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Abstract

The Applied Miniaturisation Laboratory (AML) has recently built a laser-induced

fluorescent capillary electrophoresis (LIF-CE) genetic analysis instrument, called

the Tricorder Tool Kit (TTK). By using a photodiode instead of photomultiplier

tubes in the optical detection, the AML has lowered the cost and size compared to

commercial LIF-CE products. However, maintaining an adequate signal-to-noise

(SNR) and limit of detection (LOD) is a challenge.

By implementing a multistage amplifier, we increased the bandwidth and volt-

age swing while maintaining the transimpedance gain compared to the previous

design. We also developed signal processing algorithms for post-experiment pro-

cessing of CE. Using wavelet transform, iterative polynomial baseline fitting, and

Jansson’s deconvolution, we improved the SNR, reduced baseline variations, and

separated overlapping peaks in CE signals. By improving the electronics and signal

processing, we lowered the LOD of the TTK, which is a step towards the realisation

of inexpensive point-of-care molecular medical diagnosis instruments.
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Chapter 1

Introduction

Long test times and the high costs associated with molecular medical diagnoses are

limiting factors for their widespread usage in our society. Molecular diagnoses are

currently done in batches at large centralized laboratories equipped with expensive

instruments. To complete a diagnosis, samples are processed in multiple stages and

each stage requires a specialized instrument. Due to the complexity of these instru-

ments and the protocols required, highly trained personnel are needed to perform

these diagnoses. Consequently, molecular diagnoses are expensive to perform and

test results have long turnaround times.

There is a strong need for inexpensive, portable, and fast molecular diagnosis

instruments in clinical and hospital settings [1]. Such technology would allow for

accurate diagnosis and treatment of potential diseases, virus pandemics, or cancer

development. If rapid molecular diagnoses were available, then pandemics could

be more easily monitored and controlled by providing suitable treatments. In the

recent H1N1 outbreak, medical staff were advised to treat every patient who had

flu-like symptoms with antiviral drugs to combat (H1N1 and regular) influenza.

These antiviral drugs can have adverse side effects such as nausea, hallucination,

and seizure [2]. Antiviral drugs were used on all patients with flu-like symptoms

because testing for the H1N1 virus requires the use of real-time polymerase chain

reaction (PCR). Treatments for influenza may be ineffective if delayed until labora-
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tory test results are returned.

Molecular diagnosis can also help with disease prevention. The Google co-

founder Sergey Brin, one of the richest people in the United States, recently under-

went a genetic test that revealed a mutation in his LRRK2 gene [3]. Depending on

the evaluation metrics used, the results from the genetic test indicated that he has a

20 - 80% chance of getting Parkinson’s disease later in life. Genetic testing allowed

Mr. Brin to take preventative measures for Parkinson’s disease.

Molecular diagnosis can identify cancer – early diagnosis is a key factor in con-

trolling this disease. According to Yager et al., 73% of lung, 57% of colorectal,

and 34% of breast cancer patients are diagnosed at a later stage of cancer develop-

ment [4]. But if cancer is not diagnosed and treated at the beginning of develop-

ment, the survival rate is below 15% [5, 6].

If molecular diagnoses were offered in a point-of-care (POC) format, inexpen-

sive, portable, and on-site, the health care system could provide treatments tailored

to specific needs. For this purpose, research on the application and infrastructure of

lab-on-chip (LOC) technology has been on the rise for the last two decades.

The Applied Miniaturisation Laboratory (AML), supervised by Dr. Christopher

Backhouse, recently integrated and miniaturized microfluidics, microelectronics,

and optics into an instrument that can perform molecular diagnosis. One of the

central challenges in such LOC instruments is in maintaining an adequate signal-

to-noise ratio (SNR) and limit of detection (LOD) in the detection subsystems as the

instruments are miniaturised. In the present thesis, these challenges are addressed

by improving the performance of the detection electronics, and by applying signal

processing techniques to remove electronic and instrumental artifacts produced in

the detection process.
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1.1 Thesis Overview

Chapter 2 provides a brief background on microfluidics, standard molecular diag-

nosis, and capillary electrophoresis (CE). We identify the type and source of noise

in the current detection circuitry designed and built by AML. We also review signal

processing algorithms that are used to extract information in CE signals.

In Chapter 3, a multistage amplifier is designed and tested for optical detection

and amplification of the signal captured by a photodiode in the TTK during CE

experiments. This new multistage amplifier improves the bandwidth and voltage

swing compared to the previous single-stage amplifier design. We believe that the

increase of bandwidth will reveal additional signal information in genetic analysis.

While we are improving the capabilities of our electronic circuits, we are also

investigating in this thesis the use of signal processing techniques to better extract

signals from recorded measurements compared to current methods used in the TTK.

Chapter 4 describes the wavelet transform and how it can be used to remove noise in

CE signals. A method is developed to determine a set of reliable wavelet denoising

parameters for various synthetic and experimental CE signals. The performance

of wavelet denoising is compared to other noise removal methods such as moving

average (MA), Savitzky-Golay (SG) smoothing, and low-pass filtering (LPF).

In Chapter 5, a baseline variation removal algorithm that consists of peak region

detection and an iterative polynomial baseline fit is implemented and tested.

Chapter 6 introduces a modified parametric Jansson’s deconvolution method.

This algorithm is used to separate overlapped peaks in CE signals.

In Chapter 7 a complete CE signal processing algorithm is presented and its

performance on experimental CE signals is explored.

