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Abstract

Policy gradient (PG) estimators are ineffective in dealing with softmax policies that are sub-

optimally saturated, which refers to the situation when the policy concentrates its probability

mass on sub-optimal actions. Sub-optimal policy saturation may arise from a bad policy initial-

ization or a sudden change, i.e. a non-stationarity, in the environment that occurs after the policy

has already converged. Unfortunately, current softmax PG estimators require a large number of

updates to overcome policy saturation, which causes low sample efficiency and poor adaptability

to new situations. To mitigate this problem, we propose a novel policy gradient estimator for

softmax policies that utilizes the bias in the critic estimate and the noise present in the reward

signal to escape the saturated regions of the policy parameter space. Our experiments, conducted

on bandits and various reinforcement learning environments, and the resulting analysis show that

this new estimator is more robust to policy saturation, and can be readily adapted to work with

different PG algorithms and function approximation schemes.
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Preface

This work was carried out in conjunction with Rupam Mahmood, Martha White, Samuele Tosatto,

and Yangchen Pan. The project started when Rupam realized that writing the policy gradient (PG)

in matrix form naturally lead to two different sample based estimators: the classic well known one

and a new one which we call the alternate estimator. Initially, we tried using the alternate estimator

to reduce the variance of the PG update. Although that approach mildly helped in the case of

bandits, it did not seem fruitful for larger problems. Later, based on an empirical observation,

we switched our focus on non-stationary problems, which got refined into the main focus of this

work: the setting of sub-optimally saturated softmax policies. Significant portions of the thesis build

upon the old submissions of this work (which focused on variance reduction and were rejected) to a

conference and a workshop in 2020, and more recently an updated paper (focusing on sub-optimally

saturated policies) that we have submitted to another conference in 2022.

For the sake of completeness and in the hope of increasing the readability of this thesis, I erred

on the side of reproducing well known, possibly trivial, calculations throughout this work. Despite

that, admittingly, the presentation still doesn’t have enough background for an uninitiated reader

and a lot of it will seem minor to the experienced ones; the correct balance remains elusive to me.

Fortunately, the reader can substantially reduce the time spent reading this document by focusing

on the following sections that contain the core ideas of this project: the alternate gradient estimator

for bandits (§3.2), useful consequences of it being biased (§3.4), its extension to MDPs (§5.2), and
the experiments on non-stationary problems (§7.2). Moreover, the reader can choose to skip the

numerous footnotes in this thesis; they contain additional or clarifying remarks, and details that

are often tangential to the main text. I should also mention that unfortunately, the figures are best

viewed in color and on a zoomable screen.

The collaborative nature of this project necessitated the usage of “we” as the first person

pronoun in writing of this thesis. However, I remain solely responsible for all the errors present,

whether they be due to technical or presentation issues.

Shivam Garg

December, 2021
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Chapter 1

Introduction

Learning is a fundamental way humans improve the quality of the decisions they make, and by

extension the quality of their lives. Individuals learn skills ranging from sensorimotor dexterity

such as riding a bicycle to abstract mental abilities such as navigating an emotionally charged

conversation. This learning happens continuously throughout their lives, and a good portion of

it involves trying out various actions in different situations and identifying a good behavior by

observing the resulting experience.

Deciding which actions to try is known as decision making. A salient feature of the decision

making process is that it is sequential in nature: we need to perform a sequence of actions in order

to accomplish any given task. For instance, in order to drink water, one may need to: find the

water bottle, lift it up, open the cap, pour the water into your mouth, and so on. In order to

accomplish most goals, we are similarly required to complete a series of actions. And a significant

amount of human effort is spent in figuring out optimal decisions. From a more practical viewpoint,

a variety of important business problems can also be modeled as sequential decision making tasks:

autonomous driving, user targeted advertisement, inventory control, etc. Finding the optimal, or

even acceptable, solutions to these problems is often difficult and time consuming, if not outright

intractable. This creates the need for a general framework that can come up with good solutions

for different tasks in a variety of different settings and with minimal human intervention.

Reinforcement learning (RL) is one such framework that aims to find good behavioral strategies

in sequential decision making problems, by using the experience generated by the learner. This

motivates the view that RL might be similar to the mechanisms employed by natural beings. By

design, the performance of an RL system is not limited by that of a human expert. The only

major input from a designer is to specify a goal, which is used to gauge the the goodness of a

behavioral strategy. For instance, in the autonomous driving example, a possible goal could be to

reach the destination in the shortest possible time while ensuring the safety of the passengers. In
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such a problem. an RL system would begin with an initial driving behavior (either designed by the

programmer or even a random one) and based on the resulting driving experience, continuously

improve it. Ideally, it should also be able to improve its performance with time and adapt to

changing circumstances.

To summarize, RL can be useful for achieving three separate objectives. First, for understanding

natural intelligence by emulating it. If we build a self-improving agent which continually learns

from its own experience using methods we fully understand, it would lend insights into the nature

of the mechanisms employed by naturally intelligent beings (such as humans) themselves. Second,

for pushing the boundaries of human knowledge by improving existing solutions1. And third, for

building general purpose adaptive solutions to practical business problems2.

In this work, instead of tackling the question of understanding natural intelligence or directly

solving some practical business problem, we make small incremental progress in a particular class

of RL algorithms known as policy gradient methods. Unfortunately, despite the promise of being

able to adapt to changing circumstances (also known as non-stationarity), current RL methods,

in particular policy gradient methods with a softmax policy, perform poorly with non-stationary

problems. We explain this point further using the autonomous driving example: Consider an RL

system trained to drive a car in a country with right-hand traffic. If this system were deployed in

a country with left-hand traffic, ideally we would want it to quickly adapt to the new environment

and learn the necessary skills. However, for this particular class of RL algorithms (policy gradient

methods using a softmax policy) such an adaptation is not very efficient: the RL system is unable to

unlearn its old behavior or acquire a new one in a reasonable amount of time. To help improve this

situation, we propose and analyze a novel3 policy gradient method, which improves the performance

of RL based learners using softmax policies in particular kinds of non-stationary environments.

1.1 Problem Statement

Policy gradient (PG) algorithms aim to optimize a sequential decision making problem defined

on a set of parameterized policies: the policy parameters are optimized using standard stochastic

gradient-based update to maximize the net reward received by the agent. A salient feature of the

PG methods is that they can be used with both discrete and continuous action spaces, and have

1For instance, the RL based algorithms for playing the games of Backgammon (Tesauro, 1995) and Go (Silver et
al., 2017) discovered game playing strategies which were unbeknownst to the players before.

2People have also been using RL in conjunction with other approaches to come up with solutions to various
industrial problems: such as controlling robots in warehouses (SORT robot, https://www.kindred.ai/blog/

reinforcement-learning-beat-games-such-as-backgammon-and-go-and-is-paving-a-path-for-smarter-

robots), or optimizing the performance of water treatment plants (Drayton Valley Water Treatment Project,
https://edmontonjournal.com/news/local-news/pilot-project-tests-ai-to-improve-water-treatment).

3It was recently brought to our attention that the method proposed by us is not entirely novel and has been
studied before in a different context; see Footnote 4 in §5.2.
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been successfully deployed in a variety of real world tasks such as robotics (Haarnoja et al., 2018;

Mahmood, et al., 2018) and large scale simulated problems (for instance, Berner et al., 2019).

When the action space is discrete, policies are typically represented using a categorical distri-

bution parameterized by a softmax function. However, softmax policies have some inherent issues.

Even with access to the true gradients, they can be slow in responding to non-stationarity (Hennes

et al., 2019) and their performance heavily depends on the initialization of the policy parameters

(Mei et al., 2020a; Mei et al., 2020b; Li et al., 2021). Both of these problems arise from an issue,

which we call sub-optimal policy saturation.

Sub-optimal policy saturation refers to the situation when the policy places a high probability

mass on sub-optimal actions. An agent with a saturated policy will not be able to explore other

actions and may continue to remain in the sub-optimal region if an appropriate measure is not

taken. Sub-optimal policy saturation is a significant issue that arises in multiple scenarios:

• Non-stationarity: when the agent is acting in a constantly changing environment, and what

was once an optimal strategy may no longer work well.

• Pre-training or transfer learning: deep reinforcement learning systems are often pre-

trained on different tasks before being used on the main task. The subtle differences in

the structure of these tasks might lead to a policy which is good for the first task but is

sub-optimally saturated for the main task.

• Stochastic updates: policy gradient agents are trained using sampled based updates which

can have high stochasticity. Therefore, because of noisy updates, it is possible for a policy to

become saturated on sub-optimal actions during the course of learning4.

PG methods with softmax policies are particularly susceptible to the issue of saturation. Prior

work has suggested different approaches to mitigate this issue: entropic regularization (Peters et

al., 2010; Neu et al., 2017; Haarnoja et al., 2018; Ahmed et al., 2019), natural PG algorithms

(Kakade, 2001; Peters and Schaal, 2008), and log-barrier regularization (Agarwal et al., 2021) can

all make the policy more explorative. Explicit reward bonuses can also encourage the exploration of

low-density state-action pairs (Auer et al. 2002). However, entropic regularization and explorative

bonuses introduce additional terms in the objective, and therefore the resulting optimal policy

can be different from the original one. Another solution is to replace the softmax with a better

behaved function such as the escort transform (Mei et al., 2020b). We take a different approach to

address this issue. Instead of augmenting the optimization objective with bonuses or regularizers,

or replacing the softmax function entirely, we introduce a policy gradient estimator for softmax

4It is reasonable to assume that this noise should be useful for escaping such local optima. However, for softmax
policies the noise signal is often too weak to overcome high policy saturation.
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policies that inherently helps the agent escape the sub-optimally saturated regions; furthermore,

the above augmentations can readily be applied on top of our estimator.

Our proposed estimator is a simple yet effective approach for dealing with sub-optimally satu-

rated policies thereby making PG algorithms more robust. The classic likelihood ratio estimator

for softmax policies, which we call as the regular estimator, takes a frustratingly large amount of

samples to escape sub-optimally saturated policy regions. The regular estimator produces near zero

gradients at saturation as both its expectation and variance, even with reward noise, are vanishingly

small at those regions. In contrast, our proposed estimator, which we call the alternate estimator,

has a non-zero variance in the same scenario that can be utilized to escape the sub-optimal regions.

Further, the alternate estimator naturally utilizes the bias in the critic estimate to increase the

policy’s entropy, thereby encouraging exploration. As the critic estimate improves, this bias and

consequently the effect of driving the policy towards a more uniform distribution reduces, allowing

the agent to eventually achieve the optimal behavior.

1.2 Contributions

We present the alternate policy gradient estimator for softmax policies (for bandits in §3.2 and

for MDPs in §5.2) and show that it works by utilizing reward noise (§3.3) as well as the bias in

the critic (§3.4) to escape saturated regions in the policy space. We give theoretical justification

for this behavior (previous two referenced sections) in the bandit setting complemented by simple

and intuitive examples (Examples 1 and 2; §3.5). We provide an empirical verification of these

properties on (1) problems with artificially saturated policies using both bandit (§4) and MDP

(with tabular representation in §6 and with function approximation in §7) environments. And (2)

on non-stationary tasks (for linear function approximation with tile-coding in §7.2 and for neural

networks in §7.6) where sub-optimal policy saturation naturally arises. Our results show that this

new estimator works well in both the bandit and the MDP settings with various PG algorithms such

as REINFORCE (Williams, 1992) and online Actor-Critic (Konda and Tsitsiklis, 2000; Sutton et

al., 2000), and is generally superior (or competitive) to the regular estimator under tabular, linear

(with tile-coding), and neural representations.
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Chapter 2

Background

In this chapter, we briefly describe the framework of Markov decision processes (MDPs) used by

RL algorithms to model the decision making problem. We also describe a useful simplification

of the MDP framework known as the bandit setting. We then discuss a particular class of RL

solution methods, that we used in this work, known as the policy gradient methods, first for the

simplified bandit setting and then for the full MDP setting. For the MDP framework, we focus on

two popular policy gradient algorithms: REINFORCE and online Actor-Critic (AC). Finally, we

give a brief description of the vector notation and some useful results on vector differentiation. To

keep the presentation simple, we shun from using excessive mathematical rigor1.

2.1 Problem Setting: Finite Markov Decision Processes

In RL, we typically model a sequential decision making problem using Markov decision processes

(MDPs). The agent’s surrounding is known as the environment and is formulated as an MDP

M := (S,A,R, µ, p, γ), where S is the discrete set of states, A is the discrete set of actions,

R ∈ R is the discrete set of numerical rewards, µ ∈ ∆(S) is the initial (start) state distribution,

p : S × A → ∆(S × R) is the transition dynamics, and γ ∈ [0, 1] is the discount factor. In these

definitions, ∆(X ) denotes the set of all possible probability distributions over the (discrete) set X .

The agent interacts with the environment using a policy π : S → ∆(A) which governs its

behavior. At the beginning of this interaction, the environment resets itself to a state S0 ∼ µ.

After this initial reset, at each timestep t = 0, 1, 2, . . . , T , the agent picks an action At ∼ π(·|St)

which yields a reward Rt and the environment transitions to the next state St+1; both the next

1For instance, we will often use sums in places where integrals might have been more appropriate, freely use
summations over infinite sets, inter-change infinite summations with expectations without any supporting argument,
and define things in a rather intuitive manner. However, none of this compromises the veracity of any of the results.
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Agent
Environment

Figure 2.1: The interaction loop between an RL agent and an environment modeled using an MDP.

state and the next reward are sampled using the transition dynamics: St+1, Rt+1 ∼ p(·, ·|St, At).

This interaction loop is illustrated in Figure 2.1. The cycle ends, when the environment reaches

the terminal state s×, which may occur at different timesteps for different interactions. We denote

the termination timestep by the random variable T which can be formally defined as T := min{t ≥
0 : St = s×}. MDPs where the termination length T is guaranteed to be finite for any interaction

are called episodic MDPs, and will be the focus of this work. In general, different episodes will

terminate at different timesteps based on the problem dynamics. We use capital letters to denote

random variables and small letters to denote the specific instances taken by those random variables.

For instance, the expression St = s implies that the random variable St, which represents the state

variable that occurred at timestep t, took the specific state s ∈ S. The sequence resulting from the

interaction between the agent and the environment is known as an episode or a trajectory, and is

represented by

S0, A0, R1, S1, A1, . . . , RT−1, ST−1, AT−1, RT , ST .

The mechanics of this interaction gives rise to a probability distribution Pπ over the set of

all possible trajectories, which depends on agent’s behavior and the environment’s dynamics in

the following way2: (1) Pπ(S0 = s0) = µ(s0), (2) Pπ(At = at|Ht = ht) = π(at|st), and (3)

Pπ(St+1 = st+1, Rt+1 = rt+1|Ht = ht, At = at) = p(st+1, rt+1|st, at) for all 0 ≤ t ≤ T − 1,

where we denoted the sub-part of an episode using a sequence of random variables known as the

history Ht := (S0, A0, . . . , Rt, St), and analogously ht := (s0, a0, . . . , rt, st). Further, we overload

the notation Pπ(Ht = ht) to denote Pπ(S0 = s0, A0 = a0, . . . , Rt = r1, St = st), and
∑︁

ht
f(ht) to

denote
∑︁

s0

∑︁
a0
· · ·
∑︁

rt

∑︁
st
f(ht), where f is some arbitrary function. When the context is clear,

we will drop the term π from Pπ and simply write P to reduce the clutter.

The goal of an RL agent is to find a policy that accumulates as much reward as possible.

Specifically, the agent is interested in maximizing the sum of rewards known as the return, which

2The second condition specifies the policy π to be stationary (i.e. it is does not vary with the timestep t) and
memoryless (i.e. it depends only on the last observed state st and not on the complete history ht). This choice can
be justified by the Markov property which is stated as the third condition. For a detailed treatment, see Chapter 38
of Lattimore and Szepesvári (2018) or https://rltheory.github.io/lecture-notes/planning-in-mdps/lec1/.
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is defined as

Gt :=

T−t−1∑︂
k=0

γkRt+k+1. (2.1)

In particular we are interested in maximizingG0, the return over the complete episode. However,

note that the return, apart from the trajectory dynamics, also depends on the uncertainty in the

world—the exact same sequence of actions applied multiple times might still result in different

returns—and therefore is not the most robust statistic to gauge the quality of the agent’s behavior.

An elegant way of dealing with this issue is to instead use a statistic that marginalizes out this

uncertainty: the expected return accumulated by the agent when it follows a particular behavior

policy π. Therefore, the goal of an RL agent is defined as a maximization problem of the quantity

Jπ := Eπ[G0] = Eπ

[︁
R1 + γR2 + · · ·+ γT−1RT

]︁
, (2.2)

where the term Eπ emphasizes that the expectation is taken over the episode sampled using the

agent’s policy π. Further, it is also useful to define the state value function vπ : S → R and the

action-value function qπ : S × A → R which measure the expected return obtained by the agent

when it starts in a given state s or a state-action pair (s, a) respectively. These value functions are

defined as

vπ(s) := Eπ [Gt|St = s] and qπ(s, a) := Eπ [Gt|St = s,At = a] . (2.3)

Specifying an Episodic Task using the Continuing Notation

In the upcoming sections, we will heavily focus on the term Eπ[R1+γR2+ · · ·+γT−1RT ]. However,

this term can become messy to deal with since T itself is a random variable. Thus, given the simple

structure of the variable G0, we use a simple trick3: we reformulate (for alternate formulations,

also see White, 2017) the episodic task as a continuing problem. Instead of considering the episode

to have terminated at timestep T , we will assume that it continues forever. To maintain the

equivalence with an episodic task, we add the constraint that upon entering the terminal state s×,

the agent never leaves it and all the future rewards it receives are zero, i.e. p(St+1 = s×, Rt+1 =

0|St = s×, At = a) = 1 for all timesteps t ≥ 0 and any action a ∈ A. With this formulation, the

return Gt can equivalently be expressed as

Gt :=
T−t−1∑︂
k=0

γkRt+k+1 =
∞∑︂
k=0

γkRt+k+1, (2.4)

3There exist techniques for dealing with problems where the length of an episode is itself a random variable, which
don’t use such a reformulation. For instance, see stopping time in the stochastic processes literature; also see Wald’s
identity (https://inst.eecs.berkeley.edu/~ee126/fa17/wald.pdf).
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since the rewards RT+1, RT+2, . . . are all zero. Further, with this change, the objective Jπ can be

written as

Jπ := Eπ[G0] =
∑︂
h∞

Pπ(H∞ = h∞)
∞∑︂
k=0

γkrk+1, (2.5)

where H∞ is defined to be equal to the infinite length sequence (S0, A0, R1, S1, A1, . . .) and analo-

gously h∞ := (s0, a0, r1, s1, a1, . . .). Similarly, the value functions become:

vπ(s) := Eπ [Gt|St = s] =
∑︂
h∞

Pπ(H∞ = h∞|St = s)
∞∑︂
k=0

γkrt+k+1, and (2.6)

qπ(s, a) := Eπ [Gt|St = s,At = a] =
∑︂
h∞

Pπ(H∞ = h∞|St = s,At = a)
∞∑︂
k=0

γkrt+k+1, (2.7)

where t ≥ 0 is an arbitrary timestep. Further, because of the reward structure,

vπ(s×) = 0, and qπ(s×, a) = 0, (2.8)

for any policy π and action a. It is important to remember that the continuing formulation is just

a mathematical convenience, and even though it introduces H∞, we are still exclusively focusing on

episodic tasks. In practice, whenever the agent will encounter the state s×, it will reset the episode

by sampling S0 ∼ µ. Also, we assume that the agent will not waste its resources on learning a

policy for the terminal state s×; without loss of generality, we will simply define it to be a uniform

distribution over the action space, i.e. π(·|s×) := U(A).

2.2 The Bandit Problem Setting

The bandit setting is a highly useful and practical simplification of the MDP framework: it is

used to describe non-sequential decision making problems and has no concept of states. A bandit

problem can be completely specified using (A,R, p), where A is the discrete action set, R ∈ R is

the discrete set of rewards, and p : A → ∆(R) is the probability of getting a certain reward given

the action. It will also be useful to define the reward function r : A → R which gives the expected

reward4 given an action:

r(a) := E[R|A = a] =
∑︂
x∈R

P(R = x|A = a)x =
∑︂
x∈R

p(x|a)x. (2.9)

To control its behavior, the agent maintains a policy π ∈ ∆(A). In a bandit task, at each

4Note that the symbol r refers to the reward function r(·) when describing bandits, and is different from the
variable rt used in the previous MDP section. It should be clear from context, whether we are referring to the reward
function r(·) for bandits, or the reward at timestep t, i.e. rt for the MDP setting.
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a0 a1 a2

Figure 2.2: Multi-armed bandit setting with three actions: A = {a0, a1, a2}.

timestep t, the agent samples an action At ∈ A (an action is often called an arm in the bandit

literature) from its policy, which results in a reward Rt ∼ p(·|At). This is illustrated in Figure 2.2.

The goal of the agent is to learn a policy π which maximizes the expected instantaneous reward

Jπ := Eπ[R] =
∑︂
a

π(a)
∑︂
x

p(x|a)x =
∑︂
a

π(a)r(a), (2.10)

where we overloaded the term Jπ to represent both the expected instantaneous reward in bandits

(Eq. 2.10) and the expected return in MDPs (Eq. 2.2); the exact meaning should again be clear

from the context. Further, the value function equivalent in bandits is known as the average reward

function rπ := Eπ[R], which is incidentally equal to Jπ. The bandit problem focuses exclusively

on the problem of exploration-exploitation, which is essentially equivalent to searching, in as little

time as possible, for an arm that yields the highest expected reward.

2.3 Gradient Bandit Algorithm for Softmax Policies

Gradient bandit algorithms (Sutton and Barto, 2018) maintain a policy πθ with parameters θ, and

the agent tunes these parameters to find a policy that maximizes the objective Jπ. The agent uses

gradient based optimization techniques to tune these parameters, i.e. it first computes ∇θJπ and

then uses an update rule like gradient ascent to update the policy parameters: θnew = θold+α∇θJπ,
where α ∈ R+ is the stepsize parameter. Let us now calculate the gradient of this objective for the

softmax policy parameterization, which is the focus of this thesis. A softmax policy is given by:

πθ(a) =
eθa∑︁
c∈A eθc

, (2.11)

where θa is a learnable parameter and corresponds to the action preference for action a. When the

context is clear, we will drop the θ subscript from the policy and simply write π. Before we give

the expression for the gradient of the objective, let us calculate the derivative of π(a) with respect
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to θb where a and b are any two, possibly identical, actions:

∂

∂θa
π(b) =

∂

∂θa

eθb∑︁
c e

θc
=

I(a = b)eθb
∑︁

c e
θc − eθaeθb(︂∑︁

c e
θc
)︂2 =

eθb∑︁
c e

θc

[︃
I(a = b)− eθa∑︁

c e
θc

]︃
= π(b) [I(a = b)− π(a)] , (2.12)

where I(a = b) is the indicator function that returns 1 when a and b are equal, and 0 otherwise.

Now we can calculate the gradient of the objective Jπ for the softmax policy with respect to the

action preference θa for an arbitrary action a:

∂

∂θa
Jπ =

∂

∂θa

∑︂
b∈A

π(b)r(b) =
∑︂
b∈A

r(b)
∂

∂θa
π(b) =

∑︂
b∈A

r(b)π(b) [I(a = b)− π(a)] (2.13)

= r(a)π(a) [1− π(a)] +
∑︂

b∈A\{a}

r(b)π(b) [0− π(a)]

= r(a)π(a)− r(a)π(a)π(a)−
∑︂

b∈A\{a}

r(b)π(b)π(a)

= π(a)r(a)− π(a)
∑︂
b∈A

r(b)π(b)

= π(a)
[︁
r(a)− rπ

]︁
, (2.14)

where in the first line we use the fact that r(·) is independent of the policy (and thereby the

parameter θa) and the result from Eq. 2.12. With the above gradient expression, the parameters

θas can be updated using gradient ascent θa ← θa + α ∂
∂θa
Jπ, leading to the update:

θa ← θa + απθ(a)
[︁
r(a)− rπ

]︁
for all a ∈ A, (2.15)

where α is the stepsize parameter. The above update requires the knowledge of the expected reward

function r(·) for all the possible actions. Unfortunately, such knowledge is seldom available to the

agent, and therefore, the agent must resort to employing a sample based gradient estimator g(R,A)

that satisfies5

∇θJπ = EA∼πθ ,R∼p(·|A)[g(R,A)]. (2.16)

With access to such an estimator, the agent can simply sample an action A from its policy and

obtain the corresponding reward R from the environment, which can then be used to compute

g(R,A). The agent can then use stochastic gradient ascent to update its parameters. Let us

5We define the expectation of a vector random variable (or equivalently that of a vector function of random
variables, as demonstrated in Eq. 2.16) in the standard way: for a d-dimensional random variable X, E[X] :=∑︁

X p(X)X =
∑︁

x1,x2,...,xd
p(X1 = x1, X2 = x2, . . . , Xd = xd)X. Note that this definition is equivalent to taking

elementwise expectation, i.e. E[X] ≡
[︁
E[X1] E[X2] · · · E[Xd]

]︁⊤
. Using this definition, the expectation of a vector

function (see §2.8) f(·) operating on a (scalar or vector) random variable Y, is given by E[f(Y)] =
∑︁

Y p(Y) f(Y).
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derive one such estimator, which matches the one given in Chapter 2 of Sutton and Barto (2018).

