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ABSTRACT 

 Small group work is becoming an increasingly popular structure for promoting 

communication, sense-making, and reasoning in the mathematics class. This increased sense of 

student autonomy must co-exist with the curriculum, the expectation to provide opportunities for 

students to master certain mathematical ideas. This study is an exploration into the patterns that 

emerge when a teacher of mathematics establishes small groups in their classroom and attempts 

to balance the inherent complexity of student interaction with the ultimate goal of affecting 

action toward curricular outcomes. 

The analytical framework of complexity theory and the epistemology of enactivism are 

used to frame the mathematics curriculum as a landscape, and the process of learning 

mathematics as one of emergence with the mathematical environment while operating in certain 

curriculum spaces. The image of the curriculum space is introduced as an interpretive tool to 

visualize the dynamic, drifting nature of the problem deemed relevant to a group, and their 

movement as they work at varying levels of sophistication with targeted outcomes.  

 Through this lens, I offer illustrative episodes of group action and an analysis of patterns 

of teacher action to provide a language to observe small groups as complex systems, inform the 

work of teachers by presenting viable images of complex systems of learners making sense of 

their experience, and explore the tendencies of teacher actions when consciously balancing 

complexity and curriculum. My research suggests that the complex action of small groups can 

generate curriculum, and that a teacher of mathematics can both prompt action with curricular 

outcomes and honour the complexity of small groups if they attune themselves to the dynamic 

movement of a group’s problem drift.  
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“Enjoy thinking sideways” 

- The Big Show 
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CHAPTER 1: INTRODUCTION 

 

“Mathematics education is much more complicated than you expected even though  

you expected it to be more complicated than you expected.” 

E. G. Begle, 1971, p. 30 

 

 

 

 

Figure 1.1. An opening classroom episode. The task asked students to place four different digits 

(2-9) and one operation in the boxes to create an expression with the largest result possible. 

Teacher:  How do you know this is the largest? 

Student 1:  Because I made the bottoms as small as I could. 

Student 2:  Denominators. 

Teacher:  Right, denominators. So you chose 2 and 3? 

Student 1:  Yes, because they were the smallest, the best. 

Student 2:  Because you said we couldn't use 1. 

Student 1:  We would have used 1, because it is the best. 

Teacher:  1 is the best denominator? 

Student 3:  Yes, well no, zero would be the best. It is as small as possible. 

Classmates:  No! Can't divide by zero! Zero doesn't work! etc. 

Student 3: I know you can't, but if you could, it would make the largest number. 
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Western Canada is still feeling the wave of mathematics curriculum and pedagogy reform 

prompted by the publication of the National Council of Teachers of Mathematics’ curriculum 

and evaluation standards for school mathematics (1989). Now over twenty-five years later, 

mathematics education in Saskatchewan has undergone a distinct shift in policy. The blanket 

renewal of secondary school mathematics curricula under the umbrella of the Western and 

Northern Canadian Protocol (WNCP) has shifted the content students are expected to master, the 

sequence in which it is encountered, and the pedagogies underpinning their mathematical 

experiences (WNCP, 2008, 2011). In my experience, the shift in pedagogy has been by far the 

more tenuous for teachers. The tone of curriculum materials has shifted, and teachers are 

expected to cultivate student curiosity through investigative activities, productive math 

communication, and multiple lines of reasoning (WNCP, 2011). The central classroom structure 

valorized to uphold these practices is the collaborative group, and the curricula and educational 

policies provide significant pressure on classroom teachers to operate efficiently within this 

structure (Towers, Martin, & Heater, 2013) which does not share the same affordances of direct 

instruction with regards to efficient progression through a curriculum by fixing the learning goals 

prior to instruction (Doll, 1993). Consider the opening vignette of a group’s discussion of the 

task posed in Figure 1.1. What is the teacher to do? Do they entertain the idea of dividing by zero 

and steer action toward the ideas of division of fractions and infinity? Or perhaps choose to 

dampen the discourse, define the problem away, and move into the intended lesson on comparing 

the size of fractions? The teacher is placed in the precarious position of providing space for 

student sense making, but still retaining a sense of order. This pressure grows in magnitude at the 

secondary level where—historically—most of the program of schooling can be characterized as a 

lockstep march toward calculus through a close adherence to curriculum documents organized as 

hierarchies of skills, each elaborating on the previous level. It seems as though the nature of 

group work is not well fit to the project of schooling in this regard, yet the world for which 

schooling is preparing students to live only scarcely contains situations where individuals act in 

isolation. Teachers attempt to create learning groups in their classrooms with the understanding 

that groups of students can be unpredictable, and unpredictability has been cast as the diametric 

opposite of efficiency. It is out of the pragmatic needs of practitioners that the patterns of action 

from student groups be explored. 
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Coming to Know My Research Interest 

In an attempt to frame the movement toward my research interest, I wanted to stay away 

from metaphors of linearity. Such images not only betray the convoluted landscape of becoming, 

but give the environment a static feel and the journey a sense of polished completion. Instead, I 

wanted to place the interactions with my many influences in the foreground. The idea of mutual 

influence with one’s environment is central to enactivist thought; this mutual influence is 

explained in greater detail in chapter two, and continues as a major theme throughout the study. 

It is a continual movement towards coherence in the face of constant change. This study 

represents, in some sense, the history of my becoming to this point, but lags perpetually in the 

past tense (Varela, Thompson, & Rosch, 1991). Not only does this document reflect on, and 

speak to, my countless influences, it has become an influence itself. Like other research 

conducted in the area of enactivism, the study not only attempts to elaborate on the complex 

process of education, it is a complex process itself (Reid, 1996). My pragmatic obsession with 

carving curriculum out of chaos has emerged as a result of a variety of influences. 

Classroom influences. Of the countless features that influenced my path, the most 

prominent are the years spent in classrooms employing collaborative group work. From the onset 

of my career, I was driven by my mandate to think sideways—that is, to provide a space for 

students to encounter divergent mathematical thinking. This began firmly within my control, 

presenting and playing with curiosities of my own choosing. As my career progressed, the small 

group became a stalwart structure to allow students to pursue divergence. I was able to design 

tasks to deepen my focus on divergent thinking through classroom discourse and open problem 

solving. Operating from an underdeveloped hybridity of social and cultural theory of 

collaborative work, my goal was to scaffold students toward curricular outcomes through 

encounters with peers at varying levels of understanding. My actions as the teacher were 

included in the scaffolding, and a shred of Tayloristic efficiency remained because I was able to 

intervene with groups that were completely lost while other groups had students that could take 

on the role of teacher (Taylor, 1911). I developed efficient patterns of interaction in the 

classroom, and was comfortable networking collections of learners.  

As the classroom environment opened to student actions, I began to notice two phenomena 

that did not synchronize with my (then) current theory of how collaboration in mathematics class 

functioned. The first was the emergence of sudden moments of enlightenment among a group of 
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learners. A group would establish a novel solution pathway or a unique mode of conceptualizing 

a problem, but would not be able to attribute it to any one student. These ‘aha’ moments had no 

single author, no expert toward which to scaffold. Rather, they seemed to emerge out of the 

interactions of the members, constructed piecemeal from the members’ contributions but 

belonging to none of them. The second was the frequent activation of my own personal 

enlightenment while interacting within a group of learners. While attempting to scaffold their 

learning toward a pre-determined goal, I would be occasioned down a much different path—one 

I never envisioned (Davis, 1996; Davis, Sumara, & Kieren, 1996). There seemed to be ideas 

emerging in action that had no author, no scaffold. Mathematical knowing was emerging in 

erratic and, through the lens of the curriculum, irresponsible ways. I loved it, but could not 

explain it.  

Academic influences. The coursework in my graduate program of study introduced me to 

the work of William E. Doll, Jr. in the field of complexity and education. His notion of the 

culture of curriculum described a project of schooling steeped in the ideas of linearity and 

capitalism, where programs of study are tightly controlled, well-known, and executable in spite 

of human participants. The awareness of this culture spurned my search for a worldview that 

could help me explain the nature of mathematical understanding that was evolving through the 

work of my students (Doll, 2012). Doll’s work toward a pragmatic picture of complexity in 

classrooms combined explanatory potency and simple elegance. His work shifted my lens away 

from seeking divergent mathematical thinking, and toward a sensitivity for emergent 

mathematical thinking. His influence can be felt throughout this work. Doll theorized a 

mathematics education “where play, poiesis, and possibility reign” (Doll, 2008, p. 20) in which 

teachers and learners alike are “embedded, embodied, [and] emboldened” (Doll, 2012, p. 175). 

Doll’s tendency to employ these alliterative triads can be found in the title itself. 

My focus began to hone in on my actions—as the teacher—that occasioned instances of 

effective group work. It became a process of explicating my influence on learners, recognizing 

when student actions influenced me, and noticing when moments of complex organization could 

be harnessed. I began to develop my lens for complexity through the theory of enactivism. 

Enactivism enabled me to reconcile my two worlds: the world of teaching in a curriculum-based 

education system, and the world of complex human organization. It theorized complexity in 

action. 
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Situating the Study 

Collaboration in a culture of curriculum. The project of mathematics education has 

come a long way since the assembly line oriented ideas of Taylor (1911), the deficit model of 

Bobbitt (1918), and the input-output notions of the “lawful and determined” behaviorist 

psychology (Skinner, 1953, p. 6) were hallmarks of the educative process. Mainstream theory 

has moved beyond the conceptualization that learning is a tightly-controlled individual effort, 

and now recognizes the important role that social context plays in education. Socio-culturalists 

have written about various issues and themes ranging from the processes involved in using 

groups in the classroom (e.g. Cohen & Lotan, 2014; Horn, 2012), the enhancement of reasoning 

skills that group problem solving affords (e.g. Boaler & Staples, 2008), and equity issues arising 

in group problem solving (e.g. Esmonde, 2009a, 2009b). In this framework, members of the 

group interact in a series of scaffolded relationships to move along a continuum of 

sophistication. In other words, it focuses on using the activity of groups on a mathematical task 

to construct a personal understanding of the mathematics.  

Research establishing the classroom as a complex system (e.g. Davis & Simmt, 2003; 

Davis & Sumara, 2006; Doll, 1993; Hurford, 2010) and enactivism as a theory of learning (e.g. 

Kieren, 1995; Kieren, Calvert, Reid, & Simmt, 1995; Proulx & Simmt, 2013; Proulx, Simmt, & 

Towers, 2009; Reid & Mgombelo, 2015) expands the perspective that the role of the group is 

simply a vehicle for individual appropriation of meaning. Complexity theory treats the 

interactions of groups of students as having more potential than the sum of their individual 

capacities. Moreover, from the perspective of enactivism, curricular mathematics knowledge is 

an act of in the moment creation. Knowledge is not something that individuals hold after 

interactions; rather, it is brought forth through interactions. This orientation has led some 

researchers to merging the idea of collaboration and the theory of enactivism in education. In 

their studies they explore the structure of collective action and the markers of collective activity 

in the classroom through the lens of enactivism (e.g. Kieren & Simmt, 2002, 2009; Namukasa & 

Simmt, 2003; Towers & Martin, 2015). It is here that student work in problem solving groups is 

analyzed for attributes that can indicate or describe emergent paths of mathematical knowledge 

toward curricular outcomes. The primacy placed on collaborative classroom design and its 

trademark structure—the small group—modifies the role of the teacher as they attend to the 
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collective and curriculum simultaneously. This theme will be expanded on and referenced often 

throughout the study. 

Role of the teacher. Curriculum driven courses are derived from sequential order (Doll, 

1989, 1993), but complexity does not operate on metaphors of linearity (Davis & Sumara, 2006), 

and enactivism treats cognition as an emergent, present-tense phenomenon. What, then, are the 

implications for the role of the teacher if the classroom is conceptualized through these lenses? 

Enactivism disposes the neatness of the idea of cause and effect (teaching causes learning) and 

positions the teacher as another member in a system of interaction (teaching can trigger learning) 

(Proulx, 2010). The teacher still holds major influence in the collective, but not in a prescriptive 

sense whereby the teacher’s actions directly determine the learners’ reactions. Metaphorically, 

the teacher does not stand at the front of the room causing learning through careful presentation. 

They also do not stand as an overseer of action or a guide listening for opportunities to help a 

group. The teacher stands in the middle, as a participant in the action (Kieren, 1995), shaping 

possibilities throughout the inter-action of the task. The teacher is therefore placed in a position 

where the goal is the delicate balance between commentating the possibilities with the small 

group and highlighting the curricular outcomes utilized through their actions. Research has 

begun to investigate the role of teachers in the collective with regards to their mode of listening 

and the classification of teacher actions, but further exploration into the role of the teacher in 

operating through an enactivist lens in a culture of curriculum is warranted (Davis, 1996; Kieren, 

1995; Towers & Proulx, 2013). If curriculum is understood as a list of predetermined 

mathematical ends (Doll, 1993), but complexity and enactivism problematize predictability, we 

need to know more about how the actions of a teacher influence the collective action of small 

groups of mathematics learners. 

Research questions. It is through this theoretical re-casting of complexity thinking and 

the corresponding epistemology of enactivism that we can examine the classroom at a different 

level—the level of the small group. Rather than postulate on the ways in which the collaborative 

group can co-exist with mathematics curriculum, teachers need images of collectivity generating 

curriculum. It is through this lens that this study explores the following questions: 

In what ways can a teacher of mathematics influence the actions of small groups of 

learners toward curricular goals while working together mathematically on tasks? 



 

7 

 What patterns of mathematical action emerge from collectives when teachers 

intentionally offer interventions with curricular goals in mind? 

 What are the implications for teachers when seeing small group work through an 

enactivist lens? 

Rationale for the Study 

 This study does not set out to establish a set of teacher interventions that will trigger 

predictive, collective responses. Such a conceptualization would not be aligned with the thinking 

of complexity, the epistemology of enactivism, or the evolutionary path of groups. In fact, there 

is a distinct effort to avoid the “modern tendencies of exorcizing ambiguity and mechanizing 

complexity, in effect reducing a fluid form to a static formula” (Davis, 1996, p. 59). While 

strengthening the ontological pathway for theorizing classroom groups as complex systems, the 

main contribution of this study is to the growing scholarship revolving around the pragmatic 

functioning of teachers in complex systems. That being said, it is important to be clear that the 

study does not attempt to offer a generalizable complex pedagogy. Paralleling the warning from 

Davis and Sumara (2006) regarding the notion of ‘constructivist teaching’, the notion of 

‘complex teaching’ also has an oxymoronic feel because the first half of the term forefronts 

chaotic sense-making and the second half insinuates predictable, “deliberate and generalizable 

action” to affect the complex system (p. 115). The study illustrates how classroom actions and 

interactions inform teachers operating with(in) complex systems, but does not claim to provide a 

general and robust way of teaching complexity. 

This means that, despite the pragmatic focus of the work, the tasks presented, actions 

described, and analyses of the contained classroom episodes are not meant to establish replicable 

structures for optimizing classroom collectivity or a list of suitable and generalizable teacher 

actions. Rather, the motivation behind the work is the re-casting of the role of teacher when 

viewing groups of learners through the lens of complexity thinking. It is, perhaps, best 

summarized by Kieren and Simmt (2002) when they describe how a shift in theoretical lens 

affects the teaching and learning of mathematics: 

Because the teacher is both leader of and part of the collective in the classroom, she can 

use her observations to change her perception of mathematics as occurring in her 

classroom or of the nature of the mathematical task or prompt as lived out in the actions 

and inter-actions in her classrooms, but also to change elements of classroom environment 
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in ways that she thinks might affect the collective understanding. … More generally, if 

collective understanding is a coemerging feature of a self-organizing system, the teacher 

might be prompted to probe her role as both a learning member of that system and as a 

special ‘catalyst’ in it. (p. 873) 

The study also expands upon the explanation of classroom happenings through the lens of 

enactivism. As mentioned earlier, and to be extended upon on in a review of the literature, 

enactivism does not operate on a logic of cause and effect. The shift in action of a collective (if 

any) is not caused by the teacher’s intervention, but rather by the interactions with the new 

possibilities. The teacher is then balancing multiple goals of instruction with the incoming flow 

of information. They can control what type of intervention is offered and the tools provided to 

take up the trigger, but the collective organizes itself dynamically, interpreting the intervention in 

an emergent fashion. This phenomenon rules out the possibility of a predictive certainty where 

specific teacher actions are said to cause particular collective re-actions. This creates a novel 

stance for the teacher, a stance that is not governed by right and wrong interventions, but 

complex judgements about what learners need in the moment. This study presents an actionable 

step toward extending the theorization of enactivism into the realm of the practitioner by 

illuminating patterns of collective interactions so that teachers might attune themselves to the 

complex nature of groups working with curricular outcomes.  

The pragmatic focus of this research is a response to calls from the literature on teaching 

and learning mathematics with enactivist sympathies.
1
 For instance, Towers and Proulx (2013) 

call for the documentation of how teacher actions and re-actions might occasion student learning. 

Towers et al. (2013) call for a continuance of this pragmatic line of inquiry where researchers 

document teaching activities in the context of classrooms to “show what is possible within the 

structures of regular schools and programmes” (p. 431). The close ties to classroom practice is 

crucial to the pragmatic emphasis throughout the work. Complexity thinking in mathematics 

education is moving away from descriptive activities and into a pragmatic discipline of research. 

The question has shifted from if classroom groups can be conceptualized as part of a nested, 

complex structure to how this nature can be occasioned and influenced. In short, the call is to 

expand the corpus of “viable accounts of how specific learners make sense of specific 

                                                      
1
 See the April 2015 issue of ZDM: Mathematics Education for an entry point into the literature on 

enactivism and mathematics education.   
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experiences” (Davis & Sumara, 2006, p. 116). The situated contexts of the episodes used in this 

work are chosen purposefully to honour the complexity encountered daily by the classroom 

teacher and continue the pragmatic theme in recent research in complexivist and enactivist 

mathematics education. The pattern seeking emphasis—firmly positioned within the teacher’s 

reality of classroom practice—places the study at the juncture between the growing body of 

literature on enactivist thought in mathematics teaching and the shifting curricular landscape. It 

is an attempt at attuning the teacher to their role in complexities through the vehicle of small 

groups in mathematics class. Stated succinctly, “Its principal orienting question is neither the fact 

seeking ‘What is?’ nor the interpretation-seeking ‘What might be?’”, although both of these are 

addressed, “but the practice-oriented ‘How should we act?’” (Davis & Sumara, 2006, p. 25). 

Contribution to the teaching of mathematics. For the mathematics teacher, the study 

elaborates on a language—or lens—of complexity at the classroom level. By focusing on the 

level of the small group, a classroom structure familiar to mathematics teachers, the study aims 

to transform the analysis of a familiar situation by providing a new possibility—that of 

complexity thinking and enactivism—from which to act. By means of illustration, imagine 

viewing a 3D movie without the accompanying glasses. The pictures will appear blurry and 

offset from one another, and, while it is not impossible to make out a storyline, it forces the 

viewer to constantly ‘squint’ in order to fit the action on the screen with their expectations. The 

3D glasses resolve these tensions and allow the viewer to see previously unavailable features of 

the film. Providing a lens through which to observe classroom action and its complexity allows 

teachers to better take up their role within it. Providing a new and self-consistent language that 

teachers can use to observe and discuss classroom events is also of critical importance to 

working with complex systems of learners. Seeing a language develop in context “helps all 

stakeholders to fabricate their own internal models of dynamical learning systems”, which makes 

the work of immediate significance to the work of teachers of mathematics (Hurford, 2010, p. 