The project conclusion and future improvements to this thesis work are pre-

sented in Chapter 8.
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Chapter 2

Background

2.1 Microfluidics

Microfluidic technology possesses key functionalities for the implementation of

point-of-care (POC) molecular diagnostic systems. The ability to manipulate and

analyse small samples of fluids is popular in molecular biology diagnosis because

it greatly reduces reagent usage and analysis time [7]. Microfluidic technology has

the ability to perform complex chemical and biological reactions, typically done

in laboratories, without the intervention of an expert operator. Thus the term lab-

on-a-chip (LOC) has been coined for microfluidics and the terms are used inter-

changeably in literature and in this thesis. With the impressive advances in mi-

crofluidics in the last two decades, molecular diagnostic devices have been reduced

in size and cost while increases in throughput, sensitivity, and applications have

been achieved [8–10]. With supporting equipment, microfluidic technology can be

used to diagnose medical conditions such as herpes simplex viral infection, gene

mutations, and muscular dystrophy [11].

2.2 Standard Molecular Diagnosis

A standard molecular diagnosis requires three steps as shown in Fig. 2.1 [12]. The

first step is sample preparation, where genetic information such as deoxyribonucleic
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acid (DNA) is extracted and purified from raw samples such as blood or urine. The

amount of genetic information must then be increased before detection. A popular

choice for DNA amplification is the polymerase chain reaction (PCR). The last step

in molecular diagnosis is genetic detection. A method that can be employed to

perform genetic analysis is electrophoresis. This thesis focuses on improving the

signal-to-noise ratio (SNR), resolution (R) and limit of detection (LOD) of genetic

detection in a molecular diagnosis.

Figure 2.1: Standard steps for molecular diagnosis.

Electrophoresis is the most widely used method for the detection of DNA and

protein because it is highly sensitive, flexible, and can be integrated with other

molecular biology protocols [11]. Among various electrophoresis methods, capil-

lary electrophoresis (CE) has become a standard due to its speed and low sample

requirement [13–17].

Biological components in solution can be separated based on their mobility dif-

ferences when an electric current is applied. This is the principle of CE separation.

In a fluid mixture, the velocity of a particle is dependent on its charge and size; thus

an electric field can be used to separate smaller molecules from larger molecules.

The separation channel is filled with a polymer sieving matrix and a buffer solution.

Since longer DNA fragments are bigger and have a lower electrophoretic mobility

than shorter DNA fragments, they pass more slowly through the sieving matrix [18].

The buffer solution provides ions to move the molecules along the channel when an

electric field is applied [19].

CE detection techniques such as electrochemical detection [20], mass spectrom-

etry [21], and laser-induced fluorescence (LIF) [22] have been developed. Among
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these methods, LIF is the technique used most often because of its sensitivity, reli-

ability, and compatibility with other biological systems [16, 23–28].

LIF works as follows: PCR produces multiple copies of product DNA (typically

millions or more) of a specific small region of the sample DNA. The sample DNA

may consist of billions of bases, and the product DNA is typically on the order of

300 bases long. The PCR process can be used to fluorescently label the product

DNA so that it is readily detectable by fluorescence at the near-single copy level.

By applying an electric field, the movement of the DNA can provide information

on the size and sequence of the product DNA (and hence also upon a specific region

of the sample sequence). From this information (an electropherogram), a clinical

diagnosis can often be made.

2.3 Miniaturisation Challenges

Significant advances in applications using microfluidic technology have been made

in recent years [8], but large supporting equipment are required to facilitate the

operations of microfluidic chips [29]. The expense and size of the these supporting

equipment have limited the application of the technology.

2.3.1 Commercial Capillary Electrophoresis Instruments

Commercial CE products, such as the µTK (Micralyne) and the Biofocus 3000

(Biorad) use a combination of a high-gain photomultiplier tube (PMT) and confocal

optics for LIF. A confocal optic system focuses and captures the exact location

where the DNA emits fluorescence, which is a very small area of the microfluidic

chip [30]. This method eliminates most of the scattered light of the microfluidic

chip and therefore has low baseline offset and variation. Although these instruments

have impressive throughput and sensitivity, they are large, expensive, and cannot

perform the entire molecular diagnosis. For these reasons, they are not suited for

automated POC applications.
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If POC molecular diagnoses were available, samples would not have to be sent

to off-site laboratories and diagnoses could be done on-site. This would allow for

quick diagnoses and treatments of medical conditions. In order to provide POC

molecular diagnosis, the support equipment must be portable, inexpensive, auto-

mated, easy to use, and reliable [1, 31]. Miniaturisation and integration of optics,

microfluidics, and microelectronics can eliminate expensive facilitating equipment;

however, as devices shrink in size, integration becomes more complex and new

challenges arise.

2.3.2 Optical Setup and Noise

To address the cost and size challenges in miniaturising commercial CE systems,

AML has recently demonstrated that the building cost of a LIF-CE instrument can

be reduced by using a photodiode, an interference filter, and a gradient index lens

instead of a confocal optical setup [29, 32, 33]. Fig. 2.2 shows two instruments

capable of performing LIF-CE, designed and built by AML. Photodiodes are suit-

able for POC applications because they are low cost, small, durable, and compatible

with existing complementary metal oxide semiconductor (CMOS) technology (for

future integration). One problem with this non-confocal approach is that the area of

detection is much larger. Hence, more scattered light is captured off the microfluidic

chip walls, causing a higher baseline.

