
Univers i ty of Alberta 

HYBRID MODELS FOR PROTEIN SECONDARY 
STRUCTURE CONTENT PREDICTION 

by 

Mandana Rahbari 

A thesis submitted to the Faculty of Graduate Studies and Research 

in partial fulfillment of the requirements for the degree of 

Master of Science 

Department of Electrical and Computer Engineering 

Edmonton, Alberta 

Fall 2008 



1*1 Library and 
Archives Canada 

Published Heritage 
Branch 

395 Wellington Street 
Ottawa ON K1A0N4 
Canada 

Bibliotheque et 
Archives Canada 

Direction du 
Patrimoine de I'edition 

395, rue Wellington 
Ottawa ON K1A0N4 
Canada 

Your file Votre reference 
ISBN: 978-0-494-47395-5 
Our file Notre reference 
ISBN: 978-0-494-47395-5 

NOTICE: 
The author has granted a non
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

AVIS: 
L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par Plntemet, prefer, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats. 

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these. 
Ni la these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis. 

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these. 

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis. 

Canada 

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant. 



To my beloved parents and my dear Dmitry. 



ABSTRACT 

Secondary protein structure content prediction is an important interme

diate problem in establishing accurate methods for prediction of higher-level 

structures (2D and 3D). The content was recently applied to prediction of 

structural classes, folding rates and transition, enzyme proteins and types, 

and analysis of protein interactions. A new machine learning based protein 

secondary structure content prediction method named Length Adjusted Mod

els for Improving Content prediction Accuracy (LAMICA) is introduced. The 

proposed learning models are trained on features extracted from two comple

mentary secondary structure prediction methods, PSIPRED and PROFsec, 

and further advanced by the addition of physicochemical, energetic and con

formational features. Two separate models are created: one for small protein 

sequences and the other for large sequences. The models are tuned by a two-

stage feature selection process. The proposed method outperforms state-of-

the-art prediction techniques in terms of content prediction error. In addition 

we demonstrate that the predicted content can be used to improve protein 

secondary structure and class predictions. 
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Chapter 1 

Introduction 

Proteins are among the most important biochemical molecules that provide 

invaluable structure and services to the host organism. For instance, they 

form the cytoskeleton (e.g., tubulin), perform signaling (src) and transport

ing functions (hemoglobin), implement immune responses (antibodies), etc. 

Proteins are natural polymers consisting of amino acid (AA) units. The num

ber of AAs in protein molecules ranges from several (for short peptides) to 

thousands. Each protein, at the primary structural level, is a sequence of 

AAs. The secondary (2D) protein structure corresponds to a specific local, 

spatial arrangement of AAs caused mostly by hydrogen bonding. Most of the 

existing secondary protein structure data has been obtained by one of three 

methods: X-ray and electron crystallography based on a crystallized protein 

or NMR from a purified protein in solution. High expenses incurred by these 

two methods, inherent practical restrictions, and high numbers (millions) of 

unsolved proteins (with known sequences but unknown structure) result in a 

great demand for more time and cost-effective methods to find protein struc

ture. 

National Center for Biotechnology Information (NCBI) database contains 

over 5 million protein sequences (2008), while Protein Data Bank (PDB), 

which is the only database that contains three dimensional protein structure, 

contains just about 50,000 proteins, see Table 1.1. 
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year ^depositions 

before 2000 

2000 

2001 

2002 

2003 

2004 

2005 

2006 

2007 

2008 

total 

10991 

2983 

3286 

3563 

4830 

5508 

6678 

7282 

8128 

2782 

50830 

Table 1.1: Statistics for PDB structures that were deposited. 

A reasonable and time-efficient candidate to replace the experimental meth

ods is a computational (in-silico) prediction of the 3D and 2D protein structure 

from its AA sequence. Early in-silico prediction methods were based on local 

properties associated with neighboring residues of a given sequence, while later 

research focused on prediction based on global protein properties via multiple 

sequence alignment. Unfortunately, despite the low cost and high computa

tional efficiency all currently known computational prediction techniques suffer 

from relatively low prediction accuracy of about 80%. 

The lower level of protein structure, referred to as protein secondary struc

ture, consists of three major components: helix, strand, and coil. This level 

of the structure plays a major role in proteins' conformation. This project 

intends to predict the quantities of components (helix, coil, and strand) in a 

protein secondary structure. These quantities are also called secondary struc

ture content. The prediction is based on machine learning techniques. Protein 

content prediction is an important intermediate problem in establishing accu

rate methods for prediction of higher level structures. 

Protein secondary structure content prediction was tackled in the past 
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using two machine learning methods: Neural Networks and Regression (Krig-

baum and Knutton, 1973; Lin and Pan, 2001; Muskal and Kim, 1992; Ruan 

et al., 2005). Neural networks are characterized by long learning time and 

lack of interpretability. Therefore alternative regression type methods received 

significant attention. In this project a new protein secondary structure con

tent prediction method, called Length Adjusted Models for Improving Content 

prediction Accuracy (LAMICA) based on support vector machine regression 

is investigated. 

To this end, three goals are addressed in this work: 

- to develop a method that provides lower content prediction error com

pared to existing methods for content prediction and gives more accurate 

results than content computed from secondary structure predictions. 

- to verify whether the features computed from predicted protein sec

ondary structure are useful for content prediction. 

- to validate whether the predicted content can be applied to solve other 

practical problems. 

The thesis is organized as follows. Chapter 2 presents the background 

knowledge about proteins and their structures. It also describes the protein se

quence characterization, methods and datasets that are utilized in this project. 

Chapter 3 reviews the related works. The proposed solution for the problem 

addressed in this thesis is described in Chapter 4. In Chapter 5 the experimen

tal comparison between our proposed method and state-of-the-art techniques 

is presented. Chapter 5 also discusses results achieved for the above mentioned 

goals. Chapter 6 summarizes the contributions and concludes the thesis. 
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Chapter 2 

Background 

2.1 Prote in Secondary Structure 

2.1.1 Amino acids 

Polymers are large molecules made from many repeating subunits known as 

monomers. Twenty amino acids (monomers) are found in our body that com

pose the protein sequences (polymers). In each amino acid the central carbon 

is bonded with four different groups: Hydrogen group (—H), Carboxyl group 

(—COOH), amino group (—NH2) and the side chain symbolized by R, see 

Fig 2.1. Amino acids vary ixi their side chain groups. 

H x 

amino group fsj • 
/ 

H H 

H 
I 

C-C 
r 

o 
carboxylic acid 

O-H 

side chain (R) 

Figure 2.1: The structure of alanine amino acid, with the amino group on the 

left and the carboxyl group on the right. 
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amino acid three-letter code one-letter code 

alanine 

arginine 

asparagine 

aspartic acid 

cysteine 

glut amine 

glutamic acid 

glycine 

histidine 

isoleucine 

leucine 

lysine 

methionine 

phenylalanine 

proline 

serine 

threonine 

tryptophan 

tyrosine 

valine 

ala 

arg 

asn 

asp 

cys 

gin 

glu 

giy 

his 

ile 

leu 

lys 

met 

phe 

pro 

ser 

thr 

t rp 

tyr 

val 

A 

R 

N 

D 

C 

Q 

E 

G 

H 

I 

L 

K 

M 

F 

P 

S 

T 

W 

Y 

V 

Table 2.1: Twenty standard amino acids 

The twenty amino acids are denoted by either three-letter or one-letter 

codes. Table 2.1 gives these notations. 

To form a protein, amino acids are linked to each other by dehydration 

synthesis to form peptide bonds. A peptide bond is formed by the reaction of 

an amino group of one amino acid with the carboxyl group of another amino 

acid, see Fig 2.2. Each amino acid chain is known as primary amino acid struc

ture of the peptide. A short chain of amino acids, including 20-30 amino acids, 
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Peptide Average Single Average Hydrogen 

bond length bond length bond 

Average (+/-30) 

Ca - C 

C-N 

N - C Q 

1.53 A 

1.33 A 

1.46 A 

C - C 

C-N 

C - 0 

1.54 A 

1.48 A 

1.43 A 

O-H-

N-H--

0-H--

- -0 -H 

• - o=c 
• -o=c 

2.80 A 

2.90 A 

2.80 A 

Table 2.2: The average bond lengths in a peptide chain. 

linked by peptide bonds is called a peptide. Polypeptides are longer than pep

tides and they can include as many as 4000 amino acids. Some proteins have 

one polypeptide chain while others, for example hemoglobin, contain several 

polypeptide chains. The sequence of amino acids in each polypeptide chain or 

protein is unique for that protein. The primary amino acid structure (denned 

in Section 2.1.2) contains the information necessary for folding the peptide 

chain into its "native structure". If even one amino acid in the polypeptide is 

changed, it can sometimes result in changing protein's function. For example, 

sickle cell anemia is caused by a change in only one nucleotide in the DNA 

sequence that causes just one amino acid in one of the hemoglobin polypeptide 

molecules to change. As a result, the whole red blood cell ends up being de

formed and unable to properly carry oxygen. A few important characteristics 

of bonds are given in Table 2.2. 

H 

H 

\ I 
N —C 

/ I 

H 
I 
C-C 

a 

Rj 

H 

O 
H 

N-C-C^ / r \ 
H 

N-
14 

n 
/ J a \ 

o 

O-H 

Figure 2.2: The condensation of three amino acids to form a polypeptide chain. 
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2.1.2 Protein Structure 

A polypeptide chain can bend and twist in several ways. Most of the polypep

tides fold up into an energetically stable, three dimensional molecule, shortly 

after being synthesized. Four distinct structural levels are defined below. 

Primary Structure 

The sequence of amino acids, which are connected through peptide bonds, 

is called the primary structure of the peptide or protein. The length of the 

peptide is defined as the number of the amino acids composing its primary 

structure. The sequence starts at the N-terminal (amino group), and ends 

with a C-terminal (carboxyl group). 

Secondary Structure 

Due to interaction between chemical groups in the amino acids, some spatially 

local 3D patterns frequently occur within a folded protein. These frequently 

occurring shapes are called protein secondary structures. The most common 

secondary structures are a-helix, /3-sheet and /3-turn. 

