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Abstract 

Global optimization of non-convex functions over real vector spaces is a problem of widespread 

theoretical and practical interest. In the past fifty years, research in global optimization has 

produced many important approaches including Lipschitz optimization, simulated anneal

ing, homotopy methods, genetic algorithms, and Bayesian response-surface methods. This 

work examines the last of these approaches. The Bayesian response-surface approach to 

global optimization maintains a posterior model of the function being optimized by combin

ing a prior over functions with accumulating function evaluations. The model is then used 

to compute which point the method should acquire next in its search for the optimum of the 

function. Bayesian methods can be some of the most efficient approaches to optimization in 

terms of the number of function evaluations required, but they have significant drawbacks: 

Current approaches are needlessly data-inefficient, approximations to the Bayes-optimal ac

quisition criterion are poorly studied, and current approaches do not take advantage of the 

small-scale properties of differentiable functions near local optima. This work addresses 

each of these problems to make Bayesian methods more widely applicable. 
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Chapter 1 

Introduction 

We are interested in a staggeringly difficult yet beautifully concise problem: 

max/(x) (1.1) 

For example, the function / could be the speed of a walking robotic dog, or the quality 

of a depth map reconstructed from a stereo image pair. The set X could be the space of 

possible motor commands the robot understands, or the space of parameters that define 

how similar two pixels are. They could also represent the objectives and domains needed 

to solve most of the interesting problems in computing science, from linear regression to 

maximum satisfiability. 

In order to solve (1.1), we will need to know something about / . To encode this infor

mation, we will appeal to the axioms of probability theory. 

P{f\F) ex P{T\f)P{f) (1.2) 

Specifically, we will make use of (1.2), widely known as Bayes's Rule. This will allow us to 

reason about the specific / we are dealing with by combining two quantities: Our "prior" 

belief P(f) about how likely various functions are, and our collection T of observations of 

the function, which give us insight into the specific / we are dealing with. We can use 

the accumulating knowledge about / to find the x G X that solves our problem. More 

realistically, we can use the knowledge to help us approximately solve our problem, or 

perhaps just get ourselves headed in the right general direction. The problem as stated is 

very difficult. 

Optimization methods that take this probabilistic approach are known as "Bayesian 

optimization" methods. These methods are unique in that they retain all accumulated data 

about the function and use all of it to determine where to search next. 
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1.1 Objective and Contributions 

Our objective in this thesis is to make these methods more widely applicable and appealing 

to scientists who need global optimization techniques. There are three main obstacles pre

venting the wider adoption of Bayesian methods. First, the methods were never extensively 

tested and therefore not widely publicized, so the user community tended to be either un

aware of such techniques or suspicious of their effectiveness. Second, there are many free 

parameters in Gaussian process-based optimization that are intimidating to users who are 

looking for a more black-box solution. Third, Bayesian methods do not make use of gradient 

information that is available in some problems, leading users to select other methods that 

can take advantage of such information. 

We have made the following contributions that address these problems: 

• We develop new GP-based techniques that are invariant to vertical shifting and scaling 

of the objective function. This reduces the need to tune the optimization algorithm's 

parameters to different objective functions. 

• We develop a new methodology for evaluating global optimization techniques based 

on generating many (i.e. tens of thousands) test functions and evaluating performance 

on each. Our results show that GP-based optimization methods can perform well in 

a variety of situations. 

• We show how using a maximum a-posteriori objective can be used to reliably learn the 

kernel parameters, eliminating the need for expensive pre-acquisition of the function 

and again reducing the need for user input. 

• We present a novel prior based on the expected Euler characteristic of a Gaussian 

process. 

• We give a polynomial time algorithm for computing the expected Euler characteristic 

of a useful subclass of Gaussian processes. 

• We illustrate the use of gradient information with GP optimization, showing that 

the methods we have developed work well when given this information. Our empirical 

results show that GP-based optimization with gradient information can perform better 

than a quasi-Newton method with random restarts. 

2 



Chapter 2 

Background 

The study of Bayesian optimization methods draws on knowledge from the fields of optimiza

tion, machine learning, and random field theory. We begin by reviewing the contributions 

of each of these fields to the problem of global optimization. 

2.1 Optimization in Rd 

As we discussed, the general problem of Equation 1.1 is far too broad for our purposes. To 

narrow things down, we will restrict ourselves to X C Rd and / : X —> R. We will suppose 

that X is compact, and that / is Lipschitz-continuous, i.e. Vx,z € X, \f(x) — f(z)\ < 

I • \\x — z\\ for some constant I > 0. This is sufficient to guarantee that a solution exists, i.e. 

3x* € X s.t. f(x*) = supx€A» f(x) [18]. However, even with these restrictions we cannot in 

general find the answer we seek using a finite number of function evaluations. 

To remedy this, we could consider the problem successfully solved when we find a point 

x* that we know is within e of optimal in terms of Euclidean distance (\\x* — x*\\ < e) 

or function value (\f(x*) — f(x*)\ < e) or some other closeness measure. This guarantees 

a solution using a finite number of function evaluations, but affords a theoretical comfort 
r, r-Ad 

only: Any algorithm that provides this type of guarantee must make Q( -^ ) function 

evaluations in the worst case [18], and we are interested in solving problems where d is at 

least in the dozens. Intuitively, this bound arises because we have to make sure we evaluate 

the function at points sufficiently near to all points in the domain, which means we have to 

construct something like a grid of points in d dimensions with a resolution determined by I 

and e. The number of points in such a grid will scale exponentially in d. 

3 



2.1.1 Local Optimization 

This insistence on finding a point that is near-optimal compared to all other points in the 

domain illustrates the critical difference between "global" optimization and "local" opti

mization: For the problem of local optimization, we seek a point x+ such that 

f(x+) > /(:r), Vx € {x G X : ||x+ - x\\ < e} (2.1) 

To verify that x+ is an acceptable solution, we need only consider points in the neigh

bourhood of x + . If / is differentiable, as is commonly supposed, this can be accomplished 

implicitly by examining first and second derivatives of / at x+. This verification can be ac

complished by factoring the (possibly approximated) Hessian matrix Hf(x+), which takes 

0(d3) time. Therefore if we can find a candidate x+ reasonably quickly, we can easily 

verify that we have found a solution to the local optimization problem. The business of 

getting to a good x+ has been studied at least since the publication of Newton's method 

[32] approximately 300 years ago. Given a sufficiently close starting guess, the error in 

the solution given by Newton's method decreases geometrically after each step. Modern 

approaches that approximate Newton's method, such as the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) method discussed in Section 4.2, are efficient enough to solve local opti

mization problems with thousands of variables. In some lucky instances, notably when f(x) 

is quasiconvex, a solution to the local problem is a solution to the global problem; if / is not 

quasiconvex, typically all bets are off. Nevertheless, local optimizers are frequently applied 

to non-quasiconvex problems in the hopes of finding a point that is at least better than a 

random (or educated) guess. 

Realistic Optimization: The Principle of Perseverance We have seen that global 

optimization is hopelessly hard, and that local optimization is hopelessly easy. This is an 

exaggeration of course, but not far off the mark. However, the intractability of a problem 

does not make it go away, and the world is full of non-convex functions that various people 

would like to optimize even if they do not have the time to wait around for a provably 

optimal solution. This raises an important question when approaching non-convex global 

optimization problems: What if we have more than enough resources to find a local optimum, 

but not enough to guarantee finding a global optimum? This situation has become more 

prevalent with advances in computer hardware in the last forty years or so, and research on 

this problem has produced a motley crew of heuristic global optimization methods. We will 
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now briefly examine a variety of well-known global optimization techniques, including both 

non-Bayesian approaches and the Bayesian methods that will be the focus of this thesis. 

2.1.2 Non-Bayes ian M e t h o d s 

The majority of global optimization algorithms that are widely known and used by scientists 

in different fields have little or no connection with Bayesian statistics. Most are based on 

intuitions about how to balance attraction toward a local minimum with prevention from 

getting stuck there. 

Random Restarts 

Since local optimization routines work so well, it seems natural to adapt them for use in 

global optimization. The simplest adaptation involves random restarts: Points are uniformly 

drawn from the set X, and a local optimizer is executed starting from each one. As the 

number of samples approaches infinity, we will have found all possible local optima, and can 

simply pick the best one we have observed. 

Typically, each local optimum x+ has a basin of attraction—a set B(x+) C PC such 

that for any x € B(x+) the optimizer when started from x will converge on x+. Normally 

at least some of B(x+) exists in the vicinity of x+, so that many points near any given 

local optimum converge to the same location. This is a direct result of using Newton-like 

methods that assume the function is locally quadratic in a neighbourhood of x+. "Density 

Clustering" [18] is a modification to the random restart approach that attempts to prevent 

the local optimizer from repeatedly falling into the same basin of attraction. The details 

are somewhat complicated, but the the basic idea is to build a region around each local 

optimum found so far and avoid starting the local optimizer within these regions. This is 

achieved by rejecting randomly sampled starting points that fall within these regions. This 

encourages the method to converge to new local optima as evaluation progresses. 

Simulated Annealing 

Another famous global optimization technique based on random sampling is known as simu

lated annealing. In this approach, a random walk is defined over the domain of the function. 

The hope is that, in the limit, the walk will converge to the global maximum of / . The 

walk is defined by two distributions: the proposal distribution, which is typically uniform 

5 



over X, and the acceptance distribution, given by 

P(xcmi f- a;prop) = min{l, eW IP'°p)- ' ( I™"»/ r} (2.2) 

The procedure is simple: Propose a point a;prop. Evaluate the function at that point. Assign 

^curr <— ^prop; the "current point", according to the acceptance probability above. One can 

see that if / (x p r o p ) > f(xcurr), we always move to the newly proposed point, otherwise we 

move to it with some probability dependent on the magnitude of the decrease in function 

value and on the current "temperature" T. Initially, T is taken to be large; in this situation 

we will accept almost any point regardless of how poor it is. As we decrease T, we will 

accept inferior points with decreasing probability. It is possible to show that, under certain 

conditions, as T —> 0 and the number of proposals goes to infinity, xc u r r converges to x* 

[18]. In practice, since this convergence may take an exceedingly long time, we keep track 

of the best function value seen to date, and stop the walk once our time runs out. 

Lipschitz Methods 

We now turn our attention to methods that are entirely deterministic. Previously, we 

mentioned that we will assume the functions we are optimizing are Lipschitz-continuous, 

meaning there exists a constant I for which 

Vx,z£X, \f(x)-f(z)\<l-\\x-z\\ (2.3) 

This property effectively gives an upper and lower bound on the function that is refined 

as more and more function values are observed. These bounds are in turn used to decide 

which observation to acquire next. There are many variations, but a common approach is 

to evaluate / where its upper bound is greatest. After acquiring this new function value, 

the upper bound is updated and maximized again to find the next point to acquire. This 
r /-j-id 

technique can provide a provably e-optimal solution, but requires fl( -^ ) in the worst 

CclSG 5 clS mentioned earlier. 

Homotopy Methods 

Homotopy methods take a significantly different approach. They attempt to take a solution 

to a simplified version of the problem and use that to find solutions to the original problem. 

6 



A homotopy H is a differentiable map that "blends" two functions. 

H : Rd x [0,1] -> R (2.4) 

H{x,0) = g(x) (2.5) 

fffol) = f(x) (2.6) 

For example, H(x, t) = (1 — t) • g(x) + £ • f(x) is a homotopy that varies smoothly with the 

parameter t from g to / . The premise of these methods is to construct a homotopy for which 

the function g is easy to optimize. Since the homotopy is a continuous map, the location of 

a local optimum usually changes smoothly as we change t. We can therefore find the optima 

of the easy function H(x,0), and set up differential equations to track the optima as we 

move t from 0 to 1. This works well in some instances; however, local minima can undergo 

bifurcation and merging, and they can spontaneously appear or disappear as the parameter 

t changes. Care must be taken in each of these situations. Another strange possibility is the 

"turn-back." There may be a continuous path through Rd x [0,1] connecting an optimum 

of g with an optimum of / that is not monotonic in t. That is, we may have to increase t 

for a time, then backtrack t but continue moving a; to a different part of the space, and then 

increase t again to reach the optimum of / at the other end of the path. Of course, this can 

happen several times depending on the objective and the homotopy used. Reliably tracking 

solutions in this way has resulted in interesting algorithms for optimization that are unlike 

any other known techniques. 

Genetic Algorithms 

The term "genetic algorithm" is applied to a great swath of algorithms that share a common 

metaphor. In this paradigm, a "population" of "individuals", described by their "chromo

somes", are "evolved" over time according to their "fitness." That is, a set of candidate 

solutions is maintained, these candidates are perturbed according to various biologically-

inspired rules, and the resulting new candidates are evaluated using / . Those individuals 

that perform poorly are (probably) removed from the population. This procedure repeats 

until no further progress is made. 

Genetic algorithms present a staggering array of choices governing the details of the op

timization procedure. Good choices for the specific rates and mechanisms for "crossover", 

where two solutions are combined, and "mutation", where a solution is perturbed by an out

side force, are critical for good performance. In addition, since their original description by 
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Holland [15], genetic algorithms have acquired innumerable additional tricks and heuristics 

that help in specific situations. 

Ultimately there is no single, unified "genetic algorithm". The application of genetic 

algorithms is a high level technique of taking the popular perception of evolution and natural 

selection and constructing an algorithm whose functions and data structures, according to 

the developer, mimic those present in nature. This in effect means that, to use a genetic 

algorithm effectively, a great deal of expert knowledge is needed both about the function in 

question and about genetic algorithms. This is because genetic algorithms are procedural 

rather than constructive—knowledge about the objective (smoothness, range, etc.) must be 

translated into a genetic algorithm that will likely work well on such functions. 

2.1.3 Introduction to the Bayesian Approach to Optimization 

Next, we introduce the details of "Bayesian" optimization methods. In contrast to the non-

Bayesian methods described earlier, which are focussed predominately on algorithm devel

opment, Bayesian optimization methods take a different approach: They combine relatively 

simple algorithms with explicit, descriptive statistical models of the objective function. This 

gives Bayesian methods a major advantage, because a practitioner can improve performance 

by describing the objective function well, as opposed to describing a solution algorithm well, 

which is much more difficult for a non-expert. 

The adjective Bayesian can be applied to any optimization technique that makes use of 

the laws of probability to combine prior belief with observed data to compute a posterior 

distribution over any quantity of interest. For most methods that fall into the category of 

Bayesian optimization, the quantity of interest is the function itself: These methods model 

the function in question by encoding prior beliefs about the function, updating those beliefs 

according to the laws of probability as new information about the function accumulates, 

and using the resulting model to guide the progress of the optimization procedure. This 

model is sometimes called a "surrogate" function, or a "response-surface." 

This does not restrict Bayesian methods to those that model the objective explicitly; 

one could imagine that modeling a different quantity (such as the location of the function's 

optimum) could give rise to effective optimization procedures. Nevertheless, the methods 

we discuss here will take the approach of building a response-surface model that has been 

augmented with the capability of probabilistic reasoning. 
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Models and Acquisition Criteria A Bayesian response-surface method for optimization 

has two major components: The probabilistic model describing the objective function, and 

the acquisition criterion1 function that determines how to choose the next point at which 

we evaluate the function. 

The Gaussian process model is used in all of the Bayesian response-surface methods we 

will discuss here, in one guise or another. We introduce the basic Gaussian process now to 

provide the appropriate background material, but we will discuss enhancements to the model 

that are widely used by the machine learning community in Section 2.2. In principle, there is 

no reason we could not use other, more complex models; it could be that in some instances 

a more general exponential family model, say that can model higher-order interactions 

(beyond pairwise) may be useful. The major problem, as usual, is computational: more 

general models will not admit the clean, analytical inference procedures that Gaussian 

processes afford. Nonetheless, they would be an interesting alternative avenue of research. 

2.1.4 Preview of Gaussian Processes 

A Gaussian process (GP) [46, 35] is a collection2 of random variables {Fxi,Fx2,...} for 

which any finite subset of the variables has a joint multivariate Gaussian distribution. The 

variables are indexed by elements a: of a set X. We will restrict our attention to X C M.d, 

but this is not necessary; X could be the space of integers or trees or strings, for example. 

For any finite length vector of indices x = [xl,x2, ...,xn]T, we have a corresponding vector 

F x = [Fxi,Fx2,...,Fxn]T of variables that have a joint multivariate Gaussian (or normal) 

distribution, 

F x -A^{/x 0 (x) , fc(x ,x)} , (2.7) 

where the elements of /Jn(x) are given by a prior mean function /j,o(xi), and k is the kernel 

function. The kernel takes two indices x% and x\ and gives the covariance between their 

corresponding variables Fx% and Fx,. Given vectors of indices x and z, k returns the matrix 

of covariances between all pairs of variables where the first in the pair comes from Fxi and 

the second from Fzi. The result of k(x, x) must be a square, symmetric positive semi-definite 

matrix for any x in order for k to be a valid kernel [42]. Note that each Fxi is marginally 

Gaussian, with mean txo{xl) and variance fc(x%xl). 

1This function has been by various names in previous work, including the 'acquisition criterion' [39].' 
2A11 of our GPs will have an uncountable number of variables, but we will abuse notation and "list" them 

occasionally, though this is impossible. 
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Gaussian Process Regression Suppose we have a function f{x) that we would like to 

model. Furthermore, suppose that we cannot observe / directly, but that we can observe a 

random variable Fx that is indexed by the domain of / and whose expected value is / , i.e., 

Vx € X, E[FX] = f(x). In particular, we assume that our prior belief about the function / 

conforms to a Gaussian process with prior mean JIQ and kernel k, as described above, and 

that the observed variable Fx is an observation of f(x) that has been corrupted by zero-

mean, i.i.d. Gaussian noise, i.e., Fx — f(x) + e, where e ~ Af(0, of). Hence, f(x) is a hidden 

variable whose posterior distribution we can infer after observing samples of Fx at various 

locations in the domain. The resulting inference is called Gaussian process regression. 

Let x be the set of observation points and f be the corresponding real-valued obser

vations. We want to compute the posterior distribution of some new point z € X. This 

distribution will be Gaussian with mean and variance given by 

fi(F2\Fx = i) = MoW+fc(^x)(fe(x,x) + a 2 l ) - 1 ( f - / U o ( x ) ) (2.8) 

a\Fz\Fx = i) = k(z,z)-k(z,x)(k(x,x)+a2J)-1k(x,z). (2.9) 

Note that the inverse applies to the kernel matrix of observed domain points (plus a diagonal 

term), and so can be computed once and used to evaluate the posterior at many points in 

the domain. (In practice, the matrix will be Cholesky factored instead of inverted.) 

Gaussian process regression is a generalization of least squares linear regression that al

lows for more complex regression functions, and provides information about the uncertainty 

of the regression model at different domain points3 Use of this type of model is known as 

"kriging" [4] in geostatistics4. The form of the possible regression functions is not as com

plex as one might initially suspect: Consider the posterior mean function /u(Fz |Fx = f). It 

consists of the prior mean function fio(z), which is frequently taken to be constant, plus a 

term involving the kernel function between the query point z and each observed data point. 

Since the second part of the second term, (fc(x,x) + CT^I)-1 (f - /io(x)), depends only on 

the observed data, this factor collapses to a simple weight vector independent of z: The 

posterior mean is just a weighted sum of kernel functions between each observed data point 

and the query point z. In other words, the posterior mean function is a linear combination 

of n kernel functions, each one centered at an observed data point. From this construction, 

3For X C M.k and k(xi,Xj) = Xi • Xj, this formulation is equivalent to linear ridge regression with 
regularizer a\. 

4Actually "kriging" refers to a model that is the sum of a low-degree polynomial and a Gaussian process. 
The polynomial portion is typically taken to be constant, so in most cases the resulting models are identical. 

10 



one can see that the shape of the mean function and of the functions a given GP is likely 

to produce is governed largely by k, the kernel function. 

Introduction to Acquisition Criteria Now that we have a model, we would like to make 

use of it to decide where to acquire data about the objective in order to find its optimum 

using as few function evaluations as possible. Since the model provides a distribution over 

the value of the objective at every domain point, we can search through the model for a good 

point to acquire next, either because the function is likely to be near-optimal at that point, 

or because an observation there will provide a large amount of information about the shape 

of the function, or because the resulting observation will have some combination of these 

properties. This idea will be formalized as we examine the history of Bayesian methods. 

2.1.5 A History of Bayesian Optimization Methods 

Bayesian optimization approaches have existed in the scientific literature for about forty 

years. Their capability and complexity have increased in response to the explosion in avail

able computing power over that time period as they evolved into the methods in use today. 

For the remainder of this section, we will assume we wish to maximize an objective function 

/ : Rd -+ R. 

Kushner 

One of earliest publications in English that describes a Bayesian response-surface approach 

to optimization was written by Harold J. Kushner in 1964 [25]. Kushner describes a method 

for optimizing a one-dimensional, real-valued function. 

Model Kushner's work uses a specific type of Gaussian process known as a Wiener process 

to model the unknown function / , and assumes the observed variable Fx is the underlying 

function plus i.i.d. Gaussian noise, i.e. 

Fx = Wx+e (2.10) 

e ~ N{0,al) (2.11) 

11 



The Wiener process in one dimension describes the Brownian motion random walk, and can 

be simply characterized. Suppose a<b<c<dG E + . Then we have 

W0 = 0 (2.12) 

Wb-Wa ~ M(0,cr2
r(b-a)) (2.13) 

[a, b) n [c, d) = 0 =4> (Wa - Wb) and (Wc - Wd) are independent (2.14) 

Functions sampled from such a process are almost surely continuous, but nowhere differ-

entiable. Because of the independent increments property (2.14), the posterior probability 

distribution at any point depends only on the two closest observed data points. We there

fore do not need the full-blown machinery of Gaussian processes described in Section 2.1.4 

for inference, since the posterior at any point will depend on at most two of our observed 

data points. The parameter a2 controls how quickly the variance grows as we move away 

from observed data, which affects the amplitude of the larger scale function variation we 

are likely to observe. Suppose we want the posterior distribution of Fz, and that we have 

data points (xl,fl) for x1 < x2 < ... < xn. If xl < z < xt+1, then 

Fz ~ Af(M(Fz|Fx = f),<72(Fz |Fx = f)) (2.15) 

(al + a2
f • (x

i+1 - z))fxi + (a2 + a2
f • (z - x^f^+i 

MW = f) = ' 2 ^ . ( ^ - J ) — (2'16) 

2 / , x (a2)2-(z-xi)(xi+1-z)+al-(a2
n+a2

r(x
i+l-xi)) / x 

Note that for x% < z < xi+1, fi(Fz\Fx = f) is linear in z, and cr2(Fz\Fx = f) is quadratic in z. 