A light source with constant intensity is required for a LIF-CE system. Laser

diodes are suitable for POC applications because they are inexpensive and com-

pact. However, laser diodes exhibit a phenomenon called mode hopping, where the

wavelength of the emitted light varies slightly. According to a report by Heumier

and Carlsten, mode hopping is caused partially by temperature and injection current

variations [34]. As a result, the output intensity of laser diodes often fluctuates. In

the TTK, slight laser intensity fluctuation due to temperature variation could cause

baseline variations as high as the signal peaks [29]. This is because non-confocal
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(a) A complete molecular diagnosis
platform [29].

(b) A compact instrument capable of
performing CE using a custom high volt-
age generating integrated circuit [32].

Figure 2.2: Non-confocal LIF CE instruments designed and built by AML.

systems like the TTK captures light of a large area and the baseline is very sensitive

to laser intensity fluctuations. The authors of [29] minimized the temperature varia-

tion by attaching a large metal slab onto the laser diode to increase the temperature

coefficient. The metal slab combined with a warm up period of 10 minutes reduced

the light intensity fluctuation by 66%.

Although the authors of [29] successfully lowered the laser intensity variations

by attaching a large metal slab and warming up the laser, these methods are not

permanent solutions. The stability and performance are different for every laser

diode and the same strategy will have a different effect on each laser diode. Also,

long continuous warm up periods shorten a laser diodes’s life span and a large metal

slab adds unnecessary bulk to a POC genetic analysis system.

2.3.3 Microfluidics

Microfluidic devices were originally fabricated with silicon and glass substrates. To

reduce cost, polymeric materials such as polydimethylsiloxane (PDMS) have been

used to fabricate microfluidic chips [35]. A drawback is that polymer substrates

typically emit higher autofluorescence than glass, which results in higher baseline
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offset and variation.

The resolution of a CE diagnosis depends on the channel length and sieving

matrix properties [36]. Peak resolution is defined as the ratio of the distance be-

tween two peaks and the average peak width [37]. Peak resolution decreases as the

length of the microfluidic chip is reduced to improve compactness and separation

speed. Low peak resolution causes peaks to overlap, limiting the number of CE

applications.

2.3.4 Amplifier Noise and Bandwidth

Because emitted DNA fluorescence causes a photodiode to output a very low cur-

rent (nA range), the TTK uses a single-stage transimpedance amplifier configured

in negative feedback with a 1×109 (G) Ω feedback resistor (R f ) and a 1×10−12 (p)

F feedback capacitor (C f ) as shown in Fig. 2.3 [29, 32, 38]. This circuit is used to

amplify and condition the signal. There are three major sources of noise associated

with this design: shot noise, thermal noise, and interference noise. Shot noise orig-

inates from electrons (in electronics) and photons (in optical systems) that not only

carry the signal but also carry energy which gives rise to fluctuations in measure-

ments [39]. Photodiodes are PN junctions and therefore are prone to shot noise in

low light conditions [40]. Thermal (or Johnson’s) noise stems from electron move-

ment due to thermal agitation [41]. Thermal noise causes all resistive elements to

fluctuate in voltage as a function of temperature and resistance and increases as tem-

perature or resistance increases. Thermal and shot noise have Gaussian probability

functions and thus they are known as source of white noise [42]. Interference noise

can arise from magnetic interference and digital switching. Noise generated from

electrons (shot), heat (Johnson’s), and interference generally has higher frequency

than the signal; thus these types of noise are classified as high-frequency noise in

this thesis.

Another problem with this single-stage amplifier is that its bandwidth (of 1.6
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Figure 2.3: Transimpedance amplifier currently used in the TTK.

Hz) is severely limited by the op amp’s gain bandwidth product (GBP). Because the

bandwidth of this amplifier is low, it cannot provide insight on noise such as laser

intensity fluctuations. In this thesis, we will design and test a multistage amplifier to

be used for LIF-CE in the TTK. Such amplifier could provide us with more insight

on the signal and noise.

2.4 Noise Sources

2.5 Signal Processing

We identified high-frequency noise, baseline variations, and low resolution as three

key challenges to miniaturizing LIF-CE diagnostic instruments. Improvements in

chemistry, microfluidics, optics, and microelectronics can solve these problems,

but these improvements may increase design complexity, size and manufacturing

costs. We take a different approach in this thesis to address these issues: in addition

to working to improve the electronics in the TTK, we develop signal-processing

algorithms to reduce baseline variations, increase the SNR, and lower the LOD for
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Signal Condi-
tion

Cause Method

High-frequency
noise

Shot, thermal and interfer-
ence noise in circuits

Wavelet denoising

Low-frequency
baseline variation

Non-confocal photodiode-
based detection and laser
mode hopping

Iterative polynomial base-
line fit and peak region de-
tection

Low signal reso-
lution

Short microfluidic channels Jansson’s deconvolution

Table 2.1: Signal conditions observed in the TTK and proposed methods

the TTK. Table 2.1 summarises the signal condition problems observed in the TTK

and the signal processing methods used in this thesis to address these issues.

2.5.1 High-Frequency Noise

High-frequency noise in CE signals is commonly removed with Fourier low-pass

filtering (LPF) [20], moving average (MA) [43,44] and Savitzky-Golay (SG) smooth-

ing [45].

For many years, Fourier LPF has been the workhorse in signal processing in

analytical chemistry and other fields [20, 46]. Based on the frequency spectrum

of the Fourier transform (FT), LPF can be designed to remove the high-frequency

noise. FT is useful for signals where signal peaks have the same shapes and widths.