583). The study does not claim to equip teachers with the ability to predict the knowing that 

evolves though collaborative work, but rather to develop the recognition that mathematical 

understandings are enacted in a complex ecology and can provide possibilities for the generation 

of curriculum alongside collectivity. The study contributes to the professional discourse on 

teaching groups in the mathematics classroom because teachers can benefit from the continued 

synthesis of enactivist theory within the reality of curriculum, a close analysis of the patterns of 
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influence a teacher’s actions have on groups of learners, and episodes that model the possibility 

of the complex group working productively with curriculum.   

A Way Forward 

This thesis is presented in a fairly conventional style, with the exception of some of the 

traditional chapter names being replaced with more descriptive alternatives to parallel the 

language of the research questions. Chapter two presents a review of the literature. This includes 

complexity theory and its adoption from the natural sciences into educational literature. The two 

dominant lines of educational inquiry resulting from complexity thinking are described, and a 

complementary epistemology of enactivism is expanded upon. The result is a re-defined image 

of classroom collectives from which I am operating. Chapter three describes how the design-

based methodology pairs with enactive inquiry. It also frames the research site, participants, data 

collection tasks and other logistical design decisions. Chapter four details the need for, and 

creation of, the observational tool of the curriculum space—an image to interpret the patterns of 

group knowing. Chapter five uses the curriculum space to explicate patterns of group action in 

three illustrative episodes and analyze the nature teacher interventions during the data collection 

tasks. Chapter six discusses the precipitates that emerged, for me, from the study, and the 

implications of the study on the teaching and learning of mathematics. On the whole, the work 

represents an attempt to invite the complexity of human being into my mathematics classroom, 

and situate myself alongside it. 
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CHAPTER 2: REVIEW OF THE LITERATURE 

 

“The past as a reference to interactions gone by and the future as a reference of interactions yet 

to come are valuable dimensions for us to communicate with each other as observers.” 

H. R. Maturana & F. J. Varela, 1987, p. 124 

 

 

Complexity and Education
2
 

 A foothold in natural science. Complexity theory—long before it was used to theorize 

classroom action—emerged from a series of curious developments in the natural sciences. For 

many years previous, the linear metaphors and reductionist approach of Newtonian science 

encapsulated the whole of scientific pursuit. According to this school of thought, the world is 

ultimately knowable and the job of science is to uncover the nature of reality. But Newton 

himself knew of the limitations of the linearity (Stewart, 1989). Maybe the earliest encounter 

with the non-linear nature of the cosmos was encountered in the three body problem in which the 

movement of three large bodies, each with mutually perturbing gravitational forces, needed to be 

mapped. Linear approximations provided some semblance of a solution but the problem 

remained inaccessible to linear mathematics. Long after the three body problem was posed, 

scientists in numerous domains of inquiry continue to explore natural phenomena that seem to 

organize themselves internally in non-linear ways. Chemists study dissipative structures in which 

reactions seem to cycle and re-organize themselves in time and space (Prigogine & Stengers, 

1984), physicists study the patterns of action in complex adaptive systems (Holland, 1995), 

biologists study the bottom-up organizations of auto-poietic systems (Camazine et al., 2001; 

Maturana & Varela, 1987), and mathematicians use non-linear dynamics alongside a ton of 

computing power to attempt to understand the systems of differential equations emerging from 

these situations (Strogatz, 2003). Despite the technical areas from which the theory of 

complexity emerged, accounts on everything from cellular genetics to urban planning have been 

penned in approachable prose (e.g. Cohen & Stewart, 1994; Gleick, 1987; Johnson, 2001; 

Kauffman, 1995; Waldrop, 1992). These accounts began to move the counterintuitive and 

                                                      
2
 Heading used in a deliberate nod to the incomparable influence of Brent Davis and Dennis Sumara’s, 

Complexity and Education (2006).  
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curious study of complexity into the mainstream. Emerging from natural science was a new 

paradigm, one where “order does not need to be imposed externally—by God, scientific laws, or 

teachers. Order emerges internally, through interaction” (Doll, 1986, p. 14).  

 Complexity thinking. Complexity theory does not manifest itself the same way, with the 

same goals, in educational theory as it does in the natural sciences. Davis and Sumara (2006) 

describe the evolution of complexity theory research into, what they term, complexity thinking. 

They represent the work on complexity as three bodies
3
—hard (or reductionist) complexity 

science, soft complexity science, and complexity thinking. Hard complexity science is concerned 

with uncovering the nature of reality through rigorous testing. This is the approach that is most 

prevalent in physics. Soft complexity science draws on metaphors developed by hard complexity 

science to describe living systems. It can be thought of as “a way of seeing the world” (p. 18). 

Complexity thinking, a middle ground, is concerned with the implications of assuming 

complexity—it is “a way of thinking and acting” (p. 18). Complexity thinking places the 

observer firmly within the system and is concerned with the pragmatic implications of 

interpreting a phenomenon as complex. In terms of education, complexity thinking views the 

structures of learning, at various levels of organization, as complex. In this study, the level of 

organization under analysis is the small group.  

 The literature on complexity thinking in education can be organized into two major 

categories: Learning about complex systems and learning as a complex system (Hurford, 2010). 

The literature on learning about complex systems defends the benefits of complexity as a 

curricular topic—gaining accessibility through the rapid development of computing potency 

(Jacobsen & Wilensky, 2006; Wilensky & Resnick, 1999). The two foci are mutually 

constitutive, to a point, but the focus of the current work in on examining small groups as 

complex systems. In other words, on observing small groups with a theoretical frame of 

complexity thinking.  

 Levelling in complex systems. The shape of complexity is nested, recursive, and fractal 

in nature which requires those attempting to interpret complex organization to think in levels 

(Wilensky & Resnick, 1999). The idea of levels is particularly important to research on 

classroom groups, because, in complex terms, collectives take on their character through the 

interactions of agents (in this case, students) at lower levels. These interactions are not simple, 

                                                      
3
 Pun intended. 
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cumulative actions as in the case of, say, days composing weeks and weeks composing months. 

Rather, they are transformative interactions that see organization emerge at new, outer—to use 

the language of nestedness—levels. The image of nested layers is found throughout the literature 

with regards to learning systems in the classroom (Davis, Sumara, & Luce-Kapler, 2008), 

categories of knowing and knowledge (Davis & Sumara, 2006), and the growth of mathematical 

understanding both individually (Kieren & Pirie, 1992; Pirie & Kieren, 1994) and collectively 

(Martin, Towers, & Pirie, 2006). Resnick and Wilensky (1999) illustrate this emergent view of 

levelling by asking readers to imagine a traffic flow pattern where each car is moving forward, 

but a traffic jam emerges from the interactions. The traffic jam is an emergent level of 

organization in the cars’ individualistic actions. As the traffic moves, the jam actually moves 

backward through the flow of vehicles despite each individual vehicle’s forward movement. It 

seems to take on a new pattern of life. Resnick and Wilensky contend that thinking in these 

levels is not an innate human ability, but must be done through a practiced lens. The levels share 

a crucial relationship not present in simple interactions. 

These levels might seem similar to the part/whole levels: just as a year is made up of 

months, traffic jams are made up of cars. But the jam/car relationship is different in some 

very important ways. For one thing, the composition of the jam keeps changing; some 

cars leave the jam and other cars enter it. Moreover, the jam arises from interactions 

among cars. Months do not interact to form a year; they simply accumulate or ‘add up’. 

(p. 5) 

 Not all levels of organization evolve on the same timescale. The more central the layer, 

the faster a significant transformation can occur. At the level of a bodily subsystem, changes can 

occur in milliseconds. Moving outward through the layers of the person, the collective, the 

society, the species, and, ultimately, the ecosphere, transformation takes significantly longer 

(Davis & Simmt, 2006; Davis et al., 2008). The project of education then requires researchers—

and teachers—to recognize these levels of organization and jump across them fluidly. Davis & 

Sumara (2006) call this the act of “transphenomenal hopping” (p. 157). The focus of the current 

work is on the level of the small group because organization as a collective can emerge within a 

timescale observable in the scope of the data collection, and small group work is already a 

common framework around which teachers organize classroom experiences. Focusing on the 

patterns of action at one level of organization is a necessary choice, but this choice by no means 
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signals the belief that small groups are the only complex systems in classrooms. Rather, key to 

the work is the awareness that “education simultaneously affects and is affected by many 

overlapping, intertwining, and nested learning systems” (Davis et al., 2008, p. 110).  

Establishing order in chaos. Complex systems—in short—are systems that learn, and 

complexity thinking presents that learning, both inside and outside the confines of a classroom, 

as a non-linear phenomenon. The term ‘learning’ is not meant to evoke an image of attainment or 

transaction where an actor stores some fact that can later be called upon. Rather, learning, in the 

sense of complex systems, is the process by which an agent and their environment are 

continually redefined, each continuing to mutually specify the potential to action of the agent’s 

structure and the constraints in which it must act. In other words, knowledge is not possessed; it 

is a structured potential to action. Systems adapt (and learn) because of the presence of dynamic 

tension. A complex system cannot survive at a state of homeostasis—inaction results in 

extinction. Instead, it needs enough imbalance to maintain a creative dynamism (Doll, 2008). 

Cognitive imbalance is necessary for the learning system to thrive. It is on the back of these 

ripples of imbalance that the system’s learning is furthered. Incongruence between learner and 

environment creates the need for further action, and these perturbations provide “the driving 

force of development” (Doll, 1989, p. 246). Doll (1993) illustrates a complex system as a magnet 

swinging between three poles. While it may seem like the magnet falls into a regular pattern of 

oscillation, the slightest perturbation in that movement creates wild and erratic movement. 

Eventually, the magnet re-orients itself to the environment and a new pattern of movement 

begins. For the system to survive, it needs to be impacted; for a collaborative group to act 

complexly, it needs to be perturbed. No linear pathway can be pre-traced, and careful planning 

on the part of the teacher can be interrupted by instances of recursion, wandering down a path of 

interest, or emergent issues that pop up continuously (Proulx, 2010; Varela, 1987). On the 

surface, a system built around imbalance and unpredictability seems to have no order at all, and 

establishing collaborative groups as the vehicle for such anarchy is irresponsible; however, 

complexity theory establishes the inherent chaos in any human system. For the most part, human 

interaction remains in an organized state, what complexity theory terms the attractor space. 

However, even the most prescriptive environments have the ability to divulge into disorder. In 

short, complexity in the classroom cannot be avoided, but it is in conditioning the reciprocal—

order embedded in chaos—where complexity gains standing as an analytical framework for 
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classroom action, and provides new footing for the use of collaborative groups (Lesh, 2010). 

This has implications for knowing, learning, and teaching (Davis et al., 2008), and places new 

emphasis on the affordances of collaborative groupings. The call to recognize complexity is a far 

cry from viewing the mathematics classroom as a linear, ordered picture of a typical mathematics 

classroom, but in order to harness complexity, a classroom-based picture of complexity is 

required.  

Research into Complex Systems  

The education research that has been conducted with the ontological premise that a 

classroom of students is an inherently complex system can be divided into two categories (Davis 

& Sumara, 2006). First, descriptive complexity research attempts to recognize and describe 

complex organization in the classroom. Second, pragmatic complexity research is concerned 

with how complex organization can be occasioned and manipulated. Because all educationalists 

have the fundamental responsibility to deliberately impact learners, complexity research with 

regards to classroom action is evolving from a descriptive enterprise, concerned with recognizing 

characteristics of complex organization, into a pragmatic one concerned with impacting that 

same organization by providing conditions necessary for its occurrence. Both categories are 

explained in greater detail below.  

 Descriptive complexity research: Characteristics of complex systems. The most 

common technique for deciding if a system is complex is to look for particular characteristics 

(Davis & Simmt, 2003; Davis et al., 2008). Educationalists and scientists alike have undertaken 

the work of describing the characteristics of complex action. The resultant qualities can be 

organized into two categories. The first provide descriptions in broad strokes, attempting to 

encapsulate the complexity by widening the scope of their lens. Examples of these are Lesh’s 

dictum that you can brand systems as complex if “when you act on them, they act back” (2010, 

p. 564), or the findings of Camazine et al. (2001) which contend that complex self-organization 

is driven by feedback loops. A positive feedback loop is the clustering of action around a specific 

focus causing that action to gain momentum; a negative feedback loop dampens the reaction of a 

phenomena causing it to level off or extinguish its effects altogether. For Camazine et al. (2001), 

the existence of feedback loops signals a complex character.  

 The second category aims to describe a complex system’s character with more thorough 

lists of characteristics. Self-organization remains the hallmark of these lists, but greater detail is 
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given to the structure and behaviour of self-organizing systems. These lists do not claim to be 

exhaustive, but do provide a more intricate image of self-organization. In an early attempt, Casti 

(1994) provides the ingredients for what he terms “the science of surprise” (p. 274). Complex 

systems, according to Casti, are marked by feedback and feedforward loops, a diffusion of real 

authority, and an irreducible character. In an elaboration of these initial efforts, Holland (1995) 

details the seven basics of complex adaptive systems. The seven basics are separated into two 

categories. The first is a list of four properties that complex systems exhibit: aggregation, non-

linearity, flows, and diversity. The second is a list of three mechanisms that complex systems use 

to build coherence: tagging, internal models, and building blocks. Together, these seven features 

(summarized in Table 2.1) are seen by Casti to make up the nature of self-organization. Both of 

these lists are developed within the study of the natural sciences, yet the characteristics proposed 

by research in the area of education echo many of the same features. According to Davis and 

Sumara (2006), a complex system exhibits self-organization, a bottom-up structure, scale-free 

networks, nested organization, ambiguous boundaries that remain organizationally closed, 

structure determinism, far from equilibrium behaviour, and many short range relationships. This 

list is helpful in translating the concerns of natural science into the work of teachers in complex 

settings—their classrooms. A concurrent review of all the proposed characteristics reveals 

common ground; self-organized emergence contains free movement of ideas and ways to track 

the results of interactions. Perhaps the over-arching message from descriptive complexity 

research is “even though these complex systems differ in detail, the question of coherence under 

change is the central enigma of each” (Holland, 1995, p. 4).  

Table 2.1 

Holland’s seven basics of complex adaptive systems 

Seven Basics 

Properties Mechanisms 

Aggregation 

Non-linearity 

Flows 

Diversity 

Tagging 

Internal Models 

Building Blocks 

Note. Table 2.1 is adapted from Holland, J. H. (1995). Hidden order: How adaptation builds 

complexity. Copyright 1995 by John H. Holland. 
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Pragmatic complexity research: Conditions necessary for emergence. If complexity 

thinking is to influence the work of teachers, it must move beyond the description of complex 

action and into the study of how the complexity can be occasioned and influenced. This growing 

body of pragmatic complexity research in mathematics education moves away from a description 

of the characteristics of complex systems and into the analysis of conditions that make it possible 

(Hurford, 2010). The necessary conditions can be organized into the three dynamic tensions: 

specialization (internal diversity and internal redundancy), trans-level learning (neighbour 

interactions and distributed control), and enabling constraints (randomness and coherence) 

(Davis et al., 2008). The presence of these characteristics does not guarantee complex action, but 

complex action cannot occur without them. Addressing them in order, specialization requires that 

there be enough diversity among agents to enable novel action but still enough redundancy from 

which to enable habitual movement. Trans-level learning requires that there be structures in 

place “to allow ideas to stumble across one another” as well as the ability to shift focus and 

control amongst the agents as the moment dictates (Davis et al., 2008, p. 199). Finally, enabling 

constraints focus on the necessary creative mix of coherent movement through established 

knowledge and the (seemingly) random movement of establishing knowledge. Making space for 

these dynamic tensions results in what Doll (2008) calls an open system, and, in pragmatic terms, 

“ones important for education, closed systems transfer and transmit, open systems transform” (p. 

187). 

At a classroom level, the collaborative group provides the necessary conditions for 

complex action to emerge, and thus heightens its importance as a classroom structure beyond the 

social and cultural notions of mutual scaffolding. A small group can distribute control, offer 

close neighbour interactions, and highlight the redundancy and diversity of the learners. The 

structure of small groups contains the necessary ingredients for complex emergence, and the act 

of teaching creates the possibility of commentating that collectivity. Through the lens of 

complexity, the classroom (and classroom teaching) is the constant unfolding of a tension 

between order (establishing redundancy, managing control, and establishing coherence) and 

chaos (marketing diversity, distributing control, and navigating randomness). The characteristics 

of complex organization established through the descriptive literature are cultivated through the 

necessary conditions established through the pragmatic literature and provide a solid foundation 
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for the theorization of small groups as complex systems. From this position, teaching, learning, 

and knowing become a complex act. 

Enactivism: A Complex Way of Knowing  

 The non-linear and evolutionary character of complexity gains traction as a theory of 

learning through the expanding body of literature on enactivism (e.g. Glanfield, Martin, Murphy, 

& Towers, 2009; Kieren, 1995; Reid & Mgombelo, 2015; Towers et al., 2013). Enactivism 

conceptualizes knowledge and sense making as evolutionary and biological processes, and 

largely stems from the work of Maturana and Varela (1987) and Varela et al. (1991). It is 

centered around two main points. First, human action is perceptually guided. This is the assertion 

that a living system’s reaction to an outside trigger is determined by the structure of the system 

as it interacts with the perturbation, not by the nature of the trigger alone. We say that the 

system’s response is structurally determined (Maturana & Varela, 1987). Second, cognitive 

structures emerge from these recurrent patterns of perceptually guided action; in other words, 

they are embodied. This is the assertion that a system does not act on an environment and build a 

perception to fit within its invariants. Rather, the system and environment reciprocally specify 

one another through inter-action, a process we call bringing forth a world of significance (Kieren 

& Simmt, 2009). Both of these features are crucial to observing the evolutionary character of 

knowing and learning, but not only does an observer read these phenomena into the process of 

learning, they must recognize that they are observing through an enactive lens. That is, their 

observations are determined by their structure and their observations participate in the bringing 

forth a world of significance. The role of enactivism on research methodology is expanded upon 

in chapter three. For now, a further explanation of the notions of structural determinism and 

world of significance is necessary.  

 Structural determinism. In the context of teaching and learning, any “changes that 

result from the interaction between the living being and its environment are brought about by the 

disturbing agent but determined by the structure of the disturbed system” (Maturana & Varela, 

1987, p. 96). In other words, the reaction of a complex system is not wholly prescribed by the 

nature of the perturbation on the system. Reid and Mgombelo (2015) use the example of a 

billiard ball being struck. We are prone to think of the forces acting on the billiard ball resulting 

in movement in a particular way. Enactivists, however, attend to the understanding that the 

collision provides energy, but “the structure of the ball being struck determines what happens to 
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that energy” (p. 173). Enactivists are interested in complex systems of learners which contain far 

more elaborate structures than billiard balls, making the recognition of their structural 

determinism all the more important. To understand how a learning system is (re)acting, we must 

look at the complexity of its structure.  

