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' Abstract
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tube. At the surface of the shest, there is infinits conductivity in the direction parailel 1o
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filed region extending from the shesth helix surface radislly to infinity. The configuration
cxtmdstohfiityhmdiroctionofmmrnﬁxaxis.Thdoctricdpfm;af
hmyrodrcmbyamm' €, & permeability equal to that of
’fruspaco.'uo. and a8 condictivity, o . '

Due to the geometry of the configuration, the circular cylindricel coordinste
wmumd'nautommfwm'nummmmmﬁe
fbldistpaﬁdwapmnmhrmmduidcoorm'bmmtanﬂﬁm
coordinate. Equations for the electric and magnetic field components in each of the three
rodmsrod«ivodeWM\thbthadi_mm
the radial and axisl wave numbers, sre obtsined. These wave numbers determine the
spatial dependencs of the slectric and megnetic field components,

. A direct sohttion of the previously mentioned equations for the wave humbers
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rod are derived. 't was not possible to directly evalusts these power dissipation
expressions becsuse of the difficulty invoived in solving for the radisl and axisl wave
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configurations == the shesth helix surrounding a perfectly conducting coaxisl rod, and
the shesth helix surrounding an ideal dislectric (zero juctivity) coaxial rod
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211 Curves of the radial dependence sssocisteti with the normelized
the preceding figure are empioyed.

2.12 Curves of the radisl dependence associsted with the normalized
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rod is not a good conductor”. ka cotany = 10.0, b/a =
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preceding figure is used.

Curves of the radisl dependence sssocisted with the normelized
slectric fisld components. k3 cotany = 1.00 is employed
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magnetic fields. The same varisble mentipned in the preceding figure is
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preceding figure are employed.

C.8 Curves of the radial dependence associsted with the normalized
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0.100 are used.
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C.10 Curves of the radisl dependence associsted with the normalized

slectric field components. ka cotany = 1.00 and b/a =

0.900 asre used
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magnetic field components. The same varisbles mentioned in the
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Linear graph of ka cotany/hda versus k& cotangy. The
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Logerithmic graph of ka cotuu/hda versus ka cotang.
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Logarithmic graph of ka Eﬂt!ﬂi/hdi versus  ka cotany.
€. ® 1.00x193 and the same values of bl/a, mentioned in the

preceding fw;tiim

Three
ka cotany and b/a €. = 1.10 isused

graph of ka tatanﬁhda versus both

Three dimensional graph of ka coggnwhdg vesus both
ka cotany and b/a ¢ = 1.00x103 is employed
Curves of the rackal jence associsted with the normalized
slectric fisld componermts. ka cotany = 10.0 and bla =
0.100 are used
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Curves of the radial dependence sssocisted with the normalized
electric field components. ka cotany = 10.0 _and b/a =
0.900 asre used.

Curves of the radial dependence sssocisted with the normalized
preceding figure are employed.

Curves of the radisl dependence sssocisted with the normalized

electric field components. ka cotany = 10.0 and bla =

= =
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D.1%

D.16
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D.20

preceding figure are smployed.

Curves of the radisl associsted with the normelized
slectric fisld components. ka cotany = 1.00 and bla =
0.100 sre used.

vaaafﬁrﬁdmmmhmﬁ
preceding figure wre smployed.

Curves of the radisli dependence associsted with the ng
olectric field components. ka cotany = 1.00 nd b/s =
0.900 are used

Curves of the radial dependence associsted with the normelized
magnetic fisld components. The same varisbies mentioned in the

#
LB

Emafﬁrﬂiwmhdmuﬁhmzﬁ
slectric fisld components. |, cotany = 1.00 and bla. =
1.00 are used.

Curves of the radisl dependehce associsted with the normalized
magnetic fisld components. The same varisbles mentioned in the
preceding figure are smployed.

olectric field components. ka cotany = 5.00x10" 2

b/a= 0,100 are used
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D.22

D.25

D.2é

Curves of the radial dependence associsted with the normalized
megnetic fiekd components. The same varisbles mentioned in the
preceding figure are employed.

Curves of the radial dependence associsted with the normalized
electric field ka cotany = SQDDx‘IGEz and
b/a = 0.900 sre used

Curves of the radial dependence sssocisted with the normalized
magnetic field components. The same varisbles mentioned in the
preceding figure are employed.

Curves of the radial dependence associsted with the normalized
slectric field components. ka cotany = 5;00:10‘2 and
b/a= 1.00 are used

Curves of the radisi dependence associsted with the normalized.

preceding fipre sreemployed. . . . . . ., . . .
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Glossary of Symbols -

F o

th:hW:cmmtiafﬁWxﬁm L

IzlEvgutihﬁmmafh:mxmm z'_f

Y mwm\;maugrum x.

Re[z]..... «++ - . Calcuiste the real part of the complex number z.

IﬁEIjEMIhmmafﬂcmxmm z.

8....0......... Sheath helix radius. (An aversge vaiue taking into account the
nonzero cross sectional area of the windings associated with the
physical helix.)

b. . i Radius of the lossy coaxial rod.

-

2 L EERE R Axial length of the lossy coaxial rod element.

Fs 8, Z........ Radisl; angulsr, circulsr, or azimuthal; and axisl, or longitudinal;

positions in the cylindrical coordinate system.

re 890 8,..... Unit vectors in cylindrical coordinstes, pointing in the direction of
increasing r, g, and 2z, respectively.

b 3.4



P = 2xa tany... Helix pitch distance.

S.iﬁ

is paraliel to the direction of the sheath helix “windings”.
Ky =
] Vector form of the electrical surface current present st r = g,
’“ COSBZ 8, ---.

ity and permaabi ility, respectively, of free space.

€. - J s/mzo._.ﬁmﬂ-!iﬁviwﬁva

"'0 € 2. Free space wave number.

ka cotany....... A varisble which depends on the opersting frequency and on the

XXVi



zS .‘IJ.“O/“ -

(1+3) - llcc....s"f’“ impedance asssocisted with s good conductor

(c/wey >> Er): which is nonn

R = Re[Z.] =
conductor.

Tgs Iy Kgs Ky-- Modified Bessel function of the first kind of orders zero snd
' one, modified Bassel function of the second kind of orders zero

Jko. J]; NO’ N]-- Bessel function of the first kind of orders zero and one,
Neumann function of orders zero and one, respectively.
o\»‘/’(y,. ;) = |
. . Wronskisn identity. (Note that the "'*  masns d//ferent/ste
Yy Yo ~ Yy Yo | o -
with respect to the total arpument)

hoa...covnennn. . Conphx-v;luﬁ radisl of transverse wave number associsted
wmmdumm:maﬁﬁngibmmyrmtﬁi1
refers to the rod=filled region, while m = 2 Ejﬁﬂ to the ar-
filled region.)

Ba .............. cmpbx-vm “_ or wm wave W -y ciate
with the sheath helix surrounding a lossy coaxisl rod.

Mmmwymrimvdyafhmwmﬂ
wave numbers.

€ X ........ netartaneous fime dependent) electic and megnetic field .

xXvii



components, respectively, in region n I = 1, 2, 2,

cwxwmrﬂmmmwm

fomponents, respectively, in region n n 1, 2 A,

region n n=1,2.3), which were used in order to obtain the

Compiex Poynting vector. .

Time-averaged power flow through the open surface S{ ’

which is perpendicular to the 4, directioni=r, ©, 2)

coaxisl rod element, as a result of the contribution associsted
ﬁEil- u!ﬂ 8, Z-J

A dimensios rmMWnnmmm

(rgs zg) within the lossy rod element, the vaks of P 4,
to the power dissipation which would be obtsined if the value of
511 nmmmmhmnﬂm
throughout the lossy rod element. i =r, 6, z)

vl

e,



h.....‘.f...‘...

SRR ek

3.00x108 m/s.. ..

Axidwmw.hivdnddm'w.w:w
MfuNWxWWMW.
associsted with the empty shesth helix. i = 1 and 2.)

Axial wave number, (singie} radisl wave number, compiex vector
Mfmmmnxwwfmmm.
MWNMMmeaprfo;ﬂy
conducting coaxisl rod. | = 1, 2, 3)

Axisi wave number, radial wave number, compiex vector siectric
field, and complex vector magnetic field, respectively, associsted
WhMMmemid.ddiﬂoctriccwidrod
im = 1 means thst the radisi wave number is associsted with
th.rod-fillodrog’on.wﬁlo m = 2 means thst this wave
number is associsted with the air-filled region.) & = 1, 2, 3)

'memmhMMxmm\g

mWMe«xiﬂrodnistwoxMon
obtained by equeting the preceding radisl snd axisl wave
numbers.

| -3 s'z
Axisl phase vslocity of traveling waves heving ¢
dependence on the axial coordinste. (I-a.c.d.))
Veiocity of light in free spece.

e

XXix



mhwmmnWMﬁﬁiﬁHafﬁm:lxﬁﬂA
mofmﬂ@ﬁm“m@wslsm“fm%
mofoﬂwprmwurkmnhmmmmﬂmmh
MMAwmafﬁmgfﬁmmfﬂdel
quwmAmﬂm&iEhdelﬁmﬁrﬂﬁﬂ-ﬂYﬂ!wﬂ
uMmMWumafhmmmmmh
ensuing chapters and sppendicss. which comprise the body of this thesis.

. 1.1 Purpose of the Thesis

Eloctncny is used in a variety of different ways to generste heat for industrial,
mmmmmmﬁmmafdmﬂmm
e/ectromagnetic hesting or radio frequency hesting. This refers to the process of
m.muw.mmnhﬂ:rmmshﬁwmm#m
range of BO Mz to W0 GHz (10x10° Hz). M is often trus thet no direct
contact exists between the sources of the waves and the material being hestsd.

Morommmafﬁmmmm
Comparad to conventional heating within an electric furnace. Two exampies are thst there
is grester control over the specific location where hesting is to ocowr, and that higher
rates of hest tranefer can be obtsined (1, pp. X; = 2, pp. 138).

Mmmmbmmmgmtmuﬁimmiqﬁ
dielectric heesting. /nduction fﬂiwmmﬂ“ﬁﬁui!mmr!ﬁad
conductors of electricity. in the approximate frequency range of 80 Hx to 100 MMz
('IOO)(IO6 Hz). Thmarwﬁpmmplﬁidrﬂleﬂafwiiﬁm
oxpondw&mwmmm%ﬁ:,prmgﬁﬁmﬁﬂiinﬁﬁdbym
alternating current. As a result of the time-varying magnetic field, electricsl currents
cdodcddywrnm:tomnhwafkmm-éﬂymhnﬁ
mﬂnmofmmﬂlﬁﬁHWMhaﬁmhmgd
rwmofummmﬁmufﬁﬁ-ﬁﬁmmmm
®posed to the induoed currents. There is often a definits tendency for the induced
arrmwboeameum:ﬁdﬁg—huﬁmafhmmﬁhm

1



is referred to s the skin effect. importam ications of intuction hesting include
meiting. tempering. surface hardening. and soidering (1. pp. XTT; 2. pp. 3: 3. pp. 63,
115, 173). |

Dislectric hesting is sssocisted with work, pieces which sre poor conductors of
slectricity, in the spproximete frequency range of 100 KMz (100x103 Hz) to
10 GHz.  Here the material to be hested mey be put inside a wire coil, although it is
similer to a capacitor. Once agein, hesting results from induced currents produced within
the work piecs. Unike induction hesting. however, dielectric hesting often has the

muSmmsafﬁ:mﬂm“h&yn;afEnﬁﬁmaf
MuﬂhMﬁfMafmﬁ;mrﬂhm&fm
procducte 3. pp. 264, 343; 4, pp. 1).

extraordinarily difficult to devise s,model so that ressonably accurste fisld sokstions can
be practically obtsined from Maxwel's equations. However, if the work piece is in the
form of a coaxial rod, the heating geometry is one that can be readily analyzed. Three
(\’ngnmt:prmFrﬂuﬁmd.-m::mnmb-fwi-ﬁﬁmdmﬂm
the coil, and finally there is sn sir-filled region on the exterior of the coil, which, for the
purposes of analysis, is considered as being of infinits extent.

Now it is possible to state the subject matter of this thesis. It is desired to
coaxisl rod configuration. The helix is excited in such a manner thet an alternating electric
neture of the electric snd megnetic fields for a wide rangs of different variables is
MuExmafﬂﬁHvriﬁInrohﬁmyafaﬁGMhrmmpm
angle of the helix, the radius of the lossy coaxial rod fwhich is never grester than thet of
the helix), the permittivity and conductivity of the rod material, and the electrical current
which is present on the helix windings. Uttimately, the power dissipstion resulting from




the rod's nonzerc and finits conductivity wil be investigetad. In short, if is desired to
;mlop & comprehensive theory so that electromegnetic hesting of the t/vee region
hel/ix and /ossy cosxisl rod configurstion can be exsmined from the point of view of
boundary velue so/utions to Maxwe!['s equations.

One importam possible applicetion of this topic involves the in situ lin place)
had:mafmlmﬂ Mrﬁ:u&mmmwmgﬂ:bpeﬂ
mhpﬂtamm:mfmmafﬁndﬂﬁfmmm
mmﬂwmﬂamgﬁ‘t@-xﬁﬁhammmmrm:mﬁ;rw
of the formation. The visco ’
to recover the oil by means 3f a suitsble gsseous or fiud driving agent. It is this
spplicstion which actuslty provided the motivation for the thesis topic.

ity of the ot sand in this region decresses, making it easier

1.2 Discussion of Earty and Relsted Resesrch

R is the intention of this section to present briafly the early resesrch done on
droctodtaﬂﬂgbh:tmafﬁ:ﬂﬁ;Anﬂmjﬁﬂﬁyim@fﬂ‘:
earfy work is given by Sensiper (5, pp. 3-10; 8).

1.2.1 Barly Work

O‘-nfhu‘hm“nmafmm“wnmmmm
rmmmbfm“mmhmmﬁymm
infinite number of simple solutions 30 thet all boundery conditions were satisfied. Time-
mmsﬁmﬁdmﬁfﬁbwﬁmhﬁ“vﬂaﬁWﬂwaxmv
thet of waves traveling with the speed of light in the direction of the helical axis. white
faﬁg#nmﬁhﬁefm“rmnﬁimafﬁhﬁcﬂ
windings. (A discussion of this behavior is presantsd in section B.3) However, the neture
of the functionsl dependences of the field components and of the wave numbers fwhich
are associsted with the spetial dependences of the fisids), on the radius of the helix, the
pitch angie of the helix, and the operating frequency, was not understood.




Adffmmofmaﬁmgﬁhmginmﬁ:f
Mamamwmmmﬂmam:raﬁmﬁﬁm
nsture of the helical wires are taken nto account. The surface of the wires is described
bym\gmofhvrurihcimmwgnupauﬂ-mm:
Maxwell's equstions in this system and to exactly spply the boundsry conditions.
wwymwummwrmnumtmmmmm
mmwoxmmmmmﬁmmmﬁmmm
thet he developed are of quegtionabie accuracy.

w”awhmmmwmg&aﬂmﬁ&mnrmmﬂ
mwNMMxApM‘mwnmyﬂhmmugﬂu
the equations. Expansion in powers of the ratio of wire radius to the pitch distance was
velocity of light in the direction of the wire.

Thofinduofhslnuﬁﬁii:tarmﬁm;dwﬁcihﬂx is credited
to Otiendorf. (This was mentioned by Sensiper (5. pp. 4). ) The shesth helix consists of an
‘the direction paraiel to the windings of the physical helix, and thers is zero
nhﬁmwwmuﬁﬁﬁMMQfﬂmm
model is presented in part 1az)mm4m:fmmmmm
dependences. .

interesting is & comparison between the use of the shesth helix modet and the
wmm%m&n%n.ﬁﬁﬁh&m&nn@t%emfwﬁ
nonzerc wire cross section or the periodic properties of the physical helix. However,
Maxweil's equations are refithily solved without requiring any spproximations.

1.2.2 Reliated Work

Litle new work on the electromagnetic behavior of the helix was reported unti
umofurmmmﬁwnsmwermﬁ
mmmMofw@m:ﬂtmwn:m:wgmm



Chu and Jackson (10} and by Pierce (11). Both groups employed the shesth helix to
model the empty physical helix and only considered circulsrly symmetric no anguiar
dependence) field solutions. The dispersion equation was obtained. Chu and Jeckson
studied the quantity Vp/ €y whers Yo iwn;m..vdodtym c is the velocity
of lght in air. (A giossery of symbols hes been inciuded nesr the beginning of the thesis,
for convenience. However, sach symbol will siso be defined in the text the first time it is
used.) Vp/c was piotted s 8 function of ka, where k is the free space wave
number and a is the shesth hefix radius. (k = Ug €Eg »  whers =
2xf is the anguiar frequency, f is the frequency, €( is the permittivity of free
m.mduo is the permesbility of free space.) Pierce gave a list of the
electromagnetic fieids and obtained the time—sveraged axial power flow. The normalized
radisl wave number, ka cotany/ha, where h is the radial wave number and
¥ is the pitch angle, was graphed ss 8 function of the varisble ka cOtany. (The
M ka cotany mewﬁm“mm'MMx
geometry -~ the pitch angle and the radius.) The rest of the work by the forementioned
authors concentrated on effects associated with the presence of an axisl electron beam,
and it is not relevant to the present discussion.

Cutier (12) experimentally investigsted the validity of the sheath helix model as an
spproximstion of s physical helix. An empty copper helix with a pitch angle of about
5.0° was used. It was large encugh in radius 30 thet messurements could be made
using probes without significantly distorting the fieids. A high operating frequency was
used. it was found thet the electromagnetic fislds cling closely to the coil and that there
mmMyf«hMomrmﬂNsMthmau
As sxpected, the field strengths very neer the coil were significantly different then the
’Mcﬁcdmwmmmmwonbuodonhwmphydcdhdix
radive, taking into account the nonzero cross sectionsl arees of the windings.) However, st
rdaﬁvdylrgqgodiddotmc«awtyfranheo&hqrmnwumgoodm
oxccpﬁmwummmmiormmmuxmuiddocﬂcﬁddm
IEz]l» Wwae somewhat less than predicted. By messuring the wavelength of the
M'wwomnon_ﬁnhﬁx.thovdocityofpropmﬁonuoocinodwm\vwm
waves was determined. There was usually very good agresment between the measured
and predicted phase velocities at high frequencies, but the agreement was not as good



for low frequencies.

Cutier points out that the validity of the shesth heiix model can be questioned at
F@ﬁm“‘ﬁmﬁmmafﬁﬁxﬁm
MhﬁwﬂﬁxwﬂMImmrﬂnmnmﬁﬂxm“
mmm mﬁfﬂﬁmthmm:mmﬂu:rﬂmﬂ
Mnmamnmmmmm-mm“-
m“iwﬁrmafﬁmmixmmﬁmvmWw-
found was the circularly

limﬂd.ﬁiﬁmﬁlwmafﬁmmméﬁim-h
ﬁﬂmmwmbylvsmafﬁﬁtmmcmuAhﬂx
with & similar geometry to that of Cutier's was smployed. When the mean radws of the
pﬁyﬁr’sﬂl’jﬁxwinﬂodfafﬁmmmﬁwnf&nd.eviﬁfrmyrmaf
valuss, when the physical hefix was supported by strings. For the dielectric supported
wmgnmmmmmmmmmmw
mm“m-h;imut-wgdwﬂamfarnmmm
mmmmmsnhmmﬁmhm-m
region compietely filed by dislectric material. It was concluded that st high frequancies
this phase velocity was less than that of the empty shesth helix, and that there was less

Smﬁabprmmammmnﬁmmgfw
cﬁnm:taf;FrnhimnﬂnﬂmGﬁafhmmrﬂxmﬁ
mm&ﬁfm*eﬂ“e. with m aninteger snd 0 the azimuthal
Or anguisr coordinets. In examining the resutting dispersion equation, he noted that
several waves having different phase and group velocities (which are functions of
ﬁmmmxrmﬁmmedenﬁtfarmmta
value of m. Axisl power flow formuiss were derived, which are valid even if severs
different waves sre present. Sensiper also snelyzéd the specisl cases of a zero and s

/2 mmmmtam-h-mh mrﬁg’!ﬂh
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independently, st nearty the same time, another detailed in ' of the air—

" filed shesth helix dispersion egustion was carried out by Philips and Malin (14, 15). Many

theorems and corolisries wers developed concerning the mathernstical behavior of the
wave number solutions, which determin ' s of ther
tisids, for different operating fre and shesth helix geometries. Special sttantion
afhdﬁmfﬁldiw-mAsﬂnpbtafhrﬁimgfﬁuﬂ
,Iﬁmﬁf:ﬁgumnﬁdnﬂmmmwnﬁfﬁ
mmﬁmﬁdﬁﬁhﬁfffﬂmﬁmm

n-wnﬂafﬁﬁwﬁéjﬁ:ﬁgﬁisn@dﬁ;@nﬁmgf;hﬁﬁxwwéf:pﬁfn&uy
MW:m:tar:Mixmwmmraumnmrto;s:nnodh
tape helix. (Ses Figwes 1.1.  Figure 1.1b shows the developed tape helix. This is
obtained by cutting the tape hekix sioog & plane of constant 6, looking st it from the
inside, and then flsttening it out) A major advamage of the taps helix over the sheath

et and sralysis of a

. helix is that it retaine the periodic nsture of the physical helix. The axisl and radisl wave

components are exprassed as an infinits sum of spetial harmonics. More specifically, it is
shown thet the axisl wave number has the form B, = 845 + 2wm/p, with m
an integer and p the pitch distance. In addition, the axial and anguiar dependence of the
fislds is expressed as - IM(2%Z/P - 0) AN field components are expressed as
an infinite series summed over m. , :
Ta@mﬁﬁ“mmnummmmmm
r=a the surface of the tape helix. thess are that the tangential electric field is
continuous, the discontinuity in the magnetic tield is relsted to the slectrical current on
hmﬂmfﬂdmmhﬁrf:ﬂymmﬂzraimﬂh
mamﬁmwummﬁmﬁmﬁmafmm
results In 8 doubly infinite set of | us finser simultanecus equstions. In theory,
mmmnmmmnmmmm
mmwaxmmeﬁmmmhmmm




THE TAPE HELIX AND VDEVELOPEDWTAPE HELIX

a) Tape Helix
, 3

i3}

b) Developed Tape Helix

2wa

TS " — " — — — —

P = pitch distance ¥ = pitch angle
8 = tape width 8'= gap width

0 = tape radius

Figures 1.1 The Tape Helix Investigated
by Sensiper (5, 6).



tobocxpruudhhformofaﬂvohfmwbcoq-udmz&o.mmm
using s combinstion of anslytical, graphical, and numerical methods. '

mmh.ﬁxisamowmmddmdcmyiddhfomuﬁonmm
noruuowhﬂickmsmdhpriodcproprﬁnofaphydcdmﬁx.wﬁchhm.
Mxm&m.“pﬁap&dfubmhrﬁv@%madﬂbﬁwh
ob&imgmowmwm:ﬁmforamop«-ﬁngfrwmdmﬁxm
ismcmodAsMhﬁddoxprnsivautommmmd'
hard to interpret. | '

A reiatively large amount of literature exists concerning the tape helix. Accounts
are given in the books by Hutter (16, pp. 121-1289), Watkins (17, pp. 46-55), and
Coliin (18, pp. 396-388). While swareness of the tape helix solution adds to one’s
u\d«stmdhgofvnhoﬁcdco&ﬁnumorddmtmduuuofmmmdhmn
will not be discussed further.

Workhub.mdonebuodonhlhoathhohxmoddmmmmm
romowwmww—fmmwxsrymnamuvum
ofﬂthﬂixpMporfocﬂyconwcthgcoaxidcyhdor&Asd\ownhFiwo 1.2
these are: |

a WMM“MUW

b. qumamw\dr\gmmxidcym. ‘

. WMMMWM:ﬂW

The dispersion equation for each of the above was caiculsted Graphs of
ka cotany/ha versus he were made.

.Wyof&ymfswork.msU\tho'QO)Wm a
and b. ofhwohamocwmvarmym
procodtoforobhhhghobcﬁcmdmnﬁcﬁddcmpmhmofaam
mmmﬁmu\dh,dwﬁmmﬁmwuobw&mof

ka cotany/ha versus ka cotany were given, using several different cylinder
rdwsm‘mmmmwmoofmmncwmmm
ﬂmmhdiapcdmmmmvdocnyismmmam
ﬁmwmnbhhmofhmmﬂx.mswiorh
Mhmcunhmmforhmyhpﬂ b., that there is
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SHEATH HELIX WITH INNER AND OUTER
COAXIAL PERFECTLY CONDUCTING CYLINDERS

F LRI LS AI LTSS ek e ST IL 7 I TN L PO, ;"f;‘ff‘ff

T T T T T T T Dsc<a<b<o T
%M\\%%%\\\\%\\Q\\\ e |
cnnduc.tor ,s“"’ Vs zg:g:ll; \ ;1:":

e LR s . e e e ffffffff!!ﬁf;‘ff ,f;f;’fffff;’}:}'}’/

Figure 1.2 The Configuration Investigated

L4

by Bryant (19).
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ic f-mnnrqmmnmmafn

hﬂmmnwymmgﬁymmum;mm
' ic media. Once agsin, it
the arrangement with the dislectric extending radislly to infinity and extending into, or not
into, the sheath helix interior region. (See Figures 1.3.) The dispersion equstion was
obtaned for the hree cases a>b, s <b, and a = b. For the situstion when the

surface of the dislectric rod touches the sheath helix surface, which occurs whan
a=h, ﬁm—wf@dnﬂpaw-'flawmcﬂmnwumwnmnmw

frequencies, the phase velocity normalized with respect to the velocity of light m ar is

WL -\/zf(zr’ ¥ 1) - tany, Whers e = c/eq  is the relstive

of the dislectric material. Hence, one important property of the two region
configurstion is that the phase velocity can be greatly reduced through the proper choice
components associsted with the shesth helix are greatly sttenusted over a relatively smal
rﬁiMm:damdm:yﬁmﬁmmegm Here the axterior
fnldihw-;mﬁtrm-xmmmmﬂir-mybnlﬁﬂiﬁarhm::mvm

:mafhsdiﬂgﬁ-:mmvﬁymﬂ,&nmﬁfrm;ﬁudﬁﬁ-m
account for the finits diglectric m&ﬁamﬂymmwfmbySmﬂ—
Hook (22). He !’illynd the configuration with three seperate interfaces. (See
Fwnl.éJE@ﬁHmmm}arhuhmmmw-mnh
fwefmmﬁmxmmhnqxﬁmm:mmmwh
rlﬂ:ﬂnﬂluvM' ”tﬁwammw-mmfarl

? ;’,

hmmAbpmafgmaﬂidmhmgxmmm

made. These graphs dispisyed ka cotany/ha Vversus ka cotany, 8nd used
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SHEATH HELIX EMBEDDED IN AN INFINITE
DIELECTRIC MEDIUM

a)

sheath helix —

" dislectric_
interface

(Osb<o<w)

. &

(O<asb<w)

Figures 1.3 The Configurations Studied

by Olving (21).



. b) Helix embedded in
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SHEATH HELIX PLUS DIELECTRIC TUBE

a) Helix contained
inside the dielectric
tube

(O<asbsc<w)

sheath helix—GA—
dielectric tube —

" the dielectric tube

(Osb<c<a<c<wm)

Figures ‘1.4 The Configurations Investigated

by Swift-Hook (22).
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&
€r* b/a, and ole as peramwtars. High frequency spproximstions of the previous
was pointsd out thet for certsin geometries of the dielectric tube, there is much less
property for microwave

Attention umw'ﬁ'mmrmtdﬂmﬂmmmm
mvmmwnmaama&-—&ﬂmﬁﬁnrwhﬁzﬁ
lossy coaxisl rod configuration, by proposing electrical circuits to model the rod and the
wire helix. The efficiency of the heating arrangement was studied, taking into account the
nonzero resistance of the helical windings. These analyses are very different from that
which will be followed in the thesis and so they will not be mentioned further.

An investigstion of the three region helix snd lossy coaxisl rod based on
Maxwei's equstions was carried out by Brown et al. (3, pp. 27). No attermpt was mede to
mddhphydcdhhxm-lhwﬁﬁrﬂyiﬁw“iimmmj
single angular electric field Companent and a single axial magnetic field component within
the rod. These fisids were only sssumed to have a radidl spatisl dependence. Power
dmmhbmmmradwumaJﬁﬂmﬁm:afﬂwmm:
field.

There are several b Ntations on the preceding analysis. First, varying the geometry
of the helical coil or the radius of the lossy coaxial rod has no effect on the two field
components. The anslysis given in Cheptar 2 of the thesis shows thet this iz an
oversimplificstion. Another deficiency is that the helix will often be excited so that the
slectrical current present on the windings has sn axisl jence, and therefore it is
MMthmcmt-wmhuummWyﬁwm
~be seen in Chepter 2 and in Chapter 3 that the power dissipation results from the -
wmofﬂrudmcheﬂafﬂdmmﬂ-hbuymmﬂm&h
m3ﬂummwhm§yradu-§mdm then Brown ot al. are
MnyMnaﬂymﬂgﬂmdﬁhe fu&gwm&m
Chepter 3 makes it clear thet the axisl electric fiekd provides s large contribution to the
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mmhmmhwmmmm

mmmﬁmmmafmﬂ-ﬁmwhmmm
mmw_mumhyalma125memm
with two regions having different electrical properties u, ¢, g, where ad is the
rod conductivity. One region filed the sheath helix interior and touched the sheath helix
Mmmﬁmmrwmnhmmmufﬁﬁlmfﬂy
to infinity. It was assumed thet the electric and magnetic field components did not exhibif
an anguiar dependence. The dispersion equation was obtained and the field components
were expressed in terms of the electrical current present st the sheath helix surface.

Special attention was given to low opersting frequencies. The power dissig
resuiting from the anguiar and axisl electric fislds were caiculsted, and it was discovered
thet the latter one was ususity much grester thah the former. A simple slectrical circuit to

of hydrocarbons from oWl sand, were mentioned.

not directly concerned with helicsl structures, stil provides some useful iInformation on
is therefore frﬂEQnAmﬁgmmhmmaﬂmtzﬂ&nm
discussions are given by Hutter (16, pp. 73~137), Coltn (18, pp. 363-430), Colin 27,
pp. 388-40%), Remo et sl (28, pp. 474-479), Sister (29, pp. 168-188), and
mcse.pp.zuq?z.hmuam-mmafmwiﬁe
properties of the physical helix.

m‘ﬁﬁmrimhmmm-mamﬂ
Fraﬁ:fhldﬂﬁarypahlafmmmmﬁﬂr-ﬂfrmnhurwm
sheath helix structure only because the boundary conditions at the cylindrical wall force

Il
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ﬁrﬂimﬁnﬂ!ﬂhﬂahuimmmfﬂmhm“ﬁ
mvmﬂhmrﬂxnﬁmtimmﬁHﬁﬁﬂmm
the fisids in the interior region to those in the exterior region. Earty work on the circulsr
waveguide containing two coaxial trics was done by Frankel (31) and
mn;@ﬁmmmmmmmhm
the racisl and axisi spatisl dependences of the field components. Two examples of later
work on this circulsr waveguide are Tesedsle and Crawford (33} and Tessdsle and

1.3 Nature of the Desired Solution snd Disoussion of the Shasth Helix Model

1.3.1 Nature of the Solution for the Sheath Helix

The desired type of solution must meet the following requirements.

8 [t must satisfy Maxweil's equstions.

b. All boundery conditions must be sstisfied Examples of these boundary

conditions are thet slong an interface between two regions characterized by a

. the tangential slectric
ﬂnmb:fﬂdmi-mwmrwmmmb-
8 pertect electrical conductor, the tangential electric fields sre forced to be
zero aslong the nterface. This siso mesans the normal magnetic fisids at the

interface are zero. An ol ical current mey be present oh the surface of the
m-amwmﬂmnmmm-—-
us according to |

3, x (H, ¥H,) = K.

(, is the unit vector normal to the interfece and pointing into region 2.
H1 and H, are the magnetic fieids in region 1 and in region 2,
tively, evalusted st the interface, snd K (A/m) is the electrical




¢ Ina source—free region. the solution must be finita, single-valued, continuous,
represent a finlts amourt of resl power transtfer, and be excitable by a finite
amourt of energy.
d If sl sources are located within a finits distance of the chosen coordinsts
wwnmaﬁmmﬂmﬂmm
"Tim (R . E) 9 1im (R . H) & bounded. where R
R+00 - R+q0 -

is the distance from the origin. Stratton (35, pp. 485) refers to this as
the condition m’ regularity st infinity.

2)  The boundery condition st infinity is sstistied. This property means that
8t very large distances from the sources. only outward traveling waves
occur (38, pp. 486). From one point of view, this means thet § matched
load exists st infinity (36, pp. 712).

An e/ectromegnetic weve which satisties all the pru:ﬂing roquirements will
hencetorth be cel/ed & free mode field solution. : -

Eﬂﬂafﬁlmyafﬂ‘-mFﬁLﬂﬂmfﬁrﬁymtﬁm
the circular cylindrical 00Grdinate system. This is defined in the Ususl manner, 88 shown in
Figure 1.5a A point in space is specified by PPr, o, z).  The unit vectors in the
radisl, anguisr or circuler, snd axiel directions. are 2.5 2.0 and 2,+ respectively.
Electric and magnetic fields can be gxpressed in terme of component fiekds parsltel to
these unit vectors.

and

+*
™
j-
-]
>
™
[
j o

E-E

N
-

(1.1)

N
x
+‘
=
*
xx
o

H=H.oa +Hya, *+H,
mmmevﬁdtdrndmmbbirwm-m
mmmﬁmmm the rod is assumed to be r
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_PHYSICAL HELIX AND SHEATH HELIX

a) Physical helix showing the coordinate :jsﬁm

by

Figures 1.5 The Circular Cylindrical Coordinate
System, the Physical Helix, and the
Developed Sheath Melix.



Maxwell's equstions for the /nstantaneous (time dependent) vector fiekds in this source-
free region are well known but are repested hers for convenience.

o 1 £
ng'-uo:z—. VXH'c'aT-‘fo_g

(1.2)

v-cf -0, ana v-'uOH"O ;

where € s the (res) permittivity, o is the conductivity, 2 is the instantaneous
vector electric field, snd M s the instantanecus vector magnetic field. To modify
these equstions 30 that they descritie an air-filed region, it is only necessary to choose
€ " ey and g = g

A time—hermonic dependence of the form et here t is time, is
mmdfordhiMmﬁdds.Ofmu.ﬁsrmicﬁonisnotlmiﬂ
mmhmmwwmm.awiarmofm*ﬁrbie
functions can be expressed as s suitable summation of such soktions. 1t is very useful to
separats the time dependence from the instantaneous vector fiekis so that comp/ex or
phasor vector fields are defined.

\0
"

El(r.ve, z, t) =-Re[ E(r, 6, z) - et ] ang
‘ (1.3)
'E(r’ 8, Z, t) = Re[ _H_(r, e, Z) . Q‘J“t ].

E ond H rommwmmmfuurw

Equations 1.2 can be rewritten using the compiex fisids.

(1.4)



Onily the compiex fieids will be considered in the remsinder of this thesis.

if traveling wave solutions are desired, the axisl dependence of the fieids is taken
8 ¢ 382 where g is referred to as the axial or longituding
fmmumﬂmmﬂmafﬁm&ifmgrwﬂhm
for sl vaiues of z and that the shesth helix boundary conditions are the same for a
Mof&“mfnﬁfmws .i:i, t of the spstial
canMMgMﬁnﬂaﬁrmmmhmr
othhﬂxmﬁmﬁwpﬂﬁcﬁcﬂprmafﬁbmcmurm

fwym“wrmﬁmyimmmafmnﬁnm

fHdwmmbtomlumﬁmsﬁﬁQBMQfﬁifMﬁ
dependence.

Fawqwmimﬁmhprmafﬁnﬂmumvmn
difficult The choice which will be made is to have the axial dependence of E, and
Hz characterizedby COSBz. (Ot will later be seen thet the axisl dependencs of the
other field components is described by either COSBz or singz.) This choice is
annd&dﬁﬁﬁfmgxﬂmmhﬂmbingnodl
rnprmupogsﬁiﬁ:fﬁh:xﬂmmﬁ;ihﬁglfﬁlfﬁtﬂﬁuﬁ:ﬁ.ﬁh:
excited in 8 balanced manner sbout the mid-plane, which is taken to be =0, iiti:
known thet H; must be cheracterized by 8 cosgz axisl dependence so that its low
frequency behevior is simitar to thet of the d.c. case.
WMMubnﬂmmﬁmmmﬁnhum
thet the m = 0 mode is the most important for determining the electromagnetic
e~ Jme free mode fisid solstion associsted with the shesth helix surrounding a lossy
. coaxisl rod is expectsd to be extrsordinarily difficult to obtain, while not further
iyminating the behavior of the slectromagnetic hesting occurring within the lossy rod. It
is repested here that the anguiarly independent solution was the only type of guided wave
thet Cutier was able to excite during his experimental studies of air air-filled physical
helices.
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. To compiets pert 1.3.1, it is mentioned thet the rationalized MKS system of units
Transient effects are not considered in the thesis.

1.3.2 The Shesth Helix

The physical helix may be wound in two different senses —- positively or

negatively. If a particie folowing the windings moves in the positive z  direction as
] incrmos.tmhdixisuidtobopositivdymm.nwmdww;b-nm"r'ﬂhﬁs
thesis that the physical helix is positively wound, which means that the pitch angle
satisfies 0 < y < 90.0°. One can readily extend this definition to the sheath
helix. (See Figures 1.5. It will later be seen in Chapter 2 that the free mode field
-wwmismﬂymdfbdwmncmwthMMHﬁL
Throforqmbu{\mtﬁtyocwsbyruﬁcﬁ\gmm:ﬁm.h:ﬂﬁvm
xmhmwfmmmymc&mwwmismmmmn
desired to have the shesth helix model represent the physical helix as closely as possible,
ft is best to just consider reistively small pitch angles. Ususity ( < v < 10.0° will
be used, sithough the fres mods field solution for the shesth helix surrounding a lossy
coaxisl rod which is derived in Chapter 2, equstions 2.65 and 2.70 - 2.88; and the
Omw3oxprudmwﬁd\mwﬂupowwduipaﬁmocmhgwiﬂi1ﬁbnyra¢
equations 3.12, 3.14, and 3. 16; are actusily velid for 0 < y < 90.0°.

The developed sheath helix is shown in Figure 1.5b. This is a convenient way
to study the geometry. it will be repested thet the developed helix is obtained by cutting
the sheeth helix siong a pisne of constant 6, looking st it from the inside. and then
flattening it out. p is the pitch distance, and this is relsted to the shesth helix radius snd
the shesth helix pitch angle sccording to tany = p/2ra. 3, snd 3, areunit
Wsw“mwmmhmwx"m’.rﬁgﬁvﬂygmrl
‘rmmhmum&m”mmw:w&vmz

a4, =3, cosp + 2, siny, -
| (1.5)

) " -3, siny + a, cosvy,



»

2y * a, cose - ;l.sin..~
a, - 2" siny + %J-coso. and (1.5)
' (continued)
X a = 2
-r —H -4

A physical interpretation of the sheath helix model is now presented. Consider a
wroofmrbivrycrourcﬁaﬁrumuwrmoduomdmm;
cylinder so that it assumes a helical shape. Next, another wire is placed beside this first
one and wrappsd identically. This process is repested many times. Taking the hmit as the
number of wires snd their conductivity becomes infinitely large, with the spacing
between individual wires and their cross sectionsl aress going to zero, the shesth he/ix
h&“hf&tﬂhhtﬁﬂymﬁw&wﬁcmmw.ishfﬁﬁ
conductivity st the surface of the shest in the direction parallel to the “windings~, and
zero conductivity in the perpendiculsr direction. It is important to remember that these
are ideslized wires snd hence sre very different from the physical helix windings.

In order to obtsin the free mode fisld sokion, it is necessary to satisfy the
bomdtyca\dﬁmathmwixwfmmnofwcmdﬁommybowﬁ

-
E = 0 or
| mlm
E~ * cosy + E sing = 0,° | (1.6)
cllr_. zllr_. :
=« 0 or
Euzlr_.
E cosy + E sing = 0 (1.7)
oZ'r,! ) zzlr_. i ,
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or .
(1.8)

(E - E_,| )cosy = 0,
2 i N 22| ua

~~
m
-
—
™
@
™
~—
Lo
b
=3
-+
]
|
]
—

or

Notsthet 1" and "2~ refertotheinterior (0 < r < a)  and exterior
(a & r <) regions, respectively, of the sheath helix.) Equations 1.6 and
equstions 1.7 result from the fact that o * Q0, where %) is the conductivity
at the shesth helix surface in the direction paraliel to the “windings”. Equations 1.8
express the continuity of the tangential electric field st the shesth helix surfsce. Since
o " 0, where 9; is the conductivity at the sheath helix surface in the direction
perpendicular to the “windings™, there can only be an electrical surface currant present
which is paraliel to the “windings”. This means thst at the shesth helix surface, the
magnetic field parailel to the ~winding " must be continuous, and this idea is expressed in
W1&WHMHHMW15*IQ§@M6“-W
Mhhxrwfﬂd;mmhnttwrwfmmxﬂ:mﬂmhfrﬂ
mode field solution must have axisl components of both electric and magnetic fields.
Trmw;o olectric (TE) or transverse magnetic (TM) sohitions cannot exist by
themseeives.

Two shortcomings of the sheath helix model are immediately clear. First, it does
not account for the nonzero wire size of the physical helix. Second, the periodic
pvpuﬁusofﬁn;ﬂwﬁaﬂhﬂkarikngifﬁi;ﬂwigihdﬁi:khide-shchgvﬁy
long. in an unbounded medium. and if it is Wanelsted in the axisl direction by the pitch
distance p or rotated tirough the snguiar distance 6 and then transisted axisity by
the distance (6/2x) - p, it wil be impossible to distinguish the new position
from the originel one. The physical helix is, therefore, g periodic gtructyre. Floquet's

—
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for a given mode of propegstion st » given steady state frequency, the fields st one
cross section differ {rom those one period away only by » complex constam. (17.pp. 2;
30, pp. 140.)
This means thet the quantity gp must be periodic with a pericd of 27. The sheath
hﬂxmﬂld@csmtﬁmm:wcmmafm:xmmim

The first mentionad deficiency is partly overcome by taking the actual physical
wire radws into account to determine the value of the shesth helix radius. Also, it is
expected thst the physical wire size will have a significant influence on the fields aﬁly
close to the physical helix windings. insofar as the second limitation is concerned, it
“should be noted that the periodic effect is more significant for modes other than the
circularly symmetric one. Finally, it is agsin mentioned that the measuramants made by
Cutier {12) and by Harris et al. (13) do lend support to use of the sheath helix model for
the anguisrly independent wave.

1.4 Brief Discussion of the Chapters and Appendioes that Follow

One advantage that the author has over early researchers concerns the numericsl
aspect of calcu . hwn-m;mmmmmafh
Mcmmfﬂdcmkmnsnﬂnmmﬂanmﬂwmaf
digitsl computers are vastly superior to the csiculating devices present in the
ninteen forties or fifties. In addition, at the present time, quite extensive software
programs have been developed. Good use of the computer facilities at the University of
A totsl of four chapters and five appendices comprise the thesis. The main text

of the thesis following Chapter 1 if divided into two major parts. These consist of

Chapter 2 and Chapter 3.

Chapter 2 is concerned with deriving snd investigeting the free mode field
mhﬁmim-dwmanmmmmmgbuymﬂrai@mm
;mﬁon:afhwmmm;mdwd-tm&-rﬂﬂmnumdml
of the field components, are given. Graphs showing the approximste radisl dependence




of the electric and magnetic field component magnitudes are presented.

MSMumoofhfrumodofmethhprm
dmtrhordwtohvutimhpowwduip.ﬁonmchoeqnwm*\ﬂnlony
coaxisl rod. Exact equstions for this power dissipation are developed. Unfortunstely,
these equations are discovered to be very difficult to numerically evsiusts. in order to
overcome this limitstion, several different types of approximste power dissipstion
equations are derived and investigsted. )

The final chapter contained in the thesis is Chapter 4. This consists of a summaery
and a statement of the important conciusions obtained in the three p'rocoding chmtirs.

It is possible to read Chapters 1 - 4 without referring to the appendices.
However, in order to obtsin as good an understanding as possible of tie chapters, it is
recommended that the five appendices contained in the thesis are resd.

 The first appendix is Appendix A. It provides s useful listing in one location of
MnmymﬁmnﬁcdidmﬁtmmrohﬁomofBuujfu\ctiom.Mid\tooftMMd
awcoml.Mmmmwmé%ym:wwmm

As has been previously mentioned in section 1.1, the objective of this is is to
develop as comprehensive a theory as possibie of the free mode field soktion for the
sheath helix surrounding s lossy coaxisi rod, snd then to investigate the power diosipaﬁm
occurring within the lossy rod Some information sbout this configuration will be
Wbyommmu.mnhmafwmorypo)tofm:romg
ss complicated. Two configurstions which immedistely come to mind are to replace the
lossy coaxisl rod by either s perfectly conducting coaxisi rod or by an idesl dielectric
{zero conductivity) coaxisl rod. In sddition, as the radius of the lossy coaxisl rod
'manmmmmwixrmﬁuMomuprmm
similar to those of air, one intuiltively expects that the free mode field solution will tend
to beheve ike that of the asir-filed sheath helix. Therefore, an exsmination of the
simplest configuration, when air completely fills the interior snd exterior regions of the
shesth helix, is justified.

Appendix B discusses the free mode field components and dispersion equstion
for the empty shesth hefix. Graphs of the radisl wave number soiution are presentad.
Approximate equstions which simplify calculsting the radisl and axisl wave numbers oo
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.\
mWWwWofﬂhnﬁ:ﬁcmﬂmﬂc*ﬂdmm
been prepared. -

Next comes Appendix C, which is concerned with the shesth helix surrounding a
components are ksted and discuseed. Graphs of the racial wave number soktion heve
been prepared, and approximate equations to simpiify the calculstion of the radial and
uﬂwwchrodvnmrﬁdmafﬂﬁMﬁWGﬂ
components is illustrated by using graphs.

Appendix D discusses the sheath helix surrounding an ideal dielectric coaxial rod.
:Tho free mode field solution is listed. Unfortunately, it is dif ficult to numerically caiculate
the radisl and axisl wave numbers solution. To overcome thl: problem, an approximate
free mode field solution, which is obtained from the exact solution by equating the radial
and axial wm.nmbcri. is presented. The (single) wave number solstion is quite
‘axtensively graphed for s wide range of opersting frequencies. sheath helix geometries,
idesl dielectric coaxisl rod geometries. and relative ittivities of the dielectric
material. Equations are deveioped which mske it relatively sasy to approximatsly calculste
the (single) wave number solstion. Graphs showing the radisl dependence of the field
cwummwwmmwommtjpnm

The final unit of the thesis consists of Appendix E. It contains data tables which
show the electrical properties as a function of frequency for several differsnt materisis
Mcwwhm:fmmmm%méfﬁm
,mmmmmmﬂw-mmpﬂ;zaﬂﬁum;

B,
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2 Chaprer 2 Sheeth Helix Swrounding s Lossy Coaxial Rod
some properties of s
centered lossy rod The rod has aradius b, suichthat 0 < b <« a € Q0 is
siways trus. and is ideslized as being of infinite axial extent. its electrical properties sre
described by a (reall permittivity, ¢, a permeability equal to that of free space,
¥g* and a conductivity, 0. Free space exists in the gap between the rod surface

and the sheath helix surface, and in the entire shesth helix exterior region, 8 < r <
OO0 . The shesth helix surrounding a lossy coaxisl rod is shown in Figures 2. 1.
Chute ot &. (25) examined the lossy two region sheath helix configuration from

" the point of view of electromagnetic hesting aspplications. They derived the field

a different medium was present in each of the two regions 0 < r < 3  and
& & r < @@. Eachof the two media had its electrical properties characterized by
some st u; ¢, g. A small argumaent representation of the dispersion equation
was given, aithough no attempt was made to obtain numerical solutions of the wave
mﬁpﬂwﬁmwhﬁﬁhhrw 0 < rca deto

wave numbers associsted with the radisl spetial dependence of the fisids are both smell
toward the ohmic power dissipated within the shesth helix interior region, sssuming that
region sheath helix configuration that the suthor is aware of. He has no knowledge of any

A brief outiine of the present chapter is now given. The free mode fisld: solution
fahmmxmm:mmﬂrﬁﬂthdnlrmm
manner. Al fields will be expressed in terms of the electrical current present on the

“shesth helix "windings”. Some special imiting cases of the free mode field sokution will

27
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SHEATH HELIX SURROUNDING A
LOSSY COAXIAL ROD

(d) Side View

ar ®

EPE
27777 /Abh ‘
, : zé‘{f// ////, -

€

lossy rpd

sheath helix-

(b) End View A'y

Figures 2.1 - Two views of the sheath helix
: surrounding a lossy coaxfal rod.



be studied. These are when the rod radis approsches zerc, when the rod ¢
q:-proochu zero. and when the rod conductivity approaches infinity.

separgtion constant equation, of the wave numbers which determine the radial snd axisl
mmafﬁfﬂdmhmwﬁryﬁﬂmmmim
mwmm»mmfwhmmmhmafWMrﬁi
ch:tnnﬁﬂaprﬁrammhéﬁ:‘mmﬂ
the separation constsnt equation, and graphs of the radial wave number solution
tpocialmﬁnrivﬂiﬂﬁm“tﬁglaﬂymﬁﬁggﬁdwuﬁvﬁ?whiﬁ"‘!h:
/mrw/sm.mmwmumafmernmafm

in section 2.3)

Nesr the end of the chapter, fa:iffiﬂﬁnafgmﬁwmgﬁ
spproximate radial dependence of the electric and magnetic fisid component magnitudes
sre presented. These are based on the cases when the two radial wave numbers are
either small or large, for both the circumstances when “the lossy rod is a ﬁaé,d
conductor” and when “the iossy rod is not a good conductor”.

21 Derivation and Discussion of the Free Mode Flaid Solution

211 Derivation of the Field Components snd the Dispersion Equation

A free mode fieid solution must satisty the proper form of Maxwaelil's equstions,
hwoprmbwﬁym:ddmrmmmma-ﬂmm 1.3.1.
To obtain the free mode electric and magnetic fisld components for the sheath helix
surrounding 8 lossy coaxial rod. Maxwell's equations must be satisfied within the two
sir~filled regions and within the rod-filled region. In addition, the boundsry conditions at
the shesth helix surface and st the rod surface must be fulfiled. These act to couple
together the fisids in each of the three regions. Finally, the requirement of finiteness of
the fieid components in s source—-free region and the condition of regulsrity at infinity
for the fieids, which is discussed in part 1.3.1, must be met.

There are many different methods which can be used to obtain the electric and
magnetic field components in terms of several undetermined constants, which satisfy the
sppropriste form of Maxwell’'s equations for the particular configuration of concern.

v



Harrington (37, pp. 128~ 131) expresses the slectric and magnetic fields in terme of an
rmﬁ“ﬁﬂmmﬂyﬂMfmafﬁmmhm
H@ﬁhﬂ&mﬁ?—zdmmmm 116~117) use the axial
slectric and magnetic fieid components as scalar potentisl functions. All the other electric
mmfﬁcmngMﬁmﬁQMh-
homogensous. source—free region, Ez and M, uﬁ:fyﬁmfﬁaf

The procedure which will be followed here, to obtain the free mode fisld sokstion
for the shesth helix surrounding a lossy coaxisl rod, is to express the fisld components
within the sir madium and within the medium of the lossy rod material, using
e/ectric and magnetic hertzian potentisl vector functions. X is the slectric hertzien
pat;rmi vector snd X" s the magnetic hertzian potentisl vector. For 8 cylindricel

surface whose genersting elements are persiiel to the I axis, the total field

obtained by /ineerly combining the pertiel fields dueto ¥ = v, 2, &nd x* =

W," 8,, is s0 general that a prescribed set of boundary conditions on the surfsce

can be satisf/ed {35, pp. 351)

The rod matarial is assumed to be linesr, hom
electrical properties sre characterized by a (real)
finite conductivity, 0. In addition, the permesbility of free space, u = O is
used. No free electricsl conduction currents or free electric charges are assumed to be
present — the medium consisting of the lossy rod material is source-free. Within this
medium, the scalers *, and iz* satisfy the homogeneous form of the scalar

£, -and a nonzero and

AT UL I g oJe, = 0,  and (2.1)

Vzi * 4 (kz € - J ﬁ g a’)iz“" = 0, o (2.2)

™

where k% = W2y 0 (35, pp. 32).
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ﬁﬂfmafmmm-ﬁwfarhmﬁiﬁQafrn

readily obtsined by using €, = ] and o = 0. in order thet no confusion srises

over the hertzian potential function sohutions and the slectric and magnetic field sokstions
=;E-iqhﬂifiﬁiﬁﬁninﬂ!bléﬁiﬂ:ﬂbytﬁi:ﬁﬂbﬁl ¥ L

vztz; + k2 " =0 and (2.3)

2 izi* = 0 (2.4)

Vzizlf + k
is the corresponding form of equations 2.1 and 2.2 which is sppropriste for the air
Thm:@m:fmdsri-xpﬁmﬂmafmmm
2.1 = 2.4 sccording to

E=9vx (v x v, ;2) = 3wy (v x ), (2.5)
ﬂ_iV:E(&#J-:)§:2_g_z]*v:(Vx:Z*£a_z)iI (2.6)

Ef = v x (v x x,0 ) -Jo Mo (v x v, 9 a), and (2.7)

Ht = 9 x (] €9 izf !I) + Vx ¥ x (t:#* 22)‘ (2.8)
© (35, pp. 32) it was mentioned in part 1.3.1 that the desired field components will not
depend on 0. This siso mesns that the hertzien potentisis are anguiarty independent.

Mlﬁﬂﬁfﬁnﬂfﬁmﬂﬁ%rﬂhﬁﬂhwmwﬁHFﬁ
example, see 18, pp. 572), equations 2.1 — 2.8 can be rewritten in a Mors convenient

e, - j “ ¥y G)iz = 0, (219)_
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Frge=) s —E vk oy a o, (2.11)

S|
- ||m
-

v v | |
ar 77)*#?—*k7 iz"!D- (2-]2)

1=

| ‘Wu
—
-

» (2.13)

im
[
L

|

-

+
[

[ -4
-

o
o

Y
Mu

—
-

[

L~

bow

]
]
1 »
|
o
I~

| |
|
b
|
L
—
Q
+*
Kb
E
™
L~
L
b |
o
L]

and ' (2.15)

a_. . (2.16)

magnatic field compc Ms cheracterized either by a cosgz orbya COSgfz axial
méﬁnmz.ﬁ-116M¢ﬂmm“h—umpatnmsmtm-
ﬁ-mﬁmnfmmiﬁw-fﬁghmmmhm
and magnetic hertzian potentisls is -




v,(r, 2) = R(r) cosgz,
i;(r. z) = ,e*(r) cospz,
v, #(r, 2) = j!(r) cosgd#z, and

v #*(r, z) = 1!*(?) cossdz.

[

(2.7

(2.18)

(2.19)

(2.20) .

A(r), jt(r), jg(r)! and !ii(f} sre four unknown functions of the

radiasl distance, which will now be determined. Substituti
the corresponding equastion of the set 2.9 - 2.12, yiolde

U‘E %(! %’l?i_). 2,'_2 !(r) = 0,
E—g{_la).ddr"' +rd7;g(ilthzrz Aa(r) = 0,

pl QER-E-(L)- +r %gﬂll - ne? r? If(r) = 0, and
dr ’

) 42 Lae(r) 3 > »
oy dgi"ikrgd;ﬁ‘LL-hiz r? ﬁ‘(") =0
: dr

hz snd “2 are defined according to

(2.24)
(zji)
(2.23)

(2.24).

(2.25)

Equetion A.1 shows that equations 2.21 ~ 2.24 are the modified Bessel equetions

of order zero. For exarmple,



1
A(r) - A'Ig(hr) + C ]:Q(i"-)i
where A and C !’lMﬂﬁmimafmlgi Iﬂ i
hﬁﬁdﬁfﬁd&ﬁnﬂﬁmﬁ@afhﬁﬁkiﬂaf&dﬁm&m 'KD is the modified
Bﬁﬁfmﬂhmuﬂafﬁ&zra_Smhmmm
2!21iiZ!tikﬂéﬂﬂﬂiMiﬁWll?*liD;ﬁbﬁm
i£(r, z2) = [A I,(hr) + C Ky(hr)] cossz, _ (2.26)
w3(r, 2) = {B I (hr) + D K (hr)] cossz, (2-}7)
= F — ",7—
tz!(r. z)y = [A# ig(hir) + Co KQ(MF)] cosg#z, and (2.28)

w 4% (r, z). = [Bf Fy(hor) + DI-KO(h#?)]'écse#z; (2.29%

where the constants A, B, C, D, At, B#, C#, and D4

it of the spatial coordinates.

2.25 - 2.29. This is done 30 that the field components associsted with each of the two
étffﬁiﬁtmdnnawr-frtaﬂehafﬁﬁﬁrmmmﬂmm;
surToundhng a lossy coaxial rod. Subscripts *1”, "2, snd ~3” will be used on the field
comgonents and on the undetermined constants. ™1” refers to the rod-filled region,
5 )

Flf-‘itahﬂeél’lﬂﬂ"fw% 8 s r <QD.

Combining equations 2.26 - 2.29 with equations 2,13 - 2.16, making use of the
Bessel function relstions A5 - A8, means that the electric and magnetic fieid
components in sach of the three regions are obtained in terms of siversl u

0 £ rgcb, =2 refers to the first air-filied regon, b < r < a, and"3”

Epy == 8 by TA) 1i(hgr) - € Kp(hyr)) sinez, (2f30) 

Eor = 3 wug by , :

EB] 11(h1F?;- D1 Kj(hIF)] cospz,’ . (2.3)
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rl

Ho]“ - (0 +j W t) h] hd , N

[Al I](h]r)j- C‘ K](h]r)] cosgz, (2.
Hpp = = 02 [8y Ig(hyr) + Dy Ko(hyr)] cossz, (2.
Een = - 8 hy FA I (h,r) - € Ky(h,r)] stinsz, (2.

E., = - hlz [A, I(hyr) + C, Kogh]r)] cossz, (2.

Eon = 3 w ug hy -

[ln l1(h2r) - Dn K,(hzr)] cosgz, (2.

zn

Hep = = 8 hy I8, I,(h,r) = D K (h,r)] singz, (2.

rn

on

Egn = - Mp? [A, Iolhar) + €, Kolhyr)] cossz, (2.

H ";Jﬂtohz'

[An l](hzr) - C, K](hzr)] cospz, and (2

Hzn.

- hzz [8n Io(hzr) + Dn Ko(hzr)] cosgz, (2.

where n = 2 and 3.

N\

The resder

230-'235ﬁﬂW{lnk'

.

32)

33)

34)

35)

36)

37)

38)

39)

.40)

41)

understand why 842 = g2 has been used in equations
the fact that the boundary conditions for the slectric and
magnetic fieids at the lossy rod surface must be satisfied for ol vakes of 2. whers
-0 < 2 <00 - (These boundery conditions will be discussed shortly. It will be
mentioned here they require that



E_ | s f | g, 2 =
'i,r-b Eo 'r-b' Ez], — EzE, .’

He‘l

r=p

Equations 2.31, 2.32, 2.34, 2.35, 2.37, 2.38, 2.40, and 2.41 show that it is only if the
mefﬁudww:mnmmﬁbmrﬁmmmﬂs

the squere of the axisl wave number associsted with the sir medium, thet it is possible to

in equations 2.30 - 2.41, R{ is the radiasl wave number sssocisied with the
rod materisl medum, while h, is the radisl wave number sssocisted with the sir
medium. As was previously mentioned, the axial wave number, 8, is the same for

The separstion constant equstion is a modified form of squations 2.25. It is

2 2 2

B = mS e (k¥ e - J e o) - hE% + k2.

(2.42)

Equation 2.42 provides a reistionship between the two radial wave numbers and the axial
Ai%uaf'hvﬂvg m-\dﬁnuﬁ-ﬁrﬁr-dwmw:
sppear in equations 2.30 - 2.41. Two of the constants associsted with the rod-filled
region can be immediately set to equal zero. No fres slectrical currents or fres electric
charge is present in this region. Therefore, the conditions for a free mode field sokstion
ntiongd in part 1.3.1, require that all the electric and

in this source—free region, as !

mfﬂmnﬁg, 0 < reb. Equetions A.28 and
A.29, the small argument Bessel function representastions, show that Kg(hyr) and
KT(h]?‘) re unbounded st r = 0. One is therefore forced to choose ¢, =
D, = o. " |



Rt will now be shown thet two of the constants sssociated with the fisids in the
region 8.5 r < Q0 are siso required to vanish. No sources of the fieids are
assumed to be located st r -+ CO . ion of reguiarity at infinity, as
number —hz is nonzero, when the radial distance is sufficiently large, it will be true that

lhzi" >> ], Nawﬁlrg-rmtsnﬂfmmnr-prmr:mmi

Equations A.36 - #39 show that the exponential dependence of ig(hzr) and
_ . + r k.
Li(h,r) is & 27 whie thet of j, (h,r) and ;J_(h;_.i‘) s o hz"i i

will now be assumed that the real part of thn compiex quantity hz is posttive. [This
assumption is discussed in the next paragraph.) in order to satisfy the condit

Ak

of

reguiarity at infinity, one is forced to choose A3 = 33 =0. At sufficiently large
radisl distances, all the fisids exterior to the sheath helix surface will now be rapidty

*

hmﬁan&?ﬂusmtumﬂﬁnﬁ(smgldfﬂﬂwwqmfarmgirrpty
sheath helix, h? is resl positive, and that the radisl dependence of the exterior
rnpcmfnld:i:grvmby K, (h r) snd K (h‘,-) In the kmit as the lossy rod radis
spprosches zero, arnﬂ‘u:llcb'ﬂ properties of the lossy rod approach those of air,
the sheath helix surrounding a lossy coaxial rod configuration is expected to reduce to
the empty sheath helix configuration. This leads to the choice Re[h,] > 0, so that
hrﬁdm-afhfmld:mhrwm asr <o is given by
0('1 r) and K, (h, 2T) . '
Eight unc ",:mtswﬁnmwwnmsrmm
equations 2.30 - 2.41. There are four boundary conditions which must be satisfieqd at
.the sheeth helix surface. These are specified by squations 1.6 - 1.9. Four additional
boundary conditions exist at the rod surface. They are statements of the fact that the
slectric and n fu@:mmﬁhnﬁmgmh-mmuh
Ctivities of the two regions forming the interface are both fﬁmﬁwn mentioned

in part 1.3.1 that if the conductivity of one of the regions is assumed to be infinite, the
slectric fisids tangential to the interface must be zero while the tangential magnetic fields
Ilﬁ!ﬂmmmmmmiemﬂllprimtﬂhnrfi:iﬂfﬂﬂ
hﬁfﬂMh:bﬂwarmtmnﬁbuymdumeHﬂrad



AR

caﬂxﬁwuﬁbmrmm:aﬁﬁmhnmﬁwmn
the surface of the lossy rod are 4

E = (2.43).

™
]

r=hH zz'r:b | (2!‘4)

[ ]
-

32’ , and (2.45)

(2.46)

r=b

Requiring that equations 2.30 - 2.41, with C; =0y = ,A3 = Ba =0,
satisfy equations 1.6 = 19ﬁmﬁaﬁ3243*245 :umcfuldcmt-
known in terms of a singls undetermined constant plu; thres undetermined wave
numbers, and the d/spersion equation is obtained. ’T’he dispersion squation is sometimes
called the determinantal equation or the characteristic equation. It arises because for a
set of m homogensous linesr equations involving m  unknowns, if a solution other
than-the trivisl one is desired, the determinant of the coefficients of the unknowns must
vanish. In short, for our purposes, the dispersion equation arises from the necessity that
sl sight of the undeterrmned constants must not each be zero. Using the previously
mentioned equations and performing a large amount of algebra, which is straightforward
hn&ummW.uw;1afw-:mnn-ﬂl=i1b--quumdirqﬁn;nf-nhﬁhcx-.-t!ﬂ-
dispersion equation is obtsined. A s now the single undetermined constant. (A
Mofhﬁhﬁmtaﬁtwarﬁﬂwmmm:ﬁhumm-mm
given in part 2,1.2.)

#



-
Summary of the Fields in Terms.of A]
Region 1 ( Ogrsgb)
‘. : Ai = s ) N . = .
Er1 = - —3 B2 h,a 11(h1r) singz, ) L (2.47) \\
. a ,
L4
i Mo \2
Ee1 -3 (kaxcat;nt) tany -
, a
h1a K1(h;a) ( ) ’
s CTh.3) Iy(h,r) cosgz -
F;§ Fo'h2? 1L ! ~c
Eh‘i ID(h1b) Kl(hzb) ' (2.48)

-4 A] ka cotany
- —. & :

* (en = 3 o/ueg) hya I3(hyb) Ko(hyb)] -

1/[hya T4(hib) Ky(hyb) + hya 1,(hib) Ko(hyb) 1,

»

= - = (a)? 1,(h,r) cosez,  (2.49)

. elwx -~
a

“hya Ky(hja) N )
H;f VB 20 I](h]f) singz - _ (2.50)
[hya Ty(hyb) Ky(h,b)

* (e, = J a/weg) hpa I,(h;b) Ky(h,b)] =

1/fh]l rD(hlb) K1(hzb) + hya I](hib) KD(hzb)J‘



A

h,2 11(h1r) cospz, and , (2.57)

(hy2)2 K,(hya) -
hpd Ko(hpa) Io(hyr) cossz -

[h]a Io(hib) K1(hzb) 5(2.52)

+ (er -3 a/n:a) h,a 11(h1b) go(hzb)] .

'I/[h.la Io(h-—lb) "1("2") + hza Ij(hib) Ka(hzb)].

Regi qnﬁg (bsrga)

r2 8a hyb singz -

m
]
]

o Nl-')

[1y(h,r) « (hja fo(hjp) Ky(h,b)
+ (e, - § o/ucg) hya 1,(hyb) Ky(hyb)) (2.53)
- Ky(hyr) « (hya I5(hyb) I,(hyb)

‘-f (cr -3 a/n:o) hya Io(hib) 11(h1b))],
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Mo 12 peny MP Kplhpa)
Egp * ] (ka cotany)® tany F,a RyThyal cosBz -

Ly hr) ¢ (hya 1o(hib) K, (hyb)
+ hya I,(h;b) Ky(h,b))
= Kylhyr) « (hya ToChyb) 1, (h,b) | (2.54)
= hpa Ig(hyb) Iy(hyb))] -
[hya 14(hyb) K, (h,b)
r * (e, - J.a/mto) hod I,(h;b) Ky(h,b)] -
1/[h,a To(hyb) Ky(hyb) + hya 1,(h,b) Ko(hpb) 1,
A

!-”] i » g -
Ezz !éthD hza cosgz -

[Io(hzf) . (hia Id(bjb) K](hzb)

L Y
of

+ (e, - § a/uey) hya I, (hyb) Ko(hyb)) (2.55)

+ Ko(hzr) . (h]a Ig(hib) Ij(hzb)

L m Loy = 3 olusg) Mpa To(hyb) Ty(hb)Ye



a2

hib Ky(hya)

Pt Rpd Rolhaay *100% 7

[(hya 15(hb) K (h,b)

+ (e. = J a/uey) hya 1,(h;b) go(hzh)]'.
(1)[h1i Io(hyb) Ki(hzb) + hya 1,(h;b) Ku(hzb);)»- )
[r,(nz;) » (hya Iy(hyb) K (h,b) C . (2.56)
+ hya I,(hb) Ko(hyb)) |

- Ky(hgr) + (hya To(hyb) T(hyb)

hza Ig(hzb) I](hjb))li

tany h1b cospz -

[1,(h,r) = (hya To(hyb) Ky(hyb)

‘
+ (e, - 3 o/weg) hpa 1;(h ) Ko(hyb)) (2.57)
~ = Xy(hyr) + (hya To(hyb) T (h,b)

- (e, = § 0/wcy) hya TIo(hyb) I1(hyb))], and

(2.58)

[hla Ig(hjb) Kj(hgb)

+ (e, = J o/wey) hyoa 1,(hyb) Ko(hy0)] -



Er3 * —% 8a h,b ¢

L

E53

= 771 ¢ d =
. :Z tany hjb hzi r

. 43

(1/Chya T5(hyd) K (hyb) + hoa I,(hb) Ky(hyb)]) -

[Ig(hyr) < (hya 1,(h,b) xl(an)

—.ﬂgs"hszI1(hjb) Kn(hzb))

#»lo(hzr) . (hig Io(hib) [](ﬁzb) R

= hya I,(h,b) I,(h;b))].

