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Abstract

With the rapid development in visual sensors such as monocular vision, appearance-

based robot simultaneous localization and mapping (SLAM) has become an open

research topic in robotics. In appearance SLAM, a robot uses the visual appear-

ance of locations (i.e., the images) acquired along its route to build a map of the

environment and localizes itself by recognizing the places it has visited before. In

this thesis, we address several issues in the current appearance SLAM techniques,

with the intention to develop a systematic approach for SLAM under significant

illumination change – a typical scenario in long-term mapping. Instead of using

traditional Bag-of-Words (BoW) image descriptor in comparing the appearance of

locations, we use visual features directly to solve the perceptual aliasing that may

particularly happen in illumination change caused partially by vector quantization

of feature descriptors in image encoding. Efficient data structures such as k-d tree or

random k-d forests are exploited to speed up the feature matching with approximate

nearest neighbor search to ensure real-time robot exploration, without sacrificing

performance at the level of matching locations.

In order to deal with the cases in which local features do not work well, for

example, in the environment with significant illumination variance where feature

repeatability is not guaranteed, we propose to use a whole-image descriptor which

is a low dimensional compact representation of image responses to a bank of filters

incorporating the structural information (e.g. the edges) of an image to describe the

appearance and measure similarities among locations. PCA is employed to trans-
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form a high dimensional gist descriptor to a lower dimensional form to improve

both computational efficiency and discriminating power of the descriptor. In addi-

tion, we use a particle filter to exploit the correlation among images in a sequence

captured by the robot in the process of identifying loop closure candidates, making

the algorithm highly scalable due to both the compactness of image descriptor and

simplicity of particle filtering.

Based on the above methods, our final component of the SLAM system is a

novel feature matching method for multi-view geometry (MVG) based verification

of loop closures in illumination change. To develop such a method that serves

as the prerequisite of verification, we exploit the particular camera motion in our

application to illustrate that spatial constraint of matching features (or keypoints)

derived from optical flow statistics can be used as an important basis in finding

true matches. Particularly, by assuming a weak perspective camera model and pla-

nar camera motion, we derive a simple constraint on correctly matched keypoints

in terms of the flow vectors between two images. We then use this constraint to

prune the putative matches to boost the inlier ratio significantly thereby giving the

subsequent verification algorithm a chance to succeed.

∼
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Chapter 1

Introduction

1.1 Foreword

Amobile robot can perform a wide variety of tasks including exploration, detection,

operation, etc., in complex or dangerous environments where human beings cannot

be involved directly. As the research of robotics develops rapidly, mobile robots

are now playing an important role in traditional industries such as manufacturing,

logistics, services, etc. There have been several instances where a mobile robot can

be used to replace human beings towards improving the efficiency and productiv-

ity. In addition, the needs for mobile robots increase significantly in a particular

set of programs that are strategically crucial to economics, social security and na-

tional defense. With the continuous expansion of human activities, mobile robots

are making considerable influences and showing vast potentialities in areas such as

planet exploration, military reconnaissance, anti-terrorism, disaster rescue, ocean

exploitation, hazard handling, etc. Many of these applications are in unknown dy-

namic environments incorporating variances such as in illumination, scene and ob-

ject motion. Therefore, the research of mobile robotics in these environments is

important and meaningful. In this thesis, we focus on the research of vision-based

robot navigation in case of illumination change, as described later.

1.2 Research Background

In the past few decades, navigation has become one of the most important research

topics in the robotics community. The ability of accurate navigation is considered a

1



prerequisite for a mobile robot to be truly autonomous in an unknown environment

where the robot location and map information cannot be obtained from external

sensors such as Global Positioning System (GPS). In order to achieve successful

navigation, a robot has to perform simultaneous localization and mapping (SLAM)

to both identify its location in the environment and incrementally build the map at

the same time.

1.2.1 SLAM at a Glance

A milestone in SLAM is the research of Smith and Cheeseman on the representa-

tion and estimation of spatial uncertainty [104] in 1986, in which a statistical basis

was proposed for describing relationships between landmarks and manipulating ge-

ometric uncertainty. This soon led to the seminal work proposed in 1990 by Smith,

Self and Cheeseman in their landmark paper [105], where stochastic mapping was

achieved based on extended Kalman filter (EKF). In SLAM, a robot starts from an

unknown location and detects landmarks in the environment with its sensors. Local-

ization and mapping are performed online using the sensor measurements of the rel-

ative positions between the robot and landmarks. Therefore, the two processes are

correlated and achieved at the same time. In general the following steps are iterated:

1) the robot predicts its pose and landmark positions for the next time step based on

the current pose and map information, 2) it makes observations of landmarks using

its sensors and 3) upon receiving the measurements from sensors, it corrects the

predicted results of its pose and landmark positions. The estimation of robot pose

and landmark positions gradually becomes accurate as the iteration proceeds, and

mapping is completed incrementally. As all quantities in the estimation are usually

probabilistic [111–113], the SLAM process can be modeled as a state estimation

problem where the joint posterior of the system state P (xk,m | Z0:k,U0:k,x0) is

estimated. Starting with an estimation P (xk−1,m |Z0:k−1,U0:k−1,x0) at k− 1, the

posterior is calculated in two steps

Prediction

P (xk,m | Z0:k−1,U0:k,x0)

=

∫
P (xk | xk−1,uk)P (xk−1,m | Z0:k−1,U0:k−1,x0) dxk−1

(1.1)
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Update

P (xk,m | Z0:k,U0:k,x0) =
P (zk | xk,m)P (xk,m | Z0:k−1,U0:k,x0)

P (zk | Z0:k−1,U0:k)
(1.2)

Equation (1.1) and (1.2) are based on Bayes theorem and provide a recursive pro-

cedure for calculating P (xk,m | Z0:k,U0:k,x0). The recursion is a function of a

motion model P (xk | xk−1,uk) representing robot kinematics, and an observation

model P (zk | xk,m) [4, 32]. In order to solve this problem, an appropriate repre-

sentation of P (xk |xk−1,uk) and P (zk |xk,m) is required. The most common one

is in the form of a state space model with Gaussian noise, leading to the use of EKF

which is a parametric method with closed-form solution to state estimation. By as-

suming that the joint system state consisting of both xk and m follows a Gaussian

distribution, both observation and motion models can be linearized using first order

Taylor series expansion (note that a robot system is non-linear due to its observation

model and motion in orientation) and system state can be estimated using standard

Kalman filter (KF) procedures. Therefore, the core issue in EKF is to calculate the

weighted average values (the numerator in Equation (1.2)) of the system state and

the associated covariance matrix representing the system uncertainty caused by the

assumed Gaussian noise.

Alternatively, FastSLAM [77–79] proposed byMontemerlo et al. based on Rao-

Blackwellised particle filter [31,85] built another milestone in terms of implement-

ing the recursive Bayes filtering in the context of probabilistic SLAM. The direct

use of Monte Carlo sampling [30,63], or particularly particle filter [34] to SLAM is

not feasible due to the super high dimensional state space whose probabilistic distri-

bution cannot be approximated by sampling with a finite number of particles. How-

ever, it is possible to reduce the sample space by applying Rao-Blackwellisation

to the joint state so that only a low dimensional space needs to be sampled. In

SLAM, the joint state can be factored into a robot component and a conditional

map component and a key observation is that when conditioned on the robot tra-

jectory, the map landmarks become independent. Consequently, a particle filter can

be used to estimate the robot trajectories, each of which is associated with a set of

landmarks whose positions can be estimated with EKF. The joint distribution is rep-
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resented as a set of weighted trajectories incorporating robot poses, together with

their associated landmark estimations consisting of independent Gaussian distribu-

tions. FastSLAMwas the first to directly represent the non-linear process model and

non-Gaussian pose distribution. The biggest advantage however, is the efficiency

in time complexity as the map estimation becomes linear (or even logarithmic) af-

ter factorization, rather than quadratic in the traditional EKF due to the joint map

covariance.

The approaches mentioned above dominated the SLAM research in the early

years. Many KF or EKF variants were developed to address different issues in the

original algorithm. Well-known examples include unscented Kalman filter (UKF)

[48,49], sparse extended information filter (SEIF) [115], exactly sparse extended in-

formation filter (ESEIF) [123], invariant extended kalman filter (IEKF) [9], observ-

ability constrained (OC)-EKF [45], compressed EKF [38,39], etc.. In general, EKF-

based methods assume that geometric landmarks (or features) can be extracted from

the environment and the map is defined as a dense set of such salient landmarks that

may consist of points, edges or line segments, corners and planes [10, 95]. Map is

usually maintained by recording the metrical information acquired by range-bearing

sensors such as laser range finder or sonar (visual sensors such as monocular vision

could be also used as in [27]). This kind of map representation is compact and

can facilitate the estimation within the filtering framework. However, the features

themselves can be difficult to extract, and the sensor information may need further

processing. In addition, the number of landmarks may increase considerably as the

size of map grows, making the algorithm intractable in large scale environment due

to the computational burden.

Thanks to the rapid development in visual sensors such as monocular vision,

the trend of SLAM research in the recent years has turned to representing the en-

vironment using its appearance without being dependent on geometric landmarks.

This type of representation can make a SLAM algorithm highly scalable in large

maps. The use of Bayes filtering described in Equation (1.1) and (1.2) still applies

to the estimation of robot location. However, as the landmarks are no longer defined

during localization and mapping, the system uncertainty reflected by the covariance
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matrix in the traditional EKF-based methods is not explicitly maintained. As a re-

sult, the system update does not require a quadratic process of recalculating the

uncertainty. Details of appearance SLAM are discussed in the following section.

1.2.2 SLAM in Appearance Space

Appearance SLAM is one type of visual SLAM using visual sensors. Different

from many visual SLAM methods that still detect landmarks with depth (range)

information obtained by stereo vision, SLAM using appearance builds a map with

images. In general, the robot moves along its route and continuously takes images

as the appearance of locations. Mapping is achieved by connecting these locations

according to how similar they look, i.e., two images with sufficient similarity re-

flecting the same location are related to each other. Meanwhile, the robot localizes

itself within this map by recognizing places it has visited before. Localization is es-

sentially a place recognition problem, which is equivalent to loop closure detection

in the context of SLAM. As a result, the map built in appearance SLAM is actually

a topological graph of the places being the nodes of the graph. Only localization in

the level of identifying locations is required, metrical information of the map such

as the specific distance between two locations is optional, or usually ignored, as

one example shown in Figure 1.1, the map of Edmonton Light Rail Transit (LRT)

system. Under such a map representation, the core issue in appearance SLAM is

to match locations, i.e., the images. Image matching usually requires two steps

of 1) encoding the image in a particular form and 2) comparing images with their

encoded representation.

Image Encoding

As a digital image in its original form usually cannot be directly used in matching

due to both its high dimensionality and redundant information it may convey, an

encoding scheme of transforming it to a more efficient and effective representation

is desired. A common solution is to detect features in the image that can be charac-

terized using feature descriptors. Early approaches focused on detecting edges [13]

consisting of a set of pixels which have a strong gradient magnitude. However,
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Figure 1.1: An example of a topological map of Edmonton LRT system (concep-
tual). In this map, no distance is given between locations. However, it does not
affect us understanding the map.

edge features are not desirable in matching as it is difficult to properly describe a

spatially continuous set of points. Alternatively, methods detecting blobs/regions of

interest points are more popular. We briefly summarize the commonly used feature

detectors below.

• Scale-invariant region detectors. This type of feature detectors generally

involve two steps. First, an image is convolved by a Gaussian kernel at a

certain scale to generate the scale-space representation of the original image.

Then an operator is applied to the convolved image to obtain a multi-scale

blob detector to detect scale-space extrema, resulting in strong responses for

salient blobs. One of the first common operators is the Laplacian operator

with automatic scale selection proposed by Lindeberg [58, 60], and the de-

tector is named Laplacian of Gaussian (LoG). Alternatively, difference of

Gaussians (DoG) is a simplified version of LoG and for instance used in the

well-known scale-invariant feature transform (SIFT) algorithm proposed by

Lowe [64,65]. The change is that the Laplacian operator in LoG is computed

as the limit case of the difference between two Gaussian smoothed images.
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Another detector is determinant of Hessian (DoH) in which Laplacian opera-

tor is replaced with the scale-normalized determinant of the Hessian matrix of

the scale-space representation. An integer approximation of DoH computed

from Haar wavelets is used as the basic interest point operator in speeded up

robust features (SURF) [6]. It is shown in [59] that DoH performs signifi-

cantly better than LoG and DoG for image matching using local SIFT-like

image descriptors. In addition, spatial selection can be done by DoH, and

scale selection with scale-normalized Laplacian [69], resulting in a hybrid

operator between the Laplacian and DoH named Hessian-Laplace.

• Affine-invariant region detectors. The above methods can generate features

that are invariant to translation and scale changes. It is more important to find

features that can be extracted under large viewpoint change related by affine

transformations. To this end, many feature detectors have been developed

using affine shape adaption [5, 61, 69, 120] to incorporate affine transforma-

tions, with the examples of Harris and Hessian affine region detectors, both

of which were proposed by Mikolajczyk and Schmid [68]. Some other ex-

amples of this type of detectors include maximally stable extremal regions

(MSER) [67], Kadir-Brady saliency detector [51, 52], edge-based regions

(EBR) [120], intensity-extrema-based regions (IBR) [106, 119] and princi-

pal curvature-based region detector (PCBR) [29]. A detailed comparison of

most affine-invariant detectors is provided in [71]. We also mention the fea-

tures from accelerated segment test (FAST) detector originally proposed by

Rosten and Drummond [96]. It does not belong to any of the above categories

but is computationally efficient due to simple pixel intensity comparison.

Once a set of interest regions are extracted, a subsequent step is to encode their

content in feature descriptors for robust matching. This is usually done by defining

a local area around a detected keypoint and describing this area with gradient or in-

tensity. For example, SIFT [64,65] computes a gradient orientation histogram for a

16×16 region around a keypoint, partitioned to 16 (4×4) subregions, each of which

using 8 bins as the quantization of orientations. The dimensionality of the descriptor
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is therefore 128 (4×4×8). Similar descriptors using gradient are gradient location

and orientation histogram [70], PCA-SIFT [54] and histogram of oriented gradi-

ents [25]. Alternatively, SURF [6] uses the sum of Haar wavelet response around

the keypoint, which is essentially the gradient of a small neighborhood of pixels.

More recently, binary descriptors such as binary robust independent elementary

features (BRIEF) [12], binary robust invariant scalable keypoints (BRISK) [57] and

oriented FAST and rotated BRIEF (ORB) [98] were proposed. These descriptors

are generated by comparing pairwise pixel intensities within a random or predefined

pattern. The main advantage is that they are extremely fast to compute and highly

compact, with comparable performance to the real-valued descriptors. Performance

evaluation of feature descriptors are provided in [70] and [44].

Feature detectors and descriptors together encode an image to a set of vectors

with either real values or binary code. While this type of encoding works well for

many applications due to the preserved local invariance in scale, rotation, trans-

lation, illumination, etc., the potential limitations include 1) time-consuming in

feature detection and matching, 2) memory inefficient and 3) not robust to signif-

icant illumination change (e.g. between sunny day and dark night) as both feature

repeatability and descriptor variance may become an issue. An alternative of en-

coding an image is to use the whole-image descriptor which captures the general

structure of the scene in the image without focusing too much on local details. A

whole-image descriptor can be computed using the image responses to a bank of

filters (e.g. Gabor filters with different orientations and frequencies) that preserve

the texture information [88]. It can also be obtained by transforming each pixel to

a local binary pattern code [125], or directly using feature descriptors in the en-

tire image, with the image center as a “virtual keypoint” [3, 109]. Color histogram

in the early work [121] shows the possibility of applying a simple whole-image

descriptor in robotics for place recognition. Even simpler, an image itself can be

downsampled to a smaller size and used as a descriptor with values being either the

normalized pixel intensities or their binarization [73,74,76,126]. The whole-image

descriptors mentioned here have all been successfully used in robotics applications,

particularly, appearance SLAM or place recognition [84, 100,101,117].
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Image Comparison

Image comparison is a subsequent step after encoding an image and generates the

candidate(s) of being a loop closure (a visited place) or new location. If a whole-

image descriptor is used, comparison is usually done by calculating the Euclidean

distance between two descriptor vectors. On the other hand, comparison using local

invariant features involves feature matching between two sets of keyponits. For a

keypoint in one image, its nearest neighbor in the other image is deemed to be

a match, conditioned on some uniqueness constraints [65]. As the current frame

is compared with all the existing map nodes, this nearest neighbor search soon

becomes intractable as map grows. To address this problem, approximate nearest

neighbor search needs to be applied, which requires an efficient data structure such

as k-d tree [80–82], randomized k-d forest [90,102], locality-sensitive hashing [26]

and kNN graph [40]. Some examples of appearance SLAM using feature matching

can be found in [53, 128, 129] and there also have been many instances of using

these data structures in visual search of keypoints [8, 11, 24, 36, 41, 83].

Bag-of-Words in Appearance SLAM

Based on the image encoding scheme introduced in Section 1.2.2, a significant im-

provement is to apply the idea of inverted index from text indexing [130] to image

retrieval [103]. The image descriptors are assigned by vector quantization to corre-

sponding visual words from a visual vocabulary (Bag-of-Words, BoW) generated

offline by clustering a pool of features. Image retrieval then becomes an indexing

procedure where only relevant database images containing the same visual words

are returned. The method avoids large scale search in direct feature matching and

reduces comparison time to constant, depending only on the predefined number of

visual words. This soon leads to the novel solution to appearance SLAM using

BoW, with representative examples proposed by Cummins et al [23,24] and Angeli

et al [1, 2]. As mentioned previously, a tree structure [87] can be used to organize

the visual words to speed up the search if a large number of words are used [24]. Bi-

nary visual words are also possible to provide satisfactory performance with faster

image comparison in appearance SLAM [35,36]. A well-known variant of BoW is
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proposed in [55].

Place Recognition in Illumination Change

In appearance SLAM, image encoding and comparison form the fundamental steps.

Loop closure detection, the important issue of identifying a previously visited lo-

cation, then becomes a place recognition problem. Early work in place recogni-

tion [37, 121, 127] was not discussed in the context of SLAM. However, as the

research of SLAM develops rapidly, place recognition has been combined with ap-

pearance SLAM and there is a continuous focus on the problem in illumination

change in long-term autonomy. Current solutions can be categorized into the fol-

lowing types.

• Direct feature matching. This has been discussed in Section 1.2.2. The

basis idea is to use original keypoint descriptors instead of their vector quan-

tized representation in BoW. A performance evaluation of SIFT and SURF in

seasonal change is provided in [122], and an example of feature matching in

appearance SLAM in dynamic environment can be found in [53].

• Learning the change. This is the most commonly used approach. Learn-

ing can be done in local feature level, i.e., a visual vocabulary reflecting the

co-occurrence rate of two visual words corresponding to the same landmark

(but may be in different illumination conditions) is learned offline to charac-

terize the relationship among all the visual words [72]. Image comparison in

different illumination is then possible because similar images are related due

to containing visual words of the same landmark, even if they are taken in

various illumination [14,46,47,94]. Alternatively and similarly, learning can

be also achieved in whole-image descirptor level [108]. This type of meth-

ods usually require a large amount of labelled training data for learning to be

feasible [22, 92].

• Using abundant sensory information. A direct way of obtaining the infor-

mation is to use sensor fusion to combine different types of sensors as in [75].

Alternatively, an image sequence, rather than a single image, can be used in
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matching [76, 89] to boost the performance. The basic assumption is that

when the current observation is too poor or inaccurate to use in significant il-

lumination change, there must be useful information obtaining from other

sources to compensate the defected observation. In fact, sequence-based

matching has shown promising results in not only illumination change, but

also seasonal change that involves life-long localization and mapping [107].

In a nutshell, appearance SLAM is currently a thriving area in vision-based mo-

bile robot navigation. The challenging situation of illumination change in long-term

autonomy has attracted an increasing amount of attention. Promising results have

been shown. However, some open problems still exist and new research topics are

continuously emerging. Based on this background, this thesis studies the related is-

sues in appearance SLAM, especially in illumination changing environment, trying

to obtain substantial results and provide impetus to the research and development

of the field.

