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Abstract

This thesis presents recent developments in direct numerical simulations of

fluid-structure interaction occurring in biological systems, with particular interest in the

modeling of particle deposition within the human respiratory system.

Two numerical techniques are proposed. The first one is intended for direct numerical

simulations of solid high aspect ratio micro-fibers in a general Newtonian fluid flow. For

efficient and accurate resolution of the microscales, a micro-grid rigidly attached to the fiber

in its spatial motion is introduced. The entire problem on the micro-grid is transformed

with an Arbitrary Lagrangian-Eulerian method to a fixed reference domain and then solved

with a Fictitious Domain Method. Using this algorithm, rotational behavior of fibers in a

linear shear flow is studied. In view of our analysis, it is suggested that respiratory tract

deposition for high aspect ratio fibers with complex shapes will be enhanced compared with

the deposition of simple ellipsoidal fibers. Additionally, study of deposition enhancement

due to magnetic field alignment of long straight ellipsoids in realistic airway bifurcation is

performed. Results indicate that magnetic alignment of such particles can increase deep

lung deposition by a factor of 1.42–3.46 depending on the fiber aspect ratio.

A second method is developed to allow direct numerical simulations of dynamical in-

teraction between an incompressible fluid and a hyper-elastic incompressible solid. A Fic-

titious Domain Method is applied so that the fluid is extended inside the deformable solid

volume and the velocity field in the entire computational domain is resolved in an Eu-

lerian framework. Solid motion, which is tracked in a Lagrangian framework, is imposed

through the body force acting on the fluid within the solid boundaries. Solid stress smooth-

ing on the Lagrangian mesh is performed with a Zienkiewicz-Zhu patch recovery method.

High-order Gaussian integration quadratures over cut elements are used in order to avoid

sub-meshing within elements in the Eulerian mesh that are intersected by the Lagrangian
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grid. The method is validated against previously reported results on numerical simulations

of 3-D rhythmically contracting alveolated ducts. Observed flow patterns and alveolus

dynamics for breathing conditions and geometrical parameters corresponding to different

acinar generations in the respiratory system are comparable to those reported previously.

This suggests that our new formulation can be successfully applied to numerical studies of

coupled dynamics of air and airway walls in distal regions of the lungs.
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Preface

Chapter 3 of this thesis is based on two papers previously published as:

� A. Roshchenko, W. H. Finlay, and P. D. Minev. The Aerodynamic Behavior of
Fibers in a Linear Shear Flow. Aerosol Science and Technology, 45(10):1260–1271,
Oct. 2011. I contributed by developing the numerical technique and implement-
ing it in a computer code; I performed data acquisition and analysis as well as the
manuscript composition. W. H. Finlay and P. D. Minev were the supervisory authors
and were involved with concept formation and manuscript composition. W. H. Fin-
lay assisted with results interpretation, while P. D. Minev contributed to numerical
method development.

� R. C. Martinez, A. Roshchenko, P. D. Minev, and W. H. Finlay. Simulation of
enhanced deposition due to magnetic field alignment of ellipsoidal particles in a lung
bifurcation. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 26(1):31–40,
Feb. 2013.

R. C. Martinez performed data acquisition and analysis as well as the manuscript
composition. I contributed by developing the numerical method and computer code
for the experiment and assisted with manuscript edits. P. D. Minev contributed to nu-
merical method development and manuscript edits. W. H. Finlay was the supervisory
author and was involved with concept formation and manuscript composition.

Review of the Fictitious Domain Method in chapter 2, development of the numerical
technique and its verification in chapter 4 as well as concluding analysis in chapter 5 are
my original research conducted under the supervision of P. D. Minev and W. H. Finlay.
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Chapter 1

Introduction

We know that particle deposition behavior in the respiratory system is influenced by a

combination of natural factors. Among them we can distinguish major aspects that include

biological aspects determining respiratory system morphology, airway tissue composition

and characteristics of the breathing cycle, and mechanical aspects determining coupled air

and tissue dynamics, aerosol properties (particles shapes, densities, concentrations) and

deposition mechanisms.

1.1 Respiratory system

Morphology of the respiratory system is typically described using morphometric lungs mod-

els which simplify and unify complicated real airway geometries being unique for each or-

ganism. Such models usually cover the tracheobronchial region of the respiratory system,

which includes the trachea and all lung airways responsible for air transport, and the acinar

region, which includes the respiratory bronchioles, alveolar ducts and terminal alveoli – the

region with the largest volume and the place where gas exchange occurs in the lungs, see

Figure 1.1. Referring to these two regions together they are called thoracic region of the

respiratory system.

The third major region of the respiratory system is usually called extrathoracic region

and it includes the oral and nasal cavities and the throat, which in turn is composed of the

larynx and pharynx [Finlay, 2001].

The main function of the extrathoracic and tracheobronchial regions is to deliver air to

the acinar region while filtering it from the foreign objects, such as particles or bacteria,

on the way.

Morphometric lung models commonly adopt simple dichotomous splitting of a parent
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Figure 1.1: Schematic of lung morphology for tracheobronchial and acinar regions. Lung
generations are marked according to Table 1.1. Source: Wikipedia. Author: Rastrojo.

airway into two daughter branches. Some models assume symmetric branching into two

equal airways [Haefeli-Bleuer and Weibel, 1988; Finlay et al., 2000], while other models

account for observed lung asymmetry and assume daughter airways with different diameters

[Horsfield et al., 1971; Yeh and Schum, 1980].

In order to establish the relative location of airways with respect to each other, morpho-

metric lung models assign a specific index to each airway generation indicating the number

of dichotomous bifurcations preceding the airway. Thus, the trachea has generation num-

ber 0, it bifurcates into two bronchi with generation number 1 which are followed by four

daughter airways of generation 2, etc., see Figure 1.1, and refer to Table 1.1 for a complete

set of morphological parameters and airway numbering based on [Finlay et al., 2000].

Customarily, the acinar region is numbered as well, such that indexes between 0 and

3 correspond to partly alveolated respiratory bronchioles and indexes between 4 and 8

to alveolar ducts ending with alveolar sacs. For example, zero acinar generation z′ = 0

corresponds to generation number 15 in the symmetric lung model [Finlay et al., 2000],

Table 1.1.
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Generation Number Diameter Length Volume Re
Lung Acinar (mm) (mm) (cm3)
0 1 18.1 124.5 32.1 1406.9
1 2 14.1 36.1 11.4 903
2 4 11.2 28.6 11.2 568.4
3 8 8.85 22.8 11.2 359.7
4 16 7.06 17.8 11.1 225.4
5 32 5.65 11.3 9 140.8
6 64 4.54 8.97 9.3 87.6
7 128 3.64 8.28 11 54.7
8 256 2.86 7.45 12.2 34.8
9 512 2.18 6.53 12.5 22.8
10 1,024 1.62 5.55 11.8 15.4
11 2,048 1.21 4.54 10.7 10.3
12 4,096 0.92 3.57 9.7 6.76
13 8,192 0.73 2.77 9.5 426
14 16,384 0.61 2.19 10.5 2.55
15 0 32,768 0.49 1.34 21.8 1.59
16 1 65,536 0.48 1.09 34.9 0.81
17 2 131,072 0.39 0.91 44.2 0.5
18 3 262,144 0.39 0.81 73.8 0.25
19 4 524,288 0.35 0.68 116.2 0.14
20 5 1,048,576 0.33 0.68 215.8 0.07
21 6 2,097,152 0.3 0.68 377.8 0.04
22 7 4,194,304 0.28 0.65 675 0.02
23 8 8,388,608 0.24 0.73 1257.3 0.01

Table 1.1: Airway morphology parameters, Reynolds numbers (calculated for inhalation
flow rate of 18 liters/min), and the corresponding generation volumes of the symmetric
lung geometry based on [Finlay et al., 2000].

In addition to the aforementioned symmetric lung model by [Finlay et al., 2000], another

widely used model is the so called symmetric Weibel A model described in [Haefeli-Bleuer

and Weibel, 1988]; among asymmetric models, it is worth noting the morphometric de-

scription by [Yeh and Schum, 1980]. All models provide geometrical parameters, including

airway diameters, lengths; some of them additionally provide branching angles and angles

of inclination to gravity, which are useful for estimating inhaled particle sedimentation.
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1.2 Particle deposition

1.2.1 Experimental approach

Experimental in–vivo studies of aerosol deposition in human or animal subjects have been

successful in determining cumulative (total) deposition of selected aerosols, but at the same

time they have many practical limitations. Environmental aerosols, that are toxic (such as

asbestos fibers) or have the potential to harm the subject (such as carbon nanotubes [Li

et al., 2010]) can not be studied in–vivo from an ethical point of view. The cumulative

deposition approach measures only how different concentrations are between inhaled and

exhaled aerosols. And based on this information, conclusions on aerosol mass retainment

are made [Emmett et al., 1982; Jaques and Kim, 2000]. Measuring total deposition does not

tell the whole story: where in the lungs and in what amounts various aerosols deposit under

different breathing patterns remains unknown at a morphological level. Indirect in–vivo

methods exist to study local deposition patterns of nontoxic aerosols. The most common

are the studies based on retention of radio or magnetically labeled aerosols [Redman et al.,

2011; Fok et al., 1996], and analysis of aerosol bolus1 inhalation data [Kim and Hu, 1998;

Ma and Darquenne, 2012; Sturm, 2014].

A large body of knowledge about local particle deposition has been generated using in–

vitro experimental data from studies on airway replicas [Borojeni et al., 2014; Kelly et al.,

2004; Oldham and Phalen, 2002; Doorly et al., 2008] and airway idealized models [Oldham

et al., 1997; Zhang and Finlay, 2005; Javaheri et al., 2013; Golshahi et al., 2013; Azh-

darzadeh et al., 2014]. Such studies are restricted to extrathoracic and bronchial airways

only. Acinar geometries, due to their small sizes, are very difficult to construct and experi-

ment with at full size, although, recently there have been attempts towards modelling and

simulation of fluid dynamics within alveolar geometries using microfluidic devices [Kumar

Mahto et al., 2012].

1.2.2 Mathematical modeling

It is apparent that experimental techniques do not entirely satisfy the demand for scientific

data related to aerosol deposition in the lungs. As we mentioned earlier, experimental

1[Golshahi and Finlay, 2009] define aerosol bolus as a volume of gas, which contains particles, that
is surrounded by particle-free air i.e., aerosol particles are not distributed evenly throughout the entire
breath but are instead confined to a small bolus within the inspired air. Analysis is performed on the
expired aerosol concentration which has been found to be a good tracer for convective mixing within
defined segments of the respiratory system [Heyder et al., 1988].
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techniques supply information on total lung deposition studies but are lacking in predicting

accurate local depositions through the entire range of airway bifurcations. Certain aerosols

can not be tested on living humans, and it is not ethical to perform experiments on children

or other vulnerable demographic groups. Moreover, experimental studies in a strict sense

are only valid within the domain of the specific test subjects, specific particle sizes and

shapes, lung capacities and breathing patterns. While idealized airway models such as

Alberta Idealized Throat [Stapleton et al., 2000] avoid the inter-subject variability issue

by averaging individual airway geometries, they do not solve the other practical problems

mentioned above.

At the same time, with the latest advances in inhalation drug therapy and with con-

tinuing concerns about known and emerging aerosols that pose health risks to the human

population, there is strong interest and demand for more information about regional depo-

sition sites within lungs for a wide variety of aerosols under different breathing patterns.

Potentially, particle deposition modeling can fill the gaps in the knowledge left open by

experimental approaches. A combination of scientific disciplines such as mathematics, biol-

ogy, and continuum mechanics are required for proper construction of respiratory deposition

models and calls for serious interdisciplinary studies. Inevitably, mathematical modeling

will require idealization of actual morphological or mechanical characteristics of the lung–

aerosol system. Good mathematical models will not necessarily perform adequately for all

possible cases, but within certain limits, must allow analytical or numerical solution of ide-

alized equations employing physically and biologically realistic assumptions. And usually,

the fewer assumptions that are made regarding the fluid mechanics or morphology of the

system, the more complicated the mathematical model that has to be built.

There are two types of particle deposition models categorized by the approach for find-

ing deposition within individual airways. When analytical relations are used to predict

deposition in each airway, such models are called analytical and they are well capable of

predicting deposition efficiencies in the whole respiratory system. Examples of such mod-

els are [Asgharian and Yu, 1988; Balásházy et al., 1990; Asgharian et al., 2001; Choi and

Kim, 2007; Zhou et al., 2008]. In order to develop analytical expressions for deposition

probabilities these models decouple airway fluid dynamics from particle transport. Hence,

assuming laminar flow regimes with possible correction factors accounting for turbulence in

the trachea and extrathoracic region, corresponding deposition equations are used within

a lung morphology simplified to a system of bifurcating tubes. Such simplifications work

well at predicting total particle deposition in the respiratory system but they may result

in local deposition efficiencies several times greater or smaller than those obtained with
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other methods [Zhang et al., 2009b]. The second type of models, which are best suited for

predicting local deposition and transport of particles within a single or a few consecutive

airway bifurcations, are the so called computer simulation models or computational fluid

dynamics (CFD) models. These models are different in that the fluid flow in all its com-

plexity is resolved locally in a single or even in a span of few airway bifurcations. They

naturally allow for the most realistic airway geometries to be studied but at the same time,

the complexity of the respiratory system restricts their application to a limited number

of elementary morphological elements within larger components of the respiratory system.

Examples of computational deposition models grouped by the lung region are: for extratho-

racic airways [Liu et al., 2007; Xi et al., 2014], for bronchi [Zhang et al., 2009b; Longest

and Xi, 2007; Pilou et al., 2013], and for the alveolar region [Tsuda et al., 2008; Balásházy

et al., 2008; Henry et al., 2012; Sznitman, 2013]. Once the fluid flow is resolved, particle

dynamics equations are solved taking into account particle velocity, local fluid velocity,

particle mass, and Brownian diffusion. For example, a typical equation of motion in a

Lagrangian description for a spherical particle of diameter dp and mass mp can be written

as [Sznitman, 2013]:

mp
dup

dt
= FD + Fg + Fdiff , (1.1)

with Fg = mpg being the force of gravity, FD = −3πdpμ(up−v)/CC drag force on the par-

ticle surface exerted by a fluid with dynamic viscosity μ and local velocity v corrected using

Cunningham slip correction factor CC [Finlay, 2001], and random force due to Brownian

diffusion Fdiff . It is also possible to study particle deposition in an Eulerian description

solving for spatial concentration of monodisperse aerosol c [m−3] as in [Pilou et al., 2013]:

∂c

∂t
+∇·(cup) = 0, (1.2)

where particles velocities are given by up = v − τpv·∇v −D∇ ln c + O(τ 2p ), with particle

relaxation time τp = ρpd
2
pCC/18μ having the meaning of the characteristic time of the

particle velocity decay due to drag, diffusion coefficient D, dynamic viscosity μ and particle

density ρp. The CFD approach works well for predicting local deposition efficiencies of

spherical particles and for identification of localized sites of excessive deposition, which

is important when looking for potential locations of lung disease when subjected to toxic

aerosols or when targeted drug delivery in the lungs is desired.
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Deposition of high aspect ratio particles

The particle deposition equations (1.1) and (1.2) use particle size dp and density ρp (mass

mp) to determine deposition within the respiratory system. The shape of inhaled particles

is another important parameter which has significant importance in deposition patterns

for nonspherical aerosols. In contrast, equations (1.1) and (1.2) assume spherical particle

shape and completely ignore rotational motion of the particles which can significantly alter

computed locations of deposition sites. In reality only liquid particles and particles made

by evaporation of liquid droplets have spherical shapes, while most other aerosols have a

variety of different geometries. When an aerosol is known to be composed of nonspherical

particles, then the particle dynamic shape factor χ can be used in equations (1.1) and (1.2)

to account for altered behavior of the particles. The dynamic shape factor is defined as

the ratio of the actual drag force of the nonspherical particle to the drag force of a sphere

having the same volume and velocity as the nonspherical particle, [Hinds, 1999]:

χ =
FDCC(de)

3πdeμ |up − v| , (1.3)

where de is an equivalent volume diameter i.e., the diameter of a spherical particle with the

same volume as that of the actual particle. Obviously, it is impossible to know FD a priori,

therefore values of χ are tabulated experimentally for selected shapes by averaging over all

possible orientations [Davies, 1979; Dahneke, 1982; Johnson et al., 1987; Cheng et al., 1988].

With known χ, equation (1.1) can be applied to nonspherical particles using a corrected

resistance force FD = −3πdeμ(up−v)χ/CC(de); similarly, correcting the particle relaxation

time τp = ρpd
2
eCC(de)/18μχ, equation (1.2) can be extended to study the deposition of more

general classes of nonspherical aerosols.

When dynamic shape factor is used, the actual particle is replaced with an equivalent

volume sphere which feels the same resistance, averaged over all orientations, to linear

motion as the actual particle, but resistance to rotation or torque on the particle surface

is still ignored. Therefore, it is not reasonable to expect that the fluid dynamics of an

arbitrary particle with complex geometry can be well approximated by a sphere with the

same volume. Indeed, experiments with high aspect ratio straight particles [Anczurowski

and Mason, 1967] and ellipsoids [Anczurowski and Mason, 1968] and theoretical results

for prolate spheroids [Jeffery, 1922; Asgharian and Anjilvel, 1995] predict alignment of

high aspect ratio particles parallel to streamlines and following them around bending and

bifurcating airways in the lungs. This suggests that, contrary to the concept of equivalent

volume diameter, particle length has insignificant effect on the equivalent aerodynamic
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diameter2 for most of the time. Thus, while aligned with the flow, high aspect ratio

particles behave nearly identically to the spherical particles with diameters equal to the

fibers diameters, and do not get intercepted as readily by airway walls as would be in the

case of random orientation in the airway as assumed for the dynamic shape factor.

At the same time, fibrous aerosols, even those composed of fibers with simple geometries

(which are usually man made), produce particle agglomerates when individual particles

stick together or when they are contaminated with dust [Hwang, 1983]. Besides, real

fibrous aerosols are far from being characterized as being symmetric or regular in shape,

as is seen in Figure 1.2 and Figure 1.3.

Figure 1.2: Chrysotile bundle, World Trade Center dust. Bar length corresponds to 50 μm.
Courtesy of the U.S. Geological Survey.

Aerodynamics of high aspect ratio fibers of complex shapes can tremendously impact

their deposition in the respiratory system, but simple analytical or existing CFD models are

only partially able to account for this. Therefore, efficient mathematical and computational

tools are required in order to address the dynamics of fibers of complex shape in the three

dimensional flows such as are observed in the airways. Such tools should be able to resolve

particle motion in all its complexity, accounting for the realistic fluid dynamics of the

surrounding air in all airway bifurcations starting from the trachea.

2Diameter of a spherical particle with a density of 1000 kg/m3 that has the same settling velocity as
the actual particle.
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Figure 1.3: Union Internationale Contre le Cancer (UICC) Asbestos Chrysotile ’A’ stan-
dard, courtesy of the U.S. Geological Survey.

Previously, very little has been done in this direction. To our knowledge, there have

been only two attempts to study lung deposition of curved fibers. In one of them, performed

by [Asgharian and Ahmadi, 1998], a bent fiber was made by attaching two ellipsoids at an

angle to each other. Based on analytical results for drag force and torque for ellipsoids,

the corresponding equations of motion were obtained for the link of ellipsoids. In another

attempt, [Podgórski and Gradon, 1990] studied motion of deformable elongated fibrous

particles in a pipe representing an airway between two bifurcations in a stationary fully

laminar parabolic profile. Their equations of motion were based on expressions for body

forces derived by [Cox, 1970] under the assumptions of circular particle cross–section with

constant radius along the axis of symmetry and vanishing Reynolds number.

1.3 Fluid–Structure interaction

One important aspect that was significantly simplified in the described models in the pre-

vious section was the motion of airways during a normal breathing cycle. With recent

developments in medical imaging technologies which provide an understanding of real air-

way geometries and their variability among subjects, modeling the respiratory system as

a network of smooth bifurcating cylinders with dominant laminar airflow proves to be in-
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adequate in explaining realistic particle deposition mechanisms as well as experimentally

observed flow structures [Wall and Rabczuk, 2008]. In a more realistic model, local features

of the airflow and its global characteristics within the lungs are determined by a combi-

nation of hydrodynamic resistance to flow in the narrow tubes and the compliance of the

airway walls in such a way that tissue compliance plays a more important role in the global

distribution of air within the respiratory system [Tawhai and Lin, 2011]. As more and more

computational resources become available, CFD takes a leading role in providing insight

into realistic mechanics of airflow interacting with lung tissues.

Particularly, in connection with ventilator-induced lung injuries, [Wall et al., 2010] point

out that CFD studies on fixed airways can not provide information on the stresses occurring

within lung tissues under mechanical ventilation. High shear stresses in airway walls caused

by wrong ventilation frequencies and alveolar overexpansions can be predicted and corrected

when fluid–structure interaction (FSI) algorithms are used in conjunction with patient–

specific computer tomography (CT) models of the lungs. Additionally, [Wall et al., 2010]

report that even though normalized flow distributions and secondary flow intensities are

not very different when FSI simulations are applied to realistic upper bronchial geometries,

major and secondary airflow patterns were different and in spite of a relatively small changes

(of about 2%) in airway crossection areas. Such differences in airflow patterns may be less

important for larger aerosols, but it may cause significant redistribution of deposition sites

for sub–micron and nanoparticles which have a more pronounced tendency to follow the

air flow.

Another example of the importance of the correct resolution of the coupled dynamics

of air and airway walls is the flow mixing and particle deposition in the pulmonary acini.

Historically, due to small dimensions and corresponding small Reynolds numbers, flows

in the distal airways were considered kinematically reversible. Therefore, small particles

reaching that far into the bronchial tree must have been following streamlines and as such

exhaled the same way as they got there, with the only source of perturbation due to

Brownian diffusion [Edwards, 1994; Darquenne and Paiva, 1994]. Instead, it was observed

experimentally that acinar flow in complex alveolar geometries with time dependent wall

motion is characterized by recirculating flow structures [Tsuda et al., 2002]. It was shown

numerically [Tsuda et al., 1995; Henry et al., 2002] that such recirculatory flows may cause

the formation of stagnation points within the fluid domain and can be associated with

irreversible chaotic transport of massless particles.

Many studies since the year 2000 have covered the role of alveolar rhythmic expansion,

different breathing regimes, the importance of ductal and alveolar flow rates and alveolar
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topology in the particle deposition modeling in the distal airways. A summary of the major

results has been recently reviewed by [Sznitman, 2013]. These advances were associated

with increased availability of commercial CFD software and the assumption of geometrical

self–similar expansion of the studied alveolar geometries, the latter supported by many

sources, among them [Weibel, 1986; Gil et al., 1979]. At the same time, [Miki et al., 1993]

reported that lung expansion undergoes geometric hysteresis, which can alter flow and

particle deposition in the acini.

The dynamical interaction between a Newtonian fluid and a hyper-elastic solid gov-

erns many processes within human body. In recent years advances in development of FSI

methods were tightly connected with numerical studies of various biological flows, not only

within the respiratory system. Particularly, these techniques found their use in the study

of cardiac valves [Dasi et al., 2009; Weinberg et al., 2010], evolution of arterial and cere-

bral aneurysms [Humphrey and Taylor, 2008; Sforza et al., 2009], pulse–wave propagation

[van de Vosse and Stergiopulos, 2011], flow induced oscillations [Heil and Hazel, 2011] to

name but a few.