Continuing from Eq. 2.14,

∂

∂θa
Jπ = π(a)

[︁
r(a)− rπ

]︁
= π(a)

[︄
r(a)−

∑︂
b∈A

r(b)π(b)

]︄
= π(a)r(a)−

∑︂
b∈A

π(a)r(b)π(b)

=
∑︂
b∈A

π(b)r(b)I(a = b)−
∑︂
b∈A

π(b)r(b)π(a) =
∑︂
b∈A

π(b)r(b)
(︂
I(a = b)− π(a)

)︂
=
∑︂
b∈A

π(b)
∑︂
x∈R

p(x|b)x
(︂
I(a = b)− π(a)

)︂
= EA∼π,R∼p(·|A)

[︂
R
(︂
I(A = a)− π(a)

)︂]︂
⏞ ⏟⏟ ⏞

=:gNo-b
a (R,A)

. (2.17)

It is possible to reduce the variance of the above estimator by subtracting an action independent

baseline b from the reward while still maintaining its unbiasedness (Sutton et al., 2000). A popular

choice of baseline is b = rπ; with this baseline, we get what we call as the regular gradient bandit

estimator gREG(R,A):

∂

∂θa
Jπ = EA∼π,R∼p(·|A)

[︂(︁
R− rπ

)︁(︂
I(A = a)− π(a)

)︂]︂
⏞ ⏟⏟ ⏞

=:gREG
a (R,A)

. (2.18)

However, note that this estimator still requires access to rπ and thus the knowledge of the reward

function r. The way to circumvent this issue is by estimating the average reward, say, by a running

exponential average r̂π. Further, let our agent estimate the above expectation using a single sample.

The resulting gradient bandits algorithm using the regular estimator is presented as Algorithm 1.

Algorithm 1 Gradient Bandit with Regular Estimator

Input a softmax policy πθ(a) :=
eθa∑︁

b∈A eθb
and an average reward function estimate r̂π

Input the policy stepsize α and the average reward stepsize β
Initialize θ and r̂π
for total number of timesteps do

Sample an action A ∼ π and a reward R ∼ p(·|A)
for each action a ∈ A do

# Calculate the gradient estimator

ĝREG
a =

(︁
R− r̂π

)︁(︂
I(A = a)− π(a)

)︂
# Update the policy parameter

θa ← θa + α · ĝREG
a

# Update the average reward estimate

r̂π ← βR+ (1− β)r̂π

11



2.4 Policy Gradient Methods

Policy gradient methods are the MDP analog of gradient bandits. The agent using them starts

by considering a parameterized policy πw with parameters w. Then it estimates the gradient of

the objective ∇wJπ using data collected by interacting with the environment, and uses stochastic

gradient ascent to update the parameters w. Often, in order to obtain a good estimate of the

gradient ∇wJπ, the agent also needs access to the value function vπ. Therefore, the agent might

also need to maintain a value function estimate v̂ω with parameters ω. In this work, we focus on

algorithms that estimate the gradient, by using a particular form of policy gradient estimator known

as the log-likelihood estimator (for an explanation of this terminology, see the last paragraph of

§2.7). Other forms of estimators derived from, say, the re-parameterization policy gradient (Silver

et al., 2014; Lan and Mahmood, 2021), and the related algorithms are out of the scope of this work.

The policy gradient can be estimated by a large number of policy gradient estimators (for

instance, see Table 1, Huang and Jiang, 2020). These estimators have different behaviors and give

rise to a wide range of algorithms that are suitable for different scenarios. Elegant, succinct, and

widely varied derivations of various policy gradient theorems and the related estimators already

exist in the literature (Williams 1992; Sutton et al., 2000; Konda and Tsitsiklis, 2000; Kakade,

2001; Degris et al., 2012a, Silver et al., 2014; Schulman et al., 2015; Ghosh et al., 2020; Huang

and Jiang, 2020; Tang et al., 2020; Lan and Mahmood, 2021; Vaswani et al., 2021). Therefore, in

this chapter we will consider some of the simplest estimators and focus on details that are often

not mentioned explicitly. We will demonstrate how the policy gradient, based on small changes in

the calculation, naturally can be expressed as multiple sample based estimators each of which has

different properties and has to be estimated using a unique sampling process.

We start by stating a probability trick, that we will heavily employ in our calculations. The

proof uses the marginalization of the joint probability distribution over discrete random variables.

Proposition 1. (Marginalization Trick): Let U = {X0, X1, . . . , } be a countably infinite set

of random variables, where Xi takes values from the set Xi for all i ≥ 0. Let P be a joint prob-

ability distribution over these random variables X1, X2, . . ., and define the shorthand
∑︁

U P(U) :=∑︁
x1∈X1

∑︁
x2∈X2

· · ·P(X1 = x1, X2 = x2, . . .). Also let V = {Y1, Y2, . . . , Yk} ⊂ U for some finite k,

and let f(·) be a function defined on the random variables in the set V. Then

∑︂
U

P(U)f(V) =
∑︂
V

⎛⎝∑︂
U\V

P(U)

⎞⎠ f(V) =
∑︂
V

P(V)f(V). (2.19)

In order to take the gradient of the objective of policy gradient algorithms, let us expand Jπ
to highlight its dependence on the probability of the trajectory Pπ using which, immediately after,

12



we will show its dependence on the policy π:

Jπ =
∑︂
h∞

P(H∞ = h∞)
∞∑︂
t=0

γtrt+1 (2.20)

=

∞∑︂
t=0

γt
∑︂
h∞

P(H∞ = h∞) · rt+1 =

∞∑︂
t=0

γt
∑︂
rt+1

P(Rt+1 = rt+1) · rt+1, (2.21)

where in the second line we used the marginalization trick with U = {H∞ : Si ∈ S, Ai ∈
A, and Ri ∈ R for all i ≥ 0} and V = {Rt+1}. We will now separately take the gradients of

Eqs. 2.20 and 2.21 to obtain different PG estimators. Before we do that, it is helpful to state some

intermediate results:

∇P(H∞ = h∞) = P(H∞ = h∞)
∇P(H∞ = h∞)

P(H∞ = h∞)
= P(H∞ = h∞)∇ logP(H∞ = h∞)

= P(H∞ = h∞)

[︄
∇ logµ(s0) +∇

∞∑︂
k=0

log π(ak|sk) +∇
∞∑︂
k=0

log p(sk+1, rk+1|sk, ak)

]︄

= P(H∞ = h∞)
∞∑︂
k=0

∇ log π(ak|sk), (2.22)

where the first and the last gradient terms in second line are zero since both the distributions µ

and p are fixed independently of π. Analogously, we also obtain

∇P(Rt = rt)

= ∇
∑︂

ht−1,at−1

P(Ht−1 = ht−1, At−1 = at−1, Rt = rt)

=
∑︂

ht−1,at−1

P(Ht−1 = ht−1, At−1 = at−1, Rt = rt)∇ logP(Ht−1 = ht−1, At−1 = at−1, Rt = rt)

=
∑︂

ht−1,at−1

P(Ht−1 = ht−1, At−1 = at−1, Rt = rt)
t−1∑︂
k=0

∇ log π(ak|sk). (2.23)

2.5 REINFORCE

REINFORCE (Williams, 1992) is a policy gradient algorithm that uses Monte-Carlo rollouts to

estimate the policy gradient. We first calculate the gradient estimator used by REINFORCE and

then present the complete algorithm. If we take the gradient of Eq. 2.20 with respect to the policy
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parameters and use Eq. 2.22, we obtain

∇Jπ =
∑︂
h∞

P(H∞ = h∞)

[︄ ∞∑︂
k=0

∇ log π(ak|sk)

]︄ ∞∑︂
t=0

γtrt+1

= EH∞∼Pπ

[︄
G0

∞∑︂
k=0

∇ log π(Ak|Sk)

]︄
, (2.24)

where the second line follows from the definition of the expectation under Pπ and the definition of

the return G0 :=
∑︁∞

t=0 γ
tRt+1. Interestingly, if we instead take the gradient of Eq. 2.21 and use

Eq. 2.23, we can get a better PG estimator:

∇Jπ =
∞∑︂
t=0

γt
∑︂

ht,at,rt+1

P(Ht = ht, At = at, Rt+1 = rt+1)

[︄
t∑︂

k=0

∇ log π(ak|sk)

]︄
rt+1 (2.25)

=
∞∑︂
t=0

γt
∑︂
h∞

P(h∞ = h∞)

[︄
t∑︂

k=0

∇ log π(ak|sk)

]︄
rt+1

=
∑︂
h∞

P(H∞ = h∞)

∞∑︂
k=0

γk∇ log π(ak|sk)

[︄ ∞∑︂
t=k

γt−krt+1

]︄

= EH∞∼Pπ

[︄ ∞∑︂
k=0

γk∇ log π(Ak|Sk)

(︄ ∞∑︂
t=k

γt−kRt+1

)︄]︄

= EH∞∼Pπ

[︄ ∞∑︂
k=0

γk∇ log π(Ak|Sk)Gk

]︄
, (2.26)

where in the second line we used the marginalization trick, in the third line we rearranged the

order of the summations, in the fourth line we used the definition of expectation under Pπ, and

in the last line we used the definition of the return Gk :=
∑︁∞

t=k γ
t−kRt+1. Although both the

above PG estimators (given in Eq. 2.24 and Eq. 2.26) are unbiased, the latter has a lower variance

(see Table 1, Huang and Jiang, 2020) and is thus more desirable. We can further reduce the

variance of the latter estimator by subtracting an action independent baseline from the return

without introducing any bias (Williams, 1992; Sutton et al., 2000). One popular choice is the

value function vπ (Williams, 1992; Sutton et al., 2000); other possible choices are baselines which

optimally reduce the variance of the PG estimator (Greensmith et al., 2004; Weaver and Tao, 2013).

This leads to the REINFORCE with baseline estimator gREINF (H∞):

∇Jπ = EH∞∼Pπ

[︄ ∞∑︂
t=0

γt∇ log π(At|St)
(︂
Gt − vπ(St)

)︂]︄
⏞ ⏟⏟ ⏞

=:gREINF (H∞)

. (2.27)
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The REINFORCE algorithm uses the above PG estimator to update the policy weights. How-

ever, computing this estimator requires access to vπ and involves an infinite sum. To solve the

first issue, the agent, instead of using the true value function, can use an estimate v̂ω, where ω

represents the learnable parameters. For the second issue, recall that we fixed π(·|s×) := U(A), and
consequently ∇π(At|St) = 0 for all t ≥ T . Therefore, the REINFORCE with baseline PG estima-

tor can be approximated as: EH∞∼Pπ

[︂∑︁T (H∞)−1
t=0 γt∇ log π(At|St)

(︂
Gt − v̂ω(st)

)︂]︂
, where T (H∞)

emphasizes the fact that given a trajectory H∞, the agent can figure out the termination step. We

now present the REINFORCE algorithm (Algorithm 2).

Algorithm 2 REINFORCE with Baseline

Input a policy πw(a|s) and a value function estimate v̂ω(s)
Input the policy stepsize α and the value function stepsize β
Initialize w and ω
for total number of episodes do

Sample an episode (S0, A0, R1, . . . , ST−1, AT−1, RT , ST ) ∼ Pπ

# Calculate the PG estimate

ĝ REINF =
∑︁T−1

t=0 γt(Gt − v̂ω(St))∇w log πw(At|St)
# Update the policy

w← w+α · ĝ REINF

for each step of the episode t = 0, 1, . . . , T − 1 do
Calculate the return Gt = Rt+1 + γRt+2 + · · ·+ γT−t−1RT

# Update the value function estimate

ω ← ω + β ·
(︂
Gt − v̂ω(St)

)︂
∇ω v̂ω(St)

REINFORCE is a true gradient based algorithm, and therefore should converge atleast to a

local optimum under certain conditions on stepsizes (Bertsekas and Tsitsiklis, 2000). In the version

given above, we made some additional design choices. First, the agent uses a single trajectory to

compute the gradient estimator; using more trajectories to estimate the gradient should result in a

higher quality estimate; but the agent will make fewer updates. Second, it uses data from the same

trajectory with a squared Monte-Carlo loss (Sutton and Barto, 2018) to estimate the value function.

Using the same trajectory for updating both the actor and the baseline should introduce some bias

but allows the agent to reuse data; for a brief discussion and further references on this topic, see Wu

et al. (2020). The choice of the baseline loss function also affects the learning dynamics. Our choice

was motivated by convenience—value functions are easy to estimate and work well in practice; a

principled way of deriving baseline loss functions is an open research question. And third design

choice was to update the baseline after the policy6.

Algorithms, like REINFORCE, which store the entire episode, and wait until the termination to

6This reduces the bias from correlation. For a small counterexample where updating the baseline before the
policy can lead to zero gradients, see slide 25 by Martha White, Policy gradient tutorial, NeurIPS 2020 (https:
//drive.google.com/file/d/12w3EHzgE6CNaBhjPrqJO7IDY7WCnWBPW/view).
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make the updates are called batch algorithms. In contrast, algorithms which don’t store the episode

and make an incremental update per-timestep are known as online algorithms. Online algorithms

have the benefit of distributing the computation equally across the agent’s timesteps and don’t

require extensive memory for storing episodes. We now present one such online algorithm.

2.6 Online Actor-Critic (AC)

The online AC algorithm (Chapter 13, Sutton and Barto, 2018), unlike REINFORCE, uses an

estimate of the action-value function in place of the return, which enables it to update its policy at

each timestep of the episode. Before calculating the online AC estimator, we discuss two relevant

concepts: the expected termination length of an episode and the on-policy distribution of a policy.

The expected termination length under Pπ, denoted by E[T ], is the average number of timesteps

an episode will last when the agent follows the policy π in a given environment. It can be computed

in terms of the probability distribution P as follows:

E[T ] =
∞∑︂
k=0

P(T > k) =
∞∑︂
k=0

P(Sk ̸= s×) =
∞∑︂
k=0

∑︂
s∈S\{s×}

P(Sk = s), (2.28)

where the first equality follows from the tail-sum formula for probability. In the second equality

we used the fact that the event {T > k} = {Sk ̸= s×}, because if the termination time is greater

than k then the episode could not have terminated on the kth timestep, i.e. the kth state cannot

be equal to the terminal state s×. And in the last equality we used the reasoning P(Sk ̸= s×) =

1 − P(Sk = s×) =
∑︁

s∈S P(Sk = s) − P(Sk = s×) =
∑︁

s∈S\{s×} P(Sk = s). In general, the agent

can’t compute E[T ], since it depends (in addition to the policy π) on the MDP dynamics µ and p.

The on-policy distribution of policy π in episodic tasks dπ = ∆(S \ {s×} × N0), is a joint

distribution over the set of non-terminal states and the timesteps. We define it as follows:

dπ(s, k) :=
P(Sk = s)∑︁∞

i=0

∑︁
x∈S\{s×} P(Si = x)

for all s ∈ S \ {s×} and k ∈ N0. (2.29)

To understand this distribution, let us marginalize it over the states and the timesteps separately:

dstatesπ (s) :=
∑︂
k∈N0

dπ(s, k) =

∑︁∞
k=0 P(Sk = s)∑︁

x∈S\{s×} [
∑︁∞

i=0 P(Si = x)]
for all s ∈ S \ {s×},

dtimesteps
π (k) :=

∑︂
s∈S\{s×}

dπ(s, k) =
P(k < T )∑︁∞
i=0 P(i < T )

for all k ∈ N0.

From the expression for dstatesπ , we see that the states that have a higher likelihood of occurring at
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any step in the episode are proportionately more likely to be sampled. And from the expression for

dtimesteps
π , we observe that the timesteps which are more likely to occur during an episode, i.e. they

are less than the termination length of a given episode, have a proportionately higher probability

of being sampled. Both these marginal distributions hint that dπ is related to the distribution of

state-timestep pairs that the agent observes during its interaction with the environment.

The distribution dπ(s, k) specifies how often the agent will observe a certain non-terminal state

s at a given timestep k in a finite length episode when it follows policy π. Sampling a state and

timestep from dπ is equivalent to picking a random timestep and the state on that timestep from

the agent’s experience. One way to see this is to imagine the set of all possible (finite-length)

episodes. Then if we pick a state-timestep pair uniformly randomly from this list of episodes, the

probability of picking a particular pair (s, k) is exactly equal to dπ(s, k).

We are now ready to derive the PG estimator used by online AC7. We continue with the policy

gradient expression given in Eq. 2.25 and move around the last summation, which gives us

∇Jπ

=
∞∑︂
k=0

∞∑︂
t=k

γt
∑︂

ht,at,rt+1

P(Ht = ht, At = at, Rt+1 = rt+1)∇ log π(ak|sk)rt+1

=
∞∑︂
k=0

∞∑︂
t=k

γt
∑︂

sk,ak,rt+1

P(Sk = sk, Ak = ak) · P(Rt+1 = rt+1|Sk = sk, Ak = ak)∇ log π(ak|sk)rt+1

=

∞∑︂
k=0

∑︂
sk,ak

P(Sk = sk, Ak = ak)γ
k∇ log π(ak|sk)

⎡⎣ ∞∑︂
t=k

γt−k
∑︂
rt+1

P(Rt+1 = rt+1|Sk = sk, Ak = ak)rt+1

⎤⎦
=

∞∑︂
k=0

∑︂
s

P(Sk = s)
∑︂
a

π(a|s)γk∇ log π(a|s)qπ(s, a) (2.30)

=
∞∑︂
k=0

∑︂
s∈S\{s×}

P(Sk = s)
∑︂
a

π(a|s)γk∇ log π(a|s)qπ(s, a)

= E[T ] ·
∞∑︂
k=0

∑︂
s∈S\{s×}

(︄
P(Sk = s)∑︁∞

i=0

∑︁
x∈S\{s×} P(Si = x)

)︄
⏞ ⏟⏟ ⏞

=: dπ(s,k)

∑︂
a

π(a|s)γk∇ log π(a|s)qπ(s, a)

= E[T ] · ES,K∼dπ ;A∼π(·|S)
[︁
γK∇ log π(A|S)qπ(S,A)

]︁
, (2.31)

where in the second line we used the marginalization trick followed by the definition of conditional

probability; in the third line we moved around summations; in the fourth line we used the definition

of qπ(sk, ak), the (standard) MDP assumption that domain of the states and action at each timestep

is the same, and the definition of conditional probability; in the fifth line we used the fact that

7The derivation presented here is nearly identical to that given in §13.2 of Sutton and Barto (2018).
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qπ(s×, a) = 0 for all a ∈ A, and in the second to last line we multiplied and divided by E[T ]8. Now,
using similar techniques (marginalization trick along with rearrangement of sums9) as used to derive

Eq. 2.30 from Eq. 2.25, we obtain the online actor-critic gradient estimator gOAC(S,A,R, S′,K):

∇Jπ ∝ ES,K∼dπ ;A∼π(·|S);S′,R∼p(·,·|S,A)

[︂
γK∇ log π(A|S)

(︂
R+ γvπ(S

′)− vπ(S)
)︂]︂

⏞ ⏟⏟ ⏞
=:gOAC(S,A,R,S′,K)

, (2.32)

where we subtracted a value function baseline, and conveniently dropped E[T ], which the agent

cannot compute anyways, by using the fact that for a given policy π and the environment dynamics

(which we assume to be fixed), E[T ] is effectively a constant. This estimator depends on random

variables that the agent has access to at each timestep, i.e. the agent doesn’t need to wait until the

end of the episode to update its policy. Also, note that this estimator uses R+ γvπ(S
′)− vπ(S) =:

δ(S,R, S′), a quantity known as the temporal difference (TD) error. Therefore, a natural choice

for the agent to learn the value function is by using the TD-style updates (Sutton, 1988), again in

an online fashion. We now present the complete online AC algorithm (Algorithm 3).

Algorithm 3 Online Actor-Critic

Input a policy πw(a|s) and a value function estimate v̂ω(s)
Input the policy stepsize α and the value function stepsize β
Initialize w and ω
for each episode (in total number of episodes) do

Sample S ∼ µ
Initialize the geometric discounting term Iγ ← 1
while the state S is not terminal, i.e. S ̸= s× do

Sample A ∼ πw(·|S) and S′, R ∼ p(·, ·|S,A)
δ ← R+ γv̂ω(S

′)− v̂ω(S) (if S′ is terminal, then v̂ω(S
′) = v̂ω(s×) := 0)

# Calculate the gradient estimator

ĝ OAC = Iγδ∇w log πw(A|S)
# Update the policy

w← w+α · ĝ OAC

Iγ ← γIγ
# Update the value function estimate

ω ← ω + β · δ∇ω v̂ω(S)
S ← S′

8Note that we implicitly assumed that Eπ[T ] < ∞ for all possible policies π. In fact, this assumption is necessary
(see Point 4, Assumption 1, https://rltheory.github.io/documents/assignments/midterm.pdf) if we are consid-
ering the episodic undiscounted setting. However, it is not too difficult to think of situations where this could be
violated in practice even for supposedly episodic MDPs (for instance, see Footnote 2 in §6). Also, this assumption
is critical for this calculation: we do not know how to derive/motivate the online Actor-Critic estimator for settings
where this assumption does not hold true; for instance continuing problems.

9It is also possible to equivalently use the law of iterated expectation (see https://en.wikipedia.org/wiki/Law_
of_total_expectation) to do most of the calculations presented in this chapter. We instead chose to explicitly write
out the summation and use the marginalization trick, since we find it to be more instructive.
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The (online) actor-critic algorithms get their name from the interplay between two components:

the actor, which refers to the policy, and the critic, which refers only to the baselines that are learned

using a TD-style update10. However, because the policy weights are updated at each timestep,

sampling from the agent’s episode is not exactly equivalent to sampling from the distribution dπ

(Eq. 2.32). As a result, the above actor-critic algorithm does not seem like a true gradient algorithm:

it feels more like a two-timescale stochastic approximation algorithm which is inspired from gradient

based calculations (cf. the TDC algorithm, Sutton et al., 2009). Prior works (Bhatnagar et al.,

2009; Wu et al., 2020) use a two timescale viewpoint to prove that versions of the online AC

algorithm (using linear function approximation with the average reward formulation for continuing

tasks) converge. This algorithm, similar to REINFORCE, again used a single sample for estimating

the gradient, and retained the same update order as before: the policy gets updated before the

critic. Further, since we used the same stream of data to update both the actor and the critic,

there will be some bias due to correlations (again see Wu et al., 2020); there will also be bias due

to the Markovian nature of data collection (see Bresler et al., 2020). Also note that because we

ignored the term Eπ[T ] while estimating the gradient, we are effectively scaling the stepsize with a

different constant (equal to the inverse of the expected termination length for that policy) at each

update: α/Eπ [T ].

Degris et al. (2012a, 2012b) extend the online AC algorithm to use eligibility traces. Both

these papers drop the γk term from their updates; Degris et al. (2012a) does so by making an

approximation in the policy gradient derivation. Recently, Nota and Thomas (2020) showed that

the estimators which drop this term do no take the gradient of the policy objective Jπ and such

updates can be sub-optimal in certain MDPs. Despite that, there is a good reason drop this term:

γk geometrically discounts the contribution from state-action pairs that occur at later timesteps,

making the algorithm sample inefficient. This dropping of γk now seems like a general practice and

is adopted by most (if not all) deep policy gradient algorithms. However, in all the experiments in

this thesis, we retain this γk term in our implementations of different policy gradient algorithms.