For x1 < z < xn, both are continuous, /i(.Fz|.Fx = f) is piecewise linear and a2(Fz\Fx = f) 

is piecewise quadratic5. They are differentiable except at the data points {x1}. In the zero 

noise case where a\ = 0, fi(Fz\Fx — f) interpolates the data points. 

5 Outside the range of the data points they become constant and linear respectively; the forms are similar 
to those given here. 
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Acquisition Criterion The criterion used by Kushner to select the next acquisition is 

given by 

x n + 1 = argmax P[FZ> ma^(fxi) + £(n)] (2.18) 
z 

= a r g m a x ( l - J m a X ^ ) - ^ ^ = f) + ^ H (2.19) 

. / 'max.!/ , , ) -y(-F» |F, = f) +{(11)^ 

- a r g r ° ( — ^ w f . = o — J < > 
_ atgml„ ( < - " • » - ' - ^ f - ' f » + « " » 2 ) (2.21) 

x \ a2{Fz\Fx = l) J 

where $ is the standard normal cumulative density function, which is monotonic in its ar

gument; hence the equivalence of (2.19) and (2.21). This criterion, which we call Maximum 

Probability of Improvement (MPI), is the posterior probability that the next acquisition 

observed /(x™+1) is greater than the current maximum observed value plus a positive term 

£(n). The parameter £(n) is used to control how "local" or "global" the search is, and is typ

ically allowed to depend on n, the number of data points we have so far. As £(n) —* oo, using 

(2.21) as a acquisition criterion degenerates to choosing the point of highest posterior vari

ance. Conversely, as £(n) —> 0, the criterion selects the point with highest posterior mean. 

Any positive, bounded £(n) results in a tradeoff between mean and variance. Once £(n) 

is chosen, the minimum in (2.21) can be computed analytically on each interval [xt,xl+1) 

using the equations above, and the best of these can be chosen as the next acquisition. 

It therefore takes time linear in the number of data points to choose the next acquisition 

location. 

The question of how to choose £(n) is similar to the question of how to choose temper

ature in simulated annealing: Kushner suggests starting £(n) quite high (based on some 

intuition about the function) and scheduling its decrease in a geometric fashion as data 

accumulates. He suggests accomplishing this by manually defining regions of interest and 

desired progress for each stage; however, no concrete algorithm is given in the work. 

GROPE 

This method, published by Elder in 1992 [11], is one representative of the various heuristics 

[33, 44] used to extend Kushner's original method to multiple dimensions. 

Model The model used by Elder is inspired by the Brownian motion model used by 

Kushner. The convex hull of the points that have been acquired is divided into simplexes 

13 



using a Delaunay triangulation [43]. The posterior mean along edges of the triangulation 

is constrained to be the linear interpolator between the points, and the posterior variance 

is constrained to be quadratic. This is in effect assuming that a Wiener process runs along 

the edges of the triangulation. Using the distributions defined along each edge, a posterior 

mean and variance is defined over each simplex, again constrained to be linear and quadratic 

respectively, but in d dimensions. This choice is intended to emulate the Markov property of 

the Wiener process, where the posterior distribution depends only on the "nearest" points, 

since the distribution of a point depends only on the vertices of its enclosing triangle. The 

use of a triangulation in this manner, however, is at best an approximation to this property: 

Triangles that have one very large angle (i.e. that are very skinny) will have points along 

their edges whose posterior distribution depends not on the closest point (the vertex opposite 

the edge) but on points potentially much further away (the vertices incident to that edge). 

It is hoped that the use of the Delaunay triangulation will mitigate this problem, since it 

prefers more equi-angular triangles. 

Acquisition Criterion Following Kushner's example, Elder uses the same criterion 

X-+1 - annum ^ m a x ^ ) ~ ^ x | F x = f) + g ( n ) ) ^ \ 
x - a r g m m ^ a%F x |F x = f) J ( 2 > 2 2 ) 

to choose which data to acquire next. This minimization problem is broken into subproblems 

over each simplex: A numerical optimizer is used to find the best point within each simplex, 

and these are compared to find the best overall candidate. 

Elder [11] claims that 

The Key difficulty in expanding Kushner's algorithm from R1 to Rd—and per

haps the reason the method saw little use for a generation—is the extension of 

the random walk model into a random field (for which there are even competing 

theoretical definitions in the literature). 

There are several well-known Gaussian fields whose sample paths satisfy his desiderata of 

being "locally rough" but "regionally smooth"; furthermore, these processes were suggested 

much earlier as possible candidates for use in higher-dimensional global optimization prob

lems. The main drawback is not in the conceptual definition of random fields; rather it is 

in the time complexity of reasoning with them: typically operations take time quadratic or 

cubic in the number of data points. We will examine this difficulty further in Section 2.2. 
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Mockus 

At the time Kushner was originally developing his algorithm, Jonas Mockus was in the for

mer USSR developing similar methods and publishing in several Russian language journals 

of the day. The earliest of his English language publications that Mockus cites in his book 

is in the proceedings of the International Federation for Information Processing Congress 

1977 which was held in Toronto, Canada. 

Model Mockus suggests a model that is an extension of the Wiener process to d dimen

sions. This model was chosen because it is, in his opinion, the simplest that satisfies two 

desiderata: Sampled functions are continuous, and their finite differences are independent. 

Finite differences are the discrete analogues of derivatives; again functions sampled from 

this model are nowhere differentiable. The kernel function for this model is given by 

Kv)=^(i-V) (2-23) 

where d is the dimension of the data points, and x, z 6 [—1, l]d for simplicity6. (Any hyper-

rectangular region is easily mapped to [— 1, l]d.) This model is the sum of 2d Wiener fields, 

each of which is the extension of the Wiener process to d dimensions. The Wiener fields 

have their origins at each vertex of [—1, l]d. The result is a process in d dimensions that is 

everywhere continuous but nowhere differentiable. 

Acquisition Criterion The development of Mockus's criterion begins from assuming we 

will have the opportunity to observe n samples, and that we wish to minimize the expected 

difference between the function value we report and the true optimum value of the function. 

Given this criterion, the rational point to report is the point that gives the lowest expected 

loss, according to our posterior model. We call the reported point xn+1. 

xn+1 = a r g m i n E [ ( r - F 2 ) | / ( x ) ] (2.24) 
z 

= argmm(E[/*]-E[F, | / (x)]) (2.25) 
Z 

= argmaxE[Fz | /(x)] (2.26) 
z 

that is, the point with the highest posterior expected value. In practice, the reported point 

is chosen from the set of points where we have observed F instead of over the entire domain. 

For the Wiener process and extensions with no added noise the two choices are equivalent, 

6 Recall that Xi is the i th component of the point x G Rd . 
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but for more general models this is not the case. This simplification is made for two reasons: 

It is computationally much more convenient to simply scan the list of observed values for 

the best one than to search over X, and there is typically a preference for reporting a point 

that has low posterior variance, which our observed points have—a preference that is not 

stated in the original problem. Nevertheless, for the moment we will presume that we will 

always report the point with the greatest posterior expected value. 

Having decided which point to report if we cannot acquire any more, we now examine 

the optimal point to observe if we are allowed one more acquisition, which leads us to what 

Mockus calls the "one-stage" method. 

xn «- argminE[ minE[/(a;*) - Fx„+ 1 | /x i^] | fxlin-i } (2.27) 

<— argmaxE[ maxE[.Fxn+i|/xi:r,] | fxi.n-i ] (2.28) 

The property we want xn to have is intuitive: Choose xn so that after we have observed 

Fxn, the maximum posterior mean of Fxn+i, the point we will report, is as large as possible, 

given our actual observation of Fxn. 

Of course in principle there is no reason not to consider all future acquisition; we can 

unroll the recurrence relation all the way down to the first acquisition: 

x1 <— argmaxE[ maxE[ ... maxE[ maxE[.Fxn+i|/xi:,i] | / x i ^ - i ] ... | /x i ] ] (2.29) 
x l X1 Xn xn + 1 

Thus to really maximize our criterion from the beginning of an optimization run, we must 

consider all possible future trajectories of the choices that we make and the values we might 

observe. This "expecti-max" quantity appears most famously in the problem of acting 

optimally in finite-horizon Markov Decision Processes as the Bellman equation, and various 

attempts have been made to approximate its solution [45, 20]. However, to our knowledge, 

all current Bayesian response-surface methods with an expected-loss type criterion use only 

the "one-stage" method for selecting the next point. Mockus re-writes the criterion thus 

xn <— argmaxE[ maxE[.Fa.n+i|/a.i:n] | fxi-n-i } (2.30) 
xn xn+1 

<— a,rgm&xE[(m&xE[Fz\fxi:n]-m&xE[Fw\fxi:n-i})+] (2.31) 
~ z w 

<- argmaxE[(Fxn - ^ m a x ) + ] (2.32) 
xn 

which is the expected positive difference between the value we would have reported before 

observing f(xn) and after observing f(xn). This re-writing is based on the assumption that 

observing a new point will never cause us to report a value that is worse than we would have 
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reported before, and that we will only report a function value at a point we have observed. 

This means that maxwE[Fw\fxi-.n-i] is a constant (which we write as /imax) and the whole 

criterion is a single expectation of a function of Fxn. This criterion is frequently called 

expected improvement. Furthermore, Mockus augments this criterion with a parameter £ 

similar to that used in MPI, giving 

xn <- argmaxE[(F;cn - (Mmax + £))+] (2.33) 
X™ 

For the remainder of this thesis, we will refer to this as the Maximum Expected Improvement 

(MEI) criterion. 

EGO 

Jones, Schonlau and Welch describe an algorithm they call Efficient Global Operation or 

EGO [19]. 

Model The stochastic model used for EGO is known as the Design and Analysis of Com

puter Experiments or DACE model [37, 38]. This model was used by Sacks et al. for a 

different task—choosing acquisitions for an experimental design that minimizes a global 

error measure, such as expected squared error between the model and the true function 

integrated over the domain. The DACE model is a Gaussian process model with a param

eterized kernel 
d 

k(x, z) = rf-e <=1 (2.34) 

where Oe > 0 and each pt € [1,2]. This is a generalization of the exponentiated-negative-

distance kernel commonly used by the machine learning community. Covariance along each 

axis is controlled by the positive length-scales 0£, and by the exponents pi. If pt = 2, sample 

functions will be infinitely differentiable along the direction of xg; otherwise they will be 

non-differentiable but continuous. 

Acquisition Criterion The criterion used for selecting query points in EGO is exactly 

the "one-stage" or "expected improvement" criterion used by Mockus. The developers of 

EGO note that this quantity can be computed using standard Gaussian probability and 

density functions. For the remainder of this section, we will use \i(x) and o(x) as shorthand 

for the posterior mean and standard deviation of Fx, we will use / m a x as shorthand for 
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maxj fxi, and the functions $ and <p will be the standard normal CDF and PDF. 

E[(FX - / m a x ) + ] = (M*) - /max) • $ ( M x )
g ~ [ m a x ) + a(x) • </> ( M ( X )

f f ^ ( m a X ) (2-35) 

Before following this criterion, however, the EGO algorithm first acquires approximately 

10 • d points in a Latin hypercube design where all one- and two-dimensional projections 

are nearly uniformly covered. The DACE model is then fit to these points using maximum 

likelihood. If the fit is found by inspection to be "poor", the data are transformed using a log 

or inverse (—1/y) transformation. The criterion function just described is then optimized 

using a branch-and-bound technique to find the next point to acquire. This procedure is 

followed until the maximum expected improvement found is less than 1% of the current best 

function value. 

The EGO procedure takes basically the same approach as Mockus's work except that 

it uses a more complex model and provides a systematic way of optimizing the criterion 

function used for selecting acquisition points. Its practical use has been restricted to low-

dimensional (d < 6) spaces to date, however, partly because use of the initial Latin hyper

cube can be undesirable for expensive-to-evaluate problems,7 and because the branch-and-

bound algorithm alluded to does not scale up effectively to higher dimensions. 

Extensions to EGO 

Extensions to the EGO procedure have been introduced that enable further control of the 

locality of search points, allow constraints on other response variables, and reduce computa

tion time for problems that have mixture of expensive and cheap objectives and constraints 

[41, 39]. 

Generalized Expected Improvement Schonlau [41] gives a recurrence relation for com

puting the expectation of positive integer powers of improvement. 

M(FX - /m a x)9)+] = *{x)° f > l ) f c ( f c ! ( / l f c ) ! ) z9~kTk (2-36) 

where 

Tk = -4>{z)-zk-1 + {k-l)-Tk-2 (2.37) 

and 

/max Ml'*'/ 
Z= ( \ 

7We have found that for AIBO walk optimization, which has 15 dimensions, we can find a very good 
walk in 150 = 10 • d evaluations by following the maximum expected improvement criterion. In this case, it 
is unlikely a Latin hypercube design would fare as well. 
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The parameter g provides another mechanism for controlling the locality of the search 

procedure: By maximizing the expected squared improvement (or cubed improvement or...) 

preference is shifted from points that have a low posterior mean to points that have a high 

posterior variance. This is similar to the tradeoff afforded by changing £ discussed earlier. 

Schonlau suggests that, since expected improvement is frequently found to be "too local", 

setting g = 2 gives better performance; however, this is based on one example only. Sasena 

gives a "cooling" schedule for g that he has found to work well empirically. 

Simultaneous Acquisitions The methods described up to this point have concerned 

themselves with acquiring points one at a time, always using the most current model of the 

function. There are situations, however, where acquiring several points simultaneously is 

preferable; if we have the resources to acquire points from an expensive function many times 

in parallel it seems a waste not to take advantage of this capability. 

Suppose we want to acquire a group of m points. A simple extension of the expected 

improvement criterion would be 

E[max(0,.Fa;i - fmax, Fxi - / m a x , ... , Fxm - /m a x)] (2.39) 

While this definition is simple, the optimization problem it poses is potentially very hard. 

We must now solve a global optimization problem in R m d since we need to select the location 

of m points. Also, it is not known if the expectation (2.39) has a closed form, so sampling 

is currently the only method for evaluating it. 

For these reasons, Schonlau [41] suggests a simpler alternative: Use the one-step expected 

improvement criterion to find a point. Do not acquire the function's value at that point, but 

update the posterior variance assuming we have. (Note that the posterior variance depends 

only on the location of the acquisition, not on the observed value.) Repeat until we have 

chosen rn points and then acquire them, possibly in parallel. This technique could be used 

with any of the other acquisition criteria also. Schonlau reports that it behaves reasonably 

on an example function using the expected squared improvement criterion. 

Constraints Various extensions that allow more complex constraints on variables have 

been developed for use with EGO. Here we mention four of the most commonly used pro

posals. 

The first two ideas are re-inventions of the most basic way of dealing with a constrained 

optimization problem: Penalize constraint violations by including them in the acquisition 
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criterion, and solve the resulting unconstrained problem. Constraints are presumed to be 

expressed in the form 
k 

A 9i{x) < 0 (2.40) 

In the first approach, proposed by Schonlau, all constraint functions are modeled just as 

the objective function is, and the acquisition criterion (typically expected improvement) is 

multiplied by the posterior probability that all constraints are satisfied at any given point. 

This way, points will only be selected by the acquisition criterion if they are unlikely to vio

late the constraints. The constraint and objective variables are assumed to be independent 

for ease of modeling and computation. This method of penalizing will alter the location of 

optima of the acquisition criterion if there is any uncertainty in the model of the constraints. 

Worse, the penalized criterion can be very flat in areas where constraints are violated with 

very high probability, since the modified acquisition criterion is close to zero in these re

gions. This makes the already difficult problem of maximizing the acquisition criterion even 

harder. 

The second penalty-based approach, suggested by Bjorkman and Holmstrom, is simply 

to add the value of the constraint functions g%{x) anywhere they are positive, i.e. 

k 

c*( : r )=c(x)+ £ > ( * ) ] + (2.41) 
i = i 

If the gi are expensive or not readily available, then they are modeled using a GP and 

the model's posterior mean is used instead. This additive method of penalizing does not 

affect the locations of feasible solutions, but it does introduce regions of non-differentiability 

wherever 3i gi(x) = 0. Any optimization routine used with this type of penalty must 

therefore be capable of handling non-differentiable functions. 

A third approach defined by Audet et al. [3] involves randomly generating candidate 

points in the domain, and ranking them according to their expected violation. This quantity 

is exactly analogous to the expected improvement criterion used on the objective. As a 

penalty function, expected violation was found by Sasena to perform poorly on the example 

he presents. Constraints by definition are binary objective: they are violated or not. A 

point that with very high probability violates a constraint by a tiny amount (and therefore 

has a tiny expected violation) is not a feasible solution; if such a point is deemed acceptable 

then the problem has been incorrectly described. 

The fourth approach acknowledges that decades of research in the field of constrained 

optimization have resulted in methods that are widely used, well understood, and very effec-
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tive. Rather than apply a primitive penalty function for constraint violation, the posterior 

mean of the constraints (i.e. our best guess) can be handed off along with the acquisition 

criterion to any constrained optimization routine; a log barrier method would be a popular 

choice, for example. 

Heterogeneous Function Costs Sasena [39] points out that it certain problems may 

have a mixture of objective and constraint functions with varying costs for evaluation. 

He proposes dividing these into two groups, "expensive" and "cheap", and treating them 

separately during optimization. The approach is an obvious one: If a function is expensive, 

model it with a GP. If it is not, simply respect the constraint while searching for the 

next acquisition point. If the objective is cheap, add the following constraint to the global 

optimizer used for the acquisition criterion: 

/cheap(a) > /max (2 .42) 

This takes care of the situation where we want to test expensive constraints as little as 

possible by avoiding points we know cannot improve on what we have found so far. If 

everything is cheap, this approach, which Sasena calls "superEGO," degenerates to using 

the global optimizer chosen for the acquisition criterion. In Sasena's work, the DIRECT 

algorithm [12] is used. 

Boyle 

At the time of this writing, the most recent extensions to Gaussian process optimization 

were the addition of techniques prevalent in the Bayesian machine learning field by Boyle [6]. 

Model Throughout his dissertation, Boyle focuses on using a more fully Bayesian treat

ment of Gaussian processes. To this end, he specifies priors on covariance function param

eters such as length scales, data rotations, and noise levels. He then uses Monte Carlo 

methods to infer the posterior, which is now no longer Gaussian. This allows him to use a 

more complicated covariance function, which we now detail. 

The covariance function used by Boyle has a squared exponential form with a length scale 

9( for each principal axis I £ {1,2,...,d} and a fully parameterized rigid rotation matrix A. 

The form of the covariance function is 

k(x, Z)=a)- e-<*-*)TA[diag(0?)]AT(*-*) ( 2 4 3 ) 
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where [diag(0|)] is a matrix with squared length scales on the diagonal and zeros elsewhere, 

and A is d x d with ATA = I. Boyle parameterizes the matrix A using a set of d2 Givens 

rotation angles — IT < Pij < TX. This kernel therefore has d2 +d+1 parameters that are used 

to achieve data rotations, data scaling, and function scaling by 07. 

Using such a rich parameterization with a small amount of data will almost certainly 

lead to overfitting if we use a MAP hypothesis [13]. Therefore, rather than choosing a single 

set of kernel parameters, Boyle specifies prior beliefs about the parameters and integrates 

over them to compute the posterior of F. This cannot be done analytically, so Monte Carlo 

methods are used to approximate the posterior. Taking this approach allows the use of 

richer models, but is computationally much more expensive than using a simpler model 

with the maximum likelihood or MAP parameter settings. 

Further to this idea, Boyle presents results where after each acquisition, two models are 

built: One is axis-aligned, and one is rotated. Posterior inferences are then constructed by 

weighting each model according to its posterior plausibility. 

Finally, in an effort to curb computational costs, Boyle points out that it is possible to use 

Reduced Rank Gaussian Processes [36] (RRGPs) for optimization, and gives one empirical 

example. This approach is one of a set of techniques for reducing the computational cost of 

GP inference; we propose a more rigorous investigation of these techniques in Section 7.2.1 

Acquisition Criterion Boyle uses the Maximum Expected Improvement (MEI) acquisi

tion criterion given in Equation 2.33 with £ = 0 throughout his work. He also proposes a 

"local" version of MEI, where the next point to acquire is constrained to be within distance 

e of the last point acquired. He proposes a schedule for e using an increment e;nc > 1 as 

follows: 

{£i x fine if the last acquisition was an improvement , . 

Ci/einc otherwise 

Details of setting eo and emc are left to the user. 

Empirical Results The various modifications by Boyle are tested on several analytically 

constructed problems, each of which consists of a single d-dimensional, possibly non-axis-

aligned Gaussian function. Dimensions of the various test cases range from 1 to 36. Note 

that each of these functions has a single local optimum that is also the global optimum. 

Boyle found improved performance when using a covariance function that is "matched" 

to the objective. That is, using an axis-aligned model with an axis-aligned objective or 
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using a non-axis-aligned model with a non-axis-aligned objective gave the best performance. 

Interestingly, he also found that results when the two models were averaged according to 

their plausibility were better than either used alone. This model-averaging approach was also 

applied to an 8-dimensional "double pole balancing" control problem, for which Gaussian 

process based optimization found good controllers using fewer evaluations than a competing 

genetic algorithm technique. 

2.2 Gaussian Processes in Machine Learning 

The preceding methods were developed over a number of years by researchers in the statisti

cal sciences familiar with general random field models, and by researchers in the engineering 

sciences familiar with the "kriging" models of geostatistics. Gaussian processes have become 

widely popular in the machine learning community only during the last decade. Advances 

have been made adapting the GP model to various tasks in regression, classification, and 

reinforcement learning. In the process of these adaptations, various insights and tricks for 

the practical implementation and use of GPs have been developed. Some techniques par

ticularly relevant to Bayesian optimization with GPs are geared toward improving model 

selection, and reducing the computation time necessary for inference. 

