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(i)

ABSTRACT

This thesis concerns itself with the optimum-control study
of a class of infectious diseases which are propagated through the
transfer of disease micro-organism, by direct contact between diseased
and healthy individuals. An improved model, generally applicable to
most such diseases, reasonably accurate in representing the phenomena
connected with their spread, mathematically simple, and suitable
from control point of view, has been formulated. The new model, while
remaining essentially deterministic in'nature, incorporates a very
desirable feature of stochastic models by representing the latent
and infectious periods of disease by their mean values and respective

standard deviations.

The resulting model consists of a set of non-linear
differential equations which include functions of present values and
past history of both state and control variables. Numerical solutions
have been obtained for the simulated model, consisting of equivalent
differential difference equations, with different sets of parameters,
but without control; thus demonstrating the applicability of the model
to various diseases. The effect of application and variation of

each of the active and passive vaccination controls has also been studied.

The optimum control theory has been applied to the

problem of finding the most economic use of active and passive



(ii)

immunization controls. Application of Pontryagin's Minimum Principle
to this case, involving functions of both delayed state and delayed
control, has been demonstrated and a Procedure has been developed for
the numerical solution of the resulting control problem.

Using the numerical procedure, optimum control strategies
have been obtained for different values of reported case cost, a
parameter representing the personal, social and economic damage done
by one active case of the disease. The influence of delay in the
effectiveness of active control on the resulting optimum cost and

controls has also been studied.
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CHAPTER T
GENERAL INTRODUCTION

.1 Introduction

Research conducted during the last sixty or so years
in the fields of clinical medicine, biology, epidemiology, and other
related disciplines has pruvided considerable insight into the
phenomena connected with the spread of infectious diseases. A Targe
number of text books on public health, containing this information,
may be classed as non-technical from the point of view of medical
sciences; references [11]: [23], [26], and [30] are a few examples of
this fact. This easy access to information, coupled with the common
concern of every individual for the scourge of epidemics to which
humanity has been subjected from time immemorial, has attracted the
attention of a considerable number of researchers from sciences

other than medical.

Mechanisms of contagion can be readily classified into
two sub-sections, namely, micro-mechanisms and macro-mechanisms; the
former dealing with characteristic properties of pathogenic material
of infection and its effects on the biological system of the victim,
and the latter concerning itself with the behaviour of the intended

victims as a group and the susceptibilities and defenses of this

* Numbers in rectangular brackets indicate references listed at the

end of this thesis.
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group as a crowd or herd. The former is the area of major concern of
only the medical or biological scientists, whereas the latter can and
has benefitted most from the specialised knowledge of mathematicians,
statisticians, ecologists, and system scientists. The research

reported in this dissertation falis in the second category.

A beginning 1in the application of mathematical concepts
to epidemics may be said to have been made with the studies of London
Bills of Mortality by John Graunt and William Petty,in the middle of
the 17th century. It was then that the term medical statistics really
originated. Early attempts on the study of statistical returns of
deaths from smallpox were aimed at finding some empirical laws under-
lying the spread of epidemics. William Farr, in fact, succeeded in
fitting normal curves to quarterly data on smallpox deaths, in the
middle of the nineteenth century. Successes 1ike this, coupled with
research in the biological field around the same time, laid the

foundations of the present mathematical theory of epidemics.

A Tlarge number of workers have proposed a number of math-
ematical models to mimic the behaviour of epidemics. The work done
in this field has been extensively reviewed, and good number of review
articles and publications are available; prominent among them are those
of Serfling [37], Bailey [2], and Deitz [10]. Bailey's monograph [2]
reviews in detail the work done up to 1957, ard has been updated by

Deitz [10]. The major milestones in the development of this theory are
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the works of Hamer, Brownlee, Lotka, Ross, Reed and Frost, Kermick
and McKendrick, and E.B. Wilson. While a more detailed historical
review of the subject is postponed to the later parts of the thesis,
it will be useful to discuss here, in brief, the basic concepts of

the epidemic theory as they are understood today.

1.2 Basie Concepts

Micro-organism of an infectious disease is carried from
a diseased individﬁa] or animal to the healthy one either by direct
contact and proximity, or through an intermediate agent. The inter-
mediate agent may be an item of food, water, or a rodent or arthropod
vector. Attention is here particularly restricted to those communicable
diseases which pass on by direct contact or proximity. The causative
agents of these diseases are bacteria or virus. It may be pointed out
here, however, that the methods discussed in this thesis may be
extended to other classes of infectious diseases by suitable modi-
fications.

For the purpose of epidemic study a population, at any
time, may be considered to consist of the following three sub-populations:
susceptibles, infectives and Zmmunes. A brief description of these
three terms is in order here. Siweceptibles, as the name implies,
are the healthy individuals who have a very weak or no resistance to
the disease in question. Since in most cases an individual acquires

immunity to a disease after recovery, it may be assumed that a member
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of the susceptible population is one who has either no experience of
the disease in question or has lost his immunity obtained from earlier
exposures. Infectives are the individuals who have sufficiently
developed pathogenic material in their system so that they are capable
of passing it on to their contacts, thus infecting the susceptible
ones. Immmes are the members of population who have acquired immunity
to the disease in question, either by earlier exposure or by artificial
means of immunization. These members do not take any part in the
process of disease spread. Therefore the individuals, once affected
by the disease but since dead, recovered, or removed frem circulation;
either by hospitalization or effective quarantine on the appearance of
symptoms, can also be considered in the immune class.

When an infective somehow gets introduced to a population
of susceptibles and immunes only, the contacts of the infective pick
up the disease micro-organism which then meets the biological and
chemical defenses of the host. Depending upon the degree of this
resistance and its own capability for multiplication, the parasite
establishes itself in the system of a susceptible host after a period
called Zatent period. The susceptible now himself becomes an in-
fective and starts spreading the disease to his healthy contacts till
he shows the symptoms of disease and is removed from circulation by
quarantine, hospitalization, death, or recovery. If recovered, he

acquires immunity to the disease, at least for the immediate future,
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and enters the immune population. Some relapses in diseases 1like
tuberculosis do, however, occur. Also, some infectives develop a
tolerance to the parasite and become capable of passing the disease,
at least for a limited time, without themselves ever showing the
symptoms of disease; they are called carriers. There are others

who become immune without ever becoming sick by virtue of receiving
repeated but small.doses of infection.

The time elapsed between the receipt of infection by a
susceptible and his becoming infective is called the Zaternt period,
and that between first exposure and appearance of symptoms is called
the incubation period. These two periods have definite mean values
for a particular disease. The difference between the incubation
period and latent period is the time during which a case is actively

infective and is hence called the infectious period.
1.3 Modeling

The discussion so far leads to the conclusion that the
dynamics of a crowd disease or an epidemic can be represented, at
any time, by the numbers of susceptibles, infectives and recovered or
removed individuals and the rates at which they move from one
category to the other. In other words, an epidemic can be represented
by a mathematical model, provided parameters for the rates of change
of the above variables are known. 1In fact, a number of such models

have been formulated during the last 60 years, as shall be discussed
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in the néext chapter. The primary parameters mentioned above are the

rates at which effective contacts are made and infectives are removed

from circulation. However, for a model to be more accurate, in addition

to the consideration of chances of contact and removal, the mean values

and the upper and lower Timits of the latent and incubation periods

should also be incorporated. Thus, mathematically, an epidemic can

be specified by the effective rate of contact, and mean values and

variance of the latent and incubation periods.

Since the events of contact between a susceptible and an

infective (as well as various other phenomena connected with the disease

spread) are probabilistic in nature, it is clear that the model re-

pPresenting an epidemic should ideally be stochastic in nature. However,

when dealing with large populations, a deterministic model which by
its nature tends to evaluate the mean values of variable at any time

rather than the probabilities of these numbers is sufficiently accurate

and mathematically much simpler than its stochastic counterpart. In fact,

a stochastic model for a small community, when considered for households

of more than two, is almost unmanageable mathematically. Therefore,

when one is not dealing with very small groups, the usefulness of

deterministic models can not be over stated.

As pointed out earlier, models help in understanding the

mechanism of the spread of epidemics at macro level. The understanding
thus gained has always been used for a better control of the epidemics.

Most of the models discussed in Titerature, however, can be said to
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be predictive in nature rather than control oriented, since they do
not include parameters representing control actions. Because of
the availability of methods for creating artificial immunity to
disease by use of active and passive immunization, and because of the
proven effectiveness of chemoprophylaxis in preventing disease, -
the important question of selecting the best means of control naturally
arises. If only the predictive models without control parameters
are used, the control Strategy arrived at can, at best, be said to
be a qualified guess. Whereas, with the development of control models
and application of optimization techniques,a more logical control
strategy can be evolved. The question of optimum control has recently
started appearing in the Titerature, as reviewed in subsequent chapters.
In fact,other attempts on some kind of optimization of epidemic
control have been reported. However, to the best of this author's
knowledge no model, sufficiently accurate and yet general enough
for application to the control of a class of diseases, has been reported.
Nor has a thorough application of the Minimum P rinciple of optimum
control theory to this class of problem appeared in the literature.

An improved model for the spread of contagious diseases
is presented in the next Chapter. The new model is basically deterministic
in formulation and is derived from the standard Kermack and McKendrick
model. However, latent and incubation periods and their variation for
the disease in question have been incorporated in the model. The

model assumes each of these periods to be normally distributed with
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known mean value and standard deviation, and these values constitute
Nominal controls in the form of

The

important parameters of the model .
active and passive immunizations have also been considered.
resulting model has been used to evolve a most economic control
strategy.

Chapters II, III and IV contain the major contribution of
this thesis. Chapter II describes the new model ard jts parameters in
detail. Numerical solutions of the model equations, presented in
this Chapter, clearly show its advantages over the earlier models.

The Chapter also demonstrates the ease with which the model can be
used to represent various diseases by adjusting the appropriate

parameters. The introduction of control and its effect on the course

of disease is discussed in Chapter 1I1I. Two different controls,
active immunization and passive immunization, are separately considered,
and numerical solution for various predetermined controls are pre-
sented. Chapter IV deals with the extension of optimal controil
theory for the determination of best control strategy between the two

controls used simultaneously. The procedure developed minimizes a

cost function consisting of the sum of the cost of each control and

that of each case affected by disease.
It is hoped that this dissertation, in addition to pre-

senting some new results in the field of optimum control of epidemics,
also represents an extension and good example of some recent techniques

in optimum control theory. The new model, incorporating the two
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different controls as arrived at in Chapter III, has a finite number
of delays in both state and control variables. Although considerable
work on optimum control of systems with delays in state or control has
been reported, and recently some papers discussing delays both in
state and control have also appeared, yet the author has not come
across any example of such an application in the 1iterature. Numerical
solutions presented in this thesis will, hopefully, provide a good
example of practical application of optimum control to a nonlinear
system with constraints, and having finite number of delays in both

state and control.
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CHAPTER IT

NEW MODEL

2.1 Imtroduction
Introductory remarks made in the last chapter suggest

the existance of a large number of mathematical models suitable for

representing the epidemic spread. 1In fact, the very understanding

of the mechanisms of disease spread, which we now possess, is mainly

due to the liberal use of these models during the last half century.
Among the available models, both deterministic and stochastic, some

are specific to special cases whereas the others are more general.

Again, some are relatively simple whereas the others are more complicated.
Generally speaking, simple ones are less accurate in the representation
of epidemic spread. Therefore a model which is accurate enough and

yet mathematically simple is always desirable. One such model is
introduced in this chapter.

The new model is an improved version of a well known
deterministic model and incorporates many desirable features of other
models, both deterministic and stochastic. This model is quite general
in application to various diseases and quite suitable for introducing

control parameters. Moreover, it is also suitable for the optimum

control analysis.
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The new model is discussed in detail in this chapter,

whereas the analysis of the model with respect to controls is taken up

in the subsequent chapters.

2.2 Historieal Review

Serfling [37]

of the art as it existed

In 1957, Bailey [2] Published his now famous monograph

This work did

single effort. It is no surprise, therefore, that Bailey predicted the

future use of mathematical models in the eéconomical control of epidemics,

which is now receiving some attention in the Titerature and is also

Bailey's work has been

of Deitz [10], which up-
g the

the subject of this author's pPresent effort.

adequate]y supplemented by the review article
These three efforts alone, not withstandin

dates it to 1967.
Present an almost complete picture

Parallel efforts of other authors,

of the state of the art in the field. Any attempt to improve upon this

or the understanding of the

new model, are, however, made jin the next few paragraphs.
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As pointed out in the last chapter, early efforts, including those of
Farr, were devoted to the finding out of these relations from the
published statistical case-report records by the use of mathematical
curve fitting methods. The works of Hamer, Brownlee, Lotka and other
pioneers in the field, were also directed to the same goal. These
investigations helped establish the fact that the number of cases
reported, at any time, depends upon the number of susceptibles and
infectives in the population. This line was further advanced by Ross,
Reed and Frost, Wilson et al and the Kermack-McKenirick team, among
others. Most of the early attempts were deterministic in nature for the
sake of mathematical simplicity. The most popular deterministic model
is the one by Kermack and McKendrick [21], proposed in 1927. It was

on the basis of this model that the authors proposed the now celebrated
Threshold Theorem which states that for a disease to start the pop-
ulation of susceptibles should be more than a certain threshold value.
This model is the one most often used, and it forms the basis of the

model to be proposed in this chapter.

Dissatisfaction with deterministic models, due to their
inaccuracy in representing essentially probabilistic phenomena, led to
the development of mathematically more complicated stochastic models.
The simple stochastic epidemic model, which led to those used today,
is due to Bartlett [6] and Bailey [2]. [3j, [4]. [5], and was first

introduced by Bartlett in 1949. The accurate consideration of latent
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and incubation periods was first introduced in the stochastic models,
and some concepts evolved there are used in the model proposed in this
chapter. Another significant but Targely unexplored area is the
geographical element introduced in epidemic models, mainly by Menther
and Bailey [2], [4].

To sum up, two kinds of epidemic models are now available
in the literature : deterministic and stochastic. The standard
deterministic model is the Kermack and McKendric [21] model. The
stochastic models, however, are being continuously improved upon as
increasing numbers of researchers adopt them because of their better
accuracy and better representation of the phenomena connected with
disease spread. The immediate appeal of the stochastic models stems
from the fact that everything connected with disease spread depends
upon chance, and these models take this fact into account precisely.
But when large populations are involved, it follows from the Zaw of
- Large numbersthat the stochastic deviations are small compared to the
average values, hence the argument that deterministic models are useful
can not be rejected out of hand. This is especially so when the
mathematical simplicity of these models far outweighs the marginal
advantages of stochastic models when applied to larger populations. 1In
fact, due to their mathematical simplicity, the deterministic models
are the only ones suitable for effective optimum control studies at

the present state of development.
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It is due to the above considerations that the model to
be introduced is kept essentially deterministic, even though the latent
and incubation or infectious periods and their statistical variations
are accounted for. The new model is quite general in application and
suitable from the control point of view. Since the new model is based
on the existing Kermack and McKendrick model and is an improvement on
it, it is proposed to discuss the old model, in some detail, in the

next section.
2.3 Kermack and McKendrick Model

The standard deterministic model for a closed population

proposed by Kermack and McKendrick and mentioned in the last section is:

d
a%-= - B XYy (2.1)
dy = BXxXy-~vyy (2.2)
dt
dz = vy (2.3)
dt

where x, y, z are, respectively, the numbers of susceptibles, infectives,

and removed or recovered cases at any time. 8 is the contact rate for
the disease in question and y is the removal rate. The solution of this
model gives a bell shaped case report curve of the type generally
observed in actual practice. This model is a landmark in the history of
the mathematical theory of epidemics, since the now celebrated threshold
theorem, that an epidemic will not start until and unless the number

of susceptibles is more than the relative removal rate p=v/8, was
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derived from this model. In view of the non-linearity in the differential
equations epidemiological conclusions, like the threshold theorem, were
drawn from equilibrium conditions [29], and results were compared with
those of a disease in rat populations under laboratory conditions.

It may be pointed out here that the later stochastic models also arrived
at a threshold theorem similar to that mentioned above, thus proving

the essential correctness of the model.

Although mathematically very simple, the model is not very
accurate in representing epidemics, especially in the beginning and near
the end of the disease cycle. This model assumes the removals (vy) to
be proportional to the population of infectives. This assumption is
very inaccurate, especially at the terminals of the curve. The model,
by virtue of its formulation, assumes a zero latent period and a negatively
distributed Poissoﬁ infectious period [21]; this may be somewhat
correct for quick spreading diseases like influenza and common cold,

but not so for most other diseases.

Due to its mathematical simplicity this model has been used
extensively, and it is also the basis of Revelle's model for economical
control of T.B. [33], [34]. [23]. His model consists of nine differential
equations instead of the three of the Kermack McKendrick model. The
formulation of these equations in the two models is very similar. The
various subpopulations considered in ReVelle's tuberculosis model are

those of susceptibles, susceptibles vaccinated with B.C.G., infected
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but non-active cases, non-actives with prophylaxis cured cases, and
naturally recovered cases. This improved model appears to be re-
asonably accurate for application to the control of tuberculosis, but
still does not consider latent and infectious periods explicitly. It
also uses ~“he proportional rates of the type 'v' used in equation (2.2)
to represent transfers of population from one group to the other during
disease spread. Since this model is highly specialized for tuberculosis,

its application to other situations would be very complicated, if not

impossible.