1.2.3 Potential Problems

Appearance SLAM has become a major topic in the research of vision-based robot

navigation and a considerable amount of results have been achieved. In terms of

research and application, the following limitations and problems are still present.

Perceptual Aliasing

Perceptual aliasing [23] is the most common and intrinsic problem existing in ap-

pearance SLAM, especially in environment with significant illumination variance

or other types of dynamic change. It refers to the problem of high ambiguity be-

tween locations: images representing totally different places are considered correct

matches, or conversely, a true matching location is considered a different place.

Figure 1.2 shows two examples of perceptual aliasing, where (a) and (b) are sepa-

rated places with similar appearance, and (c) and (d) are taken from the same spot

but look differently due to illumination change. In a traditional BoW image encod-

ing method, perceptual aliasing can be partially caused by vector quantization of

local invariant feature descriptors. The visual words in a vocabulary actually form a
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(a) (b) (c) (d)

Figure 1.2: Two examples of perceptual aliasing. (a) and (b) are different loca-
tions but look similar. (c) and (d) represent the same location but show different
appearance due to illumination change.

partition of the feature space. Then two issues of 1) if the feature space used to train

the vocabulary resembles the one in which feature descriptors are generated from

robot views, and 2) if the feature space can be properly partitioned to distinguish

the features, become the possible bottlenecks in achieving good performance in im-

age comparison. Consequences of perceptual aliasing include a low recall in place

recognition due to missed loop closures and a high cost in geometric verification

for loop closure candidates that need to be processed.

Limitations in Feature Extraction and Representation

Many state-of-the-art algorithms in appearance SLAM that depend on local invari-

ant features require keypoint extraction (both detection and description) and match-

ing. Even if the time-consuming matching process can be alleviated by indexing vi-

sual words in BoW framework, the process of extracting keypoints is inevitable, and

this is typically inefficient. Using binary visual words [35,36] is a more efficient al-

ternative as both the detector (e.g., FAST [96]) and descriptor (e.g., BRIEF [12]) are

fast to obtain. However, it does not radically solve the intrinsic perceptual aliasing

problem mentioned above, especially in significant illumination changing environ-

ment. Another family of approaches use a whole-image descriptor which is much

more efficient in encoding an image. The potential problem is that the temporal co-

herence in an image sequence is not exploited in many existing algorithms [76,109]

and therefore they may not be scalable in large maps.
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Difficulty in Geometric Verification

Multi-view geometric (MVG) verification is usually the last step in appearance

SLAM. It is a highly desired procedure (although optional) as false positives are

usually not allowed, i.e., 100% precision is desired in loop closure detection. MVG-

based verification is expected to remove all the candidates that are not true loop

closures and retain the real positive ones. It is only performed on a limited number

(usually one or two) of top candidates with highest possibility of being a matching

location, since this procedure is typically time-consuming. The fundamental step

of verification is to build a set of feature correspondences between two images, i.e.,

perform reliable feature matching, which is extremely difficult under significant

illumination change due to both degradation in feature repeatability and descrip-

tor variance. A recent method is to exploit the vector field consensus [66] from

putative matches. However, the algorithm is both too sensitive to parameters and

inefficient due to the iterative EM procedure in estimating an implicit probabilistic

model reflecting the flow pattern. As a result, a robust feature matching algorithm is

important and should be developed in achieving reliable verification of loop closure

candidates in order to obtain high accuracy in both precision and recall.

To summarize, several problems are present in the research of appearance SLAM

in illumination changing environment, and need to be well addressed.

1.3 Motivation

Based on the above-mentioned problems in appearance SLAM, we conduct system-

atic research in this area, focusing on the challenging case of illumination change,

with the intention of solving the problems of perceptual aliasing, feature limitation

and inaccurate verification under illumination change.

First of all, as a fundamental problem in appearance SLAM, perceptual aliasing

directly impacts the performance of robot localization and mapping. In dynamic en-

vironment with perceptual changes such as illumination variance, seasonal change,

object motion and occlusion, etc., this problem becomes even more obvious and

typical. A visual appearance SLAM system can neither reliably build a correct
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topological map nor achieve accurate localization with perceptual aliasing existing.

Consequently, visual navigation is unavailable in such a case. Therefore, to en-

sure that a robot with visual sensors can be truly autonomous in complex unknown

environments, perceptual aliasing is the urgent problem that needs to be properly

addressed.

On the other hand, real-time implementation in robotics applications is required,

i.e., all the tasks must be completed on-the-fly. In appearance SLAM, image encod-

ing and comparison should be done within the time of key frame [129] sampling

period (usually no more than a second). Many existing algorithms are limited by

feature extraction and representation, and beyond real-time implementation. As a

result, they are not really applicable in real-world scenario. In addition, developing

a real-time SLAM system that is highly scalable in large maps [74] is the crucial

step of the research towards its practicability. This can be addressed by improving

the feature efficiency with scalable localization and mapping algorithms.

Finally, verification is the last insurance of accuracy in place recognition. A

reliable feature matching method under illumination change enhances robustness

of verification and improves detection performance. In our research, we study the

feature matching method in the context of illumination change, incorporating it to

the SLAM system.

1.4 Contributions

Motivated by the research problems and applications, this thesis studies appearance

SLAM in illumination changing environment, using discriminative feature descrip-

tors with efficient matching techniques to address perceptual aliasing problem. For

challenging environment with significant illumination variance, we propose to use

a whole-image descriptor to encode an image, plus an efficient localization and

mapping algorithm that scales well in large maps. In addition, we develop a robust

feature matching algorithm in order to achieve reliable verification. Particularly, the

following contributions are made.

• We use original local invariant features, rather than their BoW representation
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to encode an image, and perform direct feature matching in image compari-

son to detect loop closures. Different from existing analogue methods in ap-

pearance SLAM that match features with nearest neighbor search, we propose

to use a tree structure in organizing the pool of features from the map node

images (key frames). Matching is then achieved by indexing visual features

in relevant key frames and becomes much faster with superior performance

to BoW-based image matching. In our method, loop closure detection can

be achieved in real-time manner in a moderate environment. It also shows

potentiality in illumination changing environment. In addition, to investigate

the scalability of the method, we also apply the scale dependent feature selec-

tion [128] in our approach and show that online implementation is possible

in large scale environment with satisfactory performance.

• In the case of significant illumination change and large environment, we use

a compact whole-image descriptor, Garbo-Gist of low dimension to describe

appearance and measure similarities among images. We employ PCA to

transform a high dimensional Gabor-Gist descriptor to a lower dimensional

form to improve both the computational efficiency of our method and the dis-

criminating power of the image descriptor. In addition, we use Monte-Carlo

sampling [28], particularly, a particle filter to exploit the correlation among

images in a sequence captured by the robot in the process of identifying loop

closure candidates, making our method highly scalable due to the compact-

ness of the image descriptor and the simplicity of particle filtering. The algo-

rithm is also extended to the case of matching image sequences, showing its

superiority in efficiency and scalability.

• Performance evaluation of whole-image descriptors is provided. The study

is conducted with several different types of whole-image descriptors in the

context of SLAM and robot localization. As whole-image descriptors have

been widely used in related research, it is interesting to compare the effec-

tiveness of these descriptors and set up a guideline of choosing them in the

context of loop closure detection or any other applications that can benefit
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from a compact and discriminative image descriptor.

• Assuming a weak perspective camera model which typically applies to out-

door robot navigation, and based on the study of spatial statistics of optical

flow [97], we propose an reliable feature matching method for verification

under significant illumination change. Our method uses a simple constraint

derived on correctly matched keypoints to prune the putative matches to boost

the inlier ratio significantly. With the assistance of the method, the perfor-

mance of Loop closure verification is significantly improved.

In general, our research addresses several issues in appearance SLAM and pro-

vides solutions to the existing problems. By incorporating the methods proposed in

this thesis, we aim to build a real-time SLAM system that can work in illumination

changing environment by obtaining satisfactory localization and mapping perfor-

mance. The achievements in our study have great potentialities and significance in

robot applications.

1.5 Organization

The remaining of this thesis consists of five chapters. In Chapter 2, we introduce

the efficient direct feature matching method in addressing perceptual aliasing, a

common issue under illumination change. Inspired by both the widely used tree

structure in approximate nearest neighbor matching and the inverted indexing in

BoW, we propose the method of indexing visual feature in loop closure detection.

Chapter 3 presents a novel localization and mapping framework using a compact

whole-image descriptor and a Monte-Carlo implementation of Bayes filtering, with

particular intentions on resolving the problems in illumination change and improv-

ing the scalability. In addition, the proposed method is extended to another case,

combined with sequence-based image matching to show its possibility in improv-

ing the matching efficiency. A thorough performance evaluation of whole-image

descriptors is conducted in Chapter 3, in the context of multiple robot applications

such as SLAM, localization, kidnapped robot problem, etc.. The main purpose is

to provide a general guideline of using these descriptors in different scenarios. A
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robust feature matching algorithm intended to improve the accuracy in loop clo-

sure verification under significant illumination variance is described in Chapter 4.

The proposed method ensures that loop closure verification can be achieved reli-

ably even in an extreme case of illumination change, such as between sunny day

and dark night. Finally, we summarize the contributions in this thesis and present

the future work in Chapter 6.

∼

17



Chapter 2

Indexing Visual Features with a Tree
Structure

In this Chapter, we will discuss the solution to perceptual aliasing by direct feature

matching. As mentioned before, perceptual aliasing is a major issue in appearance

SLAM, especially in changing illumination environment, and therefore should be

properly addressed. The proposed method can be applied to real-time loop closure

detection in an indoor environment. However, we show that it can also be possibly

generalized to a larger environment by using feature selection to reduce the search

space. In addition, it shows potentiality in appearance SLAM under illumination

change. The core of the method is to use a k-d tree (or randomized k-d forests) to

organize the features in the map images (key frames) so that approximate nearest

search for a given feature descriptor in the robot view is possible. It is better than the

traditional BoW methods as the true matching locations are always ranked high in

terms of the number of matching features, and therefore saves time in the following

MVG-based verification.

2.1 Introduction

Appearance SLAM using a BoW representation as the image descriptor dominates

the early research in this topic, and is often considered the benchmark for compari-

son. As the introduction, we briefly recall some of the representative algorithms in

the literature for this types of methods.

Newman et al. developed a SLAM system in [86] with multiple sensors. A ge-
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ometric 3D map was built using a laser range finder with the aid of visual sensor to

detect loop closures based on appearance recognition. Later, the BoW image repre-

sentation was respectively used by Cummins et al. [23, 24] and Angeli et al. [1, 2].

In FAB-MAP [23], the authors used a Chow-Liu tree to capture the co-occurrence

statistics of the visual words and proposed a method for explicitly calculating the

normalizing term (P (zk |Z0:k−1,U0:k) in Equation (1.2)) in the recursive Bayes es-

timation for location likelihood. Note that in SLAMwe have to consider the case of

the current robot view being a new place, which is different from pure localization

where the denominator can be simply computed by

P (zk | Z0:k−1,U0:k) =
∑
i∈N

P (zk | xi,m)P (xi,m | Z0:k−1,U0:k,x0) (2.1)

with N being the set of all the mapped places. Instead,

P (zk | Z0:k−1,U0:k) =
∑
i∈N

P (zk | xi,m)P (xi,m | Z0:k−1,U0:k,x0)

+
∑
j∈N

P (zk | xj,m)P (xj,m | Z0:k−1,U0:k,x0)
(2.2)

where N is the set of unmapped places, and in [23] was achieved by sampling an

arbitrary environment. The probabilistic framework was a success in challenging

outdoor datasets in detecting loop closures. This model was modified in FAB-MAP

2.0 [24] in conjunction with a k-d tree used in the clustering process for generating

many more visual words to make the system be able to deal with large outdoor

environment.

Similarly, Angeli et al. also incorporated Bayesian framework to BoW rep-

resentation to compute the likelihood of loop closure occurrence [1]. A “virtual

image” was created at each likelihood computation step with the n most frequently

seen visual words to account for the new location, assuming that loop closing im-

ages should contain unique visual words that can distinguish them from others.

In [2], the authors used a thresholding method to avoid the update of loop closing

hypotheses with too low weights, and hence simplify the computation of full pos-

terior. In fact, only a restricted set of hypotheses need to be updated at every step.

In addition, color information of local color histogram in the HSV color space was

also added to improve the performance.
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2.2 Feature Matching in SLAM

The major problem of perceptual aliasing can be intrinsic to the scene or artificially

created by the process of image representation, for example, by clustering in cre-

ating the visual vocabulary in BoW. When a robot is building a map in an indoor

environment such as a hallway, dense sampling of the images is required so that

the the entire environment can be covered and the map is complete and meaningful

for robot navigation. In such a case, there can be much overlap between consec-

utive images, and perceptual aliasing may appear more frequently than in a larger

outdoor environment. A natural way to avoid this problem is to discard the quan-

tization procedure and compare images using their raw local invariant features, for

example, SIFT, by direct feature matching. In fact, feature matching has been exten-

sively applied in vision community for object recognition and detection in various

conditions [65]. In robotics, researchers have also tried using this method instead of

BoW to achieve image comparison. The main concern however, is that as mapping

is an incremental process, it can become computationally burdensome as the search

space increases with the map growth. Therefore, how to speed up the search to find

a match for a given feature becomes a crucial issue. Here we discuss the existing

feature matching methods in SLAM and their possible speed-up extension using

fast approximate nearest neighbor matching.

Zhang in [129] has shown that similarity using feature matching is a good crite-

rion in comparing images, or equivalently, contend-based image retrieval (CBIR).

The authors in [53] proposed a new kind of local feature named position-invariant

robust feature (PIRF) to handle the problem. PIRF is in fact the stable local features

that can be tracked in several continuous frames. It is the common case that along

multiple (e.g. five) consecutive frames, only a few matching keypoints can preserve

in all these images. Therefore, when these distinctive features appear again, it is

the evidence that loop closure is detected. Apparently, the drawback is that a lot

of feature matching needs to be done, not only in finding PIRF, but also matching

them. A better solution in [128] is to use scale dependent feature selection [124]

to remove a majority of SIFT keypoints extracted at fine scales and retain a small
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subset of the coarse scale features with higher repeatability.

Even though the number of features can be possibly reduced by feature selec-

tion, as map grows, still too many of them need processing, and matching by nearest

neighbor search is intractable for a huge pool of features. An alternative is to use k-

d tree in which features are assigned to the nodes in the tree and search complexity

is reduced. Each dimension of the feature is used to evenly separate the data and

the tree is in general balanced. A query feature reaches a leaf node in a few steps

and a backtrack process using for example, best bin first (BBF) [7], based on the

candidate leaf node is applied to find the approximate nearest neighbor of the query

feature. Muja extended the tree-based search by automatically determining the best

algorithm and parameter values [80, 82] given a dataset and desired degree of pre-

cision in search, and also applied the search in binary features [81]. In addition, the

idea of a tree structure was used in clustering [87] to generate visual words as an

improvement of [103]. The basic idea is to run k-means hierarchically with only a

few cluster centers (visual words) at each level so that both clustering and search

is much faster. Some applications of k-d tree (or forest) in feature matching in the

vision community can be found in [90, 102].

Another efficient data structure in approximate nearest neighbor match is locality-

sensitive hashing (LSH). The idea of LSH is to find a set of hash functions so that

similar vectors are likely to have the same hash value. There are different hash

function families with different distance metrics and a commonly used example is

the one proposed by Datar [26] that optimizes Euclidean distance. A hash value is

created by projecting the original feature vector to a random direction and shifting

the projection length by a random amount. One advantage of LSH is that it does

not need any preprocessing such as building the tree. As long as the hash functions

are defined, new features can be added to the hash tables for indexing. However,

it is shown in [82] that k-d tree has better performance. Examples of using LSH

in image retrieval are shown in [20, 21] and there have also been applications in

robotics [8, 99] for detecting loop closures.

In a word, our feature matching method is highly inspired by the above-mentioned

algorithms and applications in both vision and robotics community. The key issue is
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to use an efficient data structure to make feature matching possible in a huge search

space so that robust image comparison can be achieved to overcome the perceptual

aliasing problem in the traditional BoW approach.

2.3 Appearance SLAM by Feature Matching Using
k-d Tree

Compared with the existing work on visual loop closure detection where k-d tree

is used in clustering, our method uses k-d tree to detect loop closures via feature

matching and no vector quantization is used. The idea is inspired by several obser-

vations.

We first notice that k-d tree not only reduces the search complexity from linear

to logarithmic, but also compares one dimension of the high-dimensional features

each time and therefore avoids the distance computations, the most time-consuming

part in finding the correct nearest neighbor for a query feature with linear search.

The previous work such as [24] used k-d tree (or randomized k-d forest) to assign

each feature to its closest cluster center during the clustering process. This could

make the clustering possible with a large amount of features to generate tens of

thousands of visual words. However, the perceptual aliasing problem may deteri-

orate by erroneously classifying the features to their corresponding cluster centers,

although we have no way to validate how significantly this approximate k-means

clustering [87] may impact the performance of loop closure detection since stan-

dard k-means over too large dataset is intractable and no comparison can be made

then. Nonetheless, k-d tree can still be a strong and efficient tool for approximate

nearest neighbor search, which is an essential part of our method. In fact, people

have shown the possibility of using k-d tree or randomized k-d forest in matching

high-dimensional image descriptors [80, 82, 102].

The second observation is that the distance ratio method [65] is an effective

way for verifying putative matches. By using the distance ratio test, a correct match

requires the ratio between the distances of the closest and second closest neighbor

to the query feature to be below some given threshold. This implies that we can
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have a way of handling incorrect nearest neighbors returned by a k-d tree. In our

work, we focus more on the applicability of the tree structure in feature matching

by using distance ratio technique.

Some other phenomena that can make k-d tree suitable to our work will be

discussed later as these observations can be explained clearly together with the

proposed algorithm.

2.3.1 Key Frame Selection and Construction of k-d Tree

In order to test the performance of loop closure detection, we first need to select a

set of key frames for comparison. Key frames are representative images taken from

distinct places of the environment. As discussed in Section 2.2, images are usu-

ally sampled densely in an indoor environment in order to ensure a full coverage

and therefore considerable overlap may exist along a set of continuous frames. In

such a case, there is no need to keep all the captured images since many consecutive

ones look similar and a subset of sampled images are enough. There may be several

ways of selecting key frames, for example, at a certain fixed time interval (e.g. per

second) as the robot camera takes images. While this simple method works well for

the case of a straight robot trajectory with a constant linear speed, it may miss key

frames in the case of abrupt change of the location appearance, for example, when

the robot makes a turn at a corner. Here we use the key frame extraction strategy

proposed in [129] with some modifications to select key frames. Particularly, the

first image captured is always considered as the first key frame and two consecu-

tive key frames should either have little overlap or be “far apart” enough spatially,

whichever occurs first,

overlap =
2N

Ni +Nt

(2.3)

distance = |IDi − IDt| (2.4)

where Ni and Nt are the numbers of scale-invariant features (we use SIFT in our

work) in image Ii and It respectively. N is the number of matching features while

IDi and IDt are the sequential numbers of Ii and It showing the order of sam-

pling. For Equation (2.4) to be valid, we assume constant velocity in robot motion.
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Thresholds are given to the above equations for deciding whether the current view

should be considered as a new key frame.

Once a new key frame is detected, we insert its features to the feature pool D

and construct a k-d tree over all the features in D. Hence, D always includes the

features extracted from all the key frames and the tree is updated every time a new

key frame is found. Inspired by the inverted index used in BoW, which keeps the

associated image ids and word frequencies for each visual word, we also maintain

a similar table which maps the features in D to their corresponding images from

which they are extracted.

2.3.2 Indexing Visual Features

Let Q be the set of features extracted from the current image. For each feature in

Q, it will go through a tree search in the current k-d tree and the top two nearest

neighbors are returned. Distance ratio is applied to determine whether the closest

one is a good match or not. If positive, the image containing this matching feature

can be immediately retrieved by indexing.