The specification of a Gaussian Process prior involves choosing a prior mean function 

/io(x) and a covariance function or kernel k(x,x). We have seen two primary examples of 

possible kernels: Mockus's Wiener process kernel 

k(X,z) = ajf[ (l-^-^j (2.45) 

and the "squared exponential" kernel used in EGO 

d 

k(x, z) = a) • e «=i (2.46) 

These two kernels give rise to very different sampled functions. When Vi Pi = 2 in kernel 

(2.46), for example, functions sampled from the resulting Gaussian process prior are in

finitely differentiable. Functions sampled from a Gaussian process prior using kernel (2.45) 

on the other hand are nowhere differentiable. Even using only kernel (2.46), we can produce 

a wide variety of priors by adjusting the free parameters p and 0. If 1 < p < 2, the sampled 

functions become non-differentiable again, and are progressively "rougher" as we decrease 

p. On the other hand, B\ controls the "length scale" of the process. This is a larger-scale 
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property that can be related to the distribution of the number of zero-crossings of the func

tion on a given interval. As we increase #j, sampled functions become increasingly smooth 

along the zth axis, in the sense that the expected number of zero crossings decreases [36]. 

The most common version of (2.46) is a slightly modified case where Vi Pi = 2. 

k{x,z)^a2
re-^ (2.47) 

where r is the vector given by 

n(xi,Zi) = - 1 - — - , i = l...d 

This is known as the Gaussian kernel, the ARD kernel, or the squared exponential kernel, 

which is how we will refer to it. 

Another commonly used kernel is the Matern kernel, which consists of an exponential 

kernel multiplied by a polynomial. These are parameterized by an additional real parameter 

v > 0; however, only two values of v are commonly used in machine learning applications 

K=3/2(r) = ^ . ( l + A/3| | r | | ) .e-^l" r l l (2.48) 

*„=5/2(r) = ^ • ( l + V5||r|| + | | | r | | 2 ) - e - ^ " H I (2.49) 

where again, Ti(xi,z») = Xi^Zi, i = 1.. .d. These kernels produce processes that are mean-

square differentiable exactly [v\ times, and as v —> co the Matern kernel tends toward the 

squared exponential kernel described earlier [36]. 

Because of the degree of flexibility and lack of a priori knowledge about how to select a 

kernel or its parameters, it is common in the machine learning community to use a maximum 

likelihood criterion to choose these. The Gaussian likelihood function is given by 

log p(Fx = f) = -UT fc(x.x)-1 f - ilog|fc(x,x)| - | log27r (2.50) 

Empirical results have shown that using the maximum likelihood criterion for choosing a 

kernel works well in many cases. A popular first attempt at modeling is to use the squared 

exponential kernel and adapt the £$ parameters using maximum likelihood. This is known 

as the "Automatic Relevance Detection" or ARD approach [28]. Success with ARD has 

resulted in still more ambitious parameterizations of kernels. For example, kernel (2.47) can 

be extended as follows: 

k(x, z)=a2
r e-(*-*)T*(*-*) (2.51) 

24 



Here, 0 is a d x d positive semi-definite matrix. If 0 is diagonal, (2.51) is equivalent to 

(2.47) with all pi set to 2. Estimating the full matrix © is in many cases infeasible if data 

are limited; however, if we assume G decomposes as 

9 = AAT + diag(6>)~2 (2.52) 

where 9 is a vector of positive values and A is d x TO, TO < d, then we have significantly 

fewer parameters than if we were trying to estimate a more general 0 , but we can still 

identify interactions between input dimensions. This is called the factor analysis approach 

[36], and allows us to describe length-scales of the function in a limited number (m) of 

non-axis-aligned directions. The kernel is therefore similar to but not expressive as that of 

Boyle described in Section 2.1.5. This approach has been used effectively to provide more 

flexibility in modeling than the axis-aligned approach (i.e. kernel (2.47)) while controlling 

the number of parameters that must be fit. 

2.3 Extrema of Gaussian Processes 

The behaviour of Gaussian8 processes has been studied extensively over the past 100 years 

or so, in a way that combines questions about the behaviour of functions with questions 

about the behaviour of random variables. 

Common questions attempt to somehow encapsulate information about the behaviour 

of the function in a single number. For example, how many zeroes does the function in 

question have? How many critical points does it have? What is its global maximum? For 

random processes, these questions are of course ideally answered with a distribution instead 

of a single value; unfortunately, in many cases we are only able to give an analytic answer 

for the first moment of the distribution or for an approximation to its tail probabilities. 

Furthermore, investigating these quantities soon reveals that a treatment of general Gaussian 

processes is impractical; therefore before we begin we introduce three definitions to restrict 

our attention to stationary processes, isotropic processes, and axis-scaled isotropic processes. 

Definition 1 (Stationarity). A real-valued random field F(x), x 6 Rd is stationary [1] (or 

homogeneous) if its finite dimensional distributions are invariant under translations of the 

parameter x. That is, for any set of points x1,x2,...,xk and any point z (all in Md), the 
8Many of the results we review here apply to some degree to general random processes; however we 

restrict our discussion to the Gaussian case. 
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distribution of 

{Fxi,Fx2,...,Fxk} 

is identical to that of 

[Fx1+z,Fx2+z,...,Fxk+z] 

Two immediate consequences of this requirement are that for all x and z, 

E[F(x)] = c where c is some constant 

E[(FX — c)(Fz — c)] is a function of x — z only 

For real-valued processes, these two properties taken together imply stationarity. (See The

orem 2.1.1 by Adler [1].) Note that we also apply the adjective stationary to kernels that are 

a function of x — z only; in this case we may write the kernel as a function of one variable, 

k(r), where r = x — z. 

All of the prior Gaussian processes we deal with in this work will be stationary, though 

posterior processes will not be. 

Definition 2 (Isotropy). A real-valued random field F(x), x G Rd is isotropic if it is 

stationary and 

E[(FX — c)(Fz — c)] is a function of ||x — z\\ only 

where || • || is the Euclidean 2-norm [1]. 

Finally, for convenience we define a slightly broader class of processes. 

Definition 3 (Axis-Scaled Isotropy). A real-valued random field F(x), x G M.d is axis-scaled 

isotropic if it is stationary and 

E[(FX — c)(Fz — c)] is a function of \\(x — z) L _ 1 | | only 

where L is a d x d matrix with £y = 0 where i ^ j and £u > 0 are characteristic length-scales 

for each dimension (usually written £i.) 

It is convenient to define the kernel of an axis-aligned isotropic process as a function 

k(r) where 
/ \ Xi — Zi . 

ri{xi,Zi) = — - — , i = l...d 

but to have the function only depend on r through its norm, \\r\\. This last class of processes 

corresponds to those used in the Automatic Relevance Determination procedure described 

above. 
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2.3.1 Spectral representation 

Here, we give a very brief overview of the ideas behind spectral representations for Gaussian 

processes. More complete treatments can be found in many sources [1, 21, 36, 2]. The 

spectral theory of Gaussian processes plays a critical role in the understanding of many 

of their properties, because it allows us to decompose them into sinusoidal components 

for which those same properties (related to amplitude, periodicity, etc.) are more easily 

accessible. This is particularly helpful when there is one dominant sinusoidal component, 

as there typically is in our models, since expectations of quantities like level crossings and 

local maxima (described later) depend only on this easily computed component. 

All of the results that follow are based in part on the fact that any real-valued stationary 

Gaussian process with zero mean can be expressed as follows: 

Fx= f [cos(A • x) dll{\) - sin(A • x) dV(A)] (2.53) 

Note that here, U and V are random fields that take intervals (i.e. rectangles) of Rd as 

inputs, making this a stochastic integral. A complete explanation of the semantics of this 

equation is given by Adler [1], but here we just want to give an intuition of the consequence 

of this equivalence. Note that we can approximate (2.53) by a sum of sinusoidal components 

Fx « ^[cos(A ( i ) • x)U{A{i)) - sin(AW • x) V(A«)] (2.54) 
i 

Here, each AW is an interval containing the point A^ , A^nA^') = 0 for i ^ j , and UjAW = 

Rd. We can see that the field F can be approximately expressed as a sum of sinusoidal 

components, each one with amplitude y/U(A^)2 + V(AW)2 and frequency determined by 

A«. 

The spectral distribution of a Gaussian process is defined as 

S(X)=E[\U{X) + iV(X)\2} (2.55) 

which is the expected squared magnitude at any given frequency A. (Here, i2 = — 1. Also 

note that S is not necessarily a probability measure.) The second-order9 spectral moments 

are given by 

Xij = I x^ dS(X) - d2k{r) (2.56) 
r=0 lRd dndrj 

Here, k(r) is the kernel of the process. The quantities Xu indicate the squared frequencies 

along each axis that have the highest expected amplitude, scaled by fe(0) = J d5(A). This is 
9Note that the first-order spectral moments are identically zero [1]. 
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useful particularly in the isotropic case where Xij-.i^j = 0. The right hand side of the above 

expression is true because the spectral distribution also completely determines the kernel in 

the following way 

Jfc(r) = / cos(r • A) dS*(A) 

For this work, we will never deal with S, U, or V directly; however, the spectral represen

tation provides us with two critical pieces of information: A stationary Gaussian process 

can be thought of as a random sum of sinusoids, and the most important frequency of these 

sinusoids can be recovered simply by differentiating the kernel function. This is important 

because, as we will see, many expectations of (quasi-)periodic events (level crossings, local 

maxima, etc.) depend only on the "dominant" frequency of the function in question. 

2.3.2 Stat ionary processes in one dimension 

The first extensively studied Gaussian processes were those indexed by Z or E, usually 

referred to as discrete or continuous time series, respectively. The study of time series was 

one of the first forays into the analysis of sets of random variables that are not independent 

and identically distributed—their dependency structure is explicitly stated. In the Gaussian 

case, this structure is defined by a kernel as we saw earlier 

Considering the one-dimensional case has the advantage that many interesting quantities 

have easily computable, analytic answers that give further insight into how the parameters 

of a process influence different properties of that process. 

Level Crossings One useful measure of the complexity of a time series is the number of 

u-level crossings of sampled functions. A w-level crossing is a point on a function / where 

f(x) = u and f'(x) j^ 0. This quantity is used as a measure of the oscillatory properties of 

a function or process, and is related to the "dominant frequency" of the object in question 

[21]. 

Theorem 1 (The Rice Formula). Let F be a zero-mean, unit-variance Gaussian process 

on the interval X C M. with kernel k(r). Then the expected number of u-level crossings of F 

T over X, denoted Ni, is given by 

E [ A T | ] - M J ) 

d2k(r) 
dr2 

IT \ | jfc(0) 

provided the second derivative of k exists at 0[lJ. 

r=0e-u*/k{0) ( 2 > 5 7 ) 
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This formula is perhaps the most famous in time series analysis, and has been proven 

many times and in many ways [1, 21, 36, 2]. We omit the proof here, but provide an 

analogous proof for the expected number of local maxima in the next section. It is worth 

noticing that the quantity LI = \J—k"(0)/k(0) is the normalized second spectral moment, 

which as we mentioned earlier can be thought of as the dominant frequency of the Gaussian 

process. Therefore, if we take u — 0 and X = [0,1], say, then the expected number of 

0-level crossings is w/ir. For comparison, the number of 0-level crossings of a sinusoid with 

frequency u is G {[w/-7rj, [U/TV\ + 1}. 

Higher-Order Crossings We now consider what are known as "higher-order crossings" 

[21]. The "order" referred to here is the order of the derivative of the process we are 

considering. The study of higher-order crossings brings up an important property: If a 

Gaussian process is c times mean square differentiable, then each of its partial derivatives 

up to order c is also a Gaussian process. Furthermore, the original process and its derivatives 

are all jointly Gaussian, with covariances given by 

C o v ( d«F(x) dPFjz) \ = da+/3fc(x,z) (2 5 8 ) 

where a = ^-yi-y a n d P — J2s^s, d°f(x)/dx — f(x), a < c and j3 < c. Briefly, the 

justification for this is an interchanging of expectation and differentiation, both of which 

are linear operators. Again, more thorough proofs can be found in the literature [2]. 

Theorem 2 (Expected Number of Local Maxima). The expected number of local maxima 

(denoted N^ (T)) of a twice mean square differentiable, stationary Gaussian process over an 

interval I is given by 

E[AT(I)] = 

\ 

d*k(r) 
dr 4 

d2fc(r) 
8r2 

r = 0 (2.59) 
27T 

r-0 

where HL(Z) is the length (Lebesgue measure) of the domain of x, and k is the kernel, which 

depends only on the distance r — x — z between domain points. 

Proof. We could simply use Rice's formula 2.57, if we knew that 

1. Local maxima are 0-level downcrossings of the first derivative 

2. There are half as many it-level downcrossings as u-level crossings 

3. The covariance of the first derivative process is given by (2.58) 
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However, we present a proof that gives a feel for how the expectations of numbers of level 

crossings and other similar events are computed for Gaussian processes. We will closely 

follow the approach taken by Adler and Taylor [2] by computing the number of downcrossings 

of a deterministic, one-dimensional function and then taking expectations to recover this 

version of Rice's formula. This approach affords a straightforward, intuitive proof, but relies 

on heavy use of Dirac delta functions and changing orders of integration in ways that are 

not immediately clearly justifiable. We refer the intrepid reader who is interested in the 

detailed justification of these operations to investigate the aforementioned work. 

We define a "downcrossing" x^ of a one-dimensional deterministic function g to be a 

point where g(x^) = 0 and g'{x^) < 0. We presume that these points are isolated: For any 

downcrossing X[, there is an interval X inside which xi € J is the only downcrossing and 

Vx€l,g'(x) <0 . 

Let 5 be the Dirac delta function which has the property 

/ 5(x)f(x)dx = f{x) 

for "reasonable" functions / . Then within the interval [z, w] that contains a single down-

crossing, we have 
ru> rf(w) 

/ -6(f(x)) • f'{x) dx = / -6(y) dy = 1 
Jz Jf(z) 

by substituting y = f(x) and dy = f'(x) dx. The negative sign appears because by as

sumption / is decreasing over I so f(z) < /(to). By integrating over the domain of / and 

using an indicator function to identify areas where f'(x) < 0, we can count the number of 

downcrossings N^ as follows: 

N^l) = J -5(f(x)) • l(_0O>0)[/'(x)] • f'(x) dx 

Here, l^o^o^-] is the indicator function for negative numbers. An immediate consequence 

of this is that we can count the number of interior local maxima of / , since these are simply 

points where f'(x) = 0 and f"(x) < 0. Hence, we have 

N~(l) = J -6(f(x)) • l(_oo,0)[/"(a;)] • f"{x) dx 

We now substitute the random process field F(x) for the function f(x), and take the expec-
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tation 

6(F\x))-l^oofi)[F"(x)]-F"(x)dx 
i 

0 /.oo 

E[N~(T)] = E 

/

U />00 r 

/ / -z 5(y)p(F'(x) = y, F"(x) = z) dx dy dz 
-00 J—OO JX 

= 1 1 ~zp(F'{x) = 0,-F"(x) - z) dx dz (2.60) 
J-oo Jl 

Here, p is the joint probability density of F'(x) = y, F"(x) = z. Recall that in our case, this 

density is Gaussian, stationary (i.e. it does not depend on x) and y and z are independent. 

Therefore we can simplify and get 

E[JV~(Z)] = f dx I -zp{F'(x) = 0,F"(x) = z)dz 
Jl J-oo 

= fiL(l) f -zp(F'(x)=0)-(F"(x) = z)dz 

= fiL(I) • p(F'(x) - 0) • / -z- (F"(x) = z) 

= ML(2) 

dz 

= MiW 

= VL(Z) 

0 e-z
2/2a\F"{x)) 

^2na2(F'(x)) J-oo ~* J2^{F"{x)) ** 

1 la2{F"(x)) 
^2ira2(F'(x)) V 2TT 

1 la2(F"(x)) 
2TT y ^(^ ' (a : ) ) 

We can then use a simplified version of (2.58) to determine that the marginal variance of 

the derivatives are given by a2{F^(x)) = (—1)* • k^2x\G). Therefore, 

E[JV~CD] = W ( i ) • — 
\ 

d4fc(r) 
9r 4 

d2fc(r) 
r=0 (2.61) 

r=0 

This gives the exact expected number of local maxima of functions drawn from a sufficiently 

smooth stationary Gaussian process over a closed interval I CM.. • 

2.3.3 Stat ionary processes in many dimensions 

We now examine processes over subsets I c t < ! . First- and second-order mean square partial 

derivatives of F are denoted Fi{x) = dF(x)/dxi and Fij(x) = d2F(x)/dxidxj, respectively. 

Expected Number of Local Maxima In principle, we can count the number of local 

maxima of a function in d dimensions by computing 

AT(2) = J 5{Vf{x)) • Uo[V}(x)} • \detV2
f(x)\ dx 
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where l-<o[-] is the indicator function for negative definite matrices, 5(x) = Yii^(xi)' an<^ 

V/(x) and V*(x) are the gradient and Hessian of / , respectively. This follows again from 

a variable substitution of the now multi-dimensional delta function, recalling that V*(x) is 

the Jacobian of V/(x) . Taking the expectation of this quantity over F, we can make similar 

simplifications as in the one-dimensional case, up to a point, and get: 

E[i\T(Z)] - /iz,(I) / p(VF(x) = 0 , V ^ ( x ) = H ) - | d e t H | d H (2.62) 
J H ^ O 

d r 

= iiL(2)-T[P(Fi(x)=0) p(V|.(a:)=H)-|detH|dH (2.63) 
i = l •'H-cO 

There are two extremely unfortunate characteristics of equation (2.63) that bear mentioning. 

First, the integral in question is over all possible negative definite matrices, which is a difficult 

region to express analytically in terms of the elements of H. Second, the elements of V|.(x) 

are dependent, so we need to deal with the full joint Gaussian distribution over Hessians, 

which has d(d+l)/2 variables. Even computing a simple orthant probability (i.e. p(x > 0)) 

has no known closed form for more than 4 dimensions, so it seems unlikely that a simple 

closed form for (2.63) exists. 

In a similar vein, Adler [2] defines the quantities 

Mfe = # { x <= X : f(x) > u, V/(x) = 0, index(V/(a;)) = k} (2.64) 

where the index of a matrix is the number of negative eigenvalues of that matrix. Clearly, if 

we set u = —oo then JU<J = JV~(J). Adler states categorically that "...it is actually impossible 

to obtain closed expressions for any of the E[/ife]." Although fid is a slightly more general 

quantity than N^(l) since it involves the additional constraint F(x) > u, it seems that the 

prospects of obtaining an analytic answer for N^{1) are slim to none. 

It is, however possible to approximate the number of local maxima that exceed a value 

u, which we denote JV£\ An asymptotic expression for this quantity was given by Adler [1]. 

It is important to note that this will count the number of interior local maxima, i.e. points 

with a zero gradient and negative definite Hessian. In the realm of constrained optimization, 

these do not encompass all of the maxima that are of interest—maxima that are against 

active constraints do not have this property, in general. We shall see how a different approach 

based on geometry rather than calculus can lead to quantities more appropriate for our use. 

32 



2.3.4 The Euler characteristic of excursion sets 

Given the limitations of the critical-point, calculus-based approach to excursion theory, it is 

fortunate that there are other properties of Gaussian processes over high dimensional spaces 

that give insight into the behaviour of the "bumpiness" of F, have closed forms, and are 

at least somewhat tractable. The most prominent approach in the field has been to shift 

focus away from finding critical points (i.e. points where V/(IE) = 0) and toward computing 

properties of excursion sets, which are sets Au(f) = {x • f(x) > u}. 

Contour plot of a 2D Function 
1| -J— (" " X * nr—-—j ; . , B I 1 

Figure 2.1: Example of an excursion set for a two-dimensional function / . Shown on the 
right in green, the excursion set A0.5—the set of domain points where / > 0.5—has four 
components, none of which have holes. Therefore x(-4o.s) = 4 for this function. 

Some examples of excursion sets in two dimensions are shown in Figure 2.1. For a 

function / with a "mountain range" type of behaviour, like samples from a smooth Gaussian 

process or a sinusoid, the excursion set Au for u = s u p ^ / — S for some small enough 

5 > 0 will consist of a connected, nearly ellipsoid-shaped closed set of points containing 

x* = argsupI f(x), if we suppose that x* is unique and is not on the boundary of J . To 

see this, note that by Taylor's theorem, the behaviour of / about the point x* will be very 

nearly quadratic within a small enough radius, and that the level sets of a quadratic function 

are ellipsoids. As we decrease u, the size of Au will grow, and new components will appear 

around other local maxima that u crosses on its descent- Au will become more and more 

connected until it consists of most of the domain I , but with holes surrounding the locations 

of extreme local minima. 

We now consider what we can tell about a function from looking at its excursion sets to 
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try to give an idea of their potential in studying extrema. First, it is easy to see that the 

number of connected components of Au gives a lower bound on the number of local maxima 

that exceed level u. Second, if we somehow knew that a Gaussian process would produce 

either a single local maximum above u or none at all, then the number of components of 

Au for any sampled function will be zero or one, and the expected number of components 

of Au would be equal to ^(supj. Fx > u), which we call the excursion probability of F above 

u. It turns out that the best asymptotic approximations known for excursion probabilities 

(and they are very good for moderate to large w/07, i.e. u/a/ > 1.5) are related to counting 

connected components of excursion sets. 