Actions of students (entwined fully in their environments) are embodied by the resources 

of biology and a direct product of human being (Lakoff & Núñez, 2000). In other words, student 

cognition is a structurally determined phenomenon whereby a response to a trigger is determined 

by the complex infrastructure of the agent and not by a deterministic locus of external control. 

The student is “considered an organism evolving with/in his or her environment in an adapted 

fashion” (Maheux & Proulx, 2015, p. 212). The environment, including other students, is a 

source of perturbations, and “the learner’s structure allows the environment to be problematic—

to occasion learning” (Towers & Proulx, 2013, p. 8). Moving beyond a single learner, if the 

system is a small group of learners working together on a mathematical problem and the 

perturbation comes in the form of a teacher’s intervention, it is the structural makeup of the 

group that determines the response to the intervention. The intervention doesn’t have an 

instructive effect in the sense of causation. Any changes in the internal dynamics of the learning 

system are determined by their own dynamics as they interact with the possibilities provided 

through the teacher’s intervention. It is through this structural determinism that the analytical 

frame of complexity and the epistemological theory of enactivism are tethered. The complex 

structure of groups is fully implicated in our knowing.  

 Structural determinism also has implications on how we observe knowing and learning 

because it is the structure of the observer that determines their interaction with an observation. It 

places the researcher in an active stance of sense-making where classroom occurrences do not 

exist outside of interaction with an observer, but rather are brought forth through the interaction 

of the observer’s structure and the environment. It is the structural determinism of the system 

that determines how agents will inter-act with their mathematical environment, and, as is 

signalled by the term enactivism, this inter-action is the key to knowing, learning, and teaching 

systems of learners within a complex structure. 

 World of significance. Enactivism has biological and evolutionary foundations through 

which it views the world as not pre-given but as continually shaped by the actions that the 

learners engage in. We have already seen that these actions are not wholly determined by the 
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environment, but are mitigated through learners’ complex structure. As is the case in other 

accounts introducing the reciprocal emergence of environment and agent through the lens of 

enactivism (Kieren, 1995; Proulx & Simmt, 2013; Simmt, 2000), the distinction between the role 

of the environment in social constructivism is useful to highlight the similarities and differences 

between the two theories. 

Social constructivism
4
, used here as an umbrella term for the many branches of 

constructivism that highlight the importance of social interaction to the process of learning 

(Ernest, 2010), views the individual as the seat of cognition. The environment plays a large role 

in cognition, but the learner appropriates the meaning of the environment through interaction, 

and then transforms it into individualized knowledge of the environment (Ernest, 2010). Through 

this theoretical lens, individual knowing is a product of social interaction. The environment 

remains static and the learners fit themselves to invariants in the environment to construct 

individualized perceptions of its nature. There may be many divergent perceptions of the nature 

of the environment, but the learners are thought to be using social interaction as a mechanism of 

internalizing subjective meanings of a shared environment. 

I am not claiming that social constructivism is disjoint from the evolutionary theory of 

enactivism (Cobb, Yackel, & Wood, 1992; Proulx & Simmt, 2013; Reid, 1996; Simmt, 2000), 

because both theories explore the ways in which knowing is a social act, occurring in context. 

The key difference lies in the relationship between the learner and the environment. Social 

constructivism is concerned with the creation of knowledge in a situated environment. As 

collaborative groups operate in the environment, their created understandings are mitigated 

through its character. These understandings are negotiated collaboratively, but housed 

individually. In contrast, evolutionary theories of learning, such as enactivism, are “not so much 

about the invariants within the environment, but about the coordination of the knower and the 

environment” (Proulx & Simmt, 2013, p. 66). As the learners interact with the environment, the 

environment becomes part of a non-linearity, of an emerging world of significance. Learning, 

then, is a “dynamic co-emergence of knowing agent-and-known world, of self-and-collective” 

(Davis, 1995, p. 8).  

                                                      
4
 For a closer analysis of constructivism and its various representational and radical forms, see Simmt, 

2000. 



 

21 

The environment is not a static set of features that learners must fit into, but a dynamic 

process of mutual fitting, a process called structural coupling (Kieren et al., 1995; Maturana & 

Varela, 1987; Reid, 1996). According to enactivism, knowing is doing (Maturana & Varela, 

1987), and knowledge grows through the learners’ interaction with the environment. As the 

coupling continues, the learner and environment begin a process of coming to know that involves 

the natural drift in both learner and environment (Maturana & Varela, 1987; Proulx, Simmt, & 

Towers, 2009). In their co-adaptation, the environment does not select a groups’ action, but 

triggers possible action as determined by their structure; likewise, an agent’s action triggers the 

evolution of the environment. Acting fuels a “fundamental circularity” between knowers and 

their environment as they mutually specify one another (Davis, 1996, p. 11). 

A system learns as their structural response to triggers widens the scope of possible 

action, and this wider scope triggers changes in the environment. This constant interaction 

between system and environment results in what Kieren and Simmt (2009) call bringing forth a 

world of significance, where the evolutionary nature of knowing continually unlocks further 

possibilities. Learners are not constructing subjective, and possibly divergent, perceptions of the 

nature of the environment; learners are bringing forth—enacting—the mathematical environment 

together in an emergent fashion. For the enactivist, “the world is not preformed, but performed” 

(Davis, 1996, p. 13). Enactivism theorizes a sphere of possibilities where knowing and coming to 

know are structurally determined and environmentally constrained. Succinctly stated, 

“mathematics cognition is seen as an activity fully determined by a person’s structure in which 

he or she brings a world of mathematical significance with others within a sphere of behavioural 

possibilities” (Kieren, 1995, p. 7). Cognition becomes inseparable from the embodied, interactive 

process co-emergent with the mathematical environment. Small groups afford interaction and 

structural coupling; they are a critical mechanism to bring forth a world of significance.  

As was the case with structural determinism, viewing knowing as bringing forth a world 

of significance has implications on the role of observer in a research project. Just as the observer 

cannot claim objectivity because all observations are made through their structure, the observer 

cannot claim to observe from outside the system. They become a source of triggering, of 

bringing forth mathematical significance. This is discussed further in chapter three. What still 

remains in this chapter is to use the verbiage of enactivism to define the difference, in this study, 

between a collaborative group and a collective, and to explore the role of the teacher in a 
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classroom that recognizes that all knowing is a structurally determined process of bringing forth 

a world of mathematical significance.  

Collaborative Group and Collective 

 Throughout the early chapters of this work, I have used both the terms ‘collaborative 

group’ and ‘collective’ to describe the small groups that are the focus of this study. It is 

important to clarify my intentions, in this study, when using both terms, and to explain why the 

difference is important. Others have offered definitions to delineate between the two notions. For 

instance, Armstrong (2013) distinguished between collaborative and collective in terms of the 

coordination of group members. 

When a group is working collaboratively, everyone in the group is working on the same 

task at the same time. Finally, a group that is working collectively has such a high degree 

of coordinated interaction that it appears to be behaving as a single unit. (Armstrong, 

2013, p. 8) 

The theme of density of interaction is a common thread within the research viewing 

groups through the theories of complexity and enactivism, the two underpinning theories of my 

study. Furthermore, much of the research of classroom group knowing studied through the lens 

of enactivism refers to the knowing systems as collectives (e.g. Kieren & Simmt, 2002; Martin & 

Towers, 2015; Namukasa & Simmt, 2003; Towers et al., 2013). Studies have explored the 

various markers of collectivity as their action brings forth a mutual, or collective, world of 

significance (e.g. Martin & Towers, 2009, 2015; Thom, 2004; Towers & Martin, 2009, 2015). 

In this study, the two terms are used to intentionally demarcate between a particular 

classroom structure (the small group) and the action of students within such a structure. The term 

‘collaborative group’ is popular in the lexicon of the practitioner; here, it refers to the 

organization of students in close proximity with the intention that they focus their joint efforts on 

a common task. For the purposes of the study, a group is simply “a certain number of people who 

are working together on a designated task for a designated amount of time” (Armstrong, 2013, p. 

10). When referring to a collaborative group, I am referring to the students and their organization 

in the classroom. The term ‘collective’ has strong ties to the research in complexity and 

enactivism. Here, it refers to the knowing and learning of a collaborative group—the bringing 

forth of their world of mathematical significance. For the enactivist, knowing and learning with 

others is the norm (Kieren, 1995), and it is with a specific awareness toward these knowing 
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relationships that I use the term ‘collective’. When I refer to the collective, I am referring to the 

group as a knowing system in a deliberate attempt to recognize knowing as inherently 

communal—that is, we bring forth meaning together. Phrased differently, I use the term 

‘collaborative group’ to refer to the human beings, and the term ‘collective’ to refer to the 

humans being. 

Teaching With(in) the Collective 

Teaching takes on a new nature for the enactivist. The structure of the teacher remains the 

same as that of the student, fully and reciprocally coupled to their environment. The teacher’s 

structure, however, may be considerably more adept at acting within the mathematical 

environment of the classroom (Kieren, 1995). This does not mean that the teacher stands outside 

the system; however, from within this system, the teacher serves as a crucial source of triggering 

for the rest of its agents. Teaching is not an art of facilitation; teaching is a process of 

participation (Proulx, 2010; Sumara & Davis, 1997). Teachers provoke, get in the way, orient, 

influence, and couple with the action of the learning system. Instead of being an interested 

observer listening for moments to re-shape student action if it begins to stray off course, the 

teacher listens for the emerging character of the action as a wholly coupled piece of the learning 

system. Teaching becomes a process of “improvisational competence” (Towers et al., 2013) as 

the systems of learners move through and expand their sphere of behavioural possibilities. 

Included in this sphere is the curricular space composed of opportunities for students to interact 

with the topics and ideas of a program of study.  

Teacher interventions with(in) the complex system prompt action. The role of the teacher 

is redefined as the growing body of literature on classroom collectives re-casts the nature of 

collaborative groups as a structure which is inherently complex. Towers and Proulx (2013) 

propose informing practices, orienting practices, and shepherding practices as three broad 

categories of teacher interactions, each of which can present themselves as optimal in the 

contexts of learning. Teacher action, then, becomes less about ‘good’ and ‘bad’ interventions, 

and more about a dynamic fitting with the group action as teachers balance their deliberate and 

emergent instructional goals (Hoong & Chick, 2007/2008). Here the emphasis is placed on the 

tension between the goals of working with curriculum outcomes and honouring the action of the 

group. The teacher’s role then emerges from their setting. In other words, teaching “is not about 

the application of rules and principles; it is more about judgement in context, about adapting 
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constantly to the context—a context where learners, teacher, and subject matter are structurally 

coupled.” (Towers & Proulx, 2013, p. 24). The role of the researcher is also recast if one begins 

to see all observing as structurally determined and part of an emerging world of significance. As 

such, careful attention needs to be paid in outlining a methodology that honours the complexity 

of the classroom as well as the enactive theory of knowing.  

 

  



 

25 

CHAPTER 3: METHODOLOGY AND DATA COLLECTION 

 

“Always keep one hand in the dirt.” 

B. Sriraman, personal communication, June 24, 2016 

 

 

Methodological Approach 

 The pragmatic focus of this study situates the research problem directly within the 

complex environment of the classroom. Complexity thinking and enactivism, the two guiding 

theories of the research, provide grounding for the complex character of student groups and the 

evolutionary way in which they bring forth a world of significance while operating with a 

mathematical task. The study required a methodology where the complexity of the classroom 

was not collapsed, but allowed the patterns of emerging worlds of significance to be explored. In 

this chapter, I detail the tenants that enactivism places on a program of research and tether these 

to design based research methods. After establishing the methodology, I detail the logistics of 

data collection, research site, task creation, and student workspace. The result is a research 

design that encourages the complex structure of student groups and honours the implications of 

viewing learning—and the study of learning—through an enactive lens. 

 Enactivism as methodology. There are three tenants of enactivist methodology that 

consistently appear in the literature. First is the role of the observer in enactivist research. For the 

enactivist, “all research is observer dependent, whether enactivist or not”, but enactivist research 

forefronts this mindfulness (Reid & Mgombelo, 2015, p. 180). As the researcher enters a 

research site, they begin a relationship of reciprocal interdependence (Reid, 1996; Reid & 

Mgombelo, 2015). Some studies try to minimize this influence by taking a research stance of 

first among equals, but do not claim to be unobtrusive or objective (Martin & Towers, 2015). 

Participation in the active unfolding of mathematical events becomes an enfolding of researcher, 

participants, and research site through the process of structural coupling. All research establishes 

a relationship with the constituents—components of complex systems—and triggers change in 

their structure by the very presence of a program of research. The researcher becomes a source of 

mutual perturbation amongst the students, classroom teacher, and problem environment. Their 

influence, while claimed to be minimized by some, must be recognized because “there are no 
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observerless observations or measureless measurements. Any and every identification entails and 

implicates an identifier” (Davis & Sumara, 2006, p. 70). In other words, all observations are 

structurally determined. In this study, the demarcation between researcher and teacher was 

intentionally blurred from the onset of the study. It was established with the participating 

teachers that none of us could stand outside the system as an orchestrator, but, rather, we were all 

key players in the triggering of the problem environment. As such, we adopted the same mode of 

operating in the classroom. As the groups worked on the tasks, we moved around the room, 

engaged with the groups’ emerging knowing, and offered our commentary as classroom events 

evolved.  

The second tenant is the nested nature of enactivist research (Reid, 1996; Simmt & Kieren, 

2015). As the researcher collects data by participating in the research site, the process of data 

collection is influenced by the researcher’s coupling with the site. The focus of where critical 

mathematical action occurs can be shifted by the inter-action of researcher and research 

environment. This means that research questions may drift, with some that began at the periphery 

potentially emerging as crucial to the inquiry. As interaction with the research changes the 

structure of the researcher (observer), this new structure provides interpretive drift. Simmt (2000) 

termed these fractal research cycles where each experience with a research site generates flux in 

researcher attention until the “specific questions that … [guide] inquiry co-emerged with the 

inquiry” (p. 37). This process continues throughout the analysis of the data collected. In essence, 

the re-viewing of events influences the theoretical lens being employed, and this new, drifted 

lens is then used to analyze subsequent data. This means that the writing of a research report, 

such as this thesis, is an activity in constant recursion as the events are re-searched (Miranda, 

2004). 

The third tenant of enactivist methodology is the embracing of multiplicity as strength. 

Unlike the process of triangulation, enactivist research values multiple perspectives because they 

provide a mosaic of observer impressions, not because they narrow in on a verifiable result. The 

process of enactivist research is perceived to be a community event, and thus, multiplicity is 

valued (Brown, 2015; Reid & Mgombelo, 2015). Multiplicity is encouraged in the collection of 

data as well as its review and analysis, with the research striving to honour all stakeholders in the 

research site. Classroom teachers working alongside researchers are valued as important meaning 

makers. They are prompted to comment on the significance of classroom happenings all the 
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while opening up possibilities and connections. Interpreting data influences the ideas that 

develop from viewing, and this new lens is then in play when interpreting further data. A 

researcher also may choose to use a variety of techniques to analyze and present the data each of 

which may provide new understanding; Towers and Martin (2015) call this a “willingness to play 

with data” (p. 255). Diversity in an enactivist program of research is used as a tool to elucidate 

possibility, not to prescribe verifiability. The multiple lenses mean that the intent of the inquiry is 

to provide models for rather than theories of the complex structure (Reid, 1996). Descriptions of 

effective action from multiple perspectives open the space for continued synthesis of ideas. The 

variety of interpretive sources—media types, stakeholder viewpoints, and analysis techniques—

attunes the research to the emergent possibilities and adds to the quality of the research.  

Design research methods. Design research methods synchronize well with the tenants of 

enactivist methodology. The methods pair a search for understanding with the consideration of 

application to practice, and are situated in the middle space between guiding theories—such as 

complexity and enactivism—and pragmatic application. Design research embraces complex 

settings in a deliberate move away from artificial laboratory settings. In doing so, a design 

research study recognizes that the inherent complexity of the classroom is pertinent to inquiry if 

it is to inform theory as well as remain salient to practice. Although design research studies vary 

in scope (Gravemeijer & Cobb, 2013; van den Akker, 2013), they all involve designing 

conditions within a situated context where the actions, reactions, and interactions of participants 

can be explored. Prediger, Gravemeijer, and Confrey (2015) succinctly summarize the process 

and mandate of design research methods. 

[Design researchers] design and create classrooms where students are provided rich tasks 

to work with and ample opportunities to participate, individually and collectively. Once 

these conditions are met, the research concentrates on the emergence of students’ thinking 

over time and seeks to identify both, productive moments and moments of failure, refining 

the relevant designs in light of them. (p. 881) 

Design research as a research method has been referred to by several different names. 

Some authors refer to the methodology as a design experiment (Brown, 1992; Cobb, Confrey, 

diSessa, Lehrer, & Schauble, 2003); others have referred to it as a process of engineering 

particular contexts (Cobb, Jackson, & Dunlap, 2014). I have chosen to refer to the method as 

design research in keeping with the recent literature in the field (e.g. Cobb et al., 2014; Prediger 
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et al., 2015; van den Akker, 2013), as well as a distancing from the connotations associated with 

the classical experiment or process of engineering where the variables can be tightly controlled 

and the influence of the researcher is pre-planned and exterior to the context.  

Educational design research organizes itself into two archetypes (Prediger et al., 2015). 

The first are studies primarily focused on developing curriculum innovations (often in the form 

of materials) and the second are studies primarily focused on developing theories of the learning 

process. The word primarily is used intentionally to signal the dual focus of all design research 

studies. Within these archetypes, studies often occur in one of two settings: classroom design 

studies collaborate with a teacher in their classroom context, and professional development 

design studies work with larger groups of teachers outside of the classroom context to develop 

instructional practices (Cobb et al., 2014). The present study is primarily focused on developing 

theories of the learning process of groups through a classroom design, but the dual concerns of 

theory and practice are embedded within its structure as it is in all design experiments.  

Theory informs both the classroom design as well as the actions within it, and so 

background theories “act as a fundamental core of design research approaches in mathematics 

education” (Prediger et al., 2015, p. 881). The theory provides an explanatory and advisory aim. 

Not only does theory attempt to understand classroom events, it aims to inform how productive 

models of teaching and learning can be promoted. Thus, it has a theoretical-pragmatic blend. The 

two attentions do not stand at opposite poles, but amalgamate. Design studies build contexts to 

demonstrate that a phenomenon exists, but the principal focus is on the ability to harness the 

phenomenon to improve teaching and learning. One aim cannot be parsed from the other.  