2.4 PNew Model

Reference to standard text books on public health : Leavell
et al [26], and epidemiology : Taylor et al[40], shows that the in-
cubation period for every disease varies between a lower and an upper
Timit and these values of incubation period are so consistent that
they are used for differential diagnosis of diseases. This fact is
further borne out by the published results of studies conducted by Hope
Simpson, [14], [15]. Reference [15] tabulates the distribution of cases
against incubation period in days for three different diseases, namely :
measles, mumps and chickenpox (varicella). Bailey has discussed the
Hope Simpson data, in some detail, in chapter seven of reference {21,
and has concluded that normal distribution curves can be fitted to the
incubation period data. Continuing his discussion, on the basis of his

earlier published work, he further concludes that it is reasonable to
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assume a normally distributed latent pPeriod and a constant infectious
period. The fact that incubation period and latent period have some
kind of distribution was also proved by Abbey [1] and Sartwell [35].

Although some earlier deterministic models [44] used
constant latent and infectious periods, yet it is only the recent
stochastic models which use the variations in these periods as well.
Bailey [2] proposed the stochastic model considering normally distributed
latent period and constant infectious period (which implies a normally
distributed incubation period, since incubation period is the sum of
Tatent and infectious pPeriods). He outlined a procedure for the
estimation of parameters for this modeT and calculated these parameters
for an epidemic of measles using Hope Simpson [15] data. Among the
parameters calculated were the mean value and standard deviation of
the latent period and the value of infectious period (assumed constant
in his model). Significantly, Bailey and Stenberger [5] have recently
(1970) revised the above proqeduré for estimation of parameters for the
sake of befter accuracy. In addition to the recalculation of parameters
for measles they have also calculated parameters for infectious hepatitis
using the recent (1959-67) data Privately supplied by Dr. K. Peterson of
Hamburg.

It is clear from the above discussion that incubation period
for every disease has a distinct mean value and a definite distribution.

Although incubation period is directly observable from the case histories
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of the patients, the latent period can only be found indirectly.
Bailey's assumption of a constant infectious period, while considering
the latent period to be normally distributed, seems to have been
made at least as much for mathematical simplicity of his stoéhastic
model as for accuracy. In the opinion of this author, a more general
model should have all the periods represented by their mean values and
standard deviations. Consideration of a distributed rather than a
constant infectious period may also be made to compensate for the fact
that many reported cases may escape effective removal from circulation,
and may be spreading the disease, at least for some time, after the

appearance of symptoms.

We can now proceed to incorporate the above feature in the
epidemic model. It may be pointed out here that for an accurate model
we need the mean value and standard deviations of latent period and
those for one of the other two periods, i.e. either infectious period or

the incubation period. A version of the new model may be stated as

follows :
Xy = - By X; X, (2.4)
X, = A(t) - R(t) (2.5)
X3 = R(t) (2.6)
Xy = K(t) B, Xy Xy » ' (2.7)

where X1, X2 and X3 are the numbers of susceptibles, infectives and
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removed or recovered cases, respectively, and X], X2, k3 are the

corresponding rates of change. i4 is the rate at which infected (but

not yet infective) cases are generated; Bo is the effective contact

rate; K(t) is the fraction of population which finally becomes active

in spreading the disease, [1-K(t)] being that fraction which becomes
immune due to repeated but small doses of infection [40, page 142].

A(t) is the rate at which infected cases become infectives after their

latent period is over, and R(t) is the rate at which infectives show

symptoms and are reported, and hence are considered removed from

circulation. Expression for variables A(t) and R(t) are derived in

the next few Paragraphs and are represented by equations (2.8) to (2.14).

The model is clearly based on the earlier Kermack McKendrick

model. However the manner of representing the introduction of active

cases and removal of reported cases is different in the two models.
It is now possible to Calculate the active cases and reported cases on

the basis of latent and incubation periods. The expressions for these

calculations are discussed next.

It was concluded in the earlier discussion that it is

reasonably accurate to assume the latent, infectious and incubation

periods to be normally distributed. This hypothesis will now be used to

We refer to figure 2.1 for
Part (a) of this

evaluate the variables A(t), and R(t).
deriving the expression for the calculation of A(t).

figure shows a probable curve for the past history of {infection rate i4
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and part (b) represents a normally distributed unit impulse with its
distribution parameters Uy and o, being the mean value and standard
deviation of the latent period. The two curves are drawn on the same
time axis. The number of cases becoming active at a time t, from among
those who picked up infection = days back, will be the product of the
ordinates of two figures at time t-r. Mathematically this number will
be

L

1 1 2 v
— exp - _2. ( - ) - X (t- ) s
vV 2 oy ( 201 L ] 4 !

and the total number of newly active infectives, appearing at time t will

be the integral of this product over = varying from O to <. Therefore

1 g 1 2] ..
A(t) = —_ X (t-17) - - — -t)°i{dt. 2.8
() - Jy Yale=e) - exn [ 7oz 1 J] (2.8)

-

Since the ordinate of the normal distribution curve is nearly zero for .

greater than 2u1 equation (2.8) can be approximated to
Zu]

1 1
A(t) S —_— —
=,

X, (t-t) - exp[ -1, (urT)ZJ dr. (2.9)
20]

Similarly, if Uy and o, are the corresponding mean value and standard

deviation of incubation period, the expression for the reported cases

becomes, 2.,
R(t) = —— 1 sz X, (t-7) - exp| - 21— (4 -T)Z] dz (2.10)
v 2w oo o 4 2022 2 B
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R(t) can also be calculated from the past history of A(t) rather than

that of X,. The corresponding expression then is,

4
R(t) = —— 1 juz A(t-t) - exp[— " (u -1)2] dt (2.11)
1% 211' 0'2 (o) 20’22 2 >

if Ho and o, are the mean values and standard deviation of infectious

period instead of being those of the incubation period.

Referring again to figure 2.1, we can rewrite the expressions
for A(t) and R(t) in discrete form by making the valid approximation that
at any time t-nt, the area under the curve between times t-nr and t-(n-1)<,
is equal to the ordinate at (t-nt) multiplied by 1, where n is a number
and t represents an interval of one day. This area is shown shaded in
the figures 2.1 (a) and 2.1 (b) for a typical period of one day. With
this assumption the expressions for A(t) and R(t), in discrete form, are:

21_1-]

A(t) = - 1 S Xy (t-n7) - exp[_- L, (u1-nr)2] . (2.12)
27 o — 20
1 n= 1
and
R(t) = L %E? i (t-nt) - exp[-—-—l— (u —nr)2] (é 13)
4 2 2 > -
v 2% %> n=o 202
when incubation period is used, or
1 2u2
R(t) = - 1 Z A (t-nt) - exp| - —1—2 (uz—nr)z] (2.14)
2m %2 ‘oo 205

when infectious period is used.
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Normalization

Let us now examine the model for dimensional consistency.
A dimensional analysis of equation (2.4) shows that for x1, x2 and i1
to represent actual numbers, in a population, Bo mﬁst have the
dimension of inverse population. Thus other conditions being same, the
value of Bo will be different for communities of different populations.

The following example illustrates this point more clearly.

Suppose a community of 10,000, consisting entirely of
susceptibles, has 10 infectives introduced at a given time. Using
equation (2.4) and a contact rate Bo1> the number of infected cases

generated per day (since day is the unit of time used in this dissert-

ation) will be

g, x 10 x 10,000 = 10° By1- (2.15)

ol

If we now consider the same community to be consisting of 10 sub-
communities, each of 1,000 susceptibles, and one infective is introduced,

simultaneously, in each of these subcommunifies, the total number of

cases generated per day will be
10 (8o x 1 x 1,0000 = 10% ¢, (2.16)

where 302 is the new contact rate for each community. Since both the

above expressions represent the same situation, 302 =10 Bo]'
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For the model to be more general, however, a contact rate
independent of population size will certainly be better. This was
achieved by Revelle [33], in his T.B. model, by representing susceptibles
as a fraction of total population but maintaining the infectives as
actual number; the infection rate, then, was also in actual numbers. A
still better method of achieving the same result, in the opinion of this
author, is to normalize all the state (population) variables, i.e. to
represent the state variables as fractions of total population rather
than actual numbers.

Therefore, replacing the upper case variables by their lower

case counterparts so that the new variable is the old one divided by

total population N, i.e. x = %-, the model can be rewritten as

X = -8 XqX5 (2.17)
22 = a(t) - r(t) (2.18)
%5 = r(t) (2.19)
Xy = K(t).8 xqx, (2.20)
where g = NBO1
a(t) = —4— 1L FAlp (t-1) - exp[ R R -1)2] dr  (2.21)
v 2w oy '[O )El 2012 1
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1 P2 1 2
(t) = — — j x (t-t) - exp[— — (uy-7) Jd (2.22)
i vV 2w o, ° 4 ’ 20’22 Her ’

if incubation period is used, or

2n
2
1 1 1 2
r(t) = — — ,[ a (t-7) - exp[.- —s (u,-1) ] d (2.23)
v 2T o5 o ’ 2022 A *

if infectious period is used and reported cases are calculated from the

past history of active rate. Corresponding values a(t) and r(t) in

discrete form are

2u
1
1 1 - 1 2
a(t) = 1 1 % (t-nt) - exp[- I (uq-ne) ] (2.24)
v 2w o3 nz=o 4 * 2012 1
1 1 A 1 2
and pr(t) = — x (t-nt) - exp [— —_— (uo-nt) (2.25)
v 2T o5 Z_ 4 ’ 20 2 H2mhT
n=o 2
1 1 2 1 2
or r(t) = — —— a (t-nt) -.exp[ - — (u,-nt) (2.26)
v 2w oy nz=.'o 2022 2

as the case may be.

The variables Xqs X5 X3 and X4 Now represent, respectively, the sub-
populations of susceptibles, infectives, reported cases and infected
cases as fractions of the total population, and 21, iz, £3 and §4
represent their respective rates of change. a(t) and r(t) are the
corresponding active and report rates, again as fractions rather than

actual numbers. The contact rate B is now independent of the population
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size, thus making the model more universal in application.

The term: per unit value, commonly used in electrical
engineering terminology, can be applied, successfully, to describe the
normalized quantities, defined above. Here, as there, this term means
that a quantity called per unit value is the ratio of actual value to
a reference value. In the present context, if x = %-is a sub-population
expressed as a per unit value, then X is the actual sub-population and
N is the total population or reference population. Given a per unit
quantity, an actual value can be found by multiplying per unit value by
the corresponding reference value. A1l the variables represented by
Tower case Tetters, in the subsequent discussion, will represent per
unit quantities.

Contact Rate B

The contact rate g, used in the normalized new model has the
same dimension as that of infection rate (B) used by ReVelle [33]. '
Therefore both, heuristic and probabilistic, derivations of infection
rates given by ReVelle [33, pp. 26-30], are equally applicable in the
present case also. Physical interpretation of g is hest understood by

quoting ReVelle [33, p. 26].

"8 = average number of individuals per unit time that any
individual (active case or not) will encounter
sufficiently to cause infection. The value does not
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depend on whether the person encountered is susceptible
or the individual doing the encountering is infectious.
However, only if the encounterer is infectious and the
encountered susceptible will a new infection arise. An
individual encountered sufficiently is call a "contact";
then g8 is the average number of contacts any individual
makes per unit time. The parameter g is characteristic
of the disease and the average individual's behaviour."

Elaborating the last sentence of the above quotation we can
say that g depends upon the infectiousness of the disease, weather and
meteorological conditions, and 1living, working and social conditions of
the community. A practical method of evaluating g is by curve fitting
on available data. However, with sufficient knowledge of the quantitative
effects of the above mentioned social and biological factors and with
enough experience, an a-priori evaluation of g is possible, at least

theoretically.

2.5 Comments on the model

As pointed out earlier, the important features of the new
model are: (1) normalization, (2) representation of the latent, infectious
and incubation periods by their mean values and standard deviations.
Normalization provides a better <interpretation of contact rate g and
makes it independent of the size of the population to which the model is
applied. The representation of sub-population as fraction has also heen
used to advantage by Bailey [3] for perturbation approximation to simple
stochastic epidemics. A somewhat similar representation has also been

suggested by Landau and Rapoport [24] in their spread of information
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model: the expression arrived at there is somewhat similar to the
expression we would obtain after substituting a(t) and r(t) in equation
(2.18). The time ‘'t' in our model is similar to the “"private time"

used in that paper.

Hope Simpson [15], in addition to arriving at the distrib-
ution of the incubation period for three different diseases as discussed
earlier, also showed that the infectiousness of each disease is
different. Thus, other conditions being equal, g for one disease can
be converted to that for the other by multiplying it by the ratio of
infectiousness of the two diseases. As an example, Hope Simpson [15]
calculated the infectiousness of measles, varicella and mumps to be
66.5%, 48.2% and 32.1%. Thus if g for mumps is 1,

48.2

g for varicella =1 x = 1.5
32.1

and g for measles =1 x 66.5 | 2.1
32.1

Thus we find that, as far as the model is concerned, a
disease is identified by &8, s Hps O and oo and these constants are
unique for each disease. So our model can be made to represent any

disease for which these constants can be identified.

The new model has available, at any time, the values of
variables representing susceptibles, infectives, infected cases, reported
cases, infected case rate and reported case rate. Since control of an

epidemic is affected by modification of one or more of these variables,
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introduction of control parameters is quite easy. Therefore the model
is quite suitable for application of control. This aspect will be

discussed in greater detail in the next chapter.
2.6 Analysis of the model

It was pointed out earlier that the simple model of Kermack
and McKendrick already presented many difficulties for its mathematical
solution. The modified model, as is apparent from equations (2.17) to
(2.22), is much more complicated because of the integro-differential
nature of the equations. Therefore no general, closed-form solution
is attempted. The model is analysed here by digital simulation and the

important results are presented.

The procedure used for solving the model numerically is to
calculate the values of a(t) and r(t) for each day from the past stored
values of the variables representing sub-populations (now called state
variables). Expressions (2.24) to (2.26) are used for calculating the
variables numerically. These expressions are greatly simplified if new

weight multiplier vectors arve defined as below:

WLP(n) -1 1 exp [- 12 (u1- nr)z] (2.27)
211' 01 20’]
WIP(n) = a1 exp [- ——175 (uz-nr)z ] (2.28)
v ex o5 202
Then 2u1

a(t) = Z WLP(n) - X,(t-nt) (2.29)

n=o
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N

Y2
r(t) = Z WIP(n) - X,(t-nt) (2.30)
n=0

for incubation period or
2u2
r(t) = Z WIP(n) - a(t-nt) (2.31)

n=o0

for infectious period.

The values WLP and WIP now represent the ordinates of the
normal distribution curve at each day between the current time and 2u
days back. The normal distribution is nearly zero at u days away on
either side of the mean peak, and

2u,

z WLP(n)

n=o
2u

E:? WIP(n)

n=o0

1]
—d

13
d
.

Keeping the calculated rates a(t) and r(t) constant for
one day, the numerical solution of the differential equations is obtained
for one day by using the Runga Kutta procedure. Thus the final value of
variables at the end of the day is obtained from the known initial values.
The final values now calculated constitute the initial values for the
next day. The process is continued till the value of infectives becomes

negligibly small.
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The solution of the model is obtained, taking the mean

values of latent and infections period to be 7 days. The standard

deviations assumed are 1.4 and 2.0 reSpective]y. Although these values

are completely arbitrary, they resemble those calculated by Bailey [2]

for his measles epidemic model. (Since the purpose here is only to

demonstrate the applicability of the new model to various diseases, the

arbitrariness of the above values does not detrac
The model has been solved for values of B8 varying from
arying from 0.1 to

discussion.)

0.2 to 3.0 and for initial Susceptible populations v

1.0. Since the only observable measure of disease, in actual practice,

is the number of reported cases per day or week, the results of the

above analysis have been plotted with X-axis representing time in days

and y-axis representing the reported cases (x3) per dayv.

Figure 2.2 shows the solution of the new model with a

constant g but with variable initial susceptibles. The result is a

family of 10 bel1 shaped curves, each representing the response for one

value of initiail susceptibles between 0.1 to 1.0. The figure shows

clearly that the spread of diseése is most violent when the entire popul-

ation is Susceptible, i.e. when disease has been introduced into a virgin

The severity of the disease Successively decreases as the

Population.
till a threshold

initial Susceptibles are assumed Tesser and lesser,

value of initial susceptibles is reached below which disease does not

start. The latter point is made more clear in figure 2.3, which is a
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2.2.

Tue of g below which

on figure 2.4
Susceptibles

Thus we find that each initial-

disease will not start.
This result is in line with the mo-

value has a threshold value of g.

dified threshoild theorem of Landau et a7, [24], although stated

different]y.
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It appears that when an epidemic wanes it leaves most people
As time passes

diseases.
immune to the disease, i.e. the "herd immunity"” dis high.

the herd immunity goes on decreasing, due to the addition of more

susceptibles by new births and removal of immune older people by death.

Some individuals also loose immunity with time. Thus the susceptible

population builds up but still remains below the threshold value for

the prevailing g. But when, due to meteorological changes or some

other reasons, g suddenly drops, the initial susceptibles are now more

than the threshold value for the new B and a flare-up of epidemic

occurs. Studies of Spicer [39] and wise [46], support the contention

that weather changes and meteorological factors have definite effect on

the infectiousness of diseases, thus supporting the above hypothesis.