Region 3 ( asr<w)

A K (h,r)
] L2~ singz -

a RotNad
[Zg(hza) . (h1a Ig(h1b) K](hzb)

+ (e - o/weg) hpa I,(hb) Kolhab))

+*

Ko(haa) « (hya ig(h1b) I,(hsb)

A

[Ia(hzn) . (pil Iﬂ(hjbz K1(hzb)

+ (tr - G/u:o) hzi 11(h1b) Kn(#{?))'x

o : , . ) ,,%5$¥‘i;

- (:? -3 ?/“EQ) hz‘ Io(hzb) Ij(h]b))j:

(2.58)

(continued)

(2.59)

(2.60)



) A1 7 Ka(h r)
EZ3 = - ii-h]b hEl ?;Tﬁ§?7 cospz -

[Tg(hpa) « (nya Io(hyb) K (hyb)

*+ (e, - o/ueg) hya 1;(h;b) Ko(hyb)) (2.61)
+ékucnzg) * (hya Iy(hyb) T (h,b)

- (Er = j §/EEO) hzl Io(hzb) 11(h1b))3i

hyb h Ky(hyr): '
2 2 ]
=¥ af 156 ka cotany K. (h ay sinez -

[Ig(hza) . (hji IQ(hib) Ki(hzb)
+ (:r -J G,ﬁto) h,a I](hjb) Ko(hzb)) (2.62)
+ xo(ﬁzg) * (hya Io(hyb) I,(h,b)

- (:f -J a/a:o) h,a ID(hzb) Ij(hlb))j;

K](hir)

tany hjb TFTF;?T COsB2 -

. = J A] k‘,,CQt!ﬂ
63

a
[o(hpa) + (hya 1g(h b) K, (hyb)

+(ep = J o/ucg) hya Ii(hyb) Ko(hyb)) | (2.63)
*+ Ko(hya) = (hya Io(h b) 1,(h,b)

= (e, = J o/ueg) hya To(h,0) I,(h,b))], and
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I B WU LY (PO L A ORS
§ J?Wta cotany ?‘ﬁ_fmsgz‘

[To(hpa) - (hya 1g(h5) K, (h,b)

* (ep = 3 alueg) hpa 1 () Ky(h,b)) (2.64)
* Kolhaa) = (hya 15(hb) 1 (h,b)

* lep - o/ueg) hya 1(h,b) I,(hyb))].

The dispersion equation which results for the sheath helix surrounding a lossy
coaxial rod is the following.

Summary of the Dispersion Equation

ka cotany,2 _ Ko(hz2)

2 b T K Thpay (M Ig(hyb) :,(h b)

+ hya 1,(h,b) Kg(hgb)) = (1/Lhya 1o(hb) Ky(hyb)

flep - 1 otuey) haa Iy(hyb) Ko(h,b)3) -

[1g(hya) « (hya I,(h,b) 11(h2b)' - - (2.65)
&+ (e, - 3§ d/ueg) hya 1,(hyb) Ko(hyb))
f + Ko(hya) - (hja 15(hyb) I,(h,b)

= (e, - 3 a/uey) h o Iy(hyb) Li(hb))] -

108y (hga) -+ (hya Io(hyb) Ky (hyb) + hya 1)(hyb) Ky(hyb))

-.K‘(hzi) . (h.]i Io(hib) I](hzb) = hya Io(hzb) Ii(h]b))],



where 0 < ka cotany <0, 0 « b/a <1, ¢_>1,

and oluto > 0.

Inthocoarsoofmykmmﬁhcdahﬁonotoobtﬂnmﬁonsli?;l&d.ﬂwn
mtondowoofrduﬁonA.Zs which was derived from the modified Bessel
fmchonWrmwmy equstion 2.65, Mumdwmm-ﬁﬁ
oquelity \/¥g/cg = 120« (q).

' The single remaining constant which appesrs in equations 2.47 - 2.84, A]:
wucmwhmofhmumwwOMMﬁmﬁlix
"windings”. As was mentioned in part 1.3.1, it is assumed that the physical helix is
excited in such a manner that current with no anguisr dependence and COSg8z  axial
WoogimmhmmsMMMﬁfmmtypiofMH
uwwwhhmmpotmsformmmmurrmﬁtgilany
coaxisl rod, equstions 2.26 ~ 2.28.) For the shesth helix, this meens that there will be an
slectrical surface current st r = g ofthotypo -

K = K'! ag- 3“ cossz a); ., where .»“ (A/m)

is & constant with respect to the spatisl coordinates. In part 1.3.1, the disconti
thomnncﬂddltmm.rfmhnvngaufacommt is discussed. Applyngﬁg .
‘mtthqufmrMh

+ (H°3’ -—H- (2.66)

r=a

D
~N

-

[ ]

»
~
»
N

,‘ = ,‘ co;.z._._o + )Z cosgz a._.



nmmmﬂﬂtﬁmﬁﬁhmrﬁx;ﬂmmmnmm
nmm:mmm?s ﬁdSz being ‘quantities to be determined.
Combining the region 2 and region 3 angulsr and axisl magnetic field components, which
are specified by equstions 2.57, 2.58, 2.63, snd 2.64, with equation 2.66, making use of
m;es-urmugfwmfma mﬂ» can be expressed in

tarms of the constant A]

N - g 1 ka cotany MP 1
Ba T T0r  Fa Ky(hpay

(hya To(hyb) Ky(hpb) y | (2.67)

+ (e, - 3 o/wey) hya 1,(h;b) Ko(hzb)), and

. Ay bo s hyd
o 1 ka cotany 1 | I
_» L S 1 LA Ko(ha)

'(nig 1o(hyb) Ky(hyb) ' (2.68)

+ (:r - J Glmto) hza I](hlb) KD(hzb))i

Frmmﬁam!!aﬂmbauﬂotonprm»“ and %_L in tarms of

99 :ﬂ’ _A]— cmmwhi?mmﬁij,’qwﬁmmﬁ
shesth helix “windings”. mw15mmza7ﬁmzsa
yleids

h

1. ! u
*-d sll ’ Eil%%%?ii cosy F%E Ko(haa) - (2.69)



”[hi! IO(hib) Ki(héb) ’

*lep - 3 0/ucy) hya Ly(hyb) Ko(h,0)], . and :
(2.69)
)4§ - 0. (continyed)
SmﬁmmmwndifTﬁ&FWQOnfhﬁacMWRﬁM
surface in the direction parallel to the ° “windings” mzraemvﬁynﬂ‘ndricﬁm
mtoﬁmdfmm3“¥ﬂ ﬂ%ﬁL:Q_

Therefore, equations 2.69 are in good agresment with the definition of the sheath halix

#

model, as one expects. ‘

R i ﬁﬁﬁﬁﬁﬂﬁhﬁ\&!lﬁ?mﬂ sl the fisld components in terms of S)“.
Equations 2.69 weres substituted into equations 2.47 - 2.64, and equstion 2.65, the
dispersion squation, was used for simplification, in order to derive the following field -
components, equations 1;10 - 2.87.

Summary of the Final Form of the Field Components

Region 1 (0sgrgb)

- ML 120w o
En = & K@ cotany O%¥ Mot o

Ko(hza) 11(h1r) singz - | (2.70)
. 1/[h,a Ia(h1§)’x1(h2§)

A (Er - J ?lﬂiﬂ) hzi jj(hlb) Kg(hzb)jl

JE;iné"J'EQ% 120* ka cotanv siny -
K1(ha) I‘fhir) cosfz - ’ k (2.71)

1/Thya To(hyB) Ky(hyb) + hya 1y(hyb) Ky(hyb) ],



o
*» -Jz-,— 120w cosy h,a hya *
21 | a ka cotany A L
Ko(hya) Io(hyr) cossz - - (2.72)

Il[h]l Io(h]b) K‘(hzb)
+ (e, - § a/uey) hya I]\hib) Ko(hyb) 1,

: Mo .%.}1: cosy 8a K,(h,a) I,(hyr) singz - (2.73)

[

1/7[hja 15(hyb) Ky(hyb) + iza I,(hyb) Kg(hzi)j.

- 'H” = - }% (:r -J c/wco) siny !‘123 .

Ko(haa) I;(hyr) cossz .  (2.74)
1/ Chya T5(h b)Y K (h,09 B
L ! ) '
+ (e, -] a/uey) hya I,(hyb) Ko(hsb) 1, and
]
H” -}% cosy h]a Kl“'z‘) Io(hjr) cosBz . (2.75)

1/ {hye T5(hgd) K (Ny0) + hoe 1,(h0) Ky(hyb)}.

/



Erz

02

z2

Region 2 (bgrsa)
_ 120« %, C -
= J)“ m“—; cosy h,z,l ga -
Kolhpa) sinsz « [1,(hyr) - K (hyr) -
(M3 Io(h,b) T,(hyb) : (2.76)
- (:r - J a/ﬁgo) hzi Iﬁ(hib) Il(h1b)) .
f (:? - ﬁ/mEQ) hzl Ii(hibl Ka(hzb))Ji
H
= - 3" 120w ka cotany siny -
- Ky(hya) cossz + [ (hyr) - Ky(hyr) - (2—7?)

(hya Tg(hyb) I;(hyb) - hoa I (hy0) I (hyb)) -

1/(h;a Io(hib) KI(?Zb) + hya I,(h,b) K4(h,b))],

1204
ka cotany

j%“, cosy (hya)? .

Ko(hya) cossz « [Tg(h,r) + Ky(hyr) -

(hya Tg(hyb) T,(hyb) (2.78)
< (e, - 3 alucg) hya Tg(hyh) Ty(h b)) - |
1/(hya T4(hyb) Ky(hyb)

+ (e, - J a/wey) hya I,(hyb) Ko(hy0)) ],



1
SSSSQS%PE ’ N
 Kylhpa) stnsz - [1,(h,r) - Ky(h,ry - (2.79)
(hya To(hyb) I,(h,b) - hya Iy(h,b) I,(h,b)) -
1/(hya To(hyb) Ky(hyb) + hya Iy(hyb) Ko(h,b))],
Hgp * - %H sine hya -
Ko(h,a) cosaz + [I;(h,r) - l(](h,zr‘) .
(hya To(hyb) I,(h,b) (2.80)
- (e, = J o/eey) hya 15(hyb) I (hyb)) -
1/(hya 1o(hyb) K (hyb)
+ (¢, = § ofucg) hya I,(h.b) Ko(hpb))], and
sz = ‘l' icOS* 'hzl =
!Kj(h;I) cossz + [I,(h,r) *'xo(hzr) . (2.81)

(hya Tg(hyb) T(hgd) - hpa To(hyb) Iy(hyb)) -

1/(hya To(hyb) Ky(hyb) + hya T,(hb) Ko(hyb))].
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r3

-
Region 3 (agr<o0)
- J %"_ 120w ka cotany cosy %' . ' (g.ﬂg)

K,I('hra.) B N T - -
grs)—KD 5T Ki(hpr) singz - [I,(h,a) - K (h,a) -

L]

(hya I(hyb) I,(h,b) - hya I (h,b) 11(hjb)) .

1/(hqa 15(hi8) Ky(hyb) + haa I13(hyb) xa(hzb})];

-J 5” 120x ka cotany siny -
Ky(h,r) cosgz « [1,(hya) = Ky(hya) - (2.83)
(hya To(hyb) Ty(hyb) = hya Iy(hyb) I (hyb)) -

1/(hya To(hyb) Ky(hyb) + hya I,(hyb) Ky(hyb)) ],

J 3“ 120« ka cotany cosy - (2.84)
Ky (hya)

W Ka(hzr) COSBZ - [’I](hza) - K—T(hzn) .

(hya To(Ayb) 17(hyb) - bya Io(hyb) I (hyb)) - - @

1/(h1i Io(h1b) "1("2") + h,a Ii(hib) Ko(hzb)!)j;
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- L !B" cosy Ba -
Ki(hzr) s%nlz.- [Ij(hza) - K](hzn) . | (2.85)
- (hya Io(h b) T(h,b) - hya T15(h,b) I,(h;b)) -

1/(hya T4(h;b) Kj(hzﬁ) + hya T;(hyb) Ko(hyb)) 1,

Heg = B" (ka cotany)? siny WZ—; - | (2.86)
Kythpa) e
W K1‘hzf) coséz - [Il(hzi) - K](hzi)
(hya Ty(hyd) T (hyb) = hya 15(h,b) 1,(hyb))

1/(h1a [D(hib) Ki(hzb) + hya Ij(hlb) Ko(hzb))]i and

Hyg = - 3"* cosy h,a -

-Ko(hz") cosgz - [I{(hza) - K1(h2a) (2}87)

L

(hya 1o(hyb) Ty(hyb) - hya To(hyb). Iy(nyB)) -

1/(hya T5(hib) K (hyb) + hya I,(hyb) Ky(hyb))].

o

~ 2.1.2 Disoussion of the Field Components and the Dispersion Equation
As mentioned Inpart 1.3.2, the field components, equstions 2.70 - 2.87, sre
characterized by £, k0 nd H_ k0, for n= 1,2, 3. Therefors, these are
hybrid type wave solutions. Traneverse electric (TE) and transverse magnetic (TM) waves
cannot exist independently on the shesth helix surrounding a lossy coaxisl rod
configurstion.
Aﬂhcuﬁ'l the fielq eampamnti given by equstions 2.70 - 2.87 represent a
standing wave with respect to the axisl coordinate, they cannot be thought of as the sum
afiuimiﬁﬁwnnmrﬂﬁﬁﬂyitkﬁntsﬁ:;arﬁgﬂyahevhjw::mdmnhgpunijmsn:



siong its surface vanish. This concept has been expressed ss 2 trave//ng weve supported
by the shesth helix and refiected st s plane boundery will spiral in the wrong
direction (12; 16, pp. 82).

Attantion is now directed to the dispersion equation and the seperation constant
equstion. It is convenient to rewrite equetion 2.42, the separation constant aquation, as

(82)2 = (nya)2 + (ka)? (¢, - 3 o/ucy)
_ ' (2.88)
- (hza)2 *'(ka)z.

The dispersion equation, equation 2.65, and the separation Constant squetion, equation
2.88, serve to determine the twb radial wave numbers, hla and hza. and the
axish wave number, sa. n.-wafﬁmﬂomhfucmmcfn‘
geometry, and the rod materisl slectrical properties. '

h-'i -f‘(k‘ C?t!ﬂi- b/‘; EFj G,ﬂﬁa. *)g (2-39)

h,a = fz(ki cotany, b/a, ¢ ,’a/u:o. v), and (2.90)

r

(ga)? = fa(ka cotany, b/a, «,. o/uegs ¥). (2.91)

the aigebrasic sign of the axipl wm number. Therefore. they are said to specify
(g;)z rather then ga 38, 40} (Strictly spesking, it is h'l‘ hZ" EZ and not
Mas h,a, (ga)Z  which are the wave numbers solution. However, this
distinction in terminology is not important. In fact, it is best to consider the iatter solution
becsuse h,a -ﬁhzi appesr as Bessel function arguments in the dispersion
equation. it is then not necesssry for the shesth helix radius to appesr by itself as an
extra varisble on the right hand sides of equstions 2.88 - 2.91. It is useful to think of the
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racisl and sxisl spatisl dependences of the elegtric and magnetic field components
de%rmﬁﬁﬁmrﬂxr&gnmhiﬂ hzr—._ and B2
become h]a s r/a, hzg - r/a, and ga - z/a.)

Twowwafhmmmﬁﬁﬂmmm
e immedistely spperent. First, the pitch angle only sppesrs in the quantity
(ka cotany)Z. Replacng y by - y wil therefore result in no change. This
means that the wave numbers sokution is independent of the positive or negative sense
of the shesth helix “windings”. Second, the angulsr frequency only appesrs in the
Quantities (ka)z, (ka catani)z, and G/NEQ- Since the quantity o/ we
is present, the wave numbers sohstion will be different if the sigebraic sign of the snguisr
frequency is reversed. This is an important property. Adler (35 40) has shown that by
considering the compiex electric and magnetic fields as the Fourier transform of the
instantaneous time-dependent electric  and magnetic fields, it follows that if -
82(- &) = 82(w), 8 may only be purely real or purely imaginary. Since the
procodhgoqmsonis%ot valid for the case of a shesth helix surrounding a lossy coaxisl
rod. ga is sliowed to be genersily complex with nonzero real and imaginary parts.
(Appendices B, C. and D are concerned with the empty shesth heiix, the shesth helix
dislectric coaxisl rod. respsctively. For esch of these .thres configurations, m-*
corresponding dispersion equation and separstion constant equstion shew that
(ea)z is not changed if o is replaced by - . Therefore, the previous
discussion has shown thst for these three configurstions, the axial wave ruggieer is only
sllowed to be either purely resl or purely imaginary.)

informstion concerning the possible sigebrsic signs of the reel and imaginary
parts of the weave numbers solution can be obtained by examination of the dispersion
equstion, equetion 2.65, the separation constant equation, equation 2.88, and the field
mmwz.i'oé;_aim



h‘a ] h]ra + 3 hjj!.
,hza = tha + ] hzja, and (2.92)

ga = Bra + eja,

whoromoubscript”r"dugmhrwmﬁfﬁemx—vﬂﬂwncmm
the subscript ”]” denotes the imaginary part. As was previously mentioned in part 2.1.1,
in order that the condition of regularity at infinity of the fields is satisfied for r +
©O , itis necessary that h, a > 0. In sddition, it has previously been ssid in part
2.1.2 that if a particulsr velue of B2 satisfies the dispersion equation and the
separation constant equation, then - Ba must also be a valid solution. However,
equations 2.70 - 2.87 d\oerovaﬂﬁiﬂeibr& sign of Ba resuts in no
change in the fieid components. Therefore, no loss in generality results from restricting
B2 > 0. Making use of the Bessel function reiations A.14 and A.1B, it can be
shown thst reversing the aigebraic sign of h‘l a inequations 2.65, 2.70 - 2.87 causes
no changs. Of course, this is also true of equation 2.88. This means that no loss n
generality results from restricting h‘lr‘ > 0. Finally, separsting equation 2.88 into
resl and imaginary parts, shows thet when the imaginery parts are equated, Bj:‘ and
hZJ‘ memwkumhmy.faﬁlfrnnﬁﬁfﬁﬁﬂh{ﬁm
the wave nurribers are restricted so that  h, a > 0, h, a > 0, 8.2 > 0,
with BJa andhzja having the same sigebraic sign. ) |

is desirsble to mske approximations to them which result in simplification. What is
sometimes done in muiti—dielectric region configurations is to equate the axisl wave
number with the radial wave numbers (22). For the sheath helix surrounding a lossy
coaxisl rod, this mesns that  h,a "’hza‘?si?hﬂi The necessary require-
mwmﬁmWoxmroobﬂﬁmﬁmianeﬁhnpsqﬁaﬁ
constant equation, Expanding equstion 2.88 and equsting first the resl parts and second
the imeginsry perts, the approximition is seen to be valid providing that
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'l(hr:)? - (hja) %) >> e (ka)? and

Iha hjal >> (o/weg) (ka)?, (2.93)

where ha = hra + J h,a.

3

The author spent considerable time studying the spproximate form of equetion
2.65, and equstions 2.70 - 2.87. Unfortunstely, the two inequalities listed in 2.93,
espacially the second one, wers shown by direct numerical solution of the spproximats

form of the dispersion equstion to be very difficult to satisfy, at least when |h|a s
small compared to unity. In short, although the approximate solution does provide
simplification to the dispersion equation and to the field components, and is therefore
highly desicable, it was found that, unfortunately, the requirements invoived to justify its
usage could ususlly not be met. No more discussion of this approximate solution will be
given. Only the equstions where the wave numbers h-la. hz’n, and Ba e
assumaed to be distinct values will be discussed throughout the remainder of the chapter.

2.2 Some Limiting Cases of the Free Hé;ihlﬂﬂ

The purpose of this section is to investigaste several limiting forms of the
dispersion equiition, equstion 2.85, the separstion constant equation, equation 2.88, and
the fisld components, equations 2.70 - 2.87. These limiting cases are when the iossy
rog radius spproaches zero, the Iauy rod juctivity approaches ero, and tha lossy

hﬁﬁﬁwﬁflﬂﬂmfﬁhmm?ﬂmﬂﬂMMxm&uﬁWQ
ﬂmbmdrmmhmmxmm-prﬁﬂytm
m-ad.rnpc:hvﬂy w&&mt’m:ﬂ“hﬂmfwm All
results in thees appendicss were cbtained compietely independertly of the free mode
fﬁdmfﬁni‘mmixmm:bm:ﬁmrﬁ. Ei-mr-maﬁ

m@mm? .

&



2.2.1 Limit as the Lossy Rod Radius Approsches Zero

limit of the dispersion equation, equation 2.85, is taken as the rod radius
spproaches zero. it is assumed that the other geometrical varisbles, the operating
frequency, and the electrical properties of the rod material. are all held constant during
the limiting process. Msking use of relstions A.26 - A.28, the smell srgument Bessel
function representstions, and performing a smell amount of aigebra, one discovers thet

iy (kayggtann? . (ke cptany: (2,90
b+0 '

v I,(h,'a) K.(h,'a)
- Io 2. 0 2‘ » Where 1im hza = hz'a
+ ! '

The correct form bf the separation constant reistion, equation 2.88, in this lmit is

(') = (n ) v (ka)?, (2.95)

‘where 1im ga = g'a.
\ b+0*

Y 3
»

Eq;ﬁomz.MandZ.Qs are the same as equation B.13, the empty shesth helix
dispersion equstion, snd equstion B.14, the shesth helix separstion constant
equation. respectivelyl i the imit ae the lossy rod radkus spproaches 2ero, the diapersion
u;nﬁuw.xlﬁn|npu10u\qwnhntumuManboaxnoﬁxnocﬂ1hocu.qrdnumfnﬁx
uonowddoxpoct.moroforo.numm '

\

Hm h,a = h,'a = n¥% and
+ 2 2
b+0 .
h . . (2.96)
1im sa = g'a = 3%,,
b+0* ,

/



where n33  and g%  are the radisl and axisl wave numbers, respectively, of the
empty sheath helix.

Applyhgmm'lhitt,omﬁomzn-z.w.mﬁddconpmmm
mofmznmdmmwmmxze—kzs,wm
argument Besse! function representations, it is seen thet equstions B. 1 - B.12, the empty
Mholixﬁﬂdconpormu,rommvnmtymwhfiddcon'ponomsaro
Aobtainodbytd(hghmumorodradiusq:proachosuroofnchomoftmrogion
2 and region 3 lossy rod configuration fields.

In summery, taking the limit of the dispersion equation, the seperation constant
mtion}monfwconpmumlouyroarm-pprwmwo,yvum
- corresponding equstion of the empty sheeth helix. The empty shesth helix is discussed in
Appendix B and the snslysis is carried out independently of that given in this chabter.
Fromphyﬁcdcmﬂdwmvnlmmnmucxpocud.nisauufutchockonh
Aa—ncyofthofrumodoﬂoldaolutionforﬁthoﬁxmwsdhguouycouid
rod. @

2.2.2 Limit as the Lossy Rod Conductivity Approaches Zero

Now the conductivity of the lossy rod materisl is made to approsch zero, with ait
mmuwmofhrwmwop«mhmy.hmmﬁx
geometry. and the rod geometry, held constant. Clearty, this mesns that | |

&

Tim (cr -3 a/uco) N
+
o-+0

Replacing the quentity € - J a/uto by the quantity €. in equstion 2.85, the
dispersion equstiory and equstion 2.88, the separation constant equation, the seme result
uoqutionD.ls.ﬂndiwpionoqnﬁonfocﬁnidoddidocticrodeonfwm)t\d
mﬁmDJO,“npraﬁonmmmwrhwmvbrodmﬁgwm
is obtsined! Taking the limit of the dispersion equstion and the separstion constant
Wuhrodqonducﬁvkywmuromomﬁncmupm



Therefore, | : f o

enre L d e
a+0 o0

n
-
(-8

and  1im ga = g'a = g; | (2.97)

o+0

where h‘dig hzdg, and ;d. sre the two radial wave numbers and the axisl

wave number, respectively, for the sheath helix surrounding an ideal dislectric coaxial
rod. ' -

In & similar manner, replacing €. - J o/wecy by €.’ in equations 2.70 -
2.87, the field components, making use of equations 2.97; equstions D.1 - D.18, the
Taking the limit of each field component as the lossy rod ¢
the corresponding fisld component of the sheath helix surrounding an idesl dielectric
coaxisl rod is obtained. '

A brief digression will now be made to show that equations 2.70 - 2.87, 2.85,
iossy coaxisl rod, can be relsted to the free mode field soktion for a sheath helix
surrounding an idesl dielectric coéixial rod, equstions D.1 = D.20. This is done by making

ivity-spproaches zero,

use of the concept of compl/ex re/ative psrmittivity.
Equations 1.4 list Maxweil's equations in a conducting region. It is convenient to
rewrite the equation whichtskes thecuriof H as '

gl

= (J we + o)

im

v;xﬂ‘jgig*a

= J wey (e, - J a/uey) E



a

vVXH =} we g Er"’ E. (2.98)
&

‘r' e -3 ﬁ/m:o is the comp/ex ﬁlnlﬁ permittivity. Using the quantity

€r nplmaflh-mty E—,z-i! Maxweil's equations in a conducting region can

be transformed into the form of Maxwetl's equations suitable for an ideal dislectric (zero

occurence of €." in the equstions associsted with the free mode fisld sokstion for a

sheath helix surrounding a lossy coaxisl rod, with €r*  must resuit in the correct

mmmgfhfrnmd-fmmfar:mmnxmw:th
idesl dislectric coaxisl rod. Of course, ‘

- 1im EF* bl 4

o+0

mumumafmrmmﬁnuﬁMﬂmmhmn
esy rod conductivity spprosches zerc, the two free mode field sokstions st be
the same. | |
Mam“ﬁﬁafhﬁﬂmmﬁmmw
WMmedmnﬁlanymdewgﬂm:ram
the corresponding equstion g the shesth helix silirounding an ideal dislectric coaxial rod.
This lstter mentioned confi tion is studied in Appendix D and the analysis is conducted
independently of that given in this chapter. in the limit as the lossy rod conducti
Wodmzrammﬁmgﬁyﬂmmtutﬁfrﬁmmu
mofmmaemfwm&hhmmmmmtmdm
bohcmﬂnhﬁﬁgpm&;hgprmﬂnﬂ:mafﬁﬂhgmhmmaf
“ﬁum&fﬁdmfarﬁmm:mmuaﬁyeaniﬂmd

r .



2.2.3 Limit as the Lossy Rod Conductivity Approsches infinity :

infinity, with sl geometrical varisbies, the operating frequency, and the value of  €p»

heid constant. The separstion constant equation, equstion 2.88, makes it Clesr that at

lesst one of the wave number solutions must become infinits in this kmit. Using some

physical ineight. 1t is anticipated thet the fisids within the rod~filed region will vanish but

that nonzero fmdlwm‘xmnhm:r air=filled regions. Tnfumnwhm
uctivity approaches jnfinity leads to the equality

hja = Vi a/_sg ka. (2.99)

4

"(A further discus
o +Q0, it is clesr from equstion 2.99 that |h,|a becomes unbounded.
Combining equations 2.88 and 2.99, it is evident thet When the limit is caiculated, the

on of this choice for hia will be given shortly.) Taking the limit as

T

, 2 , D 7 ' ) ) -
(8'a)¢ = (n,'a)2 + (gu)?, | (2.100)
where 1im h,a = h,'a and 1im pa = g'a,
' g+ 00 . L") o+ 00
o
and the wave number magnitudes |hy'|a and |g'|a are finite.
mehmmmmza!imranrMH

[!D(hzl) + KD(ﬁZQ) *

(hya To(hyb) T (h,b) o J; (z.101)

e (C—'. -J a’/-zo) hz*hzb) I.](h‘b))



(1/(hya To(hyb) K (hyb) C 0 (2.01)
(continued)

+ (EF -3 6/:50) hzl I‘(h]b) Ko(hzb)))] . \

(h a Io(h b) I (h b) - hgj ID(h b) I (h b))
1.
(h a Io(h b) l( (h b) + hzl ) (h b) K (h b))

xy Taking the limit of equetion 2.101 88 o + QO , using equation 2.99, and the large
;rgum Bessel function representations, equstions A.SBlndA,37 one discovers that

1im (kd_cotany,2 | (ka_cotany 2 Ko(hg a) Ky(hy 'b)

o+ 00 hza ' hz‘a K' (h 'd) K, (I'n2 a)

(Io(h;'a) Kolha'®) - T5(h,'b) Ko(h, ‘a))
Iy (hy"a) K (hy'b) - 1 NUATY) Ky(h, ‘a))

(2.102)

] Equstions 2.102 and 2.100 sre the same as equations C.14 and C.15, respectivelyl
Equations 2.102 and 2.100 agree with the dispersion equation and the separation
constant equstion sssocisted with the sheath helix surrounding s perfectly hucting

mW@mMﬁafﬁMMsmmipﬁfﬁycwmﬁ
coaxisl rod. Tharstors.

11 - = h a ' — -
, a*;;"z‘ hp'a »“ g, (2.103)
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1im ga = g'a = Bﬁa_ - (f_]oZ;,
o+ 00 ;gnt::nue ]

where 1€y and gCa  are the radisl and axisl wave numbers, respectively, for the
Gﬂgﬁﬁgmmmafmﬂafmlﬁizeiﬂm
ta, meking use of squations 2.89, 2.102, 2.103, and of equations A.36 -
Eﬁ‘fmmﬁfﬁﬂtc1=ﬁ.11ﬁﬁﬂdcmfﬁhmﬂv
mrﬁdﬁaﬁfWM}Fﬂ.ﬂTﬂﬁﬁhIMBﬁradmmm
infinite, the lossy rod configuration fisid components become transformed.into thoes
Ammmafﬁmmwr h.ia can be achieved by
rewriting equstion 2.99 as

h.—la

ka = VJ é'ué ? a.

N an’ unbounded, source-free region ﬁmuﬁbyhm?m LR
€, and O, & uniform plane wave with e YZ axisl dependence hes

R Yy = JJF w u‘; (0 +J we)

nﬁﬁmmimﬁ-xmmﬂppainhnm;mn
is true that o >> w ¢ and 80 it is Clear thet hia ¥ ya.  Therefore,
mzﬁrmmnwmmmhmmgw&mfmmm

©In summary, taking the limit of the separation constant ecuetion, the dispersion
equation, and the field components, as the lossy rod onductivity approaches infinity,
mmmZBSHthmmmhmgthhﬂm
maﬂq:pvf&ﬂyaaﬂ:ﬁngmﬂmﬁmabﬁﬁﬁﬁccﬂyemﬁﬂgmd
cc;nfngribeﬁ is discussed in Appendix C and the analysis is carried out independan

tly of

that given in this chapter. From physical considerstions, the limiting behavior is expected.



it is 8 useful check on the sccuracy of the free mode field solution associsted with the
shesth helix surrounding a lossy coaxial rod. -

e - r/a, hpa © r/a, and ga - z/a. Inorder to understand how
Hﬁfmd:bdm.n:hffrﬂmlﬁmrtu:nm;ﬂ‘ytaknnwﬁnvmgih
two radial wave numbers and the axisl wave number. Therefore, a study of the dﬂp-rnan
equstion, equation 2.65, and the separation constant’ equation, equation 2.88, is well
justified. It is highly desirable to obtain numerical values of the wave numbers sokution
tﬂi‘ﬂm:ﬁff:ﬂmﬂﬁvr@hgnﬁﬁwﬂhml@*2591,

Equstions 2.65 and 2.88 are two simultaneous. complex-vakued, nonkineer
equstions nvolving the two cmxévm m: h1 and hza. Many

dif ferent iterative numerical methods are known which can be used to solve simultanscus
/

nonlinear equations involving complex roots. Sami examples of these e the
Secant method, Newton's method, and Mulier's method (32, pp. 74). The essentis! basis

that the trisl roots are always being modified. If the ;sréc;s&ra works correctly, after a
certain number of iterations, both the redi and the imaginary parts of ail the roots will
converge within an acceptable error Himitation to the vahues of the exact sokstions.
Unfortunately, the direct numerical soktion of equations 2.65 and 2.88 is
extremely difficult to sccomplish. Equation 2.65 § a very lengthy, transcendental
equation involving modified Bessel functions having complex-valued arguments. In order
to begin the numerf®il solution, it is necessary tgh:vczscm program which can
it must be efficient s0 that it can be executed very rapidly. A small . execytion time is
important in order thet the cost of operating the program does not become excessively
_high. Taking into consideration the degres of difficulty of the dispersion equetion and the
nsture of Bessel functions having complex-valued arguments, it is expected that




riﬁdﬂ:afhwmm_d.ﬁmrmafhﬁm h’l"
and  h,a mmmmvmm&mmydﬁfmmmﬁu
here,

Although the direct solution of the dispersion equation and the separstion
cmmﬁancmtb-mhmmmﬂnfmwhanmﬂ
bdﬁvmrmdﬁmlcdvdunafmwnlmslﬂuhm;mhmm
making approximations to equation 2.85. This involves using the smail and large argument
Bessel function representations to wexm all the modified Bessel functions

appesring in the dispersion equation. Two major classes of spproximations will be
m-&Thn-Elm“ttﬂlmyrﬁdtsrmtagmdmnﬁuﬁfﬁvwﬁﬁ'thlmsy
mﬁi;agmamm’mﬁmwafhuprumnmmm-:-m
discussed in parts 2.3.1 and 2.3.2.) For these two classes of approximations, both the
tireeregion (b < a) andthetworegion b = a) sheath helix surrounding a lossy
coaxial rod configurations are considered. (The free mode.field solution associsted with
ﬁmrwsmfwmmhabmbymmlmn b -+ a of
squation 2,85, the dispersion equation, and of ions 2.70 - 2.75 and 2.82 - 2.87,
ﬂf-ﬁmmzae the separation constant equstion, is the same for
baﬁﬁm-ﬁﬂfnrweanfwm)

The three region configuration free mode field soktion for the sheath helix
surrounding a lossy Coaxial rod, which consists of equations 2.85 and 2.70 - 2.88, is
Mvﬂfﬁﬂmm:mmhﬁrm 0 < y < éD.D‘;
However, as was previously discussed in part 1.3.2, in order that this anguiarty
independent free mode field solution resembles as clasély &8s possible the solution
'associated with a physical heiix, it is best to consider a relatively tightly wound sheath
hﬁmﬁm@ﬂhrmﬁﬁafﬁ&wmhwulmﬂyhummﬁpﬂm
angie is restricted to 0 < y ¢ 10.0°.

The discussion and the equations derived in section 2.3 will lster be used in
section 2.4 to make graphs of the radial dependence associsted with the electric and
magnetic field component magnitudes. In sddition, the -information presented in
mlawiﬂhttb.Mﬁiﬁhmizlﬂiata’hpawcﬁm




“which occur's withun the lossy coaxisl rod.

2.3.1 Solution of the Wate Numbers When “The Lossy Rod is Not a Good

. Ea-a

Conductor”

23.1.1  Small Argument Representsation

The approximation of the dispersion equation, equatior 2.65, which 1s vahd when
the Bessel function arguments are small in magnitude for the case when “the lossy rod is
not a gt’Jod conductor”™ will now be investigated. /t wi// be assumed that the opersting
frequency, the shesth hel/ix geometry, the lossy rod geometry, and the electrical
properties of the /ossy rod material sre such thst the magnitudes of the two radial

wave numbers satisfy the inequalities

|hyla < 0.10 and |h,]a < 0.10. (2.108)

\

Making use of the separstion constant equation, equation 2.88, it is apparem thet the

/4

two /nequalities |isted in 2.104 st |east require that

VE, ka < 0.10 and o/weyg ka < 0.10. (2.10s)

i

The restrictions imposed in 2.104 and 2.105 serve to define what is mn; by
the expression “the /ossy rod is not a good conductor” as it is used in sub-part 2.3.1.1
for both the two and three region sheath helix surrounding s lossy coaxisl rod
Fonflgurations. However, it is apparent thet the rod conductivity may actually be quite
large if the operating frequency is such that the radius of the sheath helix is very small
compared to the free space wave length. Thus, the soiution to the wave numbers which
will be derived is not necessarily restricted to low loss dielectric materisls but may be
appled to situstions where the loss tangent (/¢ = U/wcocr) of the rod
material is considersbly grester than unity.
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Tabie A 1 ’ﬁfw‘ that for a real posrtive argument  x. the small argument Bessel
functron approximations, squations A.26 - A.29, only have a small error associated with
them for x < 0.10. Therefore. when the inequairhes listed in 2.104 re‘ satisfiad,
oe s well justified in using ;q.smans A.26 - A.29 to agproximate the Bessel functions
sopesring n mbc:ﬂ 2.65. (The single exception 1§ that equations A.30 and A.31 must
be used to spproxmmate the quantity

hoa I.(h.b) I,(h.b) - h.a I.
12 To(hyb) I, (hyb) - h,a Io(hyb) T,(h,b)
¥
because the other small argument Bessel function pproximations are not sufficiently

accurste.) Making these approximations, performing a reistively large amount of algebra,

and carefully simplifying by shirminating less significant terms, yields

(2.106)

Equation 2.106 is the smel/! argurnem approximation of the dispersion sqguation,
for the case when “the /ossy rod is not a good conductor”™. it is valid for both the two
and 311: region sheath helix surrounding a lossy coaxial rod configurations. (The torrect
form for the two region configuration is obtained by caiculating {im b - a~  of
equation 2.106.) Note that the radial wave number h1a does not appesr in this
squstion. Of courss, the small argument approximate values of h’l a4 and Ba canbe
cbtained when the small ar gument vaie of hza is known, by using equation 2.88, the
separstion constant squation. (it was previously mentioned in part 2.1.2 that the algebrsic
signs of the three wave numbers are chosen so that their real parts are positive.)



L
Taking the limit of equation 2. 106 as /p + a , keepng in mind equation 2.88,
yieids the same smasii argument dispersion equation approkimation and the same
Separation constant equation as thegt obtmned by Chute et al. (25). (The resufts of this
reference have beer modi‘ied so that they refer to a lossy nonmagnetc rod filing the
sheath helix interior region with ar filling the gxtanc:r region.) Thus result 1s expected md
n provides a useful check on the sccuracy of aq;ﬂnaﬁ 2.106. In addition, cmculsting fhns
it as £ , 2% of equation 2106 ana performing a smail amount of aigebra yieids
equation D.48. As axpected, in the lirmut as the lossy rod conductivity approaches zero,
equation 2.106 reduces to the small argument approximation of the dispersion equation
a5s0Ciated with the sheath heiix surrounding an 1deal dieiectric (zero conductivity) coaxual
rod. Once agan, thus result provides s useful check on the accuracy of equation 2. 106.
in order to numerically solve equation 2.106 to obtan hza » the squation i1s
ssparsted into resl and imaginary parts and then thess are rg;p-étwsiy equated. Two
real-vaiued nonlinesr equations Nvolving the two resi-velued unknowns hzra and
hgj 3 .are thus obtaned. These two squations are

(ka Egtanw)z (2 - (b/a)2 109(0.891 b/a xm) .

2 .2

(E'_ (XEI'
+ (b/a)? on (2 €, xp Xpy - 2% (;2,2 . xzjf))] (2.107)

-2 [2 x 2 xzjz) 109(0.891 x )]

2r %23 ®m - (X2

[2 - (b/a)2 Tog(b/a) (e, (xp,7 - x,,2) + 2 sy *2r %25))

- 2 (b/a)? log(b/a) (2 ¢, Xop %24 ° ;%g (KZFE - ;232)) .

(o, (xzv_2 - szE) + 2 Xy, Xp109(0.891 x,)]

and

]

-2
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4

(b/a)z (ka cotanw)z [em (‘r (x2r2 T X2 *2 w6ED X2r %21)
¥

+ 10g(0.891 b/a xm) (2 Cr Xor X35 T T (x2r - sz’))]

2 (Lo (x5.% = xp4%) + 2 x5, x,y 10g(0.891 x )] - (2.108)
(2 - (bsa)? 2,2 = . |
- /a)® log(b/a) (e, (er X234 ) + 2 vty Xy xzj)]

+ (b/a)‘2 log(b/a) (2 €. X, xzj - "’_:_6 (XZr

[2 x o, - (x, % - xzjz) 109(0.891 x_)1),

2r %25 m

The notation which 1s used in equations 2. 107 and 2. 108 is now defined.

Je
= = m - . i
‘2 xzr + XZJ Xm e ’ er hzra RE[hzaj,

= = | = 2 7 T
X234 hzja Im[hzaJ. Xm \/er +x2J » and

. -1
8. tan (xZJ/er)

In order to solve squations 2.107 and 2.108 for Xop and ij- it is
necessary to specify the variable sét ka cotany, b/a, € o/m:o and to
make an initial guess of X, and XZJ' An iterstive procedure is then followed.
The author made use of the IMSL (43) software program ZSCNT to numerically solve the
twomhordvﬁntrmawym.cw.cywwdboobmiﬁpmgrﬂ
was run using extended precision arithmetic and s large number of iterstions were

spocifiodinthoMSLprog-mAsafindchockontmnccuacyofﬁimswtﬁn
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sokgion h,a wuuuamwmmmumm.dmthanwamodﬁt
%18 agreement for both the real parts and the imaginary parts was Correct to at lesst
three figure accuracy.

2 i the four graphs mciuded in sub-part 2.3.1.1 which wil shortly be discussed.
bmdonmosokmontooqntionsz.107m2.108,andmmmy other graphs based on
the solution of these two equations that were prepared but which are not mctude n the
thesis. 1t was always found that hzra > 0 ang "‘2,-a < . As was previously
moqtionod inpart 2.1.1, the real part of - hza must be :;osmve in order that the fimids
sstisfy the condition of regulsrity st mfinty ‘or - . 00 . in addition, whan
caiculating the numerical soiution of equations 2 'C7 ang 2.'08. t was discovered that

the expression

(ka cotan!)? ’."-z' 109(0.891 h, a) (2.109)

2ra

'$ 8 @ood approximste reistion for the purpose of evalusting tha. This
zoximation follows from equation 2.106, when further restrictions to those
tioned in inequalites 2.105 are placed on the values of €r and C’/w':o- These

restrictions sre X

h,b|?

{cr - J €/wc°l l—z—l— |log(b/a)| << 1, and
hob|?

l:r -J o/w:ol {10g(0.89 hzb)l << 1.

Clearly, equstion 2.109 shows that hzra is approximstely dependent only on
the varisble ka cotany. Since equations 2.109, D.49, and B.21 are the same, the
smell argument value of h, 8 is similar to the small srgument value of the
approximate (reall radial wave number associsted with the sheath helix surrounding an

(2.110)
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ideal chelectric coaxial rod, and it is similar to the smakk arument vaiue of, the (real radiai’
wave nuUTber assocusted with the empty sheath helix.

in the following four graphs, lhzjfé << tha was found to be true,
‘.-cﬂyf?vﬁﬁndl ka cotany values Since ;'hgj;’,a 15 much smaller than

h;-?ra) Rt was decided to graph the quantity h,a  arectty as a function of the
varisbles ka cotany, S/ai € s and  c/wepys  rather than piotting the
q.nti’tfty ka Ectaﬁw‘hgai Trus latter techrwque was usgﬂmApﬁéﬂcgs B.C. D
fldﬁli convenient when the range of values that the radial wave number sssumed was
not very large.

As a final remark before the graphs are specifrcally discussed, it will be
mentioned that a dsta table was prepared showmng the numerical values of the wave
rwumbers solution hTa, hzai and ga, assocuted with sach one of the graphs.
This table made 1t Clear that the approximations h; _ a ’?hﬁa ond hyya T
th 3 are usually greatly in error. It was obvious that it is not correct to aquate the two
rachal wave numbers. Therefors. the approximate solution discussed :tin end of
part 2.1.2 15 certainly not valid

The following four graphs present numerical values of the solution hza =

hopa + ] hzja. based on equstons 2.107 and 2.108. All the graphs have
ka cotany as the sbscissa Xop = hy 2 and X4 ¢ *hzja are used
as the ordinate. Each specific curve shown on any one of the graphs is nsa-::m-d with
one specific set of the variables b/a, Epe and S/M:D- Whan héa is
known, the corresponding small argument values of hya and 8a t-;ﬂmﬁ-d by
noting the pitch angle of the shesth helix and by using the separation constant equation,
squation 2.88,
Figure 2.2 is a graph of hza versus ka cotany for €. = 10.0,
o/wey = 10.0, 1.00x10"% < ka cotany < 0.10,  and with severa
different values of b/a. More specifically, b/a = 1.00, 0.900, 0.500, and 0.100 sre
used. Clearly, varying the value of b/a has no significant effect on the value of
h,pa. This behavior is expected from equation 2. 109, which shows that h,.a s
spproximately only dependent on the value of ka cotany. Hawmiﬁviuiaf
b/a does have a grest effect on the vsiue of hyja,  As bia  decreases,
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Figure 2.2 Small argument approximate solution for hza

based on equation 2.106 (the lossy rod is not a good
conductor). :F!IDiD; o/wey=10.0; b/a=1.00, 0.900, 0.500,

0.100; and 1;DD;1D'4<ka cotany<0.100 are used. hZFa and

-h,,a
23
are actually shown. (Note XZ:hzra*jhfja, XER!hZFa‘ X2J=h

, 24%"
KA COTANP=XKTACP=ka cotany, B/A=b/a, ERT*;F. and ERE!c/uzD-

XRB1.0 means the curve represents hzra for b/a=1.00. -XJB.10
means gpg curve represents ihzj‘ for b/a=0.100.)

2
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[hs 412 becomes smalier. Once agan, this behavior is expacted. in the limit as the
iossy rod radius approaches zero, it was previously shown in part 2.2.1 that the radial
and axisl wave numbers solution become the (real) respective radisl and axial wave
numbers assocusted with the empty sheath helix. This mesns that i this limit, th =
0 i1srequired N
Figure 23 15 8 similar type of graph as Figure 2.2, with the same values of
ka cotany and b/a The two graphs are different because Figure 2.3 has much
larger vaiuves of ¢, and Z/MZD! €p = Z«'/;.,EO = T@DDX’IDB is used.
hzra us to a good approximation, the same as for Figure 2.2. However, hzja ]
Quite different. For any value of the parr b/a and ka cotanvy, ,hzjla 18 much
larger compared to its corresponding value In Figure 2.2.
Figre 2.4 uses the values b/s = 0.900, ﬁ/méo = LDDxTDE) and
differsnt values of €. and ka cotany. Mors specifically,
Q e = 1.00x10%, 1.00x10%, 10.0, 1.10 and 1.00x10°% .
ka cotany < 0.10 are shown It is obvious that the value of the reiative
permittivity has an insignificant effect on the wave number solution h;—EEi axcept nesr
ka cotany = D!‘ID, when €. s large. The curves corresponding to all four
ditfferent values of €., associsted with N, 2 nd with !hzja, sre on top of
each other over nearly the entire range of the ka cotany values shown.
The final graph inciuded in sub—part 2.3.1.1 is Figure 2.5. It was prepared using
b/a=0.900, €. = 10.0, andvarious values of ﬂ/m:o and ka cotany.

Mﬁfg mlflﬁﬂ'y- hza 18 evalusted for U/QJED = 1-00!103, TDDXIDE;

10.0, 1.00x1072 ad 1.00x10°% < ka cotany < 0.10. Varving
the value of a’/mio has a negiigible effect on the value of h,.2. However,
NCreasing this varisble means that the value of ,hz, jl a &ffhitglyibﬁ;‘amii larger.
From physical considerations, one expects that the vaive of o/ we€q  will have a great
effect on the value of the imaginary part of h,a because hz_ja results from the
fact that the rod material has a nonzero :mmvtywﬁmhcmwwy of the lossy
rod spproaches zero as a limit, it was demonstrated in part 2.2.2 that the free mode field
solution associsted with a shesth helix surrounding a lossy coaxisl rod reduces to the
free mode field solution associsted wvth 2 shesth helix surrounding an ideal dielectric
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nvestigated. /t w/// be sssumed thet the operst/ng frequency, the shesth helix
geometry, the /ossy rod geometry, and the /ossy rod masterial electrical properties are

such that the two redial wave numbers satisty the inequalities

[hllb > 1, fhz]b > 1, and tha - (1-bsa) > 1. (2.111)

An equivalent statement of the preced:ng inequalities is

ka cotany - b/a > 1, «ka cotany - (1-b/a) > 1,

and 1if er’:’cotanzw, then,/c/meo ka - ‘b/a > 1.

Y

(2.112)

(The expisnstion for imposing the requirements given in 2.111 and 2.112 will be
provided shortly.)

Inequalities 2.111 or 2.112 define what is meant by the expression “the /ossy
rod is not a good conductor” as it is used in sub-part 2.3.1.2 for the three region
configuration. it should be made clear that these inequalities do not place an upper limit
on the values of €, and U/wco- However, the case where the lossy rod
conductivity becomaes sufficiently large so that “the lossy rod is a good conductor”™ will
be considered separately in sub-part 2.3.2.2. For the purposes of the following
discussion, the conductivity is only assumed to be sufficiently large so that
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justification is pravndad for usvng .the zero order large argument representstions to
approximate ail the Bessel functions appearing in equstion 2.65, the dispersion aquation.

For convervence, equation 2.65 is rewritten in the following Manner.

(gahggtaﬂi)z . (h a) K (h p2) T 70("' a) i
e I1(h a) li (h ‘l) D“”za)

(hya To(h b) 1,(h,b)

= (e = 3 o/weg) hya Io(hyb) I,(hyb)) - (2.113)
1/(hya To(hyb) Ky (h,b)

* (ep = J o/uwey) hya 1,(hb) Ko(hyb)))

_Ej(ih;a) (h—aif(r 1(h 27')""251 (h b) I(h b))

b) I
1700 2
I1(hza) (h a l (h b) K1(h b) + hza I1(h b) K (h b

Substituting the zero order large argument Bessel function repressntstions into
equation 2.113 and performing a stall amount of aigebra yieids



(ka_cotany,2 7> (2.114)
h,a
h,e

-2 hza (1‘b/a)_ (hTE - (Er - jréfuig)hzi)

[1 + e I N ]
(;h]i *, (Fvg - j g/m,EQ)hZEL,

I CTRT
(h‘i +* hza)

[

Equation 2.114 is the /arge argument approximation of the dispersion equastion
when “the /ossy rod is not 8 good conductor”. An attempt was made to obtain numercal
solutions for both hja and h?‘;a based on equations 2.114 and 2.88. Separately
equating respectively the real and /maginary parts of these two equations, four reali-
valued equations mvolving the four resi-vaiued unknowns hy.a, h 158 hopds
and hE:j a were obtained. The IMSL (43) software program ZSCNT was used i the
attempt to solve these equations. Unfortunately, the two aquations sssocuted with the
real and imaginary parts of equation 2.114 are very lengthy and complicated.
Considerable difficulty was encountered in getting the trial solution of the four unknowns
to converge to the correct solution. The suthor failed in his attempt to numerically solve
squations 2. 114 and 2.88.

Even though s numerical soiution of hya and hza could not be achieved,
exprassions for the wave numbers solution can be obtained by making apbroximations to
equation 2.114. As stipulated in inequalities 2.1 11, it will now be assumed that the value
of hzra is sufficiently large, taking into account the value of b/a, so that

h, a - (1-b/a) > 1 s true. This means that

2r® ’

1 - Je e

-2 hya (1-b/a)  (hja - hza)' ~

“’“0“‘2"’

| -
| —
—_
-]
]
—
]
L

=,

-2 hza (1-b/a)
e Z £
, G/mED)h;a)

—
-
—
e
- )
——
™
1l
L% L=
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Using these relstions, equation 2.114 can be simplified to show that

ka cotany and

| Zjla << ka cotany

(2.115)
Combining these expressions for h,a  with t

and £a

. with the separstion constant equation,
lqu:nan 2.88, vales for h,a
ths shg}B\ h-hx is sufficiently tightly wound so that cotan“y >> 1

mﬁmmmm-smam
Thug will

if the pitch angle satisfies 0 < y ¢ 10.0°.)

Zr‘a\\féria

ka cotany,
\{
lhzjl, = lsjla << ka cotany, and

e
h,a T ka q&cctan e

(2.11¢)
r‘) + 76/@?.7

L
Equations 2.116 are the approximate large argumer wave numbers solution
assoc/sted with the three region configurstion, when
conductor.” nequali

the /ossy rod is not a good
nequslities 2.112, which list the requirements necessary so that this
Spproximate wave numbers solution is valid, can be obtained from inequalities 2.111 by
making use of spproximations 2.116. Note that, in agresment with the discussion
previously presented m part 2.1.2, the real parts qf the three wave numbers listed
N 2.116 are positive. In addition, the approximation for hE A 15 the same as that
stated in equation B.20. Thereforae, if the requirements listed ;ﬁ 2.112 are satisfied, the
large argument approximation for h, 2  is the same as the
spproximation of the (real) radial wave number associated with the empty sheath helix
h.la, hzr‘a‘ and B.2

large argument

are explicitly given in 2.116 in terms of the
operties. Unfortunately, an explicit solution for
it is the fact that the ¢

hzj,a

of the lossy rod is nonzero which accounts for the

operating frequency, the shesth helix gesometry, and the lossy rod material slectrical
it = Eja cannot be obtained.
presence efhmypﬂafﬁ wave numbers solution. Making use of
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spproximgtions 2.115, it is seen from equation 2.114 that the megnitude of the term
contaning the lossy rod conductivity,

e~2 ka cotany(1-b/a) (hya - (e, - o/wey) ka cotany)

(h]a + (er -3 a/wco) ka cotany)

will rapidly become small compared to umity in an sxponential fashmon as the value of
ka cotanv increases. Therefors, as ka cotany becomes large, equation

2.114 shows that ‘hzjfa = ‘Ejia will rapidly bacome small.

-

Attention 1s now directed towards deriving the approximste large arQument wave
/ rtlFBo}s solution which is vaiild for the two region configuration. This can be obtained by

st.bq(tutmg b =2 into equation 2.114. Assuming that h]a T hza,‘
\

(e «1) - § o/uwe ) .
hya ¥ r 0 ka cotany (2.117)
2

is obtained. Equation 2.117 can essily be shown to satisfy the inequsiities given in 2.93,
sssuming that the sheath helix is sufficiently tightly wound so that cotanZy > |
occurs. (This is atways true for 0 < y < 10.0°.) For this special case, the
spproximations N2 ¥ h,a ¥ ga we well justified. (This supports the
spproximation  h . a ¥ h,a which was used in the derivation of equation 2.117.)
Therefore, it follows from equation 2.117 that

(e +1) - J o/uwe ,
a '3’h11’:'h2a 7] r O \a cotany, (2.11g)
2



Equations 2.118 are the approximate /srge srgumemnt wave mumbers solution
associsted with the two region configuration, “when the /assy rod is not a good
amduaofﬂThouau;nmuutrovuyzxrwamuntncanoboﬁsﬁ:fﬁd:ﬁjﬁmlﬁmgnry
parts of the three wave numbers are explicitly expressed n tarms of the opersting
frequency, the sheath helix geometry, and the eiectrical properties of the lossy rod
material. Note that Ny .2 > 0, h, a > 0, and 8.2 > 0 occurs, which
are the correct values of the real parts of the wave numbers. &s was previously
discussed in part 2.1.2. As waell, h2j a < 0 s u:uo and so this quantity has the same
sigebraic sign as it did for the small argument solution which was previously discussed in
sub-part 2.3.1. 1,

Taking the Imit of equations 2.118 as 5 - o' yields equation D.54. in the
limit as the conductivity of the iossy rod approsches zero, the wave numbers solution
given in equations 2.118 reduces to the two region approximate large argument solution
of&nﬁwﬂ)wmmrmnb«wnumuudvwmtn|#nnhhdusuTa:ﬂmgiﬁ@nméhbﬁﬁc
coaxisl rod. This result is expected and it provides a check on the accuracy of
equations 2.118.

Equstion 2.114 was used in the derivation of equstions 2.118. In order that
equstion 2.114 with b = a s justified as an approximation of the dispersion equation,
it 1s necessary that |h]|a>1 and Ihzla>1- Furthermore, in order to
obtain equstions 2.118 from equation 2.117, it was assumed thet the shesth helix is
sufficiently tightly wound so thst cotanzw >> 1. Making use of equations 2.118,
it is possible to express the three preceding inequalities as

(Cr*]) - J O/wco
. 2

ka cotang > 1,

(2.119)

and cotanzw >> 1.
8

&



The requirements /isted in 2.115 define what is meant by the expression “the
lossy rod is not 8 good conductor” as it applies to the two region configurstion |arge
argument case. |If these requrements are satisfied, the approximats wave numbers
solution given in equations 2.118 1s justified. Note that no upper it s pisced on the
values of € and j/u[o. 1f tha value of ka cotany satisfias

ka cotany > 1 andif the pitch angle 13 sufficiently small so that cotanzw >3
1 s true, either €. >> c/weo or o/weqy > €. g sllowed.

23.2 Solution of the Wave Numbers When “The Lossy Rod is a Good Conductor”

2.3.21 Small Argument Representation

Attention i1s now directed to the approximation of the dispersion squation whuch
's vaid when the Bessel function arguments are either small or iarge in magnitude, for the
case when “the lossy rod 1s a good conductor”. Both the two and three region sheath
helix surrounding a lossy coaxial rod configurations will be considered. The three region
configuration will be examined first. /t wi// be assumed that the opersting frequency,
the sheath helix geornetry, the /ossy rod geometry, and the electrics/ properties of the

/ossy rod material are such thet the 1 nequalities

.

U/WCO >> ‘rl :‘h]ag\’j O/WCQ kal
LL 3,1\07“0 kb > 1, and |h,la < 0.10

ey

(2.120)

are satisfied.

The restrictions imposed in 2.120 serve to define whet is meam by the
expression “the /ossy rod /s @ good conductor” a8 it is used in sub-pert 2.3.2.1 for the
three region sheath helix surrounding a lossy coaxial rod configurstion. Note that the
vaiue selected for the radisl wave number h]a is the same as that demonstrated
previously in part 2.2.3 to be the appropriate vaiue as the lossy rod conductivity tends to
infinity. it follows from this choice that equstion 2.88, the separstion constant squation,



pproximaely becomes
(Ea)zg(hza)z* (ka)?. (2.121)

For converience, equation 2.85, the dispersion equation, is written in the manner
grven by equation 2.101. Since | h, |a < 0.10 1srequred from 2.120, little error 1s
mvolved with using the small argument Bessel functon representations, equations A .26 -
A.29, to approximate ali the functions of argument h,a and h,a « bsa which
appesr n equation 2.101. Furthermore, smce !h] ib > 1 isrequred from 2.120,
relatively littie arror 1s involved n using the zero order large argument Bessel function
representations, which consist of just the first term of eqgustions A.36 - A.39, to
spproximate all the functions of argument N,2a and hia - b/a appearng n
equstion 2.101. Msking these substitutions, employing the requirement ﬁ/méo >>

“r listed in,2.120, performing some aigebra. and carefully smplifying by slimnating the

less significant terms. yieids

ka cotany 2 , -2 \/j ;/"""ED ka log(b/a)
(———)¢ 7 ————
h

)2 ' [7\/3 a7£uzc ka (:l:(l,;/a)z) v 2 E/a]

10g(0.891 h,a) ,
I A (2.122)

- 10g(0.891 hyb)

Equation 2.122 is the smal! argument approximation of the dispersion equation
associsted with the three region configuration, ‘when "the /lossy rod is # good
conductor”. It is justified when the requirements listed in 2.120 are satisfied. Taking the
it of equaton 2.122 as 5 QD Oves the same result as equation C.21. As
expected, n the limit as the lossy rod conductivity tends to mfinity, equation 2.122



becomes the same as the accurste small srgument approxmmation of the dispersion
oequation assocurted with the three region sheath hehix surrounding a perfectly conductng
coausl rod configurstion. This hmwting resuft provides support for the sccuracy of
equation 2.122.

Equation 2.122 15 numencally solved to obtan hza usiNg 2 similar procecurs
to that empioyed previously to solve equation 2. 106. Separstely squating respectively
the real and maginary parts of equation 2. 122 gives two resi-valued squations INvolving
Thess wre

the two reai-vaiued unknowns h,pa and tha'

A

(ka cctan¢)2 * [10g(0.891 b/a xm)
((1-(b/a)?) ka \[o fucy *+ 2 b/a)

- o, (1-(b/2)?) ka \[57Zac, ) (2.123)
+ 2 ka‘[a/?&so log(b/a)

[(SZFZ - xzjz) (10g(0.891 Xp) = 8.)

m

-2 Xor X234 (10g(0.891 xm) + Bm)] =0,

and

(ka ;ot:nw)z - [10g(0.891 b/a xm)

i (1-(b/a)%) ka \[o/2ue, (2.124)

+ o, : (2 b/a + (1*(b/a)2) ka\/[
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[2 x Xy (10g(0.891 ;i) - 8.)

2r m

(2.124)
ontiny
+ (xzr2 - Xy ) (log(0.891 xm + 0 )] - (continued)

, - ,ffs T
The notation used in equstions 2. 123 and 2. 124 is how defined. K
= 3 = 2 " = = 27 ] X 2
xzr tha' !Zj hz‘j‘al Ih2|a szl' + !2‘] 3

-1,
and e = tan (xzj/xZT)g

The IMSL (43) software program ZSCNT was used to solve mmn‘ 2.123 and
2.124 for the small argument approxmmate value of  h,a. In order to obtan h,a,
it is necessary to specify the variable set ka cotany, b/a, a[méo. and

V. R’ was siways ensured that the varisbies satisfied the riqurcmcnt: listed In
equations 2.120.

Two graphs of the solution to equations 2.123 and 2.124 have been prepared. it
was stways found thst h'Z'r-a > 0 and hzja < 0. As was pl‘ﬁ\fit:)usl?
discussed n part 2.1.1, Re[hza] > 0 is necassary in order that the fields s,itnsfy\
Wcmofrwnyﬂlﬁﬁ:ﬂyfér r - Qo- hzr‘a and shzja have been
piotted on the graphs. The corresponding approximate small argument vnlua of ga is
caicuisted when h2a is known by using equation 2.121. Of course, the approximate
value of h]a is given in 2.120.

For both of the graphs presented in sub—part 2.3.2.1 it was discovered that the
real part of hza is approximately given by

-2 log(b/a)

ka cotany,2 ~ (2.126)
( 2r® ) (1-(b/2)2)

Clearly, equation 2.125 shows that hzra is approximately dependent only on the
varisbies ka cotany and. b/a This equation is the same as equation C.24, wiich



isha@ﬂlrwwo;mﬂaﬁafﬁdﬂﬁmmﬁfmm&mﬁh
sheath helix surTounding a perfectly conducting coaxial rod.
Figure 2.6 plots hza versus ka cotany for T.DD;{ID-“ <

10.0°, and various velues of b/a and
0.100. 0.900; and 3/we, = 1.00x10'4

ka cotany < 0.10,
c/ch., Mor ificaity, b/a

and I.OOx]O‘20 are used. (Note that the restriction ,‘j/“*z(j ka - b/a > 1

mentioned N 2. 120 means thst U/QED must be very large.) The values of b/a and
a/wco are seen to have s grest effect on ihzja- For a fixed value of bl/a

increasing o/we ) tends to decrease Ihzjla. This behavior is expected because

it was previously shown that in the limit as @/MED approaches infirity, hz,j =0

results. (in part 2.2.3 it was demonstrated that taking the lrmut as the lossy rod
conductivity approaches infinity, the free mode field solstion becomes that of a shaath
helix surrounding a perfectly conducting coaxisl rod. As mentioned in section C.2 s
believed that only reali-valued wave numbers are permissible for the free mode field
solution associsted v;ijh the perfectly conducting rod configurstion.)
Figure 2.7 1s a graph of hzé versus ka cotany for T-DDﬂOéz <

ka cotany < 0.10, b/a=0.900, sand v = 10.0°. Many different values
‘of o/weq e used These are G/LAAED = LDDHDB—. T.DDx]Om,
1.00x10'4, and 1.00x10°0 . Clearly, increasing the vaiue of g/wey tends to
smaller.

Attention is now directed towards deriving the small srgument approximation of
the dispersion equstion which is valid for the two region configuration, when “the lossy
rod is a good conductor”. /t /s assumed thst the requiremems /isted in 2.120 are
satisfied with b = a. This defines whet |s meen by the expression “the /ossy rod is
8 good conductor™ ss it applies to the two region configuration, smal! srgument case.

A similar procedure to that performed st the beginning of sub-part 2.3.2.1 was
carried out in order to derive the two region small srgument aspproximgtion of the
dispersion equstion. Mowever, & more detai/ed examinetion showed thet this
spproximetion is actuslly- not w;'l;dg The small argument Bessel function
representations, equstions A.26 - A.29, were used to approximate all functions of
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Figure 2.6 Small argument approximate solution for h2

based on equation 2.122 (the lossy rod 15 a good conductor).
b/a=0.900, 0.100; ¥=10.0°; o/we =1.00x10"%, 1.00x1020; 4ng
1.00x10° 4<ka cotanv<0.100 are used. 2ra and ‘hzj‘ are
actually shown. (Note X2= h2 a+Jh2Ja. X2R= h2 a, qu hz;"
KA COTANP=KTACPs= ka cotanv, B/A=b/a, and ER2=a/us .1E20
means the curve represents h2 a for b/a=0.100 and ﬂ/uzo
=]. 00x1020 -JB.9E14 means the curve represents ’hzja for

b/a=0.900 and o/eey=1. OOxIO]' )
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~hgyd Hre actually shown. (Note X2=h, atjh, 2, X2Reh,

means the curve represents =h2JE for a/m:DSTaDDXYDSa)
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argument h,3 i the two region form of the anguiar and axisl magnetc fieid
components, which were obtained by caiculsting 1im b - a of eqQuations 2.74,
2.75, 2.86. and 2.87. Sumiiagly. the zero order lsrge argument Bassel function
representations, which consist of just the first term of equations A.36 - A.39, were
used to approximate all functions of argument h]a appearing in the previously
mentioned magnetic fisld components. Making use of the ‘roquremonts isted in 2.120, 1t
was discovered that these approximate magnetc field components did not satisfy the
boundary condrtion at the sheath helix surface given by aquation 1.9. This means that the
two region confi/guration sma/l argumenmnt case when “the /ossy rod is 8 good conductor”

is not & valid free mode fie/d solution. No at"ampt was made to investigste the

approximate wave numbers solution because it 1s actually mesningless -- the fieid
components associated with these wave numbers do not satisfy ail the required

boundary conditions and therefore they are rejected as an incorrect solution.

2.3.2.2 Large Argument Representation

To conclude section 2.3, the large argument representations of the dispersion
equation for the case when "the lossy rod 1s a good conductor” associated with both the
two and three region configurations will be considered. The three region sheath helix
surrounding a lossy coaxisl rod configuration will be considered first. /t wil// be
assumed that the opersting frequency, the shesth helix geometry, the lossy rod
geometry, and the /0ssy rod material electrical properties sre such that

o/wey >> €., hya =3 o/weq ka, lhylb > 1,
(2.126)
lh]la’:,/o/weo ka >> |h,|a, and h, a - (1-b/a) > 1.
, UNote thst equstion 2.88, the separation constant equstion, demonstrates that

'h]la >> lhzla is required in order that h,a "= ,/J d/weg ka is vahd)
An equivalent statement of the inequalities presented in 2.126 is



ka cotany - b/a > 1, Dq/&zc >3 catanzwi and (2.127)

(The explanstion concerning why the requirements hsted in 2.126 and 2.127 are
equivalent will be provided shortly.)

/nequalities 2.126 or 2.127 define what is meam by the expression “the /ossy
rod is & good conductor” as it /s used far the smel/ argument case of the three region
configurstion. Since lh1 [b > 1 and lhz b > 1 s required, reiatively little
error is involved m using the zero order iarge argument Bessel function representations
to spproximate the dispersion equation. Substituting just the first term of
squations A.36 - A .39 in order to approximate all the Bessel functions appearing in the
form of the dispersion equation given by equation 2.113, making use of all the
requirements listed in 2.126, and finally smploying equation 2.88, which is the separation

constant equation, yields

h.

e p ~
PRI Bra = ka cotanV,

(2.128)

1w
-
(="

Ihzjlaglsjla << ka cotany,

el g AL .
hy 2= h”a‘E,r,/Zucn ka.