2.7 The Canonical PG Estimator

Let us now consider an estimator (first introduced in Sutton et al., 2000) that has a particularly

succinct form. In fact, this is the expression that people often think of when they are referring to

the policy gradient theorem. Moreover, it was also useful in implementing the expected PG updates

10Interestingly, the baseline in REINFORCE is not considered as a critic, because it is learned using Monte-Carlo
based returns. Maybe one reason (admittingly, we are unsure) for this is that TD-style updates allow online learning
which increases the effect actor and critic have on each other, whereas in REINFORCE, the baseline and the policy
are not as tightly coupled (also see Chapter 13, Sutton and Barto, 2018).
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for the tabular experiments given in §6. We rearrange the summations in Eq. 2.30 to get

∇Jπ =
∑︂
s

[︄ ∞∑︂
k=0

γkP(Sk = s)

]︄∑︂
a

π(a|s)∇ log π(a|s)qπ(s, a)

=
∑︂
s

νπ(s)
∑︂
a

π(a|s)∇ log π(a|s)qπ(s, a)

= ES∼νπ ;A∼π(·|S)

[︂
∇ log π(A|S)qπ(S,A)

]︂
⏞ ⏟⏟ ⏞

=:gPG−Other(S,A)

, (2.33)

where in the second line we used the γ-discounted state visitation distribution11 (also known as the

occupancy measure) under policy π, defined as

νπ(s) :=
∞∑︂
k=0

γkP(Sk = s). (2.34)

Note that each of the above PG estimators (given by Eqs. 2.24, 2.26, 2.31, and 2.33) contain

the term ∇ log π(A|S); it is because of this reason, each these estimators is often known as a

log-likelihood type of policy gradient estimator.

2.8 Differentiation of Vector Variables

In this section, we first explain the vector notation we use and then state some useful vector

differentiation rules. We assume that θ ∈ Rm is a vector and θi denotes the ith element of θ,

c ∈ Rm is a vector independent of θ, diag(θ) denotes the m×m diagonal matrix with θj as the jth

element on the main diagonal, the function α : Rm → R defined as α(θ) := α(θ1, θ2, . . . , θm) ∈ R
is a scalar function dependent on the vector θ, the function x : Rm → Rn defined as x(θ) :=

[x1(θ) x2(θ) . . . xn(θ)]
⊤ ∈ Rn is a vector function of θ, and y(x(θ)) ∈ Rp is a vector function

which depends on x and consequently on θ as well. Finally, for a function f : R → R, we define

f(θ) := [f(θ1) f(θ2) · · · f(θm)]⊤ as the vector obtained by applying the function f to the vector θ

elementwise. For example, eθ = [eθ1 eθ2 · · · eθm ]⊤.

The gradient of a scalar α(θ) with respect to θ is the vector defined as

∇θα(θ) :=
[︂
∂α(θ)
∂θ1

∂α(θ)
∂θ2

. . . ∂α(θ)
∂θm

]︂⊤
m×1

.

11Technically, νπ is not a probability distribution, since it does not sum to one:
∑︁

s νπ(s) =
1

1−γ
.
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We overload the gradient operator to take gradient of a vector x(θ) with respect to θ as follows:

∇θ x(θ) :=
[︂
∇θx1(θ) ∇θx2(θ) . . . ∇θxn(θ)

]︂
m×n

≡

⎡⎢⎢⎢⎢⎣
∂x1(θ)
∂θ1

∂x2(θ)
∂θ1

· · · ∂xn(θ)
∂θ1

∂x1(θ)
∂θ2

∂x2(θ)
∂θ2

· · · ∂xn(θ)
∂θ2

...
...

. . .
...

∂x1(θ)
∂θm

∂x2(θ)
∂θm

· · · ∂xn(θ)
∂θm

⎤⎥⎥⎥⎥⎦
m×n

.

According to the above definition, ∇θ x(θ) is the transpose of the usual Jacobian matrix, and readily

reduces to the gradient vector if x(θ) is a scalar (i.e. n = 1). Further, using this convention, if θ

is a scalar (i.e. m = 1), then

∇θ x(θ) =
[︂
∂x1(θ)
∂θ

∂x2(θ)
∂θ · · · ∂xn(θ)

∂θ

]︂
1×n

.

Finally, if both x(θ) and θ are scalars (i.e. m = n = 1), then

∇θx(θ) =
∂x(θ)

∂θ
.

We are now ready to state some useful propositions, along with their proofs, regarding the

differentiation of vector variables.

Proposition 2. ∇θ

(︁
θ⊤ c

)︁
= ∇θ

(︁
c⊤ θ

)︁
= c .

Proof.

∂

∂θk
θ⊤ c =

∂

∂θk

m∑︂
i=1

θici = ck ⇒ ∇θ θ
⊤ c = c .

Proposition 3. ∇θ

[︂
α(θ)x(θ)

]︂
= x(θ)∇θα(θ)

⊤ + α(θ)∇θ x(θ).

Proof. (︂
∇θ

[︂
α(θ)x(θ)

]︂)︂
ij
=

∂

∂θi

[︂
α(θ)xj(θ)

]︂
=

∂α(θ)

∂θi
xj(θ) + α(θ)

∂x(θ)j
∂θi

⇒ ∇θ

[︂
α(θ)x(θ)

]︂
= ∇θα(θ)x(θ)

⊤ + α(θ)∇θ x(θ).

Proposition 4. ∇θ y(x(θ)) =
[︂
∇θ x(θ)

]︂[︂
∇x(θ) y(x(θ))

]︂
.
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Proof. We show this result taking the total derivative12 of y with respect to θ.

(︂
∇θ y(x(θ))

)︂
ij
=

∂yj(x(θ))

∂θi
=

m∑︂
k=1

∂yj(x(θ))

∂xk(θ)

∂xk(θ)

∂θi

⇒
(︂
∇θ y(x(θ))

)︂
·j
=

m∑︂
k=1

∂yj(x(θ))

∂xk(θ)
∇θxk(θ) = ∇θ x(θ)∇x(θ)yj(x(θ))

⇒ ∇θ y(x(θ)) =
[︂
∇θ x(θ)

]︂[︂
∇x(θ) y(x(θ))

]︂
,

where
(︂
∇θ y(x(θ))

)︂
·j
denotes the jth column of the matrix ∇θ y(x(θ)).

Proposition 5. Let f be a function, applied elementwise to a vector θ, i.e.

f(θ) := [f(θ1) f(θ2) · · · f(θm)]⊤.

Then

∇θf(θ) = diag

(︃[︂
∂f(θ1)
∂θ1

∂f(θ2)
∂θ2

· · · ∂f(θm)
∂θm

]︂⊤)︃
.

12See https://mathworld.wolfram.com/TotalDerivative.html.
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Chapter 3

Alternate Gradient Bandits

This chapter introduces the alternate gradient bandit estimator and discusses its properties.

3.1 Gradient Bandits using Vector Notation

We begin by describing the vector notation which makes our calculations succinct and easier to

follow. For a k-armed bandit, let π, r ∈ Rk denote the policy and the reward vectors with [π]k =

π(ak) and [r]k = r(ak). Using these vectors, the expectations of scalar quantities become vector

inner products: Jπ ≡ rπ = Eπ[R] =
∑︁

a π(a)r(a) = π⊤ r. The softmax policy (defined by Eq. 2.11)

can be written as

π = eθ/(1⊤eθ), (3.1)

where the vector eθ ∈ Rk is defined as [eθ]a := eθa . The gradient of πθ with respect to θ can also

be computed using just differentiation of vector variables:

∇θ π = ∇θ

[︃
eθ

1⊤eθ

]︃
= eθ

(︃
∇θ

[︃
1

1⊤eθ

]︃)︃⊤
+
∇θe

θ

1⊤eθ
(using Proposition 3)

= eθ
(︃
∇θe

θ∇eθ

[︃
1

1⊤eθ

]︃)︃⊤
+
∇θe

θ

1⊤eθ
(using Proposition 4)

= eθ
(︃
∇θe

θ∇eθ
(︁
1⊤eθ

)︁
∇(︁

1⊤eθ
)︁ [︃ 1

1⊤eθ

]︃)︃⊤
+
∇θe

θ

1⊤eθ
(using Proposition 4)

= −eθ
(︄
diag(eθ)1

1(︁
1⊤eθ

)︁2
)︄⊤

+
diag(eθ)

1⊤eθ
(using Proposition 5)

= − eθ

1⊤eθ
1⊤

diag(eθ)

1⊤eθ
+

diag(eθ)

1⊤eθ
= −π 1⊤ diag(π) + diag(π)

= (I−π 1⊤) diag(π), (3.2)

23



where 1 represents a k × 1 vector of ones. As a sanity check, note that the gradient in Eq. 3.2

corresponds to the derivative in Eq. 2.12.

Given the above expression, the gradient of the objective for the softmax policy for gradient

bandits (Eq. 2.14) can be recovered as

∇θJπ = ∇θ

(︁
π⊤ r

)︁
=
[︁
∇θ π

]︁[︁
∇π(π

⊤ r)
]︁
= (I−π 1⊤) diag(π) r

= diag(π) r−π 1⊤ diag(π) r = π⊙ r−ππ⊤ r (3.3)

= π⊙ r−π rπ = π⊙(r−rπ1), (3.4)

where ⊙ represents the elementwise vector product, which for any two vectors a and b is defined as

(a⊙b)i = aibi. Now continuing from Eq. 3.3, the regular PG estimator can be derived as follows

∇θJπ = π⊙ r−ππ⊤ r = π⊙ r−π r⊤ π = [diag(r)− π r⊤]π

=
∑︂
a

π(a)
[︁
r(a) ea−r(a)π

]︁
=
∑︂
a

π(a)r(a)
[︁
ea−π

]︁
=
∑︂
a

π(a)
∑︂
x

p(x|a)x
[︁
ea−π

]︁
= EA∼π,R∼p(·|A) [R(eA−π)]⏞ ⏟⏟ ⏞

=:gNo-b(R,A)

, (3.5)

where eA is the Ath column of the identity matrix, i.e. a basis vector (or a one-hot vector) with the

element corresponding to action A equal to one and all other elements equal to zero. We can also

subtract any action independent baseline from the reward in the above gradient estimator without

making it biased:

∇θJπ = EA∼π,R∼p(·|A) [(R− rπ)(eA−π)]⏞ ⏟⏟ ⏞
=:gREG(R,A)

= EA∼π,R∼p(·|A) [(R− b)(eA−π)]⏞ ⏟⏟ ⏞
=:ĝREG(R,A)

, (3.6)

where b is any action independent reward baseline.

3.2 The Alternate Gradient Bandit Estimator

We now derive the alternate gradient bandit estimator. Again continuing from Eq. 3.3, gives us

∇θJπ = π⊙ r−ππ⊤ r = π⊙ r−rπ π = [diag(r)− rπ I]π

=
∑︂
a

π(a)
[︁
r(a) ea−rπ ea

]︁
=
∑︂
a

π(a) ea
[︁
r(a)− rπ

]︁
=
∑︂
a

π(a) ea
∑︂
x

p(x|a)
[︁
x− rπ

]︁
= EA∼π,R∼p(·|A) [(R− rπ) eA]⏞ ⏟⏟ ⏞

=:gALT(R,A)

. (3.7)
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The alternate estimator gALT(R,A) is similar to the regular estimator except that it is missing the

−π term that gREG(R,A) has. This fact allows the alternate estimator to utilize the noise in the

reward signal. We discuss this point further in §3.3. Further, unlike the regular estimator, where

we additionally introduced the baseline rπ, the term rπ automatically came up during derivation

of the alternate estimator. With the alternate estimator, we cannot arbitrarily add any action

independent baseline or drop rπ: the alternate estimator with a baseline b ̸= rπ becomes biased

(for a detailed discussion, see §3.4):

E [eA(R− b)]⏞ ⏟⏟ ⏞
=:ĝALT(R,A)

̸= ∇θJπ = E[gALT(R,A)]. (3.8)

This biasedness of the alternate estimator gives it some desirable properties that we discuss in §3.4.

Also note that the regular gradient estimator gREG(R,A), in general, would have a non-zero

component corresponding to each action and therefore would update all the action preferences at

each timestep. In contrast, the alternate gradient estimator has exactly one non-zero component

and would only update the preference corresponding to the sampled action at each timestep. This

fact, as we show in §3.6, allows the gradient bandit algorithm employing the alternate estimator to

become computationally per-timestep faster than the gradient bandit algorithm with the regular

estimator.

Before we discuss all these properties in further detail, we give two examples that help us develop

some intuition behind the working of these two gradient estimators. The first example illustrates

how the alternate estimator can utilize the reward noise to escape a saturated region.

Example 1. Consider a 3-armed bandit with A = {a0, a1, a2}, the expected reward r = [0 0 1]⊤,

and the policy π = [1 0 0]⊤. The rewards are perturbed with a normally distributed noise ϵ ∼
N (0, 1), so that upon picking action A, the agent receives the reward r(A) + ϵ. Since rπ = 0,

R− rπ = 0 + ϵ− 0 = ϵ. And because the agent samples A = a0 at each timestep, we obtain

∇θJπ = π⊙(r−rπ 1) = [1 0 0]⊤ ⊙ [0 0 1]⊤ = [0 0 0]⊤,

gREG(A,R) = (R− rπ)(eA−π) = ϵ ·
(︂
[1 0 0]⊤ − [1 0 0]⊤

)︂
= [0 0 0]⊤, and

gALT(A,R) = (R− rπ) eA = ϵ · [1 0 0]⊤ = [ϵ 0 0]⊤.

This example shows that at a sub-optimal corner1, the agent with the alternate estimator

effectively does a random walk until it escapes that region and can choose other actions to get a

non-zero reward signal. Further, doing a random walk at the optimal corner is not problematic,

1This examples requires the policy to lie at the boundary of the probability simplex which is unsatisfiable for
softmax policies, as this would require some of the action preferences to be infinitely large. However, it is easy to
construct a similar example for policies that are near, but not at, the corner and show that a similar reasoning holds.
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since there is an attractive gradient signal that pulls the agent towards this corner as soon as it

moves away. The second example shows how an optimistic baseline can also help reduce policy

saturation by providing a signal that is not mere noise.

Example 2. Consider the 3-armed bandit and the policy of the previous example. Now assume

that the agent doesn’t have access to rπ and instead uses an optimistic baseline b = δ ≫ 0. Again,

the agent will sample A = a0 at each timestep. Therefore:

∇θJπ = π⊙(r−rπ 1) = [1 0 0]⊤ ⊙ [0 0 1]⊤ = [0 0 0]⊤,

ĝ REG(A,R) = (R− b)(eA−π) = (ϵ− δ) ·
(︂
[1 0 0]⊤ − [1 0 0]⊤

)︂
= [0 0 0]⊤, and

ĝ ALT(A,R) = (R− b) eA = (ϵ− δ) · [1 0 0]⊤ = [(ϵ− δ) 0 0]⊤.

As this example shows, with a suitable baseline (in this case a positive baseline that can override

the reward noise), the alternate estimator can use the signal from the baseline to escape the

saturated policy region, without relying solely on the reward noise. We formalize these two points

in the sections ahead.

3.3 Alternate Estimator Utilizes Reward Noise

In this section, we first show that the expected policy gradient at saturated regions, or equivalently

the corners of the probability simplex boundary (see Figure 3.2), is zero. We then show that at

these corners, the variance of the regular estimator is zero as well, but the variance of the alternate

estimator is equal to the variance of the reward noise which in general is non-zero. The consequence

of these two facts is that whenever the policy is saturated, i.e. it places a high probability mass on

some actions, the expected gradient becomes close to zero, and therefore the policy weights are not

updated. Further, since the variance of the regular estimator at these corners is also zero, there is

neither any gradient signal nor any noise, and the agent is unable to escape the sub-optimal region.

In contrast, the alternate estimator, despite being zero in expectation, has a non-zero variance and

therefore the agent can utilize the reward noise to escape the sub-optimal region.

Proposition 6. Define Ic := {a | r(a) = c} for some c ∈ R. Consider a constant c such that2

Ic ̸= ∅ and that the policy is saturated on the actions in the set Ic, i.e.
∑︁

a∈Ic π(a) = 1. Then the

expected policy gradient for softmax policies is zero:

∇θJ = E[gREG(A,R)] = E[ĝ REG(A,R)] = E[gALT(A,R)] = 0 .

Proof. We set ∇θJ = π⊙(r−rπ1) = 0 to obtain a system of |A| + 1 linear equations in |A|
2We can always find such a c by choosing it to be equal to the expected reward of some action.
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variables:

π(a) · (r(a)− rπ) = 0, ∀a ∈ A and
∑︂
a∈A

π(a) = 1. (3.9)

Consider Ic = {a | r(a) = c} where c is equal to the expected reward for some action. Then

for a policy satisfying
∑︁

a∈Ic π(a) = 1, we immediately see that π(a) = 0,∀a /∈ Ic and rπ = c =

r(a), ∀a ∈ Ic. Consequently, this policy would also satisfy Eqs. 3.9 and thereby ∇θJ = 0.

The above proposition shows that the expected gradient bandit update ∇θJπ is zero only at

the simplex boundary which can happen either at any one of the corners, or at a point on one of the

face (i.e. a sub-space) of the simplex such that all the actions on that face have the same expected

reward. The next proposition considers the variance of the estimators at the simplex corners.

Proposition 7. Let σ(a)2 := V[R|A = a] denote the conditional variance of the reward correspond-

ing to action a. Assume that the policy is saturated on the action c, i.e., π(c) = 1. Also assume

that σ(c)2 ̸= 0. Then, the variance of the regular PG estimator (with or without a baseline) is zero:

V[gREG(A)] = V[ĝ REG(A,R)] = 0. Whereas, the variance of the alternate PG estimator (with or

without a baseline) is non-zero: V[gALT(A,R)] = V[ĝ ALT(A,R)] = σ(c)2 ec.

Proof. As defined in the proof statement, the conditional variance of the rewards given an action

a is denoted using σ(a)2, i.e. σ(a)2 := V[R|A = a]. Further, define σ2 to be the conditional

variance vector with [σ2]k = σ(ak)
2. Also for brevity, let x2 := x⊙x for any vector x. Then, it is

straightforward to show the following statements:

E[R] =
∑︂
a

π(a)
∑︂
x

p(x|a)x =
∑︂
a

π(a)r(a) = rπ, (3.10)

E[R2] = EA

[︂
ER[R

2|A]
]︂
= EA

[︂
V[R|A] + E[R|A]2

]︂
=
∑︂
a

π(a)
(︂
σ(a)2 + r(a)2

)︂
= π⊤(σ2+ r2), (3.11)

E[eA] =
∑︂
a

π(a) ea = π, (3.12)

E[eAR] =
∑︂
a

π(a) ea
∑︂
x

p(x|a)x =
∑︂
a

π(a) ea r(a) = π⊙ r, (3.13)

E[eAR2] = EA

[︂
eA ER[R

2|A]
]︂
=
∑︂
a

π(a) ea

(︂
σ(a)2 + r(a)2

)︂
= π⊙(σ2+ r2). (3.14)

Next, let η be an action independent vector and b be an action independent scalar. And assume

that the variance for vector variables is calculated elementwise, i.e. the variance and covariance of

arbitrary vector random variables X and Y are defined as V[X] := E[X⊙X] − E[X] ⊙ E[X] and
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Cov(X,Y) := E[X⊙Y]− E[X]⊙ E[Y] respectively. Then,

V[(eA−η)(R− b)]

= V[eAR− eA b− ηR+ η b] = V[eAR− eA b− ηR]

= V[eAR] + V[eA b] + V[ηR]− 2Cov(eAR, eA b)− 2Cov(eA b,ηR) + 2Cov(eA b,ηR)

= V[eAR] + V[eA]b2 + V[R]η2−2Cov(eAR, eA)b− 2Cov(eAR,R)⊙ η+2Cov(eA, R)⊙ η b.

(3.15)

Simplifying the above expression for a policy saturated at action c, i.e. π = ec, gives us

V[eAR] + V[eA]b2 + V[R]η2−2Cov(eAR, eA)b− 2Cov(eAR,R)⊙ η+2Cov(eA, R)⊙ η b

= ec⊙σ2+0+σ(c)2 η2−0−2σ⊙ ec⊙η+0

= σ(c)2 ec+σ(c)2 η2−2σ(c)2η(c)2 ec =

⎧⎨⎩σ(c)2 ec if η = 0 (i.e. for alternate estimator), or

0 if η = π = ec (i.e. for the regular estimator).

This concludes the proof.

Note that these two propositions again require the policy to have support only at a subset of

all the actions. This condition cannot be fulfilled for softmax policies since the action preferences

for these actions will need to be infinitely large. Despite that, using continuity arguments, we can

still reason that for the regular estimator, both the expected gradient and its variance vanish in the

proximity of the simplex boundary, whereas the alternate estimator will have non-zero variance.

3.4 Alternate Estimator Utilizes the Bias in the Critic Estimate

The alternate estimator can also utilize the bias in the critic estimate b to escape the saturated

regions of the policy space. If the critic estimate b is not equal to rπ, then the alternate estimator

becomes biased, whereas the regular estimator does not. And for the alternate estimator, this bias

helps make the policy more uniform thereby moving the agent out of the saturated region. To see

this biasedness, consider a baseline b ̸= rπ and a vector η which we will set equal to either π for

the regular estimator, or 0 for the alternate estimator. Then it is straightforward to see that

E[(eA−η)(R− b)] = E[eAR]− E[eA b]− E[R]η+η b = π⊙ r−π b− rπ η+η b

=

⎧⎨⎩π⊙(r−rπ1) if η = π, and

π⊙(r−b1) if η = 0 .
(3.16)
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Therefore,

∇θJ = E[ĝ REG(A,R)] = π⊙(r−rπ1) ̸= π⊙(r−b1) = E[ĝ ALT(A,R)].

Interestingly, this biased update E[ĝ ALT(A,R)] is not the gradient of any function. To show

this, we adopt the same process as Barnard (1993) did for the TD update.

Proposition 8. The biased expected gradient bandits update is not a gradient of any objective

function, i.e. for no function L, ∇θL = π⊙(r−b).

Proof. We prove this statement by contradiction. Assume that the biased update is the gradient

of some function L, i.e. ∂L
∂θa

= π(a) · (r(a)− b). Then,

∂2L
∂θc∂θa

= π(a)[I(a = c)− π(c)](r(a)− b) ⇒ ∂2L
∂θc∂θa

̸= ∂2L
∂θa∂θc

, for a ̸= c,

which gives a contradiction3. As a result, the biased update cannot be the gradient of any objective

function.

The above result suggests that we cannot use the usual optimization analysis, such as setting

the gradient equal to zero or computing second order derivatives, to study the properties of this

biased update. Therefore, we instead try to understand its behavior by looking at its fixed point.

It is now essential to introduce a few more terms. Let r1 ≤ r2 ≤ · · · ≤ rk represent an ordering

of the true rewards for the bandit problem. Let πt = eθ
(t)/︁

1⊤eθ
(t)

represent the softmax policy at

timestep t. Here, θ(t) represents the action preference vector at timestep t; which is updated using

the rule θ(t+1) = θ(t)+αE[ĝ ALT(A,R)] for α > 0.

Lemma 8.1. The fixed points of the biased gradient bandit update can be categorized as follows:

(1) If there exists an n ∈ {1, 2, . . . , k − 1} such that r1 ≤ · · · ≤ rn < b < rn+1 ≤ · · · ≤ rk,

then Eπ[ĝ
ALT(A,R)] is never equal to zero and has no fixed point. (2) If b = r(a) for at least

one action, then Eπ[ĝ
ALT(A,R)] = 0 at any point on the face of the probability simplex given by∑︁

a∈Ib π(a) = 1 with Ib = {a|r(a) = b}. (3) If b < r1 or b > rk, then Eπ[ĝ
ALT(A,R)] = 0 at a

point π∗ within the simplex boundary given by π∗(a) = 1
r(a)−b

(︂∑︁
c∈A

1
r(c)−b

)︂−1
, ∀a ∈ A.

Proof. Let g := E[ĝ ALT(A,R)], and recall that we update the policy parameters using θnew =

θold+αg, and then find the policy by applying the softmax function (Eq. 2.11). Now, at the fixed

3In contrast, for the true gradient bandit update ∇θJ = π⊙(r−rπ),

∂2J
∂θc∂θa

= −π(a)π(c)
[︁
r(a) + r(c)− 2rπ

]︁
+ π(a)I(a = c)

[︁
r(a)− rπ

]︁
⇒ ∂2J

∂θc∂θa
=

∂2J
∂θa∂θc

, for a ̸= c.
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point, the policy should stop changing, i.e. πold = πnew. This means that for each action a ∈ A,

eθ
old
a∑︁

b e
θoldb

=
eθ

new
a∑︁

b e
θnewb

=
eθ

old
a +αga∑︁

b e
θoldb +αgb

=
eθ

old
a · eαga∑︁
b e

θoldb +αgb
⇔ ga =

1

α
log

∑︁
b e

θoldb +αgb∑︁
b e

θoldb

=: κ, (3.17)

where we introduced κ, a constant independent of the action a. Therefore, at the fixed point of the

gradient bandit update, each element of the expected gradient is equal to the constant κ.

