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We are all captive of
the pictures in our heads -
Our belief that the world we experience
is the world that really exists
...... Walter Lippmann

All that we see or seem
is but a dream within a dream.
A Dream within a Dream
...... Edgar Allan Poe



Abstract

The virtual machine paradigm for extending computer user multiplicity has a history
that spans over three decades. Over the years, virtual machine operating systems
have faded in and out of research focus. A great part of this research has tended
to concentrate on large and medium size computer systems. The work presented
in this thesis centers on the research and development concerns of virtual machine
systems. The emphasis of the work is on virtual machine systems for the personal
workstation environment. The improved computational power and cost effectiveness
of personal computer - ystems combined with the lack of adequate computer software
that support the research and education of operating systems topics on personal
computer systems is the primary motivation for this werk.

MIME is an experimental implementation of a virtual machine operating sys-
tem designed to operate on a workstation-class computer. It is currently being
developed on a Sun Microsystems Incorporated Sun-3 workstation. The central
component in MIME, as in any virtual machine operating system, is the virtual
machine monitor (VMM). The VMM is responsible for the transparent virtualiza-
tion of all hardware resources in the host architecture. MIME’s VMM attempts to
project a complete virtual machine interface, but is limited by the hardware to vir-
tual machine interiaces that are smaller than the physical machine interface. This
restricts MIME from generating a recursive virtual machine hierarchy, while per-
mitting all operating systems that can execute on the physical machine to execute
on a virtual machine. In this thesis we discuss the weaknesses that are present in the
current implementation of MIME and suggest hardware changes. These changes

will improve the efficiency of the virtual machine operating system. They will also

vi



allow MIME to project a more complete virtual machine interface. The work on
MIME is intended as the foundation for further research in operating systems and

as a software teaching aid in operating system courses.
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Chapter 1
Introduction

Virtual machine operating systems for large computer facilities have been common-
place experiences for many year. This thesis presents a virtual machine operating
system called MIME that is being developed for the personal workstation platform.
The primary intention of this work is to provide a workstation environment that is
suitable for experimental and developmental operating system work. The system is
also intended as a practical teaching platform for operating system principles. The
sections to follow in this chapter will provide some background and motivation to

the subject of virtual machine operating systems.

1.1 Background

In the past, software and hardware resources had to be dedicated when designing
experimental computer systems. This made experimental system design both an
expensive and difficult task. As the systems being developed became larger and
more complex, sophisticated environments were created to svpport the design and
testing of the new systems. These environments came in several different forms that
were based on their principal objective. Some were designed to support efficient de-
bugging of new hardware systems using older or different hardware. Others were
designed to provide new features in an older hardware platform so that software

development for a new hardware design and the development of the new hardware



could take place simultaneously. In effect these design environments created simu-
lators of the new systems. Over the years, the trend has been for these simulators
to become larger, more complex and more complete in their simulation of the real

system.

1.1.1 Virtual Resources In System Development

As new systems become more complex, the task of systems research and devel-
opment increases in difficulty. Complex designs require complex support environ-
ments, which are expensive. For example, it would be supportive if an experimenter
building a new type of file system had an empty disk to use as the test platform.
Another, more commonplace, example is the development of an operating system
for a new class of machine architecture that is still in the design phase or even the
designing of a new and different operating system on the traditional hardware. In
both of these cases, the complete emulation of the new or old machine architecture
on a traditional machine would allow the development of the new operating system
to continue in parallel with the development of the new hardware. This is possible
in the traditional machine by providing virtual resources that emulate the iunc-
tionality of the new machine. In running a simulator on a traditional machine, the
developer extends or alters the machine interface to be a replication of the machine

interface present in the new machine.

1.1.2 Virtual Resources In System Research

In the academic and research arenas, designing real hands-on experiments or re-
search with machine hardware and software, has been handicapped by several re-
quirements. These requirements range from the need for a complete and private
system for experimental use, to, expensive, but sharable resources. Therefore, in-
stead of being shared by many, system resources are found to be limited to a few
users. The motivations for the policies that hinder modern system development,
research and experimentation are based on installational and administrative issues.

These issues cover security, availability, cost and efficiency policies. Security and



cost issues have been the major contributors to this under-utilization of system re-
sources for research and development. The connection of a live experimental system
to a network of other production level systems could have dire security and relia-
bility consequences. This has forced system developers to create their new systems
in a closed, private environment, forcing a one-to-one usage on a hardware resource
instead of exploiting the possibility of a one-to-many basis. A classical example is
the provision of several dedicated hardware platforms to operating system develop-
ers, while experimental level work is being done. The resources are partitioned with
a subset of the resources running the experimental system, while the other subset
is used in building, evaluating and debugging the experimental system. To offset
part of the limitations, system simulators similar to the ones mentioned above, have

been used to provide virtual resources that are outside the real environment.

1.1.3 Systems For Education

Use of computer resources in education have been subject to similar limitations as
those found in system development and research. This has affected the teaching
of subjects like operating system and networks. If one were interested in providing
system level education with design and development experience, one would have to
provide access to what is or appears to be a real resource. In the past, the practice
has been to supply students with complete systems or complex simulators. This
has restricted the quality and quantity of the teaching and research in operating
systems. To help alleviate this restriction, researchers and educators should be
provided with environments that provide, on demand, individual resources that the
experimenter, student or researcher, can use, while permitting the secure sharing
of the systems resources with other users who maybe doing other experimental or
general computational work. An alternative solution to the restriction is provision
of several replicated systems in which each experimenter or researcher gets their
own system!. Now some may find it unreasonable to provide each experimenter

with their own private lab, disk or workstation while they are working on a new file

'Here system refers to the collection of resources that an experimenter requires.



system or operating system. The more attractive solution would be an environment
in which one can produce complete copies of real and artificial system resources on
demand that a user can experiment with, while sharing the real system resources
amongst many users. From the system management perspective, one would expect
the usual system protection that prevents users from adversely affecting each other
or corrupting the general system. This environment would have to support the
additional requirement that such a solution be, from a user perspective, a complete

and transparent representation of the real system.
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Figure 1: Conventional extended machine.

1.1.4 Pseudo-Devices

As oper.-iing systems become more general and complex, so have the general user
resource requirements. Complex problems are being computed on general purpose
systems resulting in higher dependencies on the interface presented by the multi-
purpose operating systems. In these multi-purpose operating systems a central
aim has been the support of several users simultaneously. As user needs get more
complex, the physical hardware that is in place in the systems is being outpaced! In
an effort to provide better systems to support modern complex environments, new
ways of improving resource usage have been developed. In modern day computing,
a typical user requires many system resources. Most often the resource required

by the user greatly exceeds the real available system resources. For example, to



improve user productivity the notion of window systems? was introduced. Windows
are transparent abstractions of an input/output devices like a terminals. In most
operating systems the number of real terminal devices on the system are far fewer
than the number of windows a user may create. This need for many terminal
devices at the user level to support the windowing system has placed a strain on
the available real terminal devices in the system environment. The introduction of
pseudo-devices that are transparent replications of regular devices in the operating
systems has been the instrument in developing these windowing systems. A pseudo-
device is seen by the user as a virtual terminal device, and has all the properties
of a real terminal device. In like fashion, modern operating systems offer a suite of
resources that are realized only on a virtual level. In the previous example of the
systems designer with two dedicated machines, it would be desirable if we could let
the designer build and test the system in shared environment, but protect others
from the designer’s follies. Since most s; <tem resources in a computer system may
be virtualized and shared, it seems a small conceptual step to the next level in
virtualization of system resources. Complete hardware virtualization is the next
step. An operating system that provides a transparent virtual copy of all the real

resources in the architecture: a Virtual Machine Operating System.

1.1.5 Virtual Machine Operating System, A Definition

The single most important notion in & virtual machine operating system is that
every system resource in the machine architecture may be virtualized in one form
or another. It is this notion that permits greater accessibility and usage of system
resources by transparent duplication of the resource that is the underlying concept
in the following work. The virtual machine operating system is a privileged soft-
ware nucleus that provides functional copies of the complete machine. A major
requirement of such a system is that a majority of the machine instructions set in
the machine copies execute directly on the real machine. In the chapters to follow,

this work will introduce studies done on the topic of Virtual Machine Operating

IMIT’s X11 window system(26) is one example.
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Figure 2: Virtual machine.

Systems, for use in Operating System research and education. This effort in virtual
machine systems will have two interesting outcomes. The first being the possibilities
that virtual machine operating systems have in higher level operating system re-
search, particularly in distributed operating system environments. The second, the
issues surrounding virtual devices and their definition. In the rest of this chapter

some history and specification of formal requirements will be examined.

1.2 History Of Virtual Machine Operating Sys-

tems

Virtual machines have grown out of a past wherc there had been an increasing de-
mand for a more complete virtual environment. A software designer who is trying
to develop software running on a machine architecture that is yet to be realized in
hardware, would traditionally first build a simulator of the new machine architec-
ture on a general purpose machine. The purpose of the simulator being to provide a
special-purpose environment on the general purpose machine that would, for most
cases appear as the new machine architecture. As the requirements of the simulator
become more general, a time sharing system could be developed in the native lan-

guage of the new machine architecture and executed on the simulator to improve

6



the efficiency of the software design team. In effect the simulator, depending on
how complete its implementation, would create a virtual copy of the new machine
architecture. Goldberg[12] explains that, while the new machine architecture and
the general-purpose machine may be arbitrarily chosen, the instructions that are
being simulated may be similar to or different from those of the native architecture.
In this fashion a complex simulator can be built that generates a virtual implemen-
tation of the yet unrealized machine architecture. Likewise, system designers have
begun to develop and use systems that provide virtual copies of limited or artificial
system resource so that d«velopment and debugging of new tools and software can

be done better, faster and more economically.

1.2.1 Past To Present

The mid 60’s saw the arrival of early virtual machine systems. In the conclusion
of their 1973 paper on virtual machine architectures, Buzen and Gagliardi[5] pre-
dicted ‘hat virtual machine systems would see rapid growth. This has never really
happened. Today we see still few large computer manufacturers supporting virtual
machine systems. The rapidly expanded list of applications of virtual machine im-
plementations that they predicted, has never really arrived. The state of virtual
machine research is stil} much the same as it was a decade ago. One aspect of vir-
tual machine research that has improved over the two decades, is the formalization
and specifications of virtual machine systems. In the next section we explore som:

of the formalizations that are relevant to virtual machine systems research.

1.3 Architectural Requirements For A Virtual
Machine Operating System.

In this section we would like to examine some basic requirements for virtual machine
systems, and introduce the machine architecture that we chose to experiment with.
Considering that currently most machine architectures fall under third generation

architecture, we will focus only on them.
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Figure 3: Dual dimensions of virtual machine environments.

1.3.1 Formal Models

In formal models of virtual machine architectures there are two dimensional cate-
gories to virtual machine environments, as figure 3 describes. On one dimension
we have the equality of machine base being offered by the virtual machine with the
real machine versus the equality of the virtual machine to the real machine. The
differences on this line may be as great as a different instruction base, like the simu-
lator example in section 1.2, or as small as imperfect virtualization of the complete
system3. On the other dimension we have the recursive nature of the virtual ma-
chine interface, i.e. whether the virtual machine representation of the real machine
is complete enough to allow a virtual machine operating system to run in a virtual
machine. For the work presented here we are only interested in recursive virtual
machine systems that project a same machine interface base. These virtual machine
systems are formally described in [4, 9, 10]. Here we define a virtual machine system

by the following three chief characteristics:-

1. The execution environment on the virtual machine is equival:nt to that on

the real machine.

2. The performance of a virtual machine with respect to a r-al machine is de-

graded only by the level of resource sharing imposed.

3An example of this is the removal of paging facilities in the virt:.ai machines generated [5].



3. No virtual machine can by direct action, or side-effect, affect the state of other

virtual machines®.

From a hardware point of view we also require the machine architecture to be of
a third generation architecture®. Popek and Goldberg[24] introduce some specific
formalization for these machine architectures. On this level the following restrictions

are necessary:-

1. The CPU is pre-emptable.

2. Sensitive instructions are protected, and may be executed only in the more

privileged mode of operation.

3. Execution of sensitive instructions while the machine is in non-privileged mode

will result in a trap and a change of mode.

In this fashion we can then treat the CPU as any other resource in the system that
is virtualizable, and all execution sensitive instruction executed in a non-privileged

mode will cause a machine exception, or trap.

1.3.2 What Is MIME

The work presented here is the description and implementation of a Virtual Machine
Operating System <alled MIME for the Sun-3¥/MC68020 family of workstations.
This effort follows closely the work introduced by Goldberg in early 1970. The work
is an on-going effort to produce a complete virtual machine system for research in
principles of distributed virtual resource management. The need for a useful virtual
machine environment for operating system instruction is also a major foundation
of this effort. MIME’s current implementation exists as special derivative of the
Sprite Netwerk Operating System kernel[23]. In later chapters of this thesis we will
describe MIME in greater detail.

iHere we do not include the effects of communicaling virtual machines via the usual
mechanisms.

5Third generation architectures are machine architectures that support dual operation modes,
i.e. a supervisor mode versus a user mode.

5Sun-3 is a trademark of Sun Microsystems Incorporated.



Chapter 2
Machine Architecture

The machine architecture that is being used for the development of MIME is that
of a Sun-3 workstation. The Sun-3 is a high-performance family of workstations that
are rated at 1.5-4 MIPS. Sun’s design strategy has been to use industry standard
whenever possible. The 32-bit VMEbus, SCSI and SMD interface are but a few
examples. This family of workstations carry an onbcard ETHERNET controller and

feature a CPU from the Motorola 68020 family of microprocessors.

2.1 Motorola MC68020 Microprocessor

The MCS58020 is a full 32-bit micro-processor from Motorola. It implements a
full 32-bit data path, 32-bit register with 32-bit addressing [17]. The processor
implements three processing states, user/master/interrupt, but the interrupt state
maybe considered as a special case of the master state. The following subsections
examine the exception handling capabilities of the processor, its instruction set, and

interrupt behavior.