Since k-d tree does not guarantee to find the correct nearest neighbors, the key

frame that contains the most matching features is not necessarily the true loop clo-

sure key frame. We then perform a second step of further verification of the possible

candidates. In this step, top K key frames that contain the most matching features

are selected as the candidates and direct feature matching is performed between the

query image and each candidate. A loop closure is found if the similarity is above

some given threshold. This verification is based on the observation that only a few

key frames contain matching features after the previous indexing step and the true

loop closure key frame is always likely to have multiple matching features by using

the tree search. One can also use a more rigorous and accurate MVG-based veri-

fication that identifies the underlying camera motion between two frames based on

epipolar constraint (we will discuss it in detail later in Chapter 5), at the expense of

spending extra time on this step.

We also notice that the features in Q that have correct matches in D only repre-

sent a small fraction (normally less than 15%) of the total features in Q. This may
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potentially increase the tolerance of finding the incorrect nearest neighbors. The

other important fact is that we are only interested in finding the correct matches

for features in Q that do have matches in D. In other words, the purpose is to find

as many true positive samples as possible using the tree search and the number of

false positives is not important. The only possible negative impact of finding a false

positive is to retrieve an irrelevant key frame as a candidate after the first step of

the algorithm. However, this irrelevant key frame is likely to be discarded since it

is unlikely to rank high among all the key frames with matching features.

2.3.3 Loop Closure Detection and Simple SLAM System

The algorithm is summarized in Algorithm 2.1 with a brief flow chart shown below.

Here we use |A| to represent the number of elements in set A and variables that

are not mentioned in the algorithm have the same meaning as in Equation (2.3) and

(2.4). The similarity measurement is consistent with Equation (2.3). In Algorithm

2.1,D is initialized to be an empty set and increases with features from key frames.

q is the current image. E is the set of key frames (we can use their ids) that contain

matching features and C is the sorted topK candidates in E according to the num-

ber of matching features (if |E| < K, we will consider all the key frames), returned

by the function sorttop(K,E). DIST and SIMI are two thresholds used for discard-

ing nearby key frames to the current view and determining loop closures. In step 1, a

set (could be empty) of ranked key frames based on the number of matching features

using tree search are generated, and step 2 performs feature matching to make a loop

closure decision. If no loop closure is found, the robot needs to add the features to

D if the current observation is a key frame, and update the tree. Note that the nearby

key frames are not loop closures but may have many matching features due to the

short spatial distance to the current view. The algorithm takes Q, a set of SIFT fea-

ture descriptors as the input, and returns a loop closure decision and the associated

key frame id if existing. It is developed to detect loop closures, but can be easily

incorporated to a SLAM system, by making topological connections among the key

frames and updating the map with new locations to fulfill the state augmentation in
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Retrieve top k frames
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candidates one-by-one

Pass verification?

Loop closure found!

Key frame?

Add feature to D
and update tree

Yes

No

Yes

2.4 Experimental Results

In order to validate the performance of the proposed method in visual loop closure

detection and appearance SLAM, several groups of experiments were conducted on

both a dataset describing an indoor hallway environment, and another one collecting

from an outdoor campus environment incorporating significant illumination change.

In this section, we will illustrate the results from both environments respectively.
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Algorithm 2.1: Visual Loop Closure Detection Using k-d Tree
1 while robot acquiring images do
2 % step 1: indexing visual features%
3 E = matchTree(Q,D) ; // tree search
4 for i = 1→ |E| do
5 if

∣∣IDq − IDE(i)

∣∣ ≤ DIST then
6 E = E \ E(i);
7 end
8 end
9 K = min(K, |E|);
10 C = sorttop(K,E) ; // sort the top K candidates in E
11 % step2: further verification in image level%
12 i← 1;
13 while i ≤ K do
14 N = matchIm(q, C(i)) ; // feature matching
15 S = 2N

Nq+NC(i)
;

16 if S > SIMI then
17 a loop closure is found;
18 break;
19 end
20 i← i+ 1;
21 end
22 % key frame detection if needed %
23 if i > K then
24 if keyframeDetect(q) = TRUE then
25 D = D ∪Q;
26 updateTree(D);
27 end
28 end
29 end
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Figure 2.1: Sample images of the indoor dataset. The dataset was sampled densely
and covers two entire loops of the hallway in the second floor of Computing Science
Center, University of Alberta.

2.4.1 Indoor Environment

The indoor dataset was sampled by a Pioneer 3-AT mobile robot equiped with a

Dragonfly IEEE-1394 camera pointing forward [128]. Images were captured at

equal time interval as the robot moved, covering a total distance of approximately

200 meters with two entire loops of the second floor of Computing Science Center,

University of Alberta. A total of 7420 images were collected with resolution of

320×240 pixels. Figure 2.1 shows several sample images of the dataset and Figure

2.2 is the visualization of the path (unit: meter) according to the odometry readings.

Due to the error in the readings from robot wheel odometry, the original trajectory

of the two loops was not quite aligned. We performed an easy calibration of the sen-

sor so that the visualization looks better as shown. Note that no metric information

of any type was used in our method.

Performance of Feature Matching Using k-d tree

Before applying the proposed method to loop closure detection, we would like to

first investigate the possibility of using k-d tree in feature matching in terms of both

accuracy and run time. We extracted all the SIFT features from the above dataset

and randomly selected 500,000 of them as the feature pool D. Another random

20,000 features from the same dataset were used as the test query set Q. By per-

forming a linear search for each query feature over all the features inD, we obtained

the ground truth of the test set and 2415 features out of 20,000 (around 12.1%) had

been given corresponding matches. FLANN was used as our implementation of k-d

tree [80]. Different numbers of trees and checked leaf nodes were used in the tree
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Figure 2.2: Visualization of the data describing robot path and key frames according
to the odometry readings (after alignment). There are two complete loops. 3346
images taken in the second loop (red) are considered loop closures. Selected key
frames in the first loop (yellow) are shown in blue stars. The starting point is [0, 0]

search to illustrate the performance. As discussed previously, we are only curious

about how many correct matches we can find for these 2415 features. Figure 2.3

shows that the performance will improve by using multiple trees and checking more

leaf nodes in the backtrack process. There is no obvious difference between three

and four trees and this suggests that the performance may converge to a number of

trees. Hence, it is unnecessary to use too many trees in our method. Note that the

search time will also increase if more trees are used or more leaf nodes are exam-

ined. In fact, we used only one tree and compared 10 leaf nodes in the experiments

on this dataset and found it working pretty well. As shown in the figure, we are still

able to get around 90% of matches correct, which is an acceptable result.

Another group of experiments was designed to investigate the applicability of

k-d tree in terms of run time. Since the number of key frames is increasing during

SLAM process, we are particularly interested in seeing how the speedup factor over
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Figure 2.3: Result of feature matching with different numbers of trees and checked
leaf nodes. The result suggests that in terms of accuracy, k-d tree can be used in
loop closure detection. There is no need to use multiple trees since the accuracy is
good enough with one tree for our problem.

linear search evolves with the increase of feature number. Different numbers of fea-

tures were randomly collected from the same dataset, ranging from 10K to 100K as

D. The same test setQ was used as the query samples. There is no overlap between

any of the two feature groups (including the previous 500,000 feature group). The

second row of Table 2.1 shows the numbers of matching features between the test

set and different pools using exhaustive search as the ground truth. The tree search

performance (here one k-d tree was used with 10 leaf nodes checked) in the third

row is consistent to the result shown in Figure 2.3. Figure 2.4 is the speedup fac-

tor of k-d tree over linear search on different feature groups. In the tree search, we

counted the time of both constructing the tree and performing the search. The result

shows that k-d tree is at least three orders of magnitude faster than linear search and

the time advantage increases rapidly with the increase number of features.
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Table 2.1: Number of Matching Features and Performance of Tree Search in Dif-
ferent Feature Groups. The second row shows the number of true matches (ground
truth) in each group. The third row shows the correct matches using k-d tree in
percentage.

10K 20K 30K 40K 50K 60K 70K 80K 90K 100K
1747 2251 2376 2529 2615 2609 2819 2766 2760 2688
88.61 86.94 86.15 87.90 88.83 87.93 86.91 87.20 86.81 87.69

Loop Closure Detection

Based on the above results, we ran the proposed loop closure detection algorithm

described in Algorithm 2.1 on this indoor dataset on a normal lab computer (2.0

GHz CPU and 4.0 GB memory) and compared the results with BoW of 1000 visual

words in terms of both recall and time (the visual words were generated by cluster-

ing more than 20000 features extracted from sampled images of another dataset).

The scale dependent feature selection proposed in [128] was also applied here to

show the scalability of the method. Selected features were used to build the tree

(features in D) and search (features in Q). The run time of the algorithm mainly

comes from three aspects: time of building the tree, search time (indexing in step

1) and time of further verification (step 2). All the other components such as fea-

ture extraction and key frame detection are the same to both algorithms and do not

need to be considered and compared. Thresholds for Equation (2.3) and (2.4) are

3% and 80 respectively. DIST and SIMI are 100 and 3%, i.e., we do not want to

consider the key frames within 100 images in sequential order as the loop closure

candidates, and the threshold for accepting a loop closure hypothesis is the same

as deciding a key frame. The parameters were all empirically chosen and could be

adjustable. The guideline is that the key frames should have a full coverage of the

environment but are not redundant in localization. Different groups of parameters

were tried and the differences between the proposed method and BoW on different

parameter settings were close. A total of 53 key frames were selected (see Figure

2.2). We built the ground truth mainly according to the spatial distances: for each

image in the second loop, the closest two key frames are both considered the true
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Figure 2.4: Speedup factor over linear search vs. different numbers of features. k-d
tree is at least three orders of magnitude faster than linear search. It is reasonable to
believe that we are able to deal with many key frames in real-time implementation
using k-d tree in feature matching.

loop closure images. This would be subject to a visual check to exclude special

cases (e.g., when the robot turns, the two images may look different although they

are spatially close). The performance is summarized in Table 2.2 for the 3346 loop

closure images in the second loop in terms of recall. As mentioned in Section 2.3.3,

we consider the top K ranked candidates in E to undergo the further verification

in step 2. Here we do not worry about the precision because step 2 will reject any

candidate that does not have a similarity measurement above the given threshold. In

other words, with this step we can consider the precision as 100%. The first column

in Table 2.2 is the scales above which features were used [128]. So “> 0” means

that the entire original SIFT features were used without applying scale selection.

It can be seen that the performance will go down with fewer feature used (more

feature selection applied). This is understandable because the number of features

is too few. However, our proposed approach can be still superior to BoW even if

we reduce the average number of features to only 30 per image (scale > 4). The

top 3 and top 5 results do not differ too much which suggests that the correct loop
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Table 2.2: Recall on Indoor Dataset with Scale Selection (%)

Top 1 Top 3 Top 5 # of features / image
> 0 (all) 85.12 94.77 95.70 256.6
> 1 82.46 94.17 95.31 211.1
> 2 80.66 91.54 92.17 78.9
> 3 78.81 88.52 88.82 46.4
> 4 72.33 82.85 82.93 30.8
BoW 45.04 72.33 80.39 256.6

Table 2.3: Run Time on Indoor Dataset – Building the Tree (ms)

Min Max Average
> 0 (all) 2.1 31.2 16.2
> 1 1.5 26.4 13.6
> 2 0.89 31.2 5.8
> 3 0.66 24.8 3.7
> 4 0.56 26.0 2.8

closure key frames are normally ranked high, with or without feature selection. The

run time of both building the tree and indexing is shown in Table 2.3 and 2.4 re-

spectively. By using features at scales higher than 4, the average run time is almost

one order of magnitude less compared with using the entire set of original features,

sacrificing the performance as much as 13%. In most cases, the average time of

processing one image is the total time of both search (step 1) and further verifica-

tion (step 2). The time of rebuilding the k-d tree should be counted in only when a

new key frame is found. Therefore our method provides a real-time performance to

detect loop closures on this dataset.

To make the results comparable, we also used a single k-d tree with 10 leaf

nodes in the backtrack to create the BoW descriptor of an image from the extracted

features. Therefore, the time of BoW in Table 2.4 is actually the time of converting

the image to the BoW descriptor, depending on the vocabulary size and the number

of features in the query image. For the top K retrieved candidates with the highest

similarity according to their BoW descriptors, the same verification was performed
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Table 2.4: Run Time on Indoor Dataset – Search and Indexing (ms)

Min Max Average
> 0 (all) 0.55 128.4 10.3
> 1 0.40 97.9 9.0
> 2 0.30 50.8 4.9
> 3 0.27 25.4 3.3
> 4 0.24 16.7 2.3
BoW 0.32 3.7 1.4

to decide whether a loop closure was found or not. The combined run time of both

indexing and verification can be represented as

T = Ti + k × Tv (2.5)

where Ti is the indexing time shown in Table 2.4 and Tv is the time of further

verification for each retrieved candidate. k is the number of candidates verified

to achieve a certain level of performance. We are only interested in comparing T

because all the other parts are the same to both methods as mentioned previously,

and the time of verification can be dominant in the total execution time of processing

one image, if too many candidates are verified. The verification for each key frame

took around 6.9 milliseconds on average. Fig 2.5 shows T in both methods with

respecct to the performance. It is not surprising to see that BoW spends more

time in achieving the same level of performance. In the proposed method, the loop

closure key frame is usually included in the top 5 retrieved candidates after the

indexing step. However, BoW needs to verify as many as tens of key frames to

obtain the correct one. This verification is mainly responsible for the time spent in

detecting loop closures.

The series of experiments designed above have obviously shown the effective-

ness and efficiency of the proposed method in visual loop closure detection and

appearance SLAM. The results have shown several facts. First of all, direct feature

matching in appearance SLAM is possible with fast approximate nearest neighbor

search using k-d tree. In addition, perceptual aliasing indeed exists in the state-of-

the-art BoW method and consequently, a low recall can be generated due to missed
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Figure 2.5: The absolute run time of indexing and verification vs. recall of both
methods. Since BoW requires more key frame candidates to be verified to achieve
the same level of performance, it is not as efficient as the proposed method on this
indoor dataset in terms of obtaining the same recall.

loop closures. In order to overcome this issue, a brute-force solution is to verify

more candidates. This is apparently not desirable due to the time-consuming pro-

cess of verification. Our method alleviates the problem as the true loop closure key

frame is always ranked high. Finally, scale dependent feature selection can help

improve the efficiency without loss of too much performance. This increases the

scalability of our method.

Based on the experimental results shown above, we will then conduct another

group of experiments, focusing on the case of illumination change using the pro-

posed method. As most of our hypotheses have been validated in the previous

experiments, the following experiments will be designed and conducted in a brief

and compact way, showing only the performance of the method in a different envi-

ronment.

35



(a) Cloudy1 (b) Cloudy2 (c) Rainy (d) Sunny (e) Night

Figure 2.6: Sample images of the outdoor dataset at the same location in five se-
quence, cloudy (two cases), rainy, sunny after the rain and dark night at 10 o’clock.

2.4.2 Outdoor Environment

In this set of experiments, we used a dataset in changing illumination environments.

The dataset was collected with five image sequences at five different times of a

day in a campus environment. The images were collected with a Husky A200

mobile robot equipped with a Xtion Pro camera. In each sequence the robot was

driven along the same trajectory of approximately 700 meters at the speed of 1m/s.

Therefore, the image numbers of each sequence can be used in building the ground

truth of positive loop closures. Several weather and illumination conditions are

covered in this dataset, including cloudy, sunny, rainy and night. Figure 2.6 shows

a set of matching images in the five sequences representing the same location. In

our experiment, we investigated the most challenging case of localization between

dark night and sunny day. The images in the sunny sequence were used as a map

(first loop) and every frame is a key frame (645 in total). The 646 images in the

other sequence were compared with the map nodes.

Experimental settings are generally consistent with that in the previous indoor

experiment. However, as the outdoor dataset contains high resolution color images

with several thousand SIFT keypoints per image, we no longer considered using the

entire set of descriptors as the execution is far beyond real-time in such a case. In

the tree search, we still used one tree but 128 checks (rather than 10) in the back-

track to improve the performance in search. In addition, BoW was omitted since it

has been validated to be inferior, by both our previous results in the indoor environ-

ment and the results reported in [76] where FAB-MAP with BoW achieves recall

values lower than 10% in a similar environment in terms of the level of illumina-

tion variance. The performance is summarized in Table 2.5. As can be seen, the
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Table 2.5: Recall on Outdoor Dataset with Scale Selection (%)

Top 1 Top 3 Top 5 # of features / image # of matches
> 1 70.90 76.16 78.17 2052.9 14.5
> 2 64.55 75.54 79.10 430.4 7.9
> 3 56.97 71.52 73.68 208.5 4.8
> 4 47.99 60.37 61.92 124.8 3.4

Table 2.6: Run Time on Outdoor Dataset – Tree Build and Search (s)

Build Search
> 1 16.34 0.19
> 2 1.67 0.035
> 3 0.78 0.016
> 4 0.45 0.009

recall is significantly lower than that in the indoor experiments, even if the number

of features per image is much higher. The degradation in the performance shows

the difficulty of appearance SLAM using feature matching in an environment with

illumination change. In spite of the fact that the number of keypoints is high, their

matching repeatability decreases as the illumination changes, and consequently, the

number of true matches becomes fewer. The last column of Table 2.5 illustrates the

average number of matches that can be found by the tree search in the top 1 case

(the best matching candidate). With only a few matches, it is not confident enough

to make a decision of a true loop closure.

The time of building a k-d tree and search will also become intractable with the

increase of features. Table 2.6 shows the time of building a tree with 645 frames in

the sunny sequence, and the average time of tree search for the 646 images in the

night sequence. The search time is still acceptable even if the tree contains millions

of nodes. However, building such a tree can be especially time-consuming. Note

that the time complexity of building a k-d tree is O(knlogn), and the number of

features (n) extracted at scales higher than 1 can reach several million. In such a

case, building a k-d tree takes 16 seconds, no longer applicable to robot applications.
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Although the experimental results of the proposed method deteriorate in the

outdoor environment, most values are still higher than the state-of-the-art SeqS-

LAM [76] in handling significant illumination change with 60% recall. The method

is even better than BoW in the less challenging indoor environment. Therefore, we

can conclude from the results that 1) our proposed method of appearance SLAM

or visual loop closure detection significantly outperforms BoW in addressing the

problem of perceptual aliasing, and can be used in handling illumination change in

a moderate size environment and 2) there are still improvement space and it is rea-

sonable to believe that the matching performance can be improved if the accuracy

of feature matching increases.

2.5 Summary

In this chapter, we have presented a loop closure detection method for appearance

SLAM. Our proposed method does not rely on the widely used BoW representa-

tion to extract image descriptors but uses feature matching to address the perceptual

aliasing and improve the recall in detecting loop closures. Our method consists of

several steps. First, we built a k-d tree over all the database features extracted from

the map images or key frames. For a newly acquired image, we also extracted its

local invariant features and performed a tree search for these keypoints. Relevant

matching candidates can be retrieved by indexing visual features to achieve fast

match. In addition, we applied a further verification to confirm a true loop closure.

It is shown in our work that due to its efficiency in feature matching, k-d tree can

be applied in real-time loop closure detection with high recall in an indoor environ-

ment. The necessity of using scale dependent feature selection was also discussed

for the purpose of extending the work to large outdoor environment.

In addition to the experiments conducted on a moderate size indoor environ-

ment confirming our method in terms of both recall and time, we also applied the

method to an outdoor environment with illumination change. The performance

decrease in both recall and time in outdoor environment has demonstrated the diffi-

culty of SLAM in illumination changing environment. However, our method is still
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able to achieve up to 80% recall, showing its potentiality in dealing with illumina-

tion change. Possible improvement may involve boosting the accuracy in feature

matching, which may be important future work.