Equations 2.728 are the approximats |arge argumem wave numbers solution assoc/ sted
with the three region configurstion when “the /ossy rad is a good conductor”. They are
ustified when the restrictions listed in inequalities 2.126 or 2.127 are satisfied. (Note
that inequalities 2.127 can be obtained from inequalities 2.126 by making use of



a3

equations 2.128.) interestingly, equations 2.128 can be derived from squstions 2.116

whaen 6/@@:0 >> €. and i’/uED > Catanng The approximaste wave

numbers solution for the three region configu-at:on /arge argument case when "the
lossy rod is & good conductor™ can be considerec as a special case of the approximate
wave numbers solution for the three region configurstion large argurmerm case when

“the lossy rod is not a good conductor”, provided that the rod conductivity is

sufficiently large to satisfy the preced/ng two inequalities.

Finally, attention 1s directed towards deriving the approximate large argumant

wave numbers solution which 1s valid for the two region configuration. it s assumed that

The requirements /isted in 2.129 define what is meant by the expression "the /ossy rod
/s a good conductor” as it app/ies to the two region configuration /arge argurment case.
A similar procedure to that followed at the beginning of sub-part 2.3.2.2 was
carried out in order to derive the two region large argument approximation of the
dispersion equation. However., & more dJetai/led investigstion showed that this
approximation /s actually not va/id. Just the first term of equations A.36 - A.39, the
zero order large argument Bessel function representstions, was used to approximate all
the Bessel functions appearing in the two region form of the anguiar and axisl magnetic
fisld components, which were obtaned by calculating lim b + a_ of
equations 2.74, 2.75, 2.86, and 2.87. Making use of the restrictions listed in 2.129, it
was discovered thst these approximate magnetic field components did not satisfy
equatiom 1.9, which 18 one of the boundary conditions ;;tha surface of the sheath helix.
Therefore, the two region configuration large argument case when “the lossy rod is &

good conductor™ [s not 8 val/id free mode field solution. No sttempt was made to

sxaming the approximate wave numbers solution because 1t 1s not of any interast.
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it is important to reslize thats@roper wave numbers solution does axist for the
two region configuration large argument case, when tha electrical properties of the lossy
rod material are such that €. >> S/MEDa As was previously discussed in sub-

part 2.3.1.2, this means that h1 a = h occurs and the spproximate wave numbers

a
solution is given by Gﬁgbéﬁs 2.?13.2 However, if €_ >> o/ wepq, h.]a 7
m ka snd | hyla >> | h, [a are all assumed, the preceding discussion
has daemonstrated that a free mode ﬁaidisatmn;ﬁ doas not exist, and so an invastigation
of the wave numbers solution is meaningless.

&

2.4 Graphs of the Radisl Dependence Associsted With the Magnitudes of the
Approximste Fields

The field components, equations 2.70 - 2.87, are very lengthy and comphcated
expressions. In order to achisve an understanding of how these fields behave at
different points in space. it would be useful to prepare graphs showing their radial
dependence. Unfortunately, this is usually very difficult to accomplish. The reason for
this originates from the hardship invoived wn solving the dispersion equation,
equation 2.65, and the separation constant equation, equation 2.88, for an arbitrary set
of the varisbles listed in equations 2.89 - 2.91, in order to obtain the wave numbers

solution. However, It is possible to prepare radial dependence graphs which approximate

helix geometry, the lossy rod geometry, and the lossy rod material electrical properties.
Previously, in section 2.3, approximate radial and axisl wave numbers were calculated for
both the large and small argument representations associsted with the circumstances
when “the lossy rod is not a good conductor”, and when “the lossy rod is a good
conductor”. Thé purpose of this section is to provide some graphs of the radial
dependence associsted with the approximate magnitudes of the eslectric and m:&mtnc
field components, based on the previously mentioned approximate wave numbers
solution. There are three important reasons for doing this.
1. "An understanding of how the slectric and magnetic fields behave at different points
in space within the rod-filled region, within the sir gap between the surface of the
lossy rod and the sheath helix surface, and within the ar—filled region exterior to



the surface of the sheath helix, will be obtaned.

2. By numerically evalusting and graphing the radial dependence of the radial, angular,
and axial electric fieids within the rod-filled region. mformation concerning the
time-averaged power dissipation which occurs within the lossy rod is obtained.
Chapter 3 is concerned with studying this power dissipation.

3. For the operating frequency. sheath helix geometry, lossy rod geomaetry, and lossy

rod material electrical properties which are used, it will be seen that the magnitudes

‘of the fields associsted with the lossy rod configuration are spproximately similar

to the asbsolute values of the corresponding fields associsted with either the

configurstion studied in Appendix C or that studied n Appendix D. The
configurstions discussed in these two appendices sre very stiractive because it is
restively aasy to caiculste the radial and axial wmm and consequentty to
numerically evaluste the fieild components. By establishing a connection between the
free mode fieid solution associated with the sheath helix surrounding a lossy

coaxial rod, and that associsted with the two configurations given in Appendices C

and D, the discussion given ip the two appendices will aid in understanding the lossy

rod configurstion. Furthermore, it 18 important to establish this connection because

Chapter 3 makes use of information given in Appendices C and D to approximataly

investigate the power dissipation occurring within the lossy rod.

All the electric field components, equastions 2.70 - 2.72, 2.76 - 2.78, and
2.82 - 2.84, are normalized from dividing them by en electric normalizing coefficient,
E,0- All the magnetic field components, equations 2.73 - 2.75, 2.79 - 2.81, and
2.85 - 2.87, are normalized from dividing them by a magnetic normalizing coefficient,
H - The electric and magnetic normalizing coefficients are obtsined from
equsations 2.78 and 2.8 1, respectively. They are

. 2=0 120+ 2 ) , ,
F20 7 £z IM T eotary cos (npn)? Kolhya) - (2.130)

r=a




.[Ia(hza) . (h1a IG(h']b) K](hzb) +

(e - 3 o/wey) hya I,(hb) Ko(hyb)) + KD(hza)

(hya To(hyb) I (hyb) = (e, = i o/wey) hpa Io(h,b) I,(h,b))] -

1/[h13 ID(h1b) KI(hzb) + (¢

e - 3 9/weg) hya I(hyb) Kol(hyb)]

(2.130)

120" ka cotany cosv K1(h2a) (continued)

=j - —_— —_—
B“ (hya To(hyb) Ky(hyb) + hya I (h b) Ky(h,b))

[1,(h,a) - (hja I,4(h,b) Ky(hyb) + hya I,(h,b) Kg(hyb))

- Ky(hp,a) = (hya I,(h,b) Iy(hyb) = hoa T,(h,b) 1,(h;b))],

and
= : ZSD = " ~ ] K I ) * ]
Hyo = Hyp o 3” cosy h,a K (h,ya) - (2.131)

[Ig(h,a) - (hya I5(h;b) K (h,b) + hzé I1(hyb) Ko(hyb))
+ Kg(hya) « (hya Io(hyb) I,(h,b) - hya I (h,b) I,(h.b))] -

1/0hya T5(hb) K (hyb) + hya T (hib) Ko(h,b)].

Equation 2.65, the dispersion equation, was used in the derivation of equations 2.130.
The normalizing coefficients associsted with the two region configuration & = a) are
obtained by calculating 1{m b . a of equations 2.130 and 2.131.

When graphs of the radial dependence of the approximste normalized field
t magnitudes are presanted. it is assumed that the axisl coordinate is held
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constant. The transverse planes are chosen so that cos(Ba-z/a) = +1  for the
anguiar and axial fields. In tha case of the radial fieids, the transverse planes specified by

+] &8 considerad.

1

sin(ga-z/a)

2,41 “Tha Lossay Rod is Not a Good Conductor”

it 15 assumed that the operating frequency, the sheath helix geometry, the iossy
rod geometry, and the lossy rod material slectrical properties are such that the
Spproximats wave numbers solution previously discussed in part 2.3.1 15 justified. This
solution is vaiid for both the three region configuration (b < a) and the two region

configuration (b = a).

2411 Large Argument Repressntstion

The wave numbers solution previously given in sub—part 2.3.1.2 s smpioyed in

wave numbers for the three region configuration. To justify the usage of this sohution, it
Is required that inequalities 2.112 are satisfied. The approximate wave numbers solution
Is given n equations 2.118. This approximate solution is well justified if the conditions
listed i inequalities 2.1 19 are fulfilled.

The zero order large argument asymptotic representations, which sre grven by
just the first term of equations A.36 - A.39, were used to approximate both the two
and three region forms of the normalized fislds and the normalizing coefficients. In order
that these representations can be used for theregion 1 (0 < r < b)  fields, it is
required that the radial distance is sufficiently large so that | h’l la - r/a > 1 is
true.

For the three region configuration, the approximate normalizing coefficients are
calculated from equations 2.130 and 2.131 to be

1

E g R %‘—' 120w cosy, and (2.132)

"zof:h cosy. (2.133)
- 2



On the other hand, for the two region configuration,

Y, 120% cosy | ,
?jzﬂ o (2.134)

s the approximate electric normalizing coefficient, while the approximate magnetic
normalizing coefficient is the same as that given in equstion 2.133.

it was ensured that the approxmate normalized fields assocuted with the three
region configuration correctly satisfy the boundary conditions at the surface of the lossy
rod. equstions 2.43 - 2.46, and at the sheath helix surface, equstions 1.6 - 1.9. For the
two region configuration, it was ensured thst the normalized fields evaluated at the
surface of the sheath hélix_x sstisfied equations 1.6 - 1.9. To avoid disrupting the
continuity of sub-part 2.4.1.1, the approximate normalized fieids associated with both
the two and three region configurstons will not be listed here.

In each of the six graphs concerning the radial dependence associsted with-the

ensured that all the requirements involved to justify using the approximate wave numbers
solution given in sub-part 2.3.1.2, and that all the requirements involved to Justify
approximating the normalizing coefficients and the normalized field components, were
satisfied. Figures 2.8 and 2.9 display the magnitude of the approximate normalized
electric and magnetic field components, respectively, associsted with the three region
configuration, as a function of the radial distance normalized with respect to the shesth
helix radius, r/a.  The two vertical lines represent the surface of the lossy rod and the
sheath helix surface. The operating frequency, the sheath helix geometry, the lossy rod
geometry, and the lossy rod material electrical properties are specified by the varisbies
ka cotany = 10.0, b/a = 0.100, €, " 100, ci/m;D = 10.0,
and y = | p°. The resulting spproximate wave numbers solution is computed to

be h.a ¥ 9.85 + j1.55x1072, h,a ¥ 10.0, ad ga ¥ 10.0.
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Figure 2.8 Curves of the radial dependence associfated

with the normalized electric field magnitudes for the large
argument case, when the lossy rod is not a good conductor.
The varfables used are ka cotany = 10.0, b/a = 0.100, €, ®
1.00x10%, o/uwey = 10.0, and y = 1.00°. They determine the
approximate wave numbers solution h1a = .85 + jT.SSxIOéZ.
h,oa = ga = 10.0, and the apptoximate electric normalizing
coefficient £, . = 33“ 188(V/m). (Note that ER/EZ0 = |E _/E |

EO0/EZ0 = |E /E o), EZ/EZ0 = |E,/E 4|, and R/A = r/a.)
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Figure 2.9 Curves of the radial dependence associated

with the normalized magnetic field magnitudes for the large
argument case, when the lossy rod is not a good conductor.
The variables used are ka cotany = 10.0, b/a = 0.100, €, =

1.00x10%, o/uey = 10.0, and y = 1.00°. They determine the
approximate wave numbers solution hia = 9.85 + j1.55x10§2,
hza = Ba = 10.0, and the approximate magnetic normalizing
coefficient H,o =311 0.500(A/m). (Note that HR/HZO ;‘HF/HZOI‘
HO/HZO = [H /H |, HZ/HIO0 = IM,/H, o1+ and R/A = r/a.)
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Eo T 3)1 188 (V/m) and H,o T Y 0.500 (A/m)

»-

are the caicuisted vaiues of the approximate normalizing coef ficients.
Figures 2.10 and 2.1 iliustrate the radial dependence of the magnitudes of the
spproximate normalized electric and magnetic fields. respectively, for the three region
conhiguration.  ka cotany = 10.0, b/a = 0.900, ¢ = 100, =/.cy =
10.0, snd y = | _pQg° ore the variabies which are used. These two graphs are

a variation of Figures 2.8 and 2.9, using b/a = 0.900 instead of b/s = 0.100. The
caiculated approxmate wave numbers solution is ha = 9.85 + ji !55“@‘2

¥
Vot

h2a = ]OO) “ Ba ’;/ ]OO. TT'-’ emﬁé ngimi m""-hzw

coefficients are

EzO F3 j»”188 (v/m) and H;Q?SH 0.500 (A/m).

Two final graphs included in sub-part 2.4.1.1 sre Figures 2.12 and 2.13. They
show the radisi dependence of the spproximaste normalized electric and magnetic field
magnitudes. respectively, for the two region configuration. The varisbles used are

ka cotany = 10.0, b/a = 1.00, €, = 100, é/mED = 10.0,
and y = 1.00°. These two figures can be considered as a modification of the
previous four figures, using b/a = 1.00 instead of b/a = 0.100 or b/a = 0.800.
hya ¥ h,a ¥ ga T 71.2 - §3.51 e the csiculsted values of the

1 2
approximste wave numbers.

E o 7J3“ (26.4 + J 1.31) (V/m) and Hzo“-"zu 0.500 (A/m)
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Figure 2.10 Curves of the radifal dependence associated

with the normalid

zed electric field magnitudes for the large

argument case, when the lossy rod is not a good conductor.

The variables used are ka cotany = 10.0, b/a = 0.900, €,

1.00x102. o/uco = 10.0, and ¢ = 1.00°. They determine the
approximate wave numbers solution h]a = 9.85 + Jl.55x10'2,

hza = g8a = 10.0, and the approximate electric normalizing

coefficient Ez =

EOQ/EZ0 =

0

Yy 188(v/m).
|Eg/E,ols EZ/EZ0 = 1E_/E_ |, and R/A = r/a.)

(Note that ER/EZ0 = 'Er/Ezo"
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Figure 2.11
with the normal

argument case, when the lossy rod is not a good conductor

The variables u

1.00x10%, o/ue, =

approximate wav
hza ga 10.0
HO/HZ0 IHE/HZ

Curves of the ragial dependence associated
1zed magnetic field magnitudes for the large

sed are ka cotany 10.0, b/a 0.900, =
10.0, and ¢ = 1.00°. They determine the
9.85 + j1.55x107 2,

» and the approximate magnetic normalizing
=11 0.500(A/m). (Note that HR/HZ0 . /H g
01, HZ/HI0 = IHI/H and R/A = r/a.)
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e numbers solution hla
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Figure 2.12 Curves of the radial dependence associated

with the normalized electric fleld magnitudes for the large
argument case, when the lossy rod is not a good conductor.
The variables used are ka cotany = 10.0, b/a = 1.00, €, ®

1.00x102, o/wey = 10.0, and ¢ = 1.00°, They determine the
approximate wave numbers solution hja = hza = ga = 71.2 -

J3.51, and the approximate electric normalizing coefficient
E,o " 33 (26.4 + §1.31)(V/m). (Note that ER/EZO = ,EF/EI@

EQ/EZ0 = 'EE/EZD" EZ/EZ0 = lEz/EzD" and R/A = r/a.)
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Figure 2.13 Curves of the radial dependence associated

with the normalized magnetic field magnitudes for the large
argument case, when the lossy rod is not a good conductor.
The variables wsed a- .- otany = 10.0, b/a = 1.00, €, *
1.DDxIDZi G/uED = ] . d v = 1.00°. They determine the

approximate wave num: . .0lution h1a = hza = ga = /1.2 -
J3.51, and the approximate magnetic normalizing coefficient
Hoo = dun 0.500(A/m). (Note that HR/HZO = |[H./H, ol HO/HZO =

|He/HzD|‘ HZ/HIO = {Hz/HzDJ, and R/A = r/a.)
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are the caiculsted values of the approximate normalizing coef ficients.

It is clear that for the large value of ka cotany which was used n the six
figures, all the electric and magnetic fieid components are rapdly mmm at increasing
radial distances away from the sheath helix surface. For the two region configuration,
s attenustion is much grester than 1t is for the three region configuration. Since the
verigble ka cotany = EﬁfJTBi?D cotany 1s directly proportional to
frequency, it can be sad that at “high frmues‘: which maans isrge values of

ka cotany, the fisld components cimg tightly to the sheath haelix “windings”. /n
this circurnstance, the shesth helix is said to act /ike a8 wave guiding structure.

it i1s informative to compare Figures 2.8 - 2.13 with Figures D.9 - D.14. The
latter mentioned set of figures s associated with the sheath helix surrounding an ideal
dielectric (zero conductivity) coaxiasl rod. The same values of ka cotanyg, b/a,

€.> and U are used for both sets of figures. Keeping In mind the values of the
normalizing coefficients, it 1s apparent that for each of the three different values of
b/a  which have been used. the corresponding figures of the two sets show that the
magnitudes of the electric and magnetic fields assocated with the lossy rod
configuration are approximately similar to the absolute vaiue of the corresponding fieids

associsted with the ideal dielectric rod configuration.

2412 Small Argument Representstion

The wave numbers solution previously discussed in sub-part 2.3.1.1 is used in
the normalized fieids. Equations 2.107, 2.108, and 2.88 are numerically solved to obtain
the radial and axial wave numbers, for both the two and three region configurations. In
Order thst this approximate solution is valid, it was ensured that the restrictions listed in
equations 2.104 and 2.105 sre satisfied.

Equations A.26 -~ A.29, the small argument Bessel function representations, were
used to approximate the normalized fields and the normalizing coefficients. In order that
these representations could be used to approximate the normalized field components,
the radial distance associated with the regon 3 (4 < r <) fields was
restricted to being sufficiantly small so that | hz la « r/a < 0.100 is trua.

The suitable spproximations of equations 2.130 and 2.131, which are valid for

both the two and three region configurations, are
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o~

EZD = jaﬂ 120 ka cotany cosy, and (2.135)
' 2

S *é\l cosy. )

All the approximate normalizea fieids ~ere checked to ensure that for both the
two and three region configurations, the bouaary conditions associated with the surface
of the lossy rod and the sheath hel'x sur‘ace are corractly satisfied. In order that the
continuity of sub-part 2.4.1.2 is not interrupted, the ~ormalzed approximate field
components will not be Iisted. For the six graphs illustrating the radial dependence of the
approximate field component magnitudes which are presentad here, i1 was snsured that
all the restrictions required to justify obtaiming the approximate wave numbers soiution,
approximating the normalizing coefficients, and approximating the normalized fields,
wers satisfied.

Figures 2.14 and 2.15 display the radial dependence of the approximate
normalized electric and magnetic field magnitudes, respectively, for the three region
configuration. The operating frequency, the sheath helix geometry, the lossy rod
geometry, and the lossy rod material electrical properties are specified by the varables

ka cotany = 5.00x10°2, b/a = 0.100, €, = 100, o/uwey =

1.00x103 and v = 1.00°. (Note that although slweg > € s trus,
the requirements listed in equstions 2.104 and 2.105 are satisfied. According to the

definition used in sub-part 2.3.1.1, this circumstance is said to be an example of the

ug

small argument case when “the /ossy rod is not s good conductor”.) h.ia
2.25x107% + §1.68x1072, h.a = 1.73x10°2 - J6.15x107°,  and
1.73x10°2 . j 6.14x10°° &e the caiculsted approximate wave

]

2

Ba
numbers solution. The approximate normalizing coeafficients are obtained from
equations 2.135 and 2.136.

E20 T I 943 (V/m) ang W, TYy 1.00 (A/m)
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Eigure 2.14 Curves of the radial dependence associated

with the normalized electric field magnitudes for the small

argument case, when the lossy rod is not a good conductor.
The variables.used are ka cotany = 5.00x1072, b/a = 0.100,

e, = 1.00x10%, o/uey = 1.00x10%, and y = 1.00°. They determine
’ 2

r
the approximate wave numbers solution h,a = 2.25x10°

§1.68x10°2, h,a = 1.73x107% - §6.15x1075, ga = 1.73x1072 -
16.14x10'5 and the approximate electric normalizing

+

coefficient E,o=3du 9-43(V/m). (Note that ER/EZO=[E/E o]
EO/EZ0 = lEe/Ezol. EZ/EZ0 = [Ez/Ezol. and R/A = r/a.)
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Figure 2.15 Curves of the radial dependence associated

with the normalized magnetic field magnitudes for the small
argument case, when the lossy rod is not a good conductor.

The variables used are ka cotany = S.DDxIDEZi b/a = 0.100,

€. = 1;DDx1DE, ofwey = 1,003103, and y = 1.00°. They determine
the approximate wave numbers solution 913 = 2i25x10'2 +
51.68x107%, hya = 1.73x1072 - 5 6.15x107°%, ga = 1.73x1072 -
36.14x10°°, and the approximate magnetic normalizing
coefficient Hoo = 0 1.00(A/m). (Note that HR/HZ0 = lHr/HzDI'

HO/HZO = [Ho/H o1, HZ/HZO = [H /M, ol, and R/A = r/a.)

o
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ars their computad values.

The final two graphs associsted with the three region configurstion are
Figures 2.16 and 2.17. They show the radial dependence of the approximats normalized
electric and magnetic field magnitudes, respectively. ka cotany = SEDDHD*Z,

b/a = 0.900, ¢ = 100, o/wey = 1.00x10°, and 4 = 1.0p°
e the varisbles which are used. Note that thase graphs can be considered as a variation
of Figures 2.14 and 2.15, using b/a = 0.900 nstead of b/a = 0.100. The pproximate
radial and axial wave numbers ae computed to be  h,a T ] 99,702

(1]

: 3 ——*2 N i _ - - - gt
* o 31.58x107°, hya T 1.60x107% - ja.60x1073, snd ga 2

2

1.59x10°2 - j4.59x10°3.

E20 ‘?jall 9.43 (V/m) and Hio ?‘B” 1.00 (A/m)

are the computed values of the approximate normalizing coef ficiants.

Figures 2.18 and 2.19 display the radial dependence of the approximate
normalized electric and magnetic fisid components, respectively, for the two region
configuration. The varisbles used sre ka cotany = SiDDx’IDéE, b/a =

1-0(-1- ET‘ = 100- c"/m:o = 1i00K103‘ and v = 1.00°. These

two graphs can be considered as a specisl case of Figures 2.14 - 2.17, using

b/a = 1.00 instesd of b/a=0.100 or bis=0800. hya ¥ 1.93x10"2
+ §1.56x107%, h,a ¥ 1.53x1072 - §5.28x10°3, wnd B2

I.S.BXIDQZ - JS.Z?’xiQ”:‘" are the caiculated values of the approximate wave

numbers. The approximate normalizing coefficients are calculated to be

€0 ¥ 30 943 (VT and W o F ¥y 1.00 (A/m).



1

-y —— = ) = - - = - ik - @
Wﬁﬁﬁﬁl![ll T T ’FTI! T -
| | - -
] .
: : 2
a L] o =J
» - [ n L
-*= - - s s; H
s - * o L
L] - [ .
[} + [ ,LJ
. - ° =
[ ] - [ ] .E
|
" ’ : : - O
] L) ] - Ll
] - ] _
s N . L
[ - L ]
—— — — L
] - . @)
. a - ™ n
- © B o L
- ® . &
- e .n o %
ooOo - s ~ L
VI ¢ - * 9
~~ - e ® =
@Oy - o = "
L L . e = hug 5
g0« : © ® © L
B 6 . * b ')
- & @ -
: -
. o B o
- s = m =
- - 7‘ = - :
o
a1 . ] o (I
- ] [ D:
€ - ]
- [ ]
, : *|l e
l’llrJ 1 i llLllIilil ol LIAAI‘L,I 1 - 'lllll L. | 7[]1‘!11 L.l é
n & 7] N~ A Al ") L' un I )
) - o =
Y, > 2 5 5 5
0Z3/Z23°03°43
Figure 2.16 Curves of the radtal dependence associated
with the normalized electric field magnitudes for the small

argument case, when the lossy rod is not a good conductor.
The variables used are ka cotany = 5.00x107%, b/a = 0.900,

€. = 1.D6x102. a/we = I_DDxiDBi and ¢ = 1.00°. They determine
the approximate wavé numbers solution h,a = 1.99x107° +
31.54x107%, hoa = 1.60x107% - § 4.60x1073, ga = 1.59x10°2 -
J 4,59316‘3‘ and fhe approximate electric normalizing 7
coefficient EzD!J N 9.43(v/m). (Note that ER/EZDi]EF/EZQ[.

EO/EZ0 = IEe/E;ol' EZ/E10 = IEZIEzol, and R/A = r/a.)
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Figure 2.17 - Curves of the radial dependence associated
with the normalized magnetic field magnitudes for the small
argument case, when the lossy rod is not a good conductor.

The variables used are ka cotany = S_DDxIDEZ, b/a = 0.900,

. 1.00x10%, o/wey = 1.00x10%, and y = 1.00°. They determin

£

.
the approximate wave numbers solution h,a = 1.99x107% +

j 1.54x10°2, hya = 1.60x10°% - § 4.60x10"3, ga = 1.59x10°° -

j4i59x10i3D and the approximate magnetic normalizing
coefficient H o= ¥, 1.00(A/m). (Note that HR/HZO=|H /H o],

HO/HZO = |H /H 0|, HZ/HZO = [H /H |, and R/A = r/a.)
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Figure 2.18 Curves of the radia} dependence associated

with the normalized electric fie]l® magnitudes for the smal)
argument case, when the lossy rod is not a good conductor.

The variables used are ka cotany = 5.00x10°%, b/a = 1.00,

e, = 1.00x10%, o/uey = 1.00x103, and y = 1.00°. They determine
the approximate wave numbers sc1uticnrh1a = 1;93x1052 +
§1.56x1072, hya = 1.53x107% - §5.28x1073, ga = 1.53x10"2 -
15.27x10'3. and the approximate electric normalizing

coeffictent € =3 §y 9.43(V/m). (Note that ER/EZO=|E /E .|,
E0/EZ0 = [E./E, o]+ EZ/EZO = |E /E_ 0|, and R/A = r/a.)
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Figure 2.19 Curves of the radia) dependence associated

with the normalized magnetic field magnitudes for the small
argument case, when the lossy rod is not a good conductor.
The varfables used are ka cotany = S,DOxTO’Z; b/a = 1.00,

€ = 1.00x10%, o/uey = 1.00x10%, and y = 1.00°. They determine
the approximate wave numbers solution h,a = 1.93x107% +
31.56x107%, h,a = 1.53x10°% - § 5.28x10°3. ga 1.53x1072 .
j 5.27x10°3, and the approximate magnetic normalizing
coefficient H_ = 3“ 1.00(A/m). (Note that HR/HZO=[H /H .|

HO/HZO0 :.IHBIHZDI‘ HZ/HZI0 = IHZ/HZD[i and R/A = r/a.)



't 1s clear that the radial dependences of the fields shown in Figures 2.14 - 2,19
are much different from that displayed n Figures 2.8 - 2,13. The first mentionsd set of
graphs shows that the freids are characterized by a relatively graduai change as the radisl
distance is varied. The fieids n region 3 decay siowly with ncreasng radial distance. For
the small value of ka cotany which is used, the fieid extension Is large. /t can
therefore be said that for “low frequencies”, which means small va/ues of

ka cotany, thefieldsare basically unguided by the shesth helix.

it 1s informstive to compare Figures 2.14 -2.19 with Figures D.21 - D.26. The
latter mentioned set of graphs are associsted with the sheath helix surrounding an desl

dislectric cosxial rod. The same values of ka cotany, b/a, € s and | me

lossy rod configuration sre comparad with the absolute vaiue of the corresponding
normalized fields associsted with the ideal dielectric rod configuration, for a particular
vaiue of b/a, keeping in mind the values of the normalizing coefficients. This shows
that with the exception of the region 2 radial electric fisld component, and of the
region 1 and region 2 anguiar magnatic fieild components, the corresponding fieids of
the two sets of figures are similar.

' Figures 2.14 and 2.15 provide a good illustration of how the electric and
magnetic fields behave st the surface of the lossy rod and st the sheath helix surface.
Consider the fisid behavior at the rod surface. Figure 2.14 shows that the anguiar and
axial electric fields are continuous. This is simply a statement of the fact that the alectric
fields tangentisl to an interface are continuous. The figure aiso shows that the radial
electric field is discontinuous. The explanstion for this behavior is that the permittivity of
the lossy rod is different than that of air, and that free electric charge is iocated on the
rod surface. When two regions forming an interface have different permittivities, and
when free electric charge is present at the interface, thie normal slectric field will be
discontinuous at that interface. | >

Figure 2.15 shows that the angular and axial magnetic fislds are continuous at the
surface of the lossy rod. Since the conductivity of the lossy rod is finite, it cannot
possess an electrical surface current. At an interface which does not possass mn

Muwfmmmﬂmstmmmmmmhcfmdsrn



continuous. T’h-‘ﬁg:g siso shows that the rachal magnetc field 13 continuous. Since no
free magnetic charge exists st r = b, the normal magnetic field must be continuous at
the lossy rod sirface.

Attention 1s now directed to examining the fieid behavior st the sheath helix
surface. Figure 2.14 shows that the anguiar and gxial electric fields are continuous at

r=a Ths s a dwrect consequence of the boundary conditons st the surface of the
sheath helix, as 1s apparent from equations 1.6 - 1.8. The radisl electric fisid is seen to
: be discontinuous st r = a  The explanation for this behavior is that free siectric charge
exists st the shesth haiix surface.

Figure 2.15 shows that the anguiar and axial magnetic fieids are discontinuous at
the surface of the sheath helix. This i1s because an electrical surface current axists on the
sheath helix “windings”. The magnetic fieid tangential to an interface which possesses an
electrical surface current will be discontinuous. Finally, the radial magnetic fieid i1s seen to
be continuous at the shesth helix surface. Since no free magnetic charge exists at

r =a the normal magnetic field must be continuous at the surface of the sheath helix.

2.4.2 "The Lossy Rod is a Good Conductor”

it is now assumed that the operating frequency. the shesth helix geometry, the
lossy rod geometry, and the lossy rod material slectrical properties are such that the
spproximate wave numbers solution previously discyssed in part 2.3.2 13 justified. Since
N part 2.3.2 it was mentioned that a free mode field solution could only be obtained for

the spproximate normalized fields presented in this part will be restricted to the case of
b < a.

24.21 Large Argumant Representation

it is assumed that the restrictions listed in inequalities 2. 127 are satisfied, so that
the spproximate wave numbaers solution is given by equations 2.128. Just the first term
of equstions A38 - A39 (the zero order large argument Bessel function
representstions) are used to approximate the three region form of the normalized fields,
and the normalizing coefficients, equstions 2.130 and 2.131. When these
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sufficiently large so that ih1laar‘/a;1 s true. it was ensured that the
spproximate normalized fisids correctly satisfied the boungdary conditons st r = b,
equstions 2.43 - 2.46, and &t r = a, equations 1.6 - 1.9,

The approximate normalizng coefficients were computed to be

Ezq?' J ? 120 cosy, and (2.137)

Hoo T2 oy, (2.138)

P

In order that the contmuity of sub-part 2.4.2.1 i1s not nterrupted. the vaiues of the
approxwmate normalized fialds will not be listed hera.

For each of the four graphs which will be examined, it was snsured that the
requirements involved to justify approximating the wave numbers solution, DproxXImatng
the normalizing coefficients, and approximating the normalized fislds, were well justified.
Figures 2.20 and 2.21 display the radial dependence of the pproximate normalized
slectric and magnetic field magnitudes, respectively. The operating frequency, the sheath’
helix geometry, the lossy rod geometry, and the lossy rod materal eiectrical properties
are specified by the varisbles ka cotany = 10.0, b/a = 0.100, €, =

100, Q/NEQ = TEDO;:]DE, and y = 1 00°. (Note that a large vaiue of
o/wey Mmust be used in order to satisfy the requirement {i/méa >> -«‘cetanzh
which is mentioned in inequalities 2.127.) The approximate wave numbers are caiculated

tobe h,a = 39.0 + j39.0, hza = 10.0, and ga = 10.0. The

approximate normalizing coefficients were cormputed from equations 2.137 and 2.138
to be

Eyo &3 Ju 188 (/@) and W6 T Yy 0.500 (A/m).
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Figure 2.20 Curves of the radial dependence associated

with the normalized electric field magnitudes for the large
argument case, when the lossy rod is a good conductor. The
variables used are ka cotany = 10.0, b/a = 0.100, €. =
1,DDXTGE. u/mtD = 1;ODx1D5, and ¢ = 1.00°. They determine
the approximate wave numbers solution h,a = 39.0 + j39.0,
h,a = ga = 10.0, and the approximate electric normalizing
coefficient, £ ,=J Qi 188(V/m). (Note that ER/EZ0=|E /E ],

EO/EZ0 = |E /€ 0l EZ/EZ0 = |E,/E, |, and R/A = r/a.)
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Figure 2.21 Curves of the radial dependence associated

with the normalized magnetic field magnitudes for the large
argument case, when the lossy rod is a good conductor. The
variables used are ka cotany = 10.0, b/a = 0.100, €. =

1.00x10%, o/wey = 1.00x10%, and 4 = 1.00°. They determine
the approximate wave numbers solution h]a = 39.0 + j39.0,
hza = ga = 10.0, and the approximate magnetic normalizing
coefficient HzO-BIt 0.500(A/m). (Note that HR/HZOSIH?/HIOI,
HO/HZO = lHe/Hzol’ HZ/HZ0 = IHz/Hzol. and R/A = r/a.)
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Figoras 2.22 and 2.23 show the racial dependence of the approxwmata
normalized electric and magnetic field magnitudes, respectively. | 5 cotany

(11

10.0, b/a = 0.900, ¢_ = 100, s/wey = 1.00x12°,  and ¥
1.00° &e the varisbles which are used. These two graphs can be considered as a

varigstion of Figures 2.20 and 2.21, with b/a = 0.900 mnstead of b/a = 0.100.

* hja T 39.0 + 339.0, hya T 10.0, ad ga T 0.0 e the

computed values of the approximate wave numbers.

EZD j?“ 188 (v/m) and .o 22“ 0.500 (A/m)

1] }

e the computed values of the approximate normahzing coefficients.

It is clear from Figures 2.20 - 2.23 that all the field components are rapidly
attenusted at incraasing radial distances away from the shaath halix surface. Furthermaores,
Figures 2.22 and 2.23 make it apparent that thys attenustion 1s much greater for region 1
fieids than t 1s for region 2 and region 3 fields. In fact, the radial dependence of the

i 5/.c~ ka-b/a(1-r/b)
region 1 fields 1s dominsted by the exponential e ’ .

Making use of the relation

o

(2.139)

o |

MUOS

is the sk/n depth associsted with the nonmagnatic lossy rod, one can easily demonstrate
that at the radial position r = bzﬁ, the previously mentioned exponential has a
magnitude of e’j . Therefore, at a distance s bensath the surface of the lossy
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Figure 2.22 Curves of the radial dependence associated

with the normalized.electric field magnitudes for the large
argument case, when the lossy rod is a good conductor. The
varigbles used are ka cotany = 10.0, b/a = 0.900, €, =
1.00x10%, o/uey = 1.00x10%, and v = 1.00°. They determine
the apprcximaté wave numbers solution h]a = 39.0 + j39.0,
hza = ga = 10.0, and the approximate electric normalizing
coefficient E o= Ju 188(V/m). (Note that ER/EZO=|E /E, o

EO/EZ0 = [E,/E EZ/EZ0 |E,/E and R/A = r/a.)
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Figure 2.23 Curves of the radial dependence associated

with the normalized magnetic field magnitudes for the large
argument case, when the lossy rod is a good conductor. The
varfables used are ka cotany = 10.0, b/a = 0.900, €p =
1.00x10%, o/wey = 1.00x10°, and y = 1.00°. They determine
the approximate wave numbers solution h1a = 3.0 + J39.0,
hza = ga = 10.0, and the approximate magnetic normalizing
coefficient H20i3“ 0.500(A/m). (Note that HR/HZO=|H
HO/HZO [Hg/H, ol s HZ/HZO = |H,/H and R/A =

r/HzOI‘

ZDI‘ r/a.)



rod, all field components have been sttenusted by the factor e -1 compared to their
values st the lossy rod surface. This is in agreement with the definition of the term skin
depth. (For example, see 18, pp. 36; 28, pp. 251; and 36, pp. 769.) Note that the larger
the variable o/ wey 1S, the more rapid is the attenuation of the region 1 fieids.

Figures 2.20 - 2.23 will now be compared with Figures C.4 - C.7. The latter
mantioned set of graphs 15 associsted with the shesth helix surrounding a perfectly
conducting coaxial rod. The same values of ka cotany, b/a, and ¢ are used
for both sets of graphs. For the perfectly conducting rod configuration, all region |
tields are zero. In the case of the lossy rod configuration, the region 1 fields are
nonzero but they are extremely rapidly sttenusted for increasing radial distances rwvay
from the rod surface. For a particular value of b/a. the two sets of graphs are
examined. Keeping N mind the values of the electric and magnetc normalizing
coetfficients, it i1s seen that the magnitudes of the region 2 and region 3 fields associated
with the lossy rod configuration are similar to the absolute value of the corrasponding
fislds associated with the perfectly conducting rod configuration. The single exception

occurs for ragion 2 fields, which are very close to the rod surface.

2422 Small Argument Reprassntation

The final set of graphs of the radial dependence associated with the magnitudes
of the approximate normalized fields is for the small argument representation of the
three region configuration, when “tha lossy rod is a good conductor”. It is assumed that
the restrictions listed in inequalities 2.120 are satisfied, so thst the wave numbers
solution previously discussed in sub-part 2.3.2.1 is valid. This mesns that h1 a ¥

Ji r:;/gsED ka, and that equation 2.122 is the approximate dispersion equstion.

Em 2.122 is numerically solved to evaluste hza, and then equation 2.121 is
used to caiculste Ba.

The three region configuration approximate normalized fields are obtsined in the
following manner. Al Bessel functions of argument h—]a and h13 - b/a

appearing in the three region configuration normalized fields are approximated by the

racial distance assocists

| with the region 1 fields is sufficiently large so that | hyla



r/a = [q, weg ka + r/a > 1. Al Bessel functions of argument h,a and
hz—a - b/a mppexng n the thres region configurstion normalized fisids mre
spproximated by using the small argument Besssl function representations,
equations A.26 - A.29. So that these representations can be used, it is necessary that
the radial distance associsted with the region 3 fields is sufficiently small so that
Ihgla +r/a < 0.100 isspproximstely true.

The normaiizing coefficients, equstions 2.130 and 2.131, are approximated in the

manner discussed in tha preceding paragraph. They are discovered to be '

- 3& 120~ ka cotany
20 = j ¥ ——— cosvy

HZD !BH COoSv. (2.141)

it was ensured that all the normalized fields correctly satisfied the boundary
conditions st the surface of the lossy rod and at the sheath helix surface. So that the
contirnuity of sub-part 2.4.2.2 is not disrupted, the spproximate normalized fisids will
not be listed. It will be emphasized that for the four graphs presented here, it was
snsured that all the requirements necessary to justify using the approximations involved
in calculating the wave numbers, the normalizing coefficients, and the normalized fields,
were satisfied,

Figures 2.24 and 2,25 display the radial dependence of the normalized slectric
c field magnitudes, respectively. The operating frequency, the sheath helix

ga:nm-try mnd tha lossy rod material electrical properties sre specified by the varisbles
ka cotany = 5.00x107%, b/a = 0.100, ¢ = 100, o/ucy =

5.00x10%, and ¥ = 1.00°. (Note that a large value of 0/ue, must be

0
usad so that the previously mentioned requirement associsted with the region 1 fisids,
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Figure 2.24 Curves of the radial dependence associated

with the normalized electric field magnitudes for the smaill
argument case, when the lossy rod is a good conductor. The
variables used are ka cotany=5.00x10"2, b/a=0.100, e, =1.00x102,
g/meOiS,DDx1Dg. and y=1.00°. They determine the approximate
wave numbers solution h,a=43.6 + §43.6, h,a=ga=2.97x10"2 -
jBESZxID‘S, and the approximate electric ﬁarma1iziﬁg
coefficient E_o = §3|) (9.35 - J2.16x10°2)(V/m). (Note that

ER/EZ0=|E./E ol EO/EZ0=E /€ o], EZ/EZ0=[E/E .|, and R/A=r/a.)
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Figure 2.25 ~ Curves of the radial dependence associated
with the normalized magnetic field magnitudes for the small
argument case, when the lossy rod is a good conductor. The
variables used are ka ﬁotanw§5;DDx10'2, b/a=0.100, E?ST.ODxID
a/ueDSS.DDxTOg. and y=1.00°. They determine the approximate
wave numbers solution h]a!43i6 + j43.6, h23-5512ﬁ97x1952 -
jS.SZﬂDiSi and the approximate magnetic normalizing

coefficient H o= 3) 1.00(A/m). (Note that HR/HZO=|H /H

HO/HZO0 =

|H6(Hzo|, HI/HZ0 = |H /H

) , ZOI'
s0l+ and R/A = r/a.)

2



\/é/cgeo ka «- r/a > 1, is satisfied.) The apprgximste wave numbers solution

is calcuisted to be h,a = 43.6 + j43.6, and h

] ‘E

2.97x107% - j3.62x10°5.
o

B0 = 39” (9.35 - § 2.16x10"2) (V/m) and H_, ‘;‘»H 1.00 (A/m)

are the caiculsted values of the approximate normalizing coefficients, making use of
aquations 2. 140 and 2.141.

The final two graphs presented in sub-part 2.4.2.2 are Figures 2.26 and 2.27.
These show the radial dependence of the approximate normalized slectric and magnetic
field magnitudes, respectively. ka cotany = 5_00“052 s+ b/a = 0.900,

€p = 100, o/wey = 5.00x10°, and 4 = 1.00° are the varisbles which
are used "hese two graphs can be considered as a varistion of Figures 2.24 and 2.25,

0.100. hjé = 43.6 + j43.6, and

with b/a = 0.900 instead of b/a
h

—

ga = S,DQHO;E - ;]'2;5[);.1]Q’:i are the computed values of the

[ 'E

28
approximate wave numbers. The calculsted values of the approximate normalizing

coafficients sre

E20 ¥ 39y (1.99 - 5 0.194) (¥/m) and H,o T Y 1.00 (a/m).

Figures 2.24 - 2.27 show that the region 2 and region 3 fields only change
gracually as the radial distance is varied. The extension of the region 3 fields is large.
However, the region 1 fields are rapidly sttenuated as the radial distance decresses.
More specifically, their radial dependence is dominsted by the exponential

-Ji o TZ.?’O ka-b/a(1-r/b)
e . This is identical to the radial dependence of the

region 1 fields previously discussed in sub-part 2.4.2.1.
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Figure 2.26
with the normali

Curves of the radial dependence associated
zed electric field magnitudes for the small

argument case, when the lossy rod is a
variables used are ka c@tanws5!00x1ciz

a/szSS_DDx]Qg, and y=1.00°. They determine the approximate
wave numbers solutfon h‘ai43,s + j43.6, hEEiEBSS.OQxTQ‘E .

jEiSDxiﬂ'B, and the approximate electric normalizing )
coefficient E_,=j ¥)) (1.99 - j0.194)(V/m). (Note that ER/EZO =

good conductor. The 7
. b/2=0.900, ¢ _=1.00x10%,

[E,7E,ql+ and RAA = r/a.)
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Figure 2.27 Curves of the radial dependence associated
with the normalized magnetic field magniftudes for the small
argument case, when the lossy rod is a good conductor. The
2

varfables used are ka cotany=5.00x10"2, b/a=0.900, ¢.=1.00x10

°/“‘0!5—093109: and y=1.00°. They determine the approximate
wave numbers solution h,a=43.6 + j43.6, hza-sass.09x1a‘2 -
§2.50x1073, and the approximate magnetic normalizing
coefficient H 5 =) 1.00(A/m). (Note that HR/HZ0 = [Ho/H ool s

HO/HZO = |H /H_ o|, HZ/HZO = |H,/H,gl. and R/A = r/a.)



conducting coaxial rod The same values of ka cotany, b/a, and v are used
n both sets of figures. Keeping in mind the vahies of the normalizing coefficients, it is
seen that for a particular value of b/a.  the magnitudes of the region 2 and region 3
fieids associated with the iossy rod configuration are similar to the absolute vaiues of the
corresponding fields associated with the perfectly conductng rod configuration. All
region 1 fieids associsted with the sheath helix surrounding a perfectly conducting
coaxial rod are zero. The region 4 fields corresponding to the lossy rod configuration
are rapidly attenuated as the radial distance decreases. They are only large very near to
the lossy rod surface.

Figures 2.26 and 2.27 provide a good illustration of the fisld behavior at the
surface of the lossy rod, and st the sheath helix surface. However, a relatively detaiied

discussion of this was previously given m sub-part 2.4.1.2 for the small argument case,

behavior st the two interfaces, for the small argument case when "the lossy rod I1s a
good conductor”™, will not be presented.

25 Summary
The free mode fieid solution for the shesth helix surrounding a lossy coaxial rod
has been derived. it will later be used in Chapter 3 to caiculate the ohmic power
dissipstion occurring within the lossy rod. This solution consists of equation 2.85. the
dispersion equation, equation 2.88, the separstion constant equation, and
equations 2.70 - 2.87, the electric and magnetic field components. The free mode field
solution is valid for the three region (b < a) configuration. However, the
appropriate solution valid for the two region b = a) configuration can be obtained by
calculsing 1im p - a  of the previously mentioned squations.
In theory, the dispersion equation and the separation constant equation are solved
to obtain the two radial wave numbers, hja and hza, and the axisl wave number,
ga. R is very important to caliculste these three wave numbers becsuse they
determine the radial and axial spstisl dependences of the electric and magnetic field
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components. The wave numbers are functions of the varuabies listed in equations 2.89 -
2.91. By considering the dispersion equation, the separation constant equabon, and the
fieid components, it was demonstrated that the real parts of the three wave numbers are
restricted to beng positive. Furthermore, it was shown that the algebrac signs of the
imagnary parts of hga and £a must ba the same.

The hmut of the free mode fieid solution associsted with the sheath helix
surrouncing a lossy coaxial rod was taken as the lossy rod radius 2pproaches 1ero, as
the lossy rod conductivity approaches zero, and as the lossy rod conductivity
approsches mfinity. As axpected, it was éns::marqﬂ that the free mode field solutions
associated with the empty sheath helix, the sheath helix surrounding an 'deal dielectric
coaxisl rod, and the shesth helix :a.rrc-\f-;mg 8 perfectly conducting coaxal rod,

C. respectively. All these free mode field soiutions wers obtained completely
independently of the one studied in this chapter. Caiculating the three Iimits provides a
surrounding a lossy coaxial rod

For the purpose of electromagnetic hutmg applications, the latter two limiting
cases mentioned i the preceding paragraph are very important. When the lossy rod
conductivity is small (but nonzero), one anticipates that the free mode field solution will
approximately behave like that of the sheath helix surrounding an i1deal dielectric coaxial
rod. For a large (but finite) lossy rod conductivity, the free mode field solution is
expected to approximste that of the sheath helix surrounding a perfectly conducting
coaxial rod. The sheath helix surrounding an ideal dielectric coaxial rod and the sheath
helix surrounding a perfectly conducting coaxial rod are very sttractive configurations
because it is much easier to numerically evaiuste their radial and axisl wave numbers, and
consequently to numerically evaluste their field components, than it is for the
configuration studied in this chapter. Approximate solutions for the power dissipation
occurring within the lossy roq will be obtained in Chapter 3 for the special cases when
the rod conductivity is either small or large, based on the fadial and axial wave numbers
solution for the previously mentioned two configurations.
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Unfortunately, the direct numerical solution of the dispsrsion equation and the
separation constant equation i order to obtan h,a, h,a, and Ea for sn
abitrary set of the varisbles listed in equations 2.89 - 2.91 1s very difficult to
accomplish. However, spproximate soiutions were obtained by using the small and lar Qo
srgument Besssl funchon representations to approxmmate the dispersion squation. Thea
two major classes of approxmations considered are when “the lossy rod is not a good
conductor” and when “the lossy rod is a good conductor”. (These two expressions are
defined n section 2.3.) For the first mentioned class of approximations, small and large
argument apEroXiIMate wave Nnumbers solutions were obtamed for both the two and three
region lossy coaxial rod configurations. in the case of the second mentioned class of
spproxsmstions, small and large tg;:ﬁ-ﬁt approximate wave numbers sokstions «:wd
only be obtamed for the three ragu:m configuration.

The fisld components are very lengthy and complicated exprassions. In order to
achieve an understanding of how these fieids behave at different points n space,
spproximate graphs of the field component magnitudes were prepared. These made use
of the approximate wave numbers solution discussed in section 2.3.

The case when "the lossy rod is not a good conductor” was examined first. For
both the two and three region configurations, the field component magnitudes based on
the large argument approximate wave numbers solution rapidly decayed in an exponential
fashion at increasing radial distances sway from the sheath helix surface. This decay was
even more rapid for the two region configuration than it was for the three region
configuration. Since the fie/d components cling tightly to the sheath helix "windings”,
it can be said that the sheath hel/ix is acting /ike a wave guiding structure.

The preceding graphs were compared with radial dependence graphs associated
with the sheath helix surrounding sn ideal dielectric coaxial rod. For the same operating
frequency, sheath helix geometry, rod geometry, and rod permittivity, it was discovered

establish this connection because n Chapter 3 use is made of the nformation presented
in Appendix D to investigate the power dissipation occurring within the lossy coaxial rod.,

Two and three region configuration radial dependence graphs when “the lossy
rod is not a good conductor” based on the small argument wave numbers solution were
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prepared. In this circumstance, the magnitudes of the field components changed in a
reistively gradusl manner as the radial distance was varied The extension of the
region 3 (&8 ¢ r < Q0 ) field components was large. /t can therefore be said that
the waves are basically unguided by the shesth helix,

A comparison was made of the graphs mentioned in the precsding parsgraph with
the racial dependence graphs assocurted with the shaath helix surrounding an daal
dislectric coaxial rod. For the same operating frequency, sheath helix geometry, rod
geometry, and rod permittivity, 1t was discovered that most of the corresponding fieid
components assocuted with the two sets of graphs are similar. The only exceptions
occurred for the region 2 (b < r < a) radal electric field component, and for
theregion 1 (0 < r < b) andregion 2 anguiar magnetic field components.

Several different three region configuration radial dependence graphs when “the
lossy rod 1s a good conductor” based oh the large argument wave nombers solution
were prepared. t was discovered that all field component magnitudes rapidly decay =t

InCreasing rackal distances away from the sheath helix surface. The decay associated with

fieids.

The graphs discussed in the preceding paragraph were compared with graphs
ilustrating the racial dependence of the fields associsted with the sheath helix
surrounding a perfectly conducting coaxial rod. For the same opersting frequency,
shasth helix geometry, and rod geometry, it was discoversd that the cofresponding
region 2 and region 3 fields in the two sets of graphs are usually similar. The single
exception occurs for the region 2 fiaids which are very close to the rod ;ﬂ.rfs:i. For the
sheath helix surrounding a perfectly conducting coaxial rod, all region 1 fields are zero.
in the large argument case when “the lossy rod is a good conductor™, the region 1 fieids
are nonzero but they decay extremely rapidly st increasing radial distances away from the
lossy rod surface. It 1s important to establish a connaction between these two sets of
nvestigate the power dissipation which occurs within the lossy coaxial rod.

ﬁfmmafrmmifmwr:mﬁdaﬁﬂgﬁﬁmgim
configurstion case when “the lossy rod’is a8 good conductor”, making use of the small
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arguMant approximate wave rumbers sohtion. B was discovered that the region 2 and
regron 3 fieid magritudes exhibit a relatively gradusi change as the radial distance s
vaned. However, the region 1 fisid magnitudes rapidly decay at increasing rachal
distances away from the lossy rod surface. These magnitudes are only large very closa
to the surface of the rod

A comparison was made betwesan the graphs discussed in the preceding
paragraph and those tlustrating t™e radial depencence of the fieids assocurted with the
sheath helix surrounding a perfectly conducting coaxal rod. For the sama operasting
frequency, sheath helix geometry. and rod geometry, it was’ discovered that the
corresponding region 2 and region 3 fieids in the two sets of graphs are usually similar.
The single exception occurred for the region 2 fieids which were very close to the rod
surface. All region 1 fieids associated with the perfectly conducting rod configuraton
are z8ro. Although the region 1 fieids assocuted with the lossy rod configuration are
nonzero, they are sextremely rapidly attenustad at increasing radial distances away from

the iossy rod surface.



3. Chapter 3. Powsr Dissipstion Oceurring Within the g@::f@@ixi:l Rod, Which
is Surrounded by a Sheath Halix

This chapter i1s concerned with studying the time-averaged power dissipation

occurring within the iossy coaxual rod, which ig surrounded by a shasth helix. Exact

equstions for the power dissipation will be derived. Unfortunately, the usefuiness of

these results 1s quite imited because of the difficulty invoived in caiculasting the wave

PuMmbers hja; Vh:;._é: nd B3, which appesr in these axact 8xprassions.

Two major approsches have been used N order to obtam approximations of the
exact power dissipation equations. The first approach involvas dériving approximate
power chssipation equations by restricting the magnitudes of the (complex-valued radial
wave numbers, h1a and hzé + 80 that they are sither small or large. Section 2.3
relatively wide range of different iossy rod material eiectrical properties are aliowed. The
tossy rod conductivity 1s only restricted so that the radcial wave number magnitudes are
sther small or large.

The second approach used in this chapter INvolves deriving approximate power
dissipation equations by placing sharp restrictions on the rod material slectrical
properties. Only very small or very large rod conductivittes are allowed The
spproximation s made of usng the reai-vaiued) wave number solutions assocuated with
the sheath helix surrounding an ideal dielectric cosxial rod, or the sheath helix
surrounding a perfectly conducting coaxwal rod. (Note that in section 2.2.it was shown
that when the lossy rod t:c:sncu:t&:ty approachas zero and infinity as a imit, the free
mode fieid solution for the sheath heiix surrounding a lossy coaxial rod reduces to that
of the 1deal dislectric coaxial rod configuration and the pertfectly conducting coaxial rod

configur stion, respectively.) It i1s now not necessary to reastrict the values of the wave

dissipation equations for a wide range of operating fraquencies, sheath helix geomaetries,
ad lossy coaxial rod geometries.
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currents, ¢ E, N a8 region contaning 8 medium having a nonzero and finite
conductivity, 0. The total time-averaged power dissipated within the conducting

region, Pd » 15 calculated from

=
[»%
]
O

j!a AEIE dv, (3.1)
V

where the integral 1s avaluated over the entire conducting region volume. (For example,
see 41, pp. 314.)

The purpose of this section 15 to derive equations stating the tume-averaged
power dissipation c::;a:ring within the logsy coaxial rod, which 1§ surrounded by a sheath
helix. The power dissipation 15 due to alectrical conduction currants within tha lossy
coaxial rod, which originate from the presence of the radial, anguliar, and axial region 1

(0 grgb) electric field components. These fiaids are given by equations

2.70 - 2.72. For convenience, the three electric fields will be repeated here.

r1 = 3 b73 Ka cotany €OosV hpa Ba
KD(hZa) 11(h1r) singz - | . : (3.2)
1/[hya Ty(hib) Kq(hyb)

Y -
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m

61 ° -] 2?; 120% ka cotany siny -

Kj(hza) I](h]r) cosBz - (3.3)

1/0hya I,(hyb) Ky(hyb) + h,a I,(hyb) Kg(h,b)], and

- . 120
Ez1 = b/a ka cotany o5V hla hoe
KD(hza) ID(h1r) cosBz - (3.4)

1/["'13 ID(th) K](hzb)

+ (e_ - J o/we

r D) hza Ij(h]b) Kf(hzb)]@

0

Equations 3.2 - 3.4 are region 1 fields. Therefore, thew radial and axial spatial
dependences are restrictedtotheranges 0 < r < b and -0O < Z < @ .

=

The appropriate form of aquation 3.1 for the lossy coaxial rod elament is

_ 1 s
Pg =3 § o 1E,12 av

z=+1, 0= 2 r=p

,% 5 I j |E1I r dr de dz, (3.5)

“ z=-z 8=0 r=0Q

In actual fact, the lossy coaxial rod is assumed to extend to 7 =+ + Q0. Equstion 3.5
shows that the power dissipation is actusily calculated for an e/ememnt of the rod having

the length —21.;5:{11 (0 < z; <0@). Henceforth, the symbol

1
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"Pd" IS usadét:i/;;nma the total time-averaged power dissipasted within the /ossy
coaxial rod e/ememnt.

An important obsarvation 15 now made. Since

ve 2 - ,
E.|*c = . . 0= = 2 ! 2 5 p
L R I N T L T S L €12

equation 3.5 shows that the total power dissipation occurring within the iossy coaxial
rod element can be considered as the sum of the power dissipations resulting from the
contribution due to each of the rachal. angular, and axial region 1 electric field

components. Hence, one can define

_ 3 - 2 N B

Par " 2 jF'Er1' v, : (3.6)
v

P g E 12 Ly )

de = 7 |591| dv, and : (3.7)

Paz = 3 § 1,417 v (3.8)
v

All integrals are evaluated over the volume mentioned in equation 3.5. Py v P .

P4 ; e the time-averaged power dissipations occurring within the lossy coaxial rod
element, resuiting from electrical conduction currents associated with the region 1 radial,
anguiar, and axial eiectric fisid components, respectively. The total tma-averaged power
dissipated within the lossy coaxial rod slement is simply the sum of the three previously

mentioned power dissipations.

Pa = Par * Pae * Py, ; (3.9)
The evaluation of the right hand sides of equations 3.6 - 3.8, msking use of the
respective field components, equations 3.2 - 3.4, is straightforward but it requires a
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reiatively large amount of mathematics. First, the equation for the power dissipation
associated with the region 1 radial electric field component, Pd,. s will be derived.

IEH IZ = E E,fl is calculated using equation 3.2, and then this result is
substituted mto equation 3.6. The following two relations are necessary to evaluate the

integral which i1s now present.

242, | 2
gf! lsingz[z dz = 2 pr(sinzgrz + sinhzg z) dz
LY “0 J

)

= W (8.b sinh(2 By 2;) - Byb sin(2 8 z,)] (3.10)

(As was previously mentioned in part 2.1.2, Brb = Re[gb] and Sjb =

Im(8b].)

reb b
f? [1,(hyr) |2 dr = fr I(hyr) Ty(hyr) dr
r=0 ' 0
b
- o e
ffo r o Iy(hyr) 1y(Ayr) dr - TF, b Fy b
[hyb Ty(hyb) I,(Ryb) - hyb ID(Fjb) I,(hb)] (3.11)

it was necessary to make use of the property of snalytic continustion for Bessel
functions, equation A.22, the integral involving Bessel functions, equation A.51, and the
recurrence relation for Bessel functions, equation A.7, in order to derive equation 3.11,
(As was previously mentioned in part 2.1.2, h, b = RE[hjb] and hijb .

Im(h b].) |



Returning to the calculstion of Pdr® equations
evaiuate the intagral appearing in equation 3.6. One finds that

2
.2
Pdr‘-j)'é-l"!

, 2
cos’ 1: lh a| IEE'E |KQ('?2§)7|

h bh bBrijb

Ir 1

[hbi(hb)l(hb)—h]bl(hb)

140

3.10 and 3.11 sre used to

(3.12)

I (h b)] B .

|h ail (h b) K.‘(h b) + (E - a/uec) hza

[E'Fb sinh(2 Sj z.]) - Sjb sin(2 . 21)]

1,(hyb) Kolh, b) |2

This expression is the time-averaged power diss/ipated within the /ossy coaxial rod

e/emem resulting from electrical conduction currents associated with the presence of

the radial electric field component, E Of course, 1t

rl:

that the two radisl wave numbers, h1 a and h23 N

was established in part 2.1.2

and the axial wave number,

Ba, are complex-valued quantities. Making use of relation A.22, which is a property

of analytic continuation for Bessel functions, it 1s clear that

hyb Tothyb) 1 (hyb) - Wb 15(R)b)
!h-lb ID(h1b) I-—l(h]b) = [h1b Io(h

3 2 Im[hyb To(hyb) 1 (R b)].

WNote thaet [hyb - 1,(h b) - 1,(Rb)f"

I1(h1b)

0) 1, (o) 7

maans tlki the complex

conjugate of the entire quantity t:antmﬁsd within the square bm:kﬂ; ) Therefore,

equation 3.12 is a real-valued expression. In fact. it is clear fraurtha integrand of

equation 3.6 that this equation must be positive real.

The equation for the power dissipation associsted with the region 1 anguisr

slectric field, Fde y  will now be derived. IEei | 2

E 1 ?e] i1s calculated
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using equation 3.3 and then this quantity is substituted into equation 3.7. The following

new relation is needed to svaluste the resulting integrat.

z=+2, z
[cossz]2 dz = 2 ’f—(coszsrz + sinhzejz) dz
Z=‘Z] 0
= —_.b__ : A
2 Brb Sjb [an stn(2 Br Z'I) + Brb sinh( 2 Bj Z])] (3.13)

4

Using equations 3.13 and 3.11, the integral given in equation. 3.7 i1s evaluatad to show

that

2 2 2 .. 2 , 2
- all 2 (1204)° (ka cotany)® sin“y [K,(h,a)|"-
Pag = mabo Ry b hy b B.b ij 1°72

”~ ~~ A
' [hib 15(hyd) 1,(hib) - hib T (hb) T,(hb)] -
2
[hya I5(hyb) Ky(hyb) + hya Iy(hyb) Ky(h,b) |

(3.14)

[an sin(2 B z]) + Brb sinh(2 Bj z])J.

Equstion 3.14 s the time-averaged power dissipated within the [ossy coaxisl rod
e/ement resulting from electrical conduction curren;s associated with the presence of

the angul/ar electric field component, E Examination of the right hand side of

eV’
equation 3.7 shows that it must have a positive real vaiue.
Finally, the equation for the power dissipation associated with the region 1 axial
electric field, P dz’® 's derived. This 1s done by using equation 3.4 to !v';lu-!ti
| Ez] | 2 . 3 21 '?21) snd then by wbstltm‘ing this result into the right hand side of
equation 3.8. One additions! relation is needed to evaiuste the integral appaaring in

equation 3.8. This relation is



r=b b

ijg ;?110(h1r)|2 dr =§/?r Tohyr) ?;(h1r) dr

r=0 0
f :

= ) rIythyr) 1(hr) dr = d D5 3.15)
2 olhyr) To(h, TR By (3.15)

[hyb 1o(RY0) 1y(hyb) - Byb 15(hib) 1,(R)b)].

In the course of carrying out the caiculations to obtain equation 3.15, it was nacessary
to make use of the property of analytic continuation for Bessel functions, equation A.22,
the Bessel function integral, equation A.51, and the recurrence relation for Bessel
functions, equation A.5. Equations 3.15 and 3.13 are used to evaluate the left hand side

of equation 3.8. it follows that

2. | 2 1€ . . Z

cos™v [hyal® [hpal® IKo(hya) |, (3.16)
h”b h]jb Erb ij
[ny® To(hyo) Ty(hyb) - hyb To(hyb) 1y(h,0)]

[hya 14(hyb) Ky(hyb) + (e, = § o/wey) hya 1,(hib) Ko(h,b) |2

[sjb sin(2 8. zy) + 8.b sinh(2 By z,)].

e/ement resul/ting from electrical conduction currents associated with the presence of
the axial electric field component, E . The right hand side of equation 3.8 shows
that it must be positive real in vaiue.

The tota/ time-averaged power dissipated within the lossy coatial rod element is

given by equation 3.9. It is simply the sum of equations 3.12, 3.14, and 3.16. Note that
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sl the power dissipation equations which have been obtmned are “exact” - no
spproximations have been made in ther derivation from the region 1 electric fiald
components. The radisl wave numbers, h,a and hoa, and the axial wave number,
Ba, which appear in the power dissipation equations are obtained as solutions to the
disper sion equation, equation 2.65, and the separation constant equation, equation 2.88.
It 1s of interest to determine how large of a contribution each of the three
region 1 electric fields makes toward tha total time-averaged power dissipation
occurring within the lossy coaxial rod element. In particular, 1t is desirable to determine
which electric field makes the dommant contribution. This Information can be obtaned by
Stuﬂy;ﬁ'g the ratios Pde/PdZ and pdr"lpdz’ From equations 3.12, 3.14, and

3.16, the following two equations are readily obtaned.

. (ka catany) tanzw ‘K (h a |7

dz |hy a|* [h, a| |K ha)]

P

[h Tg(hyb) 1 h b) - Wb I -
[hyb 1 ) 1 { A At s (3.17)
h

V[h b 1 (h b) 1 L (h, b) - '\ b Ioih,b) 1,(hyb)]

lﬁ]a I (h,b) Ky (h b) + (z -] a/meo)rhza I (h b) K'(ﬁzb)y_

2

IhaI(hb)K(hb)+h2aI(hb)K(hb)lz

*

and
7 Par  [sal? [Mpd Ip(hyb) I,(hb) - By I (n b) 1y(hyb)]
T P Inal T 1Ry Lyl T F
dz  [hyal [nyb 14(RyB) 1y(hib) - Wb 1, (h b) 1 (R b)]
EBrb 5‘““‘?,Ejﬁf1) - sj, sin(z 8, 11?2! (1.18)
[8,b sinh(2 8y z;) + 8,b sin(2 ¢ 8, 2;)] '
-
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Note that aqguation 3.17 15 ndeg
2 2.

nt of the lossy coaxial rod slement length,

A digression will now be made to discuss the apphcation of Poynting's theorem
incomp/ex or phasor form n order to invastigate the power dissipation occurring withun
the lossy coaxial rod element Since many clear derwvations of 1 are avalable, the

theoram itse!f wili simply be listed here. (For example, see 18, pp. 31-32; 30, pp. 30-
33; 36. pp. 625-628; 41, pp. 312-315: and 44, pp. 316-317))

E dv
v
, S o2 ,
v iz { (3 50 IHy1% < F ¢g e 16,127 av

(3.19)

15 the approprste form of Poynting’'s theorem in complax form as applied to the lossy
surface r = b,

coaxial rod slement. Tha ciosad surface of integration, S,
- Z 1

< I =
S 4 )

~ Z’]!
“r < b.

e

consists of the cylindrical
7 and the two endfaces Z ELZ]. 0 &«

Figure 3.1 illustrates the lossy coaxial rod slement closed surface.
Equstion 3.5 shows the volume of mtegration, V.

field components, equations 3.2 - 3.4 and equations 2.73 - 2.75, are to be used mn
equation 3.19. Equation 3.20 is obtaned by taking the real part of both sides of equation
3.19. |

&*

L

Rel- 3 @ () x B - &)

Vv

(3.20)
This has the important meaning that the total time-averaged power flow /nto the closed

surface associsted with the lossy coaxial rod element equals the total time-averaged

power dissipated within the element volumae. (Note that, as mentioned in section 2.1.1,
the lossy coaxial rod volume is assumed to be source—fres.)
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In addition, the radial and a

flows, PH

jr=b
displayed. (Note that 21321

air
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~lossy rod
element surface

O0<b<g<m®
0<zI1<®

+— Z=-2|

3.1 The lossy coaxfal rod element of the
sheath helix surrounding a lossy coaxial rod 1s shown.

and Pz1

)

xial time-averaged power
y respectively, are
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Previously, n section 3.1, the right hand side of equation 3.20 was evalusted. i1 s

now deswred to evaluste the left hand side. in cylindrical coordinates, the compiex
Poynting vector associated with the region 1 fields is

1 X Hy s (B Wy - B W) g, (3.21)
FlE Ry s By Ty e (B Wy - Egy Hp) oy
Therefore,
Re[- %‘ §(,§_1 X Eﬂ ds] l
5 R
- - P, . + (F'Z]fzs_Zl - Py Z=11), where (3.22)

2=-1, 6=0
and
p 1 - -~ L
271z, s — 1
2
6=2x r=b
1 P - e
= Re[r j f (E'_'I o1 EBT HF1)|Z!*Z' r dr de]- (3.24)
8=0 r=0 '

&
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Pﬂ b 1S the radial time-averaged power fiow m the + gr dwection, through
F; - L

P

L
the cylindrical surface associated with the lossy coaxal rod slement. ~ 21

the axial time-averaged power flow in the + direction thwrough the two endfaces

bd
associated with the element. These two power flows are clearly shown in Figure 3.1,

flows, equatons 3.23 and 3.24, respectively, wili now be outhned. The field
components, equations 3.2 - 3.4 and equations 2.73 - 2.75, were used. The property
of analytic continuation for Bessel functions, equation A.22, was employed. The relation

Re[z]

% (z + 7) wasaiso used. Equations 3.13 and 3.11 were employed.
Finally, the trigonometric analytic continuation properties

cos(gz) = cos(Bz) and sin(gz) = sin(Fz) :
were used. All the trigonometric functions were separated into their real and imaginary
parts. To mimmize the chsruption n the continuty of section 3.1, the values of equations
3.23 and 3.24 will not be explicitly stated here. 't will be emphasized that the author was
able to demonstrate that the net radial and sxial time-averaged power flow into the
/assy coaxial rod element closed surface, as stated /n equation 3.22, is exactly the same
as the total time-averaged power dissipated within the e/ement volume, equation 3.9.
This was accomphshed by combimng the two equations obtaned from separately
equating respectively the real and maginary parts of the separation constant equation,

equstion 2.88, with equation 3.22, and performing a large amount of algebrarc

manipulations.
In summary, the preceding discussion has achieved two important purposes. First,

it has provided snother outiook for investigating the total time—averaged power
dissipation occurring within the lossy coaxial rod slement. Instaad of rggrdiﬁg it from
the point of view of electrical conduction currents which result iIn ohmic heating, the
power dissipstion has been considered as the net time-averaged power flow into the
element closed surface. Second, the discussion has supported the validity of the



previously obtsined results. The total time—averaged power dissipation, eguation 3.9
(which 1s the sum of equations 3.12, 3.14, and 3.16), was verified to be correct from a
completely different method of csiculation than that which was originally used to derive
it

As was mentioned earlier in section 3.1, the two radial wave numbers and the
axial wave number appearing in the power dissipation squations are obtaned from the
solution of the dispersion squation, squation 2.65, and the separstion constant equation,
equation 2.88. Unfortunately, it was previously discussed at the beginrung of section 2.3
that the direct solution of equations 2.65 and 2.88 to obtain numericai values of the
wave numbers solution 1s usually extremaly difficult to accompiish. Therefore, 1t 1s not
usuaily possible to numerically svaluate the power dissipation equations which have been
obtained. However, thhs can be approx/mate/y sccomplishad for certain values of the
radisl wave numbers soiution. When the magnitudes of h1 a and hza are either
small or large, a discussion of the approximate wave numbers solution was previously

given m part 2.3.1, which corresponds to the case when “the /ossy rod /s not a good

good conductor”. Making use of this knowiledge, it 1s possible to derive small and large
argument approximations of the power dissipation squations. This 1s the purpose of
sections 3.2 and 3.3.