The Dictionary of Secondary Structures of Proteins (DSSP) is a single letter 

coding method, which is used to describe the protein secondary structures 

based on hydrogen bonding patterns. DSSP annotates each amino acid as 

belonging to one of eight secondary structure conformations using eight single 

letter codes: 

• G = 3io-helix. (Minimum length 3 amino acids) 

• H = a-helix. (Minimum length 4 amino acids) 

• I = ri-helix. (Minimum length 5 amino acids) 

• T = hydrogen bonded turn 

• E = P sheet. (Minimum length 2 amino acids) 
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• B — /3-bridge 

• S = bend 

• C / L / " " (space) = coil/loop. (For those amino acids which are not in 

any of the above conformations) 

DSSP eight secondary structure types can be reduced to three state sec

ondary structure by assigning H=HGI, E = E B , C=STC. Helix is represented 

as H and has a spiral shape. Strand is shown by E and is a plane-shaped struc

ture and Coil, which is represented by C, serves as a linker between helices 

and strands, see Fig 2.3. 

Figure 2.3: Secondary structure components of a protein. 

By building models of peptides using known information about bond lengths 

and angles, the first elements of secondary structure, the a-helix and the (3-

sheet, were suggested in 1951 by Linus Pauling (Pauling et al, 1951). 
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Helix Conformation 

The helix structure is formed when a polypeptide chain arranges into spiral 

conformation. A repeated hydrogen bonding between amino group (N-H) of \th 

amino acid in polypeptide chain and carboxyl group ( C = 0 ) of the amino acid 

n residues earlier (i-n) forms a helix (n equals four for a-helix, and three and 

five for 3io-helix and ri-helix, respectively). 3io-helix and II-helix are relatively 

rare. The helix conformation is tight and there is almost no free space in this 

structure. The amino acid side chains are on outside and they point slightly 

downwards. Helices range from four to forty residues, and a typical helix is 

about ten amino acids long. Fig. 2.4 shows the side and top view of a helix. 

Figure 2.4: Helix. Left panel is the side view of an a-helix composed of alanine 

residues. Right panel shows the top view of the same a-helix. 

Strand Conformation 

/3-strands are positioned adjacent to the other /^-stands and form hydrogen 

bonds with their neighbors. N-H groups in the backbone of one strand form 

hydrogen bonds with C = 0 groups in the backbone of the adjacent strand. This 
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way a network of hydrogen bonds is established and strands form a sheet. If 

the strands are in the same direction with respect to the protein sequence, the 

resulting sheet is called parallel sheet, otherwise it is called antiparallel sheet. 

/3-strands are typically five to ten amino acids long. The strand conformation 

is shown in Fig. 2.5. 

O H R O H R 

H R O H R O 

6 R H 6 R H 

N. Jl X M 
N 
I 
H O R H 0 R 

1 

Figure 2.5: Antiparallel sheet. 

Coil Conformation 

Since coils are non-repetitive irregular structures, it is not easy to describe 

them by structure. Among three types of coil, turns seem more structurally 

defined than bends and loops. Coils connect (link) two other secondary struc

ture components and without them a protein would be loosely packed. 
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Tertiary Structure 

The secondary structure elements are usually folded into a more stable com

pact shape using turns and loops. Although the formation of the tertiary 

structure is usually driven by energy minimization, burial of the hydrophobic 

residues and other interactions like hydrogen bonds, ionic interactions, and 

disulphide bonds also stabilize the tertiary structure. This level of the protein 

structure depends on the number, size and the arrangement of the secondary 

structure elements. The information about conformation of the protein is the 

key for understanding its properties and functions. 

Quaternary Structure 

The quaternary structure is established based on interactions between multiple 

polypeptide chains. The individual chains in the quaternary structure are 

called subunits. Not all proteins have quaternary structure, since they might 

function as monomers. This structure is stabilized by the same interactions as 

the tertiary structure. 

2.1.3 Classifications of protein structures 

Organization of protein structures according to folding pattern imposes a very 

useful logical structure on the entries in the Protein Data Bank (PDB), which 

is the centralized, world-wide repository of protein structures (Berman et a/., 

2000). Several databases derived from the PDB are built around classifica

tions of protein structures. They offer useful features for exploring the protein 

structures, including search using keywords or sequences, navigation among 

similar structures at various levels of the classification hierarchy, presentation 

of structures, exploring the databank for structures similar to a new struc

ture, and links to other sites. These databases include SCOP (Structural 

Classification Of Proteins) (Murzin et al, 1995), CATH (Class, Architecture, 

Topology, Homologous superfamily) (Orengo et a/., 1997), and FSSP/DDD 

(Fold classification based on Structure-Structure alignment of Proteins/Dali 
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Domain Dictionary) (Holm and Sander, 1994, 1998). 

Class 

All a proteins 

All j3 proteins 

a and (5 proteins (a//3) 

a and (3 proteins (a+(3) 

Multi-domain proteins 

Membrane and cell surface proteins 

Small proteins 

Total 

folds 

259 

165 

141 

334 

53 

50 

85 

1086 

superfamilies 

459 

331 

232 

488 

53 

92 

122 

1777 

families 

772 

679 

736 

897 

74 

104 

202 

3464 

Table 2.3: Statistics for SCOP classification. 

S C O P 

The SCOP database organizes protein structures in a hierarchy according to 

evolutionary origin and structural similarity. The lowest level of the SCOP 

hierarchy includes individual domains, extracted from the PDB entries. Do

mains are grouped into families of homologues, for which the similarities in 

structure, sequence, and sometimes function imply a common evolutionary 

origin. Families containing proteins of similar structure and function, but for 

which the evidence for evolutionary relationship is suggestive but not com

pelling, form superfamilies. Superfamilies that share a common folding topol

ogy, for at least a large central portion of the structure, are grouped as folds. 

Finally, each fold group falls into one of the general classes. The major classes 

in SCOP are all a , all (5 , a+(3, a/(3 . and miscellaneous 'small proteins', 

which often have a small amount of helices and strands and which are held 

together by disulphide bridges. All a structural class includes proteins with 

only small content of strands, while all j3 structural class includes proteins 

with only small content of helices. Both a+(3 and a//3 classes include proteins 

with helices and strands. a+(3 contains the proteins with mostly antiparallel 
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Class helix content (%) strand content (%) 

All-a 

AU-/3 

a(3 

Irregular 

> 15 

< 15 

> 15 

< 15 

< 10 

> 10 

> 10 

< 10 

Table 2.4: Denned criteria by (Eisenhaber et al, 1996) for assignment of struc

tural classes based on the content of the corresponding secondary structure. 

strands, while a/'f3 includes proteins with mostly parallel strands (Nakashima 

et a/., 1986). Sometimes a+f3 and a/f3 classes are combined into a single a(5 

class (Eisenhaber et al, 1996). 

The SCOP release of September 2007 contained 34494 PDB entries, split 

into 97178 domains. The distribution of entries at different levels of the hier

archy is shown in Table 2.3. 

Nakashima's Structural Class Ass ignment 

This method, introduced by Nakashima et. al(Nakashima et al, 1986) con

siders five structural classes (Levitt and Chothia, 1976) (a, (5, a + f3, a/f3 

and "irregular"), and analyzes the relation of protein's structural class and its 

amino acid composition. 

In this method a 20-dimensional space is used to represent a protein via its 

amino acid composition. The frequencies of the 20 amino acids form the 20 

coordinates of a point representing a protein in this 20-dimensional space. The 

distribution of proteins in composition space is investigated and some criteria 

of assigning the structural class to a protein are defined, which were later 

adapted by Eisenhaber (Eisenhaber et al., 1996) for the case of four structural 

classes. Eisenhaber assumes that structural class is defined via secondary 

structure content according to Table 2.4. 
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2.1.4 Protein Sequence Characteristics 

Secondary structure content prediction is usually performed using an interme

diate step, in which the protein primary structure is encoded into its feature 

space representation. Existing content prediction methods use a limited num

ber of features to represent the protein sequence when compared to other 

structure prediction techniques. In this work protein features employed for 

content and structure prediction are aggregated to provide a more compre

hensive feature space representation of the protein sequences. In this section, 

the employed features are explained in detail. 

Index-base Attr ibutes 

The index-based properties used in this work include molecular weight, iso

electric point, hydrophobicity indices and 48 other index-based diverse amino 

properties analyzed by Tomii and Kenehisa (Tomii and Kanehisa, 1996). 

The molecular weight (MolW) of a protein sequence is the result of adding 

up of its amino acids' molecular weight values plus the weight of a water 

molecule ( M O I W H 2 O ) , which is approximately 18 daltons (Da). 

N 

(2.1) MolW = MO1WH 2 O + X ] M o l w ^ 

where N denotes the length of the protein sequence. Table 2.5 shows the value 

for MolW. 

The amino acid isoelectric point property (pi) shows the pH at which a 

molecule carries no electric charge and therefore it is stationary in an electric 

field (Nelson and Cox, 2000). Isoelectric point indices are shown in Table 2.5. 

The chemical properties of the amino acid side chain give the amino acid 

its character. Depending on the polarity of the side chain an amino acid can be 

hydrophobic or hydrophilic, which play an important role in protein structure 

and protein-protein interaction. Hydrophobic and hydrophilic molecules are 

also called nonpolar and polar molecules, respectively. Hydrophilic molecules 
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are charge-polarized and capable of establishing hydrogen bonds, which en

ables them to dissolve in water. Hydrophobic molecules are nonpolar and 

prefer neutral molecules and nonpolar solvents. In hydrophobic environment, 

these molecules cluster together and form micelles. In this work we are using 

three hydrophobicity indices by ( (Engelman et al, 1989) (EnH), (Eisenberg 

et al, 1984) (EH) and (Fauchere and Pliska, 1983) (FH)), see Table 2.5. 

It has been shown that similarities in physical, chemical, energetic and con

formational properties enable amino acids to conserve their specific ideal envi

ronments and spatial positions in the folded conformation of proteins (Prab-

hakaran and Ponnuswamy, 1979). Tomii and Kenehisa (Tomii and Kenehisa, 

1966) analyzed 48 diverse amino acid properties, which are shown to be in

volved in proteins stability. In this work, five out of above mentioned 48 amino 

acid index-based properties are used to build the model, i.e., average medium 

contact (Mc), coil tendency (P c), helix tendency (Ph), turn tendency (P t) , and 

average power to be at helix N-terminal (Pn). They are shown in Table 2.5. 

Property groups 

Property groups classify the AAs into groups related to specific properties of 

individual AAs or entire protein molecule. The properties that are considered 

in this thesis are summarized in Table 2.6. The composition of each group 

which is normalized with regard to the sequence length, gives a real number 

attribute. A short description of each group is given below. 