Let us use this knowledge to solve for the policy at the fixed point of the biased PG update

g = π⊙(r−b1). We have the following system of |A|+ 1 linear equations in |A|+ 1 variables:

π(a) · (r(a)− b) = κ, ∀a ∈ A and
∑︂
a∈A

π(a) = 1. (3.18)

We now consider the three cases given in the lemma statement separately:

Case 1 (b lies between the expected rewards): We know that there exist two actions an and

an+1 such that r(an) = rn < b < rn+1 = r(an+1), then

π(an) · (r(an)− b) < 0 and π(an+1) · (r(an+1)− b) > 0.

Consequently, for no value of κ, Eqs. 3.18 could be satisfied, and those equations do not possess

any fixed point.

Case 2 (r(a) = b for atleast one action): If the expected reward for any action a is equal to the

baseline b, then κ = 0, and the fixed point solution corresponds to the face of the simplex where

the expected reward for each of the actions is equal to b:∑︂
a∈Ib

π(a) = 1, with Ib = {a | r(a) = b}. (3.19)

Case 3 (b is either less than or greater than all of the expected rewards): We assume

that either b > r(a) or b < r(a) for all actions a ∈ A. Now we solve for κ: From Eqs. 3.18,

π(a) = κ
r(a)−b , ∀a ∈ A, and therefore

∑︂
a

π(a) = 1 ⇒
∑︂
a

κ

r(a)− b
= 1 ⇒ κ =

(︄∑︂
a

1

r(a)− b

)︄−1

.

Therefore, the fixed point of the biased update is given by

π(a) =
1

r(a)− b

(︄∑︂
c∈A

1

r(c)− b

)︄−1

for all actions a ∈ A. (3.20)
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This completes the proof4.

Before moving forward, we state a result (Lemma 7.10, Lafferty et al., 2008) which will be useful

in proving the next theorem.

Lemma 8.2. Let X be a bounded random variable with bounds u and l, i.e. l ≤ X ≤ u. Then

E
[︁
eX
]︁
≤ e(u−l)2/8+E[X].

To keep the analysis simple, we assume that for all actions a, b > r(a) or b < r(a). Then,

depending on how b is set, the fixed point π∗ can act either as an attractor or a repellor.

Theorem 1. Assume that πt ̸= π∗. If the baseline is pessimistic, i.e. b < r1, then for any α > 0,

the fixed point π∗ acts as a repellor: DKL(π
∗∥πt+1) > DKL(π

∗∥πt), where DKL denotes the KL-

divergence. And if the baseline is optimistic, i.e. b > rk, then given a sufficiently small positive

stepsize α, the fixed point π∗ acts as an attractor: DKL(π
∗∥πt+1) < DKL(π

∗∥πt).

Proof. We first express πt+1 in terms of πt. If we define

ζ(a) := α[r(a)− b], (3.21)

then for each action a, the action preference would be updated using θ
(t+1)
a = θ

(t)
a +πt(a)ζ(a).

Applying the softmax function on these updated action preferences gives us πt+1:

πt+1(a) =
eθ

(t)
a +πt(a)ζ(a)∑︁

c∈A eθ
(t)
c +πt(c)ζ(c)

=
eθ

(t)
a · eπt(a)ζ(a)∑︁

c e
θ
(t)
c · eπt(c)ζ(c)

=
πt(a) · eπt(a)ζ(a)∑︁
c πt(c) · eπt(c)ζ(c)

. (3.22)

Let us now compute the KL-divergence between the fixed point π∗ and the policy at timestep t+1:

DKL(π
∗∥πt+1) :=

∑︂
a∈A

π∗(a) log
π∗(a)

πt+1(a)
=
∑︂
a

π∗(a) log

(︄
π∗(a)

πt(a)
·
∑︁

c πt(c) · eπt(c)ζ(c)

eπt(a)ζ(a)

)︄

=
∑︂
a

π∗(a) log
π∗(a)

πt(a)
+
∑︂
a

π∗(a) log

(︄∑︂
c

πt(c) · eπt(c)ζ(c)

)︄
−
∑︂
a

π∗(a)πt(a)ζ(a)

= DKL(π
∗∥πt) + log

(︄∑︂
c

πt(c) · eπt(c)ζ(c)

)︄
−

(︄∑︂
c

1

ζ(c)

)︄−1

, (3.23)

4Interestingly, using this style of reasoning to analyze the true expected gradient bandit would not give us any
new information. Even if we assume that ga = π(a) · (r(a) − b) = κ, ∀a ∈ A, we find that κ is always zero for the
true gradient bandit update. To see this, sum these |A| equations to get∑︂

a

π(a) · (r(a)− rπ) = |A|κ ⇒
∑︂
a

π(a)r(a)− rπ
∑︂
a

π(a) = |A|κ ⇒ κ = 0.
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where in the first line we used the expression for πt+1 from Eq. 3.22 and in the last line we used

the expression π∗(a) = 1
r(a)−b

(︂∑︁
c∈A

1
r(c)−b

)︂
from Eq. 3.20, to simplify the last term. We now

consider the two cases (corresponding to an optimistic and a pessimistic baseline) separately.

Case 1 (Pessimistic baseline): With the assumption that α > 0 and b < r(a), we immediately

see that ζ(a) > 0 for all actions a. Noting that ζ(a) > 0, we apply Cauchy-Schwartz inequality:(︄∑︂
c

πt(c)
2ζ(c)

)︄(︄∑︂
c

1

ζ(c)

)︄
>

(︄∑︂
c

πt(c)
√︁
ζ(c) · 1√︁

ζ(c)

)︄2

= 1

⇒
∑︂
c

πt(c)
2ζ(c) >

(︄∑︂
c

1

ζ(c)

)︄−1

, (3.24)

where we could use a strict inequality in the first line because for no constant ρ does πt(a)
ζ(a) = ρ

for all actions a; if this were true, it would imply that πt = π∗, which in turn would violate the

assumption made in the theorem statement. Next, recall that log(·) is a concave function and then

apply Jensen’s inequality followed by the previous result to get:

log

(︄∑︂
c

πt(c) · eπt(c)ζ(c)

)︄
>
∑︂
c

πt(c) log
(︂
eπt(c)ζ(c)

)︂
=
∑︂
c

πt(c)
2ζ(c) >

(︄∑︂
c

1

ζ(c)

)︄−1

. (3.25)

Above inequality combined with Eq. 3.23 gives us the desired result:

DKL(π
∗∥πt+1) > DKL(π

∗∥πt).

Case 2 (Optimistic baseline): In contrast to the previous case, the assumptions α > 0 and

b > r(a), imply that ζ(a) < 0 for all actions a. We will first use Lemma 8.2 to upper bound the

term log
(︁∑︁

c πt(c) · eπt(c)ζ(c)
)︁
and then obtain the condition on α (as given in Eq. 3.29) to show that

the fixed point is an attractor. Consider a random variable X : A → R defined as X(c) = πt(c)ζ(c)

and distributed according to πt, i.e. P(X = c) = πt(c). Then E[X] =
∑︁

c π(c)
2ζ(c) and X is

bounded between l := αminc πt(c)[r(c)−b] and u := αmaxc πt(c)[r(c)−b]. Using Lemma 8.2 along

with the fact that log(·) is an increasing function gives us:

log

(︄∑︂
c

πt(c)e
πt(c)ζ(c)

)︄
≤ (u− l)2

8
+
∑︂
c

π(c)2ζ(c). (3.26)

Now the question is whether there exists a stepsize α > 0, such that the following inequality holds:

(u− l)2

8
+
∑︂
c

π(c)2ζ(c)
?
<

(︄∑︂
c

1

ζ(c)

)︄−1

(3.27)
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And the answer is yes! To see this, again apply Cauchy-Schwartz inequality, only this time for

ζ(c) < 0, to obtain
∑︁

c πt(c)
2ζ(c) <

(︂∑︁
c

1
ζ(c)

)︂−1
. Therefore, there does exist an α > 0 that

satisfies Ineq. 3.27. With Eq. 3.23, Ineq. 3.26, and an appropriate condition on α, the intended

result that π∗ is an attractor5 readily follows:

log

(︄∑︂
c

πt(c)e
πt(c)ζ(c)

)︄
≤ (u− l)2

8
+
∑︂
c

π(c)2ζ(c) <

(︄∑︂
c

1

ζ(c)

)︄−1

⇒ DKL(π
∗∥πt+1) < DKL(π

∗∥πt).

All that remains is to find the expression for α that satisfies Ineq. 3.27:

α <
8

(maxc πt(c)[r(c)− b]−mind πt(d)[r(d)− b])2

⎡⎣(︄∑︂
c

1

r(c)− b

)︄−1

−
∑︂
c

πt(c)
2[r(c)− b]

⎤⎦ .

(3.29)

Note that the above upper bound on α depends on the policy at timestep t, the choice of the baseline,

and also the complete bandit reward structure (which is not known to the agent a priori).

We present an example in Figure 3.1, which shows that the upper bound on the stepsize, given

in Eq. 3.29, is not tight. This figure also serves as a verification of the above proof.

The above theorem illustrates an important property of the alternate estimator: with an opti-

mistically initialized baseline, the agent is updated towards a more uniform distribution π∗. For an

optimistic baseline, this distribution has a higher probability of picking the action with the maxi-

mum reward as compared to other actions; this can be seen from the expression for π∗ in Lemma

8.1 or Figure 3.6 (bottom row, second column). Therefore, if the agent were stuck in a sub-optimal

corner of the probability simplex, an optimistic baseline would make the policy more uniform and

encourage exploration6. And even though π∗ is different from the optimal policy, the agent with

5Theorem 1 only shows where the biased update converges to for an optimistic baseline; an analogous result for
a pessimistic baseline is missing. We believe that given a pessimistic baseline, the biased update will converge to the
policy corner which is closest (in some metric) to the initial policy, as suggested by Figure 3.6 (bottom-right). The
metric used to identify this corner, where the the policy would converge to, might look something like this:

c = argmax
a∈A

[πt(a)− π∗(a)] = argmax
a∈A

[︄
πt(a)−

1

r(a)− b

(︄∑︂
d

1

r(d)− b

)︄−1]︄
, (3.28)

where c denotes the action corresponding to the concerned corner. Having identified this corner, the next step would
be to show that for any α > 0, first, the following holds true

DKL(ec ∥πt+1) < DKL(ec ∥πt) ⇔
∑︂
a

πt(a)e
πt(a)ζ(a) < eπt(c)ζ(c),

where ζ(c) is as defined in Eq. 3.21, and second, that the condition on c (given by Eq. 3.28) remains true after the
policy is updated. However, at this stage, all this is a mere conjecture.

6On the flip side, with a pessimistically initialized baseline, the alternate estimator can pre-maturely saturate
towards a sub-optimal corner; see Figure 3.6 (bottom right).
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Figure 3.1: The verification of the inequalities used in Theorem 1. We plot the key terms used in the

proof:
(︂∑︁

c
1

ζ(c)

)︂−1
, log

(︁∑︁
c πt(c) · eπt(c)ζ(c)

)︁
, its lower bound

∑︁
c π(c)

2ζ(c), and its upper bound

(u−l)2

8 +
∑︁

c π(c)
2ζ(c), for a three armed bandit problem with r = [1 2 3]⊤ and the fixed policy

π = [0.2 0.1 0.7]⊤. The left figure shows the variation of the key terms with a changing baseline
and a fixed stepsize α. In the middle and the right plots, we fix the baseline to be pessimistic or
optimistic and then vary the stepsize α. The rightmost subplot also serves as the concrete example
where the maximum stepsize predicted by Eq. 3.29, for the fixed point to remain attractive given
an optimistic baseline, is not tight.

an alternate estimator can still reach the optimal policy, because as the agent learns and improves

its baseline estimate, the alternate PG estimator becomes asymptotically unbiased. And hopefully

by this time, the agent has already escaped the saturated policy region.

One might wonder: but why the biased update is more helpful than the true gradient; after

all the true gradient, unlike the biased update, doesn’t just move the policy towards a point close

to the optimal corner, it updates it exactly towards the optimal corner. The reason for this is

that the true gradient update can be vanishingly small in saturated regions and therefore take an

excessive amount of time to escape saturation (Mei et al., 2020b; Li et al., 2021). Whereas, as

we hypothesize, the biased update will have a much larger update magnitude and therefore result

in a faster escape. Even though, we don’t theoretically show this, Example 2, the policy update

plots shown in Figure 3.6 (bottom row, second column), and our experiments on bandits with an

optimistic baseline initializations (see §4.3) do suggest this.

3.5 Visualizing the Stochastic PG Estimators for Bandits

In this section, we study the properties of the stochastic regular and the alternate estimators.

In the previous sections we primarily looked at the expected policy updates, and now we will

focus on the sample based updates. We do so by plotting the stochastic policy gradient updates

and the variance corresponding to the two estimators for different 3-armed bandit problems and
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(1, 0, 0)
r(a0)=1

r(a2)=3
(0, 0, 1)

(0, 1, 0)
r(a1)=2

Probability Simplex

Saturated regions
we care about

Corner

Figure 3.2: The probability simplex for a three armed bandit problem. Each point on the sim-
plex corresponds to a policy. The color map shown is representative of the policy weight for the
corresponding action. For instance, in regions that are more blue, the agent’s policy has large
probability mass on the the action a2. The reward structure for this problem is r = [1 2 3]⊤ with
the individual components corresponding to the expected reward on the right, left, and the top
corners respectively. We also highlight one corner of the simplex, and the saturated policy region
near that corner. In our experiments, we focus on these regions neighbouring the corners, i.e. we
focus on policies that are quite saturated but still have non-zero components for all the actions.

various policies on the probability simplex (see Figure 3.2). These visualizations also illustrate the

properties discussed in the previous sections.

The policy-update plots were created by drawing a vector from the initial policy to the

updated policy after one gradient ascent step using the corresponding PG estimator with a fixed

stepsize7. For each estimator, we show four different plots: three for the stochastic estimator, each

corresponding to one of the sampled actions (a0, a1, or a2); and the fourth one corresponding to

the updates made by expected gradient (which itself can be the true policy gradient or the biased

one). While calculating the estimator, we also added a noise of constant (unit) magnitude to the

expected reward. The blue and grey arrows correspond to the policy change direction for positive

and negative reward noises respectively. For clarity, let us illustrate this process with an example.

Consider the bandit problem with A = {a0, a1, a2}, the reward structure r = [0 0 1]⊤, and a

positive reward noise. Let the old policy be πold = [1/3 1/3 1/3]⊤ which will be updated using the

stochastic regular estimator without baseline with the sampled action being a2 and a stepsize of

α = 0.4. The action preferences corresponding to this policy can be computed by taking log(·) of
the action probabilities. This gives us θold = [log(1/3) log(1/3) log(1/3)]⊤. Next, we calculate the

gradient update using the regular estimator without the baseline: ĝ (R,A) = (R − 0) · (eA−π) =

(r(a2)+1−0) ·([0 0 1]⊤− [1/3 1/3 1/3]⊤) = 2 · [−1/3 −1/3 2/3]⊤. We then update the action preferences:

θnew = θold+α ĝ (R,A) and in the end take the softmax of these action preferences to obtain the

updated policy πnew. Finally, we plot a blue colored vector (since a positive noise was added to the

reward) from πold to πnew on the probability simplex. We repeat this process for different initial

7We chose stepsizes that resulted in a visually appropriate arrow length. To make the arrow lengths comparable
across the estimators, the stepsize was kept same for the regular and the alternate estimators in the same setting
(such as for the same choice of the baseline or the bandit reward structure).
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policies to obtain the final plots (for instance, see Figure 3.3).

The variance plots were created by plotting the elementwise variance for the different stochas-

tic PG estimators on the probability simplex. Each hexagonal point on the simplex corresponds to

a particular policy value and the color specifies the variance of a particular component of the PG

estimator. The variance was calculated using Eq. 3.15. The top three rows show the variance for

the three components and the last row shows the sum of variance along the three components.

Bandit Problem with r = [0 0 1]⊤ and Non-zero Reward Noise

Figure 3.3 shows the policy update plots and the variance heatmaps for the two estimators on a

3-armed bandit problem with the reward structure r = [0 0 1]⊤ and reward noise ϵ ∼ N (0, 1).

Each column corresponds to the updates and the variance for either the regular estimator with

true rπ, the regular estimator without baseline (b = 0), the alternate with true rπ, or the alternate

estimator without baseline (b = 0). We include the zero baseline case because in our experiments,

when we learn the baseline, we often initialize it to zero.

A= a0

A= a1

A= a2

Policy Gradient Update Direction Variance of the PG Estimator

Reg           Reg no baseline           Alt            Alt no baseline
(with rπ)               (b=0)              (with rπ)             (b=0)

Reg           Reg no baseline           Alt            Alt no baseline
(with rπ)               (b=0)              (with rπ)             (b=0)

+ve reward noise

-ve reward noise

[g0]

0.00

0.33

1.00

1.25

0.00

0.33

1.00

1.25

0.00

0.33

1.00

1.25

0.00

0.33

1.00

1.25

[g1]

[g2]

Total

Figure 3.3: Policy updates and the variance plots for the PG estimators on a 3-armed bandit
problem with r = [0 0 1]⊤ and a non-zero reward noise. (Update Plots) The top three rows show
the policy updates corresponding to the different stochastic estimators upon taking a particular
action. Last row shows the expected update. Since, the alternate estimator with true rπ and both
the regular estimators result in the same expected update, we show only a single plot for these three
settings. (Variance Plots) The first three rows depict the respective component of the variance
vector (of the different gradient estimators) and the last row shows the total variance.

From the update plots, we see that the stochastic alternate estimator has much higher update

magnitudes than the regular version. For instance, consider a policy saturated say at action a0, i.e.

it is near the vicinity of the right corner. With the alternate gradient estimator, there is a chance
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A= a0

A= a1

A= a2

Policy Gradient Update Direction Variance of the PG Estimator

Reg          Reg no baseline           Alt            Alt no baseline
(with rπ)              (b=0)              (with rπ)             (b=0)

Reg           Reg no baseline           Alt            Alt no baseline
(with rπ)               (b=0)              (with rπ)             (b=0)

[g0]

[g1]

[g2]

Total

0.00

0.110.11

0.25

0.00

0.110.11

0.25

0.00

0.110.11

0.25

0.00

0.110.11

0.25

No reward noise

Figure 3.4: Policy updates and the variance for PG estimators on a 3-armed bandit problem with
r = [0 0 1]⊤ and no reward noise.

that the policy will move towards the center of the simplex, i.e. it will be updated towards a more

uniform distribution. Whereas, with the regular estimator, the agent will likely remain stuck. This

observation is also reconciled by the expressions for the estimators: the term eA−π in the regular

estimator becomes very small as π saturates on action A; whereas the alternate estimator only

has the term eA and its magnitude remains the same irrespective of the saturation. As discussed

earlier, the alternate estimator with no baseline is biased. However, its ascent direction points in

the same direction as the true gradient update. From the variance plots, we notice that the variance

at the corner for both the regular estimators is zero, and for the alternate estimators is non-zero.

So near a corner of the simplex, the alternate estimator utilizes the reward noise to essentially

perform a random walk. At sub-optimal corners, this random movement is good since it might

make the policy more uniform, from where it is easier to move towards the optimal corner. And at

the optimal corners, this random movement is not particularly bad either because optimal corners

represent stable equilibrium points: in expectation the gradient signal towards them.

Bandit Problem with r = [0 0 1]⊤ and Zero Reward Noise

Now we study how these estimators behave when we take away the noise from the rewards in

the bandit problem. Figure 3.4 shows how the policy is updated and the variance of the gradient

estimators for a bandit problem with no reward noise. From these plots, we see that the benefit

of the alternate estimator (large update magnitudes at the corners) disappears. With neither any

reward signal nor any noise, the alternate estimator cannot escape the corners (see the experiments

in §4.1). However, the alternate estimator still has a higher update magnitude as compared to the
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Policy Gradient Update Direction Variance of the PG Estimator
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Figure 3.5: Policy updates and the entropy plots for PG estimators on a 3-armed bandit problem
with r = [1 2 3]⊤ and a non-zero reward noise.

regular estimator near the corners. From the variance plots, we see that, as shown by Proposition

7, the variance for all the estimators is zero at the corners; no reward noise means no variance.

Bandit Problem with r = [1 2 3]⊤ and Non-zero Reward Noise

In the previous settings, there was no reward signal at the sub-optimal corners. Now we consider

a case in which there is a non-zero reward signal at the sub-optimal corners and the noise is

comparable to it. From Figure 3.5 (left), we see that the alternate estimator (with true rπ) works

better as compared to the regular estimator: it has high noise at sub-optimal corners which might

make the policy more uniform. However, with b = 0, this is no longer true. In fact, with the

alternate estimator, we are driven into the sub-optimal corner faster than the regular without the

baseline. Since b = 0 is pessimistic for the reward structure r = [1 2 3]⊤, the policy will move

away from the center of the simplex (Theorem 1). So initially, the alternate estimator will drive

the policy into the corner. Then as its baseline estimate improves and becomes closer to rπ, there

is some chance that the agent will escape saturation (although our experiments in Figure 4.7 show

that the alternate estimator with a pessimistic baseline is often inferior to the regular estimator).

In Figure 3.5 (right), the top row shows the variance of the policy against its entropy, and the

bottom row shows the variance of the particular estimator against the policy’s distance (measured

using KL divergence) from that corner, i.e. for each action a, we plot V[ga] against DKL(ea ∥π).
The results are similar as the previous variance plots. These entropy figures, unlike the variance

heatmaps, can also be plotted for bandit problems with more than three actions.
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Figure 3.6: Policy updates for the bandit problem r = [1 2 3]⊤ and no reward noise. The regular
and the alternate estimators use an optimistic (b = +4) or pessimistic (b = −4) baseline. As
discussed in §3.4, both the regular estimators are unbiased, whereas both the alternate estimators
are biased.

Bandit Problem with r = [1 2 3]⊤ and an Optimistic or a Pessimistic Baseline

In Figure 3.6, we show the policy update plots for optimistic or pessimistic baselines. We fix the

reward structure to r = [1 2 3]⊤ and do not add any reward noise (the results with non-zero reward

noise were effectively similar to these ones, and therefore we skipped them). For an optimistic

baseline, we see that both the regular and the alternate stochastic estimators make the policy more

uniform. The alternate estimator again has higher update magnitudes compared to the regular

estimator. The last row illustrates the point made by Theorem 1, that the alternate estimator

with an optimistic baseline attracts the policy to a point on the simplex. Further, this attractive

signal, as seen from the figure, is much stronger than the expected gradient signal offered by the

regular estimator. The expected regular estimator moves the policy towards the optimal corner

albeit with very small update magnitudes, especially at the corner. The trends are similar for the

pessimistic baseline, except that the policy is updated aggressively towards a corner. The variance

plots for this settings looked very similar to those from the previous settings, and therefore we did

not include them.
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3.6 Per-timestep Computational Complexity of Gradient Bandits

We now show that the per-timestep cost of a discrete gradient bandit algorithm using the alternate

estimator has a weaker dependence on the number of actions than the regular estimator. The

gradient bandit algorithms involves multiple operations during each timestep. At the start of

learning, the agent has to initialize the action preferences. Then at each timestep, it needs to

compute the gradient estimate, update the action preferences and the policy, and sample an action

from the policy. The sampling process itself requires the agent to maintain a sampling data structure

which also needs to be updated each time the policy changes. The total per-timestep computational

cost of the algorithm depends on all of these operations, which we summarize in Table 3.1.

Regular Estimator Alternate Estimator
Computational Process + +

Vose’s Alias Sampling Tree Sampling

Initialize θ O(|A|) O(|A|)
Compute ĝ and update θ O(|A|) O(1)

Compute π O(|A|) –
Update the sampling data structure O(|A|) O(log |A|)

Sample A ∼ π O(1) O(log |A|)
Total cost O(|A|+ niter|A|) O(|A|+ niter log |A|)

Table 3.1: The key steps involved, along with their respective computational cost, while running
the gradient bandit algorithm with the regular or the alternate estimator. We denote the total
number of iterations by niter. Also, it is reasonable to assume that niter ≫ |A|.

