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Abstract

In [2], Atkin and Swinnerton-Dyer conjectured a simple characterization of

those Fuchsian groups whose modular forms have integral Fourier coefficient.

It has a natural and far-reaching generalization, which we will call the vASD

conjecture, to vector-valued modular forms. We confirm vASD conjecture for

all 1-dimensional multipliers of Γ(2), and set the stage to test it for higher di-

mensions for Γ(2) and other Fuchsian groups. In order to do so, we investigate

the similar question for hypergeometric functions, namely when the denom-

inators of its coefficients are unbounded. We do this using p-adic methods,

checking when the coefficients are p-adically unbounded for a given p. We

generalize the results of [11] for the standard hypergeometric function 2F1 to

the generalized hypergeometric function nFn−1 with rational parameters. In

particular, we provide a necessary and sufficient condition for a given prime

p, applicable to all but finitely many primes, which determines when its co-

efficients are p-adically unbounded; these are equivalent but different to the

conditions found earlier by Dwork in [7] and by Christol in [6]. Also, we show

that the results from [11] concerning when the density of unbounded primes is

0 or 1 respectively extend to the case of nFn−1, and strengthen each slightly.

We additionally show that the structure of the set of unbounded primes from

the 2F1 case extends to the nFn−1 case. We end with a discussion of modular

forms and a brief overview of how the work on hypergeometric functions will

apply to the vASD conjecture.
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Chapter 1

Introduction

The theory of modular forms began in the field of number theory, alongside

the study of elliptic curves. Since then, it has spread across many fields of

mathematics, notably including that of vertex operator algebras. Here they

appear as characters of certain ’nice’ VOAs; however, as opposed to traditional

modular forms, these are multi-dimensional ’vector valued’ modular forms,

with an additional multiplier or representation attached. We provide a brief

sketch here; for a more precise introduction, see chapter 4.

A traditional modular form is, roughly speaking, a function on the upper

half plane H which is invariant, up to a specific factor, under the Möbius

action of the modular group, Γ(1) = PSL2(Z) = SL2(Z)/±I, where I is the

standard 2× 2 identity matrix. We usually refer to matrices in Γ(1) by one of

their pre-images in SL2(Z); the action we are about to define remains the same

regardless of which representative we choose. The Möbius action is defined,

for τ ∈ H, as (
a b

c d

)
· τ =

aτ + b

cτ + d
.

Then our requirement for a function f is that, for a given representation ρ of

Γ(1), we should have

f

[(
a b

c d

)
· z

]
= ρ

[(
a b

c d

)]
(cz + d)−kf(z),
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where k ∈ 2Z is called the weight of f . This definition can easily be generalized

to discrete subgroups of PSL2(R), known as Fuchsian groups, by requiring that

this hold only for matrices in said subgroup, and can be further generalized

by allowing the function f to be vector valued and the representation ρ to

be multidimensional. In this thesis we will primarily be interested in (vector

valued) modular forms for Γ(1) and another group, Γ(2), which we will define

shortly.

Applying certain minor restrictions to the multiplier ρ, we get that our

modular forms will always have nice Fourier expansions in a variable which

depends on the group (eg q = e2πiτ for Γ(1) or q̃ = eπiτ for Γ(2)). We restrict

here to the cases where these Fourier expansions have rational coefficients.

A question then becomes, why is it that in some cases, these Fourier expan-

sions will have rational coefficients with denominators which grow large to an

unbounded extent, while others have purely integer coefficients?

For example, take η(3τ)
η(τ)

= q1/12(1 + q + 2q2 + 2q3 + 4q4 + 5q5 + . . .)

and
√

η(3τ)
η(τ)

= q1/24
(
1 + 1

2
q + 7

8
q2 + 9

16
q3 + 171

128
q4 + 343

256
q5 + . . .

)
, where η is the

Dedekind eta function. Both are modular forms of weight 0 for Γ(1), but for

different 1-dimensional representations; is there something about their repre-

sentations that would let us predict that one has an integer q-expansion, while

the other has an expansion whose coefficients are not only rational, but whose

denominators grow without bound?

As another example, take one-dimensional vector valued modular forms

for Γ(2). Γ(2) is generated freely by two matrices, A :=

(
1 2

0 1

)
and B :=(

1 0

−2 1

)
. One-dimensional representations therefore consist of a choice of

two complex numbers, a := ρ(A) and b := ρ(B). Non-trivial modular forms

for such a ρ will have rational Fourier coefficients if and only if a, b ∈ Q.

Of these so-called rational representations, almost all will have vector valued

forms with Fourier coefficients with unbounded denominators. However, as we

show in section 4.6, there is a small class which will have Fourier coefficients

with integer coefficients, namely those where a24 = 1 and a8 = b8. What

is special about these representations? Is anything about the representation

2



captured by the fact that the Fourier coefficients for its modular forms are

integral?

Number theorists have long considered almost exclusively what are known

as congruence groups, ie groups that contain some group Γ(N), defined as the

image in PSL2(Z) of{(
a b

c d

)
∈ SL2(Z)|a ≡ d ≡ 1 (mod N), b ≡ c ≡ 0 (mod N)

}
.

Related to these are congruence representations, which have kernels which

contain some Γ(N), and congruence modular forms, which are fixed by some

Γ(N). Indeed, these are the Fuchsian groups which show up almost exclusively

in applications of modular forms to geometry, algebra and physics. In spite

of this, there are very few of them compared to the total number of Fuchsian

groups. Hence the question becomes, is there something special about these

groups which makes them interesting, or is their widespread usage merely an

accident?

Atkin and Swinnerton-Dyer, in their paper [2], suggested that perhaps con-

gruence modular forms f(τ) (with rational Fourier coefficients) were precisely

those with bounded denominator, that is to say that there exists a non-zero

M such that Mf(τ) has integer Fourier coefficients. We generalize this to vec-

tor valued modular forms and ask, is it the case that vector valued modular

forms with bounded denominator are precisely those whose components are

the congruence modular forms?

We need to make certain restrictions in order for this question to be inter-

esting. For example, it turns out that if ρ has infinite image (or equivalently,

its kernel has infinite index) then it necessarily both has unbounded denom-

inators for its modular forms, and is also not congruence. It is also known

that if the kernel is a congruence group, then its modular forms’ Fourier series

have bounded denominators. Hence the interesting case is the case where we

have a non-congruence representation that has finite image. We also restrict

to vector valued modular forms whose components are linearly independent,

as they can otherwise be recast as vector valued modular forms for a subrep-

3



resentation. We call vector valued modular forms with linearly independent

components and rational coefficients full rational modular forms.

This leads us to the following question:

Question 1.0.1. Let ρ be a congruence representation with finite image, and

let X(τ) be a full rational vector valued modular form for ρ. Can X(τ) have

integer Fourier coefficients?

The vASD conjecture is the prediction that they can’t.

In the case of Γ(1), in 1 and 2 dimensions, every finite image representa-

tion is a congruence representation, making the question vacuous in this case.

It is for this reason that we look, in section 4.6, at the case of Γ(2). There,

we confirm the conjecture for 1-dimensional representations of Γ(2). How-

ever, as explained in section 4.7, to answer the question for higher dimensions

and especially in two dimensions, the question comes down to looking at the

hypergeometric function.

The hypergeometric functions have a long history, having first been in-

troduced by Euler in 1769. As discussed in more detail in Section 2.4, they

are solutions to a certain class of differential equations, and as such show up

in many practical applications in physics and elsewhere. Their differential

equations are defined over the Riemann sphere, with rational functions as co-

efficients. These rational functions are permitted to have singularities only at

0, 1, and ∞.

The connection to vector valued modular forms is that the components of

any 2-dimensional vector valued modular form for Γ(2) is, up to some change

of variables z = z(τ), some hypergeometric function 2F1. Moreover, in each

dimension d > 2, infinite families of vector valued modular forms will have

components which are, up to a change of variables, dFd−1. For these vector

valued modular forms, verifying the vASD conjecture is intimately related to

investigating which nFn−1 have unbounded coefficients. Hence, it is to this

that we now turn.

The hypergeometric functions have a nice series expansion. For the gener-
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alized hypergeometric function nFn−1, this takes the form

nF n−1(α1, α2, . . . , αn; β1, β2, . . . , βn−1; z) =
∞∑
m=0

(α1)m(α2)m · · · (αn)m
(β1)m(β2)m · · · (βn−1)mm!

zm,

where the Pochhammer symbol (γ)m is defined as

(γ)m =

{
1 m = 0

α(α + 1) · · · (α +m− 1) m > 1
.

In order to answer Atkin-Swinnerton-Dyer, we must answer the similar ques-

tion about nFn−1: when are the denominators of the coefficients of the gener-

alized hypergeometric function unbounded?

It turns out the question can be answered using p-adic valuations. p-adic

valuations come from the study of p-adic numbers, an alternative completion

of the rational numbers that can in a sense be thought of as a localization

around a given prime p. The valuation measures divisibility by p; hence, by

using known facts about p-adic valuations, and especially Kummer’s result

about the p-adic valuation of binomial coefficients, we are able to examine

the divisibility of the denominators of the hypergeometric coefficients by each

prime p. We call the series unbounded with respect to p if the series’ p-adic

valuation is unbounded from below, that is, if arbitrarily high powers of p

divide the denominators of the coefficients of the series.

Using these methods we are able to generalize and strengthen the results of

[11], which proves various results on this topic for 2F1, to arbitrary nFn−1. In

particular, let α1, . . . , αn, β1, . . . , βn−1 be a set of hypergeometric parameters.

Let D be the least common multiple of their denominators. Then in Proposi-

tion 3.3.2, we show that we can find whether any prime p > D is unbounded

simply by checking the first prime q > D such that p ≡ q (mod D); that

is, whether any prime in a given congruence class of primes modulo D is un-

bounded is entirely determined by looking at a single sufficiently large prime.

This is a strengthening of the original paper’s theorem, which claims only that

if some prime is unbounded, then all primes larger than it in the same congru-

ence class are unbounded as well. This also ensures that the unbounded primes
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have a Dirichlet density of N
φ(D)

, where φ is the Euler totient function. We then,

in Theorem 3.4.2 use this to characterize when a hypergeometric function has

unbounded denominators for all but finitely many primes, and in Theorem

3.4.4 when the hypergeometric function has bounded denominators for all but

finitely many primes. We of course also generalize the necessary and sufficient

conditions for the hypergeometric function 2F1 to have unbounded denomina-

tors for a given prime, which again apply to all but a finite number of primes.

Namely, we introduce the concept of numbers being semi-interlaced, and in

theorem 3.2.6 show that for sufficiently large p, the question of whether nFn−1

has unbounded coefficients is simply the question of whether every p-adic col-

umn of the expansion of its parameters with 1 subtracted is semi-interlaced.

Since these expansions will be periodic, this is a finite test. These results form

the main body of the original work of this thesis.

The structure of this thesis is as follows.

In Chapter 2, we deal with the hypergeometric function and p-adic num-

bers. We begin with Section 2.1, an introduction to p-adic numbers and valu-

ations. In Section 2.2 we introduce the reader to p-adic expansions and arith-

metic. Section 2.3 provides proofs for the results in the area of p-adics which

we will use to prove our main results. Section 2.4 gives a similar background

for hypergeometric functions and generalized hypergeometric functions.

Chapter 3 provides the meat of the thesis; this is where the results from

[11] are generalized. In s=Section 3.1 we prove some preliminary results and

set up some definitions. We then, in Section 3.2, answer the question for the

hypergeometric function of when the coefficients have unbounded denomina-

tors with respect to given primes. In Section 3.3, we show that the set of

unbounded primes has a Dirichlet density, as well as a result about the struc-

ture of the set of unbounded primes. In Section 3.4, we show when the set of

unbounded primes has density 0 or 1.

In Chapter 4, we give an outline of the theory of modular forms and the

Atkin-Swinnerton-Dyer conjecture. We start in Section 4.1 with an introduc-

tion to the standard theory of modular forms. In Section 4.2 we then give a

brief overview of the generalization to arbitrary Fuchsian groups, especially

Γ(2). In Section 4.3 we generalize to vector valued modular forms. We then
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give a brief overview of the structure of some structure and theory for vector

valued modular forms for Γ(1) and Γ(2) in Section 4.4. Section 4.6 then gives

a brief overview of the story of the Atkin-Swinnerton-Dyer conjecture and an-

swers the vASD conjecture in the affirmative in the case of 1-dimensional vector

valued modular forms for Γ(2). We end in Section 4.7 with a brief overview of

how the two parts of this thesis come together for higher dimensional vector

valued modular forms.

In the conclusion, Chapter 5, we provide some possible future directions

for this work.

7



Chapter 2

p-adic Numbers and

Hypergeometric Functions

2.1 p-adic Numbers and Valuations

We begin with an introduction to the basics of p-adic numbers. For a more

thorough introduction, see for example [17] or [21].

Recall that one method of constructing the real numbers R is as a com-

pletion of the rationals, Q, for instance by requiring all Cauchy sequences to

converge. In so doing, we implicitly (or explicitly) use the standard metric

on the rationals, the Euclidean metric, which measures the distance between

two numbers using the standard absolute value. However, this is not the only

metric which one can define on the rational numbers, nor is it the only possi-

ble absolute value. Another method of measuring size and distance is, roughly

speaking, to look at divisibility by some prime p; completing the rationals with

respect to this metric gives us the p-adics.

More precisely, and more algebraically, we can approach p-adic numbers

via the idea of a valuation and the related concept of absolute values. For more

on valuations and the associated concept of valuation rings, see for example

chapter 11 of [8] or chapter XII of [24]. We define only discrete valuations here,

using the definition most appropriate to our needs; more general definitions

exist, as do definitions written using multiplicative notation.

8



Definition 2.1.1. A discrete valuation on a field K is a function ν : K →
Z
⋃
{∞} such that for any a, b ∈ K,

� ν(ab) = ν(a) + ν(b),

� ν(a+ b) ≥ min(ν(a), ν(b)), with equality when ν(a) 6= (ν(b)),

� ν(a) =∞ if and only if a = 0

The last condition can be dropped if we instead use only the multiplicative

group of the field, which will also remove the need for the use of infinity,

however this notation will be more convenient for us when converting to an

absolute value.

Definition 2.1.2. An absolute value on a field K is a function | · | : K → R
such that for any a, b ∈ K,

� |ab| = |a||b|

� |a+ b| 6 |a|+ |b|

� |a| > 0 and |a| = 0 if and only if a = 0.

We are most interested in a particular class of valuations and absolute

values, defined over the rationals.

Definition 2.1.3. Given a prime p, the associated p-adic valuation is the

function νp : Q→ Z :

� For a ∈ Z, let a = pkb, where p - b. Then νp(a) = k. That is, the

valuation of a whole number is the maximum power of p which divides

it. Here we define νp(0) = ∞, both to satisfy the requirements of a

valuation and since pk divides 0 for all k.

� For m
n
∈ Q, where without loss of generality m and n are co-prime,

νp(
n
m

) = νp(n)− νp(m).

It is an easy exercise to check that this does indeed define a discrete valu-

ation. We can now use this valuation to define an absolute value as follows:

9



Definition 2.1.4. Given a prime p, we define the p-adic absolute value | · |p :

Q→ R+ for a ∈ Q by

|a|p =
1

pνp(a)
.

Again, seeing that this does in fact define an absolute value is an easy

exercise, and follows mostly from the definition of a valuation.

In fact, we can use this absolute value to define a norm as follows.

Definition 2.1.5. Given a prime p, the associated p-adic norm is the function

|| · ||p : Q→ R+ defined for a ∈ Q by

||a||p = |a|p

That this is a norm in relation to the p-adic absolute value follows imme-

diately from the definition of absolute value.

As a matter of interest, and to show the importance of the p-adic norm,

we state the following well-known theorem.

Theorem 2.1.1 (Ostrowski’s Theorem). Up to equivalence, any non-trivial

norm on the rationals is either a p-adic norm, or the Euclidean norm.

For a proof see for example page 3 of [22].

We are now ready to define the p-adic numbers.

Definition 2.1.6. Given a prime number p, the completion of Q with respect

to the p-adic norm is called the field of p-adic numbers, denoted Qp.

There are, of course, many extensions of p-adic fields, however the base set

of p-adic numbers will be sufficient for our needs.

By Ostrowski’s Theorem, the p-adics are, in essence, the only completion

of the rationals other than the reals. As such, we can often use the p-adics

to find information about the rationals. One common example of this is what

is known as the Hasse Principle (see [17, pg 76-77]): the idea that one can

study the solutions of Diophantine equations over the rationals by studying

their solutions over all the p-adics as well as the reals. This can be thought of

as a local-global principle, where the p-adics are thought of as being the local

10



context around the corresponding prime (and the reals are the local context

around the ’infinite prime’). Although it is not in general true that solutions

exist for the rationals if and only if they exist in the p-adics for all primes as

well as the reals, this does hold for quadratic forms.