The literature often captures the spirit of design research methods by listing key 

characteristics (e.g. Bakker & van Eerde, 2015; Cobb et al., 2003; Cobb et al., 2014). All of the 

lists contain significant overlap, but Prediger et al. (2015) discern five common characteristics 

that were particularly informative to my research design. Design research studies are 

interventionist, theory generative, prospective and reflective, iterative, and ecologically valid and 

practice oriented. Design research is interventionist in the sense that “researchers deliberately 

manipulate a condition or teach according to particular theoretical ideas” (Bakker & van Eerde, 

2015, p. 6). The deliberate nature does not insinuate that the process of bringing forth new 

educative possibilities is a simple matter of cause-effect. Rather, interventionist design is the 

commitment to possibilities for educational improvement. Design research is theory generative 
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in the sense that it builds “local theories and paradigm cases that meant to inform practitioners 

and researchers” (Prediger et al., 2015, p. 880). The learning context is theorized and theorizing; 

design based research produces theory from practice to ensure it does real work. Design research 

is prospective and reflective in the sense that the relationship between theory and practice is 

reflexive. Theory influences the design context prospectively, and context’s action influences 

theory reflectively. Design research is iterative in the sense that the structures for investigation 

remain mutable throughout a process that spans several cycles of learning events. An iterative 

design provides the conduit through which the prospective and reflective analysis is performed. 

Finally, design research is ecologically valid and practice-oriented in the sense that participants 

are treated “as epistemic agents of their own who bring to bear their own experience and 

resources” (Prediger et al., 2015, p. 881). Design research places participants in an active sense-

making position in order to take an honest look at implications for improving practice. The 

emerging theme from the common characteristics is that design research includes a flexible 

attentiveness to “a learning ecology—a complex, interacting system involving multiple elements 

of different types and levels” (Cobb et al., 2003, p. 9).  

Integrating enactivist methodology and design research. Design research aligns well 

with an enactivist methodology because it is guided by theory but explores practice as both 

informed by the theory and theory informing. The combination of enactivist (and complexivist) 

sensibilities and design research can be further co-implicated through a closer association of the 

tenants of enactivist methodology and crosscutting characteristics of design research.  

In enactivist research the researcher does not act as an external observer, but is fully 

complicit in the unfolding classroom events. Design research methods honour this with their 

interventionist, ecologically valid, and practice-oriented characteristics. The researcher is meant 

to deliberately influence the actions of the system, and, as established previously, this is the 

necessary stance of the observer in a complex system. This awareness of the influence of 

researcher along with the desire to act and re-act in synchronicity with the learning ecology knits 

enactivist theory with design research methods. 

Enactivist research has a nested nature where the attention of the researcher is reciprocally 

influenced by participating in the research process. Design methods also encourage this process 

through a prospective and reflective stance as well as an iterative design. The iterative structure 

provides opportunity for events to be examined in light of theory, but also for theory to be re-



 

30 

examined in light of classroom events. An attunement to mutual coupling between environment 

and agent is a central tenant of enactivist theory and facilitated through reflective design.  

Finally, enactivist research encourages multiplicity in order to inform theory. Design 

research aims to develop theories from practice that are “modest in scope” (Cobb et al., 2014, p. 

4), humble in the sense that they are “accountable to the activity of design” (Cobb et al., 2003, p. 

10). Multiplicity acts as a check and balance between the theoretical and pragmatic. The theory 

generating process of design research shares the goals of enactivist research—to develop models 

for and not theories of. The features of this study were designed to honour the tenants of 

enactivist methodology as they intersected with the characteristics of design research. An 

account of this design process is detailed below. 

Data Collection Activities 

To explore my research questions, I worked with two teachers over the course of three 

weeks. The research was conducted at a school in a middle class neighbourhood in an urban 

community in Saskatchewan. The school was of average size for the area, serving approximately 

850 students from grades nine to twelve. The school provided a full offering of curricular and 

extra-curricular programming in academics, athletics, and the arts. Both classrooms involved in 

the research were designed, by myself, with intentions of encouraging complex organization. 

Specific structures in the classroom ecology were established in the hopes that they would 

encourage the manifestations of complex activity while still retaining the structure of group work 

familiar to many mathematics classrooms. In particular, group size, grouping procedure, task 

introduction, and instructional flow were all designed intentionally with these aims in mind.  

The study took place three weeks into the school year and consisted of two phases. 

During the first phase, the study was introduced to the students and permissions were distributed. 

While we waited for parent consent, I participated in the classrooms as a support and resource 

for the teachers. During this time, Mrs. Murray and Mrs. Hudson
5
 planned the lessons, and I 

familiarized myself with the environment and the students within it. The second phase, the data 

collection phase, consisted of six days designed around small group instruction. Data was 

collected from student action during data collection tasks (see Appendix A) on three separate 

days in Mrs. Murray’s class and two separate days in Mrs. Hudson’s class. The data collection 

                                                      
5
 The names of all participants in the study, including the teachers, have been changed to preserve their 

anonymity.  
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tasks ranged between fifteen and thirty minutes in length. After the data collection tasks were 

complete, I remained available to both teachers throughout the semester. 

 Mrs. Murray. Mrs. Murray had been teaching high school mathematics for eight years, 

and was entering her second year at this particular school. She had taught the ninth grade 

mathematics course nine times, giving her a wealth of experience from which to draw. During 

the study, Mrs. Murray was paired with a student teacher, Ms. Becker, who was completing an 

internship at the local university. Ms. Becker was included as a full participant in the study’s 

activities. During a typical day, Mrs. Murray’s classroom was organized in rows of desks facing 

the front of the room which featured a digital projector and whiteboard space. Small groups were 

typically not used during instructional events in her room, but collaboration was encouraged 

when working on problem sets. 

 The data collection in Mrs. Murray’s classroom took place during a unit on fractions in 

the Mathematics 9 course (Saskatchewan Ministry of Education, 2009) with twenty-seven 

enrolled students. Of the twenty-seven, four chose not to participate in the study. Mathematics 9 

is the only math course for grade nine students in the regular pathway in Saskatchewan high 

schools. Although instructional hours vary from building to building, this school offered the 

course over a semester and a half, amounting to approximately 150 hours of instruction.  

 Mrs. Hudson. Mrs. Hudson had been teaching high school mathematics for nine and a 

half years, and was transferred to this particular school at the end of the last school year. She had 

taught this grade ten mathematics course twice before. Like Mrs. Murray, Mrs. Hudson’s 

classroom was primarily organized in rows of desks facing a digital projector and whiteboard 

space at the front of the room, but the room was reorganized for small group work which 

occurred nearly every week. The room also had a small area on one side of the room organized 

around mathematical puzzles and games. 

 The data collection in Mrs. Hudson’s classroom took place during a unit on surface area 

and volume of various geometric solids in a Foundations and Pre-calculus 10 (FPC10) course 

(Saskatchewan Ministry of Education, 2010). The class had thirty-one students enrolled. Of the 

thirty-one students, fourteen chose not to participate in the study. FPC10 is one of two courses 

offered at the grade ten level in the regular pathway for Saskatchewan students. It is offered in a 

single semester (approximately 100 hours of instruction), and designed to prepare students for 

the study of calculus. 
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 Forming Groups. The vast majority of class time during the study was spent working in 

small groups. While formal video and audio data was not collected during every class period, 

every task where video data was collected (henceforth called data collection tasks) was 

completed in small groups. It is important to note that creating small groups encouraged intra-

action as the primary source of meaning making. This, however, did not preclude groups from 

communication at the inter-group level—a property that Liljedahl (2014) has termed the 

“porosity of groups” (p. 14). The formation of groups for the purpose of this study does not 

pretend to eliminate meaning-making between groups, but rather attempts to encourage meaning-

making within them. Group porosity once again calls attention to the levels present in any 

complex system of interaction.  

 Group size. Studies on classroom collectivity that focus on the whole class as the unit of 

analysis can result in such high density of action that documentation and analysis quickly 

becomes unwieldly even with multiple researchers and sources of video (Towers et al., 2013). 

The focus on small groups (somewhat) alleviates this pressure, but the descriptor small remains 

vague. Assuming a single person cannot be considered a group in a social sense
6
, the next 

available size would be groups of two. Yackel (1991) found that more sophisticated forms of 

explanation were not present when students worked in pairs or alone. Perhaps the balance of 

redundancy and diversity is unstable or perhaps a pair lacks significant opportunity for neighbour 

interactions, but the study of complex groupings often is focused on groups that contain more 

than one dyadic link (Arrow, McGrath, & Berdahl, 2000). Fear of the Ringelmann Effect, where 

addition of co-workers leads to a decrease in the average performance of each member (Steiner, 

1972), coupled with personal experiences with small groups in mathematics classes caused me to 

avoid groups larger than or equal to four members. Groups of three were chosen as the ideal size 

to facilitate the conditions of complexity as well as to allow each student to maintain an 

influential voice in the group’s action.  

 Grouping strategy. Students were divided into groups each day using the strategy of 

visibly random grouping (VRG) (Liljedahl, 2014). Employing VRG meant that student groups 

were created randomly in real time and in plain sight of the students so as to avoid any 

controversy regarding goals of the groupings. With VRGs, a student could no longer assume that 

                                                      
6
 Viewing the body as a complex organization of bodily systems opens this up for debate. See Davis et al., 

2008.  
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the teacher had some sort of personal vendetta against them (pedagogically or socially) and the 

teacher could no longer assume that students were grouped solely for social reasons, as is often 

the case when student self-select their groupings. VRG provided an interesting caveat into the 

classification of groupings provided by Arrow et al. (2000). These groups would have been 

classified as concocted because they were imposed from an external control and were planned—

not driven by extenuating circumstance or need. However, the transparency created through 

randomness served to alleviate the sense of external control often held by a teacher in the 

classroom. In this regard, VRG began to decentralize control. Although most effective if used 

over stretches longer than the scope of the data collection, VRG has been found to result in 

several desirable classroom affordances such as increased engagement, increased mobility of 

knowledge, and increase in intra-group interactions (Liljedahl, 2014).  

  Creating daily VRGs began to establish other conditions for complex emergence 

alongside decentralized control. Randomness was a natural one; students may (or may not) have 

been paired with new partners daily, creating a new group dynamic each day as their actions 

coalesced. On the other side of the dynamic tension, a sense of coherence was maintained 

because the tasks continued along a common content thread. Strategies, structures, and patterns 

of action from previous group tasks were brought by each new member in the form of action 

potential on the new task. The common content and history of action provided threads of 

coherence in the randomness. Varied histories also created a great deal of redundancy and 

diversity in a classroom. Instead of engineering groups that, in the impression of the observer, 

contained a balance of diversity and redundancy, VRG used the random mechanism to create a 

dynamic equilibrium. This minimized the social tensions, provided opportunity for combinations 

that may have been overlooked altogether, and reaffirmed that “one cannot impose diversity 

from the top down… Diversity cannot be assigned or legislated” (Davis & Sumara, 2006, p. 

138).  

 Group workspace. To encourage productive interaction, mechanisms were established 

to encourage ideas to stumble across one another. The group workspace was designed to 

facilitate that stumbling. Each group sat in a pod composed of three desks and a large, dry-erase 

board to be shared between them. The entirety of their work was archived on this communal 

space. Their physical proximity caused their work to remain more-or-less self-contained, and the 

non-permanence of the workspace had been shown to provide affordances such as eagerness to 
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start, discussion, participation, and non-linearity of work (Liljedahl, 2016). The workspace was 

designed to encourage a high density of neighbour interactions—a key to complex organization.  

 Other classroom features. Other facets of the classroom environment were purposefully 

established. Each class period during the study began with a starter question linked to the theme 

of the unit of study. The questions encouraged student decisions and allowed for multiple ways 

of reasoning. The starter was shown on the projector at the front of the room; students detailed 

their reasoning by themselves for three minutes, shared with a partner for two minutes, and then 

volunteered solutions and reasoning to the entire group for a short discussion. The method of 

introducing the data collection tasks was also varied intentionally. Some tasks were given as 

visuals projected at the front of the room, some were given as handouts at the groups’ 

workspaces, and some were provided in stages. All contained some degree of verbal explanation 

and the invitation for further clarification as needed. The goal of this practice was to de-

centralize focus in the room. 

Building Data Collection Tasks 

Design researchers dedicate a large amount of time building the classroom tasks and 

anticipating how the features of the task might occasion student action. This attention is 

heightened for enactivist research because agent interaction is the impetus for learning; even 

with the conditions for complex manifestation present in small groups, it is unlikely that 

collective action will organize if the task dampens any or all of the conditions by being trivial or 

prescriptive (Davis & Sumara, 2006). Numerous titles have been coined for tasks that provide 

occasion for multiplicity in student patterns of action and conceptualization. Tasks that 

encourage a process of open conjecturing have been called nonroutine (Papert, 1972; Thom, 

2004). Problems of this variety are not immediately solvable and typically require some 

intervention (Towers & Martin, 2014). Tasks specifically designed to be approachable at a 

variety of levels have been called low floor, high ceiling (Boaler, 2016) or low threshold high 

ceiling (McClure, 2011). These tasks offer a relatively simple mathematical entry point, but can 

be expanded with more sophisticated approaches. Tasks that have multiple, viable starting points 

have been called variable entry (Simmt, 2000), and tasks that call on resources from several 

members of a group and offer multiple solution strategies have been called groupworthy (Boaler 

& Staples, 2008; Horn, 2005, 2012). There is no denying that all of these contain considerable 
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overlap in definition. Instead of defining a specific set of requirements, I chose tasks
7
 that, in my 

opinion, reflected two guiding principles from the literature. First, the students “need to perceive 

of the tasks as both relevant and do-able—that is, as coherent. At the same time, there must be 

sufficient play in the questions to open spaces for broader discussion” (Davis & Sumara, 2006, p. 

150). Second, the problems should “maintain a delicate balance between sufficient structure, to 

limit a pool of virtually limitless possibilities, and sufficient openness, to allow for flexible and 

varied responses” (Davis et al., 2008, p. 193). A brief synopsis of each of the five data collection 

tasks is given in Table 3.1 and a more thorough explanation, including materials provided to the 

student groups, is provided in Appendix A.  

Table 3.1 

Brief descriptions of the five data collection tasks 

Task name Description of the task 

The Surface Area Doubling Task 

Groups were given the dimensions of a house and asked to 

design an addition so that the surface area became exactly 

double that of the original house. 

The Tile Design Task 

Groups were given coloured, square tiles and asked to build 

shapes that met various specifications provided on a 

sequence of stage cards.  

The Fill in the Blanks Task 

Groups were asked to satisfy an expression structure that 

contained inequality and equality statements by filling in the 

blanks using the digits one to nine. 

The Solid Fusing Task 

Groups were given six solids and asked to construct a 

composite solid that had a surface area as close to identical 

as possible to its volume. 

The Number Line Cards Task 

Groups were given cards that represented pieces of number 

lines and asked to place them end-to-end to build coherent 

number lines.  

 

Sources of Data  

The study contained two major sources of data. The first—video data—was used to 

capture the action of the groups as they worked on the tasks. The second—teacher interviews—

                                                      
7
 Of the five data collection tasks, I built the Tile Design task, the Solid Fusing task, and the Number Line 

Cards task specifically for this study, and the Surface Area Doubling task and the Fill in the Blanks task 

were adapted from my previous work in classrooms.   
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were used as a reflective device to discuss critical moments in the classroom action, and as a 

generative device to build connections between critical events and theories for their emergence.  

 Video data was collected during each data collection task from three classroom groups 

chosen at random. These recordings were captured by tablets positioned above the workspace 

and resulted in a close-range account of the conversations, actions, and artefacts of the group’s 

doing. No attempt was made to diminish the fact that the classroom action was being recorded. 

Every member of the study—including teachers—were made aware of the tablets as well as the 

purpose of the recordings. Video recording has an inescapable effect on human behaviour and 

the type of data collected (Armstrong, 2013; Pirie, 1996), but the attempt was made to 

background concerns by inviting all questions from stakeholders regarding the recordings. 

 Data from teacher interviews is a cornerstone of both enactivist inquiry and design based 

methods. In an iterative design study (in this case, each enactment of a data collection task 

served as an iteration) it is crucial to hold debriefing sessions where events are interpreted and 

future events are attended to (Cobb et al., 2014). This is the essence of the reflective-prospective 

duality. The interviews became “the sites where the intelligence of the study [was] generated and 

communicated” (Cobb et al., 2003, p. 12). For the enactivist, interviews are linked closely to the 

doing of the study. They are chances to experience the classroom action as another has 

experienced it, and, in doing so, occasion a larger interpretive breadth. As such, a loosely 

structured interview was conducted with the classroom teacher(s) after each data collection task. 

The teachers were asked to describe what we called critical events in the action—moments when 

a member of the research team felt a particular episode of group work warranted more 

investigation. Together, we talked about what we saw, why we intervened the way we did, and 

what we felt the result of the intervention was. The goal of the interviews was not to analyze the 

teachers’ thought pattern in the moments of teaching and provide a more productive alternative. 

Rather, the interviews provided an occasion to get the participants “talking about the detail of 

their actions in their classrooms, what happened from their perspectives. What then happens is 

that out of this space they then report new connections as ideas come to them” (Brown, 2015, p. 

193). 

 Having collected the two cornerstone sources of data for the study, my attention turned to 

the creation of a framework that could image the complexity of the theoretical underpinnings, 
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research design, and subsequent data. The creation of the interpretive device—the curriculum 

space—is detailed in chapter four.  
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CHAPTER 4: IMAGING A CURRICULUM SPACE 

 

“We shape our tools and afterwards our tools shape us.” 

M. McLuhan, 1994, p. xxi 

 

 

Framework for Analysis 

 The interaction between the complexity of the research design and the outcomes of the 

mathematics curriculum needed to be intertwined in order to image the patterns of complexity in 

the midst of curriculum. That is, I needed a structure through which to view the non-linear, far-

from-equilibrium nature of groups’ knowing in relation to the outcomes of their program of 

study. Within this interaction, the role of the teacher needed to be explored. In this chapter, I 

establish the two conceptual frames used in the analysis of data. First, the notion of problem drift 

as a way of viewing the complex shifting of a group’s curricular attention, and second, the 

classification of teacher actions provided by Towers and Proulx (2013). From these two frames, 

the process of establishing an explanatory tool to interpret the evolutionary nature of bringing 

forth a world of significance is detailed. The result is a tool of analysis, termed the curriculum 

space, through which patterns of group action with the given tasks are analyzed in chapter five. 

 Problem drift. The notion of problem drift is rooted in the enactivist idea of the dynamic 

nature of reciprocal coupling between environment and agent.
8
 Drawing from evolutionary 

imagery, Maturana and Varela (1987) use the term natural drift to describe the process of 

knowing and coming to know. In the process of natural drift, species and environment co-adapt 

to one another, each influencing the other through a process of structural coupling (Proulx, 

Simmt, & Towers, 2009). For a coupling to be viable, it “must simply facilitate the continuing 

integrity of the system” (Varela et al., 1991, p. 205). As this co-adaptation unfolds, the structure 

of the organism determines which changes occur. Framed in the context of a group of students 

working on a task, it is the structure of the group that chooses “the relevant issues that need to be 

addressed at each moment…where what counts as relevant is contextually determined” (Varela 

et al., 1991, p. 145). The result is an image of problem drift where a group’s attention is paid to 

what it determines is worthy of mathematical attention. Returning to the enactivist notion of 

                                                      
8
 This process of bringing forth a world of significance was discussed in greater detail in Chapter 2.  
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structural determinism (see chapter two), attention is not forced through nuanced cues or 

structures in a problem or classroom milieu. Rather, it is determined by the structure of the group 

as it interacts with the triggers it encounters. Students do not act on pre-existing situations. Their 

“co-determination and continual interaction with the environment creates, enables and specifies 

the possible situations…to act upon” (Proulx & Simmt, 2013, p. 69). This metaphor allows the 

environment—the problem focusing group action—to be interpreted as a process, constantly 

emerging as the group redefines relevance. In this active language, problems are not solved—

they are posed.  