The number of connected components of a closed set is an example of a topological 

invariant. That is, the quantity is the same for all sets that are homeomorphic—sets between 

which there exists a continuous, one-to-one, and onto mapping. Less formally, a topological 

invariant property of two sets will be the same if one set can be smoothly deformed into the 

other, like a doughnut and a coffee cup, but not a doughnut and a bowling ball10. The Euler 

characteristic x is perhaps the most famous topological invariant11 Precisely defining the 

Euler characteristic is a somewhat lengthy process, so we instead give a few of its properties 

that are relevant to our discussion. 

x(Sfc) = 1 where Bk is the unit ball in Mfc 

x(xuy) = xW + xW if^ny = 0 

So, any set that is homeomorphic to Bk, for example the ellipsoid-shaped components of 

excursion sets around local maxima that we mentioned above, counts for 1 when computing 

the Euler characteristic. Furthermore, the characteristic is additive, so if Au consists of 

some number of disjoint components that are each homeomorphic to Bk, then the x(A*) 

will be the number of components of Au. We have of course left out all of the sets which 

are not homeomorphic to Bk', here are a few examples of these: 

x(£fc,h) = 1 + M - 1 ) " 

X(£k,h) = 1 - h 

Here, K.k,h is Bk with h non-intersecting fc-dimensional holes drilled through it, and JCk,h is 

1 0 The problem here is continuity—to map the basketball back to the doughnut, there will have to be 
points that are nearby on the bowling ball that map to points that are far apart on the original doughnut, 
and vice versa. This is caused by the hole in the doughnut. (Or by the absence of a hole through the bowling 
ball.) 

n A l o n g with genus, which is defined for surfaces. The orientable genus g can be defined as x = 2 — 2g. 
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Bk with h "handles" attached to it. Envisioning a fc-dimensional sphere with fc-dimensional 

handles attached to it is taxing at best, but the important thing to note is that x(-4) is n°t 

simply the number of connected components of A. 

We now come to the single most important formula governing the extrema of Gaussian 

processes. 

mw - .--> E E i™^*-, £)+* £) <-> 
Theorem 3. For a stationary Gaussian process with zero mean, we have 

| l / 2 

where the process is over the set X, a rectangle in R with one vertex at the origin. The £k 

are collections of the k-dimensional facets of the boundary of I that contain the origin, of 

which there are (^). For example, if I C I 3 , then £\ would be the three line segments that 

border X and touch the origin, £2 would be the three 2-dimensional rectangles that border 

X and touch the origin, and £3 would be X itself. Kj is the matrix of spectral moments of 

the process when restricted to the set J, and 07 is the process variance. As before, HL{J) 

is the (k-dimensional) Lebesgue measure of the set J, and ty(x) is the standard normal 

right tail probability p(X > x), X ~ A/"(0,1). Hk-i(-) is the k — 1st "probabilist's" Hermite 

polynomial.12 

The preceding formula, given by Adler [2], is important not merely because it is inter

esting to know the expected Euler characteristic of excursion sets, but because it provides 

the state-of-the-art approximation to excursion probabilities of Gaussian processes: 

\p{suPF(x) > u}-E{x(Au)}\ < O (e-*"2 /2*/) (2.67) 

where a > 1. Furthermore, it provides insight in to how the spectral moments—and there

fore the length-scales—of a process influence its supremum distribution. To see this more 

clearly, we give a more specialised version of Equation (2.66). 

Corollary 1. For an axis-scaled isotropic Gaussian process over the hyper-rectangle X = 

[0, w\) x [0,u>2] x ... x [0,«;d], if we let T>(J~) represent the set of indices of the k axes that 

are included in a boundary set J £ £k, the expected Euler characteristic is given by 

[rLep(j-) wi\ " [riisp(j-) v % 
(27r)(fe+1)/2^ E|*A)I - .-"4 E E ' " ' ^ X S ^ M 0 ^ - (£) +* (£) (M8) 

2 See the List of Symbols for some properties of H. 
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Proof. This corollary uses two main properties: First, for an axis-scaled isotropic process, 

since Xij-.i^j = 0, we have lA^I1/2 = Ylievij) V^u- Furthermore, since the domain is a 

hyper-rectangle, the fc-dimensional Lebesgue measure of each of these is given by HL{J) = 

Uiev(j)wi- D 

Recall from (2.66) that there are (^) such boundary sets J for each k G {1,2, . . . ,d}. 

Therefore, a naive expansion of the sum in (2.68) would involve X^=i (t) — 2d terms, making 

use of this approximation prohibitively expensive. We now give a novel re-formulation of 

(2.66) that takes 0(d2) time. 

Theorem 4. For an axis-scaled isotropic Gaussian process as defined in Corollary 1, the 

expected Euler characteristic is also given by 

Sk 
Ek(A,)]=e-^g(2T)(;;1|/^Hl "-'J7)+*U 

where 

Si 

So 

ZLi(-i)k+1Si-k-sw 

sw = J2 (wiV>^r 

(2.69) 

(2.70) 

(2.71) 

(2.72) 
i = l 

This alternate factorization, in terms of S, generates the necessary sums for each dimension 

k in 0(d) time, for a total run time of 0(d2). Each of ai, Wi, Xu, and H are defined as in 

Corollary 1. 

Proof. First, note that the denominator inside the inner sum of (2.68) does not depend on 

J, and so can immediately be factored out. This leaves us with the task of computing 

n ^ n w< E n w^ =E n « 
for each k, where q% = Wi\f\i. The sum is over all subsets of size k of the index set 

{1,2,..., d}, so for each k the sum has (£) terms that cover all possible monomials of degree 

k formed from {qi,q2, •••,%} that have no exponent greater than 1. 

The sequence Si constructs these sums as follows: at each step k > 0, all monomials of 

degree k composed of k distinct variables are generated, along with some that have a 2 in 

the exponent. These are then subtracted away in the next term, but this introduces some 

monomials with cubed variables which are removed by the term after and so on until we 
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remove the last of the extra terms using SW. This can be be improved, given that Sd can be 

computed in linear time—it is simply fli=i wiV^Hi- i n practice, we also use the following 

sequence 

_ _ EtlK-i^Hi-g'-^1" 
<3i _ . 

a — % 
d 

Sd = fJ^vXi 
4 = 1 

d 

s[~a] = £ K^)"a 

i = l 

which begins with Sd and successively removes variables from each monomial, thus intro

ducing terms with extra negative powers, which are removed in a manner analogous to 

the previous sequence. We can save some time by using both sequences and "meeting in 

the middle"—we use the first sequence to compute So...S4/2 and the second to compute 
Sd/2+l—Sd- • 

The values Si are known as the ith elementary symmetric polynomials, evaluated at 

(wi\/Xii,W2-\/^22t •••iu>d\/\dd)- These are symmetric in all d variables, which implies that 

the ordering of the axes of the domain does not matter—so long as the «;»-\/A~i7 remain the 

same, a process will have the same expected Euler characteristics. They are also linear in 

each Wi and \f\~ii, since there are no exponents greater than one. This means that if we fix 

u, Of, and vii, then E[x(«4u)] = c\ • y/Xu + CQ for some constants c\ and CQ. 

For example, suppose we had a zero-mean Gaussian process with covariance given by 

the Matern kernel with v = 3/2 as defined in Equation 2.48. To use Theorem 4, we need to 

know <T?, which is part of the definition of the process, the vii, which are the widths of each 

axis of the domain, and the A« which are derived from the kernel function. Recall that for 

this Matern kernel, 

fcv=3/2(r) = ^ . ( l + V3 | | r | | ) - e -^ IMI 

where 

ri{xi,Zi)= l l, i = l...d 

Using Equation 2.56, we have 

d2k(r) 
A,;,; 

dr\ 
D2 

r=0 

^[^.(l + V3||r||).e-^HI 
r = 0 

a2 3 
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From this, we see that the spectral moments A^ depend only on the process variance and 

the length scales. (Incidentally, if we had used a squared exponential kernel for k instead, 

we would have An = a'l/i'j.) This shows that decreasing the length scale along dimension % 

increases the spectral moment for that dimension, pushing more power into higher frequen

cies relative to the other dimensions, and making dimension % "bumpier" than the others.13 

Using 07, Wi, and An with Theorem 4, we can compute £'[x(^4«)] for this kernel with arbi

trary length scales and any value of u. Furthermore, since .E[x(«4„)] is linear in each of the 

Xu, it is a smooth function with respect to £i and a'j, and derivatives with respect to these 

quantities are easily computed using the chain rule. We will require these derivatives later 

when we use i?[x(.4«)] in a prior over the £j that favours simple functions. 

Theorem 4 allows the expected Euler characteristic to be used for the first time in a 

computational setting when working with Gaussian processes over hyperrectangles with 

more than a few dimensions. In the next chapter, we will detail a novel prior on process 

length scales that takes advantage of this capability. 

Processes over more general spaces 

The topologically inclined reader should note that many of the results presented here for 

processes over compact subsets of Rrf have been extended to processes over more general sets 

and topologies, including locally convex, smooth manifolds. These extensions have allowed, 

for example, an analysis of the cosmic microwave background radiation which is frequently 

modeled as a Gaussian process over the sphere [29]. 

13Recall that the "dominant frequency" is given by the normalized second-order spectral moments, which 
are in this case Xu/a2,. 
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Chapter 3 

Practical Bayesian Optimization 

During the development of any system, choices inevitably must be made that are unforeseen 

or glossed over in the initial abstract conception of that system. We will describe here in 

detail each choice that was made in the development of our global optimization system, the 

reasons for making it, and the consequences that follow from it. This includes the specific 

Gaussian process models used, our approach to parameter learning, the acquisition criteria 

we developed and investigated, and our approach to optimizing them. 

3.1 Gaussian Process Model 

The response model used throughout this work is essentially that described in Section 2.1.4; 

that is, we construct a full Gaussian process model using all of the currently available data 

points. The model uses a constant prior mean over the entire domain, and an axis-scaled 

isotropic kernel which may be either squared exponential or Matern. We learn the length 

scale for each dimension using a likelihood function similar to the Automatic Relevance 

Determination (ARD) objective. 

We allow for the inclusion of first-order derivative information as well. If gradient in

formation about the target function is available, the gradient observations are used both in 

computing the posterior model and in computing the likelihoods used in parameter learning. 

3.1.1 Parameter Learning 

The models we consider have d + 2 parameters. Each of the dimensions i = l..d has 

a characteristic length-scale £i, and the process itself has a signal variance a"j and noise 

variance a\. These parameters can be optimized using a pure Maximum Likelihood (ML) 

criterion that depends only on data likelihood, or using a Maximum A Posteriori (MAP) 
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criterion that is a combination of data likelihood and a prior on parameters. 

Likelihood 

Recall that the likelihood function for a Gaussian process with prior mean function /x(x) 

and kernel k is given by 

logp(Fx = f) = -\{i- /x)T K" 1 ( f - / x ) - i log |tf| - y log27r (3.1) 

where K = fc(x,x) + c^I. In the above equation, x, f, and N are completely determined by 

the data, whereas a\, /z and the £i and a"j that parameterize k are free model parameters. 

In many machine learning applications, /z is fixed at zero; however for our optimization 

application we would like to be able to model functions that have typical values far from 

zero without having to greatly increase the signal variance <r? to account for these. In 

other words, we want the model to be invariant to additive scaling. To this end, we will 

always choose the best constant /x for our data and substitute it into the likelihood equation, 

effectively removing zx as a parameter by fixing its form to maximize likelihood. We can find 

this most likely /x by defining /z(x) = /xc, implying /x = 1 • /J,C. We then take the derivative 

with respect to the constant \xc and set it to zero, which gives the maximum likelihood 

constant prior mean /x* 

\ogp(Fx=f) = _ i ( f - / x * ) T K - 1 ( f - / x * ) - i l o g | K | - | l o g 2 7 r 

where 1 is the vector of all ones. Furthermore, since 

( f - ^ * ) T K - 1 ( f - / i * ) = f T K - 1 f - 2 f T K - V * + At*TK_V* 

r K ^ f - 2 f T K ~ 1 l ( l T K - 1 f ) + ( l T K - 1 f ) 2 

l T K - ! l 

- f T K - f - ' l T
T

K - ' f ' 2 

l T K - ! l 

it follows tha t if we assume we will always use fj,* for the mean, the likelihood function can 

be written 

1 1 AT 1 ('I " T T ^ — I f \ 2 

log p(Fx = f) = - - ^ K ^ f - - log |K| - - log27r - - l
i T K _ 1 ] L

J (3.2) 

The first three terms of this expression represent the likelihood assuming /x = 0, and the last 

term accounts for our maximizing to find /it*. Therefore, when we take a partial derivative 
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with respect to a kernel parameter 8, we can use the usual form [36] of the likelihood gradient 

plus an extra term to account for our optimization of /it. The derivative the last term above 

term is 

d ( lTR- i f ) 2 _ 2 ( l T K - 1 l ) ( l T K - 1 f ) ( l T K - 1 | | K - 1 f ) - ( l T K - 1 f ) 2 ( l T K - 1 f | K - 1 l ) 

09 l T R - 1 ! ~ (^K-1!)2 

( rK- i l ) 2 

(2(lTK-1l)(lTK-1f) ^K- 1 - ( fK^f ) 2 1TK-J) • H • (K^l) 

so if we define a = K_1f, and 7 = K _ 1 l , the derivative of the likelihood function is 

! l o g P ( F x = f) = i t r T rs-U9K 

( f l a - K ) W 

~\ww (2 ( 7 T l ) ( a T l ) °T -(aTl)2 7T) • H •(7) (3-3) 
Note that we only use kernels (Matern, squared exponential) for which dk(x,z)/89 exists 

for all x and z in the domain of / , and for all 9 we are interested in. 

Priors 

Previously, consternation has been expressed about using maximum likelihood to determine 

the length-scales of Gaussian processes when there are few data points. Indeed, we will see 

that using small amounts of data, optimization procedures using maximum likelihood mod

els initially perform significantly worse than the uniform random strategy. When data are 

sparse, the likelihood function can become very flat along certain dimensions, or worse yet, 

become monotonic increasing in certain directions, causing parameters to head toward pos

itive or negative infinity. This can cause a number of problems including producing a kernel 

matrix that is numerically ill-conditioned, and models that practitioners find unappealing. 

Previous approaches (Jones et al. [19], Sasena [39]) to Gaussian process optimization 

have included an initial pre-acquisition of points in a Latin hypercube design. This initial 

design is not in any way dependent on incoming data. In such a design, n points are chosen 

by first dividing each dimension into n bins. For each dimension, the bins are permuted and 

dimension i of point j is drawn uniformly from within the jth bin in the ith permutation. 

The important result of this is that we are very unlikely to have points where Xj = Zj, 

i.e. we will not observe pairs of points that are parallel to one of the coordinate axes. This 

arrangement is particularly unhelpful when trying to learn axis-aligned processes. Figure 3.1 

shows the result of using maximum likelihood on two data sets that are identical except that 
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Posterior Mean after ML 

Posterior Mean after ML 

-0.4 -0.2 

Figure 3.1: Two GPs, one with axis-aligned data and one with non-aligned data. Data 
points are indicated in the posterior mean plots by small *. From the lower-left heading 
clockwise, the function values are —0.5, —1.0,0.5,1.0 in both cases. Maxima are indicated 
in the likelihood plots with the same marker. 
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one is aligned with the coordinate axes and one is not. Note that in these examples an is 

fixed at a very small value, a typical practice in the literature [39]. The spacing between 

data points and the corresponding observation values remain the same; we have simply 

rotated the points clockwise in the domain by 7r/8. Note that in the axis-aligned case, 

the likelihood function is unimodal, and the maximum likelihood length-scales are both 

moderate at (£i,£2) = (0.98,2.96). 

In the rotated example, the likelihood function is unimodal along £\, but monotonic in

creasing in £2- The maximum likelihood function found by the hill-climber for this example 

is (^1,^2) = (0.260,371015.82), and £2 is only finite because the function asymptotes (fortu

nately) so that eventually the gradient becomes sufficiently small for the hill-climber to quit. 

This asymptotic behaviour illustrates another important point: At £2 = 371015.82, the data 

are only about 1.005 times more likely than at £2 = 1.0, for example. However, since the 

likelihood function does not have a priori preferences on length-scales, £2 is increased dras

tically to achieve this tiny improvement. The effect of this very large £2 causes the model to 

explain the variation in the function observations using £\ only—this is visible in the plot of 

the posterior mean, which shows that fi([xi #2]T) does not vary with #2 over the domain. In 

the axis-aligned data, however, there is strong evidence that the data cannot be explained 

by one dimension alone. Take the rightmost two points, which are w = (0.5, —0.5) and 

z = (0.5,0.5). In this example, f(w) — 0.5 and f(z) = 1.0. Since w and z share the same 

first coordinate, their difference in function value must be explained by a finite £2- A similar 

impact on £\ is produced by points in the square that share the same second coordinate. 

This example is not meant to imply that if we have axis-aligned data then the likelihood 

function will be unimodal, but to illustrate that when data are grid-aligned, maximizing 

likelihood will not make a length-scales go to infinity, unless of course no variation is ever 

observed along that direction. 

It also illustrates the point that maximizing likelihood to chose parameters can produce 

counterintuitive results, particularly with small amounts of data. In the example shown, 

one variable is effectively removed from consideration. It is reasonable to assume that, a 

priori, one assumes that all the variables for a given problem will have some importance; if 

this were not true it seems those variable would never have been included in the first place. 

Finally, it is strong evidence for not using the typical Latin hypercube pre-acquisition, 

since this approach will specifically choose points so that they are not grid-aligned, thus 

leaving us open to the problems illustrated here. Typically in such designs, 10 • d points 
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are used. We will see from later experiments that this strategy is unnecessary and will 

attempt to avoid the expense of pre-acquisition altogether, taking the view that if we are 

unhappy with the models obtained by maximum likelihood, then our objective function is 

wrong and we should encode our ideas about appropriate models in a prior. We investigate 

two types of priors, one a simple log-normal prior, and another based on the expected Euler 

characteristic of excursion sets.1 

Independent Log-Normal Prior This prior is designed simply to prevent length-scales 

from getting very large or very small. For the independent log-normal (ILN) prior, we place 

a normal distribution with mean 0 and standard deviation 10 on the logarithm of each of 

the length-scales. This is a very vague prior; for example it asserts that there is a 95% 

probability of finding a length-scale between 7.18 x 10~8 and 1.39 x 107. We simply add the 

logs of these probabilities to the likelihood function (3.1) to obtain our new objective 

logp(F x = f) = _ i ( f - M * ) T K - 1 ( f - M * ) - i l o g | K | - | l o g 2 7 r (3.4) 

Recall that the ti in Equation 3.4 are simply the length scales from the kernel as defined in 

Equations 2.47 and 2.48. These appear explicitly in (3.4) in the prior part, and implicitly 

in K. In practice we work with log(£i) for convenience, which makes the derivatives simpler 

and allows us to use an unconstrained optimizer. To compute the gradient of (3.4) with 

respect to the log length scales, we therefore simply add the gradient of the likelihood from 

Equation 3.3 to the gradient of the last term of (3.4), which is 

We will need this gradient for computing MAP estimates of the li, discussed below. 

Expected Euler Characteristic Prior We also describe a novel prior based on the 

expected Euler characteristic (EEC), denoted E[x(.4u)]- A definition and novel polynomial 

time algorithm for this quantity were given in Section 2.3. Recall that the excursion set Au 

of a function above level u consists of all points in the domain where the function exceeds u, 

and that the Euler characteristic x of a set is equal to the number of connected components 
xNote that in this discussion we have not mentioned model averaging. While it would be arguably a 

more correct approach, we wish to keep computational effort to a minimum, so we will restrict ourselves to 
using optimized point-estimates of model parameters. 

d 

aiog&o 
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of the set, so long as none of the components have holes in them. The expectation is taken 

over functions sampled from the Gaussian process. For sufficiently large u, the excursion 

sets become the union of small disjoint convex sets surrounding the maxima of the function 

in question and therefore approximates the number of maxima above u. We propose the 

expected Euler characteristic as a measure of the difficulty of optimizing functions drawn 

from a particular Gaussian process model—the higher the E[x(«4«)], the more difficult the 

optimization. 

Sampled Function, Expected EC a 0.01 Sampled Function, Expected EC - 1.00 

0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.B 0.9 

Figure 3.2: Contour plots of two sampled functions, one from a GP with E[x(^3.o)] = 0.01 
and the other with E[x(^3.o)] = 1-0. For both, fj,(x) = 0 and aj = 1.0. 

The motivation for the expected Euler characteristic prior is based on the desire for a 

prior that considers "simple" functions more likely a priori. This is somewhat true of the 

independent log normal prior discussed above, but only for functions of few dimensions. 

For example, a two-dimensional process with log length-scale parameters log(-6) = [0,0] and 

a ten-dimensional process with parameters log(^) = [0,0,0,0,0,0,0,0,0,0] are both at the 

mode of the independent log-normal prior we use, and are both therefore most preferable 

a priori. However, the two-dimensional process is much simpler, both intuitively and as 

measured by expected Euler characteristic. For the two-dimensional process, E[x(^3.o)] = 

0.0070, whereas for the ten-dimensional process E[x(-43.o)] = 1.0769. Figure 3.2 shows 

sampled functions from processes where E[x(^3.o)] = 0.01 and E[x(^3.o)] = 1-0, and the 

difference is quite striking. 

Our novel prior should place most of its mass between these two extremes of complexity. 

To that end, we use a normal prior over E[x(-43.o)] that places about 97% of its mass 

between 0.0 and 0.5 by using parameters /ieec = 0.175 and <7eec = 0.0917. Again, we simply 
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add this penalty to the likelihood function to get 

logp(Fx = f) = - i ( f - M * ) T K - 1 ( f - / x * ) - i l o g | ^ | - ^ l o g 2 7 r (3.5) 

(E[X(^3.Q)]-Meec)2 , / ^ 
r -5 iog(7eecV27r 

and again, the length scales from the kernels defined in Equations 2.47 and 2.48 will allow us 

to compute both the log likelihood and its gradient, as well as E[x(_43.0)] and its gradient, 

as detailed at the end of Section 2.3.4. 

Independent Log Norma) (ILP) Prior 

Figure 3.3: Contour plots of the independent log-normal prior and the expected Euler 
characteristic prior used in this work. 

Figure 3.3 shows both the ILN prior and the EEC prior. While both priors prefer log 

length-scales near the origin, the EEC prior is also willing to allow one length scale to become 

shorter if the other is made longer. This is because if we fix the number of dimensions of the 

process, there are sub-manifolds of length-scales that produce processes with the same EEC. 

The contour lines of the EEC prior in Figure 3.3 show some examples of these sub-manifolds 

for two-dimensional processes; in d dimensions, these manifolds will be d — 1 dimensional. 