3.2 Approxim Representations of the Power Dissipation Equstions When “The
Lossy Coaxisl Rodl is Not » Good Condustor”

" Equations B.12, 3.14, and 3.16 are the exact power dissipation equations.
Approximate repr*sontatuon; of these equations will now be derived and examined for
the case when “the lossy rod is not a good conductor”. (The meaning of the expression
in quotation marks as it is used in part 3.2.1 is the same as it was in sub-part 2.3.1.1,
This term has the same measning as used in part 3.2.2 as 1t did in sub-part 2.3.1.2.)

The approximate power dissipation equations are obtained by using the small
srgument and large argument representations to aspproximate the Bessel functions
sppearing in the exact equations. These approximate equations will be seen to be

'
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relatively easy to evaluate. Equally mportant, the effect on the app: -mate power
dissipation equations of varyng the operating frequency, the sheath helix geometry, the
lossy coaxial rod siement geomeatry, and the 10ssy rod electrical properties, 1s often

reachly understood.

3.2.1 Small Argument Rapressntation
The smal' argument approximations of equations 3.12, 3.14, and 3. 16, the exact

number magnitudes are restricted so that h,ja < 0.100 and lhzta <
0.100. Equations A.26 - A 29, the small argument Bessel function representations,
that equations A30 and A. 3! were used n place of squations A.26 and A.27 to

approximate the guantity

hyb I (h.b) 1.(m 0y b)) I '
10 Ig(hyb) 1,(Rb) - hyb 1o(Ryb) 1, (hb)

because the iatter mentioned two equations are not a good emough approximation.)
Making the previously mentioned substitutions and performing a small amount of aigebra,

equations 3.25 - 3.27 are obtaned.

, NPT
R 3!!2 e b3 o (20T 2 2, [hpal ~ 18al”
dr ) ca cotanv’ B a B.,a
k 8.2 8,
110g(0.891 h.a)|? ,
- 1’9 i A . (3.25)
(h,b)¢ *
11 - (e - § o0/we,) 2 l1og(0.891 hfb\')l2 - 7
' o Ak SAN T n2

™

b sinh(2 By zy) - Byb stn(C 2 8, 2,)1],

]
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& 2 D
Sp :-SQH_ x b3 o (120n)2 (k2 cotany)® sinly -

de 8.2 B8
[Brb sinh(2 Bj z]) + ejb sin(2 B . z])]i and (3.26)
4
2 |h,aj
Py T AL L2y o (120 2 o2, N2t
8,2 B2
|10g(0.891 hza?iz B
> —— s (3.27)
(" (hzb) 2
|1 - (e, - § o/uey) —5—— 10g(0.891 h,b)]|

[Brb sinh(2 By zy) + st sin(2 B z])].

As a check on the accuracy of the three preceding equations, er:zu;;:i«:ﬁs A.26 -
A.29, the small argument Bessel function representatnons were used to approximate
equations 3.2 — 3.4, the region 1 electric field components Equations 3.6 - 3.8 were
then used to aaiculste the approxnmate power dasslpauons Exactly the same result as
equations 3.25 - 3.27 was obtained. In summary, using the exact elqctric field
components, njtegratmg these to obtain the power dissations, snd then applying the »
smail argumonf Bessel function representations, gives the same result as when the small
argument Bessel function representations were used to approximats the electric fislds,
,and-&hen the integration was performed to obtain the power dissipation gqua;gns. This

result is expected. !t provides a check on the correctness of equations 3.2% - 3.27.

Equation 2.106 is the small argument approximation of the dispersion equation,

simplify equations 3.25 and 3.27.
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2 2 2
N a
Par * % w636 (12012 (ka cotany)? Cgiaysﬁg -

[Brb sinh(2 BJ 11) - BJb sin(2 B z])]

2 »
(h,b)
—2 " og(bsa)|?

“and (3.28)

v - (e - 3§ o/weo)

r

2 2
Py, Q')*%— v albo (120w)2 (ka cotanw)2 §£%3§¥3 .
r J

[Brb sinh(2 8. z,) + ij sin(2 8, z])].

(h,b)?

11 - (e, - J o/wey) ——-—;———-1og(b/a)|2

(3.29)

Equagnons 3.26, 3.28. and 3.29 can be evaluated by using the wave numbers
solution discussed In sus—part 2.3.1.1, This mvolvés equation 2, 1'06 and equation 2.88,
the separation constant equation. Graphs of the radial wave number solution hza are
given in Figures 2.2 - 2.5.

Rather than following the procedure discussed in the previous paragraph to
evaluste equstions 3.26, 3.28, and 3.29, the approximate power dissipation equations
can be more easily understood by making some further approximations. A significant
simplification is achieved by assuming that the magnitude of the axisl wave number 1s

sufficiently smail for the particular normasiized lossy coaxisl rod element length of

concern, 2 z]/a, sothat 2 |g] Z,] = |gla - 2 z]/a << 1. This
means that
) ~ (2 Bl" 11)3 q
sin(2 B z]) 28,2 - ————g————— an
\
' .- (2 8 z])3
‘ sinh( 2 B, z,) =2 8, z, + i Bt A
Ve (2852 34 "



One final approximation which will be made 1s to assume that the magnitude of the radial

wave number associated with the air medium, | h,|a,

15 sufficiently small, takmng into

account the normalized lossy rod radius, b/a, and the lossy rod materal electrical

properties, so that

v - (cr - J c/uED) -

(h,b)?

[t

Mo

log(b/a)| = 1.

and 3.29. it 1s now possible to list the approximate small argument power dissipation

equations.

«

2
dr j%%— o 2’

‘o
n)

(ka cotanv

~i1u£
Pyo = L= o

) 2
(ka cotany)® sin‘y ——,

a3 (b/a)% (120n)2

(bra)? (120%)2 |Balt -

, 2 1z
caszw (—*—l)3
a

]

2

2 _
sz ?B-é-‘— v o al (b/E)z (1207)2

(ka cotanw)zicaszt —,

2 21

(3.30)

(3.31)

(3.32)
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P 2 2 2
dr ~

n rodbfa) gt (N2 g (3.33)
dz a

P

de ~ 1 2 2 '

p—d: i (b/a)c tany. (3.34)

Equations 3.33 and 3.34 were obtaned by simply taking the appropriate ratios of
equations 3.30 - 3.32. For convenience. all the assumptions made in deriving equations
3.30 - 3.34 from the exact power dissipation equations will be gathered together and

hsted below.

Ihyla < 0.100, |hpla < 0.100, |Bal- 2 zy/a << 1,

b2 (3.35)

(h ~
log(b/a)| ="1.

and |1 - (e, - § o/wey) —2

A brief digression will be made concerning the first two requirements listed in
equations 3.35. Figures 2.2 - 2.5 and equation 2.109, the small argument approximate
equation for caiculating h, .2 = h, |a, make it clear that |h2 |la < 0.100
18 usually true if ka cotany < 0.100. The separation constant equation,

equation 2.88, shows that when | h, |a < 0.100, itisnecessary that

VEr ka < 0.100 and /5 weg ka < 0.100,

to approximately ensure that | h] |la < 0.100. In short, the reqQuirements on the
magritudes of the two radial wave numbers, [h]]a < 0.100 and ]hzla <
0.100, can be approximately explicitly stated in terms of the operating frequency,
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the sheath helix geometry, and the lossy rod electrical propertes, according to
4 ’

ka cotany < 0.100, ‘/er ka < 0.100,

and «o/weo ka < 0.100.

Equations 3.30 - 3.34 are the approximate small argument power d1ssipation

(3.36)

equations, when the /ossy rod /s not a good conductor. (The term “the lossy rod i1s not a
good conductor” 1s defined as having the rod materiai electrical properties such that
equations 3.35 and 3.36 are satisfied. This places restrictions on how large the quantities

€. and o/weo are allowed to be. Note that O/wco >> € /s allowed here,
which is the usual definition of the term “good conductor”.) Equations 3.30 - 3.34 are
vahd for both the three region configuraton (b < a) and for the two region
configuration (b = a).

From the pomnt of view of the electromagnetic heating of common materials,
these small argument power dissipation oqiu/tuo‘r:s\e very important. For example,
materials such as food stuffs, biological tissues, lumber)nd oil sand, couid be heated by
sdfrounding them with a sheath helix (25). The elsctrical properties of these materials are
such that for a wude..tnnge of operating frequencies, sheath helix geometries, and lossy
coaxisl rod slement geometries, the restrictions given in equations 3.35 and 3.36 would
be satisfied.

Equations 3.31, 3.32, and 3.34 are easy to understand because they are explicitly
given in terms of the siectrical current on the sheasth helix “windings”, the operating
frequency, the sheath helix geometry, the lossy coaxisl rod siement geometry, and the
lossy coaxial rod element electrical properties. However, in order to evaluate equstions
3.30 and 3.33 it is necessary toknow |8|a. The value of the mo?'vtudo of the axial
wave number s spproximately caiculsted by making use of the separation cohstant
squation, oq;utnon 2.88, and the small srgument approximate representstion of the
dispersion equation, equation 2.109.



(2 o~ 2 2 ~ . , 2 s
1821° T (s,0)% (8,0)2 T (h, 2)% + (ka)?, (3.37)
/.w/he:e hzra is approximately calculated from the relation

(“—aﬁ%ﬂ)z T 12 109(0.891 h, a).
£r N

Note that the solution for hza shown in Figures 2.2 - 2.5 can be used along with the

separation constant equation to give a slightly more accurate vaive of | 8 l a than that
which is obtained from equations 3.37.

A discussion of the behavior of the approximate power dissipation equiations as
the operating frequency, sheath helix geometry, and lossy coaxial rod eilement geometry,

_ i
are varied 1s now given. Decreasing only the pitch sngle and the frequency of operation

2nf ‘[ué’—gd a cotany

remaing constant, it 1s clear from equations 3.30 - 3.32 that P4,  will be greatly

in such a fashion that the variable ka cotany

reduced but P, -~ and sz will be approximately unchanged. This behavior
originates from the fact that the pitch angle appears by itself n E.; as siny,
while in E.y and E,) itappesrsas cosy.

Making' the normalized lossy coaxial rod siement length, 2 z,/a, smalier
means that Pdr
because £ _, hasa singz axisl dependence, while Eqy and By have s

COSBZ axisl dependence. (Note that, as mentioned m equstions 3.35, |8 a
2 23/a << 1 has been assumed in the derivation of equations 3.30 - 3.34. Of

becomes reduced more rapidly than P . and Py, This s

cowse, 0 < [B|z ¢ IE!Z1 '8 true when the electric fieids withm the lossy

cosxisl rod element are considered. Therefore, cosgz = | and sing; =

Bz‘l) Making the range of | 8|z values smaller by reducing 2 21/’3 clearty

tends to reduce lEﬂl but it has an insignificant effect on | E and

81 |
,Ezl | - It only the lossy coaxial rod radius s reduced, just the varisble b/a
© equations 3.30 - 3.32"%ecomes smaller. It 1s clear that Pyp and P4ge become

smaller more rapidly then P .- The explanation for thws behavior originates from the

¥



radisl dependence of the three region 1 electric fields. Equations 3.2 - 3.4, the slectric
fisld components, show that the radisl dependence of £, and Eg, is given by

I(hyr), whie that of E is given by I5(h,r).  As mentioned in

z1
equations 3.35, | h] la < 0.100 is true and so the small argument represantations
of the Bessel functions, equations /A,.EE and A27, can be usad to approximate

I ] (h] r) and IO( h] r) at al! points withun the iossy rod slement. it is seen that

Er] and 591 are directly proportionsl to the r;dul distance, while EZT 8

independent of it. Clearly, IEHI and IEE)1 | are largest near the lcssy rod
surface. If the rod radius is decreased, the magnitudes of £, and Egy near

r = b become less while that of E21

reducing only the lossy rod radius mesns that P, and P,y become small more

15 spproximately unchanged. Therefore,

rapidly than P . (Figures 2.14, 2.16, and 2.18 illustrate the radial dependence of
dz o

the electric fields for the small argument case, when “the lossy rod is not a good

b/a are used. Therefore, they can be usad to study how the slectric fialds within the
lossy rod element behave as the rod radius is varied.)

Attention 1s now directed to detarmining which of the three electric fields riiskes
the major contribution towards the total power dissipated within the lossy coaxial rod
slement. Assuming that the sheath helix is sufficiently tightly wound so that o < ¢ <

10.0°, itis clear from equstion 3.34 that Poz > Pgo:  Furthermores, since
IBla. 2 z]/a << 1 has been assumed in the derivation of equations 3.30 -
3.34, it follows from equation 3.33 that sz > Pdr* Therefore, the axisl
region 1 electric field provides the dominam contribution to the total power
dissipastion occurring within the /ossy cosxisl rod elerment, for the small argument
cese when "the /ossy rod is not a good conductor™. To a good approx/mation,

equstion 3.32 states the totel power dissipstion occurring within the /ossy coaxiasl rod

e/ement.
Informstion concerning how the total power dissipstion is distributed throughout
the iossy coaxisl rod element volume can be obtained by examining the spstial

dependence of the axial electric fisid component in regon 1. E.1 hasa cosBz
axial dependence and s Io(h]r) radial dependence. Since |h1|a < 0.100

snd |[B)a .2 z]/a << 1 has been assumed, it i1s Clear from the small argument
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representations of the two previously mentoned functions that cosgz = | and
3
approximately constant n value. This has the important maarng that the tota/ power

Ih( hyr) %7 1. At all points throughout the lossy coaxial rod element, E

dissipation is approximeately distributed uniformly throughout the element volume. A

more detailed discussion of this behavior for the special case when the lossy rod

material electrical properties are such that d/mzo << €, s given later in part
3.4.3

Chute et al. (25) mentioned the fact that for the two region configuration, where
the sheath halix interior region 1s completely fillad with a low-loss material, the total
power dissipation for the situation where the wave numbers solution 1s small in
magnitude, approximately results only from the contribution associated with the interior
region axial electric field. Furthermore, 1t was mentioned that the total power dissipation

15 approximataly vn/formly distributed throughout the iossy material volumae.

3.2.2 Lirgi Argument Representation ,

The purpose of part 3.2.2 s to obtan large argument approximations of
squations 3.12, 3.14, and 3.16, the exact power dissipation equations. Due to the nature
of the radial and axual wave numbers s;::lutn:mi it 1s necessary to separataly consider the
two region and three region shaath helix surrounding a lossy coaxial rod configurations.
This will be done in sub-parts 3.2.2.1 and 3.2.2.2.

3.2.2.1 Two Region Configursation

it 1s assumed that the lossy coaxial rod completely fills the interior region of the
shaath halix and touches the sheath surface. Only two regions ara present, the rod-filled
ragion and the region exterior to the sheath helix.

Previously, in sub-part 2.3.1.2, the two region large srgument wave numbers
solution was obtained. This solution is given by equation 2.118. It is convenient to repesat

this equation herae.

g;- ~ ) ,;5 . (;,, + 1)73 JVVQ{MED

ka cotany (3.38)
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As was mentioned in sub-part 2.3.1.2, to justify the preceding spproximate wave
numbers solution it is necessary that

Ihlla > 1, |h2la > 1, and cctan2¢7> 1;

or, equivalently, that (3.39)

(er+1) - j c:/mzo 2 7
- ~! ka cotaney > 1 and cotan“y>»> 1.

2

Equation 3.38 is very useful because it shows that h1 a, hza and Ba are
explicitly known in terms of the operating frequency, the sheath helix geometry, and the
lossy coaxial rfd material glectrical properties. £quations 3.39 define what /s meant by
the term “the /ossy rod is not 8 good conductor™ as it is used in sub-part 3.2.2.1. Note
that equations 3.38 and 3.39 show that either €. ~> G/NEQ or rj/m;Q >>

€y €sn occur. This is the ususi mesning of the expressions “good dislectric™ and

~“good conductor”, respectivaly.

Taking -just the first term of equations A.36 - A.39, the large argument Bessel
function representations, and substituting this into equations 3.12, 3.14, and 3.18, the
exact power dissipation equations, making use of the fact that b = a. equations 3.40 -

3.44 are obtained.

3!2 " 53 g (12@1)2 coszi
P * - N S— _— —
dr a/mcD_(ka cot;nv)g;](ﬁr + 1) - 3 ﬁ/mEDI hra

[

' [hra sinh(2 h‘j 21) - hja sin(2 h, z])], (3.40)



B 2 . 33 o (120w)2 sinly )
PdE = - | 7 — - N — °
o/we (ka cgtanw) '(Er + 1) - ﬁ/ﬂial h.2
[hra sinh(2 hj zj) + hja sin(2 hr 11)], (3.41)

2

S T v ado (120:)3 cos®y
P . E = - I — — —— %
dz . -

E/QE (ka c:c»tanw)— I(Er + 1) - ] G/mEDl h'_a

(h.a sinn( 2 hy zy) + hja sin( 2 h. )1, (3.42)
P, [h_a sinn(2 j 11) - hja s1n(2 h. z2y)]

' ———, and (3.43)
‘ dz [h a sinh(z hj ) + hja s1n(2 h 11)]

P . .
F,—Ege = tanly. , (3.44)
dz

In the course of carrying out the caiculations Yo obtain equations 3.40 - 3.44, it was

necessary to use the relation =
hea hja . —5‘ (ka cotany)?,
5 ;

which was obtsined by squaring equation 3.38 and then equating the imaginary parts.
Equations 3.43 and 3.44 wegp derived b; simply taking the appropriate ratios of
equations 3.40 -3.42. Note that h.a = Re[ha] and hja = Im[ha]. ha

is the (single) wave number which ditlynmgs the approximate large argument radial and
axisl spatial dependences of tha F;E{;mts assocuated with the two region sheath
helix surrounding a lossy coaxial rod configuration. To justrfy the large argument Bessel
function spproximations used to derive equastions 3.40 - 3.44 from the exact/power

dissipation equations, 1t is necessary that Wurmﬁ isted n equations 3.39 are
satisfied.
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Equation 3.38 makes it clear that h a > 0  and hja < 0. Employmg

the basic trigonometric function and hyperbolic function relations
sin(-x) = - sinx and sinh(-x) = - sinhx,

1t 1s seen that equations 3.40 - 3.42 are in fact pasitive real In value, as they must be.
Equations 3.40 - 3.44 are the approximate |arge argument power d/ssipation
equations for the two region sheath helix surrounding & |ossy coaxial rod
configuration, when ‘the lossy rod is not a gdod conductor. The values hra and
h 3 a which appear are approximately evaluated from equation 3.38.
It 1s possibie to derive equation 3.44 without performing a detalled calculation of
Pde snd P, . From equstion 1.6, the relation between the anguiar and axial

elsctric fieids in the rod-filled region at the sheath surface is

cotany. .
r=3 r=a

The radial dopm:! of Ee? and Eﬂ i1s specified by Io(hjr—) and
I](h, r), respectively. When r s sufficiently large so that ]h1 [r > 3},

ﬂ
the zero order form of the large argument Bessel function reprasentations, equations

A.36 and A.37, sre approximately vahid, and they show that

*hTr
IaCthor) 1. (hyr) ¥ —0
D 1 - 71 * ! = — — =
! "  { h1r
P N
Therefore, Eﬂ = - 551 + cotany is valid for radia distances sufficiently

close to the sheath helix surface so that | h,' [r > 's satisfiea. Furthermore, the

large argument Bessel function representations make 1t ciear that [ and

g1
| E 21 | are large near the sheath surface. but thay rapidly decay as the radial distance

decreases. Examunstion of equations 3.7 and 3.8, u:mﬁn previously mentioned
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relationship between Ee’l and EzT' shows that squation 3.44 1siiﬂ?dmaly
obtaned. In short, this equation 1s seen to be a natural consequence of the boundary
conditions at the shesth helix surface and the large argument behavior of the Bassel
functions.

Attention 1s now directed to determining how much of a contribution aach of the
tree region 1 electric fsids makes towasrds the total power dissipation. As was
previously mentionad in equations 3.39, it 1s required that- the sheath helix is sufficiently
tghtly wound so that Cgtanzw >> 1. Therefore, it s obvious from equation 3.44
that P, >> Pg . The contribution to the total power dissipation occurring
within the lossy coaxial rod element /s much grester for the region 1 axial electric
field than it is for the region 1 angular electric f1e/d, which are associsted with the
two region /arge argumem case, when "the /ossy rod /s not 8 good conductor”.

The relative contributions to the total power dissipation associated with E "
and Ez‘l

mind that €. > ] =and ka cotany > 1, it 1s clear that hr‘a = 1 s trua.

can be obtained by exammning equation 3.43. From equation 3.38, keeping in

However, depending on the electrical properties of the lossy rod material, 1t 1s possible

that Ihj‘la -2 z,/2 -2 hj Z1 s either less than or greater than uni
This means that it 1s necessary to consider both the large argument representatior
sinhx = E*x/'zi which is approximately vahd for x > 1, and the small

argument representation Sinhx = x, which s approximately vahd for x < 1,

in equation 3.13 Thess both show that Pdr = sz . The comtribution to the total
power dissipation occurring within the /0ssy coaxial rod element is approximately the

two region configuration /arge argumemnt case, when “the /ossy rod is not & good
conductor”,

Information concerring how the total power dissipation it distributed within the
lossy coaxial rod slement volume can be abui_?éd by examining the spatial dapendence
of the radial and axial region 1 electric fields. It was mentioned earlier in sub-—
part 3.2.2.1 in connection with the discussion of equation 3.44 that the region 1 electric
field magnitudes are rapidly attenuated st decreasing radial distances away from the

sheath helix surface. Figure 2.12 displays the radul dependence of the eiectric field
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components associsted with the large argument case of the two region configuration,
when “the lossy rod i1s not a good conductor”. This figure provides a good illustration of
how rapidly the fisid magnitudes become reduced at radual distances away from the

for the two region, /arge argument case when “the /ossy rod is not a good conductor”™ /s

concenyrated near the /ossy rod surface, and it is very smal// near r = 0.

3.22.2 Tivee Region Configuration

The large argument approximations of the exact power dissipation squations will
be obtaned for the case when “the iossy rod is not a good conductor” and for the
geometry where b < a It will be assumed that the restrictions on the wave numbers
hsted n equations 2.111 and 2.112 asre satisfied so that equations 2.116 are the
spproximate wave numbers solution. For convenience, equations 2.111, 2.112, and

2.116 are repested here. It i1s assumed that

|h]|b > 1, |h2|b > 1, and h
or, equivalently, that (3.45)

ka cotany - b/a > 1, ka cotany - (1 - b/a) > 1,

and if €, Q’cotanzw, then \b’weo ka - b/a > 1.

L)

it was previously shown in sub—part 2.3.1.2 that oquatioqa 3.45 lead to the following
approximate wave numbers solution.

’

~ r~
- = ka cotany,
h2ra °r° k ¥

Ihzjla': IBJIG << ka cotany, and (3.46)
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Lo~ - 2 b
hia = ka J(catan V- z'_) + a/mec. (3_453
J (continued)

Substituting just the first term of the large argument Bessel function
representations. equations A.36 - A.39, into the exact power dissipation equations,
equations 3.12, 3.14, and 3.16, making use of the approximate wave numbers solution,

equations 3.46, equations 3.47 ~ 3.49 are obtaned.

N2 ,
Py = i-ﬁ“ v ado (1200)2 -

ka cotan¥ ﬁ@szw E=2 ka cotan¥ (1-b/a)

; 5 (3.47)

G

h1fa Eja lhTa + (Ef = J /wED) ka cotanv,

[ka cotanv sinh(? By 29) - B4a sin(ka cotanv °2 z,/a)],

Y2
Pda‘?B—r” n a3 o (120m)2

2

ka cotanv siny e 2 ka cotanv (1-b/a)
N Y ('3.48)
h,.a Bja [h1a + ka cotanv|

[ka cotanv sinh( 2 Ej z,) + fja sin(ka cotanv * 2 z,/a)],

. A |Z 3 , a2 | T ~
Pd = * a~ o (120%)° - : (3.49). .

e
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| (3.49)
lh a|, cosy E-E ka cotanv (1-b/a) (ccntinued)
ka cctani h1 j Ih a + (E, - J G/mid) ka cotanvlgf
- ‘Eﬂ; =
[ka cotanv sinh(2 B zy) + Ej a sin(ka cotanv - 2 z,/a)].

To support the correctnass of equations 3.47 - 3.49, the first term of equations

" A.36 - A3S was used to approximate equations 3.2 - 3.4, the region 1 electric fieid

* ka cotany - 2 zi/a.

components. Equations 3.6 - 3.8 were then used 1o calculste the power d:ss:mncns.t‘
Exactly the same results as equations 3.47 - 3.49 were obtaned. As a summary, using
the exact electric field components, intagrating these to obtain the power dissipations,
and then applying the large argument Bessel function representations, gives the same
result as when the large argufment Bessel function representations were used to
approximate the siectric fieids, and then the integration was performed to obtain the
power dissipation equations. This result is expected. tt'pfawdes a check on the accuracy
of equations 3.47 - 3.49.
Two assumptions can be made which significantly simplify equations 3.47 - 3.49.
First, it wili be :smd that the lossy coaxial rod element length is sufficiently large so
that 2 z,/a > 10. It was previously mentioned in sub-part 2.3.1.2 that
lgj |a rapitly becomes smaller as the value of ka co tany Increases. The
sacond assumption which will ba made 13 that for the particular lossy coaxial rod elamaent
length of concern, the value of ka cotany s suffncmnﬂy large so that lgj l|a .
2 2z /a << ], Keeping in mind the fact that iquitlc;ns 3.45 show that

ka cotany > 7, these two assumptions mean that .

1,

By [ka cotany sinh(2 By 29) * 842 sin(ka cotany - 2 z,/2)]

¥ ka cotany - 2 z;/a + sin(ka cotany - 2 z4/a)

L.
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Equstions 3.47 - 3.49 now become the foliowing. y
R 2, ,
- 4 ma> o (120n)° 2 z,/a - o t
(ka Cotan‘d)z COSZW e‘? ka Eﬁtani (igb/a) 7 7
' ———————— ,  (3.50)
hy,a |h1a + (e, - G/mED) ka cotany]|
2
Pde ?)Ji»wa3o(120«)22:1/a=- )
1 f’
(ka cotanw)z ‘5”12‘J e-Z ka cotany (1-b/a)
—————————— . (3.51)
h1ra |h]a + ka cotany|
2
Py, 'A o (1200)% 2 z,/a
Ih]alz cdszw e-2 ka cotany (1-b/a) 5 7
—7» (3.52)
Ih]a + (c - J a-/mio) ka cotanvpl
-
P r~ (ka cotang)2 ,
= 5 , and (3.53)
dz |h1a|
Pde ~ (ka cot.any)2 2
p_ " tan“y -
[hya + Yc - J o/uwey) ka catanwl ,
— . (3.54)

|h a + ka cotani,l2



168

’Equt:ons 3.53 and 3.54 were obtaned by simply taking the appropriste ratios of
equations 3.50 - 3.52.

For convernence, the assumptions which were used in obtaining equations 3.50 ~

3.54 from the exact power d|ssnpmcm equations, !qult!éns 3. 12 3.14, and 3.16, will be

gathered together ‘and iisted n one location.

2 zy/a > 10, lSjlé * 2 zy/a << 1, ka cotany - b/a > 1,

ka cotany - (1-b/a) > 1. and {f e, T cotan?y, (3.55)
then\/c/wco ka - b/a > 1.

When the restrictions listed in equations 3.55 are satisfied, the radial wave number

h10 »  which appears in equations 3.50 - 3.54, i1s approximately evaluated from
equstions 3.46. fquations 3.50 - 3.54 are the approximaste large argument power
dissipstion equations associated with the three region sheath helix surrounding a lossy
coaxial rod configuration, whe»v"x}h,e /ossy rod /s not a good E‘Qﬁﬂuff@r?’

The restrictions on €. and c/mzo hsted in egqustions 3.55 define what s
meant by the term “the lossy rod is not a good conductor” as it is used in sub-part
3.2.2.2. Note that both € r

it 1s obvious from mﬂmir 3.50% - 352 that mcreasing the value of

>> G‘/MED and G/ME‘O >> €, canoccur

ka cotany or decreasing the value of b/a means that the power dissipltion
occurring within the lossy coaxial rod slement rapidly becomes small. From physical
considerations, this behavior 13 expected. Substituting equations A.36 - A.39, the large
argument Bessel function representstions, into equations 2.76 - 2.78, the region 2

(b s r g a) electric field components, making use of the retation h’Zr‘a Cil
ka cotany from equations 3.46. the radisl dependence of the fieid components is
seen to be dominated by the exponentisl ka3 cotany (1-r/a) _ Furthermore,
the boundary conditions given by equations 2.43 and 2.44 state that the radial and
snguiar electric fields are continuous through the lossy rod surface. Evalusting equations
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2.76 and 3.2, the region 2 and regon 1 radial electric field components, respectively, at
\
the lossy rod surface shows thst they are discontinuous according to

E - (e, -9 o/we,) = E . A
rl reb r 0 rZ!'_=b )

Clearly, |E

| <

|E |
ri re r=b

r=b
Finslly, using equations A.36 - A.39 to approximate equations 3.2 - 3.4, it is seen that
the magnitudes of the region 1 electric field components have a radiai dependence

-h, b(1-r/b)
which is dominated by ¢ r .

(Note that from equations 3.45 and
5.46. it 1S approximately true that h] rb > 1.) These field components
exponentially decrease in magnitude as the radial distance becomes smalier. Figures 2.8
and 2.10 provide an illustration of the radial dependence associated with the region 1 and .
region 2 electric fieids, and of their behavior at the interface r = b, for the three
region configuration large argument case when “the iossy rod is not 8 good conductor”.
iIncreasing the value of ka cotany mesns thst the region 2 field components
become more tightly heid near the sheath surface. They become very small in magnitude
throughout the air gap, region 2, and this is especially true near r = b. Keeping in mind
the previously mentioned nature of the electric fields at this interface and the type of
radial dependence of the region 1 fields, it is obvious that increasing the variable
ka cotany wil greatly reduce the electric field magnitudes throughout the rod-
filed region, 0 < r < b. In addition, reducing the variable b/a means that the
lossy rod surface is moved further away from the sheath helix surfacs. Therefore, the
slectric field magnitudes in the rod-filled region will become much smaller. This provides
the explsnation as to why increasing the value of |k a cotany or reducing the vaiue
of b/a has a grest effect on making the power dissipation smaller. (Note that for the
large argument two region case discussed in sub—part 3.2.2.1, the power dissipation

expressions, squations 3.40 - 3.42, do not exponentisily decrease when the varisbie
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ka cotany mcreases. This is because of the fact that since the lossy rad s
touching the shesth helix surface, the slectric field magnitudes at the rod surface are
always reistively large, even when the value of ka cotany 'slarge. No ar gap exists
between the shesth helix surface and the lossy rod surface in which the electric field
magnitudes are r;:udl; axponentially sttenuated.) / ‘

The manner n which the total power dissipation 1s distributed throughout the
lossy coaxial rod element volume s known from the preévious discussion. It was
mentioned that the electric fisid magritudes withun the rod-=filled rg.g@n sxponantially
decrease as the radisl distance decreaes. Therefore, the fotal power dissipation
associsted with the large argument case of the three region sheath helix surrounding a
/ossy coaxia/ rod sonfiguration, when “the /ossy rod 15 not a good conductor!' 1s
concentrated near the surface of the rod. A more detaled discussior of the power
dissipation resulting from the ragn& !1 axial plectric fieid for the special case when the
electrical properties of the lossy rod are such that €. >7 G/wED is given later in
part 3.4.3.

Attention 1s now directad towards deterrmining how much of a contribution sach
of the three region 1 electric field components makes towards the total power
dcssspgtu:;ﬁ occurrning within the lossy coaxial rod element. This 1s achieved by ‘axzﬁ'ﬁmcﬁg
squations 3.53 and 3.54. Making use of fh? gppraxmﬁtnah for h’i a gwven in equations

3.46. 11 15 convenent to exprass equation 3.53 as

P o~ cotanzw ,
pim = — — — (3-56)

dz I(Eﬂtanzw - EF) + G/mio|i

Two natural divisions of equation 3.56 sre when the lossy rod material electrical
properties are such that g/mig > > :,'_1 or when €. > QINED For the first
mentioned case it is clear that Pdrlpdz’ <« 1.

A c/mio >3 €,

This means that Pdf‘/Fdz < 1.

L]
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For the second mentioned ease, 1t 1s bast O consider three speacial situations.

8 £, 2> g/sz

(m)if €p > COtan"y, then Pdr/sz << ],

() 1f (:Cltanzi, 3"3“‘5'&; it follows that pcjr-/Fdz I
- 7
e) 1t e, & cataﬁgw! then ij/mgo’ ka - b/a_> 1 s

required. mn order that the regqurements listad n equations 8.45 are.

satisfied, and it 15 true that Pd!"lpdz_ > 1.

F

Equstion 2:54 shows that the ratio Pde/P 1s more comphcated than the
. B

rato P dr‘lp dz* The first mentioned ratio c:@ms;gs the contribution to the total
power dissipation occurring within the lossy coaxial rod element due to the angular
region 1 electric fieid component, to that due tg the axial region 1 electric field
::amc:r’fg!\t;Tm contribution associated with the anguiar electric field can be regarded as
ohrmic hutmg resulting from a circumferential eddy current. Brown at al. (3, pp. 27)
Investigated the ohmic heating occurring within 8 conducting rod centered within a
physicsl helix by assuming that only this circumferential eddy current was important.
However, 1t will be seen |ster in sections 3.4 and 3.5 that. although when the h:;sg rod
material slectrical properties are characterized by C!/mED >> € tha power
dissipation contribution associated with EET' ususily dominates over that associated
with Ez? , when €Ep >2 a/me:o c:n:eu':, it is true that the power dissipation
contribution associsted with EzfI ususlly domunates over that assocusted with

E g1 N this case, the previously mentioned discussion given by Brown et al. has to
be considered as incomplete and misleading.

The ratio Pdalpdz i$ important because it shows whether the major portion
of the ohrmuc heating results from circumferential eddy currents or axial currents. This
ratio i1s a complicated expression and a lengthy investigation of it has been carried out. A
discussion and graphs of this quantity are giverin parts 3.2.3 and 3.2.4.
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3.23 anhs.of PdS/sz .

The purpose of this section i1s to achheve s better mderttﬁdmg of when the axial
regiort 1 electric fieid component does or, does not dominate over the angular region 1
slectric field, with respect fo its eanﬁh:t?arv toward the total pc ~er dissipation
occurring w'uthm the lossy coaxial rod siement This will be done by plotting a series of
graphs. Both the iarge argument and the small argumelt approximations of ths ratio are
shown on each graph. Equations 3.34 and 3.54 are used as the small and large argument
approximations, respectively, of tha rato P de/P dz° For convervence, these two

equations will be repeated hers. The small argument approximation of the ratio 1s

p ) -
532 = L (b/a)? tan?y, (3.57)
dz
and the large ar gument approximation 1s
/'j il
Pae ' :
3 e — — (3.58
dz |(CDt§n2t = E:r) + ] a/mzcl ' )
| J(cotan?y - ¢ ) + § ofuer s ( i o/ otany|?
K £y I a/uga ‘_:‘ (Er -~ J C‘T/mézo) CDtaﬂtl
:r;f e — - -—
| J(cotan vomoel) + ‘j/fgg + ﬁatanwlz
Note that the solution for h from squations 3.46 was substituted into equation

1

3.54, in order to obtain aquation 3.58. It was previously mantioned in part 3.2.1 and in
sub-part 3.2.2.2 that the requirements listed in equations 3.35, 3.36, and 3.55 must be
met in order to justify the u;lgaﬂaf equations 3.57 and 3.58. in all of the foliowing
graphs, it was ensured that these requirements are satisfied. (Actually, the region 1
snguiar and axisl slectric fields, equations 33 and 3.4, have the same type of axial
dependence. This means that when the ratio P4o/P 4, is calculsted, the quantity
2 Z;/2  does not appesr . Therefore, the restrictions 2 z;/a > 10 and

|8 [a - 2 z,/a << whi@::mmtmdbﬁmiansa,ﬁs.éen@Lmf;ct.hivi
J 1

)
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to be sstisfied.) A gap is left in the graphs where neither the smail or large argument
spproximations of the rstioc can be used.
Figures 3.2 are graphs of PdB/sz versus ka b/a = 0.100, 0.900;
e, = 10.0; 9/wey = 10,05 1.00x10%; ¢ = 5.00°; ' ~and
, ].00,(]0'4 < ka < 10.0 &e used For the iwo curves associsted with
o'/wgo = ]_00“03’ t1s seen that as ks increases, a crossover occurs from
when the contribution to the total power dissipation resulting from E ;1 domnates
over that resutting from E i+ to when exactly the opposite is true. A
Figures 3.3 show pde/pdz versus ka for b/a = 0.900; €p °
10.05 o/wey = 10.0, 1.00x103; y = 1.00°, 5.00°, 10.0°; and
1.00x10™% < ka < 10.0. The fowr curves. which are described by
oluey = 1.00x103 sndby o/wey = 10.0, v = 10.0°, each heve the
property that, for a sufficiently large value of ka, the power dissipation contribution

associsted with [ dominates over that associsted with £

81 zl ——
The final graphs of Py /P, versus ka are given in Figures 3.4. bla = ,

0.800; € = 2.00, 1.00x10%; o/wey = 1.00x10°2, 1.00x10%; v -

10.0°; and 1.00x10'4\< ka < 1.de102 are used. Each of the three
curves, which are associated with o/wso = 1.00x103 and with € =
1.00x10%, o/ue, = 1.00x10"2
ks, ¢t
E

show that for a sufficiently large vaiue of

g1 Wil provide a grester contribution to #he totsl power dissipation than

21

Another set of graphs of the ratio Pde/sz have been prepared. These are
based on the same equations that were used in Figures 3.2 - 3.4. However, the lossy
coaxial rod element is now assumed to be a specific material which might be a candidate
slectromagnetic heating (25). Douglas Beech wood. steak mest, muscie tissue, and oil
sand. are considered. For these materiais. the values of €. and o/wey depend on
frequency. The slectrical properties v‘:ron taken from references 45, pp. 268 - 271;
and 46, Figure 2. Data tables have been prepared which show the slectrical properties of
the materisis over a wide frequency range. in order that the continuity of part 3.2.3 is
not nterrupted, these tables have been put in-Appendix E.
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Pg,+ KA=ka, and ER2=0/wey. ER2=1E1 means the

curve represents g/sz=IDiDi)
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Figwres 3.5 are graphs of Pde/Fdz versus frequency for Dougias Beech
wood. b/a = 0.100, 0.500, 0.800; ¢ = 1.00°, 5.00°; and a = 04490 (m
are used. Table E.1 lists the values of “pr and a/sz as a function of frequency.
The slectrical propertres of Douglas Beech are such thet ¢, >> i/;uED. For the
sheath helix snd lossy rod geometrical varables used n this figurae, it 15 always trus that

E,1 provides a much larger contributior to the total power dissipation than £ .

Figures 3.6 piot Pdé/sz versus frequency for a sample of steak mest
Table E.2 hsts its electrical ;»f@gc-ﬂnas; The same values of b/a. a and ¥ used in
Figuras 3.5 sre smployed hers. 1t 15 ciasr from the dita tabie that thus matecal s not

characterized by either €. >> j/xga or by :/MD >> e The graphs

show that when the pitch angle 1s y = 1 (p°, fortigh trequencies £, makesa

greater contribution to the total power dissipation than £ Howeaver, when y =

"
5.00°, the reverse i1s usually true. Note that the fgmnvflv swift dacrease in the ratio
st high frequencies resuits from the fact that €, and a/@zo sre both rapidly
decraasing with increasing frequency.
S Figures 3.7 display Pde/P dz Versus frequency for a sampie of muscle tissus.
The siectrical properties of this sample are listed in Table E.3, and tha same values of
b/a, a and y as were used in the preceding two sets of figures sre employed
here. For thess graphs. the oniy data available of the electrical properties corresponds to
the large argument case of pde/sz‘ it is clear from the data table thet ¢ >>
a/m:oé When y = ] . 0(0°, itis seen that EZI makes a larger contribution to

the total power dissipation than 61" However, when

. 5.00°, exactly the

opposite is rua.
The final two figures included in part 3.2.3 are based on the sample of oil sand
whose electrical properties are listed in Table E.4. Figure 3.8 uses b/a = 0.100, 0.500,
0.900; v = 1.00°; and a = 1.00 (m. It is apparent from the data table that
a/uED >> ¢

r 8 true over the frequency range for which the smail argument form

ot Pye/Py, is shown whie ¢ >> o/uc, ocous for f = 1.00x10°

r 0
(Hz) . The oil sand sample exhibits a wide varisty of electrical properties over the

large frequency range which is considered. For most of the points shown on Figure 3.8,

E 21 makes s larger contribution to the total power dissipstion than E 01"
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Figure 3.5a Graph of Pde/sz versus frequency for

Douglas Beech wood, based on equations 3.57 and 3.58.
Table E.1 1ists the electrical properties Qf7§h1§
material. Curves for b/a=0.100; »=1.00°, 5.007; a=
0.10 (m); and 1.00x103Hz<f<1.00x10"' 'Hz are shown.
(Note PDeiPde and PDZiPdZi)
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Figure 3.5b Graph of Pde/pdz versus frequency for

Douglas Beech wood,

based on equations 3.57 and 3.58.

Table E.1 lists the electrical properties of this

materifal. Curves for b/a=0.500; ¢=1.00°, 5.00°; a=

0.10(m); and 1.00x103Hz<f<1.00x10
and PDZ=P

(Note PDe'Pde

]]HZ are shown.

dz’)
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Figqure 3.5c ‘Graph of pde/sz versus frequency for

Douglas Beech wood, based on equations 3.57 and 3.58.
Tab?e £E.1 1ists the electrical properties of this
material. Curves for b/a=0.900; ¢=1.00°, 5.00°; a=

0.10 (m); and 1.00x103Hz<f<1.00x10' 'Hz are shown.

(Note PDe*Pde and PDZthZ.)
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a sample of steak meat, based on equations 3.57 and
3.58. Table E.2 presents the electrical properties of
this material. Curves for b/a=0.100; y=1.00°, 5.00°;

a=0.10 (m);
(Note PDe=P

de

and 1.00x10%Hz<f<1.00x10
and PDZdeZ.'

11Hz: are exhibited.
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Figure 3.6b Graph of PdB/Pdz versus frequency fd'r

a sample of steak meat, based on equations 3.57 and
3.58. Table E.2 presents the electrical properties of
this materfal. Curves for b/a=0.500; ¢=1.00°, 5.00°;

a=0.10 (m); and 1.00x10%Hz<f<1.00x10' 'Hz are exhibited.
(Note PDeiPda and PDi*PdZ.)
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Figure 3.6c¢ Graph of Pde/pdz versus frequency for

a sample of steak meat, based on equations 3.57 and
3.58. Table E.2 presents the electrical properties of
this material. Curves for b/a=0.900; y=1.00°, 5.00°;

a=0.10 (m); and 1;DOXIO4HZ<ff1;DDx1O11HZ are exhibited.

(Note PDe=P,  and PDzssz.T z
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Figure 3.7a Graph of Pde/sz versus frequency for

a sample of muscle tissue, based on equations 3.57 and
3.58. The electrical properties of thi;imaterja17§re
listed in Table E.3. Curves for b/a=0.100; $81i00 R
5.00°; a=0.10 (m); and 1.00x10%Hz<f<1.00x10 “Hz are
shown. (Note PDeiPde and PDZ-PdZ.)
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Figure 3.7b

DZ VS, FREQUENCY. FOR MUSCLE TISSUE

PDB/P

Graph of pde/sz versus frequency for

a sample of muscle tissue, based on equations 3.57 and

3.58. The electrical properties of this materfal are
Curves for b/a=0.500;

5.00°; 2=0.10 (m); and 1.00x10 Hz<f<1.00x10
and PDZ:PdZ.)

listed in Table E£.3.

shown.

(Note PDe=P

de

v=1.00°,

1GHZ are
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Figure 3.7c Graph of Pde/sz versus frequency for

a sample of muscle tissue, based on equations 3.57 and
3.58. The electrical properties of this material are
listed in Table E.3. Curves for b/a=0.900; ¢v=1.00°,
5.00°; a%0.10 (m); and 1.00x108Hz<f<1.00x10'%Hz are

shown. (Note F’_DasPde and PDZ=PdZ,)
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Figure 3.8 Graph of Pde/sz versus frequency for a

sample of ofl sands based on equations 3.57 and 3.58.
Table £.4 1ists the electrical properties of the sample.
Curves for b/a=0.100, 0.500, 0.900; ¢=1.00°; a=1.00 (m);

and 1.00x103Hz<f<1.00x107Hz are displayed. (Note PDo=
Pde' PDZ'sz. and B/A=b/a.)
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Finalty, Figure 3.9 s a similar type of graph as the previous figure, except that
now ¥ = 10.0° is used instead of & = 1.00°. It 1s mformative to compare
these two figures. For low frequencies, the ratio Pde/sz 15 NOW much larger than
was for Figure 3.8, although 1t 1s still definitely smalier than unity. Furthermore, for large

arguments, Figure 3.9 shows that £ .7  makes a greater, or at ieast an equal,
contribution to the total power dissipation, than EZ‘] * This s not true of Figure 3.8.
3.2.4 Large Argument Graphs of Py, /P,

Part 3.2.3 was concerned with figures which each displayved both the smail and
large argument approximations of the ratio Pde’,pdz’ 't is now desired to focus
attention only on the large argument form of the ratio. in order tc determine whether the _
angular region 1 electric field or the axial region ! electric field makes the larger
contribution to the total power dissipation which occurs within the lossy coaxial rod
elemaeant. ,

It 1s convenient to repeat the large argument form of Pdelpdz »  equation

3.58, here.
Pde ';r —_— 771 — e —_— 2 59
i’dz l(cataﬁzw -e) @/uaf (3.59)
,I \l(catangiu; - E;) +7,j7r37/9z0 v (e, - 3 o/ueg) C-Gfaiﬁwrl%

lJ(cotan v - e:r,_) + ] cf/m:o + c@tanwlz

Previously, in part 3.2.3, it was mentioned that the following requirements must be

_ satisfied in order to justify the usage of equation 3.59.

ka cotany -b/a > 1, ka cotany - (1-b/a) > 1,
(3.60)

and if ¢ % cotan®y, then \]g?mzé ka - b/a > 1.
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Figure 3.9 Graph of Pde/sz versus frequency for a

sample of oil sand, based on equations 3.57 and 3.58.
Table E.4 lists the electrical properties of the sample.
Curves for b/a=0.100, 0.500, 0.900: = 10.0°; a=1.00 (m);

and 1.00x10%Hz<f<1.00x10'%Hz are displayed. (Note PDo=

Pde‘ PDZiPdZ. and B/Aib/f,)
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';rwo ways of exBmininy equation 3.59 are when the lossy rod material slectrical

properties are such that either €. >> t:i/g.,u:D or a/m:o >> €. s true.

A Cr >> a/weD

Equation 3.59 simplifies to

P 1

(3.61)

Two specisl cases of this occur, depending on the value of the reifftive

permittivity.

& €y >> Cﬁténzw

It follows that

P

d (3.62)

<

Ol Eotanzu

5

b4

Ciearty, P4y >> Py, occurs, sssuming that the sheath helix is

relatively tightly wound.

b) €, << cetanzw
This means that
Ty 2
p (e_ + 1)€ o
de ~ '"r . (3.63)
Idz 4 catan2¢ ‘

Either Pde > sz or sz > Pyg may be true.



8. O/wto >> €, ’
From equstion 3.58, it follows that
P 1
Fge T . (3.64)
dz |cotan®y + j G/m:a|
I \lcptanzt +
I\licntaiﬁzwr

Once agan, two special cases of the above can be considered. These depend on
the value of the gquantity j/gED .

(a) 0/@50 >3 Catanz‘f’

Equation 3.64 now becomes tf
Pde ~ 2 3.65
- * cotan'y. (3.65)
‘dz

tis spparent that P, >> P, , assuming thet the sheath helix is
reistively tightly wound.

2

B  o/wey << cotan’y

This means that

Pao
P

go o~ 11 - 3 a/@gglz
dz

_ ’ _ (3.66)
4 :atanzt

I\?

PdO €< sz is NOw true.

contribution of Egy and £, to the total power dissipation, using many different



194

sets of the varables €. C’/NEQ- and y. Of course, the values of ka cotany
and b/s assocusted with the sheath helix surroundng a lossy coaxial rod configuration
must be such that the requirements histed in equations 3.60 are satisfied.
Figure 3.10 plots Pde/Fdz_ versus a/uzai v = 1.00°, 10.0°;
ep * 1.1, 100.0; and 0.100 ¢ o/wey < 1.00x105 are used.
When o/weq >> €p  and 9/wey >> cotan?, bOth occur, the graph shows
that equation 3.65 1s correct. as one expects. The curve representng v = 10.0°
and €. = 100.90 satsfies €. >> G/mgo and approximately satisfies

€. >> Eatanzh st o/wey = 0.100. As expected, the value of the ratio

precicted by equation 3.62 is seen to be approximately correct. At g/mga =
0.100, the other three curves meet the requirements necessary to use equation
3.63. indeed, their vaiues are seen to agree well with its prediction.
Figore 3.11 1s a graph of Pdefpd; versus Ep- v = 1.00°,
10.0%; o/wey = 1.00x107%, 10.0, 1.00x10%; and 1.00 ¢ e <
1.00x10° e shown. When o/uco = 1.00x10°, t s true  that

a/meo >> €., except near the top of the graph. Of course, it is also true that

CffLuED *> cotan 2,‘, This means that the requiremants necessary 1o use aquation
3.65 are satisfied. As expected, the two curves corresponding to this value of

U/@EQ agree well with this equation. At £, = LQDx]OS_ the other four
curves satisfy both €. >> g/’mzo and €p >2> CGtanzw! Therefore, the
usage of equation 3.62 1s justified. The four curvés do agree with this equation, as one
expects. Consider the two curves representing f'/mEQ = TEOGX’ID—EE At € Cl

1.00, itis true that £y >> '3/"—”:0 nd that €, << CDtangw_ There-

fore, the requirements involved with using equation 3.63 are satisfied and indeed the
curves have the value that thus equation predicts. The final two curves represent
EIAQEQ = ]D-O. At Er :"1-0@. j/mg

cgtanz‘; is correct for ¢ = 1.00 ﬂ‘ and it 13- gpproximately correct for v =

0 >> E’_ i1s true. ‘j/i&)ED <<

10.0°. The usage of equation 3.66 s justified, and the vaiues of the two curves are

ssen to be i good agresment with it, as one expects.



195

o
__ I o — . B
C - Vr’u w
- = w g .
- - o . ~
w o ! W
= - Zj ! 1 =2
- O a
oo W
- rj) ~ . —
- . B #E. * (371 i
a | | = =
i o o
_ = 3 = 7
z% o Jn -
~ B EE
¥2 I§ < -
vl !E 4 B o
E = E/ﬁ ) S
., I N F
, . - x o@x
", | Hr W T
' —_— — % }
oy . 3 - 0
o - v &)
w wo L
o — Heu
a a - N
: . =3 © a
g 37 O
E?f ] v .
4 _ ¢i = ui)
4 - Heu -
= 2
w = ° N
- - . 3. -
3 % :’ %
l -
ALLLL L Jeili L | Lif i _ e o a
e e A N @ N e na;_ —
5 % % » ®» L 5 & L
Z0d/80d

Figure 3.10 Graph of Pae/Pqz Versus a/wey, based on
equation 3.59. Curves for ¢=1.0°, 10.0°; c.*1.1, 100.;
and 0.10¢0/wey<1.00x10% are shown. (Note PDO=P,, . PDZ
Ssz. ERZ?@/::Q- and ER]!:F. PI10E1E2 means the curve
represents y=10.0" and :Fiiﬁﬂi PIE11.1 means the curve
represents ¢=1.0° and ;r-l.lj)
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Figure 3.11 Graph of P, /Py, versus ¢ _, based on

equation 3.59. Curves for ¢=1.0°, 10.0°; o/wey=0.01,
10.0, 1.00x10%; and 1.00gc,<1.00x10% are given. (Note
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the curve represents y=10.° and o/wey=0.01. P1.E2ES
means the curve represents ¢=1.0° and a/u:oil.DDxiosg)
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3.3 Approximste Representstions of the Power Dissipstion Equations When “The
Lossy Cosxisl Rod is a Good Conductor”

The purpose of thws section 1s to derive and nvasthigate approximate power
dissipation equations for the case whon\\the lossy rod is a good cm::tarf'ﬁhg meaning
of the term "the iossy rod is a good conductor” as 1t 1s used in part 3.3.1 1 the same as
it was for sub-part 2.3.2.1. its meaning in part 3.3.2 s the same as it was for sub-part
2.3.2.2.) Previously, n part 2.3.2, equations and graphs of the approximate radial and
axiai wave numbers solution were given for the sheath helix surrounding a lossy coaxial
rod configuration, for the case when\}he lossy rod i1s a good Emtﬂffi'ﬁics was done
for the three region configuration (b < a), but not for the two region configuration

b = a)l. The discussion of section 3.3 will be restricted to the three region

configuration.

3.3.1 Threa Region Configuration Small Argument Representation

The small argument approximations of equations 3.12, 3.14, and 3.16. the exact
power dissipation equations, will be obtamned. The assumptions Iisted In equations 2,120
are made. Equations A.28 and A.29, the small argument Bessel function representstions,
are substituted into the exact power dissipation equations, in order to approximate all
Bessel functions having hza and h2a - b/a as the argument. The first two
terms of equations A.36 and A.37, the large argument Bassel function rapresentations,
are substituted into the exact power dissipation equations, so that all Bessel functions of
argument h] b and ? b #re approximated. Msking these substitutions and

1
performing some aigebra, the following equations sre obtained.

ﬂ’)il_ o (120%)°

dr N2 (o/ue )5/2 (ka cotanwfg i

bcotan* [109(0.891 h, a)[ i (3.67)
[109(0.891 hzb)lz o

[8a]?

oszv
8.b By

[Brb sinh( 2 BJ z,) - ij sin(2 8, z])].
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3 2 2 2 ,
2 v a b/a o (120%)° cos“wv cotanvy
2 JE' (o/mco) ka cotany Brb ejb
[Brb sinh(2 Bj z,) + BJb sin(2 8 z])]. and
2 x ad o (120m)2
P, = ZLL_
dz 3/2
2 Vﬁ?(o/weo) ka cotany
|10g(0.891 h a)l2

Br® B0 110g(0.891 hzb)lf

[Brb sinh(2 Bj z]) + ij sin(2 8. z])].

Equations 3.67 - 3.69 can be evsluated by using the approximate dispersion
equation, equation 2.122, snd the separation constant equation, eguation 2.121, to
evaiuste hza and ga. Some numerical vaiues of the solution for hza are given
in Figures 2.6 and 2.7. Rather than followmng this procedure, however, equations 3.67 -
3.69 can be considersbly simplified by assuming that the value of |8 |a is sutficiently
smali, taking nto sccount the lossy coaxial rod element length, so that |8]a

2 z,/a = 2 | 8] z, <« 1. This means that

3
(2 8, z,)
sin(2 8. z,) =2 B, Zy - r 1 and
6
| - (2 8y 2y)°
sinh(2 Bj z]) = 2 BJ z, + .
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Using these approximations i eguations 3.67 - 3.69, the following equations are

, _ .3
P ?)ELLE_ re
,dr - 77 —

o (1200)2 [galt
122 b/a (k:f,r"msD)Sf2 (ga CQtEﬂi:)S

2. 1109(0.891 h,a)|?
cotany cos" ¢ —

2 z, 3
- (* 777) * (3;70)
[1og(0. 891 h b [2 '
2 2 2 2
p =7 a b/a o (120%)" cos 4: cotany ° % (3.71)
de \/2% (a/we )3/2 ka cotany a ‘ > 71)
b o 2 " 33 g (1EDf'2 siny cosvy
dz J, b/a ( /mso)3/2 ka ccfanw
I’Iag(o 891 h a)l 2 z,
T (3.72
[ 109(0.891 h. b)l2 2 | )
. 2
P, ia.1#8 cetan v 2z, .
_dr A~ 1 |ga] S TN )
A - ( -)©, and (3.73
P: : 6/“0 (ka cntaﬁw)* a )
p
de ~
. = (b/a)
Paz

2 1109(0.891 n, b)l2
cotan"y —

|1ag(a 891 h, a)f§

(3.74)
3.70 -

Equations 3.73 and 3.74 were obtained by taking the appropriate ratios of equations
of equstions 3.70 -

3.72. For convenience, the assumptions which have been used n the derivation

- 3.74 from the exact power dissipation equations will be gathered
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Yo,gther and listad.

gla - 2 Z]/a << 1, c/wco >> €., hla’:,’j c/wco ka,

(3.759)
|h1|b £ /a/wco ka - b/a > 1, and |h2|a < 0.100.

Equstions 3.70 - 3.74 can be approxmately numerically evalusted in the following

manner. Making use of the discussion previously given in sub-part 2.3.2.1; when the

requirements given in equations 3.75 are satsfied, it s approximately true that
[hz[a = h,.2, where h, a s calculsted using

L 4

-2 loa(b/a)
(ka cotan*)z Ing : ) (3.76
Mare (1 - (b/a)%) )

~

Furthermore, iti1s true that | 8| a :‘—7 hya.

Equations 3.70 - 3.74 are the approximate small argument, three region
configuration, power dissipstion equations, when “the /ossy rod is & good conductor”.
(The term “the lossy rod 1s a good conductor” has the mearung that the slectrical
properties of the rod material are such that the requirements listed in equations 3.75% are
satisfied.) These equations are valid for the three region sheath helix surrounding a lossy
coaxial rod configuration.

The relative contribution thst each 6f the three region 1 electric field components
makes towards the total power dissipated within the lossy coaxial rod slement can be
understood by examining equations 3.73 and 3.74. Making use of the requirements

Jolweg « kb > 1 and |Bla -+ 2 zy/2a << 1, which are listed in
equations 3.75, equation 3.73 shows that P, >> P, .. ror the three region,
smal/ srgumem represeration, when “the /ossy rod is e good conductor”, the
contribution to the total power dissipation essocisted with the region 1 axial electric

field is much greater then that associsted with the region 1 radial electric fleld.



2,

Since |109(0.891 h,b)[ = }10g(0.891 h,a) + Tog(b/a)| >

| 10g(0.891 h2°)| for 0 < b/a < 1 and ihzla < 0.100,

equation 3.74 shows that when y  1s small, Pde > Pgz occurs, uniess the vaive -
of b/a is very small. Assuming thet the shesth helix is tightly wound, for the three
region, smal/ argument represemastion, when “the /ossy rod is & good conductor”, the
contribution to the totel power dissipation sssociated with E 61 /s usually grester

than that associsted with E The single exception to the previous ststermem

z1-
occurs when the rod radius /s much smaller than the sheath helix radius.

To conclude part 3.3.1, 1t will be mentioned how the total power dissipation is
distributed throughout the lossy coaxial rod element volums. Substituting just the first
term of equations A.36 and A.37, the large argument Bessel function representations,
Nto equations 3.2 - 3.4, the region 1 electric field components, making use of the
relstion hia T (1 + j) - ka -m from equations 3.75, it 1s seen
that the radiat dependence s dominated by the exponantial

-(1+3) Ja/2ae, kb (1-r/b) - o
e . Once again making use of equations 3.75, it is
known that /g/wey - kb > 1, and so all the electric field magnitudes are at
least relatively rapidly exponentisily attenusted throughout the rod-filled ragion, as the
radial distance decreases. Figures 2.24 and 2.26 illustrate the radial dependence of the
electric field components for the three region configuration smail argument case, when
“the lossy rod 1s a good conductor”.) This has the importamnt meaning that the total
power dissipation occurring within the 10ssy coaxial rod element is concentrated nesr
the surface of the rod, for the three region configuration smal/ argumem case, when

"the /ossy rod is a good conductor”. A further discussion of this beshavior i1s given |ater n
part 3.5.3.

- "



X
o
Y]

3.3.2 Three Region Configurstion Large Argument Representation

The large argument approxmmations of equations 3.12, 3.14, and 3.16, the exact
power dissipation equstions, will be obtaned for the case Mﬁ%ﬁe lossy rod 1s a good
cmmryand for the geometry where b < a. It 1s assumed that the FaquIremeants
hsted in equations 2.127 are satisfied. which means that the approximate wave numbers
solution is given by equations 2, 128.

The first term of equations A.38, A.39, and the first two terms of equations
A.36, A.37. winch are the iarge argument Bessel function reprasentations, are
substituted into equations 3.12, 3.14, and 3.16. Equations 2.127 and 2. 128 are used.
Finally, two additional assumptions are made. First, it is assumed that the lossy coaxial rod
element length is sufficiently large so that < 21 /a > 10. Second. it 1s assumed
that the value of laj Ia 15 sufficiently small for the particular siement length of
concern. so that 'Ej la « 2 zy/a << 1. Making the previously mentioned

assumptions and substitutions, squations 3.77 - 3.8 are obtained.

) 2 1 33 g (”IZDw)2 ccszw cotany 2 z,
2

J—Z- (;/NEO)SIZ'ka cotainp a

g2 ka cotany (1-b/a) (3.77)

) 7112 xadg (120x)2 cos?y cotany 2 z,
P = € —_— —_— — —
de 2 V2 (a/usD)Bfgika cotany a

-2 ka cotany(1-b/a) (3.78)

~ ’ 2 33'3 (120i)2 cosy siny 2 z,
B ] \E (6/@&’.0)3'/2

ka cotany a

-2 ka cotang(1-b/a) (3.79)
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]

and (3.80)

L]

o
]
a |
s
g |
™o
o |3
L

d
dz

“'U
w

= cotan®y. , (3.81)

=

Equations 3.80 and 3.81 were obtaned by taking the appropriate ratios of
equations 3.77 - 3.79. t.s converient to list In one location the approximations made in

deriving equations 3.77 - 3.79 from the exact power dissipation equations.

2 zy/a 310, |8

g/mgo >3 (:gtanzq,, h,a ¥ /j é/@zb ka, ka cotany- (3.82)

b/a > 1, and ka cotany - (1 - b/a) > 1.

When the requirements mentioned in equations 3.82 are satisfied, it was previously
mentioned n sub-part 2.3.2.2 that the following approximate wave numbers solution

results.

[ ] }‘

B.2 = ka cotany, h.la = \[_] g/m.D ka,

and  |h,;|a ?Elsjla << ka cotany. ‘

(3.83)

configuration, power dissipastion equations, for the case when “the /ossy rod is a good

conductor”. (As it 15 used in part 3.3.2, the expression in quotation marks has the -
meaning that the electrical properties of the lossy rod satisfy the requirements listed in
equations 3.82.) Assuming that the sheath helix i1s relatively tightly wound, equstion 3.8
makes it clear that Pde >> sz. Making use of equations 3.82, it is apparent from
equstion 3.80 that sz >> Py The question concerning which of the three

within the lossy coaxal rod element is easy to answer. For the /arge srgumem case of



the three region configurstion, when “the lossy rod /s a good conductor”, the angul ar
region 1 electric fie/d makes the dominant comtribution towards the total power
dissipation, assuming thast the shesth helix is relstively tigitly wound. Tha total
power dissipation 1s therefore approximataly given by equation 3.78. Note that it rapidly
dacreasas in an exponential fashion when ka cotany INcreases or when 5/:
decreases. The explanation for this behavior is the same as tha discussed previously in
sub-part 3.2.2.2,

Substituting equations A.36 - A.39, the large argument Bessel function
representations. into equation 3.3. the region 1 anguiar electric ‘ieid, making use of the
relation for h1a from equations 3.83 and the fact that oo~ from
equations 3.82, the radial dependence of [ =] 'S seen to be simiar to that discussed
previously n part 3.3.1. Therefore, for the three region configuration, large argurnent

case, when “the /ossy rod /s & good conductor”, the total power gissipation (§

of this behavior.

To conclude part 3.3.2, the power dissipation expressions presented here will be
compared to the expressions iisted in sub-part 3.2.2.2. These latter mentioned
equations, equations 3.50 - 3.54, are for the large argument case of the three region
configuration, when “the lossy rod i1s not a good conductor”™. it will be assumed in sub-
part 3.2.2.2 that the conductivity of the lossy rod 1s sufficiently large so that

E/L.;EO >> €, and D/gED > catanzw. (3.84)
(Note that this does not violate any of the requirements listad in equations 3.55, which
were used in tha derivation of equations 3.50 - 3.54 from the axact power dissipation
equations.) Equations 3.84 mean that the approximate wave numbers solution listed in
equations 3.46 reduce to the wave numbers solution listed in equations 3.83. The wave
numbers solution associated with he three region, large argument case, when “the /ossy
rod is not 8 good conductor”, has become the solution associsted with the large
argument, three region configuration, when “the /ossy rod is a good conductor”, Making
use of equations 3.83, 3.84 in equations 3.50 - 3.54. and simplifying by sliminating the

less significant terms, it is discovered that the corrasponding equation of the set 3.77 - 3.81
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is obtsined. When the conductivity of the lossy rod is large encugh to satisfy
equations 3.84, the power dissipstion equations which were previously obtained for the
three region, large argument case, whHen “the lossy rod is pot 8 good comnductor”,
become simplified to the equations associated with the three region, large argumaent
case, when “the /ossy rod /s 8 good conductor”. Thus mesns that it s possible to
consider the discussion given in part 3.3.2 as a specialized form of that given m sub-
part 3.2.2.2, when the conductivity of the lossy rod bacomes sufficiently large. Note
that demonstrating the equivaience batween the two sets of squations serves as a check

on the accuracy of equstions 3.77 - 3.81,

3.4 Approximate Raprasentstions of the Power Dissipstion Equstions When the
Lossy Rod is an Excelient Dislectric, Based on the |deal Dislectric Rod Configuration
Wave Number Solution

Sections 3.2 and 3.3 discussed approximate power dissipation equations. Thase
approximate expressions were derived from the exact equations given in section 3.1,
for the special cases when the magnitude of the radial wave numbe - are either small or
large, so that the Bessel functions appearing In the exact equations could be
qaﬁraxﬁuttd by simpler functions. The slectrical properties of the rod material were
sllowed to assume a relatively wide range of different values. They were restricted only
to the -‘gt-rrt that the radial wave number magnitudes were either sufficiently small or
large to justify the usage of the smail or large argument Bessel function approximations,
respectively. The radial and axisl wave numbers sre complex-valued. Section 2.3
discusses the small argument and large argument solution of these wave numbers.