Therefore, now with even more advanced computing technologies available, there is de-

mand for new FSI numerical approaches providing facilities for studying internal biological

flows within domains with elastic boundaries.

1.4 Summary of thesis

This thesis presents the development of modern numerical techniques for solving problems

involving fluid-solid and fluid-elastic body interactions found in abundance in biological

systems. Although the described methods do not carry any assumptions restricting their

use elsewhere, they are developed keeping in mind their application to modeling deposition

of high aspect ratio fibers of complex shapes subjected to realistic biological flows within

the respiratory system.

In Chapter 2, development and evolution of the Fictitious Domain Method for Partic-

ulate Flows is outlined as it is used to solve problems addressed in the present thesis.

In Chapter 3, a computational technique for simulating the dynamics of micro-fibers of

arbitrary shapes in a general flow structure is presented. This technique is characterized

by the use of a micro-grid rigidly attached to the fiber in its spatial motion and by the

application of Arbitrary Eulerian-Lagrangian and Fictitious Domain methods for efficient

resolution of fluid flow around the particle. Then, two numerical studies based on this

technique are presented. The first study characterizes rotational behavior of high aspect

11



ratio fibers in a linear shear flow, a local approximation to the ductal flow in the lungs.

The second one is the study of enhanced deposition of magnetically aligned high aspect

ratio fibers in a realistic airway bifurcation.

Chapter 4 presents development of the finite element scheme for simulations of dy-

namical interaction between a hyper-elastic solids and a Newtonian fluid. The numerical

approach is based on the Fictitious Domain Method, where the fluid domain is extended

into the entire computational domain and the effect of solid stress is imposed through a

body force acting on the fluid in the solid volume. Validation tests are presented and proof

of concept simulations in a 3-D alveolated duct are performed.

Chapter 5 discusses results of previous chapters and points out directions for future

research.
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Chapter 2

Overview of the Fictitious Domain

Method (FDM)

2.1 Introduction

In the following we present a development of the Fictitious Domain Method (FDM) for par-

ticulate flows from its first complete description in [Glowinski et al., 1999] to its present form

that we use in subsequent chapters. In the FDM framework, calculations are performed on

a fixed domain with rigid particles moving inside the domain. Time discretization, based

on the operator splitting, is employed, allowing for separate treatment of the numerical

operators in the computational model.

First, we describe the FDM formulation with Distributed Lagrange Multiplier (DLM)

proposed by [Glowinski et al., 1994, 1999]. In this formulation, the Lagrange multiplier

acts as an additional body force per unit volume required to assert the rigid–body motion

in the solid and it is similar to the pressure in the Navier–Stokes equations, which can be

interpreted as a Lagrange multiplier imposing the incompressibility constraint [Glowinski

et al., 1999].

Then, the formulation by [Diaz-Goano et al., 2003] follows, where instead of the DLM, a

global Lagrange multiplier is introduced, allowing simpler handling of large solid fractions

suspended in the fluid.

Afterward, we describe the [Veeramani et al., 2007] approach, which eliminates the

global Lagrange multiplier from the set of governing equations and allows us to explicitly

resolve the interaction force between the fluid and the solid.

Finally, we briefly mention a moving grid procedure for very small particles proposed
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in [Dechaume et al., 2010] which is based on the [Veeramani et al., 2007] formulation of the

FDM.

2.2 Governing Equations

Consider the flow of an incompressible fluid with density ρf and dynamic viscosity μ = ρfν

around a moving solid particle with density ρp and volume Vp. The fluid flow is governed

by the Navier–Stokes equations

ρf
Dv

Dt
= ∇·σ, ∇·v = 0 in Ωf , (2.1)

with volume occupied by the fluid denoted Ωf , fluid velocity field v, full material derivative

Dv

Dt
=

∂v

∂t
+ v·∇v,

and fluid stress tensor σ defined through the fluid pressure p and velocity rate of strain

D[v] as

σ = −pI+ 2μD[v], (2.2)

such that D[·] = 1
2
[∇(·) + ∇T (·)]. The gravitational term ρfg, where g is the vector

of gravitational acceleration, in equation (2.1) has been combined into the pressure p for

convenience of notation. Additionally, a no–slip boundary condition v = U + ω×r on

the particle surface ∂Ωp is imposed, such that r = (x −X), where x is a point on the

particle boundary; U , ω, and X are respectively the particle centroid velocity, angular

velocity, and center of mass position. Schematics of the fluid domain with immersed solid

are illustrated in Figure 2.1.

The particle motion is governed by the following equations:

ρpVp
dU

dt
= Vp(ρp − ρf )g + F

d(Ipω)

dt
= T ,

dϑ

dt
= ω,

dX

dt
= U

(2.3)

where Ip is the solid inertia tensor and ϑ is the rotation vector (vector pointing along the

rotation axis with modulus equal to the rotation angle). Here, F is the total hydrodynamic

force, and T is the torque about the center of mass acting on the particle surface; they can
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Figure 2.1: Typical computational domain for problems solved with the Fictitious Domain
Method. Illustrated: fluid domain Ωf , particle domain Ωp and particle boundary ∂Ωp.

be expressed as

F =

∫
∂Ωp

σ·ndS (2.4)

and

T =

∫
∂Ωp

r×(σ·n)dS. (2.5)

where n is the outward normal to ∂Ωp.

2.3 Distributed Lagrange Multiplier

2.3.1 Weak formulation for the combined fluid–solid system

Following the argument of [Glowinski et al., 1994, 1999] we can derive a weak formulation

of the governing equations for the combined fluid–solid system (2.1)–(2.3) such that the

hydrodynamic torques and surface forces appearing in the equations (2.3) are eliminated.

The combined formulation is made possible by defining the combined trial velocity
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space, which restricts functions on ∂Ωp to satisfy a rigid body motion constraint:

V̂v = {(v,U ,ω)| v ∈H1(Ωf ), U ∈ R
3, ω ∈ R

3,

v = U + ω×r on ∂Ωp, and v = v∂Ω(t) on ∂Ω}
(2.6)

with the corresponding test space

V̂ = {(ϕ̂, ψ̂, �̂)| ϕ̂ ∈H1(Ωf ), ψ̂ ∈ R
3, �̂ ∈ R

3,

ϕ̂ = ψ̂ + �̂×r on ∂Ωp, and ϕ̂ = 0 on ∂Ω},
(2.7)

where ∂Ω is the outside boundary of the computational domain ∂Ω = ∂Ωf \ ∂Ωp.

Using the fluid momentum equation (2.1) with the test functions (2.7) and integrating

the right hand side by parts we obtain:

∫
Ωf

ρf
Dv

Dt
·ϕ̂ dΩ =

∫
∂Ωp

σ·ϕ̂·n ∂S −
∫
Ωf

σ : D[ϕ̂] dΩ, (2.8)

where n is the normal pointing inside Ωp.

Similarly, multiplying (2.3) with the corresponding test functions, we find:

ρpVp

(
dU

dt
− ρr − 1

ρr
g

)
·ψ̂ =

∫
∂Ωp

σ·n·ψ̂ ∂S

d(Ipω)

dt
·�̂ =

∫
∂Ωp

(r×(σ·n))·�̂ ∂S,

(2.9)

where ρr = ρp
ρf

is the relative density of the particle in the fluid. From the definition of

the test functions, the following relation ϕ̂ = ψ̂ + �̂×r is satisfied on ∂Ωp; therefore, the

surface integral on the right hand side of (2.8) becomes:

∫
∂Ωp

σ·ϕ̂·n ∂S =

∫
∂Ωp

σ·ψ̂·n ∂S +

∫
∂Ωp

σ·(�̂×r)·n ∂S, (2.10)

which can be rewritten using a·(b×c) = b·(c×a) as
∫

∂Ωp

σ·ϕ̂·n ∂S =

∫
∂Ωp

σ·ψ̂·n ∂S +

∫
∂Ωp

�̂·(r×(σ·n)) ∂S. (2.11)
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Inserting equation (2.11) into equation (2.8) and adding to it equations (2.9) we find that

the surface integrals on the right hand side cancel and the resulting combined equation of

motion reads:∫
Ωf

ρf
Dv

Dt
·ϕ̂ dΩ + ρpVp

(
dU

dt
− ρr − 1

ρr
g

)
·ψ̂ +

d(Ipω)

dt
·�̂ = −

∫
Ωf

σ : D[ϕ̂] dΩ. (2.12)

With an additional requirement that the pressure

p ∈ L2
0(Ωf ) =

⎧⎪⎨
⎪⎩q ∈ L2(Ωf )

∣∣∣ ∫
Ωf

q dΩ = 0

⎫⎪⎬
⎪⎭ ,

we state the weak form of the incompressibility constraint:

∫
Ωf

q∇·v dΩ = 0 for all q ∈ L2(Ωf ). (2.13)

2.3.2 A Fictitious Domain Formulation

In order to obtain a fictitious domain formulation, we seek to extend the fluid problem from

Ωf to the entire Ω = Ωf ∪Ωp, while continuing to satisfy the no–slip boundary condition on

the solid surface ∂Ωp. Such an approach improves the computational performance of the

method by allowing solution of the problem on a fixed grid covering the entire domain Ω.

Following [Glowinski et al., 1999], extension of the formulation (2.12) onto Ω is performed

in two steps:

1. Obtain a combined weak formulation in Ωp and add it to (2.12), producing a new

weak formulation which covers the whole Ω.

2. Enforce rigid–body motion as a side constraint through a Lagrange multiplier de-

fined in Ωp, effectively removing the rigid–body motion constraint from the combined

equation.

In order to produce the combined equation of motion over the Ωp domain, we have

to extend the rigid–body constraint for the velocity v and the corresponding velocity test

functions ϕ̂ from the particle boundary ∂Ωp into Ωp. Then, the appropriate functional
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spaces can be defined as:

Vv = {(v,U ,ω)| v ∈H1(Ω), U ∈ R
3, ω ∈ R

3,

v = U + ω×r in Ωp, and v = v∂Ω(t) on ∂Ω}
(2.14)

and the test space

V = {(ϕ,ψ,�)| ϕ ∈H1(Ω), ψ ∈ R
3, � ∈ R

3,

ϕ = ψ +�×r in Ωp, and ϕ = 0 on ∂Ω},
(2.15)

where ∂Ω is set as before: ∂Ω = ∂Ωf \ ∂Ωp.

Using (2.14) and (2.15) we find that in Ωp

Dv

Dt
=

dU

dt
+

dω

dt
×r + ω×dr

dt
, (2.16)

which, remembering r = x−X and dr/dt = v −U , results in

Dv

Dt
=

dU

dt
+

dω

dt
×r + ω×(ω×r) in Ωp. (2.17)

Testing (2.17) with ρpϕ within solid domain yields:

∫
Ωp

ρp
Dv

Dt
·ϕ dΩ =

∫
Ωp

ρp

(
dU

dt
+

dω

dt
×r + ω×(ω×r)

)
ϕ dΩ;

and applying the rigid–body constraint from (2.15), we obtain:

∫
Ωp

ρp
Dv

Dt
·ϕ dΩ = ρpVp

dU

dt
·ψ +

d(Ipω)

dt
·�. (2.18)

In order to derive the last equation, we have used

∫
Ωp

r dΩ = 0,

and

ρp

∫
Ωp

r×
(
dω

dt
×r
)

dΩ·� = Ip
dω

dt
·�,
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plus the Jacobi identity for the triple cross product:

ρp

∫
Ωp

(r×(ω×(ω×r))) dΩ·� = ω×(Ipω)·�.

Multiplying (2.18) with ρf/ρp and adding it to (2.12), and taking into account that the

rigid–body constraint implies D[ϕ] = 0 and

−
∫
Ωp

σ : D[ϕ] dΩ = 0,

the combined weak formulation on the entire domain Ω becomes:∫
Ω

ρf
Dv

Dt
·ϕ dΩ +

ρr − 1

ρr

[
ρpVp

(
dU

dt
− g
)
·ψ +

d(Ipω)

dt
·�
]
= −

∫
Ω

σ : D[ϕ] dΩ. (2.19)

The definition of the combined velocity space strongly enforces the rigid-body constraint

in Ωp for both the resulting velocity v and the corresponding test function ϕ. [Glowinski

et al., 1999] propose to relax the rigid body constraint by removing it from the combined

velocity space (2.14) and instead enforce it in a weak sense as a side constraint through an

appropriate DLM.

Finally, the weak formulation with the solid motion constraint relaxed using the DLM

reads:

Find v ∈ W = {ϕ ∈ H1(Ω)| ϕ = v∂Ω on ∂Ω}, p ∈ L2
0(Ω), λ ∈ Λ(t) = H1(Ωp),

U ∈ R
3, ω ∈ R

3 satisfying:

∫
Ω

ρf
Dv

Dt
·ϕ dΩ +

∫
Ω

σ : D[ϕ] dΩ +
ρr − 1

ρr

[
ρpVp

(
dU

dt
− g
)
·ψ +

d(Ipω)

dt
·�
]
=

= 〈λ, ϕ− (ψ +�×r)〉Ωp(t)

(2.20)

for all ϕ ∈W0, ψ ∈ R
3 and � ∈ R

3, coupled with

∫
Ω

q∇·v dΩ = 0 for all q ∈ L2(Ω), (2.21)

and

〈η, v − (U + ω×r)〉Ωp(t)
= 0 for all η ∈ Λ(t), (2.22)
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with an appropriate inner product 〈·, ·〉Ωp(t)
in Λ(t). For example, [Glowinski et al., 1999]

use the standard H1(Ωp) inner product

〈η, ϕ〉Ωp(t)
=

∫
Ωp(t)

(η·ϕ+∇η : ∇ϕ) dΩ.

2.4 Global Lagrange Multiplier

The Fictitious Domain Method (FDM) with the Distributed Lagrange Multiplier (DLM),

described in the previous section, is found to be robust and useful for simulations involving

one or a few solid particles. Unfortunately, application of FDM with DLM to fluidized

beds was complicated by the requirement to impose the rigid–body constraint separately

for each solid domain.

The method proposed in [Diaz-Goano et al., 2003] develops on the [Glowinski et al.,

1999] approach, but instead of using for each particle its own Lagrange multiplier, they use

a global Lagrange multiplier defined in the whole computational domain Ω = Ωf ∪ Ωp.

In order to derive the new formulation, [Diaz-Goano et al., 2003] propose to define a

new velocity field u(x, t) ∈ L2(Ω) such that

u(x, t) = U (t) + ω(t)×(x−X) in Ωp, (2.23)

and u(x, t) = 0 in Ωf .

The momentum equation for u in Ωp can be derived from (2.3) taking into account

(2.4) and remembering that
∫
Ωp

ω×r dΩ = 0:

ρpVp
dU

dt
=

d

dt

∫
Ωp

ρpU dΩ =
d

dt

∫
Ωp

ρp(U + ω×r) dΩ =

=
d

dt

∫
Ωp

ρpu dΩ =

∫
Ωp

(ρp − ρf )g dΩ +

∫
∂Ωp

σ·n ∂S

(2.24)

At this point, the stress tensor σ used in (2.24) is the fluid viscous stress defined over Ωf .

[Diaz-Goano et al., 2003] propose to extend this stress continuously inside Ωp by extending

the velocity field v and the pressure field p inside the solid. Note, that at this point v is

not necessarily equal to u in Ωp. Therefore, applying the divergence theorem to the surface
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integral in (2.24) we find:

∫
Ωp

D

Dt
(ρpu) dΩ =

∫
Ωp

(ρp − ρf )g dΩ +

∫
Ωp

∇·σ dΩ, (2.25)

which, using (2.2), becomes:

∫
Ωp

D

Dt
(ρpu) dΩ =

∫
Ωp

(ρp − ρf )g dΩ +

∫
Ωp

(−∇p+ μ∇2v) dΩ. (2.26)

Introducing the following interaction force:

F =

⎧⎨
⎩−ρf

Dv

Dt
+ μ∇2v −∇p in Ωp

0 in Ωf ,
(2.27)

which is related to the total hydrodynamic force on the particle surface (2.4) through the

relation

F =

∫
Ωp

(F + ρf
Dv

Dt
) dΩ,

the particle momentum equation takes form

∫
Ωp

D

Dt
(ρpu− ρfv) dΩ =

∫
Ωp

[(ρp − ρf )g +F ] dΩ. (2.28)

Using (2.27) we can now write an extended fluid momentum equation which holds in

the entire domain Ω:

ρf
Dv

Dt
= −∇p+ μ∇2v −F , ∇·v = 0 in Ω. (2.29)

Force per unit volume F has the meaning of the global interaction force between the fluid

and the solid and at the same time it enforces the rigid–body motion within the solid phase.

Additionally constraining the global velocity field v with

v = u in Ωp, (2.30)

which naturally follows from the no–slip boundary condition on the particle surface, the
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momentum equation for the solid phase becomes

∫
Ωp

D

Dt
(ρp − ρf )u dΩ =

∫
Ωp

[(ρp − ρf )g +F ] dΩ.

Adopting the notation (ρp − ρf )Vp = ΔM to denote the buoyant mass of the particle, and

using (2.23), we find the equation for the particle centroid velocity:

ΔM
dU

dt
= ΔMg +

∫
Ωp

F dΩ. (2.31)

The angular velocity ω is expressed from the same no–slip boundary condition on the

particle surface, which implies:

∫
∂Ωp

(ω×r)×n ∂S =

∫
∂Ωp

(v −U )×n ∂S,

and after applying Stokes’ theorem turns into an expression for ω:

ω =
1

2Vp

∫
Ωp

∇×(v −U ) dΩ =
1

2Vp

∫
Ωp

∇×v dΩ. (2.32)

Collecting everything together, the following strong form of the Fictitious Domain

Method can be stated:

ρf
Dv

Dt
= −∇p+ μ∇2v −F , ∇·v = 0 in Ω, (2.33)

ΔM
dU

dt
= ΔMg +

∫
Ωp

F dΩ, (2.34)

ω =
1

2Vp

∫
Ωp

∇×v dΩ, (2.35)

v = U + ω×(x−X) in Ωp. (2.36)

In such a formulation, F is very similar to the Distributed Lagrange Multiplier in [Glowinski

et al., 1999], but is different in the sense that it has a global effect on the fluid velocity

through (2.33). Therefore, [Diaz-Goano et al., 2003] propose another Lagrange multiplier

which is defined globally in Ω and has no restriction to be equal zero in Ωf ; it is defined as
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a solution to the following boundary–value problem:

−αλ+ μ∇2λ = F in Ω,

λ = 0 on ∂Ω, α > 0 is a constant.
(2.37)

The convenience of the equation (2.37) lies in its ability to be discretized with the global

velocity space on domain Ω. Therefore, in such a formulation, the Lagrange multiplier does

not require separate particle meshing and, in the case of many particles, the solution of

equation (2.37) imposes the rigid–body constraint simultaneously for all off them.

Finally, after integrating F by parts in Ωp, the combined equations for a Fictitious

Domain Method with global Lagrange multipliers can be obtained:

ρf
Dv

Dt
= −∇p+ μ∇2v + αλ− μ∇2λ, ∇·v = 0 in Ω, (2.38)

ΔM
dU

dt
= ΔMg −

∫
Ωp

αλ dΩ + μ

∫
∂Ωp

∂λ

∂n
∂S, (2.39)

ω =
1

2Vp

∫
Ωp

∇×v dΩ, (2.40)

v = U + ω×(x−X) in Ωp, (2.41)

dϑ

dt
= ω,

dX

dt
= U . (2.42)

2.5 A non–Lagrange multiplier version

A non-Lagrange multiplier version of the FDM has been derived by [Veeramani et al.,

2007] and is based on the Global Lagrange Multiplier version presented in the previous

section. Introducing proper operator splitting, the new formulation avoids using Lagrange

multipliers for imposition of the rigid-body constraint; instead, the interaction force is

resolved explicitly. In this new formulation, the end-of-step solid velocity is a solution

to an implicit equation, which can be solved either iteratively in the case of pronounced

rotational motion, or can be evaluated explicitly, when angular velocity is extrapolated

from the previously computed quantities.
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2.5.1 Combined formulation for fluid and solid

The new formulation starts off with the same idea of extending the fluid stress inside the

solid phase, assuming that it is Newtonian, as described in the section 2.4. First, we

state the non–dimensional versions of the equations (2.1) and (2.3) obtained by scaling the

original equations with L/ρfU
2, with the fluid stress tensor σ extended inside Ωp:

∂v

∂t
+ v·∇v = −∇p+

1

Re
∇2v, ∇·v = 0 in Ωf , (2.43)

dU

dt
=

ρr − 1

ρr

1

Fr
eg +

1

ρrVp

∫
Ωp

∇·σ dΩ

d(Ipω)

dt
= T ,

dϑ

dt
= ω,

dX

dt
= U ,

(2.44)

with no–slip boundary condition v = U + ω×(x −X) on the particle surface ∂Ωp, solid

inertia tensor Ip, rotational vector ϑ and x,U ,ω and X defined as previously, to be a

point in the solid domain, particle centroid velocity, angular velocity and the center of

mass position. The scaling coefficients Re = UL/ν and Fr = U2/gL are defined through

the characteristic velocity U , the characteristic length L, the fluid kinematic viscosity ν

and the magnitude of the gravity acceleration g, with gravity orientation given by the unit

vector eg.

Then, the interaction force is defined over the entire domain Ω = Ωf ∪ Ωp as proposed

by [Diaz-Goano et al., 2003]:

F̂ =

⎧⎨
⎩−

Dv

Dt
+

1

Re
∇2v −∇p in Ωp

0 in Ωf ,
(2.45)

allowing to extend equation (2.43) from Ωf to Ω:

∂v

∂t
+ v·∇v = −∇p+

1

Re
∇2v − F̂ , ∇·v = 0 in Ω, (2.46)

and rewrite the particle momentum equation (2.44) as

dU

dt
− 1

ρrVp

∫
Ωp

Dv

Dt
dΩ =

1

ρrVp

∫
Ωp

[
ρr − 1

Fr
eg + F̂

]
dΩ. (2.47)

Imposing the additional constraint v = u in Ωp, similarly to (2.30) in section 2.4, we
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recognize that the fluid acceleration in Ωp should be the same as the acceleration of the

rigid particle, therefore we can write

dU

dt
=

1

Vp

∫
Ωp

Dv

Dt
dΩ (2.48)

which turns (2.47) into

(ρr − 1)
dU

dt
=

1

Vp

∫
Ωp

[
ρr − 1

Fr
eg + F̂

]
dΩ. (2.49)

At this point, [Veeramani et al., 2007] propose to define the interaction force as

F =

⎧⎪⎨
⎪⎩

1

Fr
eg +

1

ρr − 1
F̂ in Ωp

0 in Ωf ,

and rewrite the final set of the governing equations (2.43) and (2.44) to obtain:

∂v

∂t
+ v·∇v = −∇p+

1

Re
∇2v + (ρr − 1)(G−F), ∇·v = 0 in Ω, (2.50)

dU

dt
=

1

Vp

∫
Ωp

F dΩ, G =

⎧⎨
⎩

1

Fr
eg in Ωp

0 in Ωf ,
(2.51)

ω =
1

2Vp

∫
Ωp

∇×v dΩ (the same as in section 2.4), (2.52)

v = U + ω×(x−X) in Ωp, (2.53)

dϑ

dt
= ω,

dX

dt
= U . (2.54)

Equation (2.53) should be recognized as a side constraint for the momentum equations

(2.50) and (2.51). In the previous sections, we have established similar systems following

[Glowinski et al., 1999] and [Diaz-Goano et al., 2003], who use Lagrange multipliers to

impose the constraint (2.53). Instead, in the present formulation, [Veeramani et al., 2007]

are able to derive an explicit equation for the interaction force F eliminating the need in

the Lagrange multipliers.
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2.5.2 Discretization and operator splitting

A second order incremental pressure-correction scheme is used to decouple the velocity

and pressure at each time step. This allows us to solve a sequence of elliptic problems for

the velocity and the pressure, which significantly simplifies solution of the Navier-Stokes

equations in real applications. The approach is as follows:

Predictor

The position and orientation of the particle at time step tn+1 are predicted explicitly

by

Xp =Xn−1 + 2ΔtUn ϑp = ϑn−1 + 2Δtωn

where Δt is the time step.