2.2 p-adic Expansions and Arithmetic

An important property of p-adic numbers (and, in fact, of p-adic fields in

general) is the existence of a unique (for each p) p-adic expansion for any p-

adic number, and in particular for the rational numbers. We will make use of

this extensively, so we will spend some time introducing the reader to these

expansions and how they interact with the p-adic operations, in particular

addition. As much of this is well-known, we will focus on examples, and leave

most basic theorems without proof.

Theorem 2.2.1. Given a prime number p, every p-adic number a has a unique

expansion, called the p-adic expansion, of the form

a =
∞∑
k=m

akp
k,

where m ∈ Z, am 6= 0, and for every k, ak ∈ Z, 0 6 ak < p.

For a proof, see for example [21, pg 22-25].

Definition 2.2.1. The expansion given in Theorem 2.2.1 is called the canon-

ical expansion, or simply the p-adic expansion. The numbers ak are called the

digits of a, with each ak being called the k-th digit of a.

In particular, it is well known that a p-adic number has an eventually

periodic canonical expansion if and only if it is a rational number; see for

example [21, pg 30-32].

This expansion is the source of the intuition that p-adics are local. In

number theory, we can take Q as a global object, which is analogous to global

objects in geometry such as the Riemann sphere CP1. In algebraic geometry

these are captured by their function field, in this case the field of rational

11



functions. Primes in number theory are analogous to points. Evaluating a

function at a point is analogous to reducing a rational number modulo p.

One can examine the local behaviour of a function at a point by looking at

its Laurent expansion; hence this is analogous to the p-adic expansion of a

rational number.

The notation above can be somewhat hard to visualise, especially in rela-

tion to the commonly used operations of addition and multiplication. As such,

it is common to write out p-adic numbers using only their digits without the

powers of p, either padded with zeros if m > 0 or with a decimal between a−1

and a0 if m < 0. That is, rather than writing

∞∑
k=m

akp
k,

it is common to simply write

amam+1 . . . a−1.a0a1a2 . . . for m < 0

or

a0a1 . . . amam+1am+2 . . . for m > 0,

where in the second case we set ai = 0 for all i < m.

In the case where the expansion is eventually periodic, we will use the usual

overbar notation, that is, for example,

a0a1 . . . ak−1akak+1ak+2

means that the expansion is continued by repeating akak+1ak+2 to infinity.

Additionally, in the case where there are only a finite number of non-zero

terms, it is traditional to omit the trailing zeros. In this case, we call the

number of digits written the length of the p-adic expansion. Note that the

length always begins its count at or before the zeroth digit.

As it may be hard to distinguish between this and regular, decimal digits,

where necessary we will write [a]p when a is written in p-adic digits and [a]10

when it is written in decimal notation. Since 10 is not a prime, no confusion

12



should arise.

The result of this notation is that positive integers’ canonical expansions

are precisely their p-nary expansions, only reversed. For example, if we take

p = 5 and a = 2482 = 3 · 54 + 4 · 53 + 4 · 52 + 5 + 2, then its p-nary expansion

would be 34412; we write its p-adic expansion as [21443]5.

Negative integers, by contrast, always have infinite series expansions. To

see why, let’s look at addition using the canonical expansions. Rather than

getting bogged down in notation, we will show this using an example. Let’s

again take p = 5, a = [2482]10 = [21443]5, and b = [54]10 = [412]5.

Addition in the p-adics is done much as addition in any n-ary system,

except with the possibility of infinite carries. In our example above, then, we

have

21143

+ 412

Adding 2 + 4 = 6 = 5 + 1, we get the zeroth digit as a 1, and a carry to the

next column; there, we get 1 + 1 = 2, plus the carry, making the first digit a

3; the second digit is 1 + 2 = 3, the third is 4 + 0 = 4 and the fifth is 3 + 0 = 3.

All subsequent digits are zero. That is, the final answer is 13343.

Now let’s look at a negative number, for example −1. By definition, we

must have 1 + (−1) = 0. For simplicity, let’s keep working with p = 5. We

need to have a p-adic number x = x0x1x2 . . . xn . . . such that

x0x1x2 . . . xn . . .

+ 1

0 0 0 . . . 0 . . .

Then we know that we need x0 + 1 = 0 (mod 5); since 0 6 x0 6 5, this

implies that x0 = 4. The first column now has a carry, meaning that we must

again have x1 + 1 = 0 (mod 5), meaning x1 = 4. Continuing this argument to

infinity, we get that xn = 4 for all n, that is, −1 = [ 4 ]5. In fact, the same

13



argument can be made for any p, giving −1 = [ (p− 1) ]p for all primes p.

Similarly, for any positive integer, to get 0 we will be forced to create a

stream of infinite carries with a summand of finite length; as such, our p-adic

expansion will need infinite non-zero entries.

Multiplication, similarly, works much as it does in n-ary arithmetic, but

with the possibility of infinite carries. As it will be less important to this

thesis, we refer the reader again to any introductory book on p-adic numbers,

such as those mentioned above.

Of particular note is that for rationals x = a
d
, where gcd(a, d) = 1, if p does

not divide d then x has an expansion whose only non-zero digits have non-

negative indices. p-adic numbers which have this property are called p-adic

integers and form a ring denoted Zp. The multiplicative group Z×p is made up

of precisely those p-adic integers whose zeroth digit is non-zero. In particular,

rational numbers x = a
d

are units in this ring if and only if p divides neither a

nor d.

2.3 Kummer’s Theorem and Other Simple Re-

sults in p-adics

The following simple results turn out to be quite important for our purposes.

The lemmas and proofs in this section follow those of [11].

Lemma 2.3.1. Let p be a prime, x = a
d
∈ Q∩Z×p , where without loss of gener-

ality gcd(a, d) = 1. Then x has a purely periodic p-adic expansion if and only

if x ∈ [−1, 0). Moreover, in this case, the minimal period M of the expansion

is the multiplicative order of p in (Z/dZ)×, that is, in the multiplicative group

of Z/dZ.

Proof. Let x = a
d
∈ Q ∩ Z×p , gcd(a, d) = 1, with purely periodic p-adic ex-

pansion x = x0x1x2...xM−1, where without loss of generality M is the minimal

period. Take y = [x0x1x2...xM−1]p. We will show that x = y
1−pM , that is, that

x · (1− pM) = y.

First note that pM has p-adic expansion with Mth digit 1 and all other

digits 0. Then similarly to −1, −pM will have expansion 00 . . . 0(p− 1), where
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the first p − 1 is at the Mth digit. Then 1 − pM = 1000 . . . 0(p− 1), where

again the first p − 1 is at the Mth digit. Thus, multiplying x · (1 − pM), we

get the first M digits as the first repeat of the sequence, whereas all following

repeats of the sequence and their carries are cancelled by the infinite p − 1

shifted copies of the sequence. That is, x · (1 − pM) = y, or x = y
1−pM . In

particular, since by definition of p-adic expansion we have 0 < y 6 pM − 1,

we have that x ∈ [−1, 0). Moreover, since both y and 1− pM are integers, we

have that d|1 − pM . Stated differently, pM ≡ 1 (mod d), so that if we let N

be the multiplicative order of p in Z/dZ, N must divide M .

Conversely, suppose that x = a
d
∈ Q ∩ Z×p ∩ [−1, 0), gcd(a, d) = 1. Let N

be the multiplicative order of p in Z/dZ, as above. Without loss of generality,

assume a > 0, d < 0. Then we have that pN ≡ 1 (mod d), so that there exists

some u ∈ Z>0 such that 1 − pN = du. Then multiplying both the numerator

and denominator by u, we get x = nu
1−pN . Since we know that −1 6 x < 0,

we must have 0 < nu 6 pN − 1. In particular, nu must have a finite p-adic

expansion with a length of at most N digits.

Doing similar calculations to those above, we find that the p-adic expansion

of 1
1−pN is

1

1− pN
= 1 00 . . . 0︸ ︷︷ ︸

N−1

,

that is, a repeating pattern of a 1 followed by N − 1 zeroes. Multiplying this

by an integer whose p-adic expansion has length at most N , such as nu, will

result in a number with a purely periodic expansion, whose minimal period M

divides N . By above, we must also have N dividing M , hence the two must

be equal.

In the coming sections we will largely be dealing with rational numbers,

for instance x, between 0 and 1, and looking at the p-adic expansions of x− 1

rather than that of x itself. It is for that reason that we introduce the following

potentially confusing notation.

Notation 2.3.1. Let x ∈ Q ∩ [0, 1). For any prime p, we define xj(p) to

be the jth coefficient of pj in the p-adic expansion of x − 1, that is, x − 1 =∑∞
j=m x

j(p)pj in the p-adic norm. When there will be no confusion, we will

15



sometimes write simply xj. For any set A, we will refer to the set {xj(p)|x ∈
A} as the j-th column (with respect to p) of A. (Note that this means that the

numbering of columns for p-adic integers starts at 0, not 1.) In cases where

we want to reference the jth p-adic coeffecient of x itself, we will instead write

x(j, p) or simply x(j).

Additionally, we will sometimes want to look at only part of a p-adic ex-

pansion, say the first j digits. Formally, this is a sort of truncation which gives

us an integer. For that reason we define the following operators.

Definition 2.3.2. Let x ∈ Zp. For any j = 0, there is a unique integer, which

we will denote τj(x), such that 0 6 τj(x) < pj and τj(x) ≡ x (mod pj). Then

τj is a map τj : Zp → Z, which we call the jth truncation operator.

Note that when we take a rational number x between 0 and 1 and sub-

tract 1 from it, we end up, by Lemma 2.3.1, with a rational number with a

purely periodic expansion so long as p divides neither the numerator nor the

denominator of x − 1. In fact, we can say more than this; as the following

lemma shows, there is a relatively simple formula for the values of digits of the

expansion.

Notation 2.3.3. For a real number x, we as usual let bxc be the floor of x,

that is the unique integer such that bxc 6 x 6 bxc+ 1. We also define {x} to

be the fractional part of x, that is, {x} = x− bxc.

Lemma 2.3.2. Let x = a
d
∈ Q ∩ (0, 1), gcd(a, d) = 1, p a prime such that

x− 1 ∈ Z×p . Let M be any period of x− 1. That is, using our above notation,

let x− 1 = x0x1x2 . . . xM−1. Then for all 0 6 j < M , we have

xj = b{−pM−1−jx}pc.

Proof. Let x,M be as in the hypothesis. Then we have that −x and x − 1

are both in (−1, 0) ∩ Q, and moreover, since they both have the same de-

nominator, p does not divide the denominator of either. Hence, since both

are rational numbers, both have periodic expansions and are p-adic inte-

gers. In fact, since we have −x + (x − 1) = −1 = (p− 1), we know that

−x = (p− 1− x0)(p− 1− x1) . . . (p− 1− xM−1).
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Let {−pM−1−jx} = r
d
, n = b−pM−1−jxc. Then multiplying the expansion

of −x by pM−1−j, we have that

r

d
+ n = −pM−1−jx = 00 . . . 0︸ ︷︷ ︸

M−1−j digits

(p− 1− x0)(p− 1− x1) . . . (p− 1− xM−1).

To prove that xj = b{−pM−1−jx}pc, we must show that 0 6 r
d
p− xj < 1.

In order to accomplish this, we first write r
d

+ n = ( r
d
− 1) + (n+ 1). Now by

definition, 0 6 r
d
< 1, so that by Lemma 2.3.1 we must have that r

d
−1 is purely

periodic. Hence, we can find n + 1 as the unique p-adic number which, when

subtracted from −pM−1−jx = r
d

+ n, gives a number with a purely periodic

expansion. It is clear, then, from the above expansion of −pM−1−jx, that we

must have −(n + 1) = [(p− 1− xj+1)(p− 1− xj+2) . . . (p− 1− xM−1)]p, and

hence

r

d
− 1 = (p− 1− xj+1) . . . (p− 1− xM−1)(p− 1− x1) . . . (p− 1− xj).

Truncating this, we get τM( r
d
− 1) = (p − 1 − xj+1) . . . (p − 1 − xM−1)(p −

1 − x1) . . . (p − 1 − xj), which allows us to isolate xj as the final digit. As

we showed above, truncation is equivalent to multiplication by pM − 1. If we

subtract the final digit of a p-adic number of finite length, we necessarily get

a finite p-adic expansion of strictly shorter length; hence we have that

0 6 (1− r

d
)(pM − 1)− (p− 1− xj)pM−1 6 pM−1 − 1.

Expanding, rearranging and dividing by −pM−1, we get that this is equivalent

to
r

d
· 1

PM−1
6 p

r

d
− xj 6 1− (

1

pM−1
− r

d
· 1

pM−1
).

Since 0 6 r
d
< 1, we have also 0 < ( 1

pM−1− r
d
· 1
pM−1 ) < 1. Thus, 0 6 p r

d
−xj < 1,

as required.

Corollary 2.3.3. Let x, y ∈ Q ∩ (0, 1), x 6= y. Let D be the least common

multiple of the denominators of x and y, and let p be a prime such that p > D
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and x− 1, y − 1 ∈ Z×p . Then for all j > 0, xj(p) 6= yj(p).

Proof. Suppose, by way of contradiction, that xj(p) = yj(p). By Lemma 2.3.2,

this is equivalent to

b{−pM−1−jx}pc = b{−pM−1−jy}pc.

Let {−pM−1−jx} = a
D

, {−pM−1−jy} = b
D

. Then we have

⌊ a
D
p
⌋

=

⌊
b

D
p

⌋
=⇒ 0 6 | a

D
p− b

D
p| 6 1

=⇒ 0 6 |a− b| 6 D

p
.

Since p > D and a, b are integers, this implies that a = b, that is, that

{−pM−1−jx} = {−pM−1−jy}. But then this means that since−pM−1−jx,−pM−1−jy

have the same fractional part, we must have that −pM−1−j(x− y) ∈ Z. How-

ever, since 0 < |x − y| < 1, and since p > D implies gcd(p,D) = 1, this is

impossible. Hence, we must have xj(p) 6= yj(p).

Corollary 2.3.4. Let x = a
d
∈ Q such that 0 < x < 1. Let p be a prime such

p > D (in particular, gcd(d, p) = 1). Then for all j, xj(p) 6= p− 1.

Proof. LetM be the order of p (mod d). By Lemma 2.3.2, xj = b{−pM−1−jx}pc.
Since x = a

d
and p is, in particular, an integer, we have that {−pM−1−jx} 6

d−1
d

. Then {−pM−1−jx}p 6 p− p
d
< p−1, so that b{−pM−1−jα}pc < p−1.

For our purposes we will need to know about the valuations of binomial

coefficients. It turns out that this information is encoded within the number

of carries performed during addition. This important, yet fairly elementary,

result will be the basis of our upcoming analysis. To prove it, we will need the

following well-known formula, attributed to Legendre ([25]) and now often left

as an exercise, eg in [17][pg 113]. We provide a proof here for completeness.
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Lemma 2.3.5 (Legendre). Let n be a positive integer, and let sp(n) be the

sum of the p-adic digits of n. Then

νp(n!) =
n− sp(n)

p− 1
.

Proof. First note that we can count the valuation of n! by counting first the

number of multiples of p less than n, then the multiples of p2, and so on, since

each of these and only these will contribute to the valuation of n!. The number

of factors in each of these cases is
⌊
n
pi

⌋
. That is,

νp(n!) =
∞∑
i=1

⌊
n

pi

⌋
.

Now, let’s let n = n(0) + n(1)p + n(2)p2 + · · · + n(k)pk be the p-adic

expansion of n. We write it out in full since we will be using it as a sum. We

can then rewrite the above formula as

∞∑
i=1

⌊
n

pi

⌋
=
∞∑
i=1

⌊
k∑
j=0

(
n(j)pj

pi
)

⌋
=

k∑
i=1

k∑
j=i

(n(j)pj−i)

=
k∑
j=0

j∑
i=1

(n(j)pj−i) =
k∑
j=0

n(j)

j−1∑
i=0

pi

=
k∑
j=0

n(j)
1− pj

1− p
=

1

p− 1

k∑
j=0

n(j)(pj − 1)

=
1

p− 1

k∑
j=0

n(j)pj − n(j) =
1

p− 1
(n− sp(n)).