One interesting issue is to discover and investigate more efficient feature selec-

tion strategy to keep the performance as high as possible while reducing the feature

number. Inserting the features in the current tree instead of rebuilding it entirely

every time is also an alternative to reduce the time. In addition, the framework of

implementing SLAM in the proposed method is purely based on image compar-

ison and does not take into account the filtering process. Therefore, map frames

are considered random images without continuity. In appearance SLAM however,

images are usually acquired sequentially and temporal coherence commonly exists

along the robot trajectory (similar case also applies to traditional metric SLAM). In

Chapter 3, we will exploit this important information to improve the performance

in appearance SLAM.

∼
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Chapter 3

Appearance SLAM with a Compact
Image Descriptor

In this chapter, we will present a method for SLAM using a compact image de-

scriptor, Gabor-Gist. The traditional feature-based algorithms, including both BoW

and feature matching mentioned in the last chapter, depend on the local invariant

features in image comparison. As shown before, the performance of this type of

methods may deteriorate when the illumination changes significantly. In contrast

to these approaches, we develop a method relying on a single efficient image de-

scriptor of low dimension to describe appearance and measure similarities among

images. We employ PCA to transform a high dimensional Gabor-Gist descriptor

to a lower dimensional form to improve both the computational efficiency of our

method and the discriminating power of the image descriptor. To define SLAM in

a probabilistic framework, we use a particle filter to exploit the correlation among

images in a sequence captured by the robot in the process of identifying loop clo-

sure candidates. Our method is highly scalable due to the compactness of the image

descriptor and the simplicity of particle filtering. In addition, it can be also extended

improve the efficiency of sequence-based SLAM so that the issue of illumination

change can be well addressed.

3.1 Introduction

In Chapter 2, we have presented the traditional solutions to appearance SLAM with

some representatives using BoW as the image descriptor in a Bayes framework. The

40



method presented in this Chapter uses a compact image descriptor of Gabor-Gist.

Since no BoW or feature matching is used, neither the offline process of building

the vocabulary nor the online extraction of any local invariant features (such as

SIFT or SURF) is needed. Instead, a global image descriptor which is a compact

representation of an image is used here. Comparison between images also becomes

straightforward, using only the simple Euclidean distance. To eliminate the unnec-

essary comparisons with all the existing map nodes and reduce the computational

cost, we exploit the temporal coherence in the image sequence with the particle

filter framework to track the matching candidates. Note that particle filter is an im-

plementation of Bayes filtering in probabilistic SLAM and ensures the continuity

in detection so that temporal false detections can be removed. Compared with the

existing work, our method uses an efficient likelihood function in a probabilistic

framework and maintains a fraction of all the hypotheses during the loop closure

detection process. Although we use Gabor-Gist as our image descriptor here, any

other compact image descriptor can be an alternative. From this point of view, our

method can be also considered as a general framework of loop closure detection or

appearance SLAM.

3.2 SLAM with a Whole-Image Descriptor

In contrast to local invariant features, a whole-image descriptor is defined as a

global and compact representation of an image, typically using a vector with ei-

ther real numbers or binary values. This type of image encoding has been studied

extensively in image-based robot localization and mapping.

Before the application of BoW to robotics, Ulrich and Nourbakhsh used color

histogram as the features to describe an image, combined with a voting scheme to

perform image matching [121]. In this method, the color histograms of training

(map) panoramic images were built offline using HSL (hue, lightness, saturation)

and normalized RGB color spaces. Histogram comparison using nearest neighbor

matching was applied to each color band separately to generate the location votes

of matching candidates and classification was done by unanimous voting. Appar-
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ently, the problem was defined as pure localization rather than SLAM. Badino et

al. [3] described a topometric localization method which combines the robustness

of topological localization with the geometric accuracy of metric methods. In image

comparison of the topological part, the authors used a novel whole-image descriptor

named whole-image SURF (WI-SURF), containing gradient information of the en-

tire image, computed in the way of deriving a SURF keypoint descriptor. A filtering

framework was also exploited in localization. Similarly in [109], a BRIEF descrip-

tor [12] was extracted for the entire image with the center as the only “virtual”

keypoint. The WI-SURF and BRIEF-Gist are both whole-image descriptors since

they represent an image without keypoint detection. The binary whole-image de-

scriptor has shown comparable discriminating power with real-valued descriptors,

although they have not been exploited within a probabilistic framework.

Siagian and Itti proposed a biologically-inspired approach to scene classifica-

tion [100] using a gist descriptor [88], which represents an image in terms of its

responses to a filter bank such as discrete cosine transform or Gabor, and applied

it to robot localization [101]. Principal Component Analysis (PCA) was performed

on the original extracted gist features to reduce the dimensionality. In robot lo-

calization, a map was divided into segments – each of multiple locations – and a

segment was described by the gist descriptors of the images captured by the robot

at the locations in this segment. A neural network was trained for computing the

likelihood of an image belonging to a segment. Subsequent salient region matching

was employed to refine localization with the coarse localization hypothesis deter-

mined by the gist-based segment matching. Monte Carlo localization (MCL) that

utilizes sampling importance resampling (SIR) [28,34] was used as the back-end to

estimate robot position.

More recently, Murillo et al. investigated the possibility of using the Gabor-Gist

descriptor in visual loop closure detection with panoramic images of four views

[84]. A Gabor-Gist image descriptor captures the image responses to a bank of

Gabor filters. A Gabor filter is Gaussian kernel modulated by a sinusoidal plane
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wave and used to detect the edges in an image. It has the form

g(x, y) =exp
(
−(xcosθ + ysinθ)2 + γ2(−xcosθ + ysinθ)2

2σ2

)
× cos

(
2π
xcosθ + ysinθ

λ
+ ψ

) (3.1)

In the above equation, λ represents the wavelength of the sinusoidal factor, θ repre-

sents the orientation of the normal to the parallel stripes of a Gabor function, ψ is

the phase offset, σ is the standard deviation of the Gaussian envelope and γ is the

spatial aspect ratio, and specifies the ellipticity of the support of the Gabor func-

tion. To obtain a Gabor-Gist descriptor, one can simply convolve an input image

with different Gabor filters with different frequencies and scales, and use average

intensities of the output image as the filter responses. In [84], when comparing two

panoramas, the permutation of circular shifts of the four views was used to obtain

four measurements, out of which the most similar one was adopted. In addition,

the authors also proposed to use the gist vocabulary which consists of visual gist

words to measure the similarity between two images. Under such a representa-

tion, the distance between two sets of original gist descriptors is equivalent to that

between their corresponding gist words. PCA was also exploited to reduce the di-

mensionality and improve the matching performance. In terms of Bayes filtering in

localization, a similar model as in [2] was used. The use of panoramas can be pos-

sibly applicable to the case of loop closure from opposite directions. It was shown

that localization in a large area (more than 12K images covering a long run of 13

miles in urban area) is possible with gist, and the performance in place recognition

is comparable or better than local feature-based approaches, with the advantage of

higher efficiency and smaller memory storage requirements.

Some other applications of whole-image descriptors can be found in [73,74,76,

126]. In these methods, the image was downsampled to a smaller size and used as

a descriptor. The descriptor values can be either the normalized pixel intensities

or their binarization. The most obvious advantage is that this type of descriptors

are even more compact and memory efficient. Therefore, mapping a much larger

area becomes possible. In addition, combined with a framework of sequence-based

matching, the simple whole-image descriptors can handle the case of significant
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illumination change [76], and drastically outperforms the traditional BoW image

descriptor in such a case. However, only the discriminating performance was eval-

uated in these methods. The Bayes filtering in localization is not incorporated.

In general, whole-image descriptors have shown great potentiality in vision-

based robot localization and mapping, including the case of illumination change,

where BoW may not work well. There are two crucial components in the existing

algorithms – the representation or selection of the descriptor itself and the imple-

mentation of the filtering framework in achieving robust localization performance.

Inspired by the current methods that Gabor-Gist is a good choice in scene recogni-

tion and has shown success in robot localization, we use it in our proposed algo-

rithm, plus a novel application of Monte Carlo Localization to achieve localization

and mapping.

3.3 Monte Carlo Loop Closure Detection

To describe our proposed method, we first recall the probabilistic model of SLAM

in Equation (1.1) and (1.2) in Chapter 1. To facilitate our representation, we use

a simplified version of definition, ignoring the landmark state of m as in appear-

ance SLAM, no explicit landmarks are estimated. Then the two equations can be

represented as

P (xk | Z0:k,U0:k) =
P (zk | xk)P (xk | Z0:k−1,U0:k)

P (zk | Z0:k−1,U0:k)

= ηP (zk | xk)

∫
P (xk | xk−1,uk)P (xk−1 | Z0:k−1,U0:k−1) dxk−1

∝ P (zk | xk)P (xk | xk−1,uk)P (xk−1 | Z0:k−1,U0:k−1)

(3.2)

In the above equation, the denominator P (zk | Z0:k−1,U0:k) is considered to be a

constant in our method. In topological SLAM, the map is represented by a graph

whose nodes are the key locations of the environment and whose uncertainty is

not explicitly maintained. As a result, xk in topological SLAM only describes the

location of the robot in the graph and is therefore a 1D random variable whose

range is the set of integer values associated with the nodes of the map graph. The

solution to the SLAM problem is described by the posterior probability density
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function (pdf, or probability mass function – pmf – to be exact) P (xk | Z0:k,U0:k),

incorporating all the previous observation (Z0:k) and motion (U0:k) information of

the robot. P (zk | xk) is the observation likelihood. P (xk | Z0:k−1,U0:k) is the

location prior with P (xk | xk−1,uk) as the motion model from k − 1 to k (see the

prediction step in Equation (1.1)). The SLAM problem as defined by (3.2) has been

successfully solved with the Markov Chain Monte Carlo (MCMC) approach [114]

leading to, for example, the well-knownMonte Carlo localization (MCL) algorithm

[28]. We adopt the MCMC approach, specifically particle filtering to solve (3.2).

In our method, a particle corresponds to a key location in the map and the par-

ticle set χt describes the sampled representation of P (xk | Z0:k,U0:k)

χt = {x[1]
k ,x

[2]
k , · · · ,x

[M ]
k } (3.3)

x
[i]
k ∈ {1, 2, · · · , N} (3.4)

where x
[i]
k is a particle at time k and M is the total number of particles used to

approximate the pdf of the robot location in the map of N key locations. As the

robot navigates, each newly acquired key frame [129] is either determined to be

a loop closure or a new key frame. The former case leads to adding a link to the

map graph and possibly modifying the representation of the node being closed.

The latter case results in a new node of the map graph, and this is handled by

incrementing N by 1 and recording the image associated with the node. In this

way, both localization (the former case) and mapping (the latter case) are handled

and in our method, the state augmentation does not change the existing posterior

pdf, as was done in [2, 23].

3.3.1 Motion Model

The motion model has the form

x
[i]
k ∼ P (xk | x[i]

k−1,uk) (3.5)

where uk is the robot control at the current time. A simple motion model is used in

our method: the robot will move one step forward with a high probability given the

current location [1]. In addition, we wish to account for the motion uncertainty by

allowing larger forward motion with low probabilities.
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3.3.2 Update and Resampling

When the measurement zk is obtained, the weights of the particleswk are calculated

according to their likelihoods given zk:

w
[i]
k = P (zk | x[i]

k ) (3.6)

After calculating the weights of all particles, we resample them according to

their weights and add noise to the particle set by randomly generating αM (0 <

α < 1) particles to maintain the diversity of the population.

Unlike the previous work, we only use Gabor-Gist in our method to calculate

the likelihood and do not need to extract keypoints [1,2] or match regions [101]. In

addition, we use only a single monocular vision rather than a panoramic vision [84],

to reduce computational cost and memory usage. We also use PCA to enhance

the discriminating ability of the original descriptors and reduce the dimensionality.

The implementation used in our study can be found online1. Basically, we use 20

filters applied on all three channels of a RGB color image partitioned into 16 tiles.

Therefore, the dimensionality of the descriptor is 960 and each dimension is the

average pixel values in the tile after filtering.

3.3.3 Monte Carlo Loop Closure Detection Algorithm

Our loop closure detection algorithm is summarized in Algorithm 3.1 using nota-

tions in [114], and a flow char is shown below. We use χ̄k to denote a temporary

particle set at each step to keep the particles with their weights before resampling.

In line 24, mode(χk) means the mode of the posterior pdf and it corresponds to the

most likely loop closure candidate. In our method we estimate this mode by the

location with the highest number of particles. This is just one of the several ways

to estimate the mode and select the loop closure candidate, although we found it

to work well in our experiments. The selected candidate is subjected to a further

verification as described in Chapter 2. α is set 0.2 here.

1http://people.csail.mit.edu/torralba/code/spatialenvelope/
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Algorithm 3.1: Loop Closure Detection Algorithm
1 N ← 0, k ← 1;
2 while zk exists do
3 if k == 1 then // initialization
4 N ← N + 1;
5 χk = {x[i]

k = N | i = 1, 2, ...,M};
6 else
7 χ̄k = ∅;
8 for i = 1→M do // motion

9 x
[i]
k ∼ P (xk | uk,x

[i]
k−1);

10 w
[i]
k = P (zk | x[i]

k );
11 χ̄k = χ̄k + ⟨x[i]

k , w
[i]
k ⟩;

12 end
13 χk = ∅;
14 for i = 1→M do // resampling

15 draw j with the probability ∝ w
[j]
k ;

16 χk = χk + x
[j]
k ;

17 end
18 for i = 1→ αM do // randomization
19 u1 ∼ U [1, N ];
20 u2 ∼ U [1,M ];
21 x

[u2]
k = u1;

22 end
23 end
24 x̂k = mode(χk);
25 if verify(x̂k) then
26 loop closure detected, update map topology;
27 else
28 N ← N + 1;
29 end
30 k ← k + 1;
31 end
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3.4 A Simple Extension to Sequence Matching

Our method described in Section 3.3 can be easily extended to sequence-based

SLAM [73, 74, 76] which was developed to address the perceptual (especially illu-
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mination) change in long-term mapping. The main idea in SeqSLAM is to use a

series of consecutive frames as the observation and matching is done between im-

age sequences. For sequences with the same originating location, different lengths

are considered so that the possible changing velocity in the robot motion can be

taken into account. While the comparison between sequences can be feasible in a

regular map with thousands of key locations, it may become intractable when the

map size increases to, for example, millions of locations. By applying our method

in sequence-based matching with a two dimensional (2D) particle filter, the run time

can be reduced significantly with equivalent detection accuracy, greatly improving

the efficiency in localization and mapping, and making the algorithm highly scal-

able in large maps.

In this extension, a 2D particle corresponds to an image sequence with a specific

length L[i]
k , originating at a key location in the map with the index I [i]k

I
[i]
k ∈ {1, 2, · · · , N −Rrecent} (3.7)

L
[i]
k ∈ {Lmin, Lmin + 1, · · · , Lmid, · · ·Lmax} (3.8)

where Rrecent is used to exclude sequences that are too close to the current robot

view [76]. L
[i]
k is in the range of Lmin to Lmax. We use Lmid as the length of

the current observed sequence, meaning that each candidate sequence can be either

shorter or longer than the current observation. Therefore, x[i]
k can be one of the

combinations of (I [i]k , L
[i]
k ), meaning that the sequence originates from I

[i]
k and has

the length of L[i]
k .

x
[i]
k ∈ {(I

[i]
k , L

[i]
k )} (3.9)

As the robot navigates, the current sequence observed (including the current view

and its predecessors within Lmid) is determined to be either a match to a previous

sequence or a new one. In the former case the current view Ic is considered an

old location while the latter case judges Ic as a new place. The map will then be

modified accordingly by either adding a link to a previous node or creating a new

node and incrementing N by 1.
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3.4.1 Observation Likelihood

The evaluation of observation likelihood of P (zk | x[i]
k ) now becomes complicated

because x
[i]
k involves a set of locations as in Equation (3.9). A reasonable and

intuitive way as in [76] is to correspond each location in x
[i]
k to its closest coun-

terpart in the candidate sequence and this can be done via interpolation after the

two sequences are aligned with each other. This method implies that the spatial in-

formation in terms of the sampling order of the frames reflects the true correlation

among these frames. A simpler alternative is to ignore this correlation and assume

the independence of locations in x
[i]
k . Then we can relate each location in x

[i]
k to its

best matching counterpart in the candidate sequence, in terms of similarity, rather

than spatial arrangement. We refer this method as maximum estimation because it

maximizes the similarity between the current sequence and a candidate one. Both

estimation methods are tested in our experiments. The results do not show any dif-

ference in performance when precision is high, although at a lower precision, the

maximum based estimation slightly outperforms the interpolation in [76], as will

be shown in the Section 3.5.

3.4.2 Motion Model and Resampling

In the 2D filter, I [i]k describes the robot motion and L[i]
k gives the change of the se-

quence length. The motion of I [i]k is similar to that in Sectoin 3.3.1. The second

dimension of sequence length can be unchanged, longer or shorter with equal prob-

ability. In this way we can sample the 2D space with the particles. The resampling

is also similar to that in Section 3.3.2.

3.4.3 2D Particle Filter Algorithm

The algorithm runs a standard particle filtering process as in Algorithm 3.1 with

each of the components elaborated above. There is one obvious difference in this

2D case compared with the 1D particle filter in finding the best candidate from the

pdf mode. Directly selecting the hypothesis with the most number of supporting

particles can be unreliable in a 2D space, especially when only a small number
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of particles are used. We have observed in our experiment that the originating

location of a sequence is more important than the length in finding a correct match.

Therefore, an intuitive way is to marginalize the second dimension to obtain a 1D

distribution of the starting locations in estimating the true match and for the best

one, we return all the sequences with different lengths (the second dimension). The

best matching sequence is the one with the highest support by the particles. In

general, the first step of marginalization strengthens the confidence in selecting the

correct starting location and the second step generates the best candidate based on

this location. This is of course a simple way of determining the match, although

it works well in our case. More sophisticated methods can be exploited here to

possibly obtain better performance. When the best matching sequence is selected,

the image in this sequence with the highest similarity above some given threshold

to the current robot view is deemed to be a loop closing location, otherwise the

current view is considered a new place. Strict geometrical verification can be also

applied in the last step to exclude any false positive.

3.5 Experimental Results

Comprehensive experiments were conducted for both methods. For the ordinary

particle filter algorithm proposed in Section 3.3, we ran the experiments on two

outdoor datasets with different levels of illumination change. A much larger dataset

consisting of more than 12000 stree view panoramas was used in testing the perfor-

mance and efficiency of the method of 2D extension.

3.5.1 Particle Filter in Appearance SLAM

The first dataset used in the evaluation is the Oxford City dataset that was published

for the evaluation of FAB-MAP [23]. The dataset contains 1237 pairs of images,

taken by the left and right cameras on the robot as it was driven through the envi-

ronment. GPS information and the ground truth were provided. Figure 3.1 shows

the ground truth matrix of the dataset and the visualization of GPS positions. More
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Figure 3.1: (a) Ground truth of the dataset. Bright indicates a match between two
locations. (b) Visualization of GPS positions. Note that the coordinates are only for
visualization purpose and do not reflect any metric information of the map. There
are two loops. The second loop is in red.

information about the dataset can be found online2.

Motion Model

Our motion model is described as follows
P (x

[i]
k = n+ 1 | x[i]

k−1 = n,uk) = p1

P (x
[i]
k = n | x[i]

k−1 = n,uk) = p2

P (x
[i]
k = n+ 2 | x[i]

k−1 = n,uk) = p3

P (x
[i]
k = n+ 3 | x[i]

k−1 = n,uk) = p4

(3.10)

n ∈ {1, 2, · · · , N} (3.11)

In our implementation p1, p2, p3 and p4 are set to be 0.7, 0.1, 0.1 and 0.1,

respectively, implying that the robot moves one step forward at each time with high

probability, although it can move more than one step or stay unchanged with low

probability.