Because CE signal characteristics (peak widths, shapes, mean etc.) vary from signal

to signal (non-stationary random processes and time dependent), FT is inefficient

in removing noise for CE signals [47]. Furthermore, if a Fourier filter’s cut off

frequency is too low, it distorts the signal; but if it is too high, it does not remove

noise well enough. Another disadvantage of Fourier filtering is that it produces

ripples in the filtered signal when there are sharp edges in the signal [48].

MA is a technique used to remove random white noise. In MA, each data point

in the signal is compared and averaged to its adjacent points. Higher order smooth-
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ing decreases noise but increases the likelihood that the peaks are flattened [49].

SG filters were first published in 1964 [45]. Since then, SG filters have been

popular in removing noise in CE signals [50,51]. Because SG filtering requires mul-

tiple parameters (polynomial degree and smoothing span), distortions in signals are

very common when these parameters are not chosen correctly [47]. Vivo-Truyols

et al. automated part of SG filtering by combining SG with the Durbin-Watson

criterion [52]. In their method, the span length was calculated automatically for a

pre-specified polynomial degree. However, a fundamental disadvantage with SG

filtering remains: when there are random spikes (due to noise) in the signal, SG

filters overcompensate by trying to fit the polynomial over the spike regions, which

leads to ripples in the post-processed signal [48].

Recently, use of the wavelet transform (WT) to process analytical chemistry

signals, including CE signals, has increased significantly. According to a study by

Shao [53], WT became popular after Daubechies [54] and Mallat [55] published

influential papers in 1989 on fast computational algorithms for wavelet basis func-

tions. Perrin et al. were the first to use WT to remove noise (wavelet denoising)

in CE signals [46]. Since then, WT have been shown to improve SNR better than

FT [56] and to outperform both SG and FT in preserving peak shape and height

in the post-processing signal [47, 57]. Since CE signals are non-stationary signals

and localised in time, WT is superior to other high-frequency noise removal meth-

ods because wavelets have a time component in the statistics of the transformed

signal [46].

The problem with wavelet denoising is that suitable choices of wavelet type,

decomposition level, and other threshold settings depend on the signal type and

noise level. For example, Perrin et al. found that the Haar wavelet yielded the

lowest root mean square error (RMSE) between ideal and denoised signals. In

another study, Liu et al. claimed that the Daubechies (db) 5 wavelet with level 6

decomposition resulted in the lowest root mean square error (RMSE) between the
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denoised signal and the ideal signal [47]. Both Cao and Zhang claimed that the

Symlet (sym) 4 wavelet with higher than level 5 decomposition gave satisfactory

results for their application using a PMT-based instrument [58, 59]. No one has

researched a set of wavelet denoising parameters suitable for CE signals recorded

by non-confocal CE instruments. Our goal in this thesis is to find a set of wavelet

denoising parameters suitable for removing the high-frequency noise in TTK’s CE

signals.

2.5.2 Baseline Variation Removal

A varying baseline is one of the most common problems in the measurement of

CE signals [60]. Baseline removal is important because a stable reference for the

background signal must be established to provide an accurate CE diagnosis. The

main difference between baseline variation and actual peaks is that the frequency

of the baseline variation is lower than the frequency of the peaks [53]. Ordinary

Fourier frequency analysis cannot distinguish between the actual signal peaks and

baseline variations because the spectral difference is small [60].

Methods such as median subtraction (MS) [61,62], FT [63,64], and WT [13,46,

47, 65] have been reported to address the baseline variation problem in CE signals,

but, as indicated by Schulze [66], these methods all have shortcomings. For exam-

ple, MS fails to remove the baseline variations if there are wide or overlapping peaks

in the signal. Fourier filtering cannot be automated because the frequency contri-

butions of baseline variation and signal peaks vary from signal to signal. Schulze

also argued that WT’s baseline removal ability depends on the wavelet type and the

decomposition level, and the optimal choice depends on the nature of the signal.

More recently, Gan et al. showed that an iterative polynomial baseline fitting

(IPBF) method removed high baseline variations in CE signals [60]. For this rea-

son, we decided to implement the IPBF in our signal processing algorithm. In their

method, the beginning and end coordinates for the peak regions must be manually
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specified, which is not possible when automatic analysis of unknown samples is re-

quired. Detection of peak regions is easy by visual inspection, but automatic detec-

tion of peak regions is much more complicated. Peak location detection research is

extensive [19,52,67,68], but to our knowledge, peak region detection algorithms for

CE signals have received little attention. Landers suggested that CE peak regions

can be found by finding the zero crossing of the first derivative of the signal [69].

This approach works well in an ideal world where noise is absent. In reality, using

the zero crossings of the first derivative alone to determine the peak region often

leads to false peak region detection. To address this problem, we developed a peak

region detection algorithm to assist IPBF in removing baseline variations from CE

signals.

2.5.3 Overlapping Peak Separation

Low peak resolution is another challenge facing portable CE devices today. Low

resolution leads to overlapping peaks, which hinders the ability to distinguish signal

peaks. Resolution can be increased by increasing peak spacings, which effectively

reduces peak widths. This can be accomplished by either lengthening the microflu-

idic chip channel or by using a longer CE separation time. However these options

do not align with the goals of a POC molecular diagnostic tool.