Examples of the impact of these priors on a likelihood function are shown in Figure 3.4 

and Figure 3.5. In the left column are the posterior mean functions produced when the 

various criteria are used for parameter learning, and the right column illustrates the function 

that was maximized to arrive at these posterior means. One can see that the priors can 

significantly influence the outcome of parameter learning when there are only a few data 

points. 

Maximizat ion P rocedure These two objective functions give us a mechanism for learn

ing the relevant kernel parameters (i.e. length scales) from data. To do so, we simply 

Expected Euler Characteristic (EEC) Prior 
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Posterior Mean after ML 

Posterior Mean after MAP with EEC Prior 

log(l,) 

Likelihood with ILN Priors 

logfl,) 

Likelihood with EEC Prior 

log(l.) 

Figure 3.4: Gaussian process with axis-aligned data. In the likelihood graphs, the small 
asterisk indicates the global maximum. 
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Posterior Mean after ML 

1 

-0.6 -0.4 -0.2 

Posterior Mean after MAP 

RTF" 

Posterior Mean otter MAP with EEC Prior 

- . 131^ 

•».• 1 
\ ..J mmm 

lofl(l,) 

Likelihood with ILN Prior 

log(l,) 

Likelihood with EEC Prior 

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 
log(l.) 

Figure 3.5: Gaussian process with non-aligned data. In the likelihood graphs, the small 
asterisk indicates the global maximum. 
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maximize (3.4) or (3.5) with respect to the £i, and then use the resulting parameters in 

our posterior computations. In order to maximize these criteria, we use an unconstrained 

quasi-Newton method, starting from the mode of the prior. In particular, we use the BFGS 

method as implemented in Matlab 7.3. The method is provided with the value and gradient 

of the objective function, which we compute analytically as shown above. 

3.2 Acquisition Criteria 

As mentioned earlier; there are two acquisition criteria currently in use for global opti

mization using Gaussian processes. The Maximum Expected Improvement (MEI) criterion, 

which selects the point at the maximum of the Expected Improvement (EI) function, 

EI(x,C) = E [ ( F x - ( M m a x + £))+] (3.6) 

= (Mx)-(,max+^(Mx)^7 + 0 ) (3-7) 

and the Maximum Probability of Improvement (MPI) criterion which selects the point at 

the maximum of the Probability of Improvement (PI) function, 

P I ( X , £ ) = P [ F x > Mmax + £] (3.9) 

(p{x) - (/ima> 
V *{X) 

= i -gM*) - (AW + fl\ (310) 

. (3.11) 
a{x) ) 

We use = to indicate that the function given by Equation 3.11 is equivalent to the MPI 

criterion, since removing the $ and negating is a monotonic transformation and therefore 

the maxima and minima do not change location. Recall that \x(x) and a(x) are the posterior 

mean and standard deviation of Fx, and /Wx = maxx fi(x). 

Both of these criteria prefer points with higher posterior mean and higher posterior 

variance, but the tradeoff between these two quantities is qualitatively different for the 

different criteria. This is tradeoff is controlled by the parameter £ > 0. Figure 3.6 shows 

this tradeoff graphically. For PI, the tradeoff is straightforward; for a fixed a, PI increases 

linearly in fx. For fixed /x, it increases like —1/cr since the numerator in (3.11) is always 

negative by definition. This brings up an important point: PI is bounded above by 0, and 

PI = 0 is achieved only when £ = 0 and /x(x) = / i m a x , regardless of the value of a(x). It is 
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Expected Improvement, ^ = 0 Expected Improvement, £ = 2 

l» H 

Probability of Improvement, ^ 0 Probability of Improvement, S s 2 

Figure 3.6: The MEI and MPI acquisition criteria. In the contour plots, dark red indicates 
the highest function values; the maxima of each of these is in the top-right corner. Note 
that for higher £, increasing a has a greater impact than increasing fi, particularly for PI. 

easy to see therefore that we can can make MPI purely "greedy" by setting £ = 0. In this 

case, using MPI will always acquire the maximum point of the posterior mean. 

On the other hand, EI is bounded below by 0 by definition, and MEI = 0 is only achieved 

£ = 0 and fi(x) = /zmax and a(x) = 0. Therefore MEI is not "greedy" even when £ = 0 and 

will not always select the point where fj,(x) = /j,ma,K. Furthermore, the tradeoff MEI makes 

between fi and a is more complicated than that of MPI, although the preference for higher 

\x and a is maintained. 

The plots in Figure 3.6 immediately demonstrate what kind of point we would choose if 

we could select /i and a; however we are only allowed to select the domain point x which 

determines these values. Acquisition criterion optimization can be though of as a search 

over x in the domain (as it is usually formulated) or as a constrained optimization over 

H and a, with the feasible set being those (/x,cr) pairs that can be found in our Gaussian 

process. 
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Heuristics for Criterion Optimization This brings up an important point: In order 

to use these criteria, we must maximize them over the domain of / , and both EI and PI 

can be complicated, multi-modal functions. For processes with many dimensions, it will be 

impossible to guarantee finding the global maximum. Nevertheless, we can take advantage 

properties of these functions to at least find points where the criteria are large, if not 

maximal. 

Both criteria can be written as functions of 

z = M*)-awx+o (3J2) 
a(x) 

With this definition we have, 

EI = O i ( x ) - ( / w + £))*(2)+<r(aO0(2) (3-13) 

PI = Z (3.14) 

Each of these functions has properties that make them difficult to maximize in certain 

situations. 

For areas where Z is small, EI in and its gradient become numerically zero because <& 

and 4> fall off exponentially as we decrease Z. In Matlab 7.3, for example, these functions2 

are identically zero for Z < —40. Perhaps the worst side-effect of this is that if we want to 

optimize EI by hill-climbing, if we start at a point that is very poor then we cannot make 

any progress. 

For MPI, the problem is the opposite. Particularly when £ is small, maxima of Z can 

become very flat since it is bounded above by 0. From a practical standpoint, the problem 

is less severe since even if we fail to accurately maximize PI we can definitely make progress 

from poor points because the function and its gradient are not bounded below, so we can 

always find a search direction that improves PI from such points. 

In view of these properties, we use the following heuristic for finding the MPI point: 

Since it is easy to make progress from poor points, we evaluate PI at a small number of 

uniform random domain points (we used 100) and run a quasi-Newton hill-climber from the 

best of these (we used 5). There are certainly more intelligent and complicated heuristics 

that could be used here; however we have found that even with this simple approach the PI 

criterion performs well in experiments; see Chapter 5 for details. 

Since EI is sometimes difficult to maximize from very poor points, as described above, 

we modify the heuristic slightly for this criterion. Again we use a small number of uniform 
2They are named normcdf and normpdf, respectively, in this software. 
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random domain points (again 100) and run a quasi-Newton hill-climber from the best of 

these (again 5). However, we also always run the hill-climber from the point found by MPI, 

since this hopefully has a high Z and therefore a nonzero gradient, allowing us to improve 

the point further. 

Invariant Improvement Earlier in the chapter, we mentioned the desire to make our 

optimization procedure invariant to any additive shift, motivated by the knowledge that 

such scaling does not change the location of optima of the target function. We achieve 

this by choosing the maximum likelihood constant mean: When we do this, the EI and PI 

functions become invariant to any additive constant in the data, which we will show shortly. 

We then present novel modifications to the MEI and MPI criteria that make them invariant 

to multiplicative scaling also. 

First, recall the likelihood function we are using is given by 

logp(Fx = f) = - I ( f - / x * ) T K - 1 ( f - / x * ) - i l o g | K | - | l o g 2 7 r 

and note that if we shift the data by a constant c, we have 

- m^> 
= H* + c • 1 

therefore shifting the data by c shifts the maximum likelihood mean by c, which means that 

(f — fi*) remains the same, as does the rest of the likelihood function. Therefore if we are 

maximizing likelihood and we shift the data additively, estimates of all the other parameters 

remain the same, and the posterior mean 

H(x) = fi'(x) + k(x, z) K" 1 (f - /x*) 

is also shifted by c. The posterior variance function, which does not involve the observed 

data but only the locations of observations, does not change. Now, note that 

z = M ( S ) ~ (Mmax + Q 
a{x) 
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It is clear now that if we shift the data by c then fj,(x) and / im a x also shift by c, so we have 

^ CJ ~~ 7~~\ 

= /J(X) - (^max + Q 

CT(X) 

= Z (3.15) 

so -Z (and PI) are unchanged by an additive shift in the data. It is also immediate that the 

shifted expected improvement criterion 

EI[c] = {n{x) + c-(nmax + c + 0M2)+a(x)4>(Z) (3.16) 

= (fx(x)-(^max+0mZ)+a(x)4>(Z) (3.17) 

= EI[c] (3.18) 

is unaffected. Therefore a global optimization strategy based on a maximum likelihood 

estimate of the constant mean that uses either of these criteria will select the same points 

to acquire regardless of any additive shift in the data. 

We now consider the effect of a multiplicative scaling s of the data. First, it is easy to 

see what happens to the original fi*: 

= 

= 

V l T K-! l 

SUTK-lJ 
S • (1* 

Unsurprisingly, /x* is scaled by the amount s. Next we address what happens to the max

imum likelihood estimate of the signal variance <r?, which we denote <r?. For convenience, 

we define the following quantities: 

(3.19) 

(3.20) 

(3.21) 

Note that k depends linearly on <jf, so r does not depend on 07. Whereas k gives the 

covariance between domain points, and r gives the correlation. Using these definitions, we 

can write the likelihood function as 

logp(Fx = f) = -^(i-^)rR-1({-^)-\^ga2
f-^\og\R\-j\og27r 
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and, by taking derivatives with respect to a\ and equating to zero, we can find the maximum 

likelihood estimate 

^ = (f-M*)TR"1(f™M*) (3-22) 

We can substitute this back into the likelihood function to get 

l0gp(Fx = f) - - i - i l 0 g ^ - i l 0 g | R | - y l 0 g 2 7 T 

If we scale the data, we have 

a)\s\ = (s-i-s-ii*)JR-l{s-f-s-tx*) (3.23) 

= s 2 - ( f - ^ * ) T R - 1 ( f - M * ) (3.24) 

= s2 • a) (3.25) 

implying that 

1 l „ 2 r , 1 . ,„ . N. 
log p(Fx = {) = _ - - - ^ [ a ] - - l o g | R | - - l o g 2 7 r 

= - i - i l o g S
2 . ^ - i l o g | R | - y l o g 2 7 r 

1 1 , 2 1 , -2 1, ,„, N, 

= ~ 2 " 2 g S ~~2 l o g < 7 / ^ 2 S ' R ' ~ " 2 ~ S 

and since —(1/2) logs is a constant, this objective equivalent to the un-scaled objective. 

This means that when we scale the data, the only effect is to scale <r? and fx*, since the 

other kernel parameters (i.e. length scales) only influence the —(1/2) log |R| term, which is 

unaffected by scaling. In other words, the length scales learned from the data vector f will 

be identical to those learned from data vector 2 • f. 

We now turn our attention back to the acquisition criteria, starting with the quantity 

Z, which can be written 

z = Kx) ~ (<"max + g) 

o(x) 

(o}r(x, z ) ) ^ R - x ( f - M*) " O w + 0 

Jojr(x,x) - {&)r{x,z))jzRr1{o-2
fr{2,,x)) 

_!_ . r(x z)R-1(f - /x*) - (/xmax + g) 

frf \/r(x, x) — r(x, z)R _ 1r(z , x) 

We arrive at Equation 3.26 by substituting the Gaussian process formulae in for /u(x) and 

a(x). This illustrates an important point: If the data are scaled by an amount s, then 

1 s - r ( x , z ) R - 1 ( f - ^ * ) - ( s . / i m a x + 0 
Z[S] 

s • Of \/r(x, x) — r(x, z)R _ 1r(z , x) 

1 r ( x , 2 ) R - 1 ( f - ^ * ) - ( / i m a x + g/s) 

Of \fi~{x, x) — r(x, z)R_ 1r(z, x) 
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Note that because of the lone £ in the numerator, Z is not invariant to scaling. For example, 

scaling by a factor s < 1 is equivalent to increasing £ by a factor of 1/s, meaning that the 

MPI and MEI criteria will shift in focus toward points of higher variance, even though such 

a scaling would not change the locations of optima of the target function. 

We now present a new alternative to Z that is scale invariant. Consider the following 

modified objective, denoted Zr. The subscript r is intended to indicate that the objective 

is "relative" to the scale of the target function. 

tl{x) - (/LXmax + Of • £) 
J6J> — 

o(x) 
1 rt-r wYR-Vf - n.*\ - (11 4- Pr, . P.A 

(3.27) 

cr(x) 

1 r ( x , z ) R ~ 1 ( f - /A*) - (^max + Of • f r ) 

Of y/r(x, x) — r(x, z)R _ 1 r (z , x) 

Suppose we now scale the data f by an amount s. Then this new objective becomes 

1 S-r(x,z)R-1({ ~ / J * ) - ( s - ^ m a x + S • Of • £ r ) 
Z[s] s • Of y/r(x, x) — r(x, z)R _ 1 r (z , x) 

1 r(x, Z ) R ~ 1 (f - jit*) ~ (/Xmax + Of • £ r ) 

Of y/r(x, x) — r(x, z)R _ 1 r (z , x) 

therefore changing the scale of the data does not affect the quantity Zr. 

Furthermore, if we modify MEI in a similar way, we obtain 

EI r = (r{x,z)R-1(i-ti*)-(fimax + or^))^(Zr) + o(x)ct){Zr) (3.28) 

= ( r ( x , z ) R - : ( f - ft*) - (/Xmax + Of • £ r ) ) $ 0 Z r ) 

+ (of • \/r(x,x) -r(x,z)R-1r(z,x))4>(Zr) (3.29) 

and again if we scale the data by s and maximize likelihood, we get 

EIr[s] = ( s - r ( x , z ) R - 1 ( f - / x * ) - ( s - / i m a x + s - a / - £ r ) ) $ ( 2 r ) 

+ (s • &f • y/r(x,x) — r(x,z)R~1r(z,x))(j)(Zr) (3.30) 

S • {(r{x, Z ) R - I ( f - A**)) - (/imax + Of • £r)${Zr) 

+ (of • y/r{x, x) - r(x, z)R"1r(z, x))cj>(Zr)] (3.31) 

= s • EI r (3.32) 

Consequently, while EI r is not invariant to scaling, the effect of scaling the data by s is 

simply to scale the EI r function by the same amount. Therefore the optima of EI r remain 

the same, and any strategy relying on maximum likelihood estimates ix* and Of and using 

the EI r criterion to select points will select the same points regardless of any multiplicative 
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scaling of the target function. Furthermore, the PI r and EI r functions are also invariant to 

additive shifts by the same arguments used for PI and EI, simply by re-writing £ = aj • £r. 

Figures 3.7, 3.8, 3.9, 3.10, 3.11, and 3.12 illustrate the MPI r and MEI r criteria on six 

different example GPs. These examples illustrate the type of points that both criteria prefer: 

Both criteria select points where the posterior mean is high and the posterior variance is 

high. (Though not illustrated, bear in mind that the posterior variance increases as we move 

farther from the observed data.) They also illustrate the effect of increasing £r from 0.01 to 

0.7: At the higher level of £ r, both criteria select points that have higher posterior variance 

and hence are further from the observed data points. 

3.3 Summary 

We have described in detail the Gaussian process model we use for the remainder of this 

work, which is based on ARD. However, our model may use either of two proposed priors on 

length scales, one a simple log-normal prior and another novel prior based on the expected 

Euler characteristic of excursion sets, made feasible by the novel polynomial time algorithm 

for computing EEC given in Section 2.3. 

We have also given two new acquisition criteria that are based on the existing MEI and 

MPI criteria, but that are invariant to multiplicative scaling of the objective function. These 

novel objectives, denoted MEI r and MPI r to indicate that they are "relative" to the scale 

of the function, will be empirically investigated in the following chapters. 
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Figure 3.7: The MEI and MPI acquisition criteria. In the contour plots, dark red indicates 
the highest function values; the maximum of each criterion is marked by a large white 
asterisk. 
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Posterior Mean after MAP with ILN Prior 
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-0.0 -0.4 -0.2 

Figure 3.8: The MEI and MPI acquisition criteria. In the contour plots, dark red indicates 
the highest function values; the maximum of each criterion is marked by a large white 
asterisk. 
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Posterior Mean after MAP with EEC Prior 
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Figure 3.9: The MEI and MPI acquisition criteria. In the contour plots, dark red indicates 
the highest function values; the maximum of each criterion is marked by a large white 
asterisk. 
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Posterior Mean after ML 
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Figure 3.10: The MEI and MPI acquisition criteria. In the contour plots, dark red indicates 
the highest function values; the maximum of each criterion is marked by a large white 
asterisk. 
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Posterior Mean after MAP with ILN Prior 

Figure 3.11: The MEI and MPI acquisition criteria. In the contour plots, dark red indicates 
the highest function values; the maximum of each criterion is marked by a large white 
asterisk. 
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Posterior Mean after MAP with EEC Prior 
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Figure 3.12: The MEI and MPI acquisition criteria. In the contour plots, dark red indicates 
the highest function values; the maximum of each criterion is marked by a large white 
asterisk. 
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Chapter 4 

An Experimental Framework 
for Global Optimization 

Our literature review failed to find a single Gaussian process based optimization paper with 

more than eighteen different example functions. This type of empirical evaluation can be 

damaging when authors begin to "over-fit" a small suite of objectives that come to be 

considered "standard test problems". Fortunately, in Bayesian optimization, we are in a 

good position to avoid this problem. 

The MEI and MPI acquisition criteria were constructed as approximations to the Bayes 

optimal acquisition criterion. That is, they are intended to approximate the best strategy 

in expectation, when functions are drawn from the prior. Since we have the prior, which is 

supposed to reflect the type of functions we expect to see, it seems natural to draw functions 

from it to evaluate the performance of the commonly used acquisition criteria in different 

situations and with different parameters. No such study has ever been done, to the best of 

our knowledge. 

Our experiments are therefore constructed as follows: For each experiment, we fix a test 

model, which is a Gaussian process with fixed parameters and kernel from which we draw 

multiple test functions. For each of these test functions, we construct an optimization model 

which we learn using data acquired from the test function. The information given to the 

optimization model (kernel, length scales, priors on length scales, derivatives, etc.) will vary 

between optimization models depending on the properties we wish to investigate. 

Furthermore, an empirical examination of the effect of an incorrect model is not difficult 

to devise. We will simply chose a test model with, for example, a different kernel from the 

one assumed in the optimization model, which allows us to assess the robustness of different 

methods and models. 
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4.1 Models 

For the test models, we use Gaussian processes with a constant prior mean of zero and 

unit signal variance ai over a rectangle X = [—l,l]d. We do not vary these parameters 

because the criteria we are assessing, MEIr and MPI r are invariant to additive shifts and 

multiplicative scaling under the models we use. Therefore our test models are completely-

determined by the kernel of the GP and its parameters. 

The optimization models are of course over the same domain, however they may or may 

not use fixed parameters. We investigate the effects of having to learn these parameters using 

maximum likelihood or MAP optimization as discussed in Chapter 3. We also investigate 

the effects of using the same or different kernels in the test and optimization models. 

4.1.1 Kernels 

The kernels we consider are the squared exponential kernel and its relative, the Matern 

kernel with v = 3/2. (We will henceforth refer to this simply as the "Matern" kernel.) 

The main difference between these two kernels is in their smoothness. Two examples—one 

drawn from a process with each type of kernel—are shown in Figure 4.1. 

2D Test Function from Squared Exponential Kernel - EEC = 0.5 2D Test Function from Matern Kernel - EEC = 0.5 

x, x, 

Figure 4.1: Two example test functions, one drawn from a GP with a squared exponential 
kernel, and the other from a GP with a Matern kernel. 

One way of describing the smoothness of a process is by examining its mean square 

continuity and differentiability. A Gaussian process is continuous in mean square at a point 

x* if 

lim E[\F(x) - F(x*)\2) = 0 (4.1) 
X—>X* 
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and has a mean square derivative of di(x) with respect to Xi at x if 

n2 

limE 
h->0 

F(x + te»)-F(E)_di(x)- 0 (4.2) 
h 

where e*- = 1 if i = j , rf = 0 if i ^= j [36]. Higher order mean square derivatives are similarly 

defined. A Gaussian process has mean square derivatives of order k if and only if 

d2kk{s,t) 
A« = (4.3) 

s=t 
13 dsit dsi2... dsik dth dtj2... dtjk 

exists and is finite. This is the matrix of 2fcth order spectral moments. 

The squared exponential kernel is mean square continuous and infinitely mean square 

differentiable, whereas he Matern kernel with v = 3/2 is mean square continuous but mean 

square differentiable only once. As such, they represent extremes of this kind of smoothness 

if we restrict ourselves to differentiable processes. Furthermore, all posterior means and 

variances remain twice differentiable, since these are expressed as weighted sums of kernel 

functions, and both of these kernel functions are twice differentiable. This differentiability 

is required for our approach, since we use hill climbing to optimize the MEI r and MPI r 

criteria as described in Chapter 3. 

4.1.2 EEC, Complexity, and Dimensionality 

The overall functional form of the kernel tells us these broad characteristics of the resulting 

process, but the spectral moments can tell us more about process behaviour. In particular, 

the second order spectral moments 

are of interest since they determine the expected Euler characteristic of the process. Recall 

that, when using the ARD approach, exponential and Matern kernels are parameterized by 

a length-scale parameter ii in each dimension, resulting in axis-scaled isotropic processes. 

These length-scales appear in the second spectral moments of these kernels as follows: 

AMater„ = 3^2 

A^EXP = °*flG 

These are computed simply using Equation 4.4. Note that in the ARD case, Ajj = 0 for 

all i ^ j . We use the relationship between Ajj and £i to compute the expected Euler 

characteristic of a process, which in turn lets us use a root-finding technique to find length 
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scales that would give a process a particular EEC. We use this approach to select test 

models. 