‘A completely different approach to that used in sections 3.2 and 3.3 will be
followed in sections 3.4 and 3.5, in order to derive and discuss approximate forms of
the exact power dissipation equations. 't will bs assumed that the conductivity of the
lossy rod is either very small or very large. The approximation will be made of using the
(real) radial and axisl wave mms solution, for the sheath helix surrounding an ideal
dislectric coaxial rod, or for the sheath helix nr%ggnaing a perfectly conducting coaxial
rod. (Recall that in the limit as the rod conductivity approaches zero, it was shown in

part 2.2.2 that the free mode field solution associated with the shesth helix surrounding a



lossy coaxial rod bacomes that of the sheath helix surrounding an iIdeal delectric coaxial
rod Part 2.2.3 showed that in the limit as the rod conductivity approaches infinity, the
free mode field solution associsted with the sheath helix surrounding a lossy coaxial rod
becomes that of the sheath helix surrounding a perfectly conducting coaxial rod
Thersfore. one expects that when ¢ s very small (but nonzero) or is very large (but
finite), the wave numbers solution associsted with the lossy rod configuration will
spproximate that of the 1deal dielectric rod configuration or the perfectly conducting rod
cénfigurltjm respeactively.) "

Appendices C and D provide a reistively thorough discussion of the free mode
field solution associated with the sheath helix surrounding a perfectly conducting coaxial
rod and the shesth helix surrounding an ideal dislectric coaxial rod, respectively. t is
shown that the folution of the dispersion equation and the separation constant equation,
in order to numerically evaluate the radial and axwl wave numbers, is relatively easy to
accomplish. It is very attractive to use these wave numbers to derive approximate power
evaluated for a wide range of operating frequencies, sheath helix geometries, and lossy
rod geometries. It 15 not nacessary to restrict the vaiues of these (raal) radial wave
numbers to be either small or larga.
ary, sections 3.4 and 3.5 will put sharp restrictions on the conductivity of

By using the wave numbers solution associsted with Appendices D and C,
it will be p8 Aible to derive and evaluste approximate power dissipation equations,
without using the small and large argument Bessel function approximations. Section 3.4 is
concerned with the approximate power dissipstion equstions for the case when the
lossy rod conductivity is very small. Section 3.5 discusses the approximate sxpressions

for tha case when the lossy rod conductivity 1s very large.

3.41 Derivation of tha Approximate Power Dissipation Equstions

it 13 assumed that the lossy rod is an excellent dielectric. Approximate
expressions for the power dissipation occurring within the lossy coaxial rod siement will
be obtaned from the exact power dissipation expressions, equations 3.12, 3.14, and
3.16. Previously, in part 2.2.2, it was demonstrated that taking the limit of the radial and
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axial wave numbers as the lossy rod conductivity approsches zero, the (real) racial and
axial wave numbers associated with the shesth helix surrounding an idesl dielectric -
coaxial rod are obtaned. Therefore, the following approximations are reasonable, when

the lossy rod conductivity is very small.

G/MEO << Erl h’ > lhljla'

(3.85)

hzra > ]hzjlai S’_a >> IEJIQ

An additional approximation is made that the imaginary parts of the radial and axial
wave numbers will tend to approach zero. This result is evaluated as a lirmting case of
equations 3.12, 3.14, and 3.16. During the course of evaluating these limits, it was

necessary to apply L'Hopital’s rule (for example, see 47, pp. 65 1) in order to obtan the

following three resuits.

B.b sinh( . b sin(2 B ; '
1im I;" " (2; Blle:), zBib 51’?(2, Ef’r‘ zy)]

LL] 77737 77
=28, zy * sin(2 8. 21). (3.86)

i o ~ ~ L~ )
11 [P0 To(hyb) [y(hyb) - Fyp Tothyb) 13(hyb))
hy4+0 h

140

=32 [hy b [0 (hy 5)12 - hyeb [1y(hy b)]2

+ 2 Ia(h“_b) IT(h1rb)]‘ and . (3.87)
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waldﬁw)xﬂhw)-fﬁbrom1mh(ﬁbn

Hm
h]J?O hljb
=32 hgb ([g(hy 5)1% - (1, (hy )32, (3.88)
v

In or@f to evaluate equations 3.87 and 3.88, the dif ferentiation rule

] h i, )
3513 nlt) :511 fniMyrb e i) - 36 I " (hyb),
where n = 0,1 and the " " denotes differentiation with respect to the total

argument, was used. Furthermore, equations A.5 and A.7, the Bessel funchon recurrence
relations, were empioyed.

Caiculating the bmits of equations 3.12, 3.14, and 3.16, as the imagnary parts of
the radial and axial wave numbers approach zero, making use of equations 3.86 - 3.88,
the following three aquations are obtained. .

2 .
':ill 2 120« 2 .2
Pdr »a“" b o (FI—EFTIFV) cos"y -

2 2
(h, )2 (8.a)
h'lrb Brb

Lo 12 A
1P [Ii(h]rb)] (3.89)

[Ky(hy,2)1% (h

= hypb [I4(hy 5)1% + 2 10(h; b) 1,(h, b))

(2 B Zy - sin(2 B, ZT)]
. — s
(h]ra IO(hlrb) K](thb) + €. hzl_a I‘(h“_b) KQ(hZFb—”




iTE 2 nta 2 .
Fde ik SRR (1201) Lﬁa ggggg!l* siny -
r- r
[K](hzra))z (h1rb [Xl(h1rb)]2 (3@90)

- hy b [10(h1rb)]2 + 2 To(hy b) I (h, b))

(2 8.z, + sin(2 8_ z,)] '

r “1 r I

7 — . 5+ and

a Io(h]rb) Kl(thb) + hgra 11(h]r_b) K’D(hzrb))

(hlr

) 2
20 2 = 2 [ - 1
sz’: y " ‘2 b g (ka]é@%aﬁi) cos v - ' (3.91)

(hlr°)2 (tha)Z

8 b

[Ko(h,, 2032 ([1,(hy 0)1% - [1(n, b)7%) .

[2 B 2y * 51§£2 ér 21)]

(hypa To(hy b)) KyChy b) + e hya Ty(hyb) Kg(hy b)

)

in equations 3.89 - 3.91, the quantity €, - J Q/M;O has been approximated as

€ In order thst these equations are in a form where they can be relstively easily

pe
numerically evaluated. 1t is desirasble to make one additional approximstion. This

approximation is that

Sh,a%gavnla. (3.92)

h 2rd r

2 h

ir

hda 1s the (single) wave number which determines the racial and axisl spatial

dependences of the approximate field components for the sheath helix surrounding an
1deal dislectric coaxial rod. it is discussed in section D.2.

Substituting equstions 3.92 into equations 3.89 - 3.91, equations 3.93 - 3.95
sre obtained.
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2
p Qihl_ x ad g ( 120« )2 coszt ;

dr 4 ka cotany
. d
sin{(2 h™ z,) 2 2
(h%a)? [Ko(hda)J2 (- ] L) L. (3.93)
2 h z, a

2
([1,(h%)1% - [1,(n%)1% + 3= Toth%) 1(n%))

(Io(hab) x](hab) +e I](hdb) xo(hdg))2

~ 2
Pde = h%— " a3 (b/a)2 o (120m)2 (ka cotanv)? sinly -

d
in(2 h 2
[K](hda)]z (1 + sfnl 5 z‘)) 1 (3.94)
2 h z, a
2
([I](hdb)]z - [Io(hdb)]2 ' Io(hdb) I](hdb)). and
2
~2| 3 1200 2 2
sz " ra o (Ea cotanw) cos'vy -
in(2 nd 2
(ha)? [xy(nda)1? (1 s ot B 20 gy
, 2 h z] a

([1(h%) 1% - [1;(h%)12)
(14(h%b) xlég?b) e e, 1,(n%) Kky(hp)) %

Reistion A.25, which was obtained from the Bassel function Wronskian identity, was
used for simplification in the derivation of equstion 3.94.

Equstions 3.93 - 3.95 are the approximete power dissipstion equations when
the /ossy coaxiel rod is sn excel/em dielectric, besed on the wave number solution for



the shemh helix surrounding sn ideal dielectric coaxial rod. Equation D.47 lists the
varisbles needed to determine hd,  From equstions D.47 and 3.93 - 3.95, the
variables on which the approximate power dissipation expressions are dapendant can be

stated.

Pdi = Fi(ka cotany, b/a, €ps ¥y 2, 2 21/3, a.%“). (3.96)

where 1 = r, 8, Z.

it 1s mentioned in part D.2.1 thst equations D.57, D.58, and D.59 must be

satisfied to justify the usage of hda . These equations put a limit on how large the
value of €. s sllowed to be, and they will be more easily satisfied for a relatively
tightly wound shesth helix. The vaiue of h9, 15 obtaned for the particular set of
varisbles ka cotany, b/a, € s by solving the dispersion equation,
equation D.41. Extensive graphs of this wave number soilution are given n Figures D.1 -
D.8. For small or large values of hda , the approximate representations,
equations D.49 and D.53, respectively, can be used for the solution. Once the vaiue of
hda 's known, equations 3.93 - 3.95 can be directly evaluated for a particular set of
the varisbles iistad in equation 3.96.
A digression will now be made to discuss an siternative procedure which was
used to derive approximate power dissipstion equations, when the conductivity of the

on the region 1 electric fields associsted with the sheath helix surrounding an ideal
dislectric coaxisl rod. When the conductivity of the lossy rod is very small, the
approxirmation is made of using the ideal dislectric rod configuration fieids in piace of the
actual iossy rod configuration fields. (For example, see 3, pp. 13.)

Equations D.23 - D.25, the approximate region 1 electric fislds for the ideal
dislectric rod configuration, are used in the integrand of equstions 3.8 - 3.8. A similar
procedure to that followed in section 3.1 is used to evaluste the three integrals. in the
course of carrying out these caiculstions, it was necessary to make use of squation

A.52, a reiation involving the integral of Bessel functions; and equations A5, A.7, which



are both Bessel function recurrence relations. It 1s discovered that the resulting
#pproximate power dcissipations assocuted with the radial. anguiar. and axial region |
fields are axactly the same as the corresponding exprassions histed in equations 3.93 -

3.95. The power dissipation equations, which were obtai ned by making approximations

perturbation method involving the region 1 electric field componems associsted with
the sheath helix surrounding an ideal dielectric cosaxial rod.

This demonstration serves two important purposes. First, it supports the
accuracy of equations 3.93 - 3.95. Second, it provides a new way of regarding the
approximations which were made to the exact power dissipation expressions, in order to
derive equations 3.93 - 3.95. These approximations can be considered as bemg
configuration, with the corresponding fields associated with the ideal dielectric rod
configuration.

To conclude part 3.4.1, a discussion I1s given concerning the overlap involving the
approximate power dissipation equations hsted here and those given praviously for tha
case whaﬂ‘}ﬁ'\e lossy rod i1s not a good E&ﬁéu«:tar{‘ parts 3.2.1 and 3.2.2. Equations
3.30 -3.32 are the two and three region, small argument, approximate power dissipation
exXpressions, wﬁeﬂ\\ﬁﬁ lossy rod is not a good c:aﬁductar{[ The smail argument Bassel
function representations, equations A.26 - A.29, are used to approximate equations
3.893 - 3.95. The single exception is in the approximation of the quantity

2

[y (h95)12 - [1y(n%b) 32 » 3= 1g(h%) 1, (%),

where it is necessary to use the approximations given by equstions A.30 and A.31. The

following additional approximations are mada.

cd, 2

(h™b)° Lo~ 3.97)

- e, — 109(0.891 %) T, h% . 2 2,78 << 1‘(397)
2
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which means that sin(2 hd ;]) T2 hﬂ z. - (2&!1 z,');
] 6 ©(3.97)

(continued)

ka cotany,2 ~ , .
and (?;——Lt) = -2 1l0og(0.89] hda)i

which is equation D.49, the crude small argument approximation of the dispersion

equation.
Making the previously mentioned approximations, it 1s discovered that equations
.

3.93 -~ 3.95%re transformed into equations 3.30 - 3.32. When the value of hda IS
sufficiently smali, the approximate power dissipation equatons based on the idaal
dielectric coaxisl rod configuration wave number reduce to the small argument
representations of the approximate power dissipation equations, for the case whan'fhg
lossy rod 1s not a good conductor” This |latter mentioned case was previously discussed
in part 3.2.1.

Consider the two region, large argument, approximate power dissipation
expressions, equations 3.40 - 3.42, which were previously discussed in sub-part
3.2.2.1. The relation E—,/ﬁlED - (ka cctanw)z T - hra hja 15 used,
which is obtained by squaring squation 3.38 and then equating the imaginary parts.
Furthermore, it 1s assumed that the conductivity of the lossy rod 1s sufficiently small so*
that o/wco << €.:  From equstion 3.38, this means that h.a >> ihjlai
Finally, the it of equations 3.40 - 3.42 1s taken as the imaginary part of the (single)

wave number solution approaches zero. The following relation i1s used.

Ehra sinh(2 hj”ZI) + hj§7§12(§4ﬁr721)1

1im
hJ"O hJa

h 2 1‘ . —~ ) 2 Z]
* h.a - + sin(2 hr z,) = h_ a 7; !



Attention is now directed to equations 3.93 - 3.95, for the special case when

b = & Just the first term of equations A.38, A.39, and the first two tarms of
equations A.36, A.37, the large argument Bessel function representations, are used to
approximate equations 3.93 - 3.95. To ,ustify usage of these representations, it Is
r Necessary that hda > 1. The spproximate two regeon, large argument dispersion

equation, equation D.54, is used. Finally, 1t 15 assumed that

2 z)/a 210, which means that 1 + ————~ 271, (3.98)

Making use of the restrictions and assumptions mentioned in the pfaégding two
paragraphs, it 1s discovered that equations 3.93 - 3.95 equal the corresponding equation

of the set 3.40 - 3.42. When the wave number pd, s assumed to be sufficiently
large n the esquations considered in part 3.4.1, and when the yalue of the lossy rod
conductivity associated with the equations considered in sub-part 3.2.2.1 becomes
sufficiently small, the two sets of approximate power dissipstion equations agree with
aach other. i

Finally, the three region, large argument, approximate power dissipation
expressions, equations 3.50 - 3.52, which were previously discussed in sub-part
3.2.2.2, are considered. It is assumed that the conductivity of the lossy rod 1s sufficiently
small so that g/m&;o << €. Furthermore, it 15 assumed that the sheath helix is
sufficiently tightly wound so that cotan2¢. >> €. From equations 3.46, this
means that lh]lﬂ?h,—lra";‘ka cotany. ~

Equations 3.93 - 3.95 are now investigated. Just the first term of equations
A.38, A.39, and the frst two terms of equations A.36, A.37, are used to approximate
the previously mentioned exprassions. To justify using the large argument Bessel
d

function representations, it is necessary that 9 . 1. The assumption listed in

equation 3.98 i1s used. Finally, the three region, large argument approximation of the
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dispersion squation, }asm:n D.53. is usad.

When the restrictions and assumptions mertioned in the previous two paragraphs
are made, 1t 1s discovered that equations 3.93 - 3.95 agree with the corresponding
expression of equatons 3.50 - 3.52. For a sufficiently targe value of hda_ the
2pproximate power dissipation expressions given m part 3.4.1 become the same as the
proximate exprassions given m sub-part 3.2.2.2, provided that for the latter
mentoned eguations. the conductivity of the lossy rod 1s assumed to be sufficiently
small. ’

In summary, a discussion has been given of the overlap between the approximats
power dissipstion equations given n part 3.4.1 and those grven in part 3.2.1, sub-
part 3.2.2.1, and sub-part 3.2.2.2. 't was discovered that if the value of h9; s
assumed to be sufficiently small or sufficiently large, and if the value of the lossy rod
conductivity 1s assumed to be sufficiently small, then the approxmate power dissipation
equations based on the wave number soclution for fha ideal dislectric coaxusl rod
configuration, become the approximate small and large argument power dissipation
equations, respectively, for the case when “the lossy rod 13 not a good conductor”. This

result 1s expected. t provides a check on the accuracy of the previously mentioned

342 Graphsot P, /P,  end pde/Fd;

It 1s desirable to know how much of a contribution towards the total power
dissipation 15 Fssociated with aach of the three sisctric fields prasent in the -od-filled
region. In particular, knowing which slectric fisld provides the dominant contribution is
useful. Thvs means that the total power dissipation occurring withn the lossy coaxial rod
element is approximately given by a single squation of the set 3.93 - 3.95. The total
power dissipation can be studied more easily now than it could if all three of the
previously mentioned squations had to be considered.

The contribution that each of the radisl, anguisr, and axial region 1 electric freid
components makes towards the total power dissipation 1s obtmned by exarmning the
ratios Pd?/sz and Pde/pdz + These ratios are easily obtained from the power
dissipation expressions, squations 3.93 - 3.95.



) 2 , ,
(L1, (n b)j EID(hdb)]z L (ndb> 1.(h%))

EQF . R h b _ .
Pz (1,007 - 11, (09018
© (2 hd z, - sin(z hd 2,)) . ’
, —— and (3.99)
(2 h z, + sin(2 h z ))
P LS (h%a)7?
de ka cotany, 4 2 , .
= (-ETEJ) (hdp)? %i' (3.100)
F? (Kq (h¢ a)]

, , 2
(L1y(n%) 3% - Etf(hdb>12 + == To(h%) 1,(h%))

h’b
- (1, (h b)]

([I ("I

(1g(h%) K (hdb) + ¢ 1,(n%) K (n%b))2.

Equﬂiaﬂs 3.99 and 3.700 are the pmvg} dissipation ratios, when the /ossy jod /s
an excel/ent dielectric, based on the ideal dielectric rod contiguration wavl number
so/ution. Making use of equation D.47, which lists the variables on which the wave
number hda Is dependent, the functional dependencas of the previous two equations
can be stated. '
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Pd'
F:; f(ka cotany, b/a, €ps 2 21/3). and -

(3.101)

o
o
|
"

g(ka cotany, b/a, €. W) .

(=
L]

Equations 3.99 and 3.100 are more sasily understood if approximate forms of
them are derived. These approximations are valid when the Bessel function argurments are
either small or large. First, the small argument representations are considered. Equations

A.30 and A.31 are used to approximate the Quantity

%

[1,(n%)1% - [Io(hdb)jz ID(hdb) 1,(h%).

-
[>¥
o |

Equations A.26 - A.29 are used to approximate all the other Bessel functions appearing
n equations 3.99 and 3.100. To justify the usage of these small argumaent Bessel

function representations, it 1s necessary that hd a < 0.100. Onedscovers that

P

dr ~ (b/a 2 d 2 ,
2L 3 Lgé’ls (h92)2 (2 nd ; ) and (3.102)
Pz 1 _

P 2 :
Paz 2

are the small argument forms of equations 3.99 and 3.100, for the three region

® < a) configuration. When performing the calculations required to obtain equation
3.103. equation D49, the small argument approximate dispersion aguation, was used.
Furthermore, it was assumed that the value of hda . b/a s sufficiently smail for

the particular value of €, which is specified, so that



\ ‘

d 2
3 h 3 - = e
1 - e, L=§Elé log(0.891 hdp) = 1.

In order to obtan equation 3.102, 1t was assumed that the value of pd, 15 ~
sutficiently small for the specified value of the lossy coaxial rod element length

normalized with respect to the sheath helix radius, 2 z,/a, so that

Therefore, sin(2 hd

The value of hda , which appears in equation 3.102, 1s approximately evaluated using

the smali argument form of the dispersion,equation, equation D.49.

The special case of the power dissipation ratios associated with the two region
configuration (b = a) can be obtaned by simply taking the imit as b + a~  of
equations 3.102 and 3.103. Equation D.49 shows that for a particular value of

ka cotany, the wave number soiution hda , Which appears in equation 3.102,
is the same for both the two and three region configuratuons.

The large argument representations of equations 3.99 and 3.100 are now

considered. The first two terms of equations A.36 and A.37 are used to approximate the

expression
y 2
[1,(h%)32 - [xo(hd%)]2 ' [,(h%) 1, (h%b)
[1,(h9) 1% - [1,(n%) 12 ’

Just the first term of equations A.36 - A.39 i1s used to represent all the other Bessel
functions appearing in equation 3.100. To justify usage of these large -argument Bessel

function approximations, it 1s necessary that hdb > 1. it follows that
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';dr ~

sz = ], and (39104)
Pde ~ 1 2, 2 ,

p—(;; = E (cr + ]) tanTy. (3105)

are the large argument representations of the power dissipation ratios, for the three
region configuration.

It was necessary to assume that hda 2 ka cotany when the dervation of
equation 3.105 was performed. This assumption is just a statement of the three region,
large argument, approximate dispersion equation, equation D.53. In part D.2.1, 1t s
mentioned that equation D.53 s approxmately valld when ka cotany

(]‘b/d) > 1. Duwring the calculations followed to obtain equation 3. 104}4‘ it was
assumed that 2 z]/a > 10. -

The special case of the two region, large argument, power dissipation ratios is
now considered. These are obtaived from equations 3.99 and 3. 100 by using a similar
procediye to that followed to derive equations 3.104 and 3.105. However, the two
region, large argument, approximate dispersion equation, equation D.54, 1s used, instead

of the three region, large argument equation, equation .53, It 1s discovered that

Pdr ~ . -
p— = 1. and (3.106)
dz

[

Pde 7 tanzw (3.107)
dz

are the large srgument aspproximate power dissipgtion ratios, for the two region
configuration. Note that equations 3.106 and 3.104 sre identical. but aquations 3.107
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and 3.105 sre different.

The ratios Pde/sz and Pdrlpdz have been visuslly represented as
graphs for some typical sets of the variables mentioned n equations 3.101. These
graphs were obtaned by first solving the dispersion equation, squation D.41, for the
specified values of ka cotany, b/a €,.s+ inorder to obtan hda. Equsations
3.99 and 3.100 are then directly numerically év:iu;tsi A single graph based on aach of
equstions 3.99 and 3.100 has been prepared. For thase two graphs, it was siways
ensured that equations D.57 and D.59 are satisfied, so that the usage of | da as tha
single wave number determining the radial and axial spatial depesndences of the ideal
dielectric rod configuration fieild components is justified. (This 1s discussed in part D.2.1)

Figure 3.12 is & graph of Py /P, versus ka v = 0.100°,

1.00°; bla = 0100, 0800: €_ = 2.00, 1.00x102 nd

(]

1 ,00;(]0'4 < ka < 10.0 e usgd.rméta that qurte small values of the pitch
angle were used in order to satisfy equation D.59.) Equations 3.103 and 3.105 are seen
to be in good agreement with the curves for very small and large values of ka,
respectively. For very small values of ka (or, equivalently, srmall vaiues of

ka cotany), itis ciear that Pd, > pdeé In addition, when ka s large (or,
equivalently, ka cotany is large), sz > Pye is usually true. This is apparent
from equstion 3.105, keeping in mind that 4 €, tan‘?i, < ] must be trua, since
this is just a statement of equation D.57. Only if € r sverylargeand y is small will
it be possible to satisfy the previously mentioned inequality, and also satisfy the inequality
%— (+:r+1)2 . tanzo > 1. Exeept for this specisl case of the large argument
form of the ratio pde/pdz » equations 3.103, 3.1085, 3.107, and Figure 3.12 show
thet for both the two and three region configurations, the contribution to the total power
dissipation associsted with the region 1 axial electric field is usually much larger than that
associsted with the region 1 anguiar slectric fisid.

Figure 3.13 shows several different curves of the ratio Pd,a/ sz ' plotted
0.100°, 1.00°; b/a = 0.100,

]

versus ka 2 z]/a = 10.0;,
0.800; e, = 2.00, ].00“02; nd 1.00x10" % « ka < 10.0 e
used When ka s small or large, equations 3.102 and 3. 104, respectively, are seen to
be in good agreement with the curves. Equations 3.102, 3.104, 3.106, and Figure 3.13
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Figure 3.12 Graph of Pde/Fdz versus ka, based on

equation 3.100. The lossy rod 1s

Curves for b/a=0.

and 1.00x10"*<ka<10.0 are shown. (

10, 0.90; ¢=0.10
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equation 3.99. The lassg rod {s an excellent dfelectric.
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2 z,/4=10.0; and 1.00x10"4<ka<10.0 are shown. (Note
Plii')l’l!’l"e“_,i FDZ-sz; and KA=ka. BIE2.P.) means the curve
represents b/a=0.10, :FiZ_D. and y=0.10°. BY9EE2P1. means
the curve represents b/a=0.90, ;rﬁIQGiD. and v=1.00°.)
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show that when the value of ka s very small {which mesns that ka cotanyg s
small), sz >> Pdr occurs. On the other hand, when ks s large (which mesns
that ka cotany s iarge), Pdr and A‘sz sre, t0 3 good approximstion, equal In
vaiue. The preceding two sentences are valid for both the two region and three region
configurstions.

N summary, the previous discussion has assumed that the sheath helix s tightly
wound and it 1s has shown that for small values of ka cotany (which aiso means
that hd; 15 smaid Par’Pdz << 1 and pde/sz << 1  occurs. When

ka cotany 's large (which means that hda 1s large), the region 1 axial electric
field usually - contributes significantly more to the total power dissipation than the
region 1 angular eiectric field. However, in this situstion, the region 1 radial electric fieid
makes a contribution equally as large as that of the axial electric field.

For both the two region and three region configurations, ‘when the /ossy rod is
an excel/ent dielectric, so that the ides/ dielectric coaxial rod configurstion wave
number so/ution can be used, the contribution to the total power dissipation associated
with the region 1 axia/ electric field is ususlly much /arger than that associsted with
the region 1 redial and angul/ar electric fields. One exception to the previous sentence
occurs when the value of ka cotany /slarge. /nthissitustion, the region 1 radial
and axial electric fields each contribute nearly half of the tota/ power dissipation, for

both the two region and three region configurastions.

3.4.3 Graphs of the Spatial Distribution of the Power Dissipation, Based on £ 71

The preceding part, part 3.4.2, has shown that the contribution to the totsl power
dissipation associsted with the region 1 axisl electric field is much grester than the
contribution associsted with the region 1 radial and anguiar electric fieids, for small
vaiues of hda » assuming that the sheath helix is relatively tightty wound. For lsrge
values of hda , the power dissipstion contributions associated with the region 1 axial
and radial electric fields are equal, and they sre usually much larger than that associated
with the region 1 anguiar electric field.

An understanding of how the total ohmic heating is distributed at dif ferent pomts

within the lossy coaxial rod element can be achieved by following the procedure



h
L]
F -

suggested by Brown et al. (3, pp. 13). This mvolves defining the dimensioniess ratio

E,+ whichis a function of the radial and axial spatal position.

z
“
S e, 4?2 g 2
E g = - v — — - = — v )
Ez(roi ZD) = 6— e Z - x _ _ .
7 f\; [E,y 1 av P dy
g . ,
Zxbb 22, €,
) T (3.108)
Pdz
The volume of integration is taken as the lossy coaxial rod element volume. sz + as

grven by equation 3.95, 1s the contribution to the power dissipstion associated with the
region 1 axsl slectric field. IEZ ] #| 15 the magnitude of the region 1 axial electric
fisld for the case when the lésiy rod 15 an sxcellent dislectric, based on the ideal
chelectric coaxial rod configuration wave number solution, evalusted st a particular point
( Fo® 2 D) within the lossy coaxial rod element. Furthermore, this electric fieid i1s now
assumed to be constant in magnitude throughout the lossy coaxial rod element volume,
which means that it can be taken outside of the integral sign, as was done In aquations
3.108.

Whenaver £ z 'S greater than unity at a particular point, the meaning 1s that if
the axisl electric field which exists at that point had the same value at all points through-
out the lossy coaxial rod element voiume, the associated power dissipation would be
greater than sz - Therefore, studying the vaiue of &£, at several different points
gives information concerning the spatal distribution associsted with the power
dissipation or the ohmic heating, which arises from the contribution associated with

'E;T *  When this contribution is much larger than that associsted with the two other
region 1 slectric fields, £ 7z ®Pproximately represents the spatial distribution of the

tota/ power dissipation occur/ng within the lossy coaxial rod element,
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done from the (exact) axial region 1 electric fieid component, as given by equation 3.4,
by making the approximations listed in equations 3.85 and 3.92. It is discovered that

- , - Il _ 120+« . d.
Ez1frg. 2g) = 4 h/a ka cotany COSv h-a - (3.109)

Ko(ha) 1(hr ) cos(ndz)

(15(n%) K1Zhdb) + grrz](hdé) nghdgfi

1s the regron -1 axial electric field associated with the case when the lossy rod s an
excelient dialectric, based on the deal dielectric coaxial rod configuration wave number
solution, hda . (Note that equation 3.109 is the same as equation D.25. Applying the
approximations listed mn equations 3.85 and 3.92 to the (exact) region 1 electric ‘field
components associatad with the lossy coaxial rod configuration, the electric fieids
assocuted with the ideal dielectric coaxial radr configuration are obtaned. This is an
expected result. It was previously mentioned in part 3.4.1 that the approximate power
dissipation expressions, equations 3.93 - 3.95, could be obtained by using &
perturbation procedure based on the ideal chelectric coaxial rod configuration region 1
electric fields.)

Equations 3.95 and 3.109 are used 1o evaluste equation 3.108. It is easily shown

e ? [1ghr) 2%
O (11y(h ) 2% - 1, (n98)1%)

[

gz(rD,

COS 0 o .
—— (3.110)
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Making use of equation D.47, which lists the varsbles on which the wave number hda
IS dependent, the nonspatial functional dependence of 52 s

Ez = f(ka cotany, b/a, €y 2 21/a); (3.111)

Ez has been visusily representsd. to show the spatial distribution of the power
dissipation associsted with the region 1 axial electric field, using severai dif ferent sets bf
the variables mentioned n equation 3.111, E’Z(FD’ 0) was plotted versus FD/b
to show the radial dependence occurring at the  fransverss plane ZO = Qr

£,(b, 2;) was plotted versus 23/Z| to show the axial dependence occurring at
the lossy rod srface. The numerical solution was actveved by frrst solving
equation D.41, the dispersion equation associated with the ideal dislectric coaxial rod
configuration. for the specified vaiues of the varisbles ka cotany, b/a €ps m
order to obtain hda . Equation 3.110 was then directly evaiusted.
The six figures presented here are each chacterized by b/a = GJE)DE 0.500,
0.800; €. = 10.0; 2 z,/a = 10.0; and a particular value of
ka cotany. (Note that the pitch angie does not have to be explicitly specifiad
However, it must be sufficiently small so that equations D.57 and D.59 are satisfil® in

order that the usage of the wave number hd 18 justified. As sn example, | =

1.00° could be used in these figures.)
Figure 3.14 illustrates gz(rDi 0) wversus ro/b, for 0 ¢ ro/b <
1 and ka cotany = 10.0. Clesrly, when b/a = 0.800, the ohmic heating is
large at the lossy rod surface, and it decays rapidly as the value of ro’ b decresses.
However, when b/a = 0.100, the ohmic heating is smaller at o * b, =ndt
exhibits only a siow change as the normalized radial position, ro/bs s varied.
Figure 3.15 displays E;Z(b, ZQ) versus ZD/Z’]‘ for 0 & 23/21 N
0.20 ad ka cotany = 10.0. Each of tha thres curves shows that the
ohmic heating is distributed very nonuniformly along the lossy coaxial rod element
surface. It is large at some points but it is small just a short axial distance sway. The

maximum value of Ez tends to increase as the value of b/s increasas.
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Curves for b/a

ka cotany=10.0;
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The next two graphs are based on ka cotany = 0.500. Figure 3.18
displays é;z(ra, 0) versus ro/b  for 0 & rg/b < 1. It i obvious that
0,
for a particular value of b/a Furthermore, the value of b/a does not have a very

the ohrmic heatng is approxmmately uniform throughout the transverse plane 5

strong effect on the ohmic heating.

The other graph of the previously mentioned set, Figure 3.17, shows
gz(b, ZD) versus 2/, for 0 ¢ 25/ & 1.00. At z, = 0, e
obrmec heating 1s large but 1t becomes small near the endfaces of the lossy coaxial rod
elenent. Once agan, the vaive of b/a does not hsve a great effect on the ohrmc

E.?ily, two graphs were prepared usmg ka cgta.nw = ’l.DDxlD'z.
Figure 3.18 displays EZ(FD, 0) versus "‘D/b for 0 = F‘D/b < 1. £, =

1 is now true for b/a = 0.100, 0.500. 0.900, and for all vaives of ro/b. Ths
has the meaning that the ohrmuc heating occurs uniformly within the lanyict;axml rod
siemeant, at the plane ZD = 0.

Figure 3.19 is the second graph of the previously mentioned set. It illustrates

Ez(b;. ZO) versus ;D/z for 0 & ;D/;1 < . Once agan, &, = 1

1

occurs. This 1s true for all three values of b/a and for all values of ZD/Z] . Taken
together, Figures 3.18 and 3.19 show that the ohmic hesting is uniformiy distributed at
sl points within the lossy coaxial rod slement.

It has been previously mentioned st the beginning of part 3.4.3 and in part 3.4.2,
that for large values of ka cotany (which aiso means large values of hda) , the
region 1 rachal electric field makes the same contribution to the total power dissipation
as the region 1 axisl electric fieid. and both of these are usually much larger than the
contribution associsted with the region 1 anguisr electric fisid Although to a good
spproximation, Figures 3.16 - 3.19 represent the spatial distribution of the tota/ power
dissipation occurring within the /ossy coaxial rod e/emenmt, this is not necessarily true
of Figures 3.14 and 3.15, because the power dissipation contribution associsted with the
region 1 rachal slectric field has been neglected.

A similar procedure to that followed st the beginning of part 3.4.3 was used, In

order to calculats 5'_( ros 2 Equation 3.93, the spproximate power dissipation

Q)*
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assocuated with the region 4 radial electric field, for the case when the lossy rod i1s an

the idesl dielectric coaxial rod configuration, were used in the denominstor and

numerator, respectively, of equation 3.108. Assuming that hdf'D > 1, hda .

2 z.,/a > 10, and using equations A.36 and A.37, the large argument Bessel

.function representations, it was discoverad that

-2 nd

b (1-rD/b)
db e

7 i2,,d n
75 — sta®(h” z5). (3.112)

Er(rO' ZO) "VZ h

The same approximations mentioned iIn the previous sentance were made to equation

3.110. This resuited in

-2 pd

b (1-r./b)
b & 0

/b cos

d d

2(p 25). (3.113)

4 ~
ez(ro. z5) ¥ 2 h

d d

The value of h™b = ha - b/a appearing in the previous two equations is
approximately evaluated for the two and three region configurations by using the large
srgument approximations of the dispersion equation, equations D.54 and D.53,
respectively.

In short, examination of equations 3.112 and 3.113 is necessary to obtain an
under standing of the spatial distribution associated with the total power dissipation, when
the value of ka cotany s large. Note that the approximation for £, only differs
from that for Cz becasuse it has a ¢ 1n2( hdzo) type of axial dependence instead
of cosz( hdzo) . This means that the total p@wcr dissipation occurring within the
lossy coaxial rod element is concentrated near the surface of the rod. and it rapidly
becomes small as the value of "‘o/b decreases, as shown in Figure 3.14. Since the
region 1 radisl and axial fields esch contribute nearly one half to the total powaer

dissipation, the spatisl distribution of the total power dissipation is approximately given



[ %]
("]
(3.1

Cfmw by the sum of equations 3.112 and 3.113. Making use of the trigonometric
7 identity coszx + sinzx =1, it is seen that the total power dissipstion s
spproximately constant over the entire axial length of the lossy coaxial rod element
Figure 3.15 does not accurstely represent the spatisl dependence of the tota/ power
dissipation on the axial position.
dissipation has been exarmned. For /arge values of ka cotany (which also means
large values of hda) s the power dissipation is large neer the rod surface and it

for a fixed value of r‘o/b y & the axial distance is varied. On the other hand, for
sma// values of ka cotany (which s/so means smal/!/ velues of hda) s the
power dissipation is approximately distributed uniformly throughout the entire /ossy

coax/al rod elemem volume.

3.5 Approximate Representations of the Power Dissipation Equstions When the
Lossy Rod is sn Excellent Conductor, Based on the Perfectly Conducting Rod
Configuration Wava Number Solution

The final section of this chapter is concerned with investigating the power
dissipation occurring within the lossy coaxial rod element, when the lossy rod is an
excellent conductor. A similar format to that of section 3.4 is followed. The
spproximation is made of using the radial wave number and the axial wave number
associsted with the shesth helix surrounding a perfectly conducting coaxial rod. As
expisined in section C.2, the free mode field solution discussed in Ap@gndm C for the
perfectly conducting coaxial rod configuration is not valid for the special case when the
perfectly conducting rod surface touches the shesth helix surface. Therefore, the

discussion in section 3.5 will be restricted to the three region configuration (b < a).
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3.5.1 Derivation of the Approximate Power Dissipation Equations

Representations of the exact power dissipation expressions, equations 3.12,
3.14, and 3. 16, will now be derived which are approximately correct when the lossy rod
s an excellent conductor. More specifically, the conductivity s assumed to be

sufficiently large so that the following approximations are vaid.

O/WCO >> E_r) h-‘a ‘;—"j O/WCO ka’
Ihyla >> |h,ja, and |n]|b’?,/o/we0 kb > 1.

(3.114)

fNote that from the separation constant equation, equation 2.88, the restriction
lh][a >> ,hzlﬂ 1s required to justify using h]a ) J c/wco - ka.
lh, |b > ) is restricted in order that the large argument Bessel function
representations, equations A.36 and A.37, can be used to approximate equations 3.12,
3.14, and 3. 16, as will shortly be done.)

Two other assumptions are made which result in a sigmficant simplification. These

|h]a K](hzb) + h,a Ko(hzb)l Cl |h]|a !K](hzb)l

’-‘\/o/uco ka |Ky(h,b)|, and (3.115)

lh]a K](hzb) + (er -J o/uco) hza KO(th)'
’-"a/weo Ih,la IKO(th)I. (3.116)
Making use of assumptions 3.114 - 3.116, keeping just the first term of the

large argument Bessel function representations, equations A.36 and A.37, in order to
approximate all Bessel functions with arguments h 1b and /¥ p 8nd performing a
‘, ’
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small amount of sigebra. equations 3.12, 3.14, and 3.18 are transformed mto the
followng equations.

a C.\2
(ha) cose siny

P f;%“Z " ]
dr 2\/'z‘b/a om ka cotany

[Ko(hca)]2 sin(2 h® z]) 2 z,

—— (1 - , 3.117
[Ko(hcb)] 2 he z, ) a ( )

2
 120x% a COSZ* .

~\ 2
Paa = NI .
de % 2VZ oTuc, b/a

[k, (ha)]? sin(2 h¢ z;) 2z,

1 , and 3.118
[xl(hcb)]2 (e 2 ht z, ) a " ( )

2
» 120« a Vsinzt -

P, 7 2

[Ky(hCa))? LI he z,)
1 +
[Ko(h%b) 1 2 hC

2z1'

) (3.119)

1 a

it 1s now assumed n equations 3.117 - 3.119 that the imaginary parts of hza
and Ba are much smaller in absolute vaiue than their real parts. Furthermore, it 1s
sssumed that the real parts of these wave numbers are simiiar to the corresponding (real)
wave numbers for the sheath helix surrounding s perfectly conducting coaxial rod. A

summary of these assumptions is given belQw..

3ol

h,a = tha + hZJa’ |h2‘J|a << h, a, (3.120)
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7 (3.120]
(conttnued

where hca and BC, are the rachal and axual wave numbers, raspectively, for the
"\ perfectly conducting coaxial rod configuration.

Next, it 1s assumed that the imaginary parts of hza and B3 spproach zero.

L'Hopital’'s rule 1s used tc evaluste

Lo [8pb stnh(2 8y z)) + 84b sin(z 8, 2y)]

jb

=B, 2 2z; ¢ sin(2 8 21);
Finally, the approximation Bca og hca 1$ used. This is discussed in section
C.2, and 1t 1s usually well justified for a relatively tightly wound sheath helix. It requires
that equation C.30 s satisfied.
Applying the assumptions and approximations discussed in the previous three
paragraphs to equations 3.117 - 3.119, equationg 3.121 - 3,123 are obtainad.

~\,2 _" 1 a (hCa 2
Pdr 3” )

)"
2 557'50 mka cotany

cosy siny -

[Ko(h°a)]2 0 sin(2 h© ;1)) 2 z, -
fe (n€y12 T — 3.121
[Ko(hCb) ] 2 h¢ 2, a (3.121)

1 a I
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. » 1207 a 2
oo TN T Y e
" S 2V 2 a mt:b )

(K, (hCa)]? sin(2 h¢ 2) 2 2,

(1 4+ —— -) —L, and (3.122)

[Ky(nCb)3% 202, a
SR TRLILLENTION
0 aNT fiTeg B

(e — 1y 7T (3.123).

Equations 3.121 - 3.123 are the approximate power di1ssipation equations for
the case when the /ossy coaxial rod is an excellem conductor, based é;lﬁ the wave
number so/ution for the sheath helix surrounding a perfectly conducting coaxial rod.
Keeping i mind equation C.19, which lists the variables on which the wave number

h€a s dependent, the functional dependencas of the three types of power

dissipation contributions can be stated.

Pd'l = ‘Fi(ka Cﬁtan&; b/ai v, a, 2 31/31 ﬂ/uéai G:S“)l

(3.124)

where { = r, g, 2.

The wave number h€ a '3 obtained by solving the dispersion equation, equation
C.14, for a given set of the variables listed in equation C. 19, Graphs of this wave number
salution are shown in Figures C. 1 - C.3. For small and large values of | Cg , equations
C.24 and C.28, respectively, can be used to obtsin an appr;:simatg wave numbar
solution. When 1€, s known, equations 3.121 - 3.123 can be directly evaluated for

a particular set of the variables listed in equation 3.124.
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A digression will be now be made to discuss an nvestigation of the power
dissipation occurring withn the lossy coaxial rod slement, making use of the concept of
surface resistance snd the magnetic fields associated with the perfectly conducting
coax/al rod configuration. This procedure can be ragarded as a perturbation method,
based on the fields associated with the sheath helix surrounding a perfectly conducting

coaxial rod. The (tme-averaged) power dissipation is

R ,

2
(Y
R (3.125)
= _S 2 ) - 7
) g(lHezc] + IHZECF) ds

R s * Re([Z s ] 1s the surface resistance associated with the nonmagnetic lossy rod.

52*—*3 is the skin depth.

1Y Yo

(For example, see 38, pp. 153 - 155; 44, pp. 356 - 360; 48, pp. 263 - 269; and 49,
pp. 331 - 33%.) _}itc = Hezc ie + szﬁggz is the magnetic field tangential to
the coaxial rod surface, assuming that it is perfect!y conducting. H eEc and HZZ ¢
are given by équations C.6 and C.7, respectively. The surface of integration, S,
consists of the lossy coaxisi rod element cylindrical surface, which is specified by
r = b, -z]\<z\<z].

Equations 3.125 are actually an approximation of the left hand side of equation
3.20, which is a form of Poynting’s ‘energy theorem. This can be understood by

examining the integrand in the left hand side of equation 3.20.



() x H}) cat (B, Ty - £, T
1 L r 81 "zl z1 "ol Ly |
(3.126)
= - 2 2 C e g r 2y
Zg (|H01| ¥ IHzll ) rab Zs (lHezl * IHZZI )

since the region 1 and region 2 magnetic freids tangential to the lossy rod surface are

continuous at r = b. (See squations 2.45 and 2.46.)

7 = - r=b _ 'r=b

1s the surface impedance. Next, the approximation is made m equations 3.126 of using
the magnetic fieids for the perfectly conducting coaxial rod configuration, HBZ C and

HZ 2c , n place of the magnetic fields associated with the lossy coaxal rod
configuration, HeZ and sz , respectively. Finally, the closed surface of
integration mentioned in equation 3.20 1s taken as the cylindrical rod element surface.
The power flow through the area consisting of the two slement endfaces, which are
specified by Z * *z,, 0 grshb, 15 neglected. This 1s justified when the
conductivity of the lossy rod is very large, because the skin depth is much smaller than
the rod radius. The region 1 electric and magnetic #isld magnitudes are only large very
close to the surface of the lossy rod.

Making usgy of the discussion given in the preceding paragraph, it 1s seen that the
left hand side of equation 3.20 approximately simplifies to equations 3. 125. In summary,
the perturbation type of procedure used to investigate the power dissipation occurring
within the lossy coaxial rod slement, based on the magnetic fields associated with the
perfectly conducting coaxial rod configuration and the concept of surface resistance. s
actusily an approximation of Poynting’s energy theorem.

Attention is now directed to the simple task of evalusting squations 3.125, it is

convenient to rewrite these equations as

b



P

R 1 *
= _5 c,2
( - (IHy,12 + IHZZEIE)'r=b dz b do,
=0 z2=-2z,
1
+2
R_
p,;égib (IH E|2+ |H CIZ)' d
, r=b
-Z]

o i C ; .
Making use of the values of HBE and Hzgc from equations C.6 and C.7.

respectively, and the value of Rs mantionad after equations 3.125, and making the
approximation Sca ;*‘} h':a it can be shown that equation 3.127 is just the sum of

equations 3.122 and 3.123. Taking the ratio of equations 3.121, 3.122, and of equations

3.121, 3.123, it 15 clear that Pdr 1s smaller by the factor 1/g than Pde snd
P Therefore, since the rod conductivity has been assumed to be very ltge the

Pdz"
tota/ power dissipastion is. to 8 good spproximation, given only by the sum of equations
3.122 and 3.123. This means that using the concept of surface impedance and the
magnetic fie/ds associated with the perfect/y conducting coaxial rod configuration, the
same total power dissipation was calculsted as that given near the beginning of part

: 3.5.1, which was obtained directly by making approximations 1o the exact power

dissipation equations /isted in section 3.1.

accuracy of the approximate power dissipation expressions, equations 3.121 - 3.123.
Second, a better understanding of the meaning of the assumptions made during the
derivation of these approximate power dissipation expressions 13 schieved. Thwd, an
alternative interpretation of the nature of the power dissipation s obtaned. instead of
saying that the power dissipation results from ohmic heating associated with the
presence of electrical currents flowing withun the lossy coaxial rod slement, the power

A
{dissipation 18 considered from the pont of view of the time-averaged power flow



through the cylindrical surface of the lossy coaxisi rod element

To conciude part 3.5.1, a discussion will be given of the overisp which occours
between equations 3.121 - 3.123, the spproximate power dissipation equations for the
coaxial rod configurstion wave number solution, and equations 3.70 - 3.72, 3.77 - 3.79,
the approximate power dissipation equations when “the lossy rod is a good conductor”,
as discussad n section 3.3.

First, equations 3.121 = 3.123 and equstions 3.70 - 3.72. the small argument
approxmmate power dissipation equations for the case when “the lossy rod is a good
conductor”, are considersd. For the first mentioned set of equations, it is assumed that

ha < 0.100 and KTy . 2 zy/a << 1. Equations A.28 and A.29, the
small argument Bessal function rapf:fsﬁutians, re :pphadfgmnyf equation C.24, the
small argument spproximation of the dispa;svan equation, 1s used. Keeping in mind the
approximations listad in equations 3.76, 1t can be shown that the ‘E@*F!spéﬁdiﬁg
squations of the sets 3.121 - 3.123 and 3.70 - 3.72 are equal. When the vaiue of
hCa is sufficiently smgll, the approximate power dissipation equations for the case
when the lossy rod 1s an excellent conductor, based on the perfectly conducting coaxial
rod configuration wave number solution, become the same as the small argument
approximste power cissipation equations for the case when “the lossy rod 1s a g(:eél
conductor”™, which were previously discussed in part 3.3.1. _

Finally, equations 3.121 - 3.123 and lq;!t'@ﬁl 3.77 - 3.79, the large argument
approximate p:::\ﬁf énman equatigns for the case wiznn “the lossy rod 1s a good
conductor”, are examined. Consider equations 3.121 - 3.123. It is assumed that

hb = h®a - b/a > 1, and that 2 ®,/a > 10.  Equstion C.26, the
large argument approximate dispersion equation, is used. The large argument Bessel
function representstions, equations A.38 " and A.39, are applied. Making these
approximations and performing some aigebra, equations 3.121 - 3,123 sre transformed
into the corresponding equation of the set 3.77 - 3.79. If the vaiues of KhC, and
2 z]/ a e sufficiently large, the approximate power dissnr;tiaﬁ equationg for the
case when the lossy rod i1s an excelient conductor, baséd on the perfectly conducting

¢



approximate power dissipaton equations for the case wﬁcn“ﬂu lossy rod s a good
cénduct@r? which were previously discussed n part 3.3.2.

In summary. i}, has been shown that when the values of L€, and 2 z,/a
are sufficiently small or large, the approximate power dissipation egustions given rn part
3.5.1 become those given in parts 3.3.1 and 3.3.2, respectively. Thus overlap is an
expected result. It supports the accuracy of the approximate power dissipation

equations hsted in the three previously mentioned parts of Chapter 3.

3.5.2 Graphs of Pd,ﬂ/sz snd P, /Py,

In order to achieve a better understanding of the power dissipation which occurs
within the lossy coaxial rod element. for the case when the lossy rod s an axcellent
conductor, making use of the perfectly conducting coaxal rod configuration wave
number solution, 1t 1s desirable to know how much of a contribution to the total power
dissipation i1s associsted with each of the three region 1 electric fields. It 1s especially
important to detdrmine which electric field makes the domihant contribution. This means
that fRe total power dissipation can be nvestigated by considering just a sing's equation
of the set 3.121 - 3.123. In order to obtain this information, 1t 1s necessary to study the
ravos Py /P, and Pye/ Py, Equations 3.128 and 3.129 are obtamed simply
by taking the appropriate ratios of equations 3.121 - 3.123.

€.\ 2
de . ] B (h7a) — cctaﬂzi
F? a/méo (ka cgtanwF 7

sin{(2 h® 21)7
— =)

——b _ and = (3.128)
sin(2 h- Zi)

[v - ,
2 h® 2

+

| e |
el

s c
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(=8
]

P 7 (K. (h€ 12 v /nCiy 2
. cotan?, Eﬁlf':‘)l, [50(?7b)3,,
[Ky(h0) 1% [k, (nCa) 12

2]

(3.129)

Equations 3.128 and 3.129 are the power d155ipation ratios, when the /ossy rod

/s an excellent conductor, based on the perfect/y conducting coaxial rod configuration
wave number so/ution. Equation C.19 hsts the variables on which the wave number
hca 1§ dependent. Keeping this n fmund, 1 is possible to stale the functional

dependences of equations 3. 128 and 3.129,

P -
d .
T = f(ka cotany, b/a, y, o/wegs 2 2,/2), and
1z
P 45 | (3.130)

g(ka cotany, b/a, y).

)

1

It is important to realize that the requirements listed in equations 3.114 - 3.116, and in
equation 3.120, must be satisfied to justify the usage of equations 3.128 and 3.129.
Equations 3.128 and 3.129 can be more easly understood by usmng

approximations of the trigonometric and Bessel functions, which are vaid for certan

values of the arguments. First, the small argument approximations are considered.
Restrictng KhCa < 0.100 so that the small argument Bessel function

o , , ) L
representations, equations A.28 and A.29, are well justified, and substituting these into

squation 3.129, 1t follows that

P oo , [109(0.891 hSb)]?
548 % (b/a)? cotan?y ———— " ° 5. (3.131)
dz [109(0.891 hCa)]

It the vaiue of b/s is not too small, taking into consideration the value of hCy
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109(0.891 h°b) = 109(0.891 ha) + log(b/a) = log(0.891 hCa).

Therefore. equation 3.131 approximately smpiifies to

h-l

de ~ 2 2 ‘
== (p cotan®y '
sz (b/a)® cotan‘y. (3.132)

¥ the values of hca and 2 2, /a are sufficientty small so that

1

can be used. In addition, the small argument approximation of the dispersion aquation,
equation C.24, 1s employed. As mentioned in section C.2, this 1s vaid for hCy .

0.100 f b/a s not too smail, and 1t tends to be more accurate for a fixad value
of bim when hca bscomes very small. Making the two previously mentioned

approximations in egquation 3. 128,

P, 2 z, 1 ; ,
dr o~ 1 1,2 ) ) L z2 2
sz 48 a t:/uu;o

(O_- (b/a)%)? (3.133)
(log(b/a))?® '

<

-®
is obtained. Equations 3.132 and 3.133 are very convenient because the two ratios sre

explicitly given in terms of the operating frequency. the sheath helix geomelry. the lossy -

coaxisl rod element geometry, and the lossy rod conductivity.
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The lsrge argument spproximations of equations 3.128 and 3.129 are now
obtained. Just the first term éf equations A.38 and A.39 1z substituted mto
equation 3.129. To justify using these large argument Bessel function representations, it
18 necessary that L Cp . | The large argument approximation of the dispersion
equation, equation C.28, 1s used in equation 3.128. Finally, the assumption 2 Z 1 /a »

10 15 used in equstion 3.128. The following two equations are easily obtaned.

- cotdn“y, and (3.134)
0 ,
ﬁdg?cataﬁzw. (3.135)

A graph for each of equations 3.128 and 3.129 has been prepared. it was
necessary to first solve equation C. 14, the dispersion equation, for the specified values
of ka cotany and b/a in order to obtain hca! Equations 3.128 and 3.129
were then directly evaluated.

Figure 3.20 is a gr!ph of the ratio Pde/sz » 4as given by equation 3.129.

v = 1.00°, TOEO"'; b/a = 0.100, 0.500, 0.900; and 1.00x10°7 « ka «
10.0 ore used. (Note that as mentioned m equations 3.130, the vaius of o/we(
doas not have to be explicitly specified. However, ﬁ'u lossy rod conductivity must be
sufficiently large so that the requirements listed in equations equations 3.114 - 3.116,
and in equation 3.120, are satisfied.) Equations 3.132 and 3.1 35 ara seen to be in good
sgresment with the curves, for small and large v,-lu;; of ka respectively. It is clear

from this figure that P4, >> Pz is usually true,

Figure 3.21 is a graph of Pdrlpdz‘ based on equation 3.128. ¢ =

1.00x10°%; 2 zy/a = 10.0;  and  1.00x107° < ka < 1.00 #®.

1.00°, 10.0°  pa x 0100, 0.800; o/wey = 1.00x10'°,

used. (Note that a large value of o/ we€(y must be used to ensure that

Tucy
ka - b/a > 1. This requrement is mentioned in equations 3.114.) It is apparent

that equation 3.134 is in good agreement with the curves when the vaiue of ka is
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Figure 3.20 Graph of Pdeipdz versus ka, based on

equation 3.129. The lossy rod is an excellent conductor.
Curves for b/a=0.10, 0.50, 0.90; v=1.0°, 10.0°; and
1.00x1077 <ka<10.0 are shown. (Note POO=P,, . PDZ=P, ,

and KA=ka. B.10P10. means the curve repfééents b/a

=0.10 and y=10.0°. B.90P1.0 means the curve represents
b/a=0.90 and ¢=1.0°.)
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Figure 3.21 Graph of Pdr/Pd; versus ka, based on
equation 3.128. The lossy rod is an excellent conductor.
Curves for b/a=0.10, 0.90; v=1.0°, 10.0°; a/g:n
=1.00x10'%, 1.00x10'5; 2 2,/2%10.05 and 1.00x10 3<ka<1.0
are displayed. (Note PDRiPdF, PDZ-PdZ. and KA=ka.
BIEI5P10 means the curve represents b/a=0.10, o/we
ii.ﬂ0x1O]5. and =10.0°. BY9E1OP). means the curve

FEPTesents b/2s0.90,0/uc("1.00x10'0, ang yuy 0e.)
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large. For small values of ka. there is reasonably good agresment between the curves
and the prediction of equation 3.133. More specifically, there is just a few percent error
st ka = 1.0031053 when b/a = 0.900, but there 1s sbout fifty percent error

1]

at ka = LQQHD*E‘ when b/a = 0.100. The isrge error results from using
équation C.24 n the derivation of equation 3.133. Equation C.24, the small argument
approximation of the dispersion equation, will only be Mghly IGE'\IDt\fQF' values of
b/a as small as 0.100, for vaiues of ka cotany less than those used here. It
1s obvious from the figure that P, >> Pyr s true.
In  summary, graphs of the power dissipation ratios Pde/sz and
Pyr/Pg4z have been presented, assuming that the sheath helix is relatively tigntly
wound, using different operating frequencies, sheath helix geometrias, Iossy coaxial rod
element geometries, and lossy rod conductivities. It has been clearly shown that

Pde > sz and sz >> P are aimost always true. 7/his has the important

dr
meaning that for the case when the [ossy rod is an excell/em conductor, making use of
the wave number solution for the perfectly conducting coaxial rod configurastion, the

comribution to the total power dissipation associsted with the region 1 angular electric

fields. Therefore, to a good approximation, the ipta/ power dissipation occurring
within the /ossy coaxial rod element is given by equstion 3.122.

=

3.56.3 Graphs of the Spatisl Distribution of the Power Dissipation, Based on E o1

The preceding part, part 3.5.2, has shown that the contribution to the total pewtr
dissipation associsted with the region 1 angular electric field is usually much greater than
that associsted with the region 1 radial and axisl electric fislds, when the sheath helix is
relstively tightly wound. Therefore, an understanding of the spatial distribution of the
total ohmic heating aaarriig within the lossy coaxisl rod element can be achieved by
repeating the same procechre previously followed in part 3.4.3, using Ee] as the
electric field component.

The dimensioniess ratio ko s defined as
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de

The volume of integration in equations 3.136 I1s the entre lossy coaxial rod eiement
volume. P .. is specified by equation 3.122. IEB] #| s the magnitude of the
region 1 angular electric field component evaluated at the particular point within the lossy
coaxial rod element specified by (ro, zo) . Futhermore, this magnitude s then
assumed to be constant at all points throughout the element volume. Therefore, as shown
N equations 3.136, 1t can be taken outside of the integral sign.

The value of & v which was

] b4
previously discussed in_ part 3.4.3. Studying ce st several different points

( To° ZO) gives mforrmtb@b concerning the spatial distribution of the ohmic heating,

_which arises from the contri to the total power dissipation associsted with

E K
spproximation, equal to the total power dissipation. Therefore, equations 3.136

has the same meaning as the value of £

However, as was discussed in part 3.5.2, this contribution I1s, to a good

approximately show the spatial distribution throughout the lossy coaxal rod element of
the tota/ power dissipation. -

in order to evaluate equations 3.136, the approximations hsted in equations
3.114 and 3.115, as well as the approximations ga =~ h,a = h, , are used in

the expression for the region 1 angular electric fieid, equation 3.3. it follows that

2 c 2
<2, [Ky(h-a)]

|E_#(r,, z )|2 . 4l (1207)° cos“y "y .
CR 0 0 (b/a) O/wto [K](hcb)]2

|1 (mk ro)l2
II (T3 o . b)l?— cos (h zo).

k4

(3.137)
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Substituting equations 3.122 and 3.137 into equations 3.136,

(3.138)

is ébuiﬁﬂdé If the radial distance of concern 1s sufficiently large so that E/m:o
kb ro/b > 1, just the first term of equation A.37, the large argument Bessel

function representation, can be used to approximate equation 3. 138. it follows that
£

\E a/m: kb (1-r D/b)

r/b

SRS LA (3.139)

’\
P
o
[
™
[

Keeping in mind equation C.19, which Iists the variablas on which hea is dependent,
the nonspatial functional dependence of equation 3. 139 s

£o = f(ka cotany, b/a, y, o/wey, 2 2,/a). (3.140)

To achieve a better understanding of equation 3.139. it has been graphed using
several different sets of the variables mentioned In egquation 3.140,. Two dnffcraﬁi types
Qf figures were used to show the spatial distribution of the power dissipation. First,

Ee(rﬂ‘ 0) was piotted for ditferent values of r.D/b, to show the rachal



[ %]
[ ]
[ ]

dependence occurring at the transverse plane 2 = 0.  Second, by 2() was
plotted versus 20/21 to show the axisl dependence occurring at the lossy rod
surface. Numerical caiculstion of equation3.139 was achieved by first iel\n'ng
equation C.14, the dispersion equation, for the specified vaiues of ka cotany and
b/a. n order to obtain hCa. Equation 3.139 was then directly evalusted.

The six figures which follow are each characterized by b/a = 0,100, 0.500.
0.800; y = 1.00°; c/w,co = LDOx’lﬁ]z; 2 21/a = 10.0;
and a particuler value of ka cotany. (Nots that the value of g/még was chosan

sufficiently large so that the requirement g/mgo + kb FD/b > 1, which
is mentioned after equation 3.138, s always satisfied.)

Figure 3.22 shows 56("0; 0) versus rQ/b for 0,99§’§ < r"D/b <

1.0000, andfor ka co-any = 10.0. Al three curves make it mmediately
clear that the value of Ee

as the vaiue of ro/b decreases. This means that the ohrmic heating 1s very strongly

IS very large at o © b but# decays extremely rapidly

concentrated near the lossy rod surface. It can be seen that the larger the value of
b/a, the larger is the value of Eg ot rog * b, and the more rapidly it decays as
the value of ro/b is decreased.

Figure 3.23 displays Ce(b- ZQ) vVersus 20/21 for 0 g ZD/ZT z
0.20 and the sasme value of ka cotany #8s was used previously. All the curves
show thst the ohmic hesting st the lossy coaxial rod element surface is very large at
certan axial positions but it is small just a short distance away from these positions. The
distribution of the power dissipation as a function of the axial distance s vif'yv
nonuniform.

Next, Figure 3.24 graphs ‘e(ro‘ 0) for 0.990 < ro/b < 1.000,
and it is sssocisted with ka cotany = 0.500. Similar behavior to Figure 3.22
occurs. However, the fact that the value of ka cotany used here is smaller than
that used in Figure 3.22 means that the valus of Ee at o * b, although large, is
Mub&guMOfmoproviouﬂyﬁ:ntimfﬁrghiddﬁimiﬂ'ﬂu;ﬁﬁrmn
which Ce becomes smaller for decreasing values of FD/b is very rapid, it is not as
grest as that exhibited in Figure 3.22.
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Figure 3.22 Graph of £y Vversus ro/b for ZD-Di based v

on equation 3.139. The lossy rod is an excellent conductor.

~12,

Curves for b/a=0.10, 0.50, 0.90; ¢=1.0°; a/sz‘T.ODxl P

2 z,/8=10.0; ka cotany=10.0; and 0.9995sr,/bsl.

0000 are

shown. The line ee!IiOD is also given. (Néte Eelzg. R/B

SrO/bi Z:;Di KA CP=ka cotany, and B/A=b/a.)
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figure 3.23 Graph of Ee versus zo/z] for ro-b. based

on wquatfon 3.139. The lossy rod is an excellent conductor.

Curves for b/a=0.10, 0.50, 0.905 y=1.0%; a/uwcy=1.00x10'%;

2 z,/a=10.0; ka cotany=10.0; and 0.0520/1150.20 are
displayed. (Note Ee'ca. R-ro. Z/Zl-zo/z‘. KA CP
=ka cotany, and B/A=b/a.)
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Figz;é 3.24 Graph of £, versus rO/b for zD—O. based

on equation 3.139. The lossy rod is an excellent conductor.

Curves for b/a=0.10, 0.50, 0.90; y=140°; o/ue,=1.00x10'%;

2 z,/a=10.0; ka cotany=0.50; and 0.99<r,/bgc1.00 are shown.
Tha Jine EB-T?BG s also displayed. (Note Eeige. R/B

ira/b; Zizai KA CP=ka cotany, and B/A=b/a.)
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Figure 3.25 displays Ee(b. “io) using 0 < 29711 < 1.00, andnt

corresponds to ka cotany = 0.500. At Zy5 = 0, the ohmic hesting s
large. It exhibits a relatively siow variation as the axial position changes, and 1t bacomas
small about halfway between the piare zy = 0 and the two endfaces of the lossy

coaxial rod element.
Figure 3.26 graphs £g(Tgs 0) for 0.90 < rg/b < 1.00,  gng
uses ka cotanyg = ) _00;10'2_ Similar behavior to Figures 3.22 and 3.24 s
exhibited. The differences are that since the quantity Ka cotany s now smalier than
it was for the two previously mentioned figures, the vaiue of Ee at ryg = b s
'less. although 1t 1s still large, and the rate of decrease associated with E,e as T‘D/b
becomes smalier is less, aithough it 1s still rapid.
The final graph, Figure 3.27. shows EE( b, ZD) for 0 <« ZD/Z-I <
1.00, and 1t 1s associated with ka cotany = LDDx’ID’ZE The ohrmic
heat:wg which now occurs at the rod surface 1s seen to be constant over the entire lossy
- Coaxial rod element iength. This behavior 1s greatly different than that of Figure 3.23,
which has a large value of ka cotany wessocisted with it.
/'n summary, when the /ossy coaxial rod element 1s an excellent conductor. the
" (total) ohmic heating is very /arge near the surface of the rod, but it extremely rapidly
decreases moving radially inwards toward the center of the rod. When the value of
ka cotan Vv is/arge (which means that nC4 /s large), the ohmic heating is very
large at g * b end Zg = 0. It :changes rapidly in value along the rod
surface as the axial distance is varied. On the other hand, when the valuve of
ka cotany /5 smas (which means that nC, s small) the ohmic heating is Iarge
st Tg b ang 2y = 0, aithough it is much smaller then for the previously
mentioned case. It is now constant along the rod surfsce, for all the values 221 <

25 < 2.
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Figure 3.25 ; Graph of £, versus zD/z1 for ro-bi based

on equatfon 3.139. The lossy rod is an excellent conductor.
Curves for b/ax0.10, 0.50, 0.90; y=1.0%; o/wey=1.00x10'?;

2 2,/a=10.0; ka cotany=0.50; and 0.0g27/2,<1.00 are given.
(Note Eeizel RirO, Z/Zii;D/z1. KA CP=ka cotany, and
B/A=b/a.)
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Figure 3.26 Graph of £, versus rofb for zD!D, based
on equation 3.139. The lossy rod 1s an excellent conductor.
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Curves for b/a=0.10, 0.50, 0.90; w=1.0°; é/mgoi1iDDx1 H
2 2)/2=10.0; ka cotany=1.00x10"%; and 0.90¢r /b<1.00 are
shown. The l1ine 56-1@00 is also given. (Note Ee*EE, R/B
irD/b, Z-zoD KA CP=ka cotany, and B/A=b/a.)
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Figure 3.27 @Graph of g Versus 20/11 for rosb. based
on equation 3.139. The lossy rod is an excellent conductor.
Curves for b/a=0.10, 0.50, 0.90; y=1.0%; g/wey=1.00x10'%;
2 2,/4%10.0; ka cotany=1.00x10"%; and 0.0¢2,/2,¢1.00 are
gfven. The line £g1.00 is also shown. (Note Eéise, R=rg,
Z/Z'Iizolz1i KA CP=ka cotany, and B/A=b/a.)
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36 Surnmiry .

This chapter is concerned with studyng the tme-aversged power dissipation
occurring within tHe lossy coaxial rod element, which 1s surrounded by a sheath helix.
(Tholossycoaxnlrodmtnsdescrﬁbedb‘:* 0V srgb, LTI
where (0 < z] < 00.) Exact power dissppation equstions were dﬁrvii (The
term “exact” means that the field components of part 2.1.1 were uséﬁ ‘and that no
approximations were made to these fieids during the caiculation of the power dissipation
expressions.) Poyntimg’'s theorem for complex fieids was apphed to the iossy coaxial rod
elemlent. Both sides of the equation stating thus theorem were evalusted, and it was
demonstrated that the theorem s correctly satisfied. This provides :c:hsc':k on the
accuracy of the exact power dissipation equations. it 8lso shows that the total power
dissipation occurring writhin the lossy coaxial rod element could be considered either
from the pomnt of view of electrical currents flowing within the lossy rod which result in
ohmic heatimg, or from the point of view of the net radial and axial time -averaged power
flow which pass through the closed surface defining the element volume.

Although exact power dissipation equations have been denvc&. lq 18 usually
extremely difficult to caiculste the wave numbers h.4, h

a
1 27’
appesr in these equstions. In order to achieve a good undors_tandmg of the power

end ga which

dissipation occurring within the lossy coaxial rod element, 1t 1s necessary to develop
approximations to the exact power dissipation equations.