The curricular environment—the group’s world of mathematical significance—is enacted 

as the topics that need to be addressed are deemed as productive ways forward. Maheux and 

Proulx (2015) provide an example of problem drift where a student working on reproducing a 

shape with tangrams abruptly changes her course of action. Her decision seemed to relate to “the 

identification of a ‘shape of interest,’” and the proposition that the search for a mathematical 

solution involved the “endorsement of new, yet unseen figures” (p. 218). Over the course of 

pursuing a solution to the task, the learner posed a yet unseen problem of interest, drifted the 

problem of relevance, and re-defined the inquiry. 

As a conceptual frame for data analysis, problem drift allows us to interpret a problem as 

plural, as that which focuses action in the moment. The task provided serves as a source of 

perturbations, but it is through the taking up and acting on these triggers that the problem gains 

mathematical relevance. The actions on the problem subsumed by the curriculum are a part of 

the larger sphere of behavioural possibilities available to the group. A framework of analysis was 

needed to be able to communicate the image of problem drift in relation to the curricular goals of 

the teacher/researcher, a tool that must begin to capture the complex nature of problems drifting 

in and out of prominence.  

 Teacher actions. The classification of teacher actions by Towers and Proulx (2013), the 

second conceptual frame for data analysis, was used to classify each intervention offered to a 

group by a teacher during the data collection tasks. Consistent with the authors’ interpretation, I 

did not intend the framework as a trajectory from unproductive to productive or novice to expert 

teacher moves. Instead, in line with enactivism, they describe a productive teacher intervention 

as one which fits with the context in which it is offered. The teacher acts with the problems 

relevant to groups of learners as a fully coupled agent in an attempt “to do the right thing in 
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context—for enriching students’ learning…in a landscape of complex goals and commitments” 

(p. 10).  

The framework consists of the three broad categories of informing, orienting, and 

shepherding actions, each with several sub-categories. I used the three broad categories, and ten 

sub categories, to classify the teachers’ actions as we operated with groups of learners with the 

intentional focus on occasioning encounters with curricular outcomes. They are not, however, 

meant to be isolated from one another, and often intertwine at different times during teaching. 

The first category, informing actions, give information. They consist of three sub-categories: 

enculturing actions, which induct students into the wider customs of the mathematics 

community; reinforcing actions, which place emphasis on certain ideas; and telling actions, 

which explain and correct. The second category, orienting actions, direct students’ attention. 

Towers and Proulx describe four sub-categories of orienting actions: Clue-giving actions use 

hints to orient students toward specific pathways; blocking actions prevent students from 

following certain solution pathways; pretending actions take a position in order to elicit 

argumentation; and anticipating actions remove challenge or make the problem more accessible. 

The third and final category, shepherding actions, support or coordinate the possible. They 

consist of three sub-categories: Inviting actions offers an avenue of possibility for exploration; 

rug-pulling actions destabilize student thinking in order to provide new possibilities; and 

retreating actions give students the space to consider the current problem’s possibilities. The 

distinctions are summarized in Table 4.1. 
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Table 4.1 

Mathematics teaching actions 

Category Sub-Category Explanation 

Informing 

Enculturating 

Reinforcing 

Telling 

Giving information 

Orienting 

Clue-giving 

Blocking 

Pretending 

Anticipating 

Directing students’ attention 

Shepherding 

Inviting 

Rug-pulling 

Retreating 

Supporting and 

coordinating the possible 

 

Note. Table 4.1 is reproduced from Towers, J., & Proulx, J. (2013). An enactivist perspective on 

teaching mathematics: Reconceptualizing and expanding teaching actions. Mathematics Teacher 

Education and Development, 15(1), 5-28. Copyright 2013 by the Mathematics Education 

Research Group of Australasia. 

Process of Analysis 

 It is important to detail the process I went through when analyzing the data. Equally 

important as the description of the tools of analysis are the ways in which these tools, interpreted 

through my structure as an observer, became ones with explanatory power. No model can 

perfectly capture the complex activity of human interaction, but a tool for observing the action of 

a group within the intended curricular outcomes was needed. It also needed to balance a 

sensitivity to complexity with the ability to remain relevant to the work of the teacher. To assist 

in the explanation of the model’s development, artefacts created from a session of data collection 

where Cohen, Anne, and Lucas were working with the Surface Area Doubling task (Appendix 

A) are provided throughout this chapter. 

 Viewing the data. Each of the five recorded classroom tasks contained video data from 

three groups for a total of fifteen sessions of group action. Analysis began with the viewing of all 

sessions in order to timestamp every time a teacher intervened with a group. Audio recordings of 

the post-session teacher interviews were used to identify the moments that the team felt were 

critical or interesting. Two of the three groups from each task were chosen for further analysis 
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based on the frequency of critical events (as perceived by myself or the classroom teachers) and 

their cooperative structure. For instance, if a group worked with little interaction or was 

dominated by a single student, the conditions for complexity were not deemed adequate and that 

session was not chosen for closer analysis. A total of ten sessions were selected and transcribed. 

 Identifying problem drift. In order to gain an image of problem drift, the transcript of a 

session was dissected into four columns. The first was a recording of the time elapsed in the 

session, and the other three focused on the constituents of the classroom: the teacher, the 

students, and the problem. The utterances of the teacher were separated out from the transcript 

and placed in the second column. The third column contained the transcript of the group 

members, anonymized to focus on the theme of the discourse rather than the source. The fourth 

column contained an idealized form of what I interpreted as the relevant problem around which 

the group was operating. Read vertically, this column contained a sort of record of the problem 

drift. Two excerpts of this modified transcript of Cohen, Anne, and Lucas working with the 

Surface Area Doubling task are given in Figure 4.1 and Figure 4.2. 

In this format, two relationships emerged as relevant through my interpretation. The first 

was the relationship between the student action and the nature of the relevant problem. 

Comparing the third and fourth columns brought forth an image of the evolutionary character of 

group knowing—how the coupling of group and task resulted in problem drift. The second 

relationship was between the teacher interventions and the nature of the relevant problem. 

Comparing the second and fourth columns brought forth an image of the various influences on 

the evolutionary character of group knowing.  
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Time Intervention Transcript Relevant Problem 

3:50  Alright, so I guess start with these, so 3 times 10 

is 30 times 2 is 60. So now both these sides 

are done. So we just need 3 times 6. 

Wait, so which sides do you have? These ones? 

So these two are done, so now we need these 

two, so 3 times 6 is a number. 18. 

18. 

Are we allowed to use calculators? 

Times 2. 

He didn’t say not to. 
36. So now these two, oh wait, no, we have to 

minus 1 times 2 so that’s. 
We don’t want the door, so. 
Which is 2, right? 
Yeah. 
It’d be 16. So 16 plus 18. 
34. 

What is the total surface 

area of the house? 

5:02 So what are you doing 

currently? What are you 

trying to do? 

    

   We found. 

Surface area of this part. 

Yeah, we’ve done these two and these. 

  

5:09 So you’re finding the 

surface area of the original 

building? 

    

   Yeah.   

5:12 Okay and what would be 

the point of that? 

    

   So we know how big to make the other one. 

Yeah, how big to make the other part of the 

house. 

  

5:17  …   

5:22   And now we need to figure out.  

Triangle. These two are still rectangles. 

Yeah, so 5 that’s 50 so 100.  
100, and then the triangles are. 
Base. 
Times height divided by 2. 

So base times. 

We don’t know the height. 

What is the total surface 

area of the house? 

Figure 4.1. An expanded excerpt of transcript of Cohen, Anne, and Lucas while working with 

the Surface Area Doubling task. 
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Time Intervention Transcript Relevant Problem 

15:54   Okay we just have to do the same thing, so 21. 

Yeah okay. And then. 

What is the total surface 

area of the new house? 

17:05  …   

17:18  Equals 36 minus 2 is, oh wait we have to go. For 

both sides, which we have, yeah so 36 minus 

2 which is 34. 

These are exactly as tall as each other, right? 

Then 5, 5 times, 5 times 21, 105. 210. Then the, 

plus the 30, so 126, 210, 34, and 30 is… only 

400, dang it. What did we do wrong? 
Do we know what the surface area of this is? 
The entire thing? 
The single house. 
Yeah that was. 
224. 

Like, in total it was 224. 

And I’m pretty sure this is 236 for this part of the 

house. 

236? Alright. 

  

18:51  …   

20:12 Did it work out when you 

found the surface area? 

    

   We were short 48. Life sucks.   

20:22 What did you decide to do 

with that 48? There’s got to 

be an easy answer.  

    

    We could add a little thing off the end.  

Yeah, let’s add, let’s add a doghouse.  
Yeah. 
Ok, so how is that? 

A doghouse. 

Oh! 

Under, oh. No that’s taking away surface area. 
No, it’s adding. 
K. I think we should attach it with a string so that 

we don’t lose any surface area. 

How can we add something 

to the house without losing 

more surface area? 

Figure 4.2. Another excerpt of expanded transcript of Cohen, Anne, and Lucas while working 

with the Surface Area Doubling task. 
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Defining a curriculum space. Problem drift conceptualizes curriculum as lived through 

interactions at varying levels of sophistication, not as something encountered or collected. The 

drifting nature of the group’s action necessitated a way for myself, as a researcher, to observe the 

movement in relation to the intended curricular outcomes. An image of the curricular landscape 

was needed to display the evolutionary nature of problem drift and the various strengths of 

association with curricular outcomes. The Cartesian grid, a stalwart frame for visualizing 

location and movement, was used as the framework to house the curriculum landscape. 

Ironically, Cartesian images are set up as juxtaposed to complexity thinking because they are 

part of a larger system designed to prescribe order and hierarchy between places and not the 

examine the features of the places themselves (Davis, 1996). In this instance, however, the grid 

was an approachable and familiar medium, and a catalyst for further examination of the 

curricular places the groups visited along their way. I do not propose the curriculum space as an 

ending point to whitewash complexity, but a tool through which the classroom and curriculum 

can be interpreted.  

The horizontal and vertical axes were each designated with a curricular outcome from the 

program of study intended to become a focus through the day’s task. These outcomes were 

established during pre-conference meetings with the classroom teachers. The Surface Area 

Doubling task had “Calculating the surface area of a composite shape” as the outcome on the 

horizontal axis and “Understanding the effect of overlap on the surface area of a composite 

shape” as the outcome on the vertical axis. The image of the curriculum space for this particular 

task can be seen in Figure 4.3.  

The result was an elementary image of the facets of curriculum that captured the attention 

of the groups as they completed a task; it is an attempt to conceptualize the curriculum as a 

landscape. Traditionally, curriculum outcomes are seen as a list of endpoints to be mastered in a 

tight sequence. The curriculum space still uses these objectives to label the axes, but they are 

now imaged in the middle space of sense-making, as processes for addressing relevant issues 

posed in their world of mathematical significance. The curriculum outcomes are not completed at 

the end of action, they are the process used to resolve perturbation and prompt further action. 

The curriculum space, then, is then an image of a productive orientation toward mathematics. I 

use the word productive to mean that a group, in moments of productivity, is using the intended 

curricular outcomes to address the problem deemed relevant. That is, the action of a group is 
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seen as productive when the curriculum outcomes emerge as useful ways to address the problem 

deemed relevant to the group. In other words, the group has identified (what the researcher and 

teacher understand as) the curricular outcome as containing potential to resolve the tension 

provided by the current instantiation of problem drift.  

 

 

Figure 4.3. The curriculum space for the Surface Area Doubling task.  

The curriculum space’s greatest attribute is its simplicity. As mentioned earlier, a 

mathematics classroom is complex, and the activities of groups are extremely dense, filled with 

social and logistical factors. The curriculum space is established as a subset of the sphere of 

behavioral possibilities available to the group, concerned only with the nature of the problem 

deemed relevant to the solution of the task and its relationship to the intended curricular 

outcomes. It treats curriculum as enacted and the curriculum outcomes as processes to engage 

the relevant problem, rather than a list of products that result from learning. It is a structure to 

provide an image of a group’s drifting curricular action—their problem drift. 

Translating data into the curriculum space. The process of converting the group’s 

action, in the form of video data, into a location in a curricular space was necessarily a 

qualitative one. The relevant problem was defined as the one which focused group action, the 

theme of the mathematical interactions. Some of the problems remained relevant for long periods 

of time, and others held group attention for a short while and then gave way to other possibilities. 

Calculating surface area 

Understanding effect  

of overlap 
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A group’s coordinates in the curriculum space were coded every time a teacher interacted with 

the group, or the group action signaled to the researcher/observer that significant problem drift 

had occurred. The word ‘significant’ is used in the recognition that the relevant problem is 

continually being re-made for the knower through structural coupling, but instances can only be 

coded when they become large enough to be viewed by an observer. That is to say, I can only 

recognize problem drift at the level of inter-action, and cannot ascribe intentions to learners 

based on inference. Also, teacher interventions were not interpreted in a deterministic fashion. 

That is to say, coding the problem drift after a teacher’s intervention with a group was not 

intended to claim that the teacher caused the group to focus on a new feature of the task. Instead, 

teacher interventions provided triggers and possibilities around which group action focused. 

Once again, the result of the intervention was not within the intervention itself, but in the group’s 

interaction with it (Towers et al., 2013). A teacher’s intervention may have proven potent much 

later in a solution pathway, but I was limited to coding its immediate impact and not making 

inferences about lingering effects. 

 Prior to coding a session, a list of indicators was established for each curricular outcome. 

These lists contained expected and unexpected actions of a group of learners operating with the 

targeted curricular outcomes. The word “unexpected” is not used in the sense that I, or the 

classroom teachers, did not anticipate the strategy, but rather that it signaled a sophisticated 

utilization of the outcome that was not expected from every group. Unexpected actions were 

those that, in my interpretation, signaled a deep understanding of a targeted curricular outcome. 

Both expected and unexpected actions indicated that students were using curricular processes to 

address the relevant problem of the group. The list of indicators for expected and sophisticated 

action established for the Surface Area Doubling task appear in Table 4.2. These indicators of 

expected and unexpected action were established prior to coding classroom sessions, but were 

open to amendment when student groups did enact sophisticated, yet unanticipated, strategies. 

For instance, during their work with the Surface Area Doubling task, Cohen, Anne, and Lucas 

wondered if it would be possible to attach pieces to the structure without producing any overlap. 

They brainstormed the use of string, but they decided, with the help of the teacher, that a string 

does, in fact, have some surface area and this strategy would not suffice. Later on in the task, one 

member realized that if they built an extension over the open doorway, there would be no loss in 

overlapping surface area. I did not anticipate this strategy emerging as relevant, but it showed a 



 

48 

deep understanding of the effect of overlap on a composite shape, the vertical curricular outcome 

in the curriculum space. The new indicator was then added to the list of those actions that 

signaled an outer level of sophistication with the curricular outcomes. It can be seen in 

parentheses in Table 4.2. 

Table 4.2 

Expected and unexpected indicators for the Surface Area Doubling task 

Inside Benchmark (Expected actions) Outside Benchmark (Unexpected actions) 

Calculating the surface area of a composite shape 

 Using formulae to calculate surface 

area of entire solids. 

 Recognizing a composite  

shape as composed of 2-dimensional 

shapes. 

 Dissecting the formulae to correspond 

to 2-dimensional shapes. 

 Using the symmetry of the shape to 

combine calculations. 

Understanding the effect of overlap on the surface area of a composite shape 

 Recognizing that overlap results in 

losing the overlapped area twice. 

 Making general compensations for 

anticipated surface area loss. 

 Making an estimation, calculating the 

surface area, and then adjusting 

addition to add or subtract area as 

needed. 

 Calculating and accounting for the 

specific amount of surface area lost.  

 Building an addition with an exact 

surface area corresponding to the loss 

due to overlap. 

 (Constructing the addition in a way 

where no overlap will occur.) 

 

Based on the established indicators, I marked a benchmark space in the curriculum space 

that created a reference point between expected and unexpected group action. The space is 

shaded to hint at the ability of group’s problems to drift between, what I interpreted as, inner and 

outer levels of sophistication. Groups operating in productive, but less-sophisticated ways with 

the curricular outcomes had their problem drift coded at locations in the bottom-left of the 

curriculum space, inside the benchmark. Groups operating at sophisticated levels would have 
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their problem drift coded outside of the benchmark in the curriculum space resulting in ‘outside 

the box’ thinking in both the literal and figurative sense. This reference point was established to 

provide more explanatory power to the tool of curriculum spaces as well as provide more 

stability in the coding system. Figure 4.4 shows the benchmark included in the curriculum space 

of the Surface Area Doubling task. 

 

  

Figure 4.4. The benchmark space imaged in the curriculum space of the Surface Area Doubling 

task. 

In the curriculum space, an axis represents the demarcation between relevance and 

irrelevance based on my observation of group action. When a node was coded on the horizontal 

axis, there was no indication of the vertical curricular outcome proving relevant to the group’s 

current instance of problem drift. When a node was coded on the vertical axis, there was no 

indication from the group’s action that the horizontal curricular outcome was relevant to the 

current problem focusing action. The interpretive tool of the curriculum space contains no 

negative values on the axes because it did not make sense to talk about curricular outcomes in 

Understanding effect  

of overlap 

Calculating surface area 
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various degrees of irrelevance; either the outcome was relevant in the group’s actions (to some 

degree) or it was not. Therefore, no node was coded as negative on either axis, and higher 

degrees of relevant action with the curricular outcomes appear as nodes further away from the 

horizontal and vertical axes into positive space. 

It is important to note that the coded location in the curriculum space was not based on 

the correctness of a group’s work, but on the reasoning behind their action. A group may 

establish a fairly sophisticated way of reasoning with a particular outcome, but make an error in 

the process of calculation. Alternatively, a group may interact with the outcome in a less-

sophisticated manner but execute a solution method perfectly. The former group would be coded 

as having a more distal location, in relation to the origin, in the curriculum space with that 

particular outcome. Phrased differently, the indicators for coding were based on actions that 

indicate that a group is operating in sophisticated ways with the curricular outcome, and not that 

a group arrived at a correct solution. The curriculum space is an image of process, not of 

product—an image of relevance, not an image of competence.  

 A node was placed in the curriculum space every time a group was interpreted as acting 

on a new problem of relevance. That is, a new node was placed after every interpreted instance 

of problem drift. A node was also placed after each time a teacher offered an intervention to a 

group, whether it triggered problem drift or not. The location of the node was determined by the 

interpreted degree that each outcome played in focusing the group’s action. That is, greater 

evidence of the number or extent of an outcome’s anticipated actions being used to address the 

relevant problem resulted in the instance of problem drift being coded higher on that particular 

outcome’s axis. In order to breach the shaded benchmark space, the group needed to show 

evidence of using the outcome in an unexpected (or unanticipated, yet sophisticated) fashion 

while addressing the relevant problem. Again, the number or extent of these actions, as 

interpreted by me, determined where in space the node was coded. 