2.1.1 Exception Processing in a MC68020

The MC68020 can generate both internal and external exceptions. Internal ex-
ceptions are caused by instructions, address errors, tracing and breakpoints. This

includes illegal instructions, privilege violations, co-processor protocol violations

10



11

W Privileged Instructions || Trap Instructions I

ANDI te SR TRAP #n |
EORI to SR TRAPcc |
cpRESTORE TRAPV

cpSAVE cpTRAPcc

MOVE from SR CHK

MOVE to SR CHK?2

MOVE USP

MOVEC

MOVES

ORI to SP

RESET

STOP

Table 2.1: User Mode Privileged And ap Instructions.

and trap executions. External exceptions will be generated for interrupts from
peripheral devices, bus errors, reset and co-processor errors.

During exception processing the following steps are followed:-

e Save the status register, place the CPU in supervisor mode by setting the
S-bit in the processor status register SR. Clear the trace bits, and set the

interrupt priority mask for reset and interrupt exceptions.
¢ Compute the exception vector number.

e Save the processor context on the supervisor stack. Load and fill an exception
stack frame on the supervisor stack. If the exception is an interrupt and the
status register M-bit is set, it is cleared and the second stack frame operating

system created on the interrupt stack.

e Compute an exception vector offset by multiplying the vector number by four
and adding it to the contents of the Vector Base Register VBR. The program
counter is loaded with this value, and the normal instruction execution cycle

coptinues.

The exception/interrupt routines then execute in master state and return to normal

processing by executing the RTE or RTI instructions. This resets the stack and



program counter to the values that are in the saved exception stack frame.

15 12 0

Sp —""L Status Register J
[ Program Counter J

l Program Counter l

[ Format l Vector Offset ]

[ Additional State Information ]

)

[ (2. 6, 12, or 40 Words)

Figure 4: Basic Exception stack frame

2.1.2 MC68020 Exception Stack Frames

Let us examine the details of the MC68020 exception stack frames. The following
paragraphs examine the six MC68020 exception stack frames, and describe the
various internal and external conditions that generate the exception conditions.
Figure 4 shows the basic frame format. Words 0 to 3 are present in all stack frames.
The rest of the words in the the frame make up the additional information that is

present of the different stack frames.

Normal Four Word Stack Frame.

This frame is placed on the supervisor stack if any of the following events occur:
an interrupt, a format error, the execution of TRAP #n instruction, an A-line
or F-line emulator trap, a privilege violation, or a co-processor pre-instruction ex-
ceptions. The stacked PC will point to the next instruction, RTE or cpRESTORE
instruction, next instruction, illegal instruction, A-line, F-line instruction, first word
of instruction causing the privilege violation, Op-Word of instruction, respectively.
This frame is labeled with the format field value of 0x0.



Throwaway Four Word Stack Frame.

This frame will be on the interrupt stack if an exception is taken while the processor
is in master state. It transits the processor to interrupt state. The PC saved on
the stack points to the next instruction and is equal to the value on the normal four
word or co-processor exceptions stack frame. This frame is marked by a format field

value of 0x1.

Normal Six Word Stack Frame.

This frame will be on the supervisor stack if 2= exception is taken for the CHK,
CHK2, cpTRAPcc, TRAPcc, TRAPYV instructions, trace, a zero divide arithmetic
fault or co-processor post-instruction. In all cases, the PC saved on the stack points
to the instruction to be executed next. The address of the instruction that caused
the exception is saved in the fifth and sixth words of the frame. This frame is

marked with a format field value of 0x2.

Co-processor Mid-Instruction Exception Stack Frame.

This frame will be on the supervisor stack if one of three different co-processor
related exceptions occur. The first occurs when a take mid-instruction exception
occurs during a co-processor instruction. The second occurs when the main pro-
cessor detects a prciocol violation while processing a co-processor instruction. The
third occurs when a null, come again with interrupts allowed primitive is received,
and the processor detects a pending interrupt. For all these exceptions the PC
saved on the stack points to the next instruction in the instruction stream. The
fifth and sixth words of the stack frame contain the address of the faulting instruc-
tion and the following four words contain internal co-processor registers. This frame

is marked with a format field value of 0x9.

Short Bus Cycle Fault Stack Frame.

This frame will be on the supervisor stack if a bus cycle fault is detected and the

processor determines that it is at an instruction boundary. The PC saved on the



stack points to the next instruction to be executed. The frame is sixteen words
long and contains several internal saved register values. This frame is marked with

a format field value to OxA.

Long Bus Cycle Fault Stack Frame.

This frame will be on the supervisor stack if a bus cycle fault is detected and the
processor determined that it is not at an instruction boundary. The PC saved on
the stack points to the address of the instruction that was executing at the time ~f
the fault, which may not be that instruction that caused the bus cycle fault. This

frame is forty six words long and is labeled with a format field value of 0xB.

2.1.3 Instruction Set And Addressing Modes

Considering that we are designing virtual machine system for a third generation
architecture, the essential machine instructions are those that affect the machine
state as described in Section 1.3. Table 2.1 lists all the sensitive machine instruc-
tions. Execution of the privileged instructions in a user-mode will cause a privilege
violation exception, and alters the CPU state as covered in 2.1.1. While execution
of a trap instruction while in user-mode will result in a trap exception with the
instruction that caused the trap in the exception stack frame as described in 2.1.1.
While the MC68020 supports a wide variety of addressing modes, it is beyond the
scope of this work to cover them, and we refer the reader to the MC68020 User’s
Manual[17, section 2.8}}.

2.1.4 Interrupt Levels And Bus Cycles

The MC68020 supports seven interrupt levels. At instruction boundaries the micro-
processor will begin interrupt processing if there is a pending interrupt with a pri-

ority greater-than-or-equal-to the interrupt mask, {17, Section 5.2.4.1.3]. Interrupt

1CPU addressing modes do not affect the design of the virtual machine operating system.



processing entails entering an interrupt acknowledge cycle and performing the fol-

lowing

1. Set the address space to CPU space.
2. Get the interrupt vector, or provide an internal autovector if none is provided?®.
3. If external logic shows a bus error, take the interrupt to be spurious.

4. Save the exception vector offset, program counter, and status register on the

supervisor stack®,

5. If the M? bit ir the status register is set, clear it and place a throwaway

exception stack fraine.
6. Begin normal exception processing by loading the program counter with the
value contained at the exception vector.

Note that a return form exception instruction RTE or MOVE to SR will clear
the interrupt mask level and set it to a lower level. Another thing to note is that
interrupt level seven is special: level seven interrupts are non-maskable.

On bus errors the process-r follows the usual exception processing steps.

1. Copy the status register.

2. Enter the supervisor state.

3. Disable tracing.

4. Generate an exception vector of Bus Error.

5. Stack the vector offset, program counter, status register, non-visible internal

registers.

If the exception was taken at an instruction boundary, the exception stack frame
will be of the Short Bus Cycle variety, or else it will be the Long Bus Cycle type,

as we saw in section 2.1.1.

See the exception vector table in Appendix A.
3During co-processor instruction interrupt further internal state information is saved as well.
“The M bit of the status register shows whether the CPU is in Master or Interrupt state.



2.2 Sun-3 Architecture

The Sun-3 architecture that MIME is targeted for features the following major

components [2]:-

MC68020 central processing unit.
MC68881 floating point co-processor.

Sun’s proprietary paged memory management unit. The Sun-3 MMU is an 8

context memory management unit, that maps 265 megabytes per context.
A main memory space of 4 to 32 Megabytes.

Bit-mapped display with virtually addressable video memory.

IEEE 802.3 ETHERNET network interface controller.

A software readable programmable boot read only memory (Boot PROM).

An optional high performance virtual address, direct-map, write-back cache.

The cache is application transparent and is 64 Kbytes with 16 byte lines.

Multiple buses: private bus for the CPU and memory; VMEbus for the system
I/0O path.

The architecture also features a full 32-bit VME interface, a standard SCSI/SMD

disk and tape-drive interface, and direct virtual memory addressing (DVMA) for

the I/Q systems. Several optional performance enhancing add-ons for floating-point

arithmetics and graphics processing are also available. Since we are only interested

in the run-of-the-niill Sun-3 hardware we will not concern ourselves over the add-ons

and options. The architecture implements the microprocessor’s eight address spaces

as follows:-

Address Space 0 Function code 000 - Reserved

Address Space 1 Function code 001 - User Data Space



Address Space 2 Function code 010 - User Program Space

Address Space 3 Function code 011 - Memory Management Unit Space
Address Space 4 Function code 100 - Reserved

Address Space 5 Function code 101 - Supervisor Data Space

Address Space 6 Function code 110 — Supervisor Program Space

Address Space 7 Function code 111 - CPU Space

From this list we can see that the MM U may be manipulated only by data moves®

across address space three.

2.2.1 VMEDbus, Devices And Peripherals

The Sun-3 VMEbus is a full 32-bit VMEbus interface that is dual-ported with
a master interface for CPU to VMEbus access, and slave interface for VMEbus
to main memory access. The VMEbus slave interface allows VMEbus to main
memory transfers by treating a range of VMEbus addresses 2s a range of virtual
CPU addresses. The architecture also includes standard devices that provide basic

Sun-3 system resources. The following devices can be found on the CPU board:-

¢ EPROM and EEPROM: they store system configuration and initialization

code for booting and diagnostics.

e Time-of-Day Clock: a battery-backed clock.

Interrupt registers: control the system interrupts.

e Serial Line Interface: two programmable serial I/O channels.

Keyboard/Mouse Interface: serial interface to the keyboard and the mouse.

ETHERNET Interface: takes advantage of DVMA to transfer data directly to

memory.

5This is done by the CPU by the Move address space “MOVES” privileged instruction.
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Figure 5: (Pmeg number translation) The MMU takes the value of the context
register (3 bits) and composes it together with the Segment number (11 bits) that
comes from the virtual address. The result of the composition is used to index into
one of the 8 Segments groups that are 2048 entries deep. The result of the index is

an 8 bit wide pmeg value.

On the VMEbus we have the following I/O devices.

e SCSI and SMD Interface: interface to SCSI and SMD disk/tape drives.

1/2-inch Tape Interface: interface to 1600/6250 bpi tape drives.

Second ETHERNET Interface.

=

o VME-Multibus® Adapter for Multibus interface.

Asynchronous Line Multiplexer: for additional serial devices.

2.2.2 Sun-3 Memory Management Unit

A virtual memory address is composed of an 11 bit segment number, followed by a

four bit page number and a 13 bit byte number. The Sun-3 memory management

6Multibus is a registered trademark of Multibus Inc.
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Figure 6: (Physical address translation) To obtain a physical address the MMU
uses the page number (4 bits) as an index into a page map entry group or pmeg.
The top of the pmeg is obtained from the previous pmeg translation of figure 5.
The result of the index is a 26 bit long value whose lower 19 bits define a physical
page number. The physical page number is then composed with the byte number
(13 bits) from the virtual address and the two bit type field to make a physical
address 34 bits). The page entry in the pmeg includes three protection bits: the
valid bit V, the write bit W, and the supervisor bit S; two statistics bits: the
accessed bit A, and the modified bit M, and one two-bit type field T'.



unit is a e.ght-context memory management unit. Each context together with the
address segment’ value point to one of 16,384 segment map entries. The segment
map, which may be viewed as 8 contexts of 2048 each, is made of eight bit wide
entries that point to a page map entry group, or pmeg. The page map contains 4096
entries that each map an 8 Kbyte page. The page map table is a 26 bit wide table
that is indexed by the 8 bit pmeg number composed with the 4 bit page number from
the virtual address. The resulting entry is made of a 3 bit protection field (valid,
write, supervisor), a 2 bit statistic field (accessed, modified), a page type field (main
memory, I/0, 16 bit VMEbus, 32 bit VMFEDbus), and a 19 bit physical page number.
The 34 bit physical address is composed of the 2 bit type field, the 19 bit physical
page number, and the 13 bit byte number from the virtual address. The valid bit
specifies if the page entry is a valid entry read and execute access is permitted.
The write bit flags allows or disallows write access to the page. The supervisor bit
restricts access to the page to the supervisor state only. The access and modified
bits are bits that are automatically updated by the MM U hardware as accesses and
writes are made to the page. The type field provide four physical address spaces,
each beginning at physical address 0, one for each MMU resource. Figures 5 and
6 describe the translation that MMU makes when mapping a virtual address to a
physical address. The memory management unit is accessed by reading and writing
to virtual memory address in address space three. In this fashion, context changes
are made just by writing the MMU context register. We will avoid the technical
details, manipulation and operation of the Sun-3 proprietary MMU unit.

"The address segment value is the 11 most significant bits in a virtual address, bits 17-27.
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Chapter 3

A Virtual Machine QOperating
System

In this section we will propose a Virtual Machine Opes . ing System that is targeted
to run on the Sun-3 workstation platform. This virtual maclune operating system,
which we have christened MIME, is built or a Virtual Machine Monitor (VMM)
that is capable of providing Virtual Machines and a collection of device drivers
that virtualize system peripheral resources wherever possible. The virtual machine
monitor provides the virtual machine interface that was introduced in Section 1.3.
This interface appears transparent to any system that runs in virtual machines.
You could compare a virtual machine generated by the VMM to a user process
on a conventional operating system. The virtual machine will execute for a time
quantum before it is preempted and the CPU and hardware resources handed over
to another virtual machine running in the environment. In the sections to follow

we will present the various requirements and the design of MIME.

3.1 Hardware Management

In Sections 1.3 and 2.2 we explored the formal system requirements for a virtual
machine operating system and those offered by the Sun-3 platform. We see that

the Sun-3 hardware conforms to our specifications for a virtualizable machine ar-
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chitecture. We will categorize the task of designing the virtual machine monitor
into three parts: Managing the CPU, virtual memory issues, peripheral devices

and miscellaneous duties like accounting etc.

3.1.1 CPU
| CPU Register | Size (bits) ||
Program Counter (PC) 32
Processor Status Register (SR) 32
14 General Purpose Registers 14 x 32
User Stack Pointer (USP) 32
Master Stack Pointer (MSP,SSP) 32
Interrupt Stack Pointer (ISP) 32
Vector Base Register (VBR) 32
Special Status Word (SSW) 16
Cache Control Register (CACR) - 32
Cache Address Register (CAAR) 32
Source Function Code Register (SFC) 3
Destination Function Code Register (DFC) 3

Table 3.2: Machine CPU context structure.