Advection–diffusion step

Then, we solve for v∗(x) from

τ0v
∗ − 1

Re
∇2v∗ = −τ1ṽn − τ2ṽ

n−1 −∇pn + (ρr − 1)Gp in Ω,

v∗ = v∂Ω on ∂Ω
(2.55)

where τ0 = 3/(2Δt), τ1 = −2/Δt and τ2 = 1/(2Δt), with superscript [·]p indicating

parameters dependent on the predicted solid position Xp and orientation ϑp. In

equation (2.55), we perform time splitting of the convective terms from the generalized

Stokes problem as explained in [Minev and Ross Ethier, 1998]. In this approach, the

material derivative on the left hand side of (2.50) is approximated with the second

order backward difference scheme as:

∂vn+1

∂t
+ ((vn+1)·∇)vn+1 ≈ 3vn+1 − 4ṽn + ṽn−1

2Δt
= τ0v

n+1 + τ1ṽ
n + τ2ṽ

n−1, (2.56)

with ṽn(x) = v(Z(tn;x), tn) and ṽn−1(x) = v(Z(tn−1;x), tn−1) being the velocities

from the time levels n and n−1, which have been advected alongside an approximation

to the characteristics. In such a formulation, Z(tn;x) and Z(tn−1;x) are the solutions

to the following terminal-value problem for pure advection equation between tn−1 and

tn+1: ⎧⎨
⎩

dZ(s)

ds
= v(Z(s), s),

Z(tn+1) = x, x ∈ Ω, s ∈ [tn−1, tn+1].

(2.57)
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Velocity projection

Project the approximation v∗(x) onto the solenoidal subspace of L2(Ω) in order to

recover the divergence-free velocity v∗∗(x):

τ0(v
∗∗ − v∗) = −∇(pn+1 − pn) in Ω (2.58)

∇·v∗∗ = 0 in Ω (2.59)

(v∗∗ − v∗)·n = 0 on ∂Ω (2.60)

where n is the outward normal to ∂Ω.

Rigid body constraint

In the following, derivation of the explicit relation for F is performed. It follows

[Veeramani et al., 2007] and is based on the Marchuk–Yanenko splitting approach.

First, we predict the rigid body centroid velocity with the approximation to (2.48):

τ0U
p + τ1U

n + τ2U
n−1 =

1

Vp

∫
Ωp

p

(τ0v
∗∗ + τ1ṽ

n + τ2ṽ
n−1) dΩ. (2.61)

Then, since in (2.55) there was no interaction force term due to the solid, the following

correction should be considered:

τ0(v
n+1 − v∗∗) = −(ρr − 1)F in Ω, (2.62)

as well as correction to the particle centroid velocity:

τ0(U
n+1 −U p) =

1

Vp

∫
Ωp

p

F dΩ, (2.63)

and the rigid–body constraint

vn+1 − (Un+1 + ωn+1×(x−Xp)) = 0 in Ωp
p. (2.64)

The expression for the interaction forceF can be found by subtracting equation (2.63)

from equation (2.62):

−(ρr − 1)F − 1

Vp

∫
Ωp

p

F dΩ = τ0(v
n+1 −Un+1 +U p − v∗∗), (2.65)
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and plugging in the rigid-body constraint for vn+1 −Un+1:

−(ρr − 1)F − 1

Vp

∫
Ωp

p

F dΩ = τ0(ω
n+1×(x−Xp) +U p − v∗∗). (2.66)

This can be further simplified, if we integrate (2.65) over the solid domain and use

the integral of the rigid-body constraint

∫
Ωp

p

(vn+1 −Un+1) dΩ =

∫
Ωp

p

ωn+1×(x−Xp)) dΩ = 0

to find: ∫
Ωp

p

F dΩ =
τ0
ρr

∫
Ωp

p

(v∗∗ −U p) dΩ. (2.67)

Plugging (2.67) into equation (2.66), we find the explicit form of the interaction force

F in the entire domain Ω:

−(ρr − 1)F = τ0

[
1

ρrVp

∫
Ωp

p

(v∗∗ −U p) dΩ+

+ ωn+1×(x−Xp) +U p − v∗∗
]
χp(x),

(2.68)

where χp is the indicator function such that

χp =

⎧⎨
⎩1 in Ωp

p,

0 in Ωp
f .

The end of step particle centroid velocity can now be found from (2.63) as

Un+1 = U p +
1

ρrVp

∫
Ωp

p

(v∗∗ −U p) dΩ

=
ρr − 1

ρr
U p +

1

ρrVp

∫
Ωp

p

v∗∗ dΩ,
(2.69)
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while the end of step fluid velocity becomes

vn+1 = v∗∗ +
[
Un+1 + ωn+1×(x−Xp)− v∗∗]χp. (2.70)

If we employ equation (2.52) in the form

ωn+1 =
1

2Vp

∫
Ωp

p

∇×vn+1 dΩ

as an expression for the angular velocity, then it becomes apparent that the equation

for the fluid velocity (2.70) is implicit and nonlinear. One way to address this would

be to solve (2.70) iteratively, or, when the angular velocity of the solid is expected to

be small, ω can be extrapolated with

ωn+1 =
1

2Vp

∫
Ωp

p

∇×v∗∗ dΩ. (2.71)

Corrector

The position and orientation of the particle are corrected using

Xn+1 =Xn +
Δt

2
(Un+1 +Un) and ϑn+1 = ϑn +

Δt

2
(ωn+1 + ωn). (2.72)

Note, that all integrals in the described algorithm are evaluated in the solid domain

Ωp
p which is explicitly predicted at the beginning of each time step. Moreover, when the

extrapolation (2.71) for the angular velocity is used, the resulting method becomes explicit

in solid velocity as well. These simplifications, which significantly reduce the computational

complexity of the algorithm per time step, will inevitably require very small time steps in

order to maintain accuracy and stability. Therefore, the trade–off between the time step

size and the complexity of the implicit iterations should be considered carefully for each

particular problem.
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2.6 A two-grid Fictitious Domain Method – multi-

scale approach

The Fictitious Domain Methods presented in the previous sections are designed to simulate

solid particles in domain, where the solid and fluid length scales are comparable. Particu-

larly, the global Lagrange multiplier formulation in section 2.4 and non-Lagrange multiplier

version from section 2.5 find their application in the simulations of sedimenting fluidized

beds of many solid particles. These formulations assume that the governing equations de-

fined on the computational domain Ω = Ωf ∪ Ωp (Figure 2.1) are discretized on a grid GH
which fits Ω and such that the grid size H is well suited to resolve both fluid and solid

phases.

However, there are some biological particulate flows, such as the flows of inhalable

aerosols in the lungs, which are characterized by significant differences in the domain and

suspended solid length scales. Particles reaching the tracheo-bronchial region are so small,

compared to the airway dimensions, and their mass fraction is so insignificant, that the

fluid flow at the lung airway scale is not affected by the solid inclusions. Therefore, it

is sufficient to discretize the fluid dynamics equations on a grid GH associated with the

airway domain, having grid size H correspondent to the airway fluid flow length scale. On

the other hand, rigid-body motion, in the cases when particles are non-spherical, can not

be resolved well without resolving the correct hydrodynamic forces and torques imposed

by the fluid on a particle surface. In this case, correct resolution of the fluid flow is only

possible when the equations that describe coupled fluid-solid dynamics are discretized on

a grid Gh with the grid size h correspondent to the particle length scale. In view of these

arguments, correct modelling of the particle deposition in the lung airways will require

H � h, which, if approached naively, demands so much computational resources, that

application to realistic problems is not feasible.

In order to address the aforementioned problems, [Dechaume et al., 2010] propose a

two-grid FDM for particles of a very small size. They introduce two grids, each of them

fine enough to accurately resolve the flow on its corresponding scale. Therefore, when an

object of a very small size is simulated within a much larger domain, the micro-scale grid

Gh with the grid size h surrounds the object and is attached to its centre of mass following

its motion. The macro-scale grid GH with the grid size H covers the entire computational

domain Ω and the micro-scale grid Gh becomes embedded in GH , see Figure 2.2.

The idea of the multiscale approach is to resolve the fluid flow on the macro-grid GH
first, without the presence of the solid, and then transfer the so computed velocity as

30



Figure 2.2: Computational grids in two-grid FDM formulation.

a Dirichlet boundary condition onto the micro-grid surface ∂Gh, solving the micro-scale

problem discretized on Gh with the spatial resolution appropriate for the object’s size. The

described approach is only consistent as long as the H � h condition holds.

2.6.1 Governing equations

For solid micro-particles simulations the two-grid multiscale algorithm is combined with a

slightly modified FDM formulation from Section 2.5.

The fluid flow on the macro-scale is governed by the Navier-Stokes equations:

∂vH
∂t

+ vH·∇vH = −∇pH +
1

ReH
∇2vH , ∇·vH = 0, (2.73)

which are discretized on the macro-grid GH , with pH , vH being the fluid pressure and

velocity and ReH = UHLH/ν is the Reynolds number defined using the characteristic

length and characteristic velocity appropriate for the macro-scale flow.
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On the micro-grid Gh, we discretize a modified version of the system (2.50)–(2.54):

∂v

∂t
+ ((v −U )·∇)v = −∇p+

1

Re
∇2v + (ρr − 1)(G−F), ∇·v = 0 in Ω, (2.74)

dU

dt
=

1

Vp

∫
Ωp

F dΩ, G =

⎧⎨
⎩

1

Fr
eg in Ωp

0 in Ωf ,
(2.75)

d(Ipω)

dt
=

1

ρr

∫
Ωp

(x−X)×Dv

Dt
dΩ, (2.76)

v = U + ω×(x−X) in Ωp, (2.77)

dϑ

dt
= ω,

dX

dt
= U , (2.78)

where Ω is the domain covered by grid Gh, Ωf is the sub-domain of Ω containing fluid, and

Ωp is the solid sub-domain, such that Ω = Ωf ∪Ωp. Similarly, the notation of the previous

section is adopted here for quantities defined on Ω with the scaling performed using the

characteristic length and the characteristic velocity based on the micro-scale parameters.

Additionally, the micro-grid Gh is attached to the particle center of massX so that particle

is free to rotate in Ω.

One change we have to make to the system (2.50)–(2.54) is to introduce the total

derivative in the equation (2.74) in a form which is natural for Arbitrary Lagrangian-

Eulerian (ALE) methods. Indeed, since the micro-grid is moving with the particle centroid

velocity, we have to reflect that in the governing equations as it is done in ALE. Although,

since the grid motion is linear, i.e., parallel translation, it is only the convective term that

has to be modified.

Additionally, [Dechaume et al., 2010] propose to find the angular velocity by solving

equation (2.76) instead of using for this purpose equation (2.52). Based on their numerical

experiments, [Dechaume et al., 2010] conclude that for ellipsoids, equation (2.52) performs

not as well as it does for spherical particles. Therefore, they use equation (2.76) which also

follows from (2.77).

2.6.2 Algorithm description

Implementation of the approach is as follows.

1. Find solution on macro-grid

Resolve the Navier-Stokes equations (2.73) on the macro-grid GH ignoring the effect of
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the solid. Since the length scale of the solid is assumed much smaller than the length

scale on GH , flow on the macro-grid does not “feel”the presence of the particle.

2. Predict position of the micro-grid at tn+1

Predict position and orientation of the particle at time step tn+1:

Xp =Xn−1 + 2ΔtUn ϑp = ϑn−1 + 2Δtωn,

which also defines predicted position of Gh(tn+1) denoted as Gp
h.

3. Transfer velocity from macro-grid as a boundary condition on micro-grid

Use the resulting velocity field on GH to interpolate Dirichlet boundary conditions

at ∂Gp
h boundary of Gp

h. The interpolation can be performed with regular P2 basis

functions. Zero velocity is prescribed on boundary nodes when they appear outside

of the computational grid GH as a result of particle motion.

4. Impose zero flux through micro–grid surface

In general, the interpolated velocity v̂H on ∂Gp
h produces non-zero flux through the

surface. Therefore, we correct its normal component with the simple Lagrange mul-

tiplier problem

v∂Ω·n = v̂H·n+ λ̂ on ∂Ωp∫
∂Ωp

v∂Ω·n dS = 0,
(2.79)

discretized on the micro-grid boundary ∂Gp
h the discrete version of the continuous

boundary ∂Ωp.

5. Resolve fluid flow and solid motion on the micro-grid

Using the same time discretization and operator splitting as in section 2.5.2, we

perform the following steps:

Solve for v∗(x):

τ0v
∗ − 1

Re
∇2v∗ = −τ1ṽn − τ2ṽ

n−1 −∇pn + (ρr − 1)Gp in Ωp,

v∗ = v∂Ω on ∂Ωp
(2.80)

discretized on Gp
h. It is important to note here, that ṽn(x) = v(Z(tn;x), tn) and

ṽn−1(x) = v(Z(tn−1;x), tn−1) are the velocities from the time levels n and n − 1,
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which have been advected alongside an approximation to the characteristics as before.

Although, due to the left hand side of (2.74), the feet of the characteristics at time

levels n and n − 1, Z(tn;x) and Z(tn−1;x) respectively, are the solutions to the

modified terminal–value problem (2.57):

⎧⎨
⎩

dZ(s)

ds
= v(Z(s), s)−U (s),

Z(tn+1) = x, x ∈ Gp
h, s ∈ [tn−1, tn+1].

Solve for pressure pn+1 and incompressible velocity v∗∗:

τ0(v
∗∗ − v∗) = −∇(pn+1 − pn) in Ωp

∇·v∗∗ = 0 in Ωp

(v∗∗ − v∗)·n = 0 on ∂Ωp

on Gp
h, with n being the outward normal to ∂Gp

h.

Resolve rigid body motion:

The rigid body velocity is first predicted by integrating the fluid acceleration in Ωp
p

on Gp
h:

τ0U
p + τ1U

n + τ2U
n−1 =

1

Vp

∫
Ωp

p

(
Dv

Dt

)n+1

dΩ, (2.81)

where (
Dv

Dt

)n+1

= τ0v
∗∗ + τ1ṽ

n + τ2ṽ
n−1. (2.82)

Then, we eliminate the Lagrange multiplier F from the set of equations, which yields

the end-of-step centroidal and angular velocities:

Un+1 =
1

ρrVp

∫
Ωp

p

v∗∗ dΩ +
ρr − 1

ρr
U p, (2.83)
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and

ωn+1 =
(Ipp)

−1

τ0

(
1

ρr

∫
Ωp

p

(xn+1 −Xp)×
(
Dv

Dt

)n+1

dΩ−

− τ1(Ipω)
n − τ2(Ipω)

n−1
)
,

(2.84)

where I
p
p is the predicted inertia tensor, and integration over Ωp

p is performed on the

micro-grid Gh.
Correct fluid velocity and solid position:

Finally, we have the end-of-step solution for the fluid on the micro-grid:

vn+1(x) =

{
v∗∗(x), in Ωp

f ,

Un+1 + ωn+1×(x−Xp), in Ωp
p,

(2.85)

which could be imposed pointwise or in the L2 sense on Gp
h.

The position and orientation of the particle, as well as the end of step position of

Gn+1
h are corrected using

Xn+1 =Xn +
Δt

2
(Un+1 +Un), ϑn+1 = ϑn +

Δt

2
(ωn+1 + ωn). (2.86)

6. Next time step

Go to step 1, in order to perform another time step.

The algorithm is tested and validated in [Dechaume et al., 2010] on the problem of

a sedimenting sphere in a tank, on the tumbling motion of an ellipsoid in a linear shear

flow (Jeffery orbits [Jeffery, 1922]) and on the problem of a small ellipsoid migrating in a

bifurcating pipe, which resembles the tracheo-bronchial airway bifurcation.
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Chapter 3

Dynamics of solid particles in a fluid

This chapter is based on and follows closely previously published paper:

A. Roshchenko, W. H. Finlay, and P. D. Minev. The Aerodynamic Behavior of

Fibers in a Linear Shear Flow. Aerosol Science and Technology, 45(10):1260–

1271, Oct. 2011.

Some results presented in this chapter have been previously published in:

R. C. Martinez, A. Roshchenko, P. D. Minev, and W. H. Finlay. Simulation of

enhanced deposition due to magnetic field alignment of ellipsoidal particles in a

lung bifurcation. Journal of Aerosol Medicine and Pulmonary Drug Delivery,

26(1):31–40, Feb. 2013.

3.1 Introduction

Various factors influencing fiber deposition have been studied by numerous authors since the

1960’s. However, a complete mechanistic model of fiber dynamics in narrow tubes like those

of the airways in the lungs which would account for all major factors affecting deposition,

including diffusion, gravitational sedimentation, inertial impaction and interception, as well

as fiber shape, has not been developed yet.

When developing deposition models for inertial impaction and interception, recent ad-

vances have been observed in the study of how inertia influences the deposition of man-made

fibers in the upper airways [Su and Cheng, 2009], though one of the problems yet to be self-

consistently addressed is the orientation of the real fibers with respect to the flow direction

in an airway. Fiber orientation depends on a number of factors such as airway geometry,

type of fluid flow in the airway, and particle size and shape. Since airway geometry and flow

conditions vary greatly along the particle path through the lungs, only general statements
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about fiber orientation can be made.

Experiments with rods [Anczurowski and Mason, 1967], ellipsoidal bodies [Anczurowski

and Mason, 1968], and theory developed by [Jeffery, 1922] for neutrally buoyant prolate

spheroids, with the later extensions by [Asgharian and Anjilvel, 1995] in order to include

inertia and [Podgórski and Gradon, 1990] for flexible slender bodies, allow us to expect

alignment of long straight fibers with the flow in the lungs. But this expectation cannot be

extended to all fibrous aerosols, since fibrous aerosols, even those composed of only straight

fibers, when observed through a microscope [Hwang, 1983], reveal significant numbers of

irregularly shaped particles. Such particles form when regular particles are contaminated

with dust or several particles stick together to form particle aggregations, and due to their

irregular shape cannot be expected to align with the flow.

Unfortunately, we know very little as to how fibers of different geometries will orient

in an airway. In this regard, it is worth mentioning the analytical work by [Cox, 1970].

Ignoring fluid inertia, he derived an asymptotic expansion in terms of the ratio of the

cross-sectional radius to the body length for force per unit length applied on a long solid

slender body immersed in an undisturbed fluid flow. Worked examples present resistance

to translation for long slender bodies with curved centerline. [Cox, 1971] further develops

this approach and applies it to find the total force and torque on a long slender body in

a linear shear flow. Unfortunately, [Cox, 1971] assumes an axisymmetric shape and so his

analysis does not apply for arbitrary fiber shapes.

[Podgórski and Gradon, 1990, 1998] derived equations of motion for deformable and

rigid elongated fibrous particles in an arbitrary flow structure. For deformable particles

the derivation is done by considering local motion of thin slices forming the particle body.

Dynamics of solid particles is considered as a limiting case of the flexible fibers with infinite

elastic modulus [Podgórski and Gradon, 1998]. The equations are derived under the as-

sumption of circular particle cross-section with constant radius along the axis of symmetry,

and are easy to use when viscous drag per unit length exerted by the fluid is known, e.g.

the case of creeping flow when the corresponding body forces are determined from slender

body theory [Cox, 1970]. Using these equations [Podgórski and Gradon, 1990] report ori-

entation, deformation and deposition efficiency for perfectly flexible slender particles under

flow conditions representative of the lower human airways.

Additionally, [Asgharian and Ahmadi, 1998] approximated curved fibers with ellipsoids

rigidly connected to each other under different angles. They derived a system of differential

equations governing the full body motion of a fiber made of two ellipsoids by using analytical

expressions for fluid forces and torque acting on a single ellipsoid. The system is solved
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numerically and the results are used to study the deposition rate of such fibers in a narrow

airway. Though the authors did not present a detailed description of the rotational motion

for a single fiber, they did note a lack of orderly movement for their particles and showed

dependence of deposition rates on particle geometry.

Since there is a lack of scientific data on how fluid flows influence the orientation of

particles of various shapes, analytical models developed over the years [Harris and Fraser,

1976; Asgharian and Yu, 1988; Balásházy et al., 1990] and more recently, [Sturm and

Hofmann, 2006; Zhou et al., 2008; Inthavong et al., 2009] offer formulae for deposition

efficiencies only for long straight fibers. These models cover different flow conditions such as

laminar flow in the lung airways (some authors assume that the fluid flow profile is uniform

in the straight portions and radially dependent on the curved portions of the airways as

in [Balásházy et al., 1990], while others assume it to be parabolic as in [Harris and Fraser,

1976]) and turbulent flow in the upper airways. In order to compensate for uncertainties

about fiber orientation, all such formulae are developed by assuming one or more of three

cases of fiber orientation: the fiber axis is aligned, perpendicular, or randomly oriented

with respect to the flow. Using these assumptions, deposition models can be constructed

by taking into account airway geometry, flow conditions, and expected fiber orientation at

different points along the particle’s trajectory through the airway.

It should be noted that both experiments and analytical deposition estimates for long

fibers show that their deposition efficiency in the lungs increases when the particle’s shape

has a large interception cross section [Timbrell, 1970; Harris Jr and Timbrell, 1975] and

when fibers (even straight ones) are oriented randomly in an airway [Harris and Fraser,

1976; Asgharian and Yu, 1988; Balásházy et al., 1990].

[Timbrell, 1970] characterizes different shapes and size distributions for two types of

asbestos fibers – curly chrysotile fibers resembling bundles of long thin fibrils and straight

”needle-like” amphiboles. He also describes an experiment on two groups of rats, in which

it is found that after 10 weeks exposure to dust clouds of the Union Internationale Contre le

Cancer (UICC) reference fibers, six times more (by weight) amphiboles are recovered from

animal’s lungs than chrysotile particles. They repeated the experiment in vitro on a bundle

of 100 tubes, 1 cm long and 400 μm inner diameter, with flow conditions comparable with

the narrow lung airways and confirmed that an estimated five to six times as much needle-

like fibers as curly fibers penetrated the bundle. This difference is explained by the smaller

penetration efficiency of curly fibers through narrow tubes as compared with needle-like

shape particles. Higher ratios of penetrated masses for amphiboles and chrysotiles have

also been observed in experiments on hollow casts of pig and human lungs [Timbrell, 1970].
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More recently, [Harris Jr and Timbrell, 1975] proposed a deposition model and math-

ematical estimates for three particles – a single straight rod, two attached straight rods,

or three rods orthogonal to each other – all under an assumption of random orientation in

the airway. Their idea is that a randomly oriented straight rod may behave in an airway

like a particle of general shape, while the two other configurations represent aggregations

of simple particles. Their mathematical formulation is based on adapting a mathematical

model for straight fibers as described in [Harris and Fraser, 1976]. They compared the

deposition of the three particles of interest with the deposition of single straight particles

in an ordered tumbling motion. Their results predict differences in deposition efficiencies

for particles aligned with the flow and for randomly oriented particles. They also found

that increased interception cross section for particle aggregations and random orientation

of single particles both decrease the probability of particle deposition in the peripheral lung

airways, but increase deposition probabilities for the upper airways.