Gabor-Gist Image Descriptor

Figure 3.2a shows the result of the cosine similarity among all images using original

Gabor-Gist descriptors. The left and right sets of images were processed separately

and the final similarity is the mean value of the two calculations. Although the

2http://www.robots.ox.ac.uk/∼mobile/IJRR 2008 Dataset/data.html
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Figure 3.2: (a) Similarity matrix built with the original Gabor-Gist descriptors. The
loop closure events can be visible. However, the discriminating power is limited.
(b) A detailed plot of the likelihoods associated with image 800. No significant
difference on likelihood exists among images.

secondary diagonal indicating loop closure is still faintly visible, the differences

among all the likelihoods are not obvious. We took a random image (number 800)

to plot the likelihoods associated with it shown in Figure 3.2b. The correct matches

of image 800 according to the ground truth are from 257 to 267. However, it can

be seen that there is no obvious difference in measurement for all the images. We

have observed in our experiments this likelihood provides little help to the particle

filter since it is too poor to correctly denote the temporal coherence in the image

sequence, as discussed in the Section 3.3.

Nonetheless, the faint secondary diagonal corresponding to the loop closure

images encourages us to optimize the result. The similarity matrix after applying

PCA to the original descriptors is shown in Figure 3.3a. We reduced the original

dimension of 960 to only 60, preserving 90% of the information according to the

eigenvalues of the principal components. The similarity matrix is discriminative

now and the loop closure is clearly visible as the secondary diagonal. To better un-

derstand the difference, we took the same image 800 to see the detail in Figure 3.3b.

Apparently, the temporal coherence in the image sequence is better reflected by the

gradual and obvious change on likelihood around the maximum value. Figure 3.5a

further describes this change in a zoomed-in view, focusing on the neighboring

images around the one with the highest value of likelihood. For the online imple-
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Figure 3.3: (a) Similarity matrix built with the descriptors after applying PCA to the
original ones. The loop closure events can be clearly visible. The dimensionality
of the new descriptors is 60. (b) A detailed plot of the likelihoods associated with
image 800. The difference is obvious among images.

mentation, we can sample images from the same or similar environment to obtain

the principal components. Figure 3.4 and Figure 3.5b show the results of using the

principal components trained from the first 100 images of the dataset.

Loop Closure Detection Performance

We ran the experiments with different number of particles for repeated times to

gather the performance. With the same parameter settings, the performance of all

the runs (we tried up to 50 times) are almost the same. The tiny difference can be

due to the random factors such as the resampling of particles. Therefore, we report

the result from one of these repeated runs here for each type of parameter settings.

For the verification of the loop closure candidate, we introduced three constraints to

avoid excessive and unnecessary trials. 1) The location must have sufficient number

of particles. The threshold here is 20% of the total. 2) The similarity measurement

based on Gist descriptor with the current robot view should be higher than 0.3 and 3)

the candidate should be “far enough” from the current one. These are all adjustable

parameters and the purpose of using these constrains is to keep the true loop closure

locations as many as possible for the further verification while excluding incorrect

ones. One can of course ignore these constraints (i.e., verification is applied at every

step) to obtain a higher recall, at the expense of spending more time on verification.
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Figure 3.4: (a) Similarity matrix built with the descriptors after applying PCA to
the original ones. The principal components are trained from the first 100 images of
the dataset. The loop closure events can still be clearly visible. (b) A detailed plot
of the likelihoods associated with image 800. As can be seen, there is obviously
better performance compared with Figure 3.2
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Figure 3.5: (a) A zoomed-in part of Figure 3.3b. (b) A zoomed-in part of Figure
3.4b. The likelihood of nearby locations around the one with the highest value
(image 262) are shown. The smooth change reflects the temporal coherence in the
image sequence.
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We emphasize that the verification does not have significant impact on the run time

of the algorithm since only one candidate is verified at most.

Figure 3.6 shows the precision-recall curves with respect to the verification

threshold (i.e., the number of matching features between two images) with different

number of particles. Generally, the performance becomes better with the increase

of particles. The best recall obtained at 100% precision with 50, 100, 150 and 200

particles are respectively 0.83, 0.87, 0.85 and 0.87. It seems that 100 particles pro-

vides slightly better performance than 150 particles here. We interpret this as the

convergence of the performance with the increase of particles.
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Figure 3.6: Precision-recall curves with different number of particles. Generally,
the performance goes up with the increase of particles

The visualization of loop closure detection at 100% precision is shown in Figure

3.7. Note that 100% precision is achieved by using a strict verification step such as

multi-view geometry as in the previous work [1, 2]. We can see that most locations

in the second loop are verified. However, the verification may reject some true

positives. An example is given in Fig 3.8. Our result shows that many rejected

true hypotheses do not share a common view with the current one. The algorithm
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also fails to detect loop closures for the last few locations. The reason is that the

robot traverses in an opposite direction. Therefore, the motion and observation

are both inconsistent with our assumptions. An example of a positive loop closure

detection is given in Figure 3.9. Figure 3.9a shows the likelihoods (upper) of all

the hypotheses and the corresponding pdf (lower) of the robot location which is

consistent to the likelihood. Figure 3.9b and Figure 3.9c are respectively the current

robot view and the retrieved location, taken from the left and right cameras.
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Figure 3.7: Visualization of loop closure detection at 100% precision with 100
particles. Red shows the detected loop closures (true positives). Green indicates
the locations that do not pass the verification (false negatives if in the second loop).
Blue illustrates the missing locations in the second loop that are not verified (also
false negatives).

Processing Time

For online implementation, the processing time mainly comes from three aspects:

the time of extracting the Gabor-Gist descriptor, the time of running a particle filter

and the time of verification. As discussed before, feature extraction is always an

inevitable process in every algorithm. Compared with local invariant features such
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(a) The current robot view. (b) The retrieved candidate.

Figure 3.8: An example of non-verified true positive (left view of the robot). Ac-
cording to the ground truth, the loop closure candidate is a true match of the current
view. However, the verification declines the hypothesis. It is understandable since
the two views do not look similar.

as SIFT, Gabor-Gist is faster to extract, taking only 160 ms for an image with a

MATLAB implementation on a 2.40GHz lab computer. The time of running a

particle filter, including the particle resampling and the motion, depends on the

number of particles used in the algorithm. Our experiments show that by using 50

particles it takes only around 2 ms to run the filtering at each step. Even if 10000

particles are used, the implementation could still be real-time since the filtering

takes up to 0.8 seconds due to the 1D nature of Equation (3.2). Regarding the

likelihood calculation, the dot product used to compute the similarity measurement

between the current view and a hypothesis (two 60 dimensional vectors in our case)

takes negligible time. The verification can be time-consuming, depending on the

number of local features extracted from the images. However, as mentioned above,

this does not happen at every step, and it is a standard procedure that is used in most

algorithms. Based on the above performance on loop closure detection with 50

particles in a map with 1000 locations, it is reasonable to believe that the proposed

method scales easily to large maps, consisting of many thousands of locations, as

will be shown later in Section 3.5.2.
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(a) The pdf of the robot location and the likelihood.

(b) The current robot view. Two images are taken from the left and right
cameras.

(c) The matching loop closure image with the highest number of particles.

Figure 3.9: An example of loop closure detection. The likelihood is relatively strong
around image 406. As can be seen, the likelihood and the pdf are consistent. Here
100 particles are used.
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Figure 3.10: (a) Similarity matrix built with the original Gabor-Gist descriptors –
significant illumination change. (b) A detailed plot of the likelihoods associated
with image 840.

Significant Illumination Change

Oxford City dataset conveys illumination change in a limited level. To evaluate

the performance of the proposed algorithm in the case of significant illumination

change, we conducted experiments on the two image sequences used in Section

2.4.2 of Chapter 2, with generally the same settings. Figure 3.10 shows the similar-

ity matrix using original gist descriptors with an example of the detail. The results

after applying PCA are shown in Figure 3.11. Apparently, as the environment be-

comes more challenging due to the illumination change, the loop closure events are

not as distinguishable as that in Figure 3.3. However, the similarity after PCA still

reflects the temporal coherence (although may not be perfect) among an image se-

quence. Thanks to our proposed filtering framework, we are still able to make use

of the likelihoods to detect loop closures.

The evaluation of this series of experiments is slightly different from that in Sec-

tion 3.5.1, mainly due to the loop closure verification. In the previous experiments,

verifying a loop closure is usually not a problem since the step of establishing fea-

ture correspondences is simple when two images match. In the case of illumination

change however, the true matching features are not that easy to find. As a result,

even if a true loop closure is returned, it could be rejected by verification due to

insufficient support from correct matches. We will discuss the problem of keypoint
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Figure 3.11: (a) Similarity matrix built with the descriptors after applying PCA
to the original ones – significant illumination change (b) A detailed plot of the
likelihoods associated with image 840.

matching in detail in Chapter 5 and propose an effective solution. At this moment,

to fairly evaluate the proposed algorithm, we will simply assume that verification

is 100% reliable and therefore consider only the recall value of detecting loop clo-

sures.

In addition, to compare our proposed method to the state-of-the-art SeqSLAM

[76] which was developed to handle significant illumination change, we used its

implementation on OpenSLAM3 with default parameters. Similarly, we focused on

the recall and considered the top matching for every frame in the night sequence.

Table 3.1 summarizes the recall values with respect to the number of particles,

together with that from SeqSLAM. By verifying only the top one candidate, a re-

call value of 73% can be obtained using 500 particles. This result is better than

that in Table 2.5 in Section 2.4.2 using direct feature matching, confirming the ef-

fectiveness of a whole-image descriptor plus a filtering framework. In addition, the

run time is extremely fast as illustrated before, even when 500 particles are used.

On the contrary, the execution of feature matching on this dataset is well beyond

real-time, making it not applicable in such an environment. SeqSLAM achieves

47% recall which is much lower than the proposed method. We interpret the dif-

ference from two aspects: the gist image descriptor in this environment is more

discriminating than the one used in SeqSLAM and, the filtering (not exploited in
3https://openslam.org/
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Table 3.1: Recall w.r.t. the number of particles.

# of particles 50 100 200 300 400 500 600 SeqSLAM
Recall (%) 59.91 60.22 63.93 66.25 69.04 73.07 69.97 47.37

SeqSLAM) boosts the performance. One can definitely use the same descriptor in

SeqSLAM to possibly improve the performance. That would however, result in a

more time-consuming process in calculating the similarity and finding the matches,

making the real-time robot exploration difficult.

An example of loop closure detection is shown in Figure 3.12. The true match-

ing location does not have the highest observation likelihood as shown in the top

of Figure 3.12a. However, in the posterior pdf, the proposed filtering framework

is able to correctly estimate the robot location due to its capability of capturing the

temporal coherence in the image sequence.

3.5.2 Extension of 2D Particle Filter

Our method has shown satisfactory results in dealing with illumination change in

appearance SLAM. An important goal of evaluating the performance of the method

in a 2D case is to validate its scalability. Therefore, we conducted experiments on a

large dataset consisting of more than 12000 street view panoramas that are taken in

the downtown area of Pittsburgh. The dataset was provided for research purposes

by Google and has been used in related work [84]. The vehicle route covers a long

run of 13 miles with frequent loop closure events in the process. Figure 3.13 shows

in the Google map how the vehicle traverses. To make it clearer, we visualized the

path in MATLAB as shown in Figure 3.14, without showing the last part of the

route. Some image samples are given in Figure 3.16 and Figure 3.17.

Ground Truth

We built the ground truth for matching images ourselves as it is not provided with

the dataset. For each view, GPS information (provided with the dataset) was used to

select the locations that are possible revisited places. However, taking into account
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(a) The pdf of the robot location and the likelihood.

(b) The current robot view. (c) The matching loop closure image.

Figure 3.12: An example of loop closure detection – significant illumination
change. The likelihood does not capture the matching location (image 114). How-
ever, the filtering is able to establish the correct posterior estimation of the robot
location. Here 500 particles are used.
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Figure 3.13: Vehicle route on Google map for the Google street view dataset. Figure
is taken from [84].

the unreliable measurement in GPS, we also applied a refining process with strict

visual check to finally determine the loop closure events. The guideline was that

for each possible revisited place, the “best match” one with sufficient similarity to

the view being checked should fall within a short distance around this view based

on GPS information, and the global consistency of detection should be maintained.

Here the “best match” can be determined by either visual check or any reasonable

similarity measurement. The global consistency means that the detection of loop

closures should be continuous without sudden interruption in the middle. This is a

tedious process but will give us precise locations of loop closure events. After these

steps, we produced 2941 ground truth locations with corresponding “best matches”.

Any location that falls within a short range of the “best match” in terms of sampling

(e.g. 20 frames) would be considered a true positive.

Gist Image Descriptor

There are four sub-views for each location from the front, rear, left and right, each

of which is a high resolution image of 640× 905 pixels. After applying PCA to the

original Gabor-Gist descriptors of all the sub-views, we calculated the similarity

between two locations simply as the average value of the similarities from the four

sub-views, which was also the method used in [109].
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Figure 3.14: A clear visualization of the route. The coordinates in this figure does
not reflect the true metric information. The last part of the route is removed for a
better view.

Motion Model and Parameters

Since a 2D particle filter is used, the motion model should be applied to each di-

mension as described below
P (I

[i]
k = n+ 1 | I [i]k−1 = n,uk) = p1

P (I
[i]
k = n | I [i]k−1 = n,uk) = p2

P (I
[i]
k = n+ 2 | I [i]k−1 = n,uk) = p3

P (I
[i]
k = n+ 3 | I [i]k−1 = n,uk) = p4

(3.12)

n ∈ {1, 2, · · · , N −Rrecent} (3.13)
P (L

[i]
k = l | L[i]

k−1 = l,uk) = 1/3

P (L
[i]
k = l − 1 | L[i]

k−1 = l,uk) = 1/3

P (L
[i]
k = l + 1 | L[i]

k−1 = l,uk) = 1/3

(3.14)

l ∈ {Lmin, Lmin + 1, · · · , Lmax} (3.15)

In our implementation p1, p2, p3 and p4 are set to be 0.7, 0.1, 0.1 and 0.1, respec-

tively. For the other parameters, Lmin = 15, Lmid = 20, Lmax = 25, Rrecent = 100,

α = 0.2. As we have observed the performance of the algorithm is not sensitive to

these parameter settings and the motion model, and currently we do not focus on
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the optimization of the parameters. Our primary concern is to reduce the time while

still keeping a satisfactory result in detection.

Performance

We used different numbers of particles in our experiments to validate the algorithm.

As a comparison, we also ran the exhaustive search method of the 2D space to find

the best match for the current robot view. That is, for the current sequence, every

possible previous sequence was compared and the best one was selected for place

recognition. Apparently the search is fast in a small map but will become slower as

the robot navigates. This will be discussed later. For the exhaustive search, we used

both methods of maximum estimation in Section 3.4.1 and the interpolation-based

one in [76] to calculate the similarity.

Performance in terms of precision-recall curve is given in Figure 3.15. The

curves are generated by varying the threshold of the similarity measure in deter-

mining a recognition. For the two ways of calculating similarity, the results are

almost identical with the maximum-based one slightly outperforms the other at a

low precision. Therefore, it is not really important of choosing which one to use in

our case. In the proposed algorithm, it is in general that more particles will provide

better result, but the advantage will become smaller with the particle increasing,

suggesting a convergence in performance as in Section 3.5.1. An interesting phe-

nomenon is that by using 1000 particles (only 10% of the map size), our method is

able to give equivalent recall (52.13%) to the exhaustive search (52.64%) at 100%

precision. We do observe that the method has inferior performance at a lower preci-

sion (around 5% lower in recall). This is however, not important since in appearance

SLAM, a high precision is usually required. Similar to the exhaustive search, most

of the false matching candidates generated in the method can be easily excluded by

using a high threshold in the decision step.

Figure 3.16 and Figure 3.17 are two examples of the perceptual aliasing in the

detection. The two views in Figure 3.16 are taken from different locations but share

a high similarity measure above 0.8, while the case in Figure 3.17 shows two images

taken in the same spot but the similarity is below 0.5, possibly due to different
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Figure 3.15: Precision-recall curves of the proposed algorithm with different num-
bers of particles and exhaustive search with two ways of similarity calculation. In
general more particles provide better result. The proposed method performs equally
well to the exhaustive search at a high precision, showing its effectiveness in this
context.

illumination conditions and occlusion. These cases are not easy to overcome in

both the proposed method and exhaustive search.

An example of a positive detection with 200 particles is given in Figure 3.18.

Figure 3.18a shows the pdf of the marginal distribution of the first dimension, i.e.,

the originating location of the sequence. The one with the highest value is used

to determine the best matching sequence as discussed in Section 3.4.3. Figure

3.18b and Figure 3.18c are respectively the current robot view and the retrieved

true matching location.

Processing Time

The main advantage of the 2D particle filter is its efficiency in large maps. The

most time-consuming part in the algorithm comes from the resampling of the par-

ticles, which grows linearly with respect to the particle number. All the other parts
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(a) The current robot view of the four directions.

(b) The false positive retrieved as a recognition. It has a high
similarity with the above panorama.

Figure 3.16: An example of the perceptual aliasing. The two panoramas are taken
from different locations but share a high similarity above 0.8.

(a) The current robot view of the four directions.

(b) The false negative missed in detection. It has a low similarity
with the above panorama.

Figure 3.17: Another example of the perceptual aliasing. The two panoramas are
taken at the same location but share a low similarity below 0.5, due to the illumina-
tion change (the front and rear sub-views) and occlusion (the side sub-views).
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(a) The pdf of the originating location. The true matching candidates
have significant higher values than the rest.

(b) The current robot view.

(c) The retrieved matching location.

Figure 3.18: An example of true detection. 200 particles are used here. The pdf
gives the originating location that needs to be used for selecting the matching se-
quence.
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Table 3.2: Speedup factor over exhaustive search at 99% precision

# particles 100 200 1000 1500 2000
Recall 47.43% 54.51% 70.93% 71.51% 73.31%

Speedup factor 139.53 78.95 15.63 9.76 6.96

such as the motion take negligible time. This resampling is independent of the map

size. Therefore, the processing time is always fixed as long as the particle number

is given. The time of exhaustive search however, highly depends on the map size.

In the Google dataset the map size is on a 10K order and for each starting location

we used 11 sequence lengths. The searching space is therefore on a l00K order.

With the same implementation platform, the processing time is at least one order

of magnitude longer than the proposed method in achieving similar performance.

Since 100% precision is not always available due to the perceptual aliasing, we

considered the recall values at 99% precision, which is 73.51% for the exhaustive

search. Table 3.2 shows that even if this highest recall is desired, by using 2000

particles the proposed method can be still 7 times faster than the exhaustive search.

The advantage is more obvious if a lower recall is desired. It is reasonable to be-

lieve the method can be scalable in a much larger map with satisfactory result in

detection. In fact, the implementation is still in real-time even if 10K particles are

used.

3.6 Summary

In this chapter, we have presented a visual loop closure detection method that uses

(but is not limited to) Gabor-Gist as the image descriptor to obtain the likelihood. A

particle filter framework is applied to exploit the temporal correlation in the image

sequence. The method proposed in this paper is not the first one that incorporates

a probabilistic framework in visual navigation. However, most previous work used

the BoW image descriptor and an inverted index to compute the likelihood, and

was therefore unable to exploit the MCMC approach, while in our method we use

a compact global image descriptor to directly compute the likelihood for only the
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samples of the robot location. We have shown in our method that as long as this

likelihood is able to capture the spatial correlation among neighboring locations in

an image sequence, it can be used in loop closure detection or appearance SLAM

with a particle filter in an efficient and effective way. In addition, a whole-image de-

scriptor is also capable of handling illumination change where local feature-based

algorithms may fail due to descriptor variance and repeatability issue. Our main

contribution is to provide a novel algorithm of using a good image descriptor in vi-

sual loop closure detection in illumination change. Although it is not our intention

to optimize the parameter settings, we believe that the dimensionality of the de-

scriptor can be even lower to work on the dataset that was used in our experiments

to validate the method. However, with the increase of the map size, more principal

components may be needed to build the descriptor.

A simple extension of the method in a 2D case has also been described. This

extension can be combined with SeqSLAM to improve the efficiency in sequence

matching without too much loss of performance. It makes use of a particle filter to

resample a 2D space of both the starting location of a sequence and its length. In

terms of obtaining the likelihood, we have shown that a maximum-based method

performs comparably with or better than sequence matching with interpolation. By

using a 2D particle filter, localization and mapping in large illumination changing

environment becomes possible.

