
Universi ty of Albe r t a

PRACTICAL BAYESIAN OPTIMIZATION

by

Daniel James Lizotte

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment
of the requirements for the degree of Doctor of Philosophy.

Department of Computing Science

©

Edmonton, Alberta
Fall 2008

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-46365-9
Our file Notre reference
ISBN: 978-0-494-46365-9

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Plntemet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

knpiwn \rwiwn \nvFnn \
f > — — — > —

fr n rjf?riCr Lr jk i-^JT3irnjji7 - ii
-J. S. Bach

file:///rwiwn
file:///nvFnn

Abstract

Global optimization of non-convex functions over real vector spaces is a problem of widespread

theoretical and practical interest. In the past fifty years, research in global optimization has

produced many important approaches including Lipschitz optimization, simulated anneal­

ing, homotopy methods, genetic algorithms, and Bayesian response-surface methods. This

work examines the last of these approaches. The Bayesian response-surface approach to

global optimization maintains a posterior model of the function being optimized by combin­

ing a prior over functions with accumulating function evaluations. The model is then used

to compute which point the method should acquire next in its search for the optimum of the

function. Bayesian methods can be some of the most efficient approaches to optimization in

terms of the number of function evaluations required, but they have significant drawbacks:

Current approaches are needlessly data-inefficient, approximations to the Bayes-optimal ac­

quisition criterion are poorly studied, and current approaches do not take advantage of the

small-scale properties of differentiable functions near local optima. This work addresses

each of these problems to make Bayesian methods more widely applicable.

Acknowledgements

Seeing a doctoral degree through from beginning to end is a monumental individual and
collaborative effort. Here, I would like to explicitly express my thanks to some of those who
helped me along my way.

Thank you Russ Greiner for exposing me to so many different ideas and problems, and
for making sure I know what I'm talking about.

Thank you Dale Schuurmans for your faith in me, and for encouraging me to pursue my
own interests, and for teaching me never to give up.

Thank you Mike Bowling for being a colleague and a friend, and for your perspective,
and for making me a "robot scientist."

Thank you Tao Wang for the immense amount of work you put in during our research
collaborations.

Thank you Colin Cherry for being my best friend, and for realizing the practical potential
of this research.

Thank you Daniel Neilson for your crucial contribution to ensuring this thesis has an
impact on the computer vision community.

Than you Ruth Shaw and Larry Garey for teaching me to love research in my first years
of university education.

Thank you to all of my friends, who are are happily too many to list here.
Thank you to my family for your unwavering support.

Contents

1 Introduction 1
1.1 Objective and Contributions 2

2 Background 3
2.1 Optimization in Rd 3

2.1.1 Local Optimization 4
2.1.2 Non-Bayesian Methods 5
2.1.3 Introduction to the Bayesian Approach to Optimization 8
2.1.4 Preview of Gaussian Processes 9
2.1.5 A History of Bayesian Optimization Methods 11

2.2 Gaussian Processes in Machine Learning 23
2.3 Extrema of Gaussian Processes 25

2.3.1 Spectral representation 27
2.3.2 Stationary processes in one dimension 28
2.3.3 Stationary processes in many dimensions 31
2.3.4 The Euler characteristic of excursion sets 33

3 Practical Bayesian Optimization 39
3.1 Gaussian Process Model 39

3.1.1 Parameter Learning 39
3.2 Acquisition Criteria 49
3.3 Summary 56

4 An Experimental Framework for Global Optimization 63
4.1 Models 64

4.1.1 Kernels 64
4.1.2 EEC, Complexity, and Dimensionality 65

4.2 Using Derivatives: Connections with Local Search 66
4.2.1 Incorporating Derivative Information 68

5 Empirical Results 70
5.1 Experimental Setup 70

5.1.1 Test Model Choices 71
5.2 Discussion 71

5.2.1 The Effect of £r 72
5.2.2 The Effect of Priors on Performance 76
5.2.3 Effect of Mismatched Models 78
5.2.4 The Effect of Gradient Information 79

5.3 Summary 81
5.4 Functions from the Literature 81

6 Applicat ions 89
6.1 AIBO Gait Optimization 89
6.2 Stereo Matching Parameter Optimization 97

7 Conclusion 102
7.1 Contributions 102
7.2 Future Work 103

7.2.1 Reducing Computational Requirements 103
7.2.2 Application to Translation Directed Word Alignment 104

7.3 Summary 105

A Complete Experimental Data 106
A.l Results using 2D squared exponential test kernel,

equal length scales 106
A.2 Results using 2D Matern test kernel,

equal length scales I l l
A.3 Results using 2D squared exponential test kernel,

unequal length scales 116
A.4 Results using 2D Matern test kernel,

unequal length scales 121
A.5 Results using 8D squared exponential test kernel,

unequal length scales 126
A.6 Results using 32D squared exponential test kernel,

unequal length scales 131
A.7 Results using 2D squared exponential test kernel,

equal length scales,
Matern optimization model kernel 136

A.8 Results using 2D Matern test kernel,
equal length scales,
squared exponential optimization model kernel 141

A.9 Results using 2D squared exponential test kernel,
equal length scales, gradients included 146

A.10 Results using 2D Matern test kernel,
equal length scales, gradients included 151

B Effect of Priors on Performance 156
B.l With function values only 156
B.2 With gradient observations 163

List of Symbols

/ The function to be optimized. / : X C
X The domain of /
x, z,w Points in the domain of /

The j t h coordinate of the point x °3
\\x\\ The Euclidean norm of x

x A list of points x ^ x 2 , . . . ,xn

x1:fe A sublist of points xx,x2, ...,xk

/ (x) , or f A list of function values / (x 1) , / (x 2) , . . . , f{xn)

k(x, z) The kernel function between the points x and z
fc(x, z) A column vector whose ith element is k(x%, z)
k(x, z) A row vector whose ith element is k(x, z%)
k(x, z) = K A kernel matrix whose (i,j)th element is k(xi, z3)

n(x) The prior mean function

<r? The "signal" or "process" variance of a Gaussian process
a\ The noise variance of a Gaussian process

li The characteristic length-scale along the ith dimension
L A diagonal length-scale matrix

X A random variable
p(X = x) Probability (or density) of the event X = x
E[X] The expectation of X
Cov(X, Y) The covariance between X and Y: Cov(X, Y) = E[(X - E(X)) • (Y - E[Y})}

(a)+, [a]+ max(a, 0)

I The identity matrix

K The set of real numbers

\I>(x) The standard normal right tail probability p{X > x), X ~ A/"(0,1)

Hk{x) The fcth "probabilist's" Hermite polynomial
Some properties of Hk(x):
F,(rr) = (- l) f c - e a ; 2 / 2 . ^ e - ^ / 2

HQ{x) = 1
Hi (x) = x
Hk+i{x) = xHk(x) - fciJfc_i(x)

Chapter 1

Introduction

We are interested in a staggeringly difficult yet beautifully concise problem:

max/(x) (1.1)

For example, the function / could be the speed of a walking robotic dog, or the quality

of a depth map reconstructed from a stereo image pair. The set X could be the space of

possible motor commands the robot understands, or the space of parameters that define

how similar two pixels are. They could also represent the objectives and domains needed

to solve most of the interesting problems in computing science, from linear regression to

maximum satisfiability.

In order to solve (1.1), we will need to know something about / . To encode this infor­

mation, we will appeal to the axioms of probability theory.

P{f\F) ex P{T\f)P{f) (1.2)

Specifically, we will make use of (1.2), widely known as Bayes's Rule. This will allow us to

reason about the specific / we are dealing with by combining two quantities: Our "prior"

belief P(f) about how likely various functions are, and our collection T of observations of

the function, which give us insight into the specific / we are dealing with. We can use

the accumulating knowledge about / to find the x G X that solves our problem. More

realistically, we can use the knowledge to help us approximately solve our problem, or

perhaps just get ourselves headed in the right general direction. The problem as stated is

very difficult.

Optimization methods that take this probabilistic approach are known as "Bayesian

optimization" methods. These methods are unique in that they retain all accumulated data

about the function and use all of it to determine where to search next.

1

1.1 Objective and Contributions

Our objective in this thesis is to make these methods more widely applicable and appealing

to scientists who need global optimization techniques. There are three main obstacles pre­

venting the wider adoption of Bayesian methods. First, the methods were never extensively

tested and therefore not widely publicized, so the user community tended to be either un­

aware of such techniques or suspicious of their effectiveness. Second, there are many free

parameters in Gaussian process-based optimization that are intimidating to users who are

looking for a more black-box solution. Third, Bayesian methods do not make use of gradient

information that is available in some problems, leading users to select other methods that

can take advantage of such information.

We have made the following contributions that address these problems:

• We develop new GP-based techniques that are invariant to vertical shifting and scaling

of the objective function. This reduces the need to tune the optimization algorithm's

parameters to different objective functions.

• We develop a new methodology for evaluating global optimization techniques based

on generating many (i.e. tens of thousands) test functions and evaluating performance

on each. Our results show that GP-based optimization methods can perform well in

a variety of situations.

• We show how using a maximum a-posteriori objective can be used to reliably learn the

kernel parameters, eliminating the need for expensive pre-acquisition of the function

and again reducing the need for user input.

• We present a novel prior based on the expected Euler characteristic of a Gaussian

process.

• We give a polynomial time algorithm for computing the expected Euler characteristic

of a useful subclass of Gaussian processes.

• We illustrate the use of gradient information with GP optimization, showing that

the methods we have developed work well when given this information. Our empirical

results show that GP-based optimization with gradient information can perform better

than a quasi-Newton method with random restarts.

2

Chapter 2

Background

The study of Bayesian optimization methods draws on knowledge from the fields of optimiza­

tion, machine learning, and random field theory. We begin by reviewing the contributions

of each of these fields to the problem of global optimization.

2.1 Optimization in Rd

As we discussed, the general problem of Equation 1.1 is far too broad for our purposes. To

narrow things down, we will restrict ourselves to X C Rd and / : X —> R. We will suppose

that X is compact, and that / is Lipschitz-continuous, i.e. Vx,z € X, \f(x) — f(z)\ <

I • \\x — z\\ for some constant I > 0. This is sufficient to guarantee that a solution exists, i.e.

3x* € X s.t. f(x*) = supx€A» f(x) [18]. However, even with these restrictions we cannot in

general find the answer we seek using a finite number of function evaluations.

To remedy this, we could consider the problem successfully solved when we find a point

x* that we know is within e of optimal in terms of Euclidean distance (\\x* — x*\\ < e)

or function value (\f(x*) — f(x*)\ < e) or some other closeness measure. This guarantees

a solution using a finite number of function evaluations, but affords a theoretical comfort
r, r-Ad

only: Any algorithm that provides this type of guarantee must make Q(-^) function

evaluations in the worst case [18], and we are interested in solving problems where d is at

least in the dozens. Intuitively, this bound arises because we have to make sure we evaluate

the function at points sufficiently near to all points in the domain, which means we have to

construct something like a grid of points in d dimensions with a resolution determined by I

and e. The number of points in such a grid will scale exponentially in d.

3

2.1.1 Local Optimization

This insistence on finding a point that is near-optimal compared to all other points in the

domain illustrates the critical difference between "global" optimization and "local" opti­

mization: For the problem of local optimization, we seek a point x+ such that

f(x+) > /(:r), Vx € {x G X : ||x+ - x\\ < e} (2.1)

To verify that x+ is an acceptable solution, we need only consider points in the neigh­

bourhood of x + . If / is differentiable, as is commonly supposed, this can be accomplished

implicitly by examining first and second derivatives of / at x+. This verification can be ac­

complished by factoring the (possibly approximated) Hessian matrix Hf(x+), which takes

0(d3) time. Therefore if we can find a candidate x+ reasonably quickly, we can easily

verify that we have found a solution to the local optimization problem. The business of

getting to a good x+ has been studied at least since the publication of Newton's method

[32] approximately 300 years ago. Given a sufficiently close starting guess, the error in

the solution given by Newton's method decreases geometrically after each step. Modern

approaches that approximate Newton's method, such as the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) method discussed in Section 4.2, are efficient enough to solve local opti­

mization problems with thousands of variables. In some lucky instances, notably when f(x)

is quasiconvex, a solution to the local problem is a solution to the global problem; if / is not

quasiconvex, typically all bets are off. Nevertheless, local optimizers are frequently applied

to non-quasiconvex problems in the hopes of finding a point that is at least better than a

random (or educated) guess.

Realistic Optimization: The Principle of Perseverance We have seen that global

optimization is hopelessly hard, and that local optimization is hopelessly easy. This is an

exaggeration of course, but not far off the mark. However, the intractability of a problem

does not make it go away, and the world is full of non-convex functions that various people

would like to optimize even if they do not have the time to wait around for a provably

optimal solution. This raises an important question when approaching non-convex global

optimization problems: What if we have more than enough resources to find a local optimum,

but not enough to guarantee finding a global optimum? This situation has become more

prevalent with advances in computer hardware in the last forty years or so, and research on

this problem has produced a motley crew of heuristic global optimization methods. We will

4

now briefly examine a variety of well-known global optimization techniques, including both

non-Bayesian approaches and the Bayesian methods that will be the focus of this thesis.

2.1.2 Non-Bayes ian M e t h o d s

The majority of global optimization algorithms that are widely known and used by scientists

in different fields have little or no connection with Bayesian statistics. Most are based on

intuitions about how to balance attraction toward a local minimum with prevention from

getting stuck there.

Random Restarts

Since local optimization routines work so well, it seems natural to adapt them for use in

global optimization. The simplest adaptation involves random restarts: Points are uniformly

drawn from the set X, and a local optimizer is executed starting from each one. As the

number of samples approaches infinity, we will have found all possible local optima, and can

simply pick the best one we have observed.

Typically, each local optimum x+ has a basin of attraction—a set B(x+) C PC such

that for any x € B(x+) the optimizer when started from x will converge on x+. Normally

at least some of B(x+) exists in the vicinity of x+, so that many points near any given

local optimum converge to the same location. This is a direct result of using Newton-like

methods that assume the function is locally quadratic in a neighbourhood of x+. "Density

Clustering" [18] is a modification to the random restart approach that attempts to prevent

the local optimizer from repeatedly falling into the same basin of attraction. The details

are somewhat complicated, but the the basic idea is to build a region around each local

optimum found so far and avoid starting the local optimizer within these regions. This is

achieved by rejecting randomly sampled starting points that fall within these regions. This

encourages the method to converge to new local optima as evaluation progresses.

Simulated Annealing

Another famous global optimization technique based on random sampling is known as simu­

lated annealing. In this approach, a random walk is defined over the domain of the function.

The hope is that, in the limit, the walk will converge to the global maximum of / . The

walk is defined by two distributions: the proposal distribution, which is typically uniform

5

over X, and the acceptance distribution, given by

P(xcmi f- a;prop) = min{l, eW IP'°p)- ' (I™"»/ r} (2.2)

The procedure is simple: Propose a point a;prop. Evaluate the function at that point. Assign

^curr <— ^prop; the "current point", according to the acceptance probability above. One can

see that if / (x p r o p) > f(xcurr), we always move to the newly proposed point, otherwise we

move to it with some probability dependent on the magnitude of the decrease in function

value and on the current "temperature" T. Initially, T is taken to be large; in this situation

we will accept almost any point regardless of how poor it is. As we decrease T, we will

accept inferior points with decreasing probability. It is possible to show that, under certain

conditions, as T —> 0 and the number of proposals goes to infinity, xc u r r converges to x*

[18]. In practice, since this convergence may take an exceedingly long time, we keep track

of the best function value seen to date, and stop the walk once our time runs out.

Lipschitz Methods

We now turn our attention to methods that are entirely deterministic. Previously, we

mentioned that we will assume the functions we are optimizing are Lipschitz-continuous,

meaning there exists a constant I for which

Vx,z£X, \f(x)-f(z)\<l-\\x-z\\ (2.3)

This property effectively gives an upper and lower bound on the function that is refined

as more and more function values are observed. These bounds are in turn used to decide

which observation to acquire next. There are many variations, but a common approach is

to evaluate / where its upper bound is greatest. After acquiring this new function value,

the upper bound is updated and maximized again to find the next point to acquire. This
r /-j-id

technique can provide a provably e-optimal solution, but requires fl(-^) in the worst

CclSG 5 clS mentioned earlier.

Homotopy Methods

Homotopy methods take a significantly different approach. They attempt to take a solution

to a simplified version of the problem and use that to find solutions to the original problem.

6

A homotopy H is a differentiable map that "blends" two functions.

H : Rd x [0,1] -> R (2.4)

H{x,0) = g(x) (2.5)

fffol) = f(x) (2.6)

For example, H(x, t) = (1 — t) • g(x) + £ • f(x) is a homotopy that varies smoothly with the

parameter t from g to / . The premise of these methods is to construct a homotopy for which

the function g is easy to optimize. Since the homotopy is a continuous map, the location of

a local optimum usually changes smoothly as we change t. We can therefore find the optima

of the easy function H(x,0), and set up differential equations to track the optima as we

move t from 0 to 1. This works well in some instances; however, local minima can undergo

bifurcation and merging, and they can spontaneously appear or disappear as the parameter

t changes. Care must be taken in each of these situations. Another strange possibility is the

"turn-back." There may be a continuous path through Rd x [0,1] connecting an optimum

of g with an optimum of / that is not monotonic in t. That is, we may have to increase t

for a time, then backtrack t but continue moving a; to a different part of the space, and then

increase t again to reach the optimum of / at the other end of the path. Of course, this can

happen several times depending on the objective and the homotopy used. Reliably tracking

solutions in this way has resulted in interesting algorithms for optimization that are unlike

any other known techniques.

Genetic Algorithms

The term "genetic algorithm" is applied to a great swath of algorithms that share a common

metaphor. In this paradigm, a "population" of "individuals", described by their "chromo­

somes", are "evolved" over time according to their "fitness." That is, a set of candidate

solutions is maintained, these candidates are perturbed according to various biologically-

inspired rules, and the resulting new candidates are evaluated using / . Those individuals

that perform poorly are (probably) removed from the population. This procedure repeats

until no further progress is made.

Genetic algorithms present a staggering array of choices governing the details of the op­

timization procedure. Good choices for the specific rates and mechanisms for "crossover",

where two solutions are combined, and "mutation", where a solution is perturbed by an out­

side force, are critical for good performance. In addition, since their original description by

7

Holland [15], genetic algorithms have acquired innumerable additional tricks and heuristics

that help in specific situations.

Ultimately there is no single, unified "genetic algorithm". The application of genetic

algorithms is a high level technique of taking the popular perception of evolution and natural

selection and constructing an algorithm whose functions and data structures, according to

the developer, mimic those present in nature. This in effect means that, to use a genetic

algorithm effectively, a great deal of expert knowledge is needed both about the function in

question and about genetic algorithms. This is because genetic algorithms are procedural

rather than constructive—knowledge about the objective (smoothness, range, etc.) must be

translated into a genetic algorithm that will likely work well on such functions.

2.1.3 Introduction to the Bayesian Approach to Optimization

Next, we introduce the details of "Bayesian" optimization methods. In contrast to the non-

Bayesian methods described earlier, which are focussed predominately on algorithm devel­

opment, Bayesian optimization methods take a different approach: They combine relatively

simple algorithms with explicit, descriptive statistical models of the objective function. This

gives Bayesian methods a major advantage, because a practitioner can improve performance

by describing the objective function well, as opposed to describing a solution algorithm well,

which is much more difficult for a non-expert.

The adjective Bayesian can be applied to any optimization technique that makes use of

the laws of probability to combine prior belief with observed data to compute a posterior

distribution over any quantity of interest. For most methods that fall into the category of

Bayesian optimization, the quantity of interest is the function itself: These methods model

the function in question by encoding prior beliefs about the function, updating those beliefs

according to the laws of probability as new information about the function accumulates,

and using the resulting model to guide the progress of the optimization procedure. This

model is sometimes called a "surrogate" function, or a "response-surface."

This does not restrict Bayesian methods to those that model the objective explicitly;

one could imagine that modeling a different quantity (such as the location of the function's

optimum) could give rise to effective optimization procedures. Nevertheless, the methods

we discuss here will take the approach of building a response-surface model that has been

augmented with the capability of probabilistic reasoning.

8

Models and Acquisition Criteria A Bayesian response-surface method for optimization

has two major components: The probabilistic model describing the objective function, and

the acquisition criterion1 function that determines how to choose the next point at which

we evaluate the function.

The Gaussian process model is used in all of the Bayesian response-surface methods we

will discuss here, in one guise or another. We introduce the basic Gaussian process now to

provide the appropriate background material, but we will discuss enhancements to the model

that are widely used by the machine learning community in Section 2.2. In principle, there is

no reason we could not use other, more complex models; it could be that in some instances

a more general exponential family model, say that can model higher-order interactions

(beyond pairwise) may be useful. The major problem, as usual, is computational: more

general models will not admit the clean, analytical inference procedures that Gaussian

processes afford. Nonetheless, they would be an interesting alternative avenue of research.

2.1.4 Preview of Gaussian Processes

A Gaussian process (GP) [46, 35] is a collection2 of random variables {Fxi,Fx2,...} for

which any finite subset of the variables has a joint multivariate Gaussian distribution. The

variables are indexed by elements a: of a set X. We will restrict our attention to X C M.d,

but this is not necessary; X could be the space of integers or trees or strings, for example.

For any finite length vector of indices x = [xl,x2, ...,xn]T, we have a corresponding vector

F x = [Fxi,Fx2,...,Fxn]T of variables that have a joint multivariate Gaussian (or normal)

distribution,

F x -A^{/x 0 (x) , fc(x ,x)} , (2.7)

where the elements of /Jn(x) are given by a prior mean function /j,o(xi), and k is the kernel

function. The kernel takes two indices x% and x\ and gives the covariance between their

corresponding variables Fx% and Fx,. Given vectors of indices x and z, k returns the matrix

of covariances between all pairs of variables where the first in the pair comes from Fxi and

the second from Fzi. The result of k(x, x) must be a square, symmetric positive semi-definite

matrix for any x in order for k to be a valid kernel [42]. Note that each Fxi is marginally

Gaussian, with mean txo{xl) and variance fc(x%xl).

1This function has been by various names in previous work, including the 'acquisition criterion' [39].'
2A11 of our GPs will have an uncountable number of variables, but we will abuse notation and "list" them

occasionally, though this is impossible.

9

Gaussian Process Regression Suppose we have a function f{x) that we would like to

model. Furthermore, suppose that we cannot observe / directly, but that we can observe a

random variable Fx that is indexed by the domain of / and whose expected value is / , i.e.,

Vx € X, E[FX] = f(x). In particular, we assume that our prior belief about the function /

conforms to a Gaussian process with prior mean JIQ and kernel k, as described above, and

that the observed variable Fx is an observation of f(x) that has been corrupted by zero-

mean, i.i.d. Gaussian noise, i.e., Fx — f(x) + e, where e ~ Af(0, of). Hence, f(x) is a hidden

variable whose posterior distribution we can infer after observing samples of Fx at various

locations in the domain. The resulting inference is called Gaussian process regression.

Let x be the set of observation points and f be the corresponding real-valued obser­

vations. We want to compute the posterior distribution of some new point z € X. This

distribution will be Gaussian with mean and variance given by

fi(F2\Fx = i) = MoW+fc(^x)(fe(x,x) + a 2 l) - 1 (f - / U o (x)) (2.8)

a\Fz\Fx = i) = k(z,z)-k(z,x)(k(x,x)+a2J)-1k(x,z). (2.9)

Note that the inverse applies to the kernel matrix of observed domain points (plus a diagonal

term), and so can be computed once and used to evaluate the posterior at many points in

the domain. (In practice, the matrix will be Cholesky factored instead of inverted.)

Gaussian process regression is a generalization of least squares linear regression that al­

lows for more complex regression functions, and provides information about the uncertainty

of the regression model at different domain points3 Use of this type of model is known as

"kriging" [4] in geostatistics4. The form of the possible regression functions is not as com­

plex as one might initially suspect: Consider the posterior mean function /u(Fz |Fx = f). It

consists of the prior mean function fio(z), which is frequently taken to be constant, plus a

term involving the kernel function between the query point z and each observed data point.

Since the second part of the second term, (fc(x,x) + CT^I)-1 (f - /io(x)), depends only on

the observed data, this factor collapses to a simple weight vector independent of z: The

posterior mean is just a weighted sum of kernel functions between each observed data point

and the query point z. In other words, the posterior mean function is a linear combination

of n kernel functions, each one centered at an observed data point. From this construction,

3For X C M.k and k(xi,Xj) = Xi • Xj, this formulation is equivalent to linear ridge regression with
regularizer a\.

4Actually "kriging" refers to a model that is the sum of a low-degree polynomial and a Gaussian process.
The polynomial portion is typically taken to be constant, so in most cases the resulting models are identical.

10

one can see that the shape of the mean function and of the functions a given GP is likely

to produce is governed largely by k, the kernel function.

Introduction to Acquisition Criteria Now that we have a model, we would like to make

use of it to decide where to acquire data about the objective in order to find its optimum

using as few function evaluations as possible. Since the model provides a distribution over

the value of the objective at every domain point, we can search through the model for a good

point to acquire next, either because the function is likely to be near-optimal at that point,

or because an observation there will provide a large amount of information about the shape

of the function, or because the resulting observation will have some combination of these

properties. This idea will be formalized as we examine the history of Bayesian methods.

2.1.5 A History of Bayesian Optimization Methods

Bayesian optimization approaches have existed in the scientific literature for about forty

years. Their capability and complexity have increased in response to the explosion in avail­

able computing power over that time period as they evolved into the methods in use today.

For the remainder of this section, we will assume we wish to maximize an objective function

/ : Rd -+ R.

Kushner

One of earliest publications in English that describes a Bayesian response-surface approach

to optimization was written by Harold J. Kushner in 1964 [25]. Kushner describes a method

for optimizing a one-dimensional, real-valued function.

Model Kushner's work uses a specific type of Gaussian process known as a Wiener process

to model the unknown function / , and assumes the observed variable Fx is the underlying

function plus i.i.d. Gaussian noise, i.e.

Fx = Wx+e (2.10)

e ~ N{0,al) (2.11)

11

The Wiener process in one dimension describes the Brownian motion random walk, and can

be simply characterized. Suppose a<b<c<dG E + . Then we have

W0 = 0 (2.12)

Wb-Wa ~ M(0,cr2
r(b-a)) (2.13)

[a, b) n [c, d) = 0 =4> (Wa - Wb) and (Wc - Wd) are independent (2.14)

Functions sampled from such a process are almost surely continuous, but nowhere differ-

entiable. Because of the independent increments property (2.14), the posterior probability

distribution at any point depends only on the two closest observed data points. We there­

fore do not need the full-blown machinery of Gaussian processes described in Section 2.1.4

for inference, since the posterior at any point will depend on at most two of our observed

data points. The parameter a2 controls how quickly the variance grows as we move away

from observed data, which affects the amplitude of the larger scale function variation we

are likely to observe. Suppose we want the posterior distribution of Fz, and that we have

data points (xl,fl) for x1 < x2 < ... < xn. If xl < z < xt+1, then

Fz ~ Af(M(Fz|Fx = f),<72(Fz |Fx = f)) (2.15)

(al + a2
f • (x

i+1 - z))fxi + (a2 + a2
f • (z - x^f^+i

MW = f) = ' 2 ^ . (^ - J) — (2'16)

2 / , x (a2)2-(z-xi)(xi+1-z)+al-(a2
n+a2

r(x
i+l-xi)) / x

Note that for x% < z < xi+1, fi(Fz\Fx = f) is linear in z, and cr2(Fz\Fx = f) is quadratic in z.

For x1 < z < xn, both are continuous, /i(.Fz|.Fx = f) is piecewise linear and a2(Fz\Fx = f)

is piecewise quadratic5. They are differentiable except at the data points {x1}. In the zero

noise case where a\ = 0, fi(Fz\Fx — f) interpolates the data points.

5 Outside the range of the data points they become constant and linear respectively; the forms are similar
to those given here.

12

Acquisition Criterion The criterion used by Kushner to select the next acquisition is

given by

x n + 1 = argmax P[FZ> ma^(fxi) + £(n)] (2.18)
z

= a r g m a x (l - J m a X ^) - ^ ^ = f) + ^ H (2.19)

. / 'max.!/ , ,) -y(-F» |F, = f) +{(11)^

- a r g r ° (— ^ w f . = o — J < >
_ atgml„ (< - " • » - ' - ^ f - ' f » + « " » 2) (2.21)

x \ a2{Fz\Fx = l) J

where $ is the standard normal cumulative density function, which is monotonic in its ar­

gument; hence the equivalence of (2.19) and (2.21). This criterion, which we call Maximum

Probability of Improvement (MPI), is the posterior probability that the next acquisition

observed /(x™+1) is greater than the current maximum observed value plus a positive term

£(n). The parameter £(n) is used to control how "local" or "global" the search is, and is typ­

ically allowed to depend on n, the number of data points we have so far. As £(n) —* oo, using

(2.21) as a acquisition criterion degenerates to choosing the point of highest posterior vari­

ance. Conversely, as £(n) —> 0, the criterion selects the point with highest posterior mean.

Any positive, bounded £(n) results in a tradeoff between mean and variance. Once £(n)

is chosen, the minimum in (2.21) can be computed analytically on each interval [xt,xl+1)

using the equations above, and the best of these can be chosen as the next acquisition.

It therefore takes time linear in the number of data points to choose the next acquisition

location.

The question of how to choose £(n) is similar to the question of how to choose temper­

ature in simulated annealing: Kushner suggests starting £(n) quite high (based on some

intuition about the function) and scheduling its decrease in a geometric fashion as data

accumulates. He suggests accomplishing this by manually defining regions of interest and

desired progress for each stage; however, no concrete algorithm is given in the work.

GROPE

This method, published by Elder in 1992 [11], is one representative of the various heuristics

[33, 44] used to extend Kushner's original method to multiple dimensions.

Model The model used by Elder is inspired by the Brownian motion model used by

Kushner. The convex hull of the points that have been acquired is divided into simplexes

13

using a Delaunay triangulation [43]. The posterior mean along edges of the triangulation

is constrained to be the linear interpolator between the points, and the posterior variance

is constrained to be quadratic. This is in effect assuming that a Wiener process runs along

the edges of the triangulation. Using the distributions defined along each edge, a posterior

mean and variance is defined over each simplex, again constrained to be linear and quadratic

respectively, but in d dimensions. This choice is intended to emulate the Markov property of

the Wiener process, where the posterior distribution depends only on the "nearest" points,

since the distribution of a point depends only on the vertices of its enclosing triangle. The

use of a triangulation in this manner, however, is at best an approximation to this property:

Triangles that have one very large angle (i.e. that are very skinny) will have points along

their edges whose posterior distribution depends not on the closest point (the vertex opposite

the edge) but on points potentially much further away (the vertices incident to that edge).

It is hoped that the use of the Delaunay triangulation will mitigate this problem, since it

prefers more equi-angular triangles.

Acquisition Criterion Following Kushner's example, Elder uses the same criterion

X-+1 - annum ^ m a x ^) ~ ^ x | F x = f) + g (n)) ^ \
x - a r g m m ^ a%F x |F x = f) J (2 > 2 2)

to choose which data to acquire next. This minimization problem is broken into subproblems

over each simplex: A numerical optimizer is used to find the best point within each simplex,

and these are compared to find the best overall candidate.

Elder [11] claims that

The Key difficulty in expanding Kushner's algorithm from R1 to Rd—and per­

haps the reason the method saw little use for a generation—is the extension of

the random walk model into a random field (for which there are even competing

theoretical definitions in the literature).

There are several well-known Gaussian fields whose sample paths satisfy his desiderata of

being "locally rough" but "regionally smooth"; furthermore, these processes were suggested

much earlier as possible candidates for use in higher-dimensional global optimization prob­

lems. The main drawback is not in the conceptual definition of random fields; rather it is

in the time complexity of reasoning with them: typically operations take time quadratic or

cubic in the number of data points. We will examine this difficulty further in Section 2.2.

14

Mockus

At the time Kushner was originally developing his algorithm, Jonas Mockus was in the for­

mer USSR developing similar methods and publishing in several Russian language journals

of the day. The earliest of his English language publications that Mockus cites in his book

is in the proceedings of the International Federation for Information Processing Congress

1977 which was held in Toronto, Canada.

Model Mockus suggests a model that is an extension of the Wiener process to d dimen­

sions. This model was chosen because it is, in his opinion, the simplest that satisfies two

desiderata: Sampled functions are continuous, and their finite differences are independent.

Finite differences are the discrete analogues of derivatives; again functions sampled from

this model are nowhere differentiable. The kernel function for this model is given by

Kv)=^(i-V) (2-23)

where d is the dimension of the data points, and x, z 6 [—1, l]d for simplicity6. (Any hyper-

rectangular region is easily mapped to [— 1, l]d.) This model is the sum of 2d Wiener fields,

each of which is the extension of the Wiener process to d dimensions. The Wiener fields

have their origins at each vertex of [—1, l]d. The result is a process in d dimensions that is

everywhere continuous but nowhere differentiable.

Acquisition Criterion The development of Mockus's criterion begins from assuming we

will have the opportunity to observe n samples, and that we wish to minimize the expected

difference between the function value we report and the true optimum value of the function.

Given this criterion, the rational point to report is the point that gives the lowest expected

loss, according to our posterior model. We call the reported point xn+1.

xn+1 = a r g m i n E [(r - F 2) | / (x)] (2.24)
z

= argmm(E[/*]-E[F, | / (x)]) (2.25)
Z

= argmaxE[Fz | /(x)] (2.26)
z

that is, the point with the highest posterior expected value. In practice, the reported point

is chosen from the set of points where we have observed F instead of over the entire domain.

For the Wiener process and extensions with no added noise the two choices are equivalent,

6 Recall that Xi is the i th component of the point x G Rd .

15

but for more general models this is not the case. This simplification is made for two reasons:

It is computationally much more convenient to simply scan the list of observed values for

the best one than to search over X, and there is typically a preference for reporting a point

that has low posterior variance, which our observed points have—a preference that is not

stated in the original problem. Nevertheless, for the moment we will presume that we will

always report the point with the greatest posterior expected value.

Having decided which point to report if we cannot acquire any more, we now examine

the optimal point to observe if we are allowed one more acquisition, which leads us to what

Mockus calls the "one-stage" method.

xn «- argminE[minE[/(a;*) - Fx„+ 1 | /x i^] | fxlin-i } (2.27)

<— argmaxE[maxE[.Fxn+i|/xi:r,] | fxi.n-i] (2.28)

The property we want xn to have is intuitive: Choose xn so that after we have observed

Fxn, the maximum posterior mean of Fxn+i, the point we will report, is as large as possible,

given our actual observation of Fxn.

Of course in principle there is no reason not to consider all future acquisition; we can

unroll the recurrence relation all the way down to the first acquisition:

x1 <— argmaxE[maxE[... maxE[maxE[.Fxn+i|/xi:,i] | / x i ^ - i] ... | /x i]] (2.29)
x l X1 Xn xn + 1

Thus to really maximize our criterion from the beginning of an optimization run, we must

consider all possible future trajectories of the choices that we make and the values we might

observe. This "expecti-max" quantity appears most famously in the problem of acting

optimally in finite-horizon Markov Decision Processes as the Bellman equation, and various

attempts have been made to approximate its solution [45, 20]. However, to our knowledge,

all current Bayesian response-surface methods with an expected-loss type criterion use only

the "one-stage" method for selecting the next point. Mockus re-writes the criterion thus

xn <— argmaxE[maxE[.Fa.n+i|/a.i:n] | fxi-n-i } (2.30)
xn xn+1

<— a,rgm&xE[(m&xE[Fz\fxi:n]-m&xE[Fw\fxi:n-i})+] (2.31)
~ z w

<- argmaxE[(Fxn - ^ m a x) +] (2.32)
xn

which is the expected positive difference between the value we would have reported before

observing f(xn) and after observing f(xn). This re-writing is based on the assumption that

observing a new point will never cause us to report a value that is worse than we would have

16

reported before, and that we will only report a function value at a point we have observed.

This means that maxwE[Fw\fxi-.n-i] is a constant (which we write as /imax) and the whole

criterion is a single expectation of a function of Fxn. This criterion is frequently called

expected improvement. Furthermore, Mockus augments this criterion with a parameter £

similar to that used in MPI, giving

xn <- argmaxE[(F;cn - (Mmax + £))+] (2.33)
X™

For the remainder of this thesis, we will refer to this as the Maximum Expected Improvement

(MEI) criterion.

EGO

Jones, Schonlau and Welch describe an algorithm they call Efficient Global Operation or

EGO [19].

Model The stochastic model used for EGO is known as the Design and Analysis of Com­

puter Experiments or DACE model [37, 38]. This model was used by Sacks et al. for a

different task—choosing acquisitions for an experimental design that minimizes a global

error measure, such as expected squared error between the model and the true function

integrated over the domain. The DACE model is a Gaussian process model with a param­

eterized kernel
d

k(x, z) = rf-e <=1 (2.34)

where Oe > 0 and each pt € [1,2]. This is a generalization of the exponentiated-negative-

distance kernel commonly used by the machine learning community. Covariance along each

axis is controlled by the positive length-scales 0£, and by the exponents pi. If pt = 2, sample

functions will be infinitely differentiable along the direction of xg; otherwise they will be

non-differentiable but continuous.

Acquisition Criterion The criterion used for selecting query points in EGO is exactly

the "one-stage" or "expected improvement" criterion used by Mockus. The developers of

EGO note that this quantity can be computed using standard Gaussian probability and

density functions. For the remainder of this section, we will use \i(x) and o(x) as shorthand

for the posterior mean and standard deviation of Fx, we will use / m a x as shorthand for

17

maxj fxi, and the functions $ and <p will be the standard normal CDF and PDF.

E[(FX - / m a x) +] = (M*) - /max) • $ (M x)
g ~ [m a x) + a(x) • </> (M (X)

f f ^ (m a X) (2-35)

Before following this criterion, however, the EGO algorithm first acquires approximately

10 • d points in a Latin hypercube design where all one- and two-dimensional projections

are nearly uniformly covered. The DACE model is then fit to these points using maximum

likelihood. If the fit is found by inspection to be "poor", the data are transformed using a log

or inverse (—1/y) transformation. The criterion function just described is then optimized

using a branch-and-bound technique to find the next point to acquire. This procedure is

followed until the maximum expected improvement found is less than 1% of the current best

function value.

The EGO procedure takes basically the same approach as Mockus's work except that

it uses a more complex model and provides a systematic way of optimizing the criterion

function used for selecting acquisition points. Its practical use has been restricted to low-

dimensional (d < 6) spaces to date, however, partly because use of the initial Latin hyper­

cube can be undesirable for expensive-to-evaluate problems,7 and because the branch-and-

bound algorithm alluded to does not scale up effectively to higher dimensions.

Extensions to EGO

Extensions to the EGO procedure have been introduced that enable further control of the

locality of search points, allow constraints on other response variables, and reduce computa­

tion time for problems that have mixture of expensive and cheap objectives and constraints

[41, 39].

Generalized Expected Improvement Schonlau [41] gives a recurrence relation for com­

puting the expectation of positive integer powers of improvement.

M(FX - /m a x)9)+] = *{x)° f > l) f c (f c ! (/ l f c) !) z9~kTk (2-36)

where

Tk = -4>{z)-zk-1 + {k-l)-Tk-2 (2.37)

and

/max Ml'*'/
Z= (\

7We have found that for AIBO walk optimization, which has 15 dimensions, we can find a very good
walk in 150 = 10 • d evaluations by following the maximum expected improvement criterion. In this case, it
is unlikely a Latin hypercube design would fare as well.

18

(2.38)

The parameter g provides another mechanism for controlling the locality of the search

procedure: By maximizing the expected squared improvement (or cubed improvement or...)

preference is shifted from points that have a low posterior mean to points that have a high

posterior variance. This is similar to the tradeoff afforded by changing £ discussed earlier.

Schonlau suggests that, since expected improvement is frequently found to be "too local",

setting g = 2 gives better performance; however, this is based on one example only. Sasena

gives a "cooling" schedule for g that he has found to work well empirically.