In conclusion, we can say that the new model is quite

reasonable in representing many phenomena connected with disease spread

and is likely to be a useful €00l in the study of epidemics. The latter

is borne out by the control studies to be presented in the next two

It may be mentioned here that the curves of figure 2.4 are

where the Cook

chapters.

very similar to those presented by Hopensteadt [16],
model was used with an added constant latent period. Thé only difference

is that our model shows the successive generations of cases in the

beginning, which is an improvement.
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CHAPTER IIT
MODEL WITH CONTROL
3.1 Introduction
In his presidential address to the Royal Society of
Tropical Medicine and Hygiene (1965), Dr. G. McDonald [28], while talk-
ing of mathematical models for disease spread, said: "When it comes to
development of policy in such a way as to gain the initiative and
ultimately gain complete mastery over an infection throughout substantial
areas of populations, scientific knowledge has as yet scarcely been
brought into play. There are techniques by which such policy can be
developed. An important one is the study of dynamics of- infections, with
full evaluation of their relative susceptibility, in terms of prevalence,
to alterations in different aspect of environment. In this way their
sensitivity to control can be put on a scientific footing and much of

the present element of "Hit and Miss" removed from the general study."

The remarks quoted above underline the fact that any advance
in the art of mathematical modeling of epidemics is 1in itself a
contribution to the control of disease spread. This is so because it
helps in the understanding of mechanism of disease spread and hence
helps in the formulation of control strategy. In this respect the model
discussed in the previous chapter represents a significant contribution,

as it shows the sensitivity of the disease spread to initial susceptibles,
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to changes in g, and to the values of latent and infectious periods.
A constant monitoring of the susceptible population, to keep it below

its known threshold value, and control of B8, to make it as low as

possible, go a Tong way to prevent the disease spread. General

notification, closing up schools and other public places, and enforcement

of strict quarantine etc., are the methods commonly used to reduce g

and to prevent disease spread when such a danger exists. If the

quantitative effect of these measures on the value of g8 is known, their

preventive effect can be easily estimated by the use of this model.

The above preventive methods, although universally used,

have only a 1imited effect and are difficult to enforce, especially

under the modern conditions of swift travel. They have either to be

supplemented or altogether abandoned in favour of the sophisticated

methods of immunization now available. These methods, which create

artificial immunity or resistance to the disease, are active immunization,

passive immunization, and chemoprophylaxis. This chapter is primarily
concerned with the modification of the epidemic model to include para-

meters representing controls by the first two of these methods. An
analysis of the model with respect to the sensitivity of its response
to these controls is presented.
3.2 State of the art

Although a considerable amount of work has been done in the

field of mathematical modeling of epidemics, yet the incorporation of
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control effects in these models is only in the beginning stages. 1In
fact, only three serious efforts where control is incorporated in the
epidemic models have come to this author's notice; those of Jacquette
[17]1, Taylor [40] and ReVelle [33]. Among these, the last is the one
closest to the sjtuation in practice, as it studies fhe quantitative
effect of various controls, applied at different rates, on the final
cost of the disease control. The other two studies evaluate the economic
benefits of stopping a disease instantaneously by massive application of
control. The assumption of unlimited control for stopping the disease
may be practical from the point of view of disease control in isolated
cattle herds, but is hardly realistic from the public health administration

point of view.

In practice, the control of disease spread in large
population, always strains the resources of public health authorities.
Modern practice of epidemic control consists of the administration of
one or more of the three possible controls: (1) active immunization,
(2) passive immunization and (3) chemoprophylaxis depending upon the
disease in question. Available quantities of drugs and vaccines, their
rates of production by pharmaceutical industry, and the available
number of public health personnel to administer these controls.,are
always limited. Hence the administration of these controls is anything
but instantaneous. Therefore, in the interest of evolving a useful

control strategy, it is imperative that the sensitivity of the
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epidemic models to these controls is studied in some detail. ReVelle's
[33, 34, 23] model, though quite realistic, is not general enough (it
was developed specifically for tuberculosis) and has not been used for
the study of sensitivity of the disease to the controls (B.C.G.
vaccination and chemoprophylaxis in the case of tuberculosis). To
remedy this situation, the model presented in Chapter II is modified,

in the next section, to include active and passive immunization controls,
and its sensitivity to each of the two controls is analysed. The model
thus obtained is similar to the one presented previously by Gupta and

Rink [13].
3.3. Active Immunization

Active immunization i; the process of creating artificial
immunity in the system of a suﬁceptib1e by injecting a vaccine of either
dead or live, but attenuated, disease micro-organism. The method
induces the body's defense mechanism to produce antibodies specific to
the micro-organism of the disease. The experience of producing tﬁe
antibodies, thus gained by the susceptible, confers on him immunity to
the disease in question. This immunity is almost comparable to the one
gained on recovery from the disease. Its duration depends on the
disease in question and the method used for the preparation and admi-

nistration of the vaccine.

The effect of administering active vaccine to susceptibles

is that of transferring them from the susceptible population to the
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immune population, directly, without their going through the cycle of
disease. An ideal situation would be to immunize every susceptible,
thus eliminating the danger of disease spread altogether. This ideal
is practically impossible to achieve and is economically undesirable,
as almost the same results can be obtained by a constant surveillance
of the population and administration of vaccine at such a rate that the
population of susceptibles is always kept below the threshold value for
the disease. Considering, however, the wide variety of diseases that
may strike a population and the general reluctance or negligence on the
part of individuals to get immunization when the danger is not imminent,
it is almost impossible to have sustained active immunization. There-
fore, there is always a possibility of an epidemic outbreak catching a
community inadequately protected, and control has to be applied after
the first signs of epidemic appear. It is this situation for which the

model is modified to account.

One way of representing the active control is to assume
that vaccine is given only to known susceptibles (which can be done by
giving a test before giving the actual vaccine, as in the case of B.C.G.)
and each dose is effective in providing immunity, immediately after
administration. Thus if U1(t) is the rate at which susceptibles are
being vaccinated at time t the susceptible population can be said to
be reducing at that rate, due to active coﬁtro]. This fact can be in-

corporated in the model by changing equation (2.4) from



X = -8B X1 X2 (3.1)

to X-l = -8 X1 X2 - U](t). (3.2)

The assumption that an active vaccine is effective
immediately after its administration is not wholly realistic, as all
active vaccines need some Tatent period of their own for the immunity
response. This may, however, be a reasonable assumption in the case of
those diseases which have a long latent period, since in such cases
immunity can develop before the disease does, even with a concurrent

exposure.

Correspondingly, in the case of the normalized model
equation (2.17) is changed from
Xy = =B Xy X, (3.3)

to X] = -B X7 X, - u1(t), (3.4)

where u; = UI/N is the number of vaccinations given per day, expressed
as a fraction of the total population, and is the per unit equivalent

of U1.

Since it is not always convenient and even in some cases not
possible to give a test for susceptibility, a more general situation will
be where vaccine is given at random. 1In such a case we can assume that
of the U](t) vaccines given per day, at time t, only the fraction proportio-
nal to the susceptible population is useful and the others are wasted.

So the effective immunization rate would, in that case, be U1(t). X4
-
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for un-normalized case and u1(t) X4 for normalized case.

1t has been assumed so far that every vaccination given to
a susceptible is a success. This is not true in actual practice, as we
know now that there is significant failure rate which differs from
vaccine to vaccine. This situation, however, can be easily considered
by assuming U1(t) as the number of effective vaccinations rather than
actual vaccinations per day. Another possibility to be considered is
the delay in the effectiveness of vaccine. If an active vaccine may,
on the average, be considered effective T days after it is administerred,
the control term becomes U, (t-rc) or ug (t—rc), as the case may be.

The equations(3.2) and (3.4) respectively, become

. X

- 1
X-l = - 61 X1 X2 - U] (t-rc) N (3.5)
i1 = =B Xq X5 — Uy (t-t.) - Xq- (3.6)

These equations, when incorporated in the respective versions of the
model, give the modified control model for active control. As an

example, the normalized model with active control will be as follows:

% = - 8 X Xp = Xq up (t-7) (3.7)
x, = a(t) - r(t) (3.8)
>’<3 = r(t) (3.9)
x, =8 K(t) - xq %, (3.10)
xg = uy(t) (3.11)
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S T T ol RS I I Y-
where a(t) = o .f; x4(t T) exp[: 2012 (u1 T) ] ?3.12)
2u2
r(t) ==t %q(t-7) - exp[— 1, (uz—r)z] d,
2w oy g 20, (3.13)

and other forms of a(t) and r(t) are the same as those presented in
Chapter II, equations (2.23) to (2.26). The new variable x5(t) repre-
sents the fraction of population actively immunized up to time t:
xs(tf) will, therefore, represent the total vaccine used at final

time t..

Results of the solution

The model is now analysed for different values of active
control uq- Control delay T, can be assumed to be equal to zero with-
out loss of generality, as the control is first applied on a certain day

and any delay Tc simply shifts this time of application.

Figure 3.1 shows the effect of variable control uy applied
over a fixed interval of time. Administration of control, at rates
shown on each curve, is assumed to start on the 15th day (about one mean
incubation period after the start of disease) and end on the 25th day.

We observe from the figure that the higher the rate of active control,

the lower the total number of cases.

Figure 3.2 shows the effect of different control rates with

the total amount of control administered remaining the same in each case
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the control starting at the 15th day, but this time ending
in this case,

and, again,
on a different day. The plot of the disease response,

shows that best results are obtained by using the control at the high-

est rate although the total amount of control remains the same.

Figure 3.3 shows the effect of delay in the application of

control. 1In each case the same amount of control (0.3) is used and at

the same rate (u1 = 0.03), but the control starts at different times.

The delay in the start of the administration of control represents the

time lag in putting the control effort in action. This time lag may

be due to the immediate non-availability of the vaccine in sufficient
quantities, or simply due to a failure to realize the epidemic nature

We find from figure 3.3 that the disease is best
the less

of the disease.
controlled by the earliest action, and the Targer the delay,

effective is the control.

Thus we conclude from these three plots that the best

results are obtained by applying the available active control at the

highest possible rate and at the earliest available opportunity. These

results seem to be what common sense would suggest. However, since now

we are able to evolve a quantitative measure of the effect of active

control, the feasibility of an optimum control strategy is very clear,

and the next chapter evolves this strategy by using Pontryagin's

Minimum Principle.
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3.4 Passive Immunization

As opposed to active immunity, which is the process of
creating antibodies in the system of a susceptible, passive immunity
is provided by injecting "ready made" antibodies into the system of an
individual. This form of immunity is immediately effective and is even
curative in nature. The immunity provided in this manner, however, is
not as permanent as one conferred by active immunization, and is liable
to be Tost quite soon.” Other hazards of passive immunization are the
possibility of introduction of other infections from the source of
antibodies (human or animal blood plasma) and incompatibility of the
system to foreign plasma. Notwithstanding the above difficulties,
pPassive immunization is now an accepted method of control for those
diseases for which antiserum, needed for passive immunization, can be
easily produced. This antiserum is generally administered to those
suspected of already carrying the disease micro-organism in their system,

thus making them ineffective in spreading the disease further.

The accurate quantitative effect of the passive immunization
on the latent and infectious periods of the disease, and the duration of
immunity it may confer on those immunized, is not yet fully known. The
methods of representation of passive control discussed in the next few
paragraphs may, therefore, not be the best possible, but may serve as

a guide. More over these methods of representation may, hopefully, also
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be used to represent the action of chemoprophylaxis a method of
control which is not discussed in this thesis for lack of knowledge
about jits action on various sub-populaticns of the model. Two
different methods of representation of passive immunization have been
used to adapt the model to passive control. Sensitivity of the model

to changes in the passive control has been analysed in both cases.

Case 1

In this case the passive immunization is assumed to be
administered at random, thus removing both susceptibles and infectives
from circulation by conferring on them a temporary immunity. Represent-
ing the passive control by U2 inoculations per day, in the same way as
in the case of the active control model but with a difference that now
immunity is conferred both to susceptibles and infectives, the modified

model for the normalized case becomes

Xy =-8 Xy Xy = Uy Xg (3.14)
X, = a(t) - r(t) - u, x, (3.15)
X5 = r(t) (3.1¢€)
Xq = K(t) - 8 x, X, (3.17)
Xg = u, (3.18)

where u, = U2/N; a(t) and r(t) are the same as those given by equations
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(3.12) and (3.13) respectively, and Xg is the new variable representing
the total amount of passive control. It may be noted, here, that no
time delay is considered in the control variable in this case, since
it is known that passive control acts almost instantaneously. In fact

this is the major advantage of using this control.
Results of the solution

Figure 3.4 represents the solution of the model for differ-
ent rates of passive control. We find that the higher the control rate
used, the smaller the number of cases. It may also be noted that, for
the same reduction in cases, the amount of u, used is much smaller than
the amount of uy- This is an expected result, as we know that passive
control acts on the infective cases also,and as such is a more effective

way of suppressing disease, at 1ea§t temporarily.

Figure 3.5 shows the effect of delay in application of
passive control. A constant (.01) rate of passive control is used in
all the cases but it is started at different delays after the start of
disease. We note that the effect of control is maximum when it is

applied at the earliest time.
Case 2

In case 1 it was assumed that the passive immunization is
given to the population at random. However, in practice it is prefer-

able to give passive immunization to the known contacts of reported
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Cases. Thus, to represent a situation of this kind we assume that
when a case is reported its contacts are traced and those who might
have picked up the disease may be given passive immunization to
suppress the disease.. We can assume that on the average U2 infectives
are given passive immunization, per reported case. Thus the rate of
reduction in the infective population due to passive vaccination may
be assumed to be 02 R(t) per day. This rate becomes U2 r(t) for a
normalized model. It may be noted here that in this case U2 is a non-
dimensional quantity, as it represents the number cf infectives traced

per reported case.

The modified normalized model how is:

Xy =-8 Xy Xy (3.19)
X, = a(t) - r(t) - U, r(t) (3.20)
X5 = r(t) (3.21)
X, =K(t) g Xy X, (3.22)
Xg = U, r(t), (3.23)

where a(t) and r(t) are as defined in case 1 and Xg corresponds to Xg.

Results of the solution
Figure 3.6 shows the result of the solution of the model for

various values of U2. We find that as U2, the number of infectives re-

moved per reported case, is increased the disease is better controlled.
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Figure 3.7 shows the effect of delay in starting the admi-

nistration of passive control. As would be expected, the control is

most effective when started at the earliest time. Thus we conclude,

again, that for best results maximum control effort should be applied

at the earliest possible time.

3.5 Conclusions

In this Chapter the sensitivity of the model to active and

Passive controls,each taken separately, has been analysed. Control with

chemoprophylaxis was not considered. It is, however, clear that the

third control can also be incorporated in the same manner as the other

two. While considering the model with control, no Timitations on the

a&ai]ability of the vaccines and antisera, and on their costs, have thus

far been considered. 1In practice, however, the more important question

When more than one control method is available, how much of each -
This problem is very difficult to

if

is:
should be used for best results 2

solve with the methods of analysis used in this chapter, since,

various combinations of controls were to be tried in a hope of finding

the best combination, we are likely to end up doing a large number of

solutions of the model, yet having no certainty of finding the best com-

bination of controls. This problem will, however, be solved in the next

Chapter using the method of dynamic optimization.

In conclusion, as a result of the discussion so far, we can
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In both the cases a(t) and r(t) are defined as in equations
(2.21) to (2.26) in Chapter II, depending on the choice of represent-
ation to be used. Representative expressiohs for a(t) and r(t) when

mean value of incubation period is used are:

2u
2
a(t) = 1.1 ‘[ §4 (t-<) - exp[ - —1—2 (u1—r)2] dt (3.36)
2 9] o 20-l
r(t) = . L ?2 x, (t-1) - exp | - 1 (u -1)2] dt (3.37)
2r 92 o ¢ [ 2622 2
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CHAPTER IV

OPTIMUM CONTROL MODEL

4.1 Introduction

Constant vigil kept by the public health organizations
around the world has helped to allay, considerably, the danger of
full-scale epidemic outbreaks. This preventive effort, however, entails
large sums of money, and efforts are always underway to improve the
control procedures so as to reduce this expenditure and get maximum
benefits with minimum outlay. The mathematical theory of epidemics,
by providing a better insight into the mechanisms of disease spread,
has indirectly contributed to the fulfilment of the above stated goal,
since a better understanding of the mechanisms of disease spread »
alwayssresults in improved methods for jts prevention. There is, how-
eéver, a consensus in the literature that the mathematical models have
not yet been used to thejr fullest potential for the control of epi-
demics. In particular, the use of these models in determining a most
economical control strategy between various competing controls, by the
use of dynamic optimization techniques, has been frequently predicied.
This chapter presents a procedure for the application of dynamic

optimization theory to the control model developed in Chapter III.

Three references, viz. ReVelle [33], Taylor [40], and

Jacquette [17], were discussed in the last chapter for their contri-
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bution to the field of epidemic control models. It is significant to
note that the same three research efforts are also the ones that con-
sider the question of economical control strategy, and no otheerork
in this field has yet come to the notice of this author. ReVelle
[33] considered three competing controls (prophylaxis, cures and
B.C.G. vaccination) for his tuberculosis model. Four alternative
control strategies, each reducing the epidemic to an assumed level in
a fixed time, were considered, and the one involving minimum control
cost was identified. Taylor [40] considered a herd of dairy cattle
which can be immunized, at any time, to confer complete immunity, if
so desired. A vaccination schedule that minimizes the Tong-run time-
average sum of the costs of immunization and expected disease losses
was determined. Jacquette 7], in turn, assumed that an epidemic can
be stopped instantly by a massive dose of immunization and proceeded

to find out the most economical time of this stopping.