The regular estimator updates each component of the action preference vector θ at each

timestep, which has a complexity that is linear in the number of actions. Let us assume, for

illustration purposes, that the agent with the regular estimator uses Vose’s alias sampling method8

for obtaining actions from the policy. As a result, the agent needs to build an alias table which

takes a linear time. Once this table is built, the agent can then sample an action in constant time

from this table. However, updating the alias table each time has a linear cost as well. Therefore,

the total per-timestep cost for this agent becomes O(|A|). In contrast, the alternate estimator up-

dates only a single component of the action preference vector at each timestep. Because of this, a

gradient bandit instance using the alternate estimator can be sped up to have a total per-time-step

complexity of O(log |A|). To achieve this, we employ a sampling procedure based on a balanced

tree data-structure, which we call as the sampling tree. Although, the sampling tree method needs

logarithmic time for sampling a single action, it can be updated in logarithmic time as well if only

a single action preference changes at each timestep (as opposed to the alias method which would

require a linear time even if only a single action preference were to change).

8For a reference on different sampling methods, see https://www.keithschwarz.com/darts-dice-coins/.
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Figure 3.7: A typical sampling tree node and one possible tree for a softmax policy with four
actions. The values refer to exponentiated action preference eθa for that particular action.

Using a Balanced Binary Tree for Sampling Actions

The sampling tree is a balanced binary tree (for a reference on our notation, see Chapter 12,

Cormen et al., 2009). It has one node corresponding to each action that stores a reference and

the exponentiated action preference corresponding to that action. It also stores the sum of all the

exponentiated action preferences corresponding to the actions lying in the left subtree of this node.

Figure 3.7 shows a schematic diagram of such a node, and one possible sampling tree9. We now

discuss how the agent uses this data structure for sampling actions.

The cost for building the sampling tree for the first time is linear in the number of actions. The

agent would need to initialize the action preferences, create a balanced tree, and then calculate the

aggregated exponentiated preferences of actions in the left-subtree (using Algorithm 4). And all of

these operations are clearly linear in the size of the action space.

Algorithm 4 Calculate Left Sub-tree Aggregate

Call Compute-Aggregate(sampling tree, head node of the tree)
# function definition

function Compute-Aggregate(T, z)
if z = T.nil then # if z is a leaf node

return 0
L← Compute-Aggregate(T, z.left)
R← Compute-Aggregate(T, z.right)
z.agg ← L
return L+ z.val +R

9The sampling tree is not necessarily a search tree. However, one can apply procedures similar to those discussed
here without changing the asymptotic computational complexity, to balanced search trees such as the Red-black trees
(Chapter 13, Cormen et al., 2009) to obtain a sampling tree that is also a search tree. This might be required if one
needs to maintain a list over the actions ordered by their probability; say, to pick the greedy action at each timestep.
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The sampling process itself takes logarithmic time. To sample an action from the policy, the

agent first samples a key from a uniform distribution10 over the interval
[︂
0,
∑︁|A|

i=1 e
θi
)︂
, and then

calls the Action-Select function (see Algorithm 5) on the sampling tree with this key. Note that

the Action-Select function runs in log(|A|) time for a balanced sampling tree.

Algorithm 5 Selecting an Action from the Sampling Tree

Generate x ∼ U
[︂
0,
∑︁|A|

i=1 e
θi
)︂

# U refers to the uniform distribution

Call Action-Select(head node of the tree, x)
# function definition

function Action-Select(z, x)
if x < z.agg then

return Action-Select(z.left, x)
else if z.agg ≤ x < z.agg + z.val then

return z.act
else # this refers to the case when x ≥ z.agg + z.val

xnew ← x− z.agg − z.val
return Action-Select(z.right, xnew)

The next proposition explains the functioning of the Action-Select function.

Proposition 9. Let T (z1, z2, . . . , zn) denote a sampling tree of size n with nodes z1, z2, . . . , zn

arranged in an inorder traversal (see Chapter 12, Cormen et al., 2009). Also, without loss of

generality assume that the node zi corresponds to the action ai and stores the value eθi. Then given

the sampling tree T and a search key x ∈
[︁
0,
∑︁n

i=1 e
θi
)︁
as the input, the Action-Select function

returns the action zk.act = ak such that the index k satisfies the relation
∑︁k−1

i=1 eθi ≤ x <
∑︁k

i=1 e
θi.

Proof. We will use induction to prove this statement. First, consider a tree of size one, T (zj) with

zj .val = eθj and zj .agg = 0. By the assumption on the search key, x ∈
[︁
0, eθj

)︁
, i.e. the second

condition in Algorithm 5 is true, and therefore the function returns zj .act. Next, assume that the

function does return the intended action for any tree of size l ≤ m where m is some arbitrary

positive number for an appropriate key x. We now prove the proposition statement for a key

x ∈
[︂
0,
∑︁l+1

i=1 e
θi
)︂
, and an arbitrary tree of size l + 1, T (z1, z2, . . . , zr−1, zr, zr+1, . . . , zl+1) where zr

represents the root node and 1 ≤ r ≤ l+1. Then, depending on the value of x, we get three cases:

• Case 1 (x < zr.agg =
∑︁r−1

i=1 e
θi): the function gets called again on the sub-tree T (z1, . . . , zr−1),

of size r − 1 ≤ l, with the key x ∈
[︂
0,
∑︁r−1

i=1 e
θi
)︂
.

• Case 2 (
∑︁r−1

i=1 e
θi = zr.agg ≤ x < zr.agg + zr.val =

∑︁r
i=1 e

θi): the function returns zr.act.

10It is standard to assume that sampling a single value from a uniform distribution takes constant time.
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• Case 3 (x ≥ zr.agg + zr.val =
∑︁r

i=1 e
θi): the function gets called on T (zr+1, . . . , zl+1), a

sub-tree of size l − r + 1 ≤ l, with the modified key xnew ∈
[︂
0,
∑︁l+1

i=r+1 e
θi
)︂
.

This closes the induction, and thus the proposition is true for sampling trees of all sizes.

The above proposition shows that the action ak is selected whenever the search key x lies in the

range
[︂∑︁k−1

i=1 eθi ,
∑︁k

i=1 e
θi
)︂
. However, since x ∼ U

[︂
0,
∑︁|A|

i=1 e
θi
)︂
, the probability of action ak being

chosen is equal to eθk∑︁|A|
i=1 e

θi
. Therefore, using Algorithm 5 is indeed equivalent to sampling from a

softmax policy with action preferences θ1, θ2, . . . , θ|A|.

When an agent, using the alternate estimator, updates the action preference for the sampled

action, it only needs to update the exponentiated preference for that action in the tree and the

aggregated values for all nodes lying on the path from this nodes upto the root of the tree. The

procedure shown in Algorithm 6 accomplishes this in a logarithmic time. Also note that the

structure of the tree remains unchanged during all these operations11.

Algorithm 6 Fix Aggregates Upstream after an Update

Call Fix-Upstream(sampling tree, node corresponding to the sampled action a, θnewa − θolda )
# function definition

function Fix-Upstream(T, z, δ)
repeat # repeat until node z is the root node

if z.p.left = z then # update the parent’s cumulant if z is the left child

z.p.agg ← z.p.agg + δ

z ← z.p # move up the tree

until z.p ̸= T.nil

3.7 Summary

In this chapter, we introduced the alternate policy gradient estimator for bandits. We showed that

the alternate estimator is unbiased when the baseline is equal to the average reward for the policy

rπ and becomes biased when the baseline is not equal to the expected reward. We illustrated these

properties with multiple visualizations on different 3-armed bandit problems. We also demonstrated

that the regular estimator has very small update magnitudes in the saturated regions, whereas the

alternate estimator can use the reward noise and its biasedness to escape the saturated policy

regions. Finally, we showed that the per-timestep computational complexity of a gradient bandit

algorithm using the alternate estimator is logarithmic in the number of actions.

11We end this section with the following quote from Donald Knuth that is quite appropriate here: “Beware of bugs
in the above code; I have only proved it correct, not tried it.”
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Chapter 4

Experiments on Multi-Armed Bandits

This chapter presents multiple experiments with gradient bandits on different 3-armed bandit

tasks. All the bandit problems had the action set A = {a0, a1, a2}, a fixed reward structure r, and

a normally distributed reward noise ϵ. The experimental results serve as a demonstration and the

verification of the properties of the gradient bandits estimators discussed in the previous chapter.

By default, in all the experiments, we trained five different gradient bandit agents with a softmax

policy: for different agents, the policy weights were updated using either the expected gradient

∇J = π⊙(r−rπ), the regular estimator with true average reward gREG(R,A) = (R− rπ)(eA−π)

or a learned baseline ĝ REG(R,A) = (R − b)(eA−π), or the alternate estimator with the true

average reward gALT(R,A) = eA(R − rπ) or a learned baseline ĝ ALT(R,A) = eA(R − b). The

baseline in each case was learned using a running average: bt+1 = (1−β)bt+βRt, with the stepsize

β. The exact pseudocode for gradient bandits is given in Algorithm 1. The action preferences for

the softmax policy were initialized to θa1 = θa2 = 0; and θa0 = 0 for uniform policy initialization

or θa0 ∈ {5, 10, 50} for saturated policy initialization depending on the degree of saturation.

Each experiment was run for 1000 timesteps. For each estimator, we performed a sweep over

the policy stepsize α ∈ {2−6, 2−5, . . . , 21} and the baseline stepsize β ∈ {2−4, 2−3, . . . , 20}. The

sensitivity plots show the mean final performance on the last 50 timesteps averaged over 150 runs

for different parameter settings. To reduce clutter, we didn’t label all the βs in the sensitivity plots.

4.1 Alternate Estimator can Escape Saturated Policy Regions

Experiments in this section demonstrate that the alternate estimator performs competitively with

the regular estimator for uniform policy initialization and clearly outperforms it in the case of

a saturated policy initialization when there is reward noise present. They also show that in the
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absence of reward noise, the alternate estimator fails to escape the saturated policy regions. The

bandit reward structure is r = [0 0 1]⊤ with either normal noise ϵ ∼ N (0, 1) or zero reward noise.

Learning Curves

Figure 4.1 shows the learning curves for the best parameter configuration based on final performance

(see sensitivity plots) for the five different agents using different PG estimators for two settings:

uniform policy initialization and a sub-optimally saturated policy initialization. The regular and

alternate estimators, used either the true reward function rπ or learned a reward baseline that

was initialized to zero. For the uniform policy case, we observe that all the methods achieved a

good performance. More interestingly, for saturated policy initialization, the alternate estimators

(both rπ and with a baseline b) learned good behaviors, whereas the expected PG and the regular

estimators failed to learn anything. Further, alternate with a learned baseline converged faster

than alternate with rπ. We attribute this result to a better exploration afforded by the baseline.
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Figure 4.1: Learning curves for gradient bandits. The reward structure is r = [0 0 1]⊤ with noise
ϵ ∼ N (0, 1). The estimators without an accompanying value of β use the true rπ. The results are
averages over 150 independent runs and the shaded regions represent the standard error.

Parameter Sensitivity Plots and Performance with and without Reward Noise

Figure 4.2 shows the parameter sensitivity of the gradient estimators for different policy saturations

and reward noises. The graphs plot the mean final performance1 during last 50 steps of the

1000 timestep run of each method. The performance was measured by analytically calculating

Jπ = Eπ[R]. We observe that for uniform initialization, all the methods (irrespective of the

magnitude of reward noise) had a similar performance. In contrast, for saturated policies, the

1For small stepsizes, the final performance of all the methods are very similar; it is only at higher stepsizes that
we start to see a deviation of the performance of both the stochastic PG estimators from each other and the expected
gradient bandits update; for a detailed discussion on stochasticity in PG methods, also see Mei et al. (2021).
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Figure 4.2: Parameter sensitivity plots for the different estimators on the bandit problem with
r = [0 0 1]⊤. We show results for eight different combinations: the estimators using rπ or a learned
baseline, uniform or saturated policy initialization, and with or without reward noise. The results
are averaged over 150 runs and the bars represent standard error. The x axis shows the policy
stepsize α and the curve labels show the reward baseline stepsize β.

alternate estimators with reward noise were able to learn for a range of stepsizes. However, without

reward noise, none of the methods escaped the saturation and their policies did not improve. Note

that the baseline was initialized to zero which is not optimistic for r = [0 0 1]⊤ and therefore the

alternate estimator could not utilize the bias in the baseline (as discussed in §3.4). This experiment

verifies our claim that reward noise helps the alternate estimator to escape the sub-optimal regions

in the policy space; without reward noise, the agent is unable to perform a random walk.

Behavior of Action Preferences under Different Estimators

To understand how the action preferences are influenced by different estimators, we plotted their

values in Figure 4.3 (with non-zero reward noise) and Figure 4.4 (with zero reward noise) using a

set of good performing stepsize parameters. We observe that the behavior of the action preferences

for the regular estimator with and without reward noise is similar: the preferences increased quite

a bit during the first 100 steps and then did not change much, resulting in flat lines. This probably

happened because the policy had saturated and the estimator became negligibly small, i.e. with

high probability eA ≈ π and R ≈ rπ, and thus gREG = (R− rπ)(eA−π) ≈ 0. In contrast, reward

noise affected the behavior of the alternate estimator (with rπ) quite strongly: the graph for θ2

with reward noise demonstrates the characteristic random walk pattern. Whereas, in the case of no

reward noise, this graph becomes smooth and keeps increasing, since even at saturation, because

of missing the −π term, the alternate estimator gALT = (R− rπ) eA remains somewhat large. The
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Figure 4.3: (Top) Learning curves for expected reward rπ and value of the baseline b as the policy
π is updated using different estimators on the bandit problem r = [0 0 1]⊤ with noise ϵ ∼ N (0, 1).
(Bottom) Learning curves for action preferences corresponding to the different estimators. In all
cases, the finer lines depict the 150 individual runs and the thick lines show the averages.

patterns for alternate with a learned b are much less clear, probably because of additional effects

from the bias in the baseline. We also observe that the alternate estimator with reward noise is

noisier than the regular variant; this is expected because the random walk style behavior gives it a

higher variance than the regular version (refer Figure 3.3). Alternate without reward noise seems

to be less noisy as compared to the regular variant which is again reasonable since in absence of

reward noise, alternate has a lower variance than the regular estimator (refer Figure 3.4).

0.5

0.6

0.7

0.8

0.9

1.0

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0 500 1000

2

0

2

4

6

Expected Reg (true rπ) Alt (true rπ) Reg (learned b) Alt (learned b)
 (α=2) (α=2) (α=1) (α=2, β=2-3) (α=2-1, β=2-4)

A
ct

io
n 

pr
ef

er
en

ce
s

R
ew

ar
d

Timesteps
0 500 1000

5

0

5

10

0 500 1000

5.0

2.5

0.0

2.5

5.0

7.5

0 500 1000

5

0

5

0 500 1000

0

2

4

6

8

rπ
rπ

rπ

b b

θ0

θ2

θ1

Figure 4.4: Average reward rπ, value of the learned baseline b, and the action preferences against
timesteps for different methods on the bandit problem r = [0 0 1]⊤ and no reward noise.
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4.2 Gradient Bandit Estimators with Increasingly Saturated Pol-

icy Initializations

In this experiment, we trained the estimators on the bandit task r = [1 2 3]⊤ with noise ϵ ∼ N (0, 1)

and four different policy saturations, ranging from a uniform policy to a policy highly saturated on

the worst action. Figure 4.5 shows the parameter sensitivity plots depicting the final performance

of the methods during the last 50 steps of their 1000 timestep run. The results show that as the

policy saturation increases, the performance of all the methods degrade. Further, the alternate

estimator (with true rπ) is able to handle high saturations (except for θinit = [5 0 0]⊤) better than

the regular estimator. Whereas, the alternate estimator with a learned baseline initialized to zero

(which is pessimistic for this reward structure) did not perform well. This figure, with a baseline

initialized to b = 0, also serves as a standard (or a control set) against which the results of the

next section can be compared, where we explicitly study the effect of an optimistic (b = +4) and

a pessimistic (b = −4) reward baseline on the two estimators’ performance.
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Figure 4.5: Parameter sensitivity of the PG estimators against increasingly saturated policy ini-
tializations on the 3-armed bandit problem r = [1 2 3]⊤ with ϵ ∼ N (0, 1). The top row shows the
performance of the estimators with the true rπ. Bottom row shows the performance for a learned
baseline, initialized to zero. The subplot headers show how the action preferences were initialized.

4.3 Effect of Bias in the Reward Baselines on the Estimators

In this section, we study the effect of initializing the reward baseline optimistically (b = +4) or

pessimistically (b = −4). The reward was set to r = [1 2 3]⊤ with noise ϵ ∼ N (0, 1)2.

2The results for the bandit problem with optimistic or pessimistic baselines, and no noise (not shown here) were
qualitatively similar to the ones presented here; the signal from the bias in the baseline is quite strong and affects
both the estimators much more than the noise in the sampled rewards.
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Optimistically or Pessimistically Initialized Baseline

Figure 4.6 and Figure 4.7 show the sensitivity plots for the regular and alternate estimators for

an optimistically and a pessimistically initialized baseline respectively. These results show that

the optimistic initialization greatly helped the alternate estimator in escaping saturated policy re-

gions. Whereas, a pessimistic initialization significantly hampered the performance of the alternate

estimator, making it worse than the regular estimator even for the uniform policy. In contrast,

the baseline initialization affected the regular estimator in a milder way. Also with an optimistic

initialization, the alternate estimator preferred smaller stepsizes allowing it to enjoy the optimism

effect for longer; and vice-versa for a pessimistic initialization.

These results also verify the fact that the alternate estimator is asymptotically unbiased: the

sensitivity plots show that the agent was able to converge to the optimal corner (corresponding to

action a2) and thus obtained a reward of about 3. As the agent’s estimate of rπ improved, i.e. the

baseline b became closer to the average reward rπ, the bias in the alternate estimator disappeared.
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Figure 4.6: Parameter sensitivity plots for the different estimators for an optimistically initialized
reward baseline (b = +4) on the three armed bandit problem r = [1 2 3]⊤ and ϵ ∼ N (0, 1).
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Figure 4.7: Parameter sensitivity plots for the different estimators for a pessimistically initialized
reward baseline (b = −4) on the three armed bandit problem r = [1 2 3]⊤ and ϵ ∼ N (0, 1).

Fixed Baseline

Now we study what happens when we fix the baseline and not learn it, thereby maintaining the

biasedness of the alternate estimator. Figure 4.8 shows the parameter sensitivity plots for this
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setting for multiple policy initializations. From the results, we see that the regular estimator was

not affected by a fixed baseline (since it remains unbiased with any baseline): it was able to learn

a good, but not the optimal, policy for a uniform policy initialization. In contrast, the alternate

estimator was impacted heavily: for an optimistic baseline, it converged to a value of about 2.4

and for a pessimistic baseline it converged to a value of zero. The values to which the alternate

estimator converged remained the same irrespective of the policy initialization. This hints at the

fact that the update signal offered by the alternate estimator, due to bias in the critic, is quite

strong and can override the high saturation in softmax policies.
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Figure 4.8: Bias in the alternate PG estimator. Parameter sensitivity of the PG estimators for a
fixed baseline on bandit problem r = [1 2 3]⊤ with ϵ ∼ N (0, 1). The baseline in these experiments
was fixed and not updated, and therefore, the alternate estimator remained biased throughout the
learning. The individual labels on the curves show the action preference initializations.

This experiment, additionally, serves as a verification of Lemma 8.1. Recall from the lemma

that for a fixed baseline, the fixed point of the expected alternate update is given by π∗(a) =

1
r(a)−b

(︂∑︁
c

1
r(c)−b

)︂−1
. Evaluating this expression for this experiment gives π∗ = [0.18 0.27 0.55]⊤.

Using r = [1 2 3]⊤, we can calculate Jπ∗ = π∗⊤ r = 2.36. And unsurprisingly, this value matches the

value shown in Figure 4.8 (left) to which the alternate estimator converged under various policy ini-

tializations. Further, as we had predicted from the update plots shown in Figure 3.6 (bottom-right)

and remarked in Footnote 5 (§3.4), the alternate estimator with a pessimistic baseline converged

to the nearest corner. For policies saturated on action a0, this corner corresponded to action a0 as

well and thus the agents obtained a reward of 1 for all the policy saturations considered.

4.4 Can the Regular Estimator be Modified to Deal with Satu-

rated Policies?

In this section we consider whether certain modifications to the regular estimator can make it

effective in dealing with saturated softmax policies.
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Dropping the Reward Baseline

From our previous experiments, we know that the higher variance of the alternate estimator helps

it in escaping the corners of the probability simplex. So we investigate whether a similar increase

in variance obtained by removing the reward baseline from the regular estimator will help it in

escaping the corners as well. Figure 4.9 shows the sensitivity of the final mean performance (during

the last 50 timesteps of a 1000 timestep run) to the stepsize α for the regular estimator without

any baseline on the bandit task r = [1 2 3]⊤ with ϵ ∼ N (0, 1). The results show that the regular

estimator without a baseline cannot be a good competitor to the alternate estimator for escaping

the saturated policy regions. Upon careful thought, this should not be surprising: the regular

estimator, with or without the baseline, has zero variance at simplex corners (see Proposition 7

and Figure 3.3). Consequently, there is neither any gradient signal nor any noise near saturated

regions and the policy gets stuck. This is unlike the alternate estimator which not just has a higher

variance, but a variance structure that is better suited to escaping the saturated policy regions.
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Figure 4.9: Parameter sensitivity plots for the regular estimator without a reward baseline. The
individual curve labels show the action preference initializations.

Adding Normally Distributed Noise to the Policy Updates

The reward noise utilized by the alternate estimator ultimately gets translated into noisy updates

for the action preferences, whereas this translation doesn’t go through very well for the regular

estimator, especially at the corners (refer Example 1). Therefore, in this experiment, we study the

effect of adding an artificial noise to the gradient updates for both the estimators. In particular,

we trained the different estimators on the bandit problem r = [1 2 3]⊤ with ϵ ∼ N (0, 1). And

to make the updates noisy, we added a normally distributed noise to the gradient updates, i.e.

for each action a, the action preferences were updated as follows: θnewa = θolda + α(ga + ξ), where

ξ ∼ N (0, grad-noise); we also swept over the the parameter grad-noise ∈ {0, 0.1, 0.5, 1, 2}. We

experimented with a policy saturated to θ = [10 0 0]⊤ at the beginning of training; and additionally
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a uniform policy to gauge whether this additional update noise had a detrimental effect on the

estimators’ performance, since with a uniform policy there is already a strong gradient signal and

the agent does not require any extraneous noise for moving towards the optimal policy. Figure

4.10 shows the sensitivity of the final performance for the expected gradient, and the regular and

the alternate estimators using the true rπ. Figure 4.11 shows similar results for the regular and

alternate estimators with a learned baseline, initialized to zero.
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Figure 4.11: Sensitivity plots for the regular and the alternate estimators with added gradient
noise and a learned baseline initialized to zero. The figure header shows the standard deviation
of the Gaussian gradient noise. Top and bottom rows correspond to uniform and saturated policy
initializations respectively. Interestingly, for the uniform policy case and a high standard deviation
of the noise, the alternate estimator is more robust to the gradient noise than the regular estimator.

The results from this experiment suggest that adding a normal noise to the gradient bandit

update works well for escaping the saturated policy regions in this bandit setting for all the five
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Figure 4.12: Sensitivity plots for the estimators with gradient noise and an optimistic baseline.

estimators; in particular, the regular estimator can escape the saturation with a high enough noise.

At first, this observation might seem to weaken the case for the alternate estimator. However, note

that adding gradient noise also worsens the performance of all the estimators for the uniform policy

case, which is clearly an undesirable property. Further, recall that the alternate estimator benefits

much more from an optimistic baseline than it does from the reward noise. In contrast to the

noise, an optimistic baseline actually offers an clear signal that moves the agent out of saturation

and towards a more uniform policy distribution. Then, the obvious follow-up question to ask is

whether adding gradient noise to the regular estimator makes it more effective than the alternate

estimator with an optimistically initialized baseline. Figure 4.12, which shows the sensitivity plots

for the regular and the alternate estimator with both an optimistic baseline and added gradient

noise, answers this question in a negative. Comparing the results from Figure 4.12 with those from

Figure 4.11 shows that the alternate estimator benefits from an optimistic baseline much more than

the regular estimator benefits from added gradient noise. More importantly, even though adding

gradient noise helped with this particular bandit instance, as we show in §6.3, adding gradient noise

doesn’t help the regular estimator overcome saturated policies in MDPs.