Using EEC as our criterion for selecting test models allows us to generate models that 

have different length scale configurations—even different dimensions—but that are of similar 

difficulty. We have chosen E[X(^3CT /)] as our quantity to hold constant when generating 

problems. This is the expected Euler characteristic of the set {x : f(x) > 3cr/}, i.e. the 

set of points where the function is three signal standard deviations above the mean. (All 

EEC values mentioned in this work are in fact E[x(-43CT/)], so we will use "EEC" to mean 

E[x(-^3o-/)]i e v e n though it could be more general.) We chose this threshold because it is 

where the expected Euler characteristic approximates excursion probability—in the region 

u > 3aj we have the property that EfxC^oy)] « p(3x : f(x) > 3CT/) [2], and we hypothesize 

that the greater chance a process has of achieving such a high value, the more difficult a test 

function drawn from it will be to optimize. The empirical results that follow indicate that 

this is at least somewhat true; even if we increase the number of dimensions significantly 

we can still achieve good success if the EEC is kept in check. If we do not do so, it becomes 

impossible to even draw functions from the test model because we cannot use enough points 

to accurately reflect the shape of sampled function. If we sample 100 points, say, then we 

effectively end up with 100 independent needles in a high-dimensional haystack that we 

need to locate and evaluate. It is our opinion that maximizing this type of function is likely 

hopeless and that it is probably not reflective of practical problems anyway. 

4.2 Using Derivatives: Connections with Local Search 

Local search algorithms have achieved a high degree of theoretical and practical success 

and sophistication during their development [5]. Driven by advances in computer hardware 

and the desire to solve increasingly interesting and difficult problems, a suite of methods 

has been developed that were all based on the same principle: successive local polynomial 

approximations. In a sense, these are also "response surface" methods as defined earlier; 

they construct a surrogate function, in this case a low-order polynomial, and use this model 

to decide where to evaluate the function next. A new polynomial approximation is then 

constructed using this new point. In effect, all optimization techniques for smooth functions 

boil down to this approach since low-order polynomials are the only functions whose optima 

can be expressed in a convenient algebraic form. Fortunately, all sufficiently differentiable 
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functions are locally polynomial, so these provide an especially good approximation over 

sufficiently short distances as promised by Taylor's theorem [34]. The advantage of this 

property is clear when we examine the performance of these techniques. Newton's method 

for optimization, which uses a local quadratic approximation, has a super-linear convergence 

rate. That is, for approximations constructed sufficiently close to an optimum, each step of 

Newton's method results in a squaring of the current error 

e»+i ex e? (4.5) 

where e, is the current distance to the optimum. This "superlinear convergence" where the 

error at the next step is proportional to the current error raised to some power a > 1 is a 

property of most techniques that construct a local polynomial model of the function to direct 

the search. Brent [7] shows that any algorithm based on "successive interpolation"—i.e. 

alternating interpolation and optimization—using polynomials converges at a super-linear 

rate. 

The fastest of the classical local search techniques, however, use information about the 

derivative of the objective to construct these polynomial models, either explicitly by eval

uating the gradient V/(:r) and possibly the Hessian Hf{x) of / at the current point x, or 

by approximating these quantities. Newton's method for minimization requires V/ (x) and 

Hf(x) explicitly, but there are several "quasi-Newton" methods that approximate one or 

both of these quantities. For example, the widely-used BFGS algorithm uses V/(a;) ex

plicitly but iteratively constructs an approximation to Hf(x). The strategy of BFGS and 

related methods is to forego the direct search for an optimum of / , and instead look for a 

point x where 

V / ( a : ) = 0 (4.6) 

This is a critical point of / , which may or may not be an optimum but in practice often is. 

This approach—which only computes with and reasons about derivatives—has yielded the 

fastest and most widely used local optimizers known, and has provided the framework for 

describing the rate of convergence of such methods. 

This type of convergence rate analysis is common in the field of local optimization, 

but unheard of in the field of global optimization. From the typical global optimization 

perspective, even proving that a method will converge to an optimum in a finite number 

of steps is a difficult proposition. Attempts to narrow this performance gap have resulted 

in the development of the "random-restart" and other related methods mentioned earlier: 
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leveraging the power of local search techniques for functions that are differentiable but 

multi-modal can be an effective strategy, if it is possible to discover the relevant basins of 

attraction. 

Currently, all Gaussian process based methods reason only about the function's value at 

points in the domain—not about the derivative of the function. However, given the kernels 

we have chosen, reasoning about the derivative(s) of the function at any point is equally 

straightforward. 

4.2.1 Incorporating Derivative Information 

In short, since derivative operators are linear, and since linear functions of Gaussian random 

variables are also Gaussian, the derivatives of sampled functions are also Gaussian random 

variables, provided appropriate limits exist [36]. Furthermore, since expectation is also 

a linear operator, prior covariances among derivatives (and between function values and 

derivatives) are given by derivatives of the kernel function. For example, a priori: 

and 
dF 

' dxj OX; 
^ ^ (4.8) 

OZiOWj 

All covariances among all derivatives and function values the points z and w are similarly 

computed, mutatis mutandis.1 The notation is slightly loose here, since for some kernels 

the sampled functions will not have derivatives; however, the kernels we use in this work 

are sufficiently smooth to permit this analysis. 

The ability to compute prior covariances among function values and derivatives means 

that we can simply include any derivative observations we might have in our observation 

vector f, and then build the kernel matrix K using the above equations whenever we require a 

covariance that involves a derivative random variable. For example, if we observe n function 

values and associated gradients of dimension d, we will construct a [n • (d + 1)] x [n • (d +1)] 

kernel matrix that includes all of the covariances among the function values, between the 

function values and the derivative values, and among the derivative values. We can then 

compute a posterior distribution for the function at any point using the standard formulae 

introduced earlier. Furthermore, we can compute the posterior mean and variance of any 

1li the kernel is sufficiently smooth, covariances between higher derivatives are computed similarly. 
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derivatives we might want in a similar manner; however, we will not use this capability in 

our experiments. 

Observed f(0) = 0.25 Observed f(0) = 0.25, f'(0) = 1.0 

-OB -0.6 -0.4 -0.2 0 0.Z 0.4 0.6 0.8 1 •0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 08 

Figure 4.2: Illustration of the influence of derivative observations. On the left, one obser
vation /(0) = 0.25 is used for computing the posterior mean. On the right, a function 
observation and a derivative observation are used: /(0) = 0.25 and / ' (0) = 1.0. The change 
in posterior mean reflects the inclusion of derivative information. The same GP prior was 
used in both cases. {/J,{X) = 0, rj/ = 1.0, Matern kernel with t\ w 0.3679) 

Including derivative information provides us with more information about the shape of 

the function, and hopefully allows us to identify local maxima more quickly. Figure 4.2 

illustrates the effect of including a derivative observation in a ID example, where the influ

ence on the posterior mean is clearly visible. Note that in the example on the right, the 

observation vector will be: 

f =(0.25,1.0)T (4.9) 

and the kernel matrix constructed from k(z, w) will be 

*(0,0) f | 0 n 
K = dk dzk 

0,0 

(4.10) 
dw 10,0 dzdw J 

The importance of derivative information has been shown time and again in the devel

opment of local optimization techniques, and its incorporation in Gaussian process models 

is straightforward. However, the impact of derivative information on Bayesian optimization 

has not previously been studied; therefore, we will investigate the performance Bayesian 

optimization using the MEI r and MPI r objectives when first derivative information is avail

able. 
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Chapter 5 

Empirical Results 

In this study, our intent is to learn about the impact of four important factors: the effect of 

£r, the effect of using MAP instead of ML for learning length scales, the effect of mismatched 

priors, and the effect of providing gradient information. 

5.1 Experimental Setup 

Each experiment we run is based on 500 functions sampled over [—1, l ] d from a Gaussian 

process with a constant prior mean jUo(x) = 0, a signal variance cr? = 1, and a noise variance 

a\ = e~10. The kernels used are either squared exponential or Matern, and are axis-scaled 

isotropic with a length scale for each dimension. Each function is sampled by choosing 100 

uniformly randomly drawn points in [—1, l]d, sampling function values for these points, and 

then treating them as observed values of an underlying function. The posterior mean given 

these function values is the test function. All experiments that have the same kernel and 

length scales use the same set of 500 test functions. (This is ensured by using the same 

random seed for all experiments.) 

For each sampled function, we run each algorithm for 30 acquisition steps, starting from 

the origin1. GP-based methods that take a parameter £r have this fixed for the duration 

of the experiment. For each experiment, we report box plots in Appendix A that show 

the distribution of performance over these 500 trials for each step from 1 to 30. We use 

6 different test kernels, which generate a total of 30 000 test functions. Each of these is 

optimized using the MEI r and MPI r criteria at 5 different levels of £r each, and using at 

least 4 different priors on kernel parameters, resulting in more than 1.2 million optimization 

runs. 
1 Before seeing data, none of these algorithms has a prior preference on where to acquire points. Therefore 

the first point of each run is at the origin in order to reduce variance across methods. 
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Performance is measured by absolute error, assuming each algorithm reports the best 

function value it has observed so far. The true maximum of the test function is estimated by 

hill-climbing using Newton's method (i.e. with the true Hessian of the test function) starting 

from the location of the best of the test function's 100 observed function values. The box 

plots have hollow boxes but filled "notches" which are of the width suggested by McGill, 

Tukey, and Larsen [30] of a 95% confidence interval around the median. This interval is 

1.57 times the interquartile range, divided by the square root of the number of observations, 

centered about the median. 

5.1.1 Test Model Choices 

We use test models with different dimensionality, kernel choice, and length scale in our 

experiments: 

Dimensions 
2 
2 
2 
2 
8 

32 

Kernel 
Squared Exponential 
Squared Exponential 

Matern 
Matern 

Squared Exponential 
Squared Exponential 

Length Scales 
-1.9836, -1.9836 
-3.0000, -0.9018 
-1.4343, -1.4343 
-2.4507, -0.3525 
-0.7629, -0.7629, -0.7629, 3.0000, 3.0000 ... 
-0.5593, -0.5593, -0.5593, 4.0000, 4.0000 ... 

With this set of models, we have tried to cover several different scenarios, some where 

all dimensions are equally important some where they differ, some with the smooth squared 

exponential kernel and some with the rougher Matern kernel. All of the models have an 

expected Euler characteristic of 0.5, in an attempt to keep their complexity approximately 

the same even thought their length scales, kernel, and dimension may differ. 

We have only two higher-dimensional mainly because of computational concerns; al

though posterior inference in a Gaussian process is frequently touted as taking only 0(n2) 

time once we have factored the Kernel matrix, parameter learning requires that we build the 

kernel matrix, factor it, and construct its d+ 1 partial derivatives at each step, which takes 

0{nz + (d + l)n2) time. This coupled with the need for the hill-climber to keep track of an 

increasing number of dimensions means that, especially when we are optimizing thousands 

of function, things can take a long time. 

5.2 Discussion 

We now examine and interpret our empirical results and what they have to say about 

the exploration parameter £r, about the use of priors for parameter learning, about the 
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effect of having the wrong model, and about the utility of gradient observations in global 

optimization. We summarize our results in a way that will hopefully allow others to use 

these techniques to solve their own optimization problems. 

5.2.1 The Effect of £r 

To date, none of the algorithms we have examined have a principled way of managing how 

"local" or "global" their search procedure is, though they all have some sort of "exploration 

parameter," whether in the model or the acquisition criterion, that is supposed to control 

this aspect of the algorithm. The real reason for this is that the acquisition criteria can 

only approximate the full Bayes optimal procedure for choosing points to evaluate, and it 

is presumed that any one-step algorithm will be too "greedy" initially, and will need to be 

forced to "explore" more, especially when there are only few function evaluations. When 

using small numbers of test functions, scheduling the exploration parameter has been to be 

useful in some cases [41, 39). 

First, we examine the case where we do not do any parameter learning, but fix all the 

kernel parameters. Figures 5.1 and 5.2 show the first three, middle three, and last three 

acquisitions from five different experiments where the optimization model's length scales 

are not learned, but are fixed to the correct values—the values that match the test GP. 

The performance of independently acquiring points using a Latin hypercube is shown for 

comparison. There is a striking uniformity among all of these results. Most notably, in 

all cases, using MEIr with £r = 0.01 is never significantly worse than the choice that gives 

the best median performance. This runs completely counter to conventional wisdom, which 

would claim that larger values of £r would perform better early on and smaller values would 

perform better later. 

This phenomenon is observed, however, when using the MPI r criterion. The optimal 

value of £r seems to vary between 0.1 and 1.0 depending on how many acquisitions are 

made, though after 30 acquisitions £r =0.01 was best in all cases. 

Figure 5.3 shows two cases where the prior is fixed and incorrect. In these cases, the test 

kernel is squared exponential and the optimization kernel is Matern, or vice-versa. Even 

in these cases where the model is wrong we see the same behaviour of MEIr and MPI r as 

before. 

All of this evidence runs contrary to the belief that it is important to control exploration 

depending on how many acquisitions are to be made. It is certainly not proof that scheduling 
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£r would not improve performance, particularly for MPI r where there seems to be a slight 

need to explore more early on; nevertheless, it does not seem to suggest that there are 

significant gains to be made by scheduling, at least on average. For the remainder of this 

work, we will use MPI r at £r = 0.01 and MPI r at £r = 0.1 as points of comparison, since 

these settings appear to be optimal or nearly so in all of our experiments2. Furthermore, 

their performance is very similar; it would seem that in most cases, they are "safe" choices 

even when we must learn the kernel parameters, as demonstrate in the next section. 
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Figure 5.1: Effect of £r on the performance of MEI when priors are correct and fixed. In all 
cases, using £r — 0.01 is never significantly worse than the choice that gives the best median 
performance. 

2Excepting those where we also observe V / ; see Section 5.2.4. 
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Figure 5.2: Effect of £r on the performance of MPI when priors are correct and fixed. 
In all cases, after 30 acquisitions, using £r = 0.1 provides the best performance. In some 
models, however, performance is improved by using larger £r for smaller numbers of function 
evaluations. 
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correct and fixed. 
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5.2.2 The Effect of Priors on Performance 

Next we investigate the case where we learn the kernel parameters as we accumulate data. 

Remarkably, the effect of changing £r is basically the same when learning length scales as 

when they are fixed; again there seems to be little benefit to choosing a fixed £r to suit a 

particular number of acquisitions. Graphs comparing £r versus MAP learning with different 

priors are given in Appendix B. As in the exact prior case, we choose £r = 0.001 for MEIr 

and £r = 0.1 for MPI r in our comparisons. A summary of these runs is shown in Figure 5.4. 

In all cases, there is a performance loss associated with having to learn the kernel pa

rameters. However, as the number of acquisitions increases, performance improves to near 

that achieved by using the exact priors. Also, in most cases, performance earlier on is no 

worse than acquisition on a random Latin hypercube. This is significant because in previous 

work Latin hypercube acquisition is always used for the first 10 • d acquired points before 

acquiring using MPI or MEI begins. Our results show that even using maximum likelihood 

(i.e. with no prior on parameters) from the very beginning we can achieve significantly better 

performance in far fewer function evaluations. 

That said, there are cases where maximum likelihood learning can perform worse than 

random, as illustrated in the first graph of Figure 5.4. We hypothesize that this is because the 

first test model has the shortest length scales, and we have found that maximum likelihood 

learning tends to generate very long length scales, as was shown in Chapter 3. Introducing 

an ILN or EEC prior on length scales corrects this problem. 

In most cases, performance when using MAP learning with ILN priors is not signif

icantly worse than using no priors at all, and is sometimes significantly better. On the 

two-dimensional test model with one very short length scale of e - 3 0 , using ILN priors with 

MEIr is just barely significantly worse than with no priors at all. Performance using the 

EEC prior is similar to that using ILN, being slightly worse or slightly better depending on 

the situation. In any event, using a prior, whether ILN or EEC, when learning length scales 

seems to be the "safe" choice in most cases. 
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Figure 5.4: Performance of MEIr and MPI r using MAP learning with different parameter 
priors 
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5.2.3 Effect of Mismatched Mode l s 

Figure 5.5 shows the impact of trying to learn in the case where the true kernel of the test 

function cannot be expressed in the parametric form of the optimization model kernel. In 

machine learning parlance, we might say that this is an "unrealizable" case, or that the true 

kernel is not in the version space of kernels we are considering. Of course, our objective is 

not to learn the kernel of the test function but to optimize it, so the test model kernel's 

presence in the version space may not matter, especially if there is a kernel in our version 

space that behaves sufficiently like the true kernel. 

Our experiments have indicated that for both MEI r and MPI r , when not learning length 

scales, the matching kernel performs at least as well as the the non-matching kernel, and 

sometimes significantly better. This is true also when using a MAP objective with either 

ILN or EEC priors, although in the case where the test function was Matern and learning 

was done via MAP, the choice of optimization kernel did not appear to matter. 

When using no prior on parameters and using maximum likelihood, however, the Matern 

kernel performed as well or better than the squared exponential kernel, and seemed to suffer 

less from the loss in initial performance described above. 
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Figure 5.5: Effect of mismatched kernels 
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5.2.4 The Effect of Gradient Information 

All the experiments discussed so far, along with all previous work in GP-based optimization, 

assume that we can only observe the value of f(x) at the points we choose. However, as 

we have said, the underlying Gaussian process models we use can condition on gradient 

information when such information is available, because the gradient observations are jointly 

Gaussian with the function evaluations and with each other. Therefore, we can use all of 

the same techniques for learning kernel parameters and for choosing acquisition points that 

we used previously, augment the model with gradient information, and explore the effects 

of different £r and different parameter priors. 

Detailed results from two of the test kernels are presented in Appendix B. As we found in 

our function-value-only experiments, it appears that the best fixed £r for the MEI r criterion 

does not vary significantly regardless of the number of acquisitions; we use a fixed value 

of £r = 0.001 for all of our comparisons, which is smaller than the value we chose for our 

function-value-only experiments. 

Unfortunately, the MPI r criterion seems to have more variable performance depending 

on the test kernel and the method of learning parameters. The best choice of £r ranges 

from 0.01 to 1.0, although differences in performance seem not to be very drastic in many 

scenarios. We chose £r = 0.1 as our point of comparison because it performed at or near 

the best when learning kernel parameters, whether using ML or MAP. However, to achieve 

similar performance using exact priors, a setting of £r = 1.0 is required. 

Despite the apparent sensitivity of MPI r , it appears that MEIr performs well at £r = 

0.001 regardless of test model or parameters, and when learning parameters performs slightly 

better with an EEC prior than with an ILN prior or none at all. 

As another point of comparison, we include data on the performance of using a hill-

climber with random restarts, which is an optimization strategy that is very common in 

practice. The hill-climbing data are generated as follows: Starting from the origin, the 

BFGS hill-climbing algorithm is applied but the number of function evaluations allowed is 

limited to 30. If the hill-climber converges before its alloted function evaluations are ex

pended, it is restarted at a uniformly randomly drawn point in the domain. This continues 

until 30 function evaluations have been made. The reported value for BFGS after k acqui

sitions is the best observed value up to that point. Performance of this approach is denoted 

BFGSRESTARTS and is shown in green box plots. 
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Figure 5.6: Performance of MEI r and MPI r with gradients 

The performance of MEI r on test functions is ahead of BFGS after only a few function 

evaluations, and is soon very far ahead: After 15 function evaluations in both test cases of 500 

functions each, 75% of the values found by MEI r are better than the median performance of 

BFGSRBSTARTS- This is a stunning improvement over a method that is widely considered 

state-of-the-art, albeit at a significantly higher computational overhead—recall that our 

method actually calls BFGS as a subroutine. Nonetheless, for expensive functions expending 

the extra effort in order to make fewer function evaluations may be an attractive tradeoff. 

We have restricted our experiments with gradients to two-dimensional test kernels only. 

This is because the size of the kernel matrix increases much more rapidly for high-dimensional 

problems with gradient information: Each time we acquire a point, we effectively add (d+1) 

data values to our model, and the size of K increases accordingly. This means that, for higher 

dimensional problems, clever methods of increasing computational efficiency like those dis

cussed in Section 7.2.1 will become a necessity. For now, we present these results as a very 

encouraging first step toward using GP-based optimization with gradients. 
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5.3 Summary 

We present a summary of the lessons we have learned from this study, directed toward 

anyone interested in using these techniques on their own optimization problems. 

• An initial Latin hypercube acquisition is unnecessary; performance exceeding that of 

LHC acquisition is achieved in far fewer than the 10 • d function evaluations typically 

allocated to this technique. 

• When optimizing using function evaluations only, performance for MEI r is good at 

around £r = 0.01, and performance of MPI r is good at around £r = 0.1. Of course, 

our empirical evaluation is not exhaustive (nor can it be) but these values have worked 

well on average for the 30 000 test functions we used. 

• When learning kernel parameters, using an ILN or EEC prior is helpful in some cases, 

and not damaging in any. The ILN prior in particular is easy to implement. 

• When using gradient information, MEI r is preferable since it is more robust to different 

£r and models. A small £r = 0.001 is effective in the cases we examined. 

• Using an EEC prior when learning kernel parameters using gradient information may 

result in somewhat better performance, though the technique does not appear to 

require it. 

5.4 Functions from the Literature 

We now examine five analytic functions used in recent dissertations on Gaussian process-

based optimization. Note that in the literature functions are typically minimized, and 

for this section only we will assume our intent is to minimize the provided functions. (Of 

course all of our techniques apply simply by negating function values and gradients.) The 

set of functions presented here consists of the union of the examples described by Schonlau 

[41] and Sasena [39] that existed prior to these works in the literature3. These functions are 

prominent examples of the most commonly used evaluation technique in global optimization 

prior to this dissertation: They have been selected because they were deemed to have 

characteristics that are somehow representative of the functions likely to be encountered 

in practice. While we believe that this approach is not as rigorous or informative as the 

3Sasena also includes a 'mystery function,' whose "origins are unknown." [39]. We omit this function. 
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study we have described in the previous sections, we present a brief survey of some of these 

functions along with some results. The functions we use are as follows: 

Branin This two-dimensional function is the sum of a quartic polynomial and a sinusoid 

of the first variable. 

/ (x i , x 2 ) = (x2- (5 .1 /47r 2 )^ + (5 /7r )x 1 -6) 2 + 10(l-l/87r)cos(a;i) + 10 

xi e [-5,10] 

x2 G [0,15] 

Three identical global minima with value « 0.3979 are reported by Sasena [39] at 

x = (3.1416,2.2750), x = (9.4248,2.4750) and x = (-3.1416,12.2750) [39]. 