Although the three studies, summarized above, are signifi-
cant contributions to the field of economical control of epidemics,
yet each stopped short of the stated ideal of determining control
strategy by dynamic optimization techniques. The following quotation

from the Tatest of these studies [17, pp. 11-12] illustrates the point:
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orm of control and discover
an analogy with inventory theory."

control, both with finite number of delays. Solutions resulting from

the optimum control study of this model are presented.

4.2 Formulation of the eontrol problem
s> incorpo-
rating both active and passive immunization controls, was presented 1in

the concluding section of Chapter III. This model can now be modified,

by reducing ijts dimensiona]ity, to make it more suitable for optimiz-

ation study. It may be pointed out here that the results obtained
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from the normalized model, which will be the only form considered here,

can easily be extended to non-normalized model, if so desired.

A quick review of equations (3.24) to (3.37), representing

the model for two different formulations of passive control, reveals

in both the cases, can be easily

that the fourth equation of the modeT,
variables a(t) and

eliminated by substituting it in the expressions for

r(t). Moreover, by introducing a new equation representing the cost of

the control used, the Tast two equations of the model can also be

dropped without, in ahy way, reducing the effectiveness of the model

Since it is intended to obtain the model in the
-differential form,

quations (2.24) and
-36) and (3.37)),

for optimization.
differentia]-difference form rather than the integro

discrete versions of a(t) and r(t) (represented by e

(2.25) rather than those represented by equations (3

will be used in the modified model. 1In addition, we can replace the

'x! variables by y to avoid confusion in the subscripts used in the

Previous chapters.

Thus keeping the above modifications in mind and substi-

tuting the resulting expressions for a(t) and r(t) in the main equations

of the model, the model, for two cases of the last chapter, now becomes:

Case 7

&] = -8 .V-, .VZ - u],:(t-"-'c) ° .Y-, = U2 y" (4-1)
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2u
1
- Kg 1 1 - 2 - - (t_ )
y, =28 1 exp {- —— (u;-nt) }] Yy, (t-n<) Yo (t-nt
2 2n oy :L:b [ 20 L T
21.12 2
- Ks .1 Z [exp {- L—z (uz—ﬂ’r) }] 2 (t-nt) - yz(t-n'r)
7o ey L=y 202
- . 4.2
u,(t) Y ( )
K R 1 2
y. = X8 _ _1 - — - t-nt) -« y,(t-nt)
3 [exp { 2 (uy-nt) }J yq(t-n< 2
vem oy nZ=:o 20, (4.3)
g = A up(t) + B u?(e) + € uy(t) + D u,2(e), (4.4)
Cage 2
.91 = -8B .y'l .y2 = u"(t"l'c) h y-' (4-5)
K 1 & 1 2
. ]
Yo = == - — exp {- ——, (uy-nt)“3 | y,(t-nc) - ¥,(t-nz)
2L [ 20,2 1 ] ! 22
1 n=o 1
2u
- [1+U2(t)] Ke . 1 E exp {- —]—2 (uz-nr)z}] X
/2r o, n=o 20,
y.l(t-m:) - y2(t-n-r) (4.6)
2u
v. = K8_ _ _1 S SR -n)2 ) .
37 > oy Zz [exp { 20 2 (“2 nt) }J Yy (t-nt) Yo(t-nt)

= o
n=o 2 (4.7)
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Vg = Auy(t) +B u12(t) +0C + D Uy(t)} Upy(t) x

K 1 22 1 2

B .

LN exp {- — (u,-nt)“}| «x

v 2 2 f=o [ 25,2 2 J

yy(t-nz) - y,(t-nt) | (4.8)

Where Y- Yy and Y3 represent the per unit sub-populations of
susceptibles, infectives and recovered or removed cases; y, is the
cost of immunization expressed on per unit basisg Te is the delay, in
days, in the action of active control, and t is the unit of time, one
day in this case. Again, A and C are the 1inear and B and D the
quadrature costs for the active and passive rates of immunization,
respectively. A more explicit discussion of constants A, B, C and D
will be given in a later section, where the numerical values for these

constants are chosen.

Using the optimum control terminology, we can now call
¥y1> ¥o» y3 and Y4 the states, and equations (4.1) to (4.4) (also
equations 4.5 to 4.8) the state equations of the model. If the initial
values of states and their history up to the initial time to is known,
the state equations can be solved for a given control function, using
the procedure described in Chapters II & III. At the final time tf,

we then obtain the final values of the states, i.e. susceptibles,



infectives, recovered or removed cases, and the cost of immunization

used during the course of the epidemic.

Cost function

used during the

It is not Suggested here that cost to an individual

struck with disease can be counted in dollars and cents, especially

but what we mMean by cost of a case is the weighted

in a fatal case,
can be determined

average cost with respect to the control cost (which

In physical terms, this weighted average cost may

more accurately).
hours lost Plus the cost of hospital-

represent the cost of average man-

ization, for each reported case. In addition, it may be argued that

above, is more near to the trye cost. When the model is applied to an

epidemic in a herd of cattle, however, the cost per case s more

therefore, assume that the cost of one

straight forward. Let us,
on the per unit population

reported case is CI‘ The cost function,

basis can then be written as

J =0y y3(te) + y,(t,) (4.9)
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where J is the total cost of the controlled epidemic; y3(tf) is the
final value of the reported cases, and y4(tf) is the total cost of
the control applied during the course of the epidemic. Equation (4.9)

can be modified to also include the cost for the residual infectives,

if any, at the final time, thus giving,
Jd = C'l .Y3(tf) + C'l ‘yZ(tf) + y4(tf)- (4.10')

A control policy which minimizes the cost J at the end of
an epidemic is the optimum policy. This control policy can now be

formulated by the application of Pontryagin's Minimum Principle.

We thus have a vector state equation which consists of a
set of non-linear differential-~difference equations with a finite
number of delays in both state and control. The cost function is a
function of the final values of the state only, thus giving a Meyer
problem. The optimization problem, although difficult, yet is not
impossible to solve, especially in view of the latest research reported
in the field. A closed-form solution is, however, impossible at this

stage, and hence only a numerical solution is attempted.

4.3 State of the art
A considerable amount of work has already been done in the

field of optimization of time delay control systems. Yet the theory
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relating to this subject is being continuously updated as the solutions

to an increasing number of problems of this nature are attempted. This
fact is evidenced by some recent references in the field: [36], rzz1,

[9].

state but not control; see Pontryagin et a1l [32, p. 213]. Subsequent-

1y, the method was extended by him to include the case of a delay both

see Kharatishvili [22]. More recently (1970),

in state and in control;

Budelis and Bryson [9] developed necessary conditions for an extremal

analytical solution for a Tinear system with a qua
where control variable appears in the system equations at the

index,
presented by Budelis and

bPresent time and at a previous time, was also
McAulay [27] derived the optimum control criterion for a

Bryson [9].
-difference equations with

system consisting of non-1inear differential
He, furthermore, extended the

a finite number of delays in the state.
11y [20] and

application of steepest descent (gradient) technique of ke

Bryson [7] to this case.
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Concerning the gradient methods, Gottlieb [12] has brought

out the relationship of these methods with the calculus of variations

and Min-H (Pontryagin's Minimum Principle) methods. He has also

Proposed two rapid convergence gradient methods for solving Min-H

problems. Lasdon et al [25] have extended the application of con-

Jugate gradient method to the Min-H problem, thus proving the applica-

bility of general parallel tangent methods to this problem. Shah et

al [38] have applied a parallel tangent (abbreviated "PARTAN") method

to the minimization of a function of several variables.

A reasonably comprehensive solution of the epidemic control

formulated in the last section, can be obtained using the

problem,
Although some of

information contained in the research reviewed above.
the theories developed in the research detailed above have been success-

fully applied, yet many of them have not, so far, been rigorously

tested with a practical application. As such, the present problem

Provides an excellent practical application of the techniques discussed

above.

4.4 Optimization procedure
The simulated epidemic contro1l model was solved in Chapter

III with known initial conditions and a termination criterion depending

on the final values of some states. Thus, the optimum control problem,
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formulated in section 4.2, is essentially one of fixed initial time
and free terminal time. 1In view of the mathematical complication
introduced by the free final time, the problem is, here, simplified
by converting it to one of fixed initial and fixed terminal time.
This is achieved by introducing a penalty function in the state

equation. The procedure applied is explained in the following paragraph.

When solving the optimum control problem with fixed
terminal time, it is likely that absolute minimum of the cost function
would be obtained with the final values of some states becoming
negative. This is a highly undesirable situation, since negative sub-
populations have no physical meaning. In other words, we can say that
there is an implicit constraint on the state variables, and this
constraint fs that the states should, always, have values greater than
zero. This difficulty can be overcome by using a penalty constraint
of the type suggested by Kelly [20, p. 215]. Therefore the penalty

function needed to be added to the state equation for §4 is

3
L. Py slyy) v;Zs (4.11)
J=

where pj is a positive constant, suitably selected for the correspond-
ing state, and & is a Heaviside unit step function cof argument Yj- In

practice, however, we find that for the present problem, if a heavy



Penalty constant ijs used for Yo (the state representing the infective
population), penalties on the other two states are unnecessary.

Concentrating our attention on case 1 of the model, and

incorporating the inequality constraint on state Yoo the state

equations can be rewritten as:

¥y = T BV Y2 s u(teny) -y - u, (4.12)
24 1 2
Yy = Ef}- -1 2: [ exp {- 7.2 (uy-nt) }J yq(t-n<) . Yo(t-nz)
T 91 p= 1

2u
-k 1 E [ exp {- 51_2 (uz‘"T)Z}J y1(t-nt) - y,(t-nr)

2m °2  n=o %2
- up(t) -y, (4.13)
2112
ok 1y [op - 1, <u2-nr)2}] y1(t-nt) -+ y,(tonr)
L 20, (4.14)

Ya =Pz 8(yp) - y,2 + Aug(t) + B u2(t) + € uy(t) + p u,2(t).(4.15)

The above state equations can now be represented in the
vector form as:

y = fly, y(t-t), y(t-27), ... y(t-nt), u, U(t-rc)J (4.16)
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where y is a state vector with four components Yis Y25 Y3 and y4;b
f is the corresponding vector of functions f1, fz, f3 and f4, each
representing the right hand side of one of the above four equations;

u is the control vector, and n is an integer equal to 2u,.

From physical considerations we know that u(t) is piece-
wise continuous with finite discontinuities and that y(t) is con-

tinuous with piecewise continuous first derivatives.

From equation (4.10) we see that the cost function J is a
function of the final values of states at preselected final time tf.

Mathematically
te
J = oyl > (4.17)

thus giving a Meyer problem which satisfies all the conditions for
application of PMP to systems with delay, as laid down by Pontryagin
et al [32], Kharatishvili [22], and Budelis et al. [9]. The results
of Budelis et al [9] for the gradient of Hamiltonian can thus be

used directly, with extension to a multi-delay system. This extension
can be carried out on the basis of results obtained by McAulay [27],
since the delays encountered in equation (4.16) are similar to those

assumed by him.

Therefore, assuming a co-state vector
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A= [7\1, Aps Ags >\4], (4.18)
the Hamiltonian H, for the above system, becomes
H = x1f1 + a,f, + Agfy + Agfy- (4.19)
The costate equations of the system, satisfying the con-

ditions of optimality., and based on the results of references o1

and [27], can be written as follows:

. 0 sH t;*'k'r
SRR Gl to £t < temne
k=0
. n-1 oH t+kz
A= - 3y (T=Kk<) | te-nt < t itf-(n-'l)'r
k=0
. 1 3H t+kt
A= - Z —a—ym | tf-Z’r < t itf_'l'
k=0
aH

A= - -37 tf‘—T < t <—tf (4.20)
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and
_oely(te))
A(tf) =Ty (4.21)
Moreover, the necessary conditions for an extremal
(dd=o, for arbitrary su) are that H(t) be continuous and that
t+t
aH aH c _
au * sultry | =0, t, =t < te-rg (4.22 a)
3H _ 4 te-t_ < t < t (4.22 b)
du : f ¢ = F i

The problem is now solved by the use of parallel tangent
gradient method. The numerical procedure used, along with the Fortran
program, is given in Appendix B. The detailed derivation of the co-
state equation, as needed for the numerical computation, is given in
Appendix A. The final form of the costate equation,arrived at in the

appendix,is, however, given here.

The maximum number of delays in the state will be 2u2,
because the mean incubation period uy is Targer than the-mean Tatent
period uy- Thus each costate equation requires 2u2 equations to
represent it over the entire period from final time to initial time.
As derived in Appendix A, however, each of these sets of 2u2 equations
has been condensed into one equation, and the resulting four costate

equations are:
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A = Ay [ug(t-x) + up(t) + 8 y,(t)] - RLMD . y,(t) (4.23)

A, = A B _y~l(t) + >\2 u2(t) -2 ;\4 p2 5(_Y2) - yz(t) - RLMD . .y] (t)

2 1
(4.24)
Az =o0 (4.25)
‘g = 0, (4.26)
where . m(t)
RLMD(t) = % " WLP(n) - x,(t+nt) = WIP(n)[A,(t+nz) - Ag(t+nc)],
n=o
te-t
- =0, 1, 2 ... 2|.|2, tf_--t<2u2
m(t) = .
2112, tf-t > 21.12 . (4.27)

Here m(t)=o0 at final time tf and progressively increases by 1 each

time solution proceeds one day backwards from final time.

This form of the costate equation is very suitable for the
numerical solution of the problem, since the costate equations have to
be solved backwards in time following a solution of the state equations
in the forward direction. The initial values of the costates for back-
ward integration (actually, values of costate at final time) are

obtained from equations (4.21) and (4.10). These values are:
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A](tf) =0 (4.28)
Ap(te) = C (4.29)
a3(te) = €y _ (4.30)
Aglte) =1 (4.31)

With the final values of costates known, RLMD can be
easily computed at the start of the backward integration and is

progressively updated as the solution proceeds.
4.5 PARTAN Gradient Algorithm

To obtain the control function which minimizes the cost
function, the negative gradient method of Kelly [20], coupled with
parallel tangent technique (PARTAN) [31], has been successfully used.
Usefulness of rapid convergence methods for Min-H problems has already
been demonstrated by Gottlieb [12] and Lasdon et al [25], whereas the
steepest descent method has been used by McAulay [27j for systems with
finite number of delays. The conjugate gradient method of Lasdon et
al [25]1, when used for the present problem, gave good results but was
abandoned in favour of the simpler and more general PARTAN technique
discussed at some length by Pierre [31] and Shah et al [38]. Negative
gradient, satisfying the conditions of Hamiltonian with a delayed

function of control, is as follows.
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Let g(u) = [g1(u) gz(u)] be the gradient vector for the
two controls, where 97 is the gradient of H with respect to control uq

and 95 is the same with respect to control u,.

Then
= 2H
g(u) = =
3H 9H ]
au] 3u2

for a no delay case. As per the conditions laid down in equation

(4.22), for a delay in control u; only,

t+T
gq(u) = 2H_, 2H — I % t, <t<t.-t (4.32 a)
1 3uy au](t réT' (6] f "¢
_ oH
= 3u- ° te-t. < t <t (4.32 b)
and
oH (4.33)

|

a,(u) = .
2 au2

Thus we obtain the gradient, as a function of time, as follows:

91(u) = [A + 2B u;(t)] », - At ) -y (b)), tostste-t.  (4.34)
= [A + 2B uy(t)] 24, te-te < t <t (4.35)
(4.36)

92(u) [Cc + 2D uz(t)] Ag = Ay ¥y - Ay Yoo
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The gradient vector g(u), calculated from express1ons
(4.34) to (4.36), is an implicit function of time by virtue of u being
a function of time. Based on the algorithm proposed by McAulay [27]
and Lasdon et al [251, for steepest descent and conjugate gradient
solution, respectively, of such problems, the following procedure for

the application of negative gradient to our problem is proposed:

Assuming zero control and known initial conditions, the
state equations (4.1) to (4.4) are integrated from an initial time t,
to a final time te which satisfies the final conditions (yz-o). This
value of tf is now taken as the terminal time for subsequent inte-
grations of the state equations. Cost J is evaluated using equation
(4.10) and the final values of the state already obtained. Thus we
get the cost of the epidemic with no control applied, and our aim is
to reduce this cost to a minimum by the application of suitable control.
This optimum control is generated by the use of the following iterative
procedure.

(a) With the final values of costates given by expressions
(4.28) to (4.31), and using the stored values of the states, just
calculated (for the entire'period of time), the costate equations
(4.23) to (4.26) are solved by backward integration from final time

te to initial time t,- Thus we have the values, necessary for the
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evaluation of gradient vector g(u). If the control vector for the
i th iteration is represented by ui and the corresponding gradient
by g(u‘), Tet us assume

s' = - g(ui). (4.37)

51, in its present form, represents the negative gradient for the i th

iteration, and has two components, sq and Sy corresponding to two
controls, u, and u,. Reckoning of the iteration number i may start
either from O or 1, depending upon the personal preferences. In the

present case, 1et us assume i to start from O.