Hydrophobicity group: AAs can be categorized into different hydrophobic

ity groups (Lodish et al, 2000) according to their hydrophilic and hydropho

bic character. These characteristics vary depending on the polarity of the side 

chain. Hydrophilic amino acids with polar side chain are located in the surface 

of a water soluble protein. Hydrophobic amino acids stay away from aqueous 

environment and are slightly soluble or insoluble. They are found in interior 

parts of a protein. Hydrophobicity groups are shown in Table 2.6. 

R groups: In this group AAs are categorized based on their MolW, pi 

and hydropathy index (Hp) (Yang and Wang, 2003). Hp index combines hy-
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AA 

A 

C 

D 

E 

F 

G 

H 

I 

K 

L 

M 

N 

P 

Q 

R 

S 

T 

V 

W 

Y 

MolW 

71.0791 

103.1437 

115.0887 

129.1157 

147.1772 

57.0521 

137.1414 

113.16 

128.1792 

113.16 

131.1977 

114.104 

97.1171 

128.131 

156.188 

87.0784 

101.1054 

99.133 

186.2139 

163.1756 

pi 

6.01 

5.07 

2.77 

3.22 

5.48 

5.97 

7.59 

6.02 

9.74 

5.98 

5.47 

5.41 

6.48 

5.65 

10.76 

5.68 

5.87 

5.97 

5.89 

5.67 

EnH 

1.6 

2 

-9.2 

-8.2 

3.7 

1 

-3 

3.1 

-8.8 

2.8 

3.4 

-4.8 

-0.2 

-4.1 

-12.3 

0.6 

1.2 

2.6 

1.9 

-0.7 

EH 

0.62 

0.29 

-0.9 

-0.74 

1.19 

0.48 

-0.4 

1.38 

-1.5 

1.06 

0.64 

-0.78 

0.12 

-0.85 

-2.53 

-0.18 

-0.05 

1.08 

0.81 

0.26 

FH 

0.42 

1.34 

-1.05 

-0.87 

2.44 

0 

0.18 

2.46 

-1.35 

2.32 

1.68 

-0.82 

0.98 

-0.3 

-1.37 

-0.05 

0.35 

1.66 

3.07 

1.31 

Mc 

2.11 

1.88 

1.8 

2.09 

1.98 

1.53 

1.98 

1.77 

1.96 

2.19 

2.27 

1.84 

1.32 

2.03 

1.94 

1.57 

1.57 

1.63 

1.9 

1.67 

Pc 

0.71 

1.19 

1.21 

0.84 

0.71 

1.52 

1.07 

0.66 

0.99 

0.69 

0.59 

1.37 

1.61 

0.87 

1.07 

1.34 

1.08 

0.63 

0.76 

1.07 

Ph 

1.42 

0.7 

1.01 

1.51 

1.13 

0.57 

1. 

1.08 

1.16 

1.21 

1.45 

0.67 

0.57 

1.11 

0.98 

0.77 

0.83 

1.06 

1.08 

0.69 

Pt 

0.66 

1.19 

1.46 

0.74 

0.6 

1.56 

0.95 

0.47 

1.01 

0.59 

0.6 

1.56 

1.52 

0.98 

0.95 

1.43 

0.96 

0.5 

0.96 

1.14 

Pn 

1.59 

0.33 

0.53 

1.45 

1.14 

0.53 

0.89 

1.22 

1.13 

1.91 

1.25 

0.53 

0 

0.98 

0.67 

0.7 

0.75 

1.42 

1.33 

0.58 

Table 2.5: The values of AA indices that include molecular weight (MolW), 

average isoelectric point (pi), Engelman's (EnH), Eisenberg's (EH), and 

Fauchere-Pliskas (FH) hydrophobicity indices, and average medium contact 

(Mc), coil tendency (Pc), helix tendency (Ph), turn tendency (Pt), and aver

age power to be at helix N-terminal (Pn). 

drophobic and hydrophilic tendencies. Table 2.6 demonstrates R groups. 

Electronic groups: AAs can be classified based on their tendency to accept 

or donate electrons (Ganapathiraju et al, 2004). Amino acid Cysteine has 

special properties which results in categorizing this amino acid separately. 

Cysteine is a sulfur-containing amino acid, which enables it to play a key role 

in stabilizing extracellular proteins. Cysteine can react with itself to form an 

oxidized dimer by formation of a disulfide bond. Electronic groups are shown 
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groups 

R groups 

Hydrophobicity 

groups 

Other 

groups 

subgroups 

Nonpolar aliphatic 

Polar uncharged 

Positively charged 

Negative 

Aromatic 

Hydrophobic 

Hydrophilic basic 

Hydrophilic acidic 

Hydrophilic polar 

Charged 

Polar 

Aromatic 

Small 

AAs 

AVLIMG 

SPTCNQ 

KHR 

DE 

FYW 

VLIMAFPW 

YCG 

KHR 

DE 

STNQ 

DEKHRVLI 

DEKHRNT 

QSYW 

FHWY 

AG ST 

groups 

Exchange 

groups 

Other 

groups 

Electronic 

groups 

subgroups 

(A) 

(C) 

• ( D ) 

(E) 

(F) 

(G) 

Tiny 

Bulky 

Polar 

uncharged 

Electron donor 

Weak Ed 

Electron acceptor 

Weak Ea 

Neutral 

Special AA 

AAs 

C 

AGPST 

DENQ 

KHR 

ILMV 

FYW 

AG 

FHWYR 

NQ 

DEPA 

VLI 

KNR 

FYMTQ 

GHWS 

C 

Table 2.6: Amino acid property groups. 

in Table 2.6. 

Exchange groups: Unlike the other groupings that are based on amino acid 

physicochemical attributes, exchange groups are supported by statistical stud

ies, see Table 2.6. In exchange groups AAs are clustered based on accepted 

point mutation to represent conservative replacements through evolution. Mu

tation replaces one amino acid with another one due to mostly natural selection 

(Wang et al, 2000). 

Other groups: Despite the overlap between groups, each group is considered 

as a separate attribute. Other groups are defined based on molecular weights, 
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AA Associated chemical groups 

A 

C 

D 

E 

F 

G 

H 

I 

K 

L 

M 

N 

P 

Q 
R 

S 

T 

V 

w 

Y 

CH CO NH CH3 

CH CO NH CH2 SH 

CH CO NH CH2 CO COO~ 

CH CO NH CH2 CH2 CO COO~ 

CH CO NH CH2 

CH2 CO NH 

CH CO NH CH2 

CH CO NH CH2 

CH CO NH CH2 

CH CO NH CH2 

CH CO NH CH2 

CAROM CHAROM CHAROM CHAROM CHAROM CHAROM 

CH2 CAROM CHAROM N CHAROM NH 

CH CH3 CH3 

CH2 CH2 CH2 NH+ 

CH CH3 CH3 

CH2 S CH3 

CH CO NH CH2 CO C NH2 

CHRING CO NHRING CH2RING CH2RING CH2RING 

CH CO NH CH2 

CH CO NH CH2 

CH2 CO C NH2 

CH2 CH2 NH C NHj 

CH CO NH CH2 OH 

CH CO NH CH CH3 OH 

CH CO NH CH CH3 CH3 

CH CO NH CH2 CAROM CAROM CAROM NH CHAROM CHAROM CHAROM 

CHAROM CHAROM 

CH CO NH CH2 CAROM CHAROM CHAROM CHAROM CHAROM CAROM OH 

Table 2.7: Chemical groups for amino acids 

that is, tiny AAs with weight less than 80 Da, small AAs between 80 and 

101 Da, and bulky AAs (more than 120 Da) (Hobohm and Sander, 1995), see 

Table 2.6. 

Chemical groups: Chemical groups are defined based on the composition of 

a chemical group that constitute the side chains (Ganapathiraju et at, 2004). 

Table 2.7 shows the chemical composition of AAs. 
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2.1.5 Secondary Structure Prediction 

The knowledge of the protein structures helps to learn about their possible 

function and also their interactions in cellular processes. For example, knowl

edge of the structure of normally functioning proteins can help us to under

stand how defective protein structures can cause diseases. Knowing how an 

amino acid chain folds in three dimensional shape, we can conclude which 

amino acids may be involved in an interaction with other molecules. 

A branch of proteomics aims to bridge the gap between the large number of 

determined sequences and the smaller number of determined structures using 

both protein structure determination methods and bioinformatics techniques. 

The reason for the gap lies in the experimental methods which have been used 

to solve the protein structure. Two main experimental methods are Nuclear 

Magnates Resonance (NMR) spectroscopy and X-ray crystallography. Both 

mentioned methods are relatively expensive, time consuming, and thus they 

can not provide a high throughput experimental structure determination. 

Computational methods to predict the protein structures allow us to learn 

the structure of the protein directly from the protein sequence that has already 

been obtained. Community-wide experiments such as Critical Assessment of 

protein Structure Prediction (CASP) biennially evaluates the progress of the 

computational techniques in protein structure prediction. 

The computationally intractable problem of predicting the 3D structure of 

proteins has motivated the development of knowledge based approaches that 

solve simpler intermediate problems such as the prediction of the protein sec

ondary structure. It seems obvious that the secondary structure prediction 

should be easier than the tertiary structure prediction. One way to predict 

tertiary structure might be to predict helices and strands first and then to 

assemble them. Secondary structure prediction is a problem of moderate com

plexity. The problem of predicting secondary structure has been tackled us

ing various machine learning algorithms, including neural networks (Rost and 

Sander, 1993; Jones, 1999; Pollastri et al, 2002; Przybylski and Rost, 2002; Lin 
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et al., 2005), hidden Markov models (Bystroff et al, 2000), support vector ma

chines (SVMs) (Ward et al, 2003; Guo et al, 2004; Hua and Sun, 2001; Birzele 

and Kramer, 2006) and "jury-of-experts" based methods (Montgomerie et al, 

2006). While a significant body of research has been dedicated to secondary 

structure predictions, current state-of-the-art prediction techniques are able 

to guarantee accuracy of just above 80%. 

In our work, we use two complementary secondary structure prediction 

methods, PROFsec (Rost and Sander, 1993) and PSIPRED (Jones, 1999), 

and thus this section focuses on these two methods. 

A generic three-layer sequence-to-structure neural network design that is 

commonly used to predict secondary structure (Lesk, 2002) is shown in Fig

ure 2.7. 

Sequence 

Input layer 

Hidden layer 

Output layer 

Figure 2.6: The generic model of a three layer sequence-to-structure neural 

network. 