Goldstein-Price This function is an eighth-degree polynomial of two variables. 

f(xi,x2) = [l + (x1+x2 + l)2-(19-Uxx+3xl-Ux2 +6xix2 +3x1)] 

x [30 + (2xx - 3x2)
2 • (18 - 32xi + 12x? + 48x2 - 36xix2 + 27a^)] 

xi, 12 G [-2,2] 

Schonlau [41] reports a global minimum equal to 3.0 at (0, —1). 

Hartman 6 This is a six-dimensional function of the form 

/ (x i , . . . ,x 6 ) = - ^ e x p 
i = i 

• y ^ aij (xj pij) 

The constants a^, c, and pij are given by: 

a 

10 3 17 3.5 1.7 8 
,05 10 17 .1 8 14 
3 3.5 1.7 10 17 8 
17 8 .06 10 .1 14 

d] = (1,1.2,3,3.2)T 

.1312 .1696 .5569 .0124 .8283 .5886 

.2329 .4135 .8307 .3736 .1004 .9991 

.2348 .1451 .3522 .2883 .3047 .6650 

.4047 .8828 .8732 .5743 .1091 .0381 

\Pij] = 

Schonlau [41] reports a single global minimum of-0.30098 (-1.20069 on a transformed 

negative-log scale) but does not give its location. 

Shekel 10 This four-dimensional function is given by 

/ (x i , . . . ,x 4 ) 
10 

x i , x 2 , x 3 , x 4 € [0,10] 
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where x = (x\,X2,X3,X4). The vectors a* and constants Cj are given by 

4 
1 
8 
6 
3 
2 
5 
8 
6 
7 

4 
1 
8 
6 
7 
9 
5 
1 
2 

3.6 

4 
1 
8 
6 
3 
2 
3 
8 
6 
7 

4 
1 
8 
6 
7 
9 
3 
1 
2 

3.6 
L. -J 

[d] = (.1,.2,.2,.4,.4,.6,.3,.7,.5,.5)T 

Schonlau [41] reports a global optimum near (but not at) x = (4,4,4,4). Its value is 

not given but appears to be approximately —10.52. 

Six Hump Camelback This function is a quartic polynomial of two variables. 

f(x!,x2) = (4-2.1x2
1+xl)-x2

1+x1x2 + (-4 + 4xl)-xl 

xi G [-2,2] 

xi G [-1,1] 

Sasena [39] reports two identical global minima of —1.0316 at the domain points 

(-0.0898,0.7127) and (0.0898,-0.7127). 

A direct comparison with previous work on these test functions is difficult for at least 

two reasons. First, a variety of evaluation metrics have been used in the past. For example, 

Schonlau assumes knowledge of the true global minimum, and counts the number of function 

evaluations necessary to achieve an absolute tolerance of 0.0001 on the function value. 

Sasena on the other hand counts the number of function evaluations to reach within 1% of 

the value of the global minimum, along with several other measures. Second, the method 

of acquiring results varies from study to study. Schonlau reports results of one attempt 

at optimization, while Sasena reports the average results from 10 different sets of initial 

starting acquisitions. The results we present here are similar to those presented earlier: 

we simply allow the algorithms 30 function evaluations, and compare against uniformly 

randomly sampled points (when no gradient is used) and BFGS with random restarts (when 

the gradient is made available.) 

Figures 5.7, 5.8, 5.9, and 5.10 each illustrate one optimization run on each of the above 

functions using all combinations of kernel, criterion (MPI r and MEI r), and length scale 
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prior. Figures 5.7 and 5.8 illustrate performance without gradient observations and Figures 

5.9, and 5.10 illustrate performance with gradient observations. Previously reported global 

minima are indicated by a black horizontal line. 

The first thing to note here is that these runs present at best a sanity check; no reasonable 

general inferences can be drawn from such a small set of observations. Nevertheless, some 

interesting points arise. First, it appears that the Branin function is particularly easy 

to optimize; all methods including random sampling find a very good point after very few 

iterations. We conjecture that this is because the function has three identical global minima, 

each of which lies in a wide, shallow basin. On the other hand, the unique minimum of the 

Goldstein-Price function lies in a small convex basin surrounded by concavities, and proves 

to be more difficult. Indeed, it appears that providing gradient information about the 

Goldstein-Price function is unhelpful, possibly because it is not well-modeled by the kernels 

we chose, or because the concavities near the minimum are misleading to the search. The 

Hartman 6 and Shekel 10 functions are both constructed by summing up several 'wells' 

that each contain a local minimum. Those of the Shekel 10 are much narrower and deeper 

than those of the Hartman 6. On these functions the GP models made better progress, and 

gradient information was beneficial in both cases. In particular, it appears that a global 

model of the Shekel 10 function is beneficial, perhaps because it allows a systematic search 

of the local minima in order to find the global minimum; BFGS with random restarts did 

not manage to locate the deepest well, and simple random samples did not find any of them. 

Finally, the Six Hump Camelback function presents an interesting case: As mentioned above, 

Sasena reports that the global minimum of the function is -1.0316, but all of our methods 

found values well below this. This is because, over the domain indicated, the global minimum 

is against a constraint: Because the dominant x\ term is —2.1x|, eventually the function 

will tend to —oo as we increase |a;i|. In fact, it falls off sharply just before the edges of the 

domain, resulting in several global minima against active constraints. It is not clear why 

this was not discovered or mentioned previously, but it does illustrate the importance of 

properly handling this type of optimum. 
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Figure 5.7: Analytic function examples using the squared exponential kernel. For MPI, 
£r = 0.1. For MEI, £r = 0.01. No gradient information is provided. The solid black line 
indicates the best previously published minimum. 
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Figure 5.8: Analytic function examples using the Matern kernel. For MPI, £r = 0.1. For 
MEI, £r = 0.01. No gradient information is provided. The solid black line indicates the best 
previously published minimum. 
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Figure 5.9: Analytic function examples using the squared exponential kernel. For MPI, 
£r = 0.1. For MEI, £r = 0.001. Gradient information is provided. The solid black line 
indicates the best previously published minimum. 
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Chapter 6 

Applications 

To date, we have applied Gaussian process-based optimization in two domains of interest 

to computing scientists: Improving the speed and smoothness of robot walking gait opti

mization, and reducing the error of a stereo matching algorithm. The work on AIBO gait 

optimization was conceived early on in the course of the thesis, and is a proof of concept that 

illustrates how even a very simple version of Gaussian-process based optimization can be 

effective in higher dimensional spaces than have previously been addressed. Most recently, 

we have begun collaboration on a large-scale comparison of stereo matching algorithms, 

and we have used the knowledge gained in our empirical studies to help develop a fast and 

consistent optimization procedure for different stereo matching approaches. 

6.1 AIBO Gait Optimization 

Legged robot platforms offer many advantages over traditional wheeled robots. Their unique 

ability to traverse a wide variety of commonly encountered terrain makes walking robots 

are basically a requirement for performing useful tasks in our human-centric world. Despite 

these advantages, legged robots only slowly being adopted, in part because of the difficult 

challenge of developing an effective walking algorithm or "gait". 

Optimizing a robot's gait is a complex problem. An open loop gait consists of a se

quence of joint values for each of the many degrees of freedom in a legged robot. Simplified 

parametric representations of leg trajectories can result in a manageable number of param

eters; however, these parameters can have complicated interactions making manual tuning 

of gait parameters time-consuming for simple robots and nearly impossible for the increas

ing complexity of humanoid platforms. Worse yet, no single gait will be effective in all 

circumstances. The walking surface is critical and can vary in terms of friction, softness, 

89 



and height variation (e.g., compare concrete, linoleum, carpet, and grass). Robot platforms 

themselves also vary due to manufacturing imperfections and general joint and motor wear. 

Lastly, even measuring the quality of a gait is likely to be situation specific. Although 

velocity may seem like the obvious choice of objective function, relative stability of the 

robot's sensor hardware can also be important, for example. Tailoring a robot's gait to the 

environmental, robot, and task specific circumstances may be possible to some degree, but 

relying on constant manual re-tuning is largely impractical. Automatic gait optimization 

is an attractive alternative to this laborious manual process, and has been explored in the 

past using hill-climbing and genetic algorithm based approaches. 

We applied Bayesian optimization to the problem of gait optimization and demonstrate 

the effectiveness of the approach using the Sony AIBO quadruped robot [27]. We show that 

when applied to two different objectives the Gaussian process model not only finds effective 

gait parameters, but also does so with an order of magnitude fewer evaluations than a local 

search competitor. 

Previous Approaches The Sony AIBO, a commercially available quadruped robot, has 

spurred recent interest in gait optimization, driven primarily by its use in the RoboCup 

Legged Soccer League, where well tuned walks are a requirement for success. Number of 

recent approaches for gait tuning have been pioneered on the AIBO. 

A common foundation for all of these approaches including our own is the notion of a 

"walk engine", or parameterized gait generation system. Since the number of degrees of 

freedom in legged robots is large, optimizing the angle of each joint at a finely discretized 

time scale would involve searching over thousands of parameters, a task typically consid

ered intractable. The walk engine reduces the number of parameters by focusing on leg 

trajectories that are both physically possible and intuitively plausible. These parameters 

usually define properties of each leg's trajectory such as the "distance the foot is lifted off 

the ground" and "the period of the walk in milliseconds". The space of parameterized walks 

obviously has a large impact on the final quality of any automatic gait optimization, but the 

optimization problem itself is the same regardless of the walk engine. Optimization in all 

cases requires finding a point in a parameter space with between eight and fifty dimensions 

that results in an effective gait. Each of the works cited below is based on a different walk 

engine. Because of this, and because of the variation in lab surfaces and individual robots, 
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reported walk speeds are largely incomparable.1 

Despite these differences, each approach uses a similar experimental setup. All of the 

approaches involve evaluating specific parameter settings by having the AIBO walk in a 

structured arena using the parameters to be evaluated. Local sensor readings on the AIBO— 

either camera images of visual landmarks or the IR sensor readings of walls—are then used 

to compute a noisy estimate of the gait's average velocity. The procedure may be replicated 

several times to construct an averaged estimate with lower variance. 

Genetic Algorithms An genetic algorithm inspired approach was the first proposed 

method for gait optimization on the AIBO. Hornby et al. [17, 16] used a standard genetic 

algorithm search on an early prototype AIBO. A population of parameters was maintained at 

each generation, a new population was formed through mutation and crossover of individuals 

from the previous generation, and parameters in the population that evaluated poorly were 

discarded. Their procedure showed slow gait improvement over 500 generations, requiring 

approximately twenty-five robot-hours of learning. 

The evolutionary approach was revisited by Chernova and Veloso [9]. They used similar 

mutation and crossover operations to generate candidate gaits. Unlike the work of Hornby, 

their parametric space of walks included a measurement of the possibility that the AIBO 

could physically perform the gait. This allowed them to throw out poor gait parameters 

without requiring an expensive on-robot evaluation. In addition, they used a "radiation" 

procedure to disperse clusters of similar parameters in the population and force further 

search. They demonstrated that the technique learned competitive walks using 4,000 eval

uations and a total running time of approximately five hours distributed across four robots 

for a total of twenty robot-hours. 

As the AIBO's evaluations of performance are noisy, both approaches must deal with 

the possibility that an inaccurate evaluation will cause poor gait parameters to incorrectly 

remain in the population. Both used targeted reevaluation to reduce this possibility, reeval

uating either the parameters that remained for multiple generations or the ones that per

formed disproportionately well. 

Local Optimization The second family of approaches that has been explored in

volves adapting techniques for local function optimization to the gait optimization problem. 
1 Despite the lack of basis for comparison, the three most recent techniques discussed below all achieve a 

similar walk speed in the range of 0.27-0.29 m/s . 
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Kim and Uther [22] used Powell's method [34], which performs line search along a chosen 

search direction based on the effectiveness of previously chosen search directions. Kohl and 

Stone [23] used a hill climbing approach. Although the gradient is not known, a set of ran

dom perturbations are evaluated empirically, and these evaluations are used to construct an 

approximation of the gradient. The parameters are then adjusted by a fixed step size in the 

direction of this estimated gradient. Kohl and Stone reported the fastest learning result in 

the literature, requiring only three hours distributed across three robots for a total of nine 

robot-hours. It is important to note that the reported experiments for both techniques in

volved initializing the optimization with a known set of reasonable parameters. This differs 

from evolutionary approaches, which begin with a random initial population. 

Drawbacks All of the previous approaches share three key drawbacks. First, they 

can get stuck at local optima. Kim and Uther reported actual experiences of local optima 

and Kohl and Stone noted the importance of starting from good initial parameters, having 

found considerably poorer performance under different starting conditions. There are tech

niques to deal with local optima as we have seen, such as random restarts for local function 

optimization approaches and radiation for evolutionary approaches. However, both involve 

a considerable increase in the required number of gait evaluations. Furthermore, the ap

proaches forget previously evaluated gaits once they either die out of the population or after 

the gradient step is taken. Not only is this an inefficient use of expensive gait evaluations, 

but certain parameter settings may be unnecessarily reevaluated. Finally, none of the ap

proaches explicitly model the noise in the evaluation process. Hence they all involve long 

individual evaluations or repeated shorter evaluations that are averaged to compute a less 

noisy estimate. The Bayesian optimization approach does not suffer these disadvantages, 

and consequently requires considerably fewer gait evaluations. 

Gaussian Process-Based Gait Optimization Like previous approaches, we assume 

that we already have some parameterized walk engine with d parameters. We model the 

stochastic velocity function / : M.d —> R, which maps walk parameters to velocity, as a 

Gaussian process. The prior mean and kernel function of the Gaussian process are chosen 

based on prior domain knowledge. We use the MPI acquisition criterion to decide which 

parameters to evaluate on the robot based on the previous observations, and after some 

number of gait evaluations the parameters that generated the fastest observed walk are 
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returned. 

Walk Engine As discussed earlier, a complete joint trajectory for a gait could have 

thousands of parameters. All gait optimization techniques parameterize this walk space 

using a walk engine. For this work, we have used Carnegie Mellon University's Tekkotsu2 

software to control the AIBO, which includes a walk parameterization (as of release 2.4.1) 

originating from the Carnegie Mellon CMPack 2002 robot soccer team. This is an early 

version of the CMWalk engine used in the work by Chernova et al. [9]. In consultation with 

a domain expert, we identified 15 walk parameters along with reasonable bounds on each 

parameter to define our domain, i.e., X c M15. 

Model For this work, we will use a fixed optimization model, i.e. we will not do any 

parameter learning. Since we have some intuition about the behaviour of the walk function, 

taking such a "black-box" approach less necessary. We therefore define a prior mean function 

Ho : X —-> R and kernel function k : X x X —> R. We also need to specify the signal variance 

<72 which represents the amount of overall variation in the function, and the variance a\ of 

the noise that is believed to be added to each observation observation Fx. For the mean, we 

use a constant function fi(x) — /if. For the covariance function, it is hypothesized that, in 

general, parameter vectors that are close in terms of Euclidean distance are likely to have 

similar walk velocities, and therefore a large positive covariance. Furthermore, we expect 

that some parameters may have wide-reaching consequences, and so velocities generated by 

parameters that are far apart should still have some small positive correlation. We therefore 

chose to use the squared exponential kernel with axis-aligned scaling. We now need to simply 

choose the constants <r2, /JO, and a2
f. Setting these to appropriate values depends on the 

feature of the gait to be optimized. We present results both for optimizing the gait's velocity 

and its smoothness, so we examine the choice of prior for each of these cases in turn. 

Parameters for Velocity Gait velocity has been studied relatively extensively both 

on the AIBO and with our particular walk engine. In consulting with our domain expert, 

we easily solicited useful prior information. In particular, we chose fx/ = 0.15 and a'j = 

0.066, which correspond to the intuition, "For some random gait parameters, we expect 

the observed velocity to be 0.15 meters per second and within about 0.2 meters per second 

99% of the time." For observation noise, our domain expert was not familiar with our 

2http://www.tekkotsu.org 
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particular experimental setup. Instead, we computed the sample variance of a small number 

of observations of one particular setting of the walk parameters. This gave us a value of 

cr̂  = 0.01, which seemed to work well in practice. As an interesting test of the stability 

of our method with respect to the model parameters, we also ran the velocity optimization 

with a prior variance parameter of er? = 0.66 (ten times larger). 

Prior for Smoothness Since smoothness had not been evaluated before, we had no 

domain expert to consult. Instead, we made a small number of acquisitions (about 30) 

and used sample means and variances to estimate the parameters of the prior (if = —30, 

<j? = 100, (7^ = 2.25. As we will show in the next paragraph, even this simple uninformed 

method for specifying the Gaussian process model can be very effective. 

Acquisition Criterion We use the maximum probability of improvement (MPI) ac

quisition criterion with a fixed £. Since the optimization model parameters are fixed, this 

is equivalent to choosing a £r = £/c?. 

Implementation Details In order to compute the point of most probable improve

ment point, we used the generic constrained hill climber in MATLAB (fmincon) supplied 

with the function and gradient of the acquisition criterion. We used as default starting 

points the two best parameters found so far, and 13 drawn uniformly random within the 

bounded domain for a total of 15 starting points. In addition, we forced the first gait eval

uation selection by choosing the center point of the domain. Since the Gaussian process 

model starts with a uniform belief over the domain, all function points are equally good to 

the most expected probable rule. 

Results We have applied our Gaussian process approach to two gait optimization tasks 

on the Sony AIBO ERS-7. We first look at the standard problem of maximizing walk 

velocity, and we also examine the problem of optimizing a gait's smoothness. The goal 

of any gait optimization technique is to find a near-optimal gait in as few evaluations as 

possible. Therefore, we'll want to compare techniques using this criterion. 

Since previous gait learning has not involved the same walk engine, experimental setup, 

or robots, comparing directly with previously reported results can be somewhat problem

atic. For a more direct comparison, we have implemented the hill climbing method of Kohl 

and Stone [23] described earlier, and applied it in identical circumstances as our approach. 
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The Kohl and Stone algorithm is the most data efficient technique for the AIBO from the 

literature, demonstrating effective walks with only nine robot-hours of training. We repli

cated their experimental setup, using 15 random evaluations to approximate the gradient 

at each "iteration" and using a step size of 2. The empirical epsilon used in estimating 

the gradient was 1/15 of the parameters' range, which seemed to be an adequate change 

in performance. As with the Gaussian process model, we started the hill climber from the 

point in the center of the space. 

Physical Setup To evaluate each walk parameter choice, we had the robot walk be

tween two visual landmarks while focusing the head on the center of the landmark. The 

robot determined its distance from a landmark as it walked toward it based on the land

mark's apparent width in the camera's field of view, and that change is used to estimate 

velocity. To determine a gait's smoothness, we measured the time-averaged distance from 

the center of the landmark to the center of the robot's field of view, and negated this. 

Unstable walks that result in a large amount of head movement yield negative smoothness 

values, since it is difficult for the robot to keep the head and the camera aimed at the target. 

More fluid walks allow the robot to aim the camera more directly at the target, resulting in 

a smoothness much nearer to zero. 

Each observed measurement is the result of three "traversals" from one landmark to the 

other. The average time for three traversals, including time to turn around, was approxi

mately one minute. This was chosen to be consistent with Kohl and Stone's hill climbing 

experiments. We could have easily only used a single traversal and compensated by increas

ing the observation variance used in the model. 

Gait Velocity A graph showing the result of 321 observations is shown in Figure 6.1(a). 

We chose this number of observations a priori to allow the hill climber 20 "steps" or itera

tions with 15 test points for each. Both our Gaussian process technique and the Kohl and 

Stone hill climbing technique are shown, as well as the simple baseline of choosing gaits 

uniformly at random. The solid lines represent the maximum achieved walk speed over 

the accumulating observations, and the corresponding isolated markers show the maximum 

velocity achieved over the most recent 15 observations. 

We found that both the Gaussian process and hill climbing methods performed apprecia

bly better than random evaluations. The best walk velocity found was 0.285 m/s, which was 
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0.281 m/s 0.285 m/s 
aj = 0.06 
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0.248 m/s 
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(o) U.Rand 
0.230 m/s 

(a) 

100 150 200 
Observations 

(*) GP w/MPI 
-4.53 

(x) H.Clmb (o) U.Rand 
-9.80 -7.07 

(b) 

Figure 6.1: Results for (a) gait velocity and (b) gait smoothness. Solid lines represent 
cumulative maximum, and the small markers indicate the maximum observation from the 
last 15 observations. 

found by the Gaussian process with the over-estimated prior variance, a\ = 0.66, although 

the walk found by the Gaussian process with the "sensibly" initialized variance is nearly as 

fast. Despite having already warned of the difficulties in comparing walk speeds, note tha t 

this speed is comparable to other learned gaits. More impressively, though, is the fact this 

speed was at tained after only 120 observations, which took approximately two robot-hours. 

This is nearly a five-fold improvement in the required number of robot-hours. 

It is interesting t ha t the best walks found by the two Gaussian process models are in 

widely separated par ts of the space. The walk found by the sensible setting of ai — 0.066 

has a low period and shorter stride, with a parameter vector far from the center of the space. 

On the other hand, the experiment at <7? = 0.66 found a similarly fast walk near the center 

of the space with longer, slower strides tha t cover a similar distance. 

Although the results of the hill climbing approach were not poor, we were somewhat 

surprised tha t the performance was not better . The method tended to take very poor steps 

once it reached a value of about 0.230 m / s . There are two natural explanations. One may 

simply be local optima, which is in line with Kohl and Stone's noted importance of the initial 

parameter vector. Alternatively, based on the frequency of taking poor gradient steps, the 

step size may have been too large along certain dimensions. Random restar ts and a variable 

step size for each dimension could mitigate these unimpressive results. 
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Gait Smoothness A similar graph for gait smoothness is shown in Figure 6.1(b). The 

Gaussian process optimization found the smoothest walk of all three methods and did so 

within the first 20 observations, or only twenty minutes of robot time. Later improvement 

was only incremental. In a post-mortem analysis, the gait smoothness task is apparently 

much simpler. The impact of parameters on our measure of smoothness ended up being quite 

simple as a wide range of walks with a short period (below about 310 ms) and a moderate 

requested walk speed (between 210 and 240 m/s) resulted in a smooth gait measurement. 