Simultaneous Acquisitions The methods described up to this point have concerned

themselves with acquiring points one at a time, always using the most current model of the

function. There are situations, however, where acquiring several points simultaneously is

preferable; if we have the resources to acquire points from an expensive function many times

in parallel it seems a waste not to take advantage of this capability.

Suppose we want to acquire a group of m points. A simple extension of the expected

improvement criterion would be

E[max(0,.Fa;i - fmax, Fxi - / m a x , ... , Fxm - /m a x)] (2.39)

While this definition is simple, the optimization problem it poses is potentially very hard.

We must now solve a global optimization problem in R m d since we need to select the location

of m points. Also, it is not known if the expectation (2.39) has a closed form, so sampling

is currently the only method for evaluating it.

For these reasons, Schonlau [41] suggests a simpler alternative: Use the one-step expected

improvement criterion to find a point. Do not acquire the function's value at that point, but

update the posterior variance assuming we have. (Note that the posterior variance depends

only on the location of the acquisition, not on the observed value.) Repeat until we have

chosen rn points and then acquire them, possibly in parallel. This technique could be used

with any of the other acquisition criteria also. Schonlau reports that it behaves reasonably

on an example function using the expected squared improvement criterion.

Constraints Various extensions that allow more complex constraints on variables have

been developed for use with EGO. Here we mention four of the most commonly used pro­

posals.

The first two ideas are re-inventions of the most basic way of dealing with a constrained

optimization problem: Penalize constraint violations by including them in the acquisition

19

criterion, and solve the resulting unconstrained problem. Constraints are presumed to be

expressed in the form
k

A 9i{x) < 0 (2.40)

In the first approach, proposed by Schonlau, all constraint functions are modeled just as

the objective function is, and the acquisition criterion (typically expected improvement) is

multiplied by the posterior probability that all constraints are satisfied at any given point.

This way, points will only be selected by the acquisition criterion if they are unlikely to vio­

late the constraints. The constraint and objective variables are assumed to be independent

for ease of modeling and computation. This method of penalizing will alter the location of

optima of the acquisition criterion if there is any uncertainty in the model of the constraints.

Worse, the penalized criterion can be very flat in areas where constraints are violated with

very high probability, since the modified acquisition criterion is close to zero in these re­

gions. This makes the already difficult problem of maximizing the acquisition criterion even

harder.

The second penalty-based approach, suggested by Bjorkman and Holmstrom, is simply

to add the value of the constraint functions g%{x) anywhere they are positive, i.e.

k

c*(: r)=c(x)+ £ > (*)] + (2.41)
i = i

If the gi are expensive or not readily available, then they are modeled using a GP and

the model's posterior mean is used instead. This additive method of penalizing does not

affect the locations of feasible solutions, but it does introduce regions of non-differentiability

wherever 3i gi(x) = 0. Any optimization routine used with this type of penalty must

therefore be capable of handling non-differentiable functions.

A third approach defined by Audet et al. [3] involves randomly generating candidate

points in the domain, and ranking them according to their expected violation. This quantity

is exactly analogous to the expected improvement criterion used on the objective. As a

penalty function, expected violation was found by Sasena to perform poorly on the example

he presents. Constraints by definition are binary objective: they are violated or not. A

point that with very high probability violates a constraint by a tiny amount (and therefore

has a tiny expected violation) is not a feasible solution; if such a point is deemed acceptable

then the problem has been incorrectly described.

The fourth approach acknowledges that decades of research in the field of constrained

optimization have resulted in methods that are widely used, well understood, and very effec-

20

tive. Rather than apply a primitive penalty function for constraint violation, the posterior

mean of the constraints (i.e. our best guess) can be handed off along with the acquisition

criterion to any constrained optimization routine; a log barrier method would be a popular

choice, for example.

Heterogeneous Function Costs Sasena [39] points out that it certain problems may

have a mixture of objective and constraint functions with varying costs for evaluation.

He proposes dividing these into two groups, "expensive" and "cheap", and treating them

separately during optimization. The approach is an obvious one: If a function is expensive,

model it with a GP. If it is not, simply respect the constraint while searching for the

next acquisition point. If the objective is cheap, add the following constraint to the global

optimizer used for the acquisition criterion:

/cheap(a) > /max (2 .42)

This takes care of the situation where we want to test expensive constraints as little as

possible by avoiding points we know cannot improve on what we have found so far. If

everything is cheap, this approach, which Sasena calls "superEGO," degenerates to using

the global optimizer chosen for the acquisition criterion. In Sasena's work, the DIRECT

algorithm [12] is used.

Boyle

At the time of this writing, the most recent extensions to Gaussian process optimization

were the addition of techniques prevalent in the Bayesian machine learning field by Boyle [6].

Model Throughout his dissertation, Boyle focuses on using a more fully Bayesian treat­

ment of Gaussian processes. To this end, he specifies priors on covariance function param­

eters such as length scales, data rotations, and noise levels. He then uses Monte Carlo

methods to infer the posterior, which is now no longer Gaussian. This allows him to use a

more complicated covariance function, which we now detail.

The covariance function used by Boyle has a squared exponential form with a length scale

9(for each principal axis I £ {1,2,...,d} and a fully parameterized rigid rotation matrix A.

The form of the covariance function is

k(x, Z)=a)- e-<*-*)TA[diag(0?)]AT(*-*) (2 4 3)

21

where [diag(0|)] is a matrix with squared length scales on the diagonal and zeros elsewhere,

and A is d x d with ATA = I. Boyle parameterizes the matrix A using a set of d2 Givens

rotation angles — IT < Pij < TX. This kernel therefore has d2 +d+1 parameters that are used

to achieve data rotations, data scaling, and function scaling by 07.

Using such a rich parameterization with a small amount of data will almost certainly

lead to overfitting if we use a MAP hypothesis [13]. Therefore, rather than choosing a single

set of kernel parameters, Boyle specifies prior beliefs about the parameters and integrates

over them to compute the posterior of F. This cannot be done analytically, so Monte Carlo

methods are used to approximate the posterior. Taking this approach allows the use of

richer models, but is computationally much more expensive than using a simpler model

with the maximum likelihood or MAP parameter settings.

Further to this idea, Boyle presents results where after each acquisition, two models are

built: One is axis-aligned, and one is rotated. Posterior inferences are then constructed by

weighting each model according to its posterior plausibility.

Finally, in an effort to curb computational costs, Boyle points out that it is possible to use

Reduced Rank Gaussian Processes [36] (RRGPs) for optimization, and gives one empirical

example. This approach is one of a set of techniques for reducing the computational cost of

GP inference; we propose a more rigorous investigation of these techniques in Section 7.2.1

Acquisition Criterion Boyle uses the Maximum Expected Improvement (MEI) acquisi­

tion criterion given in Equation 2.33 with £ = 0 throughout his work. He also proposes a

"local" version of MEI, where the next point to acquire is constrained to be within distance

e of the last point acquired. He proposes a schedule for e using an increment e;nc > 1 as

follows:

{£i x fine if the last acquisition was an improvement , .

Ci/einc otherwise

Details of setting eo and emc are left to the user.

Empirical Results The various modifications by Boyle are tested on several analytically

constructed problems, each of which consists of a single d-dimensional, possibly non-axis-

aligned Gaussian function. Dimensions of the various test cases range from 1 to 36. Note

that each of these functions has a single local optimum that is also the global optimum.

Boyle found improved performance when using a covariance function that is "matched"

to the objective. That is, using an axis-aligned model with an axis-aligned objective or

22

using a non-axis-aligned model with a non-axis-aligned objective gave the best performance.

Interestingly, he also found that results when the two models were averaged according to

their plausibility were better than either used alone. This model-averaging approach was also

applied to an 8-dimensional "double pole balancing" control problem, for which Gaussian

process based optimization found good controllers using fewer evaluations than a competing

genetic algorithm technique.

2.2 Gaussian Processes in Machine Learning

The preceding methods were developed over a number of years by researchers in the statisti­

cal sciences familiar with general random field models, and by researchers in the engineering

sciences familiar with the "kriging" models of geostatistics. Gaussian processes have become

widely popular in the machine learning community only during the last decade. Advances

have been made adapting the GP model to various tasks in regression, classification, and

reinforcement learning. In the process of these adaptations, various insights and tricks for

the practical implementation and use of GPs have been developed. Some techniques par­

ticularly relevant to Bayesian optimization with GPs are geared toward improving model

selection, and reducing the computation time necessary for inference.

The specification of a Gaussian Process prior involves choosing a prior mean function

/io(x) and a covariance function or kernel k(x,x). We have seen two primary examples of

possible kernels: Mockus's Wiener process kernel

k(X,z) = ajf[(l-^-^j (2.45)

and the "squared exponential" kernel used in EGO

d

k(x, z) = a) • e «=i (2.46)

These two kernels give rise to very different sampled functions. When Vi Pi = 2 in kernel

(2.46), for example, functions sampled from the resulting Gaussian process prior are in­

finitely differentiable. Functions sampled from a Gaussian process prior using kernel (2.45)

on the other hand are nowhere differentiable. Even using only kernel (2.46), we can produce

a wide variety of priors by adjusting the free parameters p and 0. If 1 < p < 2, the sampled

functions become non-differentiable again, and are progressively "rougher" as we decrease

p. On the other hand, B\ controls the "length scale" of the process. This is a larger-scale

23

property that can be related to the distribution of the number of zero-crossings of the func­

tion on a given interval. As we increase #j, sampled functions become increasingly smooth

along the zth axis, in the sense that the expected number of zero crossings decreases [36].

The most common version of (2.46) is a slightly modified case where Vi Pi = 2.

k{x,z)^a2
re-^ (2.47)

where r is the vector given by

n(xi,Zi) = - 1 - — - , i = l...d

This is known as the Gaussian kernel, the ARD kernel, or the squared exponential kernel,

which is how we will refer to it.

Another commonly used kernel is the Matern kernel, which consists of an exponential

kernel multiplied by a polynomial. These are parameterized by an additional real parameter

v > 0; however, only two values of v are commonly used in machine learning applications

K=3/2(r) = ^ . (l + A/3| | r | |) .e-^l" r l l (2.48)

*„=5/2(r) = ^ • (l + V5||r|| + | | | r | | 2) - e - ^ " H I (2.49)

where again, Ti(xi,z») = Xi^Zi, i = 1.. .d. These kernels produce processes that are mean-

square differentiable exactly [v\ times, and as v —> co the Matern kernel tends toward the

squared exponential kernel described earlier [36].

Because of the degree of flexibility and lack of a priori knowledge about how to select a

kernel or its parameters, it is common in the machine learning community to use a maximum

likelihood criterion to choose these. The Gaussian likelihood function is given by

log p(Fx = f) = -UT fc(x.x)-1 f - ilog|fc(x,x)| - | log27r (2.50)

Empirical results have shown that using the maximum likelihood criterion for choosing a

kernel works well in many cases. A popular first attempt at modeling is to use the squared

exponential kernel and adapt the £$ parameters using maximum likelihood. This is known

as the "Automatic Relevance Detection" or ARD approach [28]. Success with ARD has

resulted in still more ambitious parameterizations of kernels. For example, kernel (2.47) can

be extended as follows:

k(x, z)=a2
r e-(*-*)T*(*-*) (2.51)

24

Here, 0 is a d x d positive semi-definite matrix. If 0 is diagonal, (2.51) is equivalent to

(2.47) with all pi set to 2. Estimating the full matrix © is in many cases infeasible if data

are limited; however, if we assume G decomposes as

9 = AAT + diag(6>)~2 (2.52)

where 9 is a vector of positive values and A is d x TO, TO < d, then we have significantly

fewer parameters than if we were trying to estimate a more general 0 , but we can still

identify interactions between input dimensions. This is called the factor analysis approach

[36], and allows us to describe length-scales of the function in a limited number (m) of

non-axis-aligned directions. The kernel is therefore similar to but not expressive as that of

Boyle described in Section 2.1.5. This approach has been used effectively to provide more

flexibility in modeling than the axis-aligned approach (i.e. kernel (2.47)) while controlling

the number of parameters that must be fit.

2.3 Extrema of Gaussian Processes

The behaviour of Gaussian8 processes has been studied extensively over the past 100 years

or so, in a way that combines questions about the behaviour of functions with questions

about the behaviour of random variables.

Common questions attempt to somehow encapsulate information about the behaviour

of the function in a single number. For example, how many zeroes does the function in

question have? How many critical points does it have? What is its global maximum? For

random processes, these questions are of course ideally answered with a distribution instead

of a single value; unfortunately, in many cases we are only able to give an analytic answer

for the first moment of the distribution or for an approximation to its tail probabilities.

Furthermore, investigating these quantities soon reveals that a treatment of general Gaussian

processes is impractical; therefore before we begin we introduce three definitions to restrict

our attention to stationary processes, isotropic processes, and axis-scaled isotropic processes.

Definition 1 (Stationarity). A real-valued random field F(x), x 6 Rd is stationary [1] (or

homogeneous) if its finite dimensional distributions are invariant under translations of the

parameter x. That is, for any set of points x1,x2,...,xk and any point z (all in Md), the
8Many of the results we review here apply to some degree to general random processes; however we

restrict our discussion to the Gaussian case.

25

distribution of

{Fxi,Fx2,...,Fxk}

is identical to that of

[Fx1+z,Fx2+z,...,Fxk+z]

Two immediate consequences of this requirement are that for all x and z,

E[F(x)] = c where c is some constant

E[(FX — c)(Fz — c)] is a function of x — z only

For real-valued processes, these two properties taken together imply stationarity. (See The­

orem 2.1.1 by Adler [1].) Note that we also apply the adjective stationary to kernels that are

a function of x — z only; in this case we may write the kernel as a function of one variable,

k(r), where r = x — z.

All of the prior Gaussian processes we deal with in this work will be stationary, though

posterior processes will not be.

Definition 2 (Isotropy). A real-valued random field F(x), x G Rd is isotropic if it is

stationary and

E[(FX — c)(Fz — c)] is a function of ||x — z\\ only

where || • || is the Euclidean 2-norm [1].

Finally, for convenience we define a slightly broader class of processes.

Definition 3 (Axis-Scaled Isotropy). A real-valued random field F(x), x G M.d is axis-scaled

isotropic if it is stationary and

E[(FX — c)(Fz — c)] is a function of \\(x — z) L _ 1 | | only

where L is a d x d matrix with £y = 0 where i ^ j and £u > 0 are characteristic length-scales

for each dimension (usually written £i.)

It is convenient to define the kernel of an axis-aligned isotropic process as a function

k(r) where
/ \ Xi — Zi .

ri{xi,Zi) = — - — , i = l...d

but to have the function only depend on r through its norm, \\r\\. This last class of processes

corresponds to those used in the Automatic Relevance Determination procedure described

above.

26

2.3.1 Spectral representation

Here, we give a very brief overview of the ideas behind spectral representations for Gaussian

processes. More complete treatments can be found in many sources [1, 21, 36, 2]. The

spectral theory of Gaussian processes plays a critical role in the understanding of many

of their properties, because it allows us to decompose them into sinusoidal components

for which those same properties (related to amplitude, periodicity, etc.) are more easily

accessible. This is particularly helpful when there is one dominant sinusoidal component,

as there typically is in our models, since expectations of quantities like level crossings and

local maxima (described later) depend only on this easily computed component.

All of the results that follow are based in part on the fact that any real-valued stationary

Gaussian process with zero mean can be expressed as follows:

Fx= f [cos(A • x) dll{\) - sin(A • x) dV(A)] (2.53)

Note that here, U and V are random fields that take intervals (i.e. rectangles) of Rd as

inputs, making this a stochastic integral. A complete explanation of the semantics of this

equation is given by Adler [1], but here we just want to give an intuition of the consequence

of this equivalence. Note that we can approximate (2.53) by a sum of sinusoidal components

Fx « ^[cos(A (i) • x)U{A{i)) - sin(AW • x) V(A«)] (2.54)
i

Here, each AW is an interval containing the point A^ , A^nA^') = 0 for i ^ j , and UjAW =

Rd. We can see that the field F can be approximately expressed as a sum of sinusoidal

components, each one with amplitude y/U(A^)2 + V(AW)2 and frequency determined by

A«.

The spectral distribution of a Gaussian process is defined as

S(X)=E[\U{X) + iV(X)\2} (2.55)

which is the expected squared magnitude at any given frequency A. (Here, i2 = — 1. Also

note that S is not necessarily a probability measure.) The second-order9 spectral moments

are given by

Xij = I x^ dS(X) - d2k{r) (2.56)
r=0 lRd dndrj

Here, k(r) is the kernel of the process. The quantities Xu indicate the squared frequencies

along each axis that have the highest expected amplitude, scaled by fe(0) = J d5(A). This is
9Note that the first-order spectral moments are identically zero [1].

27

useful particularly in the isotropic case where Xij-.i^j = 0. The right hand side of the above

expression is true because the spectral distribution also completely determines the kernel in

the following way

Jfc(r) = / cos(r • A) dS*(A)

For this work, we will never deal with S, U, or V directly; however, the spectral represen­

tation provides us with two critical pieces of information: A stationary Gaussian process

can be thought of as a random sum of sinusoids, and the most important frequency of these

sinusoids can be recovered simply by differentiating the kernel function. This is important

because, as we will see, many expectations of (quasi-)periodic events (level crossings, local

maxima, etc.) depend only on the "dominant" frequency of the function in question.

2.3.2 Stat ionary processes in one dimension

The first extensively studied Gaussian processes were those indexed by Z or E, usually

referred to as discrete or continuous time series, respectively. The study of time series was

one of the first forays into the analysis of sets of random variables that are not independent

and identically distributed—their dependency structure is explicitly stated. In the Gaussian

case, this structure is defined by a kernel as we saw earlier

Considering the one-dimensional case has the advantage that many interesting quantities

have easily computable, analytic answers that give further insight into how the parameters

of a process influence different properties of that process.

Level Crossings One useful measure of the complexity of a time series is the number of

u-level crossings of sampled functions. A w-level crossing is a point on a function / where

f(x) = u and f'(x) j^ 0. This quantity is used as a measure of the oscillatory properties of

a function or process, and is related to the "dominant frequency" of the object in question

[21].

Theorem 1 (The Rice Formula). Let F be a zero-mean, unit-variance Gaussian process

on the interval X C M. with kernel k(r). Then the expected number of u-level crossings of F

T over X, denoted Ni, is given by

E [A T |] - M J)

d2k(r)
dr2

IT \ | jfc(0)

provided the second derivative of k exists at 0[lJ.

r=0e-u*/k{0) (2 > 5 7)

28

This formula is perhaps the most famous in time series analysis, and has been proven

many times and in many ways [1, 21, 36, 2]. We omit the proof here, but provide an

analogous proof for the expected number of local maxima in the next section. It is worth

noticing that the quantity LI = \J—k"(0)/k(0) is the normalized second spectral moment,

which as we mentioned earlier can be thought of as the dominant frequency of the Gaussian

process. Therefore, if we take u — 0 and X = [0,1], say, then the expected number of

0-level crossings is w/ir. For comparison, the number of 0-level crossings of a sinusoid with

frequency u is G {[w/-7rj, [U/TV\ + 1}.

Higher-Order Crossings We now consider what are known as "higher-order crossings"

[21]. The "order" referred to here is the order of the derivative of the process we are

considering. The study of higher-order crossings brings up an important property: If a

Gaussian process is c times mean square differentiable, then each of its partial derivatives

up to order c is also a Gaussian process. Furthermore, the original process and its derivatives

are all jointly Gaussian, with covariances given by

C o v (d«F(x) dPFjz) \ = da+/3fc(x,z) (2 5 8)

where a = ^-yi-y a n d P — J2s^s, d°f(x)/dx — f(x), a < c and j3 < c. Briefly, the

justification for this is an interchanging of expectation and differentiation, both of which

are linear operators. Again, more thorough proofs can be found in the literature [2].

Theorem 2 (Expected Number of Local Maxima). The expected number of local maxima

(denoted N^ (T)) of a twice mean square differentiable, stationary Gaussian process over an

interval I is given by

E[AT(I)] =

\

d*k(r)
dr 4

d2fc(r)
8r2

r = 0 (2.59)
27T

r-0

where HL(Z) is the length (Lebesgue measure) of the domain of x, and k is the kernel, which

depends only on the distance r — x — z between domain points.

Proof. We could simply use Rice's formula 2.57, if we knew that

1. Local maxima are 0-level downcrossings of the first derivative

2. There are half as many it-level downcrossings as u-level crossings

3. The covariance of the first derivative process is given by (2.58)

29

However, we present a proof that gives a feel for how the expectations of numbers of level

crossings and other similar events are computed for Gaussian processes. We will closely

follow the approach taken by Adler and Taylor [2] by computing the number of downcrossings

of a deterministic, one-dimensional function and then taking expectations to recover this

version of Rice's formula. This approach affords a straightforward, intuitive proof, but relies

on heavy use of Dirac delta functions and changing orders of integration in ways that are

not immediately clearly justifiable. We refer the intrepid reader who is interested in the

detailed justification of these operations to investigate the aforementioned work.

We define a "downcrossing" x^ of a one-dimensional deterministic function g to be a

point where g(x^) = 0 and g'{x^) < 0. We presume that these points are isolated: For any

downcrossing X[, there is an interval X inside which xi € J is the only downcrossing and

Vx€l,g'(x) <0 .

Let 5 be the Dirac delta function which has the property

/ 5(x)f(x)dx = f{x)

for "reasonable" functions / . Then within the interval [z, w] that contains a single down-

crossing, we have
ru> rf(w)

/ -6(f(x)) • f'{x) dx = / -6(y) dy = 1
Jz Jf(z)

by substituting y = f(x) and dy = f'(x) dx. The negative sign appears because by as­

sumption / is decreasing over I so f(z) < /(to). By integrating over the domain of / and

using an indicator function to identify areas where f'(x) < 0, we can count the number of

downcrossings N^ as follows:

N^l) = J -5(f(x)) • l(_0O>0)[/'(x)] • f'(x) dx

Here, l^o^o^-] is the indicator function for negative numbers. An immediate consequence

of this is that we can count the number of interior local maxima of / , since these are simply

points where f'(x) = 0 and f"(x) < 0. Hence, we have

N~(l) = J -6(f(x)) • l(_oo,0)[/"(a;)] • f"{x) dx

We now substitute the random process field F(x) for the function f(x), and take the expec-

30

tation

6(F\x))-l^oofi)[F"(x)]-F"(x)dx
i

0 /.oo

E[N~(T)] = E

/

U />00 r

/ / -z 5(y)p(F'(x) = y, F"(x) = z) dx dy dz
-00 J—OO JX

= 1 1 ~zp(F'{x) = 0,-F"(x) - z) dx dz (2.60)
J-oo Jl

Here, p is the joint probability density of F'(x) = y, F"(x) = z. Recall that in our case, this

density is Gaussian, stationary (i.e. it does not depend on x) and y and z are independent.

Therefore we can simplify and get

E[JV~(Z)] = f dx I -zp{F'(x) = 0,F"(x) = z)dz
Jl J-oo

= fiL(l) f -zp(F'(x)=0)-(F"(x) = z)dz

= fiL(I) • p(F'(x) - 0) • / -z- (F"(x) = z)

= ML(2)

dz

= MiW

= VL(Z)

0 e-z
2/2a\F"{x))

^2na2(F'(x)) J-oo ~* J2^{F"{x)) **

1 la2{F"(x))
^2ira2(F'(x)) V 2TT

1 la2(F"(x))
2TT y ^(^ ' (a :))

We can then use a simplified version of (2.58) to determine that the marginal variance of

the derivatives are given by a2{F^(x)) = (—1)* • k^2x\G). Therefore,

E[JV~CD] = W (i) • —
\

d4fc(r)
9r 4

d2fc(r)
r=0 (2.61)

r=0

This gives the exact expected number of local maxima of functions drawn from a sufficiently

smooth stationary Gaussian process over a closed interval I CM.. •

2.3.3 Stat ionary processes in many dimensions

We now examine processes over subsets I c t < ! . First- and second-order mean square partial

derivatives of F are denoted Fi{x) = dF(x)/dxi and Fij(x) = d2F(x)/dxidxj, respectively.

Expected Number of Local Maxima In principle, we can count the number of local

maxima of a function in d dimensions by computing

AT(2) = J 5{Vf{x)) • Uo[V}(x)} • \detV2
f(x)\ dx

31

where l-<o[-] is the indicator function for negative definite matrices, 5(x) = Yii^(xi)' an<^

V/(x) and V*(x) are the gradient and Hessian of / , respectively. This follows again from

a variable substitution of the now multi-dimensional delta function, recalling that V*(x) is

the Jacobian of V/(x) . Taking the expectation of this quantity over F, we can make similar

simplifications as in the one-dimensional case, up to a point, and get:

E[i\T(Z)] - /iz,(I) / p(VF(x) = 0 , V ^ (x) = H) - | d e t H | d H (2.62)
J H ^ O

d r

= iiL(2)-T[P(Fi(x)=0) p(V|.(a:)=H)-|detH|dH (2.63)
i = l •'H-cO

There are two extremely unfortunate characteristics of equation (2.63) that bear mentioning.

First, the integral in question is over all possible negative definite matrices, which is a difficult

region to express analytically in terms of the elements of H. Second, the elements of V|.(x)

are dependent, so we need to deal with the full joint Gaussian distribution over Hessians,

which has d(d+l)/2 variables. Even computing a simple orthant probability (i.e. p(x > 0))

has no known closed form for more than 4 dimensions, so it seems unlikely that a simple

closed form for (2.63) exists.

In a similar vein, Adler [2] defines the quantities

Mfe = # { x <= X : f(x) > u, V/(x) = 0, index(V/(a;)) = k} (2.64)

where the index of a matrix is the number of negative eigenvalues of that matrix. Clearly, if

we set u = —oo then JU<J = JV~(J). Adler states categorically that "...it is actually impossible

to obtain closed expressions for any of the E[/ife]." Although fid is a slightly more general

quantity than N^(l) since it involves the additional constraint F(x) > u, it seems that the

prospects of obtaining an analytic answer for N^{1) are slim to none.

It is, however possible to approximate the number of local maxima that exceed a value

u, which we denote JV£\ An asymptotic expression for this quantity was given by Adler [1].

It is important to note that this will count the number of interior local maxima, i.e. points

with a zero gradient and negative definite Hessian. In the realm of constrained optimization,

these do not encompass all of the maxima that are of interest—maxima that are against

active constraints do not have this property, in general. We shall see how a different approach

based on geometry rather than calculus can lead to quantities more appropriate for our use.

32

2.3.4 The Euler characteristic of excursion sets

Given the limitations of the critical-point, calculus-based approach to excursion theory, it is

fortunate that there are other properties of Gaussian processes over high dimensional spaces

that give insight into the behaviour of the "bumpiness" of F, have closed forms, and are

at least somewhat tractable. The most prominent approach in the field has been to shift

focus away from finding critical points (i.e. points where V/(IE) = 0) and toward computing

properties of excursion sets, which are sets Au(f) = {x • f(x) > u}.

Contour plot of a 2D Function
1| -J— (" " X * nr—-—j ; . , B I 1

Figure 2.1: Example of an excursion set for a two-dimensional function / . Shown on the
right in green, the excursion set A0.5—the set of domain points where / > 0.5—has four
components, none of which have holes. Therefore x(-4o.s) = 4 for this function.

Some examples of excursion sets in two dimensions are shown in Figure 2.1. For a

function / with a "mountain range" type of behaviour, like samples from a smooth Gaussian

process or a sinusoid, the excursion set Au for u = s u p ^ / — S for some small enough

5 > 0 will consist of a connected, nearly ellipsoid-shaped closed set of points containing

x* = argsupI f(x), if we suppose that x* is unique and is not on the boundary of J . To

see this, note that by Taylor's theorem, the behaviour of / about the point x* will be very

nearly quadratic within a small enough radius, and that the level sets of a quadratic function

are ellipsoids. As we decrease u, the size of Au will grow, and new components will appear

around other local maxima that u crosses on its descent- Au will become more and more

connected until it consists of most of the domain I , but with holes surrounding the locations

of extreme local minima.

We now consider what we can tell about a function from looking at its excursion sets to

33

try to give an idea of their potential in studying extrema. First, it is easy to see that the

number of connected components of Au gives a lower bound on the number of local maxima

that exceed level u. Second, if we somehow knew that a Gaussian process would produce

either a single local maximum above u or none at all, then the number of components of

Au for any sampled function will be zero or one, and the expected number of components

of Au would be equal to ^(supj. Fx > u), which we call the excursion probability of F above

u. It turns out that the best asymptotic approximations known for excursion probabilities

(and they are very good for moderate to large w/07, i.e. u/a/ > 1.5) are related to counting

connected components of excursion sets.

The number of connected components of a closed set is an example of a topological

invariant. That is, the quantity is the same for all sets that are homeomorphic—sets between

which there exists a continuous, one-to-one, and onto mapping. Less formally, a topological

invariant property of two sets will be the same if one set can be smoothly deformed into the

other, like a doughnut and a coffee cup, but not a doughnut and a bowling ball10. The Euler

characteristic x is perhaps the most famous topological invariant11 Precisely defining the

Euler characteristic is a somewhat lengthy process, so we instead give a few of its properties

that are relevant to our discussion.

x(Sfc) = 1 where Bk is the unit ball in Mfc

x(xuy) = xW + xW if^ny = 0

So, any set that is homeomorphic to Bk, for example the ellipsoid-shaped components of

excursion sets around local maxima that we mentioned above, counts for 1 when computing

the Euler characteristic. Furthermore, the characteristic is additive, so if Au consists of

some number of disjoint components that are each homeomorphic to Bk, then the x(A*)

will be the number of components of Au. We have of course left out all of the sets which

are not homeomorphic to Bk', here are a few examples of these:

x(£fc,h) = 1 + M - 1) "

X(£k,h) = 1 - h

Here, K.k,h is Bk with h non-intersecting fc-dimensional holes drilled through it, and JCk,h is

1 0 The problem here is continuity—to map the basketball back to the doughnut, there will have to be
points that are nearby on the bowling ball that map to points that are far apart on the original doughnut,
and vice versa. This is caused by the hole in the doughnut. (Or by the absence of a hole through the bowling
ball.)

n A l o n g with genus, which is defined for surfaces. The orientable genus g can be defined as x = 2 — 2g.

34

Bk with h "handles" attached to it. Envisioning a fc-dimensional sphere with fc-dimensional

handles attached to it is taxing at best, but the important thing to note is that x(-4) is n°t

simply the number of connected components of A.

We now come to the single most important formula governing the extrema of Gaussian

processes.

mw - .--> E E i™^*-, £)+* £) <->
Theorem 3. For a stationary Gaussian process with zero mean, we have

| l / 2

where the process is over the set X, a rectangle in R with one vertex at the origin. The £k

are collections of the k-dimensional facets of the boundary of I that contain the origin, of

which there are (^). For example, if I C I 3 , then £\ would be the three line segments that

border X and touch the origin, £2 would be the three 2-dimensional rectangles that border

X and touch the origin, and £3 would be X itself. Kj is the matrix of spectral moments of

the process when restricted to the set J, and 07 is the process variance. As before, HL{J)

is the (k-dimensional) Lebesgue measure of the set J, and ty(x) is the standard normal

right tail probability p(X > x), X ~ A/"(0,1). Hk-i(-) is the k — 1st "probabilist's" Hermite

polynomial.12

The preceding formula, given by Adler [2], is important not merely because it is inter­

esting to know the expected Euler characteristic of excursion sets, but because it provides

the state-of-the-art approximation to excursion probabilities of Gaussian processes:

\p{suPF(x) > u}-E{x(Au)}\ < O (e-*"2 /2*/) (2.67)

where a > 1. Furthermore, it provides insight in to how the spectral moments—and there­

fore the length-scales—of a process influence its supremum distribution. To see this more

clearly, we give a more specialised version of Equation (2.66).

Corollary 1. For an axis-scaled isotropic Gaussian process over the hyper-rectangle X =

[0, w\) x [0,u>2] x ... x [0,«;d], if we let T>(J~) represent the set of indices of the k axes that

are included in a boundary set J £ £k, the expected Euler characteristic is given by

[rLep(j-) wi\ " [riisp(j-) v %
(27r)(fe+1)/2^ E|*A)I - .-"4 E E ' " ' ^ X S ^ M 0 ^ - (£) +* (£) (M8)

2 See the List of Symbols for some properties of H.

35

Proof. This corollary uses two main properties: First, for an axis-scaled isotropic process,

since Xij-.i^j = 0, we have lA^I1/2 = Ylievij) V^u- Furthermore, since the domain is a

hyper-rectangle, the fc-dimensional Lebesgue measure of each of these is given by HL{J) =

Uiev(j)wi- D

Recall from (2.66) that there are (^) such boundary sets J for each k G {1,2, . . . ,d}.

Therefore, a naive expansion of the sum in (2.68) would involve X^=i (t) — 2d terms, making

use of this approximation prohibitively expensive. We now give a novel re-formulation of

(2.66) that takes 0(d2) time.

Theorem 4. For an axis-scaled isotropic Gaussian process as defined in Corollary 1, the

expected Euler characteristic is also given by

Sk
Ek(A,)]=e-^g(2T)(;;1|/^Hl "-'J7)+*U

where

Si

So

ZLi(-i)k+1Si-k-sw

sw = J2 (wiV>^r

(2.69)

(2.70)

(2.71)

(2.72)
i = l

This alternate factorization, in terms of S, generates the necessary sums for each dimension

k in 0(d) time, for a total run time of 0(d2). Each of ai, Wi, Xu, and H are defined as in

Corollary 1.

Proof. First, note that the denominator inside the inner sum of (2.68) does not depend on

J, and so can immediately be factored out. This leaves us with the task of computing

n ^ n w< E n w^ =E n «
for each k, where q% = Wi\f\i. The sum is over all subsets of size k of the index set

{1,2,..., d}, so for each k the sum has (£) terms that cover all possible monomials of degree

k formed from {qi,q2, •••,%} that have no exponent greater than 1.

The sequence Si constructs these sums as follows: at each step k > 0, all monomials of

degree k composed of k distinct variables are generated, along with some that have a 2 in

the exponent. These are then subtracted away in the next term, but this introduces some

monomials with cubed variables which are removed by the term after and so on until we

36

remove the last of the extra terms using SW. This can be be improved, given that Sd can be

computed in linear time—it is simply fli=i wiV^Hi- i n practice, we also use the following

sequence

_ _ EtlK-i^Hi-g'-^1"
<3i _ .

a — %
d

Sd = fJ^vXi
4 = 1

d

s[~a] = £ K^)"a

i = l

which begins with Sd and successively removes variables from each monomial, thus intro­

ducing terms with extra negative powers, which are removed in a manner analogous to

the previous sequence. We can save some time by using both sequences and "meeting in

the middle"—we use the first sequence to compute So...S4/2 and the second to compute
Sd/2+l—Sd- •

The values Si are known as the ith elementary symmetric polynomials, evaluated at

(wi\/Xii,W2-\/^22t •••iu>d\/\dd)- These are symmetric in all d variables, which implies that

the ordering of the axes of the domain does not matter—so long as the «;»-\/A~i7 remain the

same, a process will have the same expected Euler characteristics. They are also linear in

each Wi and \f\~ii, since there are no exponents greater than one. This means that if we fix

u, Of, and vii, then E[x(«4u)] = c\ • y/Xu + CQ for some constants c\ and CQ.

For example, suppose we had a zero-mean Gaussian process with covariance given by

the Matern kernel with v = 3/2 as defined in Equation 2.48. To use Theorem 4, we need to

know <T?, which is part of the definition of the process, the vii, which are the widths of each

axis of the domain, and the A« which are derived from the kernel function. Recall that for

this Matern kernel,

fcv=3/2(r) = ^ . (l + V3 | | r | |) - e -^ IMI

where

ri{xi,Zi)= l l, i = l...d

Using Equation 2.56, we have

d2k(r)
A,;,;

dr\
D2

r=0

^[^.(l + V3||r||).e-^HI
r = 0

a2 3

37

file:///f/~ii

From this, we see that the spectral moments A^ depend only on the process variance and

the length scales. (Incidentally, if we had used a squared exponential kernel for k instead,

we would have An = a'l/i'j.) This shows that decreasing the length scale along dimension %

increases the spectral moment for that dimension, pushing more power into higher frequen­

cies relative to the other dimensions, and making dimension % "bumpier" than the others.13

Using 07, Wi, and An with Theorem 4, we can compute £'[x(^4«)] for this kernel with arbi­

trary length scales and any value of u. Furthermore, since .E[x(«4„)] is linear in each of the

Xu, it is a smooth function with respect to £i and a'j, and derivatives with respect to these

quantities are easily computed using the chain rule. We will require these derivatives later

when we use i?[x(.4«)] in a prior over the £j that favours simple functions.

Theorem 4 allows the expected Euler characteristic to be used for the first time in a

computational setting when working with Gaussian processes over hyperrectangles with

more than a few dimensions. In the next chapter, we will detail a novel prior on process

length scales that takes advantage of this capability.

Processes over more general spaces

The topologically inclined reader should note that many of the results presented here for

processes over compact subsets of Rrf have been extended to processes over more general sets

and topologies, including locally convex, smooth manifolds. These extensions have allowed,

for example, an analysis of the cosmic microwave background radiation which is frequently

modeled as a Gaussian process over the sphere [29].

13Recall that the "dominant frequency" is given by the normalized second-order spectral moments, which
are in this case Xu/a2,.

38

Chapter 3

Practical Bayesian Optimization

During the development of any system, choices inevitably must be made that are unforeseen

or glossed over in the initial abstract conception of that system. We will describe here in

detail each choice that was made in the development of our global optimization system, the

reasons for making it, and the consequences that follow from it. This includes the specific

Gaussian process models used, our approach to parameter learning, the acquisition criteria

we developed and investigated, and our approach to optimizing them.

3.1 Gaussian Process Model

The response model used throughout this work is essentially that described in Section 2.1.4;

that is, we construct a full Gaussian process model using all of the currently available data

points. The model uses a constant prior mean over the entire domain, and an axis-scaled

isotropic kernel which may be either squared exponential or Matern. We learn the length

scale for each dimension using a likelihood function similar to the Automatic Relevance

Determination (ARD) objective.

We allow for the inclusion of first-order derivative information as well. If gradient in­

formation about the target function is available, the gradient observations are used both in

computing the posterior model and in computing the likelihoods used in parameter learning.

3.1.1 Parameter Learning

The models we consider have d + 2 parameters. Each of the dimensions i = l..d has

a characteristic length-scale £i, and the process itself has a signal variance a"j and noise

variance a\. These parameters can be optimized using a pure Maximum Likelihood (ML)

criterion that depends only on data likelihood, or using a Maximum A Posteriori (MAP)

39

criterion that is a combination of data likelihood and a prior on parameters.

Likelihood

Recall that the likelihood function for a Gaussian process with prior mean function /x(x)

and kernel k is given by

logp(Fx = f) = -\{i- /x)T K" 1 (f - / x) - i log |tf| - y log27r (3.1)

where K = fc(x,x) + c^I. In the above equation, x, f, and N are completely determined by

the data, whereas a\, /z and the £i and a"j that parameterize k are free model parameters.