We can now prove Kummer’s result. We will first show it for positive

integers, then extend the result to p-adic integers. We will first introduce

some notation which we will use throughout the rest of this thesis.
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Notation 2.3.4. Let γ ∈ Zp, m ∈ Z>0. Define

cjp(γ,m) =

1 if adding m+ γ p-adically causes a carry from the jth digits

0 otherwise.

We denote the total number of carries by cp(γ,m) :=
∑∞

j=0 c
j
p(γ,m).

Theorem 2.3.6 (Kummer). Let γ ∈ Zp, m ∈ Z>0. Then the valuation of the

binomial coefficient
(
γ+n
n

)
is exactly the number of carries when adding γ + n

in the p-adics, that is,

νp

((
γ + n

n

))
= cp(γ, n).

Proof. Suppose first that γ ∈ Z>0. Then we have that(
γ + n

n

)
=

(γ + n)!

γ!n!
.

Hence by Lemma 2.3.5 and the properties of valuations, we have that

νp

((
γ + n

n

))
= νp((γ + n)!)− νp(γ!)− νp(n!)

=
(γ + n)− sp(γ + n)

p− 1
− γ − sp(γ)

p− 1
− n− sp(n)

p− 1

=
sp(γ) + sp(n)− sp(γ + n)

p− 1
.

For notational simplicity, let’s call x := γ + n. Then we have, for each j > 0,

x(j) = γ(j)+n(j)+cj−1
p (γ, n)−p ·cjp(γ, n), where we define cjp(γ, n) = 0. Since

all these are integers, we can find some index such that all following digits are

zero in all three of these numbers’ p-adic expansions. Call this index k. Then,

since both ckp(γ, n) and c−1
p (γ, n) must equal 0, we have

sp(γ) + sp(n)− sp(γ + n)

=
k∑
j=0

γ(j) +
k∑
j=0

n(j)−
k∑
j=0

(γ(j) + n(j) + cj−1
p (γ, n)− p · cjp(γ, n))
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=
k∑
j=0

p · cjp(γ, n)− cj−1
p (γ, n) =

k∑
j=0

p · cjp(γ, n)−
k−1∑
j=−1

cjp(γ, n)

=
k∑
j=0

p · cjp(γ, n)− cjp(γ, n) = (p− 1)
k∑
j=0

cjp(γ, n)

=(p− 1)cp(γ, n).

Hence, combining these two, we get

νp

((
γ + n

n

))
= cp(γ, n)

for γ, n ∈ Z>0, as required.

Now suppose that γ ∈ Zp. Then either there are infinitely many carries

when adding γ + n, or else there is some finite index l0 such that no carries

occur beyond this index. Then for any index l > l0, cp(γ, n) = cp(τl(γ), n).

Recall that (
γ + n

n

)
=

(γ + 1)(γ + 2) . . . (γ + n)

n!
.

The denominator will always have finite valuation; the numerator will have

finite valuation so long as none of the factors is zero, that is, so long as γ /∈
{−1,−2, . . . ,−n}. Then supposing we have a finite valuation, there is some

index l1 such that for all l > l1, for 1 6 k 6 n,

νp(γ + k) = νp(τl(γ + k)) = νp(τl(γ) + k).

Then

νp

((
γ + n

n

))
= νp

((
τl(γ) + n

n

))
.

Let L = max(l0, l1). Then supposing γ /∈ {−1,−2, . . . ,−n} and cp(γ, n) <

∞, we have cp(γ, n) = cp(τL(γ), n) and νp
((
γ+n
n

))
= νp

((
τL(γ)+n

n

))
. Since

τL(γ) is an integer, by the first part of our proof we have νp

((
τL(γ)+n

n

))
=

cp(τL(γ), n). Hence, we have νp
((
γ+n
n

))
= cp(γ, n).

It remains to show that cp(γ, n) = ∞ if and only if νp
((
γ+n
n

))
= ∞. We

have already shown that νp
((
γ+n
n

))
=∞ if and only if γ ∈ {−1,−2, . . . ,−n}.
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Note that, as strictly negative integers, each of−1, . . . ,−n have infinitely many

non-zero digits. However, for γ ∈ {−1,−2, . . . ,−n}, we have that γ+n ∈ Z>0,

hence γ + n has only finitely many non-zero digits. Since n has only finitely

many non-zero digits, this can only occur if there are infinitely many carries.

Hence for γ ∈ {−1,−2, . . . ,−n}, cp(γ, n) =∞.

Conversely, suppose that cp(γ, n) =∞. Since n has finitely many non-zero

digits, γ must have all digits past some index K be p− 1. This can only occur

if γ = m − pN for some m ∈ Z>0, 0 6 m < pN , N > 1. In particular, γ is

a strictly negative integer. Since infinite carries from a finite summand will

cause all but finitely many of the the p− 1s to become 0s, this forces γ + n to

be a finite integer. That is, m − pN + n > 0, or equivalently, m − pN > −n.

Hence −n 6 m− pN < 0, so that γ ∈ {−1,−2, . . . ,−n}, as required.

The p-adics are a vast and interesting area which have been applied in

many areas of mathematics, far too vast for the scope of this thesis. These

results, however, are sufficient for our needs, which largely consist of applying

p-adic methods to rational contexts. As such, we will now move on from this

area, and onto the focus of our application.

2.4 Hypergeometric Functions and General-

ized Hypergeometric Functions

We begin with a very brief history of the hypergeometric function; for a more

in-depth history, see [18], from which most of these historical notes have been

taken. The hypergeometric function and its generalizations are solutions to a

certain class of differential equations, which show up in many areas of math-

ematics and physics. They were first introduced by Euler in 1769. As we

will only be dealing with rational parameters, we will give definitions in these

terms, although more general definitions exist.

Definition 2.4.1. Let α, β, γ ∈ Q. The associated (standard) hypergeometric
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equation is

x(1− x)
d2y

dx2
+ [γ − (α + β + 1)x]

dy

dx
− αβy = 0.

The associated (standard) hypergeometric function 2F1 is

2F1(α, β; γ; z) := 1 +
∞∑
m=1

α(α + 1) · · · (α +m− 1)β(β + 1) · · · (β +m− 1)

γ(γ + 1) · · · (γ +m− 1)m!
zm

As the nomenclature implies, the hypergeometric function is a solution to

the hypergeometric equation. For ease of notation, following [11], we introduce

the Pochhammer symbol:

Notation 2.4.2. The Pochhammer symbol (γ)m is defined as

(γ)m =

{
1 m = 0

α(α + 1) · · · (α +m− 1) m > 1

Then using this notation, the hypergeometric function is

2F1(α, β; γ; z) =
∞∑
m=0

(α)m(β)m
(γ)mm!

zm.

Gauss later studied these and made several observations, including that

the series is a polynomial if either α − 1 or β − 1 is a negative integer, since

then after some point all of the Pochhammer symbols will evaluate to zero;

and for the same reason, it is undefined if γ − 1 is a negative integer. In all

other cases, he showed that it is convergent for z ∈ C where |z| < 1. In fact it

analytically continues to a multivalued function on the Riemann sphere, with

singularities at 0, 1 and ∞. Moreover, he introduced the notion of contiguous

functions:

Definition 2.4.3. Two hypergeometric functions are contiguous if at least one

of their parameters differs by exactly one and the others remain the same. For

example, 2F1(α, β; γ; z) is contiguous to each of 2F1(α± 1, β ± 1; γ ± 1; z).

Recall that the monodromy of a function is a representation consisting

23



of transformations encoding what happens to the function as it goes around

its singularities. It turns out, by Corollary 2.6 and Proposition 2.7 of [5],

that suppose two contiguous functions have irreducible monodromy; then their

monodromy representations are equivalent.

Fuchs later began to study more general homogeneous linear ordinary dif-

ferential equations. Specifically, he studied those of the form

dny

dxn
+ p1

dn−1y

dxn−1
+ · · ·+ pn−1

dy

dx
+ pny = 0,

where the pi are single-valued meromorphic functions of x on the complex plane

C, or some simply connected region thereof. The pi were moreover required

to have finitely many singular points. Recall that a regular singular point

is a singularity where the growth of solutions is bounded by some algebraic

function. We restrict our interest here to equations of this type which have

come to be known as (generalized) hypergeometric equations, which we will

define shortly.

The naming thereof comes from the fact that its solutions are (related to)

a clear generalization of the standard hypergeometric function, the generalized

hypergeometric function introduced by Thomae. There are, of course, other

generalizations of the hypergeometric function; see for example [9].

Definition 2.4.4. The generalized hypergeometric function nF n−1 is

nF n−1(α1, α2, . . . , αn; β1, β2, . . . , βn−1; z) =
∞∑
m=0

(α1)m(α2)m · · · (αn)m
(β1)m(β2)m · · · (βn−1)mm!

zm.

Notation 2.4.5. For notational convenience we will often shorten the notation

to nF n−1(αi; βk; z). Similarly we will often denote two sets of hypergeometric

parameters {α1, α2, . . . , αn}, {β1, β2, . . . , βn−1} simply as {αi}, {βk}, where it

is implicit that we have the indices i = 1, . . . , n and k = 1, . . . , n − 1. We

denote the least common multiple of the denominators of {αi} ∪ {βk} as D.

Thomae discovered that these extend many of the properties of the stan-

dard hypergeometric function, 2F1; for instance, they converge for |z| < 1,

and contiguous functions, which are defined using the obvious extension of the
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original definition, satisfy the condition that any n + 1 contiguous functions

have linear relations with rational coefficients. Similarly to the hypergeometric

equation and for the same reasons, nF n−1(αi; βk; z) is a polynomial when any

αi ∈ Z<0, and is undefined if some βi ∈ Z<0. Additionally, they satisfy an nth

order linear ODE, the aforementioned hypergeometric equation:

Definition 2.4.6. Let θ = z d
dz

, n > 2, and p1, . . . , pn ∈ C(z), such that each

pj = pj0 + pj1(z − 1)−1 for pjk ∈ C. Let P be the differential operator

P := θn + p1θ
n−1 + · · ·+ pn−1θ + pn.

The equation Px = 0 is called a hypergeometric equation.

Multiplying both sides of a hypergeometric equation by 1 − z, we get an

equation which we can write in the form Du = 0, where

D = D(α1, . . . , αn; β1, . . . , βn)

= (θ + β1 − 1) · · · (θ + βn − 1)− z(θ + α1) · · · (θ + αn)

By abuse of notation, we will also call this a hypergeometric equation. The gen-

eralized hypergeometric function nF n−1(αi; βk; z) satisfies the hypergeometric

equation with βn set to 1. (In fact when βn does not equal 1 the solutions are

hypergeometric equations shifted by powers of z; see [5].)

These generalized hypergeometric functions also show up in many places,

for instance, as we will explain later, in the study of vector valued modular

forms. They will be our main topic of study, although we will often use the

standard hypergeometric function as a more manageable example.
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Chapter 3

Unbounded Coefficients for

Hypergeometric Functions

3.1 Preliminary Results

The results we prove were originally shown by Franc, Gannon and Mason for

2F1 in [11]; the main work of this chapter is to generalize them to nFn−1. There

is some overlap with earlier work by Dwork ([7]) and Christol ([6]).

As mentioned previously, we will restrict our attention to generalized hy-

pergeometric functions with rational parameters. From here on we will call

such things simply hypergeometric functions. Furthermore, we will assume

that no αk − βj ∈ Z, since if this is the case then the monodromy representa-

tion is reducible by Proposition 2.7 of [5].

Notation 3.1.1. Let nF n−1(αi; βk; z) be a (generalized) hypergeometric func-

tion. We denote the coefficient of zm by Am. That is,

Am :=
(α1)m(α2)m · · · (αn)m

(β1)m(β2)m · · · (βn−1)mm!

Definition 3.1.2. Let nF n−1(αi; βk; z) be a hypergeometric function. nF n−1(αi; βk; z)

is said to have p-adically unbounded coefficients if infm(νp(Am)) = −∞. In

this case, p is said to be an unbounded prime for nF n−1(αi; βk; z).

The main question here is, when is it the case that nF n−1(αi; βk; z) has
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p-adically unbounded coefficients? This question has applications in vector

valued modular forms, as will be explained later. We care only about when

infm(νp) = −∞ since the question of when supm νp(Am) = ∞ is much easier,

as will be shown (following Proposition 3.8 of [11]) in Proposition 3.1.4. First,

however, we need some additional definitions.

Our main tool in analyzing the hypergeometric equation is the following

theorem, which is in fact an easy corollary of Theorem 2.3.6.

Theorem 3.1.1. Let {αi}, {βk} be rational hypergeometric parameters,and p a

prime such that all of αi−1, βj−1 are p-adic integers. Then in nF n−1(αi; βk; z),

for the mth coefficient Am, we have

νp(Am) =
n∑
i=1

cp(αi − 1,m)−
n−1∑
j=1

cp(βj − 1,m).

Proof. We have

Am =
(α1)m(α2)m · · · (αn)m

(β1)m(β2)m · · · (βn−1)mm!

=

(
n∏
i=1

(αi)m
m!

)(
n−1∏
j=1

m!

(βj)m

)

=

∏n
i=1

(
αi−1+m

m

)∏n−1
j=1

(
βj−1+m

m

) .
Hence, by Theorem 2.3.6 and the properties of valuations, we have

νp(Am) = νp

(∏n
i=1

(
αi−1+m

m

)∏n−1
j=1

(
βj−1+m

m

))

=
n∑
i=1

νp

[(
αi − 1 +m

m

)]
−

n−1∑
j=1

νp

[(
βj − 1 +m

m

)]

=
n∑
i=1

cp(αi − 1,m)−
n−1∑
j=1

cp(βj − 1,m),

as required.
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As shown in Corollary 2.6 of [5], subject to our existing conditions, contigu-

ous hypergeometric functions will have the same monodromy. In Lemma 4.1

of [11], it is shown that in the case of 2F1 they also share the same unbounded

primes. Specifically, Lemma 4.1 of [11] states the following:

Lemma 3.1.2. Suppose we have two sets of rational hypergeometric parame-

ters for 2F1, (a, b; c) and (r, s; t), and suppose furthermore that

1. none of a, b, c, a− c, or b− c is an integer;

2. a− r, b− s, and c− t are all integers.

Then a prime p is an unbounded prime for 2F1(a, b; c; z) if and only if it is an

unbounded prime for 2F1(r, s; t; z).

Here we will generalize this, showing that it holds for all nFn−1, of which

2F1 is a special case.

Theorem 3.1.3. Let αi, βj ∈ Q \Z, i = 1, . . . , n, j = 1, . . . , n− 1 be such that

for all i, j, αi − βj /∈ Z. Take any set of ki, lj ∈ Z. Then p is an unbounded

prime for nFn−1(αi; βj; z) iff the same is true for nFn−1(αi + ki; βj + lj; z).

Proof. We’ll show that if any of the following series have p-adically unbounded

coefficients for some prime p, then so does F := nF n−1(αi; βk; z):

1. G1 := nF n−1(α1 + 1, α2 + 1, . . . , αn + 1; β1 + 1, β2 + 1, . . . , βn + 1; z),

2. G2 := nF n−1(α1 + 1, α2, . . . , αn; β1, β2, . . . , βn; z),

3. G3 := nF n−1(α1, α2, . . . , αn; β1 − 1, β2, . . . , βn; z), and

4. G4 := nF n−1(α1 − 1, α2, . . . , αn; β1, β2, . . . , βn; z).

A more natural way to view the above results is that, for example, (1) says

that if nF n−1(αi; βk; z) has p-adically unbounded coefficients, then so does

F 1 := nF n−1(α1 − 1, α2 − 1, . . . , αn − 1; β1 − 1, β2 − 1, . . . , βn − 1; z). We

use the equivalent statement above as it allows more convenient notation for

the proof. It is also clear from the definition that we have nF n−1(αi; βk; z) =

nF n−1(ασ(i); βτ(k); z) for any σ ∈ Sn, τ ∈ Sn−1. Using this alternate statement
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and combining (1), (3) and (4), along with the symmetry, we can show that

if G5 := nF n−1(α1, α2, . . . , αn; β1 + 1, β2, . . . , βn; z) has p-adically unbounded

coefficients, so does nF n−1(αi; βk; z). Iterating these statements completes the

proof of the original lemma.

From here on for any power series F̃ we denote its mth coefficient by F̃m;

that is, for instance, we define Fm by F (z) =
∑∞

i=0 Fmz
m, and similarly each

Gi
m by Gk(z) =

∑∞
i=1G

i
mz

m.

The first observation is that if dk

dzk
F has p-adically unbounded coefficients,

then so does F . This is due to the fact that taking the derivative simply

multiplies each coefficient by an integer and shifts its index, that is to say,

( d
dz

(F ))m−1 = mFm. Thus while it is possible that d
dz
F could have p-adically

unbounded coefficients for fewer primes p, it could not possibly have p-adically

unbounded coefficients for any additional primes.