The nodes were connected with arrows to give a dynamic feel to the task session. This 

resulted in every teacher intervention and occurrence of problem drift having a starting node and 

an ending node. An arrow between the two nodes represented the re-posing process of problem 

drift. Solid arrows symbolized problem drift occurring directly after a teacher intervention, and 

dashed arrows represented problem drift that emerged out of the interactions of the group 

without immediate teacher intervention. The timing and sequence of nodes were left off of the 
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curriculum space purposefully to accentuate where groups have been—emphasizing curriculum 

as landscape—and not for how long or in what order they arrived—which may emphasize 

curriculum as sequence.  

Due to the density of the emerging images, certain notational features were adopted. If a 

group was deemed to be working at a specific location in the curriculum space and that location 

was unchanged after a teacher intervention, a hollow node was used. A node was bolded if a 

group drifted away from a location in the curriculum space but returned later. On one occasion, 

no discernable problem drift occurred after a teacher intervention, but the node was returned to at 

a later time in the session. This location was coded as a bolded, hollow node. On another 

occasion, two consecutive teacher interventions triggered no problem drift, but the group 

eventually drifted away from the location and returned at a later time. This location was coded 

with concentric, hollow rings, the outermost of which was bolded. One group completely 

stopped all curricular action to prepare their solutions for presentation, but during their 

preparation, a curricular problem re-emerged. The interaction between the two nodes was not 

coded with an arrow (signaling problem drift), but was connected with a bolded line containing 

flat ends instead of arrowheads. Refer to Table 4.3 for a complete legend of the coding notation. 

Throughout the coding process, problem drift arrows were broken to avoid intersection 

with co-linear points and to aid in clarity. Examples of the coding from the excerpts provided in 

Figure 4.1 and Figure 4.2 appear in Figure 4.5 and Figure 4.6 respectively. Figure 4.7, Figure 

4.8, and Figure 4.9 isolate the three other instances of teacher triggered problem drift coded in 

the curriculum space of Cohen, Anne, and Lucas working with the Surface Area Doubling task. 

Sections of transcript corresponding to the location of each node are provided on the curriculum 

space to give a sense of the student action that caused the node to appear in that particular 

location in the curriculum space. Alongside the coding in curriculum space, each teacher 

intervention was also coded as belonging to one of the categories and sub-categories of 

mathematics teaching actions (see Table 4.1). The descriptions and illustrative examples offered 

by Towers and Proulx (2013) were consulted heavily in these determinations. 
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Table 4.3 

Legend of coding notation 

Notation Meaning 

 A standard node denotes a coded instance of problem drift. 

 

A hollow node denotes a teacher intervention triggered no problem 

drift. 

 

A bolded node denotes a group drifted away from but later returned to 

the same location. 

 

A hollow node with a bolded ring denotes a teacher action triggered no 

direct problem drift, but action later returned to this location. 

 

A node with concentric rings with outer ring bolded denotes two 

consecutive teacher interventions that triggered no problem drift, but the 

group later returned to this location. 

 A solid line denotes teacher triggered problem drift. 

 A dashed line denotes group triggered problem drift. 

 

A bolded line without arrowheads denotes group action stopped but re-

organized at a much later time. 
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Figure 4.5. The problem drift from the expanded transcript of Figure 4.1 coded into the 

curriculum space of the Surface Area Doubling Task. 

Calculating surface area 

Understanding effect  

of overlap 

3 times 10 is 30 times 2 is 60. So now both these sides are done. So we just need 

3 times 6. 

Wait, so which of these do you have? These ones? 

So these two are done. So now we need these two, so 3 times 6 is a number. 18. 

… 

36. So now these two, oh wait, no, we have to minus 1 times 2 so that’s. 

We don’t want the door, so. 

Which is 2, right? 

And now we need to figure out. 

Triangle. These two are still rectangles. 

Yeah, so 5 that’s 50 so 100. 

100, and then the triangles are. 

Base. 

Times height divided by 2. 

TEACHER INTERVENTION 

. 
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Figure 4.6. The problem drift from the expanded transcript of Figure 4.2 coded into the 

curriculum space of the Surface Area Doubling task. 

 

We could add a little thing off the end. 

Yeah, let’s add, let’s add a doghouse. 

Yeah. 

Ok, so how is that? 

A doghouse. 

Oh! 

Under, oh. No that’s taking away surface 

area. 

No, it’s adding. 

Calculating surface area 

Understanding effect  

of overlap 

Do we know what the surface 

area of this is? 

The entire thing? 

The single house. 

Yeah that was. 

224. 

Like in total it was 224. 

And I’m pretty sure this is 236 

for this part of the house.  

236? Alright. 

TEACHER INTERVENTION 

. 
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Figure 4.7. A third isolated coding of problem drift in the action of Cohen, Anne, and Lucas 

working with the Surface Area Doubling task. 

 
 

Understanding effect  

of overlap 

Calculating surface area 

Or just like a square room that’s the same area. 

We could do that. That’d be smarter.  

What’s the surface area of the roof that the 

square needs to be? Is it 130? 

130. 

K, so we have this.  

13 by 10. 

K, so we just need a room that’s 13 by 10 then? 

So this was 30 so 15. So we’d be subtracting 15 and 18. So 15 and we’d be subtracting 

from the total.  

Okay. 

So whatever that is. 33, I think, just want to be sure. Yeah, 33. So just from the total. So 

we could just do 224 plus 224 minus 33.  

… 

Yeah. So we are only losing these two sides? 

Yeah. So what are they? 

Times. So actually it’d actually be 66 we’re losing, right? Fromour total. So if we, so, 

so that’s double minus 66. 

TEACHER INTERVENTION 

. 
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Figure 4.8. A fourth isolated coding of problem drift in the action of Cohen, Anne, and Lucas 

working with the Surface Area Doubling task. 

Understanding effect  

of overlap 

Calculating surface area 

So 12 times 3 equals 66 times 2 is 122 and … 382 plus 122 equals too much. 

No! It’s going to have to be a decimal or something.  

Oh, let’s try 11. 

Just like hang on to my calculator. 

… 

Times 2 is 66. Yeah, there we go. 11.  

Really? 

Make this 11 meters and this is also 3, and boom, we’ve got it doubled. 

Okay, we just have to do the same thing, so 21. Yeah, okay. 

And then. 

… 

Equals 36 minus 2 is, oh wait we have to go. For both sides, 

which we have, yeah so 36 minus 2 which is 34. 

These are exactly as tall as each other, right? 

Then 5, 5 times, 5 times 21 , 105. 210. Then the, plus the 30, 

so 126, 210, 34, and 30 is … only 400. What did we do 

wrong? 

TEACHER INTERVENTION 

. 
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Figure 4.9. A fifth isolated coding of problem drift in the action of Cohen, Anne, and Lucas 

working with the Surface Area Doubling task. 

 

  

Calculating surface area 

Understanding effect  

of overlap Why don’t we just add on? 

Let’s do the mailbox. 

Okay. Mailbox. K, but then we have to compensate for the 

two walls we’re losing. 

Oh. 

Why are we losing walls? 

Why are we losing walls? Because it has to be attached. 

Oh right.  

Yeah, so, let’s do. This is a string and then we just 

attach it here? 

But then what’s the surface area of the string? 

There is none; it doesn’t count. 

Oh my goodness, this is.  

We’re, we, no, we’re. 

K, now all we need is a cube with 48. 

TEACHER INTERVENTION 

. 
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Curriculum Space  

 The product of the analysis process is an image of curriculum as landscape where the 

human interaction couples with the given task to continually pose problems of relevance at 

varying levels of curricular significance. The images tell stories, develop personalities, and 

capture critical and interesting moments. They represent the interaction of complexity, 

curriculum, and the process of coming to know that weaves the two together. The complete 

curriculum space from the action of Cohen, Anne, and Lucas used throughout this chapter is 

shown in Figure 4.10. Appendix B contains the curriculum spaces from all ten group sessions 

chosen for close analysis.  

The curriculum spaces are meant to reflect an image of a teacher acting fully implicated 

in the learning context—a context that is not static, but drifting amidst relevant problems. The 

image provided by a curriculum space is meant to honour the coupling of group, teacher, and 

problem, and the delicate nature of commentating collectivity and curriculum. It is through 

patterns in curriculum space that the problem drift of the groups working toward curricular goals, 

as well as the pattern in teacher interventions, is observed and interpreted. Using the curriculum 

space to analyze classrooms provides a glimpse into the emerging worlds of mathematical 

significance brought forth by groups of learners and interpreted and acted on by teachers while 

working together on mathematical tasks. 
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Figure 4.10. Cohen, Anne, and Lucas’ complete curriculum space while working with the 

Surface Area Doubling task.   
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Chapter 5: Patterns in Curriculum Space 

 

“Looking for the patterns in static / They start to make sense the longer I’m at it.” 

—Benjamin Gibbard, Lightness, 2003 

 

 

Patterns in Classroom Action 

 The results of using the tool of curriculum space to interpret the mathematical action of 

groups was both informative and generative. I began the study with the intention of investigating 

the patterns of mathematical action that emerged from collectives of students. The curriculum 

space provided an accessible image of problem drift; it granted the group a sort of personality in 

relation to the curriculum they enacted. Important understandings about teaching with a 

sensitivity for problem drift emerged for me (and they will be documented in the remaining 

chapters), but alongside these were questions emerging from the interactions with participant 

teachers. Classroom sessions ended with an interrogation of the teachers’ own interventions. 

Many of their questions had a meta-pedagogical tone where they were not necessarily asking, 

“Was that a profitable intervention at the time?”, but rather, “Why did I think that was a 

profitable intervention at the time?”. As is the intention of iterative design research, the work 

began to theorize at the edge of new boundaries. The notion of collective pushed outward to 

include the teacher, and the idea of pattern began to include how the teacher felt they should act 

based on the character of the group. Analysis was then extended to include an exploration into 

the tendencies of teacher action that emerged over the scale of the entire project. The result was a 

holistic view of collective action where, through the image of curriculum space, the observed 

patterns offered implications for teaching in a complex classroom. 

 The results of the study presented here lay the groundwork for developing a lens for 

teaching groups in a complex classroom. They do not prescribe or tell, but rather image and 

imagine. They are not presented as archetypes into which all group action fits or should be fit, 

but as explanatory episodes that might help teachers recognize possibilities in their own practice. 

Returning to the heart of enactivist inquiry, the results are intended as models for and not 

theories of (Reid, 1996). 
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The chapter is broken into three illustrative episodes of the patterns of group actions 

followed by an analysis of teacher actions as they occurred in context. The three episodes of 

group action are presented to observe key patterns that emerged, allow teachers to interpret their 

own practice into the data, and draw from them advice that we, as teachers, might carry into our 

own classroom practice. The patterns of teacher intervention are included to create an image of 

how teachers operated in a classroom that aimed to elicit the conditions for complexity and carve 

a curriculum from its action. Taken together, the image of classroom complexity is given a 

character. To be clear, this is not an ontological mission to prove the existence of complexity in 

classrooms; rather, my aim is to allow the images of classroom patterns to begin to describe 

viable ways in which curriculum and complexity might co-exist. In the same way that Davis 

(1996) speaks of allowing a lesson to unfold, I present these results in the recognition that “we 

cannot make others think the way we think or know what we know, but we can create those 

openings where we can interactively and jointly move toward a deeper understanding of a shared 

situation” (p. 239). 

Episode 1: The Tile Design Task 

 The Tile Design task asked students to create a series of shapes with coloured square tiles 

to satisfy requirements given to them by a stage card. A sample stage card appears in Figure 5.1, 

and the complete set used in the classroom episode is included in Appendix A. Mrs. Murray, Ms. 

Becker, and I each had copies of the stage cards which were organized into four general stages. 

As the classroom session unfolded, the three of us visited the groups, offered interventions, and, 

when we felt the group was ready, gave them a new challenge. Sometimes the new stage card 

was at the same stage as the previous one, and sometimes it introduced them to the next stage. 

Students worked on the task for approximately twenty-five minutes, after which an entire group 

de-briefing was held to share strategies and distill curricular competencies.  
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Figure 5.1. A sample stage card used in the Tile Design task.  

During the pre-session meeting with the teachers, it was established that the task was 

aimed to occasion two curricular outcomes. In particular, we wanted to collect evidence of 

students creating equivalent fractions as well as comparing and reasoning about fractions in a 

part-whole model. These two outcomes became the metrics on the curriculum space’s horizontal 

and vertical axes respectively. Episode 1 contains the action of Brock, Ria, and Sharla as they 

enacted the task. Their resultant curriculum space is shown in Figure 5.2.  

Reading the curriculum space. In the post-session interview, all three teachers 

described this group as being thorough but stubborn. Their action was habitual in the sense that 

they returned to a familiar space to think about new stages and did not appreciate teacher 

attempts to disturb this pattern. They often complained about interventions offered by the 

teacher, because they did not want to jeopardize their solutions. Teacher reflection on the session 

categorized the group’s movement as polished; the group initially rejected many interventions 

because they posed some difficulty with their methods. They responded to many of the 

perturbations by rationalizing why the intervention did not make sense, and returning their 

workspace to its original organization. This tendency is imaged as a dense aggregation of nodes 

in the central portion of the curriculum space. The following excerpt of the group working on the 

stage from Figure 5.1 typifies the group’s interaction with a teacher’s intervention: 

Teacher: What was the first thing you focused on? 

Brock:  Red. 

Teacher: Why red? 

Ria:  Because most of it is red. 

Teacher: Oh, the biggest section. 
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Ria:  So we need to have half the shape red, so if we have that, we can kind of  

go from there. 

Teacher: Okay. Can I ask why you used 12 total tiles? 

Brock:  Because these all have a common denominator of 12. 

 

 

 

Figure 5.2. The curriculum space of Brock, Ria, and Sharla working with the Tile Design task.  

 The top of Figure 5.3 shows the group’s solution to the stage. The red tiles are arranged 

in such a manner so as to quickly identify the one-half requirement. The bottom of Figure 5.3 

shows the intervention offered by the teacher; a green tile is removed from the arrangement with 

the intention that students might establish what fraction of the shape is red, yellow, and green 

and check the sizes of each fraction against the requirements. This would prompt vertical 

movement in the curriculum space as the students compared the sizes of the new sections. 

Instead, the group rejects the intervention, and replaces the tile that was removed.  

Creating equivalent fractions 

Compare and reason  

about fractions 
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Figure 5.3. Top: Brock, Ria, and Sharla’s solution to a stage in the Tile Design task. Bottom: A 

green block is removed by the teacher. 

Teacher:  What if I did this? Does that still work? 

Sharla:  No, because he. 

Ria:  No, because this is less than a quarter now. 

Sharla:  No, it’s not. 

Brock:  No, it’s a quarter.  

Ria:  No, but it’s still not a quarter of this. 

Brock:  But it doesn’t equal 12. 

Ria:  Exactly, so you need that. [Ria replaces the tile to restore the arrangement  

from Figure 5.3 (top)]. 

 If the group would have reasoned about the new sizes of each of the three colours (now 

each with a denominator of eleven), and then compared them with the requirements set by the 

stage card, they would have drifted into the outer region of the curriculum space. Instead, the 

group chose not to reason about the new fractions. This tendency resulted in pattern resembling a 

knot in the curriculum space. We see that almost the entirety of the group’s action falls within 

the benchmark space (Figure 5.2), even though teachers attempted to trigger movement outside 

of the benchmark numerous times throughout the classroom session. Often, this took the form of 

adding or removing tiles in hopes that the group would begin to compare sizes of fractions with 

different denominators. The tendency to cluster along the right hand border of the benchmark 



 

65 

signals that the group had an understanding of creating common denominators, but insisted that 

certain denominators be used. 

 Lessons in the curriculum space. Several interventions did not have the intended effect, 

and the curriculum space offers an image of group action that is habitual and knotted in nature. 

However, the image of the group’s problem drift directs attention to two features. First, as Figure 

5.2 shows, the group—although stubborn—is operating in a productive curricular space. They 

recognize and create common denominators, reason about the size of sections when pieces are 

added or subtracted, and show understanding of inequalities and fraction size. Just because their 

action was densely knotted does not mean this group did not use the curricular outcomes in 

productive ways. Second, the curriculum space begs for further exploration into the moment 

where the group action breaches the benchmark. The moment may seem to stand out as 

occasioned by a particularly novel teacher intervention, but that instance of problem drift was 

instigated by a teacher asking a simple question while the group was working with a stage 

requiring half of the arrangement to be made up of blue tiles: 

 Teacher: Is that half blue? 

 The flurry of group sense-making serves as testament to the unpredictable nature of 

problem drift. Sometimes, interventions anticipated to prompt sophisticated responses do not 

trigger the desired curricular movement, while simple clues may result in an outbreak of action. 

For the teacher, attuning to the interaction with the trigger is key for teaching in the collective. 

For this group, well-designed interventions attempted to occasion the comparison of fractions 

size, but were not effective because the structure of the group would not allow them to be. 

Instead it was a simple fact-checking intervention that triggered movement outside the 

benchmark.  

 Brock:  This is only 14! 

 Ria:  We need 20 tiles. 

 Sharla:  Because the common denominator is 20? 

 Teacher: What were you going to say, Ria? 

 Ria:  You need 20 tiles because the denominator, the common denominator is  

20. 

 Brock:  Yeah. It doesn’t equal 20. 

  … 
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 Ria:  You add other blues. 

 Sharla:  If you add, then you have to add in more. But then you have to add in  

another colour. Add another colour. 

 Brock:  Wait, how many green do we have? 

 Sharla:  We need to add in more green then if you added more blues. 

 Ria:  Which means we have to add more yellow because it has to be equal. 

Episode 2: The Fill in the Blanks Task 

 The Fill in the Blanks task provided students with an expression structure containing 

several blank squares (Figure 5.4). The students were asked to fill in the blanks with the digits 1 

through 9 to make the expression true. Each digit could be used at most once each. Worthy of 

note, one of the fractions in the expression contained two adjacent blanks. The class was told that 

the two digits placed in these blanks would take on the appropriate place value. As the classroom 

session unfolded, Mrs. Murray, Ms. Becker, and I visited the groups and offered interventions 

with our curricular outcomes in mind. The session lasted approximately fifteen minutes and was 

followed, as was our custom, by a whole-class debriefing to share strategies and distill curricular 

competencies.  

 

Figure 5.4. The expression structure given to the groups in the Fill in the Blanks task. 

At the pre-session meeting, the target outcomes were established. We wanted group 

action to focus on creating equivalent fractions and reasoning about the size of fractions. 

Creating equivalent fractions was chosen as the curriculum outcome for the horizontal axis to 

mimic the curriculum space from the Tile Design task (see Figure 5.2). Reasoning about the size 

of fractions was coded on the vertical axis. Episode 2 contains the action of two groups as they 

enacted the task. The curriculum space of Amina, Elliot, and Makalia is shown in Figure 5.5, and 

the curriculum space of Colin, Duncan, and Madlyn is shown in Figure 5.6.  
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Figure 5.5. The curriculum space of Amina, Elliot, and Makalia working with the Fill in the 

Blanks task. 