New noninvasive magnetic targeting method that relies on increasing local interception

deposition have been presented in [Martin and Finlay, 2008b,a] and studied in vivo by

[Redman et al., 2011]. The method is based on the result of [Jeffery, 1922] predicting

that straight fiber particles will spend most of their time in the stream aligned with the

fluid streamlines. This allows elongated high aspect ratio particles to reach the most

distal lung airways, where their deposition can be enhanced by controlling their orientation

in a way that benefits deposition due to interception. [Martin and Finlay, 2008b] have

shown that the angular orientation of a high aspect ratio particle covered with magnetic

nanoparticles can be controlled with an external source of magnetic field. The magnetic

targeting method is successfully verified in an in vitro study [Martin and Finlay, 2008a]

where deposition is enhanced by a factor of 1.7 under external magnetic field. Later,

[Redman et al., 2011] completed an in vivo study confirming that the magnetic targeting

approach is able to increase deposition in the middle and basal airways of the lung in

rabbits. From these studies, this magnetic targeting technique shows promise, but the

question of how deposition enhancement can be affected by various parameters has yet to

be examined. In particular, in order to better understand the potential of this method

there is a need to study the effect of fiber aspect ratio on the deposition efficiency in distal

airways.

Given existing data that find that particle shape may strongly influence the deposition of

inhaled fibers, interest in improving deposition models in the respiratory tract to rigorously

predict deposition for particles of all shapes remains strong. In addition, asbestos fibers are

still of major interest for environmental hygienists around the world. Recent developments
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in nanotechnology have resulted in the proposed use of asymmetric fibers deformation to

enhance targeting of deposition [Shang et al., 2008] and have also brought new concerns

about the possible toxicity of recently created materials such as carbon nanotubes. But

despite the obvious importance of fiber geometry in the prediction of deposition patterns

in the lungs, except for [Asgharian and Ahmadi, 1998] and [Podgórski and Gradon, 1990],

no attempts have been made in the literature to self-consistently address the dynamics of

complex particles under flow conditions found in the lung airways either analytically or

numerically.

In the following sections we will present work on direct numerical simulations of fiber

dynamics taking into account the complexity of shapes appearing with real fibers. Unfortu-

nately, it is not possible to provide numerical solution representative of all flow conditions

present in the lungs. This is mainly because the flow there is essentially three-dimensional

[Tsuda et al., 2002; Wall and Rabczuk, 2008]. In addition, there is a strong evidence of

nonreversible mixing in all lung generations, even in the most distant ones [Tsuda et al.,

2002; Sznitman, 2013]. Despite the factors mentioned above, the flow profile in the axial

direction is usually reported as being close to Hagen—Poiseuille, skewed parabolic or M-

shaped, depending on the Reynolds number [Balásházy et al., 1996; Nowak et al., 2003;

Cebral and Summers, 2004; Zhang and Kleinstreuer, 2004; Wall and Rabczuk, 2008].

Computational efforts in the airways are especially complicated because of the sig-

nificant differences in the length scales involved in any mathematical model for particle

dynamics. Airway diameters range from 1.81 cm in the trachea to 240 μm in the terminal

alveoli [Finlay et al., 2000]. At the same time, diameters of the most interesting particles,

which have a better chance to penetrate into the distal airways are about 1 μm (∼ 10−4 cm)

and smaller. In order to accurately resolve particle motion, the size of the computational

grid used in simulations should be determined from the smallest dimension of the fiber. For

spherical particles, for example, the mesh is required to allow at least ten elements along a

sphere diameter to produce sedimentation results close to experimental results [Veeramani

et al., 2007]. On the other hand, such fine grids are not practical for simulations of the

flow within airways. From our experience, low Reynolds number flow in the ducts can be

adequately resolved on meshes with element sizes ten or even twenty times larger than

required for particle simulations [Dechaume et al., 2010; Martinez et al., 2013]. We will

address the issue of different length scales involved in our simulations with the Rotating

Grid Procedure described in Section 3.2.

Using the Rotating Grid Procedure, we first show that even neglecting secondary flows

and assuming an ideal parabolic flow profile in the airways, particle deposition may further
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be enhanced by a nontrivial particle geometry. And in this simplified case, on top of the

linear translation in the axial direction, actual high aspect ratio asbestos-like fibers in the

human lungs are expected to have at least two components of rotation: in-plane rotation

(tumbling in the plane containing a duct axis and the particles’ center of mass, i.e., in a

plane with the unit normal parallel to the local vorticity) due to simple shear in a parabolic-

like flow profile, and transverse rotation(secondary rotation orthogonal to the first one) due

to irregular particle shape causing the fluid forces to be distributed nonuniformly over the

particle surface; see Figure 3.1, Section 3.3.

Figure 3.1: Two types of rotation: in-plane rotation angle ϕ and transverse rotation angle
θ.

Second, we will study trajectories of long fibers in a small (distal) airway bifurcation

model with fixed angular position of the particle. The deposition efficiency with and without

magnetic field alignment will be presented and the effect of particle aspect ratio on the

deposition enhancement will be quantified; see Section 3.4.

3.2 Numerical Method

3.2.1 Governing Equations

To examine the coupled motion of a rigid body fiber in a fluid, we directly solve the govern-

ing equations of motion for the fiber and surrounding fluid. Newton’s second law supplies

the equations for the velocity and angular velocity of the particle of an arbitrary shape,

while the surrounding fluid motion is obtained by solving the Navier–Stokes equations.
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The particle and fluid motions are coupled via surface forces and a no-slip boundary con-

dition applied at the particle surface. The resulting set of nonlinear equations is solved

numerically.

The equations of motion of the fluid are

∂v

∂t
+ v·∇v = −∇p+

1

Re
∇2v

∇·v = 0
in Ωf , (3.1)

with no-slip boundary condition v = U + ω×(x −X) on the particle surface ∂Ωp and

Ωf being the fluid domain, Figure 2.1. Here, v is the fluid velocity field, p is the fluid

pressure, Re = UL/ν is the Reynolds number defined via the fluid kinematic viscosity

ν, the characteristic length L, and the characteristic velocity U , and x is a point on the

particle boundary; U , ω, and X are respectively the particle centroid velocity, angular

velocity, and center of mass position.

The particle motion is governed by the following equations:

dU

dt
=

ρr − 1

ρr

1

Fr
eg +

1

ρrVp

F

d(Ipω)

dt
= T ,

dϑ

dt
= ω,

dX

dt
= U

(3.2)

where ρr = ρfiber/ρfluid is the particle relative density, Fr = U2/gL is the Froude number

with g being the gravity acceleration, eg is the unit vector in the direction of gravity, Vp is

the particle volume, Ip is the inertia tensor, ϑ is the rotation vector (vector pointing along

the rotation axis with modulus equal to the rotation angle), F is the total hydrodynamic

force, and T is the torque acting on the particle surface.

3.2.2 Fictitious Domain Formulation

For our numerical method, we adopted the finite element formulation of the fictitious

domain method, developed by [Diaz-Goano et al., 2003] and further extended by [Veeramani

et al., 2007], in order to replace the use of Lagrange multipliers, when imposing the rigid

boundary constraint, with the solution of an integral equation. See Chapter 2 for more

detail.

The fictitious domain method reformulates the systems (3.1)–(3.2) by extending the

42



Navier—Stokes equations to the entire domain Ω = Ωf ∪ Ωp, Figure 2.1:

Dv

Dt
= −∇p+

1

Re
∇2v + (ρr − 1)(g −F) in Ω,

∇·v = 0 in Ω,
(3.3)

v = U + ω×(x−X) in Ωp,

dϑ

dt
= ω,

dX

dt
= U

dU

dt
=

1

Vp

∫
Ωp

F dΩ,
d(Ipω)

dt
=

1

ρr

∫
Ωp

(x−X)×Dv

Dt
dΩ,

(3.4)

where

g =

⎧⎨
⎩

1
Fr
eg, in Ωp,

0, in Ωf ,

represents the gravity acting on the particle and

F =

⎧⎪⎨
⎪⎩

1

Fr
eg +

1

ρr − 1

(
−Dv

Dt
+

1

Re
∇2v −∇p

)
, in Ωp,

0, in Ωf ,

(3.5)

represents the interaction force between the two phases.

3.2.3 Rotating Grid Procedure

In Chapter 2.6 we described a multi-scale approach for FDM simulations of the micro-

particles in the large domains. The approach introduces two grids GH and Gh with the grid

sizes H and h respectively, such that h 	 H. The grid spacing on each grid is chosen to

be appropriate for the accurate spatial resolution of the corresponding scale.

The notable feature of the method is that the micro-grid Gh is attached to the solid

centre of massX and follows particle in its motion. The particle is left free to rotate within

the grid Gh around X.

Such setup requires very fine meshing in the micro-grid everywhere where the particle

may possibly appear during the simulations. And in the case of fibers experiencing intensive

rotation, we, therefore, have to solve on a relatively large, significantly refined mesh. At

the same time, for each angular position of the fiber, fine meshing is required only in some

vicinity of the particle surface, while the rest of the grid, though being refined, does not
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contribute much to the overall accuracy of the simulations.

For the Rotating Grid Procedure we propose to extend the two-grid approach in Chap-

ter 2.6 by fixing the micro-grid Gh with respect to the particle in its spatial motion. This

allows us to refine the computational mesh in the immediate vicinity of the particle, while

leaving the rest of the grid Gh as fine as it is required for the accurate resolution of the

local flow features. Additionally, fixing particle within the mesh allows exact fitting of

the complex particle surface geometry with the elements in the computational mesh, which

eliminates sub-meshing of intersected elements required for the accurate integration in (3.4),

see Figure 3.2.

Since now the computational grid Gh is experiencing complex spatial rigid-body motion,

we apply the ALE method, thus transforming the problem on the moving grid Gh(t) to the

problem defined on a fixed grid G0
h = Gh(0).

Figure 3.2: Schematic depiction of the Macro-grid GH and the Micro-grid Gh for the Rotat-
ing Grid Procedure. Particle boundary in Gh can be seen fit by the discretization elements
edges.

Arbitrary Lagrangian–Eulerian Transformation

Grid Gh is fixed around the particle and is advected and rotated together with it. The grid

position and orientation at time t we denote Gh(t); similarly, the domain covered by Gh(t)
we call Ω(t). We introduce two sub-domains of Ω(t) = Ωf ∪ Ωp, such that Ωf is the fluid

and Ωp is the particle volumes. Relative positions of the sub-domains are fixed within Ω(t),
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but they are moving through space according to the Gh(t) motion.

Location of a point x(t) ∈ Gh(t) can be found from its initial position x(0) in the

reference grid G0
h = Gh(0) through x(t) = X(t) + R(t)(x(0) − X(0)) where R(t) is a

rotation matrix computed with the Rodriguez formula from the orientation vector ϑ(t):

R = cos(ϑ)I+ sin(ϑ)[ϑ0]× + (1− cos(ϑ))ϑ0 ⊗ ϑ0.

ϑ0 ⊗ ϑ0 =

⎡
⎢⎣
ϑ0
x
2

ϑ0
xϑ

0
y ϑ0

xϑ
0
z

ϑ0
xϑ

0
y ϑ0

y
2

ϑ0
yϑ

0
z

ϑ0
xϑ

0
z ϑ0

yϑ
0
z ϑ0

z
2

⎤
⎥⎦ [ϑ0]× =

⎡
⎢⎣

0 −ϑ0
z ϑ0

y

ϑ0
z 0 −ϑ0

x

−ϑ0
y ϑ0

x 0

⎤
⎥⎦

Fixed reference grid G0
h is a discretization of the fixed continuous domain Ωr which we will

refer to as the reference domain.

For simplicity, we assume that X(0) = 0, therefore:

T̂ (xr, t) = x(xr, t) =X(t) + R(t)xr (3.6)

is a linear transformation T̂ : Ωr×� → Ω(t) with xr ∈ Ωr being a point in the reference

domain and t ∈ � the time coordinate.

Now, for any scalar, h(x, t), or a vector, h(x, t), function defined on Ω(t) we can

define its counterpart ĥ(xr, t) = h(T̂ (xr, t), t) and ĥ(xr, t) = h(T̂ (xr, t), t) on the reference

domain Ωr. This way, the gradient of a function defined on the reference domain Ωr can

be found from the gradient of the corresponding function defined on Ω(t) as

∇rĥ = ∇hF ∇rĥ = ∇hF (3.7)

with

F = ∇rT̂ (xr, t) = R(t) (3.8)

and the gradient defined as (∇h)ij = ∂jhi. From the properties of the rotational matrix

and because the motion of Gh(t) is purely solid, it follows that det F = 1. Here we use the

following definitions:

(∇·A)i =
∑
j

∂jAij ∇·h =
∑
i

∂ihi (3.9)

and

v(x, t) = dtx(xr, t) = ∂tx+∇rx dtxr = ∂tx (3.10)
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Note that, since the reference grid is fixed in time, dtxr = 0. Partial derivatives in time

and material derivatives are correspondingly given by

∂th = ∂tĥ− (F−1∂tT̂ ·∇r)ĥ dth = ∂tĥ+ (F−1(v̂ − ∂tT̂ )·∇r)ĥ (3.11)

∂th = ∂tĥ− (F−1∂tT̂ ·∇r)ĥ dth = ∂tĥ+ (F−1(v̂ − ∂tT̂ )·∇r)ĥ (3.12)

The Piola transform of a vector h is denoted by F
−1ĥ, and therefore its divergence is given

by ∇·h = ∇r·(F−1ĥ). Similarly, for a tensor σ the Piola transform reads σ̂F−T , and its

divergence is ∇·σ = ∇r·(σ̂F−T ).
Having in mind these relations, we can now reformulate the Navier–Stokes equations

(3.3) in an Arbitrary Lagrangian-Eulerian framework:

∂v̂

∂t
+ (F−1(v̂ − ŵ)·∇r)v̂ −∇r·(σ̂F−T ) = (ρr − 1)(ĝ − F̂) in Ωr,

∇r·(F−1v̂) = 0 in Ωr,

σ̂ = −p̂I+ 1

Re
∇rv̂F

−1,

or

∂v̂

∂t
+ (F−1(v̂ − ŵ)·∇r)v̂ =

= −F−T∇rp̂+
1

Re
∇r·(∇rv̂F

−1
F
−T ) + (ρr − 1)(ĝ − F̂) in Ωr,

∇r·(F−1v̂) = 0 in Ωr,

(3.13)

discretized on G0
h, and where

ŵ(xr, t) = ∂tT̂ (xr, t) = U + ω×(Rxr) (3.14)

is the velocity of points in Gh(t) as it moves together with the particle. Observe that

Rxr = x−X.

In general, any numerical scheme implementing the ALE approach requires updating

of the matrices before each time step. This is because the inverse of the deformation

gradient tensor F
−1 appears inside the convective derivative and divergence operators in

equation (3.13). Such an update is very expensive from computational point of view and

in 3–D imposes significant limitations on the attainable spatial resolution of the method.

Nevertheless, in the case of a very special grid deformation, like in our case of pure rigid-
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body motion, updating the matrices can be completely avoided. First of all, the rotation

matrix is an orthogonal matrix, so that:

R
T = R

−1. (3.15)

We also use the following properties of the differential operators:

∇(A(t)h(x, t)) = A(t)∇(h(x, t)) (3.16)

∇·(A(t)B(x, t)) = A(t)∇·(B(x, t)). (3.17)

And finally, any vector can be rotated to have the same orientation with respect to the

points in the reference grid as is its orientation with respect to the points in Gh(t):

v = v̂ = R(t)vr w = ŵ = R(t)wr

g = ĝ = R(t)gr f = f̂ = R(t)fr.
(3.18)

Now, replacing F according to (3.8), and using identities (3.15)-(3.18), equations (3.13)

are simplified to:

∂v̂

∂t
+ ((vr −wr)·∇r)v̂ =

= −R∇rp̂+
1

Re
R∇r·(∇rvr) + (ρr − 1)R(gr − fr) in Ωr,

∇r·vr = 0 in Ωr,

(3.19)

Since solid dynamics is unsteady, the rotation matrix can not be simply factored out of the

material derivative on the left hand side of (3.19).

Now, we can perform time-splitting of the convective terms from the generalized Stokes

problem as explained in [Minev and Ross Ethier, 1998]. In this approach, the material

derivative on the left hand side of (3.19) is approximated with second order splitting as

∂v̂n+1

∂t
+ ((vn+1

r −wn+1
r )·∇r)v̂

n+1 ≈ 3v̂n+1 − 4˜̂vn + ˜̂vn−1

2Δt
. (3.20)

Here,
˜̂vn(xr) = v̂(Z(tn;xr), t

n) ˜̂vn−1(xr) = v̂(Z(tn−1;xr), t
n−1) (3.21)

are the velocities from time levels n and n − 1, which have been advected alongside of an

approximation to the characteristics, with Z(tn;xr) and Z(tn−1;xr) being the solution to
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the following terminal-value problem for pure advection equation between tn−1 and tn+1:

⎧⎨
⎩

dZ(s)

ds
= vr(Z(s), s)−wr(Z(s), s),

Z(tn+1) = xr, xr ∈ G0
h, s ∈ [tn−1, tn+1].

(3.22)

It should be noted here that even though the advected velocities ˜̂vn(xr) and ˜̂vn−1(xr)

are defined in the laboratory frame of reference, they are advected on the reference grid

G0
h alongside characteristics defined through velocities rotated according to transformation

(3.18).

Using (3.20) and transformations ˜̂vn = R(tn+1)ṽnr ,
˜̂vn−1 = R(tn+1)ṽn−1r , equation

(3.19) becomes

R
n+13v

n+1
r − 4ṽnr + ṽn−1r

2Δt
=

= −Rn+1∇rp̂
n+1 +

1

Re
R

n+1∇r·(∇rv
n+1
r )+

+ (ρr − 1)Rn+1(gn+1
r − fn+1

r ) in Ωr,

∇r·vn+1
r = 0 in Ωr,

(3.23)

Since R is nonsingular, equation (3.3) in an Arbitrary Lagrangian-Eulerian framework with

fixed reference domain Ωr and mapping T̂ (xr, t) finally takes the form of the generalized

Stokes problem

3vn+1
r − 4ṽnr + ṽn−1r

2Δt
=

= −∇rp̂
n+1 +

1

Re
∇2

rv
n+1
r + (ρr − 1)(gn+1

r − fn+1
r ) in Ωr,

∇r·vn+1
r = 0 in Ωr.

(3.24)

Using finite elements for spatial discretization on G0
h, the above formulation produces ma-

trices independent of time and can be precomputed at the beginning of time-stepping.

Here, the pressure p̂ serves as a Lagrange multiplier which enforces the incompressibility

constraints ∇r·vn+1
r = 0 as well as ∇·v̂n+1 = 0 in equation (3.13).

Algorithm Description

The detailed description of our procedure can be divided into the following sub-steps:

1. Find solution on macro-grid
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Resolve the Navier-Stokes equations

∂vH
∂t

+ vH·∇vH = −∇pH +
1

ReH
∇2vH , ∇·vH = 0, (3.25)

in the entire computational domain discretized with the macro-grid GH , where pH , vH
being the fluid pressure and velocity and ReH = UHLH/ν is the Reynolds number

defined using the characteristic length and characteristic velocity appropriate for the

macro-scale flow. Since the length scale of the solid is assumed to be much smaller

than the length scale on GH , flow on the macro-grid does not “feel” the presence of

the particle.

2. Predict particle position and orientation

The position and orientation of the particle at time step tn+1 are predicted explicitly

by

Xp =Xn−1 + 2ΔtUn ϑp = ϑn−1 + 2Δtωn (3.26)

where Δt is the time step. This also defines the predicted transformation T̂ p from

the reference grid G0
h to the predicted micro-grid position Gp

h.

3. Transfer macro-grid velocity as a boundary condition on micro-grid

Use the resulting velocity field on GH to interpolate Dirichlet boundary conditions

at ∂Gp
h boundary of Gp

h. The interpolation can be performed with regular P2 basis

functions. Zero velocity is prescribed on boundary nodes when they appear outside

of the computational grid GH as a result of particle motion.

4. Impose zero flux through micro–grid surface

In general, the interpolated velocity v̂H on ∂Gp
h produces non-zero flux through the

surface. Therefore, we correct its normal component solving the simple Lagrange

multiplier problem

v∂Ω·n = v̂H·n+ λ̂ on ∂Ωp∫
∂Ωp

v∂Ω·n dS = 0,
(3.27)

discretized on the micro-grid boundary ∂Gp
h the discrete version of the continuous

boundary ∂Ωp.
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5. Advection-Diffusion sub-step

Solve for v∗r(xr) from

τ0v
∗
r −

1

Re
∇2

rv
∗
r = −τ1ṽnr − τ2ṽ

n−1
r −∇rp̂

n + (ρr − 1)gpr in Ωr,

R
pv∗r = v̂∂Ω on ∂Ωr

(3.28)

discretized on G0
h, where τ0 = 3/(2Δt), τ1 = −2/Δt and τ2 = 1/(2Δt).

6. Projection sub-step

Project the approximation v∗r(xr) onto solenoidal subspace in order to impose incom-

pressibility:

τ0(v
∗∗
r − v∗r) = −∇r(p̂

n+1 − p̂n) in Ωr (3.29)

∇r·v∗∗r = 0 in Ωr (3.30)

(v∗∗r − v∗r)·n = 0 on ∂Ωr (3.31)

where n is the outward normal to ∂Ωr.

7. Rigid Body Constraint

The rigid body velocity is first predicted by integrating rotated fluid acceleration

R
−1
(
Dv

Dt

)n+1

= τ0v
∗∗
r + τ1ṽ

n
r + τ2ṽ

n−1
r (3.32)

within the particle volume on the reference grid:

τ0U
p
r + R

−1(τ1Un + τ2U
n−1) =

1

Vp

∫
Ωr

p

R
−1
(
Dv

Dt

)n+1

dΩ. (3.33)

Then, we rotate all vector fields back using (3.18) and eliminate the Lagrange multi-

plier F from the set of equations, which yields the end-of-step centroidal and angular

velocities:

Un+1 =
1

ρrVp

∫
Ωp

p

v∗∗ dΩ +
ρr − 1

ρr
U p, (3.34)
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ωn+1 =
(Ipp)

−1

τ0

(
1

ρr

∫
Ωp

p

(xn+1 −Xp)×
(
Dv

Dt

)n+1

dΩ−

− τ1(Ipω)
n − τ2(Ipω)

n−1
)
,

(3.35)

where I
p
p is the predicted inertia tensor. Finally, we have the end-of-step solution for

the fluid velocity:

vn+1(x) =

{
v∗∗(x), if (T̂ p)−1(x, t) ∈ Ωf

r ,

Un+1 + ωn+1×(x−Xp), if (T̂ p)−1(x, t) ∈ Ωp
r,

(3.36)

which could be imposed pointwise or in the L2 sense. The position and orientation

of the particle are corrected using

Xn+1 =Xn +
Δt

2
(Un+1 +Un), ϑn+1 = ϑn +

Δt

2
(ωn+1 + ωn) (3.37)

8. Next iteration

Go to step 1, in order to perform another time-step iteration.