In many machine learning applications, /z is fixed at zero; however for our optimization

application we would like to be able to model functions that have typical values far from

zero without having to greatly increase the signal variance <r? to account for these. In

other words, we want the model to be invariant to additive scaling. To this end, we will

always choose the best constant /x for our data and substitute it into the likelihood equation,

effectively removing zx as a parameter by fixing its form to maximize likelihood. We can find

this most likely /x by defining /z(x) = /xc, implying /x = 1 • /J,C. We then take the derivative

with respect to the constant \xc and set it to zero, which gives the maximum likelihood

constant prior mean /x*

\ogp(Fx=f) = _ i (f - / x *) T K - 1 (f - / x *) - i l o g | K | - | l o g 2 7 r

where 1 is the vector of all ones. Furthermore, since

(f - ^ *) T K - 1 (f - / i *) = f T K - 1 f - 2 f T K - V * + At*TK_V*

r K ^ f - 2 f T K ~ 1 l (l T K - 1 f) + (l T K - 1 f) 2

l T K - ! l

- f T K - f - ' l T
T

K - ' f ' 2

l T K - ! l

it follows tha t if we assume we will always use fj,* for the mean, the likelihood function can

be written

1 1 AT 1 ('I " T T ^ — I f \ 2

log p(Fx = f) = - - ^ K ^ f - - log |K| - - log27r - - l
i T K _ 1] L

J (3.2)

The first three terms of this expression represent the likelihood assuming /x = 0, and the last

term accounts for our maximizing to find /it*. Therefore, when we take a partial derivative

40

with respect to a kernel parameter 8, we can use the usual form [36] of the likelihood gradient

plus an extra term to account for our optimization of /it. The derivative the last term above

term is

d (lTR- i f) 2 _ 2 (l T K - 1 l) (l T K - 1 f) (l T K - 1 | | K - 1 f) - (l T K - 1 f) 2 (l T K - 1 f | K - 1 l)

09 l T R - 1 ! ~ (^K-1!)2

(rK- i l) 2

(2(lTK-1l)(lTK-1f) ^K- 1 - (fK^f) 2 1TK-J) • H • (K^l)

so if we define a = K_1f, and 7 = K _ 1 l , the derivative of the likelihood function is

! l o g P (F x = f) = i t r T rs-U9K

(f l a - K) W

~\ww (2 (7 T l) (a T l) °T -(aTl)2 7T) • H •(7) (3-3)
Note that we only use kernels (Matern, squared exponential) for which dk(x,z)/89 exists

for all x and z in the domain of / , and for all 9 we are interested in.

Priors

Previously, consternation has been expressed about using maximum likelihood to determine

the length-scales of Gaussian processes when there are few data points. Indeed, we will see

that using small amounts of data, optimization procedures using maximum likelihood mod­

els initially perform significantly worse than the uniform random strategy. When data are

sparse, the likelihood function can become very flat along certain dimensions, or worse yet,

become monotonic increasing in certain directions, causing parameters to head toward pos­

itive or negative infinity. This can cause a number of problems including producing a kernel

matrix that is numerically ill-conditioned, and models that practitioners find unappealing.

Previous approaches (Jones et al. [19], Sasena [39]) to Gaussian process optimization

have included an initial pre-acquisition of points in a Latin hypercube design. This initial

design is not in any way dependent on incoming data. In such a design, n points are chosen

by first dividing each dimension into n bins. For each dimension, the bins are permuted and

dimension i of point j is drawn uniformly from within the jth bin in the ith permutation.

The important result of this is that we are very unlikely to have points where Xj = Zj,

i.e. we will not observe pairs of points that are parallel to one of the coordinate axes. This

arrangement is particularly unhelpful when trying to learn axis-aligned processes. Figure 3.1

shows the result of using maximum likelihood on two data sets that are identical except that

41

Posterior Mean after ML

Posterior Mean after ML

-0.4 -0.2

Figure 3.1: Two GPs, one with axis-aligned data and one with non-aligned data. Data
points are indicated in the posterior mean plots by small *. From the lower-left heading
clockwise, the function values are —0.5, —1.0,0.5,1.0 in both cases. Maxima are indicated
in the likelihood plots with the same marker.

42

one is aligned with the coordinate axes and one is not. Note that in these examples an is

fixed at a very small value, a typical practice in the literature [39]. The spacing between

data points and the corresponding observation values remain the same; we have simply

rotated the points clockwise in the domain by 7r/8. Note that in the axis-aligned case,

the likelihood function is unimodal, and the maximum likelihood length-scales are both

moderate at (£i,£2) = (0.98,2.96).

In the rotated example, the likelihood function is unimodal along £\, but monotonic in­

creasing in £2- The maximum likelihood function found by the hill-climber for this example

is (^1,^2) = (0.260,371015.82), and £2 is only finite because the function asymptotes (fortu­

nately) so that eventually the gradient becomes sufficiently small for the hill-climber to quit.

This asymptotic behaviour illustrates another important point: At £2 = 371015.82, the data

are only about 1.005 times more likely than at £2 = 1.0, for example. However, since the

likelihood function does not have a priori preferences on length-scales, £2 is increased dras­

tically to achieve this tiny improvement. The effect of this very large £2 causes the model to

explain the variation in the function observations using £\ only—this is visible in the plot of

the posterior mean, which shows that fi([xi #2]T) does not vary with #2 over the domain. In

the axis-aligned data, however, there is strong evidence that the data cannot be explained

by one dimension alone. Take the rightmost two points, which are w = (0.5, —0.5) and

z = (0.5,0.5). In this example, f(w) — 0.5 and f(z) = 1.0. Since w and z share the same

first coordinate, their difference in function value must be explained by a finite £2- A similar

impact on £\ is produced by points in the square that share the same second coordinate.

This example is not meant to imply that if we have axis-aligned data then the likelihood

function will be unimodal, but to illustrate that when data are grid-aligned, maximizing

likelihood will not make a length-scales go to infinity, unless of course no variation is ever

observed along that direction.

It also illustrates the point that maximizing likelihood to chose parameters can produce

counterintuitive results, particularly with small amounts of data. In the example shown,

one variable is effectively removed from consideration. It is reasonable to assume that, a

priori, one assumes that all the variables for a given problem will have some importance; if

this were not true it seems those variable would never have been included in the first place.

Finally, it is strong evidence for not using the typical Latin hypercube pre-acquisition,

since this approach will specifically choose points so that they are not grid-aligned, thus

leaving us open to the problems illustrated here. Typically in such designs, 10 • d points

43

are used. We will see from later experiments that this strategy is unnecessary and will

attempt to avoid the expense of pre-acquisition altogether, taking the view that if we are

unhappy with the models obtained by maximum likelihood, then our objective function is

wrong and we should encode our ideas about appropriate models in a prior. We investigate

two types of priors, one a simple log-normal prior, and another based on the expected Euler

characteristic of excursion sets.1

Independent Log-Normal Prior This prior is designed simply to prevent length-scales

from getting very large or very small. For the independent log-normal (ILN) prior, we place

a normal distribution with mean 0 and standard deviation 10 on the logarithm of each of

the length-scales. This is a very vague prior; for example it asserts that there is a 95%

probability of finding a length-scale between 7.18 x 10~8 and 1.39 x 107. We simply add the

logs of these probabilities to the likelihood function (3.1) to obtain our new objective

logp(F x = f) = _ i (f - M *) T K - 1 (f - M *) - i l o g | K | - | l o g 2 7 r (3.4)

Recall that the ti in Equation 3.4 are simply the length scales from the kernel as defined in

Equations 2.47 and 2.48. These appear explicitly in (3.4) in the prior part, and implicitly

in K. In practice we work with log(£i) for convenience, which makes the derivatives simpler

and allows us to use an unconstrained optimizer. To compute the gradient of (3.4) with

respect to the log length scales, we therefore simply add the gradient of the likelihood from

Equation 3.3 to the gradient of the last term of (3.4), which is

We will need this gradient for computing MAP estimates of the li, discussed below.

Expected Euler Characteristic Prior We also describe a novel prior based on the

expected Euler characteristic (EEC), denoted E[x(.4u)]- A definition and novel polynomial

time algorithm for this quantity were given in Section 2.3. Recall that the excursion set Au

of a function above level u consists of all points in the domain where the function exceeds u,

and that the Euler characteristic x of a set is equal to the number of connected components
xNote that in this discussion we have not mentioned model averaging. While it would be arguably a

more correct approach, we wish to keep computational effort to a minimum, so we will restrict ourselves to
using optimized point-estimates of model parameters.

d

aiog&o

44

of the set, so long as none of the components have holes in them. The expectation is taken

over functions sampled from the Gaussian process. For sufficiently large u, the excursion

sets become the union of small disjoint convex sets surrounding the maxima of the function

in question and therefore approximates the number of maxima above u. We propose the

expected Euler characteristic as a measure of the difficulty of optimizing functions drawn

from a particular Gaussian process model—the higher the E[x(«4«)], the more difficult the

optimization.

Sampled Function, Expected EC a 0.01 Sampled Function, Expected EC - 1.00

0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.B 0.9

Figure 3.2: Contour plots of two sampled functions, one from a GP with E[x(^3.o)] = 0.01
and the other with E[x(^3.o)] = 1-0. For both, fj,(x) = 0 and aj = 1.0.

The motivation for the expected Euler characteristic prior is based on the desire for a

prior that considers "simple" functions more likely a priori. This is somewhat true of the

independent log normal prior discussed above, but only for functions of few dimensions.

For example, a two-dimensional process with log length-scale parameters log(-6) = [0,0] and

a ten-dimensional process with parameters log(^) = [0,0,0,0,0,0,0,0,0,0] are both at the

mode of the independent log-normal prior we use, and are both therefore most preferable

a priori. However, the two-dimensional process is much simpler, both intuitively and as

measured by expected Euler characteristic. For the two-dimensional process, E[x(^3.o)] =

0.0070, whereas for the ten-dimensional process E[x(-43.o)] = 1.0769. Figure 3.2 shows

sampled functions from processes where E[x(^3.o)] = 0.01 and E[x(^3.o)] = 1-0, and the

difference is quite striking.

Our novel prior should place most of its mass between these two extremes of complexity.

To that end, we use a normal prior over E[x(-43.o)] that places about 97% of its mass

between 0.0 and 0.5 by using parameters /ieec = 0.175 and <7eec = 0.0917. Again, we simply

45

add this penalty to the likelihood function to get

logp(Fx = f) = - i (f - M *) T K - 1 (f - / x *) - i l o g | ^ | - ^ l o g 2 7 r (3.5)

(E[X(^3.Q)]-Meec)2 , / ^
r -5 iog(7eecV27r

and again, the length scales from the kernels defined in Equations 2.47 and 2.48 will allow us

to compute both the log likelihood and its gradient, as well as E[x(_43.0)] and its gradient,

as detailed at the end of Section 2.3.4.

Independent Log Norma) (ILP) Prior

Figure 3.3: Contour plots of the independent log-normal prior and the expected Euler
characteristic prior used in this work.

Figure 3.3 shows both the ILN prior and the EEC prior. While both priors prefer log

length-scales near the origin, the EEC prior is also willing to allow one length scale to become

shorter if the other is made longer. This is because if we fix the number of dimensions of the

process, there are sub-manifolds of length-scales that produce processes with the same EEC.

The contour lines of the EEC prior in Figure 3.3 show some examples of these sub-manifolds

for two-dimensional processes; in d dimensions, these manifolds will be d — 1 dimensional.

Examples of the impact of these priors on a likelihood function are shown in Figure 3.4

and Figure 3.5. In the left column are the posterior mean functions produced when the

various criteria are used for parameter learning, and the right column illustrates the function

that was maximized to arrive at these posterior means. One can see that the priors can

significantly influence the outcome of parameter learning when there are only a few data

points.

Maximizat ion P rocedure These two objective functions give us a mechanism for learn­

ing the relevant kernel parameters (i.e. length scales) from data. To do so, we simply

Expected Euler Characteristic (EEC) Prior

46

Posterior Mean after ML

Posterior Mean after MAP with EEC Prior

log(l,)

Likelihood with ILN Priors

logfl,)

Likelihood with EEC Prior

log(l.)

Figure 3.4: Gaussian process with axis-aligned data. In the likelihood graphs, the small
asterisk indicates the global maximum.

47

Posterior Mean after ML

1

-0.6 -0.4 -0.2

Posterior Mean after MAP

RTF"

Posterior Mean otter MAP with EEC Prior

- . 131^

•».• 1
\ ..J mmm

lofl(l,)

Likelihood with ILN Prior

log(l,)

Likelihood with EEC Prior

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
log(l.)

Figure 3.5: Gaussian process with non-aligned data. In the likelihood graphs, the small
asterisk indicates the global maximum.

48

maximize (3.4) or (3.5) with respect to the £i, and then use the resulting parameters in

our posterior computations. In order to maximize these criteria, we use an unconstrained

quasi-Newton method, starting from the mode of the prior. In particular, we use the BFGS

method as implemented in Matlab 7.3. The method is provided with the value and gradient

of the objective function, which we compute analytically as shown above.

3.2 Acquisition Criteria

As mentioned earlier; there are two acquisition criteria currently in use for global opti­

mization using Gaussian processes. The Maximum Expected Improvement (MEI) criterion,

which selects the point at the maximum of the Expected Improvement (EI) function,

EI(x,C) = E [(F x - (M m a x + £))+] (3.6)

= (Mx)-(,max+^(Mx)^7 + 0) (3-7)

and the Maximum Probability of Improvement (MPI) criterion which selects the point at

the maximum of the Probability of Improvement (PI) function,

P I (X , £) = P [F x > Mmax + £] (3.9)

(p{x) - (/ima>
V *{X)

= i -gM*) - (AW + fl\ (310)

. (3.11)
a{x))

We use = to indicate that the function given by Equation 3.11 is equivalent to the MPI

criterion, since removing the $ and negating is a monotonic transformation and therefore

the maxima and minima do not change location. Recall that \x(x) and a(x) are the posterior

mean and standard deviation of Fx, and /Wx = maxx fi(x).

Both of these criteria prefer points with higher posterior mean and higher posterior

variance, but the tradeoff between these two quantities is qualitatively different for the

different criteria. This is tradeoff is controlled by the parameter £ > 0. Figure 3.6 shows

this tradeoff graphically. For PI, the tradeoff is straightforward; for a fixed a, PI increases

linearly in fx. For fixed /x, it increases like —1/cr since the numerator in (3.11) is always

negative by definition. This brings up an important point: PI is bounded above by 0, and

PI = 0 is achieved only when £ = 0 and /x(x) = / i m a x , regardless of the value of a(x). It is

49

Expected Improvement, ^ = 0 Expected Improvement, £ = 2

l» H

Probability of Improvement, ^ 0 Probability of Improvement, S s 2

Figure 3.6: The MEI and MPI acquisition criteria. In the contour plots, dark red indicates
the highest function values; the maxima of each of these is in the top-right corner. Note
that for higher £, increasing a has a greater impact than increasing fi, particularly for PI.

easy to see therefore that we can can make MPI purely "greedy" by setting £ = 0. In this

case, using MPI will always acquire the maximum point of the posterior mean.

On the other hand, EI is bounded below by 0 by definition, and MEI = 0 is only achieved

£ = 0 and fi(x) = /zmax and a(x) = 0. Therefore MEI is not "greedy" even when £ = 0 and

will not always select the point where fj,(x) = /j,ma,K. Furthermore, the tradeoff MEI makes

between fi and a is more complicated than that of MPI, although the preference for higher

\x and a is maintained.

The plots in Figure 3.6 immediately demonstrate what kind of point we would choose if

we could select /i and a; however we are only allowed to select the domain point x which

determines these values. Acquisition criterion optimization can be though of as a search

over x in the domain (as it is usually formulated) or as a constrained optimization over

H and a, with the feasible set being those (/x,cr) pairs that can be found in our Gaussian

process.

50

Heuristics for Criterion Optimization This brings up an important point: In order

to use these criteria, we must maximize them over the domain of / , and both EI and PI

can be complicated, multi-modal functions. For processes with many dimensions, it will be

impossible to guarantee finding the global maximum. Nevertheless, we can take advantage

properties of these functions to at least find points where the criteria are large, if not

maximal.

Both criteria can be written as functions of

z = M*)-awx+o (3J2)
a(x)

With this definition we have,

EI = O i (x) - (/ w + £))*(2)+<r(aO0(2) (3-13)

PI = Z (3.14)

Each of these functions has properties that make them difficult to maximize in certain

situations.

For areas where Z is small, EI in and its gradient become numerically zero because <&

and 4> fall off exponentially as we decrease Z. In Matlab 7.3, for example, these functions2

are identically zero for Z < —40. Perhaps the worst side-effect of this is that if we want to

optimize EI by hill-climbing, if we start at a point that is very poor then we cannot make

any progress.

For MPI, the problem is the opposite. Particularly when £ is small, maxima of Z can

become very flat since it is bounded above by 0. From a practical standpoint, the problem

is less severe since even if we fail to accurately maximize PI we can definitely make progress

from poor points because the function and its gradient are not bounded below, so we can

always find a search direction that improves PI from such points.

In view of these properties, we use the following heuristic for finding the MPI point:

Since it is easy to make progress from poor points, we evaluate PI at a small number of

uniform random domain points (we used 100) and run a quasi-Newton hill-climber from the

best of these (we used 5). There are certainly more intelligent and complicated heuristics

that could be used here; however we have found that even with this simple approach the PI

criterion performs well in experiments; see Chapter 5 for details.

Since EI is sometimes difficult to maximize from very poor points, as described above,

we modify the heuristic slightly for this criterion. Again we use a small number of uniform
2They are named normcdf and normpdf, respectively, in this software.

51

random domain points (again 100) and run a quasi-Newton hill-climber from the best of

these (again 5). However, we also always run the hill-climber from the point found by MPI,

since this hopefully has a high Z and therefore a nonzero gradient, allowing us to improve

the point further.

Invariant Improvement Earlier in the chapter, we mentioned the desire to make our

optimization procedure invariant to any additive shift, motivated by the knowledge that

such scaling does not change the location of optima of the target function. We achieve

this by choosing the maximum likelihood constant mean: When we do this, the EI and PI

functions become invariant to any additive constant in the data, which we will show shortly.

We then present novel modifications to the MEI and MPI criteria that make them invariant

to multiplicative scaling also.

First, recall the likelihood function we are using is given by

logp(Fx = f) = - I (f - / x *) T K - 1 (f - / x *) - i l o g | K | - | l o g 2 7 r

and note that if we shift the data by a constant c, we have

- m^>
= H* + c • 1

therefore shifting the data by c shifts the maximum likelihood mean by c, which means that

(f — fi*) remains the same, as does the rest of the likelihood function. Therefore if we are

maximizing likelihood and we shift the data additively, estimates of all the other parameters

remain the same, and the posterior mean

H(x) = fi'(x) + k(x, z) K" 1 (f - /x*)

is also shifted by c. The posterior variance function, which does not involve the observed

data but only the locations of observations, does not change. Now, note that

z = M (S) ~ (Mmax + Q
a{x)

52

It is clear now that if we shift the data by c then fj,(x) and / im a x also shift by c, so we have

^ CJ ~~ 7~~\

= /J(X) - (^max + Q

CT(X)

= Z (3.15)

so -Z (and PI) are unchanged by an additive shift in the data. It is also immediate that the

shifted expected improvement criterion

EI[c] = {n{x) + c-(nmax + c + 0M2)+a(x)4>(Z) (3.16)

= (fx(x)-(^max+0mZ)+a(x)4>(Z) (3.17)

= EI[c] (3.18)

is unaffected. Therefore a global optimization strategy based on a maximum likelihood

estimate of the constant mean that uses either of these criteria will select the same points

to acquire regardless of any additive shift in the data.

We now consider the effect of a multiplicative scaling s of the data. First, it is easy to

see what happens to the original fi*:

=

=

V l T K-! l

SUTK-lJ
S • (1*

Unsurprisingly, /x* is scaled by the amount s. Next we address what happens to the max­

imum likelihood estimate of the signal variance <r?, which we denote <r?. For convenience,

we define the following quantities:

(3.19)

(3.20)

(3.21)

Note that k depends linearly on <jf, so r does not depend on 07. Whereas k gives the

covariance between domain points, and r gives the correlation. Using these definitions, we

can write the likelihood function as

logp(Fx = f) = -^(i-^)rR-1({-^)-\^ga2
f-^\og\R\-j\og27r

53

(x,z) =

R =

—

-jk(x,z)

-2fc(x,x)

and, by taking derivatives with respect to a\ and equating to zero, we can find the maximum

likelihood estimate

^ = (f-M*)TR"1(f™M*) (3-22)

We can substitute this back into the likelihood function to get

l0gp(Fx = f) - - i - i l 0 g ^ - i l 0 g | R | - y l 0 g 2 7 T

If we scale the data, we have

a)\s\ = (s-i-s-ii*)JR-l{s-f-s-tx*) (3.23)

= s 2 - (f - ^ *) T R - 1 (f - M *) (3.24)

= s2 • a) (3.25)

implying that

1 l „ 2 r , 1 . ,„ . N.
log p(Fx = {) = _ - - - ^ [a] - - l o g | R | - - l o g 2 7 r

= - i - i l o g S
2 . ^ - i l o g | R | - y l o g 2 7 r

1 1 , 2 1 , -2 1, ,„, N,

= ~ 2 " 2 g S ~~2 l o g < 7 / ^ 2 S ' R ' ~ " 2 ~ S

and since —(1/2) logs is a constant, this objective equivalent to the un-scaled objective.

This means that when we scale the data, the only effect is to scale <r? and fx*, since the

other kernel parameters (i.e. length scales) only influence the —(1/2) log |R| term, which is

unaffected by scaling. In other words, the length scales learned from the data vector f will

be identical to those learned from data vector 2 • f.

We now turn our attention back to the acquisition criteria, starting with the quantity

Z, which can be written

z = Kx) ~ (<"max + g)

o(x)

(o}r(x, z)) ^ R - x (f - M*) " O w + 0

Jojr(x,x) - {&)r{x,z))jzRr1{o-2
fr{2,,x))

! . r(x z)R-1(f - /x*) - (/xmax + g)

frf \/r(x, x) — r(x, z)R _ 1r(z , x)

We arrive at Equation 3.26 by substituting the Gaussian process formulae in for /u(x) and

a(x). This illustrates an important point: If the data are scaled by an amount s, then

1 s - r (x , z) R - 1 (f - ^ *) - (s . / i m a x + 0
Z[S]

s • Of \/r(x, x) — r(x, z)R _ 1r(z , x)

1 r (x , 2) R - 1 (f - ^ *) - (/ i m a x + g/s)

Of \fi~{x, x) — r(x, z)R_ 1r(z, x)

54

Note that because of the lone £ in the numerator, Z is not invariant to scaling. For example,

scaling by a factor s < 1 is equivalent to increasing £ by a factor of 1/s, meaning that the

MPI and MEI criteria will shift in focus toward points of higher variance, even though such

a scaling would not change the locations of optima of the target function.

We now present a new alternative to Z that is scale invariant. Consider the following

modified objective, denoted Zr. The subscript r is intended to indicate that the objective

is "relative" to the scale of the target function.

tl{x) - (/LXmax + Of • £)
J6J> —

o(x)
1 rt-r wYR-Vf - n.*\ - (11 4- Pr, . P.A

(3.27)

cr(x)

1 r (x , z) R ~ 1 (f - /A*) - (^max + Of • f r)

Of y/r(x, x) — r(x, z)R _ 1 r (z , x)

Suppose we now scale the data f by an amount s. Then this new objective becomes

1 S-r(x,z)R-1({ ~ / J *) - (s - ^ m a x + S • Of • £ r)
Z[s] s • Of y/r(x, x) — r(x, z)R _ 1 r (z , x)

1 r(x, Z) R ~ 1 (f - jit*) ~ (/Xmax + Of • £ r)

Of y/r(x, x) — r(x, z)R _ 1 r (z , x)

therefore changing the scale of the data does not affect the quantity Zr.

Furthermore, if we modify MEI in a similar way, we obtain

EI r = (r{x,z)R-1(i-ti*)-(fimax + or^))^(Zr) + o(x)ct){Zr) (3.28)

= (r (x , z) R - : (f - ft*) - (/Xmax + Of • £ r)) $ 0 Z r)

+ (of • \/r(x,x) -r(x,z)R-1r(z,x))4>(Zr) (3.29)

and again if we scale the data by s and maximize likelihood, we get

EIr[s] = (s - r (x , z) R - 1 (f - / x *) - (s - / i m a x + s - a / - £ r)) $ (2 r)

+ (s • &f • y/r(x,x) — r(x,z)R~1r(z,x))(j)(Zr) (3.30)

S • {(r{x, Z) R - I (f - A**)) - (/imax + Of • £r)${Zr)

+ (of • y/r{x, x) - r(x, z)R"1r(z, x))cj>(Zr)] (3.31)

= s • EI r (3.32)

Consequently, while EI r is not invariant to scaling, the effect of scaling the data by s is

simply to scale the EI r function by the same amount. Therefore the optima of EI r remain

the same, and any strategy relying on maximum likelihood estimates ix* and Of and using

the EI r criterion to select points will select the same points regardless of any multiplicative

55

scaling of the target function. Furthermore, the PI r and EI r functions are also invariant to

additive shifts by the same arguments used for PI and EI, simply by re-writing £ = aj • £r.

Figures 3.7, 3.8, 3.9, 3.10, 3.11, and 3.12 illustrate the MPI r and MEI r criteria on six

different example GPs. These examples illustrate the type of points that both criteria prefer:

Both criteria select points where the posterior mean is high and the posterior variance is

high. (Though not illustrated, bear in mind that the posterior variance increases as we move

farther from the observed data.) They also illustrate the effect of increasing £r from 0.01 to

0.7: At the higher level of £ r, both criteria select points that have higher posterior variance

and hence are further from the observed data points.

3.3 Summary

We have described in detail the Gaussian process model we use for the remainder of this

work, which is based on ARD. However, our model may use either of two proposed priors on

length scales, one a simple log-normal prior and another novel prior based on the expected

Euler characteristic of excursion sets, made feasible by the novel polynomial time algorithm

for computing EEC given in Section 2.3.

We have also given two new acquisition criteria that are based on the existing MEI and

MPI criteria, but that are invariant to multiplicative scaling of the objective function. These

novel objectives, denoted MEI r and MPI r to indicate that they are "relative" to the scale

of the function, will be empirically investigated in the following chapters.

56

Posterior Mean after ML

>T °

-0.8 -0.6 -0.4 1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.8

1 ^ = 0.7 il at ^ = 0.7

x~ "I

-1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 1

Figure 3.7: The MEI and MPI acquisition criteria. In the contour plots, dark red indicates
the highest function values; the maximum of each criterion is marked by a large white
asterisk.

57

Posterior Mean after MAP with ILN Prior

W/i

/mssmm

0.2 0.4 0.0 O.B

MPIatE =0.01 MEIat^ = 0.01

-0.0 -0.4 -0.2

Figure 3.8: The MEI and MPI acquisition criteria. In the contour plots, dark red indicates
the highest function values; the maximum of each criterion is marked by a large white
asterisk.

58

Posterior Mean after MAP with EEC Prior

MPI at \ = 0.7 MB at \ = 0.7

i1

* * V)

Figure 3.9: The MEI and MPI acquisition criteria. In the contour plots, dark red indicates
the highest function values; the maximum of each criterion is marked by a large white
asterisk.

59

Posterior Mean after ML

-O.B -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

MPI at ^ = 0.01 MEI at ^ = 0.01

s 4

-0.6 -0.4 0.6 0.8 1

Figure 3.10: The MEI and MPI acquisition criteria. In the contour plots, dark red indicates
the highest function values; the maximum of each criterion is marked by a large white
asterisk.

60

Posterior Mean after MAP with ILN Prior

Figure 3.11: The MEI and MPI acquisition criteria. In the contour plots, dark red indicates
the highest function values; the maximum of each criterion is marked by a large white
asterisk.

61

Posterior Mean after MAP with EEC Prior

'HM*

0.2 0.4 0.6 0.& 1

Figure 3.12: The MEI and MPI acquisition criteria. In the contour plots, dark red indicates
the highest function values; the maximum of each criterion is marked by a large white
asterisk.

62

Chapter 4

An Experimental Framework
for Global Optimization

Our literature review failed to find a single Gaussian process based optimization paper with

more than eighteen different example functions. This type of empirical evaluation can be

damaging when authors begin to "over-fit" a small suite of objectives that come to be

considered "standard test problems". Fortunately, in Bayesian optimization, we are in a

good position to avoid this problem.

The MEI and MPI acquisition criteria were constructed as approximations to the Bayes

optimal acquisition criterion. That is, they are intended to approximate the best strategy

in expectation, when functions are drawn from the prior. Since we have the prior, which is

supposed to reflect the type of functions we expect to see, it seems natural to draw functions

from it to evaluate the performance of the commonly used acquisition criteria in different

situations and with different parameters. No such study has ever been done, to the best of

our knowledge.

Our experiments are therefore constructed as follows: For each experiment, we fix a test

model, which is a Gaussian process with fixed parameters and kernel from which we draw

multiple test functions. For each of these test functions, we construct an optimization model

which we learn using data acquired from the test function. The information given to the

optimization model (kernel, length scales, priors on length scales, derivatives, etc.) will vary

between optimization models depending on the properties we wish to investigate.

Furthermore, an empirical examination of the effect of an incorrect model is not difficult

to devise. We will simply chose a test model with, for example, a different kernel from the

one assumed in the optimization model, which allows us to assess the robustness of different

methods and models.

63

4.1 Models

For the test models, we use Gaussian processes with a constant prior mean of zero and

unit signal variance ai over a rectangle X = [—l,l]d. We do not vary these parameters

because the criteria we are assessing, MEIr and MPI r are invariant to additive shifts and

multiplicative scaling under the models we use. Therefore our test models are completely-

determined by the kernel of the GP and its parameters.

The optimization models are of course over the same domain, however they may or may

not use fixed parameters. We investigate the effects of having to learn these parameters using

maximum likelihood or MAP optimization as discussed in Chapter 3. We also investigate

the effects of using the same or different kernels in the test and optimization models.

4.1.1 Kernels

The kernels we consider are the squared exponential kernel and its relative, the Matern

kernel with v = 3/2. (We will henceforth refer to this simply as the "Matern" kernel.)

The main difference between these two kernels is in their smoothness. Two examples—one

drawn from a process with each type of kernel—are shown in Figure 4.1.

2D Test Function from Squared Exponential Kernel - EEC = 0.5 2D Test Function from Matern Kernel - EEC = 0.5

x, x,

Figure 4.1: Two example test functions, one drawn from a GP with a squared exponential
kernel, and the other from a GP with a Matern kernel.

One way of describing the smoothness of a process is by examining its mean square

continuity and differentiability. A Gaussian process is continuous in mean square at a point

x* if

lim E[\F(x) - F(x*)\2) = 0 (4.1)
X—>X*

64

and has a mean square derivative of di(x) with respect to Xi at x if

n2

limE
h->0

F(x + te»)-F(E)_di(x)- 0 (4.2)
h

where e*- = 1 if i = j , rf = 0 if i ^= j [36]. Higher order mean square derivatives are similarly

defined. A Gaussian process has mean square derivatives of order k if and only if

d2kk{s,t)
A« = (4.3)

s=t
13 dsit dsi2... dsik dth dtj2... dtjk

exists and is finite. This is the matrix of 2fcth order spectral moments.

The squared exponential kernel is mean square continuous and infinitely mean square

differentiable, whereas he Matern kernel with v = 3/2 is mean square continuous but mean

square differentiable only once. As such, they represent extremes of this kind of smoothness

if we restrict ourselves to differentiable processes. Furthermore, all posterior means and

variances remain twice differentiable, since these are expressed as weighted sums of kernel

functions, and both of these kernel functions are twice differentiable. This differentiability

is required for our approach, since we use hill climbing to optimize the MEI r and MPI r

criteria as described in Chapter 3.

4.1.2 EEC, Complexity, and Dimensionality

The overall functional form of the kernel tells us these broad characteristics of the resulting

process, but the spectral moments can tell us more about process behaviour. In particular,

the second order spectral moments

are of interest since they determine the expected Euler characteristic of the process. Recall

that, when using the ARD approach, exponential and Matern kernels are parameterized by

a length-scale parameter ii in each dimension, resulting in axis-scaled isotropic processes.

These length-scales appear in the second spectral moments of these kernels as follows:

AMater„ = 3^2

A^EXP = °*flG

These are computed simply using Equation 4.4. Note that in the ARD case, Ajj = 0 for

all i ^ j . We use the relationship between Ajj and £i to compute the expected Euler

characteristic of a process, which in turn lets us use a root-finding technique to find length

65

scales that would give a process a particular EEC. We use this approach to select test

models.

Using EEC as our criterion for selecting test models allows us to generate models that

have different length scale configurations—even different dimensions—but that are of similar

difficulty. We have chosen E[X(^3CT /)] as our quantity to hold constant when generating

problems. This is the expected Euler characteristic of the set {x : f(x) > 3cr/}, i.e. the

set of points where the function is three signal standard deviations above the mean. (All

EEC values mentioned in this work are in fact E[x(-43CT/)], so we will use "EEC" to mean

E[x(-^3o-/)]i e v e n though it could be more general.) We chose this threshold because it is

where the expected Euler characteristic approximates excursion probability—in the region

u > 3aj we have the property that EfxC^oy)] « p(3x : f(x) > 3CT/) [2], and we hypothesize

that the greater chance a process has of achieving such a high value, the more difficult a test

function drawn from it will be to optimize. The empirical results that follow indicate that

this is at least somewhat true; even if we increase the number of dimensions significantly

we can still achieve good success if the EEC is kept in check. If we do not do so, it becomes

impossible to even draw functions from the test model because we cannot use enough points

to accurately reflect the shape of sampled function. If we sample 100 points, say, then we

effectively end up with 100 independent needles in a high-dimensional haystack that we

need to locate and evaluate. It is our opinion that maximizing this type of function is likely

hopeless and that it is probably not reflective of practical problems anyway.

4.2 Using Derivatives: Connections with Local Search

Local search algorithms have achieved a high degree of theoretical and practical success

and sophistication during their development [5]. Driven by advances in computer hardware

and the desire to solve increasingly interesting and difficult problems, a suite of methods

has been developed that were all based on the same principle: successive local polynomial

approximations. In a sense, these are also "response surface" methods as defined earlier;

they construct a surrogate function, in this case a low-order polynomial, and use this model

to decide where to evaluate the function next. A new polynomial approximation is then

constructed using this new point. In effect, all optimization techniques for smooth functions

boil down to this approach since low-order polynomials are the only functions whose optima

can be expressed in a convenient algebraic form. Fortunately, all sufficiently differentiable

66

functions are locally polynomial, so these provide an especially good approximation over

sufficiently short distances as promised by Taylor's theorem [34]. The advantage of this

property is clear when we examine the performance of these techniques. Newton's method

for optimization, which uses a local quadratic approximation, has a super-linear convergence

rate. That is, for approximations constructed sufficiently close to an optimum, each step of

Newton's method results in a squaring of the current error

e»+i ex e? (4.5)

where e, is the current distance to the optimum. This "superlinear convergence" where the

error at the next step is proportional to the current error raised to some power a > 1 is a

property of most techniques that construct a local polynomial model of the function to direct

the search. Brent [7] shows that any algorithm based on "successive interpolation"—i.e.

alternating interpolation and optimization—using polynomials converges at a super-linear

rate.

The fastest of the classical local search techniques, however, use information about the

derivative of the objective to construct these polynomial models, either explicitly by eval­

uating the gradient V/(:r) and possibly the Hessian Hf{x) of / at the current point x, or

by approximating these quantities. Newton's method for minimization requires V/ (x) and

Hf(x) explicitly, but there are several "quasi-Newton" methods that approximate one or

both of these quantities. For example, the widely-used BFGS algorithm uses V/(a;) ex­

plicitly but iteratively constructs an approximation to Hf(x). The strategy of BFGS and

related methods is to forego the direct search for an optimum of / , and instead look for a

point x where

V / (a :) = 0 (4.6)

This is a critical point of / , which may or may not be an optimum but in practice often is.

This approach—which only computes with and reasons about derivatives—has yielded the

fastest and most widely used local optimizers known, and has provided the framework for

describing the rate of convergence of such methods.

This type of convergence rate analysis is common in the field of local optimization,

but unheard of in the field of global optimization. From the typical global optimization

perspective, even proving that a method will converge to an optimum in a finite number

of steps is a difficult proposition. Attempts to narrow this performance gap have resulted

in the development of the "random-restart" and other related methods mentioned earlier:

67

leveraging the power of local search techniques for functions that are differentiable but

multi-modal can be an effective strategy, if it is possible to discover the relevant basins of

attraction.

Currently, all Gaussian process based methods reason only about the function's value at

points in the domain—not about the derivative of the function. However, given the kernels

we have chosen, reasoning about the derivative(s) of the function at any point is equally

straightforward.

4.2.1 Incorporating Derivative Information

In short, since derivative operators are linear, and since linear functions of Gaussian random

variables are also Gaussian, the derivatives of sampled functions are also Gaussian random

variables, provided appropriate limits exist [36]. Furthermore, since expectation is also

a linear operator, prior covariances among derivatives (and between function values and

derivatives) are given by derivatives of the kernel function. For example, a priori:

and
dF

' dxj OX;
^ ^ (4.8)

OZiOWj

All covariances among all derivatives and function values the points z and w are similarly

computed, mutatis mutandis.1 The notation is slightly loose here, since for some kernels

the sampled functions will not have derivatives; however, the kernels we use in this work

are sufficiently smooth to permit this analysis.

The ability to compute prior covariances among function values and derivatives means

that we can simply include any derivative observations we might have in our observation

vector f, and then build the kernel matrix K using the above equations whenever we require a

covariance that involves a derivative random variable. For example, if we observe n function

values and associated gradients of dimension d, we will construct a [n • (d + 1)] x [n • (d +1)]

kernel matrix that includes all of the covariances among the function values, between the

function values and the derivative values, and among the derivative values. We can then

compute a posterior distribution for the function at any point using the standard formulae

introduced earlier. Furthermore, we can compute the posterior mean and variance of any

1li the kernel is sufficiently smooth, covariances between higher derivatives are computed similarly.

68

derivatives we might want in a similar manner; however, we will not use this capability in

our experiments.

Observed f(0) = 0.25 Observed f(0) = 0.25, f'(0) = 1.0

-OB -0.6 -0.4 -0.2 0 0.Z 0.4 0.6 0.8 1 •0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 08

Figure 4.2: Illustration of the influence of derivative observations. On the left, one obser­
vation /(0) = 0.25 is used for computing the posterior mean. On the right, a function
observation and a derivative observation are used: /(0) = 0.25 and / ' (0) = 1.0. The change
in posterior mean reflects the inclusion of derivative information. The same GP prior was
used in both cases. {/J,{X) = 0, rj/ = 1.0, Matern kernel with t\ w 0.3679)

Including derivative information provides us with more information about the shape of

the function, and hopefully allows us to identify local maxima more quickly. Figure 4.2

illustrates the effect of including a derivative observation in a ID example, where the influ­

ence on the posterior mean is clearly visible. Note that in the example on the right, the

observation vector will be:

f =(0.25,1.0)T (4.9)

and the kernel matrix constructed from k(z, w) will be

*(0,0) f | 0 n
K = dk dzk

0,0

(4.10)
dw 10,0 dzdw J

The importance of derivative information has been shown time and again in the devel­

opment of local optimization techniques, and its incorporation in Gaussian process models

is straightforward. However, the impact of derivative information on Bayesian optimization

has not previously been studied; therefore, we will investigate the performance Bayesian

optimization using the MEI r and MPI r objectives when first derivative information is avail­

able.

69

Chapter 5

Empirical Results

In this study, our intent is to learn about the impact of four important factors: the effect of

£r, the effect of using MAP instead of ML for learning length scales, the effect of mismatched

priors, and the effect of providing gradient information.

5.1 Experimental Setup

Each experiment we run is based on 500 functions sampled over [—1, l] d from a Gaussian

process with a constant prior mean jUo(x) = 0, a signal variance cr? = 1, and a noise variance

a\ = e~10. The kernels used are either squared exponential or Matern, and are axis-scaled

isotropic with a length scale for each dimension. Each function is sampled by choosing 100

uniformly randomly drawn points in [—1, l]d, sampling function values for these points, and

then treating them as observed values of an underlying function. The posterior mean given

these function values is the test function. All experiments that have the same kernel and

length scales use the same set of 500 test functions. (This is ensured by using the same

random seed for all experiments.)

For each sampled function, we run each algorithm for 30 acquisition steps, starting from

the origin1. GP-based methods that take a parameter £r have this fixed for the duration

of the experiment. For each experiment, we report box plots in Appendix A that show

the distribution of performance over these 500 trials for each step from 1 to 30. We use

6 different test kernels, which generate a total of 30 000 test functions. Each of these is

optimized using the MEI r and MPI r criteria at 5 different levels of £r each, and using at

least 4 different priors on kernel parameters, resulting in more than 1.2 million optimization

runs.
1 Before seeing data, none of these algorithms has a prior preference on where to acquire points. Therefore

the first point of each run is at the origin in order to reduce variance across methods.