4.5 Summary

The experiments in this chapter demonstrated that the alternate estimator has a superior (or

competitive) performance as compared to the regular estimator in a variety of 3-armed bandit

problems. The experimental results also verify the properties stated in the previous chapter, i.e.

the alternate estimator can utilize an optimistic baseline and reward noise to effectively overcome

policy saturation and learn a good policy.
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Chapter 5

Alternate Policy Gradient Estimator

for MDPs

The alternate gradient estimator can be readily extended to MDPs, where it enjoys properties

analogous to those it enjoyed in the bandit case. We begin by introducing the vector notation for

MDPs and then present the main derivations.

5.1 Manipulating Vector Variables to Calculate PG Estimators

We initially derive the regular and the alternate policy gradient estimators for the following PG

expression (this is the exact same form as discussed in §2.7):

∇Jπ =
∑︂
s

νπ(s)
∑︂
a

π(a|s)∇ log π(a|s)qπ(s, a), (5.1)

We chose this particular equation because it has the simplest form amongst all the PG expressions

we have considered till now1: it doesn’t have a sum over the sampled trajectories (like the REIN-

FORCE expression, Eq. 2.26), nor has the pesky discounting factor (from the online AC expression,

Eq. 2.31). We could have equivalently begun with the REINFORCE or the online AC expressions

as well, and we eventually do consider them anyways in §5.3. Now our goal is to express Eq. 5.1

in a vector form. To do so, let us introduce some notation: for a given state s, let π(·|s) ∈ R|A|

be the policy vector with [π(·|s)]a := π(a|s) and qπ(s, ·) ∈ R|A| be the action value vector with

[qπ(s, ·)]a := qπ(s, a). Continuing from Eq. 5.1, the vector form for policy gradient can be readily

1This not quite true though, since Eq. 5.1 packs all the complex terms and summations inside the occupancy
measure νπ :=

∑︁∞
k=0 γ

kP(Sk = s). Nevertheless for our purposes, this expression is the easiest to deal with.
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obtained as follows:

∇wJπ =
∑︂
s

νπ(s)
∑︂
a

π(a|s)∇w log π(a|s)qπ(s, a) =
∑︂
s

νπ(s)
∑︂
a

∇wπ(a|s)qπ(s, a)

=
∑︂
s

νπ(s)
[︁
∇w π(·|s)

]︁
qπ(s, ·), (5.2)

where ∇w π(·|s) represents the transpose of the Jacobian matrix (see §2.8). To obtain the PG

estimators from Eq 5.2, we will re-write the term ∇w π(·|s) to explicitly separate the gradient of

the action likelihood ∇θ π(·|s) from that of the preference ∇w θ(s). After that, we will analytically

calculate the gradient of the action likelihood, assuming a softmax policy. Before moving forward,

we recall the definition of the softmax policy for MDPs and introduce some additional notation

along the way. The softmax policy, for an arbitrary state s and action a, is given by

π(a|s) = e[θw(s)]a∑︁
c∈A e[θw(s)]c

, (5.3)

where θw : S → R|A| denotes a vector function, parameterized byw, that gives the action preference

vector for a given state input. The action preference for a specific action is the corresponding

element of this vector: for instance, [θw(s)]a gives the action preference corresponding to action a.

In practice, θw could be implemented using, say, a neural network with weights w. Such a network

would take a state as the input and output the action preferences corresponding to all the different

actions of the action space. For brevity, we will drop w and simply write θw as θ, even though

the action preferences depend on the parameters w. With this definition of θ and π, we can use

Proposition 4 to get2

∇w π(·|s) =
[︁
∇w θ(s)

]︁[︁
∇θ π(·|s)

]︁
. (5.4)

Putting the above expression in Eq. 5.2 gives us the following form for the policy gradient:

∇wJπ =
∑︂
s

νπ(s)
[︁
∇w θ(s)

]︁
∇θ π(·|s)qπ(s, ·). (5.5)

In the above expression, the gradient of the action likelihood, i.e. ∇θ π(·|s), and the gradient of

action preferences which solely depend on the states, i.e. ∇w θ(s), are explicitly separated. We

could split these terms, by using Eq. 5.4, because the softmax policy processes the states and

the actions in a sequential manner: it first computes the action preferences corresponding to a

particular state and then calculates the probability of a given action utilizing these preferences3.

2The last term in Eq. 5.4 should technically be written as ∇θ(s) π(·|s). However, for the sake of brevity, we
dropped the function argument “(s)”; the dependence of θ on state s should be clear from the context.

3Another example of such a sequential processing is Q-learning (Watkins and Dayan, 1992; Mnih et al., 2013),
where the agent first calculates all state-action values (such as the last layer of the DQN network) for each of the
actions, and then uses one of these state-action values based on the particular action sampled at that point.
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In the analysis that follows we will fix π to be a softmax policy and analytically work out the

gradients corresponding to the action likelihood. Though, we leave the gradient corresponding to

states which will be computed later using, say, an automatic differentiation package based on the

specific function approximator used (see §5.4 for the linear case). Using Eq. 3.2, we get

∇θ π(·|s)qπ(s, ·) =
(︁
I−π(·|s)1⊤

)︁
diag(π(·|s))qπ(s, ·)

= diag(π(·|s))qπ(s, ·)− π(·|s)1⊤ diag(π(·|s))qπ(s, ·)

= π(·|s)⊙ qπ(s, ·)− π(·|s)π(·|s)⊤ qπ(s, ·) (5.6)

= π(·|s)⊙ (qπ(s, ·)− vπ(s)1). (5.7)

Note that this expression looks exactly the same as Eq. 3.4, except that the reward vector is

replaced by the action value function and the average reward is replaced by the value function.

Continuing with Eq. 5.6 and moving some terms around leads to

∇θ π(·|s)qπ(s, ·) = diag(qπ(s, ·))π(·|s)− π(·|s)qπ(s, ·)⊤ π(·|s)

= [diag(qπ(s, ·))− π(·|s)qπ(s, ·)⊤]π(·|s)

=
∑︂
a

π(a|s)qπ(s, a)
(︁
ea−π(·|s)

)︁
. (5.8)

The regular estimator for MDPs can be found by putting Eq. 5.8 into Eq. 5.5, which yields

∇wJπ =
∑︂
s

νπ(s)
∑︂
a

π(a|s)∇w θ(s)
(︁
ea−π(·|s)

)︁
qπ(s, a)

= ES∼νπ ;A∼π(·|S)

[︂
∇w θ(S)

(︁
eA−π(·|S)

)︁
qπ(S,A)

]︂
= ES∼νπ ;A∼π(·|S)

[︂ (︂
∇w[θ(S)]A −

∑︂
a

π(a|S)∇w[θ(S)]a

)︂(︁
qπ(S,A)− vπ(S)

)︁
⏞ ⏟⏟ ⏞

=:gREG(S,A)

]︂
, (5.9)

where we subtracted the action independent baseline vπ(S) without introducing any bias. Even

though the estimator gREG looks new, it is exactly equal to the familiar PG estimator from before:

gREG(S,A) = ∇w log π(A|S)
(︁
qπ(S,A)− vπ(S)

)︁
. (5.10)

To see this equivalence, note that for a softmax policy π and the state-action pair (S,A),

∇w log π(A|S) = ∇w[θ(S)]A −∇w log

(︄∑︂
a

e[θ(S)]a

)︄
= ∇w[θ(S)]A −

∑︁
a e

[θ(S)]a∇w[θ(S)]a∑︁
b e

[θ(S)]b

= ∇w[θ(S)]A −
∑︂
a

π(a|S)∇w[θ(S)]a.
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Therefore, this lengthy calculation merely resulted in a different expression for the already familiar

PG estimator; it did not yield a new one and thus was little more than an exercise in manipulating

the vector variables π(·|s) and θ(s). But now that we are warmed up, we can use this new skill to

derive the alternate PG estimator for MDPs.

5.2 Deriving the Alternate PG Estimator

In order to derive the alternate PG estimator, let us again start with Eq. 5.6:

∇θ π(·|s)qπ(s, ·) = diag(qπ(s, ·))π(·|s)− π(·|s)⊤ qπ(s, ·)π(·|s)

= [diag(qπ(s, ·))− vπ(s) I]π(·|s)

=
∑︂
a

π(a|s)
(︂
qπ(s, a)− vπ(s)

)︂
ea, (5.11)

where we used the fact that vπ(s) =
∑︁

a∈A πw(a|s)qπ(s, a) = πw(·|s)⊤ qπ(s, ·). Analogous to the

previous section, we put Eq. 5.11 in Eq. 5.5 to obtain4

∇wJπ =
∑︂
s

νπ(s)
∑︂
a

π(a|s)∇w θ(s) ea

(︂
qπ(s, a)− vπ(s)

)︂
= ES∼νπ ;A∼π(·|S)

[︂
∇w θ(S) eA

(︁
qπ(S,A)− vπ(S)

)︁]︂
= ES∼νπ ;A∼π(·|S)

[︂
∇w[θ(S)]A

(︁
qπ(S,A)− vπ(S)

)︁⏞ ⏟⏟ ⏞
=:gALT(S,A)

]︂
. (5.12)

One way to look at the alternate gradient estimator is that it is equivalent to taking the gradient of

the softmax policy, but by dropping the normalization constant, i.e. ∇w log e[θ(S)]A

1 = ∇w[θ(S)]A.

Also note that even though the regular and the alternate PG estimators are equal in expectation,

in general they are not equal for any arbitrary state-action pair (S,A): gREG(S,A) ̸= gALT(S,A).

The alternate estimator for MDPs looks very similar to the alternate estimator for bandits (Eq.

3.7). The differences are that in the alternate estimator for MDPs, the reward vector from bandits

is replaced by the action value vector, the average reward is replaced by the value function, and

it additionally has the gradient of the action preference corresponding to action A with respect

to w. These differences suggest that, similar to the alternate estimator for gradient bandits, the

alternate estimator for MDPs is unbiased when we use the true value function vπ(S) and becomes

4This derivation is not entirely novel: in fact, it was recently brought to our attention that Young (2019) studied
the exact same PG estimator in a different context. Interestingly, page 37 (Young, 2019) gives the equivalent of Eq.
5.11 presented above, albeit with a different notation and a calculation that uses scalar variables. The focus of Young
(2019) was on saving compute by only calculating the gradient of a single action preference (that line of work is
weakly related to what we discussed in §3.6). In contrast, this project studies the viability of the alternate estimator
in decreasing the effect of policy saturation on the performance of softmax policies.
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biased if we use another baseline. Further, recalling that qπ(S,A) is usually estimated by an n-step

return, the alternate estimator can utilize the noise in computing these n-step returns and also

the bias in the critic estimate. So, if the value function estimate b(S) for state S is optimistic,

i.e. b(S) > q̂π(S, a) for all actions a, then the policy will be updated towards a more uniform

distribution. We demonstrate these properties via an empirical analysis in the next chapter5. In

the remaining sections, we present the alternate estimator in context of different PG algorithms.

5.3 Adapting the Alternate Estimator to various PG Algorithms

The form for the alternate estimator given by Eq. 5.12 needs to be adapted to a concrete policy

gradient algorithm before it can be used by an RL agent. In this section, we demonstrate this

adaption process for the Proximal Policy Optimization algorithm (abbreviated as PPO, Schulman

et al., 2017). After that, we directly give the expressions for the alternate estimator adapted to

various PG algorithms such as REINFORCE (Williams, 1991), Online Actor-Critic (Sutton and

Barto, 2018), and Trust Region Policy Optimization (abbreviated as TRPO, Schulman et al., 2015).

The Alternate PPO Estimator

PPO proposes the following clipped objective that the agent maximizes at each step:

JPPO :=
∑︂
s

νπold
(s)
∑︂
a

πold(a|s) ·min

⎛⎝ πw(a|s)
πold(a|s)hπold

(s, a),

clip
[︂

πw(a|s)
πold(a|s) , 1− ϵ, 1 + ϵ

]︂
hπold

(s, a)

⎞⎠ , (5.13)

where hπold
(s, a) := qπold

(s, a)−vπold
(s) is the advantage function under the old policy πold, and ϵ is

a fixed parameter. The PPO objective introduces an importance sampling ratio to reuse the data

collected by the old policy to make multiple update steps to the new policy6. Further, the agent

only makes updates for those samples which satisfy a particular condition that we define shortly.

Using this view, the gradient of the above objective can be equivalently written as

∇wJPPO =
∑︂
s

νπold
(s)
∑︂
a

πold(a|s) · I
(︂
condπw

πold
(s, a)

)︂∇wπw(a|s)
πold(a|s)

hπold
(s, a)

=
∑︂
s

νπold
(s)
∑︂
a

∇wπw(a|s)hπold
(s, a)I

(︂
condπw

πold
(s, a)

)︂
, (5.14)

5Note that we simply mentioned the properties of the alternate estimator for MDPs. This chapter is missing
the analogous theoretical results, especially Theorem 1, presented earlier for bandits. However, based on empirical
evidence (see §6.2, §7.3, and §7.7) and intuition, we conjecture that similar results should hold for the case of MDPs
as well. Further, our hope is that it should not be too difficult to show them theoretically.

6Despite this reuse of the data collected by the old policy, PPO is still very much an on-policy PG algorithm since
it does not correct for the state distribution mismatch between πold and the current policy: νπold(s) ̸= νπw (s).
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where cond() is the Boolean condition defined as

condπw
πold

(s, a) :=

(︃
hπold

(s, a) > 0
⋀︂ πw(a|s)

πold(a|s)
< 1 + ϵ

)︃⋁︂(︃
hπold

(s, a) < 0
⋀︂ πw(a|s)

πold(a|s)
> 1− ϵ

)︃
.

To reduce clutter, let us define h̃
πw

πold
(s, a) := hπold

(s, a)I
(︂
condπw

πold
(s, a)

)︂
. Then the regular PPO

estimator can be written as

∇wJPPO = ES∼νπold ;A∼πold(·|S)

[︃
∇w log πw(A|S)

πw(A|S)
πold(A|S)

h̃
πw

πold
(S,A)

]︃
⏞ ⏟⏟ ⏞

=:gREG-PPO(S,A)

.

Now we follow the same procedure that we used to obtain the alternate estimator in Eq. 5.11, but

for the expression that appeared in the PPO gradient (Eq. 5.14):

∑︂
a

∇wπw(a|s)h̃
πw

πold
(s, a) = ∇w θ(s)

∑︂
a

πw(a|s)

[︄
h̃
πw

πold
(s, a)−

∑︂
c

πw(c|s)h̃
πw

πold
(s, c)

]︄
ea .

Putting the above expression into Eq. 5.14, we get the alternate estimator for PPO:

∇wJPPO

=
∑︂
s

νπold
(s)
∑︂
a

πold(a|s)∇w[θ(s)]a
πw(a|s)
πold(a|s)

[︄
h̃
πw

πold
(s, a)−

∑︂
c

πw(c|s)h̃
πw

πold
(s, c)

]︄

= ES∼νπold ;A∼πold(·|S)

[︄
∇w[θ(S)]A

πw(A|S)
πold(A|S)

(︄
h̃
πw

πold
(S,A)−

∑︂
c

πw(c|S)h̃
πw

πold
(S, c)

)︄]︄
⏞ ⏟⏟ ⏞

=:gALT-PPO(S,A)

. (5.15)

Using a process similar to that demonstrated here, we can extend the alternate estimator to

different PG algorithms. We now summarize these estimators.

Alternate REINFORCE Estimator

The regular REINFORCE estimator is given by Eq. 2.27. And the alternate estimator is given by

∇wJπ = EH∞∼Pπ

[︄ ∞∑︂
t=0

γt∇w[θ(St)]At

(︂
Gt − vπ(St)

)︂]︄
⏞ ⏟⏟ ⏞

=:gALT-REINF(H∞)

. (5.16)
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Alternate Online AC Estimator

The regular estimator is given by Eq. 2.32 and the alternate estimator is

∇wJπ ∝ ES,K∼dπ ;A∼π(·|S);S′,R∼p(·,·|S,A)

[︂
γK∇w[θ(S)]A

(︂
R+ γvπ(S

′)− vπ(S)
)︂]︂

⏞ ⏟⏟ ⏞
=:gALT-OAC(S,A,R,S′,K)

. (5.17)

TRPO Estimators

TRPO (Eq. 14, Schulman et al., 2015) proposes that the agent solve the following constrained

optimization problem at each timestep

max
w

∑︂
s

νπold
(s)
∑︂
a

πw(a|s)qπold
(s, a)⏞ ⏟⏟ ⏞

=:JTRPO

subject to
∑︂
s

νπold
(s) ·DKL

(︁
πold(·|s)

⃦⃦
πw(·|s)

)︁
≤ δ,

where δ is a fixed parameter.

We can re-write the gradient of the objective JTRPO as follows

∇wJTRPO = ES∼νπold ;A∼πold(·|S)

[︃
∇w log πw(A|S)

πw(A|S)
πold(A|S)

qπold
(S,A)

]︃
⏞ ⏟⏟ ⏞

=:gREG-TRPO(S,A)

.

Then, it is straightforward to see that the alternate estimator would become

∇wJTRPO = ES∼νπold ;A∼πold(·|S)

[︄
∇w[θ(S)]A

πw(A|S)
πold(A|S)

(︂
qπold

(S,A)−
∑︂
c

πw(c|S)qπold
(S, c)

)︂]︄
⏞ ⏟⏟ ⏞

=:gALT-TRPO(S,A)

.

(5.18)

The alternate estimators proposed here for TRPO and PPO require the computation of the

expectation of qπold
and h̃

πw

πold
respectively, under the current policy πw and across the action space.

However, if the number of actions is large, this operation becomes prohibitively expensive7. In

such cases, techniques (also see Ciosek and Whiteson, 2020) such as maintaining another function

approximator, analogous to a value function, or sampling a subset of actions to approximate this

expectation can be used.

7Moreover, if this expectation is calculated exactly, the alternate (TRPO or PPO) estimator will remain unbiased.
Depending on the context this might be a good or a bad property to have. However, in this work, we do not pursue
a more involved analysis of the alternate estimators for TRPO and PPO. Also note that the objectives maximized
by PPO and TRPO are different from the original PG objective Jπ :=

∑︁
s νπw (s)

∑︁
a πw(a|s)qπw (s, a) which would

probably make such an analysis more interesting.
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5.4 Additional Details for Implementing Online Linear AC

In this section8, we provide details that can be used when implementing a PG agent (we used these

for the experiments presented in §7) with the estimators presented above. In particular, we calculate

the term ∇w θ(S) (for the equations in §5.1 and §5.2) to yield analytical policy gradient update

expressions. To keep things concrete, we will focus on the expected policy gradient expression,

and the regular and the alternate online AC estimators for softmax policies with linear function

approximation. These details can be extended in a straightforward way to work with other PG

algorithms such as REINFORCE and different policy parameterizations such as the tabular policies.

Recall from Eq. 5.3, that the softmax policy is given by π(a|s) = e[θ(s)]a∑︁
c∈A e[θ(s)]c

. For linear function

approximation and d-dimensional state features, [θ(s)]a := w⊤
a x(s), with wa ∈ Rd being the weight

vector corresponding to action a, and x(s) ∈ Rd being the feature vector for state s (obtained, say,

via tile-coding). Also let W := [w1 w2 · · · w|A|] be a d × |A| weight matrix. Further, overload

the gradient notation, so that for a scalar function λ(W), ∇Wλ is a d × |A| matrix defined as

[∇Wλ]ij = ∂λ/∂wij. Using this definition, ∇Wλ = [∇w1λ ∇w2λ · · · ∇w|A|λ], which in turn means

that we can first calculate ∇wcJπ for each action c ∈ A and then stack these vectors to obtain

∇WJπ. The gradient update, for the weights W, can be written as Wnew = Wold+α∇WJπ for

some α > 0. Using this formulation, let us now compute the expressions for the expected policy

gradient, the regular estimator, and the alternate estimator.

First note that, using Proposition 2, for an arbitrary state s, and actions a and c we get that

∇wc [θ(s)]a = ∇wc

(︁
w⊤

a x(s)
)︁
= I(c = a)x(s). (5.19)

Now for computing the expected policy gradient, put Eq. 5.7 in Eq. 5.5 to obtain

∇wcJπ =
∑︂
s

νπ(s)
[︁
∇wc θ(s)

]︁
π(·|s)⊙ (qπ(s, ·)− vπ(s)1)

=
∑︂
s

νπ(s)
∑︂
a

∇wc [θ(s)]aπ(a|s)(qπ(s, a)− vπ(s))

=
∑︂
s

νπ(s)
∑︂
a

I(c = a)x(s)π(a|s)(qπ(s, a)− vπ(s))

=
∑︂
s

νπ(s)x(s)π(c|s)(qπ(s, c)− vπ(s)).

Now we stack together the vectors ∇wcJπ for all the actions c ∈ A to obtain

∇WJπ =
∑︂
s

νπ(s)x(s)
(︂
πw(·|s)⊙

(︁
qπ(s, ·)− vπ(s)1

)︁)︂⊤
. (5.20)

8This section is fairly straightforward and also tangential to the main presentation, and thus can be safely skipped.
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Using chain rule of differentiation for vector variables (Proposition 4) and the expression for the

derivative of the softmax policy with respect to action preferences (Eq. 2.12), we obtain

∇wcπ(a|s) =
[︁
∇wc θ(s)

]︁[︁
∇θ(s)π(a|s)

]︁
=
∑︂
d

∇wc [θ(s)]d ·
∂π(a|s)
∂[θ(s)]d

=
∑︂
d

I(c = d)x(s) · π(a|s)
[︁
I(d = a)− π(d|s)

]︁
= π(a|s)x(s)

[︁
I(c = a)− π(c|s)

]︁
⇒ ∇wc log π(a|s) = x(s)

[︁
I(c = a)− π(c|s)

]︁
.

Again stacking the vectors ∇wc log π(a|s) for all actions c ∈ A gives us

∇W log π(a|s) = x(s)
(︁
ea−π(·|s)

)︁⊤
.

Finally, we can compute the regular estimator for online actor-critic. Using the expression for the

regular online AC estimator (given in Eq. 2.32) for arbitrary a ∈ A, r ∈ R, k ∈ {0, 1, . . .}, and
s, s′ ∈ S we obtain

gREG-OAC(s, a, r, s′, k) := γk∇W log π(a|s)
(︁
r + γvπ(s

′)− vπ(s)
)︁

= γk
(︁
r + γvπ(s

′)− vπ(s)
)︁
x(s)

(︁
ea−π(·|s)

)︁⊤
. (5.21)

If we stack the vectors ∇wc [θ(s)]a from Eq. 5.19 for different actions c, we would get

∇W[θ(s)]a = x(s) e⊤a .

Then the alternate estimator for online actor-critic (given in Eq. 5.17) can be computed as

gALT-OAC(s, a, r, s′, k) := γk∇W[θ(s)]a
(︁
r + γvπ(s

′)− vπ(s)
)︁

= γk
(︁
r + γvπ(s

′)− vπ(s)
)︁
x(s) e⊤a . (5.22)

5.5 Summary

In this chapter, we extended the alternate estimator to work with various policy gradient algorithms

in the MDP setting. We did this by splitting the gradient of the policy with respect to the policy

weights into a gradient of the action preferences with respect to the policy weights (that depends

solely on the states) and the gradient of the policy with respect to the action preferences (that

depends only on the actions given the state). After that, analogous to the bandit calculations, we

analytically worked out the gradient of the policy with respect to the preferences for the softmax

policy representation. In the end, we adapted the alternate estimator to multiple popular policy

gradient algorithms.
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Chapter 6

MDP Experiments with a Tabular

Policy and Value Function Estimate

In this section, we demonstrate that the alternate estimator for MDPs enjoys similar benefits as the

alternate estimator for bandits. We use the chain environment1, shown in Figure 6.1, which is an

episodic MDP where the expected rewards are zero everywhere expect at the rightmost transition.

We train five different agents using REINFORCE (exact pseudocode given in Algorithm 2). All the

agents maintain a tabular policy and, in some cases additionally, a tabular value function estimate.