The spatial discretizations GH and Gh employ P2 − P1 tetrahedral finite elements gen-

erated with Gmsh software [Geuzaine and Remacle, 2009] and the resulting linear systems

are solved using a conjugate gradient solver.

3.3 Fibers in a Linear Shear Flow

3.3.1 Problem Formulation

Motivation for Linear Flow Profile

Owing to large differences in scales between aerosol particles and airway flow, it is useful to

neglect the local curvature of the parabolic-like flow profile in the vicinity of the particle,

thus reducing the local flow to a simple two-dimensional linear shear flow.

We can investigate the difference between a local linear velocity profile and a parabolic

velocity profile of the Hagen-Poiseuille flow in the vicinity of an aerosol particle.
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Let the velocity with respect to the particle centroid be given as V = Vmax(1−r2/R2)−
VC , where Vmax is the maximum velocity, r is the radial position, R is the pipe radius, and

VC is the particle centroid velocity. The slope of the linear approximation at each particle

centroid position rC is given by

γ =
∂V

∂r

∣∣∣∣
r=rC

= −Vmax
2rC
R2

.

Figure 3.3: Sketch of the local velocity flow field with respect to the particle centroid in
parabolic flow. Parabolic profile (solid line) and idealized linear profile (dashed line).

Let L be the particle length. We can evaluate the difference between the two profiles by

calculating the maximum relative difference of the two velocities, ΔV/V , at the distance

L/2 from the particle centroid Figure 3.3. We plotted this error versus the relative radial

location rC/R for the fifth, tenth, and fifteenth lung generations’ flow parameters and

particle lengths, L, 20 and 40 μm Figure 3.4. It is seen that a local linear shear flow is a

good approximation for the flow in the particle vicinity over many regions in the airways.

We should note though, that such an approximation of a local linear shear flow in the

lungs is only valid starting distal to the first few lung generations where initially turbulent

flow entering from the extra–thoracic airways and the trachea has relaminized.

Particle Shapes

A number of simulations are performed with particles of different densities, geometries, and

aspect ratios immersed in a linear shear flow with velocity oriented in the Y direction and
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Figure 3.4: Maximum relative error (logarithmic scale) in velocity between parabolic flow
and linear approximation based on the [Finlay et al., 2000] lung model with an inhalation
flow rate of 18 litres/min.

velocity magnitude γX, where (X, Y, Z) is the inertial (laboratory) frame of reference and γ

is a dimensional rate of shear. Fibers are defined by their diameter (which is kept constant

for all simulations at df = 2 μm), aspect ratio ar (the ratio of the particles’ length to the

particles’ smallest diameter, which for most simulations is ar = 10), shape, and relative

density ρr (which is either 1 for neutrally buoyant particles or 1000 for heavy fibers). The

following particle shapes are used in our simulations defined in a local coordinate system

(x, y, z) fixed with the particle such that the fiber length is along x:

a. Prolate ellipsoids with axes (ardf , df , df ), with ar = 5 and ar = 10 are used for

algorithm testing and verification;

b. Cylinder of length ardf , ar = 10 with a circular cross section of diameter df (Fig-

ure 3.5);

c. Cylinder of length ardf , ar = 10 with an elliptical cross section with axes df×1.3df ;

d. Ring torus segment with the length to diameter ratio ar = 10 and torus radius

RT =
180ardf

40π
(Figure 3.6);

e. Twisted cylinder with an elliptical cross section having ends parallel but rotated

to each other by 45◦. Particle length ardf , ar = 10, cross section axes df×1.3df

(Figure 3.7);

f. Particle from case (e.) bent from both ends by 10◦ (Figure 3.8);
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Figure 3.5: Particle (b). Figure 3.6: Particle (d).

Figure 3.7: Particle (e). Figure 3.8: Particle (f).

g. Helical (spring) shape with a circular cross section of diameter df , the total length

in the x direction is ardf , and the centerline equation is x = V t, y = a cos(t), z =

b sin(t), with parameters: ar = 15, a = b = df/2, V = ardf/2π, and t ∈ [0, 2π]

(Figure 3.9);

h. Helical (spring) shape with a circular cross section of diameter df , the total length

in the x direction is ardf , and the centerline equation is x = V t, y = a cos(t), z =

b sin(t), with parameters: ar = 20, a = b = 2.15df , V = 2ardf/5π, and t ∈ [0, 2π +

π/2] (Figure 3.10), and

i. Conical spring with an elliptical cross section. The major axis of the cross section

has a length of 1.3df and is aligned with the normal direction to the centerline;

the minor axis has a length of df and is aligned with the binormal direction to

the centerline. The total particle length is ardf and the centerline equation is x =

V t, y = a( t
2.5π

) cos(t + π
4
), z = b( t

2.5π
) sin(t + π

4
)), where ar = 20, a = b = 2.15df ,

V = 2ardf/5π, and t ∈ [0, 2π + π/2] (Figure 3.11).

Figure 3.9: Particle (g). Figure 3.10: Particle (h).

Figure 3.11: Particle (i).
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In Table 3.1 we present inertia tensors for particles used in our simulations. Tensors

are given with respect to the local coordinate system (x, y, z) fixed with the particle. If

the fiber centroid by construction happens to be away from the origin, we would bring the

origin to the centroid position before calculating an inertia tensor.

I(a) = m(df )(
df
2
)2

⎛
⎝0.4 0 0

20.2 0
20.2

⎞
⎠ I(b) = m(df )(

df
2
)2

⎛
⎝0.49365 −2·10−7 4·10−8

31.5679 10−8

31.5679

⎞
⎠

Vol(a) =
4
3
πar(

df
2
)3 Vol(b) = 60.86(

df
2
)3

I(c) = m(df )(
df
2
)2

⎛
⎝0.664 −3·10−5 −6·10−5

31.734 −5·10−7
31.5637

⎞
⎠ I(d) = m(df )(

df
2
)2

⎛
⎝0.72 2.5·10−7 1.5·10−5

30.802 −3·10−6
31.0286

⎞
⎠

Vol(c) = 79.11(
df
2
)3 Vol(d) = 60.7667(

df
2
)3

I(e) = m(df )(
df
2
)2

⎛
⎝0.664 −4·10−5 5·10−5

31.7 0.05606
31.5991

⎞
⎠ I(f) = m(df )(

df
2
)2

⎛
⎝0.8888 0.0099 −0.00944

30.9478 0.05512
31.0686

⎞
⎠

Vol(e) = 79.1(
df
2
)3 Vol(f) = 79.0(

df
2
)3

I(g) = m(df )(
df
2
)2

⎛
⎝1.484 1.2·10−5 4.91537

71.1384 −8·10−7
71.1034

⎞
⎠ I(h) = m(df )(

df
2
)2

⎛
⎝18.2442 −13.671 −3·10−6

135.251 3·10−8
133.411

⎞
⎠

Vol(g) = 92.05(
df
2
)3 Vol(h) = 156.115(

df
2
)3

I(i) = m(df )(
df
2
)2

⎛
⎝6.8 −6.4743 −11.241

130.21 0.101
128.897

⎞
⎠ Vol(i) = 171.438(

df
2
)3

Table 3.1: Inertia tensors and particle volumes as functions of fiber diameter df and particle
mass m.

At t = 0, the particles are aligned with the X-axis ( i.e., perpendicular to the flow

direction), which in terms of the Euler angles defined in Figure 3.12 implies the initial

orientations α0 = π/2 and ϕ0 = π/2, the centers of mass are placed at the center of rotation,

and the initial angular velocities are set to dϕ
dt

∣∣
t=0

= 0.9, which is close to the expected

angular velocity at this angular position based on [Jeffery, 1922]. The fluid motion in the

micro-scale domain is characterized by the shear Reynolds number Res = γd2e/ν, where γ

is a dimensional shear rate, de =
3
√
10df is an equivalent volume diameter for an ellipsoid

with ar = 10, and ν is the kinematic viscosity.
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Figure 3.12: Euler angles defined through three rotations of (x, y, z) coordinate system.

All simulations are performed for a nondimensional shear rate equal to one; the shear

plane is coincident with the X − Y plane, the center of rotation is placed at the origin,

and the flow velocity is parallel to the Y-axis. The macro-grid is a cube with edges long

enough to encompass the micro-grid. Linear shear flow velocity profile on the macro-grid is

prescribed analytically at each node. Since our main interest is in the rotational behavior

associated with shear in the respiratory system, we neglect gravitational and diffusional

effects on the fibers.

3.3.2 Results

Validation

The known analytical solution for a neutrally buoyant prolate ellipsoid [Jeffery, 1922] is used

to test the ability of the numerical scheme to resolve complex particle rotation in a linear

shear flow. A simulation for an ellipsoid with ar = 10 is performed for Res = 10−15 and we

use the following initial conditions in terms of the Euler angles defined in Figure 3.12:

α0 =
π

4
, ϕ0 = 0, and

dα

dt

∣∣∣∣
t=0

=
dϕ

dt

∣∣∣∣
t=0

= 0. (3.38)

Computational results for the time–dependent behavior of the Euler angles α(t) and ϕ(t)

for times up to t = 100 (here and subsequently t is a nondimensional time scaled with γ,

i.e.,

t = t′γ (3.39)

where γ = Res(ν/d
2
e) and t′ is a dimensional time) are visually indistinguishable from the

analytical solution, as seen in Figure 3.13.

For heavy particles, we compared our numerical solution with the results of [Asgharian
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Figure 3.13: Analytical and numerical solutions for Euler angles α(t) (left) and ϕ(t) (right)
and angular velocity dϕ

dt
(left) for a neutrally buoyant ellipsoid with ar = 10.

and Anjilvel, 1995]. We found that our computed periods of tumbling (angle ϕ(t); Fig-

ure 3.12) for prolate ellipsoids rotating in the shear plane are in close agreement for small

Res. [Asgharian and Anjilvel, 1995] found that the heavy ellipsoid behavior in a linear

shear flow depends on the particle aspect ratio and nondimensional parameter

� =
ρfiberγd

2
f

μ
,

which is related to our shear Reynolds number through the relation

� =
ρrRes
3
√
100

.

We performed a series of simulations for ellipsoids with ar = 10 and ar = 5 in the shear

plane, keeping � constant but varying the relative density and the shear Reynolds number.

The results of these simulations are presented in Table 3.2.

ar = 5, � = 0.63 ar = 10, � = 0.43

Fluid parameters T Fluid parameters T
[Jeffery, 1922] 32.67 [Jeffery, 1922] 63.46
[Asgharian and Anjilvel, 1995] ∼ 32 [Asgharian and Anjilvel, 1995] ∼ 63
Res = 0.002924, ρr = 1000 35.2 Res = 0.002, ρr = 1000 67.8
Res = 0.1, ρr = 29.24 42 Res = 0.1, ρr = 20 87.2
Res = 2.924, ρr = 1 ∞ Res = 2, ρr = 1 ∞

Table 3.2: Periods of rotation for high aspect ratio ellipsoids under different initial param-
eters
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As Res is increased and ρr is decreased, we observed an increase in the period of tum-

bling T up to the point ρr = 1, where the particle ceases to rotate and becomes aligned with

the flow. Such an alignment for neutrally buoyant ellipsoids is actually predicted by [Sub-

ramanian and Koch, 2005], in which they derived a critical Reynolds number Rec =
15
4π

ln ar
ar

above which particles would always align with the flow direction. For higher shear Reynolds

numbers, discrepancies in the periods of rotation, T , between our simulations and the re-

sults of [Jeffery, 1922] and [Asgharian and Anjilvel, 1995] (see Table 3.2) can be a result

of hydrodynamic and inertial effects that do not arise for smaller Res, which are closer to

the assumption of very small Reynolds number used in derivations of analytical expressions

by [Jeffery, 1922] and [Asgharian and Anjilvel, 1995]; in addition, [Jeffery, 1922] assumes a

neutrally buoyant ellipsoid.

Numerical experiments with complex fiber shapes

Having validated our code as demonstrated above, we performed simulations for fluid-

particle parameters representative of fiber behavior in the human respiratory tract. In

particular, we set Res = 24·10−5, which approximates the value of shear Reynolds number

for the first seventeen lung generations (based on the idealized lung geometry of [Finlay

et al., 2000] for an inhalation flow rate of 18 litres/min) with ρr = 1000 (heavy) and

ρr = 1 (neutrally buoyant) solid particles. An important finding in what follows involves

the particle inclination angle to the shear plane, i.e., the out of (shear) plane angle, which

we denote as

θ =
π

2
− α (3.40)

(Figure 3.14) and which is the angle the particle makes with the X − Y plane when it

rotates. At t = 0, all particles are oriented parallel to the shear plane (θ = 0).With such

initial orientation, Jeffery motion has θ = 0 for all time.

We first consider particles derived by bending and twisting cylinders of circular and

elliptical cross sections, i.e., particles (b)–(f). We notice that in all our simulations,

heavy and neutrally buoyant particles expressed either nearly identical or at least very

similar behavior. Therefore, here we only describe in detail the behavior of particles with

ρr = 1000 and the data on the behavior of particles with ρr = 1 are provided in Table 3.3.

For particles with elliptical cross sections, we use the Euler angle ψ defined in Figures 3.12

and 3.14 in order to describe the rotation of the particle around its own axis at t = 0. We

specify ψ = 0 to be when the major axis of the cross-section ellipse at the positive end of

the particle is orthogonal to the shear plane.
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Figure 3.14: Angle θ and the particle.

For particle (b) (ar = 10, straight circular cylinder), no out-of-plane rotation is ob-

served. This particle experienced a periodic motion, replicating the behavior of an ellip-

soid. In fact, our simulations show that the motion of this particle for both ρr = 1 and

ρr = 1000 can be approximated by the motion of a prolate neutrally buoyant ellipsoid with

ar = 11.35.

The rest of the particles, [shapes (c)–(f)] show out-of-plane rotations, though for some

of them it is dependent on the particle initial orientation ψ. Among the common charac-

teristics of particle behavior, we can note the following: for most of the experiments, all

fibers are oriented close to the shear plane, with θ about 5◦; for short periods of time, when

the particle axis approaches a 90◦ angle to the flow direction, we observed rapid increases

in angle θ with local maxima of up to 41◦.

In our simulations, the fiber (c) for two initial orientations ψ = 0 and ψ = π/2 (in

these cases particle axes of inertia are aligned with the coordinate axes) would not leave

the shear plane at all. But the introduction of initial angle ψ = π/4 resulted in two local

maxima for an out–of–plane angle at t = 36 with θ = 25.8◦ and at t = 72.7 with θ = 13.75◦,

as seen in Figure 3.15.

We now consider particle (d), the torus segment. In our experiments, this particle at

t = 0 is placed in such a way that the torus radius is in the shear plane. In the dimensionless

time interval [0, 100], we observe a growth of local maxima for angle θ by a factor of 3.6,

starting at θ = 0.66◦, every Δt = 26.2 units of time, as seen in Figure 3.15.

Particle (e), because of its complex shape, express different types of behavior, depending
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Figure 3.15: Out–of–plane angles for particles (c), (d), (e), and (f) with ρr = 1000 versus
the dimensionless time t defined in Equation (3.39). The top horizontal axis labeling shows
an approximate position in the lungs based on residence times in a [Finlay et al., 2000]
lung model with an inhalation flow rate of 18 litres/min and using a reference time scale
γ = 170s−1.

on how it faces the incoming flow at t = 0. With ψ = −π/8, our simulation show the particle

tumbling with a period T = 75.5 and no out-of-plane rotation. Turning the particle to the

initial angle ψ = 3π/8 give us a particle behavior similar to what we have seen in the torus

segment: local maxima of θ occurred every Δt = 28.1 units of time increasing each time by

a factor of 3.26 from the lowest local maximum θ(t = 28.1) = 1.82◦. With initial ψ = π/4,

we observe the largest out-of-plane particle inclination of θ = 41◦: first, θ reach 21◦ at

t = 29.2, then it increase to θ = 41◦ at t = 60.7, and finally at t = 95.5, it is again θ = 21◦.

Fiber (f), having been obtained by bending particle (e), show close resemblances to

particle (e) in its rotational dynamics. At t = 0, the fiber is placed in such a way that the

shear plane contain both the particle centroid and its radius of curvature. This lead to three

local maxima at t = 26.2, 54.5, and 83.7 with θ = 17.2◦, 34.6◦, and 22.3◦, respectively.

The above results, as well as those obtained for ρr = 1, and the remaining particle types
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Local maxima ρr = 1000 Local maxima ρr = 1

I II III I II III

(b) θmax 0 0 – 0 0 –
t 35.93 71.86 – 35.93 71.86 –

(c) ψ = 0 θmax ∼ 0 ∼ 0 – ∼ 0 ∼ 0 –
t 37.34 74.68 – 37.34 74.68 –

(c) ψ = π/2 θmax ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0
t 28.18 56.36 84.54 28.18 56.36 84.54

(c) ψ = π/4 θmax –25.8 –13.75 – –26.0 –13.25 –
t 36.1 72.7 – 35.27 71.9 –

(d) θmax 0.66 2.5 8.52 0.66 2.5 8.52
t 26.2 52.4 78.6 26.2 52.4 78.6

(e) ψ = −π/8 θmax ∼ 0 ∼ 0 – ∼ 0 ∼ 0 –
t 37.35 75.5 – 37.35 75.5 –

(e) ψ = 3π/8 θmax 1.82 6.3 19.4 1.8 6.5 19.2
t 28.1 56.2 85.0 28.0 56.2 85.2

(e) ψ = π/4 θmax –20.7 –40.7 –20.7 –20.7 –41.4 –21.0
t 29.25 60.7 95.5 29.2 60.0 94.6

(f) θmax –17.2 –34.6 –22.3 –17.9 –35.0 –23.0
t 26.2 54.5 83.7 26.3 55.0 84.4

(g) θmax –5.2 –24.8 – –5.1 –24.7 –
t 32.1 65.65 – 31.9 65.4 –

(h) θmax 0.13 0.2 0.17 0.1 0.19 0.05 0.07 0.07 –0.01 –0.13 –0.19 –0.18

t 14.5 29.1 43.6 58.2 72.7 87.3 14.4 28.9 43.2 57.8 72.3 86.8

(i) θmax –21.8 –19.4 3.5 –22.0 –19.7 3.0
t 24.9 51.1 76.2 25.1 51.7 76.9

Table 3.3: Local maxima for out–of–shear–plane angle θ (in degrees) for heavy and neutrally
buoyant particles. Data in this table is gathered at the interval t ∈ [0, 100], where t is a
dimensionless time scaled with γ as given in Equation (3.39)

(g)–(i) are shown in Table 3.3.

Table 3.3 shows that the particle density has negligible influence on the dynamics of

rotation for the fibers examined in our study, provided the aspect ratio and particle shape

remain fixed.

Table 3.3 also includes simulations with spring-shaped particles (g)–(i), with the cen-

terline described by the equation of a helix. Since the shapes of these fibers differ in many

ways, the only common characteristic we notice is that the observed time intervals between

tumbling for these particles are significantly shorter than we would expect for particles

with such length to diameter ratios. We compare the measured periods of rotation for our
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particles with the periods of rotation for prolate ellipsoids from [Jeffery, 1922]. We find that

an equivalent ellipsoid aspect ratio ae for the given period T of helical particle tumbling

derived from the equation

T =
2π(a2e + 1)

γae
(3.41)

is much closer to the coil aspect ratio ac, which is the length to width ratio for a paral-

lelepiped around the particle, than to ar (the actual curved particle aspect ratio).

Particle (g) is a spring–like particle wrapped around its own axis. This fiber developed

very similar behavior to that observed in simulations for particles (c)–(f). As shown in

Figure 3.16, for this particle, θ rather rapidly grew to 3.2◦ and stayed there for a long

time until, before flipping, the particle axis shifted to the other side of the shear plane

with a maximum inclination angle θ = −5◦ at t = 32.1, afterwards returning to θ = 2.5◦

before growing again up to θ = −24.8◦ at t = 65.65. The approximate period of rotation

T = 65.65 corresponds to an equivalent ellipsoid aspect ratio ae = 10.35, while the coil

aspect ratio is ac = 7.5 and actual aspect ratio ar ≈ 15.

Figure 3.16: Out–of–plane angles for particles (g), (h), and (i) for ρr = 1000.

Particle (h) is derived from the same equations as particle (g), but this time the fiber
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is made longer and with a relatively larger helical radius. To our surprise, this particle

show only small signs of out–of–plane rotation and no rotation ψ around its own axis. The

maxima of θ occur with period Tθ = 14.55, which is a half period of particle tumbling,

and all are smaller than 0.2◦. The period of rotation T = 29.1 correspond to an equivalent

ellipsoid aspect ratio ae = 4.4, while the coil aspect ratio ac = 3.7 and actual aspect ratio

ar ≈ 26.

Finally, we combine the cylindrical and helical particles in order to obtain fiber (i). Its

centerline is a conical helix, with zero helical radius on one side and helical radius 2.15df on

the other side. This time, the particle expresses a more interesting out–of–plane rotation

compared with the two other helical fibers. First, two maxima of θ = −21.8◦ and θ =

−19.4◦ occur at t = 24.9 and t = 51.1 respectively, before a third out–of–plane angle

maximum is observed from the other side of the X − Y plane with θ = 3.5◦ at t = 76.2, as

seen in Figure 3.16. For this particle, the period of rotation can be estimated to be T ≈ 51

allowing us to calculate ae = 8, while ac = 4.65 and ar ≈ 22.

3.3.3 Discussion

Results presented in the current work clearly demonstrate the validity of the suggestion

[Timbrell, 1970] that fibers with complicated geometries have less tendency to align with

the flow, which is based on the observation that curly fibers can deposit significantly more

proximally and in greater amounts in comparison to straight thin fibers. Indeed, we have

shown that even when a complex particle enters the upper airway stream with angular

velocity parallel to the local fluid vorticity, it will most likely develop a rotation perpendic-

ular to the plane of shear. In contrast, if a Jeffery–like fiber is inclined to the shear plane

at some point, then the particle would tumble within predicted angles of inclination with

a tendency to drift toward the shear plane. The complex–shaped particles that we have

examined do not obey such behavior and may develop large inclination angles.

Fibers (c)–(f) and (i) express more variability in their behavior than straight rods of

similar aspect ratio. If we consider symmetrical and asymmetrical straight fibers initially

aligned with the flow in an airway and neglect all other factors influencing deposition

efficiency except fluid shear, the interception diameter for the symmetrical fiber will be

equal to the particle diameter, while for the asymmetrical fiber it will be higher due to the

development of an out–of–plane rotation, and this difference will increase proportionally to

the particle’s aspect ratio. We have found that the time needed for a particle to gain enough

departure from the shear plane is measured by at least one period of tumbling; this period
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is close to the Jeffery result for ellipsoids of the same aspect ratio. Such periods are much

longer than fiber residency times in any particular airway. However, as particles travel

through the lungs, during the course of several lung generations, they may gain enough

out–of–plane motion to significantly enhance interception and thereby support conclusions

about different interception diameters for symmetrical versus more complex particles.