The MC68020 is a dual state microprocessor. Our virtual machine monitor can
virtualize this resource by restricting the virtual machine processes to the user state.
This way the virtual machine monitor will not have to interpret the user state in-
structions since they have no effect on the state of the real machine and as such can
run directly on the real machine. In Table 3.2 we list all the microprocessor registers
that are relevant to describe the CPU context at an instruction boundary'. Every
virtual machine running under MIME has its CPU state defined by these regis-
ters. The C data structures Cpu_State, in Appendix D.1.1, adequately describes
a machine CPU context. A virtual machine context switch is done by saving the

old Cpu_State structure and loading the CPU with the new Cpu_State structure

!More internal CPU registers are necessary  rlescribe the CPU state at mid-instruction.



and performing a return to user-mode. The VMM is responsible for changing the

virtual memory contexts during the context switch operation.

3.1.2 Virtual Memory Support

Since the machine interface we are aiming to provide supports virtual storage by
paging, we will examine the impact of supporting a paged virtual machine interface.
As mentioned in Sections 2 and 2.2, the Sun-3 MMU is a virtually addressable
co-processor in address space 3. The MMU context register, segment map and
page map tables may only be altered by writing to virtual addresses in MMU
space. This will cause a privilege violation if the microprocessor is in user-mode.
As mentioned in the paragraph on the normal four word stack frame in Section
2.1.2, a privilege violation will cause the normal four word stack frame to be placed
on top of the supervisor stack. The CPU will enter privilege violation exception
processing, taking the exception vector from the VBR. The PC points to the first
word of the offending instruction, which here will be : MOVES instruction. If the
destination and source function code registers point to MMU address space, then
it is known that the user wishes to read or write the address in the MMU address
space?. If the source or destination register argument to the MOVES instruction
is a valid Sun-3 MMU address, the VMM will do the following emulation of the

instruction, at exception time.

1. Save the sixteen general purpose registers.

[ 3]

. Test for validity of the MMU memory space access. Since the Sun-3 MMU

addresses are fixed virtual address:s, this is easy to do.

3. Compute the source/destination register argument num.her. Table C.4 in Ap-
pendix C describes the instruction format, in vhich we can read the register

type and number.

2In the Sun-3 architecture, the MOVES instruction is used to read and write MMU memory
space.



4. Get the data in the argument register. This could be any of the seven general
purpose address or data registers. Remember that we have saved the registers

and can retrieve their original values at exception fault time.

5. If the instruction is an attempt to alter the MMU state, emulate the change
in the simulated MMU structure, for instance the memory management unit
context register. If the instruction is an attempt to read MMU space memory,
emulate the instruction by reading the virtual machine’s simulated MMU

structure.

In this model, any attempt to access the MMU for reading or writing will result
in an emulation of the request from the virtual MMU data structure. A result
of this emulation of the MOVES instruction is that the VMM can keep track of
all MMU states for all virtual machines running under it, and emulate changes to
these states. Of course, at some point the simulated MMU structure will have to

be used in address translation. We will examine this in later sections.

3.1.3 Peripheral Devices

In this work peripheral devices are treated like memory mapped 1/O to virtnal
memory addresses that map the hardware device drivers. The devices also have
interrupt service routines that initiate and terminate the I/O operations to the
devices. Every virtual machine that is to execute in a virtual machine operating
system requires some system devices. At the most trivial level, a machine console
and some form of I/O system is needed. Usually these devices are mapped by the
hardware’s startup code at system boot time. For the Sun-3, all device addresses
are virtually mapped, making device management a simple task. A virtual machine
operating system manages system devices by creating virtual versions of the re-
source for every instance of a virtual machine that is present. The virtual copies are
multiplexed into the real resource, just as a conventional operating system would
multiplex the device resources amongst the running processes. There is, however, a
major distinction between the methods a virtual machine operating system uses to

multiplex device resources and those used by conventional operating systems. The



difference is that the users in a virtual machine operating system, the virtual ma-
chines, are not aware that they are running under a VMM. This means that virtual
machines cannot make specialized requests for system resources in the same way
user processes request systemn resources in conventional operating system3. Since we
cannot expect a virtual machine running in the VMM environment to make system
call requests whenever it wants to read the disk, a VMM will have to manage the
devices by the devious route of trapping requests to the devices and multiplexing
the requests on the real devices.

As mentioned previously, the Sun-3 I/O peripheral devices are all mapped into
virtual memory. This implies that in the memory map for the Sun-3 a range of
virtual addresses are reserved for device drivers and direct virtual memeory access.
A VMM can protect the devices simply by marking the pages that map the devices
as supervisor pages. This means that when a VM accesses such a page, a memory
access violation trap will occur, and the VMM can fulfill the I/O request for the
VM. The VMM must first determine the cause of the violation and then execute
a device request that will produce the desired results.

Several weaknesses exist in this model for virtualization of system resources.
The primary weakness is that the Sun-3 machine architecture has several devices
that do not lend themselves effectively to virtualization. The Sun-3 framebuffer
is one example of such a device. Since there is only one console device per real
machine, we should not try to share the resources that make up the console device
amongst various virtual machines. Such devices should be allocated to a specific
virtual machine and all other virtual machines see an architecture that does not

support the device if it cannot be virtualized.

3System calls.

(V]
(1}



3.2 The Design Of A Virtual Machine Operating
System

In the preceding sections we have seen hardware specifications for the combination
Sun-3/MC68020 architecture?. In this section we would like to mention some design
specifications for MIME, as an operating system for the management of virtual
machines on the described architecture.

MIME consists of a Virtual Machine Monitor and a collection of device drivers
that multiplex I/G hardware amongst the various users®. The Virtual Machine
Monitor is responsible for the management of Virtual Machines that can be pro-
duced on demand. This entails the maintenance of kernel data structures that define
Virtual Machines, schedule execution of the Virtual Machines, and field supervisor
service requests. The Virtual device side of MIME is responsible for emulating real

and artificial devices that Virtual Machines may require.

3.2.1 The Virtual Machine Monitor

The principal element of the Virtual Machine Monitc f MIME, is the system
of interrupt and exception handling functions that will manage virtual CPU’s by
trapping all interrupts, exceptions and traps and passing them on to the appropriate
Virtual Machine. By multiplexing the virtual processor data structures onto the real
machine, MIME allows multiple virtual machines, each executing entirely in user-
mode. In this fashion most virtual machine operations will execute efficiently on
the real hardware. The following list presents a brief description of MIME’s VMM
startup step:

o Initialize the machine interrupt vector table. This will cause all hardware
generated traps, exceptions, and interrupts to be vectored to the VMM’s

interrupt routines.

Parts of these specifications may be valid for other chips in the Motorola 68000 family.
SHere a user is an operating system running in a virtual machine maintained by the VMM.
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e Sew a machine context for every virtual machine that will execute under the
supervision of the VMM. This includes setting up the machine context to

that of a machine at boot/startup time, (see Section: 3.4).

e Initialize the scheduling and timing modules that will permit machine context

switches and clock events.
e Initialize all machine registers and contexts for the real n:.:.<hine.

e Initialize the virtual memory and paging resources for the VMM. This in-

cludes establishing a basic file system service, and swap devices.
e Initialize the network, serial and other device drivers.

The machine interrupt vector table is started by reading the vector base register,
VBR, and writing an address pointing to the exception processing function for
each of the 256 interrupts vectors, (see Appendix A, Table -A.3). During excep-
tion processing, the appropriate exception handling routine will be called with an

appropriate exception stack frame cn the stack.

VMM Exception Handling

This subsection highlights some of the VMM exceptibn processing operations. On
receiving an interrupt for a running VM, the VMM attempts to handle the request
using the fullowing method:

At exception time the CPU is in supervisor-mode, with the supervisor stack as
the stack in usc. The exception stack frame is on the top of the stack. Based on
the type of exception, the VMM can chose to handle the exception completely, or
pass on the exception to the faulting VM®. Figure 4 describes the format of the
basic exception stack frame. If the VMM can safely permit the faulting VM to
handle the exception, and the VM is running, the VMM will dummy up a copy of

the exception stack frame on the VM’s virtual master/supervisor stack, manipulate

5The exception type is determined by looking at the format field word in the exception stack
frame.



the VM’s CPU context structure appropriately, so that the VM will execute its
exception handler when it gets the CPU next. The dummy exception {frame may
have its return address set to the return address on the real exception frame or
the next instruction in the VMM’s hand' 's. This will allow the VMM to do some
post-interpretation if the interrupt calls for it. If the exception cannot be executed
safely by the faulting VM, then the VMM will process the exception itself in an
attempt to emulate the service that the user VM expects to have access to and
was denied, based on privilege. Most of these emulated exceptions are related to
protected memory addresses that control devices and resources. For instance, if
the exception is related to a bus error or the MMU, the VMM may try to swap
in the required page for the faulting VM. In this fashion the VMM can provide
machine encapsulation, such that no VM can affect another VM. In Appendix D.2
we have presented some VMM code fragments that show the emulation of privileged
instructions. The handling of MMU access is one example of privileged instruction
emulation. In Section 3.4, we will examine in more detail the machine context

switching operation.

3.2.2 Virtual Devices

In MIME, a virtual device is represented by a collection of kernel data structures.
These data structures allow the virtual machine monitor to multiplex the access
of the virtual devices or drivers by the virtual machines. In this section we would
like to forus on the design aspects of creating virtual devices for a virtual machine
environment.

One chief problems with the design of MIME for the Sun-3 works.ation environ-
ment is the type and quantity of I/O devices available. In chapter 2 we described
in detail the quantity and type of devices that are supported by the Sun-3. Of the
devices that the architecture supports, the console device does not virtualize well,
reducing the list further’. Since the Sun-3 architecture supports virtual direct mem-

ory access, we can view all devices and their drivers as special pages in memory.

"The console device does not virtualize well owing to the special relationship between the
console keyboard and monitor and between the framebuffer and video drivers.



Indeed the I/O pages will be marked by the VMM as supervisor pages, allowing the
monitor to control access to the pages. To virtualize a device, the VMM maintains
a spool list of access events requested by executing VMs. As the physical device
becomes available, the next access request in the list is copied to the device’s control
structure and I/O begun. On successful completion of the I/O operation, the re-
sults will be copied from the virtual memory buffers that the device accessed to the
equivalent addresses in the address space of the virtual machine that requested the
/O operation. This way, the access to a virtual device is treated like a supervisor
service request and is implemented as a sequential device operation stream. Every
device managed by the VMM will have its own event queue in the monitor. To
an executing virtual machine a virtual device access will appear as a synchronous
operation, though it is implemented by the VMM as an asynchronous operation.
The configuration data for the various devices that VMM in MIME will virtualize
is part of a VM’s state information in the virtual machine control block. In chapter

4 we will return to the virtual machine control block.

3.3 Virtual Machines

In this section we would like to explore the virtual machine interface offered by
MIME, configuration of system resources and the initialization of a virtual machine.
In previous sections we described the hardware initialization state that an operating
system running on the Sun-3 will expect. For our virtual machine interface to be
transparent and flawless, each virtual machine running under the VMM must have
an identical initialization. To meet this requirement, MIME will create a copy of
the initial system configuration for each virtual machine in the virtual machine’s
virtual address space (VAS). The following is a list of steps that VMM takes to

configure a new virtual machine.

1. Initialize virtual machine pages for the new virtual machine. This includes
writing the appropriate addresses of virtual devices and drivers and building

an appropriate EPROM structure.



2. Initialize the VMM internal machine context structure that describes the new
virtual machine. This context structure describes a virtual machine that is
in the default machine boot state. Scheduling tasks are also started. These
manage the virtual resources that are expected by the VM. System resources

that the new VM needs, like disk space, are also allocated at this point.

3. The executable binary for the new virtual machine is loaded into the VM'’s

VAS. All other VMM virtual machine context data structures are initialized.

4. Once loaded and initialized, the VM is scheduled for CPU time by MIME’s

scheduler, at some point in the future.

Once all initialization is complete and an executable boot program is loaded, the
VM is ready to execute. At some point in the future the VM will be given the
CPU. It is expected that the virtual machine will then initialize itself on the virtual
machine interface the VMM has projected, just as it would on the physical machine
interface. The new VM will be able to determine its boot configuration from the
EPROM data that is visible in its address space.

3.4 Virtual Machine Context

In a VM environment, all hardware resources are virtualized. This means that,
for every operating system running in the virtual machine environment, we have to
provide all the resources it may possibly expect from the architecture. In this section
we will look at the requirements in defining a machine context that adequately
describes the machine state fcr a virtual machine.

Considering the machine architecture that was described in Chapter 2, every

virtual machine needs to have a CPU context that is defined by the following:

e Prccessor status word.
e Program counter.

e Sixteen general purpose registers.
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e User/Master/Interrupt Stack pointers.

o Memory management unit context.

Floating point unit context.

e Co-processor unit context.

This machine context provides a sufficient description of the state of the CPU
for any Virtual Machine running in the Virtual Machine Environment. During a
machine context switch, we set the hardware registers to the values that are stored
in the VM's contcxt structure and execute a return to user mode procedure. The
CPU will then start operating in user mode. This method of virtual machine

context switching will impose the following penalties and overheads:

Timing Delays The real time clock as seen by virtual machines will not tick
in a smooth incremental fashion. A VM with sensitive timing requirements, like
a real-time operating system, would suffer some penalties. Goldberg called this

additional time to process an event stream a stretchout.

Context Switch Delays A context switch requires the change of the MMU
contert. This means that the MMU instruction cache will get invalidated and the
new virtual machine will suffer an added overhead as it goes through some cache
misses. This is one processor overhead that is mainly incurred by the extra clock
ticks.

Delayed I/O A virtual machine that had pending I/O that arrives after the
context switch will not receive notification of the I/O until it receives its next CPU
slice. This applies to all I/O including network I/O.

We can see here that the machine context switch is the most expensive operation
of a VMM, and greatly affects the performance of the system as a whole. The better
the VM context switch, the fewer the penalties that the child operating systems
will pay for operating in a virtual machine environment. It is also necessary for

a virtual machine CPU context structure to store information that describes the
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states of various devices, pending interrupts and exceptions. The context structure
also maintains synchronization data for several devices like the difference between
virtual time in a virtual machine and the real time. The VMM keeps the virtual
machine context structure as part of a virtual machine control structure called the
virtual machine control block (VMCB). The virtual machine control blocks for all
the virtual machines running under the VMM appear in a kernel table called the
Virtual Machine Table (VMTAB). The VMM goes through the following steps to

achieve a machine context change:

1. Update the current VM’s VMCB entry with the current state of the processor
and peripherals. This includes the MMU state.