The policy is learned either using the expected PG, or using the REINFORCE algorithm with

either the regular estimator (true vπ or a learned baseline) or the alternate estimator (again with

true vπ or a learned baseline). The critic is estimated using Monte-Carlo sampling.

s1

Right ActionLeft Action

Terminal State Start State

r=1

s0 s2 s3 s4 s5 s6

Terminal State

Figure 6.1: Chain Environment. At the beginning of each episode, the agent is reset to the state
s3. At each timestep, it can take the action left or right, which deterministically moves it into
the corresponding next state. The episode ends when the agent reaches either of the two terminal
states. The expected rewards are zero at all transitions except the one into the right most terminal
state. Further, a reward noise ϵ ∼ N (0, 1) is added to the expected reward at each timestep.

All the methods were run for 100 episodes. The learning curves show the mean performance and

standard error, and the sensitivity plots show the mean performance over the last 10 episodes. The

1Implementation available here: https://github.com/svmgrg/rl_environments/tree/main/LinearChain.
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results were averaged over 150 independent runs. For getting a uniform policy initialization, we set

θleft = θright = 0 for all the five states. A saturated policy was obtained by initializing θright = 0

and θleft ∈ {1, 2, 3} depending on the degree of saturation, again for all the five states. The agents

either used the true value function vπ (computed analytically) or learned a value function estimate

b which was initialized to either zero, +4, or −4 for each state of the MDP. We swept over the policy

stepsize α ∈ {2−6, 2−5, . . . , 21} and the value function baseline stepsize β ∈ {2−4, 2−3, . . . , 21}. We

set the discount factor γ = 0.9. To reduce the runtime of the experiments, if the agent was unable

to solve the task after 100 timesteps, we terminated the episode2.

6.1 Performance of PG Estimators against Increasingly Saturated

Policy Initializations

We begin by showcasing that the alternate PG estimator is competitive with the regular estimator

in case of uniform policy initialization and superior to it in case of sub-optimally saturated policy

initialization. These results are essentially identical to those from the bandit experiments (§4.1).
Figure 6.2 shows the learning curves for the best performing parameter configuration (chosen from

the sensitivity plots), and Figure 6.3 shows the stepsize sensitivity corresponding to the final perfor-

mance for each parameter setting. Observe that irrespective of the policy saturation, the alternate

estimator with baseline is vastly superior to all the methods (except expected PG), and that the

alternate estimator with true vπ is a little better than the regular estimators. We attribute the

superior performance of alternate estimator with baseline to the bias of the estimator combined

with utilizing the noise in the returns, which probably allows it to have better exploration. From

the sensitivity plots, we further see that as the initial policy is saturated more towards the left

2It might seem unsatisfying to artificially end an episode after 100 timesteps. However, not doing so resulted
in some of the experiments running for about a million steps, which dramatically increased the runtime of the
experiments. To put this number in perspective, an optimal policy can solve the chain environment in three steps.
These million timestep long episodes occurred when the policy learned to go right with a high probability in one state
and learned to go left in the very next state, effectively creating an unending loop between these two states.

We justify the 100 timestep cutoff by noting that the contribution of states after a hundred steps becomes negligibly
small. This can be seen by focusing on the term γt in the expression for the REINFORCE estimator ĝREINF (Algorithm
2): for our chosen discount factor, γ100 = 0.9100 = 2.7 × 10−5. We also note that in our experiments, we learned
the value function using simple Monte-Carlo estimates and, contrary to the recommendation made by Pardo et al.
(2018), did not bootstrap at the state where the episode was artificially timed out. We again justify this by the fact
that γ100vπ(stimeout) is negligibly small compared to the returns observed in our experiments (see the scale of the
y-axis in Figure 6.2) and is thus safe to ignore. Yet another argument in favor of keeping a timeout in our experiments
is that, unlike timeouts with continuing MDPs where they are guaranteed to occur, in the chain environment the
occurrence of the episodes being timed out decreases as the agent’s policy improves.

Also note that we are using a discount factor γ ̸= 1 for an episodic problem despite the fact that episodic problems
do not necessarily require discounting. This choice was primarily made to justify timing out the episode after 100
steps. However, even if we ignore the timeout issue, keeping a discount factor around for episodic MDPs can be
useful. It caps the maximum return at the fixed value of rmax

1−γ
, and helps us avoid situations such as the infinite

loop between two states in the supposedly episodic chain MDP. Situations like these also violate the assumption (as
discussed in Footnote 8 of §2.6) that undiscounted episodic MDPs should have a finite expected termination length.
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Figure 6.2: Learning curves for the REINFORCE agent with different estimators against increas-
ingly saturated policy initializations on the five state chain environment. The figure header shows
the action preference initialization for θleft and θright respectively. The estimators which don’t
mention the baseline stepsize β used the true value function vπ, whereas the others learned a base-
line using Monte-Carlo sampling. The baseline was initialized to zero for all the states.
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Figure 6.3: Sensitivity plots for different PG Estimators, showing the mean final performance during
the last 10 episodes, against increasingly saturated policy initializations on the chain environment.
The different columns correspond to the different degrees of policy saturations and the figure headers
show the action preference initializations for the left and right actions respectively.

direction (in the chain environment), performance of all the methods worsens.

PG Estimators without Reward Noise

We now study the performance of different estimators when we remove the reward noise from the

chain MDP. Figure 6.4 shows the learning curves and Figure 6.5 shows the parameter sensitivity

plots for different estimators using REINFORCE on the chain MDP with reward noise ϵ = 0. The

results are somewhat similar to the bandit setting: in absence of reward noise, the performance of

the alternate estimator drops with saturated policy initialization. However, there is one important
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difference from the bandit setting. For MDPs, the alternate estimator finally cares about the noise

in the return estimate which depends on both the reward noise and the sampling noise. Therefore,

even without reward noise, in MDPs the alternate estimator can utilize the noise in estimating the

returns fromMonte-Carlo sampling. However, for the chain MDP, the transitions were deterministic

and therefore the sampling noise was also quite less.
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Figure 6.4: Learning curves for PG estimators without reward noise. The setting is same as Figure
6.2, except that the reward noise is set to zero. We see that, for saturated policies, the alternate
estimator performs worse as compared to its performance in Figure 6.2 where it had reward noise,
and curiously alternate with vπ performs better than alternate with a learned baseline.
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6.2 Optimistic and Pessimistic Value Function Estimates

In this experiment, we study the performance of the alternate estimator when the value function

baseline is initialized optimistically or pessimistically and then learned using Monte-Carlo sampling.

Figures 6.6 and 6.7 show the parameter sensitivity plots for agents with optimistically (b = +4) or
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Figure 6.6: Sensitivity plots for an optimistically initialized value function estimate. The setting is
similar to that in Figure 6.3, except that the baseline is initialized to +4.
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Figure 6.7: Sensitivity plots for a pessimistically initialized value function estimate. The setting is
again similar to that in Figure 6.3 except that the baseline is initialized to −4.

pessimistically (b = −4) initialized baselines respectively, against different degrees of policy satura-

tions. The results, which are yet again similar to the bandit setting, show that having an optimistic

baseline significantly helped the alternate estimator; in particular, compare the performance of the

alternate estimator on saturated policies with (b = +4, as shown in Figure 6.6) and without (b = 0,

as shown in Figure 6.3) optimism. Whereas, a pessimistic baseline hurt its performance. Moreover,

the alternate estimator with the optimistic baseline prefers smaller critic stepsizes (allowing it to

enjoy the optimism for longer), and vice-versa for the pessimistic baseline.

Fixed Value Function Estimate

In this experiment, we fixed the value function estimate for both the estimators; which made the

alternate, but not the regular, estimator biased. Figure 6.8 shows the sensitivity plots for the two

estimators. This experiment is the MDP analog of the biased gradient bandit experiment (see

Figure 4.8) and suggests that Theorem 1 might also hold for MDPs: since, we can show that the

policy (for the optimistic case) converges to the fixed point π∗(a) = 1
r(a)−b

(︂∑︁
c

1
r(c)−b

)︂−1
given by

Lemma 8.1. For MDPs, we need to compute this fixed point separately for each state: π(left|s) =
π(right|s) = 0.5 for s ∈ {s1, s2, s3, s4}, and π(left|s5) = 0.43 and π(right|s5) = 0.57. Then,

we analytically calculate Jπ∗ = vπ∗(s3) = 0.28 which approximately matches the value shown in

Figure 6.8 (left) where the policy for the optimistic fixed baseline actually converged to; therefore,
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Figure 6.8: Bias in the alternate PG estimator for MDPs. Sensitivity plots for the REINFORCE
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subsequently updated. The labels for the individual curves show the action preference initializations
[θleft, θright] for all the five states.

our prediction matches with the actual results. For a pessimistic baseline, the policy converged to

the nearest corner for each state (in this case action left) and obtained zero return.

6.3 Effect of adding Gradient Noise to the Estimators

This experiment studies the efficacy of randomly perturbing the PG estimates, with a normally

distributed noise while updating the action preferences, in helping the agent escape saturated

policy regions. The preferences, for a given state s and action a, were updated using θnewa (s) =

θolda (s)+α
[︁
ga(s)+ξ

]︁
with ξ ∼ N (0, grad-noise). We swept over the noise magnitude grad-noise ∈

{0, 0.1, 0.5, 1, 2}. Both the estimators learned a value function estimate which was initialized to

zero3. Figure 6.9 shows the sensitivity of the final performance for the two estimators.

These results show that adding gradient noise doesn’t significantly help the regular estimator in

dealing with saturated policies for MDPs: the performance of the regular estimator with gradient

noise was only slightly better than its performance without gradient noise (cf. Figure 6.3). More

importantly, the alternate estimator had a superior final performance compared to the regular

estimator for both the uniform and the saturated policy initialization cases. This observation is

in contrast to what we saw in the bandit case (§4.4), where the gradient noise seemed to help

more. We explain this result by the fact that random noise merely increases the variance of the

gradient estimate without providing any effective signal. And while this added variance helped the

regular estimator in the simpler bandit problem, it is apparently not sufficient for the MDPs. The

3We do not present the results for expected PG and the regular and alternate REINFORCE estimators using the
true vπ, since they were qualitatively similar to the results for the learned baseline case presented here.

68



6 5 4 3 2 1 0 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

6 5 4 3 2 1 0 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

6 5 4 3 2 1 0 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

6 5 4 3 2 1 0 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

grad noise: 0.0 0.1 1.0 2.0

6 5 4 3 2 1 0 1

0.0

0.2

0.4

0.6

0.8

6 5 4 3 2 1 0 1

0.0

0.2

0.4

0.6

0.8

6 5 4 3 2 1 0 1

0.0

0.2

0.4

0.6

0.8

6 5 4 3 2 1 0 1

0.0

0.2

0.4

0.6

0.8

J
π

(P
G

 o
bj

ec
ti

ve
)

log2(α)

Learned vπ

(initialized to 0)
θ init: [0, 0]

Learned vπ

(initialized to 0)
θ init: [3, 0]

Alt
Reg

Alt
Reg

β=2-4

β=2-3

β=2-2

β=1

β=2

β=2-4
β=2-3

β=2-2

β=2-1

β=1

β=2

β=2-1
β=1

β=2

β=2-4
β=2-1β=1

β=2

β=2-4

β=2-3

β=2-2
β=2-1

β=1
β=2

β=2-4

β=2-3

β=2-2

β=2-1

β=1

β=2

β=2-4
β=1

β=2

β=2-4
β=2-3

β=1

β=2

β=2-2

β=1

β=2

β=2-3
β=2-2

β=2-1

β=1

β=2

β=2-2 β=1
β=2

β=2-4

β=2-3

β=1
β=2

β=2-4

β=2-3

β=2-2
β=2-1

β=1β=2

β=2-4

β=2-3

β=2-1

β=1
β=2

β=2-4

β=2-1

β=1
β=2

β=2-4

β=2-1

β=1
β=2

Figure 6.9: Adding gradient noise to the REINFORCE estimators. The top row shows the sensitiv-
ity plots for a uniform policy and the bottom row shows the sensitivity plots for a policy saturated
as θleft = 3 and θright = 0. Different columns correspond to different gradient noise magnitudes.

alternate estimator on the other hand relies on both the noise from the sampled return and also a

much stronger signal from the bias in the critic estimate to escape the saturated policy regions.

6.4 A Uniform Policy Initialization can be Sub-optimal too!

In all the previous experiments, we found that an optimistically initialized baseline helped the

performance of the alternate estimator (by making the policy more uniform). In this section, we

consider an MDP, where a uniform policy is bad for exploration, and therefore an optimistic baseline

by making the agent’s policy more uniform hurts its performance. Figure 6.10 shows this MDP,

which is a modified form4 of the five state chain environment: instead of having just two actions,

this modified chain has four actions for each state, three of which take the agent towards the left

direction and the fourth towards the right direction.

s1

Right ActionLeft Action
r=1

s0 s2 s3 s4 s5 s6

Terminal State Start State Terminal State

Figure 6.10: Linear chain environment where a uniform policy will explore poorly.

Figure 6.11 shows the sensitivity plots for the REINFORCE agents with the regular and al-

4This MDP was inspired from the “Vanishing gradient example” given in Chapter 12 of Agarwal et al. (2019).
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Figure 6.11: Sensitivity plots for different methods, initialized with a uniform policy, on the difficult
chain environment (described in Figure 6.10). Top row shows the mean final performance (averaged
over the last 10 episodes) of the estimators after 100 episodes and the bottom row shows the mean
final performance (again averaged over the last 10 episodes) after 300 episodes. Different columns
refer to either a true baseline or a learned baseline with different initializations. We see that even
after 300 episodes, the algorithms are not able to solve the task (i.e. they are unable to achieve
the maximum return of 0.81). Further, even with an optimistic baseline, the alternate estimator
performs quite poorly as compared to the regular estimator.

ternate estimators for four different settings: using the true vπ, and a learned baseline initialized

to either of 0, +4, or −4. The policy for all these settings was initialized uniformly, i.e. θ = 0

for all states and action. The results show that in each case, the alternate estimator had a poorer

performance as compared to the regular estimator. In particular, even an optimistically initialized

baseline could not improve the alternate estimator’s performance. We reconcile this fact by noting

that in this problem the uniform random policy will actually lead to a sub-optimal exploration and

an optimistic baseline will hamper the performance of the alternate estimator.

6.5 Summary

In this chapter, we demonstrated that the extension of the alternate estimator to the MDP case

retained its favorable properties that we had identified in the case of gradient bandits. We ran

experiments with the REINFORCE policy gradient algorithm and a tabular policy and value func-

tion estimate on the five state chain environment. Our results confirm that the alternate estimator

can utilize the noise in the sampled returned estimates and also the bias in the value function esti-

mate to escape sub-optimally saturated policies. Further, even for the case of uniform policies, we

observed that the alternate method had a superior performance compared to the regular estimator

on the chain MDP (except for the case of a pessimistically initialized baseline).
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Chapter 7

Experiments in the MDP Setting with

Function Approximation

In this chapter, we demonstrate that the desirable properties of the alternate estimator continue to

hold with function approximation. We ran experiments with online actor-critic (see Algorithm 3)

on various MDPs using linear function approximation (with tile-coding) and neural networks. The

agent was trained using either the regular or the alternate estimator and a critic learned using TD-

style updates; in these experiments, we do not have access to the underlying dynamics, and therefore

we did not conduct experiments with the true value function vπ. We considered two different

types of experiments: one with artificially introduced policy saturation, and another with non-

stationary MDPs which naturally give rise to sub-optimally saturated policies. Experiments where

we explicitly saturate the agent’s policy at the beginning of learning are helpful in understanding the

behavior of the estimators by providing a controlled environment. The non-stationary MDPs serve

as a proof-of-concept that sub-optimally saturated policies are not merely pathological constructs,

but can occur in practical problems that a user might care about.

7.1 Experimental Details for Linear Function Approximation

For experiments with linear function approximation, we used the environments1 Acrobot (Sutton,

1996) and MountainCar (§4.3, Moore, 1990; Singh and Sutton, 1996), which are depicted in Figure

7.1. Both of these environments are episodic in nature with a continuous state space and a discrete

action space consisting of three actions: left, do-nothing, and right. In Acrobot, the goal is to

control an under-actuated double pendulum such that its end effector reaches a certain height, by

1We used the environment implementations available here: https://github.com/andnp/PyRlEnvs/tree/main/

PyRlEnvs/domains. In this repository, MountainCar is referred to as GymMountainCar.

71

https://github.com/andnp/PyRlEnvs/tree/main/PyRlEnvs/domains
https://github.com/andnp/PyRlEnvs/tree/main/PyRlEnvs/domains


1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Individual Trajectories

Goal

 

State

 

(0, 0)

 

Actions

 

MountainCar DotReacherAcrobot

θ1

θ2

Start State

~ Goal State

Goal State

-1.2 +0.5

Figure 7.1: Schematic diagrams of Acrobot, MountainCar, and the DotReacher environments. For
the DotReacher environment, we also plotted multiple trajectories for a particular instance of online
actor-critic that learned to solve this task.

applying torque on the second joint. In MountainCar, the goal is to move an under-powered car

from the bottom to the top of a hill. For both the environments, we fixed the discount factor γ = 1

and timed out the episode after 1000 timesteps if the agent was unable to solve it by then2.

We performed sweeps over the policy stepsize α ∈ {2−13, 2−11, . . . , 25} and the critic stepsize

β ∈ {0.01, 0.05, 0.1, 0.5, 1, 2}. The state for Acrobot is [cos(θ1) sin(θ1) cos(θ2) sin(θ1) θ̇1 θ̇2], with

θ̇1 ∈ [−4π,+4π] and θ̇2 ∈ [−9π,+9π]. The state for MountainCar is [position, velocity] (of the

car), with position ∈ [−1.2,+0.5] and velocity ∈ [−0.07,+0.07]. Both the policy (for details,

see §5.4) and the value function used by the agent were linear in the state features. And the state

features were constructed using tile-coding (§9.5.4, Sutton and Barto, 2018). In particular, we used

four tiles across each dimension of the state space, and eight different tilings with randomly chosen

offsets. We also added an “always on” bias feature and normalized the tile-coding features (by

dividing them with nine) to have a unit sum.

7.2 Non-stationary MountainCar and Acrobot

This experiment investigates the performance of the online AC algorithm, with the regular and

the alternate estimators, on non-stationary Acrobot and MountainCar. To induce non-stationarity

2For these experiments we bootstrap at the final state of the episode, i.e. if the episode times out, we bootstrap
using v̂π(stimeout), and if the episode actually ends, we use v(s×) = 0 for bootstrapping. This justifies the use of
timeouts since (1) this process follows the recommendation made by Pardo et al. (2020), (2) this is an episodic
task and as the agent’s performance improves, the episodes will be timed out less, and (3) from our experiments,
we observed that 1000 timesteps gave the agent enough time to encounter a true terminal state. Encountering true
terminal states is important when learning with TD-style updates, since only at terminal state do we bootstrap from
a true value (of zero); for all the other states, we bootstrap from an estimated value. Note that this argument is
different from the numerical precision argument given in Footnote 2 of §6. Also note that with γ = 1 and a timeout of
1000, for the agents that are unable to solve the task within 1000 timesteps, the value function estimates will diverge
to negative infinity; for instance, see the value of v̂π(s0) against time for the regular estimator in Figure 7.6.
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Figure 7.2: Learning curves and entropy plots for online linear AC with tile-coding on Acrobot
and MountainCar. Both the estimators have one learning curve each for the best performing set of
stepsizes right before the non-stationarity hit and at the end of learning. The right subplots show
the entropy of the policy on the states encountered during each episode. All the curves show the
mean values (thick line) and the standard error (shaded region) over 50 independent runs.

in either task, we switched the left and right actions after half-time. The policy was initialized

uniformly by setting all the action preferences to zero. The critic weights were also initialized to

zero. Each agent was trained for 400k timesteps for Acrobot, or 200k timesteps for MountainCar.

Figure 7.2 (left) shows the learning curves for the two estimators. For each estimator, we selected

two different sets of stepsize configurations: one that had the best performance right before the

non-stationarity hit, and another that had the best performance at the end of the experiment (in the

figure, we denote this latter set by putting a final in the subscript of the corresponding estimators).

For MountainCar, the alternate estimator was superior to the regular estimator for both sets of

stepsizes. Remarkably, the regular estimator (red curve), with the best performing parameters at

timestep 100k, was unable to recover from the non-stationarity; whereas the alternate estimator

(blue curve) was able to recover, despite having a similar performance as the regular estimator at

the end of 100k timesteps. On Acrobot, the alternate estimator was again superior to the regular

estimator, however the difference was less evident.

We attribute the superior performance of the alternate estimator to the bias in the critic esti-

mate. For instance, consider what would happen in MountainCar for an online AC agent using a

well performing stepsize configuration. At 100k timesteps, the agent would be able to learn a good

policy and therefore the critic would learn to predict a return that is greater than −200. Now,

when the non-stationarity hits, the agent’s policy suddenly becomes sub-optimally saturated, and
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Figure 7.3: The sensitivity plots for online Actor-Critic with linear function approximation (using
tile-coded state features) on MountainCar and Acrobot. The sensitivity plots show the mean
performance during the last 5k timesteps, averaged over 50 independent runs.

thus the agent starts receiving returns much lower than −200. This in turn means that at this

time, the critic estimate has become optimistic. As a result, for the alternate estimator, the critic

would encourage exploration by pushing the policy towards a more uniform distribution. Figure

7.2 (right) corroborates this point: the policy entropy for the alternate, but not for the regular,

estimator has a spike right around the timestep when the non-stationarity was introduced.

Figure 7.3 shows the parameter sensitivity plots for these tasks. From the sensitivity plots,

we see that the alternate estimator is much less sensitive to the stepsizes and achieves a superior

or competitive final performance compared to the regular estimator, both before and after the

non-stationarity was introduced.

7.3 Experiments with Saturated Linear Softmax Policies

We now consider the performance of the two PG estimators on Acrobot and MountainCar with

artificially saturated policies. Our results show the same trends for alternate and regular estimators

in the linear function approximation setting as we saw for the bandit and the tabular setting. For

obtaining saturated policies, we initialized the action preference corresponding to the do-nothing

action with a value of either 0, 5, 10, or 100 depending on the degree of policy saturation, whereas

the preferences for the actions left and right were always initialized with zero. The baseline was

initialized with different values (0,+500, or −500) imparting an optimistic or a pessimistic effect

to the estimators. Each agent was trained for 50k timesteps for both the environments

Figure 7.4 shows the learning curves for for both the environments where the policy was ini-

tialized uniformly and the critic was initialized to zero. From this figure, we note that both the

estimators were able to learn a good policy (a return of more than −200 is considered good on

these environments). Further, the alternate estimator learned faster as compared to the regular

estimator. We explain this behavior by noting that a baseline initialization of zero is effectively

optimistic for a random policy (which will achieve large negative returns). Therefore, with an
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Figure 7.4: Learning curves for the best stepsize parameter configurations based on final perfor-
mance on the two environments. The policy was initialized uniformly randomly and the baseline
was initialized to zero. The curve show the mean performance and standard error over 50 runs.

optimistic baseline, the alternate baseline was probably able to get to the fixed point of the biased

update at a fast rate. Once it was near this fixed point, as its critic estimate improved, it slowly

moved towards the optimal policy. Whereas, with the regular estimator, the agent just slowly

moved towards the optimal policy, and thus had a lower sample efficiency.

We show the sensitivity plots for these estimators, with different policy saturations and baseline

initializations, on both Acrobot and MountainCar in Figure 7.5. The results follow similar trends

that we observed for 3-armed bandits and the tabular chain environment. And impressively, these

plots show that the alternate estimator can effectively escape saturated policies, even with a high

policy saturation of θinit = [0 100 0]⊤.