70

Performance is measured by absolute error, assuming each algorithm reports the best

function value it has observed so far. The true maximum of the test function is estimated by

hill-climbing using Newton's method (i.e. with the true Hessian of the test function) starting

from the location of the best of the test function's 100 observed function values. The box

plots have hollow boxes but filled "notches" which are of the width suggested by McGill,

Tukey, and Larsen [30] of a 95% confidence interval around the median. This interval is

1.57 times the interquartile range, divided by the square root of the number of observations,

centered about the median.

5.1.1 Test Model Choices

We use test models with different dimensionality, kernel choice, and length scale in our

experiments:

Dimensions
2
2
2
2
8

32

Kernel
Squared Exponential
Squared Exponential

Matern
Matern

Squared Exponential
Squared Exponential

Length Scales
-1.9836, -1.9836
-3.0000, -0.9018
-1.4343, -1.4343
-2.4507, -0.3525
-0.7629, -0.7629, -0.7629, 3.0000, 3.0000 ...
-0.5593, -0.5593, -0.5593, 4.0000, 4.0000 ...

With this set of models, we have tried to cover several different scenarios, some where

all dimensions are equally important some where they differ, some with the smooth squared

exponential kernel and some with the rougher Matern kernel. All of the models have an

expected Euler characteristic of 0.5, in an attempt to keep their complexity approximately

the same even thought their length scales, kernel, and dimension may differ.

We have only two higher-dimensional mainly because of computational concerns; al­

though posterior inference in a Gaussian process is frequently touted as taking only 0(n2)

time once we have factored the Kernel matrix, parameter learning requires that we build the

kernel matrix, factor it, and construct its d+ 1 partial derivatives at each step, which takes

0{nz + (d + l)n2) time. This coupled with the need for the hill-climber to keep track of an

increasing number of dimensions means that, especially when we are optimizing thousands

of function, things can take a long time.

5.2 Discussion

We now examine and interpret our empirical results and what they have to say about

the exploration parameter £r, about the use of priors for parameter learning, about the

71

effect of having the wrong model, and about the utility of gradient observations in global

optimization. We summarize our results in a way that will hopefully allow others to use

these techniques to solve their own optimization problems.

5.2.1 The Effect of £r

To date, none of the algorithms we have examined have a principled way of managing how

"local" or "global" their search procedure is, though they all have some sort of "exploration

parameter," whether in the model or the acquisition criterion, that is supposed to control

this aspect of the algorithm. The real reason for this is that the acquisition criteria can

only approximate the full Bayes optimal procedure for choosing points to evaluate, and it

is presumed that any one-step algorithm will be too "greedy" initially, and will need to be

forced to "explore" more, especially when there are only few function evaluations. When

using small numbers of test functions, scheduling the exploration parameter has been to be

useful in some cases [41, 39).

First, we examine the case where we do not do any parameter learning, but fix all the

kernel parameters. Figures 5.1 and 5.2 show the first three, middle three, and last three

acquisitions from five different experiments where the optimization model's length scales

are not learned, but are fixed to the correct values—the values that match the test GP.

The performance of independently acquiring points using a Latin hypercube is shown for

comparison. There is a striking uniformity among all of these results. Most notably, in

all cases, using MEIr with £r = 0.01 is never significantly worse than the choice that gives

the best median performance. This runs completely counter to conventional wisdom, which

would claim that larger values of £r would perform better early on and smaller values would

perform better later.

This phenomenon is observed, however, when using the MPI r criterion. The optimal

value of £r seems to vary between 0.1 and 1.0 depending on how many acquisitions are

made, though after 30 acquisitions £r =0.01 was best in all cases.

Figure 5.3 shows two cases where the prior is fixed and incorrect. In these cases, the test

kernel is squared exponential and the optimization kernel is Matern, or vice-versa. Even

in these cases where the model is wrong we see the same behaviour of MEIr and MPI r as

before.

All of this evidence runs contrary to the belief that it is important to control exploration

depending on how many acquisitions are to be made. It is certainly not proof that scheduling

72

£r would not improve performance, particularly for MPI r where there seems to be a slight

need to explore more early on; nevertheless, it does not seem to suggest that there are

significant gains to be made by scheduling, at least on average. For the remainder of this

work, we will use MPI r at £r = 0.01 and MPI r at £r = 0.1 as points of comparison, since

these settings appear to be optimal or nearly so in all of our experiments2. Furthermore,

their performance is very similar; it would seem that in most cases, they are "safe" choices

even when we must learn the kernel parameters, as demonstrate in the next section.

Dim: 2 Test Kernel: SqExp

Log length scales of test GP: -1.9636 -1.S

8,

H B M E I r 5f = 0,001 Pa ram. Prior: Exact Opt. Modal :Sq Exp

gjjKHlMEl, ^ = 0.01 Param. Prior:Exact Opl. Model :Sq Exp

gg|||MEPF i r = 0.1 Param. Prior:Exact Opl. Model.SqExp

« f | M E I , 5 r=1 Param. Prior:Exacl Opt. ModekSqExp

C" / ' M E I t j r = 3 Param. Pr|or:Exael Opt. Model:SqExp

• B M P I t i =0.1 Param. PriorExacI Opt. MocMSqExp

i IS 16 28 29 30

Number of Acquisitions

Dim: 2 Test Kernel: Matern

Log length scales of test GP: -1.4343 -1.4343

i.
I.

l H M E I r 5 '

BffliMEl, ; ,

• l M P 1 ' *••

a 0.001 Param. PrlorExacI Opt. Model: MaWm

= 0.01 Param. Prtor:Exact Opl. Model:Mal4m

= 0.1 Param. PrlorExacI Opl. Model:Malem

= 1 Param. PriorExacI Opt. Mode I :Ma tern

= 3 Param. Prior:Exact Opt. Model:Matern

= 0.1 Param, PrkwiExael Opt. Model:Matern

l 1S 18 2 8 2 8 3 0

Number of Acquisitions

Dim: 2 Test Kernel: SqExp

Log length scales of test GP: -3.0000

1

I I JK-H

1 IlWtf
lis*

H M E I , £. = 0.001 Param. Prlor:Exact Opl. Moder.SqExp

H | M B , 5r = 0.01 Param. Prior:Exact Opt. ModehSqExp

| j j j j |«M E I
r 5r = 0.1 Param. PriorExacI Opt. ModehSqExp

| | j t e MEI, 5f = 1 Param Prior Exact Opl Model SqExp

w_',MEI r £(= 3 Param Prior Exact Opt Model SqExp

• H M P I , i r = 0 1 Param Prior Exact Opl Model SqExp

•iti

>
» * I * . * * •*.

Dim: 2 Test Kernel: Matem

Log length scales of test GP: -2.4507 -0.3525

i.
i

•

i n * I I

• • » • • I *

I I * *»!*

•••MEI H
ill

B0LHC

£, = 0.001 Param. Prior:Exact Opl. Model:Mat*m

; f = 0.01 Param. PrlorExacI Opt. Mod«l:Matern

5r = 0.1 Param. Prlor:Exact Opl. Modol:Mal6m

ir s 1 Param. Prior.ExacI Opt. Model :Ma«rn

i r = 3 Param. Pr»or:Exact Opl. McdelrMalern

lt = 0.1 Param. Prior:Exacl Opt. Model :Ma«m

AND

• , « - " • - * - *

Number of Acquisitions Number of Acquisitions

Dim: 8 Test Kernel: SqExp

Log length scales of test GP:-0.7629 -0.7629 -0.7629 3.0000 3.0000...

§ 1

]

I U H ' I I

-

-

* * 1

»*

HM|MEIr £[= 0.001 Param, Prior;Exact Opt. Model:SqExp

j§|jj|§ M E ,
r 5r = 0.01 Param. PrionExact Opt Model SqExp

taaaME^ £r = 0 1 Param Prior Exact Opt. Model:SqExp

;>^MEI r £ r=1 Param Prior Exact Opt. Model:SqExp

••_ '«MEI r £r = 3 Param. Prior Exact Opt. Model:SqExp

• • M P I t 5r = 0.1 Param. PriorExact Opl. Model SqExp

iMiL H CFWN0

m.

Log length

Dim: 32 Test Kernel: SqExp

of test GP:-0.5593 -0.5593 -0.5593 4.0000 4.0000...

.

XWt't}

f i t
* i *

"

Haw MEI. £. = 0.001 Param. PriorExact Opl. Model:SqExp

aBaa MEIt ^, = 0.01 Param. Prior:Exact Opl. ModahSqExp

(j j l l^MEl i =0.1 Param. PriorExacI Opt. Model:SqExp

!'Si>(ft!ME'r ' " 1 P a f a m Prior Exacl Opl Model SqExp

^ MEI, 5, = 3 Patam PrlorExacI Opl ModelSqExp

H M M P I , £, = 0.1 Param. Prlor:Exact Opt.Model:SqExp

. q
- — . — . i 4 _ „ ^ „ m — .

1 2 3

Number of Acquisitions

15 16 2B 29

Number of Acquisitions

Figure 5.1: Effect of £r on the performance of MEI when priors are correct and fixed. In all
cases, using £r — 0.01 is never significantly worse than the choice that gives the best median
performance.

2Excepting those where we also observe V / ; see Section 5.2.4.

73

Dim: 2 Test Kernel: SqExp
Log length scales of test GP: -1.9836 -1.9836

-

•
••<

.

* « I X

* * * * I K . 1 *

•r1.
w*'"''
> «|MPI

MPI

•rB.

= 0.001 Param. Ptiot:Exact Opt. Model:SqExp

(T 0 . 0 1 Param. PriorExaol Opt. Model:SqExp

= 0,1 Param, Prior ;Exacl Opt. Mode I :Sq Exp

= 1 Param. Prior:Exacl Opl. Model:SqExp

(s 3 Param, PriorExac! Opl, Model:SqExp

= 0.001 Param. Prior:Exact Opt. ModatSqExp

» i t „
w t * * f • " ' . • * *

1 15 18 28 29

Number of Acquisitions

-

-

-
I * * M l I

"*

Dim: 2 Test Kernel-
Log length scales of test GP:

Matern
-1.4343 -1.4343

I B H M P f . ^ . = 0.001 Param. Prior:Exacl Opt. Modal;Maiem

M | M R i r = 0 01 Param. PriorExact Opl. ModekMatern

^ ™ M P I r ; F = 0. I Param. Prior:Exael Opt. ModetMalern

• 4 * M P U = 1

, ; ' ;MP| ; =3

MMHMEI t ; r = 0

••LHC"~

•"»...,«

Param. Prior:Exacl Opl. ModekMatern

Param, Prior:Exact Opl. ModekMatern

001 Param. Prior:Exacl Opt. ModekMatern

. " I . I ^ I

Number of Acquisitions

Dim: 2 Test Kernel: SqExp
Log length scales of test GP: -3.0000 -0.9018

I£ *H<* '••, |

• i I • i:: : " W i ^ j ; s i y
! I ••]• • * i s « ' . l .

. ' • ! : • •

; !!.. ' i | ! " | : ****

MM||MPtr £r=0.001 Param. Prior: Exact Opl. Model: SqExp

| a n l M P , r ^s0 .01 Param. PriorExact Opt. ModokSqExp

| | | jgMPt r ; r =0 ,1 Param. Prior:Exact Opt. Model:SqExp

^ W M P I ; r = 1 Param. Prior:Enact Opt. ModekSqExp

S&ii|MpF q = 3 Param. PrtoriExact Opt. ModekSqExp

•aaaaMEl, 5, = 0.001 Param. Prior:Exact Opt. Model:SqExp

•Br""""

l * ')) • • " : ' " * ; ' : • • • : 1 * ; ; n M l

V *•** t' »H«*V jri'iJ-ui'!5 ;£U:i:-i;D

1 15 16 28 29

Number of Acquisitions

Dim: 2 Test Kernel: Matern
Log length scales of test GP: -2.4507

Wipx^ // -t

M M M P I . ; . = 0.001 Param. Prkir:Exact Opl. Mode I: Matern

M H J M P ^ i , = 0.01 Param. PrtorExact Opt. Modal:Maiem

SmgjMPI. ^ = 0.1 Param. Prior:Exact Opl. ModekMatern

M i l MPI, sr="1 Param. Prior:Exacl Opt. Modal;Matern

| | | i M P I
r ^ n 3 Param. PriorExaol Opt. Model;Matern

• ^ H MEIr ; , = 0.001 Param. Prior:Exact Opl. ModekMatern

•» " - H C RAN0.

Number of Acquisitions

Dim: 8 Test Kernel: SqExp
Log length scales of test GP:-0.7629 -0.7629 -0.7629 3.0000 3.0000...

-

f

'

IIS oik ;;
I I * * . * ! * , 1

1

H U P I 5rx o.OOl Param. Prior:Exacl OpL Model:SqExp

M M H M P I (5, = 0.01 Param. Prior:Exact Opt. Model:SqExp

§j$$|MPI (£, = 0.1 Param. Prior:Exact Opl. Model:SqExp

gigjjJSI M P !
f ^,= 1 Param. Prior:Exact Opt. ModekSqExp

KB|P|MPI 5 = 3 Param. Prior:Exact Opt. Model:SqExp

Wi|HMEI r ^=0.001 Param. Prior: Exacl OpL Model: SqExp

§ w m c w

,

»" " i . " * * . " ' " *

Dim:
Log length scales of test GP

J ;
M i Hi i i

1 : \ F'^inVtf

i * N

32 Test Kernel: SqExp
-0.5593 -0.5593 -0.5593 4.0000 4.0000...

• M U P I . $.3 0,001 Param. PrtorExacI Opl. Model;SqExp

« H M P I r £r = 0.01 Param. PriorExact Opt ModekSqExp

m M M P \ S = 01 Param. PrtorExact Opl.Model:SqExp

H M P ^ 5_.1 Param. Prior:Exact Opl. Model:SqExp

| | | | g M P I
f 5f = 3 Param. Prior:Exact Opt. ModekSqExp

W M H M E I , 5, = 0.001 Param. PrtorExacI Opl. Modal;SqExp

M H L H C » A N D .

' • . ' ' . ' • j • <

_-:dv^^M-[%;|-.Q,n;,;i j;H;jy

Number of Acquisitions Number of Acquisitions

Figure 5.2: Effect of £r on the performance of MPI when priors are correct and fixed.
In all cases, after 30 acquisitions, using £r = 0.1 provides the best performance. In some
models, however, performance is improved by using larger £r for smaller numbers of function
evaluations.

74

-

-
I I *

-

* I *

Dim: 2 Test Kernel: SqExp

Log length scales of test GP: -1.9836 -1.9836

• • M E I c =0.001 Param. Prior:Exact Opt. ModelMatern

BBBBtMEI. £f = 0.01 Param. Prior:Exact Opt. ModelMatem

Ig^'tMEl 5 = 0 1 Param Prior Exact Opt Model Male m

s t - ^MEl , £ f=1 Param Prior Exact Opt Model MatiSrn

. , . jMEI (5 r = 3 Param. PrlorExact Opi. Model:Mate>n

| K M P I 4 =0<t Param. Prk>r;Exacl Opt. Model:Malern

• M L H C R A N D

14 15 18 2B 29

Number of Acquisitions

Dim: 2 Test Kernel: Matern

Log length scales of test GP: -1.4343 -1.4343

|MEI r 5,

I M E I r 5,

^ M

r 0.001 Param. Prior;Exacl Opi. Model:SqExp

; o.oi Param. Prior: Exacl Opi. Model:SqExp

: 0.1 Param. Prior:Exact Opt. ModekSqExp

: 1 Param. Prior:Exncl Opi. Model:SqExp

[3 Param. Prior:Exacl Opt. ModehSqExp

••O.t Param. Prior:Exact Opt.Model:SqExp

U ^ j_t,.L».i.i_ji5i i I,I 11 y s i i t . i I.I a n

Number of Acquisitions

5

I
> 4

1

(F
u

n
d

P

lu
te

 E
n

A

b
s
o

0

: ' • ' • . : ' • \ \

}

"..:,;.;,...;.,;.(; .
i*MM**£ '](-

• '•• j ; ; ; • • * ; " ; > , »

* ; ;

^ i ; ! ; ; ; ; ;

Dim 2 Test Kernel: SqExp

Log length scales of test GP: -1.9836 -1.9836

. • M i
I : I

.nfi -...

if] f"

[\ 'A

i i i '
; I '

n . ? :

Tfe
!•?

M ;r :

MM|MPI r £, = 0.001 Param. Prior:Exact Opi. Model:Malem

ajWMMPIr £, = 0.01 Param. Pr)or:Exac1 Opt. Model:Matem

|jj|g|MPIF £r = 0,1 Param. PrlorExact Opi. Model: Male rn

| | | j | MPI, £,= 1 Param. PriorExacI Opi. Model:Malern

MjjjgMPI, £r = 3 Param. PriorExacI Opt. Model:Malern

HMjMEl , 5r = 0,001 Param. Prior:Exact Opt. Model:Mattrn

H i ^ H A N o ' -

. : ?': •-. [.$: i I":' :..M*. : : l ' [' i £ .: j j j j ' iaj'f (: • ! : : * ' :

: i : i : . : :i:M.: :y--/:,! :i:*L:U 1 W : L !

Dim: 2 Test Kernel: Matern

Log length scales of test GP: -1.4343 -1.4343

| M P I r £r

|MP I , ir

|MP I f i ,

|MPI r 5,

l M P ' r <r

| M E I 5f

• LHCDi

s O.001 Param. PriorExacI Opt Model:SqExp

• 0.01 Param. Prtar:Exact Opt. Mod«l:SqExp

10.1 Param. PriorExact Opi. Model:SqExp

: 1 Param. PriorExacI Opi. ModeLSqExp

: 3 Param. Prior:Exacl Opi. ModeltSqExp

•• 0.001 Param. Prior:Exact Opi. ModaLSqExp

Number of Acquisitions Number of Acquisitions

Figure 5.3: Effect of £r when the priors are incorrect and fixed. In these experiments, the
test kernels have different parametric forms and fixed length scales than the optimization
model kernels, though they both have EEC = 0.5. Behaviour is similar to when priors are
correct and fixed.

75

5.2.2 The Effect of Priors on Performance

Next we investigate the case where we learn the kernel parameters as we accumulate data.

Remarkably, the effect of changing £r is basically the same when learning length scales as

when they are fixed; again there seems to be little benefit to choosing a fixed £r to suit a

particular number of acquisitions. Graphs comparing £r versus MAP learning with different

priors are given in Appendix B. As in the exact prior case, we choose £r = 0.001 for MEIr

and £r = 0.1 for MPI r in our comparisons. A summary of these runs is shown in Figure 5.4.

In all cases, there is a performance loss associated with having to learn the kernel pa­

rameters. However, as the number of acquisitions increases, performance improves to near

that achieved by using the exact priors. Also, in most cases, performance earlier on is no

worse than acquisition on a random Latin hypercube. This is significant because in previous

work Latin hypercube acquisition is always used for the first 10 • d acquired points before

acquiring using MPI or MEI begins. Our results show that even using maximum likelihood

(i.e. with no prior on parameters) from the very beginning we can achieve significantly better

performance in far fewer function evaluations.

That said, there are cases where maximum likelihood learning can perform worse than

random, as illustrated in the first graph of Figure 5.4. We hypothesize that this is because the

first test model has the shortest length scales, and we have found that maximum likelihood

learning tends to generate very long length scales, as was shown in Chapter 3. Introducing

an ILN or EEC prior on length scales corrects this problem.

In most cases, performance when using MAP learning with ILN priors is not signif­

icantly worse than using no priors at all, and is sometimes significantly better. On the

two-dimensional test model with one very short length scale of e - 3 0 , using ILN priors with

MEIr is just barely significantly worse than with no priors at all. Performance using the

EEC prior is similar to that using ILN, being slightly worse or slightly better depending on

the situation. In any event, using a prior, whether ILN or EEC, when learning length scales

seems to be the "safe" choice in most cases.

76

Dim: 2 Test Kernel: SqExp
Log length scales of test GP: -1.9836 -1 .£

mgm MEIf £f = 0.001 Param. PriorNone Opt. Model:SqExp

8 M B MEtr £(= 0.001 Param. PriorlLN Dpi. Mode!:SqExp

t 3 f S . MEI, £,= 0.001 Param. Prior:£EC Opl. ModeLSqExp

, , MEI, £, = 0.00t Param. Prior:Exact Opl. ModekSqExp

M M W M P I , ; , = 0.1

W|M|MPlr £, = 0.1

^ M P , r ^ = 0 ' 1

| | | | M P i r £, = 0.1

;i.as.i««i;sW * " P ' RAND

: . . • . . ; • , \ r

Param. PriorNone Opt. Modet:SqExp

Param. PriorlLN Opl. Model:SqExp

Param. priorEEC Opl. ModehSqExp

Param. Prior :Exacl Opl. Model:SqExp

Dim: 2 Test Kernel: Matern
Log length scales of test GP; -1.4343

n o i i a r o

• • • M E I , £

• l M E I - 5

^ B M E ' r *

IBMMPIr 4

HSiMPIr ^

• M P I < E

i1- ' T " * « m M** . * . . ! •

- • ; 1 * *

= 0.001 Param. PriorNone Opl. Model:Malerrt

= 0,001 Param. Prior;ILN Opl. Model:Matern

s 0.001 Param. PriorEEC Opl. Model:Malem

= 0.001 Param. Prior: Exact Opt. ModekMaMrn

= 0.1 Param. Prior:Nona Opl. Model:MaWm

= 0.1 Param. Prior:ILN Opt. Model:Mai*rn

= 0.1 Param. Prior:EEC Opl. Model: Ma tern

= 0.1 Param. Prior:Exacl Opt. Mode):Mat$m

JO

»*:".:" '•} um . ••JMm-"

Number of Acquisitions Number of Acquisitions

Dim: 2 Test Kernel: SqExp
Log length scales of test GP: -3.0000

' •

XJfXKl

-: :

iini. • I |

• • M E

H M E

l f l i M E

»ME

M M M P

• | M P

. « i M P

; • i

£ , = o . 101 Param. Prior:None Opt. Model:SqExp

£f = 0.001 Param. Prior:ILN Opl. Mode I :Sq Exp

£_ = 0.001 Param. PriorEEC Opt. ModehSqExp

£, = 0.001 Param. Prior:Exact Opt. Model:Sq£xp

£(=o.
6,-0.

Sr»o-

£,=°.

>.» ^

Param. PriorNone OpL ModeLSqExp

Param. PriorlLN Opt. ModekSqExp

Param. Prior:EEC Opl.; ModetSqExp

Param. Prior:Exact Opt. Model:SqExp

u;H V- iJ - - ;

Dim: 2 Test Kernel: Matern
Log length scales of test GP: -2.4507 -0.3525

5

« 75

.2
o

LL

O

w *

«
o
n 1

<
°

l i i i i x i i i i ;

", i , ' i i , " , i ^ i

• J H M E I , £, = 0.001 Param. Prior:None Opt. Model:Malem

• H U E I , 5, = 0.001 Param. PriorlLN Opt. Model: Matern

| | | g |MEI r £, = 0.001 Param. Prior:EEC Opt. Model:Malem

l | | | | |MEI r £, = 0.001 Param. Prior; En act Opl. Mode hMatern

• M M M P I , £, = 0.1 Param, PrfonNone Opt. Model: Malem

| H M P I r £, = 0.1 Param. PriorlLN Opt. Model:Matern

j j j j j j j»M P I , S ^ 0 - 1 Param. PriorEEC Opl. Model:Malem

H W M P ,
r £f = 0.1: Param. Prior:Exact Opt,. Model;Matem

. M | L H C f W l D

7 v - ; i :-]•

* ; * * *:**?«IJ ; i; : i f]r •v-'f'i • '.•'..#

Number of Acquisitions Number of Acquisitions

Dim: 8 Test Kernel: SqExp
Log length scales of test GP: -0.7629 -0.7629 -0.7629 3.0000

: I i • I • :

• • ; ; • i

• ' - ' : ' ; ' • ' • • • • n • '•• - " ;

« « y ^ :
; : •'

l; W^i
i i l i ; r ;J f iCi

mm,m:

• H M E I .
S«a,
m™,
m™.
mi'"',

• m-". w
Ai

•~m

r = 0.001 Param. Prior:None Opt. Model:SqExp

r = 0.001 Param. PriorlLN Opt. ModeliSqExp

r = 0.001 Param. PrlorEEC Opt. Modal:SqExp

r = 0.001 Param. PrionExaot Opt. Model :SqExp

r = 0.1 Param. Prior:Nor* Opl. Model:SqExp

f = 0.1 Param. PriorJLN Opt. ModeliSqExp

r = 0.1 Param. Piior:EEC Opl. Model:SqExp

= 0.1 Param. PiionExacI Opt. Model:SqExp

i : j»»l j ' ! j y j i : ' ! „ : ' i =

Dim: 32 Test Kernel: SqExp
Log length scales of test GP:-0.5593 -0.5593 -0.5593 4.0000 4.0000...

I

' \

• : i i ! i : ; i . • ' ; •

J I I S I I I I X

:

• • [,,MA

I : wm

M « | M E I r ? r=0 001 Param. PrlorNon Opt. Mod«H:SqExp

W W H M E I , £, = 0,001 Param. PriorlLN Opl. Model:SqExp

• • M E ^ ^aO.001 Param. Prior:EEC Opl. Model:SqExp

g | |gMEI r ^sO.001 Param. Prior:Exact Opl. ModakSqExp

• H M P I t t = o.1 Param. PrlorrNon* Opl, ModehSqExp

_ | M P I r i r = 0.1 Param. PriorlLN Opt. Model:SqExp

• a w M P ^ ^ = 0 . 1 Param. Prior:EEC Opt Model:SqExp

| » M P I r £,30.1 Param. PriorExact Opl. Model:SqExp

H ^ R A N Q - '

!-i : : ; 1 ; 1; j
• - r - i r ; .•<;>». J ; « a c * ' Q ; ; . * ; • • : ; • ; ? • < . • „ ' :•••.• -; i«;

Number of Acquisitions Number of Acquisitions

Dim: 2 Test Kernel: Matern
Log length scales of test GP: -1.4343 -1.4343

IllSXIXXJf

I * H * * j t v M

-

I H H M B .

af l iM E ' '
^ M E , r

mMB,
• r M M P i ,

W M P ^

|&g|gj||MPI

w$mMPi-

" •

f = 0.001 Param. PriorNone Opl. Model:SqExp

f = 0.001 Param. PriorlLN Opt. Model:SqExp

r = 0.001 Param. PriorEEC Opt. Model:SqExp

f = 0.001 Param. PrionExact Opt. Model:SqExp

f«0.1

r = 0.1

f = 0.1

= 0.1

":

Param. PriorNona Opl. Model:SqExp

Param. PriorlLN Opt. ModelrSqExp

Param. Prior:EEC Opt. Modal:SqExp

Param. Prior:Exact Opt. ModehSqExp

' • i • • ?

^ jj : : : ,H : ' i\ \ >

•"••' : - " » * - * • • - ^ - ~ - i

Dim: 2 Test Kernel: SqExp
Log length scales of test GP: -1.9836

i*$i\x%$i£

\ »*«;,*•»'y J .

'H fy *».

H M E ^ ^ S 0.001 Param. PriorNone Opt. Model:Matern

•HjUMEl, £, = 0.001 Param. PriorlLN Opl. Model:Matern

| | | | | M E I r £r = 0.00t Param. Prlor:EEC Opt. Model:Malem

ja»||[MEI £=0.001 Param. Prior:Exact Opt. ModehMalern

• ^ • M P I , £r = 0.1 Param. PriorNone Opt. Model;Maiern

•HMMPI , £, = 0.1 Param. PriorlLN Opl. Moder.Matem

H l l M P I , £f = 0.1 Param. Prior:EEC Opl. Model:MaWm

mam MPI, £, = o j . Param. Prior;Exacl Opt. ModeliMatorn

"!• H C r w o

Number or Acquisitions Number of Acquisitions

Figure 5.4: Performance of MEIr and MPI r using MAP learning with different parameter
priors

77

5.2.3 Effect of Mismatched Mode l s

Figure 5.5 shows the impact of trying to learn in the case where the true kernel of the test

function cannot be expressed in the parametric form of the optimization model kernel. In

machine learning parlance, we might say that this is an "unrealizable" case, or that the true

kernel is not in the version space of kernels we are considering. Of course, our objective is

not to learn the kernel of the test function but to optimize it, so the test model kernel's

presence in the version space may not matter, especially if there is a kernel in our version

space that behaves sufficiently like the true kernel.

Our experiments have indicated that for both MEI r and MPI r , when not learning length

scales, the matching kernel performs at least as well as the the non-matching kernel, and

sometimes significantly better. This is true also when using a MAP objective with either

ILN or EEC priors, although in the case where the test function was Matern and learning

was done via MAP, the choice of optimization kernel did not appear to matter.

When using no prior on parameters and using maximum likelihood, however, the Matern

kernel performed as well or better than the squared exponential kernel, and seemed to suffer

less from the loss in initial performance described above.

Dim: 2 Test Kernel: SqExp

Log length scales of test GP: -1.9836

"
uMo>«;

y v <

H H MEIr £r = 0.001 Param. PrioriNone Opt. ModelzSqExp

« M | M E I r 5r =
 0 0 0 1 Param. Prior:ILN Opl. Model: SqExp

8j||8jMEIr £r = 0.001 Param. Prior: EEC Opt. Model:SqExp

W ^ M E ^ £r = 0 001 Param Pnor Exact Opl Modal SqExp

•>Eg/(|ME1f 5r = 0001 Param Prior None Opt Model Matem

." «MEIr fcr = 0.001 Param. PriorILN Opt: ModekMattm

;,;.;,; MEI, ^ = 0 001 Param Prior EEC Opt Model Matem

MEI, 5r = 0 00t Param Prior Exacl Opt Model Matem

• • " w

. - ' • ' •• . , ; .
• " " ' ' • • " • « > , » ' • • : ' „ • . . ; « i / , ; 1 , _ ; , , /

10 13 18 IS 22

Number of Acquisitions

i.
1.

Dim: 2 Test Kernel: Matern

Log length scales of test GP: -1.4343 -1.4343

l U . - i - I

1)1.«

~,

' M " • *

H j M E l 5r = 0,01 Param. Prtor;None Opl. Model; Ma* rn

jBJHMEIr 5, = 0.01 Param. Prior:ILN Opt. ModelrMalem

• • M E I , Sr =« 0.01 Param. Prior:EEC Opt. Model: MaWm

! f | | ! M E ' , £, = 0.01 Param. Prior:Exact Opt. Model:Matem

f f f i £ MEIf 5,a 0 01 Param. PrlorNone Opt. Model:SqExp

?£, ̂ M E I f 5f = 0 01 Param. Prtor:ILN Opt, ModelrSqExp

«r, ;̂ MEIr 5r = 001 Param. Prior:EEC Opl. Model:SqExp

MEI, £r = 0 01 Param. Prior:Exact Opt. ModehSqExp

• " " w

'

V-«», vJ. * * "

4 7 1 0 1 3 16 19 2 2 2 5 ^

Number of Acquisitions

Dim: 2 Test Kernel: SqExp

Log length scales of test GP: -1.9836 -1.9836

-

"

"
M..M.I

H U \ t t

; 1(,

^ • • M P L 4. = 0.1 Para

MMMMPI. i . -0.1 Para

Ij j jBlMPI, 5r = 0.1 Para

J R M P ^ . O . I Para

aaikn^-Di para
^ i i M P I

r 5 r = 0 1 Para
"^MPI f 5(= 0.1 Para

• J>MPlr 5 r»01 Para

™ L H Q ™ 0

• M 1

1MI ,

n Prior: None Opt. ModeLSqExp

TI Prior:ILN Opt. Model:SqExp

n PriorEEC Opt. ModelSqExp

TI Prior:Exact Opt. Model:SqExp

n Pfior:None Opl. Model:Mat6m

n.PriorlLN Opt. Model:Malern

TI Prior EEC Opt Model Matern

n Prior:Exact Opt. Model :Mat6rn

[

t . .

, , 13 16 19 22 25 28

Dim: 2 Test Kernel: Matern

Log length scales of test GP: -1.4343 -1.4343

u* i««) t

• " , ' •

.

< V '» .*
'»*('>

• • M P ^ 1,-0.1 Param. Prior:None Opt. ModekMaWrn

MBJMP', 5r=.0.1 Param. PriorilLN Opt. Model:Matem

H H MPIr 5r = 0,1 Param. Prior:EEC Opt. Model Matern

H H I MPI(£(= 0.1 Param. Prior:Exact Opt. Model;MaWrn

itt&nMPI f =0.1 Param. PriorNone Opl. ModeI:SqExp

ffsEf MP Ir £ (
3 ° 1 p a r a m Prior ILN Opl ModelSqExp

4' MPIr 5f = 0 l Param PnorEEC Opt ModelSqExp

it ,: MPI £ = 0.1 Param. Prior:Exact Opt. Model:SqExp

| » L M C l w n

'

' """I.-" , , , fl " " *

22 25 28 30

Number of Acquisitions Number of Acquisitions

Figure 5.5: Effect of mismatched kernels

78

5.2.4 The Effect of Gradient Information

All the experiments discussed so far, along with all previous work in GP-based optimization,

assume that we can only observe the value of f(x) at the points we choose. However, as

we have said, the underlying Gaussian process models we use can condition on gradient

information when such information is available, because the gradient observations are jointly

Gaussian with the function evaluations and with each other. Therefore, we can use all of

the same techniques for learning kernel parameters and for choosing acquisition points that

we used previously, augment the model with gradient information, and explore the effects

of different £r and different parameter priors.

Detailed results from two of the test kernels are presented in Appendix B. As we found in

our function-value-only experiments, it appears that the best fixed £r for the MEI r criterion

does not vary significantly regardless of the number of acquisitions; we use a fixed value

of £r = 0.001 for all of our comparisons, which is smaller than the value we chose for our

function-value-only experiments.

Unfortunately, the MPI r criterion seems to have more variable performance depending

on the test kernel and the method of learning parameters. The best choice of £r ranges

from 0.01 to 1.0, although differences in performance seem not to be very drastic in many

scenarios. We chose £r = 0.1 as our point of comparison because it performed at or near

the best when learning kernel parameters, whether using ML or MAP. However, to achieve

similar performance using exact priors, a setting of £r = 1.0 is required.

Despite the apparent sensitivity of MPI r , it appears that MEIr performs well at £r =

0.001 regardless of test model or parameters, and when learning parameters performs slightly

better with an EEC prior than with an ILN prior or none at all.

As another point of comparison, we include data on the performance of using a hill-

climber with random restarts, which is an optimization strategy that is very common in

practice. The hill-climbing data are generated as follows: Starting from the origin, the

BFGS hill-climbing algorithm is applied but the number of function evaluations allowed is

limited to 30. If the hill-climber converges before its alloted function evaluations are ex­

pended, it is restarted at a uniformly randomly drawn point in the domain. This continues

until 30 function evaluations have been made. The reported value for BFGS after k acqui­

sitions is the best observed value up to that point. Performance of this approach is denoted

BFGSRESTARTS and is shown in green box plots.

79

Dim: 2 Test Kernel: SqExp

Log length scales of test GP: -1.9836 -1.9836

-

IIJKftj* : •

M U E I . £r = 0.001 Param. Prior:None Opt. Model:SqExp

lg$ |g M E I , i , = 0M1 Param. PrioriILN Opt. ModeLSqExp

n-',<MEI c =0.001 Param. PriorEEC Opt. Model:SqExp

V** MEI ; =0.001 Param. Prior.Exad Opl. Model:SqExp

»fSFGSRESTARTS

'"* #•; E* 1 ' ' ' - :
s
 : ! I: ;

22 25 28 30

Number of Acquisitions

Dim: 2 Test Kernel: Matern

Log length scales of test GP: -1.4343 -1.4343

• J I M

I * :

. ; • ; ; , ; * * i , J # . 1

":":

•MM MEIr 5r = 0.001 Param. Prior; None Opt. Model: Matern

aamg MEI, ; r = 0.001 Param. Prior:ILN Opl. Model:Malem

Mfffffjf MEI ; = 0.001 Param. Prior:EEC Opl. Model:Matern

gHU; MEI i =0.001 Param. Prior: Exact. Opl. Model: Malern

M|B r o SRE>I«RTS

•

- . - * • . » . , .

Number of Acquisitions

Dim: 2 Test Kernel: SqExp

Log length scales of test GP: -1.9836 -1.9836

M115K*

: ^Vwl : f'
i. !**»«s

•;«>

H M P I . S, = 0.1 Param. Prior:None Opl. Mo

MMMPI . 5.-0.1 Porom. Prkn:ILN Opt. Mod

dehSqExp

ISqExp

|g||gMPI r ; , = 01 Param. PrioriEEC Opl. ModakSqExp

P i i l M P I , 5r = 0,l Param. PriorExact Opl. Modal:SqExp

||gg|8FGSRESTART..

•V ! \ j " m *':".! •l>'i'
-€\
: hU:

,iiii-l
22 25

Number of Acquisitions

Dim: 2 Test Kernel: Matern

Log length scales of test GP: -1.4343 -1.4343

5

0)

F
u

n
c
ti
o

n
 V

a
l

E-
1.
<

0

w i M • '•-";: • - •

- i l l M»*«nH'v " -
; ' i : n i! !' ! TK.̂Caf- P. H

1 i 7 10 13

• • M P I t £r = 0.1 Param. Prior:Nona Opt. Model:Malern

HBJMMPI, £r = 0.1 Param. PrioMLN Opl. Model:Malern

$ |$ | ! M P I
r 5r

 = 0 ' 1 Param. Prior:EEC Opl. Model ;Mattm

| | | g | M P I , ?r = 0.1 Param. Prior: Exact Opt. Model:Malem

•gBFGSRESTAKTS

•^ ; S \ ** * ; i

16 19 22 25 28 30

Number of Acquisitions

Figure 5.6: Performance of MEI r and MPI r with gradients

The performance of MEI r on test functions is ahead of BFGS after only a few function

evaluations, and is soon very far ahead: After 15 function evaluations in both test cases of 500

functions each, 75% of the values found by MEI r are better than the median performance of

BFGSRBSTARTS- This is a stunning improvement over a method that is widely considered

state-of-the-art, albeit at a significantly higher computational overhead—recall that our

method actually calls BFGS as a subroutine. Nonetheless, for expensive functions expending

the extra effort in order to make fewer function evaluations may be an attractive tradeoff.

We have restricted our experiments with gradients to two-dimensional test kernels only.

This is because the size of the kernel matrix increases much more rapidly for high-dimensional

problems with gradient information: Each time we acquire a point, we effectively add (d+1)

data values to our model, and the size of K increases accordingly. This means that, for higher

dimensional problems, clever methods of increasing computational efficiency like those dis­

cussed in Section 7.2.1 will become a necessity. For now, we present these results as a very

encouraging first step toward using GP-based optimization with gradients.

80

5.3 Summary

We present a summary of the lessons we have learned from this study, directed toward

anyone interested in using these techniques on their own optimization problems.

• An initial Latin hypercube acquisition is unnecessary; performance exceeding that of

LHC acquisition is achieved in far fewer than the 10 • d function evaluations typically

allocated to this technique.

• When optimizing using function evaluations only, performance for MEI r is good at

around £r = 0.01, and performance of MPI r is good at around £r = 0.1. Of course,

our empirical evaluation is not exhaustive (nor can it be) but these values have worked

well on average for the 30 000 test functions we used.

• When learning kernel parameters, using an ILN or EEC prior is helpful in some cases,

and not damaging in any. The ILN prior in particular is easy to implement.

• When using gradient information, MEI r is preferable since it is more robust to different

£r and models. A small £r = 0.001 is effective in the cases we examined.

• Using an EEC prior when learning kernel parameters using gradient information may

result in somewhat better performance, though the technique does not appear to

require it.

5.4 Functions from the Literature

We now examine five analytic functions used in recent dissertations on Gaussian process-

based optimization. Note that in the literature functions are typically minimized, and

for this section only we will assume our intent is to minimize the provided functions. (Of

course all of our techniques apply simply by negating function values and gradients.) The

set of functions presented here consists of the union of the examples described by Schonlau

[41] and Sasena [39] that existed prior to these works in the literature3. These functions are

prominent examples of the most commonly used evaluation technique in global optimization

prior to this dissertation: They have been selected because they were deemed to have

characteristics that are somehow representative of the functions likely to be encountered

in practice. While we believe that this approach is not as rigorous or informative as the

3Sasena also includes a 'mystery function,' whose "origins are unknown." [39]. We omit this function.