(b) We now proceed to search for a multiplying factor o
consisting of two components o, and a,, such that a value of increment
control (in the vector sense) may be obtained to minimize cost J. Thus

choose,

o =o'  to minimize J(u' + a's?). (4.38)

Then the new control vector will be,

P L P (4.39)
The two components of a are evaluated by conducting a one dimensional
search, first for one control and then for the other, to minimize J in

each case.

(c) Using the new control vector obtained from equation
(4.39), we proceed to solve the state equations, anew, and calculate

the new value of cost J. If this new value of J is judged to be the
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minimum value the solution can stop here, otherwise we proceed to the

next step.

(d) Now we either calculate the new costates and new
gradient using the procedure outlined in step (a) or find the
acceleration step, and go to step (b). The decision as to whether
this step is to be a steepest descent or an acceleration step is made
on the basis of PARTAN procedure discussed, at some length, by Pierre
[31] and Shah et al. [38], and outlined below:

1 2 o

Controls u’ and u® are obtained, respectively, from u

and u] by using the steepest descent. An acceleration step, which is

the vector difference of controls u2 and u® is now obtained and

treating it as negative gradient, control u3 is obtained. Controls

u4, u6, u8 ... are now obtained from controls u3, us, u7 cees

respectively, by the use of steepest descent approach; whereas us, u7...

etc. are obtained from the corresponding pairs of controls u4, u] and

us, u3... etc., by the use of acceleration step.

The process is iterated until the cost function J converges
to a minimum value. The numerical procedure based on this algorithm
is given in Appendix B. It may be pointed out here that, although the
gradient method assumes an arbitrary su, there is a constraint in the

present case. Since a negative control is unthinkable in practice
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{vaccinations cannot be undone!), while searching the values of o
the values of trial control which would otherwise be negative were
replaced by zero. The final values of cost obtained are therefore,
minimum in the practical, constrained case. The results of the
numerical solution, presented in the next section, prove the effect-

iveness of the method.
4.6 Choice of cost constants

While formulating the optimum control problem in section
4.2, the cost constants for immunization controls were represented
bv A, B, C and D, and that for the cost per reported case by C1.
Factors influencing the choice of numerical values for these constants
are discussed in this section; a choice is also made for a represent-
ative sot of values to be used for the numerical solution of the

problem.

Since we are using the normalized variables in the model,
the state variables Y13 Yo Y3 and Ya represent per unit values. The
actual values are, therefore, obtained by multiplying these values by
the reference value, which is, in this c&se, the number of individuals
forming the population of the community. For Ya to have this
dimension, constants A and C should, respectively, represent the cost

of one inoculation of active and passive immunization agents.
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Similarly, the cost function J will also be dimensionally consistant
if C-I represents the cost of one individual falling sick with the
disease.

Although the cost of immunization per inoculation is fairly
constant when such inoculations are given at a slow rate, yet it is
far from realistic to consider this cost to be constant in epidemic
situations. In such situations the supply of vaccine or antiserum,
as the case may be, has to be supplemented by creating additional
manufacturing capacity, and crash immunization programs have to be
initiated, thus causing the cost per injection to rise. Although the
full effect of this dislocation of normal services, on the per unit
cost of immunization, is not yvet known precisely, yet it is certain
that the cost per unit of immunization is a non-linear function of
the rate of inmunization. The simplest way of representing a non-
Tinear quantity is to represent it as the first two terms of a Taylor
series expansion. This fact is utilized here and, as such, the cost
of active immunization is assumed to be A + Bu-l per injection and that
of passive immunization to be C + Du2 per antiserum injection. Wben
proceeding with the optimization process, constants B and D penalize
high control effort, hence prevent the optimum control rates becoming

unrealistically high.
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Accurate values of constants A, B, C and D can only be
determined after a sufficient experience with the model and a full
knowledge of the effect of immunization rates on the unit cost of
immunization. However it can be generally assumed that the cost of
one injection of antiserum is relatively higher than that of the
vaccine for the same disease, and that B/A and D/C are relatively
Targe values. The following representative values have been assigned

to these constants, for the numerical solution of the problem.

$ 200.00
$ 500.00.

$ 2.00, B
$ 5.00, D

A

L}

This choice of relative values for 1linear (A and C) and quadrature

(B and D) cost constants is quite consistant with the economics of
vaccine and antisera production, in practice. Restricting our attention
to active control only, we can say that for very small values of u,

the cost per inoculation is approximately equal to A, whereas it is,

almost, independent of A for very large values of u;- A value of u,
for which A and B have equal weightage is %—= T%ﬁ' per day or 3.65 per
year. This corresponds to a production capacity which can be geared

to produce 3.65 vaccines per person per year. If a control at a higher
rate is required, additional capacity has to be created at a high

fixed cost, thus resulting in a relatively high per vaccine cost,

which is dependent on B only. The same is also true for passive
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control.

Cost per reported case (C]) depends on the disease in
question. It will be higher for a disease which causes the victim to
be away from work longer. Moreover, it will be higher for those
diseases which are costlier to cure and those which have higher
fatality rates. Three representative values of C.I considered in this

thesis are $ 50.00, $ 100.00 and $ 500.00.

4.7 Results of optimization

The optimization procedure discussed in this chapter has
been applied to the epidemic problem discussed in Chapter III.
Results of the numerical solution of the problem are presented in this
section. For the sake of clarity the parameters of the control

problem are restated below:

Epidemic Parameters

Initial susceptibles (y1(to)) = 0.5,
initial infectives (y,(t,)) = 1074,
yo(t), t < t = 0.0,
effective contact rate (g) = 1.5,
factor k(t) = 0.9,
mean value of the latent period = 7 days,
mean value of the incubation period = 14 days,
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standard deviation of the latent period = 1.3,

standard deviation of the incubation period = 2.3.

Control Parameters

Per urit cost of active control (A) = 2.0,

square law cost of active control (B) = 200.0,

per unit cost of passive control (C) = 5.0,

square law cost of passive control (D) = 500.0,

penalty function (p2) = 106,

cost per reported case = §$ 50.0,
$ 100.0 and
$ 500.0.

The choice of these parameters has already been discussed
in the various sections of this thesis. It may, however, be
emphasized once more that these parameters do not represent any
particular disease, but are typical values used to demonstrate the
usefulness of the procedure developed in this thesis. Actual values,
for a particular case, can be used to get the results appropriate to

that application.

In addition to the case where the active control is
assumed to be immediately effective after it is administered, two cases
of delay in active control have also been considered. The delays

considered are 5 days and 16 days, the latter being larger than the
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mean incubation period. Thus, in all, nine cases have been considered.
The results of numerical solution of these nine cases are summarized

below:
Resultse

The solution of the model, in all the nine cases, and when
no control is used, is the same as that shown by the no-control curve
in figures 3.1 to 3.7. The terminal time is found to be 145 days in
each case and the final extent of the epidemic, without control, is
0.4457 reported cases (per unit value). Therefore t. used for the

optimization problem is 145 days.

Figure 4.1 shows the convergence of the optimization
process to an optimum cost, for a typical case, whereas the results
relating to all the nine cases considered are summarized in table 4.1.
This table shows the optimum, in each case, calculated against the
cost without control. Optimum costs expressed as percentage of the
initial cost, and the percentage saving in these costs due to the use
of optimum control strategy, are shown in the next two columns.

Column 6 shows the final extent of the epidemic, in each controclled

case, as a percentage of that without control.

The optimum active and passive controls, determined by the

optimization procedure, are plotted in figures 4.2, 4.3 and 4.4.



COST IN DOLLARS

250

-88-

COST CONSTANTS
C; 500.0
200 20
200.0
5.0
500.0
150
100
50
—- . 4 o= . )
o) | | ] | | ] 1 1 } J
0 2 4 6 8 10
ITERATION NUMBER
FIG. 4-1 CONVERGENCE OF THE COST TO OPTIMUM VALUE.

COST PER REPORTED CASE = $ 500.00, AND NO

DELAY IN ACTIVE CONTROL.
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TABLE 4—1
COST CONSTANTS
A=20 B = 200.0 Cc=50 D = 500.0
o - OPTIMUM REPORTED
E8e| o= CASES WITH
55 (52 2| orrmum [TETASH] Fsavine | controL as PacTive.
SuI|°E z COSTINS | witHoUT | OPTIMIZATION %wc::HToHu?E CONTROL
: ] CONTROL CONTROL
11.518 51.7 48.3 18.05 NO DELAY
K .
50.0| o | 12.109 | 54.3 45.7 19.55 | spavs
oy
13.703 61.5 38.5 28.40 16 DAYS
13.467 30.2 69.8 7.15 NO DELAY
o
100.0 g 14.867 33.4 66.6 8.14 S DAYs
5
17.849 40.05 59.95 12.35 16 DAYS
21.489 9.61 90. 39 1.95 |NobDELAY
=
500.0| o« 24.121 10.8 89.2 . 2.34 5 DAYS
&
L
29.998 13.4 86.6 3.47 16 DAYS
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Figure 4.2 shows the optimum controls for three different case report
costs, without any delay in the effect of active control. Figures
4.3 and 4.4 show, respectively, the corresponding controls for the

cases of 6 days delay and 16 days delay in active control.
4.8 Discussion of the results

The results presented in the last section clearly
establish the usefulness of the optimization procedure developed 1in
this thesis. It is apparent from figure 4.1 that the cost function
converges to a minimum value (which is substantially lower than the
initial cost) rapidly. A similar decrease in cost is also observed
in the other cases tabulated in table 4.1. We find that the saving in
the total cost ranges from 38.5% to 90.39%. The percent saving in
cost is highest in the case of the most severe disease, with cost per
reported case of $ 500.00, because in this case it is economical to
use more control effort to prevent the disease. This fact is also
demonstrated by the observation that the actual disease cases have
been reduced to less than 4%, compared to over 28% in the first case
(where Cq = $ 50.00). Another important observation is that the
saving in cost, by optimization, is reduced when delay in the active
control is introduced. These results are in line with the intuitive
thinking that more control should be applied for a disease which

causes higher losses and that delay in control reduces its effectiveness,
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0.075 - FIG. 4-2 (@ ACTIVE CONTROL WITHOUT DELAY

— COST PER CASE $ 50.00
3 | == COST PER CASE $ 100.00
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FIG. 4-2 OPTIMUM CONTROL PLOTTED AGAINST TIME.

NO DELAY CASE.
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FIG. 4-3 (a) ACTIVE CONTROL WITH

0.075 - A DELAY OF 5 DAYS'
— COST PER CASE $ 50.00
> |  =——=—— COST PER CASE $100.00
_ ~—.— COST PER CASE $500.00
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6’ B 2000
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] . 2N\
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o N ] 1 | ] ]
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TIME (days)

FIG. 4-3 OPTIMUM CONTROL PLOTTED AGAINST TIME.

DELAY OF 5 DAYS IN ACTIVE CONTROL.
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FIG. 4-4 (a) ACTIVE CONTROL WITH
A DELAY OF 16 DAYS
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FIG. 4-4 OPTIMUM CONTROL PLOTTED AGAINST TIME.
DELAY OF 16 DAYS IN ACTIVE CONTROL.
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Turning to the plots of optimum control, we find that
larger amounts of control are used as the cost per case increases
from 50.00 to 500.00. Moreover, we find that more active control has
been used than passive control, which is, perhaps, due to the relative
cheapness of the active control. We also find, as one would expect,
that with delay introduced in the active control, the use of passive
control is increased.

Thus we find that the optimization procedure developed
in this thesis gives encouraging results that are consistant with
intuition.

2.9 Optimuwm control procedure for case 2

We have so far restricted our attention to case 1 only.
This was done to keep the discussion unambiguous. The method is,
however, equally applicable to case 2. Using the procedure developed
in section 4.4 and detailed in Appendix A, the corresponding costate

equations for case 2 are as follows:

i1 = Ay fug(t-t ) + 8 y,(t)} - RLMD - yz(t) (4.37)
iz = A] B8 Y1 (t) = 2>\4 p2 5()’2) * y2(t) - RLMD - }’1 (t) (4-38)
iz =0 (4.39)

= 0, (4.40)
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where
m(t)
RLMD = 2: WLP(n) - a,(t#nt) - WIP(n) Ta,(t+nt) {1 + u,(t+nc)}
n=o0
- ag(t+nt) - A, (t+nc) {C Uy(t+nt) + D U22(t+nr)}], (4.41)

m(t) is the same integer variable as in equation (4.27).

The corresponding gradient equations are:

gq(u) = [A + 2B ug(t)In, - rq(t+r) - yq(t+e)s, g < t < te-t,
= [A + 2B uy(t)1x,, te-t. < t o< te (4.42)
2u
go(u) = [rg(C+2 U,(t)-D)-2,(t)] }E? WIP(n)-y,(t-nt)-y,(t-nt).(4.43)
n=o

When the same values of constants were used in this case,
substantial reductions of cost were observed. The final cost was,
however, found to be relatively less sensitive to passive control which
is due to the fact that the nature of U2 here is different than that in
the previous case. UZ’ here, is the number of passive immunizations
given per reported case, and not the actual number of immunizations.
The choice of C and D should, therefore, be revised to suite this
case. A reference to equation (4.8) shows that the nature of cost

constant C is substantially same as that in case 1, and it is the

cost of one antiserum injection. But, the choice of constant D is
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more comp\icated. p, in the present case, not only represents the
ijncrease in the cost per jnoculation due to the increase in inocul-
ation rate, but also represents the increase in cost due to the
added cost of more intensive search for the contacts of the reported
case. Effect of t

he two factors on the choice of D is not fully

known and more study is needed for 2 better estimation of p. It is
however certain, that with a better choice of these constants, useful
results can be obtained with this model also.

4.10 Conclusions

wWe thus conclude that the optimization proc

quite effective in determining the optimum C

h the continuously changing rate of control.,

sented in section 4.7,

edure developed
in this chapter is

ontrol
of an epidemic. Althoug

as observed in the results pre

would be
difficult to implement in practice, yet it serves as a guide for the
control strategy to be used in practice. If the control strategy, in
practice, has to be varied due to some other considerations, the
quantitative effects of this deviation can be easily asses

This will help provide,

strategy in that case.

sed using
this model.

at least, 2 quasi—optima1 control
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CHAPTER V
SUMMARY AND CONCLUSIONS

5.1 Swnmary

A mathematical model, which can be used for the prediction
and optimum control of all contagious diseases that are transmitted
through personal contact between infectives and susceptibles, has
been developed. The new deterministic model takes into full consider-
ation, for the first time, the latent and infections periods of the
disease and their statistical variations. The model, though only
applicable to closed populations, yet gives results which are nearer
to disease spread observed in practice than those obtained from
earlier deterministic models. A hypothesis about the possible
relation of meteorological changes to disease outbreaks, based on the

results obtained from the new model, has also been given.

The sensitivity of the model to active and passive immu-
nization controls has been studied, and a procedure for charting an
optimum control strategy, by the application of Pontryagin's Minimum
Principle, has been developed. For the first time, dynamic
optimization techniques have been successfully used for finding the
optimum control strategy for this class of problems. In addition to

being a practical application of the existing control theory to the
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control of epidemics, the system discussed also forms an important
example of the application of this theory to a non-linear case with
a finite number of delays, both in state and control. The results
obtained show the sensitivity of the control to delays in active
control and to the severity of the disease (represented by cost per

reported case).
5.2 Conclusions

From the analysis given in this thesis, we can now conclude
that a contagious disease can be generally represented, mathematically,
by three important parameters, viz. effective contact rate, latent
period, and infective (or incubation) period. Effective contact rate
(8), the first of the three parameters, is as much dependent on the
social, hygienic and environmental conditions of the population as on
the infectiousness of the disease, and is proportional to the
infectiousness of the disease, other conditions being equal. Another
important conclusion, from the solution of the model, is that for a
disease to become epidemic, both the proportion of initial susceptibles
in the population and g8 should be greater than their respective

threshold values.

In the area of control application, we conclude that the

available control must be applied as early as possible and at the



- 99 -

highest rate. Further, if the relative costs of administering each
control are known,it is possible to find the best control strategy

by the use of optimum control theory.
5.3 Recommendations for further research

This thesis presents many possibilities for future research.
The first necessity, for getting practically applicable results, is
the accurate assessment of parameters. Statistical estimation of
these parameters can be done more accurately if the data of the right
kind are available. It will, therefore, be advisible to record the
disease data with the new models in view and develop methods for
estimation of the parameters. Laboratory research about infectious-
ness of the diseases, their latent periods, and their incubation
periods can supplement statistical research. More research is also
needed to evaluate the cost constants for the cost function, more
realistically. Introduction of other controls, not represented in

the present study, will help make the model more useful.

The present model was restricted to closed populations.
Extension of the optimization approach, used here, to models modified
to include parameters relating to births, deaths and population
migration, would make an interesting study. Moreover the present

study was restricted to short term control of one outbreak; its
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extension to endemic diseases on the long-term basis is another

challenging area.

A1l individuals have been considered to have similar
response to the disease. The effect of age groups, sex groups or any

other population classification remains to be studied.