From the results in this figure, we observe that the alternate estimator had a lower parameter

sensitivity and achieved a superior final performance compared to the regular estimator, for almost

all the policy saturations and baseline initializations considered in this experiment; except for

the (uniform policy and b = −500) initialization case, where the regular estimator had a better

performance. We also observe that as the baseline was initialized to more negative values (to −500
instead of 0), the performance of the alternate estimator became worse. The baseline initialization

affects the regular estimator much less. And as the policy initialization became more saturated, the

performance of both the methods worsened. Another thing to note is that the regular estimator

had a lower sensitivity to the critic stepsize β; the alternate estimator performed poorly for lower

critic stepsizes than it did for higher critic stepsizes. We believe that the reason for this is that

with lower critic stepsizes, the critic takes more time to track the value function due to which the

alternate estimator remains biased for longer; and this probably affects the final performance in a

negative way. We make one final comment about this experiment: the initializations (0,+500, and

−500) are all effectively optimistic for a saturated policy (which gets a return of less than −1000);
this probably explains why the alternate estimator had such a good final performance, for most

settings, in both the tasks.
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Figure 7.5: Parameter sensitivity plots for online AC with the two estimators on Acrobot (top)
and MountainCar (bottom). The columns correspond to policies with different saturations and the
rows correspond to differently initialized critic estimates. Each agent was run for 50k timesteps.
The plots show the mean final performance during the last 5k steps, averaged over 50 runs.
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7.4 Experiments on RealisticMountainCar

We now consider the performance of the two estimators on a difficult variant of the usual Mountain-

Car environment which we call as the RealisticMountainCar3. Unlike the original environment that

had an instantaneous dynamics model (§4.3, Moore, 1990), i.e. an acceleration applied to the car

instantaneously changed its velocity, RealisticMountainCar introduces a delay between when the

acceleration is applied and when the car’s velocity increases, thereby making the dynamics more re-

alistic. Moreover, as we find from our experiments, this delay makes the environment more difficult

to solve for the regular PG estimator. The state-action space for this environment remains the same

as the original MountainCar environment. The discount factor used was γ = 1 and the episode was

cutoff after 1000 timesteps if the agent was unable to solve it by then. We performed sweeps over

the policy stepsize α ∈ {2−8, 2−6, . . . , 216} and the critic stepsize β ∈ {0.01, 0.05, 0.1, 0.5, 1, 2}. All

the agents were trained for 100k timesteps and 50 independent runs.

1000

800

600

400

200

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.00.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Individual Runs

θ init: [0, 0, 0]     |    Learned vπ (initialized to 0) 

3500

3000

2500

2000

1500

1000

500

0

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Timesteps / 5000

Reg (α=210, β=1)

Alt (α=22, β=2)

Reg (α=210, β=1) Reg (α=210, β=1)

Alt (α=22, β=2)

Alt (α=22, β=2)

Figure 7.6: Learning curves for online AC on the RealisticMountainCar task for the best performing
parameters. We also plot the value estimate of the initial state of the episode, and the mean
policy entropy on the states encountered during different episodes. Even though the alternate
estimator was able to learn an effective policy, the regular estimator failed to do so. Note that the
regular estimator achieved its best performance at a very high stepsize that almost instantaneously
pushed the policy in a highly saturated sub-optimal region; hence the learning curve for the regular
estimator is flat (corresponding to an unchanging policy) and the entropy plot for the regular
estimator has zero entropy throughout the learning period.

Figure 7.6 shows the performance curves, the value function estimate of the initial states, and

the policy entropy for the two estimators as the agent learned. From these results, we see that

the alternate estimator was effectively able to solve this task, whereas the regular estimator was

unable to learn a good policy. From the individual runs for the regular estimator, we see that some

of them resulted in a good policy (achieving a return of > −200), whereas most of them didn’t

learn (achieving the maximum possible return of −1000), giving it a net average return of about

3RealisticMountainCar was proposed by Andy Patterson. We used the implementations available here: https:

//github.com/andnp/PyRlEnvs/tree/main/PyRlEnvs/domains. In this repository, MountainCar is referred to as
GymMountainCar and RealisticMountainCar is referred to as MountainCar.
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−700. We also included the plots for v̂π(s0) where v̂π is the critic estimate and s0 is the start state

observed at the beginning for each episode. From these plots, we see that the value function of

the regular estimator diverges to negative infinity because we used a discount factor γ = 1 and the

agent, for most runs, was unable to solve this task within 1000 timesteps.

We show the sensitivity plots for the mean final performance of the two estimators during the

last 5k timesteps in Figure 7.7. These results show that the alternate estimator learns a good

policy for a large range of stepsizes. Most curiously, for this experiment, the alternate estimator

with a baseline initialization of +500 had a worse performance than the initialization of 0 and −500.
We attribute this result to the fact that overcoming an optimistic initialization of +500 takes the

longest time (during which the estimator remains biased). Further, since 0 and −500 are already

optimistic for this problem, they had a good performance as well. This observation leads us to

conclude that the critic for the alternate estimator should be initialized optimistically, but not too

optimistically.
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Figure 7.7: Parameter sensitivity of different PG estimators with online AC on RealisticMountain-
Car. The policy was initialized uniformly, and the value function was initialized to different value
in each column. We see that the alternate estimator is fairly robust across parameters whereas the
regular estimator exhibits poor performance consistently across different parameter settings.

7.5 Details about Experiments with Neural Networks

Now we study the online AC algorithm with a neural policy and critic. We use an environment called

DotReacher. We again experimented separately with artificially saturated policy initializations and

a non-stationary environment. In either case, we found that the results were similar to the linear

function approximation case.

DotReacher4, shown in Figure 7.1 is a grid world environment where the agent is spawned

uniformly randomly in a 2 × 2 unit squared arena. For the stationary version of DotReacher, the

4DotReacher was proposed by Rupam Mahmood. We used the implementation available here: https://github.
com/svmgrg/rl_environments/tree/main/DotReacher.
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goal is to reach the (0, 0) state within a tolerance of 0.1. The agent has 9 different actions: eight

corresponding to eight different directions and one for no movement. Each action deterministically

moves the agent 0.03 units in the corresponding direction. The agent gets a reward of −0.01 until it

reaches the goal state. We fixed γ = 1 and the episode cutoff length as 1000. For the non-stationary

variant, we initially set the goal state to (−1,−1) and then shifted it to (+1,+1) after 50k steps.

For both the experiments involving the stationary the non-stationary DotReacher, we swept

the policy stepsize α ∈ {2−17, 2−15, . . . , 2−3}, the critic stepsize β ∈ {2−17, 2−15, . . . , 2−7}, and

used the Adam optimizer (Kingma and Ba, 2014) with the default PyTorch (Paszke et al., 2019)

configuration5. We maintained two separate neural networks (both with ReLU) for the policy and

the critic: the policy network dimensions were 2 × 10 × 10 × 9 and the critic network dimensions

were 2 × 10 × 10 × 1. For saturating the policy, we increased the action preference corresponding

to the no movement action by modifying the bias units of the last layer of the neural network.

7.6 Non-stationary DotReacher

Figure 7.8 shows the learning curves and the stepsize sensitivity plots for the online AC algorithm

with the two estimators on the DotReacher environment. The policy was initialized uniformly and

the critic estimate was initialized to zero. The results follow the same pattern as the experiments

on the non-stationary Acrobot and MountainCar. The alternate estimator is still competitive or

superior than the regular estimator, although the difference is less pronounced.
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Figure 7.8: (Left) Learning curves for online Actor-Critic with neural networks on DotReacher
(100k timesteps, 50 runs) for two sets of best performing parameter configuration: one that obtained
the best performance right before the non-stationarity occurred, and the other that obtained the
best final performance at the end of learning. (Right) The parameter sensitivity plots showing
the mean final performance (during the last 2k timesteps) at the end of 50k timesteps and the
mean final performance at the end of 100k timesteps. The mean final performance was computed
by averaging over the last 2000 timesteps either at half-time or at the end of training.

5Refer here: https://pytorch.org/docs/stable/generated/torch.optim.Adam.html.
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7.7 Experiments with Saturated Neural Policies on DotReacher

We now consider the experiments with artificially induced policy saturations on the DotReacher

environment. Figure 7.9 shows the sensitivity plots for both the estimators for different policy

saturations and critic initializations. In this problem, we consider a return of more than −1
as being good. The results are same as those discussed in §7.3: the alternate estimator had a

superior performance and exhibited less sensitivity to the stepsize α as compared to the regular

estimator. Interestingly, for these results, we observe that for lower amounts of policy saturations

(θno-action ∈ {5, 10}), the regular estimator could learn policies almost as good as the alternate

estimator. But for the highest saturation case, only the alternate estimator was able to escape the

saturation and obtain high returns. We also see that an optimistic baseline initialization (for this

problem, b = 0 and b = +25) helped the alternate estimator achieve a good performance, whereas

the pessimistic baseline initialization (b = −25) made the performance of the alternate estimator

even worse than the regular estimator (except in the case of super high policy saturation).
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Figure 7.9: Online AC + neural networks with different baseline initializations and policy satu-
rations on the DotReacher task. The plots show the mean final performance during the last 5k
timesteps of the agent’s 50k timestep lifetime. The figure header shows the action preference ini-
tialization for the no movement action; the rest of the preferences were initialized to zero. Different
rows show differently initialized value function estimates (0, +25, or −25). We observe that for
almost all the settings, the alternate estimator performed better than the regular estimator in re-
covering from saturated policies, especially for higher saturation magnitudes.
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7.8 A Digressive Remark: Softmax Policies Learn even with Ex-

tremely Large Stepsizes

In this section, we mention a peculiar observation: online AC with the alternate estimator was

able to learn a good policy even with extremely large stepsizes. The reader might have noticed

from the parameter sensitivity plots presented in this chapter that the alternate estimator has

a fairly good performance for a big range of the policy stepsize α. In particular, the sensitivity

plots, given in Figure 7.5, for Acrobot and MountainCar show that for the stepsize range we tried

(with the maximum value of α being 25 = 32), the alternate estimator had a good performance

throughout. More interestingly, for RealisticMountainCar (sensitivity plots given in Figure 7.7), we

tried stepsizes as large as 216 = 65536, and the alternate estimator still received a fairly high final

return (only slightly lower than the what the alternate estimator with the best parameter setting

achieved and much higher than what the regular estimator received). Even if we take into account

the normalization factor from tile-coding (which was 9), the effective stepsize still remains quite

high: 216/9 = 7282. To put this number in perspective, the default choice of the stepsize for training

neural networks with the Adam optimizer (Kingma and Ba, 2014) is 0.0003. One might wonder,

whether this only happens for online AC with linear function approximation setting, and the answer

is no. We show the stepsize sensitivity plots for REINFORCE on the chain environment (the same

experiment as discussed in §6.1 and §6.2) with a wide range of the policy stepsize in Figure 7.10.

And these plots display a similar pattern: the alternate estimator learns for extremely large values

of the policy stepsize as well. The first two rows of Figure 7.10 are exactly the same as Figure 6.3

except that it includes a larger sweep for the policy stepsize α ∈ {2−6, 2−4, . . . , 214}. Similarly, the

third and fourth rows are identical to Figure 6.6 and Figure 6.7 respectively. We verified that none

of these results were due to bugs in our experiments and now discuss some plausible explanations

for this behavior.

We ascribe these observations to the nature of softmax function and the policy optimization

problem over the action preferences. Note that (1) the softmax function transforms any set of

action preferences, irrespective of how large they are, to a proper probability distribution; and (2)

for softmax policies, the optimal point which maximizes the PG objective, lies at infinity on the

action preference landscape. The second point is true because for MDPs, the optimal policy is

greedy, which requires the action preference for the greedy action to be infinitely large. This makes

the optimization problem over the action preferences very different from, say, an unconstrained

convex optimization problem. For convex functions, an update step with a high stepsize, even in

the correct direction, can make the function value worse than its present value. In contrast, a larger

stepsize with softmax functions will only drive the function value closer to the optimum at a faster

rate. We illustrate this point in Figure 7.11. Therefore, as long as the update direction is correct,

having large stepsizes should not be a concern for softmax policies.
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Figure 7.10: Sensitivity plots showing the final performance of tabular REINFORCE on the chain
environment. The different columns correspond to an increasing degree of policy saturation and the
figure headers show the action preference initializations for the left and right actions respectively.
The first row shows the results for the true baseline vπ, and the next three rows show results for a
learned baseline, which was initialized to either zero, +4, or −4 at the beginning of learning.

For concreteness, let us consider the stepsize sensitivity behavior of expected PG in Figure 7.10:

a larger stepsize for expected PG update resulted in a faster convergence to the optimal policy and

consequently a higher final return. From gradient based optimization literature, we know that the

expected (policy) gradient is the the update direction that results in the fastest local improvement

in the (policy) objective, and therefore using the reasons given in the previous paragraph, we would

expect a large stepsize to drive the policy towards this local optimum faster. We can also observe

this trend for the expected gradient bandit algorithm. Figure 3.5 (bottom-left) shows that for a

bandit problem, a large policy update stepsize should still make the policy converge towards the

optimal (top) corner, albeit via a different route. But for that bandit problem, there is only one

optimum that is also globally optimal. Also, intuitively, the policy gradient update in the (tabular)

MDP setting can be considered as (kind of) making separate gradient bandit updates for each state.
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Figure 7.11: Effect of the stepsize magnitude on optimizing a function value. We consider the
optimization problem on a convex function and the logistic function. Note that the logistic function
y = ex

ex+1 is essentially equivalent (except for a translation along the x-axis) to the softmax function

π(a) = eθa

eθa+
∑︁

c∈A\a eθc
. This figure shows that given the correct update direction (positive direction

for both of these problems), an update step with a very large stepsize on the convex function can
make the function value worse. Whereas, in the case of a softmax function, the larger the stepsize,
the more the function value increases with a single update step.

However, due to the sampling noise, the stochastic PG estimators might not always give an

update direction that points towards the local optimum. Consequently, a very large stepsize could

saturate the policy in a sub-optimal manner. We posit two reasons for why the alternate estimator

might be better suited to handle very large policy stepsizes than the regular estimator. The first

reason is that the alternate estimator can handle and escape sub-optimally saturated policies much

better than the regular estimator. With very large stepsizes, the action preferences for both the

estimators would be driven to large values and the policy would becomes saturated. For such cases,

the regular gradient estimator becomes vanishingly small: ĝ REG(S,A) = (R−b)(eA−π) ≈ 0, since

near the corners eA ≈ π with a high probability. Therefore, even with a very large stepsize α, the net

update to the action preferences θnew = θold+α ĝ REG(S,A) remains small, and the policy doesn’t

change much. In contrast, for the alternate estimator ĝ REG(S,A) = (R− b) eA, irrespective of the

degree of policy saturation, the estimator remains non-zero, which when combined with a large

stepsize can be effective in changing even very large action preferences. Although this explanation

used the gradient bandit estimators, similar arguments should hold for the MDP policy gradient

estimators as well.

The second point is that, since the alternate estimator updates the preference corresponding to

only the sampled action, there is much less generalization in the preference values across actions

when using the alternate estimator. In contrast, the regular estimator updates all the action

preferences and therefore has a high generalization across the action space. This distinction becomes

important when the agent updates the policy using an incorrect direction and a large stepsize. With

the alternate estimator, only some action preferences for some states get saturated, whereas with
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the regular estimator, all the preferences for a set of states get saturated. This generalization

argument is also supported by the experiments presented in this document. With large stepsizes,

the performance of the estimators, especially the regular version, becomes worse as we increase the

generalization of the policies: compare the performance of the two estimators in Figure 7.10 (tabular

policy: no generalization); Figures 7.5 and 7.7 (linear policy with tile-coding: generalization across

8 tilings); and Figure 7.9 (neural policy: high generalization). With neural networks, none of the

estimators performed well with large stepsizes because updating even a single action preference (in

the wrong direction) changes all the weights lying in the initial layers of the network, ultimately

affecting all the action preferences.

One experiment to test the above hypothesis could be to run online AC with both the estimators

on Acrobot and MountainCar with a tabular policy. This could be achieved with a tile-coding that

has super-fine meshes (that is a large number of tiles per dimension) and only a single tiling. If the

performance of the regular estimator with high stepsizes improves as compared to Figure 7.5, then

that would serve as a strong verification for this hypothesis. Unfortunately, a detailed investigation

of this phenomenon is out of scope of this work, and therefore we do not pursue it any further.

7.9 Summary

In this chapter, we demonstrated that the alternate estimator works well with the online Actor-

Critic algorithm and function approximation on a wide range of tasks6. In fact, for most of our

settings, the alternate estimator had a strictly superior performance to the regular estimator. We

also studied a particular type of non-stationary environments where the baseline estimate becomes

optimistic after the non-stationarity hits, allowing the alternate estimator to adjust to the changes

in the environment; in contrast, the regular estimator takes much longer to improve its policy.

6It might seem that RealisticMountainCar and DotReacher are two obscure environments that we chose only
because they helped motivate our case. However, this is not true. We chose RealisticMountainCar because it is a
more realistic version of a classic control problem. By modeling the delay between when the action is taken and when
its outcome is visible to the agent, it mimics real world problems more closely than other environments. The fact
that the alternate estimator has a much superior performance than the regular estimator on this task was a mere
coincidence. We chose DotReacher because it is an easy to understand task which the online AC algorithm with a
neural policy can quickly solve, using just online incremental updates, without requiring access to a replay buffer.
And, as the reader might have noticed, the difference between the performance of the two estimators in DotReacher
is actually quite small.
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Chapter 8

Conclusions

In this thesis, we introduced and analyzed an alternate policy gradient estimator for softmax

policies that can utilize the reward noise and the bias in the critic to escape sub-optimally saturated

regions in the policy space. This estimator was derived by analytically computing the gradient of the

softmax policies in the policy gradient theorem. The resulting expression for the alternate estimator

is a very simple modification over the expression for the popularly used regular PG estimator. And

interestingly, this simple modification gives the alternate estimator certain properties that we found

to be quite useful in dealing with saturated policies.

First of these properties is that the noise in the reward signal gives the alternate estimator a

non-zero variance at the corners of the probability simplex. This allows it to conduct a random

walk type motion and potentially overcome policy saturation. The second property is that when

this estimator is used with a value function estimate, i.e. a critic, it becomes biased. With an

optimistic baseline, the biased expected update, corresponding to the alternate estimator, pushes

the policy towards a relatively uniform distribution with a strong signal, which again allows it

to escape saturated policies. Later, as the critic estimate improves, this bias disappears, and

the alternate estimator updates the policy towards an optimum point. On the flip side, with a

pessimistic baseline, the biased update pushes the policy towards saturation (possibly sub-optimal)

with an equally strong signal, which might result in poor performance.

A third property of the alternate estimator is that it only updates the softmax action preferences

corresponding to the sampled action. This is unlike the regular estimator which updates the action

preferences corresponding to all the actions. Moreover, if we utilize this property, we can design a

gradient bandits algorithm employing the alternate estimator to have a per-timestep computational

complexity that is logarithmic in the number of actions. This is strictly faster than the complexity

of the gradient bandits algorithm using regular estimator, which is linear in the number of actions.

When the action space is large, this difference can become substantial.
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We studied all these properties theoretically for the multi-armed bandit framework. We also

conducted an extensive empirical analysis with different magnitudes of artificially induced policy

saturations and baseline initializations on multi-armed bandits, tabular MDPs, and MDPs with

function approximation. In our experiments, we used a diverse range of algorithms such as gradient

bandits, REINFORCE, and online Actor-Critic with tabular, linear, and neural policies. We also

showcased the efficacy of the alternate estimator on non-stationary problems, where the policies

naturally become sub-optimally saturated. These experiments helped verify the properties we

discussed above, and demonstrated that the alternate estimator has a superior (or competitive)

performance compared to the regular estimator in a variety of situations and can work well with

different PG algorithms and various function approximation schemes.

From our empirical results, we found that the alternate estimator works really well with policies

that are quite saturated (but still have a non-zero support over all the actions) and with baselines

that are optimistically initialized. This combination, of a saturated policy and an optimistically

initialized value function baseline, is particularly well suited for MDPs where a more uniform policy

is good for exploration. More importantly, this combination organically arises in certain non-

stationary examples where, due to a change in the environment dynamics, the agent’s behavior

becomes sub-optimal and it starts receiving rewards which are lower compared to what its baseline

predicts. Unsurprisingly, for MDPs where uniform policies explore poorly, this combination results

in a bad performance for the alternate estimator. We also believe that the signal offered by the

alternate estimator is much stronger than the signal offered by the regular estimator. Therefore,

we conjecture that with a suitable critic stepsize, the alternate estimator can exhibit a faster

convergence compared to the regular estimator by: (1) initially exploiting its bias to quickly move

towards a more uniform policy (which can be, depending on the magnitude of the optimistic

baseline, close to the optimum point), and (2) later when the critic estimate improves, using the

unbiased updates to move towards the optimal policy.

The major weakness of the alternate estimator is that with pessimistic baselines, it pre-maturely

saturates the policy to distributions which can be sub-optimal. In contrast, pessimistic baselines

affect the regular estimator in a much milder way making it a better choice for this setting. Also,

the combination of a saturated policy and a pessimistically initialized baseline can occur naturally

in certain non-stationary examples, where the agent starts getting rewards which are higher than

what its baseline predicts. One example is a two-armed bandit problem where the rewards for both

the arms increase after a certain time in such a way that the optimal action switches from one arm

to the other. Further, for problems which are not too difficult and the initial policy provides good

exploration, the regular estimator should perform better than the alternate estimator, because it

has a lower variance. Another case where the regular estimator can be superior is, when the critic

stepsize is too low and thus the baseline takes a long time to track the true value function. This

makes the alternate estimator biased and changes the point where the policy would converge to,
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which depending on the problem can be catastrophic. Whereas, the regular estimator, even in such

cases, remains unbiased.

To conclude, the alternate estimator makes the policy gradient algorithms more robust to

saturated softmax policies, and works pretty well in a particular class of problem settings. Notably,

this estimator makes existing PG methods more viable for certain non-stationary problems, and

by extension for many practical real-life control tasks.

8.1 Limitations of this Project and Future Directions

In this thesis, we provided a sufficient proof-of-concept that motivates a further study of the al-

ternate estimator. However due to the nature of this estimator, the scope of such a study will

inherently be limited to discrete softmax policies and the log-likelihood family of PG estimators.

Let us now discuss the limitations of the analysis conducted in this thesis and possible future works

which can address them.

We conducted a very limited theoretical analysis of the alternate estimator on the multi-bandit

setting, where our results were asymptotic in nature. It would be useful to extend this analysis to

MDPs. A finite time analysis could also be incredibly fruitful, because based on our intuition and

some empirical evidence, we suspect that the alternate estimator might have a faster convergence

rate compared to the regular estimator. Another direction is to study, possibly employing a two-

timescale analysis (for instance, see Wu et al., 2020), how a changing baseline with the alternate

estimator affects the dynamics of policy optimization (also see Chung et al., 2021). Also, we solely

analyzed the expected updates corresponding to the regular and the alternate estimators. But, it

seems that some of the most interesting properties of these estimators only surface when we look

at the stochastic updates. Therefore, extending the analysis to include stochasticity (see Mei et

al., 2021) could yield important insights as well. Comparing the alternate estimator with policy

gradient methods that use entropy regularization also seems highly relevant.

It might also be interesting to see how the property of the alternate estimator, that it only

changes a single action preference for each update, could be used to come up with computationally

faster policy gradient algorithms. In this thesis, we answered this question for the simplest case

of gradient bandit algorithm. And Young (2019) investigated this question in connection with

reservoir sampling. Another direction could be to combine the alternate estimator with techniques

used in natural language processing to speed up the learning of softmax classifiers1. Yet another

approach could be to consider the alternate estimator with neural policies, and update only a subset

of the neural network weights connected to the action preference being modified at that time. This

approach would ensure that only a small number of weights are updated at each timestep, but on

1For instance, see candidate sampling (https://www.tensorflow.org/extras/candidate_sampling.pdf).
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average the whole network gets updated, albeit, at a slower rate.

The empirical analysis undertaken in this project was limited in certain aspects. For instance,

we only considered multi-armed bandit problems with a normally distributed noise. Possibly, other

bandit problems (see Lattimore and Szepesvári, 2020) can yield additional insights into the behavior

of these estimators. Also, we only studied a single type of tabular MDP: the five state chain (and its

difficult variant). The chain MDP is a great environment for running quick experiments whose re-

sults are relatively easy to reason about. However, it hides interesting issues in policy optimization

that other tabular environments help bring out: such as CliffWorld which has the presence of mul-

tiple sub-optimal policies (Example 6.6, Sutton and Barto, 2018), or DeepSeaTreasure (Vamplew

et al., 2010; Osband et al., 2020) which is a difficult exploration problem.

We also did not study the batch PG algorithms such as PPO, TRPO, or A2C (Mnih et al.,

2016). And we had good reasons for avoiding them: typical implementations (especially those which

perform well) of batch algorithms have a huge number of interacting parts (such as large neural net-

works, replay buffers, mini-batch updates, and complicated optimizers), which introduce tangential

and confounding factors making a careful empirical analysis much more difficult, compute intensive,

and time consuming. Having said that, an important future work would be to study the alternate

estimator with these algorithms on large MDPs. Another important set of experiments would be

to compare the performance of the alternate method on non-stationary tasks and with saturated

policies against techniques (mentioned in §1.1) such as those which add entropy regularization or

explorative bonuses to policy gradient methods, or with alternative policy parameterizations such

as the escort transform.
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