One important conclusion can be drawn from our simulations of helical fibers. We

observe that the rotation of such fibers is more dependent on the coil aspect ratio (the

length to width ratio of the parallelepiped bounding the particle) than on the actual aspect

ratio measured as a curvilinear length to diameter ratio. This may suggest more frequent

flipping of curly/curved fibers in the lungs, as compared with straight fibers with the same

lengths and diameters. This subsequently leads to a substantial increase in the deposition

of curly/curved particles due to interception. More frequent flipping may be another mech-

anism working together with larger interception diameters and weaker tendencies of curly

fibers to align with the flow.

In view of these results, we can propose an explanation for the large differences between

the masses of amphiboles and chrysotile fibers recovered from rats in the experiments de-

scribed by [Timbrell, 1970]. It is plausible, and in agreement with the results of [Harris Jr

and Timbrell, 1975], that most of the curly chrysotile fibers are deposited in the tracheo-

bronchial airways and are cleared by the mucociliary escalator from the lungs within 24

hours, while straight long fibers penetrate deeply into the alveolar region and are retained

there because of the much slower process of clearance by the alveolar macrophages.

3.4 Deposition of Fibers due to Magnetic Field Align-

ment

3.4.1 Problem Formulation

A three-dimensional model of a bifurcating airway corresponding to generation 14–15 within

a typical human lung is developed and deposition of high aspect ratio ellipsoid particles is

studied for fixed particle orientations. This model corresponds to the same airway gener-

ation that [Martin and Finlay, 2008a] study in vitro, selected because it is found to be an

optimal region for deposition enhancement due to magnetic alignment [Martin and Finlay,

2008a]. The model design is based on the morphologically realistic bifurcation described

by [Hegedűs et al., 2004]. The bifurcation model is an generalization of the physiologically

realistic model proposed by [Heistracher and Hofmann, 1995], which is assumed to produce
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a good approximation of the transition zone. The transition region design is important

because it strongly influences fluid flow within a bifurcation model, therefore affecting de-

position results [Balásházy et al., 1996]. Parameters needed to describe our model as well

as the geometry of the bifurcating airway are presented in Figure 3.17

Figure 3.17: Sketch of the symmetric airway bifurcation based on the model described in
[Hegedűs et al., 2004].

The bifurcation in Figure 3.17 is made of three subdomains. The first subdomain is

the so called parent region, which is a straight cylinder with a diameter Dp and length L′p.

The transition region is comprised of two identical narrowing tubes that branch out from

the parent region following a curve with a curvature R∗ and a bifurcation angle θ. The

daughter branch follows transition region and is modeled as a straight cylindrical tube with

length L′d and diameter Dd. [Hegedűs et al., 2004] propose the following equations for L′p
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and L′d:

L′p = 0.8Lp (3.42)

L′d = 0.2Lp + Ld − θR∗ (3.43)

with Lp and Ld being the lengths of parent and daughter branches, respectively. We have to

use equations in the form of (3.42)– (3.43) because in the literature Lp and Ld are usually

given such that their sum is equal to the length of three regions making our model, i.e.,

Lp + Ld = L′p + L′d + θR∗.

For the present study we use lengths based on the [Finlay et al., 2000] lung model, except

that their lengths are calculated as the total length of each generation. Therefore, Equations

(3.42)– (3.43) are applied for three consecutive bifurcations spanning generations 13 to 15

ensuring that the sum of Lp and Ld for generation 14 is equal to the total length given

by [Finlay et al., 2000]. The [Finlay et al., 2000] lung model also supplies us with the

diameters Dp and Dd for parent and daughter regions. The radius Rc describing the carina

and radius of curvature in transition region R∗ are found from the following relations for a

normal human bronchial tree [Horsfield et al., 1971]:

1 <
R∗

Dp

< 0.1 for Dp < 1.5 mm (3.44)

Rc

Dp

< 0.1 for an average Rc. (3.45)

Equation (3.45) is verified by [Hammersley and Olson, 1992] in casts for small human

airways with diameters less than 0.1 mm. The mean angle θ = 50◦ in the transition

region for branches with diameters less than 1 mm is reported by both [Horsfield et al.,

1971] and [Hammersley and Olson, 1992]. Parameters used to design the three–dimensional

symmetrical bifurcating geometry of an airway are presented in table 3.4.

Dp(mm) Dd(mm) L′p(mm) L′d(mm) R∗(mm) Rc(mm) θ◦

0.61 0.49 0.62 0.92 0.98 0.049 50

Table 3.4: Parameters for 3-D airway bifurcation geometry.

The bifurcation geometry is designed following the steps proposed by [Hegedűs et al.,
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2004] for the morphologically realistic bifurcation model using a computer–aided design

software; for our simulations, Pro/ENGINEER software is used. The geometry is then

imported into the GMSH finite element grid generator [Geuzaine and Remacle, 2009]. A

Delaunay-type algorithm is chosen in order to generate an unstructured tetrahedral grid.

Steady Flow in Airway Bifurcation

The conditions simulated in this study are for inhalation through airway generation 14 of

the [Finlay et al., 2000] lung model, with a breathing flow rate of 18 litres/min, which

is typical for normal tidal breathing. For symmetrically branching airways, this gives an

average inlet velocity of Vavg = 63 mm/sec. Gravity is oriented in the direction normal

to the inlet of the considered bifurcation. Characteristic length L = 0.73 mm, velocity

U = 174.99 mm/sec, and kinematic viscosity ν = 15.08 mm2/sec are used to scale the

Navier-Stokes equations in the form of (3.1), resulting in Re = 8.47 and Fr = 4.28 for the

particle motion equations (3.2). Since the Reynolds number is within the laminar region,

a Poiseuille parabolic velocity profile is prescribed at the inlet:

VY = −2Vavg(1− 4r2

D2
p

) on ∂Σinlet (3.46)

VX = VZ = 0 on ∂Σinlet (3.47)

The outlet boundary condition with zero pressure and vanishing normal component of the

velocity gradient is prescribed at both daughter outlets. The initial condition for the fluid

velocity everywhere except the inlet is set to zero. A dimensionless time step Δt = 10−4

is used to ensure stability of the time integration. The fluid flow simulations through the

airway bifurcation are considered convergent to a steady state once the velocity residuals

in maximum norm reached values less than 10−7. The steady-state velocity is interpolated

at every time step along the particle trajectory as a boundary condition for the micro-grid

simulations; see algorithm description in Section 3.2.3.

The Grid Convergence Method [Celik et al., 2008] is used to estimate the grid conver-

gence of our numerical method on the macro-grid. Five successively refined meshes are

used to study the convergence. It is estimated between pairs of grids, each pair consisting

of a coarse grid and a fine grid that has two times more elements than the coarse grid. The

grid convergence index (GCI) is computed for each pair as

GCI = Fs
εrms

rp − 1
,
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where the root-mean-square error εrms is calculated based on the relative error in velocity

at 1000 points randomly chosen inside the domain, the formal order of the method p = 2,

the refinement factor r is the ratio between the number of nodes in the refined and coarse

meshes, and the factor of safety Fs = 3 which accounts for r being smaller than two because

doubling the number of elements does not correspond to the same rate of increase in the

number of grid nodes.

Eventually, the fluid flow within the bifurcation domain is resolved on a macro-grid

with approximately 1635000 tetrahedral elements. The GCI computed between the final

macro-grid and a coarser grid with 894000 elements is found to be 1.39%, which is lower

than 5% reported by [Longest and Xi, 2007] to be adequate for the accurate deposition

results when compared with experiments.

Particle Simulations

The shapes of the high aspect ratio particles in our simulations are approximated by prolate

ellipsoids with fixed diameter de = 0.5 μm and lengths dependent on the particle aspect

ratio le = dear. Particle aspect ratios of 6 and 20 are considered. The specific choice of

particle diameter de = 0.5 μm and aspect ratio ar = 6 is motivated by the volume median

diameter and by the volume median length for particles in previous in–vitro study [Martin

and Finlay, 2008a]. The particle-fluid density ratio is set equal to ρr = 1000.

The geometry of the micro-grid Ωr (Section 3.2.3) is built using the FEM meshing

software GMSH [Geuzaine and Remacle, 2009]. The micro-grid has a shape of a rectangular

box with height 12 times the diameter of the particle de and length 3 times greater than

the length of the particle le. [Dechaume et al., 2010] report that increasing the micro-grid

size from five to ten and then to twenty times the length of the particle has a negligible

effect on the particle transport in the airway bifurcation similar to the one studied here.

Additionally, we observe that doubling the size of the micro-grid, results in a final deposition

position 0.05 mm farther downstream. For a particle with an aspect ratio of 6 to deposit

0.05 mm farther downstream means that the inlet normalized position in X direction would

have to be increased by at most 0.0007.

The number of elements inside the micro-grid is kept 49212 and 95795 for particles with

aspect ratios of 6 and 20, respectively. The computational grid is designed such that the

most number of tetrahedra are located within particle volume. The number of elements

found inside the particle is 28592 for ar = 6 and 65361 for ar = 20. Increasing the number

of elements inside the micro-grid by a factor of two resulted in a final position 0.019 mm

farther downstream for particles with ar = 6 and less than 0.001 mm for particles with
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ar = 20.

Starting from Δt = 10−3, decreasing the dimensionless time step has a negligible effect

on the trajectory of the particle with constrained angular orientation. Therefore, a time

step Δt = 10−3 is used in order to ensure an accurate trajectory resolution and a Courant

number in the micro-grid Ωr less than one.

For each numerical experiment, the initial particle position, orientation and velocity

has to be prescribed. The initial location of the particle Xp is always chosen so that the

micro–grid Ωr lies entirely inside the fluid domain Σ. The initial particle centroid velocity

U0 is chosen to be equal to the Poiseuille velocity at particle centroid. The particle angular

orientation ϑ0 and velocity ω0 depended on the setup being studied. At each time step,

velocities on the micro-grid Dirichlet boundary are interpolated from the results of the

fluid-only simulations.

Computations are performed on a Dell PowerEdge 2900 server with two Intel E5430

quad-core processors and 16 Gb of memory. A single particle simulation on four cores

with OpenMP shared memory parallelization (each spatial direction is solved on a separate

thread, and large tasks such as integration are shared between all four available threads)

resulted in a computational time per time-step between 5 and 30 seconds.

Deposition

A particle is considered deposited when it touches the airway wall before traveling past

a designated cutoff plane in the daughter tube. The cutoff plane (D–D ′ on Figure 3.17)

is positioned 0.45 mm downstream from the bifurcation carina and is set parallel to the

outlet. We use this approach in order to reduce computational time and as a measure to

avoid undesirable effects close to the outlet boundary. Deposition efficiency is defined as

the ratio between the volumetric flow rate within a deposition boundary (Figure 3.18) at

the parent inlet and the total flow rate. The deposition boundary in some sense is similar

to the limiting trajectory boundary previously implemented for calculation of deposition

efficiency in [Cai and Yu, 1988; Asgharian and Yu, 1989]. Particles with centroid position

located within the deposition boundary are considered deposited, while particles outside

the boundary do not deposit.

For different positions along the Z axis (Figure 3.18), particle simulations are performed

to find an X coordinate such that the particle released from this position deposited near

the cutoff plane, thus defining one deposition limiting point at the inlet. The deposition

boundary is composed of linear segments linking deposition limiting points. The deposition

boundary between the last limiting point and the inlet wall is found by extrapolation. The
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Figure 3.18: Sketch of the deposition boundary at the airway inlet. The black dots are
the starting positions of particles that deposited near the cutoff plane. The bold solid line
is the deposition boundary consisting of linear segments connecting deposited points. The
dotted line is obtained by reflecting deposition boundary in X–Z plane with respect to Z
axis and then reflecting obtained image in the upper half–plane with respect to the X axis.
The particles entering domain within the striped region are considered deposited.

slope of the linear equation near the wall is calculated from the assumption that the ratio

between the slopes of the extrapolated equation and the last measured segment is the same

as the ratio between slopes of the last two measured segments. The deposition boundary

is assumed to be continuous and symmetric with respect to the Z and X axes. We should

note that the definition of deposition efficiency which we use for our study is restricted to

monodisperse aerosols with a constant particle concentration density at the inlet.

For each deposition limiting point, we perform another simulation with fiber initial

position at the same Z coordinate but further away in X direction, such that the particle

does not deposit, producing a non-deposited boundary similarly to the deposition boundary.

The area between the non–deposited boundary and the deposition boundary represents a

region of uncertainty, where we can not say whether the particle leaves the daughter airway
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or deposit in it. To measure this uncertainty, we compute a deposition boundary error as

the difference between the deposition efficiency given by the deposited and non–deposited

boundaries. The deposition efficiency and deposition boundary error are calculated for the

following two cases:

Case 1 : Particle along its trajectory is aligned with local fluid streamlines direction. At

t = 0 fiber major axis is set parallel to Y axis, and once the particle enter the daughter

airway, its major axis is realigned parallel to the daughter streamlines. This setup

simulates deposition without the presence of magnetic field.

Case 2 : The particle’s angular orientation ϑ is set constant along the particle’s trajectory

to model deposition of a magnetically susceptible particle in the presence of a strong

magnetic field. The initial angular orientation of the particle is set so that the major

axis of ellipsoid is parallel to the X axis as shown in Figure 3.18.

We also take into consideration the deposition region along the airway bifurcation wall

(X2 + Z2 = D2
p/4), which is not outlined in the deposition boundary presented in Fig-

ure 3.18. For case 2, any particles that are closer than half a particle length in the X

direction have to deposit on the bifurcation wall, therefore the outer interception depo-

sition boundary is located half a particle length from the bifurcation wall. For case 1,

interception deposition at the airway bifurcation wall is ignored as it would be negligible

compared to case 2. Due to limited computational resources, we did not study particles

free to rotate without constraints on angular motion. However, we have shown before that

the present particles tend to remain aligned with the flow streamlines for periods much

greater than the transition time through the airway, see Table 3.3, Figures 3.15 and 3.16.

For the set of parameters used in our study, the estimated period of rotation [Jeffery, 1922;

Gans, 1928] is about 7 times greater for particles with ar = 6, and 17 times greater for

particles with ar = 20 than the estimated particle residence time in the airway. The rota-

tional Peclet number, which is the ratio of the hydrodynamic shear rate and the Brownian

diffusion coefficient, is much greater than 1 for both particle dimensions [Asgharian and

Yu, 1989]. Therefore, setup 1 can be considered as a reasonable approximation to the case

with unconstrained angular motion.

3.4.2 Results

The Hagen-Poiseuille flow profile in the parent airway holds its shape until the transition

region, where the flow splits symmetrically into the two daughter tubes. Once entering the
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daughter airway, the axial flow pattern regains a parabolic-like shape. Figure 3.19 shows

the axial velocity profile across the airway diameter C—C′ outlined in Figure 3.17. The

point of maximum fluid velocity across the diameter C—C′ does not occur exactly in the

middle of the C—C′ line, but instead is observed slightly skewed to the outer side of the

bifurcation. Once flow is through the transition region and in the daughter airway, the flow

pattern regains a Poiseuille profile. We compare velocity profile at 0.146 mm downstream

of the transition region for two values of L′d = 0.461 mm and L′d = 1.846 mm. The change

in L′d cause the three-dimensional velocity profile to change by less than 0.01%, indicating

that the outlet boundary placement is such that it does not affect the flow.

Figure 3.19: Axial velocity along the daughter tube diameter C–C′.

Figures 3.20 and 3.21 present the deposition boundary at the inlet surface of the parent

airway. For ar = 6 case 1 and case 2 deposition boundaries near the inlet center (Z=0)

are approximately the same. At Zscaled = 10, the deposition regions for case 1 and case

2 become narrower, with the case 1 limiting point being to the left of the limiting point

for setup 2, Figure 3.20. Observed deposition efficiencies for both cases 1 and 2 start

to significantly increase approximately at the distance of 65 particles lengths along the

Z axis (Zscaled = 65). The observed increase is more significant for case 1, such that at

Zscaled = 74 the corresponding deposition boundary has larger X coordinate than that of

case 2. Starting from this point, case 1 has larger local deposition efficiency than case

2 until at Zscaled = 90 case 2 deposition boundary surpasses case 1 and has greater X
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coordinate up to the airway wall at Zscaled = 101.6; see Figure 3.20.

Figure 3.20: Case 1 and case 2 deposition regions for particle with ar = 6. Boundary lines
represent the limits where the particles entering to the left deposit and those to the right
do not deposit. The X and Z axes are the same as seen in Figure 3.18. The X and Z axes
are scaled with the length of a particle with ar = 6, on top of that log-transformation of
the X axis is performed. The bifurcation inlet wall is located at Zscaled = 101.6.

For particles with ar = 20, the deposition boundary curves for cases 1 and 2 start with

a relatively constant slightly positive slope near the center of the inlet; see Figure 3.21.

Local deposition efficiencies increase nearing the outside bifurcation boundary but contrary

to what we observe in Figure 3.20 for particles with ar = 6, the case 2 boundary is always

to the right of the case 1 boundary.

Table 3.5 summarizes calculated deposition efficiencies and the deposition boundary

errors for particles with aspect ratios ar = 6 and ar = 20 for simulations where particles

are aligned with the flow streamlines (case 1) and for particles with alignment due to

magnetic field (case 2). The deposition boundary error was defined in Section 3.4.1 as the

deposition through the uncertainty region between measured deposition boundary and the

boundary of the no-deposition region. The smallest and the largest deposition boundary

errors recorded are Δ20
2 = 0.00057% and Δ6

1 = 0.00118%; see Table 3.5. The deposition

boundary error in our simulations is kept below 14% of the deposition efficiency. However,

the estimate for the final deposition error is higher than the actual error, because in our

simulations some of the non-deposited particles are observed greatly past the cutoff plane.
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Figure 3.21: Case 1 and case 2 deposition regions for particle with ar = 20. Boundary
lines represent the limits where the particles entering to the left deposit and those to the
right do not deposit. The X and Z axes are the same as seen in Figure 3.18. The X and Z
axes are scaled with the length of a particle with ar = 6, on top of that log-transformation
of the X axis is performed. The bifurcation inlet wall is located at Zscaled = 101.6.

Due to limited computational resources we do not perform a more detailed study of this

parameter since it is still pretty small as it is. The outside wall interception region that only

Case 1 Case 2

Aspect
ratio ar

Deposition
efficiency
d1(%)

Deposition
boundary
error Δ1(%)

Deposition
efficiency
d2(%)

Deposition
boundary
error Δ2(%)

6 0.0092 0.00118 0.0131 0.00059
20 0.0149 0.00111 0.0515 0.00057

Table 3.5: Deposition efficiencies and Deposition boundary errors in airway bifurcation
for ellipsoid particles with ar = 6 and ar = 20 calculated using Deposition boundaries
presented at Figures 3.20 and 3.21. Deposition boundary error is defined in Section 3.4.1.

applies to case 2 as discussed in Section 3.4.1 yielded a deposition efficiency of d6w = 0.0048%

and d20w = 0.0540% for fibers with aspect ratio 6 and 20, respectively.

Values for deposition enhancements e = d2/d1 for the two particles considered in our

studies are presented in Table 3.6. As particle aspect ratio ar increases from 6 to 20 (by
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a factor of 3.3), we observe increase in deposition enhancement by a factor of 2.4. The

deposition boundary enhancement range calculated as

[
d2

d1 +Δ1

;
d2 +Δ2

d1

]
(3.48)

represents the smallest and the largest possible values for the enhancement e. If we include

into consideration deposition efficiencies d6w and d20w due to interception on the outside walls

(away from the carina), the observed enhancement increases to 1.95 for particle with ar = 6

and to 7.08 for particle with ar = 20, Table 3.6, with deposition boundary enhancement

range defined as

[
d2 + dw
d1 +Δ1

;
d2 +Δ2 + dw

d1

]
. (3.49)

ar = 6 ar = 20

Deposition
enhancement

e6

Deposition
enhancement

interval

Deposition
enhancement

e20

Deposition
enhancement

interval
Deposition
boundary only

1.42 1.26–1.49 3.46 3.22–3.49

Deposition
boundary with
Outer wall

1.95 1.72–2.01 7.08 6.59–7.12

Table 3.6: Deposition enhancement for ellipsoid particles with ar = 6 and ar = 20 between
cases 1 and 2.

3.4.3 Discussion

The shapes of the deposition boundaries observed in Figures 3.20 and 3.21 can be justified

in view of the different deposition processes influencing particle motion. For both aspect

ratios, small differences in deposition boundaries between case 1 and 2 recorded close

to the airway center (X=Z=0) are expected because of the prescribed inlet velocity and

airway geometry. In this region the velocity is the largest and its profile is almost flat

which locally makes it similar to plug-like flow. Fibers are carried away with the flow

into daughter airways and only a small fraction of them deposit close to the bifurcation
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carina due to bifurcation symmetry. Under such conditions, particle orientation does not

significantly affect deposition. In contrast, higher velocity gradient and significant variation

in the airway geometry close to the parent airway wall cause significant curvature of the

deposition boundary. The velocity profile, its small magnitude, and bifurcation geometry

would encourage deposition due to interception and sedimentation. This explains why,

for both aspect ratios studied, the Z location at which the deposition begins to extend

out into the X direction is similar. For higher aspect ratio, increased particle mass and

length account for higher deposition due to sedimentation and impaction. This explains

what we observe for an aspect ratio of 20 – the deposition boundary begins to curve at a

lower Zscaled position than for the aspect ratio 6 fibers. For fibers with aspect ratio 6 we

observe that at Zscaled = 74, the deposition boundary for streamline aligned fibers (case 1)

starts to extend past the boundary for magnetically aligned fibers (case 2). In this region,

interception for the shorter particle has become less dominant than sedimentation. An

ar = 6 particle is not long enough to overcome the relative importance of sedimentation

until much closer to the wall. The bifurcation geometry close to the outside wall within the

transition region would facilitate deposition by interception. Therefore, we observe that

the case 2 deposition boundary grows at a much higher rate close to the wall and eventually

surpasses the boundary of streamline aligned fibers.

A simple estimate of deposition of high aspect ratio particles in a lung bifurcation can

be made using analytical approaches. We calculate estimates for deposition efficiencies due

to sedimentation ([Heyder and Gebhart, 1977] with shape factors for ellipsoidal particles

[Oseen, 1927]) and probabilities for impaction and interception using [Cai and Yu, 1988]

approach. However, these analytical values are found to be 7 to 20 times higher than

the values we observe in our simulations. This difference is similar to that which [Cai

and Yu, 1988] observed between their analytical deposition results and experiments by

[Myojo, 1987], who study fibers with diameters of 1.2–2.3 μm and aspect ratios between

8.3–16.7. Compared with the experiments of [Martin and Finlay, 2008a] where particles and

bifurcation dimensions are similar to the values used in our simulations, we find deposition

enhancement of 1.42 for a particle with ar = 6 (Table 3.6) is similar to their value of

1.7, especially considering our value of 1.95 that occurs when deposition on the outside

bifurcation wall is included. However, it should be noted that we do not consider the effect

of Brownian motion on particle trajectory in our simulations. It is evident that deposition

due to Brownian diffusion contribute to the results found by [Martin and Finlay, 2008a].