A very important factor, not considered here but already
voiced in the literature [2], [4], is the question of geographical
spread. In this study the population has been Tumped as a single
homogeneous group, which is quite far from reality when large areas
are considered. Application of optimization techniques to riodels for
geographical spread may require the use of distributed parameters,

and is,thus,likely to prove a challenging but useful field of study.

Only a complete analytical solution of the control problem
can really establish the Timitations and full potential of the
optimization techniques used; obtaining these solutions is another

area where considerable research is yet needed.

If this thesis helps generate some interest in the above

areas of research, it will have served a purpose.
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APPENDIX A

This appendix details the derivation of costate equations

and the assumptions made to arrive at the results.

With the assumption and definitions of Chapter IV, the

state equations of the model can be written as:

9] = -8 y1 .Yz - u1 (t'TC) ° y" - u2 (t) M .Y-| (A-1)
. Ke ;& 1 2
y2 = — — [exp {- — (U'I‘n'f) }] Y'| (t_nT) * yZ(t"nT)

vV 2w O'-l n=o 201

2u
2
K8 1 . 1 2
- — — exp {- —— (]-1 _n-[-) } y (t_n—r) -y (t_n-l-)
SZm o, zn=o[ 20, 2 ] ! 2

[}
2
- uz(t) . .VZ (A-2)
2u
. KB 1 . 1 \2
Yq = -— exp {- —, (u,-nt) }] y-(t-nt) - y,(t-nt) (A-3)
3 /om oo g;b [ 2022 2 1 2

Vg = Py2 8lyp) + Aup(t) + B uf(t) +.ICup(t) +D wi()l . (A-8)

where
s (yy) =0 ¥ 20
6(y2)=1 y2<0,

and p, is the penalty multiplier.
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The constant multipliers and exponential factors in the
above expressions, the latter representing the distribution of latent
and incubation periods, can be calculated and stored once for all,

for all values of n.

Substituting the stored vectors WLP(n) and WIP(n), defined

as

A

wep(m) = X8 1 exp - 1 (u-l-n'r)z}
(e}

1 204

|

|

wip(n) = KB 1 exp (- 1, (uz-nr)z}
2m oo 202

the state equations become:

Yy = - B ¥Yj .y2 - u](t"fc) * Yy - Uz(t) * Y1 (A-5)
2uy 2up

y, = Z WLP(n) - y,(t-nt) - yp{t-nt) - Z[WIP(N) X
n=o n=o

y,(t-nt) - yz(t-nr)] - uy(t) -y, (A-6)

2u

93 = EE? WIP(n) - y1(t—nr) . yz(t-nr) (A-7)
n=o

<
H
[

P, Y2 8(yp) + A ug(£) + B uf(t) + C up(t) + D uZ(t) (A-8)

This version of the state equations is quite suitable for
numerical analysis as they can be easily converted to the differential

difference form. The equations can be rewritten in a concise form as
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below:
3'(1 =-B8BYy Y - u.l(t--rc) -y - uz(t) - Yq (A-9)
&2 = ACTV - RMVD - u,(t) - vy, (A-10)
y3 = RMVD (A-11)
$4 = Py2 8(yp) + A ug(e) + B ul(t) + Cuy(t) + D uj(t)  (A-12)
where
Zu-l
Z WLP(n) - y;(t-nt) - y,(t-nt) = ACTV (A-13a)
n=o

is the rate at which latent cases become active in spreading the

disease, and

2n
E WIP(n) - y1(t-nr) . yz(t-nr) = RMVD (A-13b)
n=o

is the rate of reported cases per unit time, at time *t'. Since the
unit of time used is one day, the above rates can, respectively, be

called the per day active and removal rates.
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COSTATE EQUATIONS

For a complete representation of the process of disease
spread, our model needs the past history of state variables for twice
the incubation period. Since the values of state variables have been
stored at intervals of one day, a total of 2u2 delayed values of each
variable may figure in the state equations. As per the conditions
for formulation of costate equations, arrived at by McAulay [27] and
others [9]., [221, [32] and discussed in Chapter 4, a total of 2u2
expressions are needed to completely represent each costate between
the initial and final time. Working backwards in time, 2u2—1 of
these expressions represent the costate in question, one for each time
slot of one day duration between final time tf and tf—2u2. Another

one is needed for the remaining time up to the initial time.

The costate equations for the last interval, or the first
one starting backwards from final time t., can be written from the

general formula

s oM __, 2 2 A5 0T (A-14)
1 e 1 3y 2 3Y4 3 3Y4 4 EN :
i = - .aL_ = - A af] - A afz - A B‘F—3 - 2 .a_fi (A_]5)
2 3Yo 1 ay, 2 3y, 3 3y5 4 3y,

i = - ﬂ-— = - A af] - A afz - A if.__ - )\ if_a' (A_-ls)
3 dy3 1 3y3 2 3y3 3 3y3 4 3y3
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. oH af1 af2 af3 of

Aq 3y, M3y, " 23y, ~ *3 3y,

a
- 2y 5, (A-17)

When applied to the present problem, it is apparent that
the right hand sides of equations (A-16) and (A-17) are zero, so only
the first two equations remain to be considered. Concentrating on
equation (A-14) we find that this equation, between time te-t and
tf-ZT, will be

i=_3H_3H l
1 3y ay1(t—r) t=t+r.

(A-18)

Equation (A-18) is the same as equation (A-14) with one term added to
its right hand side. This additional term is the partial derivative
of Hamiltonian with respect to the delayed variable y1(t-r) and the
resulting term advanced by t in time. Thus an equation for the time
between tf-kr and tf-(k+1)r, will have k similar terms added to the
right hand side of (A-14). Hence the corresponding costate equation
for time tc-kt < t < tf-(k+1)r is:

5. = _ dH_ _ 3H I pm _ 3H
1 ay1 ay] (t-1) 't=t+c"""" 3y, (t-kt) 't=t+kr (A-19)

Rewriting

k
s aH aH =
Mo ;T*Z By (BT lt=tanes K= 15223, -c 2up.

n=1 (A-20)
Similarly K
s _ _3H _ 3H _
*2 T 7 ey, 2_1 By UEnt) lt=tenc> K = 1:2:3, - 2up.

(A-21)
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Substituting the expression for Hamiltonian and taking

necessary partial derivatives, the costate equations for time

te-kt < t < tf-(k+1)r become:

k
1T B Y A g up(terg) + 2 uy(t) - Y2(t) D ag(tenc) - wip(n)
n=o
k
- ¥2(t) 3 ay(t+nt) - [WLP(n) - WIP(n)]
n=¢ :
where k = 0, 1, 2 .... 2u, (A-22)
Kk
5\2 B Yy A7 + 2, uy(t) - 2xq Py, s(y,) - yq(t) Z Az(t+nt) -WIP(n)
n=o
k
= ¥1(8) 37 ay(t+nc) - [WLP(n) - WIP(n)]
n=o
where k = 0, 1, 2 .... 2u2 (A-23)
iz=o0 (A-24)
Ag =0 (A-25)
Equations (A-22) and (A-23) simplify to
k
0= A lup(tan) + uy(t) + 8y (0)7 - Y2(t) ) a,(t+nt) - WLP(n)
n=o
K
* () ) WIP(n) [, (tent) - Ag(t+nz)]
n=o
(A-26)

where k = 0, 1, 2, 3 .... 2u2
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k
)\2 = A" B .Y1 (t) + AZ uz = 2A4p2y2 6(.y2) = .y] (t) Z >‘2(t+nT) * WLP(n)
n=o
k
+ yq(t) Z WIP(n)[a,(t+nc) - Ag(t+nc)]
n=o0
where k = 0,1,2,3 .... 2u2 (A-27)
Defining a variable RLMD as:
k
RLMD = E: WLP(n) - X (t+nt) - WIP(n) - [ (t+nT) - ag(t+ne)]
n=o0
where k = 0,1,2,3 .... 2p2 (A-28)
The costate equations reduce to
(A-29)

X] = A][u1(t-rc) +u,(t) + Y>(t)] - RLMD - y,(t)

iz = A" B .Y](t) + A2 uz(t) -2 14_P2 ‘S(.yz) . yz(t) - RLMD - y"(t)
(A-30)

iz =0 (A-31)

ig=0 (A-32)

Costate equations (A-29) to (A-32) are apparently inde-

pendent of time slot being considered but it is not so in reality. The

newly defined variable RLMD, which figures prominently in the costate

equations, is completely dependent on the time slot, and has to be up-
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dated at every step as the backward integration of costate equations

proceeds. A look at the expression (A-28) reveals that when k = o0,

the summation is over only one value of n, and the value of RLMD

depends, only, on the known final values of state, costate and control

variables. The costate differential difference equations can now be

solved for one step in time; a day in the present case.
The value of RLMD now

Expression

(A-28) is processed again; now with k = 1.
depends on the values of state, costate and control variables between
periods‘tf and tf-r. These values are known by this time. The inte-
gration proceeds in this manner raising the value of k by one, each
step of time, til11 it reaches 2u2- After this moment k remains fixed
at this value but RLMD is still updated every step of time up to the

end of integration procedure at t=t0. Thus we are able to evaluate the

costates for the entire period of time.
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APPENDIX B

This appendix outlines the numerical procedure used for
the solution of the optimum control problem discussed in this thesis.
The Fortran IV program, suitable for the model IBM 360/67 digital
computer, and successfully applied to the determination of an optimum

control strategy, is given at the end of this appendix.

For the purpose of numerical simulation, the discretized
versipn of the model given in Chapter IV and represented by equations
(4.1) to (4.4) for case 1 and by equations (4.5) to (4.8) for case 2
has been used. A unit of time of one day has been used to make the
report-rate data, generated by the simulated model, comparable to the
field data. This unit of time may, however, be replaced by a week or

a month in the case of slow spreading diseases 1ike tuberculosis.

At the beginning of any given day, the values of variables
a(t) and r(t) (rates of newly active cases and reported cases) are
calculated using the stored values of the history of the states and
the corresponding normally distributed weighting multipliers. These
rates are now assumed constant for the day and the state equations are
solved for one day using Runga Kutta method. Final values of the

states at the end of one day form the initial values at the beginning
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of the next day. This Process is carried on till the stopping
criterion, wh1ch is either reaching the assigned final time or reaching

a value of 1nfect1ves below an assigned minimum, is satisfied.

Solution of the optimum control problem is obtained by an
iterative procedure. First the values of controls are assumed zero
and the final time, which is the time taken by the disease to subside
without any control being applied, is calculated. Using this time
as the terminal time the system iterates to satisfy the cost immuniz-
ation criterion, updating the control vector at the end of each
iteration. The computation stops when no significant further improve-
ment in the cost is possible; thus generating the best eontrol
strategy at the end.

The computer program consists of a supervisory main program

and nine modular subroutines. A brief description of the program
modules is as follows:

1. MAIN PROGRAM: It is the supervisory program which calls various
subroutines, when needed, during the computation of the solution.
Input to the program is the parameters of the disease, delay in
control (if any), solution termination criterion and penaly constant.
Final control vectors are printed at the end of the execution.

The intermediate results are printed by the various subroutines.
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SUBROUTINE WGHMLT : This subroutine calculates the normally
distributed weighting multipliers from the Tatent and incubation

periods of the disease. The resulting multiplying-constants are

stored as two vectors: WLP and WIP, at intervals of one day. This

subroutine is called only once, i.e. in the beginning.

SUBhOUTINE RKST: This subroutine solves the state equations,
using Runga Kutta procedure for the solution of differential
equations. It uses subroutine RKGS from the SSP library and is
called by both the main proéram and the search subroutine ASRCH.

This subroutine also evaluates the cost function J.

SUBROUTINE FCT: This subroutine defines the state equations of the
model for subroutine RKGS.

SUBROUTINE OUTP: This subroutine stores and prints the output of

subroutine RKST. Each time RKST is called, the stored values of

states are updated by this subroutine. Printing of the results is,

however, skipped if variable KEY is greater than 10. This is done

when subroutine RKST is called by the search subroutine ASRCH.

SUBROUTINE RKCST: This subroutine solves the costate equations

using the Runga Kutta method. The solution is carried out backwards

in time using subroutine RKGS. It also evaluates a new gradient

vector each time it is called.
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7. SUBROUTINE FCTCS: This subroutine supplies the costate equations

to the RKGS subroutine in subroutine RKCST.

8. SUBROUTINE OUTPCS: This subroutine stores and prints the results

of the solution of the costate equations.

9. SUBROUTINE ASRCH: This subroutine conducts a search for the
multiplying vector a (for negative gradient or acceleration steps)
to minimize the cost function J. The search is conducted both for
oq and oy in turn, using a combination of bisectional search
procedure and interpolation. It calls subroutines RKST (with
printing of results switched off) and interpolation subroutine

QDINPL.

10. SUBROUTINE QDINPL: This subroutine interpolates the value of o

for minimum cost and is frequently called in subroutine ASRCH.

A 1ist of the program described above is given in the

fo]low%ng pages.
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*® OPTIMUM CONTROL OF EPIDEYICS USING PARALLEL TANGENT TECHNIQUSES *%
L2 2 2 2 24 NeK e GUPTAs ELECTRICAL ENGGa DEPARTMENT &xx %k

% SST(25.200) IS THE STCRAGE ARRAY.STORAGE IN ROWS 1-4 IS FOR STATES,
S—6 FOR INFECTIVE AND REPORIT RATES,7-10 FIR CO-STATES11—-16 FOR
CONTROLS.17-20 ARE FCR S3RADIENT VECTIRS.12~20 FOR GRADIENT FOR
SEARCH.21-248 ARE FOR RIGHT HAND SIDE OF STATE EQUATIONS AND 2S5 HAS
STORED HAMILVTONIAN *»

% WLP AND wl® ARE NORMALLY DISTRIBUTED WEIGHTAGE VECTDRS %%

IMPLICIT REAL®B(A—H.,0-Z)
EXTERNAL FCTeGUTP,,FCTCSeCUTPCS
DIMENS ION SESTL25+200) s USICH{ 202003 +WLP (S0} ,WIP(S50)LCSTIS0)UL2)
2ZC2701eBZI2)e YL 200)+DSRY(SIPRUT(SI . AUX(B+5)
DOUBLE PRECISION LMD3+LMJ8 ACTVeRMVD»RLMD+BETAsAK+BKsCK DKo CRTePK,
2PWl e PW2:PWIPHWAEOPWS L UDELAYe THMEND
INTEGER ITRNLINT ¢ INTSTR. INTCS,MIP, MLP;KEYe IDELAY ISN
COMMON SSTeUSRCH +yWLPeWIP«CSTeUsZeBZ
COMMD?MN LMD3+LMDAs ACTV.RMVDs RLUDsBETAIAK ¢BK+CKeDKsCRC s PR+ PWL 4PW2,
2PW3 s PWA «PWS s UDELAY e TMEND ¢+ ITRNo INT o INTSTRe INTCSeMIPsMLP+KEY. IDELAY
901 FOOMATI(SF10.0)
90S FORMAT(8110)
911 FORMAT(1H1//+40X." *%s2% OPTIMUM SOLUTIDN OF TIME DELAY EPIDEMIC MD
2DEL *%$x%v)
912 FORMAT (1HD 18X ¢* THE DISEASE HAS $*CONTACT RATE#® *+FSe26° INETIR
2L SUSCEPTIBLE POPULATION O.50 AND DISEASE FACYTCOR Y.FS5e2)
014 FORMAT(IHM0:42X® #%%x ACTIVE CONTROL BECOMES EFFECYIVE AFTER®.I4.°
2DAYS ®x2¢)
915 FORMAT{1H +10Xs*EXPECTED MEAN *LATENT* AND *INCUBATICN® OERIODS
2 ARE®e2F6e2s" AMND RESPECTIVE STANDARD DEVIAVIONS® »2F6.2/7)
916 FORMAT(LH=+60X +?COST CONSTANTS ARE®?//+4SXe 'CCST PER REPCRTED CASE
2 =0 ,FD.2/:45Xe "PER UNIT COST OF ACTIVE CONTROL =
B eFPe2/e85X+ *SQUARE LAW COST OF ACTIVE CONTROL =0 FQe2/+45Xe
4 *PER UNIT CCSYT OF PASSIVE CONTROL =V oFP a2/ +45Xe *SQUARE LAW COS
ST OF PASSIVE CONTROL =0 oF9e2/e45Xe *"PENALTY FOR VIOLATING CONSTR
6AINTS =% FQa2/7) .
917 FORMAT(1H—¢20X+® &8 xx® NORMALLY DISTRIBUTED WEIGHTAGE MULTIPLIERS
2% kkEX2//) i
918 FORMAT(3(1X+s*DELAY IN DAYSHX&*#%,2Xe 10L3Xs I12¢6X)/ /0 1Xe LePeMULTIPLY
2ERS*¥%%, 2XelO0F 116/ /¢1Xe %1 PoMULTIPLIERSEEX® 3 2Xe10F11 67777/
3 S5X.'x%sxx SOLUTION BEGINS *¥x&&%®)

919 FORMAT(1X.*® PENALTY WEIGHTAGE MULTIPL IERS Pwl FOR NEGATIVE INFE
2CTIVESS *eF8e2.° PW2 FOR RESIDUAL INFECTIVES= *eFb6e.277)