81

study we have described in the previous sections, we present a brief survey of some of these

functions along with some results. The functions we use are as follows:

Branin This two-dimensional function is the sum of a quartic polynomial and a sinusoid

of the first variable.

/ (x i , x 2) = (x2- (5 .1 /47r 2)^ + (5 /7r)x 1 -6) 2 + 10(l-l/87r)cos(a;i) + 10

xi e [-5,10]

x2 G [0,15]

Three identical global minima with value « 0.3979 are reported by Sasena [39] at

x = (3.1416,2.2750), x = (9.4248,2.4750) and x = (-3.1416,12.2750) [39].

Goldstein-Price This function is an eighth-degree polynomial of two variables.

f(xi,x2) = [l + (x1+x2 + l)2-(19-Uxx+3xl-Ux2 +6xix2 +3x1)]

x [30 + (2xx - 3x2)
2 • (18 - 32xi + 12x? + 48x2 - 36xix2 + 27a^)]

xi, 12 G [-2,2]

Schonlau [41] reports a global minimum equal to 3.0 at (0, —1).

Hartman 6 This is a six-dimensional function of the form

/ (x i , . . . ,x 6) = - ^ e x p
i = i

• y ^ aij (xj pij)

The constants a^, c, and pij are given by:

a

10 3 17 3.5 1.7 8
,05 10 17 .1 8 14
3 3.5 1.7 10 17 8
17 8 .06 10 .1 14

d] = (1,1.2,3,3.2)T

.1312 .1696 .5569 .0124 .8283 .5886

.2329 .4135 .8307 .3736 .1004 .9991

.2348 .1451 .3522 .2883 .3047 .6650

.4047 .8828 .8732 .5743 .1091 .0381

\Pij] =

Schonlau [41] reports a single global minimum of-0.30098 (-1.20069 on a transformed

negative-log scale) but does not give its location.

Shekel 10 This four-dimensional function is given by

/ (x i , . . . ,x 4)
10

x i , x 2 , x 3 , x 4 € [0,10]

82

where x = (x\,X2,X3,X4). The vectors a* and constants Cj are given by

4
1
8
6
3
2
5
8
6
7

4
1
8
6
7
9
5
1
2

3.6

4
1
8
6
3
2
3
8
6
7

4
1
8
6
7
9
3
1
2

3.6
L. -J

[d] = (.1,.2,.2,.4,.4,.6,.3,.7,.5,.5)T

Schonlau [41] reports a global optimum near (but not at) x = (4,4,4,4). Its value is

not given but appears to be approximately —10.52.

Six Hump Camelback This function is a quartic polynomial of two variables.

f(x!,x2) = (4-2.1x2
1+xl)-x2

1+x1x2 + (-4 + 4xl)-xl

xi G [-2,2]

xi G [-1,1]

Sasena [39] reports two identical global minima of —1.0316 at the domain points

(-0.0898,0.7127) and (0.0898,-0.7127).

A direct comparison with previous work on these test functions is difficult for at least

two reasons. First, a variety of evaluation metrics have been used in the past. For example,

Schonlau assumes knowledge of the true global minimum, and counts the number of function

evaluations necessary to achieve an absolute tolerance of 0.0001 on the function value.

Sasena on the other hand counts the number of function evaluations to reach within 1% of

the value of the global minimum, along with several other measures. Second, the method

of acquiring results varies from study to study. Schonlau reports results of one attempt

at optimization, while Sasena reports the average results from 10 different sets of initial

starting acquisitions. The results we present here are similar to those presented earlier:

we simply allow the algorithms 30 function evaluations, and compare against uniformly

randomly sampled points (when no gradient is used) and BFGS with random restarts (when

the gradient is made available.)

Figures 5.7, 5.8, 5.9, and 5.10 each illustrate one optimization run on each of the above

functions using all combinations of kernel, criterion (MPI r and MEI r), and length scale

83

prior. Figures 5.7 and 5.8 illustrate performance without gradient observations and Figures

5.9, and 5.10 illustrate performance with gradient observations. Previously reported global

minima are indicated by a black horizontal line.

The first thing to note here is that these runs present at best a sanity check; no reasonable

general inferences can be drawn from such a small set of observations. Nevertheless, some

interesting points arise. First, it appears that the Branin function is particularly easy

to optimize; all methods including random sampling find a very good point after very few

iterations. We conjecture that this is because the function has three identical global minima,

each of which lies in a wide, shallow basin. On the other hand, the unique minimum of the

Goldstein-Price function lies in a small convex basin surrounded by concavities, and proves

to be more difficult. Indeed, it appears that providing gradient information about the

Goldstein-Price function is unhelpful, possibly because it is not well-modeled by the kernels

we chose, or because the concavities near the minimum are misleading to the search. The

Hartman 6 and Shekel 10 functions are both constructed by summing up several 'wells'

that each contain a local minimum. Those of the Shekel 10 are much narrower and deeper

than those of the Hartman 6. On these functions the GP models made better progress, and

gradient information was beneficial in both cases. In particular, it appears that a global

model of the Shekel 10 function is beneficial, perhaps because it allows a systematic search

of the local minima in order to find the global minimum; BFGS with random restarts did

not manage to locate the deepest well, and simple random samples did not find any of them.

Finally, the Six Hump Camelback function presents an interesting case: As mentioned above,

Sasena reports that the global minimum of the function is -1.0316, but all of our methods

found values well below this. This is because, over the domain indicated, the global minimum

is against a constraint: Because the dominant x\ term is —2.1x|, eventually the function

will tend to —oo as we increase |a;i|. In fact, it falls off sharply just before the edges of the

domain, resulting in several global minima against active constraints. It is not clear why

this was not discovered or mentioned previously, but it does illustrate the importance of

properly handling this type of optimum.

84

Branin - Squared Exponential Kernel

• « # * * * (

o

o

*
*

*

MEI

MPI

MEI

MPI

MEI

MPI

- No Prior

- No Prior

- ILN Prior

- ILN Prior

- EEC Prior

- EEC Prior

RAND

® S o
„ ; ; c o

o 9 a
B j ! 5 5 3 o

Number of Acquisitions

Hartman 6 - Squared Exponential Kernel

S
ol

ut
io

n
B

es
t

-3

-W 8 i g g g | § f OQQO ,

0 0 O „ ° °

o

* * * * * * * *
* * *

~ '•' " T 1

0 MEI f-No Prior

0 MPI f-No Prior

* MEIr-ILN Prior

» MP!r-ILN Prior

. MEI r- EEC Prior

. MPIr-EEC Prior

* RAND

o o o o o
? ? ? « « 6 : : • • •

"

$ K '

* * * * * * * *

o o o 8 S <
• , I •

Number of Acquisitions

(ft

•

Goldstein-Price - Squared Exponential Kernel

© i j ^ t i j i ^ i j j i ^ ^ i ^ i ^

0 MEI r-No Prior

0 MPI - No Prior

* MEIr - ILN Prior

» MPIr - ILN Prior

. MEIr - EEC Prior

. MPIr - EEC Prior

- RAND

-

.

* * * * * * * * * * * * # * * * * - ;

* * * * * # # • ? * * * '

O O O O O O O O O O O O O O O O O O f

O O Q G O O O O O a O O G O O O C O O C O O a O O O C t

Number of Acquisitions

Shekel 10 - Squared Exponential Kernel

a } « { C 9 « e o ^ } o J * „ , , , , , » , ,: > , , ,
f f # » 9 8 S o o o o _

*
° * ,

„ MEI t- No Prior

0 MPIr - No Prior

. MEIr - ILN Prior

, MPIr - ILN Prior

. MEIr - EEC Prior

. MPIr - EEC Prior

• RAND

* * * » » » « *
O O O O O O O O O O O O l

O 0 '

.

-

Number of Acquisitions

Six Hump Camelback - Squared Exponential Kernel

MEI -No Prior

MP^

ME^

MPI|
MEI

MPI

- No Prior

- ILN Prior

• ILN Prior

- EEC Prior

• EEC Prior

o o o
; d f f i f f l » O O O O O l f * * * * * *
> * * * * * » • • » <

Number of Acquisitions

Figure 5.7: Analytic function examples using the squared exponential kernel. For MPI,
£r = 0.1. For MEI, £r = 0.01. No gradient information is provided. The solid black line
indicates the best previously published minimum.

85

Branin - Matern Kernel Goldstein-Price - Matern Kernel

© • - -

0 O O 0

- u ° °

* *
? ! . ' *

„ MEIr - No Prior

0 M P I r - N o Prior

, MEI r - ILN Prior

, MPI r - ILN Prior

MEI f - EEC Prior

. MPI - E E C Prior

« RAND

< * * o o 6 e a o o o c o c o o o n

-

-

"

• IS S B * " "-: >• >• •'• A

0 C 0 0 0 0 0 (J Q ' '. X. h •'. < >. :• 4 X y < x. i . X ;

, , « « . , , .

0 MEI - No Prior

0 MPI r - No Prior

, MEI r - ILN Prior

„ MPI - I L N Prior

. MEI r - EEC Prior

. MPI r - EEC Prior

y RAND

o o o o o o o o o o o o o o o o o <

* * * * * * » * * * * • * * * * * <

* 9 « « » 8 8 « S 8 S 9 9 8 * 9 8 i

Number of Acquisitions

Hartman 6 - Matern Kernel

Number of Acquisitions

Shekel 10 - Matern Kernel
0 • « 8 g § j i j 4 g s „ , ; ,

* G O

0 O O O 0

y * o o o o

« x x x x x X x , x ,:

* * * * * * * * * *
*

'
0 MEI - N o P r i o r

0 MPI - N o Prior

„ MEI r - ILN Prior

, MPI r - ILN Prior

. MEI f - EEC Prior

. MPI r - EEC Prior

x RAND

o o

.

0

o
, * » •< x x x x x x x „ e 1

* * * A

»
•

* * * * *
* i :

* * * * * * *
.

» . t . M . . j . | j { S 5 J S j > - " > ' '• " •< • <

-

-

„ MEIr-No Prior

0 M P I r - No Prior

» MEI (- ILN Prior

» MPI r - ILN Prior

. MEI r - EEC Prior

. MPI r - EEC Prior

- RAND

* *. *. o o

, • * « * , « » .

* * * * * * * o o o

i

*
*

8 (

-

Number of Acquisitions Number of Acquisitions

Six Hump C a r r y b a c k - Matern Kernel

. .. . ,
0 MEI - No Prior

0 M P I r - N o Prior

„ MEI f - ILN Prior

, M P I r - I L N Prior

. MEI r - EEC Prior

. MPI r - EEC Prior

x RAND

® •

Number of Acquisitions

Figure 5.8: Analytic function examples using the Matern kernel. For MPI, £r = 0.1. For
MEI, £r = 0.01. No gradient information is provided. The solid black line indicates the best
previously published minimum.

86

Branin - Squared Exponential Kernel Goldstein-Price - Squared Exponential Kernel

*
-

• » 0

« « »
9 O O

«
• * * 9 o o o o

, " M I I J S S H K ,

0 MEI - No Prior

0 MPI - No Prior

. MEI -ILN Prior

, MPIr - ILN Prior

. MEIr - EEC Prior

. MPIr - EEC Prior

x L H C H A N D

-

-

-

ffi » « ® 8 i
., MEI

p MPI

„ MEI

» MPI

. MEI

. MPI

, LHC

- No Prior

- No Prior

- ILN Prior

- ILN Prior

- EEC Prior

- EEC Prior

RAND

• « » & a » &

Number of Acquisitions

Hartman 6 - Squared Exponential Kernel

Number of Acquisitions

Shekel 10 - Squared Exponential Kernel

11

• • •

*
•

y

'
0 MEIr-No Prior

0 MPI r- No Prior

MEIr - ILN Prior

» MPIr - ILN Prior

. MEIf - EEC Prior

. MPIr - EEC Prior

•< LHCRAND

'

-

-

-
o

*
*

* "' X

• • • • • * < S > 4 » « « » ® » © © * « ' < a * » « < B « « i

I . I I 1

-2

-4

lu
tio

n

(B "*

m
-8

-10

• * *
8 i • ° '

. : .
,*

-

o O 0 9

c MEI - No Prior

0 MPIr-No Prior

, MEIf - ILN Prior

» MPIr-ILN Prior

. MEI -EEC Prior

. MPI -EEC Prior

« LHCRAND

p p p p Q P P p p p p p p , , y , x

O O P 0 (

« ft * * * * * m » » * * * » if •* * :

0

« * * » * > * * * * * » * * * * « *
O O O O O O O O O O O O 0 !

Number of Acquisitions Number of Acquisitions

0

-5

uotjn

o

in

-20

Six Hump Camelback - Squared Exponential Kernel
!_©—$, , , , ,

0 M

* * * *
0 S 8 8 8 o o * *

0 MEI r-No Prior

0 MPI - No Prior

, M E I - ILN Prior

, MPIr-ILN Prior

. MEIr - EEC Prior

. MPIr - EEC Prior

- L H C R A N D

^ • • • e « s s e 9 4 i e g A 4 A e e e ® @ ' S 9 0 <

Number of Acquisitions

Figure 5.9: Analytic function examples using the squared exponential kernel. For MPI,
£r = 0.1. For MEI, £r = 0.001. Gradient information is provided. The solid black line
indicates the best previously published minimum.

87

Branin - Matern Kernel

'•*•

« «

» »

0 MEI - No Prior

0 M P I r - No Prior

, MEI - I L N Prior

* MPI - ILN Prior

. M E I r - E E C Prior

MPI - EEC Prior
r

« L H C R A N D

« * »

i l l i l i l l i i l

— I

-

•

•

•

IL

Goldstein-Price - Matern Kemei

Number of Acquisitions

Hartman 6 - Matern Kernel

-0.5

-1

-1.5

-2

-2.6

-3

- • • *

. °

* *
. y.

•

o s

• * *

*

0 MEI r - No Prior

0 M P I r - N o Prior

» MEI f - ILN Prior

, MPI - I L N Prior

. MEI - EEC Prior

. MPI, - EEC Prior

» L H C R A N D

•

-

-
o

' 6 ' *

Number of Acquisitions

I 1

* • e »

* »

"

' '
., MEI r - No Prior

0 MPI - No Prior

, MEI (- ILN Prior

» MPI r - ILN Prior

. MEI r - EEC Prior

. MPI r - EEC Prior

- L H C R A N D

' ' , ,. « • • • , , , « , « , , > ; , , . , , , , , x

-

-

» » # « » # « » # * » » # » » # » 1

• * * * * * * * * * * * * * * * * * '

Number of Acquisitions

Shekel 10 - Matern Kernel

o

0

*
*

MEI - No Prior

MPI r - No Prior

MEI r - ILN Prior

MPI r - ILN Prior

MEI - EEC Prior

MPI f - EEC Prior

L H 0 R A N D

o « • o
O ft I M M i i m a i i

Number of Acquisitions

0

5

0

5

20

Six Hump Camelback - Matern Kernel

' '

0

*

° ° 2 * *
• 88 88

• • * * » # » » « « a o e e

0 MEI r - No Prior

0 MPI - N o Prior

, M E I r - I L N Prior

, MPI r - ILN Prior

. MEI r - EEC Prior

. MPI r - EEC Prior

> L H C R A N D

e « o a » 0 a » » « e

-

'

9 « <

Number of Acquisitions

Figure 5.10: Analytic function examples using the Matern kernel. For MPI, £r = 0.1. For
MEI, £r = 0.001. Gradient information is provided. The solid black line indicates the best
previously published minimum.

Chapter 6

Applications

To date, we have applied Gaussian process-based optimization in two domains of interest

to computing scientists: Improving the speed and smoothness of robot walking gait opti­

mization, and reducing the error of a stereo matching algorithm. The work on AIBO gait

optimization was conceived early on in the course of the thesis, and is a proof of concept that

illustrates how even a very simple version of Gaussian-process based optimization can be

effective in higher dimensional spaces than have previously been addressed. Most recently,

we have begun collaboration on a large-scale comparison of stereo matching algorithms,

and we have used the knowledge gained in our empirical studies to help develop a fast and

consistent optimization procedure for different stereo matching approaches.

6.1 AIBO Gait Optimization

Legged robot platforms offer many advantages over traditional wheeled robots. Their unique

ability to traverse a wide variety of commonly encountered terrain makes walking robots

are basically a requirement for performing useful tasks in our human-centric world. Despite

these advantages, legged robots only slowly being adopted, in part because of the difficult

challenge of developing an effective walking algorithm or "gait".

Optimizing a robot's gait is a complex problem. An open loop gait consists of a se­

quence of joint values for each of the many degrees of freedom in a legged robot. Simplified

parametric representations of leg trajectories can result in a manageable number of param­

eters; however, these parameters can have complicated interactions making manual tuning

of gait parameters time-consuming for simple robots and nearly impossible for the increas­

ing complexity of humanoid platforms. Worse yet, no single gait will be effective in all

circumstances. The walking surface is critical and can vary in terms of friction, softness,

89

and height variation (e.g., compare concrete, linoleum, carpet, and grass). Robot platforms

themselves also vary due to manufacturing imperfections and general joint and motor wear.

Lastly, even measuring the quality of a gait is likely to be situation specific. Although

velocity may seem like the obvious choice of objective function, relative stability of the

robot's sensor hardware can also be important, for example. Tailoring a robot's gait to the

environmental, robot, and task specific circumstances may be possible to some degree, but

relying on constant manual re-tuning is largely impractical. Automatic gait optimization

is an attractive alternative to this laborious manual process, and has been explored in the

past using hill-climbing and genetic algorithm based approaches.

We applied Bayesian optimization to the problem of gait optimization and demonstrate

the effectiveness of the approach using the Sony AIBO quadruped robot [27]. We show that

when applied to two different objectives the Gaussian process model not only finds effective

gait parameters, but also does so with an order of magnitude fewer evaluations than a local

search competitor.

Previous Approaches The Sony AIBO, a commercially available quadruped robot, has

spurred recent interest in gait optimization, driven primarily by its use in the RoboCup

Legged Soccer League, where well tuned walks are a requirement for success. Number of

recent approaches for gait tuning have been pioneered on the AIBO.

A common foundation for all of these approaches including our own is the notion of a

"walk engine", or parameterized gait generation system. Since the number of degrees of

freedom in legged robots is large, optimizing the angle of each joint at a finely discretized

time scale would involve searching over thousands of parameters, a task typically consid­

ered intractable. The walk engine reduces the number of parameters by focusing on leg

trajectories that are both physically possible and intuitively plausible. These parameters

usually define properties of each leg's trajectory such as the "distance the foot is lifted off

the ground" and "the period of the walk in milliseconds". The space of parameterized walks

obviously has a large impact on the final quality of any automatic gait optimization, but the

optimization problem itself is the same regardless of the walk engine. Optimization in all

cases requires finding a point in a parameter space with between eight and fifty dimensions

that results in an effective gait. Each of the works cited below is based on a different walk

engine. Because of this, and because of the variation in lab surfaces and individual robots,

90

reported walk speeds are largely incomparable.1

Despite these differences, each approach uses a similar experimental setup. All of the

approaches involve evaluating specific parameter settings by having the AIBO walk in a

structured arena using the parameters to be evaluated. Local sensor readings on the AIBO—

either camera images of visual landmarks or the IR sensor readings of walls—are then used

to compute a noisy estimate of the gait's average velocity. The procedure may be replicated

several times to construct an averaged estimate with lower variance.

Genetic Algorithms An genetic algorithm inspired approach was the first proposed

method for gait optimization on the AIBO. Hornby et al. [17, 16] used a standard genetic

algorithm search on an early prototype AIBO. A population of parameters was maintained at

each generation, a new population was formed through mutation and crossover of individuals

from the previous generation, and parameters in the population that evaluated poorly were

discarded. Their procedure showed slow gait improvement over 500 generations, requiring

approximately twenty-five robot-hours of learning.

The evolutionary approach was revisited by Chernova and Veloso [9]. They used similar

mutation and crossover operations to generate candidate gaits. Unlike the work of Hornby,

their parametric space of walks included a measurement of the possibility that the AIBO

could physically perform the gait. This allowed them to throw out poor gait parameters

without requiring an expensive on-robot evaluation. In addition, they used a "radiation"

procedure to disperse clusters of similar parameters in the population and force further

search. They demonstrated that the technique learned competitive walks using 4,000 eval­

uations and a total running time of approximately five hours distributed across four robots

for a total of twenty robot-hours.

As the AIBO's evaluations of performance are noisy, both approaches must deal with

the possibility that an inaccurate evaluation will cause poor gait parameters to incorrectly

remain in the population. Both used targeted reevaluation to reduce this possibility, reeval­

uating either the parameters that remained for multiple generations or the ones that per­

formed disproportionately well.

Local Optimization The second family of approaches that has been explored in­

volves adapting techniques for local function optimization to the gait optimization problem.
1 Despite the lack of basis for comparison, the three most recent techniques discussed below all achieve a

similar walk speed in the range of 0.27-0.29 m/s .

91

Kim and Uther [22] used Powell's method [34], which performs line search along a chosen

search direction based on the effectiveness of previously chosen search directions. Kohl and

Stone [23] used a hill climbing approach. Although the gradient is not known, a set of ran­

dom perturbations are evaluated empirically, and these evaluations are used to construct an

approximation of the gradient. The parameters are then adjusted by a fixed step size in the

direction of this estimated gradient. Kohl and Stone reported the fastest learning result in

the literature, requiring only three hours distributed across three robots for a total of nine

robot-hours. It is important to note that the reported experiments for both techniques in­

volved initializing the optimization with a known set of reasonable parameters. This differs

from evolutionary approaches, which begin with a random initial population.

Drawbacks All of the previous approaches share three key drawbacks. First, they

can get stuck at local optima. Kim and Uther reported actual experiences of local optima

and Kohl and Stone noted the importance of starting from good initial parameters, having

found considerably poorer performance under different starting conditions. There are tech­

niques to deal with local optima as we have seen, such as random restarts for local function

optimization approaches and radiation for evolutionary approaches. However, both involve

a considerable increase in the required number of gait evaluations. Furthermore, the ap­

proaches forget previously evaluated gaits once they either die out of the population or after

the gradient step is taken. Not only is this an inefficient use of expensive gait evaluations,

but certain parameter settings may be unnecessarily reevaluated. Finally, none of the ap­

proaches explicitly model the noise in the evaluation process. Hence they all involve long

individual evaluations or repeated shorter evaluations that are averaged to compute a less

noisy estimate. The Bayesian optimization approach does not suffer these disadvantages,

and consequently requires considerably fewer gait evaluations.

Gaussian Process-Based Gait Optimization Like previous approaches, we assume

that we already have some parameterized walk engine with d parameters. We model the

stochastic velocity function / : M.d —> R, which maps walk parameters to velocity, as a

Gaussian process. The prior mean and kernel function of the Gaussian process are chosen

based on prior domain knowledge. We use the MPI acquisition criterion to decide which

parameters to evaluate on the robot based on the previous observations, and after some

number of gait evaluations the parameters that generated the fastest observed walk are

92

returned.

Walk Engine As discussed earlier, a complete joint trajectory for a gait could have

thousands of parameters. All gait optimization techniques parameterize this walk space

using a walk engine. For this work, we have used Carnegie Mellon University's Tekkotsu2

software to control the AIBO, which includes a walk parameterization (as of release 2.4.1)

originating from the Carnegie Mellon CMPack 2002 robot soccer team. This is an early

version of the CMWalk engine used in the work by Chernova et al. [9]. In consultation with

a domain expert, we identified 15 walk parameters along with reasonable bounds on each

parameter to define our domain, i.e., X c M15.

Model For this work, we will use a fixed optimization model, i.e. we will not do any

parameter learning. Since we have some intuition about the behaviour of the walk function,

taking such a "black-box" approach less necessary. We therefore define a prior mean function

Ho : X —-> R and kernel function k : X x X —> R. We also need to specify the signal variance

<72 which represents the amount of overall variation in the function, and the variance a\ of

the noise that is believed to be added to each observation observation Fx. For the mean, we

use a constant function fi(x) — /if. For the covariance function, it is hypothesized that, in

general, parameter vectors that are close in terms of Euclidean distance are likely to have

similar walk velocities, and therefore a large positive covariance. Furthermore, we expect

that some parameters may have wide-reaching consequences, and so velocities generated by

parameters that are far apart should still have some small positive correlation. We therefore

chose to use the squared exponential kernel with axis-aligned scaling. We now need to simply

choose the constants <r2, /JO, and a2
f. Setting these to appropriate values depends on the

feature of the gait to be optimized. We present results both for optimizing the gait's velocity

and its smoothness, so we examine the choice of prior for each of these cases in turn.

Parameters for Velocity Gait velocity has been studied relatively extensively both

on the AIBO and with our particular walk engine. In consulting with our domain expert,

we easily solicited useful prior information. In particular, we chose fx/ = 0.15 and a'j =

0.066, which correspond to the intuition, "For some random gait parameters, we expect

the observed velocity to be 0.15 meters per second and within about 0.2 meters per second

99% of the time." For observation noise, our domain expert was not familiar with our

2http://www.tekkotsu.org

93

http://www.tekkotsu.org

particular experimental setup. Instead, we computed the sample variance of a small number

of observations of one particular setting of the walk parameters. This gave us a value of

cr̂ = 0.01, which seemed to work well in practice. As an interesting test of the stability

of our method with respect to the model parameters, we also ran the velocity optimization

with a prior variance parameter of er? = 0.66 (ten times larger).

Prior for Smoothness Since smoothness had not been evaluated before, we had no

domain expert to consult. Instead, we made a small number of acquisitions (about 30)

and used sample means and variances to estimate the parameters of the prior (if = —30,

<j? = 100, (7^ = 2.25. As we will show in the next paragraph, even this simple uninformed

method for specifying the Gaussian process model can be very effective.

Acquisition Criterion We use the maximum probability of improvement (MPI) ac­

quisition criterion with a fixed £. Since the optimization model parameters are fixed, this

is equivalent to choosing a £r = £/c?.

Implementation Details In order to compute the point of most probable improve­

ment point, we used the generic constrained hill climber in MATLAB (fmincon) supplied

with the function and gradient of the acquisition criterion. We used as default starting

points the two best parameters found so far, and 13 drawn uniformly random within the

bounded domain for a total of 15 starting points. In addition, we forced the first gait eval­

uation selection by choosing the center point of the domain. Since the Gaussian process

model starts with a uniform belief over the domain, all function points are equally good to

the most expected probable rule.

Results We have applied our Gaussian process approach to two gait optimization tasks

on the Sony AIBO ERS-7. We first look at the standard problem of maximizing walk

velocity, and we also examine the problem of optimizing a gait's smoothness. The goal

of any gait optimization technique is to find a near-optimal gait in as few evaluations as

possible. Therefore, we'll want to compare techniques using this criterion.

Since previous gait learning has not involved the same walk engine, experimental setup,

or robots, comparing directly with previously reported results can be somewhat problem­

atic. For a more direct comparison, we have implemented the hill climbing method of Kohl

and Stone [23] described earlier, and applied it in identical circumstances as our approach.

94

The Kohl and Stone algorithm is the most data efficient technique for the AIBO from the

literature, demonstrating effective walks with only nine robot-hours of training. We repli­

cated their experimental setup, using 15 random evaluations to approximate the gradient

at each "iteration" and using a step size of 2. The empirical epsilon used in estimating

the gradient was 1/15 of the parameters' range, which seemed to be an adequate change

in performance. As with the Gaussian process model, we started the hill climber from the

point in the center of the space.

Physical Setup To evaluate each walk parameter choice, we had the robot walk be­

tween two visual landmarks while focusing the head on the center of the landmark. The

robot determined its distance from a landmark as it walked toward it based on the land­

mark's apparent width in the camera's field of view, and that change is used to estimate

velocity. To determine a gait's smoothness, we measured the time-averaged distance from

the center of the landmark to the center of the robot's field of view, and negated this.

Unstable walks that result in a large amount of head movement yield negative smoothness

values, since it is difficult for the robot to keep the head and the camera aimed at the target.

More fluid walks allow the robot to aim the camera more directly at the target, resulting in

a smoothness much nearer to zero.

Each observed measurement is the result of three "traversals" from one landmark to the

other. The average time for three traversals, including time to turn around, was approxi­

mately one minute. This was chosen to be consistent with Kohl and Stone's hill climbing

experiments. We could have easily only used a single traversal and compensated by increas­

ing the observation variance used in the model.

Gait Velocity A graph showing the result of 321 observations is shown in Figure 6.1(a).

We chose this number of observations a priori to allow the hill climber 20 "steps" or itera­

tions with 15 test points for each. Both our Gaussian process technique and the Kohl and

Stone hill climbing technique are shown, as well as the simple baseline of choosing gaits

uniformly at random. The solid lines represent the maximum achieved walk speed over

the accumulating observations, and the corresponding isolated markers show the maximum

velocity achieved over the most recent 15 observations.

We found that both the Gaussian process and hill climbing methods performed apprecia­

bly better than random evaluations. The best walk velocity found was 0.285 m/s, which was

95

100 150 200
Observations

(.) GP w/MPI (*) GP w/MPI
0.281 m/s 0.285 m/s
aj = 0.06

(x) H.Clmb
0.248 m/s

aj = 0.6

(o) U.Rand
0.230 m/s

(a)

100 150 200
Observations

(*) GP w/MPI
-4.53

(x) H.Clmb (o) U.Rand
-9.80 -7.07

(b)

Figure 6.1: Results for (a) gait velocity and (b) gait smoothness. Solid lines represent
cumulative maximum, and the small markers indicate the maximum observation from the
last 15 observations.

found by the Gaussian process with the over-estimated prior variance, a\ = 0.66, although

the walk found by the Gaussian process with the "sensibly" initialized variance is nearly as

fast. Despite having already warned of the difficulties in comparing walk speeds, note tha t

this speed is comparable to other learned gaits. More impressively, though, is the fact this

speed was at tained after only 120 observations, which took approximately two robot-hours.

This is nearly a five-fold improvement in the required number of robot-hours.

It is interesting t ha t the best walks found by the two Gaussian process models are in

widely separated par ts of the space. The walk found by the sensible setting of ai — 0.066

has a low period and shorter stride, with a parameter vector far from the center of the space.

On the other hand, the experiment at <7? = 0.66 found a similarly fast walk near the center

of the space with longer, slower strides tha t cover a similar distance.

Although the results of the hill climbing approach were not poor, we were somewhat

surprised tha t the performance was not better . The method tended to take very poor steps

once it reached a value of about 0.230 m / s . There are two natural explanations. One may

simply be local optima, which is in line with Kohl and Stone's noted importance of the initial

parameter vector. Alternatively, based on the frequency of taking poor gradient steps, the

step size may have been too large along certain dimensions. Random restar ts and a variable

step size for each dimension could mitigate these unimpressive results.

96

Gait Smoothness A similar graph for gait smoothness is shown in Figure 6.1(b). The

Gaussian process optimization found the smoothest walk of all three methods and did so

within the first 20 observations, or only twenty minutes of robot time. Later improvement

was only incremental. In a post-mortem analysis, the gait smoothness task is apparently

much simpler. The impact of parameters on our measure of smoothness ended up being quite

simple as a wide range of walks with a short period (below about 310 ms) and a moderate

requested walk speed (between 210 and 240 m/s) resulted in a smooth gait measurement.

Scores of such walks were typically greater than -10. Due to the independence of this pair

of parameters from the rest, it is not unlikely that even random search would find a smooth

gait as choosing parameters in this range will occur on average every 250 gait evaluations.

Our random search trial did happen to find one such point, giving it a moderate win over

the hill climbing technique. Again, we suspect the unimpressive hill climbing result to be

due to initial conditions and local maxima.

Conclusion We proposed a new approach to gait learning using Gaussian process re­

gression for global optimization. The approach overcomes many drawbacks of previous

techniques, effectively avoiding local optima, efficiently using all gait evaluations, and ex­

plicitly modelling noisy observations. Even with all of the caveats associated with comparing

gait velocities and training time, we have demonstrated that the approach is not only ef­

fective in our high dimensional, noisy, non-convex, optimization problem, but also requires

drastically fewer evaluations. This was also accomplished with a minimum of parameter

tuning, demonstrating effective performance when using prior settings from a domain ex­

pert, incorrect settings, and even data derived settings. This work illustrates the potential

for Gaussian process-based global optimization to be a useful technique for optimizing com­

plicated functions arising in real-world problems.

6.2 Stereo Matching Parameter Optimization

Stereo matching algorithms use two or more images that have been taken from slightly

different viewpoints to recover a "depth map" of the photographed scene. That is, for each

pixel pi, we would like to recover the distance from the camera to the 3D object that projects

to Pi. One class of state-of-the-art techniques for this problem constructs a probabilistic

graphical model of depth maps and attempts to recover the most probable map given the

input images. Consider a left image p ' , a right image p r , and a left depth map d . One can

97

think of p ' and p r as vectors of pixel intensities pf, and d as a list of depth values dl, one

for each pixel in the left image3. We now assert that

p (d V , p ') a p (P r | d ' , p ') - p (d V) (6-1)

and maximize over d to find the maximum a-posteriori (MAP) depth map. The likelihood

term, p(p r |d , p ') , describes how well the left image plus the left depth map are able to

re-create the right image. The prior, p(d |p'), gives the probability that d' is a depth map

that describes the geometry in the left image.

Each of these two terms is typically expressed using a Gibbs-distributed "energy func­

tion" over images and depth maps, which are then summed to produce a total energy E

such that p{x) oc e~E(x\ Since we are only looking for the MAP depth map and do not

need its probability, we do not need to compute the log partition function and can simply

solve

argmin £?data(pr,d',p') + £ s m o o th(d ' ,p ') (6.2)
d'

where -©data and i^mooth are the names typically given to the likelihood and prior energy

functions, respectively. Given these functions, several techniques that exploit structure

in the problem have been successfully used to compute the minimum energy (and there­

fore MAP) depth map, including max-flow/min-cut algorithms, dynamic programming, and

branch-and-bound search.

However, the energy functions themselves are parameterized functions of the image data

and depth map. For example, one simple choice for the -©smooth prior energy function is
\dl — $ I

£smooth(d ' ,p ') = W-] T \j—f (6.3)

-4 = {{hj} '• pixel p\ and pixel pl, are adjacent} (6.4)

Pixels are typically considered "adjacent" if one is a four-neighbour of the other, i.e. they

are next to each other in the up, down, left, or right direction. This function will prefer

depth maps where adjacent pixels have similar depth; however if their intensity values of

the pixels are different, the change in depth is allowed to be greater4. Note the weight w in

the equation: Altering its value will alter the importance of the Smooth term in our model,

and will change the solution of Equation 6.2; using a larger w will produce smoother depth

maps in the sense described by Smooth-
3 With a few exceptions (notably Kolmogorov's work [24]), left and right depth maps are computed

independently.
4For this function we define 0/0 = 0 so that adjacent pixels with identical intensity and depth do not

generate infinite energy.

98

Each term in the total energy function is given a weight, and some of the terms may have

other "internal" parameters. In more complicated energy functions currently in use, there

may be up to nine of these "auxiliary parameters" in the -ESmooth and Edata components.

Previous Work To date, these parameters have been optimized "by hand" based on

researchers' intuitions about what values are likely to perform well, and based on a small

number of evaluations on datasets that have an associated ground-truth, such as laser range-

finder readings. This has made comparison of different stereo matching algorithms very

difficult because the procedure for optimizing the auxiliary parameters is not standardized.

Exhaustive grid search over parameter space has also been applied in some cases, but of

course this takes time exponential in the number of parameters, and is impractical even

in low dimensional settings when each run of the underlying minimizer takes a significant

amount of time.

Gaussian Process-Based Stereo Matching Optimization Our goal is to produce

a system that can optimize these parameters reliably using a small number of function

evaluations (i.e. runs of the matching algorithm) so that researchers can more quickly and

accurately compare techniques that use different energy functions. We have constructed

a system that chooses parameters, runs the stereo matching algorithm which reports a

resulting error rate with respect to ground-truth, incorporates this information into the

optimization model, and chooses the next parameter setting according to the acquisition

criterion [31]. Because we will be testing several different matching algorithms which have

different parameters, we choose a more black-box approach than that used for AIBO gait

optimization: After considering the empirical evidence produced in this thesis, we choose to

use a squared exponential kernel together with MAP learning using independent log-normal

priors, and the MPI r acquisition criterion with £r = 0.1.

The two stereo matching algorithms we investigated are similar to work by Hirschmuller

based on dynamic programming [14]. In both of the algorithms, -Edata has no free parame­

ters, and ^smooth has two free parameters wi and W2, which we will optimize. Both of these

are constrained to the range [1,50]. The smoothing energy function is given by

£ S m o o t h (d V) = Y, [^i-H\Dl
i-D

l
j\ = l) + w2-l(\D

l
i-D

l
j\>l)} (6.5)

{j,j}6-4

Here, 1 is the indicator function, A contains sets of neighbours as above, and D\ is the

99

% Missed Cones Teddy Tsukuba Venus
MAX
MPIr
MIN

71.42253518
19.09491121
19.06307191

71.84294462
22.50036299
22.48645276

34.57740247
6.55560121
6.52367249

62.33148575
5.27275390
5.20088896

p(RAND beats MPI r): 0.0392 0.0392 0.4522 0.3302

Table 6.1: Comparison of MPI r on four stereo matching problems without median filtering.
Values indicate percent of mislabeled pixels. The last row gives the estimated probability
that 100 uniformly randomly acquired points will find a minimum < MPI r . Maximum
absolute error (MPIr — MIN) was on the 'Teddy' data set at 0.0224, and maximum relative
error (MPIr - MIN)/(MAX - MIN) was 0.0006, on the 'Tsukuba' data set.

% Missed Cones Teddy Tsukuba Venus
MAX
MPIr
MIN

59.96534228
16.70819967
16.68799520

60.33118962
20.28740048
20.26502341

16.95288271
5.06180450
5.05496260

45.41595279
3.59058305
3.57062071

p(RAND beats MPI r): 0.0392 0.0769 0.1480 0.5145

Table 6.2: Comparison of MPI r on four stereo matching problems with median filtering.
Values indicate percent of mislabeled pixels. The last row gives the estimated probability
that 100 uniformly randomly acquired points will find a minimum < MPI r . Maximum
absolute error (MPIr — MIN) was on the 'Teddy' data set at 0.0223, and maximum relative
error (MPI r - MIN)/(MAX - MIN) was 0.0006, the 'Tsukuba' data set.

disparity of pixel p[, which is proportional to the inverse of the depth d\; it is common for

practitioners to work with disparity values instead of depths, although there is a one-to-one

mapping from one to the other using camera geometry. Note that this smoothing function

does not depend on the pixel data p ' . The only difference between the two algorithms we

examine is that one uses a median filtering technique as a post-processing step, and the

other does not. The median filter takes each 3 x 3 patch in the MAP disparity map, and

replaces the center disparity with the median disparity in this patch.

Results Four commonly studied image pairs with corresponding ground-truth data from

the Middlebury stereo vision web site [40] were fed into the two algorithms. We performed

an exhaustive grid-search using 2500 points to optimize wi and W2 for each of the eight

data-algorithm pairs—one exhaustive search takes approximately two hours on a 1.83GHz

Intel Core Duo. The performance measure we use is the percentage of pixels in the image

whose disparity given by the algorithm differs from the ground truth data by more than 1;

disparity is quantized to integer values in {0,1,. . . , 255}. We report the maximum (worst) and

minimum (best) performance values found by this exhaustive search as points of comparison.

Tables 6.1 and 6.2 give the performance values found by exhaustive search and by GP-

based global optimization using the MPI r criterion with £r = 0.1 and independent log-

100

normal priors on length scales. On each data-algorithm pair, the GP-based method was

allowed to acquire 100 data points, which takes approximately 3.75 minutes of compute

time, again on an Intel Core Duo at 1.83GHz.