- The input layer takes care of a sliding n-residue window in the sequence 

to predict the structure of the central residue and then it moves one 

residue forward. Each of n residues in the sliding window corresponds 

to 20 nodes in the input layer. 

20 

each unit of input layer is > 
' connected to every unit of i 

hidden layer. 

each unit of hidden layer is 
connected to all three units of 
hidden layer. 



- The hidden layer contains around 100 nodes and each node in this layer 

is fully connected to all nodes in the input and output layers. 

- The output layer contains three nodes that predict the structure of the 

central residue as helix, strand or coil conformation, respectively. 

Most of the neural network-based methods for secondary structure pre

diction feed the input layer not just with the amino acid characteristics, but 

with a profile generated from a multiple sequence alignment. Recent neural 

network based secondary structure prediction methods use a second level of 

prediction to identify correlations among neighboring predictions. In this level 

the predictions of several neighboring residues using another neural network 

are combined to generate the final prediction. 

In both PROFsec (Rost and Sander, 1993) and PSIPRED (Jones, 1999), 

the evolutionary based information is used as input to the neural network and 

both of these methods use a second level of prediction, in which a second 

neural network is used to filter successive outputs from the main network. 

P R O F s e c 

- Input to the first level (sequence-to-structure) consists of two contribu

tions: local information which is taken from a 13 residue long sliding 

window containing a 13-21 matrix extracted from PSSM (the extra in

put in each group is used to indicate that the window spans a chain 

terminus), and global information e.g., percentage of each amino acid 

in protein. This way PROFsec uses more than 1000 input nodes in 

first neural network. Output layer in first neural network contains three 

nodes. 

In the second neural network (structure-to-structure), Profsec just takes 

into account the predictions of the adjacent residues which leads to 3 • 4 

units as inputs (the extra input in each group is used as spacer). There 

are three neurons in output layer that correspond to the predicted 3 

structures. 

21 



P S I P R E D 

- This method uses the position-specific scoring matrix (PSSM) based in

formation from PSI-BLAST (Altschul el al, 1997) as input to the neural 

network. 

- The neural network in the first level (sequence-to-structure), consists of 

a 15 • 21 input nodes, which receive the information which is taken from 

a 15 residue long sliding window over PSSM (the extra input in each 

group is used to indicate that the window spans a chain terminus). The 

hidden layer consists of 75 nodes and the output layer has three units. 

- The network in the second level has an input layer comprising of 60 input 

units, divided into 15 groups of four (the extra input in each group is used 

to indicate that the window spans a chain terminus), which takes into 

account the correlations among all 15 predictions from the first level. 

The hidden layer has 60 nodes and the output layer consists of three 

neurons. 

2.1.6 Secondary Structure Content 

The knowledge about the amount of protein secondary structure elements or 

more specifically secondary structure content is yet another simplification in 

the characterization of the protein structure. 

Considering 3-state secondary structure for each amino acid, i.e., the struc

ture S € {helix(H), strand(E), coil(C)} for each protein sequence, we define 

ns to be the number of A As having the structure S. The protein secondary 

structure content of the structure S for a protein of length N is defined as: 

(2-2) 11 = | . 

Fig. 2.7 demonstrates the sequence and secondary structure of ln0w_B protein. 

The helix content (/^) for this protein equals 0.27, while l^ and ll
c are 0.09 

and 0.64, respectively. 
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Sequence PTLLGFHTASGKKVKIAKESLDKVKNLFDEKEQ 
DSSP CHHHCCEECCCCECCCCHHHHHHCCCCCCCCCC 

Figure 2.7: The sequence (top line) and secondary structure (bottom line) of 

InOwJB protein. 

In many applications, the crucial information about the involved proteins 

is represented by the protein structure content. The content prediction con

stitutes an important problem with a large number of applications in several 

areas of modern protein science. Some examples of these are structural class 

prediction (Kurgan et al, 2006; Kurgan and Chen, 2007) and analysis of in

teractions between the CapZ protein and cell membranes (Smith et al, 2006). 

The content computed from the predicted secondary structure or true (actual) 

secondary structure was also used in the prediction of coding and non-coding 

RNAs (Liu et al, 2006), analysis of prion proteins (Concepcion et al, 2005), 

prediction of folding rates (Ivankov and Finkelstein, 2004; Gong et al, 2003; 

Gromiha and Selvaraj, 2008), distinguishing between enzyme and non-enzyme 

proteins (Dobson and Doig, 2008), prediction of enzyme classes (Dobson and 

Doig, 2005) and prediction of folding transition-state position (Huang and 

Cheng, 2007). Thus, improving accuracy of the protein structure content 

would have large impact on a variety of bioinformatics applications. 

2.1.7 Evaluation Procedures for Content Prediction Meth

ods 

The structural content prediction methods have been evaluated using several 

approaches. 

The re-substitution evaluation method assesses the prediction model on the 

same dataset used for training. In k fold cross validation assessment method, 

the training set is divided into k folds, training is performed using k — 1 folds 

and the model is tested on the remaining fold. This procedure is repeated k 

times and the average prediction error is reported. 
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The quality of prediction is measured with the average absolute error. The 

absolute prediction error for a given structure S E {H,E,C} and protein 

sequence is defined as the absolute value of the difference between the actual 

content Zs and the predicted content 1$, i.e., e = [Zg —1$\. The average absolute 

error is the average of the absolute errors for the individual sequences taken 

over the whole data set. 

When comparing two methods with average absolute errors e,\ and £2, 

where e2 < ei, we say that the second method delivers the improvement of 

(ei — e2)/ei • 100% according to the error rate reduction formula. 

A paired t-test is used to compare two population means, where there are 

two samples in which the observations in one sample can be compared to the 

observations in the other sample. Suppose the structural content of a dataset, 

composed of n proteins, is predicted by two content prediction methods (called 

x and y). We define Zg, Zg and Zs to be the predicted content by methods x and 

y, and the actual content for a given structure S E {H,E,C}, respectively. 

By eg and eg, we denote the difference between the actual content Zs and the 

predicted content by methods x and y, respectively, i.e., eg — Zs — Zg and 
e s = 's ~ ^s- The procedure to compute the paired t-test on the predicted 

content by methods x and y is as follows: 

- Calculate the difference of the prediction errors of two content prediction 

methods (x and y) for the ith protein ds,i = eg i — eg v 1 — 1, 2 , . . . , n. 

- Calculate the mean difference, i.e., cZg = - ^"=1 ^s,t-

- Calculate the standard error: 

SE« = 
1 1 " 

Jn \ n — 1 *-^ 

Calculate the t-value: 
ds 

T 
SES 

This statistics follows a distribution on n — 1 degrees of freedom. 
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- Use tables of the distribution to compare the calculated value for T to 

the £„_i distribution. This will give the p-value for the paired t-test. 

- If the p-value is smaller than 0.05, the difference between predictions of 

the two methods is statistically significant. 

2.2 Methods 

2.2.1 Support Vector Machine Regression 

Support vector regression (SVR) which was introduced by Vapnik (Vapnik, 

1998) is a statistical technique widely used for a larger variety of classification 

and prediction tasks. The basic problem setup is prediction of data from 

unknown distribution based on a number of observations and subject to a 

number of constrains. The observations can be associated with samples from 

the test set while the function which solves the regression problem can be used 

to predict the results on the test set. 

General Regression Problem 

Consider a set of I observations (x1, y%), i = 1,2,... ,1 where ? e R",2/! 6 R 

and assume that this set is generated from an unknown probability distribution 

P(x, y). Consider a class of functions 

F = {f\f : Kn ->• R} . 

The basic regression problem is to minimize a risk functional 

R{f) = J L{y-f{x),x)dP{x,y) 

where L(y — f(x),x) is a cost function indicating the penalty for difference 

y—f(x) at the point x (Smola, 1996). Since the distribution P(x, y) is unknown 

one can also calculate the empirical risk function 

i ' 

i2emp = y £ W - / ( £ i ) , f i ) 
i=\ 

25 



and the bound risk R as Remp + Rgen where Rgen is the upper bounds gener

alization error (Vapnik, 1998.). 

Depending on the application several risk functions are used. Some exam

ples include 

- L{rf) = rf quadratic cost function resulting in the least square minimiza

tion of the empirical risk. 

- e-precision approximation 

oo, if 77 < —e 

L(rj)e= { 0, if 77 G [-e,e] 

00, if rj > e . 

which indicates that deviation of no more than e is not penalized, on the 

other hand deviation to more than e is penalized with infinite cost. 

L inea r Regress ion 

Consider a set of linear functions 

F = {f\f = {u, x) + b, Q e Mn, b e R} . 

and minimize (Vapnik, 1998) 

G(u,b) = \\W2 

subject to 

e - (fix1) - yl) > 0 for i = l,2,...,l 

e-(yi-f(xi))>0 for i = l,2,...J 

where f(x) = (u,x) + b. 

Considering a more general problem where e, are possible deviations for 

each point i we minimize 

1 l 

j = i 
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subject to 

f(xi)-yi <m+£i for i = l,2,...,I 

y ' - H ^ ^ v t + e; for i = l,2,...,l 

Vi,Vl>0 i = l,2,...,1 

where f(x) = (Co, x) + b and C is a complexity parameter. 

WEKA software (Witten and Frank, 2005) is used to implement SVR al

gorithm (Smola, 1996) to solve regression tasks. 

Assume that the set of functions has a basis / i , / 2 , . . . , fn i.e. any function 

/ can be represented as 
n 

Then solving optimization problem is equivalent to finding coefficients oij which 

determine the optimal function / . The optimal solution of the above problem 

is often expressed as a linear combination of (x1, aP), however this can be gen

eralized to arbitrary functions K(x^, a?'), kernel functions. 

Nonlinear regression, general kernels 

Some of the popular kernels include (see (Vapnik, 1995)) 

- Polynomial 

K{x,x') = {{x,x')Y 

- RBF 

K(x,x') = e x p ( - | | x - : r / | ^ / ( 2 a 2 ) ) 

- two-layer feed forward neural network 

K(x, x) = tanh(«:(i;, x) — 9) 

2.2.2 Principal Component Analysis 

Principal Component Analysis (PCA) is an orthogonal linear transformation of 

a set of data vectors (measurements) that brings the data to a new coordinate 
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system such that the greatest variance by any projection of the data comes to 

lie on the first coordinate (called the first principal component), the second 

greatest variance on the second coordinate, and so on. 