920 FORMATI1H1//7 +45Xe* ITERATION NUMBER® s14,° SOLUT I0ON WITHOUT CONTRO
20 77)

921 FORMAT{1H1/// +45Xe* ITERATION NUMBER®f4.°* SOLUTION WITH CONTROL®/
27)

922 FORMAT(tH—:‘OX-'DAY‘-7XQ'REP.RATE'c7Xq'REPORTED'.Sx-'lNFCT.RATE'.
2 SXe® INFECTIVES® «6Xe® SUSCPTBLS?+5Xe*ACTV CNTRL® +SX,»* PSSV CNTRL?® /)
925 FORMAT{1H=o10X e® %%% FINAL TIME=*eF8e20¢° ®%%?,10Xe * %%t cCOoST="°,
2 F10e6+s® #%% * ,10X.* %% STORAGE POSITIONS=® <15 *¢3°)
935 FOPMAT(1MH—+10X+* ITERATIONS HAVE EXCEEDED THE LIMIT®.I6)
938 FORMAT(1H1I/// +5S5Xe*s%¢ FINAL ACTIVE CONTROL $&3%°)
939 FORMAT(1H=/// 55X ¢ %28 FINAL PASSIVE CONTROL &%%x7)
940 FORMATI{1H=e/+(2Xs10F13.6))
985 FORMAT(1H1///+50Xe*%s% ACCELERATION STEP FOR ACTIVE CONTROL %*&°¢)
946 FORMAT(1H /// +50X+°%%% ACCELERATION STEP FOR ©ASSIVE CONTROL #*%°)
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READING VALUES OF LATENT AND INFECTIOUS PERIODSe THEIR MEAN VALUES
ARD STANCARC DEVIAY IONS.CONTACT RATE AND OISEASE FACTOR. b

ALSO PRZADING COSYT CONSTANTS FOR ACYIVE AND PASSIVE CONTROLSCAK « SK .
CKesDK)»COST PER REPORTED CASE CRCe AND PENALTY CCNSTANY PK. *&

GRDSUM IS THE FLOOR LIMIT ON THE SUM DF SQUARE OF GRADIENTS, IEXITY
IS THE NUMBER OF ITERATIONS ABOVE WHICH ITERATION SHOULD STOP AND
ICELAY IS THE TIME DELAY IN YHE EFFECTIVENESS OF ACTIVE VACCINE =%

READI{SeS901) BMLPeDMIP+SDLPSCIPJEETAFACKJI(1)UL2)
READ(S+901) AK ¢ BK s CK ¢ DKo CRC ¢ PK ¢ GRDSUM
REAC(S+905) LIEXIT, IDELAY

Pwl1l AND Pw2 ARE PENALTY MULTIPLIERS FOR NEGATIVE AND RESIOSUAL
INFECTIVES PESPECTIVELY. PW3 IS THE VALUE OF INITIAL INFECTIVES.
Pwa AND P35S ARE CONDITICN CODES USED IN THE PSRCGRAM. *%

READ(S+901) PW1.PW2.Pn3.2Ws
INITIALISING THE VARIASBLES TO ZERO. =**

COCST=0.0

TMEND=0 .0

.DC 10 I=1+.S0

CST{1)=0.0

CONTINUE

DO 20 1=1,2S

DO 20 J~=ie.ECs
IF(1etTalleOR-T2GTa12) GOTO 15
IJ=F-10

SSTCIsJI=ULTI)

GCTO 20

SST(I+4)=0.0

IF(I«GY2) GO TO 20
USRCH(I+J)=0.0

CONTINUE

ITRN=1

WFITE{6+911)

WRITE(6+912) BETA.FACK
WRITE(6+915) OMLP+DMIP+SOLP, SDIP
WRITE(6+916) CRC+AK+BXsCK,;DKsPX
WRITYE(6.919) PW1.,PW2

EVALUATING AND STORING THE WEIGHTAGE MULTIPLIERS FOR NOPMAL
DISTRIBLYTION OF LATENT AND INFECTIOUS PERIODS. *%

CALL WGHMLT(WLP sWIP ¢ONLPsDMIFsSOLP+SDIPBETAIFACKMIP,MLP)
WRITE(6.917) -
WERITE(6¢91€8) (IeI1=1:10)el(WLPUlT)eTI=1410)+(WIP(I)eI=1,10),
2LTel=11+20)e(WLPLTI)«I=11+20)e{(WIP(T)eI=11+20)¢
BUII=21e30)e(NLFPLI)I=2130) +kWIP(13el=21e30)

WRITE(6+914) IDELAY

DC 2s K=1+200

LSRCH{1+sKI=S35T(11eK)

USRCH{2+KI=SST(12,K)

CONTINUE
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WRITE(S.,920) ITin

WRITE(6.922)

KEY=12
CALL RKST(X.PRMT.YoDERY'FCT.G

CEYLITRN)= casT
YRITE(6.525) TMEND.CDST-!NTSTQ
CALL RKCSY(X.PRMT-V-DE%V-FCTCS-DUTPCS.AUX)

ONE DIMENSICONAL SEARCH wITH STEERPEST DOESCENT FOR FIRSYT ST AGE.

UTP .AUX.COST)

<AL L ASQCH(X-PQNT.Y.DERY-FCT'CUTP'AUX.CQQT)

ITYERATION USING PARALLEL TANGENTS TECHNIQUE BEGINS «x»

CONTINUE
CALL RMCSTIX PRMT
A=BRZ(13+P2(2)
IF(A.LT.GROSUM) GGTYOo 60
KEY=3

CALL ASFCH(X,PPMTmY-DERY.FCT.OUTPcAUKpCOST)
DO 4S5 u=),INTSTR
SSTCIQ.M)=SST(II.M)—SST(ls.M)
SST(ZO-N)=SST(lZoM)-SST‘lQ.M)

CONTINUE

oY.DEnY.FCTCS-OUTPCS-AUX)

WRITNG ACCELERATION STEP SEARCH VALUES ==

WRITE{({S.945)
WREITF(5.,9a0)
wWR le(Geae)
WRITE(G6.940) (SST

KEY=S
CALL ASQCH[x‘ﬁﬂMT-Y-DERY'FCTQOUTP.AUX'COST)

(SST(IQ.N)'N=MIP.INTSTR)

(20.N)-N=NIP-1NTSTQ)

ITERATION TERMINAT ICN CRITERIGON. sx

!F(!TRN.GE.!EXIT) Gaoro £s
GC TO 35
CONTINUE

WRITE(6.,935) 1T7aN

CONT INUE

WRITING FINAL CONTROL . »»

WRITE(G6,5$38)
WRITEL6+940) (SST{11enN)

WRITE(6.939)
WARITE(S5+940) (SST(lZoN)-N=MlP-INTSTR,

SToR
END

sN=MIP4 INTSTR)

TOTAL MEMCRY QEOU!“EMEHTS 0019PAa BYTES

=%
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SUBROUTINE WGHMLT(WLP.H!P-DMLP.DMIO'SDLPQSDIP.BETA.FACK-“IP.MLP)

&% THIS SUBROUTINE CALCULATES THE NOAMALLY DISTRIBUTED MULTIPLIERS

(1 ¥ X2 Xa BN XaXs)

non

non NoN

10

FOR THE CALCULATION OF ACTIVE AND REPIRTED CASESe L

IMPLICIT REAL®BLA—H,0—2Z)
DIMENSICN WLP(50)«WIP{S0)sST(S0)
DO 10 =1S0

WLP(1)=0.00C00

WIP(I)=0.00000

ST(1) =0.0

CONT INVUE

‘t*LbADING THE NMULTIPLICATION ARRAYS*&k#&

20

22

2S5

*®

=%

30

33
as5

VLP=2.0%OMLP+1
MIP=2,0%DMIP+1
DO A4S I=1e2
IF(I—-2) 20¢20+22
K=MLP

SD=SDL.P

OME AN=DML P

GO TO 2s

K=MIP

SD=SD1P
DNMEAN=DMIP
C=FACK‘BETAI(SD‘DSQRTI6.283100))
DO 45 J=1eK
T=J—1

CALCULATING THE NORMALLY DISTRIBUTED CONSTANT MULTIPLIERS.
ST(J)=C¥DEXP((—O.S*(DMEAN—T)‘OZl/(SD‘*Zl)
STORING THE MULTIPLIER CONSTANTS IN PROPER ORDER. =%

M=MIP+1—-J
IF(I—=1) 303035
wLP (M) =ST( J)

GO TO 45
WIP{M)=STLJI)
CONTINUE

RETURN

END

TOTAL MEMORY REQUIREMENTS 00062C BYTES

* &
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SUBROUT INE RKST(X-PRMT-Y-DERY-FC?.OUTD.AUX-CCST)

NE INTEGPATES THE STAT: SQUATIONS UsiInG RUNGA—~kUTTA

METHOD ang SUBRPJUT INE RKGS #FRAaIM ssp LIBRARY, %%

IMPLICYITY PEAL'Q(A—H.O-Z)
DIMENS 1ON SST(E5.200);USRCH(2-200).WLDI50)-WID(SO)-CST(50).U(Z)o
22(200)'HZ(2).Y(200).DEQY(5)¢°RMT(5)-AUX(a'S)
oowuBL = PRECISTION LMDS.LMD«oACYV.RM#D.RLMDvECTA-QK

2P31;PW2.P&J.PWO~PJS-UD;LAV.TMEND
INTEGER !TQNolNT.INTSTQ-INYCSoMlP-NL9¢KEY.IDELAY.XSN
CaOMMoN SSToUSPCN-WLP.W?P.CST-UoZoBZ
TOMMON LMD 3o M 'ACTV.PMVD.RLND-BETJ-AK.BK.CKqDK'CQC-PK'PﬂI-9#2.
ZPWB'PWQ-OWS-UDELAY-YMEND.ITRN-!NT-[NTSY?-!NTCS.M:P.NLP.KEY.!OELAY
FDQ“AT{!HX!//-ASX-'!TEHATXDN HMUMBER * g7 4, v SoLuTICN WITH CONTROL * .~

27)
-7X-'QEP-RATE'-7X-‘9EPDRTED"SX-'INFCT.RATE‘-
s S5X. ¢ACTYV CNTRL'-SX-'pSSV TNTRL /)

-EKcCK.DKoCRC-PK.

2 SX-'lNFECYIVES'.ﬁX-'SUSCPTELS

INITIALISING PARRAMEYERS AND STATES, aa

PRMT(1)=—1_,0
PRMT(2)=0.0
PRFMT(3)=0.25
PﬂMT(0)=IoOD-5
Y(1)=0.5
Ye(2I)=pw3
¥{3)=0.0
Ytaj)=0.0

INT=0
SST(I-MIP)=Y(1)
SST(Z.M!P}=Y(2)

*EINT REPRESENTS THE TiImeg ga DAYS ==
EGRATION INTERVAL. =

=

10

30

*e

UPDAT ING PARAMEYERS FOR =AaCH INT

CONT INUE
INT=INT ¢3
PPMT‘!):PRMT‘!)+|.
PRHT(Z):PRMT(2)+I.
Do 20 J=1,.4
DERY(V) = Ce2S
CONTINUE

ACTV=0.0

RMVD=0,0

C‘LCULATING ACTIVE AND REPORT RATES FOR GIVEN DAY »x

00O 30 JxleMIpP
M=INT+J—)
72=SST(I.M)tSST(a.M)
ACTV:ACTV#HLP(JJ‘YZ
RNVD:?HVCOU!P(J)‘YZ
CONT INUE

PRESENT VALUES ARE STORPED AFTER MIP PLACES =»

N=INTeMIP—)
NCEL AY=N-IDELAY
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SST(S.N)=ACTV
SSY{6+N)=RVVD
Ul1)=USRCH(1,N)
UOELAY=USGCF(loNDELAY)
UI2)=LUSRCrH(2.,N)
cAaLL DRKGS(FRMT.Y'DERY;éoIHLF
IF(KEY—-1) 35435 .40
(FIYKZ).GE-PNB.AND.FQMT{2).LT.IZ.ODI) GOTOo 10

UMBER OF INTEGRATION

INTEAD IS The TOTAL N
HZE NUVBER OF STORPAGE POSITIONS NEEDED. %=

s FCT40UTD, AUX)

TMEMD IS THE FINAL Trws,
INTERVALS AND fINTSTR b -2 o

TMEND=PRMT (2)+25.,
INTEND=INT+285
INTSTR=MIP+INTENG

KEY=2

IFLINT.NE. INTEND) GaTo .40

CALCULATING THE COST OCEPENDENT ON FINAL VALUES 0ofF STATE. ==»
CCST:CRC‘(PHZ‘Y(Z)QY(J))+Y(Q)

RETURN

END

TOTAL MEMDRY REQUIREMENTS ODOS4E BYTES

SUBROUT INE FCT(XeYDERY)
THIS SUBPOUTINE GIVES STATE EQUATIONS wITH CONTRCL s»

IMPLICEIT REAL®B (A—H,3-2)

DIMENSION SST(ZS.ZDO)-USQCH(Z.ZOO)oHLP(SO).H!P(SO).CST(SO)-U(Z).
RMT{S) e AUX(8,.5)

EETA.AK-BK.CK.DKoCRC.PK'

DOUBLE PRECISIGN LMDZ-LMDQ‘ACTV.?MVDoRL“D'

ZPUI-PUZoPWJ'PNA.PW5¢UDELAV-TMEND

29N3.PUO-PU5.UDELAV-

-

INTEGER ITRN.INT.!NTSTW.!NTCS-MIP’MLPoKEY-XDELAY.!SN

CcCoMMON SSToUSRCH.NLP-wIPQCST.U.Z-BZ
DK-CRC-PK.PUI-PHZ.

COMMON LMD3-LHDA.ACTV.RMVD-RLMD.BETA.AK.BK¢CK-
TMEND-!TRN.lNTo!NTSTQ-INTCS,M!P.MLPoKEY'!DELAY

HY2 IS THE ciRAC DELTA FUNCTION FOP NEGATIVE Y(2) o

HY2=0.0
DERY(} )= —BETA*Y(I)‘Y(Z)-UDELAY‘Y(I)

DERY(2)= ACTV—RMVD—U(Z)'Y(z’

DERY(3)= RmMvVD

IF(Y(2) el T e0.0) HY2=1,0
DERY(Q)=PKOPWI¥HY2'Y(2)'#2+(AK*BK'U(l))‘U(l”(CKODK.U(Z))‘U(Z)

RE TURN
END

—UC2)%ve1)

TOTAL MEMORY REQUIFREMENTS 000374 BYTES

ENALTY MULTIPLIER *x
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c
<
c
SUBROUT INE ourn(x.v.oenv.rHLF.Nozu.DQMT)
c h
C #*% THIS SUBROUTINE sSTores THE CURRENT vaLues of STATE AND PRINTS
c THE RESULTS. ==
c
IMPLICET REAL*8(A—H,0-2)
DIMENSION ssr(zs.aoo).usacn(z.aoo).wanso).n!p(so:.csr(so).ucz).
eztzoo:.sz«zv.V(zoo:.osqv(s).pnwr(S).AUX(e.S)
DOUBLE PRECISION LMDB.LMDA.ACTV.RMVD¢RLMD-BETA.AK‘BK-CK.DK.CRC-FK-
zpwx.pwz.pns.pwc.nws.uoELAv.ruEND
INTEGER xTRN.:wr.ersrn.xNTcs.Mrp.uLn.xEv.xcELAv.ts~
comMan SST-USQCH.WLP-HIP.CST.U.Z.BZ
comMaN LMD3.LNDA.ACTV.RMVD.RLND-BETA-AK-BK.CK-DK.CRC.PK.DU!.Pwac
2Pw3-Pw6'PvS-UDELAY-TVEND.ITRN.XNT.INTSTR.INTCS.MIP-MLP'KEY'IDELAV
910 FORMAT (1M *Fl13.2,8F15,.5)
XF(X.NE-0.0-AND.X.NE.PRMTKZl) GO TO Ss
IF(XeFfEQe0.0) GoTo a0
IK=INT+MIP
00 10 Jy=1,.,4a
10 SSTUJeIK)I= v(y)
IF{KEYeGEL10) GO TO 14
00 20 J=1,.,s
JN=20+9 A
20 SST(JIN. IK)=DERY ()
IF(Y(Z).LT.O-O) GO TO S50
IFCINT/Ses . NEW INT ) GO To 1
GOTYO 50
80 IF(KEY«GE«10) GO vO £
DO 45 J=31.,4
JN=J+20
as SSTLJINMIP)I=DERY( ) .
S0 WRITE(6.910) x.nuvo.v(a).osnv(z).vtz:.v(l).u(xl.u(z:
SS CONTINUE
RETURN
END
TOTAL MEMORY REQUIREMENTS 0cCo0S4q 8YTYES
[
c
[
SUBROUT INE nxcsr(x.Panr.v.osnv.Fcrcs.ourocs.Aux)
c
[ *3THIS SUBROUT INE INTEGTRATES BACKWARDS THE COSTATYE EQUATIONS USING
[ SUBROUTINE RKGS FROM THE SSP LIBRARY. %%
c
IMPLICIT REAL#*8(A-H,0-2Z) ’
).usncu(a.zoo).incso).vxprsot.CST(sO).utzn.

DIMENSTION S8T7{(25.200
22(200).82(2).Y(2000.
oouvaLe PRECISION LMD

DERY(S).PRNT(S).AUX(B.S)
J.LMDG.ACYV.RMVD.RLMD-BETAp‘KcBK-CK;DK.CﬂC.PK.