As whole-image descriptors work well in appearance SLAM in dealing with il-

lumination change, a natural follow-up question is to investigate and compare their

capability in robot applications. In Chapter 4, we will conduct the performance

evaluation of several whole-image descriptors in various applications to generate

a guideline in applying these descriptors in a particular situation. In addition, al-

though the proposed particle filter framework plus a whole-image descriptor can

generate correct loop closure candidates, as mentioned in Section 3.5.1, the last

verification step may reject many true matches in the case of significant illumina-

tion change. We will analyze this problem in Chapter 5 and provide an effective

solution to ensure the detection rate.

∼
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Chapter 4

Performance Evaluation of
Whole-Image Descriptors

In this chapter, we will present the performance evaluation of different whole-image

descriptors in visual loop closure detection and other related robot applications. As

mentioned in the previous chapter, a whole-image descriptor does not require key-

point detection and is therefore fast to extract. In addition, it can be extremely

compact to reduce storage requirement. This type of image descriptors are attract-

ing an increasing amount of interest in appearance SLAM or robot localization. Our

evaluation is in the context of the previous works that have exploited a whole-image

descriptor in the application of visual loop closure detection or robot localization.

Several whole-image descriptors in three different categories are compared in our

study. Our experiments are conducted on several outdoor datasets and the results

show that although all these descriptors can be acceptable, they can provide signif-

icantly different performance depending upon the evaluation metrics.

4.1 Introduction

As discussed before, in the recent development of appearance SLAM or robot local-

ization algorithms, whole-image descriptors have been used to validate the perfor-

mance. It is therefore interesting to compare the effectiveness of these descriptors

and set up a guideline of choosing them in the context of loop closure detection

or any other applications that can benefit from a compact and discriminative im-

age descriptor. In this chapter, we conduct the performance evaluation of different
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whole-image descriptors with the help of the frameworks for loop closure detection

or robot localization. We first categorize the descriptors into three types according

to their implementation schemes, and then select one or multiple representatives

in each type for comparison. Besides the evaluation in loop closure detection, we

also compare them in the kidnapped robot problem or global localization to further

analyze their performance. Our purpose is to select the best and most applicable

whole-image descriptor in visual robot navigation.

4.2 Classification of Descriptors

This section provides an overview of existing whole-image descriptors. We classify

the whole-image descriptors into three types, according to how they are derived

from an image. For each type of descriptors, one or multiple representatives are

selected for comparison.

4.2.1 Filter-Based Descriptors

The Gabor-Gist image descriptor used in Chapter 3 represents an image in terms of

its responses to a bank of Gabor filters. The filtered image is then divided into image

tiles and the final descriptor consists of the average values of the tiles. Gabor-Gist

was also used in encoding panoramic images in [84] for visual loop closure detec-

tion. For a detailed description of Gist, please refer to the original work [88]. In our

evaluation, we use Gabor-Gist as the representative of the filter-based descriptors.

4.2.2 Gradient-Based Descriptors

To capture the texture of an image, gradient is widely used in many image descrip-

tors, such as the well-known SIFT and SURF. Gradient can be calculated for pixels

(SIFT) or a small neighborhood of pixels (SURF). The descriptor is a histogram of

the gradient directions, and the concept can be applied to a keypoint or to the whole

image, as is the case in our study.
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WI-SIFT

We first downsample the image to a smaller size (e.g. 128 × 128) and divide it

into 4 × 4 patches as this division was shown to provide the best result [65]. For

each image patch, a gradient direction histogram with 8 bins is constructed. Each

gradient direction added to the histogram is weighted by its gradient magnitude.

The final 128 dimensional descriptor (4 × 4 × 8) is normalized to a unit vector.

WI-SURF

In appearance SLAM, the rotation invariance of a descriptor is often simple to

achieve since the camera often moves without any rotation other than that about

the vertical axis to the ground. Our WI-SURF descriptor is in fact the upright ver-

sion (U-SURF) that does not take into account the orientation information, although

in general, one can use the standard SURF descriptor. Similar to WI-SIFT, we use

a 4× 4 division of the downsampled image to build the descriptor. The filter size of

the Haar-wavelet window is 4 in our experiments and the descriptor is normalized.

HoG

HoG. The histograms of oriented gradients (HoG) [25] was developed as a whole-

image descriptor. It is similar to the SIFT descriptor with the difference that it

is computed on a dense grid of uniformly spaced cells and uses overlapping local

contrast normalization for improved accuracy. We include HoG in our evaluation

and extract the descriptor for each downsampled image with the same size as is

used in WI-SIFT and WI-SURF.

The above three gradient-based whole-image descriptors are used for evaluation

because this type is the most popular implementation with wide applications. It is

our interest to find if there is any obvious difference among these descriptors in the

context of visual loop closure detection or robot localization.

4.2.3 Binary Descriptors

More recently, the binary feature descriptors were introduced with BRIEF [12] and

BRISK [57] as the two representatives. ORB [98] is a variant of BRIEF. These
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binary descriptors provide efficiency in both memory usage and extraction, as well

as their comparable performance with the real-valued descriptors. Since BRIEF

and BRISK are similar in nature, we select the former in this study as it has been

used in loop closure detection in [109], which showed that the downsampled image

with 7 × 7 tiles provides the best performance in their experiments. Hence we also

use their parameter settings in our work. The image is downsampled to a size of

m · s × m · s pixels with m = 7 and s = 48. For each tile, a 32 byte (256 bit)

BRIEF descriptor is built and the length of the final BRIEF-Gist is 1568 (32 × 49)

bytes or 12544 bits. The size of the downsampled image used here is bigger than

that is used previously (128× 128). Note that however, even for a larger image, the

highly efficient and compact binary descriptor can still be extracted with negligible

time – much faster than the filter or gradient-based descriptors for a smaller image.

4.2.4 Pyramid Bag-of-Words

The idea of pyramid BoW was proposed by Lazebnik et al. in [55]. The descriptor

does not belong to any of the previous types since it requires vector quantization

for the extracted features in an image. However, one major difference between

the pyramid BoW and the traditional BoW is that one type of pyramid BoW does

not use any costly keypoint detection. Instead, it uses “weak features” which are

pixels whose gradient magnitude exceeds a minimum threshold. This makes the

feature extraction fast. Another key improvement is that the BoW histogram is

built for increasingly fine partitions of an image and the final image descriptor is

the concatenation of all the weighted descriptors along the pyramid. Therefore, the

spatial information of the keypoints is contained in comparing images. In addition,

the vocabulary size can be small (up to 400 visual words) and the descriptor is

faster to compute with respect to the other whole-image descriptors we consider.

We include pyramid BoW in our study as an alternative of the traditional BoW

image descriptor.
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4.3 Evaluation Framework

Performance evaluation of the whole-image descriptors is conducted under the par-

ticle filter framework proposed in the previous chapter for visual loop closure de-

tection, which is our main focus in this study. We use the recall-precision curves

of the loop closure detection algorithm as the performance metric. In general, our

method considers all the previous locations together as the state space. The goal is

to estimate the pdf of robot location based on a sequence of observations.

As an alternative application, we also use the global localization or the so-called

kidnapped robot problem as a context for comparing the whole-image descriptors.

A kidnapped robot refers the case when a robot suddenly loses tracking of its correct

location in the map. In such a case, it is hoped that the robot can re-localize itself

soon. Recovery from a kidnap is essentially the global localization problem, which

estimates the robot location in the entire state space and is a fundamental capability

for a mobile robot. Therefore we want to design another experiment to test the

convergence capability of these image descriptors in the kidnapped robot problem,

i.e., how soon the robot can recover from a kidnap with these descriptors as the

similarity measurements as in [3].

The particle filter algorithm in Chapter 3 works equally well for the global local-

ization problem (except that no state augmentation is required), and it is therefore

used to solve the kidnapped robot problem and evaluate performance. The evalua-

tion metric in this case is the average number of iterations it takes for the robot to

re-localize itself, upon being kidnapped randomly within a previously learned map.

4.4 Experimental Results

We implementedWI-SIFT,WI-SURF and BRIEF-Gist and the other (HoG1, Gabor-

Gist2 and pyramid BoW3) implementations can be found online. Default parameter

settings were used for the available implementations. Therefore the dimension-

alities of Gabor-Gist, HoG and pyramid BoW are 960, 81 and 4200 respectively.

1http://www.mathworks.com/matlabcentral/fileexchange/28689-hog-descriptor-for-matlab
2http://people.csail.mit.edu/torralba/code/spatialenvelope/
3http://www.cs.illinois.edu/homes/slazebni/
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PCA was applied on the original descriptors except BRIEF-Gist to reduce the di-

mensionalities of the descriptors while preserving around 90% information. This

produced all the final descriptors with fewer than 100 dimensionality except for

BRIEF-Gist where PCA does not apply. Two datasets of Oxford City centre and

Google street view that were introduced and used in the Chapter 3 were also used

in this evaluation. Note that the study conducted in this chapter mainly focuses on

the performance evaluation of descriptors. We used public datasets as they have

been widely used in related work in the context of robot applications. The perfor-

mance of these candidate descriptors may drop if experiments are conducted in a

more challenging environment, for example, with significant illumination change.

However, it is reasonable to believe that the difference among the descriptors can

be similar.

4.4.1 Oxford City Centre Dataset

The similarity matrices created by each whole-image descriptor after PCA (Ham-

ming distance was used for BRIEF-Gist as the similarity measure and cosine simi-

larity for the rest) are shown in Figure 4.1. As can be seen the loop closure events

responsible for the secondary diagonal can be visible for all the cases. However

in BRIEF-Gist, this secondary diagonal is not as clear as in the other cases. This

suggests that the similarity among images is captured as well, although not obvious

by the binary descriptor.

As a preliminary analysis, we processed the similarity matrices in Figure 4.1 and

assumed the top matching image to be the loop closure event, subject to a thresh-

old that varies from 0 to 1. This was the method adopted by [109]. Although the

method does not exploit spatial coherence of the loop closure events, it is nonethe-

less appropriate for our performance comparison purposes. The precision-recall

curves are shown in Figure 4.2. With 100% precision, Gabor-Gist provides the best

recall and all the other descriptors perform similarly. At a lower precision however,

WI-SIFT and WI-SURF can still give equivalent performance to Gabor-Gist, while

that of the other three drops. BRIEF-Gist can be better than pyramid BoW and

HoG, which suggests that binary descriptors are useful in some applications. An-
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(a) Gabor-Gist (b) WI-SIFT (c) WI-SURF

(d) HoG (e) BRIEF-Gist (f) Pyramid BoW

Figure 4.1: The similarity matrices with different image descriptors for the Oxford
City Centre dataset.

other interesting point is that although pyramid BoW does not show a competitive

result in this evaluation, it can be useful for loop closure detection in the filtering

framework when spatial coherence is exploited, as will be shown later.

Particle Filter-Based Loop Closure Detection

For each image descriptor, we repeated our experiment on the particle filter-based

loop closure detection algorithm 15 times for a given number of particles. There are

totally 561 loop closure events in this dataset and the recall is used as the evaluation

criterion as precision can achieve 100% by using a strict MVG-based verification.

Specifically, we counted the number of true loop closure hypotheses that were sub-

mitted for verification. The assumption of a reliable verification is made here, which

implies that all the selected true loop closures can be confirmed by this verification

and the false ones can be rejected. Therefore, the recall value here is not comparable

to the recall mentioned above in Figure 4.2 with a simple thresholding scheme.

Figure 4.3 shows the evaluation for all the image descriptors except for BRIEF-

Gist, which we will discuss shortly. We use the standard deviation of all the runs
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Figure 4.2: Precision-recall curves for different whole-image descriptors on Oxford
City Centre dataset. The curves are generated by considering the top one match for
each image and using different thresholds. At 100%, Gabor-Gist gives the best
recall.

to account for the performance uncertainty. The results show that performance will

become better with increasing number of particles and tend to converge. Gabor-

Gist provides the best performance of all the descriptors, while pyramid BoW is the

worst. This result is consistent with that in Figure 4.2. A possible explanation of

the inferior performance with pyramid BoW is that the naı̈ve weak feature is not

discriminative enough. However, considering that the recall of pyramid BoW in

Figure 4.2 never reaches 80%, our algorithm does help improve the performance

and makes it possible to use the descriptor in loop closure detection. The three

gradient-based descriptors perform almost equally, which means they have similar

discriminating power under this evaluation criterion. It is also worth noting that

the gradient-based descriptors provide approximately 3% lower recall than Gabor-

Gist, with an obvious advantage over Gabor-Gist in computational efficiency. We

will analyze the time complexity in Section 4.4.3 to compare the efficiency of the

descriptors.

Our evaluation framework shows poor performance of BRIEF-Gist because of
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Figure 4.3: Recall of loop closure detection w.r.t. the number of particles on Oxford
City Centre dataset. The recall defined here is different from it is defined in Figure
4.2. Gabor-Gist performs best. We do not include BRIEF-Gist here since it does
not work with the evaluation framework.

the ambiguous similarity measurements (Figure 4.1e). The resampling based on the

particle weights would not work well in such a case and since random particles are

introduced in every step to maintain the population diversity, we can hardly estab-

lish a stable track for the continuously and correctly matching locations. However,

this does not suggest the Bayes framework is ineffective. Similar to the PCA that

can be applied on real-valued descriptors, a possible solution is to exploit methods

that can improve the discriminating power of the binary descriptors, possibly an

interesting open problem in binary descriptor research.

Kidnapped Robot Analysis

The whole image descriptors have also been compared in the problem of global

robot localization. For kidnapped robot evaluation, the experiment was repeated 20

time with different numbers of particles and the results are shown in Figure 4.4. In

this case, the performance differences among descriptors are not obvious, although

Gabor-Gist still slightly outperforms the others, especially when the number of par-
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ticles is increasing. Interestingly, the pyramid BoW does not show a visibly inferior

result as in the previous experiment (Figure 4.2 and Figure 4.3). The possible ex-

planation is that since the similarity measurement with pyramid BoW is capable of

capturing the temporal coherence in the image sequence and therefore does help

drive particles toward the correct location when a kidnap happens. However, due

to its lack of discriminating power which has been shown in Figure 4.2, the track-

ing can be lost easily and need for relocalization arises frequently. This has been

observed in our loop closure detection experiments. BRIEF-Gist (not shown) still

cannot perform well due to its inability of representing the spatial or temporal co-

herence clearly.
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Figure 4.4: Convergence steps w.r.t. the number of particles on Oxford City Centre
dataset. There are no significant differences among descriptors in this application,
although Gabor-Gist still slightly outperforms the others.

4.4.2 Google Street View Dataset

Figure 4.5 shows the precision-recall curves of the descriptors produced by chang-

ing the threshold to determine if the top one match is a true positive or not. Gabor-

Gist, WI-SIFT and HoG perform equally on this dataset at a high precision, fol-
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lowed by WI-SURF, BRIEF Gist and pyramid BoW. The results are generally con-

sistent to that in Figure 4.2, with the difference that HoG outperforms WI-SURF.

This can be understandable because each dataset is a different case and it could be

true that the gradient between a neighborhood of pixels in SURF is not a proper

way to capture the appearance of the images in this dataset.
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Figure 4.5: Precision-recall curves for different whole-image descriptors on Google
dataset.

The performance of particle filter-based loop closure detection is shown in Fig-

ure 4.6. Since this is a large dataset, we ran once the experiments for each group

of parameter settings. Figure 4.6 shows that 500 particles (about 5% of the to-

tal number of locations) can be enough to obtain converging performance for this

dataset and the results are consistent to that in Figure 4.5. Compared with the pre-

vious dataset, Gabor-Gist no longer shows obviously superior performance to the

gradient-based ones but it is still among the top. For the three gradient-based de-

scriptors, WI-SIFT is the most reliable one since it provides stable performance in

both datasets.

Figure 4.7 shows the performance of image descriptors in kidnapped robot prob-

lem for Google dataset. The results are generally consistent to that in Figure 4.4,
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Figure 4.6: Recall of loop closure detection w.r.t. the number of particles on Google
dataset.

where all the descriptors perform almost equally. In addition, there is a trend for

convergence with the increase of the particle number. The standard deviation also

becomes smaller with more particles, suggesting more stable performance.

4.4.3 Time Complexity

The filter-based Gabor-Gist descriptor always provides stable performance. How-

ever, it is not the most efficient one. The extraction of the filter-based descriptors

usually requires a convolution and its time complexity is O(nlogn), where n is

the number of pixels in the image. For the gradient-based descriptors, the time

complexity is O(n) since only one traversal over the image pixels is needed. The

extraction of the binary BRIEF-Gist is in constant time regardless of the image

size. The absolute execution time can be dependent on many factors such as how

the implementation is optimized. In our specific case with MATLAB implementa-

tion, the WI-SIFT and WI-SURF are fives time faster to extract than Gabor-Gist for

the downsampled image with the same size and BRIEF-Gist is even faster. Most

importantly, even with the MATLAB implementation, all whole-image descriptors
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Figure 4.7: Convergence steps w.r.t. the number of particles on Google dataset.
Gabor-Gist and HoG are better than the others in this application.

together with the loop closure detection algorithm work efficiently, for well under a

second in processing one image, fast enough for most ground robotics applications.

4.5 Summary

In this chapter, we have presented the performance evaluation of several whole-

image descriptors classified into three types, the filter-based, the gradient-based and

the binary descriptors. A variant of BoW, named the pyramid BoWwas also studied

in our evaluation. Three evaluation metrics were used for the comparison, includ-

ing the recall-precision curve of loop closure detection based on a simple analysis

of the similarity matrix, the recall curve of loop closure detection using our pro-

posed algorithm in Chapter 3 that utilizes a particle filter and the convergence rate

of the kidnapped robot application also using our particle filter-based localization

algorithm. Our results show that the filter-based descriptor such as the Gabor-Gist

performs better than or at least equally to the others in all these applications at the

expense of a higher time complexity in implementation. WI-SIFT is the most sta-

ble descriptor among the three gradient-based ones, possibly due to its strong local
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invariance. The binary descriptor, i.e., BRIEF-Gist, is applicable in visual loop clo-

sure detection based on the simple analysis with the similarity matrix. However,

this naı̈ve method of selecting the best match by comparing the current image with

all the previous ones, may not work well in large scale applications without exploit-

ing spatial coherence of loop closing events. In addition, a principled guideline for

selecting a reasonable threshold to trigger loop closure is a difficult issue. Pyramid

BoW can be acceptable in a kidnapped robot problem, but is not stable enough in a

long time tracking.

Future work includes optimizing the image descriptors with respect to their tun-

ing parameters. Taking advantage of the low time complexity, there is a potential of

using BRIEF-Gist in a more effective way by exploring the methods of increasing

its discriminating power.

∼
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Chapter 5

Robust Keypoint Matching for
Verification

In this chapter, we will propose a simple yet effective keypoint matching method

that is able to perform well under significant illumination changes. Keypoint match-

ing is an essential step in verifying loop closures. We contend and verify experi-

mentally that a major difficulty in matching keypoints when illumination varies sig-

nificantly between two images is the low inlier ratio among the putative matches.

The low inlier ratio in turn causes failure in the subsequent RANSAC algorithm

since the correct camera motion has as much support as many of the incorrect ones.

By assuming a weak perspective camera model and planar camera motion, we de-

rive a simple constraint on correctly matched keypoints in terms of the flow vectors

between two images. We then use this constraint to prune the putative matches to

boost the inlier ratio significantly thereby giving the subsequent RANSAC algo-

rithm a chance to succeed.

5.1 Introduction

In the previous chapters, we have discussed multiple ways of dealing with illumina-

tion change in appearance SLAM, including feature matching with k-d tree and the

use of a whole-image descriptor in a particle filter framework. As mentioned before,

the last step in appearance SLAM is the verification that identifies the true matching

locations from a list of candidates generated by a loop closure detection algorithm.

Verification is expected to be reliable and robust, and therefore performed in local
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feature level, with the expectation to find true matching keypoint pairs.

Keypoint matching is usually performed in two steps: similarity comparison

where the keypoints in the first set are matched with those in the second using

their descriptors, and geometric verification which imposes a constraint on the pu-

tative matches that they originate from the same camera motion. For similarity

comparison, a nearest neighbor search can be used to find the putative matches,

which include both the true matches (inliers) and many incorrect matches (outliers).