Consider an M x N matrix X which consist of N M-dimensional data 

vectors (columns). Assume that X has zero empirical mean. Then the PCA 

transformation is given by matrix W such that 

YT = XTW = Vt 

where V12WT is a singular value decomposition (SVD) of XT. 

PCA can be used for dimensionality reduction of the data i.e. by keeping 

these characteristics of the data set which contribute most to the variance 

and ignoring higher order components which do not contribute much to the 

variance. This property of PCA can be important for feature selection prop

erties where one would like to select a small set of features capturing the most 

important properties of the data. 

2.2.3 Correlation Coefficient 

Correlation between two random variables X and Y is defined as 

E(XY) - E{X)E(Y) 
PX Y — ? = ^ 7========= 
^ ' y/E{X*) - {E{X))*y/E{Y*) - {E(Y)f 

where E(-) denotes expectation. Correlation pxy £ [—1,1] is a measure of 

independence between the variables. For normal random variables pxy = 0 is 

equivalent to the statement that X and Y are independent. Conversely, large 

absolute value of px,Y shows strong dependence between X and Y. 

If a series of n measurements from X and Y is available written as Xi 

and t/i for i — 1, 2 , . . . , n then Pearson-product moment correlation coefficient 

statistics can be used to estimate the correlation px,Y- The Pearson coefficient 

can be written as 

En r-M! \-^n 
r = i = i Wi - L i = i Xi L,-=i VJ 

Vn Er=i xf ~ (EiLi Xi)2y/n ELi y? - (EILi v*)2 
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2.3 Datasets 

EVA (http://cubic.bioc.columbia.edu/eva/) is a web-based server which con

tinuously assesses the accuracy of protein structure prediction methods. Cur

rently EVA evaluates several automated servers for the secondary structure, 

residue contact, protein structure modeling, and fold recognition prediction. 

Everyday, EVA downloads the protein sequences of the newest experimentally 

determined structures that are added to PDB. The sequences are sent to each 

prediction server and then the prediction results are collected. Every week, the 

assembled results are compared to the experimental structures, the evaluation 

is updated and the results are published on the EVA web pages. 

We use the EVA server to construct the training, evaluation, and test sets 

required to design and empirically evaluate the proposed LAMICA method. 

The EVA server was selected because it provides unbiased predictions of several 

representative secondary structure prediction methods. In addition, EVA only 

accepts targets that show no significant sequence similarity to proteins known 

at the time when the structure was solved for the target (Rost and Eyrich, 

2001; Birzele and Kramer, 2006). 

Our training set, EVA977, is composed of 977 sequences that were re

leased in EVA between April 2000 and April 2002. All our preliminary tests 

and parameter optimizations have been performed on the evaluation set of 149 

proteins, named EVA 149, containing EVA targets added to the server between 

May 2002 and January 2003. Our test set, EVA150, includes 150 proteins that 

were published on EVA between January 2004 and July 2005. The latter set 

was compiled by Birzele and Kramer (Birzele and Kramer, 2006). Predic

tion results of PSIPRED, PHD (Rost, 1996), PROFsec, and PG (Birzele and 

Kramer, 2006) are available for EVA 150. A fair comparison between the con

tent prediction methods should be based on a blind testing setup. Therefore, 

we constructed our training set from the proteins released in EVA before the 

proteins included in the evaluation and the test sets. 
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Chapter 3 

Related Works 

In Section 2.1.2, eight-state protein secondary structure was introduced. Sev

eral researchers investigated eight-state secondary structure content prediction 

(Chou, 1999; Cai et al, 2003; Liu and Chou, 1999; Lee et al, 2006). Eight-state 

secondary structure can be reduced to three-state secondary structure using 

DSSP defined assignment. In this research we focus on three-state protein 

secondary structure content prediction. 

The prediction of secondary structure content is usually performed through 

an intermediate step, in which the protein sequences are converted into a fixed 

set of features. Using feature values and an established prediction model, the 

protein structural content is predicted. 

As the first at tempt to predict the three state (helix, strand, and coil) con

tent, Krigbaum and Knutton introduced a multiple linear regression (MLR) 

method, which applied the amino acid (AA) composition of the protein se

quence as the input (Krigbaum and Knutton, 1973). Subsequent attempts 

used either neural networks or MLR models and combined them with a vari

ety of other features computed from the protein sequence. Examples include 

the molecular weight of a protein (Muskal and Kim, 1992), auto-correlation 

functions based on hydrophobicity (Zhang et al, 1998, 2001; Lin and Pan, 

2001), pair-coupled composition (Chou, 1999; Liu and Chou, 1999; Cai et al, 

2003), composition moment vector (Ruan et al, 2005), evolutionary infor-
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mation encoded using PSI-BLAST profiles (Lee et al, 2006), and various 

physicochemical properties of amino acids combined with their composition 

(Homaeian et al, 2007). Several researchers also investigated the impact of a 

priori knowledge of structural classes on the quality of the content prediction 

(Zhang et al, 1998b, 2001). However, the scope of the latter two methods was 

limited to the proteins with a known structural class. 

In this work, our results are compared with the predictions of three content 

prediction methods, which we discuss in detail. The first method is a primary 

sequence based technique (Zhang et al, 1998) that uses MLR. The second 

method is also a MLR based technique, but it uses the knowledge of structural 

classes (Zhang et al, 2001), and the third method is the most recent predictor 

that combines several amino acid physicochemical properties (Homaeian et al, 

2007). 

The MLR based content prediction method of (Zhang et al, 1998) uses the 

knowledge of protein primary sequence. In this method, the amino acid compo

sition (defined as Xi, i = 1, 2 , . . . , 20) and the auto-correlation functions of the 

hydrophobicity indices of residues along the sequence, were used for secondary 

structure content prediction. It was previously shown that the amino acid 

composition is important to define the structural classes (Nakashima et al, 

1986; Chou, 1995), and for the secondary structure content prediction (Krig-

baum and Knutton, 1973; Muskal and Kim, 1992; Eisenhaber et al, 1996; 

Zhang et al, 1996). 

The autocorrelation function of each sequence denoted by pn, using the 

hydrophobicity index proposed by (Fauchere and Pliska, 1983), is defined by: 

EW-n 

(6.L P n = ^ — n = 1,2, . . . , 1 0 . 
N — n 

where pj is the hydrophobicity index (Fauchere and Pliska, 1983) for the j t h 

residue (see Table 2.5) in the primary sequence and N is the protein sequence 

length. For convenience, the auto-correlation functions pn (n = 1 ,2 , . . . , 10) 

defined above are denoted by X21, Xn-, • • • ,^30, respectively. 

The central hypothesis of the technique proposed by (Zhang et al, 1998) 
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is that helix and strand content denoted by fa and fp, respectively, are linear 

functions of x\, x2 , • • •, £30, which are defined by: 

30 

(3.2) fa = a0 + ^2aiXi i = 1,2,. . . , 3 0 , 
i = l 
30 

(3.3) fp = b0 + J2b^ i = l,2,.. . ,30. 

where a* and 6,- for % — 0 , 1 , . . . , 30 are the regression coefficients, which are 

determined once the regression model is set up on the data in the training set. 

The following equations show two regression formulae for fa and fp, pro

posed by (Zhang et al, 1998): 

(3.4) fa = 1.942xi + O.OO8X2 + 0.020x3 + 0.231x4 + 0.055x5 - 0.792x6 

+ 0.671x7 - 0.212x8 + 1.121x9 + 1.070x10 + 1.029xn + 0.661x12 

- 0.934x13 + 1.038xi4 + 0.637xi5 + 0.042x16 - 0.711xi7 - 1.455xi8 

- 1.773x19 + 0.796x20 + 0.105x2i - 0.377x22 + 0.156x23 + 0.301x24 

- 0.073x25 - 0.076x26 + 0.215x27 + 0.093x28 - 0.025x29 - 0.139x30, 

(3.5) fp = 1.254xi - 0.202x2 - 0.012x3 + 0.480x4 + 0.752x5 + 0.763x6 

- 1.671x7 + 0.665x8 - 0.461x9 + 0.402xi0 + 0.025xn - 0.514xi2 

- 0.279xi3 - 0.422xi4 + 0.219xi5 + 0.660x i6 + 1.397xi7 + 2.401x18 

+ 2.453x19 + 0.172x2o - 0.184x2i + 0.340x22 - 0.171x23 - 0.203x24. 

The MLR based content prediction method of (Zhang et al, 2001) uses 

the prior knowledge of protein secondary structure classes, which is shown to 

improve the content prediction. Protein secondary structure class and content 

are strongly related to each other. We note that the protein class prediction is 

difficult and the state-of-the-art class prediction methods achieve just about 

80% accuracy (Kurgan et al., 2008b). 

In this study similarly to the above mentioned method, sequences were 

represented by the amino acid composition and the auto-correlation functions 
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class content 

fQ=0.515-1.758 xs-3.289 x13+1.038 xi + 1.456 x10 
All a 

^=-0.002+0.214 x17+0.156 x2+0.053 Xi+0.012 x2i 

fa=0.033+0.051 X29+0.789 x n -0 .139 x2-0.350 x13 

All (3 ^=0.458-0.678 xi3-0.109 x2i-0.171 x2-0.140 x23+0.949 x18 

-1.026 x7 

fa=0.297+0.685 x1 0+0.143 x24-0.239 x2+0.462 xj-0.428 x12 

-0.364 x20-0.594 x17+0.655 x8-0.287 x16-1.599 x13 
af3 

^=0.199+0.676 xl7+0.782 x10-0.036 x24+0.555 x9-0.224 X l 

-0.246 xs+0.773 x18 

Table 3.1: Regression formulae for helix and strand content prediction of pro

teins with known structural classes 

of the hydrophobicity indices (Fauchere and Pliska, 1983) of residues along the 

sequence. The main difference between (Zhang et al, 2001) and (Zhang et al, 

1998) is that separate MLRs were trained for a, (3 and af3 structural classes 

(defined in SCOP). Considering the structural class of each protein sequence, 

this method introduces two regression formulae for helix and strand content 

denoted by fa and fp, which is shown in Table 3.1: 

The other MLR based content prediction method, which is called PSSC-

core (Homaeian et al, 2007), uses a set of amino acid physicochemical prop

erties for each of the helix and strand content predictions (see Section 2.1.4 

for the common amino acid properties definition). This method uses a feature 

selection method, which first selects the feature with the highest correlation 

coefficient value with the content value and then the method proceeds by 

adding one feature at a time provided that the feature leads to a more accu

rate prediction model. PSSC-core represents additional features for the strand 

content prediction to cover long range interactions that are characteristic for 

/3-sheets. These indices are based on probability distributions of amino acid 

pairs (A\ and Aj), which belong to two strands connected by hydrogen bonds 
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to form a sheet. In addition, a set of polypeptide composition based features 

are proposed by PSSC-core, which is defined to find a set of polypeptides of 

the same length that are frequently observed in each of the helix and strand 

structures. 
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Chapter 4 

Proposed Prediction System 

4.1 Overview 

To construct novel features for our method, we investigated the quality of 

information retrieved from the predicted protein secondary structure with re

spect to the content prediction. Our study of several structure prediction 

methods reported on the EVA server (Rost and Eyrich, 2001) shows that the 

quality of the predicted helix and coil content varies with the length of the 

protein. While the majority of the secondary structure prediction methods 

have high helix and coil content error on short protein sequences, some meth

ods, for example PROFsec, are characterized by the prediction quality that is 

less dependent on the protein length. 