The technique in general is to prove that the given function Gk is a polyno-

mial in z and derivatives of F . This implies that ifGk has p-adically unbounded

coefficients, then so does F or one of its derivatives, and thus by the previous

argument F must have p-adically unbounded coefficients. (1), (2) and (3) are

relatively straightforward and the relation can be given by general formulas;

(4) requires a bit more work, and we provide only a proof of the existence of

a formula for each n.

Fix a set of parameters {αi}, {βk}.

For (1), note that

d

dz
F =

∑
m>0

m ·
∏n

i=1(αi)m

(m)!
∏n−1

j=1 (βj)m
zm−1

=

∏n
i=1 αi∏n−1
j=1 βj

∑
m>1

∏n
i=1(αi + 1)m−1

(m− 1)!
∏n−1

j=1 (βj + 1)m−1

zm−1

=

∏n
i=1 αi∏n−1
j=1 βj

·G1.

Thus any unbounded primes for G1 must also be unbounded primes for d
dz
F

and thus also for F .
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For (2), we have

G2 =
∑
m>0

(α + 1)m
∏n

i=2(αi)m

(m)!
∏n−1

j=1 (βj)m
zm

=
1

α1

∑
m>0

∏n
i=1(αi)m

(m)!
∏n−1

j=1 (βj)m
zm · (α1 +m)

= F + α−1
1 z

d

dz
F.

(3) is similar:

G3 =
∑
m>0

∏n
i=1(αi)m

(m)!(β − 1)m
∏n−1

j=2 (βj)m
zm

=
1

β1 − 1

∑
m>0

∏n
i=1(αi)m

(m)!
∏n−1

j=1 (βj)m
zm · (β1 − 1 +m)

= F + (β1 − 1)−1z
d

dz
F.

For case (4), we will involve the following series:

H :=
∑
m>0

∏n
i=1(αi)m−1

(m)!
∏n−1

j=1 (βj)m
zm =

∑
m>0

Hmz
m.

The motivation for this is that, coefficientwise, using this series gives the fol-

lowing equations:

(G4)m = (α1 − 1)
n∏
i=2

(m+ αi − 1) ·Hm (3.1)

(zk
dk

dzk
F )m = mk

n∏
i=1

(m+ αi − 1) ·Hm (3.2)

(zk+1 d
k

dzk
F )m = mk+1

n−1∏
j=1

(m+ βj − 1) ·Hm (3.3)
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where k ∈ Z>0, Fm is the coefficient of zm in F and

mk :=

1 k = 0

m(m− 1)(m− 2) . . . (m− k + 1) k > 0.

Thus, we can use H to relate the coefficients of these series to each other by

polynomials in m, allowing us to construct systems of linear equations. Note

that the polynomials above are all monic of degree n − 1, n + k and n + k

respectively, and that the only ones with a non-zero constant term are the one

for G4 and F (ie k = 0). Allowing k to range from 0 to n− 1 gives us 2n+ 1

polynomials in m of degree at most n+n−1 = 2n−1. Comparing coefficients of

these polynomials then gives us a system of 2n homogeneous linear equations

in 2n + 1 variables, which guarantees infinite nontrivial solutions by basic

linear algebra arguments. Each solution will be a linear relation between

G4, F, z d
dz
F, . . . zk dk

dzk
F, zF, . . . , zk+1 dk

dzk
F , with coefficients which are rational

functions in the αi, βj.

It remains to show that these solutions do not all require the coefficient of

(G4)m to be zero. Since only the polynomials of (G4)m and Fm have constant

terms, this would also require that Fm have a coefficient of zero. Thus, if

such a solution existed it would imply that zF could be written as a linear

combination of zk dk

dzk
F and zk+1 dk

dzk
F for k > 0.

Suppose this were true. This is equivalent to saying that F can be written

as a linear combination of zk−1 dk

dzk
F and zk dk

dzk
F for 1 6 k 6 n− 1. Note that

(zk
dk

dzk
F )m = mkFm

and

(zk−1 d
k

dzk
F )m = (m+ 1)kFm+1

= (m+ 1)k
∏n

i=1(αi)m+1

(m+ 1)!
∏n−1

j=1 (βj)m+1

= (m)k−1

∏n
i=1(αi +m)∏n−1
j=1 (βj +m)

Fm.
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But then this implies that there are some constants ck, dk such that for all m,

(1−m
n−1∑
k=1

ck(m− 1)k−1)Fm =

∏n
i=1(αi +m)∏n−1
j=1 (βj +m)

(
n−1∑
k=1

dk(m)k−1)Fm.

Since the left hand side is a polynomial, the right hand side must be too. Then

since the αi are distinct from the βj, the denominator must be cancelled by

the polynomial
∑n−1

k=1 dk(m)k−1. However
∑n−1

k=1 dk(m)k−1 is a polynomial of

degree n − 2 in m and thus cannot possibly cancel the n − 1 factors in the

denominator, leading to a contradiction.

Thus, any solution of the system of linear equations will give us a formula

for G4 in terms of a finite linear combination of powers of z times derivatives

of F . Thus, if G4 has p-adically unbounded coefficients then so does F or one

of its derivatives, and thus so does F .

Example 1. In the case of 2F1, we can use the following equations, originally

proven by Gauss. We once again let θ = z d
dz

.

2F1(α + 1, β; γ; z) =

(
1 +

1

α
θ

)
2F1(α, β; γ; z),

2F1(α− 1, β; γ; z) =

(
(1− z)− (α + β − γ)z

γ − α
+

1− z
γ − α

θ

)
2F1(α, β; γ; z),

2F1(α, β; γ + 1; z) =

(
(α + β − γ)γ

(γ − α)(γ − β)
+

(1− z)γ

(γ − α)(γ − β)

d

dz

)
2F1(α, β; γ; z),

2F1(α, β; γ − 1; z) =

(
1 +

1

γ − 1
θ

)
2F1(α, β; γ; z).

This lemma allows us to shift any parameters by any integer without af-

fecting the results. Between this and the reducibility condition above, we can

look simply at the following case.

Definition 3.1.3. Let {αi}, {βk} be rational hypergeometric parameters. We

call these parameters admissible if both of the following conditions are satisfied:

1. 0 < αi, βj < 1 for all i, j,

2. αi 6= βj for all i, j.
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Similarly, for many of our results we will require our primes to be good in

the following sense. All but finitely many primes will be good for a given set

of hypergeometric parameters.

Definition 3.1.4. Given rational hypergeometric parameters {αi}, {βk}, a

prime p is called a good prime if νp(αi − 1) = νp(βj − 1) = 0, that is, each

αi − 1, βj − 1 is in Z×p .

Note that, by Lemma 2.3.1, for good primes, admissible rational hypergeo-

metric parameters will have purely periodic expansions for each of αi−1, βj−1,

with period the multiplicative order of p modulo each of their denominators.

Definition 3.1.5. By the period of the hypergeometric parameters, we mean

the least common multiple of the multiplicative order of p modulo each of the

denominators, that is to say the least common multiple of the periods of the

different αi − 1, βj − 1.

We are now ready to show, as promised, that the question of when supm νp(Am) =

∞ is fairly straightforward. We follow Proposition 3.8 of [11].

Proposition 3.1.4. Let {αi}, {βk} be admissible hypergeometric parameters.

Then supm νp(Am) = ∞ for all good primes such that p > D. In particular,

this is the case for all but finitely many primes.

Proof. Given a good prime, we will construct a sequence of coefficients Amk

such that νp(Amk
)
k→∞−−−→∞.

Recall that for a good prime, νp(αi) = νp(βj) = 0 for all i, j. Hence in

particular, α0
i , β

0
j 6= 0 for all i, j. Recall that pN − 1 has the expansion

pN − 1 =

N times︷ ︸︸ ︷
(p− 1)(p− 1) . . . (p− 1) .

Hence when adding (pN − 1) + a for any p-adic integer a with non-zero

zeroth digit, we get at least N carries. We get more than N carries if and only

if the Nth digit of a is p− 1. Since for p > D, each of the {αi}, {βk} have no

p− 1 digits, they will each have exactly N carries for pN − 1.

Let mk = pk − 1. Then by Theorem 3.1.1,
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νp(Amk
) =

n∑
i=1

cp(αi − 1,mk)−
n−1∑
j=1

cp(βj − 1,mk)

=
n∑
i=1

k −
n−1∑
j=1

k

= k
k→∞−−−→∞,

as required.

3.2 Unbounded Coefficients

We can now proceed to proving generalizations of the theorems which appear

in Section 4 of [11]. First we will introduce some definitions and notations

which will simplify our discussion.

Due to Theorem 3.1.1, we will often want to talk about all the carries in a

single column at once. That is, we will want to discuss the number of αi and

βk for which, when adding m to αi− 1 or βk − 1 respectively, there is a p-adic

carry from the jth digit to the j + 1st digit. For that reason we introduce the

following terminology.

Definition 3.2.1. Let p be a prime, {αi}, {βk} admissible hypergeometric pa-

rameters, m a positive integer. For any γ ∈ Z, define

cjp(γ,m) =

1 if when adding m+ (γ) there is a carry from the jth column

0 otherwise.

The (p-adic) net carries (with respect to m and p) for the jth column of these

parameters is defined to be
∑n

i=1 c
j
p(αi−1,m)−

∑n−1
i=1 c

j
p(βk−1,m). Similarly,

we will sometimes refer to carries from (αi − 1) + m as positive carries and

carries from (βk − 1) +m as negative carries.

Note that by Theorem 3.1.1, vp(Am) is exactly the sum of the net carries
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in each column with respect to m and p.

Definition 3.2.2. Let A = {a1, a2, . . . , an}, B = {b1, b2, . . . , bn−1} be two sets

of (not necessarily distinct) numbers. Suppose, rearranging if necessary, that

a1 > a2 > · · · > an and b1 > b2 > · · · > bn−1. If for each i = 1, . . . , n− 1, we

have ai > bi, we say that A and B are semi-interlaced downwards; if bi > ai+1

we say that A and B are semi-interlaced upwards. If the inequalities are strict,

we say that the sets are strictly interlaced upwards or downwards respectively.

If the sets are not semi-interlaced, call any i for which the relevant inequality

does not hold a flip point or flip index. (Whether this refers to an upwards or

downwards semi-interlacing will usually be clear from context.)

If A and B are strictly semi-interlaced both upwards and downwards, that

is if

a1 > b1 > a2 > b2 > · · · > an−1 > bn−1 > an,

we say that the sets are interlaced.

Example 2.
{

1
6
, 2

3
, 5

6

}
,
{

1
4
, 3

4

}
are interlaced, since

1

6
<

1

4
<

2

3
<

3

4
<

5

6
.

{
1
4
, 3

4
, 5

6

}
,
{

1
6
, 2

3

}
are semi-interlaced downwards, but not upwards, since

1

4



1

6
<

3

4



2

3
<

5

6
.

{
1
4
, 1

3
, 3

4

}
,
{

1
2
, 5

6

}
are semi-interlaced upwards, but not downwards, since

1

4
<

1

2



1

3
<

5

6



3

4
.

This notion of being interlaced is essentially identical to the notion of being

interlaced on the unit circle in [5], and the terminology was chosen to reflect

this. Interlaced sets are used in Theorem 2.8 of [5], which we later use as part

of our Theorem 3.4.4, as a finiteness condition for the so-called hypergeometric

group, ie the monodromy group of a hypergeometric equation. In particular,

a set of rational hypergeometric parameters are interlaced if and only if the
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parameters of the corresponding hypergeometric group as defined in [5] are

interlaced on the unit circle.

We also add the following lemma which will simplify some proofs.

Proposition 3.2.1. Let {αi}, {βk} be admissible hypergeometric parameters,

p a good prime. Then nF n−1(αi; βk; z) has p-adically bounded coefficients iff

vp(Am) > 0 for all m, that is to say all of its coefficients are p-adic integers.

Proof. The converse is obvious. For the forward implication, we’ll prove that if

there is some m such that vp(Am) < 0 we can use this to construct a sequence

of coefficients (Ami
)∞i=0 such that vp(Ami

)
i→∞−−−→ −∞.

Let M be the period of the data. Since the p-adic expansion of any m′ ∈
Z>0 is finite, we can write the digits of the given m as m = m(0)m(1) . . .m(s).

Let N =
⌈
s
M

⌉
+ 1. Since none of the parameters can be integers, in particular

none of the αi − 1 or βk − 1 is −1 = (p− 1). Let γ ∈ {αi} ∪ {βk}. Then

since each is purely periodic of period dividing M , in every collection of M

consecutive digits γ − 1, there is at least one digit which is not p − 1. When

adding two p-adic numbers x and y, if there is a carry from the jth column to

the j + 1st column and y(j + 1, p) = 0, then there will be a p-adic carry from

the j + 1st column to the j + 2nd column if and only if x(j + 1, p) = p − 1.

Thus any single digit of m can, on its own, cause at most M carries when

m is added to any γ − 1. In particular, for any m′ ∈ Z>0, for any integer

t > s + M, cp(γ − 1, ptm′ + m) = cp(γ − 1, ptm′) + cp(γ − 1,m). Since γ − 1

is purely periodic with period dividing M , we also have that for any t′ ∈ Z>0,

cp(γ − 1, pt
′Mm) = cp(γ − 1,m). Combining these and repeating inductively,

we get that for any r ∈ Z>0, cp(γ − 1,
∑r

j=0 p
jNMm) = (r + 1)cp(γ − 1,m).

Let mr :=
∑r

j=0 p
jNMm. Then by Theorem 3.1.1 and the above argument,

we have

vp(Amr) =
n∑
i=1

cp(αi − 1,mr)−
n−1∑
k=1

cp(αi − 1,mr)

=
n∑
i=1

(r + 1)cp(αi − 1,m)−
n−1∑
k=1

(r + 1)cp(αi − 1,m)

= (r + 1)vp(Am)
r→∞−−−→ −∞
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Remark 3.2.2. As in Remark 4.3 of [11], this proof implies that if there is some

m0 < M such that vp(Am0) < 0, then we can find some subsequence of vp(Am)

which diverges to −∞ at least as fast as 1
M

logp(m). In fact we will usually be

using this proposition in this context.

In Theorem 4.2 of [11], we are given necessary and sufficient conditions

for 2F1 to have p-adically unbounded coefficients. Specifically, the following is

proven:

Theorem 3.2.3. Let (a,b;c) be admissible hypergeometric parameters, and let

p be a good prime. The following are equivalent:

1. there exists an index j such that τj(c − 1) > τj(a − 1) and τj(c − 1) >

τj(b− 1);

2. p is an unbounded prime for 2F1(a, b; c; z).

Here, we generalize this to nFn−1. Unfortunately, the possibility of some

complications are introduced by the possible interactions within columns when

we are dealing with more parameters, specifically in the case where some digits

may be p− 1. Luckily, as shown earlier, we can solve this by excluding finitely

many primes. We begin by proving the necessary and sufficient conditions

separately before combining them into an equivalence theorem. Moreover, it

is no longer sufficient to simply have a single parameter as the maximum; it

is here that we begin to use the concept of being semi-interlaced.

We quickly recall that we have defined the jth column of the parameters

to be the jth digits after subtracting one from each of the parameters.

Lemma 3.2.4. Let {αi}, {βk} be admissible hypergeometric parameters, p a

good prime. If for every j the sets of j-truncations of each of these parameters

minus one are semi-interlaced downwards, then nF n−1(αi; βk; z) has p-adically

bounded coefficients. If p > D this is equivalent to every column of these

parameters being semi-interlaced.
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Proof. Following the proof of Theorem 4.2 in [11], we will prove the following

result: Choose any m ∈ Z>0 and any α ∈ {αi}, β ∈ {βk} with τj+1(α − 1) >

τj+1(β − 1). If there is a p-adic carry from the jth column when evaluating

(β − 1) + m, then there is also a p-adic carry from the jth column when

evaluating (α−1)+m; that is, using our earlier notation, cjp(β,m) 6 cjp(α,m).

This would imply that, for any j where the sets of j-truncations are semi-

interlaced downwards, we have that the net number of carries in that column is

non-negative for every m. If this is the case for every j, then by Theorem 3.1.1

we have that for every m, vp(Am) > 0, proving the lemma. The equivalence

for p > D follows directly from the fact that by Lemma 2.3.3, in this case

βjk 6= αji for all i, k.