Instead of modifying the CE system or protocol to improve resolution, post

signal-processing of CE signals can separate overlapping peaks to increase reso-

lution. The most common peak separation technique is curve fitting, but this can

only separate overlapping peaks if noise is low because artifacts are easily created

with the curve fitting method [13]. Initial estimates of the number of peaks, peak

shape, and peak width are required for the curve fitting method [70, 71]. Fourier

self-deconvolution (FSD) with a Weiner smoothing filter has been shown to sepa-

rate overlapping peaks in [72–74]; however, this method also requires a high SNR

because artifacts are easily created [75].
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Various deconvolution algorithms have been developed for chromatography and

infrared signals. For example, Olazabal et al. showed a method where signals

were deconvolved using WT; but although peaks were effectively separated, the

deconvolution shifted peak locations and distorted peak shapes from the original

signals [13, 76].

Numeric deconvolution methods, such as Jansson’s deconvolution, have been

reported to separate overlapping peaks in chromatographic signals [77–81]. To our

knowledge, no one has used Jansson’s deconvolution to separate the peaks in CE

signals. The main benefit of Jansson’s deconvolution is that it does not require

knowledge of the noise characteristics. The only parameters required are the im-

pulse response of the system and the amplitude bound of the signal [82]. To in-

crease the usability and the automation of Jansson’s deconvolution in a CE signal

processing algorithm, we incorporated the use of normalization, peak detection, and

a deconvolution factor.
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Chapter 3

Multistage Amplifier Design and
Testing

3.1 Introduction

The AML has designed and built an inexpensive medical diagnostic instrument

called the Tricorder Tool Kit (TTK). The TTK is capable of performing genetic am-

plification and detection. In the TTK’s optical detection subsystem, the amplifier

currently used to amplify the current from the photodiode is a single-stage opera-

tional amplifier (op amp) connected in (unbiased) photovoltaic mode (Fig. 3.1(a))

with a large feedback resistor of 1×109 Ω and a feedback capacitor of 1×10−12

F. This circuit produces a gain of 1×109 V/A. A problem with this single stage

high-gain amplifier is that the bandwidth is severely limited by the gain bandwidth

product (GBP) of the OPA129 op amp (Texas Instruments), which is 1 MHz [83].

With a low bandwidth amplifier, it is very difficult to distinguish between the signal

and noise (such as laser intensity fluctuations). Photodiode can also be configured

in photoconductive mode, where it is reverse biased with a voltage source. Ampli-

fiers in this configuration tend to have higher speed but they have higher leakage

current and noise.

The bandwidth could be increased by splitting the single-stage amplifier into

multiple stages. A multistage amplifier has the potential to achieve higher gain
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and bandwidth than a single-stage amplifier and reveal additional signal content.

The passage of a DNA peak (of a given size) usually takes about a second and

typical sampling rates for DNA detection are about 10 Hz to obtain all available

peak information. Or goal is to design an amplifier with similar gain (1×109 V/A)

as the current amplifier and increase the bandwidth to about 10 Hz. In this chapter

we present the design and test of a multistage transimpedance amplifier that can

be used in the TTK to convert photodiode current into a voltage for laser-induced

fluorescent (LIF) - capillary electrophoresis (CE).

3.2 Multistage Amplifier Design

In our initial design of the multistage amplifier, as shown in Fig. 3.1, the first stage

(Fig. 3.1(a)) is a transimpedance amplifier in photovoltaic mode. The purpose of

the first stage is to convert the photodiode current into a voltage. It has the same

configuration as the single-stage amplifier currently used in the TTK optics board,

except a smaller feedback resistor R f (1 MΩ) is used. The OPA129 op amp was

chosen again because of its low input bias currents (100 fA max) which is required

for low current applications. Because photodiodes are capacitive devices, they have

a built-in capacitance (Cin). In the photodiode (NT57-506, Edmund Optics) used

in the TTK, Cin is reported to be 4 pF [84]. Cin combined with R f create a phase

lag (between the input and the output of the amplifier) which causes gain peaking

and can destabilise a circuit [85]. Gain peaking is a phenomenon where the gain

of the amplifier increases sharply at a high frequency region. We used a feedback

capacitor (C f ) parallel to R f to reduce the gain peaking effect. R f and C f in parallel

also act as a low-pass filter and can be used to control the bandwidth of the amplifier.

The second stage (Fig. 3.1(b)) provides a voltage gain of 1001 V/V by set-

ting the ratio of R2 to R1 to 1000. The third stage (Fig. 3.1(c)) is a buffer circuit

connected in a voltage follower configuration. The last stage is implemented to

facilitate impedance matching with the analog-to-digital converter (ADC) and to
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provide the current required for the ADC. We used the OPA2241 to implement the

second and third stages because it has low noise, high open loop gain and multiple

op amps can be placed in a single integrated circuit to reduce parasitics.

(a) The first stage is a transimpedance ampli-
fier. This amplifier is in the same configuration
(photovoltaic) as the existing TTK, except that a
smaller 1×106 Ω resistor is used.

(b) The second stage of the amplifier is used
to provide voltage gain.

(c) Third stage of the multistage am-
plifier is a unity gain voltage fol-
lower. It will provide isolation to
the op amp circuit. The last stage
helps with impedance matching on
the ADC.