One type of approximate power dissipation equations, which were derived from
the exact equations. are valid for the case when “the lossy rod is not 8 good conductor”.
{(The term “the lossy rod is not a good conductor” ss used here has the same Fﬁ::ﬂngi
that it did in part 2.3.1.) These approximste equations make use of the approxirmnate small
and large argument wave numbers solution discussed mn part 2.3.1. Two region
’config.ntion b = & and three region configuration b < a small and large
argument approximate power dissipstion equations were ldonvad.

Assuming that the sheath helix is relatively tightly wound (as an example, ( .

v < 10.0°), for the small argument case. both the two and three region
configurstions have the proporty ‘that the regon 1 (0 < r < b) axial electric

“~

field provides a much larger contribution to the total power dissipation cccurring within
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the (ossy coaxial rod slement than the region 1 radial and anguiar electric fisids. For the
large argument case of the two region configuration, the region 1 radial and axial electric
fields spproximata'y make an equal ccﬂ‘ﬁ'fﬂtn@n to the total power dissipstion This
contribution is much larger ;ﬁm that assocusted with the regron 1 anguiar electric freld
Finally, the large argument case of the three region configuration 1s more difficult
Ususlly, the power dissipation caﬁﬁ'ibutuf;ﬁ associsted writh the region 1 axial alectric
fieid 1s greater than that associated with the region 1 rackal electric fieid. The contribution
associated with the rejion 1 anguiar electric field may or may not be grester than that
associsted with the region 1 axial slectric field, depending on the electrical properties of
the lossy rod and the pnch angle of the sheath helix.

To help understand the circumstances under which either the angular or axiasl
regron | electric freid makes the larger power dissipstion contribution. two sets of
graphs of the ratio pde/sz were prepared. The first set displayed both the small
and large argument approximations of the ratio on the same graph. A gap was left n the
middle. where neither of these approxmmations was justified. The second set of graphs
showed only the large argument approximation of Py /P, .

Another type of approximate power dissipation equations were derived from the
exact equations, for the case when “the lossy rod 1s a good conductor”, making use of
the approximate small and iarge argument wave numbers solution discussed in part 2.3.2.
(The term “the lossy rod i1s a good conductor”™ as used here has the same mearing that it
did in part 2.3.2) Only the three region configuration was considered because
npbre;imitn wave number solutions for the two region configuration were not obtained
in part 2.3.2.

For the small argument crcumstance, the contribution to the total power
dissipation associsted with the region 1 axial electric field is much grester than that
sssocisted with the region 1 radial electric: fisid. In sddition, the contribution assoCiated
with the region 1 angular slectric fisld is ususlly greater than that wssocisted with the
region 1 axial electric field When the large argument case was investigsted, it was seen
that the contribution to ‘ﬁn total power dlﬂlﬁihm‘:lm&ﬂﬂ with the region 1 anguisr
slectric field is much grester than that associated with the region 1 radial and axial
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Another set of approximate power dissipation equstions was derived frorh the
exact equations by assuming that the lossy rod is an excelient dislectric. This makes use
of the wave number solkution issoén’atod with the sheath helix surTounding an deal
dhelectric coaxial rod, hda '_ The conductivity of the lossy rod I1s restricted to being
very smail. However. it 1s not necessary to restrict the vaiwe of da . The
2pproxmmate equations are useful because they can be e_vuuttod over a3 wide range of
operating frequencies, 'sr'vuth helix geometries, and iossy coaxial rod element
geometries.

As a check on the accuracy of these approximmate power dissipation equations,
the region 1 electric fieids associated with the 1deal dwelectric coaxial rod configuration
were used to develop a set of approxmmate equations. & was discovered that these
oQuations are 'dentical 1o those obtained ﬁy Making SpProxIMations to the exact power
dissipation equstions. Therefore, the approximate power dissipation equations for the
case when the lossy rod s onxcouom dislectric can be considered as a perturbation
so/ution, based on the ideal dislectric coaxial rZ)d fieids.

A discussion was given of the overlap associsted with these power dissipation
equations and the equations for the case when “the lossy rod is not a good conductor™.
Roughly spesking. if the éonducuvnty of the lossy rod 1s assumed to be sufficiently smal
for the second mentioned set of equations, and if the vaiue of hda '$ assumed to be
sufficiently smali or large for the first set, the two sets of equations were discovered to
be equal. This is an expected result. It provides a check on the accurecy of these two
sets of equations. ‘

Graphs of Pdr/pdz and Pde/sz were prepared. For both the two and
three region configurations, it was discovered that for small vaiues of ka cotany,
the contribution to the totsl power dissination associated with the région 1 axial electric
field is much grester than that of the region 1 radisl and snguisr electric fields. On the
other hand, for large values of ka cotany, both the two and three region
configurations showed that the contribution associated with the region 1 axial and radisi
electric fmummmwsiswpmwwmmmm
associsted with the region 1 sngular electric field.
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The spatial distribution of the total power dissipation ocourring within the lossy
coaxial rod eiement was examuned it was found that for large values of

ka cotany, the power dissipation i1s large nesr the surface of the rod and 1t ragidly
decreases moving radially -mwards toward the center of the rod h is apgroxmnately
constant with respect to the axial position over the entire length of the siement When
the value of ka cotany s small, the power dissipation 15 uniformly distributed at all
points thr gughout the lossy coaxial rod siement voluma.
* The final set of approximate power dissipation equations discussed in the chapter
were derived from the exact equations for the case when the lossy rod 15 an excelient
conductor. The wave number solution for the sheath hehix surroundng a perfectly
conductng coaxsl rod, hCa » s used. Oniy the three region configurstion s
consdered. (in Appendix C it 1s mentioned that the free mode freid solution associated
wtt;w the two region configuration 13 not of interest) The approximate power dissipation
~ equstions are convenient because thay can bs evalusted over a wide range of operating
frequencies, sheath helix geometries, and lossy coaxial rod siement geometrias.

In order to check on the sccuracy of thess approxmnate power digsipation
equations, a perturbation procedure was performad, making use of the concept of
surface resnsum‘wd the regon 2 (b <« r &« a; magnatic fisids associated
with the perfectly conducting coaxial rod configurstion. Rt was discovered that
spproxmitely the same total power dissipation was calculsted from thus procedure as
that obtamoé by making approximations to the exact power dissipation eqQuations.

The overiap associsted with these power dissipation equations and the equations
for the case when “the lossy rod is a good conductor”, was discussed. Roughly
speaking, it was discovered that if the value of hca 15 sufficiently small or large for
the first mont:onod set of equations, and if the lossy rod conductivity 1s sufficiently large
i the second set. the two sets of equstions sre equal. Thes result is expected. NIt
provides a check on the accuracy of the tww:; sets of equations.

Graphs of Pdr/sz and Pdelpdz were prepared. Assuming that the
sheath helix is reistively tightly wound., it was discovered that the contribution to the total
power dissipstion sssocisted with the region 1 angulasr electric field is usually much
greater than that associated with the region 1 radial and axial -hr:ﬁ*né fisids.

A
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coaxial rod element was examined. For large values of ka cotany, the power
dissipation is very large nesr the surface of the lossy rod, and it very rapidly decreases
movmg radially mta: toward the center of the rod. Furthermore, the power dissipation
s very nonuniformiy distributed over the axiai iengtt of the slement. For small vaives o
ka cotany, _ the power dissipation 1s large at the lossy rod surface and 1t rapidly
decreases as the radial distance becomes smalier 't s uniformiy distributed over the axal

length of the slement



4. Chspter 4.  Summary snd Conclusidns

The purpc <= of the thesis 1s 10 derive and mvestigate the free mode fieid solution
assocunted wr= aath halix surrounding a2 l0ssy coaxial rod, and then 10 axamne the

L4
time-averagad power c;ﬁssémhan which occurs within the lossy rod. Equations for the
axact alectric and magnetic fré_ld caﬁw‘ts and for the exact total power dissipation
within the lossy rod, are derived in Chapters 2 and 3. (The tota/ power dissipation,

rasults from contrib

\,1 15 Bss0cCuted with the presence inside the 10ssy rod of the radial,
anguisr. and am;l‘a::tnc field components.) It was not possible to solve the exact
!dlsagv*sn:!ﬁ and saparation constant equations, In order to rumerically evaluste the two
radial wave numbers and the axial wave number. As a result, the exact electric and
magnetic field components, angd the exact power dissipation, could not be numerically
evaluated. ‘

In order to obtan numerical vaiues for the field components and for the power
dissipstion, it 1s necessary to make spproximations. Four distinct major classes of
abproximations are made. (Although the exact equstions derived for the fields and power
dissipation are vahd for all pitch angles mtherange 0 < y < 90.0°, its usually
assumed that the shesth helix is relatively tightly wound, for example 0 <y <
10.0°, when the approxmmate equations are considered.)

The first two classes of approximations are concerned with the cases when “the
lossy rod is not » good conductor” and when "the /ossy rad is a good conductor”. (The
meanings of the two expressions n quotation marks are defined in part 2.3.1 and in
part 2.3.2, respectively.) Within these two classes of approximations, the magnitudes of
the two radial wave numbers are restricted to being either small or large. This means that
all the Bessel functions appearing m the dispersion equation, the electric and magnetic
field components, and the power difsipstion equations, can be approximated by replacing
them with thew small and |arge argument rapresentations. With this approximation, 1t s
~ possible to solve the dispersion equation and the separation constant squation to
Caicuiste approximate radial and,axisi wave numbers. These wave numbers can then be
used to approximstely evaluste the electric and magnetic field components, and the
power dissipation. Unfortunately, the resulting solutions are only valid for certain ranges

of the operating frequency and for certain geometries of the sheath helix and lossy
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coaxial rod configur stion.

The second two classes of approximations are concerned with the cases when
the /ossy rod s an excellent dielectric, and when the /ossy rod is an excellent
conductor. For these cases. the radial and axial wave numbers solution associated !:mth
the ideal dielectric. (z:ro conductivity) coaxial rod configuration, and the perfectly
co‘wmctmg coaxial rod configuration, respectively, are used in order to obtan nuMmar ical
values for the field componets and to nvestigate the power dissipation occurring within
the lossy rod. It 1s now Not necessary to make any spproximations to the Bessel
functions which appear in the field components and in the power dissipation equations.
The solution i1s vaiid over a wide range of operating frequencies and for many dif ferent
goemetries of the sheath helix and lossy coaxial rod configuration. However, sharp
restrictions are placed or\ the electrical propirngs of the lossy roa.

For the four classes of approximations, it 1s_possible to determine how =uch of a
contribution towards the total power dissipation 1s associated with eaach of the three
electric field components present within the lossy rod Furthermorer it 1s possible to
determine how the total power dissipation 1s distributed spatially throughout the lossy

rod volume.

The discussion presented in Chapter 2 and in Chapter 3 considers s relatively
wide range of different cases. It s recogrized that for the purposes of adtual
electromagnetic hu'tmg applications, some of these cases are of more academic interest
than practical interest. In order to provide an iliustration of the conciusions which can be
reached using the mformation piosentod in Chapters 2 and 3, a brief discussion will be
given of two mportant practical spplications of electromagnetic heating involving a
cyhndrical rod of lossy material centered inside of a physical helix.

For both of these practical applications, the following variables are used. It 1s
assumed that the length of the physical helix (which 1s the same as that of the lossy rod)
Is ten times as great as the radius of the physical helix. Thus is done so that the effects
of fringing associated with the finite length physical structure are insignificant near the
mid-plane, which 1s chosen as the transverse plane z = 0. Furthermore, in order that
the sheath heiix model i1s well justified as a repressniation of the physical helix, 1t is

-
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assumed that the physical helix 15 tightly wound with 8 wire of small cross sections! srea.

A pitch :ngia of 1.00° s used it s assumed that the physical helix has a radius of
0.100 m. Therefore, the length of the physical helix 1s  1.00 m and 1t consists of
91 tuns of wire in total. Next, ité 15 assumad that the radius of tha lc:;ssy rod s
0.090 m. Finally, sn operating frequency of 1. 00x1 04 Hz 's employed.

For the first practical apphcation of electromagnetic heating, it 1s assumed that
the lossy rod cansists of a sample of Dougiss Beech Wood whose conductivity and
parmittivity are histed n Jable E. 1. The eslectrical properties of this sample are such that g
can be considered as an example of the small argument case, when “the lossy rod is not
8 good conductor”. Thus, from the information presented n sub-parts 2.3.1.1 and
2.4.1.2, the eiectric fieid components in all three régions can be numerically evatuated
and so ther behavior at dif ferant points in SPace 15 known.

The axial electric field within the lossy rod does not change as the radial distance
.ns varied. (When the radial dependence of the electric fields is discussed, it 1s assumed
that the axial position 1s held constant) However, the radial and anguiar elactric fields
within the lossy rod are directly iﬁrcp@ﬁncml to the radw! distance. Ar a// radia/
positions within the Doug/as Beech Wood rod, the magnitude of the axial electric f1eld
/s much grester than that of the radial and angular electric fields.

The axial electric field within the ar gap between the lossy rod surface and the
Physical helix windings is constant with respect to changes in the radial distance. The
radial and angular electric fislds withun the ar gap change relatively gradually as the radial
distance 1s varied. In the ar-filled region just outside of the physical helix windings, all
the electric fieids are siowly reduced in magnitude as the radial distance mcreases. More
specifically, the axial slectric field has a logarithmic radial dependence while the radial and
anguiar electric fields are proportional to the inverse of the radial distance. One
sxception to the behavior mentioned In the two preceding sentences occurs at very large
distances away from the physical haiix windings. All of the electric field components are
now rapidly exponentisily attenuated as!the radial distance increases.

Consider now the axial dependence of the electric field components. (it s
assumed that the racial position s held constant.) Within the lossy rod, as well as in the

ar gap region and n the ar-filled region outside of the physical helix windings, the
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angular and axml]alt:tnc fieids are constant as the axial distance 1s varied. hbww:;i the
radial electric fields increase lnearly n magnitude as the axial distance from the
transverse plane z = [ increases.

Attention 15 now directed towards axfﬁnnm; the tme-sveraged power
dissipation’ which occurs within the Douglas Beech Wood rod volume. Since the power
dissipatior 15 calculated by ?ntegrsting the scﬁig of the electric fieid components
throughout the rod-filled region -- as shown in equations 3.6 - 3.8 -- the power
dissipation contribution associated with the axial electric field component 1s much lar gor
than the contribution associated with the radial and angular siectric field componeants.
Since, as has bean previously mentioned in this chapter, the axai gcet:tr.é; fisid component
Is constant at all points throughout the. lossy rod volume, the total power dissipation
within the Douglas Beech Wood rod 1s uniformiy distributed. The total power dissipation
'S approximately given by equation 3.32.

Finally, 1t is of lnt}r!st to discuss how the total power digsipation within the 1ossy
rod behaves when relatively smail changes are made to the varables which wera initally
specified. These variables consist of the terminal current associated w:- e physical
helix windings, the physical helix pitch angle. the physical helix radius, e lossy rod
radus, the length of the physical helix (which equais that of the lossy rod), and the
operating frequency. (The electrical current present at the two terminals of the physical
helix windings s iD (A). nus relsted to the electrical surface current present on

the sheath helix “windings”, %" (A/m), accordingto
iy = 3“ p cosy = bn 2ra siny.

P 15 the pitch distance - - the axial distance between two successive windings, a s
the helix radius, and v is the helix pitch angie. See Figure 1.5b.) When one particular
variable is altered, it is assumed that all other variables are held constant,

Doubling the terminal current means that the total power cdissipation ncresses
four timaes. Reducing the helix pitch angle by a factor of two means that the total power

dissipation InCreases sixteen times. Varying the helix radius has spproximately no effect
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on the total power dissipation. If the lossy rod radius 1s reduced by a factor of two, the
total power dissipation decreases by a factor of four. Doubling, the length of the helix
Means that the total power dissipation is doubled. Finally, reducing the operating
frequency by a factor of two means that the totai power dissipation decreases by a
factor of four. -

If st the contribution to the total power dissipation associated with the angular
electric fieid had been considered -- which 15 the type of :ml;sus performed by
Brown et ai. (3, pp. 27) -- a different value for the total power dissipation would have
been obtaned. Furthermore, 1ts functional dependence would be different than that
discussed in the preceding paragraph. One important achievemeant of the thasis 15 the
recognition that the total power dissipation within the Douglas Beech Wood rod 15
approximately given by the contribution associated with the axial electric field and not by

the contribution associated with the angular electric field.

The second practical application of eletromagnetic heating assumes that the lossy
rod consists of a sampla of aluminum with zri?' 1 and g = 3.54x107 S/m.
Here the electrical properties are such that thus i1s an exampie of the small argument
representation, for the case when “the lossy rod is a good conductor”. The same
physical helix geometry, terminal current of the physical helix windings, and lossy rod
geometry, used in the first practical exampie of slectromagnetic haating are employed
here.

Assuming that the axial position 1s heid constant. all of the electric field
components within the rod-filled region are rapidly exponentially sttenuated as the radial
distance decreases. /n the rod-fi/led region, the angular electric field component is
much larger in magnitude than the radial and axial electric fl:elﬁ componems, except
& radial distances very close to the cerntar of the aluminum rod. Electric fiaid
components in the ar gap, and In the air-filled region outside of the physical helix
windings, vary relatively gradually as the radial distance 18 changed. There are. howaver,
two exceptions to the preceding statement. inside the air Gap, near the surface of the
lossy rod. the magritudes of the anguiar and axial electric field components decreasse
rapidly while the magnitude of the radial eiectric field component incresses rapidly, as the
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radial distance becomes smaller. At large distances from the physical helix windings, the
eiectric fieids are rapidly gxp&mﬁtmny attanuated as the radal distance mus;;s

At a fixed radial position within the lossy rod, the arr-gap region, and the arvx
filled region outside of the physn;zl helix windings, the angular and axial electric fields
reman the same when the axial coordinate s vargd. However, in all three regions, the.
magnitudes of the radiai electric fields ncrease Iinearly as the axial distance from thé
transverse mid-=plane z = 0 becomes larger.

Since the anguiar electric fieid has a magnitude much greater than that of the
rachal and ax.al slectric fieids at most ponts tﬁr;éugﬁém the lossy rod voiume, the power
dissipation Eaﬁﬁ'uéutnaﬁ associated witt the angular siectric field dormuinates over that
associated with the other two electric fieids. (In fact, the total power dissipation 1§
approximately given by equation 3.7 1.) Since the magnitude of the angular electric fiaid
within the lossy rod i1s rapidly attenuated as the radial distance decreases (for a fixed
“axial position) but 15 constant as the axial distance is varied {for 3 fixed radial posimon),
the total power dissipation is strongly concentrated near the surface of the aluminum rod
and 1t 1s uniformily distributed over the axial langth of the rod.

Attention i1s now directed towards Investigating the behavior of the total power
dissipation when relatively small changes are made to the jnitially specified variables. It 1s
assumed that ai ~™e- variables are held constant when a particular variabla 15 altered
When the terminai electrical current associated with the physical helix windings s
doubled, the total power dissipation incraases four times. !f the pitch angle of tha
physical helix windings 1s reduced by a factor of two, the total powar dissipation
increasas by a factor of four. Decreasing the radius of the alummum rod by a factor of
two maans that the total power dissipation becomes half of its original value. If the radius
of the physical helix doubles, the total power dissipation is reduced by a factor of four.
Doubiing the length of the physical helix means that the total power dissipation doublas.
Finally, increasing the frequency of operation four times means that the total power
dissipation doublas.

For this practical application involving the aluminum rod, the contribution to the
total power dissipation within the rod :ssac@ with the angular electric fieid 15 much ?

greater than that associated with the axial or radial slectric fieids. Therefore, tha
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sssumption made by Brown et ai. (3, pp. 27) in only considering the anguiar electric fleld
for calculating the total power disgipetion is well justified here.

e Whng only two practical numerical ax;ﬁplas have been cited. the free mode fieid
galut!a:\i and the power, i«::ssnzsgnéﬁ derived and discussed in this tﬁ§51§ can be used to
give mportant informatior concerning the fiald distribution and the Bawéf dissipation for
many other practical cases of interest. This iInformatior is invaiuable i~ the design and use
of induction coils for the purpose of esiactromagnetic neatng. Potential apphcatons
occwr in many disciplines, ranging from biomedical appiications to the food and

construction ingustries, and resource recovery opearations.
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A. Appendix A The Modified Bessel Functiona
The purpose of this sppendix is to collect in one convenient location the many
mathematical 1dentities and properties of Bessal functions, which have been used
throughout Chapters 2 and 3, and in Appendices B, C. and D. References used are 50,
pp. 355-389; 51; 52, Chapter 15; 53; 54; and 55, pp. 306-333. it is definitaly not the
intention 1o prove or derive the following properties. interasted readers are directad to
the referances. .

An explanstion of the symbols which e used 13 Nnow given. Z, i,

H L]

and a #re complex numbers, x s a real positive number. 7 means “is

approximately equal to”., " I " mashs "differentsts with respect to the total
argument”, and ™" means "tike the compiex conjugate”. Only Besse! functions of
egral orders q whare q = 0 or 1, mre used since pst these integral order
functions are of concern in the thes:s. Many rasults presented ';‘efg are actually vaiid for

a much wider class of orders.

A.1 Differential Equstion, Recurrence Properties, Relstion with other Bessel
Functions, Anstytic Continustion, snd Wronskisn |dentity

The modified Bessel equation of order q s
zz%*-z%%i(lzzz*qz):'!ﬂ- (A.1)

Employing the power series method of Frobenius, taking into :Qﬁ;id&f{tiaﬁ the fact that
the roots of the indicial equation ciffer by an integer, yieids two linearly independent
solutions (55, pp. 306-333). These are Iq » the modified Bessel function of the first
kind of order q  and Kq , the mdifmdragsnl function of the second kind of order

q Hence
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\
. U
.y =C Iq(xz) + D Kq(xz), (A.2)
where \\
@ 2k+q
(rz)
1,(22) :k=ZO el (A.3)
. I_v(xz) - Xv(xz)
Ke(2z) =3 - 1im [ ) I (A.4)

v—+q sin(vs)

For real positive arguments, Iq and Kq are plotted n Figure A. 1.

Iq and Kq do not obey the same recurrence reistions. These are

-

1o'(2) = 1(a), L(A.5)
Ko'(2) = -K(2), , (A.6)
Iﬁj'(l) = 19(2) - I 1,(2), and (A.7)
Ky '(2) = -Kg(2) = LK (2). (A.8)

The modified Bessel functions are related to the Bessel functions of the first and t
- second kinds. '

Io(z) = Jo(.jz)o (A.g)
Li(z) = -3 9,(J2), (A.10)
Kolz) = 3 5 (35(d2) + 3 Ny(3z)), and (A.11)
Ky(z) = - 5 (3y(32) + § N(§2))5 (A.12)
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where Jq 's the Bessel function of the first kind of order q and Nq is the
Bessel function of the second kind (or the Neumann function) of order 9 Jq(lz)

and Hq (12) are two linearty ndependent solutions of the Bessel equation

o]
oL

%x + (2%2° - g%y = 0.
¥4

]
(=8
[
+
~N

Thase two solutions satisfy the Wrongkian identity

NP ()0 W (2)) = 9 (2) W' (2) = 9 (2) mg(a)

(A.13)

- 2
wz

Modified Bessel functions formed by a change n the aligebraic sign of the

argument are related to the orignal functions according to

' io(-z) = ID(;), i (A.18)
Lit-z) = - 1,(2), . (A.15)
Kol-2) = Ky(z) = § » Io(z), and (A.16)
Ki(—z) = - .K](z) < J o Iy(z). (A.17)

It is convenient to express equations A.9 - A.12 in snother manner. This is dona

using equations A.14 - A 17.

Ig(jz) = Jg(z)i (A.18)
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W
L

1 (32) = 3 9)(2), (A.19)

KD(jl) = - % (No(z) + JD(Z))i and (A.20)

Ky(iz) = - 5 (3,(2) - j Ny (2)). (A.21)

Taking the compilex conjugate of the modified Bessel functions results in

’Iq(z) = Iq("?);. and (A.22)

'q 2) = KG( z ). (A.23)

”~
——
]
L
[}

This 15 a property of analytic contmuation

The Wronskian identity 1s

‘\;P(zq(z),. Ke(2)) = 14(2) Kg'(2) = 1.(2) K (2)

(A.24)

| —

It 1s very useful to combine equation A.24 with equstions A.5 and A.6, when
q = 0, with the result that

(A.25)

To(2) Ky(2) + 1,(2) Ky(z) = %



A.2 Small and Large Argument Approximations of the Bessel Functions
One can obtan the small argument representstions of the modified Bessel
functions by only keeping the most significant term in the infinite series expansions,

equations A.3 and A.4.

10(2) =, (A.26)
I(2) ™ &, (A.27)
Kol2) = - 10g(0.891 2), and (A.28)
Ky(2) = 1, (A.29)

are the small argument approximations of the modified Bessal functions. Table A1 15 a
ist of the percent error associated with the axact functions compared to equations
A.26 - A.29, for resl positive arguments Clearly, for 0< xg 0.10, the error
mvolved with using the approximate equations 1s very small, about one percant or iass.
Sometimes, such as when two nearly equal quantities are being subtracted, it s
necessary 1o use more accurate small argument approximations. In particular, if the first

two terms m the infinite seres expansion for | q are kapt, there resufts

2
Io(2) Al T and (A.30)
. ?ﬁz 23 ;oo =

In a similar fashion, small argument representations of the Bessel functions of the
first and second kind can be obtained from  jher infinite series representations (50, pp.
360).

Jo(2) =1, | (A.32)



Table A1 ] t
small argument representations of the Bessel functions

IDi I], KD‘ and K1; based on equations A.26 -
(Note ID:XOi
small

sjeleolaolaloleleleleolole]

0
0
0

X
.1000E-03
.4000E-03
.7000£-03
. 1000€E-02
.4000E-02
.7000E-02
. 1000E-01
.4000€-0"
.7000E-01
. 1000
.4000
.7000
1.000
4.000
7.000

X
. 1000E-03
_4000E-03
. 7000E - 03
1000E-02
~4000E - 02
. 7000E - 02
1000E-01
"4000E-01
.7000E-0'1
1000
~4000
.7000
1.000
4.000
7.000

I’IEI]i

lelelojeolaolafalaleofolfoleole)

10(X)
.000
.000
000
.00¢C
. 200
. 200
.00¢C
.000
.00
.003
.040
. 126
.266

1.
68.6

e

e e el el ek b b ke

I1(x)
.5000€-04
.2000E-03
.3500E-03
.5000E-03
.2000E-02
.3500E-02
.5000E-02
.2000E-01
.3502E-01
.5006E-01
.2040
.3719
. 5652
9.759
156.0

K1=K.

KD=K7, 10

argument approximation.)

SM
1

SM
0
0
0
0
0
0
0.
0
0
0
0
0
0

2
3

Percentage error associated with the

A.29.

and SM means the

I0(X)
.000
1000

000

I1(X)

.5000E-04
.2000E-03
.3500E-03
.5000E-03
.2000E-02
.3500E-02

S000E-02

.2000E-01
.3500E-01
.5000E-01
.2000
. 3500
.5000

.000
.500

%XER

0.

ROR SM I0(X)

2500€E-06

0.4000E-05

lelsjelolololeol e

%ZER
0

0

0
-0

. 1225E-04
.2500E-04
.4000E-03
. 1225E-02
.2500E-02
.3999E-01
. 1224
. 24395
3.883
11.21
21.02
91,15
99 . 41

ROR SM T1(X)

. 1250E-06
.2000E-05
.6125E-05
.1250E-04

0\ 2000E-03
0.6125E-03

;

0.2000E-01

. 1250E-02

T "0.6122E-01

0

. 1249
1,974
5.884
11.53
79.51
97.76

continued



\;K\\)‘

~dl

Table A.1 (continued)

X KO(X) SM KO (X %ERROR SM KO(X)
0.1000E-03 3.326 9,326 0.5583E-02
0.4000E-03 7.940 7.939 0.6562E-02
0.7000E-03 7.380 7.380 8.7069E-02
0.1000E-02 7.024 7.023 0.7442E-02
0.4000E-02 5.637 5.637 0.9707E-02
0.7000E-02 5.078 5.077 0.1172E-01
0.1000E-01 4,721 4.721 0. 1406E-01
0.4000E-01 3.337 3.334 0.B6758E-01
0.7000E-01 2.780 2.775 0.1852
0.1000 2.427 2.418 0.3738
0.4000 1.115 1.032 74432
0.7000 0.6605 0.4721 28.53

1.000 0.4210 0.1154 72.59
4.000 0.1116E-01 -1.271 0.1149E+05
7.000 0.4248E-03 -1.830 +7 0.4310€E+06

X K1(X) SM Ki(X) ZERRAR SM K1(X)
0.1000E-03 0.1000E+05 0.1000E+05 -0.4913E-05
0.4000E-03 2500. 2500. -0NB757E-04
0.7000E-03 1429, 1429, -0.1934E£-03
0.1000E-02 1000 . 1000. -0.3762E-03
0.4000E-02 250.0 250.0 -0.4910E-02
0.7000E-02 142.8 142.9 -0.1367E-01
0.1000E-01 99.97 100.0 -0.2611E-01
0.4000E-01 24.92 25.00 -0.3078
0.7000£-01 14,17 14.29 -0.8095
0.1000 9.854 10.00 -1.483
0.4000 2.184 2.500 -14 .45
0.7000 1.050 1.429 -36.02

.000 0.6019 1.000 -66.14
4.000 0.1248E-01 0.2500 -1903.
7.000 0.4542E-03 0.1429 -0.3135E+05
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(2) 7§, (A.33)
No(2) 2"% 109(0.891 z), - and (A.34)
Ny(z) = - % (A.35)

The asymptotic reprasentations valid for large arguments are known in the form
of an infinite series. Keeping the first thrae terms of the series for the modified Bessel

functions, the asymptotic representations are

z - .
I(Z) o j _ E1 + 0-125 + D‘OZCE . A. 136
0 2vz z ZE ] (A-36)
Z _ _ -
I(z) ¥-2— [ - 0375  0.M17,4 A.37
L \1212 z Zz . (A-37)

el
a5
LS

Ko(2) & /21; e 2 [1 - D*% 5 4 %ﬁj. and (A.38)

Ky(2) ‘%"J% e i1+ Q.g?s - OJ%Z]. (A.39)

Table A.2 compares equations A.36 - A.39, first ksaping only the nitial term and then
keeping only the first two terms, with the exact values. (When only the first term of the
series is kept, the resuiting rbpraesentation i1s called the zero order large argumem
approx/mation.) Real positive arguments are used in the table. If only tha first term s
kept, the error associsted with using the approximation is large at x = 1, Howaever, it
rapidly decreases with increasing vaiues of x, and the error is only a few percent for

x > 10. When the first two terms of equations A.36 - A.39 are kept, Table A.2
shows that the error involved n using the approximation i1s about one percent or less for

x > 4. In fact, the error associated with using these approximations for valyes of x



Table A.2

Percentage error associated with

289
the large

argument representations of the Bessel functions ID‘ 11;

KD' and KT‘ based on equations A.36 - A.39. Errors for

the approximations using onl
and the first two terms of t
ID?IDi I1=I1i KO?KD, and Kl=¢
first term of equation A.36 is used to approximate 1I..

Yy the first term of the serifes,

he series, are given. (Note

1

ASO 10 means only the

0

AST K1 means the first two terms of equation A.39 are
used to approximate K1.)

#

X
0.1000
0.4000
0.7000

1.000
4.000
7.000
10.00
40.00
70.00
100.0
120.0
140.0

X
0.1000
0.4000
0.7000

1.000
4.000
7.000
10.00
40.00
70.00
100.0
120.0
140.0

X
0.1000
0.4000
0.7000

1.000
4.000
7.000
10.00
40.00
70.00
100.0
120.0
140.0

10(X)
1.003
1.040
1.126
1.266
11.30
168.6
2816
0.1489E+17
0.1202E+30
0.1074E+43
0.4755E+51
0.2135E+60

%ERROR ASQO I0(x)

-39.08
9.553
14.75%
14,35
3.638
1.920
1.312

0.3161

0.1798

0.1257

0.1047

0

.8968E-01

11(X)
.5006E-01
.2040
.3719
0.5652
9.759
156.0
2671,
0.1471E+17
0.1193E+30
0.1068E+43
0.4735E+51
0.2128E+60

lelolele

ASO 10(Xx)
1.394
0.9410
0.9602
1.084
10.89
165.4
2779.
0.1485E+17
0.1199E+30
0.1072E+43

AS1 10(X)
3.137
1.235
1.132
1.220
11.23
168.3
2814,

0.1489E+17

0.1202E+30
0.1074E+43

0.4750E+51 0.4755E+51
0.2133E+60 0.2135E+60
%ERROR AS1 10(X)
-212.9
-18.71
-0.4772
3.639
0.6268
. 0.1687
0.7815E-01
0.4616E-02
0.1571E-02
0.8266E-03
0.6090E-03
0.4780E-03
ASO 11(X) AST T1(X)
1.394 -3.834
0.9410 0.5881E-01
0.9602 0.4458
1.084 0.6778
10.89 9.870
165. 4 156.5
2779. 2675.
0.1485E+17 0.1471E+17
0.1199€+30 0.1193E+30
0.1072E+43 0.1068E+43
0.4750F+51 0.4735E+5]
0.2133E+60 0.2128E+60

continued



X
0.1000
0.4000
0.7000

1.000
4.000
7.000
10.00
40.00
40.00
100.0
120.0
140.0

0.1000
0.4000
r 0.7000
1.000
4.000
7.000
0.00
40.00
70.00
180.0
120.0
140.0

0.1000
0.4000
0.7000
1.000
4.000
7.000
10.00
40.00
70.00
100.0
120.0
140.0

‘Table A.2 (continued)

¥XERROR ASO I1(X)

OCOOO0OO0OOOCOOO

-2685,
-361.2
-158.2
-91.88
-11.59
-5.971
-4.036
-0.9539
-0.5409
-0.3775
-0.3142
-0.2691

KO(X)
2.427
1.115
.6605
.4210
.1116E-01
.4248E-03
.1778E-04
.8393E-18
.5845E-31
.4657E-44
.B764E-53
.1673E-61

XERROR ASO KO(X)

-47.76

-19.18

-12.62
-9.511
-2.849
-1.688
-1.200
-0.30893
-0.1776
-0.1246
-0.1039

-0.8913E-01
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XERROR ASY I1(X)
7759.
71.17
-19.88
-19.93
-1.130
-0.2943
-0.1344
-0.7445E-02
-0.2318E-02
-0.1070E-02
-0.7055E-03
-0.4864E-03
ASO KO(X) AS1 KO(X)
3.586 -0.8965
1.328 0.9132
0.7439 0.6110
0.4611 0.4034
0.1148E-01 0.1112E-01
0.4320E-03 0.4243E-03
0.1799E-04 0.1777€-04
0.8419E-18 0.8393E-18
0.5955€-31 0.5945E-31 .
0.4662E-44 0.4657E-44
0.8773E-53 0.8764E-53
0.1674E-61 0.1673E-61
XERROR AS1 KO(X)
136.9
18.06
7.490
4.178
0.3648
0.1278
0.6458E-01
0.4181E-02
0.1300E-02
0.5799E-03
0.3677E-03
0.2395E-03

continued



0.1000
0.4000
0.7000
1.000
4.000
7.000
10.00
40.00
70.00
100.0
120.0
140.0

0.1000
0.4000
0.7000
1.000
4.000
7.000
10.00
40.00
70.00
100.0
120.0
140.0

‘Table A.2 (continued)

K1(X)
9.854
2.184

~1.050

leleleleolefelelalw

.6019

.1248BE-01
.4542E-03
.1865E-04
.B497E-18
.5987E-31
.4680E-44
.B800E-53
.1679E-61

ASO K1(X)

lojolisjaelaleoleleolale]

%ERROR ASO K1(X)

63.61
39.19
29.17
23.40

8.058

4.891

3.514
0.9216
0.5304
0.3723
0.3106
0.2664

3.586
1.328
.7439
L4611
.1148E-01
.4320E-03
.1799E-04
.8419E-18
.59558E-31
.4662E-44
.B773E-53
.1674E-61

AS1 K1(X)

0 2 O T D

17.03
2.574

. 142

16340

1255E-01
4551F-03
1867E-04
.B498E - 18
'5987E-31
.4680F - 44
.8800E-53
L 1679E-61

%YERROR AS1T K1(X)

-72.87
-17.82
-8.770
-5.327
-0.5621
. -0.2037
-0.1045
-0.7220E-02
-0.2467E-02
-0.1274E-02
-0.9223E-03

.7095E-03
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as little as unity is relatrively small.
The large argument asymptotic repressntations of the Bessel functions of the

first and second kinds are listed.

Cotz) ¢\fg;-[cos(z -3¢ %; sin(z - )1, (A.40)

3(2) T E Isin(z - )+ g7 cos(z - PO, (A.41)

No(z) =L [sin(z - J) - §5 cosz - P11, and (A.42)

N, (2) '-‘Jg[-cos(z- U %7 sin(z - 7) 1. (A.43)
&

Limiting cases, as the argument of the modified Bessel functions becomes very
small or very large, can be readily obtained by making use of squations A.26 - A.29 and
equations A.36 - A.39. For x approaching zero,

Hm+ Io(x) =1, (A.44)

x+0

Hm+ I](x) = 0, and (A.85)

x-+0

Hm+ Ko(x) * 1im Kj(x) = 00 . (A.46)
+

x+0 x-+0

On the other hand, as x becomes very lar ga,

lim Io(x) = 1im 1,(x) =@, and " (A.47)
X-+o0 X-+Q0

m K (x) = 1im K,(x) = 0.
X+@® 0 X-+Q0 ! (A.QS)



It the argument is restricted to bemg real and positive, the behavior of the
modified Bessel functions is quite easily understood. Ig and I, are stricty
Increasing positive functions, while KD and K1 are strictly decreasng positive
functions. Figure A.1 provides an illustration of this behavior. From equations A.26 -
A.29, and A.36 - A.39, the followmng mequaiities can be nferred.

0< Ij(x)-: Iag(x)f:@- and (A.49)
O< ga(x)f xi(x)gc;x:; (A.50)

where 0< x< 0O,

A.3 Integrals involving Bessa! Functions
The first mentioned two equations are equally valid if I and Iq‘ re

replaced by Kq and in‘ respectively.

flq(lx) Iq(gl) X Qﬁzﬁ '
[ Iq(gx) Iq'(lx) - a Iq(Ax) Iy'(ax)], and (A.Si).

' 2
fnq(u):l"-’ X dx = 3 .

2 .
r( ) [T (ax)12 = 1 ' (15112 1
[(V + ﬁ?) [1a()1% - 1t (x) 4], (A.52)

in the finel two equations, the integrand nvoives the modified Bessel functions of
both the first and second kinds.



qu(lx) Kq(ﬂ!) x dx = %{ .

AT - a
[2 Kq(gx) Iq‘(xx) - a Iq(lx) Kq‘(gx)]. and
fr (ax) K (ax) x d i"z-
J 'q \ X "Q"x X X T

2
[(1 «+ —5‘7) zq(u) xq(;x) - Iq‘(u) gq!(u)]!

(Ax)
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(A.53)

(A.54)



B. Appendix B. The Empty Shasth Helix
When ar fills both the interior and exterior regions, the simplest possible sheath
helix structure resuits. 't can be considersd as a special case of the sheath helix
surrounding a lossy coaxisl rod. This 1s true when the lossy rod radius becomes much

smalier than the shesth helix radius, or when the electrical properties of the lossy rod
become smilar to those of ar

Considersbie past work has been done on the empty sheath helix. Chu and
Jackson (10), and Pierce (11) are two exampies where research was performed In
connection with applications to traveing wave tubes. Sensiper (5; 6) performed a very
comprehensive study on this configuration, although most of the labor was directed to

waves having angular dependenca.

B.1List of the Field Components and the Dispersion Equation
ft 1s not the intention of this section to show the derivation of the dispersion
equation and of the free mode field components. intarested readers are directed to

Sensiper’'s thesis (5, pp. 22-27). An electrical current of the form
BII cosg?z a;
S I (A /m) is & constant with respect to the spatial coordinates, is assumed

to be present on the sheath helix “windings”. (See Figure 1.5b. This displays the
developed sheath helix.)

Region 1 (0 « r <« a)

- A 120+« ) - D
Epp = 3“ Ka cotany COSv 8 a h-a -

Ka(haa) I](har‘) sing?z, 4 (B.1)

[ ]
[ ]
[,



8l

z1

22

-J »|, 120x ka cotany -

a R
sinyg K1(h a) I](har) caigaz,

; 120 x 9
I ity cose (WPa)2

xo(h‘a) Io(har) cosg?z,

. a a
»|| cosy 8°a K](h a) I](har) sing?z,

. . a a Tl
)“ siny h% Ko(h a) I](har) cosg?z, and

R o ,
)‘, cosy h2a K](haa) Ig(har) cosg?z.

Region 2 (a g r < <o)

120« . a_ .,a_
‘J%“ mEDSi'Eaha .

xo(n°.) K](har) singdz,

-J 3“ 120~ ka cotany -

siny I](haa) K](har) cosglz,

120« La 2
] B" Ka cotany €°°¥ (ha)

a a .2
Io(h a) Ko(h r) cosg z,

(B

(.

(8.

(B.

(8.

(B.

(8.

.2)

7)

.8)

9)



H o = D1y cose 8% 1, (h%) K, (h%F) sing®z, (8.10)
Hep" = bll sine ha Io(h%) K (h%r) cose®z, and (B.11)

H..? = -3“ cosy hla I1(haa) Ko(har) coss®z. (B.12)

- a N B a,'
(kacotan y2  [o(7 2) Xolh 2) (8.19)
hda g Ij(haa) Kl(haa) T
-
Along with the separation constam equstion,
h%a = + J(aaa)z - (ka)? (B.14)

equation B.13 1s used to calculste the radisl wave number hd, , @nd the axial wave
rumber, 8%, |

Equstions B.1 - B.14 comprise the free mode field solution of the empty shesth
he/ix. The superscript " a” is used on all the electric and magnetic field components,
snd on the radial and axial wave numbers, 30 it 13 obvious that they are associated with
the air—filled sheath helix, and not with any of the other configurations which have been
studied n the thesis. The operating fréquency and the shesth halix geomatry are

specified by two varables, ka cotany = JT;TE‘*(T a cotany and
V. 0 < ka cotany <« OO and 0 < gy < 90.0° e the allowed

values of thase varables. Throughout the remainder of this appendix, it will usually be
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assumed that the shesth helix is sufficiently tightly wound so that 0 < g «
10.0°.

Equations B.1 - B.14 agree with the anguiarly independent form of the fieid
solution given by Sensiper (5, pp. 25-27). The dispersion equation, equation B.13, was
mentioned i references 10; 11, pp. 231; 16, pp. 78; 17, pp. 43; 18, pp. 395 27,
pp. 404; 28, pp. 469; and 30, pp. 259.

It 1s convenient to consider the wave numbers solution of the dispersion aguation
and the separation constant equation as  p3, and (33,12  rather than as 13
and (gd) 2 , respectively. The advantage of this is that the sheath neiix radius does

not appesr by itself as a varable, 1 only appears in the quantimes (,.:a)‘iJ and

(ka Cotanw)z. In equations B.1 - B.12, the spatial dependences of the fieid
components are now regarded as being normalized with respect to the sheath heiix
radius so that har and gaz become haa - r/a and gaa - z/a,
respectively.

B.2 Discussion of the Dispersion Equstion and Graphs of the Radial Wave Number
Solution
Attention 1s now directed to squations B.13 and B. 14, the dispersion aqustion and
the separation constant equation, respectively. Since the pitch angle and the anguisr
frequency appear only as (ka)2 and (ka cotanw)z, n 15 clesr that these
equations are even functions of y and . The wave numbers solution hd,; and
(8%a)2 do not depend on the positve or negative sense of the sheath helix
“windings™, or on the sigebraic sign of the frequency. (As was previously mentioned in
part 2.1.2, the dispersion equation along with the separation constant equation cannot
determine the algebraic sign of the axial wave number. They are said to determine
(Qaa)z rather than g2, ) The concept that -

(8%(-0) 2)% = (8%(+0) a)? (8.15)
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i$ very important m showing that the rachs! and axial wave numbers cannot be generally
conplex. with nonzero real and maginary parts (5, pp. 232; 39; 40). A detaned
mvestigation of the possible values 13, and g2, which may satsfy the disper sron
equation and the separation constant equation, shows that only rea/ wave numbers such
that

0 < hla « Q0 and (eaa)2 > (ka)z, | (B.16)

are permissible to obtain the free mode field solution. (Equations A.14 - A 17, A.18 -
A.21, and A.24 can be used to evaiuate the right hand side of equation B.13 and show
that negative real or purely imaginary values of hda are not possible. A relatively
thorough discussion of this is given in 5, pp. 231.)

ft is clear from equations B.13 and B.14 what variables the radial wave number
and the square of the axial wave numbar depend on.

h¥a = f(ka cotany) and _ (B.17)

(saa)2 = g(ka cotany, y). (B.18)

So that a better under standing of the behavior of the radial and axial wave number
solutions, for different operating frequencies and sheath helix geometries, is obtained,
and to faciitate computation of these wave numbers, it 1s very useful to develop
spproximations of equation B.13. First, the spproximation vaiid when the radisl wave
number s large will be considered. Keeping all three terms of equations A.36 - A.39,
substituting into the right hand side of equation B * 3 a/.! performing a small amount of

aigebra. yieids

0.50
ka cotany,2 o~ :
( haa ) 1 + '(—,Tz- . (8.19)

a)



Equation B. 19 1s the accurate /arge argument approximation of the dispersion equation.
Keeping only the first term of equations A.36 - A.39 (whuch s the zero order

asymptotic representation), and repeating the previous procedure, results in

ka cotan ~
=20 3, (8.20)

haa

Equation B.20 1s the crude /arge argument approximetion of the dispersion equation.
Note that this equation 1s very convenient because the radial wave number is exphcitly
given in terms of the operating frequency, the sheath helix radius, and the sheath helix
pitch angle. ‘

A data table (which will not be presented here) was prepared to compare the right
hand side of equation B.13 with that of equations B.19 and B.20. It demonstrated that
for values of ka cotany as small as 1, the maximum error associated with
equation B. 19 i1s two percent, while that associated with equation B.20 is twenty percent.
As ka cotany ncreases, the error very rapidly decreases. and for

ka cotany > 5, it is less than one percent for both equations B.19 and B.20.

Substituting equations A.26 - A.29 into the right hand side of equation B.13, it s

seen that for small vaiues 'of the radial wave number,

2
(ka cotany) T .2 109(0.891 haa). (B.21)

haa

This 1s the sma// argument representation of the dispersion equation.

Another data table was prepared which compared the right hand sides of
equations B.13 and B.21. It was discovered that for values of ka cotany as large
as 0.0, the maximum error i1s about 0.20 percent, while for ka cotany as
large as 0.50, 1t is about 7 percent. The error nvoived with using the smail
argument representation of the dispersion equstion decreased as the value of )

ka cotany became smaller.
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Equations B.19 - B.21 show that for very large ka cotany, h%a
ka cotany, whie for very small k3 cotany, h%a << ka cotanv.
The right hand side of equation B.13 is a strictly decreasirg positive function, which, for
h aa close to zero, has a large vaiue and a large negative slope, but which approaches
unity from the upperside with a zero slope as h?; becomes iarge. Therefore, it Is

siways true that

0 < h*a < ka cotany < 0O . (B.22)

A useful approximation which simpiifies calculating the field components 1s to
equate the absolute vaiue of the axial wave numbar with the radial wave number. Equation

B. 14 15 rewritten as

8%a = Jn%a)? + (xe)

,Z,

]
o
]
o
—
+*
———
|
-]
[N
——
o
P
L
o

Using the Binomial theorem (47, pp. 737) to expand the square root as an infinite series,

and keeping only tha first two terms of the series, yields

~al . 1 K0 T
|g?la = n%a [1 + 5 ()71, (B.24)
, . a_
h~a
The approximation lsala T R, is valid within about ten percent error if

ny

0.50. (B.25)

.ka ka —_—
%(éz <0.10 or —| = \J0.20
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Hence, i . -
h% > 2 ka (B.26)
is satisfied, Isa]a El haa 1S an approximation which 1s sccurats within the

previously mentonad arror imitation,

Inequality B.26 1s now examined, using the approximations of the dispersion
equation which were previously stated. Equation B.20, the crude large argument
representation of the dispersion equation, shows that when ka cotan v IS large, the
inequality 1s clearly satisfied for all pitch angles ntherange 0 < y < 10.0°.

From equation B.2 1, the small argument representation of the dispersion equation,

tany h?a J-z 109(0.891 ha) . (B.27)

\m‘l

ka

Therefore, inequality B.26 becomas

2 tany J—E 10g(0.891 h%a) < 1. (B.28)

"It is apparent that inequalrty B.28 is most easily satisfied if the sheath helix is very
tightly wound. As an example, if ¥ = 10.0°, the inequality is satisfied for vaiues

of hda as smallas h?, - z_gﬂg‘z_ {(Making use of equation B.21, this
value of 3, corresponds to ka cotany = 5i7x1Dé25) i v =

5.0°, then the inequality 1s satisfied for vaiues of L2, as small as ha =

9.0x10°8. (This vaiue of p2, corresponds to ka cotany =

5.1x10" 7 ) One concludes that inequality B.28 will be satisfied down to very small
values of the varisble ka cgotany, 'f the pitch angle is small. However, as
ka cotany -+ D* . inequalities B.22 demonstrate it must be true that h3a
ot. Therefore, for any (fixed) value of the pitch angle, regardiess of how small,

when the varisble ka cotany becomes sufficiently small, inequality B.28 will not be



satisfied.

In summary, the approximation |3°|a = h‘a 1s valid over a wide range of
ka cotany values. For a tightly wound shesth helix, it is always valid for large
ka cotany (ka cotany > 1), and it is justified untii ka cotany

becomes very small (ka cotany << 1). However, it is never correct in the
limitas ka cotany approaches zero.

One can obtain m;merncal solutions to equation B. 13, the dispersion squation, in a
very straightforward manner. The method 1s to first choose a value of haa and then
calculate by direct evsiuation of Bessel functions, the corresponding value of

ka cotany. Itis now pretended that the value of ka cotany was originally
specified, and that this determined the value of haa . S that better accuracy in i
reading the graph s .obtamed, it 1s helpful to shrink the ordinate axis scale by plotting the
quentity ka cotan /h%a versus the variable® that depends on the operating
frequency and the sheath helix geometry, ka cotany, rather than directly plotting
hda versus ka cotany. For a desired value of ka cotany, the

corresponding vaiue of p@ 1s easily obtained from this graph. interastingly, since
h™a gr

z

ka cotany/h%a =

ha, a cotany, (B.29)

lines of constant B35 on the graph are straight lines through the origin, having the

siope  1/h%a.
Using the approximation |g%[a = hda, it follows that

ka cotany o~ ka cotany

h%a 8% a

w " T
= | al /"0 €0 cotany = ER cotany. (B.30)

8



Therefore, the graph of ka cotany/h%a versus ka cotany Is proportional to
a graph of the phase velocity normalized with respect to the speed of ight in air, as a
function of frequency. (The phase valocity is associated with traveling waves having
e‘j 82z axial dependence.) The previously discussed method of presenting the
radial wave number solution can be regarded as a type of dispersion curve.
Figuras B.1 and B.2 were computed directly from equation B. 13 by first choosing

sevaral differant values of haa , Ccalcumting ka catanw/haa at each point by

evaiuating the right hand side of the eqyation, performing the multipicaton h%; .
ka catanu/haa in order to obtgn ka cotany, and finally pretending that
ka cotany was originally specified and that this determined the quantity
ka cotany/h%a. Software program routines froms the IMSL library (43) were

used to evaluste the Bessel functions, and the graphs were prepared by the Amdahi V/8

computer st the University of Alberta.

Figure B.1 is a linear graph of ka cotany/h%a versus ka cotany.
Several different lines of constant h%a  values are shown. In addition, the large
srgument asymptotes  ka catanw/haa = ] 18 presented.

Figure B.2 i1s a semilogarithmic graph, having the same abscissa and ordinate as
the previous figure. Many decade ranges of ka cotany values are shown. The

asymptote k3 cotany/h%a = 's given.

B.3 Discussion and Graphs of the Field Components
Some properties of the fisld components will now be mentioned. Replacing

gaa by -g%a inequations B.1 - B.12, the fieid components, in equation B.13, the
dispersion aquation, and in equation B.14, the separation constant equation, results in no '
change. Therefore, no loss in generality occurs from rastricting Ea > 0.
Decreasing the pitch angie in such a fashion that the variable ka cotany remans
constant (keeping in mind equation B.17, which gives the functional dependence of

h®a), will grestly decrease the magnitude of the angular electric and magnetic fieids,
bacause they have an explicit siny dependence. However, to a good approximation,
the other field components are not affected. The previous two sentsnces have assumed
that the shesth helix 15 sufficiently tightly wound so that cosy = and gaa g

haa.



Figure B.T

HH/dNEL0D U

1 4 i i i —be i S
. g " Y L T T L L]
3 3
= =
e ;
]
= =
=3 =
T
ITIToooo
-~ NWBWowo
ﬂig! ¥ ¥ 5 =
o (I T
ST
= ad
)
L T i T T -t - LI,
eI L1 1 1 1 &1 *1 01 &0

1.6 2.0 2.4

1.2
KR COTANP
PLOT OF KR COTANP/HA VS, KA COTANP

1

Graph of ka Eﬂtﬂﬂi/ha! versus ka cat;ai
based on equation B.13. Several 1ines of constant h%a
are shown, and so is the asymptote ka cctanwlhaa
(Note that HA=h®a and KA COTANP=KA CP=ka cotany.)

.0.



306

+ + + + + +——t + + °
- e
= ey
a.
= 12 2
C it o ES
5 aca O
x x
9 T v
— o
o - w
o >
<
- Q
! Z <
o~ Cr N
" o
E °o =
o -0 a
N T —
i X Eg
" T
— o X
- L
[ -
i -
i o
v _J
o Q.
i »
-
w
\ Y T T L4 T Y LA T o
Y Iy (¢ €€ 63 92 12 (T €1 g —
BH/ANH10D
Figure B.2 Graph of ka cotanw/haa versus ka cotany

based on equation B.13. The asymptote Xa cotany/h%a = 1.0
1s shown. (Note that HA=h%a and KA COTANP=KA CP=ka cotany.)



(See equation B.26. This ststes the regurement necessary so that the axal and
racial wave number can be squsted) If thus 1s trua, it 15 apparent that the field
components have the foliowmng approximate functonal dependences on the opersting
frequency. the shaath helix geometry, and the shasth helix “wmdings'™ current.

[

E 9 = Ln(%ll‘ ka cotany, w), (B.31)

Ho 8 - Sn(gu‘ ka cotany, %), (B.32)
£ 2. Qﬂ(’%“ , ka cotany), (B.33)

E. 2 - U,ﬁ(sui ka cotany), (B.34)

Ho 2 = vn(all‘ ka cotany), and (B.35)

Hyo® = W (Y, ka cotane); (B.36)

Since the interior sheath helix region fields’ radial dependence is characterized by
either IG( har) or I1 ( ha"') »  while that of the exteror region fislds is either.
ﬁa(ha,-) or K1(h‘37—) . with ali the Bessel function arguments bilﬂgrfﬂi
positive, it is true that for one particular operating frequency and for one particular
sheath helix geometry (which means that haa has one particuisr vaiue), the interiar
region freld magnitudes always increase as the radial distance ngréases. while the
exterior ragion fieid magnitudes always gat smaller with mc:rusmg; r. (See Figure A.1,
This shows graphs of T4, 1,. Ky, and K, , forreal positive arguments.) All
fieid magnitudes attain a maximum vaiue st r = a, the sheath helix surface.
For values of ka cotany sufficiently large sothat ka cotany > 1,

equation B.20 and Figures B.1, B.2 show 1t is true thet 13, T 4 cotany.
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Table A.2 demonstrates that for this value of h%a > ] , the large argument Bessel
function representations, equations A.36 - A.39, have a reistively small error associsted
with therr usage. Substituting equations A.36 - A.39 into equations B.1 — B.12, 1t is seen
that all the electric and magnetic field components rapidly decay about the shesth helix
surface m an exponential fashion, according to

(B.37)

e-ka cotany(r/a-1) for exterior region fields.

(The single exception to this behavior occurs at pomts in the sheath heitx interior region
where the radial distance 1s sufficiently small for the particular value of 3, | ,

so that h%a - r/a < 1 1s true. Table A.2 makes 1t clear that a large error is
mvolved with using the approximations given by equations A.36 - A.39, when the
srguments of the Bessel functions are sr‘naller than unity.)

Attention 1s now directed to the radisl dependence of the field components for
smail values of ka cotany. When ka cotany < 0.10 occurs, it must be
rusthat K33 . . 10. (See equation B.22 and Figures B.1, B.2.) Table A.1 shows
that for this argument, very littie error 1s involved in using the small argument Bessel
function representations, equations A.26 - A.29.*Substituting these equations Into
equations B.1 - B.12, it 1s apparent that the approximate radial dependence of the fieid

components is

ril 81 z1
a ~ ,a a a
Hoq hory Hg @ = n%r, Hu‘f;: 1,
) (8.38)

E A ~ 3 a ~ ! E. a a

= ’ = ’ ’;-] .
r2 har 82 har 22 og(O 891 h r),
H a ~ ! ) 1 a

= ’ H = = a
r2 ha, 82 ba andHy, 109(0.891 hr).
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{For the fieids n the shesth helix exterior region, when the radial distance 1s sufficiently
large for the particuler vae of h%a < 0.10, it wil be true that L3, .
r/a >> 0.10. Table A.) makes it apparent that a great error is associated with
using equations A.26 - A.29 when the argument is this large. For this special case, the
radial dependence of the sheath helix exterior region fields given by equations B.38 s
not correct)

In summary, for large values of ka cotany (which could be considered to

mean high frequencies since ka cotany = 2xf Jﬁ a cotany),

the fields ching very closely to the sheath helix "mﬂduﬁgs"; The sheath helix is now acting
like a wavegui/ding structure. On the other hand, for small vaives of ka cotany
(which could be considered to mean iow frequencies), the fieids in the exterior region
have a large radial extension. The waves assocuated with the sheath helix sre now largely
unguided.

The fact that the field components cling closely to the sheath helix surface for
high frequencies i1s in agreement with the experimental work that Cutier (12) performed
on a physical helix. This was previously mentionsd in part 1.2.2.

Attention :s now directed to examining the phase velocity of the traveling wave
form of the field components. These are characterized by having e"j %2 guial
dependence. They can be easily obtained from the standing wave fields, equations B.1 -
B.12, by using the identities

cosglz = & -

(B.39)

singz - &~ ~ - 7 ,

muitiplying by two, and by keeping only the ¢~J 8 2  term
The phase velocity normalized with respect to the speed of light in air, is
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For large values of ka cotany, equation B.20 and Figures B.1, B.2 show that

. L
h%a = ka cotany. it follows from equation B.14 that

gda = \/(haa)2 +(ka)? T ka cosecy. (B.41)

Substitution of equation B.41 into equation B.40 yields

= siny. (B.42)

n “‘dez

This can be interpreted as describing a wave traveling with the speed of light in the
direction of the sheath helix “windings”. (See Figure 1.5b. It displays the developed
bshavior of a guided wave.

For very small values of |, cotany, ha will be very small. (This s
apparent from equation B.22 snd from Figures B.1, B.2.) Equation B.21 makes it clear
that h%a << ka cotany. Furthermore, for any fixed value of the pitch angle, if
ka cotany s sutficiently small, it will be true that the radial wave number is such
that h3, .. ka. Equation B.14 shows that Baa = ka, and it follows
from equation B.40 that

"

(B.43)

The phase velocity now describes a wave traveling in the axial direction with the speed



of hght. This 1s the expected behavior when the sheath helix doas not act to guide the
wive.

Equations B.42 and B.43 are in agreement with the theoretical investigation of
helical wires at high and low frequencies, respectively, psrformed by Pocklington (7).
This was previously discussed in part 1.2.1,

in general, the phase velocity 1s between the limits specified by equations B.42
and B.43.

[a] "f'ut
M
—

siny < (B.44)

A brief mention will now be given of the power flow that 1s associated with the
ar-filled sheath helix. The time-averaged power flow in the axial and radisl directions
can be calculated by integration of the Poynting vector over the appropriata surfaces, as
wags praviously explained in saction 3. 1. Rather than repeating this procedure hera, only
the results of the author’s calculations will be discussed. Through any transverse plane of

constant z = 2z (-00 < 2, < @) which axtends to infinity in the radial

0
direction, the tme-averaged power flow assccuatad with the fields given by equations

B.1 I’lz 15 zaro. In fact, thus rasult is also true for any area of the transverse plana.

. )
Consiibring traveling waves characterized by ¢~J 8 Z  axial dependence, Sensiper

of the position of the transverse plane 7 = Zy  through which it)s caiculated.
The time-averaged power flow based on equstions B.1 - B.12 and calculated

through a cylindrical wall of radius r = r (0 < r 0 < o0 ) was discovered

0
to be zero. Tharefore. the empty shesth hg}zx cannot act {/ke a radistor. This property
was noted by Cutler (12). A discussion of his investigation was previously given in part
1.2.2. ‘

In order to help understand the behavior of the field components at different
points in space. several graphs of their radisl dependence have bean preparad. All the
slectric field components, equations B.1 - B.3 and B.7 - B.9, were normalized from
dividing them by an slectric normalizing coefficient, E, Da . All the magnetic fieids,
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equations B.4 - B.6 and B.10 -~ B.12, were normalized from dividing them by a magnetic
normalizing coefficient, HzDa' The electric and magnetic normalizing coefficients

are dafinred as

.| z=0 .
c a _ - a|” N __120x
€20 €2 rea ! 3” ka cotany 0%V -
(h%a)2 1,(n%) Ko(h¥a) .
7 (B.45)
= j B“ 1207 ka cotany cose i1(haa) K](haa), and

. z=0

a , a i o g 3 )
Hyo = Moy = 3,. cosv h%a IQ(haa) K1(haa). (B.46)

r=a '

(The dispersion squation, equation B.13, was ysed in the derivation of equations B.45.)
Only the radial dependence of the normalized fieids has been graphed. It s
assumad that the axial coordinate i1s heid constant. The transverse planes specified by
=0 andby saa - z/a = +2ny in=1,2 3 ..) are considered for the
angular and axial field components. This means that Eossaz =417, On the other
hand, for the radisl field components, the transverse planes g3, . ,/, -
(4n+])% and Baaez/asﬁ(ﬂﬁ*1)%’l in =01 2 ..) are
used. It 18 now true that singdz =41.
Three different types of graphs have been prepared. The first set reprasents the
“high frequency” case. This term means that the value of ka cotany s chosen
sufficiently large so that the corresponding value of h aa . which resuits as a solution
of the dispersion equation, is such that little error is involved in using the large argument
Bessel function representations. Equations A.36 - A.39 can be used to approximate the

dispersion aquation, the normalizing coefficients, and the normalized field components.

ka cotany is chosen so that considerable error is involved with using equations

A.26 - A.29, or equations A.36 - A.39. The smail or large argument Bessel function



representations cannot be used to approximate the dispersion sguahon, the normalizing
coefficients, and the normalized fields.

Fw_ulw, the third set of graphs represems the “low frequency” case.
ka cotany s chosen sufficiently small so that irttie error 15 invoived In using the
small argument Bessel function representstions. Equations A.26 - A.29 can be usad to
spproximate the dispersion equstion, the normaiizing coefficiants, snd the normalized
fields.

The method of solution which s used to obtain the graphs will now be explained.
For the specified vaive of the variable ka cotany, equation B.13 i1s solved to
obtain the racial wave number, hd;  (Actually, as was discussed in section B.2, the
dispersion equstion is solved by first specifyng pd,  and then by caiculating the
corresponding vaiue of ka cotany ) Making use of the specified value of the
pitch angie and the value of ka cotany, equation B.14 s soived to obtan the axial
wave number, Baa . Next, equations B.45 and B.46 are evaluated to obtam the
normalizing coefficients. Finally, the normalized fiaid components are caiculated for many
different values of the radiai distance normalized with respect to the sheath heiix radius,
r/as. All the Bessel functions were drrectly evaluated by making use of software
program routines from the IMSL (43) hbra'r'y. N will be amphasized that the six graphs of
the fieid components’ radial dependence presented here are “exact” - no
approximations have been made to the dispersion equation, the separation constant
equation, the normalizing coefficients, and the normalized fieids.

Frgres B.3 and B.4 show the absolute value of the normalized eiectric and
magnetic field components, respectively, as a function of r/a. The vertical line
represents the sheath helix surface. In both the interior and exterior sheath helix regions,
the aigebraic sign of each normalized field is given. The shasth helix gosmetry and the
operating frequency are specified according to the varisbles ka cotany =
10.0 and v = 1.00°. This 1s an example of the "high frequency” case.
hda = 10.0 snd g3 = 10.0 are the caiculated values of the wave
numbers. (Note that the value of h aa 1$ in good agreement with equation B.20, as one
expects.)
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Figure B.3 Curves of the radial dependence associated

with the normalized electric fields.

are ka cotany=10.0 and $=1.00°.

The variables ased
They determine the wave

numbers, h‘a = 10.0 and gaa = 10.0, and the electric

normalizing coefficient,

- - a _
that ER/EZ0 = E . "/E,,

E.
a z0

EZSIE;Q!‘ and R/A = r/a.)

2 = 5 51 188 (v/m). (Note
, EO/EZ0 = Eea/zzogi EZ/EZ0 =
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Figure B.4 Curves of the radial dependence associated

with the normalized magnetic fields. The variables used
are ka cotany=10.0 and y=1.00°. They determine the wave
numbers, h%a = 10.0 and g%a = 10.0, and the magnetic
normalizing cnefﬂciepti H;Da = Sn Q.SESV(A/m)i (Note
that HR/HZO = Hr’/H;D’, HO/HZ0 = Ho'/H, 0% HZ/HZO =
H%/H 0%, and R/A = r/a.)
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Ezoa = BII 188 (V/m) and HzDa *Su 0.525 (A/m)

ae the caiculated values of the normalizing coefficients.

it 1s apparent that all the field components are rapidly attenuated at INCreasing
radial distances away from the sheath heiix surface. The radial dependence of the fieids
"windings”, the sheath heiix 1s said to act ke a waveguiding structure.

Figures B.5 and B.6 show the radial dependence of the normalized electric and

‘magnetic fields, respectively, for the "mid frequency” case. ka cotany

1.00 and 1.00° are used. p3, 0.734 and %3 - 0.734
are the caicuiasted values of the wave numbers. The values of the normalizing coefficients

arae calculated to be

Bt = 3 Y1y 145 (v/m) and W% = Yu 0.820 (A/m)

, «
Note that both the interior region and the exterior region fieids change much more
gradually as the radial distance is varied, compared to the behavior exhibited In Fugurgsr
B.3 and B.4.