Scores of such walks were typically greater than -10. Due to the independence of this pair 

of parameters from the rest, it is not unlikely that even random search would find a smooth 

gait as choosing parameters in this range will occur on average every 250 gait evaluations. 

Our random search trial did happen to find one such point, giving it a moderate win over 

the hill climbing technique. Again, we suspect the unimpressive hill climbing result to be 

due to initial conditions and local maxima. 

Conclusion We proposed a new approach to gait learning using Gaussian process re

gression for global optimization. The approach overcomes many drawbacks of previous 

techniques, effectively avoiding local optima, efficiently using all gait evaluations, and ex

plicitly modelling noisy observations. Even with all of the caveats associated with comparing 

gait velocities and training time, we have demonstrated that the approach is not only ef

fective in our high dimensional, noisy, non-convex, optimization problem, but also requires 

drastically fewer evaluations. This was also accomplished with a minimum of parameter 

tuning, demonstrating effective performance when using prior settings from a domain ex

pert, incorrect settings, and even data derived settings. This work illustrates the potential 

for Gaussian process-based global optimization to be a useful technique for optimizing com

plicated functions arising in real-world problems. 

6.2 Stereo Matching Parameter Optimization 

Stereo matching algorithms use two or more images that have been taken from slightly 

different viewpoints to recover a "depth map" of the photographed scene. That is, for each 

pixel pi, we would like to recover the distance from the camera to the 3D object that projects 

to Pi. One class of state-of-the-art techniques for this problem constructs a probabilistic 

graphical model of depth maps and attempts to recover the most probable map given the 

input images. Consider a left image p ' , a right image p r , and a left depth map d . One can 
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think of p ' and p r as vectors of pixel intensities pf, and d as a list of depth values dl, one 

for each pixel in the left image3. We now assert that 

p ( d V , p ' ) a p ( P r | d ' , p ' ) - p ( d V ) (6-1) 

and maximize over d to find the maximum a-posteriori (MAP) depth map. The likelihood 

term, p(p r |d , p ' ) , describes how well the left image plus the left depth map are able to 

re-create the right image. The prior, p(d |p'), gives the probability that d' is a depth map 

that describes the geometry in the left image. 

Each of these two terms is typically expressed using a Gibbs-distributed "energy func

tion" over images and depth maps, which are then summed to produce a total energy E 

such that p{x) oc e~E(x\ Since we are only looking for the MAP depth map and do not 

need its probability, we do not need to compute the log partition function and can simply 

solve 

argmin £?data(pr,d',p') + £ s m o o th(d ' ,p ' ) (6.2) 
d' 

where -©data and i^mooth are the names typically given to the likelihood and prior energy 

functions, respectively. Given these functions, several techniques that exploit structure 

in the problem have been successfully used to compute the minimum energy (and there

fore MAP) depth map, including max-flow/min-cut algorithms, dynamic programming, and 

branch-and-bound search. 

However, the energy functions themselves are parameterized functions of the image data 

and depth map. For example, one simple choice for the -©smooth prior energy function is 
\dl — $ I 

£smooth(d ' ,p ' ) = W- ] T \j—f (6.3) 

-4 = {{hj} '• pixel p\ and pixel pl, are adjacent} (6.4) 

Pixels are typically considered "adjacent" if one is a four-neighbour of the other, i.e. they 

are next to each other in the up, down, left, or right direction. This function will prefer 

depth maps where adjacent pixels have similar depth; however if their intensity values of 

the pixels are different, the change in depth is allowed to be greater4. Note the weight w in 

the equation: Altering its value will alter the importance of the Smooth term in our model, 

and will change the solution of Equation 6.2; using a larger w will produce smoother depth 

maps in the sense described by Smooth-
3 With a few exceptions (notably Kolmogorov's work [24]), left and right depth maps are computed 

independently. 
4For this function we define 0/0 = 0 so that adjacent pixels with identical intensity and depth do not 

generate infinite energy. 
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Each term in the total energy function is given a weight, and some of the terms may have 

other "internal" parameters. In more complicated energy functions currently in use, there 

may be up to nine of these "auxiliary parameters" in the -ESmooth and Edata components. 

Previous Work To date, these parameters have been optimized "by hand" based on 

researchers' intuitions about what values are likely to perform well, and based on a small 

number of evaluations on datasets that have an associated ground-truth, such as laser range-

finder readings. This has made comparison of different stereo matching algorithms very 

difficult because the procedure for optimizing the auxiliary parameters is not standardized. 

Exhaustive grid search over parameter space has also been applied in some cases, but of 

course this takes time exponential in the number of parameters, and is impractical even 

in low dimensional settings when each run of the underlying minimizer takes a significant 

amount of time. 

Gaussian Process-Based Stereo Matching Optimization Our goal is to produce 

a system that can optimize these parameters reliably using a small number of function 

evaluations (i.e. runs of the matching algorithm) so that researchers can more quickly and 

accurately compare techniques that use different energy functions. We have constructed 

a system that chooses parameters, runs the stereo matching algorithm which reports a 

resulting error rate with respect to ground-truth, incorporates this information into the 

optimization model, and chooses the next parameter setting according to the acquisition 

criterion [31]. Because we will be testing several different matching algorithms which have 

different parameters, we choose a more black-box approach than that used for AIBO gait 

optimization: After considering the empirical evidence produced in this thesis, we choose to 

use a squared exponential kernel together with MAP learning using independent log-normal 

priors, and the MPI r acquisition criterion with £r = 0.1. 

The two stereo matching algorithms we investigated are similar to work by Hirschmuller 

based on dynamic programming [14]. In both of the algorithms, -Edata has no free parame

ters, and ^smooth has two free parameters wi and W2, which we will optimize. Both of these 

are constrained to the range [1,50]. The smoothing energy function is given by 

£ S m o o t h ( d V ) = Y, [^i-H\Dl
i-D

l
j\ = l) + w2-l(\D

l
i-D

l
j\>l)} (6.5) 

{j,j}6-4 

Here, 1 is the indicator function, A contains sets of neighbours as above, and D\ is the 
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% Missed Cones Teddy Tsukuba Venus 
MAX 
MPIr 
MIN 

71.42253518 
19.09491121 
19.06307191 

71.84294462 
22.50036299 
22.48645276 

34.57740247 
6.55560121 
6.52367249 

62.33148575 
5.27275390 
5.20088896 

p(RAND beats MPI r): 0.0392 0.0392 0.4522 0.3302 

Table 6.1: Comparison of MPI r on four stereo matching problems without median filtering. 
Values indicate percent of mislabeled pixels. The last row gives the estimated probability 
that 100 uniformly randomly acquired points will find a minimum < MPI r . Maximum 
absolute error (MPIr — MIN) was on the 'Teddy' data set at 0.0224, and maximum relative 
error (MPIr - MIN)/(MAX - MIN) was 0.0006, on the 'Tsukuba' data set. 

% Missed Cones Teddy Tsukuba Venus 
MAX 
MPIr 
MIN 

59.96534228 
16.70819967 
16.68799520 

60.33118962 
20.28740048 
20.26502341 

16.95288271 
5.06180450 
5.05496260 

45.41595279 
3.59058305 
3.57062071 

p(RAND beats MPI r): 0.0392 0.0769 0.1480 0.5145 

Table 6.2: Comparison of MPI r on four stereo matching problems with median filtering. 
Values indicate percent of mislabeled pixels. The last row gives the estimated probability 
that 100 uniformly randomly acquired points will find a minimum < MPI r . Maximum 
absolute error (MPIr — MIN) was on the 'Teddy' data set at 0.0223, and maximum relative 
error (MPI r - MIN)/(MAX - MIN) was 0.0006, the 'Tsukuba' data set. 

disparity of pixel p[, which is proportional to the inverse of the depth d\; it is common for 

practitioners to work with disparity values instead of depths, although there is a one-to-one 

mapping from one to the other using camera geometry. Note that this smoothing function 

does not depend on the pixel data p ' . The only difference between the two algorithms we 

examine is that one uses a median filtering technique as a post-processing step, and the 

other does not. The median filter takes each 3 x 3 patch in the MAP disparity map, and 

replaces the center disparity with the median disparity in this patch. 

Results Four commonly studied image pairs with corresponding ground-truth data from 

the Middlebury stereo vision web site [40] were fed into the two algorithms. We performed 

an exhaustive grid-search using 2500 points to optimize wi and W2 for each of the eight 

data-algorithm pairs—one exhaustive search takes approximately two hours on a 1.83GHz 

Intel Core Duo. The performance measure we use is the percentage of pixels in the image 

whose disparity given by the algorithm differs from the ground truth data by more than 1; 

disparity is quantized to integer values in {0,1,. . . , 255}. We report the maximum (worst) and 

minimum (best) performance values found by this exhaustive search as points of comparison. 

Tables 6.1 and 6.2 give the performance values found by exhaustive search and by GP-

based global optimization using the MPI r criterion with £r = 0.1 and independent log-
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normal priors on length scales. On each data-algorithm pair, the GP-based method was 

allowed to acquire 100 data points, which takes approximately 3.75 minutes of compute 

time, again on an Intel Core Duo at 1.83GHz. 

We also report an estimate of the probability that the minimum of 100 uniformly ran

domly sampled points would produce a function value better than that found by MPI r . We 

estimate this by counting the fraction of the 2500 grid points acquired that are below the 

MPI r threshold, and computing the probability that a random sample of 100 points would 

include at least one of these. In the 'Cones' and 'Teddy' datasets, these probabilities are 

quite low, indicating that MPI r is finding a global minimum that is well-separated from 

other local minima, and that is unlikely to be attained by chance. On the other hand, 

on the 'Tsukuba' and 'Venus' datasets, the probabilities are much higher. Inspection of 

the error surface for these datasets has shown that the 'Cones' and 'Teddy' error surfaces 

have a pronounced slope around the global minimum, whereas the 'Tsukuba' and 'Venus' 

error surfaces have a large and very flat area surrounding the global minimum that is full 

of small, seemingly i.i.d. fluctuations whose values are very near the global minimum. In 

these last two cases, MPI r does not appear to present a significant advantage over random 

point acquisition. 

Despite this, in all of the cases examined, the GP-based method found parameter set

tings that were worse by no more than 0.3% of the pixels in the image as compared to 

the exhaustive search. This difference was deemed acceptable given the reduction in total 

compute time by a factor of 32. 

Conclusion These experiments illustrate the use of GP-based optimization in an out-of-

the-box fashion on a novel problem. The specific technique used—MPIr with £r = 0 . 1 and 

independent log-normal priors on length scales—was suggested by the extensive experimen

tal analysis from Chapter 5. The results obtained are important to practitioners researching 

stereo matching algorithms, because they demonstrate a mechanism for investigating the 

tuning of stereo matching parameters that takes far less computation time than other naive 

approaches. Our approach also makes more rigorous parameter optimization possible: Since 

so few function evaluations are needed, it may be useful and feasible in the future to optimize 

the error of algorithms on several sets of data at once, resulting in parameter settings that 

are more generally applicable. Such a study, which would have taken days to run previously, 

could be completed in hours using our approach. 
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Chapter 7 

Conclusion 

This thesis has sought to make GP-based methods a practical choice for the task of global 

function optimization. To this end, we have made several advances to the GP-based ap

proach, made an extensive empirical evaluation, and presented two successful real-world 

applications. We now summarize these advances and present avenues of further research in 

the area. 

7.1 Contributions 

We developed and used a new methodology for evaluating global optimization techniques 

based on generating many test functions and evaluating performance on each. Having this 

method of evaluation enabled us to study the effect of adapting kernel parameters and 

changing the exploration parameter £ r. Our empirical evaluation shows that in most cases 

no tuning of £r is required at all. 

The parameter £r controls the exploration level of the new acquisition criteria that we 

developed in Chapter 3. These acquisition criteria are invariant to vertical shifting and 

scaling of the objective function, so our results hold not only for all of our test functions, 

but for all vertically shifted and scaled versions of the test functions. This reduces the need 

to tune £r to different objective functions. Our empirical evaluation showed that in the 

cases we examined, little no tuning of £r is required, particularly for MEI r . 

We demonstrated in Chapter 5 that using a MAP objective can be used to reliably 

learn the kernel parameters, eliminating the need for pre-acquisition of the function and 

again reducing the need for user input. In the process of developing the new EEC prior, 

we gave a novel polynomial time algorithm in Chapter 2 for computing the expected Euler 

characteristic of axis-scaled isotropic Gaussian processes over closed intervals of Rd. 
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Finally, We illustrated the use of gradient information with GP optimization, showing 

in particular that MEIr can perform very well when given this information. In fact our 

results show that MEI r with gradient information can perform much better than the BFGS 

algorithm with random restarts when given the same number of function evaluations. 

7.2 Future Work 

Recently, many advances have been made by the machine learning community that improve 

Gaussian process-based methods, particularly in improving computational efficiency and 

developing more flexible models. Fortunately, most of these methods are "plug-and-play" 

with the approaches described in this work since the acquisition criteria can be used with 

any underlying GP model. We present two methods for improving computational efficiency 

that could be integrated into the optimization methods we have described. 

We also foresee a wealth of interesting research arising from applying GP-based opti

mization to different problems in different application areas. There are many problems in 

computing science and in other disciplines that are solved by optimizing a "surrogate" func

tion that presents a more tractable objective than the original problem; we present machine 

translation as one example. 

7.2.1 Reducing Computational Requirements 

Perhaps the biggest obstacle to more widespread use of GP-based optimization is the com

putational expense involved in computing the next acquisition location. In GP based opti

mization to date, only naive methods that take time cubic in the number of data points have 

been used for computing posterior distributions. This restricts the applicability of GP based 

methods to problems where the cost of function evaluation makes that degree of overhead 

acceptable, i.e. problems where function evaluation is very expensive and/or the number 

of data points considered is small. However, several approaches have been developed that 

approximate the posterior distribution using less computation. 

Subset of Data Points Approximation The simplest approximation one can make 

when there are too many data points to deal with is to simply ignore some of the data. A 

small subset of m data points can be retained, and computation times are reduced accord

ingly since only m kernel functions are used to construct the posterior. 

The performance of this technique depends on the complexity of the posterior in terms 
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of how many points are needed to approximate it well. Also, the selection of which points to 

use is important. Lawrence et al. [26] suggest greedily choosing the m points where posterior 

variance is highest, which is equivalent to adding points that give the greatest reduction in 

the entropy of the posterior. 

Projected Process Approximation The Projected Process Approximation [36] is a 

mechanism for approximating the posterior process with m < n kernel functions but still 

using all n observed data points. Suppose x m contains the m points where we will center 

the kernels used for the approximation. Then 

»{Fz\Fx = f) » IM>{z) 

+k(z,xm)(k(xm,x) k(x,xm) + crlk(xm,xm))~1 (f - p0(x)) 

cr2(Fz\Fx = f) « k(z,z)-k(z,xm)k(xm,xm)-1k(xm,z) 

+ a2
lk(xm,x)(alk(xm,xm) + k(xm,x) k(x,xm))~1k(xm,z) 

Note that the posterior mean now involves only m kernel evaluations between the query 

point z and the subset of data xTO, and the matrices that need to be inverted are of size 

mxm. Compute time for inference is 0{m?n) initial setup, 0(m) time for a posterior mean 

and 0(m2) time to compute a posterior variance. Like the Subset of Data Points technique, 

m kernel functions are used to model the posterior, but the approximation is fit to all the 

data we have instead of just the points in FXm. As before, however, the choice of which 

points to include can make a significant difference in the quality of the approximation. A 

greedy criterion for including points again based on the posterior variance is given by Csato 

and Opper [10]. 

Each of these approximation methods can be quite simply "dropped in" to the GP-

based optimization framework described in this thesis; however the effect on performance 

of making this type of approximation still needs to be assessed. 

7.2.2 Application to Translation Directed Word Alignment 

The field of statistical machine translation has been dominated by the approach of first 

solving the word alignment problem [8]. Given a sentence and its translation in a different 

language, a word alignment is a set of word pairs where the first word comes from original 

sentence and second word from the translation. In a "good" word alignment, these pairs 

(or "links") will exist if and only if the words are (possibly partial) translations of one 
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another. In a statistical machine translation system, word aligner is typically trained on 

parallel text, and is then used with what is known as a "decoder" to construct translations 

of new sentences. To date, however, word aligners have not been trained using translation 

quality as the objective function, because of the complex interactions between the aligner 

and the decoder, and because evaluating modifications to the word aligner is very time 

consuming. They are instead trained on a simpler objective based on what humans consider 

to be "good" alignments. 

It is possible in principle to optimize the various parameters that direct the actions of 

a word aligner using translation quality as our objective. The word aligner is controlled 

by about 10 real input parameters, and can automatically provide us with a measure of 

translation quality. Since this problem has very expensive function evaluations and since 

the mapping is not well understood, we anticipate GP-based optimization to be a good 

candidate for finding good solutions and providing insight into the objective function in 

terms of how different parameters affect performance. 

7.3 Summary 

In this thesis we have described, tested, and improved upon Gaussian process-based global 

optimization. Our work improves not only the performance of the technique, but the breadth 

of problems to which it is applicable. We have shown two applications where the technique 

has proven useful, and we expect that further usefulness will be revealed in the future. 
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Appendix A 

Complete Experimental Data 

A.l Results using 2D squared exponential test kernel, 
equal length scales 

An example posterior mean: 

Dim:2 Test KernekSqExp 
Log length scales of test GP: -1.9836 -1.9836 

2D squared exponential test kernel with equal length scales. The optimization model also 

uses a squared exponential kernel. Only function values are used in building the optimization 

model. 500 functions are sampled from the test model. 
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A.2 Results using 2D Matern test kernel, 
equal length scales 

An example posterior mean: 

Dlm:2 Test Kemel:Matern 
Log length scales of lest GP: -1.4343 -1.4343 

2D Matern kernel with equal length scales. The optimization model also uses a Matern 

kernel. Only observed function values are used in building the optimization model. 500 

functions are sampled from the test model. 
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A.3 Results using 2D squared exponential test kernel, 
unequal length scales 

An example posterior mean: 

Dlm:2 Test Kernel:SqExp 
Log length scales of test GP: -3.0000 -09018 

2D squared exponential test kernel with unequal length scales. The optimization model also 

uses a squared exponential kernel. Only observed function values are used in building the 

optimization model. 500 functions are sampled from the test model. 
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A.4 Results using 2D Matern test kernel, 
unequal length scales 

An example posterior mean: 

Dlm:2 Test KemehMatern 
Log length scales of test GP: -2.4507 -0.3525 

2D Matern test kernel with unequal length scales. The optimization model also uses a 

Matern kernel. Only observed function values are used in building the optimization model. 

500 functions are sampled from the test model. 
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A.5 Results using 8D squared exponential test kernel, 
unequal length scales 

An example posterior mean: 

Dlm:8 Test KernelrSqExp 
Log length scales of test GP: -07629 -0.7629 -0.7629 3.0000 3.0000 3.0000 3.0000 3.0000 

8D squared exponential kernel. First three length scales are short, and the remainder are 

long. The plot of the example posterior mean is a slice through the origin along dimensions 

1 and 2. Only observed function values are used in building the optimization model. 500 

functions are sampled from the test model. 
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A.6 Results using 32D squared exponential test kernel, 
unequal length scales 

An example posterior mean: 

Dlm:32 Test KerneltSqExp 
Log length scales of lost GP: -0.5593 -0.5593 -0.5593 4.0000 4.0000 4.0000 4.0000 4,0000... 

32D squared exponential kernel. First three length scales are short, and the remainder are 

long. The plot of the example posterior mean is a slice through the origin along dimensions 

1 and 2. Only function values are used in building the optimization model. 500 functions 

are sampled from the test model. 
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A.7 Results using 2D squared exponential test kernel, 
equal length scales, 
Matern optimization model kernel 

An example posterior mean: 

Dim:2 Test KerneliSqExp 
Log length scales of test GP: -1.9836 -1.9836 

2D squared exponential test kernel with equal length scales. The optimization model instead 

uses a Matern kernel. Only function values are used in building the optimization model. 

500 functions are sampled from the test model. 
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A.8 Results using 2D Matern test kernel, 
equal length scales, 
squared exponential optimization model kernel 

An example posterior mean: 

Dim:2 Test KernehMatern 
Log length scales of test GP: -1.4343 -1.4343 

2D Matern test kernel with equal length scales. The optimization model instead uses a 

squared exponential. Only observed function values are used in building the optimization 

model. 500 functions are sampled from the test model. 
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A.9 Results using 2D squared exponential test kernel, 
equal length scales, gradients included 

An example posterior mean: 

Dlm:2 Test Kernel:SqExp 
Log length scales of test GP: -1.9836 -1.9836 

2D squared exponential test kernel with equal length scales. The optimization model uses 

a squared exponential kernel. Observed function values and gradients are used in building 

the optimization model. 500 functions are sampled from the test model. 
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A. 10 Results using 2D Matern test kernel, 
equal length scales, gradients included 

An example posterior mean: 

Dlm:2 Test KernehMatern 
Log length scales of test GP: -1.4343 -1.4343 

2D Matern kernel with equal length scales. The optimization model also uses a Matern 

kernel. Observed function values and gradients are used in building the optimization model. 

500 functions are sampled from the test model. 
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Appendix B 

Effect of Priors on Performance 

B.l With function values only 

The graphs in this section illustrate the effect of different £r on performance of MEI r and 

MPI r on each of the test models when learning length scales using different priors. The 

observation models here were built using observed function values only. 
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Figure B.6: Performance using EEC prior 
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B.2 With gradient observations 

The graphs in this section illustrate the effect of different £r on performance of MEIr and 

MPI r on two test models. The observation models here were built using observed function 

values and observed gradient values. 
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Figure B.7: Performance when using observed function values and gradients. The test 
kernel is 2D squared exponential with equal length scales. The green boxes illustrate the 
performance of using the BFGS algorithm with random restarts, but a restricted number of 
function evaluations. 
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Figure B.8: Performance when using observed function values and gradients. The test kernel 
is 2D Matern with equal length scales. The green boxes illustrate the performance of using 
the BFGS algorithm with random restarts, but a restricted number of function evaluations. 
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