We use induction on j. If j = 0, τ1(α − 1) = α0, τ1(β − 1) = β0. Then if

c0
p(β− 1,m) = 1, necessarily m(0) > p− β0 > p−α0. Then m(0) +αp > p, so

that there must be a p-adic carry, that is, c0
p(α− 1,m) = 1.

Now assuming we have proven the result for some j − 1, suppose that we

have τj(α − 1) > τj(β − 1), and that there is a p-adic carry at the jth digit

when evaluating (β − 1) + m. If βj < αj, regardless of whether or not the

carry depends on a carry from a previous carry, we must have

m(j) > p− (βj + 1) > p− αj

so that

m(j) + αj > p,

that is, cjp(α − 1,m) = 1. If, on the other hand, αj = βj, then we can only

have cjp(β − 1, j) > cjp(α − 1, j) if there is a carry from the j − 1st column

for β but not for α. But τj+1(α − 1) > τj+1(β − 1) and αj = βj implies that

τj(α− 1) > τj(β − 1), so by our induction hypothesis this is impossible.

For convenience we introduce the following notation:

Notation 3.2.3. Let {αi}, {βk} be admissible hypergeometric parameters. For

each j, we can find permutations σj ∈ Sn, τj ∈ Sn−1 such that

αjσj(1) > αjσj(2) > · · · > αjσj(n)
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and

βjτj(1) > βjτj(2) > · · · > βjτj(n−1).

Note that these permutations are not necessarily unique when p 6 D. We will

call any such permutations orderings of the jth column or j-orderings.

Note that if k is a flip point for the jth column of one pair of orderings,

it will be for any other pair of orderings as well, since different orderings can

only interchange parameters with equal jth digits.

Lemma 3.2.5. Let p be a good prime for admissible hypergeometric parameters

{αi}, {βk}. Suppose that there exists some column j of these parameters which

is not semi-interlaced downwards, and furthermore, that for some j-orderings

σj of {αi} and τj of {βk} and for some flip point K, we have αj+1
σj(i) < p − 1

for all i < K. Then nF n−1(αi; βk; z) has p-adically unbounded coefficients.

Proof. For notational simplicity we assume without loss of generality that the

j-ordering in the assumption coincides with the usual ordering, that is, that

σj and τj are both the identity.

Since K is a flip point, by definition we have βjK > αjK . Then in particular,

βjK > 0. Then we can define m = pj(p − βjK), and this will be its p-adic

expansion. Now since βjk > βjK for all k 6 K, we have that for all such k,

cjp(m,βk − 1) = 1, so that cp(m,βk − 1) > 1 for all such k. For all k < K

we also have that, by assumption, αj+1
k + 1 < p; that is, a carry from the jth

column cannot by itself cause a carry in the (j + 1)th column. Then for these

k, cp(m,αk − 1) 6 1. Meanwhile, for all k > K, βjK > αjK > αjk, so that

cp(m,αk − 1) = 0.

Combining these three facts and Theorem 3.1.1, we get that

vp(Am) =
n∑
i=0

cp(m,αi − 1)−
n−1∑
k=0

cp(m,βk − 1)

6 (K − 1)−K

< 0.

Thus, by Lemma 3.2.1, nF n−1(αi; βk; z) has p-adically unbounded coefficients.
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This is clearly very close to being a true converse; the only impediment

is the possibility of αis with p − 1 digits in inconvenient places. Luckily, by

Lemma 2.3.4 for all but finitely many primes, this is not a possibility. Hence,

we have the following theorem.

Theorem 3.2.6 (Generalization of Theorem 3.2.3). Let {αi}, {βk} be admis-

sible hypergeometric parameters, D the least common multiple of their denom-

inators, and let p > D. Then the following are equivalent:

1. For some index j, the j-truncations τj(αi − 1), τj(βk − 1) are not semi-

interlaced downwards.

2. For some index j, the jth column of the parameters is not semi-interlaced

downwards.

3. For some index m, the mth coefficient Am of nF n−1(αi; βk; z) is not a

p-adic integer.

4. nF n−1(αi; βk; z) has p-adically unbounded coefficients.

Proof. (1) and (2) are equivalent by Lemma 2.3.3. We have already proven the

equivalence of (3) and (4), and that (4) implies (2). By Lemma 2.3.4, satisfying

(2) automatically satisfies Lemma 3.2.5, showing (2) implies (4).

Example 3. We will examine whether 13 is an unbounded prime for 3F2 with

parameters
{

1
6
, 2

3
, 5

6

}
,
{

1
4
, 3

4

}
and

{
1
6
, 3

4
, 5

6

}
,
{

1
4
, 2

3

}
.

Note that we have D = 12. Since 13 ≡ 1 (mod 12), the period of the

parameters will be 1. We can use lemma 2.3.2 to calculate the expansions of

these parameters (with 1 subtracted) for the 13-adics. For example,

1

6
− 1 = −5

6
=

⌊{
−130

1

6

}
13

⌋
=

⌊
5

6
· 13

⌋
=

⌊
65

5

⌋
= (10).

Similarly, 2
3
− 1 = 4; 5

6
− 1 = 2; 1

4
− 1 = 9; 3

4
− 1 = 3.
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We have only a single repeated column, so it is sufficient to check whether

this column is semi-interlaced downwards for each of the sets of parameters.

In the first case, they are, since 10 > 9 (corresponding to 1
6

and 1
4
) and 4 > 3

(corresponding to 2
3

and 3
4
). Hence, we must have that 3F2(1

6
, 2

3
, 5

6
; 1

4
, 3

4
; z) has

13-adically bounded coefficients. Indeed, it is easy to see that any digit added

to this column will result in a net non-negative number of carries.

In the second case, the column is not semi-interlaced, since although 10 > 9

(corresponding to 1
6

and 1
4
), it is not the case that 3 > 4 (corresponding to 3

4

and 2
3
). Hence, 3F2(1

6
, 3

4
, 5

6
; 1

4
, 2

3
; z) will have 13-adically unbounded coefficients.

Indeed, by adding 9 to each of the parameters, we get a net of −1 carries, since

it will cause a carry for 1
6
, 1

4
, and 2

3
but not 3

4
or 5

6
. Either repeating this for

every column, or using Proposition 3.2.1, we see that we must have 13-adically

unbounded coefficients.

3.3 Densities and Structure

The previous theorem gives a finite algorithm, for admissible hypergeometric

parameters {αi}, {βk}, to check whether nF n−1(αi; βk; z) will have p-adically

unbounded coefficients for any prime p > D; by periodicity, we can simply

check the first M columns, where M is the period of the data. However

checking each prime individually would still be an impossible task. In [11],

this task is made somewhat more manageable by their Proposition 4.10, which

states the following for the case of 2F1.

Definition 3.3.1. Let {αi}, {βk} be admissible hypergeometric parameters.

We define S(αi; βk) to be the set of primes for which nF n−1(αi; βk; z) has p-

adically unbounded coefficients.

Proposition 3.3.1. Suppose {a, b}, {c} are admissible hypergeometric param-

eters, and let D as usual be the lowest common multiple of their denomi-

nators. Let p > D be a good prime such that p ∈ S(a, b; c). Then for all

good primes q > p which are in the same congruence class modulo D, that

is, such that p ≡ q (mod D), we must also have q ∈ S(a, b; c). In particular,
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S(a, b; c) has a Dirichlet density of the form α
φ(D)

, where α is an integer such

that 0 6 α 6 φ(D), and φ(D) is the Euler totient function.

Recall that the Euler totient function φ(D) is defined as the number of

integers less than D which are relatively prime to D, ie the number of integers

1 6 k 6 D such that gcd(k,D) = 1.

We strengthen this here to show that it is in fact sufficient to check a

single prime in each congruence class modulo D to find the answer for all

primes larger than D. This, of course, also generalizes the result about the

Dirichlet density of the set of unbounded primes.

Proposition 3.3.2. Let {αi}, {βk} be admissible hypergeometric parameters,

p > D a good prime. If p ∈ S(αi; βk), then all primes q > D such that p ≡ q

(mod D) are also in S(αi; βk). That is, either all primes greater than D in a

given congruence class modulo D are elements of S(αi; βk), or none of them

are. In particular, S(αi; βk) has a Dirichlet density of the form N
φ(D)

for an

integer N satsifying 0 6 N 6 φ(D).

Proof. Following the proof of Proposition 4.9 in [11], we prove that for any

a, b ∈ {αi}∪{βk} and any primes p, q > D such that p ≡ q (mod D) and q > p,

if aj(p) < bj(p) then aj(q) < bj(q), that is, strict inequalities amongst digits

in the same column are preserved. It is sufficient to prove this for 0 6 j < M ,

where M is the period of the data.

By Lemma 2.3.2, aj(p) = b{−pM−1−ja}pc and bj(p) = b{−pM−1−jb}pc.
Since q > p, then we have q = p+ tD for some positive integer t. Thus we

have

aj(p) < bj(p) ⇐⇒ b{−pM−1−ja}pc < b{−pM−1−jb}pc

=⇒ {−pM−1−ja} < {−pM−1−jb}

=⇒ b{−pM−1−ja}pc+ {−pM−1−ja}tD

< b{−pM−1−jab}pc+ {−pM−1−jb}tD

⇐⇒ b{−qM−1−ja}qc < b{−qM−1−jb}qc

⇐⇒ aj(q) < bj(q).
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Suppose p ∈ S(αi; βk). By Lemma 3.2.4, there is some column j which is

not semi-interlaced for p. Since p > D, this can be stated purely in terms of

strict inequalities by Lemma 2.3.3. By the above result, strict inequalities will

be the same for q, so that the jth column will also not be semi-interlaced for

q. By Theorem 3.2.6, this implies that q ∈ S(αi; βk).

Now suppose that p /∈ S(αi; βk). By Theorem 3.2.6, all of the columns of

the parameters must be semi-interlaced with respect to p. Since p > D, this

can be stated entirely in term of strict inequalities by Lemma 2.3.3, which as

shown above are preserved for q > p, p ≡ q (mod D). Thus all the columns

of the parameters must also be semi-interlaced for q, which again by Theorem

3.2.6 implies that q /∈ S(αi; βk). Thus, p ∈ S(αi; βk) iff q ∈ S(αi; βk).

Corollary 3.3.3. Suppose p /∈ S(αi; βk) and p > D. Then for all q > D

such that q ≡ pm (mod D), q /∈ S(αi; βk). In particular, the congruence

classes of primes in (Z/DZ)× for which nF n−1(αi; βk; z) has p-adically bounded

coefficients form a union of cyclic subgroups of (Z/DZ)×.

Proof. Let p, q > D, p /∈ S(αi; βk) and q ≡ pm (mod d). By Theorem

3.2.6, with respect to p every column of the parameters {αi}, {βk} are semi-

interlaced; we want to show that every column is also semi-interlaced with

respect to q.

Take any index j. Then for each γ ∈ {αi} ∪ {βk}, by Lemma 2.3.2,

γj(q) = b{−qM−1−jγ}qc, where as usual M is the period of the data. Now since

q ≡ pm (mod D), we have that qM−1−j ≡ (pm)M−1−j = pmM−m−jm (mod D).

Furthermore, since M is the order of p in Z/DZ, there exists some k such that

pmM−m−jm ≡ pM−1−k. We will show that any (strict) inequality which holds

in the kth column of the parameters with respect to p holds in the jth column

of the parameters with respect to p; then since the kth column with respect

to p is semi-interlaced and, by Lemma 2.3.3 all the inequalities involved are

strict, the jth column with respect to q must be semi-interlaced as well.

Suppose α, β ∈ {αi}, {βk}, and αk(p) < βk(p). Then by Lemma 2.3.2, this

is equivalent to b{−pM−1−kα}pc < b{−pM−1−kβ}pc. Then by our assump-
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tions, we have

{−qM−1−jα} = {−pM−1−kα} < {−pM−1−kβ} = {−qM−1−jβ}

⇒ b{−qM−1−jα}qc 6 b{−qM−1−jβ}qc

⇒ αj(q) 6 βj(q).

Since by Lemma 2.3.3 we know that the inequality must be strict, we have

αj(q) 6 βj(q), that is, the inequality is preserved.

It follows from this corollary that if there is any congruence class of primes

for which nF n−1(αi; βk; z) is bounded, then the congruence class of p ≡ 1

(mod D) must also be bounded. By Proposition 3.3.2, this means that if

S(αi; βk) contains any prime p ≡ 1 (mod D), then nF n−1(αi; βk; z) can have at

most finitely many primes for for which its coefficients are p-adically bounded.

This will form part of our more general characterization of when S(αi; βk)

contains all but finitely many primes.

3.4 The Cases of Finitely Many Bounded or

Unbounded Primes

In Theorem 4.14 of [11], the following is proven for the case of 2F1.

Theorem 3.4.1. Let {a, b}, {c} be admissible hypergeometric parameters whose

denominators have least common multiple D. The following are equivalent:

1. c < a and c < b;

2. S(a, b; c) contains all but finitely many primes;

3. S(a, b; c) contains infinitely many primes p such that p ≡ 1 (mod D).

We generalize this as follows for nFn−1. Once again it is no longer suf-

ficient for a single parameter to be the smallest, and we must instead bring

in the concept of being semi-interlaced. We have also strengthened the final

condition.
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Theorem 3.4.2. Let {αi}, {βk} be admissible hypergeometric parameters, D

the least common multiple of their denominators. Then the following are equiv-

alent:

1. The parameters are not semi-interlaced upwards;

2. S(αi; βk) contains all but finitely many primes;

3. There exists some p ≡ 1 (mod D) such that p ∈ S(αi; βk)

4. Every prime p ≡ 1 (mod D) is in S(αi; βk).

Proof. We mostly follow the proof of Theorem 4.12 in [11]; the same technique

works here.

We first note that (3) and (4) are equivalent by the proof of Proposition

3.3.2, since all primes congruent to 1 modulo D must be larger than D.

We begin by showing that (1) implies (2). Suppose that the parame-

ters are not semi-interlaced. Let A := {αi} ∪ {βk}. Take any prime p >

max
{

1
γ1−γ2 |γ1, γ2 ∈ A

}
∪ {D}, and let M the period of the data. By Lemma

2.3.2, for each γ1, γ2 ∈ A we have γM−1
1 = b{−γ1}pc = p + b−pγ1c and,

similarly, γM−1
2 = p + b−pγ2c. Suppose that γ1 > γ2. By assumption,

p > max
{

1
γ1−γ2 |γ1, γ2 ∈ A

}
, or equivalently, −γ1 + 1

p
< −γ2. Thus, b−pγ1c <

b−pγ2c, that is, γM−1
1 < γM−1

2 .

Stated differently, this says that any strict inequality which holds for the

parameters holds with the inequalities reversed for the M − 1st column of

those parameters. Then if the parameters are not semi-interlaced upwards,

their M −1st column cannot be semi-interlaced downwards. By Lemma 3.2.6,

this implies that coefficients of nF n−1(αi; βk; z) are p-adically unbounded for

any sufficiently large p. Using Proposition 3.3.2 and Dirichlet’s theorem on

primes in arithmetic sequences, we now have that all good primes p > D must

be in S(αi; βk); in particular, S(αi; βk) contains all but finitely many primes.

That (2) implies (3) is clear. It remains to show that (3) implies (1). By

Lemma 2.3.1, in the case where p ≡ 1 (mod D) we have that the period of the

data M is 1, and clearly p > D (else p = 1). Then by the above argument, any

inequality which holds for the parameters holds with the inequalities reversed
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for the 0th, and thus for every, column with respect to p. In particular, if the

parameters were semi-interlaced upwards, then every column of the parameters

would be semi-interlaced downwards with respect to p. By Lemma 3.2.5, this

would imply that p /∈ S(αi; βk), contradicting our assumption.

Example 4. We previously showed that 13 ≡ 1 (mod 12) is in S(1
6
, 3

4
, 5

6
; 1

4
, 2

3
).

Indeed, these parameters are not semi-interlaced downwards; and moreover,

by checking the first prime in each of the other congruence groups modulo D

as we did for 13, one can confirm that it has at most finitely many bounded

primes.

The following theorem was proven for the case of 2F1 in Theorem 4.12 of

[11].

Theorem 3.4.3. Let {a, b}, {c} be admissible hypergeometric parameters whose

denominators have least common multiple D. The following are equivalent:

1. the monodromy group of the corresponding hypergeometric differential

equation is finite;

2. the set S(a, b; c) is finite;

3. for every integer u coprime to D, the fractional parts are interlaced, ie

{uc} lies between {ua} and {ub}.

Recall that the monodromy representation, roughly speaking, is the data

of a group and a transformation which describe how its solutions transform as

one travels around its branch points. For instance, take the equation df
dz

= rf ;

its monodromy is e2πir for the counter-clockwise circle around 0. Monodromy

reps of hypergeometric equations are similar, but with 3 branch points instead

of 2.