Figure 3.1: Multistage amplifier design

Eric Cheong, a M.Sc. graduate, had previously attempted to design a multistage

amplifier for Spectrometry applications for the AML. His multistage amplifier was
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also a three-stage design but he observed oscillation in the output. We speculate that

the cause for this ringing phenomenon was due to the gain peaking effect, where the

amplifier oscillates in a high frequency range. In his multistage design, the feedback

resistor and capacitor he used were 100 MΩ and 33 pF, respectively [86]. We

believe that because the photo-detector he used was a collector plate (presumably

with a large built-in capacitance), the feedback capacitor he used was not large

enough to compensate for the collector plate’s built-in capacitance, hence causing

the amplifier to oscillate. We have to attempted to calculate the build-in capacitance

of the collector plate used but his thesis only describes the plate diameter to be

about 1 to 1.5cm with no information about the separation between the plates [86].

The feedback capacitor should have equal or greater capacitance than the input

capacitance of the photo-detector to eliminate gain peaking [40].

3.3 Test Setup

The test setup used to test our multistage amplifier is shown in Fig. 3.2. The

micro-controller unit (MCU) board sends amplifier output sampled by the ADC to

a PC. The power board provides power and various voltages to other subsystems.

The MCU and the power boards were designed by other students and staff at the

AML. The modified TTK optics board supplies +5 V and -5 V to the multistage

amplifier. The multistage amplifier board consists of a three-stage amplifier and an

ADC. The multistage amplifier was designed on a daughter board to provide easy

modifications to the amplifier. A Keithley 236 source-measurement unit was used

to inject current to test the amplifiers’ transimpedance (current to voltage) gain.

3.4 Test Overview

Several tests were performed on the new multistage amplifier and the TTK’s single-

stage amplifier. In the first set of tests, a photodiode was connected to the amplifier
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Figure 3.2: Test setup for multistage amplifier.

and measurements were taken when the photodiode was placed in a dark box (no

current) and out in the open (photodiode saturation). These tests were used to char-

acterize the noise and the output voltage swing of the amplifiers. We used baseline

offset and baseline variation as metrics to evaluate the performance of the amplifiers

in these tests. Baseline offset was obtained by calculating the mean (x) of the signal

whereas baseline variation was obtained by calculating the standard deviation (σ).

σ is defined by (3.1),

σ =

√
∑

n
i=1(xi− x)

n−1
, (3.1)

where n is the number of samples recorded.

In the second set of tests, various levels of current were injected into the am-

plifiers using a Keithley 236 source measurement unit and the DC voltages were

measured using a digital multimeter (DMM). This set of tests determines the DC

gain of the amplifier. The AC frequency response of the amplifiers was simulated

in PSPICE.
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DC voltage gain tests were performed separately on the second and third stages

of the amplifier. Stepped down voltages (using a power supply and a voltage di-

vider) were used as inputs to the amplifier and the output voltages were measured

using a DMM.

3.5 Test Results

3.5.1 TTK Single-Stage Amplifier

We tested the TTK optics board’s single-stage amplifier to compare its performance

with our multistage amplifier. When the photodiode was placed in the dark, the

baseline offset was calculated to be 7.5 mV with a standard variation of 0.4 mV.

When the photodiode was saturated with light, the baseline offset was calculated to

be 3.59 V with a standard variation of 0.45 mV. The TTK optics board has a voltage

swing of 3.59 V between no light and saturated light levels. Various currents were

injected into this amplifier and the output voltages were measured as shown in Fig.

3.3. The current to voltage gain for the TTK optics amplifier is about -1×109 V/A

with less than 10% error from the theoretical design.

The bandwidth of the single-stage amplifier was found by simulation in PSPICE.

The circuit simulation model can be found in Appendix C. As shown in Fig. 3.4,

we found the bandwidth of the single-stage amplifier to be around 1.6 Hz. The

bandwidth of an amplifier is defined by the -3 dB frequency [87]. This simulated

result is very close to a published work by Mohammad Behnam [29], a recent Ph.D.

graduate from the AML. He found that the bandwidth of this single-stage amplifier

to be 1.5 Hz.

We analysed the TTK single-stage amplifier’s performance and signal artifacts

by looking at a CE run with no DNA product performed by a M.Sc. student Allison

Bidulock. The microfluidic chip was filled with water and the injection wells were

taped to prevent evaporation. As shown in Fig. 3.5(a), this CE run has a baseline

variation of 0.7 mV and a baseline offset of 0.974 V. Fig. 3.5(b) shows the Fourier
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Figure 3.3: TTK optics board amplifier with a current to voltage gain of -1×109

V/A. The scatter in the voltage gain plot is less than 10% error from the theoretical
design.

Figure 3.4: Magnitude frequency response of the single-stage amplifier in the ex-
isting TTK.
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transform (FT) of this signal in the window of 0 ± 1.5 Hz. FT showed that the

majority of the spectral contribution of this signal is low, confirming the amplifier’s

low bandwidth. On top of the-high frequency noise, we noticed a slow varying

baseline. Since there are no DNA product in this run, we speculate this is due

to laser intensity fluctuation caused by laser temperature variation. Behnam et al.

of AML demonstrated that the laser variation can be suppressed by warming up

the laser for 10 minutes before CE experiments and attaching a heatsink to the

laser [29].

3.5.2 Multistage Amplifier
3.5.2.1 First Stage

When the photodiode was placed in the dark, the output DC voltage from the first

stage of the multistage amplifier should have remained low. But when the photodi-

ode was exposed to light, the output DC voltage should have been higher than the

previous case, but not saturating the amplifier. When there was no current (or light

detected by the photodiode), the first stage of the amplifier outputted a signal with a

very small baseline offset voltage of 4.04 mV and a small baseline variation of 0.11

mV. When the photodiode was exposed, the first stage of the amplifier outputted

signal with a baseline offset voltage of 61.9 mV with a standard variation of 0.23

mV.