Thl final two graphs included n this appendix are Figures B.7 and B.B. These
represent the radial dependence of the normalized electric and magnetic fieids for the
“low frequency” case. ka cotany = SiDDx‘lQ’Z and ¢ = 1.00° sre
chosen. The wave number solutions are calculated to bs h2, 1.73x10° 2 and

8%a = 1.74x) QEZ . (As expected, the value of h?%, approximately agrees

with that predicted by equation B.21.)

ot = 331 944 (wm) and W * = Ju 1.00 (A/m)

W

are the computed vaiues of the normalizing coefficients. The radial dependences of the

fislds are approximately given by equations B.38. It is apparent that the sheath helix
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Figure B.5 Curves of the radial dependence associated

with the normalfzed electric fields. The variables used
are ka cotany=1.00 and ¢=1.00°. They determine the wave

numbers, h%a = 0.734 and e‘a = 0.734, and the electric
normalizing cocfficient. E = j 9||145 (V/m). (Note
that EI/EZO = £ .YE o0, 50/£zo = E,%/E,,", EZ/EZO =

E, /Ezo » and R/A - r/a )



43

®
‘ﬂTaT‘I’T‘T—V—‘TT‘ITTT‘T_T_:':mrTT T ﬁvﬁ T ]mn 1R | ‘[’TTTYT T T __:
: 1
: : 0
en ° -
a8 . —
<o . W L
-+ OOO e ° i—.-: H
ET .s . L
NN N a8 Y
nNO P PY (—)
x ﬁ_ s ° —
113 e . —
Boe aBn ° a L
+ « 6 . - . pd
e B © - Q
.0 . T
«8 N P
O ®
-8~ - -— [
e < ' )
<+ e < © }—cz
] < ] fo) J
0 B ° T O
® e ° N =z
] < [ ] G: L.LJ
[>] - [ ] (@]
- [ - z
L] - ) w w
T coo °© < ° C o a.
NNy 8 . © wJ
o afie alie uf (] - ® Q
:‘SE ) - e
rrx °® . ® _J
+.+ L] - ® o
80¢ 0o a [ —
[ AR ] o - Py __n’: O
- n < o o a
] -« ° x
- -] < [ ]
[ - °
o -« [
] - T o
pIsTTE W | P‘HllLl LLULIIL‘IMLLJJI 4 luu111 1’].LUJL1L L o
["2) N N m{\m v~ N N v N
- o " > wn
- Q 1 / [} | ] ]
o o o o o o (an}
4 4
0ZH/ ZH0HYH
Figure B.6 Curves of the radial dependence associated

with the normalized magnetic fields. The varifables used
are ka cotany=1.00 and ¢y=1.00°. They determine the wave

numbers, h¥% = 0.734 and s‘a = 0.734, and the magnetic
normalizing coefficient, Hzoa -?“ 0.820 (A/m). (Note
that HR/HZO = H _®/H_ %, HO/HZO = H /H %, WI/HZO =

a a r bd 0 20
Hz /Hzo , and R/A = r/a.)
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Figure B.7 Curves of the radial dependence associated

with the normalized electric fields. The varfables used
are ka cotany=5.00x10"2 and v=1.00°. They determine the
wave numbers, h%a=1.73x10"2 and 8%2=1.74x10"2, and the
electric normalizing coefficient, Ewa = 9“ 9.44 (V/m).
(Note that ER/EZ0 = £, %/E %, EO/EZ0 = E,2/E, " EZ/EZO =
E,"/E,o", and R/A = r/a.)
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Figure B.8 Curves of the radial dependence associated

with the normalized magnetic fields. The varfables used
are ka cotan ES.DD;?DiZ and ¢=1.00°. They determine the
wave numbers, h®a=1.73x10"2 and s%=1.74x10"2, and the
magnetic normalizing coefficient, HZD. - Q“ 1.00 (A/m).
(Note that HR/HZO = W */H %, HO/HZO = Hot/H, 0" HZ/HZO =
HZEIHZQ‘. and R/A = r/a.)
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exterior region electric and magnetic field magnitudes decay slowly with mcreasing radial
distance. The field extension is large. Therefore, it can be sad that the fie/ds are
basically unguided by the shesth hel:x.

To conclude the discussion of the radial agpendeﬁql graphs of the normalized
fields, attention 1s dwected to the field behavior at the sheath helix surface. Figure B.7
makes it clear that EE"E‘/EZ(D'E and EZE/EM,)‘?l are continuous #t r = 8. This
s simply a staterment of the boundary condition that the electric fieid tangential 1o an
interface '1s continuous. indeed, the contmuity of the region 1 and region 2 angular
electric fisids. and of the region 1 and region 2 axial electric fields, at r = a, can aasily
be shown from equations 1.6 - 1.8 to be a necessary consequence of the shaath heiix
surface boundary ;:aﬁditjans,

Figpre B.7 gﬁaws that the normalized radial electric fiaid s discontinuocus at

r = a The physital explanation for this behavior is that the discontinuity results from

the presence of free eldctric charge located st the shaath helix surface.

Directing attentior *5 the normalized magnetic fields, Figure B.8 makes it apparent
that the radial electric fisld 13 continuous at the sheath helix surface. From physical

considerstions, this must be true becsuse free magnetic charge does not exist at
a
0

r=a Itisasiso apparent from the figure that Hea/H 2
- 2 7
discontinuous st r = a. This 1s because there i1s an electrical surface current present on

... a,. a
:ndH/HZD ae

the shesth helix “windings”™. At an interface which possesses an electrical surface

current, the tangential magnetic fields must be discontinuous.



C. Appendix C. Shesth Helix Surrounding a Perfectly Conducting Coaxisl Rod

The configuration of concern in this appendix consists of a perfectly conducting
Circular cylindrical rod, having a radius b, which 1s centered inside a sheath helix. It is
aiways assumed that 0 < b < a < OD, where, of course, = 13 the radius of
the sheath heiix. (See Figure 1.5b. It displays the deveioped sheath helix.) Thus
configuration can be regarded as a imiting case of the sheath helix surrounding a lossy
coaxial rod, when the conductivity of the lossy rod becomes very large.

Bryant (19), and Mathers and Kino (20). previously investigated this structure.
Bryant only briefly examined it. He obtaned the dispersion equation and made a single
graph of the quantity ka cotany/hCa versus hCa, where hCa s the rada
wave fumber, and ka cotany = w m a cotany. b/a, the rod
radws normahzed with raspact to the sheath hehix radius, was a paramater of the graphs.

Mathers and Kino performed s more detailed study. All field components in terms
of a single undetermined constant were listad. \n addition to obtaining the dispersion
equation, approximations of it were given which are valid for small or large values of the
varisble ka cotany. Graphs of ka ccta’h?’/hca versus ka cotany
were made for different normalized rod radii. t was mentioned that these curves are
flatter than those of the empty sheath helix, and that this 1s especially true when b/a s

nearly unity.

C.1 List of the Field Components and the Dispersion Equation

To obtain the free mode field solution, 1t 18 necessary to apply boundary
conditions. In addition to the four boundary conditions at the sheath helix surface,
equations 1.6 - 1.9, there are aiso the boundary conditions that the tangential electric
fieids vanish at the perfectly conducting rod surface. (Note this will also mean that the
normal magnetic field at the rod surface is zero.) Since the rod 1s a perfect conductor, ail .
electromagnetic fields ntheregion 0 < r < b must be zero. The same type of
electrical current discussed n section B.1 is assumed to be present on the shesth helix
“windings”. A brief derivation of the following results is given by Mathers and Kino (20).

G
[N
| A1



Summary of the Field Components

Region 1 (0grgb)

Region 2 (bgrca)
VP
120+ C Ko(h~a)

= c c = G ———— e L]
Jb“ Ka cotang 8 2 N2 cosy c

KD(h:b)
Ko(h®b) I,(hr) + Io(hb) K (hCr)) sinpCz,

E.,C = -j 1207 k i (%)
3T - " ki . & Cotant 5,“" - "
62 3 . Ky (hb)

(K (hSb) I](hcr) - 1;(h°b) K (h®r)) coss®z,

- Kn(h€a)
120« c .2 0!
22 B a cotany KD(hcb)

(Ko(h®b) Io(hCr) 14(hSb) Ko(hCr)) coss®z,

H B"sacgstp%i

(K (AB) 1,(h%r) = 1,(n b) K (hCr)) singa.
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(C.1)

(C.2)

(C.4)

(C.5)
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: ) Kr(héa)
Hgo© = ~WIhCa siny - "7 .
o2 B v Ko(hCb)
: (C.6)
(Kg(h®b) Iy (hr) + 15(n%b) K (hSr)) cosez, and
., R K,(hCa)
A o 1
szg = 3“ hca cosy :!T;§ZT .
o1 (c.7)
(Ky(h®B) 1o(hSr) + 1)(h%) Ky(hr)) coss®s.
Regidn 3 (asr< oe)
5?3’ = Eca h¢a cosy - (c.8)
, , ) i K (hcr) ,
(Ig(h€a) Ka(h®b) - I,(hb) K, (hCa)) ' singCs,
0 0 0 0 KD(th) z
Egq" = 339” 1207 ka cotany siny - (C.9)
, ) K,(hCr)
(x1(h§a) K1(hcb) - Ij(hcb) Ky(h€a)) ﬂ——ﬁa:a cosg®z,
, . Ky (hCb)
“ I ot (ha)? cosy - (C.10)
7 c. 7 c K. (h r) c
(IQ(h a) KD(h b) - ID(h'b) KD(h'a)) §£=———Eecosa z,
Ko(h®b)

}u 8a cos¥ (1,(n° a) Ky(h© b) - I,(n€ °b) K (h€a))
K, (h r)

A cinsSz, | | (c.11)
Ky (h6b)
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H g3 :3,, hCa sinw (I9(ha) Kg(n®b) - I (h°b) K (hCa))

K,(hCr) .
" cos8%z, and (c.12)
Ko(h©b)

R : : -
Hyg = =Wy hCa cosv (1,(h%) K (h®b) - I,(h%b) K, (hCa))

Ko(hcr)

—— EGSEEZ! (C.13)
Kj(h’b)

Summary of the Dispersion Equation

(;iﬁigggg;)z . Kg(ﬂ?{{TK](th)
h€a | Kg(hcb) K1(hcg)

7 (C.18)
(Io(hca? xo(ncg) - zagﬁcb) xogﬁﬁa))

(1,(hCa) K (hb) - 1,(h%b) K (hCa))

The separstion constant equsti/on, which reiates the axial wave number, gta .
to the radial wave numbaer, hca N

H

hCa = +\/(,Bcar)ﬂr- (kai)z . (€C.15)

Equstions C.14 and C.15 are used to calculate the radial and axial wave numbers.
Equations C.1 - C.15 comprise the free mode field solution of the shesth helix
surrounding a perfect!/y conducting coaxial rod. The superscript "¢ ” s used on all
the electric and magnetic field components, and on the radial and axial wave numbers, so
it is obvious that they are iéseci;t-d with the perfectly conducting coaxial rod
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configuration. and not with any of the other configurations which have been studied n
the thesis. The operating frequency. the perfectly conducting rod geometry, and the
sheath helix geometry, are specified by the varabies ka cotany, b/a, and
v. 0 < ka cotany <0, 0 < b/a < 1, od 0 < y <
90.0° are the values of these varisbles which are acceptable for a free mode fieid
solution. Throughout the remainder of this appendix, 1t wiil ususlly be assumed that the
sheath helix is sufficiently tightly wound so that 0 < vy £ 10.0°.
As was previously discussed in section B.1 in connection with the empty shaath
helix, it 1s converent to regard the radial and axial wave numbers soiution as h Ca and
Bca » rather than as hc and sc' respectively. The quantity hcb in equations
C.2 - C.14 1s now thought of as hCa . b/a. Inaddition the spatiai dependences
of all field components are considered as norn‘f;llzed with respect to the sheath hahx
radis, so that h“r and 3¢; become h€a - r/a and 8€a - z/a,

respectively.
c

To complete this section, it 1s mentioned that Er3c , Ez3c v Hog as
given in equations 14 by Mathers and Kino (20) are incorrect. These fisid components do
not satisfy the boundary conditions at the sheath helix surface, equations 1.6 - 1.9
Otherwise, equations C.1 - C.13 agree with their rasults. Equation C. 14, the disparsion
equation, is the same as equation 15 of Mathers and Kino, and equation 5 of Bryant (19).

C.2 investigation of the Dispersion Equation and Graphs of the Radial Wave Number
Solution

As was true of the empty sheath helix, the dispersion equation and the separstion
constant equation, equations C.14 and C. 15, respectively, are sven functions of both the
anguiar frequency, w, and the pitch angle, ¥. Therefore, the comments made at
the beginning of section B.2 aiso apply here.

Two limiting cases of the perfectly conducting rod geometry are when its radius
decreases until it approaches zero, and when its radius increases until it approaches that
of the shesth helix. Assuming that the varisbles ka cotany and a8 ars hald
constant and taking the limit as b + 0 of equation C.14, making use of the small
argument Bessel function representations, equations A.28 A.29, it can be shown that



equation B.13 1s obtained. As expected, in the limit when the rod radius approaches zero,
the cspersion equation 15 transformed into the smpty sheath helix dispersion eguation
Since the separation constant equations for the sheath helix surrounding a perfectly
conducting coaxial rod and for the empty shesth helix, equations C.15 and B.14,

respectively, have an identical form, the previous sentence means that

1im hCa = n?, and 1im (sca)Z = (saa)z, (C.16)
. _ ¥ _*
b-+0 b+Q

where h3a and g3, are the radisl and axisl wave numbers of the empty sheath
helix, respectivaly, IQ addition, taking this same limit of equations C.2 - C.13, assuming
that the varsbles ka cotany, v, a, and %” are heid constant, and
making use of relations A 26 - A.29 and C.16, it can bg demonstrated that equations
B.1 - B.12 are obtaned. Taking the imit as the rod radius approaches zero of sach fiald
component in region 2 and in region 3 gives the corresponding empty sheath helix field
component, as one would expect. In summary, /7 the /1mit as the rod radius approachas
zero, the free mode fie/d solution associated with the sheath helix surrounding a
perfectly conducting coaxial rod is correctly transformed Into that associated with the
empty shasth helix.

Attention is now directed toward investigating the limit when the radius of the
perfectly conducting rod increases so that the rod surface touches the sheath helix
surface. The imitas b + 3~ of the dispersion equation 1s calculated, assurming that
the varisbles ka cotany and a are heid constant. L' Hopital's ruie (47, pp. 851) is
needed to evaluate the resulting indeterminate form, and the Bessel function recurrence

relations A.5 - A.8 are used. It can be demonstrated that

~ ka cotany 2 ka cotany , 7
Tim (E%j) = (E=?}—E) =1,
h~a h™ a

b+a
, (Ca17)
where 1im h€a = héga.

b+a
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If this same hmit 15 taken of the fiald components, it i1s discovered that they all bacome
zero in the regions D.;grs:!é and a <r <.

When the rod completely filis the sheath helix interior region so that its surface
touches the shesth helix surface, there 15 infinite conductivity in all dwections on the
surface at r = a.  This means that all properties of the sheath helix have been iost. (See
part 1.3.2 for a discussion of the sheath heiix.) In fact, there is actually a perfectly
conducting rod in an unbounded air-filled region. It 1s known that the only nontriviai fieid

solution, so that at least one of the field components 1s nonzero, results when

he 0 (35, pp. 527). Only Ergc and HEBE do not varush. Thefe are

characterized by a 1/r type of radial dependence, anda 5ip SC; or C0S§ BCZ
axial dependence, raspectivaly, whera (8 Ca) 2 (ka) 2 gs,‘? by €p az
Stratton (35, pp. 527) has sad that a perfectly conducting rod in space only has an

unguided wave associsted with it -

For a sheath helix surrounding a perfectly conducting coaxial rod, the problem of
determining the vaiues of hca and Bca which may possibly result in a free mode
fisid solution 1s more difficult than was true of the empty sheath halix. If negative rea! or
purely wmaginary values of KhC;  are substituted into the right hand side of
equation C. 14, and the Bessel function relations, equations A.14 — A.2 1 are used, a vary
lengthy expression occurs. it appears to be necessary to use the small and large
argument approximations of the Bessal functions, equations A.26 - A.29 and A.32 -
A.43, to see if the two sides of the dispersion equation can possibly be squated. A
relatively thorough investigation of this was carried out. In addition, the special case of

h® = 0 was considered. (hC,  complex valued with nonzero real and
imaginary parts cannot possibly result in a free mode field solution. The pravious
statement 1s known to be true by applying the same reasoning as was previously
discussed st the beginning of section B.2.) Just the conclusion of this investigation will

be mentioned. It is believed that only rea/ wave numpers such that

-D < h®a < 00 and (,E':a)2 > (ka)z (c.18)
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are acceptable for a free mode field solution. Note that when hCa s real positive, the
Bessel function inequaiities A.49 and A.50 can be used to demonstrate that the right hand
side of equation C.14 1s real and positive. Of course, the left hand side is aiso positive
real, and so it 1s possibie to equate the two siades. Therefore, a soiution to the dispersion
equation does axist for the vaives of the wave numbers given in equations C. 18.

't 1s clear from equations C.14 and C.15 what variables the radial and axial wave
numbers depend on.

-

h“a = f(ka cotany, b/a) and (€C.19)

(g€a)? = g(ka cotany, b/a, y). (C.20)

As was true of the empty sheath helix, it s highly desirable to develop
approximations of the dispersion equation, in order that the radial and axial wave
numbers solution 1s more easily calculated, and so that their behavior for different
frequencies of operation, perfectly conducting rod geometrias, and .sheath helix
geometries, 1s more seasily understood. First, the approximation which 1s vahd when the
radial wave number 1s small wili be considered. Substituting equations ®.26 - A.29, the *
small argument Bessel function representations, into the right hand side of equation C.14,

and performing a small amount of aigebra, yields
,

M)

(ka cotanw)2 10g9(0.891 hca) (-2 log(b/a))

(C.21)

hca‘ 109(0.891 h®b) (1 - (b/a)z) .

Equation C.21 is the accurate smell argument spproximation of the dispersion
equation. Of course, ( eca ) 2 's calculated from equation C.21 by making use of the
separation constant equation, equation C.15. Reassuringly, calculating the lmit of
equstion C.21 as b -+ 0’) assuming that the variables ka cotany and a

are held constant, correctly results in equation B.21, which is the small argument

approximation of the empty sheath heiix dispersion equation.



Assuming that the variable b/a s fixed and taking the hmit of aquation C.21 as
ka cotany approaches zero, realizing this also means that RC,  approsches

zero, yields

ka cctanwrz ka cotany 2

Tm  (— o o"%y2 X2 COotany
" T )

ka cetan¢+0+

(-2 log(b/a)) ( ,

. - C.22
(1 - (b/a)?) )

%
where 1im hca = h~ a.

ka cctanw*D*

The result given by equation C.22 was previously mentioned by Mathars and Kino (20). it

1s actually an approximation of equation C.21 which i1s vahid when ht‘a << b/a,

SINCe
; AP 3 .3  C
10g(0.891 h a) 10g9(0.891 h€a) ,
9£f*,"4,i — = _— — (C.23)
10g(0.891 hb) (109(0.891 ha) + log(b/a))

1, if [10g(0.891 h€)| >> |log(b/a)].

(-2 log(b/a))

ka cotany 2~ , :
(———)° T o(b/a) = ————— (C.24)
hCa (1 - (b/a)®)

Equation C.24 is the crude small argumem approximation of the di;s:sr.szan
equation. It is much more convenent than equation C.21 because it is possible to
express hCa explcity as a function of the operating frequency, the sheath helix
geometry, and the perfectly conducting rod geometry. ¢(b/a) is 8 strictly
decreasing positive function. It has a large value and a iarge negative siope for b/a

closa to zero, md it approachas unity form the uppersida 55 b/s becomes close to
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For the empty shesth helix, the small argument representation of the dispersion
equation, equation B.21, shows that

ka cotany »

Tim ( = GO . (C.25)

a
+
ka cotany~0

h™a

Comparsion of equations C.22 and C.25 makes 1t ciear that when the varable

ka cotany becomes sufficiently smail, the radial and axial wave numbers solution
associated with the sheath helix surrounding a perfectly conducting coaxial rod 1s very
different than that associated with the empty sheath helix.

A data table, which will not be presented here, was prepared which compared the
right hand side of equations C.21 and C.24, with that of equation C.14, for a wide range
of values of the variables ka cotany and b/a. it was discovered that the error
associsted with equation C.21 1s sbout one percent or less for ka cotany <

0.100, ' and that it is about ten percent or less for ka cotany < 0.500.
The error associated with equation C.24 1s small when b/a is nearly unity, but 1t may
be very large when b/a is small. For example, it is about two percent or less when

b/a = 0.900, for ka cotany < 0.100. However, when b/a = 0.100, it s
as high as thirty five percent over the same range of ka cotany values. Equations
C.21 and C.24 both have the property that for a fixed value of b/a, the error
decreases as the value of ka cotany becomes smalier. Furthermorse, for a fixed
velue of ka cotany, the error increases as the vaiue of b/a becomes smaller.

In summary, equation C.21 will be sufficiently accurate for most applications so
that it csn be used to‘ Caiculate the radial and axisl wave numbers when

ka cotany < 0.10. This is true for any vaiue of b/a, which, of course,
mustbemntherange (0 < b/a < 1. Equstion C.24 can be used with little error
to spproximate the wave numbers solution over the previously mentioned range of

ka cotany vaues, when the value of b/a is close to unity. However, when

b/a is much smaller than unity, this approximation is significantly in error, except when



the value of ka cotany s very, yery small.

To obtain the spproximations of the dispsrsion equation, which are justified when
the radial wave number s large, it is heipful to rewrite equation C. 14 in the form

\

ka cotany , [o(h™a)

hCa 11(h’a

(1 - c ’fEi]

- — E

Keeping three terms of equations A.36 - A.39, the large argument Bessel function
representations, and substituting into the unbracketed expression on the right hand side
of equation C.26, while only using the first two terms and substituting into the pair of

bracketed expressions, gives

ka cotany,2 _ y , _0.50 ,
( <, ) (1 m)

, = (c.27)
_ -2 h%(1-b/a)_ [h®b + 0.125(1-bsa)]
_ [h% - 0.125(1-bsa)]"
[1 - e2 hCa(1-b/a) r_hc;;ﬁoj375,(1ib/a)]]
F. C . _ . -
[(h*b + 0.375(1-b/a)]

Equation C.27 is the accurate |arge argument approximstion of the dispersion equation
Of course, for a particulsr approximate soluton RCa of equation C.27, the
corresponding approximste vaiue of  + Eca is calculated by making use of
equation C.15, the separstion constant equation.
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f it 1s assumed that hCa s sufficiently large so that pC, .

(1-b/a) >> 1, equaton C.27 becomes considerably simplified to

ka_cotany - (C.28)
h~a

=

Equation C.28 ;s the crude /arge argument approximation of the dispersion equation.
Mathers and Kino (20) previously mentioned ttus result. Equation C.28B s very convenient
because the radial wave number is explicitly given as a function of the opersting
frequency and the shaath helix geometry. It 15 important to realize that this equation is the
same as eguation B.20. Since the separation constant equations, equations C.15 and
B. 14, are identical, it 1s true for large values of ka cotany that the racial and axial
wave numbers solution for the sheath helix surrounding a perfectly conducting coaxisl
rod is similar to that associated with the empty sheath helix.

In all the numerical caiculstions of the radisi wave number that the author

performed, which were based on equation C. 14, it was discovered that

ka cotany ka cotany

¢ moo—— o — <. (c.29)
hca haa

(A discussion of this numerical solution will be given shortly.) This is a staternent of the
fact that the dispersion Eznrvg assocuted with the sheath helix surrounding a perfectly
conducting coaxial rod is flatter than that of the empty sheath helix. Therefore, the

approximation hca = ka cotany is always better than the spproximation
h% < ka cotany, From the discussion given in section B.2 concerning

equation B.20, it must be true that equation C.28 is an approximation of equation C.14,
which is accurate to less than twenty percent error for ka cotany > 1,  andto
less than one percent error for ka cotany > 5, for all values of b/a,

0 < b/a < 1.



334
L

justified on the basis of developing large argument spproximations of the dispersion
equation. For some fixed vaiue of ka cotany, where ka cotany > 1,
using hCa = ka cotany m™means thatf b/a s sufficiently small, it wili be true
that hCa . b/a << 1. The large argument asymptotic representations of the
Bessel functions are not vahd for arguments much less than unity, and so equation C.28
cannot be justified (See Table A.2. This shows the error involved n using the large
argument Besse! function representations.) In order to support the usage of hCa 2
ka cotany for ka cotany = and b/a << 1, itis necessary to
say that this approximation must be a better one than that of the empty sheath helix, and
then examine the error involved with it for the empty sheath helix configurstion.
A data table was prepared which compared the right hand sides of equations
C.27 and C.28, with the right hand side of equation C.14, for many different vaives of
ka cotany and b/s. For the two approximations, ncreasing ka cotany for
a fixed value of b/a. andincreasng b/a for a fixed value of ka cotany, both

tended to reduce the error. Equation C.27 was discovered to usually be much more

Quite accurate, and its simplicity means that it is clearly preferable to equation C.27.

In summary, equation C28 is the crude large argument reprasentation of the

dispersion equation. It is valid to less than twenty percent error for ka cotany >

1 and for all values of b/a, 0 < b/a < 1. Although the error is
relatively great at ka cotany = |, itrapidly decreases as this varisbie becomes
larger.

As was true of the empty sheath helix, the approximation of equating the absolute
value of the axial wave number to the radial wave number, |8€|a = hca) results in
simplification because it is not necessary to have the pitch angle appearing by itself as a
varigble, in order to calculate the axial wave number. The functional dependences of both

the axiai and radial wave numbers are now given by equation C.19. Using 8 sifilar
procedure to that previously followed in section B.2, and making use of equation E:E, rt
is clear that for a shesth helix sufficiently tightly wound so that 0 < y E |
10.0°, the approximation is certainly correct for large values of ka cotany
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(ka cotany > 1). Equation C.24 shows, as a worst case, in order that the
approximation be valid within about ten percent ?Frar for small values of

ka cotany (ka cotany <<]1), therequrement s

A

2 tanw\/’zhg(b/a% < 1. (C.30)
-. (1 - (b/a)®)
“\

Even for b/s assmalias 1 (0,102 and ¢ as large as 10°)  the inequality
1s satisfied. Uniike the empty sheath helix, eguating the axial and radial wave numbers s
often vahid even when the varable ka3 co tany approachas zero. Of :c:ursé. in the
imit when both ka cotany and b/s become very small, neguality C,30 will not
be satisfied. The wave number solutions are now similar to those of the empty sheath
halix.

In summary, the approximaton |8 |a =

hca 15 justifisd to about ten
percent error or less, assurming that the pitch angle satisfies 0 < ¢ < 10.0°,
over the entre range 0 < ka cotany <00 , for most bi/a values. The
singile excaﬁt@ﬁ occwrs for small values of ka cotany, when the rod radius is
much less than the sheath helix radius, so that, for the particular pitch angle of concern,
inaquality C.30 is not satisfiad.

Attention is now directed to the numerical solution of equation C.14, the
dispersion equation, in order to calculate the radial wave number. The variable
ka catanw only appears in tha left hand side of the mt»aﬁ In a similar fashion to
that mantnc:nad near the end of saction B.2, the quantity ka cntanw/h a is
calculated. However, it is now necessary to specify the varisble b/a, in addition to
specifying the value of ka cotany.

The following three figures were obtained from direct calculation of esquation
C.14, making use of the IMSL (43) software program routines to svaluate the Bessel
functions. Figwe C.1 is a linear graph of ka ggtan‘,/hca versus

ka cotany. Eachcurve is associsted with one particular value of b/a. b/a = 0,

0.100, 0.300, 0.800, 0.700, and 0.900 are used. The Curve representing b/a = 0 is
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Figure C.1 Graph of ka cotany/hCa versus ka cotany

bdsed on equation C.14. Curves for b/a = 0.100, 0.300,
0.500, 0.700, and 0.900 are gtven. The curve for b/a = 0
is based on the dispersion equation for the empty sheath

helix, equation B.13. Several lines of constant h®a are
shown, and so is the asymptote ka cctanw/hca = 1.0. (Note
that HAihCa; KA COTANP=KA (CP=ka cotany, and B/A=b/a.)
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based on the dispersion equation for the empty sheath helix, equation B.13. Several
different ines of constant hca are displayed, and so s the asymptote

ka cotany/h%a = 1.0. Note that ths figure is In agreement with
equation C.29. The dispersion curve for the ‘sheath helix surrounding a perfectly
conducting coaxial rod 1s flatter than that for the esmpty shesth helix, especially when the
value of b/a s nesrly unity. .

Figure C.2 is 2 semilogarithmic graph, with the same abscissa and ordinate as the
previous figure. b/a = 0.100, 0.300, 0.500, 0.700, and 0.900 are used. Many decade
ranges of ka cotany values are displayed. The asymptote ka cotan w/hca =

1.0 1sgven.

Figures C.1 and C.2 both demonstrate that the large argument representations of
the dispersion equation, equations C.27 and C.28, are approximately correct when

ka cotany > 1 is true. Furthermore, Figure C.2 1s In good agreement with the
accurate small argument representation of the dispersion equation, equation C.21, when

ka cotany << ). However, in order that littie error is mvoh;ed with the usage
of the crude small argument representation of the dispersion equation, equation C.24,
for the case when b/a = 0100, 1t i1s seen to be necessary that the value of
ka cotany s very, very small. More specifically, so that less than 10% error
occurs, itis necessary that  ka cotany < | .00)(]0-5 .

‘ It 1s informative to compare Figures C.2 and B.2. The latter mentioned figure is a
semilogarithmic graph of the dispersion curve for the empty sheath helix. Clearly, for
large values of ka cotany (ka cotany > 1), the radial wave number
solution associated with the sheath helix surrounding a perfectly conducting coaxial rod
I$ very similar to that for the empty shesth helix. However, when the varisbie
ka cotany issmall (ka cotany << 1), the radial wave number solution
is certainly different for the two configurations. It is clesr that the value of b/a has a
great effect on the solution h€a for small values of ka cotany.

The final computer generated graph included in section C.2 1s Figure C.3. This is a
three dimensional piot of the quantity ka cotany/h®a as a function of both the
varisble 'y a cotany 8nd the varisble b/s. It indicates in a qualitative manner the
functional dependences of |k, co tanw/hca on its two vsriables. When the rod

//
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Figure C.2 Graph of ka cotanw/hca versus ka cotany

based on equation C.14.
0.700, and 0.900 are shown, and so is the

(Note that HA = h€a,

0.500,

Curves for b/a = 0.100, 0.300,

asymptote ka cotanw/hca = 1.0.
KA COTANP = KA CP = ka cotany,

and B/A = b/a.)
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radws 1s much smalier than that of the sheath helix, the dependence on ka cotany
1 similar to that of the empty sheath helix. On the other hand, when b/a approachas
uity, 1t 15 seen that g catanwhca . For a fixed vaue of
ka cotany, ncreasng b/s tends to make ka cotany/hCa smalier, or
equvalently, hCa larger. This effect is more pronounced for small vaives of

ka cotany.

C.3 Discussion snd Graphs of the Fisld Componaents

The final section of this appendix consists of an nvestigation of equations C.1 -
C.13. Replacing gC3 by - g‘:a in the field components resuits in no change. This
property is asiso true of equation C.15. Since the dispersion equation, the separation

constant equation, and the field components are not affected when the ilgébf:li sign of

the axial wave number s reversed, no loss in generaiity resuits from restricting
B a > 0.

E

The pitch angle appears by itself in the angular fmkﬁ components as  siny,
whiie in the radial and axial field components, 1t appears by itself as cosvy. it s
assumed that the sheath helix is sufficiently tightly wound so that Cosy 3 ff—,f and
Bca T h CE (As was previously mentioned in section C.2. aqQuation t;j% states
the requirement which must be satisfied for a relatively tightly wauﬁd shaaﬁh halix, n
order that the axial wave number can be equated with the radial wave imbar) Since
5 a T h "a 13 assumed, squation C.19 lists the vg;abms on whochlbaﬂﬁ the radial
and axial wave numbers are dependent. Decreasing the pitch angle in such a féshion that
the varable Ka cotany remans constant, keeping in mind equation C.19, the
magnitudes of the anguiar fislds are seen to be greatly reduced, but no significant change
occurs to the radial and axia 'eids. |
Making use of equation C.19 and of the assumptions COSy = | and
Bca ool hca . it is 2 simple matter to state the approximate fmc:tnaﬁgl
dependences of the regron 2 and regron 3 field components on the operating frequency.
the perfectly conducting coaxial rod geomatry, the sheath helix geometry, and the sheath
helix “windings™ current.



Eenc = Ln(%ll » ka cotany, bfa, v), (C.31)
Hsnc - Sn(b“ , ka cotany, b/a, v), (C.32)
E,'_nc = Qﬁ(B“ » ka cotany, b/a), (C.33)
Ezﬁc = un(%ll‘ ka cotany, b/a), (C.34)
Hrnt = Vn(%“. ka cotany, b/a), and (C.35)
H;n‘: x HH(BH , ka cotany, b/a); (C.36)

where n=2, 3.

1w ©
Region 3 fields have a radial dependence described by either Ko(h r) or
K’l ( hcf‘)., while the radial dependence of region 2 fields 15 a linear combmnation of

sither ID(hcr) and iiD(h‘:r'-)i or of Ij(h‘:r) ahd K1(hcr‘)s As was

previously mentionad in section C.2, it 1s believed that the radial wave number must be
resl positive in order to obtan a free mode field solution, and so all the arguments of
these Bessel functions are real positive. For one particulsr operating frequency,
perfectly conducting coaxial rod geometry, and sheath helix geometry (which means that

hCa has one particular value), as the normalized radial distance r/s increases, it
must be true that the magnitude of a region 3 field always decreases, while the
magritude of a region 2 field may either increase or decrease. (See Figure A. 1: This 15 a
graph af IQ | 1 KQ ’ and K] for real positive arguments.)

For small v:lugn: of ka cotany, so that 0 < ka cotany <

0.100, eguation C.29 and Figure C.2 show that ( « h€a < 0.100 oceurs.
Furthermorae, the discussion previously given in section B.2 for the empty sheath helix
makes it apparent that for this range of |, cotany Values, 0 < h%a «
0.100 occurs. The small argument Bessel function representations are therefore well

justified to approxwmate the fields for the sheath helix surrounding a perfectly
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conducting coaxial rod, equations C.1 - C. 13, and to approximste the empty shesth helix

fields, equations B.1 - B.12. (See Table A. 1. Note that in order to use the small argument

Bessel function representations for the fieids in the region exterior to the sheath heiix,

the radial distance must be mited in extent so that approximately HC, . r:/a <
0.100 and h%a - r/a < 0.100 s true)

The author made use of equations A.26 - A.29 to develop smalli argument
approximations of equations C.2 - C.13, and of equations B.1 - B.12. A éomparuson of
Hzla’
corresponding interior and exterior region sheath helix fieids are quite different, for

¢~

the two sets of equations shows that sz while the other
b/a clearly distinct from zero. Therefore, for small vaiues of ka cotany, most
of the fields of the sheath helix surrounding a porfocny conducting coaxial rod are
usually very different from the corresponding fields of the empty sheath helix.
For large values of ka cotany, sothatatieast ka cotany > 1,

“a T ka cotany. Inaddition, it

equation C.28 and Eigures C.1, C.2 show that h
was previously discussed in section B.2 that for this range of ka cotany values,
the radial wave number for the empty sheath helix 1s h3,3 2 ka cotany. The
author made use of equations A.36 - A.39, keeping just the first term, to develop large
argument Bessel function representations of equations B.1 - B.12 and C.2 - C.13. (See
Table A.2. Note it is approximately required that the radial distance associated with the
empty sheath helix and the radius of the perfectly conducting coaxial rod are both
sufficiently large so that K3, . ./, , »d % . bsa > 1, in
order thst usage of the large argument representations of the Bessel functions to
approximate the field components 1s justified.) Comparison Qf the field components in
the two sets shows that if the vaiue of ka cotany s sufficiently large so that

ka cotany - (1-b/a) > ) and ka cotany - b/a > 1, then,
nesr r = a, the corresponding fields in the two sets are very similar. Since all field

components are rapidly exponentially attenusted about the sheath helix surface according

to :

e ka cotany(1-r/a) for interior region fields, and

e-ka cotany(r/a-1) (C.37)

for exterior region fields,

-
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the field magnitudes near r = @ are certainly the largest. (For the empty sheat ~eix
this behavior of the fields was previously discussed in section B.3.) Therefore, for
sufficiently large values of ka cotany, the dominant fisids of the sheath halix
surrounding a perfectly conducting coaxial rod are similar to the corresponding onas of
the smpty sheath halix,

A crugde summary of the previous two paragraphs s now presented. For /argeé

va/ues of ka cotany (which coul/d be considered to mean high frequencies since

ka cotany 2-f \/L&?g a cotany), fheiﬁe/d components associated
with the sheath hel/ix surrounding a perfectly. conducting c‘aa:za/ rod do ﬂt?? see” the
rod. However, when the value of ka ¢cotany /S small/ (which cou/d be considered
to mean /ow frequencies), the f1e/d components do "see” the rod.

Equations C.2 - C.13 are lengthy and complicated expressions. In order to halp
understand how the fieid components beshave at dif ferent points in space, several graphs
of ther radial dependence have been prepared. The electric fieid components were

. . r c
normalized from dividing them by an electric normalizing coefficient, L g +» andthe

L]

magnetic field components were normalized from dividing them by a magnetic

normalizing coefficient, H 20 €. These normalizing coefficients are defined as
Kr(hﬁa)
c . c - 120 hCa)? Cosv S0 T,
B0 ° E;z ) %“ ka cotany (h=a) ' Ko(hcb)
1 (nC /4 €
(IO(h a) . D(h b) - ID(h b) KD(h a)) 7
(C.38)
Ky(h€a)
= j 3“ 120 ka cotany Cosy ———0—
K1(h'b)
(11(hca) Kj(hcb) - 1,(h°b) K](hca)). and
c
z2=0 K,(h~-a)
y € y C ” RCa e 1 .
H oo™ = H_ =  h"a cosy ——7—— -
20 22 | .. gll ](hcb)

(C.39)
(Ig(h%a) K (hSb) + 1,(n%b) Ko(h®e)).
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When the radial dependence graphs were prepared, it was assumed that the axisl

coordinate is rlld constant. These transverse planes were chosen so that

cos(8%a - z/a) = +1  for the anguisr and axial fields, and $o that
sin(ga . z/a) = +1 for the radial fieids.

Three different types of graphs are presented. These represent the “high
frequency”, “mid frequency”, and “low frequency” cases. (The meanings of the terms in
quotation marks is the same as it was when these expressions were previously used in
section B.3.)

The radial dependence graphs are only concerned with the three region
configuraton (b < a). The special case of the two region configuration

(b = a) s not considered. This is because the latter mentioned configuration has a free
mode field solution completely different from that of the three region configuration. As
was previously mentioned in section C.2, in the special case of b = a, all propertie$ of
the sheath helix are lost. Therefore, this special case is not of interest and will not be
considered here.

In order to obtain the radial dependence graphs, the following procedure was
used. For the specified values of the variables ka cotany and Db/as,
equation C.14 is solved to obtsin the radial wave number, hca . (Actually, as was
previously mentioned in section C.2, the method used to solve the dngpers'on equation is
to first specify the quantities hca and bl/a, and then to directly calculate the
corresponding value of ka cotan v.) Noting the value of the sheath helix pitch
angle and the value of ka cotan v, equation C.15.s solved to obtain the axial wave
number, gCa. Next, equations C.38 and C.39 are caicuisted to obtain the electric and
magnetic normlizipg coefficients. Finally, the normalized field components sre evsiuated
for several diffw;nt values of the radial distance normaiized with respect to the sheath
helix radius, r/a. The IMSL (43) software program library was used to evaluate the
Bessel functions. All twelve graphs of the normalized fieids’ radial dependence presented
here are “exact” - no approximations have been made to the dispersion squation, the
separation constant equation, the normalizing coefficients, and the normalized fields.

Figures C.4 and C.5 show the absolute value of the normalized electric snd

A
magnetic fisld components, respectively, as a function of r/a. The two vertical lines

N
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Figure C.4 Curves of the radial dependence assocfated

with the normalfzed electric fields. The variables ‘used
are ka cotanv = 10.0, b/a = 0.100, and v = 1.00°. They

determine the wave numbers, h®a=10.0 and Bca!wgci and
the electric normaljzing caefficienti EZQE = _19” 188
(V/m). (Note that ER/EZ0 = E /€, E0/E20 = E,°/E,°,
EZ/E20 = E,°/E,,°, and R/A = r/a.) ’
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Figure C.5 Curves of the radial dependence assoctated

with the normalized magnetic fields.

are ka cotany

The variables used

= 10.0, b/a = 0.100, and ¢y = 1.00°. They
determine the wave numbers, ha=10.0 and!scaiiﬂiﬂ. and
the magnetic normalizing coefficient, HZQE :3|| 0.525

(A/m). (Note that HR/HZO

!Hr

/HZQ

7/HZIH = )y C | = r/a
HZ/HZ10 - HZ /HZD , and R/A r/a.)

c

» HO/HZO = H

c,
e '

20
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represent the surface of the perfectly conducting coaxisl rod and the sheath helix
surface. In region 2 and in region 3, the algebraic sign of each (real valued) normalized
field component 1s incicated. The opersting frequency, the rod geometry, and the sheath
helix geometry, are specified by the varisbles k2 cotany = 10.0, b/a =

0.100, and ¥ = 1.00°, This 1s an exampie of the “high frequency” case.

hca = 10.0 and Bia = 10.0 ara the calculated vaiues of the wave
OMbers.

E,0¢ = 3 1) 188 (V/m) and K, = Y, 0.525 (A/m)

are the calcuiated vaiuas of the normalizing coefficiants.
Two additional graphs representing the “high frequency” case are Figures C.6 snd
c.7. ka cotany = 10.0, b/a = 0.900, ad ¢ = 1.00° are the

variables associated with these graphs. Figures C.6 and C.7 are actually a variation of

Figures C.4 and C.5, respectively, using b/a = 0.900 instead of b/s = 0.100. The
calculated wave numbers for the first mentioned two graphs are  h Ca = 10.0 and

8 Ca = 10.0, andthe calculated normalizing coefficiants are

Eo° = 3 QU163 (V/m) and M, = Y1 0.589 (A/m).

The value of hCa associated with the four previously mentioned figures is in
good agresement with the large argument approxmations of tha dispersion sgquation,
equations C.27 and C.28, as one expects. These gﬁphn show that all field components

fact. comparison of them with Figures B.3 and B.4, keeping in mind the vaiues of all
normalizing coefficients and that the same ka cotany and y values are used,

shows that near r = a, the “high frequency” fieids for the configuration studied in this

This is expected behavior and it was discussed earlier in section C.3.
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Figure C.6 Curves of the radial dependence associated

with the normalized electric fields. The variables used
are ka cotany = 10.0, b/a = 0.900, and y = 1.00°. They

determine the wave numbers, hca = 10.0 and gca = 10.0,
and the electric normaltizing coefficient, EZQc -.33‘.163

(V/m). (Note that ER/EZ0 = ErE/Ezoc‘ EO/EZ0 = EQE/EZQC‘
EZ/E20 = E,°/E, ., and R/A = r/a.)
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Figure C.7 Curves of the radial dependence associated

with the narmalized magnetic fields, The varfables used
are ka cotany = 10.0, b/a = 0.900, and y = 1.00°. They
determine the wave numbers, ha = 10.0 and g% = 10.0,
and the magnetic normalizing coefficient, Hzog 3” 0.589
(A/m) . (Note that HR/Hi? " H. /M s HO/HZO = M /M €,
HZ/HZO = H S/H_ €, and R/A = r/a.)
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Figures C.B and C.9 display the radial dependence of the normalized electric and
magnetic fields, respectively, for the “mid frequency” case. ka cotany =
1.00, b/a = 0.100, ad ¥ = 1.00° are the variables which are used.
The wave numbers are calculated tobe hCa = 0.830 and 8a = 0.830,

whila the computed normalizing coefficients are

- c
£ 20

= j%” 137 (V/m) and Hch Bll 0.799 (A/m).
The final two examples of the electric and magnetic fields’ radial dependence for
the “mud frequency” case are Figures C.10 and C. 11, respectively. The varisbles used are
ka cotany = 1.00, b/a = 0.900, and y = ].0ne, Since the
ssme values of ka cotany and y are used, these graphs can be considered as a
variation of Figures C.8 and C.9, using b/s = 0.900 instead of b/a = 0.100. For
Figwes C.10 and C.11,  h = 0.985 and %3 = 0.985  are the

computed values of this wave numbers.

EZDE = j%u 33.5 (V/m) and HZQC QBN 0.939 (A/m)

are the caiculated values of the normalizing coefficients.
Figures C.12 and C. 13 illustrate the radisl dependence of the normaiized electric
and magnetic fieids. respectively, for the “low frequency” case. |, cotany =
SiDDx'ID'Z, b/a = 0.100, ad ¢ = 1.00° sre used. These varisbies
determine the wave numbers hCy . 2 95,702 and g a =

2 iQSxIQ‘Z » 8nd the normalizing coefficients

4

E,o° = J}u 9.29 (V/m) and W € -au 0.998 (A/m) .

™~
(=]
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Figure C.8 Curves of the radial dependence associated
with the normalized electric fields. The variables used .

are ka cotany =1.00, b/a = 0.100, and ¢ = 1.00°. They
determine the wave numbers, h€a = 0.830 and eca = 0.830,

and the electric normalizing coefficient, Ezoc = J9" 137
° e r € c - f C c
(v/m). (Note that ER/EZO E. /El0 ,» EO/EZ0 Eo /Ezo .

' = c c =
EZ/E20 Ez /Ezo , and R/A r/a.)
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Figure C.9

Curves of the radial dependence associated

with the normalized magnetic fields. The variables used
They

determine the wave numbers, hcl = 0.830 and gca . 0.830,
and the magnetic normalfzing coefficient, H o° !3|, 0.799

are ka cotany = 1.00, b/a = 0.300, and ¢ =

1.00°.

v rumes ol 0 /70 = M €7 ¢ 70 = c ¢
(A/m). (Note that HR/HZ0 He /Hpo » HO/HZO = H "/H 0%,

HZ/HZ0 = HZEIHZoc. and R/A = r/a.)
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Figure C.10 - Curves of thei;;é¥§1 dependence associated
The variables used

with the normalized electric flelds. bles
are ka cotany = 1.00, b/a = 0.900, and ¢ = ].QO‘. They
determine the wave numbers, h®a = 0.985 and 8€a = 0.985,

and the electric normalizing coefficient, EzOC = Bll 33.5

(V/m). (Note that ER/EZO = E /€, ©, EQ4E20 = EC/E,,C,
EZ/€20 = E,°/E,,°, and R/A = r/a.)
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Figure C.11 Curves of the radfal dependence associated

with the normalized magnetic fields. The variables used
are ka cotany = 1.00, b/a = 0.900, and y = 1.00°. They
determine the wave numbers, h®a = 0.985 and 8a = 0.985,
and the magnetic normalizing coefficient, H;DC -SII 0.939
(A/m). (Note that HR/WZO = H_“/H, €, HO/HZO = HS/H 06,
HZ/HZO = H /K (€, and R/A = r/a.) P
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Figure C.12

Curves of the radia)

with the normalized electric fields.
are ka cotany=5.00x10"%, b/2=0.100, and y=1.00°. They

determine the wave numbers, h®a = 2.95x10"
» and the electric normalizing coefficient,
e C 5 50 (V/a\ N , N ¢
Eo "3Bll 9.29 (V/m). (Note that ER/EZ0 = E _“/E o,

2.95x10"2

EQ/EZD =

c c -
Ee /EZC » EZ/EZO =

e C,r C
£, /EZD

dependence assocfated
The varfables used

2

and gza

, and R/A = r/a.)



356
TTTT T T 7T T TYTT 1 1 TITTT T B T . *
I T [T Ij TTT ,Tfﬁ
L B i‘
[ B
Do o
- [ [} :
- L B ;
_— - I B [T 5] LL'
SO0 - . B : =
P Py Py - - -
; IITr T - [ -] a b
J NP . . &
i rT T - ] o
; . . —
é:;’! : e : Z
i 6 5 - [ ] S
< . . 1O =z
- L] [} - (;]
! - ] [ ;L
| - [ ] ] Z
L L -] [ -]
o =8 — — [
l € €0 | )
o -© LCB )
: - | © L
-
[ 1] (=L ] C: %
L] L2 ] ! "”‘*s !
s : 'Er ! e I:E
200 . - | i <
P o oy " L
Irx e © - L . E:
T e -] o -4 . D 7.
TRE e e . i -
3Ty ¢ < | =
e = B [ -] -
Boaq E ~ A . —J
L] ; nl EDQl . CI
: o LUl =, oA
° ° ~NO & . a
B © IFI - -
L o - _
J_l_LJ‘LJI i Jlllll i i } ¢ ) %
- L I | el L 1 _ =
"] fu j [¥) oy 7] Y] i - "
- o n iy ik
o o C o (wn
— — ? — — —-—
CZH/Z7H"0H" e~ 4
i - o ,
Figure C.13 Curves of the radial dependence associated
netic fields. The variables used

with the normalized mag
are ka cotany=5.00x10"°

» b/a=0.100, and y=1.00°. They

determine the wave numbers, h€a = 2.95x10°“ and g%a =

2.95x107%, and the magnetic normalizing coefficiant,
Cii B f A - 3 - j '*’i"c" C

Hoo B||T-00 (A/m). (Note that HR/HZO Ho"/H 07

= H Sy € 70 « u € c . . e
HO/HZ0 HB /HZO » HZ/HZO0 HZ /HZD » and R/A r/a.)
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Figures C.14 and C.15 are the final two examples of the slectric and magnetic
fields’ radial dependence, respectively, associated with the “low frequency” case. The

5.00x10°%, b/a = 0.900, g

variables employed are ka3 cotany

¥ 1.00°. Since the same valyas of ka cotany and y are used in
Figures §.12 - C.15, Figures C.14 and C.15 can be considered as a special case of
Figures C.12 and C.13, respectively, using b/a = 0.900 instead of b/s = 0.100. For
Figues C.14 and C.15, KCa - 4 g2x10 2 #and 3% = 4.82510°2 are

the caliculatad valuas of the wave numbers, whiis

E,0° = 3P 1-79 (V/m) and H € =Y 0.999 (A/m)

are the calculated vaiues of the normalizing coefficiants,

As expected, the value of hﬁa associated with the previously mantioned four
figures s approximately given by equations C.2)1 and C.24, the smali argumaent
representations of the dispersion squation. More specifically, there 1s less than onse
percent error involved n using equation C.21. There i1s two percent error involved with
using equation C.24 when b/a = 0.900, and twenty one percent error when b/a =
0.100. For the case when b/a = 0100, 1t is necessary that the value of

ka cotany 'S much less than 5_(’3(3;,11(352i tn order that only a small
percentage error occurs with using equation C.24 to approximate h Ca .

Comparing Figures C. 14 and C.15 with Figures B.7 and B.8, respectively, keeping
i mind the values of all normalizing coefficiants and the fact, that the same values of
ka cotany and y are used, it 15 clear that the “low fregquency” fialds associated

with the configuration studied in this appendix are usualiy different from the
[ ,
c

ml\'?

corresponding empty sheath helix fieids. The single exception is that sz
H:ﬂa. in the ragion bsrga. This behavior us'xéaatea and it was
discussad aarher in section C.3.
Figures C.14 and C.15 provide 8 good illustration of how the electric and
magnetic fields behave at the sheath heiix surface. However, this behavior was previously

discussed n section B.3 and so it will not be mentioned further here. Figures C.12 and
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Figure C.14

with the normalized electric f

Curves of the

radfal dependence assocfated
felds. The variables used

are ka cotany=5.00x10"%, b/a=0.900, and ¢=1.00°. They

determine the wave numbers, hca = 4,

4.82x10°2,

EO/EZO = Ee

8251022 and g%a =

and the electric normalizing coefficient,
Ezoc - J»“ 1.79 (V/m). (Note that ER/EZ0 = EFC/EZQC;

c ¢ .
/€ "+ ET/EZ0 -

C
EZ /E

GC_ and R/A = r/a.)

il
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Figure C.15 Curves of the radial dependence associated
with the normalized magnetic fields. The variables used

are ka cotany=5.00x10"%, b/a=0.900, and y=1.00°. They

determine the wave numbers, h€a = 4.82x10°% and sCa =

4.82x10'2. and the magnet1E’norma11t1ng coefficient,
c

uzoc -),, 1.00 (A/m). (Note that u?/uzo . Hrc/Hzo ,
HO/HZ0 = HeC/Hzoc. HZ/HIO = Hzc/Hzoc. and R/A = r/a.)
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C.13 illustrate the behavior of the fields at the surface of the perfectly conducting
: C c ) . . £ Co _
coaxial rod. Figure C.12 shows that EeZ /EZD and Ezza\l\EZQ bacm
zero &t r = b. This is simply a statement of the fact that tha slectric fisids tangential to
a perfectly conducting w{terfage are zero. However, the radial siectric field is nonzero at
r=b  This s beduse free electric charge i1s present at the perfectly conducting rod

—

surface. )
Drecting attention to the magnetic ‘ieids, Figwre C.13 shows that
» » -
H r2 c/HZO C siercat reb. Theradal magretic fisid cannot be discontinuous at
the surfate of the perfectly conducting rod because free magnatic charge does not exist
are nonzero at 1 = b This is because an electrical surface current s present or *he

pertfectly conducting rod surface. and so the magnetic fieids tangential to this surface

are discontmuous.



D. Appendix D.  Sheath Helix Surrounding an Ideal Dielectric Coaxisl Rod
‘ Ir;s'de the shesth helix i1s a coaxial rod made of an ideal dfelectric material, which
means that it has a zero conductivity. The rod radius. ‘b, s restricted so that 0 <
b ¢ a co0 s always true, where, of course, a s the radius of the shuth helix.
This configuration Can be considered as a’limiting case of the sheath Meiix surrounding a
lossy coaxial rod, when the rod conductivity becomes ver.y small.

Past research on configurations related to the sheath helix surcounding an ideal
dielectric coaxial rod was conducted by Olving (2 1) and Swift-Hook (22). As Figure 1.3a
shows, Olving considered the mirror-image of the geometry investigated in thus
appendix. when the dieiectric material fills the entire exterior region and comes inside the
sheath heilx. The anguiarly independent fieid components i terms of a single
undetermined constant were obtaned. and so was the dispérsion equstion. An
Approximate equation was derived from the original dispersion squation by equating the
two radial wave numbers with ‘the axisl wave number. The two region configuration,
where the dielectric i1s only present st A gr e m , was studied as a iimiting
case of the previous results.

Swift-Hook actually studied a four region geometry. However, when the radius

¢ appro hes mfmtﬁ, Figure 1.4b reduces to what Olving studied. !t was assumed that
the field ipononts do not possess an angular dependence. The radial wave numbers in
sll four regions were equated to the axisl wave number, in order to obtain the dispersion
oqua'tién.Frommllmnn b~ a and c -+ 00, the dispersion equation for
the two region configuration was obtaned. (See Figure 1.4b.) For this geometry, the
quantity ka cotan&/bda was plotted versus ka cotany, where hda s
the (single) wave number which determines the rachal and axial spatial dependences of the
field components. and where ka cotany = w m a cotany. These
graphs were given using seversl different vaiues of the dielectric material relative
permittivity, €., where € * ¢/ €p-  The phenomenon of negative dispersion
was discussed for the geometry where the disiectric material does not touch the sheath
helix surface. (Negstive dispersion refers to the behavior when the phase velocity

associsted with traveling waves incresses as the frequency of operastion increases.)
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D.1 List t:f the Exact Fisid Components and the Exact Dispersion Equstion

A pref derivation of the field components and the dispersion etustion for the
previously rhentionsd mirror —image geometry to that of concern in this appendix 1§ given
by Oiving (2'). However, a bettar ungerstanding of how the equations hstad i this
section are der'ved can be obtaned from Chapter 2 of the thesis. If the (raal) relstive
permitivity € 15 used in piace Of the quantity ‘ Ep T b f/mEQ »  the free Fﬁéé}ﬂ
field solution previously given » part 2.1.1 is exactly the same as that for the shaath
helix surrounding an deal dielectric coaxal rod. In order that the field &XDresSIONs
associated ‘with the deal dislectric coaxial rc;d configuration are all located m this
appendix, justification 1s provided for repeating the ipprc:prmfa form of the previously
mentionad equations hera. (Note that the term “exact” s used to distinguish this free

mode fieid solution from the one which will later be discussed in section D.2)

7 Summary of the Exact Field Components
Regfon 1 (Osrsgh)
¢ od L ) 1207 ey p 4y od N
e e 3 Wy g By cosv nyte 6% s (0.1)
d._, d \ .i..d.
FD(h’Z a) I](h1dr)51n5 z N - ,
(w A 1 n Ay o , ‘N - ‘Y
(hy"a To(hy7b) K (hy7b) + e hy"a T,(hy"b) Ky(h, bi)
£ .9 = -J %93 120% ka cotany siny - (D.2)°
CR b/a
K1(h2da) 11(h1dr) cosgdz )
A o, dpy d, d T w9y v (n Dy
- d Il 120w d, . d. . 0
£21 ‘3%?m““"1 K (0-3)
Ko(h,%a) 15(h %) coss?z ‘
T T Y T NN Y
/ (hy7a To(h,7b) Ky (hy"b) + e hy"a I,(h,7b) Kq(h,"b))



363
H_ﬂcJ = é?% cosy B 2 . A (D.4)
K, (hy%) 1,(n,%r) stns?s |
cny%a/1(h %) K (ny ) hyda 1,(h %) Ky(h,9b))

d 1 ) §
H51 = = 'a € sing hz (DS)
*"? Ko(hzda) I1(hldr") chde
d. . . 4., .y d 9 n9) Kk (n 9p
(g% 1oy %) kq(hy %) + e npfa 1y(n %) Ky, %))
and H‘Z]CJ = %7“; cosy h1da (D.6)

i
Ky (h,%) 1 o(h dr) cosadz
(hy%a 16tH 0t (hzdb) N hzda [,(h,%) x, (h b)ia
Pegion 2 (berga)
_ o d 120+ d. .d
e’ T VBN Treatamy cosv hpta 8% (0.7)
:r:D(h2 ) stngdz [1,(h,%r) - K (n,%r)- ]
d , , d. . ,. d dy s
(h] a 1ol g) 1 (h b) = ¢, hyla 10(h, %) T1(n, %))
] a4 a
(h, da Io(h ) K1(h dpy + e, hy% 1,(h %) Ky(h,%))
Eez = ’jsll 120~ ka cotany siny - (D.8)
Kj(hz*a) coss [I (h ) - K1(h2dr)-
t dy 1 (n ﬂw—r(n - hzda Io(h, db) 1,(n,%))

J d. o Aoy

(h a Io(h dp) K1(h dpy + h, % 11(h1 ) Kg(h,8))



d _ 120x d 2 '
Ez2 J »"ka Cotany- C0sv (h,"a)® . (0.9)
- d d. .. d ‘
Ko(h,%a) coss¥z [1,(h,%r) » xo(nzd;)- .
" d d d d
(hy%a 15(ny %) 13(n,%) - e n,%a 1 (n,%) 11(h,db))

d d ]
(ny % 150 %) K (hy%) + ¢ n,%a 1) (h, o) kg (h,0Y)

H,,zd =Bn cosy eda . (D.10)
K (h,%) sinez (1 (h, %) - K (n,%r).

d d d d d d
(h %8 15(n %) 1,(h,%) - h,% 1,(n,%) 1,(n %))

(hy3a 140h, %) Kk (h, %)+ n,% 1 (n %) ko n, %))

d = - d .
Hy 2 b||sinw h,"a (D.11)

Ko(hzda) cosgdz [1,(n2dr) - K](hzdr)-

(h]da Io(h]db) I](hzdb) - e, hzda Io(hzdb) I](h]db))
d

-(n]a} io(h]db) K](hzdb) + e, h,% X](h]ab) Kokhzdb))

d d
and sz = D“ cosy h2 a - (D.12)

K](hzda) cossdz [Io(hzdr) + Ko(hzdr)-
d d d d d d
(h] a IO(hl b) I}(h2 b) - h2 a Io(h2 b) Il(h] b))

d d d
a I,(h,"b) Ko(h2 b))

d d d
(h‘ a IO(hl b) K](h2 b) + h2

Region 3 (agr<oo)

d
Er3d = :j»||1201 ka cotany cosy f—%; . (D.13)
2
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Eli:éjil Ky (hy %) stne®z 1 (h,%) -k, (h,%)

o d, Kilthar) stnetz [1,(h,%) - Ky( 2 ¥/ (D.13
Kr(h— a) . (CDﬂtfﬁuEd;
(hy da 1. olhy 9y 1 (h - nEda I, (h b) 1 (h b)), -

(h 45 i o(h; dp)y K, (h b) + hzda 1]( db) «. (h dyy)°

& [

E53%-= éJB||TZDw ka cotany siny - , (D.14)
K1(hgdr) ccsgdz [If(hrda) - K1(h2da)— )
(h1 4y 1. (h ) 1y(n, b) - hzdi ID(hzd;) I](h1db))]
(h,% I (h dyy K, (h b) + hzda 11(h1db) Ko(h, b))

E,5% = 311 1200 ka cotany cosy - (0.15)
o d

K,(h, a)

L Ko h, ') cose%z [1,(n,%) - K, (h, ).
Ko(hz’a)

(h,% a Io(hy %) 1(h,%) - ngla 14(h,° (hy %))

(h1 a I (h dp) K](h dpy 4 hzda 1,(h, dy) « (h dpyy-

Hrad 3.9“ cosy gda . (D.16)

Kj(hzdr) singdz Elj(hzda) - K1(h2d

(h] 2 Iy(h db) I,(h, b) - zdg Ly(h, dy) 1 (h, 4
(h, d IO(h )fx,l(h2 b) 4 hzda I (h] dhy x Q('Z db))

+

o d _ I i} 2 1 - 7
LI 9\‘(k; cotanw)“ sinv NG (D.17)
' '2
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(h)%a Lo(hy¥b) 1,(h, %) T,hzda I¢ (" 150, %))
(h1da Io(h1db) K1(h2db) *dhzda I1 b) K. (h 9y
o v
(D.18)
Lb, %))
)
b))
(D.19)
(h, 4 a 1y(h, b) Ky (h, b)w+ hzda I1(h]db) KD(hzdb)) ‘

(h,% Io(h dpy «. (n dyy 4 er héda I,(h,%) Ko(hzdb))

[Ia(hzda) . (hjda IO(hjdb) K1(h2db) +

d doyv o o divy L, d
€. hya I,(h;"b) Kolh,"b)) + Ko(hy~a)
(hy%a 1oth %) 1,(n,%) - el h%a 1 (h,%) 1,(h %)) -
1701, %) « (hyda 1ohy %) K (h,9%) +
' , — 4 /
% 1, (h %) Ko(hy9b)) - Ky (h,%a)

(h1da Io(hjdb) ij(hzdb) - Ezda ID(hzdb) I, (h,9b))]



The exact separation constant equat/on provides a relation between the two radial

wave numbers, h; a and hzda, and the axial wave number, gda_ tis
(s%)% = (%)% + ¢ (ka)? = (n,%)2 & (ka)2.  (D.20)
(Note that (ka)z = ng g €g aZ = (fo)z g € az_) Equations

D.19 and Dé@, the exact chspersion sqQuation and the axact separation constant equation,
respectively, are used to solve for the wave numbers h 1 da ' hzda , and Bda .

Equations D.1 - D.20 comprise the exact free mode field solution for the shesth
hel/lx surrounding an ideal dielectric coaxial rod. Both radial wave ﬁw the axial
wiave number, and all the siectric and magnetic field comporents are givan the
superscript " d 7  s0 11 s clear that they are associated with the shesth helix
surrounding an daal dislectric coax:al rod, and not with any of the other configurations
which hava been studied in the thesis.

As has been previously mentioned in part 2.1.2, the dispersion equation and the
separatign consiant equation cannot determine the aigebrac sign of the axial wave
number. Furthermora, if ,Bda IS usad in place of Bda in tha fiald components,
equations D.1 - D.18, no change results. Replacing h] da by —h,, da  squitions
D.1 = D.20, making use of the Bessel function relations A.14 and A.15, 1t 1s discovered
that no change has taken piace. Theses properties of tha racial and axal wave numbers

mean that f hjd and Bd ae assumed to be resl and nonzero, restricting

h1 da > 0 and Eda > [0 results in no loss in generality.

A special case of the configuration studied in this appendix occurs when the rod
radius increases so that the surface of the rod touches the sheath helix "w%dvngs"!
Since the conductivity of the rod is zero, the usual four boundsry conditions given by
equations 1.6 - 1.9 apply at the shesth helix surface. The proper dispersion equation for .
this geometry can be obtained by taking 1im b » a~ of equation D.19, assuming

that the variables ka cotany, vy, €Ens 2 ae all held constant. This yields
7 ka cotanv 2 ka cotany 2 .
Him (——g—) ¢ = (—g5—) (D.21)
bea” M2 @ hp @
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(h,8%) " n %% S (o)
= K d* * . L . “(continued)

1 o

* * * { * ) -
(h] a IO(hl a) l(](bzd a) + hzd a I](!“liﬁI a) ,KCL(th a)?,

* * . * * *
o) ky(n, %)+ el n, a1 (n ey ko (n, %))

(h,

d

where 1im1hn a hn a, forn =1, 2.

~

b+a

Here the subscript " 1" refers to the sneath helix mterior region, 0 < r < a,

while” ” 2 ” refers to the exterior region, a <r <. Equation D.20 15 the
correct form of the separation constant equation for this two ragion geometry. |f
modifications are made to equation D.21 so that it refers to the di-laéﬁ*lc material
completely filing the exterior sheath helix region with air in the interior ragion, It is
exactly the same as the two region dispersion equation given by Olving (21). Equation
D.19 was modified in a similar manner and an attempt wajs made to transform it into the
three regio- dispersion equation which Olving obtained. Unfortunataly, Olving’s squation
was ex: esaed n Such an unususl manner that, despite perforrming a larga amount of

slgebra, the authOr was not sbie to demonstrate that it is the same as the modified form

" of equation D.19.

in summary, by suitably changing equations D.19 and D.21 so that they are valid
for the geometries studied by Olving. it was possible to show that the two region
configuration (& = a) dispersion equation exactly agreed with his corresponding
equation, but it is not clesr if the three region configuration (b < a)  dispersion
equstion agrees with his corrasponding resuit. To reassure the reader, equations D.1 -
D.20 do sstisfy ail the conditions associsted with free mode fields, as was previously
discussed in part 1.3.1, including the boundary conditions st the two interfaces, r = b
and r=a Equations D.1 - D.20 are claimed to be the correct free mode field solutioh
for the three region configuration sheath hilie surrounding an 1deal dislectric coaxisl rod.
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The exact fieid components and the exact dispersion squation, which are given by
equations D.1 - D.19, are very lengthy and complicated. One intuitively expects that it
will be very difficult to numer:cally or graphically solve equations D.19 and D.20, the
ex;éz dispersion equation and thé sxact separahon constant equation, respectvely, in

sorder to deternmine the wave numbers n,!in hzda‘ ond g9 wWhat s

-
someatimes done In multi-digiectic geomatries 1S to make sn approximation which

provides simphfication. This 15 done by equating the radial wave number associsted with

regon 1 (0 < r < b), hjda, mdth-gam:i‘w:vemﬁ; gd,g! with the

rachal wave number associated with region 2 (b L r < oa) and with region 3
(a & r < o), hzda. For axarmple, see (22).)

n % T hd%, and 8% T hYa, where hy%a = nda. (0.22)

.

The subscript ~ 2 will no longer be used on the wave number solution since
it 1S not necessary to distinguish between two different radiai wave numbers. (Note that

d, =~

if just the exact sepsration constant equation was considered, h~a

+ h da T Bda would have to be used. However, no loss in generality

1
results from only using the positive aigebraic signs, as was previously mentioned n
section D.1.) Obviously, equation D.20 shows in order that the spproximations given in
equations D.22 are justified, it is necessary that hda >3 \FT ka. A more detailed
discussion of the roq;n:oments necessary to justify using the approximation will be
‘presented later n part D.2.1. |

The following field components and dispersion equation are obtained from
substituting equations D.22 into equations D.1 - D.19, and making use of the Bessel
function property, relation A.25, to provide simpiification. Strictly speaking, this shouid
be calied the approximete free mode fiel/d so/ution for the sheath helix surrounding an
ideal dielectric coaxial rod. Howaver, throughout the remainder of this appendix, only

this approximate solution will be considered. Thereforae, it i1s convenient to refer to these

equations simply as the fie/d cormponents and the dispersion equation.
. 7/

~ /
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Summary of the Field Components

Region 1 (Ogrsb)
d . ; én 120 d ‘ 7
Erv t I 877 13 cozanw cosy h-a - (D.23)

O(hda) I] (
(15(n%) K (n%) + ¢ 1 (n

K )
d. .