The importance of Brownian diffusion in the [Martin and Finlay, 2008a] study is due to

the combination of particle diameters being much less than 0.5 μm and the use of parent
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and daughter airways that are over four times longer than what is anatomically correct.

The much longer daughter length used in [Martin and Finlay, 2008a] would result in much

higher sedimentational deposition. These reasons may explain the discrepancy in absolute

deposition efficiency between our computational results and the in–vitro results in [Martin

and Finlay, 2008a].

An increase in aspect ratio from 6 to 20 is accompanied by increased deposition efficiency

by a factor of 1.62 for case 1 and by a factor of 3.93 for case 2. This type of enhancement

in deposition has been reported before in other studies [Sturm and Hofmann, 2006] that

assume particles aligned with the streamlines. Therefore, increasing particle aspect ratio

gives better results when fiber angular position is controlled. An additional advantage of

increasing aspect ratio from 6 to 20 is that change in particle length keeping the same

diameter increases local mass deposition by 3.33 times. Such mass deposition enhancement

is especially useful when increase in the therapeutic effect of aerosol drugs is desired.

However, increase in deposition enhancement due to larger fiber aspect ratio is not

equal to the coefficient of fiber length increase. Instead, the enhancement factor increased

by a factor of 2.44 when aspect ratio increases by a factor of 3.33 (based on first row in

Table 3.6). Nevertheless, this number suggests that local deposition enhancement due to

magnetic field alignment can be over two times more effective with higher aspect ratio

particles than those used previously in the in–vitro study by Martin and Finlay [2008a].
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Chapter 4

Fluid-structure interaction (FSI)

4.1 Problem formulation

In the following we describe a FSI numerical approach for direct numerical simulations of the

dynamical interaction between a Newtonian liquid and an incompressible solid having equal

densities and viscosities. For many applications of the FSI algorithms the assumption of a

nonzero viscosity in the solid constitutive law has a negligible effect on the model accuracy

due to small velocity gradients in the solid phase. At the same time, the viscous part of the

solid stress significantly improves stability of numerical simulations that is important for

3-D applications where severe time-step restrictions otherwise arise. Additionally, many

biological flows involve coupled dynamics of a liquid interacting with a solid that is saturated

with the liquid itself. As such, the constitutive model for the solid is viscoelastic. Following

the algorithm description, we briefly discuss how the assumptions of equal densities and

viscosities can be lifted with a consistent perturbation to the original governing equations

with nonconstant coefficients without imposing major changes to the presented algorithm.

The fluid-solid computational domain Ω is a union of the fluid Ωf and solid Ωs sub-

domains, Ω = Ωf ∪ Ωs (see Figure 4.1). The fluid-structure interface is denoted by Γi and

has a unit normal n pointing outside of the solid. The computational domain boundary

∂Ω may in some places coincide with a part of the solid boundary which is not a fluid-solid

interface. In the present description we assume Γi = ∂Ωs, but the formulation can be easily

generalized to the case when a part of the solid boundary is a Dirichlet boundary, adding

one extra surface integral to the combined weak formulation of the momentum equations

for fluid and solid.

For an incompressible fluid and solid the nondimensional governing equations in an
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Figure 4.1: Abstract domain setting for a FSI problem. Illustrated: fluid domain Ωf , de-
formable solid domain Ωs, fluid-structure interface Γi, and computational domain boundary
∂Ω.

Eulerian framework can be generalized to

Dvf
Dt

= ∇·σf , ∇·vf = 0 in Ωf , (4.1)

Dvs
Dt

= ∇·σs, ∇·vs = 0 in Ωs, (4.2)

nondimensionalized with the density, and the corresponding velocity and length scales.

Here, vs and vf are the solid and fluid velocities, and the fluid and solid stress tensors

are correspondingly σf and σs. On the computational domain boundary simple Dirichlet

boundary conditions

vf = v∂Ω(t)

for the velocity are prescribed. The interaction between the fluid and solid phases is estab-

lished on the fluid-structure interface Γi through the kinematic no-slip boundary condition

vf = vs on Γi, (4.3)
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and the dynamic force balance condition, neglecting surface tension, gives

σf ·n = σs·n on Γi. (4.4)

The viscous Newtonian stress is defined as

σf = −pfI+ 2νfD[vf ], (4.5)

where pf and νf are the fluid pressure and nondimensional kinematic viscosity respectively,

and D[v] is the velocity rate of strain D[·] = 1
2
[∇(·) +∇T (·)].

We assume the solid stress to have the following structure:

σs = −psI+ σν(vs) + στ (F). (4.6)

Here, ps is the solid pressure, σν = 2νsD[vs] is the viscous part of the stress, νs is the

corresponding viscosity in the solid, assumed for now equal to νf , and στ (F) is the elastic

part of the stress.

The elastic part στ (F) is defined as a function of the deformation gradient tensor [F]ij =

Fij via the strain energy density function W , [Bower, 2009]:

[στ (F)]ij =
1

J
Fik

∂W

∂Fkj

. (4.7)

The deformation gradient tensor F is a characteristic of the local material deformation

that connects the reference material configuration with the current material deformation

through the expression dx = FdX = ∂x
∂X

dX, which implies

F =
∂x

∂X
. (4.8)

The present formulation does not restrict the choice for the constitutive relation for

στ . In our simulations presented later, we use the simplest Neo-Hookean hyperelastic solid

stress in the form

στ = G(FFT − I), (4.9)

where G is called the modulus of transverse elasticity. For incompressible deformations the

80



following relation holds at all times

J = det(F) = 1, (4.10)

which, being defined through displacements, is the most often used incompressibility con-

straint in the case of solids, in place of ∇·vs = 0.

4.2 Numerical scheme

4.2.1 Derivation

In order to derive a combined weak formulation on Ω, we introduce a common continuous

velocity field v for the fluid and solid, that is defined in the whole computational domain.

Additionally, we introduce the characteristic function of the fluid domain

χf (x, t) =

⎧⎨
⎩1 x ∈ Ωf (t),

0 x ∈ Ωs(t),
(4.11)

and the characteristic function of the solid domain χs(x, t) = 1 − χf (x, t). With the

characteristic functions defined this way, the Cauchy stress tensor in the entire domain Ω

can be written as

σ = χfσf + χsσs. (4.12)

Such notation allows us to reformulate problem (4.1)–(4.6) as follows:

Dv

Dt
= ∇·σ in Ω, (4.13)

∇·v = 0 in Ω, (4.14)

σf ·n = σs·n on Γi. (4.15)

Requiring a common continuous velocity field in Ω, we strongly enforce the kinematic

boundary condition (4.3) on Γi.

Now, we define a combined trial velocity space and the corresponding test space:

V = {v| v ∈ [H1(Ω)]d; v = v∂Ω on ∂Ω}
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and

V0 = {ϕ| ϕ ∈ [H1(Ω)]d; ϕ = 0 on ∂Ω}.

together with the usual L2(Ω) inner products

(g,h)Ω =

∫
Ω

g·h dΩ and (A,B)Ω =

∫
Ω

A : B dΩ, (4.16)

for vectors g and h, as well as for tensors A and B.

The variational formulation of the combined momentum equation is obtained by mul-

tiplying (4.13) with a test function from the test space V0, and integrating by parts over

Ω: (
Dv

Dt
,ϕ

)
Ω

=

∫
Γi

ϕ·(σs − σf )·n ∂S − (σ,∇ϕ)Ω , for all ϕ ∈ V0; (4.17)

together with the weak formulation for the incompressibility constraint (4.14),

(q,∇·v)Ω = 0, for all q ∈ L2(Ω). (4.18)

These two equations represent a weak formulation for the combined system (4.13)–(4.14).

The stress jump in the normal direction across Γi is still present in the equation (4.17)

in the form of the surface integral

∫
Γi

ϕ·(σs − σf )·n ∂S. (4.19)

Eliminating this integral term in (4.17) causes the dynamic boundary condition, (4.15),

that prescribes normal stress continuity, implicit in the combined weak formulation of the

FSI problem (4.1)–(4.6):

(
Dv

Dt
,ϕ

)
Ω

= − (σ,∇ϕ)Ω , for all ϕ ∈ V0 (4.20)

(q,∇·v)Ω = 0, for all q ∈ L2(Ω).

Recalling the definitions of the stress tensors σf and σs, equation (4.20) can be rewritten
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as: (
Dv

Dt
,ϕ

)
Ω

= (p,∇·ϕ)Ω − 2ν (D[v],∇ϕ)Ω − (χsστ ,∇ϕ)Ω , (4.21)

where p can be regarded as a Lagrange multiplier enforcing the incompressibility constraint

(q,∇·v)Ω = 0 in Ω.

Structure model

One of the advantages of an Eulerian framework is that it naturally allows for the spatial

discretization of the fluid governing equations on fixed grids. When modeling fluid flows,

we are interested in finding the fluid velocity and pressure distribution within the compu-

tational domain. Therefore, using grids such that the velocity and pressure are defined on

fixed nodes is convenient.

In contrast, the dynamics of solids is more convenient to describe in a Lagrangian

framework. At each time step, a Lagrangian mesh provides information about current

solid deformation with respect to the reference configuration as well as the solid stresses;

these two quantities are the main goals of solid simulations.

In our formulation we combine the advantages of both approaches using a fixed Eulerian

mesh G on Ω for resolving combined velocity and pressure fields, and using a Lagrangian

mesh Gs(t) for tracking the solid deformation of Ωs(t) and for computing the elastic part

of the solid stress στ (F).

The position of a point x(X, t) ∈ Gs(t) is given by a solution to equation

∂x(X, t)

∂t
= v(x(X, t), t), (4.22)

where v(x, t) is a local velocity at point x, and X is the Lagrangian coordinate of x in

the reference configuration. The displacement in the Lagrangian description is therefore

defined as u(X, t) = x(X, t)−X. On a discrete level, v(x, t) on Gs is found by interpolating

solution from the nodes on the Eulerian grid G at point x.

The elastic component of the solid stress στ (F) is computed on Gs with isoparametric

finite element interpolation. In order to compute the deformation gradient tensor F we

consider the following: on a point x(X, t) ∈ Gs the deformation gradient tensor with
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respect to the reference configuration Ĝs = Gs(0) is given as

F(x(X, t)) =
∂x

∂X
=

∂x

∂x̂

∂x̂

∂X
=

∂x

∂x̂

(
∂X

∂x̂

)−1
,

whereX ∈ Ĝs, and x̂ is the coordinate vector in a reference element for the triangulation Gs
(e.g. in a reference triangle or in a reference tetrahedron). In other words, the deformation

gradient tensor is a product of the Jacobian matrix at x(X, t) computed on an element in

Gs(t) and the inverse of the Jacobian matrix at X computed on the same element in Ĝs.
For our simulations we use P2 finite elements.

The moving solid mesh Gs overlaps with the grid G making intersection of elements in

the two grids very complex (see Figure 4.2).

Figure 4.2: Computational domain grid G(solid lines) is overlapped by the Lagrangian grid
Gs (dashed lines). Fluid-structure interface Γi is approximated by the Lagrangian grid.

In the standard isoparametric approximation, F, as any other spatial derivative, is

discontinuous across element boundaries. This causes significant inconvenience, because

the integral

(χsστ (F),∇ϕ)Ω , (4.23)

where ∇ϕ and σs(F) are discontinuous on the Eulerian and Lagrangian grids respectively,

essentially becomes a product of two distributions. Numerical approximation of such in-

tegrals is a daunting task even in two dimensions, and is prohibitive in three dimensions

with two unstructured meshes involved.

We can simplify evaluation of the integral (4.23) by rebuilding a continuous field σ∗τ
on Gs using a Zienkiewicz-Zhu (ZZ-patch) recovery procedure [Zienkiewicz and Zhu, 1992;
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Zienkiewicz et al., 2013]. The idea of the method is to recover nodal values σ̃∗τ from

the original finite element stress στ sampled within the elements of the finite element

discretization Gs, where this stress is well defined. In this way, the integral in (4.23) can be

evaluated on the Eulerian mesh G with element-wise continuous ∇ϕ and with solid stress

σ∗τ , which is interpolated on the Gauss points in G from the recovered nodal values σ̃∗τ on

Gs using
σ∗τ (xG) =N (xG)σ̃

∗
τ , (4.24)

where xG is the spatial coordinate of a Gauss point, and N (xG)σ̃
∗
τ is the standard finite

element interpolation within the element in Gs containing xG. The recovered nodal values

σ̃∗τ are convenient to define as a matrix with each row storing components of the stress

tensor recovered at the corresponding node in the element.

ZZ-patch stress recovery

The recovery procedure involves smoothing of the sampled values of στ by a polynomial of

degree equal to the degree of the shape functions in the finite element discretization, with

the polynomial being defined within a patch of elements surrounding a single vertex, (see

Figure 4.3).

Figure 4.3: Element patch in the ZZ-patch recovery procedure. Illustrated: patch assembly
point xc, sampling points (�), and nodal values recovered in this patch (•).
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Thus, for each component σj
τ = [στ ]j, where the stress tensor is represented as a vector

of its components, we write the recovered solution in a patch as

[σ∗τ (x)]j = p(x)·aj, (4.25)

where p(x) = [1, x, y, xy, x2, y2] and aj = [a1, . . . , a6]
T , with x = x− xc, and xc being the

patch assembly point.

For each element patch (Figure 4.3), for each component of the stress tensor, a least

squares functional with n sampling points is minimized:

Πj =
1

2

n∑
k=1

[
σj
τ (xk)− pk·aj

]2
, (4.26)

where pk = p(xk).

The vector of polynomial coefficients aj for each component of the stress tensor is found

as a solution to the linear system

Aaj = bj, (4.27)

where

A =
n∑

k=1

pTk pk (4.28)

is the Vandermonde matrix, and

bj =
n∑

k=1

pTk σ
j
τ (xk). (4.29)

The computed aj are used to recover each component of σ̃∗τ at all inner nodes • within
the patch, (see Figure 4.3). For example, for some node xe we recover stress tensor values

at this node as

[σ̃∗τ (xe)]j = [σ∗τ (xe)]j = p(xe)·aj. (4.30)

As some nodes (mid-edge nodes) in the P2 finite element discretization belong to more

than one patch, we perform averaging of the multiple nodal values of σ̃∗τ computed on

different patches.

In two dimensions, for stress sampling we use second order Gaussian quadrature nodes
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defined on the reference triangle using barycentric coordinates as

(1/6, 1/6, 2/3),

(2/3, 1/6, 1/6),

(1/6, 2/3, 1/6).

Extension of the ZZ-patch method to three spatial dimensions is straightforward. The

interpolation polynomial p(x) in this case is defined as a function of x = (x, y, z), and

is given by p(x) = [1, x, y, z, xy, xz, yz, x2, y2, z2]. The sampling over a tetrahedron is

performed using nodes of the symmetric, third order, five-point Gaussian quadrature.

Transfer of the elastic stress forces

The evaluation of (4.23), requires a consistent and accurate transfer of the elastic stress

forces onto the Eulerian discretization space. We achieve this using the force-projection

method [Zhao et al., 2008], proposed for the case when the elastic stress is transferred from

the Lagrangian grid onto a uniform Cartesian mesh. It can be modified and applied to the

present case as well. We propose to use a distributed force F discretized with the velocity

trial space on G, such that

(F ,ϕ)Ω = − (χsστ ,∇ϕ)Ω , (4.31)

which is a standard Galerkin projection of the solid stress contribution on a global space

defined in the entire domain Ω.

Numerical experiments show that F can be found by inverting the mass matrix on

(στ ,∇ϕ)Ωs
, while intersected elements integration is performed with high-order Gauss

quadratures [Zhang et al., 2009a] in 2-D; or with a regular 5th-order Gauss quadrature for

tetrahedra in 3-D.

Now the combined formulation is defined on the entire domain Ω and is given by: find

v ∈ V , p ∈ L2(Ω) and F ∈ [L2(Ω)]d such that

(
Dv

Dt
,ϕ

)
Ω

= (p,∇·ϕ)Ω − 2ν (D[v],∇ϕ)Ω + (F ,ϕ)Ω , (4.32)

(F ,ϕ)Ω = − (χsστ ,∇ϕ)Ω ,

(q,∇·v)Ω = 0,
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for all q ∈ L2(Ω) and ϕ ∈ V0.

Operator splitting

Convective terms on the left hand side of equation (4.32) are split from the generalized

Stokes problem as explained in [Minev and Ross Ethier, 1998] and illustrated in Chap-

ter 2.5.2. The total material derivative can be approximated with the second order back-

ward difference as (
D

Dt
vn+1,ϕ

)
Ω

≈ (τ0vn+1 + τ1ṽ
n + τ2ṽ

n−1,ϕ
)
Ω
, (4.33)

where τ0 = 3/(2Δt), τ1 = −2/Δt and τ2 = 1/(2Δt). A pointwise characteristic integration

of the convective terms is performed, such that ṽn(x) = v(Z(tn;x), tn) and ṽn−1(x) =

v(Z(tn−1;x), tn−1) are the velocities from the time levels n and n − 1, which have been

advected alongside an approximation to the characteristics. In this formulation, Z(tn;x)

and Z(tn−1;x) are the solutions to the following terminal-value problem for pure advection

equation between tn−1 and tn+1:

⎧⎨
⎩

dZ(s)

ds
= v(Z(s), s),

Z(tn+1) = x, x ∈ G, s ∈ [tn−1, tn+1].

(4.34)

Velocity and pressure are decoupled at each time step with the second order rotational

incremental pressure-correction scheme [Guermond et al., 2006]. Thus, the time-discretized

scheme (4.32) takes the form

(Fn+1,ϕ
)
Ω
= − (χn+1

s σn+1
τ ,∇ϕ)

Ω
, (4.35)

(τ0v
∗,ϕ)Ω + 2ν (D[v∗],∇ϕ)Ω = (pn,∇·ϕ)Ω +

(Fn+1,ϕ
)
Ω
− (τ1ṽn + τ2ṽ

n−1,ϕ
)
Ω
, (4.36)(∇q,∇φn+1

)
Ω
= −τ0 (∇·v∗, q)Ω , (4.37)(

pn+1, q
)
Ω
=
(
φn+1 + pn − ν∇·v∗, q)

Ω
, (4.38)

τ0
(
vn+1 − v∗,ϕ)

Ω
= − (∇φn+1,ϕ

)
Ω
, (4.39)

for all q ∈ L2(Ω) and ϕ ∈ V0.

With F taken at tn+1, scheme (4.35)-(4.39) is implicit in velocity due to the coupling

between F and v through equation (4.22). For maximum accuracy and stability, at each

time step tn+1 the solution of the discrete system (4.35)-(4.39) should be performed iter-
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atively, solving for vn+1,k using Fn+1,k−1 until reaching the desired convergence, with the

initial approximation Fn+1,0 = Fn.

Treatment of the mixed derivatives

The mixed derivatives term
(∇Tv,∇ϕ)

Ω
on the left hand side of (4.36) usually is not

present in the weak formulation for the Navier-Stokes equations. This term comes from

∇Tv part of the fluid stress tensor and is commonly omitted since ∇·∇Tv = ∇(∇·v) = 0

due to the incompressibility constraint ∇·v = 0. In our formulation we keep this term

because it is instrumental for the correct representation of the boundary forces on Γi. On

the other hand, mixed derivatives introduced by this term couple the different components

of the velocity, which makes numerical solution of the problem unnecessarily complicated.

We can avoid coupling of the different components of velocity by using the penalty

scheme proposed in [Guermond and Minev, 2013]. First, we present the idea in two space

dimensions and then we rewrite equation (4.36) in three dimensions with the second order

implementation of the scheme.

Starting from the unsteady Navier-Stokes system:

Dv

Dt
− ν∇·(∇v +∇Tv) +∇p = 0 ∇·v = 0. (4.40)

Time discretization with the method of characteristics yields

τ0v
n+1
x + τ1ṽ

n
x + τ2ṽ

n−1
x − ν∇2vn+1

x − ν∂xxv
n+1
x − ν∂xyv

n+1
y + ∂xp = 0, (4.41)

τ0v
n+1
y + τ1ṽ

n
y + τ2ṽ

n−1
y − ν∇2vn+1

y − ν∂yyv
n+1
y − ν∂xyv

n+1
x + ∂yp = 0. (4.42)

The second order version of the scheme is as follows:

τ0v
n+1
x + τ1ṽ

n
x + τ2ṽ

n−1
x − ν∇2vn+1

x − ν∂xxv
n+1
x − ν∂xx(v

n+1
x − vex) + ∂xp = ν∂xyv

e
y, (4.43)

τ0v
n+1
y + τ1ṽ

n
y + τ2ṽ

n−1
y − ν∇2vn+1

y − ν∂yyv
n+1
y − ν∂yy(v

n+1
y − vey) + ∂yp = ν∂xyv

e
x, (4.44)

where ve = 2vn − vn−1 is a second order extrapolation of velocity vn+1.
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Implementing this idea in the weak formulation (4.35)-(4.39) we obtain:

(Fn+1,ϕ
)
Ω
= − (χn+1

s σn+1
τ ,∇ϕ)

Ω
, (4.45)

(τ0v
∗,ϕ)Ω + ν (∇v∗,∇ϕ)Ω + 2ν

3∑
i=1

(
∂iv

n+1
i , ∂iϕi

)
Ω
=

= (pn,∇·ϕ)Ω +
(Fn+1,ϕ

)
Ω
− (τ1ṽn + τ2ṽ

n−1,ϕ
)
Ω
+

+ ν
(
∂xv

e
x − ∂yv

e
y − ∂zv

e
z, ∂xϕx

)
Ω
+

+ ν
(
∂yv

e
y − ∂xv

e
x − ∂zv

e
z, ∂yϕy

)
Ω
+

+ ν
(
∂zv

e
z − ∂xv

e
x − ∂yv

e
y, ∂zϕz

)
Ω
,

(4.46)

(∇q,∇φn+1
)
Ω
= −τ0 (∇·v∗, q)Ω , (4.47)(

pn+1, q
)
Ω
=
(
φn+1 + pn − ν∇·v∗, q)

Ω
, (4.48)

τ0
(
vn+1 − v∗,ϕ)

Ω
= − (∇φn+1,ϕ

)
Ω
, (4.49)

for all q ∈ L2(Ω) and ϕ ∈ V0.

Scheme (4.45)-(4.49), when discretized in space with finite elements, produces sparse

linear systems with symmetric positive definite matrices independent of time, that can be

computed once at the beginning of time-stepping. The preconditioned conjugate gradient

method is used for solving the linear systems, along with incomplete Cholesky decompo-

sition algorithm used for preconditioning. In our simulations, a standard P2 − P1 spatial

finite element approximation is adopted on the grid G.