A Keithley 236 was used to source various amounts of current into the first-

stage amplifier and a DMM was used to measure the output voltage. As shown in

Fig. 3.6, the first stage amplifier behaved as expected, providing a gain of -1×106

V/A with less than 0.3% error from the theoretical design gain.

3.5.2.2 Second Stage

The second-stage amplifier was designed to provide a voltage gain (Av) of 1001

V/V. Av is defined by (3.2),

23



(a) CE run with no DNA product.

(b) Fourier transform

Figure 3.5: Single-stage amplifier’s background response.
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Figure 3.6: First stage (-1×106 V/A) voltage output and current to voltage gain.
The scatter in the voltage gain plot is only 0.3 % from the theoretical design gain.

Av =
∆Vout

∆Vin
, (3.2)

where ∆Vout and ∆Vin are the change of the output voltage and input voltage, respec-

tively. Using a benchtop power supply and a resistor voltage divider, various DC

voltages were applied to the second-stage amplifier and the output voltages were

measured. The DC testing results of the second-stage amplifier are shown in Fig.

3.7. We believe the large gain error is due to the imprecision in our recorded data

(i.e. one significant digit in our input voltages.)

3.5.2.3 Third Stage

The third stage of the multistage amplifier was designed to follow the input with

a voltage gain of 1. Various DC voltages were applied to the third stage of the

amplifier and output voltages were measured as shown in Fig. 3.8. The DC test

verified that the third stage behaved as designed. Because of op amp clipping, there
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Figure 3.7: DC testing of the second stage amplifier.

was a large voltage gain error of -66.7% when the input voltage was high.

Figure 3.8: DC testing of the third stage amplifier.
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3.5.2.4 First and Second Stages Combined

The first two stages of the multistage amplifier were combined and connected to a

photodiode. When the photodiode was placed in the dark, the baseline offset (or

mean) was 3.52 V and the baseline variation (or standard deviation) was 0.0019 V.

With the photodiode exposed to light, the amplifier saturated at 4.08 V. Although

the first two stages of the amplifier were responsive to different lighting levels, the

high offset of 3.52 V in the dark gave a voltage swing of less than 0.5 V.

3.5.2.5 Second-Stage Gain Reduction

A second stage with a smaller voltage gain of 101 V/V was built on a breadboard

to lower the baseline offset. Various DC voltages were applied to the second stage

amplifier and the output voltages were measured, as shown in Fig. 3.9. The voltage

gain for this amplifier was almost constant over the DC range.

Figure 3.9: DC testing of a modified second-stage amplifier with a gain of 101 V/V
(implemented on a breadboard).

When the photodiode was connected and placed in the dark, the baseline offset
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remained low at 0.304 V with a baseline variation of 3.3 mV. When saturated with

light, the baseline offset was calculated to be 4.08 V and the baseline variation was

found to be 94 µV. Lowering the gain in the second-stage amplifier improved the

amplifier’s voltage swing to 3.7 V. Fig. 3.10 shows the DC response of the amplifier

when the source measurement unit was used to source current into this amplifier.

For the majority of the data points, the amplifier had a gain around -1×108 V/A, as

designed.

Figure 3.10: Two-stage amplifier (-1×108 V/A ) current to voltage gain.

3.5.2.6 First-Stage Gain Increase

Because we lowered the gain of the second stage, the overall gain for the multistage

amplifier was only -1×108 V/A, which is about ten times less than the gain of the

current TTK amplifier. To compensate for this problem, we increased the gain of

the first stage by 10. Increasing the first stage gain was accomplished by using a

1×107 Ω feedback resistor in the first stage instead of a 1×106 Ω resistor.

When there was no light, the baseline offset and variation were 3.4 mV and 1.9
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mV, respectively. When the photodiode was exposed to light, the baseline offset and

variations were 0.179 V and 4.1 mV. Various currents were injected to the amplifier

and the output voltages were measured, as shown in Fig. 3.11. The gain measured

was close to the theoretical gain of -1×107 V/A, with the exception of very low

current levels between 0 and 1×10−7 A. We believe this is due to the leakage of

current into the op amp’s terminals.

Figure 3.11: Single-stage amplifier (-1×107 V/A ) current to voltage gain.

When a photodiode was connected and placed in the dark, the baseline offset

and variation were calculated to be 0.30 V and 2.6 mV, respectively. When the

photodiode was exposed to light, the baseline offset and variation were calculated

to be 4.0 V and 0.158 mV, respectively. The DC current to voltage gain of this

amplifier is shown in Fig. 3.12. The gain of multistage amplifier was found to be

around -1×109 V/A, which is very close to the TTK optics board’s single-stage

amplifier.

The bandwidth of this multistage amplifier was simulated. Without sacrificing

any gain, the multistage amplifier improved the bandwidth to 160 Hz, as shown in
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Figure 3.12: Two-stage amplifier (-1×109 V/A ) current to voltage gain.

Fig. 3.13 via PSPICE simulation.

Figure 3.13: Magnitude response of the multistage amplifier.
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3.6 Performance Discussion

The performances of the various multistage amplifier prototypes and the TTK’s

single-stage amplifier are summarized in Table 3.1. As discussed, the multistage

amplifier possesses the same current to voltage gain (-1×109 V/A) as the single-

stage amplifier with a bandwidth increase from 1.6 Hz to 160 Hz.