Fig 4.1 shows the helix and coil content prediction error rate of PSIPRED 

and PROFsec as a function of protein length. The experiment was performed 

on the EVA977 data set. The results indicate that , although PSIPRED has 

lower absolute average error of content, PROFsec showed better performance 

for short protein sequences. In other words, the PROFsec-based predictions for 

protein secondary structure are of higher quality for short protein sequences, 

while PSIPRED-based predictions are better for long sequences. Therefore, to 

improve the prediction of the helix and coil content, we classify the proteins 

into two categories: long and short. We also define a parameter N0 to be the 
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PSIPRED 
PROFsec 

80 100 120 

sequence length 

Figure 4.1: Comparison of the content error of different prediction methods as 

a function of protein sequence length. 

length separation threshold. The error curves for PSIPRED and PROFsec 

shown in Fig 4.1 cross at 40 for both the helix and coil predictions, suggesting 

that iV0 should equal 40. These two curves might also cross for several length 

values larger than 40 (depending on the data set), but the difference between 

the two errors is not significant for larger lengths (see Fig 4.1). 

Therefore, in the proposed algorithm, we use the PROFsec prediction to 
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calculate structural features for proteins of length smaller or equal to 40. For 

seqiiences longer than 40 we calculate features from PSIPRED prediction. We 

construct two separate learning models, one trained on short sequences, the 

other trained on long sequences. During the actual prediction we are using 

the short sequence model to predict the content of the short input sequences 

and the long sequence model to predict the content of the long ones. 

4.2 Feature Generation 

During the feature generation process, each input protein sequence is encoded 

into a vector of numbers (feature vector). Each feature is computed according 

to some property of the corresponding protein. 

4.2.1 Structural features. 

We compute a number of structural features using secondary structure predic

tion result of PROFsec (short sequences) or PSIPRED (long sequences). We 

consider 3-state prediction for each amino acid, i.e., the predicted structure 

denoted by S can be helix (H), strand (E) or coil (C). We construct structural 

features according to (Chen and Kurgan, 2007) and (Kurgan et al, 2008), 

where these features were used to address protein fold prediction and struc

tural class assignment. For each protein sequence, we define nJ
s to be the 

number of segments of length j having predicted structure S. For example, n^ 

denotes the number of HH pairs in a predicted secondary structure. By Ts, 

we indicate a total number of segments in a protein sequence with predicted 

structure S. The range for the index k was defined by (Chen and Kurgan, 

2007) and (Kurgan et al, 2008) based on the average and standard deviation 

of segment sizes in the training set. Let us define normalized segment counts 
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as 
V 2 0 nj 

(4-1) N*= 7= f c c Ar = 2,3,...,20, 

T 2 0 nj 

(4-2) N* = %&h^ * = 2 , 3 , . . . , 2 0 , 

(4.3) JV* = : | ± J J * £ = 3,4,...,20. 

Here, the shortest helix segment is assumed to include at least three residues. 

The count of coil segments is normalized by the total number of all segments 

while the counts of strand and helix segments are normalized by the total 

number of strand and helix segments. These different normalizations aim 

to accommodate for the proteins that may not include any strand and helix 

segments, respectively. We define M$ to be the length of the longest segment 

having structure S in the protein sequence. By mg, we denote the average 

length of segments with structure S. The normalized maximum and average 

segment lengths for a protein of length iV are given by 

(4.4) M s = 

(4.5) ms 

Another group of features called composition moment vectors are used 

to quantify position specific contents. Let ng be the number of occurrences 

(frequency) of S in the predicted protein secondary structure and nsj be the 

index of the jth occurrence of the structure S. The composition moment vector 

of order k, CMV| , is defined as 

V " s nk 

(4.6) CMVS = - ~ J = 1 S'J A; = 0 , 1 , . . . , 5. 

For k = 0, CMV reduces to a composition vector (CV), where CVs is equiva

lent to the secondary structure content. 

4.2.2 Sequence based features. 

Several studies pointed out that similarities in physical, chemical, energetic 

and conformational properties enable AAs to conserve their ideal environments 

Ms 

ms 

N' 
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and spatial positions in the folded conformation of proteins (Prabhakaran and 

Ponnuswamy, 1979). Therefore, careful construction of physicochemical fea

tures, which are able to capture the essence of conformational environments, 

may provide invaluable information for the protein content prediction. To gen

erate the first subset of sequence based features, we considered 48 diverse AA 

properties analyzed by Tomii and Kenehisa (Tomii and Kanehisa, 1996). Also, 

some other AA characteristics, like hydrophobicity indices (Engelman et al, 

1989), (Eisenberg et al., 1984) and (Fauchere and Pliska, 1983), molecular 

weight and isoelectric point indices, were examined, see Table 2.5. These fea

tures are known to improve content prediction (Homaeian et al, 2007; Zhang 

et al., 2001). Let k = 1, 2 , . . . , 53 index the mentioned 53 amino acid prop

erties. We denote the value of the property k of the j>th amino acid in the 
(k) 

protein sequence by p,- . For each property k, we define the autocorrelation 

pn (with shift n), as 

spN-n (fc) (fc) 

(4-7) p{k) = ^ P L 3 ± l n = l,2,...,6. 
1\ — n 

We denote the average (mean), and the standard deviation of the amino acid 

property k over the protein sequence by p^ and a^k\ respectively 

•^yv (fc) 

(4.8) pW = 1=^h^ 

(4.9) o^ = 

N 
1 " 

i2>; N _ 
3 = 1 

(fc) _p-(*0)2 

We use equations (4.7) and (4.9) to calculate sequence based features from 

the AA sequences. 

The second subset of sequence based features is generated from the AA 

groups, i.e., hydrophobicity, exchange, electronic, chemical, side chain (or R) 

and the other groups. For each protein sequence, we calculate the number 

of AAs that belong to a particular group. Detailed discussion, definition, 

and motivation for these groups can be found in (Ganapathiraju et al., 2004; 

Hobohm and Sander, 1995). 
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The third subset of sequence based features comprises the composition 

vector, CV, and the composition moment vectors of the first and the second 

degree, CMV1 and CMV2 (Ruan et al, 2005), defined by 

Yn* nk-
(4.10) C M V f = , J~l lJ fc = 0,1,2, 

Uto(N-d) 

where n^ is the jth position of the ith. AA, i = 1, 2 , . . . , 20 in the protein. The 

value rii is the frequency of i th AA in the sequence, and k is the order of the 

CMV. For k = 0, CMV reduces to CV. CVs is equivalent to the percentage of 

each A A in the primary sequence, while CMV takes into account the position 

of each AA in the sequence. 

4.3 Feature Selection 

The feature generation process described in Section 4.2 produces a feature 

vector composed of 552 feature values for each protein sequence. Two sets of 

feature vectors are generated, one for proteins of length smaller or equal to A^ 

and the other for proteins of length larger than N0. For each set, we perform 

an independent feature selection such that two distinct learning models are 

created: one for short proteins and the other for long proteins. We perform a 

two-stage feature selection aimed at increasing predictive performance of the 

model and decreasing the risk of overfitting. In the first step, the Pearson 

correlation coefficient between each feature and the class label (content value) 

in the training set is computed using the EVA977 data set to find the strength 

and direction of a linear relationship between each feature and the secondary 

structure content. We note that each feature is evaluated independently to 

minimize the risk of overfitting of this large set of features into the applied 

data sets. We define a feature to be significant if the absolute correlation 

coefficient between the feature and secondary structure content is higher than 

a selected threshold p. Fig. 4.2 illustrates the number of features selected in the 

first stage as a function of the threshold p. The numbers of selected features 
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calculated for five values of p = 0.4,0.5,0.6,... ,0.8 are given in Fig. 4.2(a) for 

short sequences and in Fig. 4.2(b) for long sequences. 

Figure 4.2: Comparison of number of selected features as a function of cor

relation coefficient in helix and coil content; The numbers on the top of the 

bars show the average absolute content prediction error for the models based 

on that corresponding feature set, which were trained on the EVA977 data 

set and tested on the EVA149 data set. (a) for short sequences; (b) for long 

sequences. 

Bars located in the right side of the correlation coefficient threshold, corre

spond to features selected for the coil content prediction model, and the bars 

positioned on the left side correspond to the features selected for helix content 

prediction. The lighter shading in the upper part of each bar corresponds 

to the number of the selected structural features, and the darker shading in 

lower part of the bar corresponds to the number of the selected sequence based 
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features. The Figure shows that the majority of selected features are based 

on the predicted secondary structure, but the sequence based features are still 

shown to provide useful input. The numbers on the top of the bars show the 

average absolute content prediction error for the models based on that corre

sponding feature set that were trained on the EVA977 data set and tested on 

the EVA149 data set. We observe that the threshold p = 0.6 gives the lowest 

error for the prediction of the helix content, while, for the coil content predic

tion, the optimal value of the correlation threshold was found to be p = 0.5. 

We note that the feature groups corresponding to the optimal threshold values 

contain both the structural features as well as the sequence based features. 

In the second stage of the feature selection, we further reduce the dimen

sionality using eigenvalue ranking, which is applied to the feature set selected 

in the first stage. The goal of this process is to select a relatively small group of 

features that are weakly correlated with each other and, at the same time, that 

would provide better prediction capability than the full set could. We com

pute a covariance matrix for the feature set selected at the first stage and find 

the corresponding eigenvectors and eigenvalues. We remove the least valuable 

features, i.e., the one which when removed would result in the lowest reduction 

of variance in the data set and we repeat this process. This continues until 

we obtain a set of features for which removal of extra features would worsen 

the content that gives the most accurate content prediction on the evaluation 

data set, EVA149. 