2. Obtain a ready VM from the ready queue.
3. Allocate a virtual address space for the new VM, if one does not exist.

4. Prime the processor with the new VM’s VMCB entry. In doing so the MMU
is updated to reflect a new virtual memory address space. The VMM will
also update synchronization and timing routines that will interrupt the new

VM once its CPU time quantum is over.

5. Execute a return to user-mode. This causes the processor to begin executing

instructions from the VM’s program space.

A VM has exclusive access to the CPU as long as it does not incur a VM-fault or
its CPU time slice is not exceeded. On a VM-fault the VMM may decide to swap
virtual machine contexts as it services the fault for the VM. When an executing VM
reaches its CPU time slice limit, a VMM timer will interrupt the VM giving control
of the processor to the VMM. The VMM will then begin a virtual machine context
change with the next ready VM. The VMM hides the context changes from the
executing VM by manipulating all the system resources that can show presence of

the VMM. In doing so, the VMM provides a transparent virtual machine interface.



3.4.1 Overhead In A Virtual Machine

Goldberg identified several principal sources of overhead in a virtual machine system
that also exist in MIME. The first type of overhead is the maintenance of the status
of each virtual processor. This includes the handling of all the visible microprocessor
state and reserved memory locations, as we just saw and will see again in Section 4.4.
Another source of overhead in a virtual machine system is the support of privileged
instructions. This is the instruction emulation described in Section 3.2.1. Support
for paging in a VM is a third principal overhead imposed by a VM M. This will also
be covered in the next chapter. Other sources of overhead exist, but they depend
mostly on the management strategy of the operating system executing in a VM. For
instance, the type of functionality an operating system executing in a VM requires
for virtual console may call for extra support from the VMM. Another aspect of
virtual machines that results in extra overhead, is the optimization of peripheral
device operaticus. In a VM, I/O operations on a virtual device result in a VMM
translation that maps the virtual device to a real device. An operating system
executing in a virtual machine may attempt to improve the access of the virtual
device. Since the VMM translates all access to the virtual device, the optimization
will not result in any access performance improvement. The optimization may
rasult in slower disk access, while carrying an extra processing penalty. This aspect

of virtual device behavior is a side effect of the VMM virtualization of devices.
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Chapter 4

Virtual Memory In A Virtual
Machine

In this section we would like to examine the effects of virtual memory management
in a VM environment, one difficult aspect of a virtual machine monitor. The re-
quirement that a VMM support transparency of virtual copies of “real” resources
makes the task of virtualizing the MMU a complex task. The task is indeed more
complex than typical virtual machine management modules in conventional operat-
ing systems. In IBM’s approach to a virtual machine operating system, we see the
development of hardware components to assist in speeding up address translation.
In MIME we are not so much in pursuit of an efficient paging method, as of a
simple VMM model to experiment with. Since we are using a general definition
of a virtual machine system that includes recursion, there is room for confusion
when we refer to real resources in a virtual machine. A real resource exists as an
extension of the physical hardware. A “real” resource exists as a VMM projected
virtual resource in a VM. We will use the quoted “real” when referring to a resource
that a VM expects to be operating on the physical hardware, but truly is just a
virtual object projected by the VMM. To help define the role that virtual memory

management plays, it is useful to make some formal definitions.
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4.1 Memory Resources In A Virtual Machine

Virtual memory management in third generation architectures, like the Sun-3, may
be viewed as the dynamic mapping of memory resources. The MMU maps memory
resources in the user context to a real memory resource by applying a translation
based on the current user address map. In a virtual machine environment the
translations are made up of two major components. The first component defines
how a virtual resource in a VM is translated by the operating system running in
the VM to a “real” resource in the VM. We call this the process resource model.
The second component defines how a “real” resource in a VM is translated by
the VMM that is supporting the VM in a “virtual-real” resource in the VMM.
We call this the virtual machine resource model. Using the process resource map,
this “virtual-real” may be translated into a “real-real” resource in the VMM. In a
recursive virtual machine structure, the complete realization of a virtual resource in
a VM to a real resource on the physical hardware, may require repeated resource
translation. The following paragraphs describe the components of a resource model

that describes the translation mechanism of a virtual machine environment.

Process Resource Model

This address translation is Goldberg’s [11] ¢-map definition. This ¢-map is defined
as a software and hardware operation that translates a set of process names P = {
po,p',,. ..,p;} to the set of “real” resource names R = {ro,7y,...,r;}. Effectively,
the ¢-map, MMU here associates process names with “real” resource names. For-

mally, the ¢-map function is defined as follows:
¢:P— RU{e}

such that if z € P, y € R, then

4(z) y if y is the resource name for process name z.
)=
e if z does not have a corresponding resource name.

In the above definition, ¢(x) = e means that the resource does not exist. This

event, in a operating system, results in the occurrence of an exception. The ¢-
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map definition describes a inter-level resource mapping function, which we call the

process resource model.

Virtual Machine Resource Model

The ¢-map resource model describes a translation of virtual resources to real re-

sources both of which are on the same machine. In a virtual machine environment

we also need to define a mechanism that will map the set of virtual resources V

= (vo,v1,...,Vm) present in a VM, to the set of real resources R = (ro,7r1,...,75)
present in the “real” machine. Since recursion is permitted in our model, the “real”
machine may well be a VM; executing at level ¢ under a VMM?!. Goldberg and
Popek (10, 11, 24] developed a formal definition for this mapping mechanism. Gold-
berg called the mapping an f-map and defined it as follows:

f:V = RU{t}
such that if y € V and z € R then

() { z if z is the real name for virtual name y.
y =

t if y does not have a corresponding real name.

The value f(y) =t will cause a VM-fault. The f-map function associates resources
in the VM; with resources in the “real” machine, VM;_,. VI;_; is the virtual
machine running a VMM and executing at level i - 1. The f-map is an intra-level
resource mapping function. In a recursive VM environment, a physical resource may
require repeated applications of the f-map operation to be realized. It is possible to
compose several f-maps® that maps a level n virtual resource to the level 0 resource.
For example, figure 7(2) shows the mapping of a level 2 virtual resource, y, to the

real resource, z, by the following composition rule:
h:Vi—=R
StV =W

IThe subscript in the VM name denotes the level in the recursive virtual machine tree that
the VM is in.

2For the f-maps we are using the same naming convention that is used for the VMs.

3The mapping fiof1.1(y) is just the composition fi(f1.1(y)) or fi.10 f1.
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Composed Resource Model

The ¢-map and the f-map can be composed to translate a process resource P =
{po,p1,-...p;} executing on a virtual machine VM, V, = {vo,,v1,,--.,Vm,} toO
a “real” resource in VM,_;. This is done by applying the composed translation

f(é(z)), which can be generalized by the mapping function;
fod:P— RU{t}U{e}

This composed translation is successful if both component’s translations are suc-
cessful. If the ¢-map fails, the process resource, p; is not realized by the virtual
machine VM;. The VM. is also handed an exception. Figure 8(a) is an example
of this. If the f-map fails, the “real” resource in the virtual machine VM, is not
realized by the VMM at level £ — 1. The VMM receives a VM-fault. Figures 8
(b) and (c) are examples of VM- faults at a VM level and the real machine level.
To support a recursive virtual machine systems we will adobt the simple naming
convention of adding level subscripts to the VM and translation function identifiers.
In the sections to follow we will look at two devices that fulfill the function:'ity of

the model described here and also examine MIME’s implementation.

4.2 Direct Address Translation

Other implementations of virtual machine operating systems and their formaliza-
tions introduce extra hardware to simplify the multi-level paging that will occur
under the VMM. In IBM’s VM/370, [1, 13, 14] we see the introduction of firmware
support, referred to as the VM-ASSIST that has the effect of significantly reducing
the number of privileged instruction traps the VMM has to manage*. For this
section we can treat the VM-ASSIST as a DAT management in VM/370, viewed as
a blackbox device that intervenes in virtual memory address translation to compose
a virtual machine’s virtual memory address translation map and that of the virtual

machine monitor. The net effects of VM-ASSIST are the single translation map that

1Specifics about IBM’s VM-ASSIST are scarce and protected under IBM patents.
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(a)

(&)

Figure 7: Recursive f-maps: The bean shaped areas define the collection of resources
for virtual machine V, or real machine # The function f maps virtual resources
v to real resources r. The subscripts denocte the virtual machine level. The real
machine is a virtual machine at level 0. t suggests a trap point for an unrealized
resource. The correct translation of a resource in a virtual machine, VM, will
realize a real resource on tue real machine R without causing a VM-fault.

allows a virtual machine to page without creating additional VMM sponsored pag-
ing, and the reduction of the work a VMM needs to do when managing a privileged
instruction fault. The mechanism that is used to compose the address translation
maps is proprietary, hence we can only hypothesize about its management. In the
following section we shall look at a formalization of a device similar to the DAT

described in this section.
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Figure 8: A Process exception and VM-fault: (a) describes a process fault caused
by process P, executing in VM, when it accesses an invalid address. (b) describes
a VM-fault caused by VM, when it accesses an invalid VMM address. ¢; and f;
are the address translation functions described in section 4.1.

4.3 Hardware Virtualizer

In the past, various authors [4, 5, 9, 10, 11, 24] have presented motivation for the
management of a device Goldberg first called a Hardware Virtualizer, (HV). The
chief function of this hardware virtualizer is to map resources efficiently such as the
virtual memory of a VM, to real ones on the real hardware. For virtual memory,
this function is defined as the composition of multi-level paging requirements into a
single level operation. The HV allows a VMM to produce a composed® translation
map for all virtual resources under its control. This results in a faster resource
realization process, since at most one level of translation wil! occur for a resource
that is within the boundaries of a virtual machine VM,. The composition of the
address maps may be dynamic or static, based on the mapping algorithm. Later

we will look at possible implementations of a HV, but one trivial example can be

5[4, 11, 24] present several varying formal specifications that support and develop the hardware
virtualizer concept.
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contrived for dealing with machine contexts. An in-bounds set of registers classifies
valid address ranges. if software executing on VM, generates an address that is in
bounds, as seen by the MMU and the in-bounds register set, the VMM couid then
page in the required pages. If the address was not in-bounds, the VMM may issue
a memory access violation exception to the faulting VM. The in-bounds register set

would be adjusted as memory conditions change and other virtual machines acquire

the CPU.

4.3.1 Impact And Design

The composition c¢f the process resource name model and the virtual machine re-
source name model provides for a clean and efficient method for resource name
translation. We can clearly see that for any VM there will only be one application
of the ¢-map, preceded by n applications of an f-map. Thus if f-map operations are
inexpensive in comparison to the ¢-map operation, then the f(n) o ¢ composition
will be easy and inexpensive to implement. Noted that when a process is running
directly on the hardware the model permiis the usual ¢-map translations. In the
model, the f and ¢ functions have different purposes, and since the model does not
restrict the form or the inter-relationship of the two functions, they may be im-
plemented in whatever fashior improves the name translation operation. Goldberg
poinis out that this model makes the choice of f-map implementation independent
of the ¢-map function, which is best modeled after the process model that is in use.
For instance, the real hardware may use relocation bounds or paging methods to
achieve ¢, but this will have no effect on the implementation of f. The design of

the hardware virtualizer must consider the following points:
1. f store.
2. A mwchaiism to invoke f.
3. Map compusition facilities; dynamic composition versus static composition.

4. VM-fault handlers.
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All VMMs manage f-maps that describe the relationship between virtual machine
resources at two adjacent levels. To do so, the VMM must save the f-map data
somewhere that is invisible to the virtual machine executing under it. This f-
map data is accessed only by using the VMM’s level number. Of course the level
number itself is invisible to the VMM. Figure 9 describes a virtual machine table
(VMTAB), which is indexed by the level number. The VMTAB is manipulated by
the current VMM to produce a pointer to a virtual machine control block structure,
VMCB, which holds all the relevant resource translation details for the f-maps.
The processor map entry of the VMCB includes processor state information and
other coprocessor state information. The I/O map translates I/O resources that
are not covered in the virtual memory map. The VMCB structure may also be
used to achieve special virtual processor capabilities, like special instructions and
operations. Special instruction capabilities may be added by the addition of F-line
and A-line exception handling to the VM’s VMCB.

From HV
VMTAB VMCB PAGE TABLES
»| PROCESSOR MAP
1/O MAP
MEMORY MAP
STATUS i

PROCESSOR MAP
1/O MAP
MEMORY MAP _ \
STATUS

VMCB

AGE TABLES

Figure 9: The VMTAB and VMCB.
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4.4 Virtual Memory In MIME

Since MIME's target architecture, namely that of the Sun-3, does not support any
hardware virtualizer or DAT, the VMM will execute virtual address translation
in software. The virtual memory management scheme will provide a simple map
composition mechanism in software. The VMM memory management system is
similar to the notion introduced by Dobosiewicz et al.[6]. Address translation can
take place at two levels: the VMM translation being the top level and the VM
translation being the bottom level. MIME’s VMM implements dual level transla-
tion composition. A virtual memory address, A, generated by a process executing
on a virtual machine will first be mapped using the virtual machine’s page tables
to a virtual machine memory address, A’, and then translated using the virtual
machine monitor’s page tabics to a physical address A”. When a virtual machine

page faults®, the following three points classify the existing page status:

1. The page does not exist in the VMM real memory nor does it exist in the
VM real memory, but the page is in the virtual address space of the faulting

virtual machine. If this is the case, the page is paged in by the VMM.

2. The page does not exist in the VMM real memory, but it does exist in the
VM real memory. If this is the case, the address map of the faulting VM is

altered to permit access of the page. No physical paging occurs.

3. The page is outside the VAS of the faulting VM. Here the virtual machine is

handed a bus error exception that it may do with as it pleases.

In the following subsection we will examine some of the details of MIME’s imple-

mentation of the software virtual address translation maps.

4.4.1 Virtual Memory Context Partitions

To manage the Sun-3’s MMU address space more efficiently MIME places a parti-

tion restriction on the virtual memory model. The MMU as mentioned in section

6We shall use the terms page fault and memory access violation interchangeably.