We generalize this for nFn−1 as follows. Note that we have added an addi-

tional equivalent condition.

Theorem 3.4.4. Let {αi}, {βk} be admissible hypergeometric parameters, D

the least common multiple of the denominators. Then the following are equiv-

alent:
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1. the monodromy group of the corresponding hypergeometric differential

equation is finite;

2. The set S(αi; βk) is finite;

3. The set S(αi; βk) contains no good primes p > D;

4. For every integer u coprime to D, the fractional parts {uαi} and {uβk}
are interlaced.

Proof. As discussed in the introduction of [11], a well-known theorem of Eisen-

stein implies for that any function which is a solution of an ordinary differential

equation, if it has a finite monodromy group and rational Taylor coefficients,

then it has p-adically bounded coefficients for all but finitely many primes p.

In particular, this holds for hypergeometric equations, that is, (1) implies (2).

The equivalence of (2) and (3) follows immediately from Proposition 3.3.2.

The equivalence of (1) and (4) follows from Theorem 4.8 in [5]. Thus it is

sufficient to show (3) implies (4).

By Theorem 3.2.6 and Lemma 2.3.3, every column of the parameters is

strictly semi-interlaced downwards for all primes p > D. Then by Lemma

2.3.2, the sets {b{−pM−1−jαi}pc | 1 6 i 6 n} and {b{−pM−1−jβk}pc| 1 6 k 6

n− 1} are strictly semi-interlaced downwards for all j and for all but finitely

many primes p. This in turn implies that the sets {{−pM−1−jαi}| 1 6 i 6 n}
and {{−pM−1−jβk}| 1 6 k 6 n− 1} are strictly semi-interlaced downwards.

Note that for any x
D
∈ Q, x, u, v ∈ Z, if v ≡ u (mod D), then {v x

D
} =

{u x
D
}. By Dirichlet’s theorem on primes in arithmetic progressions, for any

u coprime to D, there exist infinitely many primes congruent to −u modulo

D, and thus such that −p ≡ u (mod D); thus by varying p and j, using the

result above we get that for any u coprime to D, the sets {{uαi}| 1 6 i 6 n}
and {{uβk}| 1 6 k 6 n− 1} are strictly semi-interlaced downwards.

We now prove that {uαi} and {uβk} are strictly semi-interlaced upwards if

{−uαi} and {−uβk} are strictly semi-interlaced downwards. Since −u will be

coprime to D whenever u is, by the above argument know that {−uαi} and

{−uβk} are indeed strictly semi-interlaced downwards, so this will complete

the argument.
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Let x
D
, y
D
∈ Q, where x, y ∈ Z but the fractions are not necessarily in lowest

terms. By the definitions of strictly semi-interlaced upwards and downwards,

it will in fact be enough to show that if {−u x
D
} < {−u y

D
} then {u x

D
} > {u y

D
},

that is, that taking the negative still reverses inequalities when done within

the fractional part operator.

Suppose {−u x
D
} < {−u y

D
}. Let −ux = axD + rx, −uy = ayD + ry, where

rx, ry are the usual remainders satisfying 0 6 rx, ry < D. Then {−u x
D
} = rx

D
,

{−u y
D
} = ry

D
, so that rx

D
< ry

D
. We also have ux = −(axD+rx) = −(ax+1)D+

(D − rx), and similarly uy = −(ay + 1)D + (D − ry), so that {u x
D
} = D−rx

D

and {u y
D
} = D−ry

D
. But rx

D
< ry

D
=⇒ D−rx

D
> D−ry

D
, proving our claim.

Thus for every u coprime to D, {uαi} and {uβk} are strictly semi-interlaced

both upwards and downwards, that is, they are interlaced.

Example 5. It is known (see [5]) that the monodromy group corresponding to

3F2(1
6
, 2

3
, 5

6
; 1

4
, 3

4
; z) has finite monodromy. We have already checked that all

primes larger than 12 congruent to 1 (mod 12) are bounded; one can similarly

check that the same will be true for all other primes larger than 12.
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Chapter 4

Modular Forms and the

Atkin-Swinnerton-Dyer

Conjecture

4.1 Modular Forms and the Modular Group

Although some might find the question of unbounded primes for the gener-

alized hypergeometric function interesting of its own volition, to explain our

interest in it we must first introduce a new concept, that of modular forms,

and especially vector valued modular forms (or automorphic forms). We give

here only a brief introduction; for a more thorough introduction to modular

forms, see for example [26] or [23]. More information about vector valued

modular/automorphic forms can be found, for example, in [4], [15] or [3].

Modular forms show up throughout mathematics, from number theory

where they originated in connection to elliptic curves, to areas such as complex

analysis, algebraic topology, and vertex operator algebras. For example, Zhu

famously proved that the character of every “nice enough” vertex operator

algebra is a vector valued modular form (see [29]), although he did not use

that terminology.

To define modular forms in their original and simplest incarnation, we first

need to define the modular group and its action on the upper half plane.
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Definition 4.1.1. The upper half plane H is the set of complex numbers τ

with imaginary part Im(τ) > 0. We define the action of SL2(R), the group

of 2 by 2 matrices
(
a b
c d

)
with real coefficients and determinant 1, on H, and

indeed on C ∪ {∞}, as follows: let τ ∈ C ∪ {∞}, γ =
(
a b
c d

)
∈ SL2(R). Then

γ · τ :=
aτ + b

cτ + d
,

where if τ = ∞ this is defined by taking the limit as τ → ∞. This action is

called the Möbius transformation.

Note that H is stable under this action, that is, this action maps H to itself.

Moreover, note that (
−1 0

0 −1

)
· τ =

−τ + 0

0− 1

= τ.

Hence, it actually makes more sense to look at PSL2(R) := SL2(R)/{±I}.
The modular group is the subgroup of this whose matrices have entries in Z.

Formally, we have the following.

Definition 4.1.2. The modular group is defined as Γ(1) := SL2(Z)/{±I}.

We will usually refer to elements of Γ(1) by a single representative of its

pre-image in SL2(Z), with it implicit that by

(
a b

c d

)
we mean ±

(
a b

c d

)
.

It is well known (see for example [26]) that the modular group is generated

by two elements, commonly referred to as S and T :

S :=

(
0 1

−1 0

)

T :=

(
1 1

0 1

)

These elements transform the upper half plane as follows: For any τ ∈ H
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S · τ = −1

τ

T · τ = τ + 1

They also satisfy the following relations S2 = (ST )3 = 1; for this reason

we sometimes refer to the element ST as U .

Unlike the group SL2(R), the modular group does not act transitively on

the upper half plane. Instead we have what is called the fundamental domain.

This is a concept which we will later extend to Fuchsian groups in general.

Definition 4.1.3. A fundamental domain of Γ = Γ(1) is an open connected

set (that is, a domain) D ⊂ H such that

1. For every τ ∈ H, there exists some γ ∈ Γ and some τ ′ ∈ D, that is in

the closure of D, such that γ · τ ′ = τ .

2. No two elements of D are in the same Γ-orbit, that is, for any τ, τ ′ ∈ D,

γ · τ 6= τ ′ for all γ ∈ Γ.

Note that some sources use the term fundamental domain to refer to what

we call the closure of the fundamental domain; our definition here follows that

of [3].

The usual fundamental domain for Γ(1) is

D =

{
τ ∈ H | |τ | > 1, |Re(τ)| < 1

2

}
;

its closure is

D =

{
τ ∈ H | |τ | > 1, |Re(τ)| 6 1

2

}
.

We are now ready to define modular functions and forms.

Definition 4.1.4. Let f be a meromorphic function on H. f is weakly mod-

ular of weight k, where for our purposes k ∈ 2Z, if it satisfies

f(τ) = (cτ + d)−kf(γ · τ), for all γ =

(
a b

c d

)
∈ Γ(1).
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Note that, since Γ(1) is generated by S and T , it is sufficient to check the

relations for S and T . That is to say:

Proposition 4.1.1. Let f be a meromorphic function on H. Then f is weakly

modular of weight k for Γ(1) if and only if it satisfies

f(τ + 1) = f(τ)

f

(
−1

τ

)
= τ kf(z).

The first implies that, using the Fourier series, we can write f(τ) as a

function of q = e2πiτ , which will be meromorphic in the disk 0 < |q| < 1. By

abuse of notation, we will also call this function f(q) or even f(τ). This change

of variables maps the real line to the boundary of the unit circle, and sends

i∞ to zero. If this function is holomorphic in the punctured disc 0 < |q| < r

for some r 6 1 and has a pole at q = 0, we call f(q) meromorphic at infinity.

If q = 0 is at worst a removable singularity, then we call it holomorphic at

infinity.

Definition 4.1.5. Let f be a weakly modular form of weight k. If additionally

it is meromorphic at infinity, f is called a modular form of weight k. A

modular form of weight 0 is called a modular function.

If a modular form f is holomorphic everywhere except infinity, it is called a

weakly holomorphic modular form; if it is holomorphic everywhere, including

at infinity, then it is called a holomorphic modular form.

Note that these different possibilities are reflected in the Laurent expan-

sions of the function around the origin: namely, a modular form will have a

Laurent expansion of the form

f(τ) =
∞∑
n=N

anq
n;

for a holomorphic modular form we have N > 0.

Some common, important examples of modular forms are the Dedekind eta

function (raised to the 24th power) and the Eisenstein series. The 24th power
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of the Dedekind eta function is

η24(τ) := q
∞∏
n=1

(1− qn)24,

which converges for |q| < 1. It is well known that the 24th power of the

Dedekind eta function is a holomorphic modular form of weight 12. Addi-

tionally, the expansion will give a power series with integral coefficients, and

clearly the coefficient of q0 is zero. Moreover, the eta function has no zeroes

in H.

The Eisenstein series are defined as

G2k(τ) =
∑

(n,m)∈Z2\{(0,0)}

1

(mτ + n)2k
.

It is well known that these are holomorphic modular forms of weight 2k for all

k > 1. Especially important are G4 and G6, which are often rescaled into E4

and E6:

E4(τ) = 1 + 240q + 2160q2 + 6720q3 + . . .

E6(τ) = 1− 504q − 16632q2 − 122976q3 + . . . .

As explained in more detail in Section 4.4, these freely generate the space of

holomorphic modular forms for Γ(1). (For details and a proof of this, see for

example page 88-89 of [26].)

(As an aside, for an appropriate definition of p-adic modular forms, G2 is

in fact a p-adic modular form; however this is beyond the scope of this thesis.

For more information, see [27]. G2 is also quasi-modular, and enters in to the

modular derivative, which we will discuss later.)

4.2 Fuchsian Groups and Γ(2)

None of the above definitions are necessarily restricted to the modular group,

although this is where they originated. In fact they are easily generalized to a

class of groups called Fuchsian groups. We provide here a brief introduction
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to Fuchsian groups and the definitions of modular forms for them; however

this is largely a digression, and our main interest will be the group Γ(2).

Definition 4.2.1. Let Γ be a subgroup of SL2(R). We call Γ a discrete or

Fuchsian group if, taking the infimum over all γ =

(
a b

c d

)
∈ Γ, γ 6= I, we

have

inf{(a− 1)2 + b2 + c2 + (d− 1)2} > 0.

For a more in-depth discussion of Fuchsian groups, see for example [20].

The modular group is, of course, an example of such a group (or at least

its pre-image SL2(Z) is). So are any subgroups thereof, such as the commonly

referenced congruence subgroups. We usually identify Fuchsian groups with

their images in PSL2(R), and from this point forward will deal only with

their images in PSL2(R). While there is no need for Fuchsian groups to be

subgroups of the modular group, all those we deal with will be.

Definition 4.2.2. We define

Γ(N) :=

{(
a b

c d

)
∈ Γ(1)|a ≡ d ≡ 1 (mod N), b ≡ c ≡ 0 (mod N)

}
.

Let Γ be a subgroup of SL2(Z). It is called a congruence subgroup if it contains

some Γ(N).

Especially important to us is the group

Γ(2) :=

{(
a b

c d

)
∈ Γ(1)|a ≡ d ≡ 1 (mod 2), b ≡ c ≡ 0 (mod 2)

}
.

It is freely generated by the matrices

A = T 2 =

(
1 2

0 1

)

B = ST 2S−1 =

(
1 0

−2 1

)
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.

Some important examples of congruence subgroups, other than the Γ(N)

themselves, are

Γ0(N) :=

{(
a b

c d

)
∈ Γ(1)|c ≡ 0 (mod N)

}

Γ1(N) :=

{(
a b

c d

)
∈ Γ(1)|a ≡ 1 (mod N), c ≡ 0 (mod N)

}

The definition of the fundamental domain extends in the obvious way to

Fuchsian groups. Namely, we have

Definition 4.2.3. Let Γ be a Fuchsian group. A fundamental domain of Γ is

an open connected set (that is, a domain) D ⊂ H such that

1. For every τ ∈ H, there exists some γ ∈ Γ and some τ ′ ∈ D, that is in

the closure of D, such that γ · τ ′ = τ .

2. No two elements of D are in the same Γ-orbit, that is, for any τ, τ ′ ∈ D,

γ · τ 6= τ ′ for all γ ∈ Γ.

Definition 4.2.4. Let Γ be a Fuchsian group. It is called a Fuchsian group

of the first kind if it has a fundamental domain of finite hyperbolic area. Oth-

erwise, it is called a Fuchsian group of the second kind.

Fuchsian groups of the first kind are the general objects of interest; the

definition of Fuchsian groups of the second kind in essence means that they

are too sparse. As an example, take the group generated by T =

(
1 1

0 1

)
. It

has as a fundamental domain the entire strip
{
τ ∈ H||Re(τ)| < 1

2

}
, which has

infinite hyperbolic area. In fact, almost all Fuchsian groups Γ appearing in

the literature are commensurable with SL2(Z), that is to say, that Γ∩SL2(Z)

has finite index in both SL2(Z) and Γ. These are automatically of the first

kind. For more information, see for example [14] or [3]. We will assume from

here forward that our Fuchsian group satisfy these conditions.
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Γ(2) is a Fuchsian group of the first kind, commensurable with Γ(1). A

fundamental domain for Γ(2) can be obtained by taking the union of six appro-

priately chosen fundamental domains for Γ(1); see [20][pg 141-142] for details.

If we take the fundamental domain of a Fuchsian group and identify the

edges of the boundary appropriately, that is if we take H modulo the action

of a Fuchsian group Γ, this will give us a Riemann surface with some number

of “punctures”. These punctures correspond to the Γ-orbits with non-trivial

stabilizers; we remove these orbits as otherwise they’d correspond to conical

singularities on the Riemann surface. The genus of this surface is what we call

the genus of the Fuchsian group Γ. For instance, in the case of Γ(1), we have

a Riemann sphere with three punctures, corresponding to the Γ(1) orbits of

∞ (the cusps), and those of i and e2πi/3 (stabilized by S and U respectively).

Fuchsian groups with genus zero and three punctures are called triangle

groups. They are the Fuchsian groups directly related to the hypergeometric

function. Γ(2) is another example of a triangle group; in fact, any other

triangle group is a homomorphic image of Γ(2). It is for this reason that Γ(2)

is our main focus. For more information and other examples see [14] or [10].

To generalize modular forms to Fuchsian groups, we need a growth condi-

tion on the function f . These definitions follow [3].

Definition 4.2.5. Let f(τ) be a (scalar-valued) meromorphic function on H.

We say that f has moderate growth at∞ if there exists some z ∈ C and some

Y ∈ R such that

|f(x+ iy)| < eIm(zτ) for all y > Y.

where τ = x + iy. Let c ∈ R. Then there exists some γ ∈ PSL2(R) such that

γ · c = ∞. If f(γ · τ) has moderate growth at infinity, then we say that f(τ)

has moderate growth at c.

To complete our definition we will need the notion of cusps. Roughly

speaking, we can think of cusps as being orbits of where the boundary of the

fundamental domain hits the real line together with ∞. More formally, we

have the following definition, following [3]:
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Definition 4.2.6. Let Γ be a Fuchsian group of the first kind. An element

γ ∈ Γ is called parabolic if its trace is equal to 2. A point in R∪{∞} is called

a cusp if it is fixed by some parabolic element of Γ. In the case of Fuchisan

groups commensurable with Γ(1), the cusps are always Q ∪ {∞}.