Table 4.1 shows the final number of selected features after stage two for 

the helix and coil content prediction, and for short and long protein sequence 

models. The sequence based features include average coil tendency (P c), aver

age turn tendency (Pt), and average helix tendency (Ph) (Chou and Fasman, 

1978), the average medium contact (Mc) and the power to be at helix N-

terminal (Pn) in each protein sequence (Nakai et al, 1988). These features 

belong to 48 diverse amino acid properties, which were shown to be correlated 

with the stability of the protein (Tomii and Kanehisa, 1996). The selected 

structural features include the helix content ( C V H ) , coil content (CVc), com-
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Pred. Seq. Selected features 

target 

helix 

content 

coil 

content 

length 

N < 4 0 

N > 40 

N ^ 40 

N > 40 

Total # 

3 

5 

6 

2 

Sequence based 

average 

average 

average 

average 

average 

Pc 

Mc 

Ph 

Pt 

Pn 

Structural based 

CMVj, 

CMV^,, 

CVH, 

N19 

i v H ' 
CMV^ 

,CVH 

CMV^ 

CVH 

, CVC 

CVC 

Table 4.1: Features selected at the second stage of the feature selection pro

cess for the helix and coil content prediction, and for short and long protein 

sequence models. 

position vector for coils (CMVc, CMVc) and helices (CMV^), and count of 

long helical segments (iVH
6 and N#). This is consistent with the overall per

formance of secondary structure prediction methods, which provides greater 

accuracy for prediction of helices and coils than for the strands (Lin et ai, 

2005; Birzele and Kramer, 2006). We can see that the selected features in

clude both structural and sequence based features. This indicates that both 

structural and physicochemical components are required to create an accurate 

content prediction model. 

4.4 Parametrization of Prediction Model 

Support Vector Machine Regression (SVR) was selected to implement our 

content prediction method. For each helix and coil content prediction, two 

SVRs were computed, one for large and the other for small proteins. The 

classification algorithms used to develop and compare the proposed method 

were implemented in Weka (Witten and Frank, 2005). 
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Figure 4.3: Architecture of the proposed helix content prediction method. 

The diagram of the proposed prediction method for the helix content pre

diction is shown in Fig. 4.3. For sequences of length N > 40, five features 

are calculated, and the prediction is performed using classifier SVRH'. For 

iV ^ 40, three features are computed, and the prediction is performed using 

classifier SVRH'. The content prediction result for an helix is denoted by ZH-

Predicted coil content, lc, is computed using the same procedure as depicted 

in Fig. 4.3, but with features selected for coil prediction (shown in Table 4.1). 

The strand content IE is calculated as IE = 1 — In — lc-

All four SVRs, employed for helix and coil content prediction, use the 

polynomial kernel. For helix content prediction, the complexity parameter 

?(i) (2) C — 1 for SVRH and C = 25 for SVRH . For coil content prediction, the 

complexity parameter C = 21 for SVRC , which performs the prediction for 
(2) 

sequences of length N > 40, and C — 42 for SVRC . The parameters were 

selected by optimization performed on the evaluation set EVA 149 and then 

applied with the same groups of features to the test set EVA 150. 
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Chapter 5 

Experiments and Results 

In this section, the performance of the proposed method is compared with 

nine competing secondary structure and content prediction methods using two 

independent data sets. 

5.1 Experimental Evaluations 

The average absolute errors for the helix content prediction produced by the 

considered prediction methods on EVA149 and EVA150 are shown in Table 5.1. 

The errors are calculated separately for the subset composed of proteins of 

length iV ^ 40 (first row), subset of proteins of length N > 40 (second row) 

and the whole set (third row). Each column of the table corresponds to the 

results of one prediction method, and the last column shows the results of the 

proposed LAMICA method. 

Our prediction results were compared to content calculated from nine pre

diction methods. Six of these methods, PSIPRED, PROFsec, PHD, PHDpsi 

(Przybylski and Rost, 2002), SSPRO (Pollastri et al, 2002), and PG (Birzele 

and Kramer, 2006) predict secondary structure, and the content is computed 

from these predictions. Three other methods, Zhang98 (Zhang et a/., 1998), 

ZhangOl (Zhang et al, 2001), and PSSC-core (Homaeian et al, 2007) predict 

the content directly from the sequence. 
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5.1.1 Helix Content 

The bolded prediction results concerning whole datasets (see Table 5.1) show 

that the proposed prediction method delivers lower prediction errors for the 

helix content when compared with the considered competing methods. For 

helix content predictions on EVA149, the proposed method gives 11% im

provement over the second best method, PSIPRED, and 14% improvement 

over the third best method, PROFsec. For EVA150, the improvement over 

the second best method, PG, is 5%, and the improvement over the third best 

method, PROFsec, equals 10%. These improvements were found to be signifi

cant using a paired t-test at 95% significance level. Table 5.2 gives the t-values 

and the degree of significance of the difference between the content predicted 

with LAMICA and content predicted with the second and the third best meth

ods. More specifically, paired t-test compares pairs of corresponding content 

prediction errors (prediction of two methods on the same sequence) over all 

sequences in the EVA150 data set. Here, ++/- - means that LAMICA pro

vides statistically significantly better/worse prediction than the method listed 

in the corresponding column; ~ shows that the difference is not statistically 

significant. The results in the first row of Table 5.2 show that the proposed 

method significantly outperforms all other considered methods in the helix 

content prediction. 
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target dataset Seq. size PSIPRED PROFsec PHD PHDPSI SSPRO PG Zhang98 ZhangOl PSSC-core LAMICA 

Helix 

Coil 

Strand 

EVA 149 

EVA 150 

EVA149 

EVA150 

EVA 149 

EVA150 

N < 40 

N > 40 

All 

N < 40 

N > 40 

All 

N < 40 

N > 40 

All 

N sC 40 

N > 40 

All 

N ^ 40 

N > 40 

All 

N < 40 

N > 40 

All 

0.2080 

0.0471 

0.0589 

0.1559 

0.0695 

0.0851 

0.1954 

0.0641 

0.0738 

0.1353 

0.0761 

0.0867 

0.1231 

0.0489 

0.0544 

0.0643 

0.0508 

0.0532 

0.1192 

0.0560 

0.0607 

0.0931 

0.0783 

0.0810 

0.1475 

0.0577 

0.0644 

0.0786 

0.0814 

0.0809 

0.1429 

0.0488 

0.0558 

0.068 

0.0637 

0.0645 

0.1370 

0.0671 

0.0723 

0.1450 

0.0766 

0.0889 

0.1434 

0.0740 

0.0791 

0.1142 

0.0824 

0.0881 

0.1578 

0.0674 

0.0741 

0.1163 

0.0632 

0.0728 

0.1447 

0.0603 

0.0666 

-

-

-

0.1411 

0.0739 

0.0788 

-

-

-

0.1679 

0.0588 

0.0669 

-

-

-

0.2176 

0.0580 

0.0698 

-

-

-

0.1694 

0,0729 

0.0800 

-

-

-

0.1568 

0.0597 

0.0668 

-

-

-

-

-

-

0.1037 

0.0703 

0.0763 

-

-

-

0.0982 

0.0842 

0.0867 

-

-

-

0.0931 

0.0617 

0.0674 

0.1698 

0.1131 

0.1173 

0.2167 

0.1198 

0.1372 

0.1369 

0.1094 

0.1114 

0.1245 

0.1213 

0.1219 

0.1873 

0.1025 

0.1088 

0.2086 

0.1092 

0.1271 

0.2969 

0.0928 

0.0949 

0.1698 

0.0929 

0.0944 

0.1035 

0.0960 

0.0961 

0.1686 

0.1112 

0.1123 

0.1934 

0.1054 

0.1063 

0.0195 

0.0880 

0.0867 

0.1814 

0.1023 

0.1081 

0.1421 

0.1152 

0.1201 

0.1250 

0.1004 

0.1022 

0.0976 

0.0644 

0.0704 

0.1396 

0.0976 

0.1007 

0.1555 

0.0939 

0.1050 

0.1192 

0.0467 

0.0521 

0.0933 

0.0680 

0.0725 

0.1452 

0.0577 

0.0641 

0.0832 

0.0642 

0.0676 

0.1382 

0.0471 

0.0483 

0.0806 

0.0488 

0.0508 

Table 5.1: Comparison of the average absolute content prediction error for helix, coil and strand prediction between 

LAMICA and nine competing methods; "-" denotes results that were not originally reported and that cannot be dupli

cated. 



Predicted targets PSIPRED PROFsec PG PSSC-core 

Helix 

Coil 

Strand 

++ 
2.20 

0.53 

++ 
6.79 

++ 
7.53 

++ 
2.28 

0.04 

++ 
3.55 

++ 
2.47 

1.44 

++ 
3.56 

++ 
4.63 

++ 
2.79 

Table 5.2: Paired t-test based comparison between LAMICA and four best 

performing competing methods for helix, coil, and strand content predictions 

on EVA150 (at the 95% level); + + / - - means that LAMICA provides sta

tistically significantly better/worse prediction than the method listed in the 

corresponding column; The numbers indicate the t-values. 

Content prediction errors for short and long sequences are presented in Ta

ble 5.1 in rows denoted as N ^ 40 and N > 40, respectively. We observe that 

the performance of prediction methods, which were used to generate inputs 

to LAMICA, i.e., PSIPRED and PROFsec, are consistent with our observa

tions in Section 4.1. For both data sets, PROFsec outperforms PSIPRED for 

the helix prediction on the set of short proteins, i.e., N ^ 40, while for long 

proteins PSIPRED shows better results. 

5.1.2 Coil Content 

The coil content prediction results shown in Table 5.1 demonstrate that the 

proposed method provides improvement in coil prediction as well. For EVA149, 

our method offers 0.5% improvement over the second best method (PROFsec) 

and 13% improvement over the third best method (PSIPRED). For EVA150, 

the improvement over the second best method (PSSC-core) equals 4%, and 

the improvement over the third best method (PROFsec) is 16%. The improve

ments were found to be significant using a t-test (see Table 5.2). Although 

for coil content prediction PSIPRED provides statistically comparable results, 
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positive t-value indicate that LAMICA provides more accurate predictions. At 

the same time, the proposed method provides statistically significantly better 

content predictions when compared with the remaining considered competi

tors. 