Matching via nearest neighbor however works poorly because it generates a large

number of outliers. A uniqueness constraint such as distance ratio test [65] can be

applied to improve the inlier ratio in the first step. The geometric verification step

focuses on finding a model of the camera motion that the true matches must sat-

isfy using well-known results from multi-view geometry (MVG). The most popular

constraint is the epipolar constraint where the matched keypoints must lie on the

same epipolar lines [42]. Since neither the inliers nor the camera motion is known

in general, RANSAC [33] is typically employed to search for the camera motion in

the presence of outliers.

In spite of the effort in achieving invariant properties of feature detectors and

descriptors, keypoint matching based solely on descriptors can be still problematic

when the illumination changes significantly. Figure 5.1 gives an example why il-

lumination change can cause considerable difficulty in keypoint matching in the

standard method where distance ratio test [65] is used as the pruning step. When

there is no change in illumination (red curves in Figure 5.1), sufficient true matches

can be found and false matches rejected by choosing a proper distance ratio, as pro-

posed in [65]. However, in the case of significant illumination change (blue curves

in Figure 5.1), it becomes difficult to select a threshold that finds sufficient true

matches without including many false matches. An attempt to increase the number

of true matches by using a higher distance ratio would also unfortunately intro-

duce a large number of outliers and cause difficulty in the subsequent RANSAC

algorithm.

Our proposed method resorts to a non-parametric geometric constraint on key-

point displacements as a way of boosting the inlier ratio. Our solution is partially
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Figure 5.1: Typical inlier/outlier distributions with respect to distance ratio under
different illumination conditions. As illumination changes drastically (blue curves),
it becomes difficult to find an appropriate distance ratio that can produce a high
inlier ratio and a high number of inliers.

inspired by the research on the spatial statistics of optical flow [97], which finds

that optical flow of images in a video sequence, captured by a hand-held camera,

follows a well-defined peaked Laplacian distribution. Since the displacement vec-

tors of matching keypoints between images is equivalent to optical flow, they might

also follow a well-defined statistical distribution. In fact, this distribution can be es-

tablished theoretically with the weak perspective camera model and planar camera

motion, as is experienced in many robotics and computer vision applications. Thus

we can employ this distribution as a prior of the inlier matches. Weak perspective

is a reasonable camera model in many outdoor environments where the depth of the

scene points is small relative to their distance to the camera or when many of the

keypoints of interest have this property.

5.2 Related Work on Keypoint Matching

In this section, we review the background and related work of our research, includ-

ing the methods of establishing keypoint correspondences and the existing solutions

to this problem under illumination change.
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5.2.1 Keypoint Matching with Geometric Constraints

As mentioned, keypoint matching algorithms involve two steps: (1) finding a set of

putative matches and (2) removing outliers by imposing a geometric constraint on

the putative matches. Keypoint descriptors are used in the first step where putative

matches are obtained by measuring similarity between descriptors. In the second, a

uniqueness constraint such as distance ratio and mutual consistency can be applied

to exclude matches that are likely to be false. As well, one can attempt to identify

an underlying camera motion between the two images and use the motion to prune

putative matches. For identifying the underlying motion, there are generally two

types of strategy in obtaining the inliers. One is through the iterative hypothesize-

and-verify framework where a model is computed with a randomly selected subset

of putative matches and verified by the rest to estimate the level of support for the

model. One the other hand, the model can be also estimated using the entire set of

putative matches. In such a case, keypoint matching is formulated as a combinato-

rial optimization problem and the inliers are associated with the optimal solution.

RANSAC [33] is an effective algorithm to identify inliers induced by the under-

lying camera motion in the presence of outliers. The algorithm continuously iter-

ates until either the maximum number of steps is reached or the algorithm reaches

a solution with sufficient support. Several variants of RANSAC have been devel-

oped to improve the performance of the original algorithm. For example, MLE-

SAC [116] uses a weighted strategy to evaluate how well the inliers fit the model,

taking into account the outlier distribution. A solution to maximize the likelihood,

rather than the number of inliers, is selected to generate more accurate estimation

of camera motion. On the other hand, LO-RANSAC [19] focuses on reducing the

number of iterations in RANSAC. This can be done by adopting a local optimiza-

tion step with a selected set of potential inliers to re-estimate the parameters in

the current best model. Alternatively, an ordering structure of the set of putative

matches based on descriptor similarity is exploited in PROSAC [18]. Samples are

drawn from progressively larger sets of top-ranked correspondences and the algo-

rithm converges much faster than RANSAC. A detailed performance evaluation and

analysis of RANSAC and its variants are provided in [93]. Apparently, all the vari-
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ants mentioned here are motivated by the desire to improve the model accuracy,

with the potential benefit of speeding up the convergence. The issue of low inlier

ratio however, is not effectively addressed in these methods, since they still depend

on randomly selected samples from the entire putative matching set.

Alternatively, keypoint matching can be formulated as a constrained optimiza-

tion problem where all putative matches are used as the input to an objective func-

tion. In [118], the matching task is formulated as an energy minimization problem

and the objective function takes into account both feature descriptors and their spa-

tial information. Dual decomposition is used to solve the minimization problem.

The spectral matching [56] algorithm uses a spectral method where an adjacency

matrix of a graph is defined with the nodes representing the potential correspon-

dences and the weights on the links representing pairwise agreements between po-

tential correspondences. The principal eigenvector of the matrix is used to recover

the correct assignments based on how strongly they belong to the main cluster.

Graph shift [62] method optimizes the same objective function as in [56] but with

different constraints based on l1 norm to find all large local maxima (including

the global maximum) through a systematic way of initialization. A progressive

graph matching framework is proposed in [16] where probabilistic progression and

matching of graphs are combined to efficiently re-estimate the most plausible target

graphs based on the current matching result. More recently, the vector field inter-

polation proposed in [66] uses an expectation-maximization algorithm to identify

the implicit probabilistic model representing the uniformity that must be satisfied by

optical flow derived from the true matches. Most methods in this type consider both

feature similarity and spatial arrangement, and are relatively more robust to outliers

than those using hypothesize-and-verify framework. However, solving a complex

optimization problem can be NP-hard, making these algorithms inappropriate for

robotics applications.

5.2.2 Keypoint Matching under Illumination Change

A main impact of illumination change on keypoint matching is the descriptor vari-

ance. Several attempts exist to neutralize the impact of illumination through im-
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proved descriptors. For example, a descriptor can be made partially invariant to

illumination by choosing a proper color space in which to compute the descriptors.

A comprehensive study in [50] evaluates the performance of color descriptors in-

cluding SIFT in the application of scene recognition with illumination change. It is

shown that color SIFT generally performs better than the original SIFT descriptor,

which is computed on a grayscale image.

Alternatively, accurate keypoint matching can be achieved by learning a dis-

tance metric in the feature space where the correlations among the features are

characterized in terms of the statistics of co-occurrence. This approach is based on

the assumption that Euclidean distance may not be optimal in capturing the similar-

ity between descriptors. An example of this approach is presented in [72] with its

application to visual localization under illumination change in [94].

Yet another approach to address illumination invariance is through feature se-

lection. The idea is to retain keypoints that are distinct, representative and easy to

match, and eliminate the less reliable ones that impact matching negatively. Scale

dependent feature selection [128] is one example with the observation that key-

points extracted at coarse scales usually provide better matching performance than

those at fine scales, although the numbers are fewer. In general, keypoint matching

repeatability can be learned and used to improve the result [43]. All techniques

reviewed in this section are complementary to our outlier pruning algorithm, and

they can be employed in combination with our method to obtain optimal keypoint

matching performance.

5.3 Outlier Pruning with Consensus Constraint

This section describes our proposed outlier pruning algorithm. We start by intro-

ducing the weak perspective camera model, one of the assumptions that is used in

our study. Subsequently, we discuss the statistics of optical flow that support our

proposed algorithm. Then we explain how Chebyshev’s inequality is used to prune

outliers and, for that, we discuss how to determine the parameters needed for using

the inequality.
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5.3.1 Weak Perspective Camera Model and Optical Flow

The weak perspective camera model is a special case of a projective camera model

when the depth of the scene points is small relative to their distance to the camera.

A projective or pin-hole camera transforms a 3D scene point X = (X, Y, Z)T into

an image point u = (u, v)T by [
u
v

]
=
f

Z

[
X
Y

]
(5.1)

where f is the focal length of the camera. Perspective effect refers to the phe-

nomenon that objects far away from the camera appear smaller than objects close

by. This is clearly captured by the denominator Z in Equation (5.1). While this

is the general case in most applications, there are instances where the perspective

effect is small so that it can be ignored for computational advantages. Examples of

weak perspective projection include when imaged objects are far from the camera

relative to their depth, and when space points are on a planar surface almost parallel

to the image plane. In such cases, the weak perspective camera model adequately

models the projection process, and this gives rise to the first assumption in our study.

In a weak perspective camera, all the geometrical properties in a pinhole camera,

including the epipolar constraint hold true, and multi-view geometry is applicable.

However, the transformation from a 3D scene to an image point is simplified to[
u
v

]
=

f

Zave

[
X
Y

]
(5.2)

where Zave is the average distance of all the space points.

Note that in many robotics applications including loop closure detection, this

weak perspective camera model can be assumed because most scene points are far

from the camera especially in the outdoor environments, or for a subset of these

points that have similar distances to the camera if they come from the same region

of an object such as a building or a tree. While it is true that not all the scene points

can be adequately modeled using weak perspective, the subset of points that do

satisfy the weak perspective assumption can be handled by our method.
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5.3.2 Flow Vector Distribution of Matching Keypoints

Under the weak perspective camera model, we will show in this section that the flow

vectors of the matching keypoints follow an extremely simple distribution. It is this

prior that we will use to prune putative matches for inliers. The flow vector of two

matching keypoints in two images is determined by the positions of the 3D point

with respect to the two camera positions when the 3D point is projected. Using the

first camera as the reference frame, when a 3D space point is observed in the second

camera, the position of the point with respect to the second camera is given by X ′

Y ′

Z ′

 = R

 X
Y
Z

+ L (5.3)

where (X,Y, Z)T is the position of the 3D point in the first camera and R and

L = (LX , LY , LZ)
T are respectively the camera rotation and translation. For the

application of loop closure detection of a ground vehicle as well as in many other

applications, we can further assume locally planar motion, i.e., there can be only

non-zero translations in X and Z, and a non-zero rotation θ around Y of the camera.

In addition, with the weak perspective camera, Z can be replaced by Zave. The

rotation and translation of the second camera become

R =

 cosθ 0 sinθ
0 1 0
−sinθ 0 cosθ

 (5.4)

L = (LX , 0, LZ)
T (5.5)

As a result, the space point in the second camera is given by

X ′ = Xcosθ + Zsinθ + LX (5.6)

Y ′ = Y (5.7)

Then flow vector of the space point in the image plane is obtained by evaluating

Equation (5.2) twice and then taking the difference

∆u =
f

Zave

(X ′ −X) =
f

Zave

· Zsinθ + LX

1− cosθ

=
fsinθ

1− cosθ
+

fLX

Zave(1− cosθ)

(5.8)
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∆v =
f

Zave

(Y ′ − Y ) = 0 (5.9)

A quick inspection of Equation (5.8) and (5.9) reveals that both ∆u and ∆v are in

fact independent of the 3D point. If we are to generate the distribution of the flow

vectors of all the matching keypoints, then the distribution will be deterministic, at

a single value with probability 1, and independent of the positions of the 3D points,

i.e., under a weak perspective camera with planar motion, the induced optical flow

of all the keypoints will be dependent only of the camera motion. Specifically,

the horizontal (u) component is related to θ and LX and v component is always 0.

In practice, however, the weak perspective assumption is not strictly satisfied by

all the space points, and there are errors also in keypoint locations, among others.

As a result, the observed optical flow for matched keypoints follows a distribution

whose mean is near that given by Equation (5.8) and (5.9), and whose dispersion is

expected to be small. It is this peaked distribution that will serve as the basis for our

outlier pruning algorithm and it is, not surprisingly, supported by previous studies

on optical flow as will be briefly discussed in the next section.

5.3.3 Statistics of Optical Flow

The previous section derives the optical flow under planar camera motion for the

points satisfying the weak perspective assumption. In fact, the statistics that serve as

the basis of our outlier pruning method is related to the study in [97] where images

in a video captured by a hand-held camera travelling forward are used to compute

the horizontal and vertical components of optical flow, which are found experi-

mentally to be approximately Laplacian, which is unimodal with a peaked form.

However that result was obtained for multiple images, while our method focuses

on a single image pair. In our case, although the distribution may not necessarily

be Laplacian, it is expected to be unimodal when the weak perspective assumption

holds true according to the analysis in the previous section. In a way, our study is

consistent with the finding in [97] in terms of the simple statistics of the optical flow

induced by planar camera motion. An obvious difference is that the distribution of

optical flow frommultiple image pairs was found to have a mode near 0 while in our
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case, it is in general not at 0 in the horizontal direction according to Equation (5.8).

This is understandable because a statistical distribution built from multiple image

pairs is a mixture of many distributions. Fortunately, our method depends only on

the fact that matching keypoints generate a dominant peak in the distribution of

optical flow vectors, and that the location of the mean is unimportant.

5.3.4 Chebyshev’s Inequality

Although the flow vectors of the matching keypoints is shown to follow an ex-

tremely simple distribution under the assumptions of weak perspective camera and

locally planar camera motion, the actual distribution of this displacement can be

quite complex due to many reasons, such as non-planar camera motion, lens dis-

tortion, keypoint localization error, etc. More seriously, we are able to compute

only the distribution of the flow vectors of putative matches, not that of the inlier

matches. Therefore, in our algorithm, we must resort to a robust statistical tool to

prune the putative matches. For this purpose, we use the Chebyshev’s inequality as

the basis to separate inliers from outliers among the putative matches. The inequal-

ity states that in any probability distribution, no more than 1/k2 of the distribution’s

values can be more than k standard deviations away from the mean (or equivalently,

at least 1− 1/k2 of the distribution’s values are within k standard deviations of the

mean). Mathematically, let X (integrable) be a random variable with finite expected

value µ and finite non-zero variance σ2. Then for any real number k > 0 (only the

case k > 1 provides useful information),

Pr(|X− µ| ≥ kσ) ≤ 1

k2
(5.10)

Equation (5.10) implies that for a given k, if σ is small, the interval to include a

majority of data samples can be narrow. Therefore, the only requirement for our

method to work is that the flow vector distribution is dominated by inliers near the

mode and outliers do not contribute to a particular mode specifically. We can then

estimate σ of the optical flow distribution using samples near the mode, and then

select most inliers accordingly without including too many outliers. In fact, far

more than 1−1/k2 inlier samples in our case are within the interval of (µ−kσ, µ+
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kσ), as will be shown in Section 5.4.

5.3.5 Consensus Constraint

Development in the previous sections has concluded that, under the weak perspec-

tive and planar motion assumptions, the distribution of keypoint displacement of

inliers among the putative keypoint matches is unimodal and peaked at a mean in-

dependent of the 3D scene, in both u and v components. In this section, we will

exploit this critical conclusion as a constraint on the inlier matches. We refer to

this constraint as consensus constraint, to indicate the fact that the consistency in

the flow vector displacement is a property that all inlier matches agree upon. As

mentioned, for us to be able to take advantage of the consensus constraint, the

displacement distribution of outliers must not distort this simple inlier distribution

enough to skew the dominant peak in the combined distribution. While this is dif-

ficult to establish theoretically, one can consider the outlier distribution to result

from random matches. Consequently, the distribution of the flow vector displace-

ment due to outliers is similar to that of the distance between two random points in

a rectangle defined by the image size. This distribution is also unimodal but with a

large variance [91] and can be approximated by a uniform distribution [66] over an

interval defined by the width and the height of the image. Therefore, it is reasonable

to expect that the dominant peak of the inliers can be identified by a mode-seeking

algorithm – for example mean shift in our case – to detect the mode in the mixture

distribution. In summary, our algorithm for pruning the outliers using the consensus

constraint can now be fully constructed as in Algorithm 5.1.

In Algorithm 5.1, mode(Sp) is to find the mode of the samples in Sp and var(Sp)

is to calculate the variance, in both x and y components. In the last step, Su 7→

Uid means mapping the elements in Su to their matching ids, i.e., the number of i

specified in Step 2. Therefore, the consensus set of inliers correspond to the samples

that fall into the rectangular area bounded by um± kσu and vm± kσv. One issue is

that in Chebyshev’s inequality the mean of the distribution is used to determine the

interval, while in our method we use the mode. We will show in the experiments

that the estimated mode of all the samples is approximately the mean of inliers, with
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Algorithm 5.1: Consensus Constraint for Keypoint Matching
Input : Two sets of keypoint locations

Sc = {(uc,vc)}, Sq = {(uq,vq)}
Output: Consensus set of inliers I

1 Perform keypoint matching by nearest neighbor search and
(uci , vci)↔ (uqj , vqj) represents a matching pair, where i ∈ {1, 2, ..., Nc},
j ∈ {1, 2, ..., Nq};

2 ∆ui = uqj − uci , ∆vi = vqj − vci , ∀i ≤ Nc, Sp = {(∆ui,∆vi) : ∀i ≤ Nc};
3 Run mean shift on Sp, (um, vm) = mode(Sp), (σ2

u, σ
2
v) = var(Sp);

4 Su = {∆ui : ∀∆ui ∈ (um − kσu, um + kσu)},
Sv = {∆vi : ∀∆vi ∈ (vm − kσv, vm + kσv)};

5 I = (Su 7→ Uid) ∩ (Sv 7→ Vid);

a distance of no more than a few pixels. Therefore, It can be used without affecting

matching performance.

To ensure that mean shift can converge to the global maximum efficiently, we

first build a 3D histogram by quantizing the 2D elements in Sp. The mean value

of the elements in the highest bin is used as the initialization in mean shift. This

value can be expected to be close to the true mode, and the mode-seeking algorithm

usually converges in a few steps with negligible computational cost. We use a

flat kernel in mean shift so that all samples within the window size are considered

equally important.

Figure 5.2 shows an example of the distributions of keypoint displacement. A

matching image pair with all the keypoints are shown in 5.2a and the distribution

of displacements after nearest neighbor matching is shown in 5.2b. 5.2c shows the

surviving keypoints that correspond to the mode detected in 5.2d.

5.4 Experimental Results

To evaluate our proposed keypoint matching method, we conducted comprehensive

experiments on datasets involving various applications. For quantitative perfor-

mance evaluation, we used the dataset popularized by Mikolajczyk and Schmid’s

seminal paper on performance evaluation of keypoint descriptors [71]. We refer to

their dataset as the MS dataset. A main advantage of the MS dataset is the avail-

ability of the ground truth matches (inliers). Next, our algorithm was evaluated on
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(a) All the keypoints in a matching image pair

(b) Distribution of displacements in 2D

(c) Surviving keypoints satisfying consensus constraint

(d) Distribution of displacements for surviv-
ing keypoints

Figure 5.2: An example of the distribution of keypoint displacements. The mode
is detected by consensus constraint in (d) and the corresponding matching keypoint
pairs are kept in (c).
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a dataset we constructed in the application of visual loop closure detection under

significant illumination change. Finally, we also tested our method qualitatively

with images whose keypoints might need to be matched in the application of struc-

ture from motion. In our experiments, we compare four competing outlier pruning

algorithms.

• CC. Our proposed algorithm to prune outliers by consensus constraint.

• RANSAC. Use of RANSAC and the epipolar constraint to prune outliers

in nearest neighbor matches. In the application of loop closure verification,

we used 2-point RANSAC [17] in which only two putative correspondences

are required to estimate the camera motion parameters in the case of planar

motion, to generate fair comparison to the proposed method.

• Distance Ratio. Default outlier pruning method proposed by Lowe to remove

outliers by enforcing uniqueness.

• VFC. Vector field consensus algorithm that finds inliers through an optimiza-

tion framework, considered as the state-of-the-art.