We also report an estimate of the probability that the minimum of 100 uniformly ran­

domly sampled points would produce a function value better than that found by MPI r . We

estimate this by counting the fraction of the 2500 grid points acquired that are below the

MPI r threshold, and computing the probability that a random sample of 100 points would

include at least one of these. In the 'Cones' and 'Teddy' datasets, these probabilities are

quite low, indicating that MPI r is finding a global minimum that is well-separated from

other local minima, and that is unlikely to be attained by chance. On the other hand,

on the 'Tsukuba' and 'Venus' datasets, the probabilities are much higher. Inspection of

the error surface for these datasets has shown that the 'Cones' and 'Teddy' error surfaces

have a pronounced slope around the global minimum, whereas the 'Tsukuba' and 'Venus'

error surfaces have a large and very flat area surrounding the global minimum that is full

of small, seemingly i.i.d. fluctuations whose values are very near the global minimum. In

these last two cases, MPI r does not appear to present a significant advantage over random

point acquisition.

Despite this, in all of the cases examined, the GP-based method found parameter set­

tings that were worse by no more than 0.3% of the pixels in the image as compared to

the exhaustive search. This difference was deemed acceptable given the reduction in total

compute time by a factor of 32.

Conclusion These experiments illustrate the use of GP-based optimization in an out-of-

the-box fashion on a novel problem. The specific technique used—MPIr with £r = 0 . 1 and

independent log-normal priors on length scales—was suggested by the extensive experimen­

tal analysis from Chapter 5. The results obtained are important to practitioners researching

stereo matching algorithms, because they demonstrate a mechanism for investigating the

tuning of stereo matching parameters that takes far less computation time than other naive

approaches. Our approach also makes more rigorous parameter optimization possible: Since

so few function evaluations are needed, it may be useful and feasible in the future to optimize

the error of algorithms on several sets of data at once, resulting in parameter settings that

are more generally applicable. Such a study, which would have taken days to run previously,

could be completed in hours using our approach.

101

Chapter 7

Conclusion

This thesis has sought to make GP-based methods a practical choice for the task of global

function optimization. To this end, we have made several advances to the GP-based ap­

proach, made an extensive empirical evaluation, and presented two successful real-world

applications. We now summarize these advances and present avenues of further research in

the area.

7.1 Contributions

We developed and used a new methodology for evaluating global optimization techniques

based on generating many test functions and evaluating performance on each. Having this

method of evaluation enabled us to study the effect of adapting kernel parameters and

changing the exploration parameter £ r. Our empirical evaluation shows that in most cases

no tuning of £r is required at all.

The parameter £r controls the exploration level of the new acquisition criteria that we

developed in Chapter 3. These acquisition criteria are invariant to vertical shifting and

scaling of the objective function, so our results hold not only for all of our test functions,

but for all vertically shifted and scaled versions of the test functions. This reduces the need

to tune £r to different objective functions. Our empirical evaluation showed that in the

cases we examined, little no tuning of £r is required, particularly for MEI r .

We demonstrated in Chapter 5 that using a MAP objective can be used to reliably

learn the kernel parameters, eliminating the need for pre-acquisition of the function and

again reducing the need for user input. In the process of developing the new EEC prior,

we gave a novel polynomial time algorithm in Chapter 2 for computing the expected Euler

characteristic of axis-scaled isotropic Gaussian processes over closed intervals of Rd.

102

Finally, We illustrated the use of gradient information with GP optimization, showing

in particular that MEIr can perform very well when given this information. In fact our

results show that MEI r with gradient information can perform much better than the BFGS

algorithm with random restarts when given the same number of function evaluations.

7.2 Future Work

Recently, many advances have been made by the machine learning community that improve

Gaussian process-based methods, particularly in improving computational efficiency and

developing more flexible models. Fortunately, most of these methods are "plug-and-play"

with the approaches described in this work since the acquisition criteria can be used with

any underlying GP model. We present two methods for improving computational efficiency

that could be integrated into the optimization methods we have described.

We also foresee a wealth of interesting research arising from applying GP-based opti­

mization to different problems in different application areas. There are many problems in

computing science and in other disciplines that are solved by optimizing a "surrogate" func­

tion that presents a more tractable objective than the original problem; we present machine

translation as one example.

7.2.1 Reducing Computational Requirements

Perhaps the biggest obstacle to more widespread use of GP-based optimization is the com­

putational expense involved in computing the next acquisition location. In GP based opti­

mization to date, only naive methods that take time cubic in the number of data points have

been used for computing posterior distributions. This restricts the applicability of GP based

methods to problems where the cost of function evaluation makes that degree of overhead

acceptable, i.e. problems where function evaluation is very expensive and/or the number

of data points considered is small. However, several approaches have been developed that

approximate the posterior distribution using less computation.

Subset of Data Points Approximation The simplest approximation one can make

when there are too many data points to deal with is to simply ignore some of the data. A

small subset of m data points can be retained, and computation times are reduced accord­

ingly since only m kernel functions are used to construct the posterior.

The performance of this technique depends on the complexity of the posterior in terms

103

of how many points are needed to approximate it well. Also, the selection of which points to

use is important. Lawrence et al. [26] suggest greedily choosing the m points where posterior

variance is highest, which is equivalent to adding points that give the greatest reduction in

the entropy of the posterior.

Projected Process Approximation The Projected Process Approximation [36] is a

mechanism for approximating the posterior process with m < n kernel functions but still

using all n observed data points. Suppose x m contains the m points where we will center

the kernels used for the approximation. Then

»{Fz\Fx = f) » IM>{z)

+k(z,xm)(k(xm,x) k(x,xm) + crlk(xm,xm))~1 (f - p0(x))

cr2(Fz\Fx = f) « k(z,z)-k(z,xm)k(xm,xm)-1k(xm,z)

+ a2
lk(xm,x)(alk(xm,xm) + k(xm,x) k(x,xm))~1k(xm,z)

Note that the posterior mean now involves only m kernel evaluations between the query

point z and the subset of data xTO, and the matrices that need to be inverted are of size

mxm. Compute time for inference is 0{m?n) initial setup, 0(m) time for a posterior mean

and 0(m2) time to compute a posterior variance. Like the Subset of Data Points technique,

m kernel functions are used to model the posterior, but the approximation is fit to all the

data we have instead of just the points in FXm. As before, however, the choice of which

points to include can make a significant difference in the quality of the approximation. A

greedy criterion for including points again based on the posterior variance is given by Csato

and Opper [10].

Each of these approximation methods can be quite simply "dropped in" to the GP-

based optimization framework described in this thesis; however the effect on performance

of making this type of approximation still needs to be assessed.

7.2.2 Application to Translation Directed Word Alignment

The field of statistical machine translation has been dominated by the approach of first

solving the word alignment problem [8]. Given a sentence and its translation in a different

language, a word alignment is a set of word pairs where the first word comes from original

sentence and second word from the translation. In a "good" word alignment, these pairs

(or "links") will exist if and only if the words are (possibly partial) translations of one

104

another. In a statistical machine translation system, word aligner is typically trained on

parallel text, and is then used with what is known as a "decoder" to construct translations

of new sentences. To date, however, word aligners have not been trained using translation

quality as the objective function, because of the complex interactions between the aligner

and the decoder, and because evaluating modifications to the word aligner is very time

consuming. They are instead trained on a simpler objective based on what humans consider

to be "good" alignments.

It is possible in principle to optimize the various parameters that direct the actions of

a word aligner using translation quality as our objective. The word aligner is controlled

by about 10 real input parameters, and can automatically provide us with a measure of

translation quality. Since this problem has very expensive function evaluations and since

the mapping is not well understood, we anticipate GP-based optimization to be a good

candidate for finding good solutions and providing insight into the objective function in

terms of how different parameters affect performance.

7.3 Summary

In this thesis we have described, tested, and improved upon Gaussian process-based global

optimization. Our work improves not only the performance of the technique, but the breadth

of problems to which it is applicable. We have shown two applications where the technique

has proven useful, and we expect that further usefulness will be revealed in the future.

105

Appendix A

Complete Experimental Data

A.l Results using 2D squared exponential test kernel,
equal length scales

An example posterior mean:

Dim:2 Test KernekSqExp
Log length scales of test GP: -1.9836 -1.9836

2D squared exponential test kernel with equal length scales. The optimization model also

uses a squared exponential kernel. Only function values are used in building the optimization

model. 500 functions are sampled from the test model.

106

5
h

4.5 h-

4
h

;

C

o

%

3
1

-
C

3

D
im

:2
Test K

ernel:S
qE

xp
O

pt K
ernekS

qE
xp

O

bs T
yp

e:f(x) O
nly

P
rior:E

xact
Log

 length
 scales of test G

P
: -1.9836

-1.9836

M
E

I
%

= 0.001

r
>

M

E
I

|
= 0.01

r
T
-

M
E

Ir
^

 =
 0.1

M
E

I
f

£
,f=

1

M
P

I
\

= 0.001
r

T
-

M
P

I
^

 =
0

.0
1

M
P

I
|

=
0

.1

M
P

I
5

=
1

r 'r

M
P

Ir-|r =
 3

R
A

N
D

^
•

Q
2

.,„

o

(,, !M
[

1
J'

J J

'I
«

i
(

i
i

i
I- i !

)
l

I
•

 !
*

 i
>

^M
A

/id
*
h
!v

,Y
Y

^
•.-•••.

N
um

ber of A
cq

u
isitio

n
s

4.5

©

re
 3

5f
>

 c o
"•5

^

c 3
U

.
o

w

i-

U
J

O

w

-Q

1.5

IH
H

i,

0.5

D
im

:2
T

e
st K

e
rn

e
l:S

q
E

xp
O

p
t K

e
rn

e
h

S
q

E
xp

O
b

s T
yp

e
:f(x) O

n
ly

P
rio

n
IL

N

L
o

g le
n

g
th sca

le
s o

f te
s

t G
P

: -1
.9

8
3

6
-1

.9
8

3
6

1 !!;•,!

ri;
«(* fiy

i rt»A;
A =- A

;
I

• II .

"
-

J
. : f"

' l

3%

b
«

M
E

Ir
£

f =
 0.001

M
E

Ir
5

r =
 0

.0
1

M
E

Ir ^ =
 0.1

M
E

I
|

=
1

M
E

I
t, =

3

r
^r

M
P

I
|

= 0.001
M

P
I

\
= 0.01

r
T
-

M
P

I
4

 =
0

.1

r
^r

M
P

I
5

=
1

r

'r
M

P
I

|
=

3

r
^r

R
A

N
D

,

0
2

.

LH
C

.'
:,1

.'
I

; 1 • I • 'I • 1

oo
o

1
2

3
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

N
u

m
b

e
r o

f A
c
q

u
is

itio
n

s

D
im

:2
T

est K
ernel:S

qE
xp

O
pt K

ernel:S
qE

xp
O

bs T
ype: f(x) O

nly
P

rior:E
E

C

Log le
n

g
th scales of te

st G
P

: -1.9836
-1.9836

>
*

V

*im

h W
W

U
il,

M
E

I

M
E

I

M
E

Ir

M
E

I

M
E

I

M
P

I

M
P

I

M
P

I r

M
P

I

M
P

I r \ \ %

%

%

^ %

^ %

%
 =

 0.001

=
 0.01

=
 0.1

=
 1

=
 3

=
 0.001

=
 0.01

=
 0.1

=
 1

=
 3

|R
A

N
D

L

|0
2

„,„

limn
iiiiiiiiii illinium in

i
ii

i
ii minium wwum

m
i

mini! minium mi
i

m i
ilium n

i
m

II

i
i

i
m i

m II
HI mi

i
mum

mil mi
minimi

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

N
um

ber of A
cq

u
isitio

n
s

D
im

:2
T

est K
ernel:S

qE
xp

O

pt K
ernehS

qE
xp

O

bs T
yp

e: f(x) O
nly

P
rior:N

one
Log

 length
 scales of test G

P
: -1.9836

-1.9836

5

4.5 4

3.5 3

2.5 2

1.5 1

0.5 0 -ilH
IFI

•
:

; 1

•B
|M

E
I

r
c

r= 0.001

•M
|M

E
I

r
|

r = 0.01

•
•

jM
E

l
£ =

0
-1

•
I

' '

H
M

P
I

(
c

f = 0.001

M
H

iM
P

I
£ =

0
.0

1

M
M

|M
P

I
r

4
r=

0
.1

M
H

M
P

I
£

=
1

H
B

flH
fllB

'

'

—
I

R
A

N
D

H
Q

2
A

L
G

•V
iV

iV .' I- t r|

ft
*

l
•*!

P

1
' !

*
*

I 1!
' I', '' J, -

i
m

i
i IIIIIIIIII

iniiiii mi
m

m

i
mini

i
n minium

 imiimiii m

mi imiiimn i
iimmii n

i
mum

 n
nmiii mi

i
i

i
n in

nn in
in iiiniiniii iiiniiiini iiiiiiiinn milium! iiiiiiiiini

1
2

3
4

5
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

N
um

ber of A
cq

u
isitio

n
s

A.2 Results using 2D Matern test kernel,
equal length scales

An example posterior mean:

Dlm:2 Test Kemel:Matern
Log length scales of lest GP: -1.4343 -1.4343

2D Matern kernel with equal length scales. The optimization model also uses a Matern

kernel. Only observed function values are used in building the optimization model. 500

functions are sampled from the test model.

I l l

D
im

:2
T

est K
ernel :M

atern
O

pt K
ernehM

atern
O

bs T
ype:f(x) O

nly
P

rior:E
xact

L
o

g le
n

g
th scales of te

st G
P

: -1.4343
-1.4343

IF I

ii

|;1
t

'.ih
i

i
i J" H

i'i

','i

Jim

*
n

n.
„,

join

M
E

I
\

= 0.001

M
E

I
^ =

 0.01
r

*r

M
E

I
%

 =
 0.1

r
T-

M
E

I
£ =

 1
r

^
r

M
E

I
%

 = 3
r

*r

M
P

I
^ = 0.001

M
P

Ir £
r =

 0.01

M
P

I
%

= 0.1

r
^

r

M
P

I
5

=
1

M
P

Ir
£

r =
 3

R
A

N
D

^

0
2

.,
„

...
;

h
i*

M

.
.

.
•

.
-

.. V
1 Y

J V

"
i "

i -'i ••! •
1

+

•*
»

-»
„

•»
...

-
*•

!'<

'••
.':

•'1-V
'-i .ii-ii .i.;
,

i
-...

i...
i

i
1

2
3

4
5

6
7

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30

N
um

ber of A
cq

u
isitio

n
s

4.5 [

3.5 H-

2.5

1.5 0
-

D
im

:2

T
e
s
t K

ern
el :M

atern

O
p

t K
ern

ekM
atern

O

b
s

 T
y
p

e
:f(x

) O
n

ly

P
rio

r:IL
N

L

o
g

 le
n

g
th

 s
c
a
le

s
 o

f test G
P

: -1
.4

3
4

3

-1
.4

3
4

3

M
M

 M
B

m
n

M
E

ir
•| M

E
Ir

l^
M

E
Ir

m
M

B<
•H

M
P

I

M
I M

P
I'

i—
M

P
I

jlljjjM
P

I

aa
M

P
|r

|
r =

0.001

lr = 0.01

5,-0.1
^

r
=

1

%
 = 3

5
r =

0.001

5
r = 0.01

5
,-0

.1

^
r

=
1

§
r = 3

•i R
A

N
D
L

H
C

IH

Q
2A

L
G

i'̂
i

I

vvvVvVA
l.ti\,\t?'Iv

l:v
1'i--.M

..i.. ,1.
nun [iiiiiiiiiii iiiiiiiiiiii iiiiiiiiiiii iiiiiiiiiiii [iiiiiiiiiii iim

iiiiiii iiiiiiiiiiii IIIIIIIIIIII illinium
 illinium

 im
iiiiiiii m

iiiiiiiii iiiiiiiinii m
iiiiiiiii m

iiiiiiiii m
iiiiiiiii m

iiiiiiiii iim
iiiiiii m

iiiiiiiii HIIIIIIIIII IIIIIIIIIIII iiiim
iiiii m

iiiiiiiii m
im

iiiii m
iiiiiiiii IIIIIIIIIIII m

iiiiiiiii m
iiiiiiiii illinium

1

2

3

4

5

6

7

8

9

1
0

11

1
2

13

1
4

15

16

1
7

1
8

1
9

2
0

21

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

N
u

m
b

er o
f A

c
q

u
is

itio
n

s

4.5

©

3.5
_3
«J
> l 3

o

c
U_

2.5

LU

2

O

3 O

»
1.5

<

0.5

D
im

:2
Test K

ernehM
atern

O

pt K
ernel:M

atern

O
bs Type:f(x) O

nly
P

rior:E
E

C

Log
 length

 scales of test G
P

: -1.4343
-1.4343

aii-.vfc,
,

y
u *

1
l|1w

i'
i)

•|M
E

I
r

£
r = 0.001

m
M

E
l

^ =
0.01

H
M

B
,

$,= 0.1

•
M

E
|r^

3

•|M
P

I
r

5
r = 0.001

M
P

I
I

= 0.01

|M
P

Ir
^ = 0.1

M
P

I
£ = 1

M
P

If |
r = 3

R
A

N
D

^
Q

2A
L

G

<
I

-..
t

•'.
I

'
1,

\
k

•
'.

iiiiiiiiii
i

Him

i
urn

miii inn
n IIIIIIHIIH n

w

inn
n mini

i
in win

i mi
i

i
m

i
iiiimi mi

m
i

m
um

 i
i

mini iwiiiiiiii m
iiiiiiiii mil

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

N
um

ber of A
cquisitions

D
im

:2

T
est K

ern
el :M

atern

O
p

t K
ern

eh
M

atern

O
b

s
 T

y
p

e
: f(x) O

n
ly

P

rio
n

N
o

n
e

L

o
g

 len
g

th
 s

c
a
le

s
 o

f te
s
t G

P
: -1

.4
3

4
3

-1

.4
3

4
3

5

4.5 4

3.5 3

2.5 2

1.5 1

0.5 0 " If!
.

•
:

•
:

HiM
!:

• »
r "a

h

i,

'
J

.
i

.
B

__
.

H
|M

E
I

r
E

r =
 0.001

H
H

M
E

I
E

 =
0

.0
1

j«|)|
M

B
 rS

r
= 0.1

^
M

E
I

r
^

r
=

3

H
|M

P
I

r
c_r =

 0.001

M
M

M
P

I
r

5
r = 0.01

—

M
P

Ir E
r = 0.1

lH
l
M

P
Ir

^
r
=1

m
M

P]'^
3

—

R
A

N
D

L
H

C

• •
"'

'
V

i

1
, «

1

.
,

,
',

,
V

V

'

•'•
'I

"
V

iiiiiiiiiiii uniiiimi iiiiiiiiiiii iiiiiiiiiiii IIIIIIIIIIII iiiiiiiiiiii iiiiiiiiiiii illinium
 minium

 im
iiiiiiii iniiiiiiiii iiiiiiiinii minium

 iiiim
iini iiiim

m
ii iiiiiiim

ii iiiiiiiiini iiiiiiniiii iiiiiiiiini iim
iiiini iiiiim

iiii niimiim
 iiiiiiiiini m

iiiiiiiii iiiiiiiinii iimiiimi iimiimii m
iiiiiini m

iiiiiiiii iiiiim
iiii

1

2

3

4

5

6

7

8

9

10

11

1
2

1
3

1
4

1
5

16

1
7

1
8

19

2
0

21

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

N
u

m
b

er o
f A

c
q

u
is

itio
n

s

A.3 Results using 2D squared exponential test kernel,
unequal length scales

An example posterior mean:

Dlm:2 Test Kernel:SqExp
Log length scales of test GP: -3.0000 -09018

2D squared exponential test kernel with unequal length scales. The optimization model also

uses a squared exponential kernel. Only observed function values are used in building the

optimization model. 500 functions are sampled from the test model.

116

isli

D
im

:2
T

est K
ernel:S

qE
xp

O
pt K

ernel:S
qE

xp
O

bs T
yp

e:f(x) O
nly

P
rior:E

xact
Log

 length
 scales of test G

P
: -3.0000

-0.9018

I M
E

If
|

f =
 0.001

|M
E

I
r?

r =
 0.01

M
E

If 4
r =

 0.1

M
E

!
|

=
3

r
^r

M
P

I
£ = 0.001

r
T-

M
P

Ir lt
=

 0.01

M
P

I
§ =

0
.1

M
P

I
5

=
1

r
^r

M
P

I
5

=
3

r
^r

| R
A

N
D

,

|Q
2

.
LH

C

'T,J >Q

rt r ifV'
.v

i.'
.'

»
)

»
i

"-
•

lif'fe
.;|)S

I*,
I,.?,

„
(

?
*

r
'

*
W

J
^

V
d ;..••'•. J

?
'

«
'

«
'

«
si

I
i

i

.!
f

* *
v ** * * *'* ** **W

 „• v ;v ;v ;v ,.v
IIIIIIIIIIIII H

iiiiiiiiii ilium

iiiiiinii iiiiiiiiiiii HI
m

i iiiniim

I
i m

il
m

ini II
mi m

i
n

i
I

im
iiiiiiii mi

ll llllllllllll llllllllllll IIIIH
IIIIII III

Illllllllll llllllllllll 1
11 llIII

II HI
M

l
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30

N
um

ber of A
cquisitions

4
M

0 Iff"!

D
im

:2
Test K

ernel:S
qE

xp

O
pt K

ernel:S
qE

xp

O
bs Type:f(x) O

nly
P

rior:ILN

Log
 length

 scales of test G
P

: -3.0000
-0.9018

M
E

I
E

 = 0.001
r

^
r

M
E

I
E

 = 0.01
r

^
r

M
EI

E
 = 0.1

r
'r

M
E

I
5

=
1

r
^

r

M
E

I
E

 = 3
r

^
r

M
P

Ir
E

f=
 0.001

M
P

Ir
E

r =
 0.01

M
P

I
E

 =
0

.1

M
PI

E
 = 1

r ^
r

M
P

If
E

r =
 3

R
A

N
D

^

|Q
2

.,„

•<
I,,,] ''"'Pir-lcri.,,

'^
W

V
V

V
^ ,•*

1 **
W

J if I
S

frV

!
ff

/
-"̂

 •' ,rf -i fl
• $

'. ;>[;
,fl

!(
li

j
,

IIIIIIIII iiiiiiiiiiii
mini

IIIIII i
urn iiiiiiiii

i
m

i
III minium

 ii
i

urn illinium

mum mi
m n

i minium

i
i

i
i

minimi
limn minimi

i mini
m

i
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

N
um

ber of A
cq

u
isitio

n
s

D
im

:2
T

est K
ernehS

qE
xp

O
pt K

ernel:S
qE

xp
O

b
s T

yp
e:f(x) O

nly
P

rior:E
E

C

Log
 length

 scales of test G
P

: -3.0000
-0.9018

M
E

! r
M

E
I

M
E

I

M
E

If

M
E

I

M
P

I r

M
P

If

M
P

I r

M
P

I

M
P

I r %
t=

 0.001

4
r = 0.01

5
,-0

.1

^
r

=
1

5
r = 3

5
r = 0.001

5
r = 0.01

5
,-0

.1

^
r

=
1

5
,-3

I R
A

N
D

L|

l!rtiriifiiir!lj<
lii1j! 4

,
f,,

,
:

:

III-If

'*

*
•

i>»v*
H

l
,„

«
,,,.,,',

'' «
i* 1 i V

 i
\U

i
iM

inn
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

N
um

ber of A
cq

u
isitio

n
s

D
im

:2
Test K

ernekS
qE

xp

O
pt K

ernelrS
qE

xp

O
bs Type:f(x) O

nly
P

rior:N
one

Log
 length

 scales of test G
P

: -3.0000
-0.9018

|M
E

If
5

r =
 0.001

IM
E

I
I

=
0

.0
1

|
r >

|M
E

Ir
^ =

 0.1

jM
E

l'^
1

•
|

M
P

I
r

5
r =

 0.001

|M
P

Ir
5

r =
 0.01

|M
P

Ir
l

r =
 0.1

JM
P

I
\

=
1

M
P

Ir
|

r =
 3

I R
A

N
DL

H
C

.
|Q

2
.,„

"
f!v

>
|

"
'•

»
>

.
«

iiiiiiiiiiii iiiiiiiii
mini iiiiiiiiii

mini i
II minium mi

II inn
i mini

m
m

 m
i imii

i
i

m
i

mini mil
i

ill minium iimiiiiiii IIIIIIIIIIII IIIIIIIIIIII illinium
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

N
um

ber of A
cq

u
isitio

n
s

A.4 Results using 2D Matern test kernel,
unequal length scales

An example posterior mean:

Dlm:2 Test KemehMatern
Log length scales of test GP: -2.4507 -0.3525

2D Matern test kernel with unequal length scales. The optimization model also uses a

Matern kernel. Only observed function values are used in building the optimization model.

500 functions are sampled from the test model.

121

D
im

:2
T

est K
ernekM

atern

O
pt K

ernekM
atern

O

bs Type:f(x) O
nly

P
rior:E

xact
Log

 length
 scales of test G

P
: -2.4507

-0.3525

6
-

0
- -H

R
I

•
'

,, h »*!
I,

B
"V

'
\i

L
.

fe
? M

l' » Iff
i

,•/

_

1
i

ii
\\

\n
> A

i ,9?

ft, ! 1
'•

•
v

>

f
Ii,

1

1
\i

\l
*

\i
I

'
lh

'
*

"
•.' "

u
."''

,„'

!
1*

' ii !•
"

•
m

M

EI
5 = 0.001

M
H

|M
E

Ir
Q

r =
 0.01

•(••M
E

I
t

=
0.1

•
H

r

'

a
M

B
r

5
r

 =
 3

^
H

jM
P

I
£ =

0.001

n
|:M

P
I

r
£

r =
 0.01

•
»

M
P

I
r

^ =
 0.1

•i M
P

Ir^
=

1

»
M

P
U

 =
 3

|g
g

|R
A

N
D

||r

•
i

Q
2

A
L

G

1

\i
[i

! i
' i! • «

•'-.
-'ii

.1..
-i,

.,.

.»*'
I*

n*
..*

%

i IIIIIIII
i

mi i
i

i
mm

 iimiiii
m

i
i

i
minimi n

i mm

in
m

um

m

i
m

i

mi mini
mini

mini
m

i
i mm

m

m

i
m

m

i
i

i inn
i

10
11

1
2

1
3

1
4

1
5

16

1
7

1
8

1
9

2
0

21

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

N
um

ber of A
cquisitions

D
im

:2
T

est K
ernel:M

atern
O

pt K
ernel :M

atern
O

bs T
yp

e:f(x) O
nly

P
rior:ILN

Log

 length
 scales of test G

P
: -2.4507

-0.3525

| M
E

Ir £
r =

 0.001

M
E

Ir 4
r =

 0.01

M
E

Ir ^ =
 0.1

M
E

I
E

 =
 1

r
T-

M
E

I
E. = 3

M
P

If 5
r =

 0.001

M
P

Ir ^ =
 0.01

M
P

If 5
f =

 0.1

M
P

Ir5
r =

 1

M
P

I
|

=
3

r
T-

i R
A

N
D

L
H

C

|Q
2

.,„

V
'M

,

«
5

.<>
*

i
si

jjilll
IH

IIIllllllllllllll
|[||

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
I Illinium

 iiillll
[

i in
M

H

m

i,
|

m
m

,
,

„,,„
,

,
J

1
4

1
S

1
6

>
'

1
8

1
9

2
0

21

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

N
um

ber of A
cq

u
isitio

n
s

co

5
h

O

_3
CO

>
 C

4
O

'

•
^

u c 3
Li.

H
i

0)

o W

2
.n
<

D
im

:2
Test K

ernel :M
atern

O

pt K
ernelrM

atern

O
bs T

yp
e:f(x) O

nly
P

rior:E
E

C

Log
 length

 scales of test G
P

: -2.4507
-0.3525

M
E

I
E

 = 0.001
r

TT

M
E

I
^

=
0

.0
1

M
E

I
5 =

0
.1

r
>

M
E

Ir
E

.r=
1

T
-|M

E
I

rE
T =

 3

H
|

M
P

Ir
5

r =
 0.001

M
P

I
^ = 0.01

r
>

M
P

If
^ =

 0.1

M
P

I
|

=
1

r
^r

M
P

I
5

=
3

r
>

R
A

N
D

,

IQ
2 'ALG

"I"„ !!"•«, Ift4. V
** iif^y

•
*

*
H

r-ft

i'„, V
-. >. .

!.-•.
I -

J.
V

.
•','•

''.'-. •»•:• •«..
'''••^

•V
.V

.v
,

v v
."
*-.., •.

•i-
-i.

1
0

11

1
2

1
3

1
4

1
5

16

1
7

1
8

19

2
0

21

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

N
um

ber of A
cquisitions

D
im

:2
T

est K
ernel :M

atern
O

pt K
ernekM

atern
O

bs T
yp

e: f(x) O
nly

P
rionN

one
Log

 length
 scales of test G

P
: -2.4507

-0.3525

|M
E

Ir
5

r =
 0.001

|M
E

Ir
4

r =
 0.01

M
E

If
5

r =
 0.1

M
E

I
5

=
1

r
^r

M
E

I
%

=
3

r
>

|M
P

Ir
lx =

 0.001

|M
P

Ir
|

r =
 0.01

|M
P

I
rl

r =
 0.1

M
P

I
5

=
1

r
^r

M
P

I
|

=
3

r
>

I R

A
N

D
,

|Q
2

.
LH

C

IK|ii-,fP«, \\\-.S\

II [iiiiiiiiiii iiiiiiiiiiii III
IIIIIIII

H
im

HI m

ini
i

ii mi
i

mini mi
iiiiiiiiii

m
il

mum
 mm

mini iim

iiiii
mi mini

n
inim

 nw
i

m
m

H

i

i nm

i in
mi im

iiiiiiii
1

2

3

4

5

6

7

8

10

11

12

13

14

15

16

17

18

19

20

21

22

23

2
4

25

26

27

28

29

30

N
um

ber of A
cquisitions

A.5 Results using 8D squared exponential test kernel,
unequal length scales

An example posterior mean:

Dlm:8 Test KernelrSqExp
Log length scales of test GP: -07629 -0.7629 -0.7629 3.0000 3.0000 3.0000 3.0000 3.0000

8D squared exponential kernel. First three length scales are short, and the remainder are

long. The plot of the example posterior mean is a slice through the origin along dimensions

1 and 2. Only observed function values are used in building the optimization model. 500

functions are sampled from the test model.

126

5
h

O

_
3

(0

>
 c o o c 3

LU

Q
)

+
-•

I* W

<

D
im

:8
T

est K
ernehS

qE
xp

O

pt K
ernehS

qE
xp

O

bs T
yp

e:f(x) O
nly

P
rior:E

xact
Log

 length
 scales of test G

P
: -0.7629

-0.7629
-0.7629

3.0000
3.0000

3.0000
3.0000

3.0000

Iii-H
fl

|ir f

*
*

/
<

:
•'•'

'.. ,
"

i
.

r

-•'
'

!"
V

V

J

« i
,.'

'
•

•
>

!

*
^

. -
. •-

i
I

M
E

Ir
5

r =
 0.001

M
E

I
%

 = 0.01

M
E

Ir
^ =

 0.1

M
E

If
5

f =
 1

|M
E

l'^ =
 3

I M
P

Ir 5
f =

 0.001

|M
P

Ir
4

r =
 0.01

M
P

I
5

=
1

r
>

M
P

I
5

=
3

[R
A

N
D

, ,,„

1
i

I
<

I
<

I 1
* |!'

l!'
' "'

!
-" '• •>• » «• • ..'.

...'•
„

»
. ,

\
.

A
 .

A
 ...".. ..-'.. ..-'.. .,.,. ...«, ..-.,

ii
mi iiiiiiiiiii mi

ii limn
i

mi nun
m

i ii minimi minimi
m

i
mi II

in m

in HI
m

i
H minimi IMMIH

iiiiiini
i milium

i II

mi I
mi minimi lllllllllll lllllllllll lllllllllll lllllllllll

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

2
7

28

29

30

N
um

ber of A
cq

u
isitio

n
s

D
im

:8
Test K

ernel:S
qE

xp

O
pt K

ernehS
qE

xp

O
bs T

yp
e:f(x) O

nly
P

rio
n

IL
N

Log

 length
 scales of test G

P
: -0.7629

-0.7629
-0.7629

3.0000
3.0000

3.0000
3.0000

3.0000

5
h

1
h

0

...U
S

'
. L II".

M
E

I

M
E

I r

M
E

I r

M
E

I

M
E

I

M
P

Ir

M
P

I

M
P

I

M
P

I

M
P

I r %

K

s
r

5
r

%

5r
^r

^r

^r r̂ =
 0.001

=
 0.01

=
 0.1

=
 1

=
 3

=
 0.001

=
 0.01

=
 0.1

=
 1

=
 3

I R
A

N
D

,

I'"
I,'

••'
I,"

I.'
I,-

IN
i m

inim

i
ii

iiiiiim

inn i
minimi HI

urn m

n
i

i
i

m
ini II

II n
m

 HI
II

m
inim

i nun
m

ilium
 m

inim
i m

ilium
 m

inim
i H

urn
i

i
mi m

inim
i

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

N
u

m
b

er of A
cq

u
isitio

n
s

D
im

:8
T

est K
ernehS

qE
xp

O
pt K

ernel:S
qE

xp
O

bs T
ype:f(x) O

nly
P

rior:E
E

C

L
o

g length scales of test G
P

:-0
.7

6
2

9
-0.7629

-0.7629
3.0000

3.0000
3.0000

3.0000
3

!I
•

II
.

l
.'

.1

IIH
B

 p
#

r
.

•
•

;
,

f
f*

J
ifr

.
.

-
-

iiiiiiiiiii ii
i

ill
m

i
mi minimi iiiiiiiiiii ii

i
i

11
inn ilium

 HI
m i

m
i

inn minimi imiiiii
muni IIIIIIHIH iiiinimi mi

n [iimiiiii HUH
II

II
i

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26

N
um

ber of A
cq

u
isitio

n
s

6
h

O
h

D
im

:8
T

est K
ernel:S

qE
xp

O

pt K
ernel:S

qE
xp

O

bs Type: f(x) O
nly

P
rior:N

one
Log

 length
 scales of test G

P
:-0.7629

-0.7629
-0.7629

3.0000
3.0000

3.0000
3.0000

3.0000 M
E

I
%

 = 0.001
r

T-

M
E

I
5 =

0
.0

1

M
E

Ir 5
f =

 0.1

M
E

I
5

=
1

r
^

r

M
E

I
5

=
3

r
^

r

|M
P

Ir
5

r =
 0.001

Ili/IP
I

5
=

0
.0

1
I

r r

|M
P

Ir
5

r =
 0.1

|M
P

I^
-

1

M
P

I
5

=
3

:

I R
A

N
D

,,, •

,
a

« ^
*

U
^

™
,„

....
'•

I
Ir

.'• .1 '
.

i
,

.
'

'
<

l
i [iiiiiiiiii IIIIIIIIIII mi

i m
inim

i
nun i

mi m
inim

i mi
i

mi in
in mi

m
ini mi

i
II m

inim
i

mi inn
m

um

inn im
iiiiii

nun
nun i

»
inn

i m
inim

i
1

2
3

4
5

6
7

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30

N
um

ber of A
cq

u
isitio

n
s

A.6 Results using 32D squared exponential test kernel,
unequal length scales

An example posterior mean:

Dlm:32 Test KerneltSqExp
Log length scales of lost GP: -0.5593 -0.5593 -0.5593 4.0000 4.0000 4.0000 4.0000 4,0000...

32D squared exponential kernel. First three length scales are short, and the remainder are

long. The plot of the example posterior mean is a slice through the origin along dimensions

1 and 2. Only function values are used in building the optimization model. 500 functions

are sampled from the test model.

131

D
im

:32
Test K

ernel:S
qE

xp

O
pt K

ernekS
qE

xp

O
bs Type:f(x) O

nly
P

rior:E
xact

Log
 length

 scales of test G
P

: -0.5593
-0.5593

-0.5593
4.0000

4.0000
4.0000

4.0000
4.0000...

^^H

S
B

W
H

W
E

I

n
|H

|M
E

I
H

H
^S

r

^
M

E
'

r

§
H

I M
E

Ir
iiiiii

'
^

^
H

•
M

PIr
•i M

P
Ir

—
i—

M

P
I

M
P

I r I
=

 0.001

^ = 0.01

6
,-0

.1

^
r

=
1

%
 = 3

\
= 0.001

|
r =

 0.01

4
r = 0.1

^r =

1

6
r = 3

E
IS

R
A

N
D
L

H
C

i IIIIIIIIIII III
i mi

IIIIII
i

IIIIII
i

i
i

II II
II

in m
inim

i i
mn nm

HIIIIIIII m
ilium

 i
i

im
iiiii mm

iiiim
i m

inim
i m

inim
i m

inim
i m

iiiiiiii m
inim

i m
inim

i iim
iiiiii

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

N
um

ber of A
cq

u
isitio

n
s

D
im

:32
T

est K
ernel:S

qE
xp

O

pt K
ernel:S

qE
xp

O

bs Type:f(x) O
nly

P
rio

n
IL

N

Log
 length

 scales of test G
P

:-0.5593
-0.5593

-0.5593
4.0000

4.0000
4.0000

4.0000
4.0000...

5

4.5 4

3.5 3

2.5 2

1.5 1

0.5 0 —

—

--m

i
:

•
:

:
.

'
!

•
:

:
•

•

•
a

a
„! !' ̂

 ,!•

H
M

E
I

r
|

r = 0.001

H
M

M
E

I
r

E,r = 0.01

j|jjM
B

r
|

r = 0.1

^=5irsM
E

I
E

 =
3

•
•

•
MPI

I
= 0.001

IM
|M

P
I

r
E

r = 0.01

M
H

|M
P

I
r

£
r = 0.1

a
M

pu
=

3

m

RAN° LHC

'
• !

>

-
: :

i
:

,
'

'

'
m

ilium
 IIIIIIII

m
i

[mum
 m

inim
i m

ilium
 i

11
m

 m
inim

i nim
iiin im

iim
i

i
n

in m
inim

i iiim
ini

inn nun
mini

i
im

iiii H
in m

ilium
 in

in
m

ini milium
 minimi m

inim
i m

inim
i

1
2

3
4

5
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30

N
um

ber of A
cquisitions

D
im

:32
T

est K
ernehS

qE
xp

O
pt K

ernehS
qE

xp
O

bs T
yp

e
: f(x) O

nly
P

rior:E
E

C

Log le
n

g
th scales of test G

P
: -0.5593

-0.5593
-0.5593

4.0000
4.0000

4 0000
4 0000

4.0000..

4.5 [

j"
3.5

>

•*—

o c =s
U

-
2.5

1 M
E

Ir
lt

=
 0.001

|M
E

Ir
5

r =
 0.01

M
E

Ir
l

r =
 0.1

M
E

I
5

=
1

r
'r

M
E

I
|

=
3

r
^

r

|M
P

If
5

f =
 0.001

|M
P

Ir
l

r =
 0.01

M
P

If
|

r =
 0.1

M
P

I
5

=
1

r
^

r

M
P

If
|

=
3

I R
A^

L rH
C

U
l

2

J3
O

«*

1 5

<

0.5 Ihf

ii.*; h-4f H
hiM

..,,;.

'
'

'
^

^

1
I'

]r

1
2

3
4

5
6

7
8

10
11

12
13

14
is

V
A

"
m"V

j!
''"'

"""""''
"I IM

M
IIIM

IIIM
M

M
II I M

llllll III
Illlllllll lllllllll

H
ill M

ill
I[|||||l||| |||

1 °
' a

^
u

'I
"

23
24

25
26

27
28

29
30

N
um

ber of A
cq

u
isitio

n
s

i
„

.
*u

D
im

;
3

2
J

e
s

t
K

e
rn

e
l:S

q
E

x
p

O

pt K
ernel:S

qE
xp

O

bs T
yp

e: f(x) O
nly

P
rio

rN
o

n
e

Log
 length

 scales o
f test G

P
:-0

.5
5

9
3

-0.5593
-0.5593

4.0000
4.0000

4
 0000

4
 M

0
0

4.0000.

4.5

0>
.3
(0
> c o
+

-o c =s
u.
**—̂

*
I—

o fc-L
.

Ill

<u
•*•»
3 o w

<

ss d

?fi ?