Definition 4.2.7. Let Γ be a Fuchsian group of the first kind with a cusp at

infinity, k ∈ 2Z, ρ a representation. A modular form of weight k for ρ is a

function on H such that

1. f(γτ) = (cτ + d)kf(τ) for all τ ∈ H and all γ =

(
a b

c d

)
∈ Γ,

2. f(τ) has finitely many poles in D ∩ H, where D is the closure of the

fundamental domain of Γ,

3. f(τ) has moderate growth at all cusps c of Γ.

A modular function is a modular form of weight 0.

In particular, we can use this to define modular forms for Γ(2). Their

Fourier expansions will be in q̃ := eπiτ , as this is now the variable which is

fixed by the stabilizer of infinity. Γ(2) has three inequivalent cusps, namely 0, 1

and ∞, as opposed to SL2(Z)’s single cusp, slightly complicating definitions

of holomorphic and weakly holomorphic. Namely, meromorphic at infinity is

as for Γ(1) except using the q̃-expansion, meromorphic at 0 means f(− 1
τ
) is

meromorphic at infinity, and meromorphic at 1 means f(− 1
τ−1

) is meromorphic

at infinity. Holomorphicity is defined similarly.

In the case of Fuchsian group Γ of genus zero, we have a uniformizing

function, called a Hauptmodul, which maps our surface (with its conical sin-

gularities) to the Riemann sphere. This will be a modular function for our

group Γ, and in fact any modular function for Γ can be written as a rational

function in the Hauptmodul. As an example, the standard Hauptmodul for

Γ = Γ(1) is the well-known j-function,

j(τ) =
E3

4

η24
= q−1 + 744 + 196884q + . . .
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For more information, once again see [14].

To construct a Hauptmodul for Γ(2), we begin with the well-known classical

theta series,

θ2(τ) =
∞∑

n=−∞

q(n−1/2)2/2 = 2q1/8

∞∏
n=1

(1− qn)(1 + qn)2

θ3(τ) =
∞∑

n=−∞

qn
2/2 =

∞∏
n=1

(1− qn)(1 + qn−1/2)2

θ4(τ) =
∞∑

n=−∞

(−1)nqn
2/2 =

∞∏
n=1

(1− qn)(1− qn−1/2)2.

A Hauptmodul for Γ(2) is −16θ43(τ)

θ42(τ)
. The holomorphic modular forms will be

generated freely by the weight 2 forms θ4
2 and θ4

3. Note that θ4
3 = θ4

2 + θ4
4.

4.3 Vector Valued Modular Forms

This definition can be further generalized to allow for multidimensional rep-

resentations, giving rise to the notion of vector valued modular forms. In this

case, we usually need some additional admissibility conditions on our repre-

sentation. For more information, see [15]. Namely, we usually assume some

diagonalization condition on the stabilizer of i∞, depending on our group. In

the case of Γ(1), this means ρ(T ) is diagonal; in the case of Γ(2), our main

concern later, we will assume that ρ(T 2) is diagonal. This allows for a q-

or q̃-series, as explained for example in [4]. Although we define vector val-

ued modular forms only for even integer weight, a more general definition is

possible; however this definition will be sufficient for our purposes.

Definition 4.3.1. Let Γ be a genus zero Fuchsian group of the first kind with

a cusp at infinity, and ρ : Γ → GLn(C) be a rank n representation with

associated weight k ∈ 2Z for some n ∈ Z>0. Let F be the closure of the

fundamental domain of Γ. A vector valued modular form of weight k is a

meromorphic function X : H→ Cd such that
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1. X(γτ) = ρ(γ)(cτ + d)kX(τ) for all γ =

(
a b

c d

)
∈ Γ,

2. X(τ) has finitely many poles in F ∩H,

3. Each component of X(τ) has moderate growth at all cusps c of Γ.

Such a form is called weakly holomorphic if it is holomorphic everywhere

except the orbit of ∞; if it is holomorphic including at ∞, then it is called

holomorphic. A vector valued modular form of weight 0 is called a vector

valued modular function.

For brevity, we will from here on sometimes refer to vector valued modular

forms simply as modular forms.

Definition 4.3.2. Let Γ = Γ(1) or Γ(2). Let X(τ) be a vector valued modular

form for Γ. Then we can write

X(τ) = qλ
∞∑

m=M

X[m]qm

(if Γ = Γ(1)) or

X(τ) = q̃λ
∞∑

m=M

X[m]q̃m

(if Γ = Γ(2)), for some M ∈ Z and X[m], λ ∈ Cd, where λ is a diagonal

matrix. The X[m] are called the Fourier coefficients of X(τ).

As mentioned previously, such vector valued modular forms show up in

places such as the characters of vertex operator algebras. A more concrete

example is the θ series, however since they form a vector valued modular form

of half-integral weight, which we have not defined, we will gloss over many of

the details. However, as their relations will be important to us later, we will

nevertheless mention them. The reader may refer to for example [4] for more

information on modular forms of half-integral weight.

Let Θ(τ) =

θ2(τ)

θ3(τ)

θ4(τ)

. Since the modular group is generated by S and T ,
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it is sufficient to find the representation for these. It can be shown that we

have

Θ(Tτ) = Θ(τ + 1) = (1)1/2

ε8 0 0

0 0 1

0 1 0

Θ(τ),

where ε8 is the 8th root of unity ε8 = e2πi/8, and

Θ(Sτ) = Θ(−1

τ
) = (τ)1/2


0 0

√
1
i

0
√

1
i

0√
1
i

0 0

Θ(τ).

(We gloss over the subtleties of complex square roots here, as they will be

unimportant to us.) Hence we have a vector valued modular form of weight 1
2
.

These also form a vector valued modular form for Γ(2), as will be important

for us later. Recall that Γ(2) is generated by A = T 2 and B = ST 2S−1; ρ(A)

and ρ(B) are easily calculated from the above computations. In particular,

ρ(T 2) is diagonal.

4.4 Theory of Vector Valued Modular Forms

and Fuchsian Differential Equations

We now briefly describe the space and theory of vector valued modular forms,

focusing on those for Γ(1) and Γ(2), which are essentially the same. We give

only a brief overview here, largely without proof; for more information, see for

example [4] and [15] for the case of Γ(1), and [10], where Γ(2) is referred to as

a triangle group of type (∞,∞,∞), for the case of Γ(2).

Definition 4.4.1. Let Γ = Γ(1) or Γ(2). We define M!
k,Γ(ρ) to be the space

of weight k weakly holomorphic vector valued modular forms, and Mhlm
k,Γ (ρ) to

be the space of weight k holomorphic vector valued modular forms. We may

omit the Γ in the subscript when the group in question is obvious from context.
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These are always vector spaces, andMhlm
k,Γ (ρ) is of finite dimension. In the

case of Γ(1), ⊕k∈2ZM
hlm
k,Γ(1)(ρ) is a free module of rank dim ρ over C[E4, E6],

where the Ei are the Eisenstein series defined previously, and M!
k,Γ(1)(ρ) is a

free module of dimension dim ρ over C[j], where the j function is the usual

Hauptmodul for Γ(1). The case of Γ(2) is similar, but with different functions;

E4 and E6 are replaced by θ4
2, θ

4
3, and the Hauptmodul j is replaced by

θ43
θ42

,

where the θi are the classical theta series defined previously.

Also important to us are differential operators, from which we construct our

Fuchsian differential equations. We mentioned these briefly previously, and will

here add only slightly more detail and a slightly different emphasis. Although a

definition exists in more generality, we will here use a restricted definition that

will be sufficient for our purposes. For more on Fuchsian differential equations

and equations of hypergeometric type, see for example [5] and section 9.6 of

[19].

Definition 4.4.2. A Fuchsian differential equation is a linear ordinary differ-

ential equation living on the Riemann sphere with only regular singularities,

including at ∞.

By necessity a Fuchsian differential equation has only finitely many singu-

larities. We are most interested in Fuchsian differential equations of hyperge-

ometric type, which we briefly mentioned when talking about hypergeometric

equations. Recall that they are of the following form:

Definition 4.4.3. Let θ = z d
dz

, and let P be the differential operator P :=

θn + p1θ
n−1 + . . . + pn−1θ + pn. A Fuchsian differential equation with regular

singularities only at the points z = 0, 1,∞ is called a differential equation of

hypergeometric type, or simply a hypergeometric equation, if each pi is of the

form pi(z) = pi,0 + pi,1(z − 1)k, where the pi,k ∈ C. We call n the order of the

hypergeometric equation.

We can rearrange such equations to be of the following form:

D(α1, . . . , αn; β1, . . . , βn)

= (θ + β1 − 1) · · · (θ + βn − 1)− z(θ + α1) · · · (θ + αn) = 0
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It is known that we have a basis of solutions for such equations which are

generalized hypergeometric functions up to some multiple of zβ. It is known

that every Fuchsian differential equation of order 2 with three regular singu-

larities is, up to a change of variables, the standard hypergeometric equation

for 2F1. We can recover the standard order 2 hypergeometric equation from

this one by setting β2 = 1; then, setting α1 = a, α2 = b, β1 = c we have

D(a, b; c, 1)f(z)

=

[(
z
d

dz
+ c− 1

)(
z
d

dz

)
− z

(
z
d

dz
+ a

)(
z
d

dz
+ b

)]
f(z)

= z2f ′′(z) + czf ′(z)− z(zf ′(z) + z2f ′′(z) + bzf ′(z) + azf ′(z) + abf(z))

= z[z(1− z)f ′′(z) + [c− z(a+ b+ 1)]f ′(z) + abf(z)] = 0

Hence removing the factor of z, which we may do since zg(0) = 0 if and only

if g(z) = 0 for any meromorphic function g(z), we have obtained the standard

hypergeometric equation.

Another formulation of Fuchsian and hypergeometric equations is also use-

ful to us. Choose k distinct points zi on the Riemann sphere, and k distinct

constant matrices Ai. Then the first-order matrix differential equation

d

dz
Ξ =

∑
i

Ai
z − zi

Ξ

is called Fuchsian. Any order-n Fuchsian differential equation can be recast

in this way (but not conversely, for n > 2). When k = 3, and zi = 0, 1,∞, we

say this differential equation is of hypergeometric type.

As mentioned previously, if we assume that ρ(T ) is diagonal in the case of

Γ(1), or ρ(T 2) is diagonal in the case of Γ(2), we get that our vector valued

modular forms will have Fourier coefficients. From here on we will assume this

is always the case. Note that in the case of Γ(2), our Fourier coefficients will

be for a series in q̃ = eπiτ instead of the usual q = e2πiτ .

In the following let Γ = Γ(1) or Γ(2).

Definition 4.4.4. Let K be some subring of C. We call a modular form K-

Fourier if all Fourier coefficients of each component lie in K. In particular, if
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all Fourier coefficients of each component lie in Q, we call the modular form

rational; if they lie in Z, we call the modular form integral.

Definition 4.4.5. A vector valued modular form is called full if its components

are linearly independent.

We will want our vector valued modular forms to be full, otherwise it will

see only part of the representation. Due to this and the nature of our problem,

we will mostly be dealing with the following types of modular form:

Definition 4.4.6. A vector valued modular form is called a full rational mod-

ular form if it is both full and Q-Fourier; it is called a full integral modular

form if it is both full and Z-Fourier.

Let ρ be a representation. It is known that the following are equivalent:

1. There is at least one full rational (resp. full integral) weakly holomorphic

vector valued modular form;

2. There exists a free basis over the ring C[E4, E6] (in the case of Γ(1)) or

C[θ4
2, θ

4
3] (in the case of Γ(2)) of full rational (resp. full integral) vector

valued modular forms for ⊕k∈2ZM
hlm
k (ρ);

3. There exists a free basis over the ring C[E4, E6] (in the case of Γ(1)) or

C[θ4
2, θ

4
3] (in the case of Γ(2)) of full rational (resp. full integral) vector

valued modular forms for ⊕k∈2ZM
!
k(ρ).

It is known that if ρ satisfies any of these conditions, ρ(T ) (for Γ(1)) or

ρ(T 2) (for Γ(2)) must have finite order, as shown for instance in [1].

Definition 4.4.7. If ρ satisfies any (and therefore all) of the above three con-

ditions, we call it rational (or, respectively, integral).

Recall that we previously defined a congruence subgroup as one containing

some Γ(N).

Definition 4.4.8. Let ρ be a representation. We call ρ a congruence repre-

sentation if its kernel is a congruence subgroup, that is, contains some Γ(N).
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The classification of congruence representations is known for dimensions at

least 1 through 5 for Γ(1) and dimensions 1, 2 and 3 for Γ(2). Our main con-

cern is Γ(2). Since Γ(2) is the free group on two generators, an n-dimensional

rep is a pair of invertible matrices a, b, corresponding to ρ(A) = a, ρ(B) = b,

where A,B are the generators of Γ(2) defined previously. We denote such a

representation by ρa,b. In particular, a 1-dimensional congruence representa-

tion of Γ(2) is a pair of numbers a, b ∈ C×. By [16], ρa,b is a 1-dimensional

congruence representation if and only if a24 = 1 and a8 = b8, which implies

that there are precisely 192 1-dimensional congruence representations for Γ(2).

Likewise, there are exactly 912 irreducible congruence representations of Γ(2)

in dimension 2, and 832 in dimension 3; see [16] for more details.

4.5 The Atkin-Swinnerton-Dyer Conjecture

We are now ready to sketch the conjecture which motivated our work in Chap-

ter 3 on hypergeometric functions.

In [2], Atkin-Swinnerton-Dyer made an observation which has since been

elevated to a conjecture. It can be generalized to the setting of vector valued

modular forms of arbitrary Fuchsian groups in the obvious way, and call this

generalization vASD.

Conjecture 4.5.1 (vASD). Suppose that ρ is a rational representation for

some Fuchsian group commensurable with Γ(1). Then ρ has a full integral

vector valued modular form, if and only if ρ is congruence.

It has been known for at least a hundred years that any rational congruence

representation is necessarily an integer representation; hence one direction of

vASD is a theorem. However, although the Atkin-S-D conjecture is 50 years

old, and its generalization vASD has been studied for at least the last decade,

it can be argued that we still have little evidence in support of it. See [28] and

[13] for recent results and some discussion of the literature.

We will need the following definition:

Definition 4.5.1. Let ρ be a rational representation for Γ(1) or Γ(2). A prime

p is called an unbounded prime for ρ if it appears to arbitrarily high powers in
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the denominators of the coefficients of one (and hence all) full vector valued

modular form for ρ, that is, if that vector valued modular form’s coefficients are

p-adically unbounded. For clarity, we say the coefficients X[m] are p-adically

unbounded if the infimum over all i and m of νp(X[m]i) = −∞. That is, it

is sufficient that one component be p-adically unbounded.

In dimensions 1 and 2 for Γ(1), a representation is congruence if and only

if it is finite image. We now know that any rational representation of Γ(1) or

Γ(2) with infinite image is necessarily p-unbounded for almost all primes p.

Hence in hindsight, the verification of vASD for Γ(1) in dimensions 1 and 2 is

not deep. However, Γ(2) is another story!

4.6 vASD for Γ(2) in 1 Dimension

In the 1-dimensional case for Γ(2), we have the classification of congruence

forms given above. We will now show that vASD holds for Γ(2) in 1 dimension.

First we will need the following two simple facts.

Lemma 4.6.1. Let h(x) = 1 +
∑∞

n=N hnx
n, where N > 1, and the hn ∈

Q, hN 6= 0. Let p be any prime which is coprime to the denominators of all

the coefficients hn. Then,

1. p is also coprime to the denominators of all the coefficients of 1
h(x)

; and

2. Let r be a rational number, p a prime which divides the denominator of

r, and such that vp(r) < −vp(hN). Then p appears to arbitrarily high

powers in the denominator of h(x)r (ie p is an unbounded prime for

h(x)r).

Proof. Recall Newton’s binomial formula, (1+a)y = 1+ya+. . .+y(y−1)···(y−k+1)
k!

ak+

. . .. Subbing in a =
∑∞

n=N hnx
n, y = −1, we get

1−

(
∞∑
n=N

hnx
n

)
+

(
∞∑
n=N

hnx
n

)2

− . . .±

(
∞∑
n=N

hnx
n

)k

∓ . . .
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Clearly any prime which is coprime to all the denominators of the hn will

still be coprime to the denominators of this sum.

For part 2, we can use the same formula, now with a =
∑∞

n=N hnx
n, y = r.

Rather than focusing on the whole thing, we will focus on the coefficient of

each xNn. This will be a polynomial in r of degree k, whose leading term

comes from (
∑∞

n=N hnx
n)
k

and hence is
rkhkN
k!