2.2.2 is an eight context MMU. The VMM’s virtual memory model restricts an
executing VM to four of the eight MMU contexts. This permits the VMM to
maintain two ready VMs in its ready queue. The implication of this virtual memory
model is that each virtual machine that runs in the VMM will execute with exces-
sive overhead in half of the available virtual memory address space. To extend the
virtual memory virtualization to the full range of a real Sun-3, the VMM employs a
simple context replacement algorithm. The virtual memory replacement algorithm
~uppoits the VMM in projecting a full Sun-3 address space of eight MMU con-
texts, by replacing one contexts of a faulting VM with the next context the VM
is cttempting to access. To achieve the replacement strategy, MIME could apply
a complex context swapping algorithm that picks the oldest context, but this adds
a greater overhead to the VMM?. Since one of the principal design goals in imple-
menting a VMM is the simplicity of the system software, MIME’s VMM employs
a simple tactic in which a faulting VM’s address space is victimized for a page.
The strategy attempts to replace the current VM’s MMU context with the new

one being referenced. The argument for supporting such a strategy is as follows:

1. It is unlikely that the current context will be used by an operating system
running in the virtual machine next if it is not a kernel context and the

operating system is implementing a fair scheduling algorithm.

2. Having two virtual machines in the ready queue is better than having only
one, while striking a balance between the extra paging to VAS’s in the VMM
to meet the expectation of the aperating systems running on the virtual ma-

chines.

3. Considering the coct of a Sun-3, it is unlikely that the number of VMs will

substantially exceed two.

In this fashion, executing VMs may effect a memory management context change
but at the price of their most curzent memory context being victimized and replaced.

The replacement of one MMU context with another is a simple process. To effect a

"Monitoring access to the MMU contexts, etc.

Fevs



context change, the VMM need only alter the virtual machine context structure of
the requesting VM to reflect a new context value. The new context points to one of
the available eight contexts whose pages are not in physical memory, and will have
to be paged in on a demand basis. In the next subsections we will deal with issues

surrounding demand paging.

4.4.2 Virtual Devices In Virtual Memory

In the Sun-3 architecture, all I/O devices are mapped into virtual memory. The
I/O devices are mapped to special pages in virtual memory and are flagged as such
"1 the pmeg entry of the page, (see section 2.2.2). To improve on virtual memory
access by J/O devices the architecture supports virtz.a! direct memory access or
DVMA. This allows devices to read and write virtual memory buffers directly,
leaving the CPU free of memory transfer cycles. DVMA greatly simplifies virtual
I/O device management in a VM eavironment. No special or complex strategies
have to be enacted to manage untrusted channel programns that communicate with
special physical memory addresses, as was common to early versions of virtual
machine operating systems[5]. An interesting effect of DVMA in a VM is that it
becomes a simiple virtual memory client in a virtua! inachine environment. Hence
DVMA access to virtual devices in a virtual machine is implemented as DVMA

to virtually mapped I/O pages that the VMM administers.

4.4.3 Memory Faults And Paging

As mentioned at the start of this section, MIME employs a two level paging process.
The levels are distinguished by who begins the paging process. The VMM or a VM
may begin the paging. To describe the paging mechanism let us adopt the example
case of MIME'’s virtual machine monitor supporting two virtual machines, VM,
and VM,. In our example, process® P.;, executing on VM_, attempts to access

a virtual memory address that is in a page that dces not currently exist in the

8]t does not make much difference to the paging system if the process is a supervisor or user
one.
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virtual address space of VM. This results in a memory access violation that hands
control over to the VMM. On examination of VM,;’s VMTAB entry, the VMM
can determine what action needs to be executed for VM, to rectify the access.
The possible actions fall into two categories, a VM-fault, and a VMM-fault. The

following paragraphs examine these two categories.

VM-fault

A VM-fault is defined as the access to a page, by a VM process, that is logically
in the virtual address space of the VM, but is not physically in memory. In our
example, the violation occurred when process P;; attempted to read or write a page
that was not physically in memory. The VMM handles this fault by executing
virtual machine VM,’s bus error interrupt handler at a user-level. VM, may then
attempt to page the offending page in from its backing store. In doing so the
virtual machine will have to find a free page to use from its pool of pages based on
whatever algorithm it is employing for page replacement. All protected references
to the physical machine state will be honored with the values currently in the virtual
machine’s machine state structure, hence the memory address space as seen by VM
will only reflect the virtual memory address space defined for the virtual machine.
Noted that if the address that caused the fault is an invalid address, VM. ’s bus error

interrupt handler may choose to pass the error directly to the offending process.

VMM-fault

If a page is logically visible to VM;, as defined by the virtual machine state struc-
tures in the VMM, but is not in physical memory, a VMM-fault is defined as an
access to the page, by a process P, ; of virtual machine VM;. Here the VMM has
to find a free page in memory so that it can move the page from backing store back
into physical memory. This type of page fault is handled by the VMM, and as such
is invisible from VM, which was the current virtual machine at the time of the
fault. On processing the page fault the memory access instruction is re-executed.
This memory fault is also possible for VMM supervisor pages that get swapped in

and out of physical memory, and just result in simple paging of the needed pages.
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A critical fault that falls in this category it that of an invalid address access by the
VMM. The occurrence of this event is fatal to the correct operation of the virtual

machine monitor.

MIME Memory Map
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Figure 10: Simplified Memory Map.

In the above cases, paging of virtual memory pages from secondary/backing
store to physical memory is done just as it usually is done in traditional operating
systems. The page fault causes the virtual memory module of the VMM to victimize
a physical page by flushing it to secondary store and bring the required page from
secondary store into physical memory. After the page is faulted-in, the offending
memory access is re-attempted in the same machine context that was current in at
the time of the initial fauvlt. Figure 10 provides a simplified view of memory map
that MIME uses.
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Chapter 5

Other Resources In1 A Virtual

Machine Environment

In this Chapter, we will look at some of the other issues that surround the effective
management of a virtual machine operating system. The VMM nucleus software
is responsible for the effective virtualization of all hardware resources in the archi-
tecture. This includes network devices and drivers, hardware clocks and counters,
disk subsystems, and serial ports and drivers. The VMM is also responsible for
the generation and provision of any artificial resource that will be exported by any
extension of the bare machine interface. All these devices are rep:-esented in the
VMM as § contexts. A 6 context is either an explicit value or an offset value that
when applied to the real hardware value will result in the values to be used for the
current virtual machine. Each system resource has its own transformation function
that will take a é context to the real one that the virtual machine expects when
it is executing. To maintain virtual machine system transparency the é context
transformation is hidden from the individual virtual machines. In the following
subsections we will examine briefly some of the more critical system resources, and
how MIME maintains and manipulates the various é contexts, all of which are part

of the a virtual machine’s context block.
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5.1 Time Of Day Clocks

The Sun-3 supports a time-of-day clock. Virtual time-of-day clocks are implemented
by the virtual machine monitor as a monitor data structure that provide each virtual
machine its copy of the time-of-day device. These virtua! time-of-day clocks could be
kept as either absolute values or as relative offsets from the real time-of-day clock
that the VMM controls. MIME employs relative offsets for its representation
of the virtual clocks. The offsets are represented as signed values in the virtual
clock register that is part of a VM’s VMCB structure. MIME treats the virtual
machine’s virtual clock as a § clock to which the real clock value is added to obtain

the correct time value for the virtual machine.

5.2 Network Support

VMM manages one physical machine, and several virtual machines From a network
perspective, given that we only have one real machine, there exists truly only one
real machine identifier. This machine identifier is used by network protocols to
address the physical machine. In a virtual machine environment there is some
difficulty in multiplexing this identifier amengst all the virtual machines that are
running in the system. A simple method that extends :ue machine network interface
of a virtual machine environment would consist of aliasing the physical machine’s
address to several addresses. There would be a one to one relationship between
the addresses and the VM and VMM. This means that the VMM would have to
honor more than one name as the network identifier that is reserved for this physical
machine. This method of extending the virtual machine interface to the neiwork
drivers does present some implementation difficulties, but does offer a short and
clear algorithm to manage virtual network devices. The method works especially
well with broadcast-based network protocols like ETHERNET![16]. The underlying
notion in the method is not new and indeed is used in ETHERNET networks to

implement network gateway machines.

IEEE Standard 802.3.
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5.2.1 Network Support in MIME

MIME'’s network facility is based on the idea of aliasing several ETHERNET ad-
dresses to one physical machine. Every VM running in the VMM has its own
singular THERNET address. The network driver of the VMM copies all packets
that appear on the network into network buffers that are readable by all virtual
machines. In this way every VM i: the environment will get to see a true and
realistic view of the network. Ali packets that appear on the netr-rk are copied
by the VMM to the network device diiver buffers of -1} the VMs sunning. The
one weakness of the scheme is the vast amount of copying ! 2¢ will have to take
place in the VMM. If there are four VMs running, MIME will have t= ::-esent
a copy of every incoming ETHERNET packet to each of the four copies of :he VM
ETHERNET drivers. To improve on this bottle-neck MIME implements a network
driver mapping strategy that allows for the creation of only one virtual copy of the
network driver. This copy is mapped into the address spaces of all the VMs in
turn as they are given a CPU time slice. This means that the VMM need not
make several copies for the several VMs. To further improve the virtual network
drivers, MIME will optionally short-cut outgoing network traffic, if it is addressed
to a locally running VM. This short-cut takes the form of copying the outgoing
traffic to the input buffers for the local VMs. This has the effect of making the
physical machine appear to the outside world somewhat like a gatewayed machine,

where there is outgoing traffic if it is addressed to machines out of the sub-net.

5.3 Disk Subsystem

This section deals with the virtualization of disk resources for a virtual machine
environment. This is a thorny issue in virtual machine operating system principles.
The problem here may be stated as follows: given we have one real machine with
several real disks, how can we virtualize the disk resources so that each virtual
machine running in the environment can see a complete and consistent view of the
disk resources available to it. We cannot just create true virtual copies of the disks

and hand one to each VM. The VMs would write all over each others disk space
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and violate the basic virtual machine system requirement of encapsulation. What is
needed is a scheme that virtualizes the disk resources in such a way that each VM

sees what appears to be a complete set of disk resources, although smaller-then-real

disk resources.

5.3.1 Mini-disk Partitions

One simple solution to the disk resource question, is the partitioning of the disk
resources on a static base to satisfy all the VM’s running in the VMM. If the
total disk resource in a system is 700 Mbytes over all partitions of the physical disk
mediums, we can configure our VMM to provide a fixed maximum disk space, say
70 Mbytes, to each VM in the system. Chis places an upper limit on the maximum
number of VMs, and is based on the division of the disk resource into the number
of VMs. In this scheme a disk resource request by a VM would result in reads and
writes to a virtual disk partition, whose dimensions are statically known. This is
the disk virtualization strategy used in IBM’s VM/370 virtual machine operating
system[l, 14]. The virtual disk partitions are referred to as mini-disks. A chief
handicap of this scheme is its simplicity. A static sized mini-disk on one VM may
fill up to maximum, while one on another VM may remain empty, hence leading to
an inefficient usage of expensive and !imited resources. The strategy does not allow
for optimal use of the available disk space as VM requirements change over time,
because of its static nature. The strategy’s performance depends on the expertise

of the operator who defines the initial system configuration.

5.3.2 Dynamic Disk Partitions

In MIME we decided to go a slightly different route in an attempt to improve on
disk space usage and provide greater flexibility to the creation and management
of disk resources. The concept employed in MIME’s disk virtualization is more
complex than the previous mini-disk strategy. A basic component of the idea is
the provision of a minimal file system by the VMM. The file system is supported
in a hyper disk that is an extension of the physical disk. The file objects in this
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file system constitute the different virtual disk (VD) partitions for the individual

virtual machines running under the VMM.

File Objects

The file objects in the minimal disk partition system define a collection of disk blocks
that belong to a virtual disk. Typically the disk blocks marked by this file object,
reside only on one physical disk partition. It is not difficult to extend the system
to support a more complex cross-disk allocation mapping that allows the virtual
disks to span across physical disk boundaries. The elements of the file objects are
disk block addresses. These disk blocks may be discontinuous on the physical disk,
although it is desirable that they be contiguous for performance reasons. A VM
disk access for a virtual disk partition is manipulated by the VMM so that the
access results in an access within the bounds of the virtual disk that is projected
by the file object. File objects are created by the VMM file system module with a
size specification. The creation size may be manipulated to realize a near mini-disk
strategy, in which the total disk space is divided up statically in advance, with no
dynamic disk space available. File objects are allocated in an optimistic fashion,
whereby the sum of the disk space presented to all VMs may be larger than the
total physical disk space. File objects are added and deleted to virtual disks on

demand as VMs grow ana shrink their disk requirements.

Disk Operations

Operations on a virtual disk produce two results. They add or delete filz objects
to a VM’s virtual disk. The VMM maintains disk configuration tables that define
a VM'’s current disk geometry. When a VM accesses its virtual disk, the VMM
translates the access to the appropriate file object in the hyper disk. If the file object
does not yet exist, and the VM has not filled its virtual disk, the VMM will attach
a new file object? to the VM'’s virtual disk, and continue the access.

In a simple implementation of this scheme the VMM intercepts all disk usage

" ?Free file objects are maintained by the VMM in a free pool.



statistics request by VMs. It returns the usage statistics for the individual VM"s
virtual disk partition. This can cause some problems. For example, when a virtual
machine, VM, expects 50 Mbytes of available disk space and gets swapped out,
another virtual machine, VM,, can use up some or all the physical disk space,
leaving less than 50 Mbytes of available physical disk space. Now when VM, gets
to run again, it could attempt an access of its virtual disk that would translate to

an invalid physical disk location.

VD

Using the dynamic disk partition scheme allows disk resource allocation to be done
in a more flexible way as virtual file systems grow and shrink in their respective VM.
The VD system has the advantage that the VMM creates the virtual disks from
the hyper disk, which is larger than the sumr of the physical disks. In dividing the
hyper disk into virtuai disks, the VMM runs the risk of being asked to supply disk
resources that are outside the physical limits of the component disks. A related
disadvantage of this VD system is the problem of choosing an appropriate size
for the various virtual disks, such that you provide effective disk resources while
minimizing the chances of filling up the physical disk often. The current VD system

does not provide any recovery mechanism for this condition.