Creating equivalent fractions 

Reasoning about  

fraction size 



 

68 

 

 

 

 

 

 

Figure 5.6. The curriculum space of Colin, Duncan, and Madlyn working with the Fill in the 

Blanks task. 

 Reading the curriculum space. The curriculum spaces of these two groups clearly 

shows the difference in personality enacted by the two groups, but there are similarities in their 

structure as well. The majority of their trace is spent on the axes of the outcomes—that is, both 

group’s action was often coded directly on one of the two axes. Again, these are not 

unproductive spaces, but do signal that the two curricular outcomes were often acted on in 

isolation. Consider the following exchange where Amina, Elliot, and Makalia were trying to 

choose which digits will make up the middle section of the expression: 

Creating equivalent fractions 

Reasoning about  

fraction size 
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 Amina:  Then what if we did 2 over 4? No, let’s do 4 over 8 and 3 over 6. 

 Makalia: Yeah. 

 Amina:  4 over 8 and 3 over 6, and then. Wait, this one has to have two digits. 

 Makalia: Do this first then. 

  … 

 Amina:  What if we did like 6 over 12. 

 Makalia:  Yes. 

 Elliot:  You can’t use 12. 

 Makalia: You can’t use 12? 

 Amina:  Yeah we can. That’s be two digits. They are just right next to each other. 

The group decided to choose two fractions from a generated list of familiar fractions 

equivalent to one-half. The structure of the task caused a problem with their choices, but they 

quickly adjusted to meet all of the requirements. At no moment in their doing does the size of the 

fraction become a relevant problem; the result is action contained on the horizontal axis in the 

lower-right portion of the curriculum space. Contrast that exchange with the relevant problem 

evident in the following action from Colin, Duncan, and Madlyn as they tried to choose the digits 

to place in the leftmost fraction of the expression: 

 Madlyn: Okay. 

 Colin:  Does 9 make that big? 

 Duncan: Is that a 9? 

 Madlyn:  We need a fraction.  

  … 

 Duncan: It has to be 1 to 9. 

 Colin:  It does? 

 Duncan: Yes. 

 Madlyn: Yes. 

 Colin:  9? 

 Duncan: 9. Put a 9 and then a 1. 

 Madlyn: Now look, it’s a really big fraction. 

 This group also ran into a problem provided by the structure of the problem, but they 

quickly imbued it into the relevant problem they were pursuing: How can we make the largest 
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possible fraction? In the end, creating the improper fraction seems to hold the answer to that 

problem. After a short time questioning whether nine can be classified as a fraction, they end at a 

point of clarity, feeling confident they have created the largest possible fraction without creating 

equivalent fractions ever becoming relevant to their action. The result is drift along the vertical 

axis through the upper-left portion of the curriculum space.  

 There are, however, significant differences in the character of the two curriculum spaces. 

Based on the observed problem drift, the action of Amina, Elliot, and Makalia (Figure 5.5) 

appears to be at a location much more proximal to the origin than that of Colin, Duncan, and 

Madlyn (Figure 5.6). In fact, the relevant problem for Amina, Elliot, and Makalia never enters 

the upper-right portion of the curriculum space. It would be easy to assign some type of 

competence to the students based on this image, but the curriculum space is not an image of 

competence—it is an image of relevance. Amina, Elliot, and Makalia’s strategy was to insert the 

four leftover numbers into the blanks comprising the first and last fractions after using the first 

five to establish equivalency in the middle of the expression. This strategy worked both times the 

group solved the task. After two successful solutions, the group was comfortable that their 

strategy would always work, and began to prepare their answers for presentation. The bolded line 

denotes the termination of action on the task, but in the process of recalling their solutions, they 

re-engaged the curricular outcomes. Amina, Elliot, and Makalia never acted on a relevant 

problem that forced them to reason at a high level about fraction size, but this says nothing about 

their ability to reason about fraction size. In fact, the reason for the stability in their problem drift 

was that they were able to quickly and efficiently arrive at correct answers without ever having 

fraction size prove relevant.  

Colin, Duncan, and Madlyn have an extremely active pattern of problem drift and a 

resultant curriculum space filled with sweeping, volatile movements. In the post-session 

interview, one teacher described the group as sensitive, always receptive to possibilities afforded 

by the teacher interventions. This is evidenced by the long arrows making up the problem drift. 

Colin, Duncan, and Madlyn spend the large majority of their time in a very productive space 

because they made an error during their initial attempt at the problem (Figure 5.7). After they 

built the equivalent fractions, they realized that they could not create a fraction to place in the 

rightmost side of the expression that was smaller than one-ninth.   
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Figure 5.7. Colin, Duncan, and Madlyn’s initial attempt at the Fill in the Blanks task. 

 Madlyn: What’s 18 divided by 2? 

 Duncan:  9. No! We already have 9. 

 Madlyn: Let’s change it to an 8. Look, it’s equal. 

 Duncan: But. 

 Madlyn: Oh, but this has to be big. [Pointing to the one-ninth] 

 Duncan: No, that has to be small. 

 Madlyn: No, but like this has to be big but it’s small. So we have to make it big.  

 Colin:   Change it.  

This allowed the curricular ideas of creating equivalent fractions and reasoning about the 

size of fractions to combine into a hybrid problem: How can we create equivalent fractions that 

are big enough so we can still create a fraction smaller than them? This new, drifted problem 

caused the group to be coded at very peripheral locations in the curricular outcomes as evidenced 

through their action. 

 Duncan: Okay. Find even numbers for these two and then we can fill these two  

ones after. 

 Madlyn: But make sure these two are. 

 Duncan: Are using small numbers. 

 Madlyn: No, they should use our big numbers. 

 Duncan:  Yeah. 

 Madlyn: Okay, we got this. Big numbers.  

  … 

 Madlyn: 6 and 3. Because that’s all we can do. 

 Duncan: What would we do below it? 

 Madlyn: So then the bottom.  
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 Colin:  7? 

 Duncan: Why is it 7? 

 Colin:  Why not? 

 Duncan: Because why would it be 7? 

 Madlyn: We need to have bigger numbers in the middle. 

  … 

 Colin:  I’m saying we could do 14. 

  … 

 Madlyn: Is it equivalent? 

 Duncan: Yeah. 

 Colin:   Yeah 

 Duncan: Because 3 fits into 6, two times. 7 fits into 14, two times. 

 After all their work, they still arrive at a solution that doesn’t quite satisfy all the 

requirements of the task, because the group uses the digit “1” in two different blanks. (Figure 

5.8).  

 

Figure 5.8. Colin, Duncan, and Madlyn’s final answer for the Fill in the Blanks task.  

 Lessons in the curriculum space. Viewing the classroom action through the lens of a 

curriculum space shifts the perception of right answers. The goal of the task was to have groups 

operate in sophisticated ways with the targeted curricular outcomes. One group efficiently 

generated correct answers with a problem drift categorized as stable; another group worked with 

a volatile problem drift pattern as misunderstandings allowed numerous productive problems to 

be posed as relevant. If the curriculum is to be envisioned as a landscape, then learning emerges 

from effective action on the problems posed in the moment, and very productive action occurs 

when the relevant problem opens up possibilities for students to act in connected ways in the 

curricular outcomes. Here, we see that stable patterns of action caused by efficient pathways to 
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right answers may restrict the conditions for complex emergence, streamline the phenomenon of 

problem drift, and result in a lower level interaction with the intended curricular outcomes. 

Lively patterns in a curriculum space do not always signal correct answers and vice versa. 

However, if we conceptualize curriculum as travelled through instead of completed, correctness 

and efficiency might become barriers as completing tasks takes a back seat to sense making.  

Episode 3: The Solid Fusing Task 

 The Solid Fusing task gave groups a set of six geometric solids and asked the students to 

combine them to create a composite shape that had a surface area (measured in square units) as 

identical as possible to its volume (measured in cubic units). Two of the solids are pictured in 

Figure 5.9, and the complete set can be found in Appendix A. Students were given further 

parameters, all of which their new, composite solid had to suffice. First, the new composite 

shape had to include at least two of the six solids provided. Second, solids could only have their 

faces fused; vertices and edges could not be ‘fused’ to faces or to each other. Lastly, the faces on 

both solids could not be fused partially; sides could not hang off one another. The image used to 

illustrate this point is shown in Figure 5.10. The first configuration pictures illegal fusing where 

the cylinder hangs off the cube. The next two images show legal fusing. In the middle, the base 

of the pyramid and the side of the cube fuse perfectly, and the last image shows a cube 

completely fused to the top of a cylinder. This fusing is legal because the face of the cube is 

entirely fused to the cylinder’s face. Mrs. Hudson and I decided to provide the groups with a 

formula sheet (Appendix C) so that the focus was on employing the formulas under the threat of 

overlap and not simply on recalling the structure of a particular formula. 

 

Figure 5.9. Two of the six solids from the Solid Fusing task. 
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Figure 5.10. Possible types of solid fusings in the Solid Fusing task. 

 At the pre-session meeting, the target outcomes were established. We wanted the task to 

encourage students to calculate the surface area and volume of various solids and to understand 

the effect on surface area and volume when fusing solids. These curricular outcomes closely 

mimic those from the first classroom session in Mrs. Hudson’s room, the Surface Area Doubling 

task (see Figure 4.8). The Solid Fusing task was the final task enacted with her class. The whole-

class debrief focused on strategy, but also on the actions throughout the unit of study. Paralleling 

the target curriculum outcomes with the Surface Area Doubling task was done intentionally to 

give the unit a sense of finality. Episode 3 contains the action of Justin, Marin, and Ben during 

the approximately 30 minutes they worked with the task. Their curriculum space is shown in 

Figure 5.11. 

 Reading the curriculum space. The curriculum space supports the teachers’ assessment 

of this group’s action. Both teachers described this group as autonomous and efficient, and the 

benchmark in the curriculum space illustrates the sophisticated manner of their thinking because 

the group is never coded as operating within it. Aside from this, two characteristics readily 

emerge from the curriculum space. First is the group’s autonomy and the second is the clustering 

of action around distinct attractor spaces (to borrow a term from complexity science). 
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Figure 5.11. The curriculum space of Justin, Marin, and Ben working with the Solid Fusing task.   

This image of group action displays a different type of autonomy than that of the group in 

Episode 1. Brock, Ria, and Sharla acted habitually and often tried to unseat a teacher’s 

intervention rather than entertain it. The result was a curricular space knotted in familiar places 

and dominated by solid lines as the teachers attempted to perturb this pattern (see Figure 5.2). 

Here, Justin, Marin, and Ben act at very high levels of sophistication and often trigger problem 

drift in their own interactions, demonstrated by the prevalence of dashed problem drift lines in 

their curriculum space. Recall that operating at a high level does not always mean correct 

answers (see Episode 2). This group did make mistakes, but the structure of the group allowed 

the task to be consistently problematic, and the problems emerging in action moved the group 

through sophisticated problems around two central clusters, posed in three distinct phases.  

The first is an entry phase, where the group’s attention is focused on the calculation of 

the surface areas and volumes of the solids. The action is coded at a high level because the group 

Effect of combining solids 

Calculating surface area and volume 
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consistently used the provided formulae flexibly in order to match the expressions in the formula 

to the specific faces of the solid. When the formula for the surface area of a cube was missing, 

the group attempted to reason about which calculations would make sense.  

 Ben:  Well you’ve got 6 sides. 

 Justin:  I’ll do 4 squared times 6. I think that would be correct. 

 Ben:   Um. 

 Justin:  4 squared times six because you have 6 sides. 

 Ben:  Yeah. 

 Justin:  Wait, that might be the volume? 

 Marin:  Maybe I should try, like … it would be 4 times 4, plus 4 times 4, plus 4  

times 4. Right, because all the measurements are 4? 

 The surface area formula for a rectangular prism was given (see Appendix C), but the 

group never connected the relationship between the rectangular prism and cube. Despite that, 

they are able to arrive at a solution that makes conceptual sense using a sophisticated method. 

The second phase is a transition phase, triggered by the realization that they could have made the 

task simpler if they would have anticipated some of the sides being lost in the process of fusing. 

 Marin:  I think we forgot to subtract the sides. Did you subtract a side when you  

were doing the surface area? Because I forgot to.  

 Justin:  Like, this? 

 Marin:  Yeah, like one of the sides. 

 Justin:  No, I didn’t. 

 Marin:  Okay. Well. 

 Ben:  We could just do it after.  

 Marin:  Well, I mean, the numbers we’ll have to get are pretty similar anyway, so,  

if they look about the same then we can subtract it. So. 

 Ben:  Yeah, the surface area for this is 25.13. Alright, so now we’re going to  

have to figure out all the different combinations and see which ones will 

be closer to each other.  

 Marin:  Okay, we should look at similar volumes and stuff. So like, these volumes  

are pretty similar. 
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 During this phase, the problem becomes the intelligent calculation of the surface area and 

volume with an anticipation toward potential fusings. They carry this awareness into the third 

phase where the flexible calculations from phase one are now combined with some type of 

expectation of surface area loss based on how much the faces of the new solid have overlapped. 

 Marin:  How’d we get 138? Because it should be less. 

 Justin:  Um, 150. 

 Marin:  Try just subtracting this from, like, just the top. 

 Ben:  Yeah, okay so what’s that? Which side? 

 Marin:  So 12.56 is just the top of this. 

 Ben:  That? Okay.  

 Marin:  So then we have to calculate just the top of that, and subtract this from it.  

So that’d be pi times 3 squared. 

 Justin:  28.27. 

 Marin:  So we add that. 

 The group eventually arrived at the conjecture that they needed to overlap the faces of 

solids as much as possible to achieve the best solution, and posed the problem, “How can we 

overlap the faces as much as possible?” Justin, Marin, and Ben acted elegantly on the problems 

as they become relevant. Their smooth and efficient movements create an image of classroom 

complexity quite similar to the image of complex organization offered by the Lorenz attractor 

(Figure 5.12)—one of the most widespread images of order in chaos. Despite its path being 

governed by unpredictable equations, the Lorenz attractor patterns its action in two dense areas 

known as attractors. Here, the mathematical action of Justin, Marin, and Ben reveals certain 

areas of attraction in the curriculum space and creates an image of harmony between complexity 

and curriculum.  
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Figure 5.12. The Lorenz attractor exhibiting two attractor spaces. 

Lessons in the curriculum space. Teaching in a curriculum space requires the 

recognition of when groups have posed productive problems and which intended curriculum 

outcomes have become attractor spaces for group action. During this episode, both teachers 

seemed to recognize this and not a single intervention was coded as shepherding—an attempt to 

support or coordinate the possible. This is not a mark of failure for the teachers, but rather a 

pedagogical decision made in context. We did not need to coordinate the possible, because the 

group’s structure allowed them to interact on its perpetual cusp. This did not mean that the 

teacher was left without a purpose. The group did not anticipate the ring of surface area 

remaining when fusing the bases of the two cylinders pictured in Figure 5.9. The process of 

teaching became one of perturbing the group to avoid inaction, because in complexity, inaction is 

extinction. In this sense, the job of the teacher was not to provide an extravagant possibility, it 

was to be available.  

 Teacher: How did you get the surface area, sorry? 

 Marin:  Um, I just calculated the surface area without the side, and he calculated  

without this side.  

 Teacher: Ah, okay, it’s like. But you don’t lose this whole side? 

 Marin:  Oh right! Because it’s bigger. 
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Patterns in Teacher Action 

 An analysis of teacher actions is not an attempt to see when and where in the curriculum 

space a teacher acted most competently. Rather, it is done to add to the interpretation of group 

work provided in the previous three episodes. Attention is now turned to the teachers’ patterns, 

intuitions, and tendencies when attempting to act as a fully coupled agent in a complex system. 

The exploration included enumerating all instances of the three categories of teacher actions 

provided by Towers and Proulx (2013), as well as analyzing their aggregate curriculum spaces to 

determine whether a character emerged.  

 Teacher intervention statistics. Every intervention was coded with a category as well as 

a timing relative to its occurrence in the classroom session. The breakdown of the frequency of 

interventions by type is organized in Table 5.1. 

Table 5.1 

Frequency of teacher intervention organized by category from the ten classroom sessions 

Total 

Informing 

Enculturating 

 

7 

Reinforcing 

 

8 

Telling 

 

8 

23 

Orienting 

Clue-giving 

 

10 

Blocking 

 

2 

Pretending 

 

2 

Anticipating 

 

4 

18 

Shepherding 

Inviting 

 

5 

Rug-pulling 

 

8 

Retreating 

 

4 

17 

58 

Note. Categories and sub-categories taken from Towers & Proulx (2013).  

Perhaps unsurprisingly, each category of intervention appears over the course of the 

study. Although no single category was used far more often than the rest, the most frequently 

used category of intervention was clue-giving. These actions “deliberately use clues to orient 

students toward specific pathways” (Towers & Proulx, 2013, p. 14). Perhaps this is due in part to 

the teachers not wanting to give direct information, a worry expressed by all three participating 
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teachers. Mrs. Hudson summed up her focus while offering interventions in a post-session 

interview: 

I just have to be more questioning and [use] less statements, right? I have to ask them 

like, “So what have you done?” or, “Where are you?” and then see if they can explain 

their thinking, and that, I imagine, is probably enough to get them started going 

somewhere else on their own, right? So I think I have to stick to questions versus 

statements when I’m working. 

 The timing of teacher actions was not a measurement of when, in elapsed time, the 

intervention was chosen as relevant to the group’s needs. Instead, it labels when, in the relative 

course of the classroom session, the intervention occurred—beginning, middle, or end. To arrive 

at accurate plotting, each problem session was divided into nine equal sections and each 

intervention was timestamped. The interventions were then organized into the nine time 

intervals. When read from left to right, the area graphs (Figure 5.13) show the number of times a 

specific type of teacher intervention was used over the course of the data collection task. That is, 

they report the relative frequency that a particular classification of intervention was deemed 

appropriate at a particular juncture of the classroom session. The leftmost edge of the graph 

represents the onset of classroom action, and the rightmost edge represents the conclusion of the 

data collection task. The taller the area, the more often interventions of that category were 

offered during that time interval during the task.  
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Figure 5.13. Timing of teacher interventions by category. Informing (top), Orienting (middle), 

and Shepherding (bottom).  

 

 

 

 

Time 

Time 

Time 
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Each type of intervention appears as used most frequently during certain portions of the 

classroom sessions. Overlaying the graphs, we begin to see a global pattern of teacher action 

during a task (Figure 5.14). If we think of a classroom session as an unfolding context, the image 

becomes one of teacher intuition—of what type of intervention we, as teacher of mathematics, 

felt paired best with temporal phases of classroom sessions. Informing actions dominate the 

introduction of tasks when the giving of information is intended to clarify the task. They taper 

off through the middle portion of the task, but reemerge as prominent when the teacher checks in 

to see group solutions. Orienting actions are focused in the middle and end of the classroom 

sessions. It is during this phase that the group diversity is at its highest, and teachers act to foster 

numerous mathematical ideas. Shepherding actions have a similar pattern in time as informing 

actions. Initially, this correspondence was surprising because giving information and 

coordinating the possible seemed like wildly different processes, but we will see this congruence 

re-emerge when the two categories are analyzed in curriculum space as well. Shepherding 

actions used at the beginning of task sessions were intended to kick-start group thinking, a goal 

shared with informing actions offered in the early phases of a task. It seemed as though teachers 

were waiting for groups to understand the constituents of the task, and then attempting to 

instigate action by presenting a previously unforeseen wrinkle. At the end of classroom sessions, 

shepherding actions were used to offer extensions to groups who, through their action, had 

become comfortable that they had arrived at a solution.  