5.1.3 Strand Content 

The prediction results of the strand content (see Table 5.1) are calculated 

from predicted helix and coil contents. The prediction results, given in bold, 

show that strand prediction is also improved by the proposed method. For 

EVA149, our method provides an 11% improvement over the second best 

method, PSIPRED, and 13% improvement over the third best method, PROF-

sec. For EVA 150, the improvement over the second best method, PSIPRED, 

equals 4% and the improvement over the third best method, PROFsec, is 

21%. These improvements were found to be significant when compared against 

PSIPRED. For PROFsec and PG, the differences are not statistically signifi

cant; however, LAMICA is shown to provide lower errors (see Table 5.2). 

5.1.4 Comparison with Composition Computed from 

Predictions of PSIPRED and PROFsec 

We also compare predictions of the proposed method with the content com

puted from secondary structure predicted with PSIPRED and PROFsec meth

ods, where PROFsec is used for proteins of length N ^ 40, and PSIPRED is 

used for proteins with length Â  > 40. This illustrates the performance of 

combination of two separate prediction models from short and long sequences, 

as used in the proposed method. The difference between the results based on 

PSIPRED/PROFsec content and results of the proposed method shows the 

value added by utilizing the prediction system. The average absolute error of 

the PSIPRED/PROFsec predicted helix content, for EVA149 is 0.0524 and for 

EVA150 equals 0.0738. In contrast, using LAMICA results in 0.5% improve

ment for EVA149 and 2% improvement for EVA150. For coil content pre-
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diction the average absolute error based on predicted secondary structure for 

EVA149 equals 0.0702 and for EVA150 equals 0.0765. Application of our pre

diction system gives 8% improvement for the EVA149 and 11% improvement 

for the EVA150. The improvements for the strand content prediction equal 

13% and 5% on the two data sets, respectively. The consistency and amount 

of improvement validate the quality of the proposed prediction method. 

Fig 5.1 demonstrates the performance of the proposed method when com

pared to PROFsec, which is the second best method for a-helix and coil con

tent on EVA150. A point with coordinates (x,y) corresponds to one protein 

sequence where x is the predicted content and y is the actual content. Hollow 

circles correspond to the PROFsec predictions and the black dots correspond 

to the proposed prediction method. We observe that the PROFsec prediction 

results are spread much wider from the diagonal line (perfect predictions) as 

compared to our predictions. This effect is even stronger for the coil predic

tion (Fig. 5.1 (b)). For each set of predictions, we draw two straight lines 

which indicate the confidence interval area, i.e., the predictions located within 

the standard deviation from the mean error. These lines can be expressed by 

points with coordinates (z + /i + a, z) and (z + /i- — a, z), where z £ (0,1) is a 

parameter, /j, is the mean of the prediction error, and a is a standard deviation 

of the prediction error. For PROFsec prediction results, the lines are dashed, 

while for LAMICA the lines are solid. We observe that standard deviations 

of the proposed method are smaller than for PROFsec in both cases. We 

also note that PROFsec's predictions tend to underestimate a-helix content 

(lines are shifted downwards) and overestimate coil content, while LAMICA's 

predictions are centered closer to the diagonal. 

Finally, we observe that, although, on average, the errors for the EVA150 

data set are larger than for the EVA 149 data set, the same relationships be

tween the predictions of individual methods are observed for both sets. We 

emphasize that these differences are not a result of using EVA 149 during the 

design of our method since we observe the same differences for other prediction 

methods, in which case no bias to a specific data set could be attributed. 
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Figure 5.1: Comparison of helix and coil content in PROFsec and the pro

posed method on EVA150; (a) helix content; (b) coil content; Hollow circles 

correspond to the PROFsec predictions and the black dots correspond to the 

proposed prediction method. 
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5.2 Applications 

We discuss two applications of the proposed content prediction method to 

improve structural class assignment and the secondary structure prediction. 

5.2.1 Structural Class Assignment 

Information about the structural classes is used in a variety of predictive tasks 

addressing protein structure and function. More specifically, the knowledge of 

structural classes was applied to improve the accuracy of secondary structure 

prediction (Gromiha and Selvaraj, 1998), to reduce the search space of possi

ble conformations of the tertiary structure (Chou, 1995; Bahar et al, 1997), 

to implement a heuristic approach to find tertiary structure (Carlacci el al, 

1991), to discriminate outer membrane proteins (Gromiha and Suwa, 2005), 

predict protein folding rates (Gromiha, 2005b) and unfolding rates (Gromiha 

et al, 2006), and to predict DNA-binding sites (Kuznetsovei al, 2006) and 

protein folds (He et al, 2002). Prior studies have shown that secondary struc

ture content can improve the quality of the protein structural class prediction 

(Kurgan et al, 2006; Kurgan and Chen, 2007). In this work we use the pre

dicted content to perform class assignment according to Eisenhaber's method 

(Eisenhaber et al, 1996), which was recently shown to outperform other class 

assignment methods (Kurgan et al, 2008), using EVA150 data set. Class as

signment which uses LAMICA content is compared with the assignment based 

on content extracted from PSIPRED and PROFseq secondary structure pre

diction. The results indicate that use of LAMICA-predicted content as an 

input gives 89.32% class assignment accuracy and delivers 8.3% error rate 

reduction compared to use of PSIPRED content and a 26.6% reduction com

pared to use of PROFsec content. This experiment confirms that LAMICA is 

capable of supplying more accurate content estimates for the structural classes 

assignment. 
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5.2.2 Secondary Structure Prediction 

The predicted content of LAMICA was also applied to improve the secondary 

structure predicted by PSIPRED on EVA150. We used each AA's secondary 

structure probability (generated by PSIPRED), structural content of the PSIPRED 

prediction, and the predicted content of the proposed method to improve the 

predicted secondary structure. Since the AA's secondary structure probabil

ities of PSIPRED were not available for EVA150 on the EVA server, we ob

tained PSIPRED structure prediction and the probabilities using PSIPRED 

server (McGuffin et al, 2000) (using PSIPRED version 2.5). To improve the 

predicted secondary structure accuracy using the content predicted by LAM

ICA we adjust the number of AAs predicted as helical residues. This is moti

vated by recent study of the distribution of the predicted N-terminus positions 

of helical segments (Wilson et ai, 2004). We compute the number of helical 

residues that should be removed or added, assuming that LAMICA delivers 

more accurate content prediction, by comparing the helix content of PSIPRED 

with the content of LAMICA. Removal corresponds to changing the structure 

predicted as helix to coil. We consider helix probabilities of the AAs in helical 

N-terminal and C-terminal positions, and change the structure of AA with 

lowest helix probability to a coil. Adding corresponds to changing the struc

ture of the AAs positioned at the interface of helical segments (immediately 

before or after), that have the highest helix probability to helix. Q3 scores (the 

percentage of residues correctly predicted in all three states) of PSIPRED V2.5 

and PROFsec for the whole EVA150 set equal 77.9% and 77.7% respectively. 

For short protein sequences in EVA150 the corresponding Q3 scores are 71.3% 

and 75.1%. Applying the content predicted by LAMICA and the abovemen-

tioned rules we obtain 78.3% accuracy for the whole EVA150 set and 76.0% 

accuracy for the short sequences, showing substantial improvements. Fig. 5.2 

demonstrates the above procedure for lsse_A protein predicted by PSIPRED 

V2.5. The number of helical residues predicted by LAMICA for this protein 

equals 17, while PSIPRED V2.5 predicted 24. Therefore, we convert 7 helices 
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to coils. This experiment confirms that LAMICA is capable of supplying more 

accurate content estimates which can be used to improve secondary structure 

prediction. 

Sequence NLDSNMFSNDFNFENQFDEQVSEFCSKMNQVCGTR . 
DSSP CCCCCCCCCCHHHCCCCCCCCCHHHHHHHHCCCCC 
PSIPRED V2.5 CCCHHHHCCCCCHHHHHHHHHHHHHHHHHHHHCCC 
New result CCCCCCCCCCCCCCCHHHHHHHHHHHHHHHHHCCC 

imolHcvMrvokD Ln^NiiolrolN^WH'iSrilfwmrolw wisrloiooiwtnliniNioMoi 
H e l i x oco^oHwmH*(^riHhinr,'>oincDmmmmm<ria\mr--ifiriou>mr"io 

. . . - . , oHmmwininv NNriHifimMom mwmmmflMjimmmmmmmi^nHo 
probability 

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 

Figure 5.2: Example of the procedure used to improve the predicted secondary 

structure based on the predicted content. 

54 



Chapter 6 

Summary and Conclusion 

This chapter summarizes the contributions of this thesis, and draws the con

clusions. 

6.1 List of Contributions 

The main contributions of the presented work are as follows: 

- We design a novel content prediction method which outperforms state-

of-the-art predictions in terms of the average absolute error. 

- We show that combining structural and sequence based features is a 

suitable approach to tackle content prediction problems. 

- We reveal that separate consideration of short and long proteins, separate 

training, feature selection and prediction improves the result. 

- We designed and implemented an accurate feature selection algorithm 

based on a two-stage approach where the first stage selects the features 

that are the most correlated with the content value while the second 

stage is based on PC A analysis. 

- We show that the established method provides useful input for a number 

of other practical prediction tasks such as structural class assignment and 

55 



secondary structure prediction. 

6.2 Conclusion 

A novel machine learning method called LAMICA for prediction of protein 

secondary structure content is proposed. Two sets of learning features are gen

erated, the structural features and sequence based physicochemical features. 

To reduce the prediction error, two separate SVR based learning models, one 

for short and one for long sequences, are constructed. Experimental results ob

tained using two independent test sets demonstrate that the prediction error of 

LAMICA is smaller than the error of current prediction techniques reported in 

the literature, including content predictions performed directly from sequence 

and predictions computed from predicted secondary structure. LAMICA im

proves predictions for all three content values (helix, coil, and strand). It is 

also shown how content predicted by LAMICA can be used to improve results 

of other related prediction tasks, such as structural class prediction and predic

tion of the protein secondary structure. The major reasons for improvement 

of content prediction results are combining structural and sequence based fea

tures, classifying the protein sequences to short sequences and long ones, and 

separate training and feature selection. We note that performance improve

ment offered by the proposed method depends on the number of short protein 

sequences in data sets. 
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