. All other terms will come from

equal or lower powers in the expansion of the binomial formula, and hence the

coefficients of the other rk will be polynomials in 1
n
Z[hN , . . . , h(n)N ]. Hence,

in particular, all these terms will have a strictly smaller power of p in their

denominator than the leading term. Thus, we can find the power of p in the

denominator of the coefficient of xNn as being precisely the power of p in the

denominator of
rnhnN
(n)!

. Clearly, since vp(r
n) < −vp(hnN), this power increases

monotonically as n increases; therefore, p is an unbounded prime for h(x)r.

We recall the earlier introduced θ series. Their transformations under S, T

are recorded in a matrix above, but we will restate them in a different format

here for the fourth power of each of these series, which we will use in the

coming calculations.

θ4
2(τ + 1) = −θ4

2(τ); θ4
2(−1/τ) = −τ 2θ4

4(τ);

θ4
3(τ + 1) = θ4

4(τ); θ4
3(−1/τ) = −τ 2θ4

3(τ);

θ4
4(τ + 1) = θ4

3(τ); θ4
4(−1/τ) = −τ 2θ4

2(τ).

It is known that none of these fourth powers have zeroes or poles in H,

which is a simply connected domain. Hence, they have a well-defined, holo-

morphic logarithm. We can multiply this logarithm by any complex number

and exponentiate without disrupting holomorphicity. Hence, these
θ4i
θ4j

can be

raised to arbitrary complex powers in H and still be well-defined and holomor-

phic. Moreover, as stated previously, we can use elements of Γ(1) to map any

cusps to the cusp at infinity, and from the q or q̃ expansion of the transformed

function read of the T or A action.

Recall from above that the 1-dimensional representations of Γ(2) can be
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classified by choosing a complex number for each of A = T 2 and B = ST 2S−1.

As before, let ρa,b be the representation defined by ρa,b(A) = a, ρa,b(B) = b.

Lemma 4.6.2. ρa,b is rational (with ρ(T 2) diagonal since we are in the one-

dimensional case) if and only if a and b are both roots of unity, that is, if and

only if ρa,b has finite image.

Proof. Let

f(τ) =
θ4

2(τ)

16θ4
3(τ)

= q̃ − 8q̃2 + 44q̃3 + . . . ,

g(τ) =
θ4

2(τ)

16θ4
4(τ)

= q̃ + 8q̃2 + 44q̃3 + . . . .

Note that A is the stabilizer of the cusp at infinity, and B is the stabilizer of

the cusp at 0. We can send the cusp at 0 to the cusp at infinity by using the

S matrix. Hence, we can examine the behaviour of powers of these functions

with respect to the modular transformations by looking at the q̃-expansions

at infinity. For example, looking at f(τ), we have

f r(τ) = q̃r(1 + 8q̃ + 44q̃2 + . . .)r.

By the binomial formula we have that the second part of this will still be a

q̃-expansion, hence the part we care about is that first factor of q̃. This tells

us that

f r(A · τ) = f r(τ + 2)

= eπi(τ+2)r(1 + 8q̃ + . . .)

= e2πirf r(τ).

Similarly, we have

gs(Aτ) = e2πisg(τ)

.

To get the answer for Bτ we use a transformation sending the cusp 0 to the

cusp at ∞, a transformation which due to earlier calculations we understand
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well as it is simply the S matrix. We can then once again look at the expansion

around this cusp to determine how this will act. Namely, we know that sending

τ 7→ −1/τ sends

f(−1/τ) =
θ4

4(τ)

16θ4
3(τ)

,

g(−1/τ) =
θ4

4(τ)

16θ4
2(τ)

.

Then for the q̃ expansion we have

f(−1/τ) =

∏∞
n=1(1− q̃2n−1)8

16
∏∞

n=1(1 + q̃2n−1)8
,

which clearly will have no pre-factor of q̃. Hence f transforms trivially under

B. Similarly, the expansion for

g(−1/τ) =

∏∞
n=1(1− q̃2n−1)8

162q̃
∏∞

n=1(1 + q̃2n)8

has a pre-factor of q̃−1, hence gs(B · τ) = e−2πisgs(τ).

Let us write a = e2πir, b = e2πis for some r, s ∈ C. Then by the above

calculations, Xr,s := f(τ)r+sg(τ)−s is a vector valued modular form for ρa,b.

Note that, using the binomial formula, if both r and s are rational, then

clearly Xr,s(τ) will have rational q̃-coefficients. Conversely, let’s look at the

first few coefficients of Xr,s(τ). Note that the first few coefficients of f and g

are

f(τ) = q̃ − 8q̃2 + 44q̃3 − . . .

g(τ) = q̃ + 8q̃2 + 44q̃3 + . . .

Using the binomial formula again, we can calculate the first few terms of

Xr,s(τ):

Xr,s(τ) =q̃r+s(1 + (−8q̃ + 44q̃2 − . . .))r+sq̃−s(1 + (8q̃ + 44q̃2 + . . .))−s
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=q̃r
(

1 + (r + s)(−8q̃ + 44q̃2 − . . .) +
(r + s)(r + s− 1)

2!
(−8q̃ + . . .)2 + . . .

)
·
(

1 + (−s)(8q̃ + 44q̃2 − . . .) +
(−s)(−s− 1)

2!
(−8q̃ + . . .)2 + . . .

)
=q̃r(1− (16s+ 8r)q̃ + (32r2 + 128rs+ 128s2 + 12r)q̃2 + . . .).

Now if Xr,s isQ-Fourier, then clearly 16s+8r, 32r2+128rs+128s2+12r ∈ Q.

But then also 12r = 32r2 + 128rs + 128s2 + 12r − 32(2s + r)2 ∈ Q. Hence

r, s ∈ Q.

Theorem 4.6.3. ρa,b is integral if and only if a24 = 1 and a8 = b8, that is to

say, if and only if the kernel of ρa,b contains a congruence subgroup.

Proof. Suppose first that a24 = 1 and a8 = b8. Define r, s as in the proof of

Lemma 4.6.2. Note that if we can show that if f 1/8, g1/8 and (fg)1/3 have

no unbounded primes, then neither will Xr,s = f r+sg−s. To see this, write

r = k/8 + l/3,s = k′/8 + l′/3 for integers k, k′, l, l′. Then l ≡ l′ (mod 3), so

without loss of generality we can choose l = l′ ≥ 0. Likewise, we can insist that

k, k′ are both non-negative. Then for these modified but equally acceptable

r, s, Xr,s(τ) = (f 1/8)k(g1/8)k
′
((fg)1/3)l. Thus we will know Xr,s is integral, if

we know f 1/8, g1/8 and (fg)1/3 are.

To see that f 1/8 and g1/8 have no unbounded primes, we use the product

formulas for the theta series, in terms of q̃, which we defined previously. We

have

f(τ)1/8 =

(
2q̃1/4

∏∞
n=1(1− q̃2n)(1 + q̃2n)2

2
∏∞

n=1(1− q̃2n)(1 + q̃2n−1)2

)1/2

= q̃1/8

∏∞
n=1(1 + q̃2n)∏∞
n=1(1 + q̃2n−1)

The Fourier expansions of both the numerator and the denominator clearly

have integral coefficients; hence by Lemma 4.6.1 part 1, so does f(τ). The same

is true for

g(τ)1/8 = q̃1/8

∏∞
n=1(1 + q̃2n)∏∞
n=1(1− q̃2n−1)

.

For (fg)1/3, we use the well-known identity θ2θ3θ4 = 2η3, where η is the
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Dedekind eta function, which is integral by the previously shown product

formula. We thus have

(fg(τ))1/3 =

(
θ8

2(τ)

(16)2θ4
3(τ)θ4

4(τ)

)1/3

=

(
28(η3(τ))8

(16)2θ12
3 (τ)θ12

4 (τ)

)1/3

=
η8(τ)

θ4
3(τ)θ4

4(τ)
.

Once again, since all the coefficients of the expansions of both the numerator

and denominator are integral, we can use Lemma 4.6.1 part 1 to say that the

coefficients of (fg(τ))1/3 also have no unbounded primes.

Conversely, suppose that we have Xr,s = f r+sg−s is integral, that is, sup-

pose that ρa,b is integral. We know already that r, s ∈ Q; we will show that

they must satisfy the conditions that their denominators must divide 24 and

24r ≡ 24s (mod 3), that is, a24 = 1, a8 = b8.

Let p be some prime which divides the denominator of either r or s. Sup-

pose first that νp(r + s) 6 νp(−s). Note that we must have νp(r + s) < 0.

Hence we can find some L ∈ Z>0 such that L(r+s) ≡ 1
p

(mod 1); for instance,

if r+s = n
pkm

, then we have pk−1m(r+s) = n
p
. Then there exists some c ∈ Z>0

such that cn ≡ 1 (mod p). Set L = pk−1mc.

Now since L ∈ Z>0, and Xr,s is integral, we must have that XLr,s = (f r+sg−s)L

is integral. Then dividing by positive integer powers of f and g, which will

similarly have no unbounded primes, we get that f 1/pgl/p must have no un-

bounded primes, where 0 6 l < p. Now, by our previous calculation,

fgl = q̃l+1(1 + 8(l − 1)q̃ + (32l2 − 52l + 44)q̃2 + . . .).

Similarly, in the case of νp(s) < νp(r + s) we get that for some 0 6 l < p,

f l/pg1/p has no unbounded primes, and

f lg = q̃l+1(1 + 8(1− l)q̃ + (32l2 − 52l + 44)q̃2 + . . .).

If p > 3, then by Lemma 4.6.1 part 2 with N = 1, unless l = 1 in which
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case N = 2, we have that p is an unbounded prime, giving a contradiction.

Hence no p > 3 can divide the denominators of r or s. Moreover, by the

same lemma, the same is true for powers of 2 greater than 23, since 8 divides

the first coefficient and the second with l = 1; similarly, the only way that

p = 3 can divide the denominator of r or s is if l = 1, since then we have

32 − 52 + 44 = 24 and 8(1 − l) = 0. That is, 24r ≡ 24s (mod 3). Moreover,

no higher power of 3 than the first power can divide the denominators. Thus

we must have a24 = 1, a8 = b8, as desired.

4.7 Higher dimensional modular forms and hy-

pergeometric equations

The two portions of this thesis come together when we look at the vASD

conjecture for higher dimensional representations of Γ(2). Unfortunately, the

details of this connection are beyond the scope of this thesis. For the story in

the case of Γ(1) see for example [3], [4] and [15]; we will give a very brief sketch

here. The story for Γ(2) will be similar, but has not yet been published.

Given a representation ρ for Γ(1) satisfying certain extra conditions, we

have the space of weakly holomorphic vector valued modular forms, M!
0(ρ),

where here and from now on Γ = Γ(1). As we stated previously, this is a

free module of rank n = dim(ρ) over C[j]. We can thus find a free basis

X(1), . . . ,X(n). Additionally, these free basis vectors satisfy differential rela-

tions. Specifically, these arise from the differential operator ∇ defined by

∇ =
E10(τ)

2πi · η24(τ)

d

dτ
,

which maps M!
0(ρ) to itself. This gives rise to differential relations on the

canonical basis vectors.

In fact, we can arrange these canonical basis vectors into a matrix, which

we call the fundamental matrix. Then, the differential relations on the basis

vectors give rise to a first order matrix differential equation of hypergeometric

type satisfied by the fundamental matrix. Additionally, this fundamental ma-
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trix encodes all the information aboutM!
0(ρ), as it stores the free basis. This

differential equation means that the free basis can be completely recovered

once a small number (approx n2) of complex numbers are known.

Consider ρ defined by

ρ(T ) =

(
e11πi/30 0

0 e−πi/30)

)
,

ρ(S) =

√
2

5 +
√

5

(
1 1+

√
5

2
1+
√

5
2

−1

)
.

Then the free generators are

X(1)(τ) =

(
q11/60(1 + q2 + . . .)

q−1/60(q−1 + 1 + q + q2 + . . .)

)
,

X(1)(τ) =

(
q11/60(q−1 − 245− 113239q − 6029989q2 + . . .

q−1/60(26999 + 1820504q + . . .)

)
.

In rank 2, this matrix differential equation can always be recast as a (stan-

dard) hypergeometric equation. This means that the components of the free

basis for rank 2 can always be expressed as a hypergeometric function 2F1

times a power of j. The same happens in rank 3, except 3F2 is involved. In

rank greater than 3, the hypergeometric functions only account for some of

the vector valued modular forms (by definition the most accessible ones).

One way to express with 2F1 the fundamental matrix for any 2-dim rep of

Γ(1) is given in Section 4.2 of [15]. Each component is written as (j(τ)/1728)

to some power, times some 2F1 for the choice z = 1728/j(τ).

[13] gives several explicit examples expressing holomorphic rank 3 vector

valued modular forms for Γ(1) in terms of 3F2, for the same choice of z.

As mentioned previously, the story in the case of Γ(2) is very similar, and

more important in that there are far more representations in each dimension

in which to probe vASD. For this reason, the case of Γ(2) holds much more

interest for the vASD conjecture than does Γ(1). As touched on in the Con-

clusion, vASD in 2 and 3 dimensions for any triangle group, such as Γ(2), will
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reduce to knowing the unbounded primes for the hypergeometric functions 2F1

and 3F2, which we solved in this thesis. The higher order hypergeometric func-

tions come into play in higher dimensions for Γ(2) and other triangle groups.

In particular, the work of this thesis opens the door to the largest test by far

of the vASD conjecture to date.
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Chapter 5

Conclusion

We have answered the question of unbounded primes for the generalized hy-

pergeometric function, and have shown vASD to be true in the case of 1-

dimensional vector valued modular forms for Γ(2). Now, there is a clear next

direction for this project. Namely, it remains to work out the detailed analysis

of vASD for the 2- and 3-dimensional representations of Γ(2). This amounts to

combining the 1-dimensional analysis (applied to powers of j) with the hyper-

geometric analysis for 2F1 and 3F2. The unbounded primes grow much faster

in the 1-dimensional case than in the 2-dimensional one, so this shouldn’t con-

stitute a major problem, but we get infinite families. Another direction would

be to try this for other triangle groups, for example Γ0(2). In rank 4 and

higher, can we find how to generalize the hypergeometric functions to recover

all Γ(2) modular forms?

In this thesis, we considered only those hypergeometric functions and vector

valued modular forms with rational coefficients. This should be generalized

to coefficients coming from any algebraic number field. The cyclotomic fields

are the most important of these. Indeed, they are the proper home of vASD

because a basis for the space of modular forms for Γ(N) can only be made to

be Z[e2πi/N ]-integral.

Some other open questions in this area would be to look at the question

of unbounded primes for other generalizations of the hypergeometric function.

For instance, while the series nFn−1 are the most interesting as they converge

only in a circle of radius 1 around the origin (we have to analytically extend
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to the rest of the Riemann sphere, and this introduces branch singularities,

from which ρ arises as monodromy), we can also ask the question for any pFq,

which are defined as

nFm(α1, . . . , αn; β1, . . . , βm; z) :=
∞∑
k=0

(α1)k · · · (αn)k
(β1)k · · · (βm)kk!

zk,

where (α)k is the Pockhammer symbol defined earlier. When p < q + 1 these

converge for any finite value of z, and hence define an entire function; when

p > q + 1, the series diverges other than for z = 0. We could also ask the

question for other generalizations, for example hypergeometric functions in

multiple variables.
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lar functions of one variable, III (Proc. Internat. Summer School, Univ.
Antwerp, 1972), pages 191–268. Lecture Notes in Math., Vol. 350, 1973.

[28] Winnie Li Wen-Ching and Ling Long. Fourier coefficients of non-
congruence cusp forms. Bull. Lond. Math. Soc., 44(3):591–598, 2012.

[29] Yongchang Zhu. Modular invariance of characters of vertex operator al-
gebras. Journal of the American Mathematical Society, 9:237–302, 01
1996.

78


	Introduction
	p-adic Numbers and Hypergeometric Functions
	p-adic Numbers and Valuations
	p-adic Expansions and Arithmetic
	Kummer's Theorem and Other Simple Results in p-adics
	Hypergeometric Functions and Generalized Hypergeometric Functions

	Unbounded Coefficients for Hypergeometric Functions
	Preliminary Results
	Unbounded Coefficients
	Densities and Structure
	The Cases of Finitely Many Bounded or Unbounded Primes

	Modular Forms and the Atkin-Swinnerton-Dyer Conjecture
	Modular Forms and the Modular Group
	Fuchsian Groups and (2)
	Vector Valued Modular Forms
	Theory of Vector Valued Modular Forms and Fuchsian Differential Equations
	The Atkin-Swinnerton-Dyer Conjecture
	vASD for (2) in 1 Dimension
	Higher dimensional modular forms and hypergeometric equations

	Conclusion
	Bibliography