Disk Partitions And MIME

There still are some weakness in MIME'’s virtualization of disk resources. These
weaknesses are common to both the mini-disk strategy and MIME’s dynamic disk
partition scheme. The most significant failure of both schemes is in the waste of
;omputer resources. This happens when an operating system executing in a VM
attempts to access its virtual disk partition optimally by doing some computation,
but the VMM re-computes the corrected disk trajectory to access the correct disk
partitior. Another weakness is the multiple copying of data from the buffers in the
VMM address space to equivalent ones in a virtual machine’s address space. Fi-
nally there is an additional cornputational burden placed on the VMM to maintain

consistent views of the virtual disk geometries under all conditions.
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5.4 Serial Devices

In the current implementation of MIME, virtual serial devices are not given much
attention. This of serial devices is caused by severe limitations in the machine ar-
chitecture. The Sun-3’s two AMD chips support a maximum of four serial devices.
Two of these devices are used in the management of the machine console and key-
board. The other two devices are available for system use. In MIME’s VMM, we
chose to use the four serial devices to create a console device for each running VM.
This implies that the environment exercises an upper limit of four virtual machines
with a console device. As a side point, a VM may exist without a serial console if
the VM makes special arrangements to have its console device elsewhere, say over
a network connection. In effect MIME chooses to virtualize the serial devices only

partially, although MIME can create virtual device drivers for the serial lines.

5.5 Debugging Tools

One difficult task in operating system implementation is the debugging of a kernel.
Since kernels are special objects, they have special debugging requirements. Ker-
nels are special since they do not have any support environment, unlike processes
in a operating system. Some of the special debuggihg requirements that kernels
have, are the need for an effective way to communicate with a kernel that is being
debugged, and mechanisms for spying on various kernel events and structures. In
earlier chapters, we inotivated the need for developing virtual machine operating
systems with their help in developing and debugging new conventional and unusual
operating system designs. On this point, the greatest asset to an operating system
develoyer is » powerful kernel debugger. MIME, in its simple incarnation, provides
a minoy tut useful interface to operating system kernel debugging. This is possible
because MIME maintains complete machine context structures and the ability to
disassemble operations, when it attempts to emulate certain instructions. MIME
provides *hat useful environment behind the operating system executing in a virtual
machine. Using the environment the VMM has developed, it is conceivable that a

specialized kernel debugger can be constructed that takes advantage of these struc-



tures and has tools for controlling a host VM. Theses tools may be as cenventional
as the usual process debuggers, breakpoints and spys, or may have uncemmon fea-
tures like event watchers, and instruction emulators. In this area MIME has uot
developed much support yet. It is hoped that as the tools and features develop we

will see more support for this facility.



Chapter 6
Conclusion

Virtual machines have been with us for over two decades and they will remain for a
while longer. They have appeared under several different incarnations and flavors:
to improve on architectural limitations, to provide specialized environments, or to
offer a full-blown user-tailored computer system.

In the age of window systems, many packages offer user environments that mul-
tiply user effectiveness by generating virtual terminal devices. Some devices are
special, like a drawing canvas, while others are siraply terminal emulators like X11’s
Xterms[26].

Xerox, in their design and implementation of the Smalltalk-80[8] environment
and language, developed a special-service virtual machine that was the operating
system and the user environment - an example of a virtual machine that supports
a specific programming environment.

IBM offers an implementation of a full-blowx virtual machine operating system
the - VM/370. As CPU’s in micro-computers and workstations become faster and
more capable of tasks previously reserved for the mini and mainframe computer
arena, we can see this platform is becoming more supportive of virtual resources.

In this chapter, we will examine related efforts and future directions of this
work, and conclude with a few closing remarks. We present here some of the work

on full-scale virtual machine operating systems.
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6.1 Related Work

In the history of virtual machine operating systems, there have been several related
research and commercial efforts. Most of the work has been focused on snecification,
design issues, and implementation. Some work also focused on security and asso-
ciated issues in virtual machine systems. Some have been purely research efforts,

while others have been commercial efforts.

6.1.1 VM/CMS

The most notable effort in commercial Virtual Machine Operating Systems has bee:
IBM’s Virtual Machine Facility /370 (VM/370) [27, 14], which appeared in the early
seventies'. This effort by IBM brought to light the feasibility and usefulness of vir-
tual machine systems. As virtual machine systems became more usable and practical
they left the realm of purely academic fancies. IBM recognized the virtual machine
system as an effective tool for the distribution of computer resources. Two decades
later IBM’s VM/370 is still the leading commercial product in this area. There
has been little effort at bringing this style of operating system to other hardware
platforms, namely the personal workstation. Several studies have been done on the
effectiveness and efficiency of the VM/CMS operating system {12, 13, 27]. Most of
the work has been focused on improving the efficiency of the operating system, as
illustrated in the section 4.2 presentation of the VM-AssIST feature. The VM/CMS
operating system is built around two components: the Control Program (CP) and
the Conversation Monitor System (CMS).

Control Program

CP is the virtual machine monitor that is responsible for the management of system
resources. It creates virtual machines that support several System/370-compatible

operating systems®. CP supports anything, albeit not necessarily efficiently. The

1IBM has worked with the idea of a virtual machine system as early as the mid sixties on their
360/40,44,67 machines{l, 5].
2CP supports DOS/VS OS/MFT, OS/MVT, DOS/VS, OSVSI, SVS, and MVS amongst others.



machine interface provided by CP is that of a System/370 and its derivatives. CP
provides only those services required to resclve the perspective differences between
the point of view of a virtual machine and of the real system; CP also dispatches
virtual machines and manages the real hardware. CP supports features that al-
low sharing of executable virtual machine code, locking of specific page frames in
real memory and the allocation of device and channel resources to special virtual

machines on a dedicated basis.

Conversation Monitor System

CMS is a special minimal operating system that depends on CP for its execution.
CMS is used typically for interactive program development and personal computing,
and supports a single user on a VM/370 virtual machine. Multiple CMS sessions
are capable of code sharing. The CMS environment is taken to provide a single
user work space on a VM/370. This work space includes language processors and

compilers, file access methods, editing, text formatting and debugging capabilities.

6.1.2 XINU

The XINU virtual machine operating system was designed and implemented as a
research and teaching facility. It is used principally for teaching operating system
courses, providing the students with access to a bare or minimal machine interface.
The XINU kernel [3] is one example of a virtual machine system implementation
that executes under a general-purpose operating system. The XINU kernel may be
viewed as a complex simulator that takes the extended machine interface provided
by the host operating system and generates a raw machine interface. The XINU
kernel was initially implemented under the Berkeley 4.2 Unix3[25] operating system
running on a set of LSI-11 machines linked by a store-and-forward ring network.
The kernel operates a XIN U machine simulator with multi-user support. The kernel
runs under the native Unix environment as a large single-process thread. Network

communication concepts are implemented in the virtual machine environment as

3Unix is a trademark of AT&T Bell Laboratories.



XINU machines that talk to each other over RS-232 ports. The RS-232 ports are
simulated by using Unix sockets. The ports introduce noise and connection failures
to enhance the simulation further. In the version of the XINU kernel examined, the
virtual machine interface is not extended to memory management. This was because
of the complexity of building and interpreting memory management instructions in
a simulator that supports the host machine’s native instruction set. NINU’s largest
weakness 2s a native language virtual machine implementation is that it executes
in a single state. This means that XINU cannot support privileged instruction

protection by dual-level instruction sets.

6.1.3 CPM

At the University of South Florida, Kim et al. [15] developed a generation of virtual
machine environments on several simple hardware platforms to evaluate concepts
in fault-tolerant distributed processes. The system was developed in Concurrent
Pascal, and was implemented on a MC68000 architecture. CPM has two compe-
nents: a Kernel, and a Code Interpreter. The function of the code interpreter is to
support a stack-oriented instruction set. The kernel provides the basic mechanisms
for concurrent execution of processes and manages low level I/O activities. Network
communication facilities are managed by an I/O processor that communicates over

one of four serial ports that operate at 9600 baud.

6.2 Further Work

In this Section, we would like to explore several extensions to MIME. As mentioned
in the Chapter 1, MIME is a part of a long-term research effort to produce a
system that will support operating systems development research and education.
These two goals represent most of the motivation behind the work on designing and

implementing MIME.



6.2.1 MIME In Education

With a full-featured implementation of a virtual machine operating system like
MIME, we can, with relative ease, develop courseware for courses in operating
systems, both for graduate and undergraduate level instruction. In most of to-
day’s academic facilities we can find many small personal computers and a few
large-scale multi-user computing resources. This migration of CPU cycles from the
large multi-user base to the personal computer® has created some difficulties in the
area of operating system edurition. The following example highlights the problem
admirably. An academic instructcr teaching a graduate level course on operating
systemn principles would like to give students some hands-on experience with context
switching, or process scheduling. At his disposal, he/she has several Sun-3 worksta-
tions that are running some proprietary operating system, called XOS. To achieve
his aim the instructor develsps a toy operating system, ToyOS that allows the stu-
dents to execute their coutext switching or process algorithms. All that the students
need do is shutdown XOS on the workstation and install their modified versions of

ToyOS to test their implementations. This has a few discouraging effects.

1. Bringing down XOS, the student destroys whatever the XOS environny=t was

supporting.

(8]

The student may have undue access to privileged data and programs, for

instance over the network.

3. The version of ToyOS the student runs may be faulty and affect other machines

in the networked environment, either accidentally or deliberately.

So the instructor of the course is unable to provide the students with a secure
environment in which they can test and develop algorithms for operating system
principles. If the instructor had a VMOS for the workstation architecture he/she
planned to support for the course, it would then be a simple process to create

a virtual machine partition for each student on the VMOS, that would also be

1Here a personal computer can be taken as the traditional PC, or a computer workstation, like
the Sun-3.



supporting the proprietary XO5. MIME's encapsulation would protect against the
three effects that where listed above and also provide a more flexible method of
application development and testing.

MIME’s principal raison d’étre in the educational arena is its usefulness as op-
erating system class courseware. Students can develop operating systems that test
various issues and algorithms in a clean, simple and safe manner. The operating
systems could then be implemented on the real hardware with little or no changes.
This presents great possibilities for creative solution and/or management of oper-
ating system issues in the academic field. The arguments presented in this section

may be extended to other areas of operating system research as we will see next.

6.2.2 MIME In Further Operating System Research

Dobosiewicz el al. [6] introduce a distributed operating system for the universe
called MESS. The underlying principle in MESS is the virtualization of resources
in a completely transparent way. The work on MIME is a founding element in the
MESS research project. In developing a research tool like MIME we can design,
develop and achieve efficient multiple operating systems, while evaluating concepts
and structures in distributed operating systems. It is easy to do rapid proto-typing
and testing of new and novel kernel concepts without the fear of interrupting normal
day-to-day computing on the hardware base that is being used for the testing.
Experimentation with the virtual network described by Dobosiewicz could be done

in greater encapsulation and security.

MIME With A Twist

Another side of MIME that will assist operating system research is in the de-
velopment and experimentation of various methodologies in resource management,
sharing and implementation. MIME’s support of resources in the Sun-3 architec-
ture should not stop at only the real ones. MIME can be implemented with support
for a variety of virtual devices that allow testing of concepts in these virtual de-
vices. Consider for example, the management of a user process based file system

in which a user defined process instantiates all file objects a user requires. The
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process would create a file system out of virtually addressable segments of memory.
This is an idea similar to the one used in the implementation of Mutics[22]. Re-
sources, in this environment, could then be represented by virtual address drivers.
These drivers would instantiate real and virtual resources by reading and writing
virtual addresses to system peripherals with maybe some filtration and emulation.
A user in this system would, for instance, get a file printed by copying a range of
virtual addresses to another address, where the printing spool device resides. In this
operating system example, the uniform view given to the user would be a virtual
address. The work elements of the system would be simple memory operations like
copy, clear, read, write, refresh. iastallation of user drivers would then be managed
at the operating system level. This example is just one creative possibilities that
MIME would allow.

6.2.3 Tomorrow’s MIME

As work on the implementation of MIME draws to an end, we should expect to see
work beginning on the definition of a virtual network. As mentioned in the previ-
ous section, there is ample motivation for this work. One motivation not menti»ned
though, is the resulting environment that comes out of having several networked
computer resourc: : ihat are generating VMMs and VNs. This environment will
permit dynamic or static configurations of VMM’s to create a cluster of virtual
machines and resources. This virtual cluster could support a distributed operating
system that takes into consideration the various virtual resources it believes it has,
and generate a uniform and apparently homogeneous virtual compute base. This
would be another feather in the nest for MESS. Universality of the distributed oper-
ating system, DOS, could be implemented at this uniform and homogeneous virtual
environment by the addition of more virtual compute resources in an indefinite
manner.

In tomorrow’s MIME, we expect to see efforts directed at improving the per-
formance of MIME with respect to the architecture-VMM combination. Several
techniques may be investigated that attempt to improve MIME's performance.

These techniques may be categorized as “Policy”, “Interface compromise” , and
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“Improved or new mechanisms”.

Policy

To reduce the overhead and solve some installation management issues, a policy that
dedicates resources to a preferred VM may be explored. These resources inciude a
percentage of CPU time?, real I/O devices as opposed to virtual I/O and pages of
memory. In alternative VMM systems, the “virtual = real” policy is one interesting
variation of the one just mentioned. Other policies that may be investigated are
Goldberg’s VMM or VM streamlining. These policies are based on the manipula-
tion of the VMM of the operating system executing on the VM to take advantage
of strengths or weaknesses in both the VMM or the VM. Reducing the amount of
paging in a VM by increasing the virtual memory definition is one example that is
based on the knowledge that paging in the VMM is far more efficient than paging
in the VM.

Interface Compromise

This performance improvement approach involves the changing of the VMM to
generate one or more specialized extended VM interfaces. The executing operating
system could take advantage of this extension to the standard interface to improve
performance. An example of this could be the possible extension of MIMEs’ inter-
face, in the current architecture, to support special F-line to A-line exception as
super instructions that signal a special service request by target virtual machines.
This means that the executing operating system in this virtual environment would
be incompatible with the real hardware or another VM. The operating system soft-
ware could possibly determine if it is operating in an extended interface, and if so

re-configure itself to take advantage of the extensions offered by the VMM.