1.5

|M
E

Ir
5

r =
 0.001

|M
E

Ir
|

r =
 0

.0
1

|M
B

r
£

r = 0.1

jM
E

I
r^

r=
1

m
|M

P
I

r
|

f =
 0.001

m
|M

P
I

r
^

=
0

.0
1

—
I|M

P
I.

E.r =
 0.1

M
P

I
E

 =
 1

r
>

M
P

Ir
£.r =

 3

I R
A

N
D

,,.„

0.5

'l!-lE:-lH
h

.
.

.
-."

•"
*

.
H

'
1

|!
&

!!'

11.
[

1
2

3

4

5

6

7

ij.mnmiiMniimiiMjj
iiijiiiiiiiniii

n ionium
 iim

im
,,

|„
,„

IIIMIMHIMI
iitm

n •••••

,
,

„„„„„
,„„„„„

„,
A

)
<>1

2

2

2
3

2
4

2
5

2

6

2
7

2
8

2
9

3
0

N
um

ber of A
cq

u
isitio

n
s

A.7 Results using 2D squared exponential test kernel,
equal length scales,
Matern optimization model kernel

An example posterior mean:

Dim:2 Test KerneliSqExp
Log length scales of test GP: -1.9836 -1.9836

2D squared exponential test kernel with equal length scales. The optimization model instead

uses a Matern kernel. Only function values are used in building the optimization model.

500 functions are sampled from the test model.

136

4.5 h

3.5 h

D
im

:2
Test K

ernel:S
qE

xp

O
pt K

ernekM
atern

O

bs Type:f(x) O
nly

P
rionE

xact
Log

 length
 scales of test G

P
: -1.9836

-1.9836

M
E

If
lr

=
 0.001

M
E

I
^ = 0.01

r
^

r
M

E
Ir

4
r =

 0.1

M
E

I
4

=
1

r
^

r
•

M
E

I
£

=
3

H

r
r

•
M

P
If

^
r =

 0.001

•
M

P
If

£
r =

 0.01

|M
P

I
r

§
r =

 0.1

M
P

I
5

=
1

M
P

Ir§
r =

 3

1
R

A
N

D
LH

C

•

|Q
2

.,„

2.5 T
O

 H
p]!

1.5

0.5 \

f'^.u,.-
l,f%

!^
4
^

i
''''if'V

t'
* U

 1* h
^

|

t

', i, ,\ U
 Vt " h

 u
: u ^ ^

! «
': .'•'

'.'1
,1

1
t I (!

,1
I.

'
I

}

•
*

•
«

'-
*

v
I

.
,

',
.

.
-

.
.

'.
,

•

I
mini minimi

iiim miiiiiiiii imiiiiiiii imiiiiiiii miiiiiiiii m
n HI

m
i

inn inn
i

II
m

mm mum

urn iiiiiiiiiin imiiiiiiii mini
nm mm

m

n •
mil imiiiiiiii iimiiiiiii miiiiiiiii miiiiiiiii iimiiiiiii

1
2

3
4

5
6

7
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30

N
um

ber of A
cquisitions

D
im

:2
T

est K
ernel:S

qE
xp

O
pt K

ernekM
atern

O
bs T

ype:f(x) O
nly

P
rior:ILN

L

o
g length scales of te

st G
P

: -1
.9

8
3

6
-1.9836

4.5 h

.5 ?!! •] %
H

*-\s.

.5

M
E

Ir 5
r =

 0.001

M
H

r 5
r =

 0.01

M
E

If ^ = 0.1

M
E

Ir |
r = 1

M
E

Ir5
r = 3

M
P

Ir %
 =0.001

M
P

If 4
r = 0.01

M
P

Ir ^ = 0.1

M
PI

5
=

1
r ^

r

^
^

M
P

I
f-5

r = 3

I R
AN

D
, LH

C

IQ
2 A

LG

4
l

i
J,

•
•

^
V

V
V

U
^

^
ia

II .
J

"
•

•
'

.
'

•
"

!
.

!
;

'P..' 'if
*

'
l 'if I r'lfl

A
ft

••,;•
*J I

I i
,

,
t

'
:

'

1
2

3
4

5
6

7
IIIH

lllllllllllllllllllillllllllll
H

lllllM
lll

m
iiiim

iiiiii m
il

| II;
H

m
itiiiiH

i

III
i

i
III

i
|

1,5

l
4

1
0

l
b

'I
1°

19

20

21

22

23

24

25

26

2
7

28

5

N
um

ber of A
cquisitions

24
25

26
27

28
29

30

4.5

0)
J3
10

3.5

£ O

O

c 3
U

.

tr 2.5

D
im

:2
T

est K
ernel:S

qE
xp

O

pt K
ernel:M

atern

O
bs Type:f(x) O

nly
P

rior:E
E

C

Log
 length

 scales of test G
P

: -1.9836
-1.9836

n...ni.
,m

nun

U
J

o (0
•Q

1.5

<

0.5 ^

,IFf:

I
vv

|M
E

Ir
5

r = 0.001

|M
E

If
5

r = 0.01

,M
E

Ir
^ =

 0.1

| M
B

,
5

,-1

?
g

K
)M

E
Ir

^ = 3

|H
M

P
I

r
E

r =
 0.001

•
H

M
P

I
r

^ =
 0.01

|M
P

l'^ = 0.1

|M
P

U
 = 1

)M
P

I
r-|^

3

1R
A

N
D

,, LHC

IQ
2.

llllllllllHlllinillllllllim
illllllllliniilliniinill

im
iiiiiiiiin

m
iinii

i
mini

i
m

n
<£

A

4
5

6
7

8
"

.
.

.

!l :
) -I •A-

K'
,,

10
11

<
»

r
'ff

1
1

'"
?

1
1

1
^

^
^

HHIIIHIIIHII
HHIII

im

M
M

 m
niim

N
um

ber of A
cquisitions

23
24

25
26

27
28

29
30

4.5

flj
3-

5

>

I" 0>
2

O

</>
n

1.5

0.5

D
im

:2

T
est K

ern
efcS

q
E

xp

O
p

t K
ern

ekM
atern

O

b
s

 T
y
p

e
:f(x

) O
n
ly

P

rio
n

N
o

n
e

L

o
g

 le
n

g
th

 s
c
a
le

s
 o

f te
s
t G

P
: -1

.9
8

3
6

-1

.9
8

3
6

tm. *A
 • i,

M
E

I
\

= 0.001

M
E

I
\

= 0.01

M
E

Ir
|

r =
 0.1

M
E

I
|

=
1

r

T-

M
E

I
|

=
3

M
P

I
^ = 0.001

r
T-

M
P

I
£

 = 0.01
r >

M

P
I

£
 =

0
.1

M

P
I

|
=

1

r
T-

M
P

I
r-|r=

3

R
A

N
D

^

lQ
2

„,„

i
1

!

I
i

i
•

1
*

'!• fc

m
ini iiiiiiiiiiii IIIIIIIIIIII iiiiiiiiiiii iiiiiiiiiiii iiiiiiiiiiii iniiiiiiiii iiiiiiiiiiii iiiiiiiiiiii minium

 m
iiiiiiiii im

iiiiiiii m
iiiiiiiii im

iiiiiiii minium
 minium

 iim
iiiiiii iiiiiiiinii im

iiiiiiii im
iiiiiiii iniiiiiiiii im

iiiiiiii im
iiiiiiii im

iiiiiiii m
iiiiiiiii iiiiiiiiini im

iiiiiiii
2

3

4

5

6

7

8

9

1
0

11

1
2

13

1
4

15

16

1
7

1
8

19

2
0

21

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

o

N
u

m
b

er o
f A

c
q

u
is

itio
n

s

A.8 Results using 2D Matern test kernel,
equal length scales,
squared exponential optimization model kernel

An example posterior mean:

Dim:2 Test KernehMatern
Log length scales of test GP: -1.4343 -1.4343

2D Matern test kernel with equal length scales. The optimization model instead uses a

squared exponential. Only observed function values are used in building the optimization

model. 500 functions are sampled from the test model.

141

5
h

5 P
IP

I
m

m
 111

I

D
im

:2
T

est K
ernehM

atern
O

pt K
ernel:S

qE
xp

O
bs T

ype:f(x) O
nly

P
rior:E

xact
L

o
g le

n
g

th scales of te
st G

P
: -1.4343

-1.4343

|M
E

Ir
t

f =
 0.001

jM
E

Ir
|

r=
0

.0
1

|M
E

Ir
^ =

 0.1

M
E

I
|

=
1

M
EI

E
 = 3

r
T

-

M
P

I
%

 = 0.001
r

T-

M
PI

E
 = 0.01

r
T-

M
P

I
|

= 0.1

M
P

I
|

=
1

r
>

M

P
I

E
 = 3

r
>

I R

A
N

D
,

(Q
2

.
LH

C

»
1.

I
I

i'
«'

'
J

$

M
l

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30

N
um

ber of A
cq

u
isitio

n
s

D
im

:2
Test K

ernehM
atern

O

pt K
ernehS

qE
xp

O

bs T
yp

e:f(x) O
nly

P
rio

n
IL

N

Log
 length

 scales of test G
P

: -1.4343
-1.4343

|M
E

Ir
|

r =
 0.001

|M
E

Ir
§

r =
 0.01

,M
E

I
r|

r =
 0

.1

,M
E

I
r5

r=
1

r
f

e
M

E
Ir

^
r

=
3

M
H

M
P

I
r

§
r =

 0.001

_
|

M
P

I
r

|
f =

 0.01

•
fg

M
P

I
l

r =
 0.1

•a
i|M

P
!

§
 =

1

M
PIf ?

r =
 3

I R
A

N
D

,

|Q
2

.
LH

C

»>%) m
 f%

*.,w

F
I

r
p

ll *
» til

„' if

t
I

t>
If

'.•
!>

'
',." i,'

..' !,•
-

,'
,,'

J 111" 1111111""''""'I)
mil ill

iiiiiinnii i"
'

H
I

«I'liiiiiini i
iiiiniii

iimiiii
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2
0

21

22

"23""""_4

«
™

«
>

™
jn

M
m

im
m

m
m

m
m

m
m

m
n

n

N
um

ber o
f A

cquisitions

CO
"St 1

4.5 h

O

3.5^
3 (B

> o c 3
2.5

111
d>

O

»
1.5f

1 -;

0.5

D
im

:2
Test K

ernehM
atern

O

pt K
ernel:S

q
E

xp
O

bs T
yp

e:f(x) O
nly

P
rio

n
E

E
C

Log

 length
 scales of test G

P
: -1.4343

-1.4343

'"%

%
4 >

!%
y

| M
E

I
I

=
 0.001

I
r

r

[M
E

I
I

=
0

.0
1

I
r

r

M
E

I
%

=

0
.1

I M
E

I
|

=
1

5
S

M
E'r^r=

3

•
M

M
P

I
i

=
0
.0

0
1

wmt MPl,
5r = o.oi

•
•

•
M

P
I,

?
r =

 0.1

I M
P

I
5

=
1

M
P

If
|

r =
 3

l R
A^L

H
C

'
*

 :B
I,' prt'rito

i
" -1 '

!
(

,""
,< »'•«!•

.1
. J

•
I

. 'i
. "1.

I
I

:
J

"-iff
•

tf
i!

i» l.i
, ,

•*
'

•
'

•
*

-#

lilllllllllllllllllllllllllllllllll
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

N
um

ber of A
cquisitions

D
im

:2
Test K

ernehM
atern

O

pt K
ernehS

qE
xp

O

bs T
yp

e: f(x)
O

nly
P

rior:N
one

Log
 length

 scales of test G
P

: -1.4343
-1.4343

5

4.5 4

3.5 3

2.5 2

1.5 1

0.5 0

•
~

II
IV-

fl

IllrJ 'If*
„

:

Iji;.S|

''"W
i,.t|I

1
.'}

•
i

"
.If :

»
!' .J *

1!
i!

.]j

I

it
1

1
.,

i
i

11 « » 7'«»
/ * V

 v
„

M
H

jM
E

Ir ^ = 0.001

H
M

|M
E

Ir £r = 0.01

•jp
M

E
^

|r = 0.1

lH
M

E'r ^r=
1

M
M

M
P

I
4 =0.001

•
H

i
r

m
|M

P
I

r
|r = 0.01

••M
M

P
Ir cT = 0.1

i
B

M
P

I
rl

r=
1

^
•

M
P

Ir
r̂ = 3

H
||R

A
N

D
L

H
C

(
l

l
i

,
i

1*'
i*

|»*
*.•

n'
~

*
J>'

.-"
if-

.-'
«*

in
i

mini i
in

inn
i

i
i

iiiiiiiiini minium

mill iiiiiiiim
i

n
urn nnmiim

in mi

mnnmii i
i

i
limn m

mi iiiiimii

niiiiin n
n iiiinii

i
i iiimmiii

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

N
um

ber of A
cquisitions

A.9 Results using 2D squared exponential test kernel,
equal length scales, gradients included

An example posterior mean:

Dlm:2 Test Kernel:SqExp
Log length scales of test GP: -1.9836 -1.9836

2D squared exponential test kernel with equal length scales. The optimization model uses

a squared exponential kernel. Observed function values and gradients are used in building

the optimization model. 500 functions are sampled from the test model.

146

5
h

D
im

:2
T

est K
ern

el:S
q

E
xp

O
p

t K
ern

el:S
q

E
xp

O
b

s T
y

p
e

: f(x) a
n

d V
 f(x

)
L

o
g len

g
th scales o

f test G
P

: -1
.9

8
3

6
-1

.9
8

3
6

P
rio

r: E
xact

!!."*:• fr*
*

I
I

I

"rtj

1
I

5
1

I
I

M
E

I
|

= 0.001

M
E

I
|

=
0

.0
1

M
E

I
%

 =
0

.1

M
E

Ir
|

f=
1

M
E

I
r|

f =
 3

M
P

I
|

= 0.001

M
P

I
^ =

0
.0

1

M
P

I
^ =

0
.1

M
P

I
|

=
1

M
P

I
'5

=
3

r ^r
I R

A
N

D
, LH

C

r
i

i
i

i
i

r'* **' i«;«' ,v
H

I
"

'.«
••'

j

i
m

ini m
inim

i im
ii

urn
ilium

 n
i ilium

m

n

m
ini

i
m

 m
inim

i i
i

i
i

m
 inn

H

i
m

in inim
iiii i

i
urn iim

m
iii iiniiiiiil IINIIIIIII liililiilii INIIIIIIII lllllllllil iiw

iiiiii lllllllllll
1

2
3

4
5

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

N
um

ber of A
cq

u
isitio

n
s

4.5 [

O

_3
(B

 3-5
>

 C

o

o c 3
u.
tT

2.5
O

U

J

©

o

O
T

X

J 1.5

0.5 h

O
h

|[..I" ;#
J a

*

D
im

:2
T

est K
ernel:S

qE
xp

O
pt K

ernekS
qE

xp

O
b

s T
yp

e:f(x) and V
f(x)

P
rior:ILN

Log

 length
 scales of test G

P
: -1.9836

-1.9836

t
!

I
I

J
I

i
i

!
I

r*"',V
"''I' ft

fv

2
3

4
5

6
7

|M
E

Ir 5
r =

 0.001

|M
E

Ir |r=
0

.0
1

| M
B

, 5
,-0

.1
|M

E
Ir5

r=
1

ia
M

E'r^
r =

 3

•H
|M

P
I

r
5

r =
 0.001

•H
|M

P
I

r
c

r=
0.01

|M
P

Ir5
r=

1

|M
P

Ir-5
r =

 3

I R
A

N
DL

H
C

'
i

l
l

I
I

'
'

•
'

,
!'"

'
•

'•
-

''-
•

••'••'.•'•.••
••'-•

-
•

:
'

-•..•'
/

;
;

..'

1
0

^
1

j
u

|4
'','f "'"'/j) 11111'"')'

IllIN
IIIIIIIilN

IIIIIIIH
N

IIIIIIinilllllllllIII
Illn

r hi||
iiiim

m
.

N
um

ber of A
cquisitions

28
29

30

0
0

-3"

iSI-E rfi

D
im

:2
T

est K
ernekS

qE
xp

O
pt K

ernehS
qE

xp
O

bs T
ype:f(x) and V

 f(x)
P

rior:E
E

C

Log length scales of te
st G

P
: -1.9836

-1.9836

*> *_<*

U
II I,

„
!

fj

I
'

'
I

!
I

j

l!
f

'> l i' ! if
J „« n' .«

1!
I"

„
If

,,"
,>

I M
E

Ir
\x =

 0.001

|M
E

Ir
5

r=
0

.0
1

|M
E

Ir
£

r =
 0.1

|M
E

I^
=

 1

|M
P

Ir
lf

=
 0.001

|M
P

Ir
|

f =
 0.01

M
P

I
|

=
0

.1
r

'r

•
M

P'r^ =
 3

•M
 R

A
N

D
, u

„

r
i

i
i

i

1
2

3
4

5
6

7
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

N
um

ber of A
cq

u
isitio

n
s

,1

D
im

:2
Test K

ernel:S
qE

xp
O

pt K
ernekS

qE
xp

O

bs Type:f(x) and V
 f(x)

P
rior:N

one
Log

 length
 scales of test G

P
: -1.9836

-1.9836

m
iir

• !

ir 1

I
I

»
]

I

!
,

I

III-
••'

•

I
I

»
I

I

|M
E

If
|

r =
 0.001

|M
E

Ir
E.r =

 0.01

'
;

iM
E

l
% =

0
.1

'M
E

Ir
|

r=
1

=
 3

|M
P

If
?

r =
 0.001

M
P

I
E

 =
0

.0
1

r
^r

M
P

I
^

=
0

.1
r

^
r

M
P

I
|

=
1

r
^r

M
P

If '5
r =

 3

R
A

N
D

^

• i
.

i
i

t

*
I

I
I

1
J

^^
is,lli|jS|!;;; ,;--.!^

lili!.
!

!

m
il

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

N
um

ber of A
cquisitions

A. 10 Results using 2D Matern test kernel,
equal length scales, gradients included

An example posterior mean:

Dlm:2 Test KernehMatern
Log length scales of test GP: -1.4343 -1.4343

2D Matern kernel with equal length scales. The optimization model also uses a Matern

kernel. Observed function values and gradients are used in building the optimization model.

500 functions are sampled from the test model.

151

4.5 [

O

3.5 f

15
>

 e o O

£
U

_
2.5

D
im

:2
T

est K
ernekM

atern
O

pt K
ernel.-M

atern
O

bs T
ype:f(x) and V

 f(x)
P

rior:E
xact

Log length scales of te
st G

P
: -1.4343

-1.4343

M
E

If |
r =

 0.001

M
E

Ir ^ =
 0.01

M
E

I
%

 =
0

.1
r

^
r

M
E

I
|

=
1

|M
E

I
r5

r =
 3

|M
P

I
r

|
r =

 0.001

|M
P

Ir
5

r =
 0.01

|M
P

I
r^ =

 0.1

|M
P

I
r4

r =
 1

M
P

Ir |
r =

 3

R
A

"
D

L
H

C

U
J

o O

£
1.5

<

0.5 [

.V

l
V

i

'
. i"

•'•
.1

:
k

.
i

'ft'
!

fi!
! If

5

2
3

4
5

6
7

1
I I

A
A

'
i

'
i

1

'
I

- "
V

-I-

-I-
•<

1
i

'.
.1

.1
'

:
I

9

1
0

n

1
2

,j
Illflll

Illl
Illllllllllllllllllllllllllllllllltl

IN
I||IM

II|||||||||||||||[|
1

'*

IJ
n^

n

t>

1
b

17
18

19
20

21
22

23
24

25
26

27
;

N
um

ber of A
cq

u
isitio

n
s

I
!

T

T

V

i
,

.
-

,
.

•
•

•

'.
. !

28
29

30

4.5
h

3.5

2.5

1.5

0.5

D
im

:2
T

est K
ernehM

atern

O
pt K

ernehM
atern

O

bs Type:f(x) and
 V

f(x)
P

rionILN

Log
 length

 scales of test G
P

: -1.4343
-1.4343

rt
.

•
•

.
*

i

'J

,i
i

,i
i

i
r

I
i

i
«

•
l

II
«t

*
..

'I
./

Il*
..*

I."
..»

;

M
E

If
£

r =
 0.001

M
E

I
5 = 0.01

r
^

r

M
E

I
\

=
 0.1

r
^

r

M
E

I
|

=
1

M
E

I
\

=
 3

M
P

I
^ = 0.001

r
'r

M
P

I
|

= 0.01
r

^
r

M
P

Ir
5

r =
 0.1

M
P

I
\=

1
r

^
r

M
P

Ir
|

r=
3

R
A

N
D

^

1
!

I
I

I
I

I
I

minimi minimi mini
imiiiiii iiiimiiii n

mi iiimiiiii iiiimiiii iiimiiiii minimi minimi minimi mi
in

n imiiinii
mil i

mi imiiiiiii minimi minimi minimi minimi iiimiiiii milium milium iiiiiiimi miiiiiiii [IIIIIIIIII minimi
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30

N
um

ber of A
cquisitions

D
im

:2
Test K

ernekM
atern

O

pt K
ernekM

atern

O
bs T

yp
e: f(x) and

 V
 f(x)

Log
 length

 scales of test G
P

: -1.4343
-1.4343

P
rior: E

E
C

5

4.5 4

3.5 3

2.5 2

1.5 1

0.5 0 -

.

i

I!
i

—

,

• l ;
•

• •
. J

I
"

•
!"

*
'

I
-

"
•

!
•

J
•

- 1
i

1
,

i
,

ft"
,

'
t

>
•.,

••
'

•
'

'
'

•
•

'
.,'

.,'
'

'
i

i
.

!i'
&

,
; ,.';

V

V

"
!

• •
• •

''
''

'
-

''-
• •

!
|-'

ih

•
ii

i}
i

•
'

'
•

•
•

•
•

.
.

.
.

1
|J

4
i

J
x

•!
IT

T

•
•

i
M

E
I

E
 = 0.001

M
M

M
E

I
r

£
r = 0.01

H
iH

M
E

l
E, - 0.1

M
g

M
E

I
f

|
r = 3

M
M

M
P

I
E. =

0.001

H
H

M
P

I
r

c
f = 0.01

i
M

P
I

E
 =

3

M
|

R
A

N
D

L
H

C

*

1
!

t
I

1
i

i
1

'
!

!
1

j
I

,
.

-
.

.
.

,
.

•
.

.
•

.
.

•
.

.
.

.
.

-
.

.
.

.
-

•
.

.
.

.
.

.
.

.
.

.
,

.
-

.
.

-
.

.
.

.
.

•
.

-

III
mini

i
mi minimi nit

iiiiiiiini minimi minimi
i

i
i

inn iiiimiin mmnm milium n
i

i
in

i minimi mi
i

n in
in in

in mi
i

i
mimi mi

immiiii minimi
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30

N
um

ber of A
cquisitions

•5

D
im

:2
T

est K
ernekM

atern
O

pt K
ernekM

atern
O

bs T
ype: f(x) and V

 f(x)
P

rior:N
one

L
o

g le
n

g
th scales o

f te
st G

P
: -1.4343

-1.4343

M
E

Ir
|

=
 0.001

M
E

Ir
£

r =
 0.01

M
E

Ir
§

f=
0

.1

IM
E

I
£, =

1

iM
E

l
E

 =
3

M
P

Ir
|

r =
 0.001

M
P

I
E

 =
0

.0
1

M
P

Ir
5

r=
0

.1

:M
P

Ir
^

=
1

M
P

Ir
|

r =
 3

R
A

N
D

,. ,„

•5

O
h

t*
[.'»!'<

-l

•
i

<

1
I

'I'
•'

.
.'

I
I

>
.

I

'v'v'•"
•"

"
"

•
i

i
<

i
i

i

h"
'

»• ""
' '''

..' '»
.-• Ir

., V

., »,
..•

1
2

3
H

ill lllllllllll lllllllllll lllllllllll lllllllllll II
Illl lllllllllll lllllllllll T

ill nil m
ill

iniiiii
lim

n m
iiiiiiii III

i
iiinim

,
,„, M

l

*

°

b
'

8
9

10

11

12

13

14

15

16

17

18

19

20

21

N
um

ber of A
cq

u
isitio

n
s

i
i

i
i

22
23

24
25

26
27

28
29

30

Appendix B

Effect of Priors on Performance

B.l With function values only

The graphs in this section illustrate the effect of different £r on performance of MEI r and

MPI r on each of the test models when learning length scales using different priors. The

observation models here were built using observed function values only.

156

Dim: 2 Test Kernel: SqExp
Log length scales oftestGP: -1.9836 -1.9836

Dim: 2 Test Kernel; Matern
Log length scales of test GP: -1.4343 -1.4343

-
I I *

-

• la • • » , . . . - i

hi

HigMEI. 1

iPIM E Ir ;

K / i M H ;

- •,• M E i f :

• MEt r ;

• > M P I - ;

sOOOt Param Pnor.None Opl Model SqExp

= 001 Param Prio

= 0 1 Para

= 1 Param

= 3 Param

= 0 1 Para

• r<w

i» ' J / ' , , i.r,.

None Op! Model SqExp

n Prior None Opt Model SqExp
PrwN

Prior N
one Opl Model SqExp

one Opl. Model:SqExp

n PnorNone Opl Model SqExp

nv •V I l f '

-

-

I S -

-

•u
i i * • ' « . . . < I

• H ME!f ; r = 0.001 Param. Prtar:None Opt Model;Matern

WjjjM MEÎ ^ = 0.01 Param. Prior:None Opl. Model:Mai6rn

p T . M E I qr = 0.1 Param. Prior;None Opl. Model:Malirn

,, fMB\t ; r = 1 Param. Prior:None Opt. Model:Malem

",^SM6I (4(= 3 Param, PrlorNone Opl. Model:Mal4m

H M P I . ; r = 0.1 Param. Prior:None Opl. Model Matern

• , L H ° " "

" • • » . " i . . . " .

Number of Acquisitions Number of Acquisitions

Dim: 2 Test Kernel: SqExp
Log length scales of test GP: -3.0000

Dim: 2 Test Kernel: Matern
Log length scales of test GP: -2.4507 -0.3525

I M ' U !

I I S * * ! ,
IK*

.
1

MM|MEI r ^r = 0.001 Param. PriorNona Opt. Model:SqExp

8f f l f l |M E I
r 5r = 0.01 Param. PriorNone Opt. ModeCSqExp

tafjFiSME^ 5 =0.1 Param. PriorNone Opl. ModelSqExp

HApyMEIj 4r = 1 Param PriorNona Opt ModelSqExp

&>,i}"ME1 % = 3 Param Prior None Opt ModelSqExp

H M P ^ ^ I O . I Param. Prior:None Opl. ModelSqExp

(•M L H C fWJD

*h

. . f ,« * . *
1 * * * I If* , .,f(i , M * n * *

»«* * ' „"» „ , » * .

, ,

II?* " I I

I I * * ""| «» • I
K

l i s *

HH jME l , ill

{< *(M 6 lr
IHMPI .

• B L H < ; »

* ft

f = 0.001 Param. PriorNona Opt. Model:Maiern

r = 0,Ol Param. PrlorrNona Opl. Model:Matern

f = 0.1 Param. Prior:None OpL Model:Matern

r = 1 Param. Prlor:None Opl. ModekMaiem

r = 3 Param. Prior:None Op). ModelMatem

f = 0.1 Param. Prior:None Opt Model:Matern

• , » • • „ -

Number of Acquisitions Number of Acquisitions

Dim: 8 Test Kernel: SqExp
Log length scales of test GP:-0.7629 -0.7629 -0.7629 3.0000 3.0000...

1
!

»»•«;„

,

»•!»

1

l * * *

1
1

I '

. " •

^ H M E l r 5f 3 0.001 Param. PriorNone Opt. Model SqExp

l H g M E I , 5r = 0.01 Param.PrrorNone Opt.ModelSqExp

H'|S|M E I
r 5 r " ° 1 Param Prior None Opt ModelSqExp

Bwj|MEI t 5 r=1 Param Prior None Opl ModelSqExp

i 'l JMEI 5 = 3 Param PriorNona Opl ModelSqExp

H M P I r 5(= 0.1 Param. PriorNone Opt. ModelSqExp

• " > , « . • > . • - • " , « # . .

" • • "

Dim: 32 Test Kernel: SqExp
Log length scales of test GP:-0.5593 -0.5593 -0.5593 4.0000 4.0000...

14 15 18 28 29 30

Number of Acquisitions

.

J U F * * ! !

"""

| H M E I r Sr=0.001 Param. Prior:None Opl. ModelSqExp

WjgtM^\ 6 f=0.0i Param. Prior:None Opt. Model:SqExp

| | | | |ME(r ^ r=0.1 Param. PnorNone Opt. Model:SqExp

jj(||||MEIr 5 r=1 Param Poor None Opt ModelSqExp

i'!>!fUMEI
r sr = 3 Param Prior None Opt ModelSqExp

• H j M P I , 5r«0.1 Param. PriorNona Opt. Model:SqExp

H i L H C . ™

i

" * " " " • " - " " ' • . . . - . ? . . . - .C . . . - ."

28 29 X

Number of Acquisitions

Dim: 2 Test Kernel: Matern
Log length scales of test GP: -1.4343 -1.4343

^ H M E I r £r = 0.001 Param. PrioriNone Opt. Model:SqExp

BWgMEl, 5r = 0.01 Param. Prior:None Opt. Model:SqExp

^ ^ M E I r 5 f = 0.1 Param. Prlor:None Opt. Model:SqExp

S ' j M E l 5 r=1 Param. Prior:None Opl. ModelSqExp

? t.MEl % =3 Param. Prior;None Opl.Model:SqExp

HH jMP^ 5 r i0.1 Param. Prior:No™ Opt. ModelSqExp

Dim: 2 Test Kernel: SqExp
Log length scales of test GP: -1.9636 -1.9636

• H j M E I r ^=0.001 Param.PrtoriNone Opt.Mod*l:Mat6rn

H M E I , 5 r»0,0i Param. Prlor:None Opt. Model:Matern

gygggME^ £r = 0.1 Param. Prior:None Opl. ModekMaWrn

|j!;;jS||ME1r 5r = 1 Param. Prior:Nona Opt. Model:Malem

&'*T'JME,r ^ r " 3 Param. Prior:None Opt. ModehMattrn

• MPI E t O .

,. • % * \

n. Prior:None Opl. Modal:Mat6m

Number of Acquisitions Number of Acquisitions

Figure B . l : Performance

157

Dim: 2 Test Kernel: BqExp

-

I I *
1 1 ;

Log length scales of test GP: -1.9836 -1.9836

H M P I r 4t = 0.001 Par am. Prior: None Opt. Model :Sq Exp

U H M r > , 5,= 0 ° 1 Param Prior None Opt ModelSqExp

iW8j M P I , . qr = 0,1 Param. PrionNone Opt. Model:SqElp

W>WMPI, ' , = t P a r a m Prior None Opt Model SqExp

•jfjjj^MPI 5 = 3 Param Prior Nona Opl Modal SqExp

H M E I , ; r = 0 001 Param Pror None Op! Modal SqExp

IgHg LHCRAND

•"«"«»',

HI. ' 1 . „,. '«. i t > . ' I . ^

.•."' ..."' . . . " »

Dim: 2 Test Kernel: Matern

Log length scales of test GP: -1.4343 -1.4343

-
-
I I K ' I K

" " " • • • • . V . i

I ,

• • M P I .

H M M P , F ^

• B M P ' . '
a*""1. *
a"". -
m™-

= 0.001 Param. Prior;Non« Opl. ModeLMalem

x 0.01 Param. PriorNone Opt. Model Ma Ism

= 0.1 Param. Prior :N one Opl. Model; Ma tern

= 1 Param. PriorNone Opt, ModekMatern

= 3 Param. PrionNone Opl. Model:Matern

= 0.001 Param. PrionNone Opl. Model:Malern

* » . , . * , "

Number of Acquisitions Number of Acquisitions

Dim: 2 Test Kernel: SqExp

Log length scales of test GP: -3.0000

Dim: 2 Test Kernel: Matern

Log length scales of test GP: -2.4507

-

m t u i
iiro»\

1

, i

-

'
*tU*iM

"*"

H U P I t ; t = 0.001 Param. PrionNone Opl. Model:SqExp

• M MPir %f = 0.01 Param. Prior:Nom Opt, Model:SqExp

| | | | g M P ,
r 5r = 0.1 Param. PrionNone Opl. Model.'SqExp

|81|||MPIf 5,= 1 Param. Prior None Opt Model SqExp

j^^wMP1 r % =3 Param PriorNone Opt Model SqExp

- - B M E I , i r = 0.001 Param. Prior:Nona Opl. Model;SqExp

«M|I-HCRAND

V I* * »- *

• ' - « • » - * » » . -

-

moit

-

-

I IMK ^ t l J "\

"•»

| M M P I

l
£ rs 0.001 Param. PriorNone Opt. Model;Matern

4(»0.01 Param. Prior:Nont Opt. Model:Matern

^ = 0.1 Param. PrionNone Opl. ModefcMaMm

£ s 1 Param. Prior:None Opt. Model:Malem

5 = 3 Param. Prior:None Opl. Model:Matem

4 x 0.001 Param. Prior:None Opt. Model;Matern

*«" " » . . » • " «» , . » , "
' » • * - •

Number of Acquisitions Number of Acquisitions

Dim: 8 Test Kernel: SqExp

Log length scales of test GP:-0.7629 -0.7629 -0.7629 3.0000 3.0000...

-
1

1

1 j '
xi o s i*

» « I * 1 I M***1 '

i '! < 1 ! «-*.

MM|MPI r i r = 0.001 Param. PriorNone Opt. ModehSqExp

W M | M P I . 5r = 0.0l Param. PriorNone Opt. Model SqExp

H f f l j l M P I , l,~01 Param. PrionNone Opt. Model SqExp

||ggjgMPIf $ (=1 Param. PriorNone Opl. Model:SqExp

f i 8 | | M P I
r 5r = 3 Param PriorNone Opt Model SqExp

MaaMEl i, =0.001 Param. PriorNone Opl. Model SqExp

W M j L H C ^ , ,

*V ««/V ."/V « . ' . m

„ - - - . . - , -

14 15 16 28 29 30

Number of Acquisitions

Dim: 32 Test Kernel: SqExp

Log length scales of test GP:-0.5593 -0.5593 -0.5593 4.0000 4.0000...

- . ..

"
•

its M I I

I 1 S 8 * 1
* M m * * ! , -

...

M M P I . 5.x 0,001 Param. PrionNone Opt. Model:SqExp

•Mj jUPIf ^f-0.01 Param. PriorNone Opt, ModelSqExp

ffWtjjMP'i {fSO.1 Param. PriorNone Opt. Modal:SqExp

|gjjji||MPIr £ r=1 Param. PrionNone Opt. Model SqExp

W»|MPI r i f = 3 Param PriorNone Opt ModelSqExp

MWeMEIr 4r = 0.DO1 Param.PrionNone Opt.ModelSqExp

W - H C » N °

i <

• * " " — - - - « —^ „ a l fc. ta f F l |

14 1 5 1 8 2B

Number of Acquisitions

29 30

Dim: 2 Test Kernel: Matern

Log length scales of test GP: -1.4343 -1.4343

I

I

I

lis sal] i

i!"™*!!**^

i

aaaVMPI.

ffNffff UP'r

B l U P I r
IjPgBjMPI

^ M P I r
•HVMEI .

H W L H C ^

r = 0.001 Param. PrionNone Opt. Mode I :Sq Exp

r = 0.01 Param. Prior:None Opt. Modei:SqExp

= 0.1 Param. PrionNone Opt. Model;Sq£xp

f = 1 Param. PrionNone Opt. ModeliSqExp

r = 3 Param. PrionNone Opl, ModelSqExp

: = 0.001 Param. PrionNone Opt. Model:SqExp

* »»* a

15

• • * ' * . " * . ' "•

16 28 29 30

Dim: 2 Test Kernel: SqExp

Log length scales of test GP: -1.9836 -1.1

'ftXXtifc

• MPIr t , = 0.001 Param. PrionNone Opt. Model:Matern

r*MPI(£, = 0-01 Param. Prior:None Opt. Model;Malern

| U P I r 6, = 0,1 Param. PrionNone Opt. Model:Malern

i»MPIr 5f = 1 Param. Prior:None Opl. Model:Matem

MMPI(5f = 3 Param. Prior:None Opl. Model:Matem

wMEIr i f = 0.001 Param. PriorNone Opt. Model:Malern

• LHC„un

' • . . " . " » . . ' . " • . . " .

Number of Acquisitions

1 15 1S 2B 29 30

Number of Acquisitions

Figure B.2: Performance using no prior

158

Dim: 2 Test Kernel: Sq Exp

Log length scales of test GP: -1.9836 -1.9836

Dim: 2 Test Kernel: Matern

Log length scales of test GP: -1.4343 -1.4343

I H f

-

I *
" " * • * * * ;

I I *

• H M E I
r 5, = 0-001 Param. PriorILN Opi. Model:SqExp

8HjggMEI(=(= 0.01 Param. Prior.ILN Opt. Model:SqExp

f ;^ . jMEI r 5, = 0 1 Param PriorILN Opt Model SqExp

, .^MEIr ; r = 1 Param Prior ILN Opt Modal Sq Exp

" *' 'MEI f ; f = 3 Param Prior ILN Opt Model SqExp

M M P I , ; , = 0 1 Param Prior ILN Opt Model SqExp

•LHC<«»i>

• n«" « „." i

...

-

IK*

1 9 »
" i l H - . . I ,

pjgMEl

nnMEi

» » M E I r

K' * - M E ' r

MEIf

H M P I .

MNNLHC.

i » - " • i , / " i

r = 0.001 Param. Prior: ILN Opt. ModehMaWm

r = 0.01 Param, Prior;ILN Opl. Model:Malern

r = 0.1 Param. Prior:ILN Opt. ModeliMatern

r= 1 Param. PriorILN Opl. Model:Malern

r = 3 Param. PriorILN Opl. Model: Malem

r = 0.l Param. Prior ILN Opl. Model:Matern

. . - • " • "

Number of Acquisitions Number of Acquisitions

Dim: 2 Test Kernel: SqExp

Log length scales of test GP: -3.0000 -0.9018

Dim: 2 Test Kernel: Matem

H i * *w ,;
1 1 * * * 1 1 '

1 (1 •«»«

,,, ,

**i

...
. 1 . l i t

| | | M E I r \r = 0.001 Param. PriorILN Opl. ModakSqExp

H g M E l , ; r = 0.01 Param. Prior:ILN Opt. ModeCSqExp

%s»e&MEIr i , = 0.1 Param. Prior:ILN Opl. ModeLSqExp

jjgWjMEl, £ r=1 Param PriorILN Opt Model SqExp

~^".iMEI r ^ = 3 Param PriorILN Opl Modal SqExp

M M P I r 5r = 0.1 Param. PriorILN Opt. ModeLSqExp

W i L H C R A " 0

* * * " • . " x
• ' I t * I J l s * , rf * ^ » u *

,, , ,

Log length of test GP: -2.4507 -0.3525

• | M E I 5r = 0.001 Param. PriorILN Opl. Model:MaWm

jHHMEL 5r3.0.01 Param.Prior:ILN Opt.Model:Malern

U g M E l , 5r»0.1 Param. PriorILN Opt. Model: Mate rn

S|B^ME1f i r = 1 Param. Prior:ILN Opt. Model:Mal*m

a, i«MEIf 5r = 3 Param. Prior:ILN Opt. Modal:Matem

M M P I 1,-0.1 Param. PriorILN Opl. Model:Maiern

• inmLHa,.,..

Number of Acquisitions Number of Acquisitions

Dim: 8 Test Kernel: SqExp

tog length scales of test GP:-0.7629 -0.7629 -0.7629 3.0000 3.0000...

-
-
lUt'Xt

» • > . ,

• < ' j . . .

-

H M E ^ 4r = 0.001 Param. Prior:H.N Opl. ModekSqExp

• g M E l , 5r»0.01 Param. Prbr:ILN Opl. Model SqExp

H | l M E l r 5r = 0.1 Param. PriorILN Opt. ModehSqExp

^ s M E l , 5 f = l Param Prior ILN Opt Model SqExp

JJHIMB, 5r = 3 Param PriorILN Opt Model SqExp

• H j M P I , 5r = 0.t Param. PriorILN Opl. ModehSqExp

H1 L H C RAND

1

" * " - " - ' " " • "

Dim: 32 Test Kernel: SqExp

Log length scales of test GP: -0.5593 -0.5593 -0.5593 4.0000 4.0000...