(hdr) sin(ndz)
1 (hdb) «

N

m
L

81 -J 9“ 120" ka._cotany siny - “ (D.24)

K](hda) I](hdr) cos(hdz);

[
P
K

d : all 120 od 7
= J b/3 ka cotany OS¢ M (D.25)

m
|

z1

Ko(hda) Io(hdr) CDS(hﬂZ)
(Io(hdg) K](hdb) e 11(hd

b) xg(hab)) ‘

f

d d d . d , , .
H'_1 = )|Icos¢ h-a gl(h a) 11(h*r) s1n(hdz) . (D.26)

He]d = - ?7"5 . (D.27)

€. sinv Ko(hda) I](hdr) ccs(hdz)
- —— , and

(15(h96) K, (n%6) + . 1, (%) Ky (h%b)) ’

d d , . ,
M,, .%” cos¥ h a K](hda)_ Io(hdr) cos(hdz) . (D.28)
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Region 2 (b<r<a)

£ .9 . Y, EE;%%??FT cosv (h%a)? Ko(h%) sin(n%z)+ (0.29)
N (e.-1) 1,(n¢ ") 1,(n b) K, (hd?
T e
(Ic(h*b) K1( b) v e I (h b) K (h b))
Eegd = - Ell 120" ka cotanV sinw- (D.30)
K1(hda) I1thr) EGS(hdZ)

E zd = Jbu ?j%%gﬁ cos ¥ (hda)z Kc(hda) casthdz) * (D.31)

M~

(E-])Iohb)l(hb)l((hr)

[1 (h r) - — -
hdb +oe I](hdb) Kq(h® b))]

Hr_zd sbl.ccsw hda K](hda)lj(hdf) sin(hdz) , (D.32)
H62 = 53u51n¢ hda KD hda) cos(hdz) (D.33)
) (e,.-1) Io(h b) 1y(n' b) K (ndr) )
(I,(h"r) & — d‘* - T—1] . and
! ' (ID(h’b) K (h b) + e I, (h dpy k.(h9b))
r 0
Hao® = Ju cosv na ky(nda) 1g(ndr) cos(ndz) . (D.34)
Region 3 (asr<m)
d g .
Er3’ = -J %M 120~ ka cotany cosy - (D. 3%)

,(h a)

I, (n%a) e od Ky(h%r) sin(n9z) |



EeBd = - 3“ 120« ka cotany siny - (D.36)
1,(h%) k,4ndr) cos(ndz)
Ez3d = j )“ 120~ ka cotany cosy - (D.37)
d
; K,(h"a) 4. ,
1, (h%) ———— Kk (h%r) cos(ndz) ,
Ko(h a)
Hod = 3¢
r3 = )“ cosy h a (D.38)
e
I](hda) K](hdr) sin(h~z) ,
d 2 1 1 o
H = (ka cotang)® siny —— - (D.39)
83 3'1 hda ,
K (hda) d . d
I (h a) __——3—_ K](h'r) cos(h“z) , and
Ko(h~a)
Hzad = - 3“ cosy hda - (D. 40)
I](hda) Ko(hdr) cos(hdz)
Summary of the Dispersion Equation
d
(ka _cotany,2 | Io(ha) Ko(hdﬂ) 7
= D.4
ha I,(h%) Kk, (h%,) (0-41)
0 o(hdb) (c “’UI,F“ b) Kkpthda)

I (h a) (I,(h b) Ky (h® b) + ;'_ I,(h b) K (h b)):I
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Equetions D23 - D.41 comprise the free mode fie/d solution of the shesth
helix surrounding an ideal dielectric coaxial rod. Th;apqrmmg frequency. the deal
dislectric rod geometry, the disjectric rod materisi permuttivity, and the sheath helix
geometry are specified by the varables ka cotanv, b/a, e, and V-

0 < ka cotany «©0, 0 < b/a < 1, e, > 1y g 0 <y o<
90.0° #re the values of these varuables which are acceptable for a free mode fiaid
solution. Throughout the remainder of this appendix. it will ususily be sssumed that the
shesth helix is sufficiently wound so that the pitch angle is restricted to 0 < ¢
10.0°. i

Equstion D.4 1, the dispersion equstion, s solved n order to obtan h 9, , the
(single) wave number which deterrmines the radial and axial spatial dependences of the
field components. (As was previously chscussed in section B.1 iIn connection with the
or16ty shoatb helix, 1t 15 convervent to consider the wave number solution as hda
rathor thar(as hd The quantity hdb appearing in equations D.23 - D.41 s
considered as hda « bs/a. Furthermore, the radial and axial spatial dependences of
the field components are can::difgd to be normaiized with respect to the shasth halix
radius so that hdr and hdz bacome hda s r/a and hda - z2/m,
respectively.) Mo;fyung equation D.41 so that 1t 1s vaid when dislectric material fills the
region b < r <00  and air fills th- regon 0 & r ¢ b, i is discovered to
be identical with what Swift=Hook (22) g.l* for the previously mentioned geomaetry.

The free mode fieid solution for the two region configurstion (which is
Characterized by the dislectric rod filling the interior sheath helix region, 0 Erg

a, with air filling the exterior region, 2 & r « 00 )  can be obtained by taking
the limit as b approaches a of equations D.23 - D.28, and D.35 - D.41. In
particular, the dispersion equation for this geometry is obtained from squation D.4 1, and

it is discovered to be

ka cotany 9 ‘ka cotany 2 .
N (o4
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. 1o(h?"a) ko )

I,(h" a) kKy(h™ a) h™ a (D.42)

(continued)

—dF 4% — T »
(Io(hd a) Ki(hd a)'+ e, Ij(hdt,,  (h¢

where 1im hda hdia.

b+a

The Bessel function property, reistion A.25, was used to smmplify this imit. (Note that

. { #
equation D.42 can be directly obtaned from equation .D.21 by using h]d a =

di’
h,

geometry with dielectric in the region 3 &£ r < (0 and ar in the region 0 ¢

a = hdta and relation A.25.) Modifying equation D.42 so that it describes the

r £ a, itagrees with the dispersion equation for the corresponding geometry grven

by Swift=Hook (22).
L 2
D.21 Discussion of the Dispersion Equstion and Grﬁg‘i of the Wave Number
Solution
Equation D.41, the dispersion equastion for the three region geometry (b <

a), wnotateredif ¥ isreplacedby -V, orif w s replsced by -u.
Therefore, the same comments made at the beginning of section B.2 are valid here.

Two special limiting cases of the three region geometry are of interest. First, the
ideal dielectric rod radius is made to approsch zero. Assuming that the varisbles
ka cotany, €Err and = are held constant and calculating 1im b . Q*
of equation D.41, making use of the small argument Bessel function representstions,
squations A.26 - A.29, it is discovered that equstion B. 13 is obtained. In the limit as the
rod radius decresses untii it spprosches zero, the dispersion squation becomes that of

the empty sheath helix. as one expects. Thereforas, it is true that

”
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1im h% = n?,, . (D.43)

where 3, s the radial wave number associsted with the empty shesth helix. It is
now assumed that the varisbles ka cotany, € v, a, and %li e
heid constant. Taking this same limit of equations D.29 - D.40. which represent the fieid

components Inregion 2 (b < r < a) andinregon 3 (a ¢ r <Q), nis
discovered that the corresponding fieids for the empty shesth helix, equations B.1 -
B.12, sre obtaned 'In the course of caiculatng this lhirmit, oquatons A.26 - A.29 and
equation D.43 wére used. Furthermore, the approximation associated with the empty
sheath helix of equating the axial wave number with the radial wave number was used.
(Ths was previously discussed in section B.2.) Finally, eq.m?c;n B.13 was used to smplify
some of the imiting expressions of the fisld components. in summary, /n the /imit as
the rod radius spproaches zero, the free mode fie/d so/ution associsted with the sheath
helix surrounding an /d;o/ ‘dielectric coaxisl rod is correct/y transformed into that
assoc/sted with the empty shesth helix.
The second speciai limiting case occurs when the relstive permittivity of the ideal
disiectric coaxial rod decresses until it approaches unity. Assuming that the varisbies
ka cotany and b/a are held constant, and evsiusting 1im €. * 1* of
equstion D.41, it 1s readily apparent that equstion B. 13 is obtaned. As one expects in the
hmit as the rod relative permittivity decreases until it approsches unity, the dispersion

equation for the empty shesth helix resuits. This means that

1im nda = p,. (D.44)

. +
-+1
€r

In addition, 1f this limit s taken of the field components in regions 1 and 2,
equstions D.23 - D.34, it is discovered that the corresponding fields in the two regions
sre the same, and that these equal the corresponding interior sheath helix region field
components associated with the empty shesth helix, equations B.1 - B.6. Evaluating this
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same hmit of the regron 3 fieids, equations D.35 - D.40, the correspondng exterior
shasth helix region field components assocusted with the empty shaasth helix, equsbons
B.7 - B.12, are obtaned. In the course of carrymg out these calculations, equatons B. 13
and D.44, ana the Besse! function property, relation A.25, were all used for
simplification.  Furthermore, for the empty shesth helix feid components, the
spproximation of equating the axial wave number with the radisl wave number was made.
In summary, /n the /imit as the relative permittivity characterizing the dielectric rod
approsches unity, the free mode field solution associsted with the shesth helix
surrounding an ideal die/ectric coaxial rod s correctly transformed imo that
associmed with the empty shesth helix.

Attention i1s now directad to tha values of dé which may possibly satisfy the
dispersion equation. Since the snguisr frequency only appesrs in equation D.41 in the
form (ka cataﬁw)z = EZ Vg €p az cetan‘?w, 1t 15 obvious that raversing
the sigebraic sign of uw  will not prémé- any change m the dispersion squation’ As was
previously sxplsined st the baginring of section B.2, the fact that (hd( *m)é)z =

(hd(n;) a) 2 means that hda is not sliowed to be generslly complex with
nonzerc rasl and rmagnary parts. This information was sasily obtaned. However, a
lengthy mvestgation was performed to see if negative real or purely imaginary values of

h da are sliowed. The detaiis of this investigation will only briefly be mentioned here.
R was necessary 10 make use of equations A.13 - A.21, A.24, A.26 - A.29, snd A.32 -
A.43 to see if the two sides of equation D.41 could postibly be equated. Since the small

for all possible arguments, this analysis cannot clam to be rigorous. The conclusion
reachad was that it 1s not behéved to be possible to satisfy the dispersion squation using
these vaiues of hda .

Finslly, h93  was assumed to be resi positive. This possibility will now be
discussed in detail. Examine the part of equation D.41 within the square brackets. Making
use of the fact thet [,(x) is a strictly incressing posittbe function, while K ( x)
is 8 strictly decreasing positive function, where 0 < x < Q0 , means that



d
I.(h a-b/a
0( ) < 1, and

0 < d
Io(h a)

(D.45)
(e,-1) 1;(n%) ko(n%a) < e 1,(n%D) Ko(h%arb/a)

(See Figure A.1. Thus is a griph of IO' I], KD‘ and K1 for real positive
arguments.) Reistons A.49 and A.50, and Figure A.1 inake it ciear that I,(x) and

K] (x) are aiso positive functions. it follows that

1.(hdb)
0 < [1 - _O_.H__ . _
lo(h a) .
(D.46)
—— < 1,

(e,-1) 1,(h9) K, (hda)
(Io(hab) x](hab) + e, 1,(n%) Ko(hdb))

which means that the right hand side of equation D.4 1 1s real positive. Obviously, the left
hand side 1s siso real positive. Therefore, a solution for hda will axist becauss it 15
possible to equate the two sides of the dispersion equation,

in summary, it 1s beleved thst only o . ,d, < 00 may satisfy the
dispersion equation. Onl/y rea/ positive vaelues of the wave number hda are
acceptable for a free mode field solution.

Equation D.41 makes apparent the functionsl dependence of the wave number
solution on varisbles describing the operating frequency, the geometry of the sheath
helix, the geometry of the ideal dielectric coaxial rod, and the type of dislectric material.

hda = f(ka cotany, b/a, Er) (D.47)
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It is rughly deswable to obtan approximations of the dispersion equation, in order
that the wave number solution hdg Is more aasily caicuisted, and so that the behavior
of hdg for different operating fregquencies, ideal rjéﬂecﬁ;c rod geometries, rod
permittvies. and sheath helix geomiithes, s more esasily understood These
;pproximations are vaid when the Bessel function arguments which appear in the
chspersion equation are either small or large. First, the small argument approximations will
be exarmwned. Substituting equations A.26 - A.29, the small argument Bessel function
representations, mto the right hand side of equation D.41, yields

(ke cotany)2 2 10g9(0.891 n%)
h™a
(e,.-1) (hdb)2 log(0.891 hda)

(2 - ¢, (h9)2 10g(0.891 h9b))

(1 +

Equation D.48 /s the sccurate smal/ argument approximation of the disparsion
equation. Reassuringly, caiculsting the limit of equation D.48 as b - 0%,  assuming
that the variables ka cotany, « r* 8and 8 are held constant, correctly results in
equation B.21, which 1s the small argument approximation of the empty sheath helix
dispersion equation. The result given in the previous sentence is also obtained if the limit
as the chelectric rod relative permittivity approaches unity is caiculated. Note ﬂ'm the
correct form for the two region configuration (b = a) 15 found simply by c::lcujztn;é

1im b » a” of equation D.48. ;

If the value of hda becomes sufficiently small for the specified vaiues of

bia ad €. o tat (ndp)2. (¢ -1) << occurs, equation D.48

mpproximately reduces to

ka cotany ,

(—g—)° T -2 1og(0.891 hda). (D.49)
4
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. o .

Equmion D.49 /s the crude smal/ argument approximmion of the dispersion
equat/on. It 1s vahd for both the three region (b < a) andthetworegion b = a
configurations. Note that this is the same equation as the smali argumaent representation
of the empty sheath heiix dispersion equation, equation B.2 11 This has the mportant
meaaning that when hda becomes sufficiently small, to a good approximation it will
have the same vaiue as the radial wave number of the empty shesth helix, for the
corresponding value of ka cotany. Here the presence of the ideal dielectric
coaxial rod has an insignificant effect on the wave number solution.

A dsta tabie was prepared which compared the right hand sides of the
spproximations D.48 shd D.49, to the right hand side of the actual dispersion equation,
equation D.41. A wide range of vaiues of the variables given by equation D.47 was used.
The mportant resufts of these calculations will be mentioned but the data table rtself will
not be presented. Equaton D.49 tends to be least accurate when b/a = | and

€ >> 1. Both equations D.48 and D.49 became less accurate as  ka cotany
became large. Equation D.48 was accurste to less than 10% error for | < ¢ r <
1 .01103, 0 < b/a < 1, sndvaluesof ka cotan, aslargeas 0.10,
while the error associsted with equation D.49 was sometimes much greater than thus.
Even for values of €. asiargeas 1.0x103 and vaues of b/a as large as 1,
equation D.49 had a maximum error of sbout 1% if ka cotan v was restricted so
that ka cotany < 1.0x10°2,

In short, equation D.48 has a higher accuracy than equation D.49, for values of

ka cotany nesr 0.10, when €. and b/a are both large. However, sven for

the worst case efror, which occurs for h/a = | and €. >> 1, equationD.49
will have a maximum error of only a few percent if ka cotany s restricted so that
ka cotany < 1.0x1072 or ka cotany < 1.px70"3 Under these
circumstances, the wave number solution, hda y I8 10 a good approximation, for the
same value of ka cotany, equaito h?3, the radial wave number of the empty
shasth helix.
Attention is now directed to the approximations of the dispersion equation which
are valid when the Bessel function arguments are large. Substituting equations A.36 -
A.39, the large argument Bessel function representations, into the right hand side of



equstion D.41, using three terms of the Bessel function representstions m the quantity

next to the ~ = “ but just the first term for the quantity within the square brackets,
yeids

ka cotany 2 ~ 0.50
(———;3————) = (1 + ?;3—77)
a a

d (e _-1)
[ - e-2 h“a (1-b/a) —r .
(e.+1)

(D.50)

Equation D.50 is the accurate /arge srgument approximetion of the dispersion equation.

Since 0 < (er_])/(€r+]) < for €. > 1, it 1s clear that

when hda is sufficiently large for the specified value of b/a so that hda

(]'b/a) > 1, h

1 - -2 hda (1-b/a) ‘ (ep-1) ~

(D.51)
(e +1)

will be true. Of course, the preceding nequality st least means that hda > 1, and
80 it is true that

0.50
] + (——a'—)-z' ’;' ]. (0-52)
h~a

Equations D.51 and D.52 mesn thst equation D.50 can be approximated ss

ka cotany

7 > 1. (D.53)
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Equation Déi}is the crude /arge argumem approximstion of the dispersion
equation, which is valid for the three ragion (b < ) configuration. it is the same
as equation B.20, the large asrgument representation of the dispersion equation
assocusted with the empty sheath heitx! Therefors, for the three region sheath helix
surrounding an ideal deelectric coaxisl rod configurstion, when hda. s sufficiently
large s value 1s, t0 2 gOOd approximation, the same as the radisl wave number solution
associated with the empty shesth heiix, and 1s in fact approxmmately the same as the
variable ka cotany. Once agan, the presence of the ideal dielectric coaxial od has
no significant effect on the wave number solution.
Taking the imit of equation D.50 as the rod radius increases so that the rod

surface touches the shesth helix surface, assuming that h da > 1, vyelds

ka cotany ka cotany __ "5 o
boa” h-a h™ a r
where 1im hda = hd*a.
b+a

Equation D.54 is the two region (b = a) configuration /arge argument approximation
of the dispersion equstion. it was given by Olving (21) as the large argument
approximation of the dispersion equation for the configuration with dislectric material
filing the region a < r « (00) and air filling the region 0 S rgeoa. it was
also mentioned by Swift-Hook (22) whenever the dislectric tube came in contact with
the shesth helix surface. This occurs for a = b m Figure 1.4a and for a = ¢ n
Figure 1.4b. Equations D.53 and D.54 make 1t clear that there 1s 8 major dif ference in the
solution of the wave number when its vaiue becomes large, for the configuration where
the ideal dielectric rod completely fills the region 0 < r < a, compared to the
configuration where a gap exists between the rod surface and the shesth helix surface.
Numerical caiculstions were performed to compare the right hand mides of
equstions D.50 and D.53, with that of the the actual dispersion equation, equation D.4 1.



A wide range of different vaiues of the variables ka cotany, b/a, and €
were used. it was found that equation D.53 tended to have the greatest error for large
vaiues of b/a. when €. >> 1. (Of cowrse, p/a < 1 s aiways assumed.)
Both equations D.50 and D.53 became more accurate as the vaiue of | a cotany
increased. If the restricton ka cotany - (1-b/a) > 1 was imposed, it was
discovered that equation D.53 had 2 maximum error of sbout 10% for large vaiues of
b/a.  Just restricting ka cotany > 1, for a wide range of b/a and r
values, gave about 10% maximum error for equation D.50.
't was previously shown in part D.2.71 that as a imiting case, when the vaiue of
b/a becomes sufficiently smail. the wave number soiutic~ becomes that of the empty
sheath helix, regardiess of the value of €, This reasoning gives ar unexpected
bonus 1o the vahdity of equation D.53. Numerical calculations showed that when
b/a << 1, the eguation resuited in about 20% maximum error for values oOf
ka cotany as smail as unity, and the error rapidly decreased as ka cotany
became larger. This i1s similar to the error which was previously found n secton B.2,
u;nng equation B.20 to approximate the radisl wave number for the empty sheath helix.

—~

When b/a << ) occurs and ka cotany = 1, equston D.53 predicts that

hda + b/a << 1 will occur. The large argument representations of the Bessel

functions of argument hda - b/a, which were used in equation D.41 to obtain
equation D.53, are not expected to be valid. (Sea Table A.2.) in fact, equation D.53 can
be used when b/a << 1, as aresult of the knowiedge that the value of hda s
similar to the radial wave number of the empty sheath helix.
in summaery, restricting ka cotany - (1-b/a) > 1 means that the
error involved n equation D.53 1s about 20% maximum for b/a + 1 , and about
10% maximum for h/a <o 1 for values of ka cotany as small as 1.
Equation D.50 s accurate to a maximum error of about 10% for vsiues of
ka cotany assmaiias 1. For both equations, increasing ka cotany tends to
rapidly reduce the error. Since in oqntv'on D.53 the wave number solution is explicitly
expressed n terms 6f the operating frequency and the sheath helix geometry,

equation D.53 is is much more convenient than equation D.50.



A sufficient understanding has now been obtaned to show when the
appro rimations

nfa T g% 7 onda - n% (0.55)

made on the exact fie/d so/ution, which is given in section D.1, in order to obtan the
solution given in section D.2, sre justified. From the separation constant equation,
equation D.20. and from the discussion previously given in section B.2, it 1s known that

the approximations are valid to within about 10% error If
hda > 2 o ka. (D.56)
r )

For the three region configuration, when hda 1s sufficiently large so that
equation D.53 15 valid, inequality D.56 becomes

2 7 tany < 1. (D.57)

If the shesth helix 1s tightly wound, this inequality will be satisified, uniess the vaiue of
€ r 'svery large. .

Considering the two region configuration, when hda \yls sufficiently large so
/

that equation D.54 13 valid, inequality D.56 will be satisfied if 1
-/

2 J2 tany < 1 (D.58)

is true. For a sheath helix sufficiently tightly wound so that ( < v 10.0°, this
nequsiity will certainly be satisfied.
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On the other hand, assuming that hda 15 sufficiently small so that

equation D.49 1s valid, inequaiity D.56 becomas

tanw\/ES € 1og(0.891 hd | T (D.59)

Inequaiity D.E9 1s vaiid for both the two and three region configurations. it 1s a more
savere restriction than that specifiad by the two preceding megualities. In order that

neguaiity D.59 s satisfied, 1t s necessary that ¢ must be quite smail, if tha value of

€, s large, or if the value of hda 15 small. For sxample, 'f 1 15 dasred to have

hda as small as 1.0x10" 3 (which, from equation D.48, corresponds to
ka cotany = 35@1@‘3) , andf € =] EDxTOBi the largest acceptable

value of the pitch angle 1s = p 25° Howaver, if the ralative permittivity is

smaller,’it 15 perrmissible to use larger values of ¢ and much smalier values of h-a.

As an example, if € ro 10.0 and v = 1.Q° , 'neguality D.59 15 stll satisfied

for vaives of hda as smallas | ¢, ]DiTS (corresponding to  ka cotany

] isﬂgiw) . Note that for a fixed value of €y and for a fixed value of vy,
regardiess of how small this pitch angie 1s, In the imit as ka cotany approachaes
zero, equation D.49 shows that hda must also approach zero, which means that
inequality D.59 cannot be satisfied,

In summary, a discussion has been given of the appr;:mm:tiaﬁs isted n
equation D.55, which were applied to the exact free mode field solution, aquations D.1 -
D.20. in order to obtain the solution given by equations D.23 - D.41. For large values of

ka cotany, the approximations are always valid for the two region configuration if
the pitch angle satisfies 0 < ¢y < 10.0°, and they are valid for the three region
configuration if ¥ s small and € r s not extremaly large. When k 3 C'Dtva,n ¢ 18
small, the approximations are valid for both the two and three region configurations, if
¥ is small snd €. is not extremely largs. However, in the imit as  k a cotany
approaches zero, the approximations are certainly not correct.
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Numerical solutions to the wave number hda have been caiculated from
equstion D.41. As was true of the empty JMBIIth helix, the variable ka cotany Only
sppears on the left hand side of the dispersion equation. The same procedure for
caicuisting the quantity ka cotan‘,/hd

discussed in section B.2 is used. except that it is now necessary to specify the variables

a versus ka cotar-y as was previously

b/a and In addition to specifying the variable ka cotany .

€ P
The foliowing eight figures were obtaned from direct calculstion of
equation D.41, making use of the IMSL (43) software program routines to evaiuste the
Bessel functions appearing in the dispersion equation. Figure D.! 1s a linesr plot of
ka c‘otanw/hda versus ka cotany. The variables used are b/a = 0, 0.500,
0.900; €, = 5.00, and 10.0. Each curve is associated with one particulsr value
of the pair (b/a, Er)' (Note that the curve for b/a = 0 s based on the
dispersion equation for the empty sheath helix, equation B.13.) Several different ines of

constant hda ae displayed. and so s the asymptote | 4 cotanw/hda =

1.0.
Figure D.1 exhibits a behavior which never occurred for the empty sheath helix,
or for the sheath helix surrounding a perfectly conducting cosxial rod. For some curves,
8 minimum vaiue of kga Cotanw/hda less than unity occurs in the mid—region df

ka cotany values. Since

ka cotany ka cotany
—a— - T T‘J“o g cotany
h~a 8

(D.60)

v
= P cotany,
C

-\

graphing the quantity ka cotanw/hda versus ka cotany is proportional to
graphing the phase velocity associsted with traveling waves having eJ de axisl
dependence, normalized with respect to the velocity of light in air, as a function of
frequency. Whenever the phase velocity incresses with increasing frequency, which
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Figure D.1 Graph of ka zotanwlhda versus ka cotany
based on equation D.41. Curves for b/a = 0, 0.500, 0.900;
and € = 5§.00, 10.0 are given. The curve for b/a = 0 is

based on the dispersion equation for the empty sheath
helix, equation B.13. Several lines of constant hda are
shown, and so is the asymptote ka cotanw/hda = 1.00.

(Note that HA = h9% and KA COTANP = ka cotany. E5.0B.90
means that the curve represents €. = 5.00 and b/a = 0.900.)



means that the curves have a positive slope, negative d/spersion is said to occur.

Equation D.50 can be used to under stand the phenomenon of negative dispersion.
The first bracketed quantity on the right hand side 1s siways grester than unity, while the
sacond E!'Dﬂtiti'é Quantity is aiways less than unity. If it happens that this second quantity
1s sufficiertly small, it will be frue that ka EDtanw/hdg << ] Ocours. However,
as 9, becomes large. which occurs when ka cotany s large, the exponental
term rapidly becomaes small and so the first bracketed quantity dorrwnates the behavior.
Therafore, it 1s always true for sufficiently large vaiues of ka cotany, that the
Quantity ka cotany/h da approaches unity from above. This means that the region
of nagative dispersion has a finite extent. Swift=Hook (22) has previously discussed tha
phenomenon of negative dasp&snaﬂ for the configurations shown in Figures 1.4.

't 1s apparent from Figure D.1 that negative dispersion 1s most pronounced when
the valves of b/a and € _ are both large. If at least one of h/a, €, is
sufficiently small, thus behavior does not occur.

Figwe D.2 s a semilogarithmic graph of , c:c:tan\p/hda versus

ka cotany, for the fixed vaiue b/a = 0100, and for many different relative
permittivities. €. = 1.00, 5.00, 10.0, 1.00x10%, #d 1.00x103
are used. (The curve based on €, = 1.00 s the same as the solution associated
with the empty sheath helix, based on equation B.13.) Many different decade ranges of
ka cotany vaues are shown. Note that for the small value of b/s  wiich is used,
~hegative dispersion does not occur. In addition, it is clear that the value of the relative
permittivity has little effect on hdai As sn exampie, the graphs for €, T
1.00, 3.00, and 10.0 sre on top of each other. For large or smail values of
ka cotany, ail the curvaes are in good agresment with the smpty sheath helix
dispersion curve. As a final remark, in order that the approximations given in
equations D.55 are justified for all values of ,d, given in the figure, it is necessary
that inequalities D.57 and D.59 are satisfied. This s the most difficult to sccomplish
when  «. = 1.00x103 and ka cotany = 1.00x10°3, " can be
demonstrated that the largest acceptable value of the pitch angie is v = 0.25°, in
order that the wave number solution hda given in Figure D.2 is always justified as an

spproximation of the exact solution given in section D. 1.
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Figure D.2  Graph qf ka cntanﬁfhda versus ka cotany
based on equation D.41. Curves for b/a = 0.100 and

¢, = 1.00, 5.00, 10.0, 1.00x10%, and 1.00x103 are shown.:

The asymptote ka catanﬁlhda = 1.00 is given. (The curve
for €. " 1.00 {s the same as the solution associated with
the empty sheath helix, based on equation B.13. Note that
HA = h9 and KA COTANP = ka cotany. ETE3B.10 means that

the curve represents €, " 1iDDx103 and b/a = 0.100.)
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Figure D.3 1s a semilogarithmic graph with the same abscissa and ordmate as the
previous figre. b/a = 0.900 with the same values of the relstive permittivity given in
Figure D.2 are used For the large vaiue of b/a which 15 empioyed, the negstive

cispersion s very apparent, except for the curve based on €, = 1.00, Rhismore

pronounced for large values of € .- However, for sufficiently large or smail valuas of

ka cotany, aithe curves are in good agreement with the chspersion curve for the
srpty sheath halix.

Figore D.4 is s semilogarithrmic graph of ka QQtanw/hda versus

ka cotany, based on the two region configuraton. b/a = 1.00 with the same

values of €, used m Figures D.2 and D.3 are empioyed. The asymptotes based on

equation D.54, which are valid for large values of ka cotan y, #re plotted. Note

large values of ka cotany, the behavior of the curves is very different from that
of the configuration where a gap exists between the dielectric rod surface and the
surface of the shesth helix. However, for small values of ka co tany, the wave
number solution K da 1 similar for both the two and three region geometries. In fact,
it is similar to the radial wave number solution associsted with the empty sheath helix.
A rather small value of the reiative permittivity, €, * 5.00, nd 8 wide
range of different b/a vaives, s illustrated by the semilogarithmic graph of
ka co tanw/hdg versus ka cotany, whichispreasentsd n FigreD.5. b/a =
0, 0.100, 0.300, 0.500, 0.700, 0.900, and 1.00 are used. Note that when the rod radius
is much smaller than the shesth heiix radius, varying the value of b/a has an
msignificant effect on hdg_ For example, the graphs for b/a = 0 and
b/s = 0.100 are on top of sach other.
in Figure D.6, the same set of b/s values just considersd is employed, but now
the ideal dielectric rod is characterized by a much larger relstive permittivity, €. "
1.00x1 03! Clearly, the effect of varying b/a on hd is grester than was true
of m“;.e.dm figure. In addition, for the three region configuration, the negstive
dispersion is fore pronounced compared to Figure D.5.
A quslitative description of the beshavior shown in Figures D.2 - D.8 will now be
given. For the thr;i region configuration, when the rod radius is much smalier than the
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Figure D.3 Graph of ka cotanw/hda versus ka cotany

based on equation D.41. Curves for b/a = 0.900 and

ep = 1.00, 5.00, 10.0, 1.00x10%, and 1.00x103 are shown.
The asymptote ka catanw/hda = 1.00 is given. (The curve
for €. = 1.00 1s the same as the solution associated with
the empty sheath helix, based on equatton B.13. Note that
HA = na and KA COTANP = ka cotany. ETE3B.90 means that
3 and b/a = 0.900.)

the curve represents €Ep * 1.00x10



[ ]
T 7rT-T—F =T T '{Tvvv LS A I E
o Z
T oo com iy 3
[ -acecw ' f 1*
SRRV IVINTTN * .
- dacaa b e ol
N . 7 =
- TR 4% =
3 24P : 3 O
F o899 ] Je >
O = ] o
[ 28588 ) x
OIS 1™ f
55@4@;;4 2
- Q9 +X . = < -
9P 3 17z ¢
. = I
o 0y 4o T :
- ’U = = S:
. * 1+ Q=
" i - T
- My f - e od
! T =
| T o O
1 . LN
.':— v : - ‘,: ©
o ’ p & - — ] o
- P o i
- 2
L . L
i o
=154
o | —
- o
z 4= I
: ] &
- b 1]
- - O
E"l
Al Aéﬁ " s‘ >l A —;‘ — E
o) o o
HH/dNH10D t)
Figure D.4  Graph of ka cotany/h% versus ka cotany
based on equation D.41. Curves for b/a = 1.00 and €p

1.00, 5.00, 10.0, 1.00x10%, and 1.00x10° are shown. The

two region configuration asymptotes based on equation D.5 4
are shown- for each particular value of €. (Note that HA =

hda and KA COTANP = ka cotany. EVTE3B1.0 means that the curve
represents €. " 1;DDx103 and b/a = 1.00. AS E100 means

that the asymptote was calculated using €. = I.DOx1DZi)
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Figure D.5 Graph of ka CDtaﬁwlth versus ka cotany

based on equation D.41. Curves for €. " 5.00 and b/a =
0, 0.100, 0.300, 0.500, 0.700, 0.900, and 1.00 are
shown. The curve for b/a = 0 is based on the dispersion
equation for the empty sheath helix, equation B.13. The
asymptote ka getanw/hda = 1.00 is presented. (Note that
HA = h% and KA COTANP = ka cotany. E5.08.90 means that
the curve represents €. * 5.00 and b/a = 0.900.)
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Figure D.6 Graph of ka cctanw/hda versus ka cotany

based on equation D.41. Curves for €. = 1.00;103 and

b/a = 0, 0.100, 0.300, 0.500, 0.700, 0.900, and 1.00
are shown. The curve for b/a = 0 is based on the
dispersion equation for the empty sheath helix, equation

B.13. The asymptote ka cgtanwjhda 1.00 is presented.
(Note that HA = n% and KA COTANP = ka cotany. ETE3B.70

means ;hat the curve represents €. = 1.00:1@3 and b/a =
0.700.
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sheath helix racis, the vale of €.  has a negligible effect on hla, and the
dispersion curves are similar to the dispersion curve assocusted with the empty shesth
helix. In addition, when the deal dwelectric rod permittivity 1s naarly unity, for both the
two and three region configurations, the value of b/a has iittie effect on hda , and:
the dispersion curves are approxmmately that of the empty shesth heiix. However, when

€, 18 large, the value of b/s defmnitely affects hda m the rmud-region of

ka cotany Vvaues Simiarly, when the valus of b/a s large, varying the vailue of

€y has a grest effect on hda mthe md ka cotany region The phenomenon
of negative dispersion i1s associsted with the three region configurstion and it is most
pronounced when both b/s and €. are large. Even in this situstion, however, for
very small or very large values of ka cotany, the chspersion curves associuated
with the three region configuration are to a good approximation the same as that
assocuted with the empty sheath helix. This 1s aiso true of the two region configuration
for sny value of ¢ when ka cotany becomeas sufficiently small. However, for

the two region configuration when ka cotany 'S large, the dispersion curves will be
. -
different from the smpty shasth helix dispersion curva.

Figure D.7 1s a three dimensional plot of the quantity ka catanw/hda as »

function of both the varwsbles ka cotany and b/a, €, 1.10 15 the

relative permittivity characterizing the ideal dislectric rod. For this small value of the

relstive permittivity, the variable b/a has an insignificant effect. For some specified

vehe of ka cotany, e quantty ka cotany/h%a s smilar to the quantity
ka cotany/h%a, whichis associsted with the empty sheath helix.

Figure D.8 is a similar type of graph as ;ﬁi preceding figure, axcept that now a
large reistive permittivity, €. = LDDx]DB, 1s used. When b/s s very small,
the dependence of ka cotany/h9s ©O" ka cotany is spproximately that of
the empty sheath helix. increasing b/a tends to emphasize the occurrence of negative
dispersion. For the three region configurstion, when b/a is large, this effect is grest.
but even here it clearly decreases as ka cotany bocamn large. For any fixed value
of ka cotany, fﬁiﬂ;ﬂ b/a clesrly makes the quantity ka catany/hda
smaller, or, equivalently, 1 d, larger.



,

Figure D.7 Three dimensional graph of ka cotanw/hda
versus both ka cotany and b/a. €, ® 1.10 is the relative

permittivity which is used. The graph is based on eguation

D.41. (Note that HA = h9a, KA COTANP = ka cotany, and

B/A = b/a.)
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Figure D.8 Three dimensional graph of kaicatanw/hda

versus both ka cotany and b/a €p = 1.00x103 is the

relative permittivity whi:h {5 .sed. The graph is based

on equation D.41. (Note that WA = h9% . KA COTANP =

ka cotany, and B/A = b/a.)
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scussion and Graphs of the Fiald Components
An investigation of the freid components, equstions D.23 - D.40, will be
conducted m thus part of the appendix. The pitch sngie appeasrs by tsalf m Eend and
Heﬁd ih=123 as siny, whie for all other fieid components, 1t m: by
itself as COsy. Decreasing the pitch angie m such a manner that the varisble
ka cotany remans constant, keeping in mind that the functional dependance of
hda 15 given by equstion D.47, the magnitudes of the anguiar fieids are seen to be
greatly reduced but the magritudes of the radial and axial field components are
approximately unchsnged.
Assuming that the sheath heiix is sufficiently tghtly wound so that  cosy Cl |
1, and making use of equation D.47, it s apparent what the approximate functional
dependences of the fisld components are on the operating frequency, the ideal dislectric
Coaxwsl rod geometry, the dhelectric materal permittivity, the sheath helix giémtf'y,. and
the sheath helix “windings™ current.
Eend

H d

= Ln(QH , ka cotany, b/a, €ps v),
an

e 4.

= Sn(éu , ka cotany, b/a, ¢
rn

(D.61)

e d
Ezn

i'_i *)!
qﬁ()“ , ka cotany, b/a,

{(D.62)
Er)i

= Un()“ , ka cotany, b/a, ¢_),

HV d

rn

€0.63)

L d
HIﬁ

, (D.64)
= vn(BH. ka cotany, b/a, ¢.), and

(D.65)

where n =

= H“(Bu ,» ka cotany, b/a, g'_);
=1,

2, 3.

(D.66)
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Regon 1 (0 & r < b) fields have a radial dependence described by
either Io(hdr) for the axial fields, or by I](hdr) for the radial and angular
fieids. Region 3 (a I r o< 00) fields have a radial dependence described by

A\
either Ko(hdr) for the axial fields, or by K] (hdr) for the radial and anguiar

fields. The radal dependence of region 2 (b < r < a) fieids 15 more
~

d

complicated. it 1s chsracterized by I (h r) for the axial magnetic fieid, and by

(
0
"ﬁ ( hdr) for the angular electric field and for *he radial magnetic field. The radial

dependence of the region 2 radiai electric fieid and angular magnetic field 1s a linear

dy .

combination of | hdr and K,(h"r Finally, the region 2 axial electric field
1 1 @

has i1ts radial dependence characterized by a inear combinatior of | hdr) nd
d
Ko(h l") . .

't was previously mentioned n part D.2.1 1t 1s beheved that the wave number

of

hda must be real positive for a free mode fieid solution to exist. Therefore, all the
arguments of the Bessel functions mentioned in the previous paragraph are real positive.
For one particular operating frequency, delectric rod geometry, dielectric rod
permittivity, and sheath helix geometry (which means that hda has one partcular
value), as the radial distance normalized with respect to the sheath helix radius, fr/a,
INncreases, it must be true that the magnituae of any region 1 field always incresses, while
the magnitude of any region 3 field always decreases. (See Figure A. 1. This is a graph of
Ig» Ty+ Kgs and Ky for real positive arguments.) The behavior of the
region 2 fields 1s more complicated. When r/a increases, the region 2 anguiar slectric,
radial magnetic, and axial magnetic fields always increase N magnitude. However, the
region 2 radwal electric, axial electric, and angular magnetic fields may either incraase or
decrease in magnitude, as the value of r/a increases.

A better understanding of the fieid components can be obtained by comparing
them with the fields associated with the empty sheath helix, equations B.1 - B. 12, for the
special cases when hda and haa are either both large or are both smail. First,
assume that the two wave numbers are much smaller than unity, so that the small
argument Bessel function representations can be used. Equations A.26 - A.29 were
employed to approximsate both the three regon (b <« a) and the two region

® = & form of equations D.23 - D.40. The small argument Bessel function
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representstions were aiso empioyed to approximate equations B.1 - B.12. Use was
made of the fact that 4, 0 3,  since the small argument approximations of the
two dispersion equations, equations D.49 and B.2 1, are identical. It was discovered that

Sciated with both the three region and two region forms of the sheath helix

§ a0 ideal dielectric coaxial rod configuration sre usually similar to the
, g d
cofra nding empty sheath helix fieids. The only exceptions occurred for He1 s

HSZ sy and Er—-zda They differred from the corresponding empty lhli'ﬁ‘\ helix
fields, He 1 2 and Er] 2 » by an amount which 1s proportional to € .

Values of hda nd haa greater than unity are now considered, In order
that the large argument Bessel function representations can be used. Just the first term

of equations A.36 - A.39 was employed to approximate equations B.1 - B. 12, and the

three region form of equations D.23 - D.40. The approximations hda i haa e

ka cotany, which are smply statements of equations D.53 and B.20, sre used.
Comparison of the two sets of equations shows that the corresponding fields nesr
T =a arethe same. As was previously explained in section B.3, the field components
sre now rapidly exponentisily sttenuated for increasing radial distances away from the
sheath heiix surface. Therefore, the dominant fields for the three region ideal dislectric
coaxial rod configuration sre the same as the corresponding ones associated with the
smpty shesth halix,

The procedure sxplained in the preceding paragraph was followed for the special
case of the two region ideal dielectric coaxial rod configurastion. Equations D.54 and
B.20, the large argument approximations of the two dispersion equations, demonstrate
that hda N haag Msking use of this fact and emplioying just the first term of
equations A.36 —- A.39 to approximate the two sets of field components, it is apparent
that the dominant fields associated with the two region dislectric rod configuration sre
clearly different from the corresponding fields associated with the empty sheath helix.

A crude summary of the three previous paragraphs is now presented. For smal/

va/ues of ka cotany (which could be considered to mean low frequencies since

ka cotany = Z*Ff\FQ €g 3 COtANV) s 1hy wave number solution and

most of the fie/d components for both the two and three region idesl dielectric coaxial
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rod configursions are similar to the corresponding quantities associsted with the
empty shesth helix. Therefore, it can be said that the fialds do not “see” the dielectric
rod. When ka cotany /S /erge (which could be considersd to meen high
frequencies), the wave number solution and the dominam field components associsted
with the three region dielectric rod configuration are similer to the corresponding
quamities of the empty shesth he/ix. Once again, the fie/ds do not "see™ the dielectric
rod. However, for /arge values of ka cotany, the wave number solution and the

field componems sssocisted with the two region dielectric rod configurstion are

helix. Inthis case, the fie/ds do "see” the dielectric rod.

Equations D.23 - D.40 sre lengthy and complicated expressions. in order to help
understand how the fisld components behave st different points in space, graphs of their
radial dependence have been prepared. All the slectric fieids were normalized from
dividing them by an electric normalizing coefficient, E Zodi Furthermore, all the
magnetic fields were normalized from dividing them by a magnetic normalizing

d

coefficient, H 20 - The electric and magnetic normalizing coefficients are defined as.

E*Dd = [ - COSY (hda:)Z KQ(hda) .
zU cotany
, , 1,(h9) Kk.(n%) )
. d Ny 1 o - _
[IQ(h a) - a — % **I - db hd'i)il
€, ,1(h b) KD(,, b))
(D.67)
_ \ . ) i d d._
= J%ll 120n ka cotany cosy I](h a) K](h a), and
z=( " .
d d|? o d, d.y o, og.d :
Hooo = Hyo . fB“ cosy h a ID(h a) Ky(ha). (D.68)

(The dispersion equation, equation D.41, was used for simplification in the derivation of
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equations D.67.)

R is assumed for the radial dependence graphs that the axisl coordnate 15 heid
constant. The transverse pisnes were chosen so that EQS(hda!Z/Q) = +1 for
the anguiar and axisl fieids, and so that s‘in(hda-z/a) = +] for the radisl fieids.

Three different types of graphs are presentsd. These represent the “high
frequency”, “mid frequency”, and “low frequency” cases. (The maanings of the terms n

quotation marks 1s the same as 1t was these expressions were previously used in

section B.3.) For sach of the three préviously mentioned cases, both the three region and
the two region ides! dielectric rod donfigurations are considered.

The procedure which was used to numerically evaiuate the normalized fields s
now explained. For the specified set of varables ka_ cotany, b/a, gg €
equation D.41 is soived to obtain the wave number hda (in fact, as was previously
explained in part D.2.1, the method used to solve the disparsion eguation is to first
specify the quartities hda , b/a, Epo and then diractly csicuiste the
corresponding value of ka cotan v.) Next equations D.67 and D.68 are computed
to obtain the normalizing coefficients. Finally, the normalized fisld components are
evaiusted for several different vaiues of the radial distance normalized with respect to
the shesth helix radius. r/a. in order to directly avaluste the Bessel functions, the
IMSL (43) software program library was used. t will be emphasized that all aighteen
graphs of the normalized fields’ radial dependence presented here are “exact” -- no
approximations have been made to the dispersion equation, squation D.41. the field
components, equations D.23 - D.40, and the normalizing coefficients, equations D.67
and D.68. Furthermore, it was ensured that the requirement mentioned in squation D.56
15 slways satisfied. This provides justification for using the approximations given in
equations D.55, which 1s how equations D.23 - D.41 were obtained from
equations D.1 - D.19.

Figures D.9 and D.10 show the absolute value of the (real valued) normalized
electric and magnetic fields, respectively, as a function of r/a. The two vertical lines
represent the surface of the ideal dielectric coaxial rod and the sheath helix surface. in all
three regions, the algebraic sign of each normaiized field component is indicated. The

operating frequency, the ideal dieiectric coaxial rod geometry, the rod permittivity, and
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Figure D.9 Curves of the radial dependence associated

with the normalized electric fields. The variables used
are ka cotany = 10.0, b/a = 0.100, € - 1.02x102. and

v = 1.00°. They determine the wave number h% = 10.0

and the electric normalizing coefficient Ezad = J 3.3 188
(V/m). (Note that £R/Ez0 = € /e, 9, £o/Ez0 = £,%E, 9,
EZ/E20 = E,9/E,,%, and R/A = r/a.)
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Figure D.10 Curves of the radial dependence associated

with the norma
are ka cotany
v = 1.00°.
and the magnet
(A/m). (Note t
HZ/HZO = H /H

The variables used

1tzed magnetic fields.
= 1.00x10%, and

= 10.0, b/a = 0.100, <,

They determine the wave number hda = 10.0

9.,0 525
Un,

fc normalizing coefficient H
hat HR/HZO = W Y/n o9, KO/HZG = Hy
zod' and R/A = r/l )
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the shesth helix geometry are specified bthtuﬁh} ka cotany = 10.0,

b/a = 0.100, €. = 100, and y = 1.00°. Thisis an example of the
three region “high frequency” case. hda = 10.p 'S the caiculsted value of the
wave number.

Ezgd - jsu 188 (V/m) and Hmd ‘3” 0.525 (A/m)

are the computed values of the normalizing coefficients.
Figures D.11 and D.12 are two additional graphs representing the three region
"high frequency™ case. The varisbies used are ka cotany = 10.0, b/a =
0.900, e, = 100, snd v = 1.00°. The caiculated wave number is

h da = 10.5, and the calculated normalizing coefficients are

d . .q. .
€20 = I3 176 (v/m) and W, % < Yui0.524 (Asm) .

Two graphs representing the two region “high frequency” case are Figures D.13
snd D.74.  ka cotany = 10.0, b/a = 1.00, € 100, and y =
1.00° are the varables which are used. hda = 71.1 s the computed value of
the wave number.

/]

Ede } JBH 26.6 (v/m) and Hzgd -B.. 0.503 (A/m)
are the computed vaiues of the normaiizing coef ficients. 7

As expected, the wave number sohtion nmm&ﬂ;vrm Figures D.9 - D.12
spproximately agrees with the large argument, three region, representation of the
dispersion equstion, equstion D.53. Furthermore, the value of hda associsted with
Figures D.13 and D.14 is in good agreement with the large argument, two region,
spproximation of the dispersion equation, equation D.54.
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Figure D. M Curves of the radial dependence associated
with the normalized electric fields. The variables used

are ka cotany = 10.0, b/a = 0.900, €. " 1.0gx102. and

¢ = 1.00°. They determine the wave number h™a 10.5

and the electric normalfzing coefficient EZQd iJSH 176
(V/m). (Note that €r/Ez0 = £ %/€ %, £o/ez0 = €,9/¢ 9,
€2/€20 = €96 %, and R/A = r/a)) N
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Figure D.12 Curves of the radial dependence assocfated
with the normalized magnetic fields. The varfables used

dre ka cotany = 10.0, b/a = 0.900, ¢, = 1.00x102, ang

v = 1.00°. They determine the wave number hda 10.5

and the magnetic normaltzing coefficient H_ Od il 0.524
(A/m). (the that HR/HZO = W, LArm o8, Hosuzo - HeCrh ¢

HZ/HZI0 = /Hzn'. and R/A = r/a.)
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Figure D.13

Curves of the radial

with the normalized electric figlds.

are ka cotany

= 10.0, b/a = 1.00, €.
¢ = 1.00°. They determine the wave number h9%
and the electric normalizing coefficient EzD

(v/m). (Note that ER/EZO = £ 9/¢ 9,

EZ/EZ0 = Ezd/E

d o r " "z0
20 ° and R/A = r/ﬂ.)

dependence associated

The varfables used
= 1.00x10%, and
71.1

$90 26.6
£ 9 9,
] z0 °*

d

EQ/EZ0 =
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Figure D.14 Curves of the radfal dependence assocfated
with the normalized magnetic fields. The variables used

are ka cotany = 10.0, b/a = 1.00, ¢, = 1.00x102, and

v = 1.00°. They determine the wave number hda = 71.1

and the magnetic normalizing coefficient H, d §||D 503
(A/m). (Note that HR/HZO = W d/Hde. HO/HZE He /M09,

HZ/HZ0 = H d/Hzod. and R/A = r/a.)
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it 1s mformative to compare Figures D.9 - D.14 with the “high frequency”™ case
of the empty sheath helix, Figures B.3 and B.4. Exarmnation of Figures D.9 - D.12 and
Figures B.3 and B.4, keepmg in mind the values of the normahizing coefficients and the
fact that the same values of ka cotany and v e used shows that nesr the
sheath helix surface, the fields are similar. This agrees with the statement made sarher m
part D.2.2 that for "high frequencies™ the fieids associsted with the three regeon idesl
disiactric coaxal rod configuration do not “see” the dielectric rod. However, comparng
Figures D.13 and D.14 wrth Figures B.3 and B.4, 1t 15 clear that the fields for the two
region dielectric rod configurstion are quite different than the corresponding fields
assocuted with the smpty sheath helix. Thus provides support for the statement made
previously in part D.2.2 that far “high frequencies” the fieids associated with the two
region ideal dielectric coaxial rod configuration do “see” the dielectric rod.
Figures D.15 and D.16 cisplay the radial dependence of the normalized slectric
and magnetic fieids, respectively, for the thres region “mid frequency” cln
ka cotany = 1.00, b/a = 0.100, € =100, ad ¥ = 1.00°
sre the varables which sre used. The wave number s calculsted to be hda =
0.80.

Ezod - j 3“143 (v/m) and Hoo iBu 0.804 (A/m)

¢
sre the caiculated vaiues of the normalizing coefficients.

Two additional graphs associated with the three region “nmyd fraguency” casa sre
Figures D.17 and D.18. These illustrate the radial dependence of the normalized electric
and magnetic fields, respectively. The varisbles lmplgv!é wre ka cotany = 1,00,

b/a = 0.900, e =100, and 4 = 1.00°. 9 = 1.65 s
the computed value of the wave number. The caiculsted values of the normalizing

coefficients are
/

Ezod = jSu 95.9 (V/m) and Hde =Bll 0.668 (A/m).
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R/A
RADIAL DEPENDENCE OF ELECTRIC FIELDS

Lo

Figure D.15 Cutves of the radial dependence associated
with the normalfzed electric fields. The variables used

are ka cotany = 1.00, b/a = 0.100, €. = 1ioox102. and

¢ = 1.00°. They determine the wave number h%a = 0.80
and the electric normalizing coefficient Ezod = 391143
(V/m). (Note that ER/EZ0 = £ %7€, 9, £osez0 = £ %€ 9,

- e d, d "
EZ/EZ0 = E,%/E o, and R/A = r/a.)
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Figure D.16 Curves of the radial dependence associated
with the normalized magnetic fields. The variables used

are ka cotany = 1.00, b/a = 0.100, ¢ = 1.00x102, and
v = 1.00°., They determine the wave number hda = 0.80
and the magnetic normalizing coefficient H .9 « Y1 0.804

(A/m). (Note that HR/HZ0 = H_ d/Hde. HO/HZD = Hed H o9,
HZ/HZO = H, ’/H ol and R/A = r/a)) %
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Figure D.17

Curves of the radial dependence associated

with the normalized electric fields. The variables used

are ka cotany = 1.00, b/a = 0.900, €,

v = 1.00°.

(V/m). (Note that ER/EZ0 = Erd/Ezod
EZ/EZ0 = Ezd/szod. and R/A = r/a.)

20

EO/EZO

= 1.00x10%, and

They determine the wave number hda = 1.65
and the electric normalizing coefficient E

- J;3u 95.9
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Figure D.18 Curves of the r

with the normalized magnetic
are ka cotany =

*'!

(A/m).
HZ/HZ0 = sz

1.00°.

1.00, b/a =

fields.
0.900, €, =

and

They determine the wave number hda = 1.65
and the magnetic narma]izing coefficient H

(Note that HR/HZO =

d

d

H9/H 09, HO/HZ0
/H20 , and R/A = r/a,)

RADIAL DEPENDENCE OF MACNETIC FIELDS
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adial dependence associated
The variables used

1.00x10°
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Figures D.19 and D.20 display the radial dependence of the normalized electric

and magnetic fields, respectively, for the two region “mid frequency” case.

ka cotany = 1.00, b/a = 1.00, e. = 100, and y = 71 gp°

are used. The calcuiated value of the wave number is nds = 7.30, ®d the
calculated values of the normalizing coefficients are 7

£,,0 = j?ll 27.4 (V/m) and ¢ =) 0.534 (A/m).

It 1s informative to compare Figures D.15 - D.18 with Figures D.19 and D.20.
Note that the same values of a cotanvy, €E.s» 8nd v are used in all these
graphs. For the two region configuration 1t is apparent that the fields are rapidiy
attenuated at increasing radial distances away from the sheath helix surface. However,
the three region configuration shows that the fields change much more gradualiy as the
rachal distance is variad. '

Figures D.21 and D.22 display the radial dependence of the normalized electric
and magnetic fields, respectively, for the three region “low fequency” case. The
variables used are ka cotany = S_ODHD-E. b/a = 0.100, e, =

100, and ¥ = 1.00°.  These variables determine the wave number solution

d

h-a 1.70x1 0‘2 and the normalizing coefficients

Emd = 3’2“ 9.52 (V/m) and Hde B“ 1.00 (A/m).

Next, Figures D.23 and D.24 are two additional graphs illustrating the normalized
electric and magnetic fields’ radial dependence, respectively, for the three region “low
trequency” case. ka cotany = 5.00x107%, b/a = 0.900, e, =

100, asnd ¥ = 1,00° are used. The calculated wave number solution is

hda = 1.80x1 D-Z . The caiculsted values of the normalizing coefficients are

#

Ezod = 13” 9.51 ‘(V/m) and HEDCl =S|| 1.00 (A/m).
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Figure D.19

with the normalized electric fields.

are ka cotany = 1.00, b/a =

v 1.00°.

and the electric normalizing cgefficient E, 20

(F/m). (Note that ER/E20 = E_ d
EZ/E20 = Ezd/Ede and R/A

r/a,)

]

1.00, €.
They determine the wave number hda

/E 20 °* EO/EZ0

Curves of the radial dependence associated

The variables used
1.00x10°, and
7.30

I 27.
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Figure D.20 Curves of the radial dependence associated
with the normalized magnetic fields. The variables used

are ka cotany = 1.00, b/a = 1.00, € " 1.00;102. and

v = 1.00°. They determine the wave number h a = 7.30

and the magnetic normalizing coefficient H, a|,0 534
(A/m). (Note that WR/HZO = W %/u_ ¢, HO/HZO = H,

HZ/MZO = W 9K 9, and R/A = r/a.)
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Figure D.21

are ka cotany =

Curves of the r
with the normalized electric

fields.

2. b/a = 0.100, .,

5.00x10"

adial dependence associated
The variables used

2

1.00x10

and y= 1.00°. They determine the wave number hda -

1.70x10"2

E,00 = 3G 9.52 (V/m). (Note that ER/EZO = E
20 'l ) ' 4. d ~r
E0/E20 = E,/E,0, €2/E20 = £, 97€, 9, and R/A

and the electric normalizing coefficient

d, d
r/a.)
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Figu;E D.22  Curves of the radial dependence associated
with the normalized magnetic fields. The variables u;ed

are ka cotany = 5.00x10"2, b/a = 0.100, e, = 1!30x10 \

and y = 1.00°. They ‘determine the wave number h% =
1;70:1022. and the magnetic normalizing caefgiciegt
Hood =Y 1.00 (A/m). (Note that WR/HZO = TRITICH

T TR B T D U S L
HQ/HZO = H"/H 0"y HZ/HZO = K, %/H 9, and R/A = r/a.)
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Figure D.23 Curves of the radial dependence associfated
with the normelized electric fields. The varfables used

are ka cotany = 5.00x10'2. b/a = 0.900, € " 1.30:102,
and ¢ = 1.00°. They determine the wave number h a =
1.80x10°2 and the electric normalizing coefficient )

d
E,0% = 31 951 (V/m). (Note that ER/EZ0 = e 96,9,

d,. d . d,. d L
E0/EZ0 = E /€, EZ/E20 E,"/E,0% and R/A = r/a.)
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Figure D.24  Curves of the radial dependence associated
with the normalized magnetic fields. The variables U§Ed
are ka cotany = 5.00x10°%, b/a = 0.900, ¢, = 1.00x10,
and y = 1.00°. They determine the wave number h% =

TESDxiqiz and the magnetic normalizing Eoefficien§
Mool = Wi 1.00 (A/m). (Note that HR/HZO = T
HO/HZO = He /HZD » HZ/HZO H, /HZQ . and R/A r/a.)
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Figures D.25 and D.26 are the final two graphs ncluded n thys sppendix. They
display the rackal dependence of the normalized slectric and magnetc fields, respectively,
for the two region “low frgqug;cy" cass. The varuabies used are ka ctotany =

5.00x107%, b/a = 1.00, ¢_= 100, wd 4 = 1.00°.
hda = 1!31319‘? 15 the computed wave number solution

20 JBH 9.45 (V/m) and Moo 23“ 1.00 (A/m)

are the computed normalizing coafficients.

As expected, the vaiue of | d a @#ssocisted with the six previously mentioned
figures approximately agrees with squation D.49, the small argumeant representation of
the dispersion equation, which is valid for both the two and three region configurations.
A better understanding of the “low frequency” case can be obtaned by comparing
Figures D.21 - D.26 with Figures B.7 and B.8, which are associated with the smpty
sheath helix. it should be notad that the same values of ka cotany and ¢y are

“used in 8l these graphs. Keeping in mind the vailues of the normalizing coeffrcients, it can

be seen that with the exception of Hﬂdi Hei‘d’ and Erzd. the fields
associated with both the two and three region dielectric rod configuations are similar to
the corresponding fislds of the empty sheath helix. This is in agreement with the
discussion given earher in part D.2.2. It provides support for the statement that st “low
frequencies”, the fields for both the two snd three region ideal dislectric coaxial rod
configurations do not “see” the dielectric rod.

Figures D.23 and D.24 provide a good illustration of the behavior of the fieids at
the sheath helix surface and at the surface of ideal disiectric coaxial rod. Since the field
behavior at the sheath helix surface was previously discussed in section B.3, it will not be
mentioned further here. Figure D.23 shows that the radial electric field is discontinuous
8t the rod surface. Indeed, evalusting equations D.23 and D.29 at r = b, it is easily
shown that

" (D.69)
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Figure D.25 Curves of the radial dependence assocfated
with the normalized electric fields. The variables used

are ka cotany = 5.00x10"2, b/a = 1.00, e, = 1.00x109,
and y = 1.00°. They determine the wave number hda =
1.80x10°2 and the electric normalizing coefficient

d N . e . d,. d
E,oo = I 9.45 (v/m). (Note that ER/EZ0 = € %€, .9,

d d 7/c70 « ¢ @ d : . wia
EO/EZ0 = Ee /Ezo » EZ/EZ0 EZ /EZD » and R/A = r/a.)
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Figure D.26 Curves of the radial dependence associated
with the normalized magnetic fields. The variables used
are ka cotany = 5.00x10°2, b/a = 1.00, e, = 1.00x10%,
and y = 1.00°. They determine the wave number hda =

1.80x10°% and the magnetic normalizing coefficient
A . e D
o = Y1 1.00 (A/m). (Note that WR/WZO = 9,

20 - d d sy ,u- d,, d DR e
HO/HZ0 = Hé /HZD v HI/HI0 = Hi /H20 » and R/A = r/a.)



Tres is the correct statement of the discontinuity of the normsl electric fieid st an
nterface assocusted with two regions having perrmittivives “r €0  and €5  when
no free slectric charge is present on the interface. In addition, the guisr and masl
electric fisids are seen to be contimuous at r = b. This 1s simply a statement of the
fact that the electric fisids tangential to an interface are continuous.

Figure D.24 ciearly displays the behavior of the magnetic fields at the surface of
the ideal dislectric coaxial rod. The anguisr and axul magnetic fieids are seen 1o be
continuous. Since the ideal dislectric rod 1s not perfectly conducting ir fact, 1t nas a zerc
conductivity), 1t cannot possess an eiectrical surface current Therefore, the magnetic
fields tangential to the rod surface must be comtinuous. Furthermore, the radial magnatic
field 15 shown to be contmuous 8t r = b. This behavior IS expected because free

magnetic charge does not exist at the surface of the 1deal dielectric rod.
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E Appendix E. Electrical Properties of Dougias Beech Wood, Stask Mest,
Muscile Tissue, and Oil Ssnd
Four data tsbles are presented wn this appenchx. The electrical propertes of
Dougiss Beech wood. stesk mest, muscie tssue, and oil sand, all of which were
Previously used n part 3.2.3 of the thesis to make graphs of Pyo/P . versus
frequency, are iistad. Each table shows the relative permittvity, ¢ po the conductivity,
I and the loss tangent, j/sz + #s 8 function of frequency. The numerical vaiues

were obtsinad from reference 45 (pp. 268-27 1) and from reference 46 Figure 2).

3
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Table E.1

Frequency

(Hz)
.0 x 10°

.0

X

3

104
10°

106

107

108

108
10?
1010

100

426

Electrical Properties of Douglas Beech
as a Function of Frequency at T=25%C.

(45, pp.

268.)

<

K.
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Table E.2 Electrical Properties of Steak as a
Function of Frequency at T=259C.
(45, pp. 270.)

Frequency 3 o o/ we,
(Hz) " (s/m) °
1.0 x 10 2.4 x 10 5.5 x 1002 9.9 x 10°
1.0 x 10° 2.0 x 102 0.67 1.2 x 10%
1.0 x 107 50 0.72 1.3 x 103
3.0 x 108 50 0.65 .39
3.0 x 10° 40 2.0 12
1.0 x 10'0 i 30 6.1 N
2.5 x 1010 15 8.3 6.0
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Table E.3

Frequency
(Hz)

5.0 x 107

2.0 x 108

4.0 x 108

7.0 x 108

1.0 x 10°
3.0 x 107

8.5 x 10°

428

Electrical Properties of Muscle Tissue

as a Function of Fr

(45, pp. 271.)

90
56
53
53
50
46
41

equency at T=259(C.



Table E.4 E{ectrical Propertfes of 011 Sand as o
Function of Frequency (46, Figure 2).

The o1l sand has 5.8% water content by weight and is at

a temperature of 25°C.

Frequency € T o/ we
(Hz) r (s/m) 0
1.0 x 10! 2.0 x 10° 2.0 x 102 3.6 x 10’
2.0 x 10 1.0 x 10° 2.0 x 1072 1.8 x 10’
3.0 x 10 7.0 x 10 2.0 x 102 1.2 x 107
4.0 x 10! 5.0 x 10% 2.0 x 102 9.0 x 10°
5.0 x 10 4.0 x 10 2.0 x 1072 7.2 x 10°
6.0 x 10 3.0 x 10 2.0 x10°% 6.0 x 10
7.0 x 10! 2.5 x 10 2.0 x 1072 5.1 x 10°
8.0 x 10 2.3 x 10" 2.0 x 1072 4.5 x 105
9.0 x 10! 2.1 x 10" 2.0 x 1072 4.0 x 10°
1.0 x 102 2.0 x 10 2.0 x10°%2 3.5 x 10°
2.0 x 10° 1.0 x 10" 2.0 x10% 1.8 x 10°
3.0 x 107 7.0 x 10° 2.0 x 1072 1.2 x 108
4.0 x 102 5.0 x 105 2.0 x 1072 9.0 x 105
5.0 x 107 4.0 x 105 2.0:x10°2 7.2 x 105
6.0 x 10° 3.5 x 102 2.0 x 1072 6.0 x 105
7.0 x 10° 3.0 x 108 2.0 x 1072 5.1 x 105
8.0 x 102 2.5 x 103 2.0 x10°% 4.5 x 105
9:0 x 10° 2.2 x 103 2.0 x 1072 4.0 x 105
1.0 x 103 2.0 x 10 2.0 x 10°% 3.6 x 105
2.0 x 103 1.0 x 10 2.0 x 1072 1.8 x 10°
3.0 x 103 7.0 x 102 2.0 x 1072 1.2 x 105

continued
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TableE.4 (continued)

Frequency £
(Hz) r
4.0 x 1D3 5.0 x
5.0 x 103 4.0 x
6.0 x 103 3.5 x
7.0 x 103 3.0 x
8.0 x 103 2.5 x
9.0 x 103 2.2 x
1.0 x 10° 2.0 x
2.0 x 10° 1.5 x
3.0 x 10° 1.0 x
4.0 x 10* 8.0 x
5.0 x 10% 7.0 x
6.0 x 10 6.5 x
7.0 x 10% 6.0 x
8.0 x 10° 5.5 x
9.0 x 10% 5.3 x
1.0 x 10°- 5.0 x
2.0 x 10° 4.0 x
3.0 x 10° 3.5 x
4.0 x 10° 3.0 x
5.0 x 10° 2.7 x
6.0 x 10° 2.6 x
7.0 x 10° 2.5 x
8.0 x 10° 2.4 x

x 10

x 10

¢ 10

10

¢ 10

10
10
10
10

10°
10
10
107
10
10
10
10

10

10

10

10

10

10

(S/m)
2.0 x 1072
2.0 x 1072
2.0 x 1072
2.0 x 1072
2.0 x 1072
2.0 x 1072
2.0 x 1072
2.0 x 1072
2.0 x 1072
2.0 x 1072
2.0 x 10°
2.0 x 1072
2.0 x 1072
2.0 x 1072
2.0 x 1072
2.0 x 1072
2.0 x 1072
2.0 x 1072
2.0 x 10°°
2.0 x 1072
2.0 x 1072
2.0 x 1072
2.0 x 1072

~d

5.
4.

1
5

X

X

continued
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Table E.4 (continued)

Frequency . e o/wey
(Hz) (s/m) *
9.0 x 10° 2.3 x 10" 2.0x10°% 4.0 x 102
1.0 x 10° 2.2 x 10" 2.0x10°% 3.6 x 10°
2.0 x 108 1.8 x 100 2.5 x 1072 2.2 x 102
3.0 x 10° 1.7 210" 2.7 x10°% 1.6 x 102
4.0 x 10° 1.6 x 100 2.8 x 1072 1.3 x 10°
5.0 x 10° 1.5 x 10" 2.8 x 102 1.0 x 102
6.0 x 10 1.4 x 100 2.9 x10°% 8.7 x 10
7.0 x 10° 1.4 x 100 2.9 x10°%2 7.5 x 10
8.0 x 10° 1.4 x 10 0 x 102 6.6 x 10
9.0 x 10° 1.3 x 10" 3.0x10°% 6.0 x 10
1.0 x 90’ 1.3 x 100 3.0 x10°% 5.4 x 10
2.0 x 10’ 1.2 x 100 3.5 x 10° 3.1 x 10!
3.0 x 10’ 1.2 x 10" 3.8x10%  2:3x 10
4.0 x 10’ 1.2 x 10" 4.0x10%  1.8x 10
5.0 x 10’ 1.1 x 100 4.2 x10°% 1.5 x 10!
6.0 x 10’ 1.1 x 10" 4.4 x10°2 1.3 x 10
7.0 x 107 1.1 x 10" 4.6 x107% 1.2 x 10
‘8.0 x 10’ 1.1 x 100 4.8 x10°2 1.1 x 10!

9.0 x 107 1.1 x 100 4.9 x 1072 9.8

1.0 x 108 1.0 x 10! 5.0 x 1072 9.0, .

2.0 x 10° 1.0 x 10" 6.0 x 1072 sS4
, . i

3.0 x 108 1.0 xéﬂ‘ 7.0 x 1072 420

continued



Table E.4 (continued)

causncy .
4.0 x 108 1.0 x 10
5.0x 108 - 1.0 x 10
6.0 x 108 1.0 x 10

L
7.0 x 108 1.0 x 10
8.0 x 108 1.0 x 10
9.0 x 108 1.0 x 10
1.0 x 10° 1.0 x 10
2.0 x 10° 9.8
3.0 x 10° 9.7
4.0 x 10° 9.6
5.0 x 10° 9.5
6:0 x 10° 9.4
7.0 x 10° 9.3
8.0 x 10° 9.2
9.0 x 10° 9.1

~
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