ZPUI.P'a-PwBoPHQ-PUSvUDELAYoTMEND
INTEGER ITPN'!NT'INTSTR'INTCS.MIP-NLP.KEY.IDELAY'lSN
CCMMON SSTvUSRCHouLPoHIP.CST'U-ZvBZ
COMMON LHDJ-LMOQ-ACTV.RHVD.RLMD-BEfkclK.BK'CK-DKQCRC-PK-PII‘PHZ.

.INT.!NYSTRQINYCS-M:P.”LPcKEY-IDELAY

2P'3.P".PNS.UDELAY.TMEND.ITRN
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1S FORMAT(LIMHNI/// 20X % 2nn SOLUTICN OF COSTATE EQUATIONS AND CALCULATE
20 VALUES OF HAMILTONIAN AND GRADIENT VECTORS ®s%e)
Q20 FDHMAT(XH—.IOXv'OAY'-BX-'LEMDA—I'.8X"LEMDA—2'-SX-'LEMDA—S'.BX.
2'LEMDA—¢'.QX"HAMlLiONIAN‘-SX”GRAD!ENT—I'oSX-'GRAD]ENT—Z'/)
950 FOFRMAT (1HO10Xe*#*%% GRADIENT INTEGERAL S**» *e4F1S5.6)
*& INITIALISING THE PARAMETERS FOR BACKWARDS INTEGRATION OF COSTATES.
INTCS IS THE STORAGE INDEX START ING BACKWARDS FROM LAST STORED

VALUE. *x

INTCS=INTSTR+1
INT=0

Y{1)=0.0
Y(2)=PW2#CRC
LMD3=CRC

LMDAa=1.
PRMT{1)=TMEND+1 .0
PRMT(2)=TMEND
PRMTY(3)=—0.25
PRMT{Aa)=1.0 O-S
WRITE(6.915)
WRITE(6+920)
SSTI7«INTSTR)I=Y(1)
SSTIBLINTSTRI=Y(2)

UPDATING THE PARAMETERS FOR BACKWARD INTEGRATION INTERVALS. *&

10 CONTINUE
INTCS=INTCS-1
PRMT {1 )=PRMT(1)~1.0
. PRMT(2)=PRMT(2)—1.0
DERY(1)=0.5
DERY(2)=0.5
RLMD=0.0
IF{INT «eEEQe0O) GOTYOD 20
IF(INTGT.MIP) INT=MIP
00 30 I=1 ¢ INT
MuE=MIP—-TI+1
MCS=INTCS+[—1
RLMD=ﬂLND#bLP(MH)lSST(BcNCS)—NIP(”N’#(SST(B;MCS)—L“DJ)
30 CONTINUE
20 INT=INT+}
CALL DRKGS(PRMT'Y-DERY'Zc!HLF.FCTCS.OUTPCS‘AUX)
IF(PRMT (2) aGTe0.) GO TO 10
DQa a0 L=MIPsINTSTR
. SSTU19.L)= —SST(17,.L)
T SSTC(20+L )= —SSY(18,.L)
40 CONTINUE

*% CAMLCULATING INTEGRAL OF SQUARE OF GRADIENTS =%

DO SO I=1+200
Y{1)=0.0

S0 Z(1)=0.0
K=INTSTR+1—-MIP
00 70 L=1,2
J=L+18
DO 60 I=1,K
ML=L—1+MIP
Y(I)= SSTLJIoML)I*%2

60 CONTINUE
CALL DOSF(1e00eYsZ.K)
BZ(LI=Z(K)

70 CONTINUE
WRITE{(6+950) 8Z(1).8Z2(2)
RETURN
END

TOVYAL MEMCRY REQUIREMENTS 0007908 BYTES
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SUBROUT INE FCTCSKX.Y.DEQY)

s THIS SUBROUTINE GEVES COSTATE EQUATIONS *%

IMPLICIT REAL*B(A—H-D—Z)
DIMENSION SST(ZS-ZOO)vUSRCH(Z-?OO)'dLP(SD)oN!D(SO)oCSTlSO)'U(Z).
22‘200).52(2)-Y(ZOO).DERY(S)‘PRMTIS)-AUX(B.S)

DovsLE PRECISION LMDB-LMDd.ACTV.RMVD-RLMD'BETAoAK.BK
2PHIcPhZ-PbE.QWQ.PWSQUDELAY.TMEND

INYEGER !TNN.JNT.INTSTQ'lNTCS.M(P.HLP,KEYQIDELAYngN
cermMon SSTQUSRCH.WLP-W!P.CSY.U-Zvﬂz

COMMON LMD3.LMDQQACTV.RMVO.RLMD.BETAgAK-BK.CK
2PU3.PWOoPWSoUDELAY.fMENDoITRN.INT.!NTSTQ.INTC
HY2=0.0

NDLAY=INTCS~IDELAY
DERY(1)= Y(l)*(SST(llqMDLAV
2 RLHO*SST(E.INTCS’
IF(SST(2.!NTCS).LT.0.0) HY2=1.0
DERY(2)= Y(l"BETA*SST(I.INTCS)—?-O‘LM“O'PK‘SST(2.!NTCS)*HYE‘P'!
2 —RLHD#SST(I-INTCS)#SST(lchNYCS)'Y(ZD

RETURN
END

*CK s DK e CRC o PK o

oDK'CRC.?K'PVloPUZ.
S-NIP-HLP-KEY.IDELAY

)*EETA‘SST(z-!NTCS)*SST(IZQINTCS))—

TOTAL.MEﬂOQY REQUIFEMENTS 000442 gvyTes

SUBROUT INE OUT@CS(X-Y-DEQY'lHLFoNDIM‘PRMT)

** THIS SUBROUTINE STCORES THE CUSTATE VALUES =*x

INPLICIT RE‘L‘R(A—H.O—Z) .
DIMENSICN SST(ZS.EOO)-USRCH(Z-ZOO)owLP(SO)oHlD(SOJQCST‘SO)oU(Z)o
22{200)-82(2)-71200)-DEQY(SJ'PRMT(S).AUXIB-S)

oousLE PRECISION LMDJ-LMDA‘ACTV.RMVD,QLMD.BETA-AK.BK.CK.DKoCRC-PKo

ZPHI-P'EvPhJoPWO'PWS-UDELAY.TMEND
INTEGER !TRN.INT'INTSYRo!NTCSQMIP¢MLD-KEY.XDELA7.ISN
CCMmman SST.USRCH-KLPleP-CST-U-Z.BZ

3-LMD4'ACTV.RMVD¢RL"D.BETAoAK.BK'CKoDK-CRCoPKoPUloPUZ'
29&3-PU6.PW5-UDELAV-THEND-lTRN-!NT.XNTS?R-!NTCS-"IP.NLP.KEY.!OELAY

910 FORMAT( 1 oFl3o2'BFlS.6)

IF(X.NE.TMEND-AND.X.NE.FQMT(2)) GOTOo SS
KF(X.EO-TMEND) GO7TO0 20

** STORING THE VALUES OF COSTATE s«

L=INTCS—~}
SST(?.LI=V(!)
SST(B.L)=Y(2)
Govo 30

20 L=INTCS

30 M=l +I1DEL AY
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*® CALCULATING THE HAMILTONIAN &3

SST(2S5 e )=SST(21 +L ) *SST(7 L I+SST(22.LISSSTIL,LI+SST(23,LI*LMO3 +
2 SSTL24a.L)*LMDA

& CALCULATING AND STORING NEW GRADIENT s*xs%

SST(17eL)==SST(7+MIESST(1eM) tLMDAX(AK+2,0%BK*SST(11.L))
SST(18¢L )= LMDA*({CK+2.0%DKESST(12,L))-SST(B8,LI®SST(2.L)
2 —SSTU7.L)*SST(1.L)
IF(XeEQ.TMEND) GOTO 50
IF(INTCS/S%*S.NEINTCS) GOTO 55
SO WRITE(6+s910) Xe¥Y(1)2+Y(2)eLMD3eLMDAsSST(25eL)eSSTI17+L)SST(18,.,L)
5SS CONTINUE
RETURN
END

TOTAL MEMORY REQUIREMENTS OO0OO6FC BYTES

SUBROUT INE ASRCH{X+ePRMT e YsDERYFCTLOUTP cAUX,COST)
*& THIS SUBROUTINE PERFORMS ONE DIMENSIONAL SEARCH ON ALPHA %%

IMPLICIT REAL®8(A—-H.0-2)
DIMENSION SST(25+200) ¢USRCH(2+200) +WLP(S0) +WIP(S0)+CST(S0).UL2)
2Z(200)+BZ(2)+Y(200) +DERY(S) +PRMT(S) e AUXL(B:+S)
DOUBLE PRECISION LMD3eLMDA+ ACTVRMVD ,RLMD+BETA ¢AK ¢ BK o CK sDK s CRC o PK »
2P WL oPW2.PU3,PWA+PWS s UDELAY « TMEND
INTEGER ITRNSINTINTSTR,INTCS +MIP MLP KEY ¢ IDELAY ¢ ISN
COMMGCN SSTsUSRCH s WLPsWIP.CST UsZeB2Z
COMMON LMD 3+LMDEcACTVIRMVD s RLMD yBETA9sAK3BKsCKeDKeCRCePKePWL oOW2,
2PU3 PWG PWS s UDELAY « TMEND s ITRNSINTsINTSTR INTCS s MIP 4 MLP(KEY, IDELAY
91S FORMAT(1HO+10Xe**%% CALCULATED VALUE OF ALPHAS ®F10e6, "%%%%,10Xe
2 *s%%x MINIMUM COST= *,F10.6," %*%%9)
916 FORMAT (1H1 +33Xe**%k%% ONE DIMENSIONAL SEARCH ON CONTROL U® .Itl.
2 * BEGINS *%8%%°//,30Xe* SEARCH NO«®* +6Xs%ALPHA® , 11X *COST* /)
920 FORMAT(1H 040XeISe2F1Se6)
921 FORMAT(1H ///+45X,*ITERATION NUMBER'el&4s® SOLUTION WITH CONTR0OL*)
922 FORMAT(1H=e10Xe*DAY? s 7Xe®* REP.RATE® «+7X o+ * REPORTED® s 5X+® INFCT.RATE®,
2 SXe®INFECTIVES®»6Xe® SUSCPTBLS®eS5Xe"ACTV CNTRL® sSXs*PSSV CNTRL® /)
923 FORMAT (1N ¢40Xe*ONLY ACTIVE CONTROL HAS BEEN SEARCHED FOR MINIMUM
2cosT*) :
924 FORMAT(1H +40X+°ONLY PASSIVE CONTROL HAS BEEN SEARCHED FOR MINIMUM
2 COST*)
925 FORMAT(1H—-o10Xe?%%% FINAL TIMES® FB8e.2.% %%%°,10X," %% COST=",
2 Fl0.6¢® %58 9,10X,'%%% STORAGE POSITIONS=®,1S,°® #%%t)
926 FORMAT(LIH +42X+°80TH CONTROLS MAVE BEEN SEARCHED FOR MINIMUM COST®
2?
930 FORMAT(1H +26X+* INTERPOLATED ALPHA®)
LCHK=0
ITRN=ITRN+1
ISN=1
S CONTINUE



nnn

anon

L2

10

1S

20

25

28

-123-

KEY=KEY+10
ICHK=ICHK+1
ALPHA=0.0
PW4a=1,0

ISRCH IS SEARCH NUMBER AND ITESY TESTS VALUES FOR INTERPOLATION #*%
I SRCH=0

ITEST=0
WRITE(6,916) ISN
WRITE(65+920) ISRCH.ALPHA,COST
K1=ISN
K2=ISN+10
K3=ISN+12
KA=ISN+14
KS=ISNe+18
IFLAG=0
DALPHA=0.0016
CST1=0.0
CcST2=0.0
CST3=0.0
ALP1=0.0
ALP2=0.0
ALP3=0.0
ITEST=1TEST+1
CSTMIN=COST
ALPMIN= ALPHA
€STi1=CST2
CST2=CST3
CST3=COST
ALP1=ALP2
ALP2=ALDP3
ALP3=ALFHA
ISRCH=ISRCH+1

PuwS=1.0
IF{ISRCH«GT.10) Gargo 3S
IF(ISRCHaGT 1 2AND« IFLAGLEQ.O) DALPHA=ALPHASPWS

ALPHA=ALPMIN+DALPHA

UPDATING THE CONTROL WITH CALCULATED ALPHA FOR NEXT TRIAL. €=

00O 20 K=MIP+INTSTR
USRCHIK1 3K )= SSTIKZ2.K)+ALPHA*SST(KS,K)
IF{USRCH(K1+K)elLT .00 USRCH(K1+K)=0«0

CONTYINUE
CALL RKSTIXePRMT ¢ YeDERYFCT+sOUTP s AUX+COST)
WRITE(6+920) ISRCH. ALPHAL,COST

IF(COSTLT<CSTMIN) GOTO 10
AALP=DABS( ALPHA)

IF(AALP.LT .1 .0-5) GOTOo 28
IF(IFLAGeEOQeO«AND.TTESTGT 23 GOTOD 25

IF(ITEST.GE.2) °'GOTO 30
DALPHA=DALPHA/ G 0
IFLAG=100C

GOTO 1S
DALPHA=ALP3-ALP2
IFLAG=100

GCTOo 1S

IF(PWA.LTL.0.D0) GOTO 45
Pwa=—Pws

PUWS==PWS

IFLAG=0

ISRCH=1SRCH+1

GCTO 18
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INTERPOLAT ION RUN FOR ALPHA %%

CST1=CST2
CEST2=CST3
CST3=COST
ALPL1=ALP2
ALP2=ALP3
ALP3I=ALPHA

ESRCH=ISRCH+1
CALL ODINPLIALP1 s ALP2+:ALP3,CST1+CST2.CST3e ALPHA)
WRITE(6+930) :

DO &40 K=MIPe INTSTR
USRCHIK12K)= SST(K2+K)+ALPHAXSSTIKS.K)
IF(USRCH(K 1K) LT .0.0) USRCH(K1+K)=0.0

CONT INUE

CALL RKST(XePRMT . YeDERYFCT+OUTPsAUX-COST)
WRITE(6+920) ISRCH.ALPHA,.COST
IF(CSTMINLT «COST) ALPHA=ALPMIN

SYTORING NEW CONTROL FOR NEXT ITERATION. **

Do 70 K=MIP+INTSTR

IFIKEY—13) £€S5.55.65
SSTIK3,KI=SST(Ka.K)
SSTI(KAKI=SSTI(K2+K)
SSTIKZ2+:KI=SST{K2,K)+ALPHASSSTIKS+K)
IF(SST(K2e¢K) LT 0.0 SSTI{K2¢K)=0.0
USRCHIK S +K)I=SSTIK2.K)

CONT INUE

KEY=KEY—10

WRITE(6+.921) ITRN

EF(ICHKaEC el cANDo ISNeEQel) WRITE(6+923)
IF(ICHKeEQel «ANDa ISNcEQ2) WRITE(G +924)
IF{ ICHK eEQ < 2) WRITE(6+926)

WRITE(H«922)

CALL RKSTEXePRMTeYsDERYFCT+OUTP+AUXCOST)
CSTC(ITRN)= COST

WRITE(6+925) TMEND.COSTV, INTSTR

IST=1

IF(ISN.EQe2) 1ST=~-1
ISN=ISN4IST
IF{ICHK.EQ.1) GOTD S
ISN=L{SN—IST

RE TURN

END

TOTAL MEMORY REQUIREMENTS ODOEAS BYTES
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SUBROUT INE QDINPLIX1eX2:X3eY1eY2eY352)

e® THIS SUBROUTINE INTERPOLATES VALUES OF ALPHA MULTISLIER FROM THREE
SERIAL VALUES OF ALPHA AND COSTSe XtleX2 AND X3 ARE THE ALPHAS
ARRANGED IN THE ASCENDING ORDER OF ALPHA ANC Yl. Y2, Y3 ARE THE
CORRESPOND ING CNSTSe. Y3 SEING THE FIRST VALUE WHEN COST STARYS
INCREASING. Z IS THE INTERPOLATED VALUE OF ALPHA. *%*
ORDER OF ALPHA AND Yi.Y2 AND Y3 ARE CORRESPONDING COSTS Y3 BZING FIRST
VALUE WHEN COST STARTS INCREASING. Z IS INTERPOLATED VALUE OF ALPHA B

IMPLICIT REAL®B(A—HeO-2Z)
910 FORMATIA4SX +* ALPHA VALUES DO NOY SAVISFY INTERPOLATION CONDITIDN®)
915 FORMAT(A4SX*DENIMINATOR = Oe0s INTERPOLATICN NOT EXECUTED®)

X23=X2-X3

xX31=X3-X1

X12=X1—X2

XS23=¥2%%2=X3%%2

XSI1=X3%#2—-X1%%2

XS12=X1*$2-X2%%2

XD=2.0'(X23‘Yl#XSlthoxlz‘YB)

AXD=DABS{ XD)

IFC(AXDeLT e1.0D-7) GOTOo 1S

D=XO/(X23*X31¢X12)

IF(D+.GT+040) GO YO 10
XN=XS23*Y14XSI1*Y2+XS127rY3
2=XN/XD .
GO TO 20

10 WRITE(6.910)
GOTO 20

15 WRITE(5+915)
z=X2

20 CONTINUS
RETURN
END

TOTAL MEMORY REQUIKREMENTS OOO03E0O BYTES
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