5Time slice.

.

[ 8]



Improved Or New Mechanisms

As new and improved hardware architectures for virtual machines arrive, we should
be able to improve on MIME’s VMM emulation of privileged instructions, hence
removing a major performance bottle-neck. IBM showed that it is worth the effort
to improve on the architectural design in search of further performance when they
introduced the VM-ASSIST firmware changes to the VM/370.

As MIME and its virtual machine interface improves, we can hope to improve
execution CPU time delays. The reduction of these values has the effect of reducing
the penalties imposed on an operating system executing in a virtual machine. This
means we can hope to achieve a better equivalence with conventional operating
systems executing directly on the real machine. Better scheduling and memory and
resource management methods may come to light with this aim in mind. We can
also expect work to be done in the implementation of a hardware virtualizer device
to replace the typical memory management unit device in the machine architecture—
VMM combination. Given the hardware architecture explored in this work, it is
not a difficult task to develop an application-specific integrated circuit (ASIC) to
realize an HV as the one formalized in Section 4.3. Appendix B.2 shows a simplistic
implementation of an HV in the Sun-3/MC68030 architecture.

6.3 Closing Remarks

As MIME continues to evolve, more and more issues in operating system design and
implementation will have to be examined. MIME represents a step in the evolution
of operating system development, research and educational tools; it has been, and
still is, a large effort in implementation testing and experimentation. This effort at
developing a virtual machine operating system for the workstation environment is
not trivial, even though the task is well defined on most issues. Since most of the
questions on virtual machine systems have been explored in the past, the topic has
drawn little fresh work, even though there are still aspects of this art that have not
been nailed down. The lessons learned with MIME improved and will continue to

improve the understanding of virtual resources. For example, in the development
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of MIME it was recognized that a consistent access mechanism for system devices
in the supported machine environment, made the kernel simpler. In the Sun-3, the
VDMA for I/O devices makes the management and operation of device drivers
a simple extension of the virtual memory operations. The lessons learned in de-
veloping a virtual machine operating system have also helped to highlight various
problems related '-: cesource management in a complex systems. For instance, in
MIME?’s current implementation, there is little or no support for system resources
that do not partitior well, such as a tape driver. An attempt of integrating these
classes of device will hay.o to be made so that virtual machine operating systems
can present complete ma-hine interfaces.

Virtual machine systems have given us the ability to examine the role devices
play in a machine architecture. The lessons learned in resource management for
multi-user, time-shared, and distributed systems have benefited from the virtual
machine system interface. A great weakness that has limited the role of virtual
machine systems in modern experimental scale computing, has been the complexity
of developing complete system implementations. The work on MIME has been an
attempt to overcome this large obstacle in the way of research and education in
virtual resource management.

To conclude this thesis, we would like to state that this work is an attempt at
providing a working virtual machine system platform that will permit further efforts
in these areas of operating system research and education. As MIME continues to
mature and stabilize as a research tool, it is expected that MIME will support
a suite of operating systems in an effort to explore various aspects and issues in

operating system principles.
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Appendix A

Exception Vector Table
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Vector Vector Offset
Number(s) [ Hex | Space Assignments
0 000 SP Reset: Initial Interrupt Stack Pointer
1 004 SP Reset: Initial Program Counter
2 008 SD Bus Error
3 00C SD Address Error
4 010 SD Illegal Instruction
5 014 SD Zero Divide
6 018 SD CHK, CHK2 Instruction
7 61C SD cpTRAPcc, TRAPcc, TRAPYV Instruction
8 020 SD Privilege Violation
9 024 SD Trace
10 028 SD Line 1010 Emulator
11 02C SD Line 1111 Emulator
I 12 030 SD (Unassigned, Reserved)
13 034 SD Co-processor Protocol Violation
14 038 SD Format Error
15 03C SD Uninitialized Interrupt
16 040 SD
Through (Unassigned, Reserved)
23 05C SD
24 060 D Spurious Interrupt
25 064 SD Level 1 Interrupt Auto Vector
26 068 SD Level 2 Interrupt Auto Vector
27 06C SD Level 3 Interrupt Auto Vector
28 070 SD Level 4 Interrupt Auto Vector
29 074 SD Level 5 Interrupt Auto Vector
30 078 SD Level 6 Interrupt Auto Vector
31 07C SD Level 7 Interrupt Auto Vector
32 080 SO
Through TRAP #0-15 Instruction Vectors
47 0BC SD
48 0BC SD
Through (Unassigned, Reserved)
63 OFC SD
64 100 SD
Through User Defined Vectors (192)
255 3FC SD

Table A.3: Exception Vector Table.
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Appendix B

Implementations, Details And

Specifics

B.1 Implementation Shortfalls In MIME

MIME is still in a developmental and evperimental stage. This is because the com-
plexity and effort needed to complete a fully operational version of a virtual machine
operating system. At present, MIME’s virtual machine monitor only manages a
sub-set of its required tasks. The virtual machine monitor does not support schedul-
ing, virtual machine context switching and timing. Virtual memory management
is still in its infant stage. Without virtual memory MIME wiil only support one
special virtual machine, as long as it is small enough to fit into the remaining real
memory. The virtual device drivers are currently those device drivers defined by
the Sun-3 EPROM and are not relocated anywhere else. In the current implementa-
tion of MIME, no effort has gone into effective management of instruction tracing.
This has the added difficulty of causing the VMM to emulate every sensitive in-
struction. Optimization of the instruction trace interrupt routines could make this

feature more manageable in a VMOS environment.
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B.1.1 Implementation Platform Details

The current work on MIME is taking place on a Sun-3/60 with eight megabytes
of physical memory and 700+ megabytes of disk storage. Most of MIME'’s code is
written in “C” with a few assembler files. Parts of the VMM code are implementa-
tion changes to parts of the Sprite network operating system (23, 20, 21]. MIME's
dynamic file systems for virtual disk resources is based on parts of Sprite’s file sys-
tems, but without the process migration and file caching aspects {19, 7]. MIME
is being implemented on a Sun-3/60 that is networked with other production-level
workstations. This makes development and debugging of MIME a far more complex
task. Once a more useful version of the VMM kernel is established, a stand-alone
test environment will be necessary for rigorous testing and debugging.

MIME'’s chosen hardware platform has several weaknesses. These weaknesses relate
to virtualization of resources that do not virtualize well, such as the machine console.
The Sun-3 console as mentioned in 2.2 is hardwired to two of the four serial ports,
and depends on the framebuffer device. This makes virtualization of the console
impossible, and as such MIME does not provide any virtual device support for
the console. Since MIME was implemented with portability in mind, we expect to
develop the kernel on other workstation based machines as they become available

without difficulty.

B.2 A Simple Hardware Virtualizer Implemen-

tation

In this section we would like to show a simple implementation of a hardware vir-
tualizer device. This HV implementation will be specified for the Sun-3 hardware
platform witk a Motorola MC68030[18] microprocessor, but the design is also ap-
plicable in general to the MC68020[17] microprocessor. The HV described here
follows, principally, the design specifications developed in [11, 9] with added sup-
port for the MC68030 CPU. Since the MC68030 microprocessor has an on-chip
MMU, the HV will over-achieve the MMU's functionality by providing mainly



virtual memory management support for a virtual machine operating svstem envi-
ronment. As is mentioned in 4.3 this HV operationally replaces the MMU tasks.
This over-implementation is not entirely equivalent and transparent, but does per-
mit a more fluent implementation of the a virtual machine monitor. The difference
in operation of the two devices, MMU-HV will require a change to the software
that is created for the MC68030-MMU combination, to take full advantage of the
MC68030-HV combination.

B.2.1 HYV Design

Our implementation of the hardware virtualizer takes the shape of a single ASIC
co-processor ciip that takes the roll of a paged memory management unit. Al-
though the MC68030 has an on-board MMU, the chip does permit the addition
external MMUs. To minimize the effective differences as seen by the rest of the
machine (Sun-3), the HV design will follow closely, where feasible, the conventional
implementation of an external memory management device. The HV defines its
own HV address space, which we arbitrarily choose as address space 4'. The chip

has the following internal registers®:

® VMLEVEL register: This register is updated by the HV firmware to reflect.
the ¢ wr:-.. 7 raachine level number. The value of this register is 0 for

the rea: machin:.

o TLA register: A translation look-aside register that points to an associative
table of virtual addresses and their physical translation. This register’s value
is different for every virtual machine. The associative translat‘on table, ATT

is used by the XV tv improve the efficiency of address translation.

Manipulation of the HV is achieved through read and write accesses to the special
registers, VMCRTL and VMSTATUS. Both of these registers reside in HV-space.
By writing specific information to the VMCRTL register, a VMM operation at level

!Section 2.2 lists the other supported address spaces.
2HV iaternal registers are not visible to the host CPU.
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n can create and destroy translation maps for a virtual machine that will execute
at level n + 1. The VMSTATUS register provides translation status and error
information about the operations of the HV. Since the registers exist in HV-space,
they are invisible to the user-level processes. In this simple HV implementation,

we adopt the following HV operations:-

e CREATE: This HV operation will create a level VM LEV EL + 1 translation
map for a new virtual machine that will be spawned by the virtual machine
monitor executing at level VM LEV EL. The instruction will return a virtual
machine identifier in the VMSTATUS register.

e DESTROY: This HV operation will remove a translation map for a VM. The
virtual machine is specified in the argument of the instruction and must be a
valid identifier that originated from a CREATE operation at this level. The
VMSTATUS register will show the success of the operation.

e SWITCH: This HV operation is executed for its side effect. It causes the
HV to assume a level n + 1 resource translation. The instruction requires
a virtual machine identifier as an argument. If the null identifier is used, a
n — 1 level change will be done, except for the special case where the current
VMM is at level 0, in which case the operations is a no-op. The instruction
is used by the VMM to switch CPU control ove to a child virtual machine.
The instruction can also be used by a child virtual machine to preempt itself,
forcing the parent VMM to take control of the CPU. This operation also
alters the contents of the TLA register.

There is scope for more complex HV operations, like the implementation of spe-
cial virtual processor features and capabilities, but we will restrict the design to
the above operatior. only. The HV supports an externally read/writable VMCTX
rogister that plays the same role as the CTX register in the Sun-3 MM U. The VM-
CTX regist:: is duplicated in the VMCB of every virtual machine iu the system,
hence a VM context change will also result ia the correct value in the register. The

VMLEVEL internal register may be seen as an index pointer to a list of virtual



machine tables. It is used in exception processing to determine which VM’s excep-
tion handler to ca’. and where to being the map lookups. Each VMTAB defines a
composed resource translation map that maps a level n virtual resource to the real
resource. This is done for all virtual machine that exist as children of the current
virtual machine monitor. Since the Sun-3 architecture supports virtual mapped

I/0, the only client of the resource translation maps is virtual memory.

B.2.2 HYV Operation

The VM'TABs makes up the f-map database that Goldberg described in [11]. The
VMCB entry describes a page table structure that maps a virtual addresses into
physical ones. The virtual address translation procedure used by the HV first tries
*o trace the virtual address in the ATT. If a match is found in the table, the

...z ted physical address is used. If a match is not found, the address is recoded
i.. ¢ HV into a physical address using a similar translation process to the one
described in sectior 2.2.2. The VMCB maintains a processor map that record: the
viewable CPU state. An entry in the VMTARB structure also classifies the top of the
segrnent table. In this HV design a .irtual add:. = i . ade up of the composed value
of the context register, C'i’X, and the low 27 .::t - » the virtua! address. Figures 5
and 6 in chapter 2 describes how the compose:! 2TX and segment value are used

to index a segment table during address translation.

VM-Faults

During address translation, if a VM-fault occurs, the HV firmware wili reset the
VMLEVEL to cne less then the current level. It also prepares a VM- fault exception
structure on the top of the interrupt stack, and places the CPU into interrupt
state. This causes the hardware to begin executing an auto-vectored inierrupt
hand’er. The fauit is processed by the virtual machine executing at this level as
an f-map-exception in which the virtual machine attempts to demand page in the
needed pages. If it is successful, the faulting-child-VM’s VMCB is modified to
reflect the address space change, and the exception returns successfully. If it fails,

the child-VM's VMCB is configured to represent a bus-error exception.



B.2.3 Summary

This HV description is designed to minimize the difference between the Sun-3-
MMU combination and a Sun-3-HV combination. Except the differences mentioned
in the previous paragraphs, the HV supports a paging operation similar to the
MMU’s one. Owing to the relationship between the VMTAB entries and the HV,
this design has one advantage over the MMU design. Paging may be achieved on
a single or multiple page scale, depending on the VMM’s page replacement policy.
This advantage may be used to carry out a page replacement policy like the used by
the MM U operating on single pages, or a pmeg page replacement policy that pages
complete pmegs to and from the backing store. Since the HV instructions are based
on HV-space memory address access, it is easy to add compiler functionality of this
device. This hardware virtualizer desciiption is incomplete and requires further

work before the device could be used as plug replacement for the Sun-3 MMU.

(1)



Appendix C

Privileged And Trap Instruction

Formats

MIME is required to service supervisor operations when ever a VM- fault occurs.
To do this the VMM uses the data in Table C.4 to determine what supervisor
instruction was executed by a VM. The VMM disassembles privileged instructions
using this table to determine what the faulting \'M needed. The supervisor request
is serviced by the VMM by emulation or simulation of the operation. Appendix D
shows some VMM functionality to manage some of these operations.

The instructions in Table C.4 define all the instructions that cause a VM- fault
in the MC68020 microprocessor. The instructions can be divided into two major

categories:

1. CPU state queries: This category, a VM requires information pertinent to
its machine state. To manage these instructions the VMM will simulate
the operation by returning the relevant value that is in the VM’s VMCB

structure.