4.2.2 Extension to variable density and viscosity

In order to include fluids and solids having different densities and viscosities, we first

introduce the following notation:

ρ(x, t) = χf (x, t)ρf + χs(x, t)ρs and μ(x, t) = χf (x, t)μf + χs(x, t)μs (4.50)

and

F̂(x, t) = ∇·(χs(x, t)στ (x, t)). (4.51)

Since the advection terms in the Navier-Stokes equations can be discretized in a straight-

forward way explicitly, it is sufficient to restrict ourselves to the governing equations in the
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form of the generalized Stokes problem. Using the notation above,

ρ
∂v

∂t
= −∇p+∇·(2μD[v]) + F̂ , ∇·v = 0 in Ω. (4.52)

Denoting the divided differences as δta
n = (an − an−1)/Δt we can state the following first

order approximation to the system (4.52):

γδtv
n+1 − 2σ∇·D[vn+1] = (γ − ρn)δtv

n +∇·(2(μn+1 − σ)D[vn])−∇pn + F̂n+1
, (4.53)

∇2φn+1 =
ρ̌

Δt
∇·vn+1 ∂φn+1

∂n

∣∣∣∣
∂Ω

= 0, (4.54)

where γ, ρ̌, and σ are the positive constants, such that for all (x, t) ∈ Ω×[0, T ] holds

ρ̌ ≤ ρ(x, t) ≤ γ and 0.5μ(x, t) ≤ σ. Unconditional stability and optimal convergence of

the scheme can be shown for the unsteady Stokes equations, i.e. without the hyperelastic

part of the stress, [Guermond and Salgado, 2009; Guermond and Minev, 2013].

4.3 Numerical experiments

4.3.1 Deformation of an elastic wall driven by a time-dependent

flow

In this numerical experiment we simulate deformation of an elastic wall by a time-dependent

fluid flow prescribed at one of the boundaries in a periodic domain. The computational

domain is 1 by 1 square with the lower half of the domain occupied by solid and the upper

half filled with the fluid; see Figure 4.4 for the schematics of the setup geometry.

At y = 0, zero velocity is prescribed. At the top boundary, y = 1, the periodic in time

Dirichlet velocity is prescribed as

vx = 0, vy = −(1− cos(2πt)) sin(2πx). (4.55)

Periodic boundary conditions are prescribed at x = 0 and x = 1. The fluid and solid

viscosities are given by ν = νf = νs = 10−2, and the coefficient G in front of the elastic

part of the solid stress tensor στ = G(FFT − I) is set to G = 0.25.

In Figure 4.5 we present the fluid velocity and solid deformation at t = 1. The results

compare well with the simulations reported in [Zhao et al., 2008].

91



Figure 4.4: Schematics of the elastic wall driven by a time-dependent flow.

4.3.2 Solid motion in a lid driven cavity

Another well validated result we would like to try is the dynamics of a soft solid deforming

in a lid driven cavity. In order to compare our results, we use the same parameters and

geometry as has been reported previously by [Zhao et al., 2008; Sugiyama et al., 2011]. The

cavity is a 1×1 square filled with a fluid at rest. A neutrally buoyant disc with a radius 0.2

is placed at (0.6,0.5), (see Figure 4.6a). The no-slip boundary conditions are prescribed at

the domain boundary x = 0, x = 1, and y = 0. At t = 0 the lid (y = 1) starts to move

at a constant speed vx = 1 in the positive x direction. The material properties are set

as follows: fluid and solid viscosities ν = νf = νs = 10−2, and the modulus of transverse

elasticity G = 0.1.

The simulation results demonstrating particle deformation and instantaneous stream-

lines in the fluid at different time steps on the interval t ∈ [0, 8.20] are presented in Fig-

ure 4.6. For times t = 4.69 and t = 8.20 we compare our solid deformation to the results

reported elsewhere; see Figure 4.6e and 4.6h, and note the bold gray line outlining the solid

boundary as reported by [Zhao et al., 2008].

4.3.3 Three-dimensional fluid flow induced by a rhythmically ex-

panding pulmonary alveolus

As an illustration of the ability of the method to resolve complex flow patterns in the res-

piratory system, we present a proof of concept simulation of a three dimensional alveolated
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Figure 4.5: Visualization of the fluid velocity field and solid deformation at t = 1. Dashed
bold line is the solid boundary as reported in [Zhao et al., 2008].

duct with a rhythmically expanding alveolus. Previous simulations by [Henry et al., 2012]

and [Sznitman, 2013] have been performed based on the assumption of geometrically self-

similar expansion of the lungs. Therefore, geometrical models used in these studies were

designed in such a way, that the entire geometry – the duct and the attached alveolus – were

expanding and contracting according to a prescribed sinusoidal law remaining self-similar

at all times.

It is also known that the resulting alveolar flow patterns depend on Qa/Qd, where Qa

is the flow rate of air entering the alveolus, and Qd is the ductal flow rate measured at the

inlet [Sznitman et al., 2007]. The flow rate ratio is dependent on the alveolar generation

number z′ (see Table 1.1), which also determines the airway dimensions and parameters of

the fluid flow.

Acinar micro-flows exhibit two major flow patterns: a recirculation flow due to viscous

shear transferred from the ductal region, and a radial flow due to alveolar wall expansion,

(see Figure 4.10). Further down the airway tree, the relative importance of the radial flow
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(a) t = 0 (b) t = 1.17 (c) t = 2.34 (d) t = 3.52

(e) t = 4.69 (f) t = 5.86

(g) t = 7.03 (h) t = 8.20

Figure 4.6: Streamlines and solid deformation in a lid driven cavity. For two time instances
t = 4.69 and t = 8.20 we include solid boundary reported in [Zhao et al., 2008], the
boundary is outlined using a thick gray line.
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increases as the ratio Qa/Qd grows with each acinar generation z′, until the recirculation

flow is completely dominated by the alveolar wall movement starting at generation z′ = 6

as reported in [Sznitman et al., 2007].

Our geometrical model consists of a rigid cylindrical duct and elastic alveolus attached

to it, see (Figure 4.7). The geometrical parameters follow the geometrical description of the

pulmonary acinus from [Sznitman et al., 2007] for comparative purposes, and are presented

in Table 4.1.

Figure 4.7: Geometry of the idealized alveolar duct. Refer to Table 4.1 for the specific
values of the two configurations studied.

d(mm) r(mm) θ V ′(m/s) T (s) Qa/Qd 1/ν G Δt
z′ = 6 0.27 0.19 120◦ 6.6·10−3 3 0.02142 0.1075 50 10−2

z′ = 8 0.23 0.217 120◦ 1.2·10−3 3 0.2425 0.01662 50 10−3

Table 4.1: Geometrical and numerical parameters for the idealized alveolar duct simula-
tions.

Since the numerical method is designed for simulations on fixed grids, special considera-

tions have to be given for the computational mesh G. For present simulations it is designed

to consist of a cylindrical duct having rigid side walls with an opening for the alveolar

mouth, and a box attached at the alveolar opening with Dirichlet surface ∂Ωtop at the top

and rigid walls on the sides and at the bottom, (see Figure 4.7 and 4.8). The alveolus wall

grid Gs is a sphere segment cut to fit the outside of the duct wall boundary, (see Figure 4.9).
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Figure 4.8: Boundary of the computational grid G for FSI simulations with the frontal
surface of the top box removed. Alveolus is placed for illustration only, separate Lagrangian
grid Gs is used for the solid domain, (see Figure 4.9).

Figure 4.9: Solid grid Gs representing alveolar wall.

A time dependent parabolic velocity profile is prescribed at the inlet boundary. The

magnitude of the prescribed velocity is given by vmax(t) = V ′ sin(2π
T
t). A standard outlet

boundary condition with constant pressure p = 0 is set at the other end of the cylindrical

duct. The Dirichlet surface ∂Ωtop is used to prescribe a proper time-dependent volumetric

flow rate through the alveolar opening in order to keep the Qa/Qd ratio constant during
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the simulations. A uniform time-dependent velocity profile is prescribed at ∂Ωtop, with the

magnitude computed according to the formula vtop = Qd(Qa/Qd)/Atop, where Qd is the

ductal volumetric flow rate, and Atop is the ∂Ωtop area.

Figure 4.10: Instantaneous alveolar streamlines at maximum inspiration. Geometry and
the fluid flow parameters correspond to the acinar generation z′ = 6 in [Sznitman et al.,
2007]. The recirculation region is seen on the left side of the alveolus, the radial flow due
to alveolar expansion is on the right.

The simulations were performed for two alveolar generations z′ = 6 and z′ = 8. The

instantaneous streamlines in the fluid at the maximum inspiration for both generations

are presented at Figures 4.10 and 4.11. Qualitatively, these results match the simulations

performed by [Sznitman et al., 2007; Henry et al., 2012], with some differences, probably,

due to completely different approaches for resolving fluid-structure interaction. Similarly

to what has already been reported, our results show that at z′ = 8 the alveolus flow

has no recirculation region and is completely dominated by the alveolar wall motion, (see

Figure 4.11). For z′ = 6 we can still see two distinct flow regions in the alveolus, the

recirculation region and the region with streamlines following the wall, (see Figure 4.10).

This is different from what is observed in [Sznitman et al., 2007], who report that starting

from z′ = 6 they do not observe the recirculation region anymore.

The apparent difference is caused by the nonuniform dynamics of the alveolar wall,

which we do not control in our simulations. Due to hydrodynamic pressure, the distal

(further downstream) portion of the alveolar wall moves and expands more readily than
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Figure 4.11: Instantaneous alveolar streamlines at maximum inspiration. Geometry and
the fluid flow parameters correspond to the acinar generation z′ = 8 in [Sznitman et al.,
2007]. The flow in the alveolus is completely dominated by the alveolar wall expansion.

the proximal side of the wall. In our view, this slower wall motion allows formation of the

recirculation region, which would not happen if the expansion was prescribed and uniform

as in [Sznitman et al., 2007; Henry et al., 2012].
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Chapter 5

Conclusion

The work described in this thesis presents new numerical approaches for solving problems

involving fluid-solid and fluid-elastic body interactions in biological systems with the focus

on aspects of fibrous particle deposition in the distal airways of the human lung.

In order to perform efficient and accurate resolution of the fluid flow around an elongated

solid of complex shape and to address the issue of different spatial scales associated with

the problem of micro-particle transport in the lungs, we introduce a new Rotating Grid

Procedure (RGP) which is based on two grids accommodating different scales, and on

the Fictitious Domain Method (FDM) for particulate flows. This technique employs a

macro-grid GH with the mesh size H for resolving the macro-scale flow, and a micro-scale

grid Gh with the grid size h 	 H for accurate resolution of the flow around the micro-

particle. The efficiency of the RGP is achieved by fixing the micro-grid with the fiber in

its spatial motion. Then, the original problem on a moving grid is reformulated using the

ALE method, yielding a problem formulation on the fixed reference micro-grid. As such,

the problem is discretized on the reference micro-grid using finite elements, resulting in

matrices independent of time, which can be precomputed before the first time step. The

solid motion of the particle is resolved with the FDM on the micro-grid, which can be

designed to fit a complex particle shape, thus improving the accuracy of the micro-grid

integration within the particle volume.

The RGP is used to study local deposition enhancement due to magnetic field alignment

for ellipsoid particles in a small airway bifurcation. Our results suggest that magnetic

alignment of high-aspect ratio particles (length to diameter ratio 20 or more) could help in

the development of new targeted drug delivery approaches to aerosol medicine.

In another study, we used RGP to find that the micro-fibers aligned with the shear

plane (plane perpendicular to the local fluid vorticity) in a linear shear flow may gain a
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significant inclination to the shear plane in a relatively short time. Additionally, our results

show that particles with complex geometries exhibit rotational behavior in shear flows,

which is different from that occurring for straight ellipsoids or cylinders. Such behavior

may be a reason for higher respiratory tract deposition for fibers with complex shapes than

that seen with simple fiber shapes, due to enhanced interception caused by a combination

of transverse motion and more frequent flipping.

A finite element method utilizing mixed Eulerian and Lagrangian approach is developed

for direct numerical simulations of dynamical interaction between a Newtonian fluid and

a hyper-elastic solid. A combined velocity field for fluid and solid is introduced over the

entire computational domain, and a weak formulation for the combined fluid-solid system

is derived in an Eulerian framework. The problem for the combined velocity field is then

solved using the finite element method with operator splitting that allows time independent

matrices for the velocity and pressure operators.

The solid deformation is tracked on a Lagrangian grid, where the solid stresses are

computed using finite element interpolation. The solid stresses are smoothed on the La-

grangian grid with the ZZ-patch recovery method and are transferred on the Eulerian grid

as a distributed force using the force-projection method.

Numerical experiments in two spatial dimensions show good qualitative agreement with

the numerical results reported in the literature. In three dimensions, a computational model

of an alveolated duct with a single expandable alveolus is simulated. The computed flow

patterns suggest that the developed numerical method is capable of resolving fluid-structure

interaction in complex 3-D configurations with the results in good agreement with those

obtained with different numerical methods and computational models.

5.1 Summary

Recapitulating, this thesis has resulted in the following contributions.

� A brief overview of the idealized respiratory system morphologies and review of the

different modeling and experimental approaches to study particle deposition in the

lungs.

� A review of the Fictitious Domain Method.

� The rotating micro-grid procedure for the accurate resolution of micro-particle dy-

namics in the respiratory airways. We extend the [Dechaume et al., 2010] micro-grid
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idea by fixing the micro-grid with the particle in its spatial translation and rotation.

We perform an Arbitrary Lagrangian-Eulerian Transformation of the Navier-Stokes

equations from the moving grid to a fixed reference grid.

� An implementation of the rotating micro-grid procedure on unstructured grids. In

order to increase the accuracy and performance of the Fictitious Domain Method

[Veeramani et al., 2007], we propose to fit the complex particle surface geometry with

the elements in the computational mesh fixed with the particle.

� Two numerical studies of problems involving dynamics of high aspect ratio particles

in the lungs

� A finite element algorithm for simulations of coupled dynamics of inhaled air modeled

as a Newtonian fluid and airway walls modeled as a hyperelastic solid in the acinar

lung generations.

� Numerical simulations of three-dimensional rhythmically expanding alveolus that of-

fered a good comparison with the available results in the literature [Sznitman et al.,

2007; Henry et al., 2012].

� A computational model of a single alveolus that allow more detailed studies of impact

of nonuniform lung expansion on the observed flow patterns in the pulmonary acini.

5.2 Future work

Based on the presented accomplishments, we consider the following next steps as promising

future developments:

1. Deposition of high-aspect ratio fibers in the pulmonary acinus

Here, the two numerical techniques presented in this thesis can be combined to sim-

ulate high aspect ratio particle transport in the alveolated ducts under the periodic

breathing conditions. To our knowledge, such studies have never been conducted

before, and the questions about trajectory reversibility and chaotic rotation of long

curved fibers subjected to the flow conditions in rhythmically expanding alveoli are

yet to be answered.

2. Effect of a non-uniform lung expansion on the flow patterns in the alveoli

In our simple model of alveolated duct, we observe that the alveolar wall deformation
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is larger distal to the duct inlet. Taking into account significant structural hetero-

geneity of the real alveolar walls and that the geometric hysteresis of lung expansion

is a known fact, the effect of the non-uniform wall deformation on the alveolar flow

patterns has to be studied in more details. Provided that there are evidences for sig-

nificant change in the flow patterns, particle transport simulations can be performed

to assess the effect of those changes on particle deposition.

3. Constitutive model for alveolar walls

Development of realistic constitutive models for alveolar tissues is instrumental for

accurate modeling of the air transport and particle deposition in the terminal airways.

Nevertheless, very little is known about the stresses in the alveolar walls, and this is

another large challenge for future work.

4. Application of the FSI scheme to other biological and engineering flows

The presented FSI approach was developed without any assumptions restricting its

use outside of the human respiratory system model. Therefore, it can be applied with-

out significant modifications to study complex flows in irregular deformable domains,

including but not limited to blood-heart interaction and evolution of the arterial

aneurysms.

5. Convergence and stability studies

Since the schemes presented in this thesis, particularly the FSI scheme, rely on many

novel numerical techniques, it is useful to study the convergence rates of the schemes

with respect to the time step and spatial resolution. When no solid phase is present,

we expect both schemes to have formal second order. When the solid is taken into

account, the order should decrease due to many factors, including skipping the itera-

tions while resolving the solid motion, errors in the fluid-structure interface resolution

on the Eulerian mesh, errors due to interpolation between meshes, etc.

Finally, the interplay of many numerical parameters influences the stability of the

FSI method. Particularly, the effect of the time step, Eulerian and Lagrangian grid

resolution, the choice of the numerical integration scheme over the cut elements,

problem reiterations and stress transfer methods should be studied together in order

to estimate the stability restrictions for the scheme.
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Balásházy, I., Martonen, T. B., and Hofmann, W. (1990). Fiber Deposition in Airway

Bifurcations. Journal of Aerosol Medicine, 3(4):243–260.

Borojeni, A. A., Noga, M. L., Vehring, R., and Finlay, W. H. (2014). Measurements of

total aerosol deposition in intrathoracic conducting airway replicas of children. Journal

of Aerosol Science, 73:39–47.

Bower, A. F. (2009). Applied Mechanics of Solids. CRC Press.

Cai, F. and Yu, C. (1988). Inertial and interceptional deposition of spherical particles and

fibers in a bifurcating airway. Journal of Aerosol Science, 19(6):679–688.

Cebral, J. R. and Summers, R. M. (2004). Tracheal and central bronchial aerodynamics

using virtual bronchoscopy and computational fluid dynamics. IEEE Transactions on

Medical Imaging, 23(8):1021–33.

Celik, I. B., Ghia, U., Roache, P. J., Freitas, C. J., Coleman, H., and Raad, P. E. (2008).

Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD

Applications. Journal of Fluids Engineering, 130(7):078001.

Cheng, Y.-S., Yeh, H.-C., and Allen, M. D. (1988). Dynamic Shape Factor of a Plate-Like

Particle. Aerosol Science and Technology, 8(2):109–123.

Choi, J.-I. and Kim, C. S. (2007). Mathematical Analysis of Particle Deposition in Human

Lungs: An Improved Single Path Transport Model. Inhalation Toxicology, 19(11):925–

939.

Cox, R. G. (1970). The motion of long slender bodies in a viscous fluid Part 1. General

theory. Journal of Fluid Mechanics, 44(04):791–810.

Cox, R. G. (1971). The motion of long slender bodies in a viscous fluid. Part 2. Shear flow.

Journal of Fluid Mechanics, 45(04):625–657.

Dahneke, B. (1982). Viscous Resistance of Straight-Chain Aggregates of Uniform Spheres.

Aerosol Science and Technology, 1(2):179–185.

104



Darquenne, C. and Paiva, M. (1994). One-dimensional simulation of aerosol transport and

deposition in the human lung. Journal of Applied Physiology (Bethesda, Md. : 1985),

77(6):2889–98.

Dasi, L. P., Simon, H. A., Sucosky, P., and Yoganathan, A. P. (2009). Fluid mechanics of

artificial heart valves. Clinical and Experimental Pharmacology & Physiology, 36(2):225–

37.

Davies, C. (1979). Particle-fluid interaction. Journal of Aerosol Science, 10(5):477–513.

Dechaume, A., Finlay, W. H., and Minev, P. D. (2010). A two-grid fictitious domain

method for direct simulation of flows involving non-interacting particles of a very small

size. International Journal for Numerical Methods in Fluids, 63:1241–1255.

Diaz-Goano, C., Minev, P., and Nandakumar, K. (2003). A fictitious domain/finite element

method for particulate flows. Journal of Computational Physics, 192(1):105–123.

Doorly, D. J., Taylor, D. J., and Schroter, R. C. (2008). Mechanics of airflow in the human

nasal airways. Respiratory Physiology & Neurobiology, 163(1-3):100–10.

Edwards, D. A. (1994). A general theory of the macrotransport of nondepositing particles

in the lung by convective dispersion. Journal of Aerosol Science, 25(3):543–565.

Emmett, P., Aitken, R., and Hannan, W. (1982). Measurements of the total and regional

deposition of inhaled particles in the human respiratory tract. Journal of Aerosol Science,

13(6):549–560.

Finlay, W. H. (2001). The Mechanics of Inhaled Pharmaceutical Aerosols. Academic Press,

London.

Finlay, W. H., Lange, C. F., King, M., and Speert, D. P. (2000). Lung delivery of aerosolized

dextran. American Journal of Respiratory and Critical Care Medicine, 161(1):91–7.

Fok, T. F., Monkman, S., Dolovich, M., Gray, S., Coates, G., Paes, B., Rashid, F., New-

house, M., and Kirpalani, H. (1996). Efficiency of aerosol medication delivery from a

metered dose inhaler versus jet nebulizer in infants with bronchopulmonary dysplasia.

Pediatric Pulmonology, 21(5):301–9.

Gans, R. (1928). Zur Theorie der Brownschen Molekularbewegung. Annalen der Physik,

391(12):628–656.

105



Geuzaine, C. and Remacle, J.-F. (2009). Gmsh: A 3-D finite element mesh generator with

built-in pre- and post-processing facilities. International Journal for Numerical Methods

in Engineering, 79(11):1309–1331.

Gil, J., Bachofen, H., Gehr, P., and Weibel, E. R. (1979). Alveolar volume-surface area

relation in air- and saline-filled lungs fixed by vascular perfusion. Journal of Applied

Physiology: Respiratory, Environmental and Exercise Physiology, 47(5):990–1001.

Glowinski, R., Pan, T.-W., Hesla, T., and Joseph, D. (1999). A distributed Lagrange multi-

plier/fictitious domain method for particulate flows. International Journal of Multiphase

Flow, 25(5):755–794.

Glowinski, R., Pan, T.-W., and Periaux, J. (1994). A fictitious domain method for external

incompressible viscous flow modeled by Navier-Stokes equations. Computer Methods in

Applied Mechanics and Engineering, 112(1-4):133–148.

Golshahi, L. and Finlay, W. H. (2009). Recent Advances in Understanding Gas and Aerosol

Transport in the Lungs: Application to Predictions of Regional Deposition. In Wang,

L., editor, Advances in Transport Phenomena, volume 1 of Advances in Transport Phe-

nomena, pages 1–30. Springer Berlin Heidelberg.

Golshahi, L., Noga, M. L., Vehring, R., and Finlay, W. H. (2013). An in vitro study on

the deposition of micrometer-sized particles in the extrathoracic airways of adults during

tidal oral breathing. Annals of Biomedical Engineering, 41(5):979–89.

Guermond, J., Minev, P., and Shen, J. (2006). An overview of projection methods for

incompressible flows. Computer Methods in Applied Mechanics and Engineering, 195(44-

47):6011–6045.

Guermond, J.-L. and Minev, P. (2013). Efficient Parallel Algorithms for Unsteady Incom-

pressible Flows. In Iliev, O. P., Margenov, S. D., Minev, P. D., Vassilevski, P. S., and

Zikatanov, L. T., editors, Numerical Solution of Partial Differential Equations: The-

ory, Algorithms, and Their Applications SE - 10, volume 45 of Springer Proceedings in

Mathematics & Statistics, pages 185–201. Springer New York.

Guermond, J.-L. and Salgado, A. (2009). A splitting method for incompressible flows with

variable density based on a pressure Poisson equation. Journal of Computational Physics,

228(8):2834–2846.

106



Haefeli-Bleuer, B. and Weibel, E. R. (1988). Morphometry of the human pulmonary acinus.

The Anatomical Record, 220(4):401–14.

Hammersley, J. R. and Olson, D. E. (1992). Physical models of the smaller pulmonary

airways. Journal of Applied Physiology, 72(6):2402–2414.

Harris, R. and Fraser, D. (1976). A model for deposition of fibers in the human respiratory

system. American Industrial Hygiene Association Journal, 37(2):73–89.

Harris Jr, R. and Timbrell, V. (1975). The influence of fibre shape in lung deposition-

mathematical estimates. Inhaled Particles, 4:75.
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