 

Figure 5.14. Composite graph of the timing of teacher interventions by category.  

The distributed nature of interventions and their timings speaks to the important role of 

context. The common thread that runs throughout every teacher intervention offered during the 

Time 
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study is that teachers identified their action as the right way to act in context—to affect the 

collective.  

 Teacher interventions in curricular space. Patterns of teacher action were also 

analyzed using the tool of curriculum space. To do so, the occasions of problem drift instigated 

by teacher interventions were separated according to the three categories of teacher actions. The 

result is an image of problem drift in curriculum space triggered by each individual category of 

teacher intervention. Because the interventions from all ten group sessions are amalgamated into 

these curriculum spaces, no outcomes appear on the axes. The starting nodes give us an image of 

where in curriculum space (as opposed to when in curricular time) certain types of interventions 

were deemed suitable, and the arrows and ending nodes give us an image of the global pattern of 

effect. That is, where, in space, did the teacher feel it suitable to give information (informing 

action), direct attention (orienting action), or coordinate the possible (shepherding action), and 

what problem drift did those interventions sponsor? As was the case with the illustrative 

episodes, the curriculum spaces tell a story. These curriculum spaces are images of effect—what 

role did specific types of interventions play in carving curriculum out of chaos?  

The curriculum space of informing teacher actions appears in Figure 5.15. Keeping in 

mind the many, differing contexts in which the interventions were offered, there are some 

interesting patterns that exist. A large percentage of nodes are arranged on the axes around the 

periphery of the space. Also, informing interventions at the periphery of the space seem to 

occasion little problem drift. This is especially apparent along the horizontal axis in Figure 5.15. 

On the whole, the nodes are fairly evenly distributed across the space signaling no apparent bias 

to where, in a curricular sense, a teacher feels giving information is most effective or ineffective. 
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Figure 5.15. The curriculum space containing all informing interventions during the study. 

 The curriculum space of orienting teacher actions appears in Figure 5.16. In contrast to 

the peripheral tendencies of informing actions, the orienting nodes tend to cluster in the central 

portion of the curriculum space. This hints that teachers feel the context for directing attention is 

most suited for when groups are already working with both target outcomes, what could be 

classified as a very productive curricular space. The orienting curriculum space also contains 

fewer instances of dramatic problem drift. This may be explained by their central mandate of 

directing attention. When compared with the giving information and coordinating the possible of 

informing and shepherding actions respectively, directing attention has a much less invasive 

tone.  
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Figure 5.16. The curriculum space containing all orienting interventions during the study.  

 The curriculum space of shepherding teacher actions appears in Figure 5.17. The 

clustering of problem drift within the central portion of the curriculum space seems to be 

consistent between the orienting and shepherding curriculum spaces. Perhaps this is the case 

because once specific curriculum processes become relevant, they have the tendency to remain 

relevant when offered an intervention that directs attention or coordinates further possibilities. 

As was the case with the timing of the categories of teacher actions, the shepherding and 

informing categories have some shared characteristics (see Figure 5.13). While the majority of 

the nodes cluster in its central portion, the curriculum space for the shepherding interventions 

contains several nodes coded along either axis. The informing intervention curriculum space also 

contained several nodes coded along the axes; however, unlike informing interventions, the 

shepherding interventions used at these locations seem to occasion considerable problem drift. 

This suggests that, when a group is operating fairly exclusively with a curricular outcome, 

shepherding interventions may trigger more drastic re-orientations of problem drift when 
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compared to informing actions. This dramatic problem drift is not mimicked by the set of nodes 

in the central portion of the informing and shepherding curriculum spaces. Here, the nodes in the 

informing curriculum space are less clustered when compared to the nodes in the central portion 

of the shepherding curriculum space. This signals that the direct giving of information may be 

better suited for quick changes in group focus when the group is operating with an amalgam of 

anticipated curriculum outcomes. 

 

Figure 5.17. The curriculum space containing all shepherding interventions during the study. 

In this chapter, the interpretive tool of the curriculum space was used to investigate 

patterns in group action, teacher action, and the interweaving of the two. The curriculum spaces 

of illustrative episodes display patterns that emerge from groups, and offer lessons for the 

teacher operating with both a lens of complexity and a mandate to teach curriculum. The 

curriculum space also documented how various types of teacher interventions occasioned group 

action in the form of problem drift—an area that Towers and Proulx (2013) identified as needing 

further exploration. The categories of giving-directing-coordinating are not inappropriate. It 



 

87 

would be a mistake, however, to classify a certain type of intervention as always more advanced, 

the work of a master teacher. This mistake is illustrated through the observed similarities 

between the curriculum spaces of informing and shepherding actions. Both types of action 

appeared in similar patterns in time (see Figure 5.13) and were chosen as appropriate, in context, 

in similar patterns in space (see starting nodes in Figure 5.15 and Figure 5.17). Despite these 

similarities, the interventions had differing patterns of effect. Around the periphery of curriculum 

space, informing actions had a smaller effect on problem drift than shepherding actions, but in 

the central area, informing actions had a greater effect on problem drift than shepherding actions. 

The effect of a teacher’s intervention was dependent on where (and when) in curricular space 

(and time) it was offered, and not wholly dependent on the nature of the intervention itself. It 

follows that equating the use of interventions from a specific category (say, shepherding) as the 

work of a master teacher is shortsighted, because it does not allow for teacher judgement in 

context. In order to classify an intervention as a successful one, a teacher must first have some 

sort of criteria for success. The hallmark of a master teacher is intentionality. That is, an expert 

intervention is one where the teacher is aware of the purpose of their action. That purpose may 

align with any of the three categories of teacher action, meaning that any one of giving 

information, directing attention, or coordinating the possible may prove the most potent action in 

context. As such, the similarities and differences between informing and shepherding 

interventions from throughout the study adds to Towers and Proulx’ assertion that shepherding 

interventions should not always be equated with high-level teaching practice. Rather, teaching is 

the process of dynamic fitting with collectives (Towers & Proulx, 2013). Here, we observe the 

types of interventions as serving different settings, not on a continuum from stale to innovative. 

The analysis of patterns within a classroom balancing complexity and curriculum begins to 

unpack a teacher’s tacit modes of classroom operation, places teacher intention at the forefront of 

effect, and offers valuable implications for the work of teachers. 
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Chapter 6: Implications in Curriculum Space 

 

“The real voyage of discovery consists not in seeking new landscapes, but in having new eyes.” 

—Marcel Proust, In Search of Lost Time, 1923 

 

 

 Comments on implications seem overly presumptuous. It seems contradictory to explore 

the nature of human activity as complex and then attempt to delineate the implications of such an 

inquiry, as if the implications are certain and well-formed for each individual observer. This 

concluding chapter, then, represents the implications that emerged for me through the process of 

design, implementation, and analysis. It examines those features that emerge as relevant to my 

research problem—how can the teacher provide meaningful opportunities for small groups to 

work with curricular outcomes? 

Carving Curriculum 

 It is my intention to use this chapter as a space to attend to the study as a whole in order 

to unearth its saliency to the work of mathematics teachers. With that goal in mind, I begin at the 

beginning—the very beginning, with the first word: carving. Attuning teachers to their role in the 

complexities of small group work required some way of envisioning the role of the teacher, but 

there is danger in metaphor because every metaphor eventually breaks down. The metaphor of 

carving is no different. So what was to gain by comparing the role of teacher to that of sculptor?  

 The image of sculpting a piece of stone is static, even in its most poetic forms. 

Michelangelo, widely recognized as one of the greatest sculptors to ever live, has been credited 

with claiming—in reference to his greatest work, David—that he saw the angel in the marble, 

and carved until he set him free. The image portrays the sculptor as liberator, one that excavates 

potential. This image of teacher as sculptor is problematized on two fronts. First, it gives the 

student groups a static feeling of stone, instead of granting them their dynamic, drifting reality. 

Second, it places the sculptor outside of the becoming, as one that acts on and not with the 

marble. Despite these two issues, this metaphor of sculptor and stone may have been the image 

called to mind by a reader when reading the word carving; this was intentional. My hope was 

that it serves as a reminder of how easy it is to distance oneself from the students, but also how 

crucial it is that this distancing does not occur.  
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 Rather than the image of a sculptor carving marble, the metaphor of carving is meant to 

evoke the way a river carves its way through its surroundings while at the same time becoming 

inextricable from the landscape. The landscape is enacted as the river encounters obstacles with 

which it couples to find a productive way forward. In the case of small groups, these sites of 

interaction could come from a teacher intervention, the task, or a piece of the social environment 

of school. The role of sculptor (teacher) emerges through the interaction of the features in the 

environment with the structure of the river (student groups). These interactions are sometimes 

subtle and sometimes prominent. It is unproductive to visualize the river without taking into 

consideration the landscape that helped form it; the same goes for the landscape which is then 

formed by the re-actions of the river. In other words, they are in a continual process of re-

defining one another. The image of the riverbed (Figure 6.1) provides balance between 

directionality, influence, and chaos. In this sense, the image of carving is granted to the inter-

action between the river and environment, and is not viewed as the sole responsibility of either 

one. In fact, the landscape cannot be brought forth without both.  

 

Figure 6.1. The Amazon River landscape. Photo by NASA (NASA WORDL WIND 4.1 

Screenshot) [Public domain], via Wikimedia Commons. 
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Chaos 

 The image of chaos provided by problem drift has implications for teachers because the 

teacher must recognize the problem relevant to a group of learners at a given time and place and 

then act intentionally. Throughout the study, the image of problem drift and curriculum space 

triggered two important learnings, for me, that attend to the question of how teachers may act 

with(in) a complex ecology of the collective. The first is the use of what I have come to call 

acclimatizing actions, and the second is a re-defining of the orienting question while teaching 

with(in) collective knowing.  

 Acclimatizing actions. Having record of student action throughout the task sessions 

made the moments I missed in the course of attending to several groups glaringly obvious. I 

recognized that, by necessity, a teacher operating with small groups cannot witness the doing of 

every group, but I was never aware of how the teacher makes up for that deficiency. This 

periodic absence is heightened within an epistemology where knowing is doing. By 

implementing a classroom structure of small groups I was not just missing doing—I was missing 

knowing.  

 As each teacher intervention was coded, it was often a struggle to classify an 

intervention. Sometimes, there was no hard and fast delineation between giving information, 

directing attention, and coordinating possibilities. However, one facet was constant throughout 

almost every teacher intervention from every participating teacher in the study. Before 

attempting to shape the group’s action, the teacher began by asking the group where they were, 

in an effort to acclimatize to the group’s needs by orienting themselves to the problem drift.  

 Teacher: So what are you doing currently? What are you trying to do? 

 … 

 Teacher: What was the first thing you focused on? 

 … 

 Teacher: How did you get the surface area, sorry? 

 … 

 Teacher: I think I walked in half-way through your explanation. 

 … 

 Teacher:  So what are we doing? Where are we going? 
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I had spent years working with small groups prior to the study, and Mrs. Murray, for 

example, readily admitted that she had little experience working with this classroom structure. 

Despite these seemingly large gaps in familiarity, teaching began with listening (Davis, 1996). 

Of the fifty-eight interventions offered by teachers throughout the study, only seven were offered 

without an acclimatizing action. Isolating the effect on problem drift in curriculum space of these 

interventions results in the image in Figure 6.2.  

 

Figure 6.2. The curriculum space containing the seven interventions before which the teacher 

failed to acclimatize to problem drift. 

The majority of the problem drift resulting from non-acclimatized teacher interventions 

occasion no problem drift or problem drift directed toward the origin of the curriculum space. 

While this is a very small sample, offering interventions to a group of learners without first 

acclimatizing to their relevant problem seems to have a negative effect in curriculum space. This 

is not intended to serve as proof that all non-acclimatized actions have negative effects on 
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learning curriculum; however, it does speak to the importance of acclimatizing to the relevance 

of the group.  

Again, the action of acclimatizing seemed natural to the work of teaching. Maybe so 

much so that it may be dismissed as a social mechanism, used only to form natural transitions 

between conversations. I contend here that the action of acclimatizing is a pedagogical one in the 

sense that it is an intentional teacher action used to adapt to the problem drift of a group of 

learners. This extends the theorization of teacher actions into a new category of actions that are 

employed not for the sake of the students, but for the teacher. This is not to claim that the 

students gain no benefit from acclimatizing. In the same vein that the action is not simply social, 

the recapitulating of their action is a generative process as the students explicate their world of 

mathematical significance. For the enactivist, the opportunity to step back and observe the 

environment as it has shifted through their process of coupling provides the possibility for further 

coupling with it. It is a learning experience in itself. In other words, acclimatizing actions are not 

a simple reviewing, but a re-viewing—an occasion to trigger further action.  

 Teaching in curriculum space. Ultimately, in order for the theorization of complex 

groups to be useful, it needs to inform the work of teachers. In the previous section, 

acclimatizing actions have offered a step toward that aim. As the study progressed, the images of 

problem drift became a part of my operation, and the conceptualization of curriculum space 

shifted how I interpreted my work with small groups. Re-casting the curriculum as a landscape, 

as opposed to a list, required that I stop looking for signals that a group could execute certain 

skills, and began looking for the patterns with which they encountered curriculum outcomes as 

ways to resolve mathematical tensions. This pattern seeking determined which interventions 

presented themselves as suitable in context, and provided feedback on whether the intervention 

had the desired effect. Teaching became a process of dwelling in context. It became clear to me 

that the task of carving curriculum out of chaos is not oriented by the guiding question, “How did 

they solve the problem?,” but rather by asking, “What problem are they solving?”. Allowing that 

question to orient the action of teaching became the starting point for influencing the complexity 

of small groups working toward mathematical, curricular goals.  

Concluding Comment 

It is my hope that this work prompts teachers to respect and recognize the complexity 

inherent in the important role all educators have in the amalgamation of knower and known. The 
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work has maintained its pragmatic focus throughout in an attempt to provide a lens through 

which teachers can interpret classroom action in small groups. Not as one who gazes down as a 

kind of informed, omniscient observer, but rather as one working in the midst of it. It is intended 

as “a way of stepping into the current of curriculum” (Davis, 1996, p. 127); not as a sculptor 

disembodied from the work, but as a feature in its dynamic landscape. 
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APPENDIX A: THE FIVE TASKS 

The Surface Area Doubling Task 

 

 

Figure A1. The original house used in the Surface Area Doubling task.  

 The Surface Area Doubling task asked groups to design an addition to the house pictured 

in Figure A1. Two conditions had to be met. First, the designed addition for the house had to 

share at least one common wall with the original house. Second, the surface area of the new 

house (original house with the addition included) had to be exactly double that of the original 

house.  
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The Tile Design Task 
 

Figure A2. The eight stages distributed by teachers during the Tile Design task.  

The Tile Design task asked groups to build shapes out of coloured, square tiles that met 

all the specifications of a stage cards (Figure A2) given in sequence to each group. 
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 𝑖𝑠 𝑅𝑒𝑑 

1

2
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1
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 𝑖𝑠 𝐺𝑟𝑒𝑒𝑛 

Stage 1 
Build a shape where… 
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3
 𝑖𝑠 𝑅𝑒𝑑 
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4
 𝑖𝑠 𝑌𝑒𝑙𝑙𝑜𝑤 
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 𝑖𝑠 𝐺𝑟𝑒𝑒𝑛 
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Build a shape where… 
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 the number of Green squares is no more than double 

than the number of Red squares. 
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exactly half the number of Yellow squares are Blue 

squares 
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The Fill in the Blanks Task 

 

 

Figure A3. The expression structure given to the groups in the Fill in the Blanks task. 

 The Fill in the Blanks task asked groups to choose which digits to place in the nine 

blanks (Figure A3) in order to make the expression true. When finished, groups were asked to 

find as many arrangements of digits that satisfied the expression as possible.  
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The Solid Fusing Task 

  

  

  
Figure A4. The solids available for use in the Solid Fusing task. 

 The Solid Fusing task asked groups to build a composite shape by fusing the faces of at 

least two of the solids in Figure A4. The goal was to create a composite shape that had a surface 

area (measured in square units) as close to identical to its volume (measured in cubic units).  
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The Number Line Cards Task 

 

 

 

Figure A5. Three sample cards used in the Number Line Cards task. 

 The Number Line Cards task asked groups to build number lines by arranging 

customized number line cards side by side (Figure A5). The groups were given cards with the 

integers between negative five and five (inclusive) placed randomly at one of three tick marks. 

To begin the task, the groups were asked to create three, separate, correct number lines, each of 

which had to include at least two cards. 
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APPENDIX B: THE TEN CURRICULUM SPACES 

 

Figure B1. The curriculum space of Cohen, Anne, and Lucas working with the Surface Area 

Doubling task. 

 

Figure B2. The curriculum space of a group working with the Surface Area Doubling task. 

Understanding effect  

of overlap 

Calculating surface area 

Calculating surface area 

Understanding effect  

of overlap 
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Figure B3. The curriculum space of Brock, Ria, and Sharla working with the Tile Design Task. 

 

Figure B4. The curriculum space of a group working with the Tile Design task. 

Compare and reason  

about fractions 

Compare and reason  

about fractions 

Creating equivalent fractions 

Creating equivalent fractions 
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Figure B5. The curriculum space of Amina, Eliot, and Makalia working with the Fill in the 

Blanks task. 

 

Figure B6. The curriculum space of Colin, Duncan, and Madlyn working with the Fill in the 

Blanks task. 

Creating equivalent fractions 

Creating equivalent fractions 

Reasoning about  

fraction size 

Reasoning about  

fraction size 



 

110 

 

Figure B7. The curriculum space of a group working with the Solid Fusing task. 

 

Figure B8. The curriculum space of Justin, Marin, and Ben working with the Solid Fusing task. 

Calculating surface area and volume 

Calculating surface area and volume 

Effect of combining solids 

Effect of combining solids 
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Figure B9. The curriculum space of a group working with the Number Line Cards task. 

 

Figure B10. The curriculum space of a group working with the Number Line Cards task. 
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APPENDIX C: THE SOLID FUSING TASK FORMULA SHEET 

 

 

   
 
 
 

 

 

 

  
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AREA 

Triangle 
Area = ½ × b × h 
b = base 
h = vertical height  

Square 
Area = a2 
a = length of side 

 

Rectangle 
Area = w × h 
w = width 
h = height 

 

Parallelogram 
Area = b × h 
b = base 
h = vertical height  

Trapezoid  
Area = ½(a+b) × h 
h = vertical height 

 

Circle 
Area = πr2  

Circumference = 2πr 
r = radius 

 

   

 

 
 

SURFACE   AREA  and  VOLUME 

http://www.mathsisfun.com/triangle.html
http://www.mathsisfun.com/quadrilaterals.html
http://www.mathsisfun.com/quadrilaterals.html
http://www.mathsisfun.com/quadrilaterals.html
http://www.mathsisfun.com/geometry/circle.html