For keypoint detection and description, as well as nearest neighbor matching and

RANSAC, we use OpenCV’s implementation in the experiments. Implementation

of our outlier pruning algorithm in both Matlab and Python is available online1.

5.4.1 Quantitative Performance Evaluation

The MS dataset was used for quantitative evaluation. The dataset is a standard

benchmark and has been popularly used in numerous studies involving performance

evaluation of keypoint detection, description, and matching. The dataset contains

eight image groups, each of six images of the same scene. Variance in each group

is in either camera motion (rotation, translation, etc.) or image quality (blurring,

compression, etc.). One of the six images was used as the reference image. Three

groups, i.e., Bike (blur), Leuven (lighting change) and Trees (blur), are taken in

conditions that are consistent with the assumptions in our method, and therefore
1https://webdocs.cs.ualberta.ca/˜liu17/
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Table 5.1: Number of Hypothetical Matches and Inlier Ratio

#Hypothetical Matches #Inliers Inlier Ratio (%)
Bike 1-2

3384

889 26.27
Bike 1-3 658 19.44
Bike 1-4 387 11.44
Bike 1-5 293 8.66
Bike 1-6 196 5.79
Leuven 1-2

2461

1271 51.65
Leuven 1-3 984 39.98
Leuven 1-4 811 32.95
Leuven 1-5 704 28.61
Leuven 1-6 489 19.87
Trees 1-2

13269

2730 20.57
Trees 1-3 2556 19.26
Trees 1-4 1211 9.13
Trees 1-5 602 4.54
Trees 1-6 309 2.33

applicable in our study. Homography from the reference image to the other five

in each group is given to facilitate building the ground truth matches reliably. In

principle, two keypoints match if they satisfy the homography. In our experiment

however, we further allow a small distance of a few pixels in both u and v in ac-

cepting a true match to account for the keypoint localization error. While changing

this distance parameter may generate slightly different ground truth, as we have ob-

served, it does not affect the comparison of different keypoint matching algorithms.

Table 5.1 summarizes the number of putative matches and the inlier ratio for each

image pair. Note that the number of putative matches after nearest neighbor match-

ing is equivalent to the number of keypoints in the reference image. We can see that

in terms of the inlier ratio, the group of Trees is the most challenging while Leuven

is the simplest.

We first calculated the distance between the mode (um, vm) estimated in Algo-

rithm 5.1 and the mean of vector magnitudes from inliers for all the fifteen pairs.

The results are summarized in Table 5.2. The mode and mean are close to each

other with no more than a pixel in most cases. The maximum distance does not ex-
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Table 5.2: Distance Between Mode and Mean in Pixels

Bike 1-2 0.1187 Leuven 1-2 0.0871 Trees 1-2 2.8022
Bike 1-3 0.2604 Leuven 1-3 0.0563 Trees 1-3 2.8135
Bike 1-4 0.4335 Leuven 1-4 0.1751 Trees 1-4 1.1337
Bike 1-5 0.1293 Leuven 1-5 0.1318 Trees 1-5 5.5997
Bike 1-6 0.4466 Leuven 1-6 0.2061 Trees 1-6 5.8252

ceed six pixels. This confirms our assertion that it is reasonable to use the estimated

mode from mean shift as the distribution mean required in Chebyshev’s inequality

in the outlier pruning process.

We then compared our method with the baseline RANSAC, distance ratio and

vector field consensus (VFC) proposed in [66], the state-of-the-art algorithm with

superior performance to previous algorithms such as graph shift [62] and MLE-

SAC [116]. The implementation of VFC in Matlab by the authors of [66] was used.

F1 score and recall curve was used as the performance metric. We did not use pre-

cision as for some cases, VFC failed to compute a single match, and this would

leave precision undefined. For RANSAC, distance ratio and the proposed method,

F1-recall curve was plotted as only one parameter varies in each case: the distance

from a keypoint to the epipolar line in pixels, the distance ratio and k, respectively.

Regarding VFC, multiple parameters may influence the performance. As suggested

by the authors, we tuned two parameters in VFC: the inlier ratio and the bounds on

the uniform distribution of the outliers, and then calculated the averaged F1 score

and recall.

Nine of the fifteen groups of results are shown in Figure 5.3. In Bikes and

Leuven, our method provides comparable and sometimes superior (see Bikes 1-6)

performance to VFC. In addition, we emphasize that the performance in our method

is more robust and insensitive to the parameter k as all the F1-recall values are close.

Therefore, we can also conclude that most inliers are included within a limited

interval centered at the mode or mean. VFC occasionally generates poor results

(see Trees 1-6) if the parameters do not favor the underlying model with respect

to the optical flow distributions. The difficulty of finding such a model to reflect
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(a) Bikes 1-2
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(b) Bikes 1-4
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(c) Bikes 1-6
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(d) Leuven 1-2
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(e) Leuven 1-4
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(f) Leuven 1-6
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(g) Trees 1-2
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(h) Trees 1-4
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(i) Trees 1-6

Figure 5.3: F1 score w.r.t. recall in the three image groups. In Bikes and Leuven,
our method provides comparable or superior performance to VFC. VFC is highly
sensitive to parameters and it may not find a single match with improper parameter
settings (fails multiple times in Trees 1-6 as shown in the corner values). Distance
ratio is generally acceptable and RANSAC can only work well when the inlier ratio
is about 20% or higher.

the smoothness of flow from inliers in VFC can lie on the significant noise of the

data, i.e., the low inlier ratio and indeterminate patterns of optical flow. A possible

solution requires a strong prior of the distribution so that a good initialization can

be achieved for correct convergence. In VFC however, such a prior is not fully

exploited. On the other hand, our method makes use of the reasonable assumptions

and investigates the distribution prior in identifying the model and the inliers.

VFC can outperform our proposed method under optimal parameter selection

in the cases of Trees 1-2 and Trees 1-4. However, our method is already able to

generate satisfactory results with above 50% recall at 80% precision. As in these
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examples there are hundreds of inliers, this recall number is sufficient in most vi-

sion and robotics applications. We should also mention that in Trees 1-6, VFC

cannot find any match for some parameter settings, resulting in 0 recall, whereas

our method can always find plenty of matches for all values of k.

RANSAC is not competitive with respect to the other algorithms in the compar-

ative group. It performs well only with relatively larger inlier ratios of higher than

20%, although not always. Distance ratio performs better than RANSAC but worse

than both VFC and the proposed method. However, its performance is in general

stable. In other words, it is easy to choose a threshold dr that achieves a good trade-

off between precision and recall. All images in the MS dataset involve relatively

moderate illumination change, which is not challenging. In the next section, we will

evaluate the performance of the algorithms using another more challenging dataset.

Finally, we emphasize that in all the methods, since nearest neighbor matching

was first used to generate the putative matches, these algorithms are all considered

pruning techniques to remove outliers. One can definitely apply RANSAC after

any pruning method when necessary, but our goal is to show the effectiveness of

the proposed method in outlier removal and therefore we omit the use of RANSAC

after the pruning step.

5.4.2 Loop Closure Verification

In the previous experiments, we dealt with only matching image pairs, i.e., the MS

dataset has only image pairs in which true matches exist. The verification of a

loop closure, however, requires a matching algorithm to distinguish successfully

between the positive or matching case and the negative or non-matching case so

that a verification decision can be made. To evaluate our method in verifying loop

closures, we conducted experiments on the campus dataset that was used in the

previous chapters.

As always, nearest neighbor matching is used to generate the initial putative

keypoint matches for a given pair of images to be verified. Subsequently, a tra-

ditional method like RANSAC can be used to identify inliers. When illumination

change is significant, for a positive image pair, the number of inliers among the pu-
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tative matches goes down, and a low threshold on the number of putative matches

that pass RANSAC has to be used, in order to verify the loop closure success-

fully. However, in the case of a pair of non-matching images where all putative

matches are outliers, if a low threshold is used, RANSAC by chance could often

find a camera motion between the two images with enough support. As a result, the

verification decision process would consider the two images to be matching, incor-

rectly. The same issue happens with the VFC algorithm, i.e., VFC would often find

an underlying motion model and accept negative image pairs. This implies that the

trade-off between precision and recall of loop closure verification through MVG

can be extremely difficult to make with lighting changes significantly. In contrast,

our algorithm is able to use the consensus constraint to exclude most of the outliers

first, for either a matching or a non-matching image pair without attempting to rely

on RANSAC to find an underlying camera motion. In addition, to compare the

proposed method fairly with RANSAC, we used 2-point algorithm [17] that also

assumes planar camera motion as in our method. To better address the issue men-

tioned here, only the parameters reflecting small camera rotations (e.g. smaller than

π/12) are considered and verified in the iteration of 2-point RANSAC.

In order to have an interesting comparison, we used the extreme case of match-

ing between dark night and sunny day (see Figure 2.6d and 2.6e) as they are the

most challenging situation of illumination change. We randomly selected 400 true

matching image pairs and 400 non-matching pairs. Recall that a non-matching pair

represents two images at two different locations that may still share similar local

structures such as trees and buildings, and hence could be considered as a loop clo-

sure candidate by the detection algorithm. Again, we compare RANSAC, distance

ratio test (dr = 0.6), VFC and our CC in generating inlier matches. To determine

their performance, we calculated the histogram of the number of matches, for both

the 400 positive and 400 negative cases, and the results are provided in Figures 5.4

through 5.7. Figure 5.4 and Figure 5.6 show that both RANSAC and VFC do not

work well for negative cases since the number of matches for a non-matching im-

age pair can be quite high. This makes it almost impossible to choose a threshold

on the number of matches to separate the positive and negative cases without incur-
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(b) Negative cases

Figure 5.4: Histogram of the number of matches – RANSAC. The positive and
negative cases are not distinguishable.

ring a major loss in recall or precision. The 2-point RANSAC does not essentially

handle the problem of low inlier ratio. In fact, when the inlier ratio is low, an incor-

rect camera motion can get as many (or more) support as the true motion, and the

thresholding of eliminating the large motion parameters does not significantly help,

as two false matches could also generate small motion. Our proposed method, in

contrast, significantly outperforms all the competing methods. For example, we can

observe in Figure 5.7a that a majority of positive image pairs have enough matches,

which is not the case in distance ratio method shown in Figure 5.5a. On the other

hand, the proposed method can perform as well as distance ratio in identifying the

negative cases by returning only a few matches as shown in Figure 5.7b.

To qualify the comparison, precision-recall curves are shown in Figure 5.8

where at 100% precision, consensus constraint surpasses distance ratio by 50% in

the recall value. 2-point RANSAC and VFC are much worse than Distance Ratio

and CC. For example, VFC is not able to reach 100% precision as there are about

25% negative cases that cannot be handled. Table 5.3 describes the average num-

ber of matching keypoints for the four methods. We can see that with significant

illumination change, our proposed CC method finds four times as many matches as

distance radio method, and also more matches than RANSAC after nearest neighbor

matching.

To summarize, the main problem in distance ratio test is that it is purely based
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Figure 5.5: Histogram of the number of matches – distance ratio with dr = 0.6.
60% positive cases have no more than 10 matches due to significant illumination
change.
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Figure 5.6: Histogram of the number of matches – VFC. Similar to RANSAC, the
positive and negative cases are not distinguishable.

Table 5.3: Average Numbers of Matching Keypoints in Four Methods

RANSAC DR VFC CC
Positive 67 18 104 83
Negative 31 2 49 3
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Figure 5.7: Histogram of the number of matches – consensus constraint. Most
positive cases have tens of or more matches, while a majority of negative cases
have fewer than ten matches.

on similarity and therefore sensitive to descriptor variance which typically happens

in illumination change. RANSAC is fragile to a large ratio of outliers as these in-

correct matches can easily lead to a biased estimation of underlying camera motion.

Similar situation applies to VFC, which optimizes a probabilistic model with un-

known prior of the optical flow distributions and is therefore extremely sensitive to

parameters. On the other hand, our method properly exploits the distribution prior

and shows great improvement in the application of verifying loop closures.

5.4.3 Time Complexity

Time complexity is an important performance measure of an algorithm, especially

in robotics application. Distance ratio test requires negligible extra time after near-

est neighbor matching. The only potential time-consuming part in our method is

the mode-seeking algorithm. However, since it is performed in 2D case with good

initialization, the convergence to the mode usually takes only a few steps. Both

RANSAC and VFC use iterative algorithms in finding the hypothetical model, and

therefore their computational time is related to many factors. For example, the num-

ber of iterations for convergence in RANSAC depends on the number of data points

from which the model can be instantiated, the percentage of outliers in the data

points and the requested probability of success [33]. Since RANSAC has shown ob-

107



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Recall

P
re

ci
si

on

 

 

Consensus Constraint
Distance Ratio
VFC
2−point RANSAC

Figure 5.8: Precision-recall curves of the four methods in loop closure verification.
Under significant illumination change, the proposed method significantly outper-
forms distance ratio test by 50% at 100% precision. Both methods are superior to
RANSAC and VFC.

viously inferior performance to the proposed method, we only compare our method

with VFC in computational time.

We investigated the relationship between the number of keypoints that need to

be processed and the computational time, and used the speed-up factor, i.e., the ratio

between the time of VFC and our algorithm, to describe the difference between the

two methods. The experiments were conducted in the same hardware platform, and

the VFC and CC pruning algorithms were both implemented in Matlab. The cases

of Trees 1-2 and Trees 1-6 were used (20.57% and 2.33% inlier ratios respectively)

and random subsets of different numbers of putative matches were uniformly sam-

pled. For each number of keypoints, 100 runs were repeated and the average time

was recorded for comparison. Figure 5.9 shows that our method is at least 20 time

faster than VFC when more than 5000 keypoints need to be processed. The result is

expected since VFC needs to solve an optimization problem whereas we only need

to run mean shift. It is reasonable to believe that in general the time advantage of

the proposed method will become more obvious when there is an increase in the
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Figure 5.9: Speed-up factor vs. the number of keypoints. Our method is at least
20 time faster than VFC when there are more than 5000 keypoints that need to be
processed.

5.5 Summary

Verification of loop closures is an important step in appearance SLAM. In this chap-

ter, we have presented a simple but effective pruning method in order to match key-

points between two images to perform loop closure verification. Our algorithm is

mainly based on the observations that in many applications one can make use of the

weak perspective assumption and planar motion of the camera. In such a case, the

inlier flow vectors of the matching keypoints are shown to be deterministic in both

u and v components in their image coordinates. Therefore, this distribution prior

can be exploited to remove outliers easily whose pixel displacements do not agree

with the consensus, defined by the dominant mode of the vector flows of putative

matches. Our method consists of a well-conditioned mode-seeking step plus an in-

terval decision for inlier selection, and it is well supported by the related research

on the statistics of optical flow. Experiments were conducted extensively on a stan-
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dard benchmark dataset and outdoor image sequences with significant illumination

change, for the purpose of evaluating our method in terms of both accuracy and

efficiency in keypoint matching for loop closure verification. The results show that

in the application of visual loop closure verification, the proposed algorithm outper-

forms the traditional outlier removal methods. It is also comparable or better than

the the state-of-the-art VFC algorithm in most cases. Finally, our method is orders

of magnitude more efficient than VFC, making it widely applicable in robotics ap-

plications. With the assistance of the proposed keypoint matching algorithm, loop

closure verification can be easily achieved with high precision and recall – an im-

portant supplement to the SLAM algorithms in changing illumination environment

proposed in the previous chapters.

∼
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Chapter 6

Conclusions

Appearance SLAM has become a main topic in robotics research and the challeng-

ing case of illumination change has attracted much attention in the recent studies.

Focusing on several open problems in appearance SLAM such as perceptual alias-

ing, limitations in feature extraction and representation, and difficulty in geometric

verification, this thesis studies appearance SLAM and place recognition in illumina-

tion changing environment. In this thesis, the case of illumination change becomes

the mainline and around this line, efforts from several aspects have been made to

address the related issues.

6.1 Achievements

In order to solve the problem of robot localization and mapping in changing illumi-

nation environment, the following achievements have been established.

• Direct feature matching is applied to address the problem of perceptual alias-

ing, a typical case in illumination change in appearance SLAM. To speed up

the process of matching, we use a k-d tree to organize the raw features from

the key frames in a topological map. Indexing visual features then becomes

available with relevant key frames being retrieved as loop closure candidates.

A verification can be used to further confirm the true matching location. We

also apply scale dependent feature selection to reduce the number of features

to exploit the scalability of the method. It is shown that feature matching

with a k-d tree can significantly improve the recall of loop closure detection
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in a moderate size environment and therefore is applicable in alleviating the

problem of illumination change in such a case.

• In order to deal with the case of significant illumination change in a large

environment, we propose to use a whole-image descriptor – Gabor Gist, plus

a novel application of the probabilistic framework. The proposed Bayes fil-

tering exploits the MCMC approach, particularly, a particle filter to sample

the state space of robot locations and capture the temporal coherence in an

image sequence to ensure the detection continuity. PCA is used to reduce

the dimensionality of the original descriptor and improve the discriminating

power. The method is highly scalable due to the compactness of the descriptor

and simplicity of the particle filter, and applicable in large maps. In addition,

it performs even better than the feature-based approaches and can be easily

extended in conjunction with a sequence-based matching technique to further

improve its capability in handling illumination change.

• Performance evaluation of several types of whole-image descriptors are pro-

vided. Our study is conducted in the context of multiple robot applications,

including loop closure detection and global localization of the kidnapped

robot problem. By analyzing the performance in terms of both accuracy and

processing time, we provide an important guideline of selecting these descrip-

tors in related applications that can benefit from a compact and discriminative

image descriptor.

• A simple and reliable keypoint matching algorithm is proposed for the last

step of verification in appearance SLAM. Different from most of the exist-

ing methods that depend solely on the feature descriptors and therefore fail

in the case of illumination change where both descriptor variance and key-

point repeatability become issues, our method exploits the spatial constraint

of flow vectors from matching keypoints and uses it as a prior to perform out-

lier pruning. The method is developed based on the weak perspective camera

model and planar motion that hold true in most robot and vision applications.

Therefore, it is not limited to loop closure verification, but can be also gen-
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eralized to other problems such as structure from motion (SfM) and visual

odometry.

6.2 Future Research

Based on the existing achievements and results in this thesis, future research in

appearance SLAM and place recognition can be identified as follows.

• Incorporating feature matching in filtering framework. Our proposed method

in Chapter 2 does not exploit the temporal coherence in an image sequence

and therefore considers loop closure detection simply an image retrieval prob-

lem. Clearly, important information of detection continuity can be exploited

here. We would like to add the probabilistic localization framework in the

method in our future work. As indexing is used in feature matching, the

MCMC approach is not applicable. However, the work in [1, 2] is still an

important reference and can be possibly used in our method. In addition,

increasing the accuracy of feature matching is another research issue.

• Developing and extending other whole-image descriptors. We have con-

ducted performance evaluation on several whole-image descriptors classified

into multiple types. However, more such kind of descriptors need to be val-

idated. It has been shown in [126] that building a map with 20 million key

locations is possibly with a binary descriptor derived from a downsampled

image. Similarly in [74], the author claimed that a map of the world can

be possibly loaded to a normal storage device, thanks to the highly compact

binary descriptors. It is extremely meaningful if such an image descriptor

can work in the case of significant illumination change. In addition, there

have been several instances of using the popular convolutional neural net-

work (CNN) in developing descriptors that are applicable in place recogni-

tion [15, 110]. The most obvious advantage is that no training is needed as

public CNNs are available for scene and object recognition.

• Localization and mapping across season. In addition to illumination change
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addressed in this thesis, seasonal change is also an important type of dynamic

change in long-term autonomy. It is shown in [122] that local invariant fea-

tures such as SIFT and SURF are able to deal with seasonal change at a cer-

tain level. The assumptions are however, high resolution images are required

and feature matching should be used as a similarity metric. Alternatively,

a whole-image descriptor can be used in learning the change as described

in [108]. In fact, the challenge in the case of SLAM across seasons lies in the

scene change, for example, between summer and winter. Therefore, how to

identify and encode the invariant component in the scene is the key to solving

the problem.

∼
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