-

I l»«

-
1

*H
41,111 «**

3 '

•".
• *

^ • • M E I

HH M E I

fH|MEI

mmMB

mmi

• • L H C

*r =

WND

"* *'* "* ""

0.001 Param. Prior:ILN Opl. Model:SqExp

0 01 Param PriorILN Opl.Model:SqExp

0.1 Param. Prior: ILN Opt. Model:SqExp

1 Param. Prior:(LN OpL ModekSqExp

3 Param Prior ILN Opl. ModekSqExp

0.1 Param. PriorILN Opt. Model:SqExp

' i '
" "" " ^ **'- „ ' k

" * - ! • * " • • - • - I

Number of Acquisitions Number of Acquisitions

Dim: 2 Test Kernel: Matern

Log length scales of test GP: -1.4343

-

-
1 * * *

1

!
i n

, :

I

•d ,„ ••4
i « * •

H H M E I r £.= 0.001 Param. PriorILN Opt. Model:SqExp

MBtMEl , ^ = 0.01 Param. PriorILN Dpi. ModefcSqExp

SSSil^E^ i r = 0 1 Param. PriorILN Opt. ModekSqExp

' | "B i | | M E ,
r S,= 1 Param. PriorILN Opt. ModekSqExp

% « M E I r ^ = 3 Param. PriorILN Opl Model:SqExp

• H | M P I T £r = 0.1 Param. PriorILN Opt. ModehSqExp

Hi'-HCR., l0

"•*...-. . . . 7 . - • . - - •

1S 16 2B 29 30

Dim: 2 Test Kernel: SqExp

Log length scales of test GP: -1.9836 -1.9836

-

-
I I *

-

» 1 I

•«» "mx • •»„

• J W M E I , 5r = 0,001 Param. PriorILN Opt. Model:Matem

gHW M E I
r £, = 0.01 Param. Prior:ILN Opt. Model :Malem

m a MEI_ £r = 0.1 Param. Prior:ILN Opt. ModekMatem

H | j S M E I , 5 r
= 1 Param. Prior:ILN Opt. ModeliMalem

2 P ' i M E I r ^ i * 3 P a r a m PriorILN Opt Model Malem

• J H M P I | i [° 0 . 1 Param. PriorILN Opl. ModeMalem

• i L H C ^ N D

« * I . / • u / * m ^ »

Number of Acquisitions Number of Acquisitions

Figure B.3: Performance using ILN prior

159

Dim: 2 Test Kernel: SqExp

L o g l e n g t h s c a l e s o l t e s t G P : - 1 . 9 8 3 6 - 1 . 9 8 3 6

Dim: 2 Test Kernel: Matern

L o g l e n g t h s c a l e s o f t e s t G P : - 1 . 4 3 4 3 - 1 . 4 3 4 3

I I S "

•

' »«»•,!,

Hi"

• e S M F > < .

fflfflwpV

^ • M E I r
m W C „

" * * M

I 1 I » I

^ = 0.001 Param. Prior: ILN Opt. Mods I :Sq Exp

, r = O.01 Param. PriorlLN Opl. Model:SqExp

, (= 0.1 Param. Prior:ILN Opt. Model SqExp

, t s 1 Param Prior ILN Opl Model SqExp

^ = 3 Param Prior ILN Opl Model SqExp

^ = 0 001 Param Prior ILN Opi Model SqExp

»•/ ,
* " " " " » " * • - • •

-
•

"
m m *

" " " " " j t i i * ^

• M B MP)

M H | M P > ,
n a M n

§•""'
i jm MPir

1HIBMEI

•,<«„

"*

••,.*," • . , / , "

r = 0.001 Param. PriorlLN Opl . Mode I :Mo K m

F = 0.01 Param. Prior:ILN Opt. Model:Matern

= 0 1 Param. Prior: ILN Opl. Mode I: Matern

r = 1 Param. Prior:ILN Opl. Model:Maiern

f = 3 Param. Prior:ILN Opt. MotteliMaiern

r = 0.001 Param. Prior:ILN Opt. Model:Malern

' • - • • . " . - . - . •

Number of Acquisitions Number of Acquisitions

Dim: 2 Test Kernel: SqExp

Log length scales of test GP: -3.0000 -0.9018

Dim: 2 Test Kernel: Matern

Log length scales of test GP: -2.4507 -0.3525

!

mmt

I

I

• , ,

I l f

....

• a n MPI, i , = 0.001 Param. Prior;ILN Opt. Model:SqExp

W M M P L ^ = 0.01 Patam. Prior:ILN Opl. Model:SqExp

| H MPIr 5f . 0.1 Param. PriorlLN Opt. Mod«l:SqExp

I g S j M P I , ^ i t Param Prior ILN Opt Modal SqExp

^ ^ M P I (5r = 3 Param Prior ILN Opt Modal SqExp

• J B ^ M E I , 5, = 0.001 Param. PriorlLN Opt. Model SqExp

HUSH ' • ' " 'MMn

1 m i If»* a H m , * m x

,, , , ;

1

-
-

-
IllMIt

• H M P I ,

MMBMPI.

IH8ftMP,r

i £ t t M P ' r

• • • M E I

WHlHCn

1 V „

r = 0.001 Param. PrtorJLN Opl. Modol:Mat*m

r = 0.01 Param. Prior:ILN Opl. Model:Malem

r - 0 . 1 Param. Prior ILN Opt. Modal :Mat*m

(» 1 Param. PriorlLN Opl. Model:Malatn

r = 3 Param. PriorlLN Opt. ModekMatem

r = 0.001 Param. Prior:ILN Opl. Model:Mattm

",*","

Number of Acquisitions Number of Acquisitions

Dim: 8 Test Kernel: SqExp

Log length scales of test GP: -0.7629 -0.7629 -0.7629 3.0000 3.0000...

-
•

J ' '
I I * I ' l l

,
-, | ;,,

M M P I . 5. = 0.001 Param. PriorlLN Opl. Model:SqExp

| H H M P I
f 4, = 0 0 1 Param. PriorlLN Opl.Model:SqExp

j j j j j j j j«Mp l , lr = 0^ Param Prior ILN Opt Model SqExp

H | g | M F , |
r { j i t Param PnoriLN Opl Model SqExp

^ « M P I r ^ = 3 Param PriorlLN Opl Model SqExp

i g a g M E l , ^r = 0.001 Param. PriorlLN Opl. Model:SqExp

• • " « » »

.
* ** « , . **a*

14 15 16 2B

Number of Acquisitions

Dim: 32 Test Kernel: SqExp

Log length scales of test GP:-0.5593 -0.5593 -0.5593 4.0000 4.0000...

"

I I * s t I X

1 1 * * " I * „ .

l V *

MMjMPI. i..0.001 Param.PriorlLN Opl. Model:SqExp

| M | M P I r ^ = 0.01 Param. PriorlLN Opt. Modal:SqExp

« H | M P I r ^ 0 1 Param. Prior:ILN Opt. Model:3qExp

gg|||MP<(^ = 1 Param. Prkw:ILN Opt. Model:SqExp

g^mMPI t ^ = 3 Param. Prior:ILN Opl. Model:SqExp

^ • g M E I . t * 0 001 Param Prior ILN Opl Model SqExp

• i " « W .

1 i

**»„»"'•-,.»""»•! . -1 ,» Li .-»

ie 26

Number of Acquisitions

Dim: 2 Test Kernel: Matern

Log length scales of test GP: -1.4343

-
I
r

<
: ;

u i f f t i y i-

] HS f f t l i

! i

",,,,,,

• J H M P I , 5, = 0.001 Param. Frior:ILN Opt Modal:SqExp

| | M P I 5, = 0.01 Param. PriorlLN Opl. Model:SqExp

gjjjjjjffljMPir ^ = 0.1 Param. Prlor:ILN Opt. ModehSqExp

| « | M P I r 5 f = 1 Param PriorlLN Opt.Model;SqExp

| j | m MPIr 5f = 3 Param PriorlLN Opt Model;SqExp

U ^ M E I . 5. = 0.001 Param. PriorlLN Opt. Model:SqExp

! « i L H 0 - "

1

<•*

*••" , «,,' , «„"", .- * - *

,,, *:*,,:, ~~~,,,',,',~,',,,:,
1 2 3 14 15 16 28

Number of Acquisitions

Dim: 2 Test Kernel: SqExp

Log length scales of test GP: -1.9836

n

• J H M P I E =0.001 Param. PriorlLN Opl. Model:Motem

H M P I r 5r
 = D<>1 P a r a m ' Pffo^LN Opt. Model:Malern

; : — ! p i p MPI f 5f = 0.1 Param. Prior:ILN Opt. Mooal:Matem

• • i

-i 1 : 1

p ^ M P I r 5 f=1 Param. PriorrILN Opt. ModeLMalem

^ ^ M P I r 5r = 3 Param. PriorrILN Opl. Model:Malom

I l l X ^ S i y P i TC: \

- ;;

; irwmxstj,

• j a jME l^ 5̂ a 0.001 Param. PriorlLN Opl. Model:MatSrn

'"4t*'ii

H i L H C f W M D '

= ; | • ; ; ; ; \ ; ; ; : ;

",,,,, (i ; ,,,,,,', , ', ,,,,,,; ,,,,,
16 2S 29 30

Number of Acquisitions

Figure B.4: Performance using ILN prior

160

Dim: 2 Test Kernel: SqExp

Log length scales of test GP: -1.9836

-
***••**

I * f .

"
•'.,....„

1 1 *

M O M M E] , ; f = 0.001 Param. Prior EEC Opt. ModehSqExp

igljgMEl, ^ = 0.0) Par m. Prior:EEC Opl. ModehSqExp

• 'f^WME^ i r = 0.1 Param. Prior: EEC Opt. ModehSqExp

• t i»MEI(£r = 1 Param

ME1(: r s 3 Param

•HMMPI. ; . = 0.1 Para

^ | L H C D a m

• H ' I • « * " i

PriorEEC Opl. Model:SqExp

Prior:EEC Opt. Model:SqExp

n. Prior:EEC Opt. ModehSqExp

. . „ . .

29 30

Dim: 2 Test Kernel: Matern

L o g l e n g t h s c a l e s o f t e s t G P : - 1 . 4 3 4 3 - 1 . 4 3 4 3

• • • M E I , ^ = 0.001 Param. Prior:EEC Opt. ModahMatern

« m M E I (q(= 0.01 Param. Prior:EEC Opl. Model:Matem

| r t y M E I , 4f = 0.1 Param. PriorEEC Opl. Model:Matern

ME1(5f= 1 Param. PriorEEC Opt. ModehMattSrn

MEIr ; (= 3 Param. PriorEEC Opl. Model:Mat#rn

_ | M P I r ; f = 0.1 Param. Prior:EEC Opl. Model:Matern

-!^

Number of Acquisitions

14 15 1

Number of Acquisitions

2B 28

Dim: 2 Test Kernel: SqExp

Log length scales of test GP: -3.0000 -0.9018

Dim: 2 Test Kernel: Matern

i r = 0,001 Param. PriorEEC Opt. Model:SqExp

5r = 0.01 Param. PriorEEC Opt. ModehSqExp

5r = 0.1 Param. Prior:EEC Opt. Model:3qExp

£ f=1 Param. PriorEEC Opl. ModehSqExp

5r = 3 Param. PriorEEC Opl. ModehSqExp

5r = 0.l Param. PriorEEC Opt. Model:SqExp

5

'Si'
3

io

our
« •

s
i >

1

A
b

s
o

I I I ' > I I

I 1 M

Log length scales of test GP: - 2 4507 -0.3525

l i » * *«

i » «

H | M E I r 5 (. 0.001 Param. PriorEEC Oot. ModeliMalern

• • U E I , £,3 0.01 Param. PrioriEEC Opl. ModeliMatam

^ M M E t , 5, = 0.1 Param. PrioriEEC Opl. Modal MaMrn

w w M E I r £ f=1 Param PriorEEC Opl ModalMatom

las^MEl, £,x3 Param PriorEEC Opl Modal Matarn

pjrMMPI r 5r = 0.1 Param. PrioriEEC Opl. Model Matern

•imC>»»

i ' i
1

' • » • " . » 4 i|

Number of Acquisitions Number of Acquisitions

Log length

Dim: B Test Kernel: SqExp

of test GP:-0.7629 -0.7629 -0.7629 3.0000 3.0000...

B^BBMEIt £, = 0.001 Param. PriorEEC Opt. ModehSqExp

HWgMEl, ^ = 0.01 Param. PriorEEC Opt. ModehSqExp

jWgpMEl, ; r i 0 . 1 Param. Prior:EEC Opt. ModehSqExp

&s|&MEIr llm'\ Param. PriorEEC Opt. ModehSqExp

/WeMEl, £T = 3 Param. Prior:EEC Opl. ModehSqExp

• • j U F I , 5, = 0-1 Param. PriorEEC Opt. ModehSqExp

••LHCB.Mf,

I 15 16 28 29

Number of Acquisitions

Dim: 32 Test Kernel: SqExp

Log length scales of test GP: -0.5593 -0.5593 -0.5593 4.0000 4.0000...

H M E < r 4 f-0.001 Param. Prtor.EEC Opt ModehSqExp

P p | M E I r Sr = 0-01 Param. PriorEEC Opt. ModehSqExp

m j j j M E l , £r = 0.1 Param. PriorEEC Opl. ModehSqExp

• ^ H M E ' ' ^ = 1 p B r a m ' P r t o r : E E C °P'- ModehSqExp

l | | | M E I
r £r = 3 Param. PriorEEC Opt. ModehSqExp

• j ^ M P I , 5 f " 0 1 Param. PriorEEC Opt. ModehSqExp

t 15 18 28

Number of Acquisitions

Dim: 2 Test Kernel: Matern

Log length scales of test GP: -1.4343

M**

j

'•

i l l

11-

I

. I I I I I I

1 "w"

• • M E I . 5, i 0.001 Param. Prior:EEC OpL ModehSqExp

• W M E I
r 5 r " 0 0 1 Param. Prior: EEC Opt. ModehSqExp

S | i j | M E I
r 5, = 0.1 Param. PriorEEC Opl. ModehSqExp

^JupMEIF 5 r
a 1 Param PriorEEC Opt.ModehSqExp

^ M E l r 5r = 3 Param. PriorEEC Opt. ModehSqExp

• H j M P I , ^, = 0.1 Param. PriorEEC Opt. Mods I :Sq Exp

•rH CRAN»

4 * . « . *

(, , , , , , , , , , , 77 7 7 . . . " . 7 7 . , , " ,
15 18 28 29

Number of Acquisitions

Dim: 2 Test Kernel: SqExp

Log length scales of test GP: -1.9836 -1 .£

i<

-

I (.

-

» I I "»
• 1 M * e * ,

I « *

M M E I . £.= 0,001 Param. Prlor:EEC Opl. ModelMatern

• H M E I r (| = 0.01 Param. Prior:EEC Opt. Model:Malem

H H | : MEI(£r - 0.1 Param. PriorEEC Opt. Mode):Matern

|Wj jMEI r { r - l Param PriorEEC Opt Model Mai* m

5j. i«MEIr 5r =
 3 Param PriorEEC Opt ModelMalim

_ | M P I . 5. = 0.1 Param. Prlor:EEC Opt. Modal:Matern

H i L H C RAr40

I

7 ""* •"« \ i l

• « . «1

15 16 28 29 30

Number of Acquisitions

Figure B.5: Performance using EEC prior

161

Dim: 2 Test Kernel: SqExp

Log length scales of test GP: -1.9836

I I *

.

- I I

I I * *
« « l

• o

^ • M P I ,

&BBtMP\

t»Mpl.
OTMPI<

flirfMEIr

nsmLHCg,

* * 4 »
» " 1 . 1 .

(= • 001 Param

r = 0 01 Param

Poor EEC Opt. Model:SqExp

Prior EEC Opt. ModekSqExp

, = 0.1 Param. Prior EEC Opl. Model :SqExp

a 1 Param Pr

r = 3 Param. Pr

r = O0O1 Param

* *
I » « I

r:EEC Opt. Model:SqExp

r EEC Opl Model SqExp

Prior EEC Opt. ModekSqExp

- . ..-•7.1 4, / i . l '

Dim: 2 Test Kernel: Matern

Log length scales of test GP: -1.4343 -1.4343

H M P I , 5r = 0.001 Param. Prior:EEC Opt. Model: Ma tern

M M | M p l
r 5 r

s 0 - 0 1 Param. Prior:EEC Opl. ModekMalern

IHjaMPI = =0.1 Param. Prkw:EEC Opl, Model: Matern

|H | |MP l r ^ = 1 Param. PriorEEC Opl. ModekMalern

| | | | | M P I r ; r i 3 Param. Prior:EEC Opl. Model:Matern

M M M E I , ^ x 0.001 Param. Prior:EEC Opl. ModekMalern

t H ^ L

* l a »

Number of Acquisitions Number of Acquisitions

Dim: 2 Test Kernel: SqExp

Log length scales of test GP: -3.0000 -0.9018

I

i m i i]

I

|

-

i « «

• | M P I . =. = 0.001 Param. PriorEEC Opl, Model:SqExp

M g | M P l r i (= 0.01 Param. PrkwlEEC Opt. Model:SqExp

| g | t t MPIf \t - 0 1 Param Prior:EEC Opl. ModekSqExp

fig|||MP1
r 5 f=1 Param. Prior:EEC Opt. Model:SqExp

sgf^jjMPI, k, = 3 Param Prbr EEC Opl Modal SqExp

• I j M E l 5| = 0.001 Param. Prlor:EEC OpL ModeliSqExp

I » * " I I I * , „ * I . * * *
*« * » »«" * »„• V

14 15 16 28 29 30

Number of Acquisitions

Dim: 2 Test Kernel: Matern

Log length scales of test GP: -2.4507 -0.3525

B H J M P I (£r = 0.001 Param. Prtor:EEC Opt. ModekMalern

H | MPIf lf = 0.01 Param. Prior:EEC Opl. ModekMalern

|g«jj|MPIf i f -0 .1 Param. PrlorEEC Opt. Model :Matem

. . . | | | § M P , r S = 1 P a r a m - Prior:EEC Opt. ModakMaMm

} i l B M P I r ! , ' 3 Param. Prior:EEC Opt. ModekMalern

H H M E I , £r = 0.001 Param. Priar:EEC Opt. ModekMalern

! l i l i L H C
H I 1 Mn

'** H

VVY
' ' ' ' ' I i i i r i i t i

Number of Acquisitions

Dim: 8 Test Kernel: SqExp

Log length scales of test GP:-0.7629 -0.7629 -0.7629 3.0000 3.0000..,

J : I

" : ! : i 1

r. 'pV-' iVl

ifakrt
M;:;j;j

. : ! • ' ; 1

' : ' j ;M
I ' I W I ' I

K i ^ t * * * i : l i .

H»",

•r;.
Hj |g M P , r

• a U E | . • | L H C F

; • "

5f = 0.001 Param. Prior:EEC Opt ModekSqExp

5r = 0.01 Param. Pr»r:EEC Opt. Modal:SqExp

^ • 0 . 1 Param. Prior:EEC Opt Moder.SqExp

^=•1 Param. Prfor:EEC Opt. ModekSqExp

5f = 3 Param. Prior:EEC Opt. ModekSqExp

5 r * 0.001 Param. PriorEEC Opt. ModekSqExp

;:ri;i ;;;-ni ;.-ii;l

• • - • W S I I R M
: ' ; . ; 7M :=&;!-! ^H r t f f h l

Dim: 32 Test Kernel: SqExp

Log length scales of test GP: -0.5593 -0.5593 -0.5593 4.0000 4.0000...

14 15 16 28 29 30

Number of Acquisitions

\ \'-1

I I I * ' I1 i •':. h ; " i

%M.0tM^

•BBJMPI. 5r = 0.001 Param. Prior:EEC Opt. ModekSqExp

HMjMPI (5r = 0.01 Param. Prlor:EEC Opt. ModekSqExp

P f f M P I , 5r = 01 Param. Prior:EEC Opt. Model:SqExp

mmaMPI, \,a 1 Param. Prior:EEC Opt. Model:SqExp

jjjj|gjj|MPI, 5,»3 Param. Prior:EEC Opt.ModekSqExp

MMjMEI r Er = 0.001 Param. Prior:EEC Opt. ModekSqExp

H | L H C f W N D

^ ' 1 ,

Number of Acquisitions

Dim: 2 Test Kernel: Matern

Log length scales of test GP: -1.4343 -1.4343

-
'

"
I

n m i * t \

" » I ¥ X . K X

'
, *""r

H M P I , 5, = 0.001 Param. PriorEEC Opt Model:SqExp

• • • M P I . 5. = 0.01 Param. Prior:EEC Opt. Model:SqExp

« j | | |MPI r £, = 0.1 Param. Prior:EEC Opt. Model:SqBtp

j | | | | M P I
f 5,= 1 Param. Prior:EEC Opt. ModeLSqExp

^ ^ M P I r £r = 3 Param Prior:EEC Opl. Moder.SqExp

M M M E I , 5, = 0-001 Param, PriorEEC Opt Modal:SqExp

wmti^cMN0

» • •

* " " " " " " . . - • " . " ' . . . • " . ' . . . • " . '

Dim: 2 Test Kernel: SqExp

Log length scales of test GP: -1.9836 -1.9836

s,

;iiid^i^

• MPI, ^nO.001 Param. Prior:EEC Opt, ModekMalern

• MR ^=0.01 Param. Prior:EEC Opt. ModetMalem

fflMPIr 4r = 0,1 Param. Prlor:EEC Opt. Model:MaWm

^MPI t ^ r =1 Param. Prior;EEC Opl. Model;Matom

| M P I r ^r = 3 Param. PriorEEC Opl. Modal:Mat«m

|MEI r 4r = 0.001 Param. Pnor;EEC Opt. ModekMalern

i L H C „ , N r i

»*/
i " i i

Number of Acquisitions Number of Acquisitions

Figure B.6: Performance using EEC prior

162

B.2 With gradient observations

The graphs in this section illustrate the effect of different £r on performance of MEIr and

MPI r on two test models. The observation models here were built using observed function

values and observed gradient values.

163

Dim: 2 Test Kernel: SqExp
Log length scales of test GP: -1.9836

-

1 1 * " *

i * * " "

I K *
" i

fflflMEi. •
M U E I 4

i;.;,̂ MEtr 5
•• , • M E I r \

. ' ' M E I
F 5

* » ' »

5 0.001 Param. Prior:None Opl, ModekSqExp

= 0.01 Param. Prior:None Opl. ModekSqExp

= 0.1 Param. PriorNone Opl. ModekSqExp

= 1 Param Prior None Opt Model SqExp

= 3 Param Prior None Opt Model SqExp

/ * .-•• --. .-. .-.

Number of Acquisitions
Dim: 2 Test Kernel: SqExp

Log length scales of test GP: -1.9836 -1.9836

5

al
ue

]

> 4

(F
u
n
ct

io

E
rr

or

A
b

so
lu

te

0

•

l id*

'int

S

, , ,,

"

m i .

„ * J

M i l 1 1

•MM|MEI r £r = 0.001 Param. Prior:ILN Opl. ModekSqExp

j a H $ M E I , 5 r " 0 0 1 Param. Prior:ILN Opt. ModskSqExp

^ » M E I r i r = 0.1 Param. Prior:ILN Opi. ModekSqExp

U4JjHfMEIr 5,= 1 Param. Prior:UN Opl. ModekSqExp

. , |MEi r 4r = 3 Param. Prior:IN Opt. ModekSqExp

gjjj||BFGSnesTARrs

• " " . • " ' ' * • " • - " • - • •

" M , , , , M „ , , " i i i i m i n

Number of Acquisitions
Dim: 2 Test Kernel: SqExp

-

'

I l K S ' I

I K

" . , , , , , , •

Log length scales of test GP: -1.9836 -1.9636

• H M £ l r 5r = 0.001 Param. Prior:EEC Opt. Mode1:SqExp

| 1 I H M E I , 5(= 0.01 Param. Prior:EEC Opl. ModekSqExp

l l H M E i
r 5Fs0.1 Param. Prior;EEC Opt. Model:SqExp

^ H M E I (5(= 1 Param. Prior EEC Opt. Model;SqExp

«MWMEI f 5(= 3 Param. Prior EEC Opl. ModekSqExp

^ B F G S
n E S T A R T S

,« I „ '

1 » * * "x _

» « , „ . . * * - * * «

,,,, ,,, , , , 10 13 16 19 22 25 28 30

Number of Acquisitions
Dim: 2 Test Kernel: SqExp

Log length scales of test GP: -1.9836 -1.9836

M M W M E I 4r = 0.001 Param. PriorExact Opl. ModekSqExp

SjggftM^1, 5r = 0.01 Param. PriorExact Opt. Model:SqExp

I i | ; | M E I £ =0.1 Param. Prior:Exact Opt. ModekSqExp

j ig™ MEI(4 r=1 Param. Prior:Exact Opt. ModekSqExp

tec - M E I , 5r = 3 Param. PfiorExaot Opt. ModekSqExp

Dim: 2 Test Kernel: SqExp
Log length scales of test GP: -1.9836 -1 .£

I1CS»S

»< * if
I I * " * . "1

I I *

M j M P I . ; . = 0.001 Param. Prior:Nona Opl. ModekSqExp

H M M P I , ; , = 0-01 Param. Prior:None Opt. ModekSqExp

KjjijiagjMPI \ =0.1 Param. Prior:Nono Opt. ModekSqExp

itgggjgMPI, 5 r =1 Param Prior None Opt Model SqExp

w n M P I % = 3 Param Prior None Opl Model SqExp

I ! ! B F G S RES™TS

/ " * " * F • " * ' . " *

Number of Acquisitions
Dim: 2 Test Kernel: SqExp

Log length scales of test GP: -1.9836

• • : • !

•VlBStlE . •

i i x i^ ; r^V^ : HJ.

H g j U P I (^ = 0.001 Param. Prior:ILN Opt. ModekSqExp

« M P I . i = 0.01 param. Prior: ILN Opl. ModekSqExp

mmMP', ^ = 0.1 Param. Prior :ILN Opl. ModekSqExp

Hg|gMPI r i , = 1 Param. Prior: ILN Opt. Model:SqExp

• B ^ P I , S = 3 Param. Prior:ILN Opt. Model:SqExp

JgjjjBBg BFGS__RT,OT„

-;: :•: :-:. I W f y M ŷ :;.

•, H l | , , , i i ' i ' ,] ' , ' , ,

Number of Acquisitions
Dim: 2 Test Kernel: SqExp

5

1
r *

u
n

ct
io

s
u j *

a

A
b

so
l

0

•

km#*

'

Log length

i t *

, ,,,,

scales of test GP:-1.9836 -1,9836

H M P I r 5. = 0.001 Param. Prtor:EEC Opl. ModekSqExp

• H | M P t r £r = 0.01 Param. Prk>r:EEC Opt, ModekSqExp

• I M P I , 5, = 0 t Param Prior EEC Opl Model SqExp

gjgjjgMPI, 5 ,«1 Param. PrionEEC Opt. ModekSqExp

j ^ * M P i r 5, = 3 Param Prior EEC Opt Model SqExp

HgjBFGS
HESTARTS

* «" f '

«• . " " » . „ . , ,
" * • * " — - " "

Number of Acquisitions
Dim: 2 Test Kernel: SqExp

Log length scales of test GP: -1.9836

-

•

III8SX

HDf*J

• H | M P I r £r = 0.001 Param. PriorExact Opl. ModekSqExp

MMMMPI. 5. "0.01 Param. Prior:Exact Opt. ModekSqExp

M | M P I F 5, = 0.1 Param. Prior:Exact Opl. ModekSqExp

3g| | |MPI r 5 r =1 Param. Prior:Exact Opt. ModekSqExp

> , J S M P I . ^r = 3 p a r a m PnorExact Opt ModelSqExp

| j g | | BFGSRESTAnTS

,."" ' - * ' - «

Number of Acquisitions Number of Acquisitions

Figure B.7: Performance when using observed function values and gradients. The test
kernel is 2D squared exponential with equal length scales. The green boxes illustrate the
performance of using the BFGS algorithm with random restarts, but a restricted number of
function evaluations.

164

Dim: 2 Test Kernel: Matern

Log length scales of test GP: -1.4343 -1.4343

-

i n * * *

8

', ,

i » * * „ * £

i i i i • m i l l i

MMFM E I ' ~~
m m MEIT \

< ^ ^ U E I r \

. . ^MEI r \

" ' MEIr X

l i itBros
f

."•

= 0.001 Param. PriorNorte Opl. Wodel:Ma16rn

= 0.01 Param. Prior:Nons Opt. Model:Matern

= 0.1 Param. PriorNone Opt. ModeJ:Matem

= 1 Param. Prior:Nore Opt. Model:Matern

= 3 Param. Priot:Nore Opt. Model:Matem

" i n , " " , , , ',',', I 1 • " ' • M ',,',,"

Number of Acquisitions

Dim: 2 Test Kernel: Matern

Log length scales of test GP: -1.4343 -1.4343

-

l U i ' i

.

", 1

I I * '

4

t

I t * %
i i i i i

10

'
i i t i i

13

g g M E l , ;

n n M E ^ q

S$C»MEIr 5

= 0,001 Param. Prior:ILN Opt. Model:MatSm

= 0.01 Param. Prior:1LN Opt. Mode):MoHSrn

= 0.1 Param. Prior:ILN Opt. Model:Matern

= 1 Param. Prior:lLN Opl. ModekMatern

= 3 Param. PriortlLN Opt, ModekMatern

H i B F G S RESTAms

- * • - • •

• i i . I I I I I

••• - \ ' :

'
16 19 22 25 28 30

Number of Acquisitions

Dim: 2 Test Kernel: Matern

Log length scales of test GP: -1.4343 -1.4343

-

m m *

n / « /
i t *

M M HEIr 5r = 0.001 Param. PriorEEC Opt. Model Matern

H p j M E ^ £r = 0.01 Param. PrionEEC Opt. MorMMatem

jjjjjjjjjjji M E ,
r ^ = 0.1 Param. PrionEEC Opl. Model;Matern

>!(M3MElr 5r= 1 Param. Prior:EEC Opl. ModekMatern

^ ^ M E I r 5(= 3 Param. Prior:EEC Opl. Model;Matem

J|$$§B T O SRESTARTS

* * - * _ % *
0 13 16 19 22 25 28 30

Number of Acquisitions

Dim: 2 Test Kernel: Matern

Log length scales of test GP: -1.4343 -1.4343

|MEI ?f •0.001 Param. PrlonExact Opt. ModekMatern

: 0.01 Param. Prfor:Exact Opl. ModekMatern

10.1 Param. Prior:Exact Opt. Mo<tel:Matem

•• 1 Param. Prior:Exact Opt. ModekMatern

13 Param. Prior:Enact Opt. ModekMatern

'00\'

Dim: 2 Test Kernel: Matern

Log length scales of test GP: -1.4343 -1.4343

-

J W *

' " V

M W M M P I . i . = 0.001 Param. Prior:None Opt. Model Malarn

MgBtMPI, i , = 0.0t Param. PriofNone Opt, Mode I; Matern

| | | | M P I r i r = 0.l Param. PriorNone Opt, Model:Matern

*I«>|| MPIr £r = 1 Param. Prior:None Opl. ModekMatern

t.-/MMPIr 5 rs3 Param. Prior: None Opt. Model Wale rn

^ B F G S R E S T A R T S

, V ' , , / i i _ \ _-m _- _- _. .

Number of Acquisitions

Dim: 2 Test Kernel: Matern

Log length scales of test GP: -1.4343 -1.4343

HHjMPI r 5 fa 0.001 Param, Prior:ILN Opt. Model:Matern

W | M P I r 5f = 0.01 Param. PriorzILN Opl. Model:Mat*rn

J H H M P I , 5, = 0 1 Param. PrtorlLN Opt. ModekMatern

H I ^ M P ^ 5 r=1 Param. Prior:ILN Opl. ModekMatern

g|»fMPI r i f = 3 Param. PrlorilLN Opl. ModekMatern

• g i B F G S .

"«V ,

Number of Acquisitions

Dim: 2 Test Kernel: Matern

Log length scales of test GP: -1.4343 -1.4343

5

a
lu

e
'

:u
n

c
ti
o

n
 V

"̂ re

UJ *

A
b

s
o

lu
te

IDEM* : '

i M . : W ^

7

* V

10

H H M P I r 5r = 0.001 Param. PriorEEC Opt. ModekMattrn

mHUMPI, £r=0.01 Param. Prlor:EEC Opl. MoxM:Mstem

jgjjjjjgMPI, !j r*0.1 Param. Prior;EEC Opl. Model: Malem

™afflMPI, ^ - 1 Param. PriorEEC Opl. Model:Malem

a|||a|iMPIr 4 r=3 Param. PriorEEC Opl. Model:Matern

X • *"* . \ " • " - , - . . -

13 16 19 22 25 28 30

Number of Acquisitions

Dim: 2 Test Kernel: Matern

Log length scales of test GP: -1.4343 -1.4343

H j M P I , 5r = 0.001 Param. Prior:Exact Opl. ModekMatern

U W , £, = 0.01 Param. PriorExact Opt. Model:Malem

jgjjgjjjgMPI, 5, = 0.1 Param. Prior:Exaet Opt. ModekMatern

H | g MPIr 5r = 1 Param. Prior:Exact Opt. Model:Matern

| | | |gMPI r ^ = 3 Param. Prior:Exact Opt. ModekMatern

^ • B F G S D E „ , „ 0

Number of Acquisitions

13 18 19 22 25 28 30

Number of Acquisitions

Figure B.8: Performance when using observed function values and gradients. The test kernel
is 2D Matern with equal length scales. The green boxes illustrate the performance of using
the BFGS algorithm with random restarts, but a restricted number of function evaluations.

165

Bibliography

Robert J. Adler. The Geometry of Random Fields. Wiley, 1981.

Robert J. Adler and Jonathan E. Taylor. Random Fields and Geometry. Springer,
2007.

C. Audet, J.E. Dennis Jr., D.W. Moore, A. Booker, and P.D. Frank. A surrogate-
model-based method for constrained optimization. 8th AIAA/NASA/USAF/ISSMO
Symposium on Multidisciplinary Analysis and Optimization, 2000.

T. M. D. Bakker. Design optimization with Kriging models. Delft University Press,
2000.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, March 2004.

Phillip Boyle. Gaussian Processes for Regression and Optimisation. PhD thesis, Vic­
toria University of Wellington, 2006.

R. P. Brent. Algorithms for Minimization without Derivatives. Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1973.

Peter F. Brown, Vincent J. Delia Pietra, Stephen A. Delia Pietra, and Robert L. Mercer.
The mathematics of statistical machine translation: parameter estimation. Comput.
Linguist, 19(2):263-311, 1993.

Sonia Chemova and Manuela Veloso. An evolutionary approach to gait learning for
four-legged robots. In Intelligent Robots and Systems, 2004.

L. Csato and M. Opper. Sparse online gaussian processes. Neural Computation,
14(3):641 - 669, 2002.

John F. Elder. Global Rd optimization when probes are expensive: the GROPE algo­
rithm. In Proceedings IEEE International Conference on Systems, Man, and Cybernet­
ics, Chicago, Illinois, 1992.

Daniel E. Finkel. DIRECT - A Global Optimization Algorithm, October 2006.
http://www4.ncsu.edu/~ctk/Finkel_Direct/.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning. Springer, 2001.

Heiko Hirschmuller. Stereo processing by semiglobal matching and mutual information.
IEEETPAMI, 30(2):328 - 341, 2008.

J. H. Holland. Adaptation in natural and artificial systems. The University of Michigan
Press, Ann Arbor, 1975.

G. Hornby, S. Takamura, J. Yokono, O. Hanagata, T. Yamamoto, and M. Fujita. Evolv­
ing robust gaits with AIBO. In IEEE International Conference on Robotics and Au­
tomation, pages 3040-3045, 2000.

G. S. Hornby, M. Fujita, S. Takamura, T. Yamamoto, and O. Hanagata. Autonomous
evolution of gaits with the sony quadruped robot. In Proceedings of the Genetic and
Evolutionary Computation Conference, pages 1297-1304, 1999.

166

http://www4.ncsu.edu/~ctk/Finkel_Direct/

Reiner Horst and Panos M. Pardalos, editors. Handbook of Global Optimization. Kluwer
Academic Publishers, 1995.

Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global optimiza­
tion of expensive black-box functions. Journal of Global Optimization, 13:455-492,
1998.

Michael J. Kearns, Yishay Mansour, and Andrew Y. Ng. A sparse sampling algorithm
for near-optimal planning in large markov decision processes. In IJCAI, pages 1324-
1231, 1999.

Benjamin Kedem. Time Series Analysis by Higher Order Crossings. IEEE Press, 1993.

M. S. Kim and W. Uther. Automatic gait optimisation for quadruped robots. In
Australasian Conference on Robotics and Automation, 2003.

Nate Kohl and Peter Stone. Machine learning for fast quadrupedal locomotion. In The
Nineteenth National Conference on Artificial Intelligence, pages 611-616, July 2004.

Vladimir Kolmogorov. Graph Based Algorithms for Scene Reconstruction From Two
or More Views. PhD thesis, Cornell University, January 2004.

H.J. Kushner. A new method of locating the maximum of an arbitrary multipeak curve
in the presence of noise. Journal of Basic Engineering, 86:97-106, March 1964.

N. Lawrence, M. Seeger, and R. Herbrich. Fast sparse gaussian process methods: The
informative vector machine.

Daniel Lizotte, Tao Wang, Michael Bowling, and Dale Schuurmans. Automatic gait
optimization with Gaussian process regression. In IJCAI, 2007.

D.J.C. MacKay. Probable networks and plausible predictions - a review of practical
bayesian methods for supervised neural networks. Network: Computation in Neural
Systems, 6:469-505, 1995.

Domenico Marinucci. Testing for non-gaussianity on cosmic microwave background
radiation: A review. Statistical Science, 19(4):294-307, 2004.

Robert McGill, John W. Tukey, and Wayne A. Larsen. Variations of box plots. The
American Statistician, 32(1):12-16, 1978.

Daniel Neilson. Personal communication, February 2008.

Isaac Newton. De analysi per aequationes numero terminorum infinitas. William Jones,
1669.

C. D. Perttunen. A nonparametric global optimization method using the rank trans­
formation. Proceedings of the IEEE Conference on Systems, Man, and Cybernetics,
1:888-893, 1989.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.
Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press,
New York, NY, USA, 1992.

Carl Edward Rasmussen. Advanced Lectures in Machine Learning: ML Summer Schools
2003, chapter Gaussian Processes in Machine Learning. Springer-Verlag, 2004.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Ma­
chine Learning. MIT Press, 2006.

J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn. Design and analysis of computer
experiments. Statistical Science, 4(409-435), 1989.

Thomas J. Santner, Brian J. Williams, and William I. Notz. The Design and Analysis
of Computer Experiments. Springer, 2003.

Michael James Sasena. Flexibility and Efficiency Enhancements for Constrained Global
Design Optimization with Kriging Approximations. PhD thesis, University of Michigan,
2002.

167

[40] Daniel Scharstein and Richard Szeliski. http://vision.middlebury.edu/stereo.

[41] Matthias Schonlau. Computer Experiments and Global Optimization. PhD thesis,
University of Waterloo, 1997.

[42] John Shawe-Taylor and Nello Cristiani. Kernel methods for pattern analysis. Cam­
bridge, 2004.

[43] Steven S. Skiena. The algorithm design manual. Springer-Verlag New York, Inc., New
York, NY, USA, 1998.

[44] B.E. Stuckman. A global search method for optimizing nonlinear systems. Proceedings
of the IEEE Conference on Systems, Man, and Cybernetics, 1:965-977, 1989.

[45] Tao Wang, Daniel Lizotte, Michael Bowling, and Dale Schuurmans. Bayesian sparse
sampling for on-line reward optimization. In ICML 2005, Bonn, 2005.

[46] C. Williams. Prediction with Gaussian processes. In Learning in Graphical Models.
MIT Press, 1999.

168

http://vision.middlebury.edu/stereo