2. CPU state changes: In this category a VM is attempting to change the state
of the microprocessor. The VMM will simulate the operation by updating the
relevant entry in the VM'’s VMCB structure. The VMM may also have to
emulate the operation on the physical hardware, for example,a MM U context

change operation.
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Instruction Bit Field Numbers
Name 15 t14 [BJI2]1ITI0]9 87 [6]5[4Jaf2]1] 0

ANDI 0 [oJoJojJoJoTJiJoJof[1JiJiJ1J1]JoJo

to SR Word Data

EORI 0 JoJoTJToJrTJToTrJoJoJrJ1JrJ1J1]oJo

to SR Word Data

f cpPSAVE ] 1 v JiJ1] Cpld J1JoJoT Mode [ Register ]|
| coPRESTORE [ [t 1 J1J1] Cpld J1[o0[1] Mode | Register ||
| MOVE tc SR [ 0o JirJoJoJoTJiJrJoJ1Tr] Mode | Register [j
[ MOVEfromSR | o J 1 JoTJToJoTJToJoJoJ1J1] Mode [ Register |
[MOVEwUSP | o |1 JoJojf1rJ1JrjoJoJ1]1]0]0] A-Register]
| MOVE from USP | 0 | 1 oJToJrJuJur]nJofl1]1]0]1[ A-Register |
MOVEC 0 1 toejo6JrJrjrjojof1jrfr]J1rjof1]dr

A/D Reg # Control Register
MOVES 0 oJoJo 1 Ti1[r]o] Sie Mode Register
A/D Reg # dr |0 [0]0]0]0]0]0[0]0]0] 0

ORI 0 ]o[()JoTo]v[o]o]1]1[1[1[1]0]0

to SR Word Data

[ RESET [0 [1]oﬁl1T1Tg0]0[1|1|1|0L0|0|0]]
STOP 0 [t foJo i1t J1fitajoJiJiJ1JoJoJ1Jo

lmmediate Data

Table C

To reduce the effect the VM M'’s trap-disassemble-evaluate ope:-!
performance of the overall system this part of the VMM has to gu:

4: Privileged And Trap Instruction Formats.

ion has on the

zk and efficient.

——



Appendix D

Virtual Machine Monitor Code

Fragments

This Appendix section has several data structures that are used to define various

virtual machine monitor structures.

D.1 VMM Data Structures

D.1.1 CPU Context Structure

¥define MACH_NUM_GPRS 16
typedef char sAddress;

typedef struct Cpu_State {

long gpr [MACH_NUM_GPRS] ; /+ General purpose registers

* 16 of them DO-D7/A0-A7 ./
long pc; /* Program counter s/
long 8T} [+ Status register s/
long usp; /e User stack pointer ./
long m8p; /% Haater stack pointer ./
long isp; /% Interrupt stack pointer e/
long vbr; /* Vector basa register s/
long cacr; /* Cache control register ./
long caar; /» Cache address register ./
long s8sv : 16; /* Spacial status word o/
long sfc : 3; /+ Source function ccde

* register 3-bite ./
long dfc : 3; /* Destination function code

» register 3-bits o/



long £ill : 10; /+ filler to a full word. s/
} Cpu_State;
/e
» The state structure for the MC68881 Floating point co-processor.
./
typedef struct Fpu_State {
long fpRegs(81{2]; /+ 8 fp. registers x/
long ctrlRegs([3]; /* 3 fpu control registers &/
unsigned char version; /* Fpu version number */
unsigned char state; /* Fpu state idle/busy */
unsigend short reserved; /* Reserved word =/
unsigned long internal[(184/4)-1]; /* 184 bytes for fpu state =/
}
/*
* Simulated Sun-3 MMU structure
./
typedef atruc Mmu_State {
unsigned char context; /* Contex Register */
long =segMapPtr; /* Pointer to Segment Map =/
long spMapPtr /* Pointer to Page Map s/
} Mmu_State;
typedef struct VMach_Context {
Cpu_State cpuState; /+ Save area for Cpu state =/
Address kernStackStart; /% Address of start of
* kernel stack. »/
Fpu_State fpuState; /* Save area for Fpu state. #/
HMmu_State amuState; /+ Mmu data */
} VMach_Context;
D.1.2 Virtual Machine User Structure
typedef struct VMach_ExcStack {
short statusReg; /% Status register »/
int pc; /% Program counter s/
Mach_VOR vor; /» The vector offset
* register s/
union {
Mach_AddrBusErr addrBusErr; /% Address or bus error info »/
} tail;

} VMach_ExcStack;

/e

* The user state for a virtual machine;

* Synonymous to the user process state for regular operating systems.

»/



typedef struct VMach_UserState {

Address userStackPtr; /+ The user stack pointer «/
int trapRegs [NACH_NUM_GPRS] ;/+ General purpose registers.s/
Mach_ExcStack sexcStackPtr; /* The exception stack ./
Fpu_State trapFpuState; /+ Internal state of the fpu s/

} VMach_UserState;

D.2 VMM Sample Code Fragments

In this Section, we would like to provide some sample VMM code fragments to
highlight VMM operations managing privileged instruction traps. The following
“C” procedure, VMach_Emulate_Prive_Inst, provides MIME's VMM with the
ability to emulate sensitive instructions that manipulate the CPU or MMU states.
The changes to the CPU or MMU states are reflected in the VMM virtual machine
context structure:s that we show in the previous section. Indeed some instructions
do cause changes in the real hardware and are evaluated in an encapsulated form.
[t is necessary to encapsulate the evaluation of some of the special instructions since
the VMM has to protect the rest of the virtual machine environment from being
corrupted by the manipulations being made by the current faulting VM. In table C.4
we list all privilege instruction formats. Using an instruction evaluation routine the
VMM can determine the type of special operatien that was requested by a faulting
VM and emulate the operation on the VM’s VMCB. The determination of a special
instruction is a simple exercise, but is a relatively expensive operation. MIME does
not currently support statistics functions to monitor system performance.
/%

* Macros to Make long word mask

»/

#define one(x) ((x) << 16)
8define two(x, y) (((x) << 16) + y)

/*
* Instruction op codes and masks.

»/

/»
* And immidiate to SR
*/

N



#define ANDIVW
tdefine ANDIW_MASK

/v

# Exclusive-or immidiate to GP

«/

#define EORIW
#define EORIW_MASK

/e

s Co-processor restore function

«/
tdefine
#define

/e

¢ Co-processor save function

7
#define
8define

/*

* Move
s/

#define
#define
#define
#define

/e
* Move
«/
8define
#define
#define
#define

/e

* Move
s/

#define
#define
#define
8define
$define
#define
$define

/=

s Moves from/to memory spaces
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#define
#define

CPRESTORE
CPRESTORE_MASK

CPSAVE
CPSAVE_MASK

to/from SR

MOVEW_TO_SR
MOVEVW_TO_SR_MASX
MOVEW_FRM_SR
MOVEW_FRM_SR_MASK

usp

MOVEL_TO_USP
MOVEL_TO_USP_MASK
MOVEL_FRM_USP
HMOVEL_FRM_USP_MASK

control register

MOVEC_TO
HMOVEC_TO_MASK
MOVEC_FRM
MOVEC_FRM_MASK
MOVEC_AD_MASK
MOVEC_REG_MASK
MOVEC_CREG_MASK

HOVESB_TO
MOVESB_TO_MASK

one(0001174)
teo (0, 0177777)

one (0005174)
two(0, O177777)

one (0170400)
one (0007077)

one {(0170500)
one (0007077)

one (0043300)
one(0177700)
one (0040300)
one(0177700)

one (0047140)
one{0177770)
one (0047150)
one(0177770)

one(0047172)
one(0177777)
one(0047173)
one(0177777)
tvo (0, 0100000)
two (0, 0070000)
two (0, 0007777)

tvo (0007000, 0)
two (0177700, 07777)



#define MOVESB_FRM two (0507000, 04000)

tdefinc MOVESB_FRM_MASK two (0177700, 07777)
#define MOVESL_TO tvo (0007200, 0)
#define MOVESL_TO_MASK two (0177700, 07777)
#define MOVESL_FRM two (0007200, 04L00)
#define MOVESL_TO_MASK two (0177700, 07777)
#define MOVESW_TO two{0007100, 0)
#define MOVESW_TO_MASK two (0177700, 07777)
#define MOVESW_FRM tvo (0007100, 04000)
#define MOVESW_FRM_MASK two (0277700, 07777)
#define MOVES_REG_MASK two(0, 0070000)
#define MOVES_DREG_MASK tvo (0000007, 0)
#define MOVES_AD_MASK two(0, 0100000)
#define MOVES_SZ_MASK two (0, 0000300)
#define MOVES_DMD_MASK t90 (0000070, 0)
/*
* Or immediate to SR
s/
#define ORIV one(0000174)
#define ORIW_MASK tvo(0, 0177777)
/*
* Reset microprocessor
w/
#define RESET one{0047160)
#define RESET_MASK one(0)
/*
* Halt microprocessor
s/
‘efine STOP one(0047162)
‘efine STOP_MASK two(0, 0177777)
acu_Emulate_Priv_Inst
E£mulate the privileged instruction found at the address of the PC in
in exception stack frame.
- Some instructions are simulated by writing to software copies of the
* data structures, e.g. SP, VBR etc. While others are emulated by
* interpreting the instructions and executing them in an encapsulated
* tform. The caller can then modify the user’s pc value based on how
- the instruction vas emulated/executed, and the sizs of the instr.
*
* Results:
* True if instruction was emulated by encapsulation and ezxecution.
s False if simulated in software structures.
*
* Side effects:
* Privileged memory may be written.



* Returns in instrSize the size (in bytes) of the instruction evaluated.
*
* -t e e e o
*/
Boolean
VMach_Emulate_Priv_Inst (machUserContex, machUserState, jnstrSize)
VMach_UserState machUserState;
VMach_Contex machUserfontext;
short sinstrSize;
{
Boolean esulated = FALSE;
long instr;
long value;
long source, dest;
short size, mode, ea;

*instrSize = 4;
instr = aachUserState->excStackPtr->pc;

switch (instr) {

case ANDIW:
value = ANDIW_MASK & instr;
machUserContex.cpuState.sr &= value;
emulated = TRUE;
break;

case EORIW:
value = EORIW_MASK & instr;
machUserContex.cpuState.sr "= value;
emulated = TRUE;
break;

case CPRESTORE: case CI'SAVE:
VMach_encap_excecuta (instr)
sinstrSize = 2;
break;

case MOVEW_TO_SR:
ea = MOVEW_TO_SR_MASK & instr;
YMach_Copy_From_EffectiveAddr (&machUserContex.cpuState.sr. ea, 2);
emulated = TRUE;
*instrSize = 2;
break;

case KOVEW_FRM_SR:
sg > MOVEW_FRM_SR_MASK &k instr;
Vilach_ Copy_To_EffectiveAddr (machUserContex.cpuState.sr, ea, 2);
axtlated = TRUE;
sinstyrSize = 2;
break;

case MOYEL_TO_USP:
source = 8 +{MOVELTO_USP_MASK & instr);
machUserContex.cpuState.usp = machUserState.trapRegs({8 + source];
emulated = TRiE;
sinatrSize = 2;
break:

case MOVEL_FRM_USP:

S



break;

source = MOVELTO_USP_MASK &k instr;
emulated = TRUE;
singtrSize = 2;

machUserContex.cpuState.usp = machUserState.trapRegs([8 + source];

case MOVEC_TO:

source = (MOVEC_REG_MASK & inatr) + ((MOVEC_AD_MASK & instr) = 8);

switch (MOVEC_CREG & instr) {
case 0x000:
machUserState.trapRegs[source]
break;
case 0x001:
machUserState. trapRegs{source]
break;
case 0x0062:
machUserState. trapRegs[source]
break;
case 0x800:
machUserState.trapRegs[source)
break;
case 0x801:
machUserState.trapRegs[sourcel
braak;
case 0x802:
machUserState.trapRegs[source]
break;
case 0x803:
machUserState.trapRegs [source]
break; ‘
case 0x804:
machUserState.trapRegs[source]
break;
}
emulated = TRUE;
break;
case MOVEC_FRM:

machUserContext.cpuState.sfc;

machUserContext.cpuState.dfc;

machUserContext.cpuState.cacr;

machUserContext.cpuState.usp;

rachUserContext .cpuState.vbr;

machUserContext.cpuState.caar;

machUserContext.cpuState.msp;

machUserContext .cpuState.isp;

source = (MOVEC_REG_MASK k instr) + ((MOVEC_AD_MASK & instr) » 8);

svitch (MOVEC_CREG & instr) {
case 0x000:

machUserContext.cpuState.sfc = machUserState.trapRegs[source];

break;
case 0x001:

machUserContext.cpuState.dfc = machUserState.trapRegs[source];

break;
case 0x002:

machUserContext.cpuState.cacr = machUserState.trapRegs(source];

break;
case 0x800:

machUserContext.cpuState.usp = machUserState.trapRegs[source];

break;
case 0x801:

machUserContext.cpuState.vbr = machUserStatae.trapRegs[source];

break;
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case 0x802:
machUserContext.cpuState.caar = machUserState.trapRegsa([source];
break;
case 0x803:
machUserContext.cpuState.usp = machUserState.trapRegs[sourcel;
break;
case 0x804:
machUserContext.cpuState.isp = machUserState.trapRegs[source];
break;
}
enulated = TRUE;
break;
case MOVESB_TO: case MOVESW_TO: case MOVESL_TO:
source = (MOVES_REG_MASK & instr) + ((MOVES_AD_MASK & instr) = 8);
dest = 8 + (MOVES_DREG_MASK & instr);
size = (MOVES_SZ_MASK & inst);
mode = (MGVES_DMD_MASK & inst);
VMach_MmuSpaceRead (machUserState.trapRegs([source],
machUserStata. trapliagsfdest], mode, size);
break;
case MOVESB_FRM: case MOVESW_FRM: case MOVESI._F2NM:
source = (MOVES_REG_MASK & instr) + ((MOVES_AD_MASK & instr) = 8);
dest = 8 + (MOVES_DREG_MASK & instr);
8ize = (MOVES_SZ_MASK & inst);
mode = (MOVES_DMD_MASK & inst);
VMach_MmuSpaceWrite (machUserState.trapRegs[aource],
machUserS:ate.trapRegs[dest], mode);
break;
case ORIW:
value = ORIW_MASK & instr;
machUserContex.cpuState.ar |= value;
emulated = TRUE;
break;
case RESET:
VMach_KillMachine (machUserState, machUserContext, RESET_INSTR);
*instrSize = 2;
break;
case STOP:
value = STG2_MASK & instr;
machUserContex.cpuState.sr = value;
VMach_KillMachine (mach’/serState, machUserContext, STOP_INSTR);
enulated = TRUE;
break;
}

return emulated;
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