One disadvantage of the multistage amplifier is that it has higher baseline off-

set (300 mV) compared to the single-stage amplifier (7.5 mV). This is due to the

amplification of the baseline DC offset voltage from the first stage. We lowered the

baseline offset in the first iteration (3.52 V) of the multistage amplifier by increas-

ing the gain of the first stage and lowering the gain of subsequent stage. Although

the multistage amplifier has higher baseline offset compared to the single-stage am-

plifier, it is compensated by the increase of voltage headroom to 4 V; therefore,

improving the voltage swing. The voltage swing could be further increased by a

circuit modification discussed in the recommendation section of this chapter.

The multistage amplifier has higher baseline variation (2.6 mV) than the single-

stage amplifier (0.4 mV). We speculate that this is due to thermal noise. As de-

scribed in section 2.3.2, the thermal noise is a product of temperature, resistance,

and the bandwidth of the measured signal. As the bandwidth of the amplifier in-

creased, thermal noise should increase as well. Another contribution to the noise

in the multistage amplifier could be because the final prototype tested was partially

implemented on a breadboard. The parasitics between traces and the long wires

used to connect components could have increased interference noise.

3.7 Noise Analysis

3.7.1 Op Amp Noise

A real op amp can be modelled by the op amp model shown in Fig. 3.14(a) [42]. It

is modelled by the combination of input referred noise sources which consist of a
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Specifications TTK Multistage 1 Multistage 2 Multistage 3
First-Stage Gain
(V/A) -1×109 -1×106 -1×106 -1×107

Second-Stage
Gain (V/V) - 1001 101 101

Current to Volt-
age Gain (V/A) -1.00×109 -1.00×109 -1.01×108 -1.01×109

Bandwidth (Hz) 1.6 1.47×103 1.47×103 1.61×102

Baseline Varia-
tion (V) 4×10−4 1.9×10−3 1×10−4 2.6×10−3

Baseline Offset
in the Dark (V) 7.50×10−3 3.52 0.304 0.3

Baseline Offset
Exposed (V) 3.59 4.08 4.08 4.0

Voltage Swing
(V) 3.58 0.56 3.776 3.7

Table 3.1: Comparison between TTK single-stage amplifier and multistage ampli-
fier.

voltage noise source and two current noise sources at its terminals and a noiseless

op amp. Input referred noise sources are used to represent the total noise in the op

amp by placing noise sources at its inputs. But for a low input impedance junction

gate field-effect transistor (JFET) op amp, only the voltage noise is important. This

is because the input noise sources are dominated by the input impedance of the op

amp [88]. Thus, op amps are often characterised by only the input referred voltage

noise, as shown in Fig. 3.14(b), for hand analysis.

The op amp input referred voltage noise en in VRMS can be described by equation

(3.3) [42],

e2
n = e2

w[ fncln
(

fh

fl

)
+ENB] (3.3)

where e2
w is the op amp’s white noise specification, which can be found in the op

amp datasheet. fnc is the noise corner frequency, where the white noise and 1/ f

noise are equal. It can be found by finding the frequency where the total noise is
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(a) Op amp model with current and volt-
age noise sources

(b) Equivalent op amp noise model

Figure 3.14: Op amp noise model

√
2 times of the white noise. For OPA 129, the white noise specification is ap-

proximately equal to the noise density at 10 kHz, which is 15 nV/
√
(Hz). This is

because from the input voltage noise spectral density graph in the datasheet, the

noise voltage density does not increase after 10 kHz. To find the corner frequency,

we used the same input voltage noise spectral density graph and found a frequency

of 200 Hz where the noise voltage density is at about 21 nV/
√

(Hz) (
√

2 times of

the white noise).

Equivalent noise bandwidth (ENB) is used to account for the extra noise outside

of the bandwidth of the amplifier, which is 1.57 times of the 3-dB frequency for first

order systems with a single pole such as our amplifier [42] . fh and fl are the upper

and lower bound for the bandwidth of interest. Equation (3.3) accounts for thermal

and shot noise, two dominating noise sources in op amps.

3.7.2 Resistor Noise

Resistors can be modelled by a voltage noise source in series with the resistor or a

current noise source in parallel to the resistor, as shown in Fig. 3.15 [42]. The noise

voltage and current sources are defined by equations (3.4) and (3.5), respectively.

33



(a) Voltage noise
source model

(b) Current noise source
model

Figure 3.15: Resistor noise model.

e2 =
∫

4KT Rd f (3.4)

i2 =
∫ 4KT

R
d f (3.5)

where K, T, and R represents Boltzmann’s constant, the temperature in Kelvin, and

the resistance in Ω, respectively. f is the frequency range of the bandwidth which

noise is measured or the equivalent noise bandwidth. We chose to use a series

voltage source in our analysis.

3.7.3 Photodiode Noise

Shot noise is dominant in a photodiode if it is configured in high speed reverse-

biased photoconductive mode. But because we implemented our photodiode in low

noise photovoltaic mode with zero biasing, dark current approaches zero and shot

noise is essentially eliminated. However, thermal noise still exists. To calculate the

thermal noise contribution from our photodiode, we modelled our photodiode by

the combination of a junction capacitance (C j), a shunt resistor (Rsh) and a series

resistor (Rs), as shown in the equivalent photodiode noise model (Fig. 3.16) [40].

e1 and e2 are the thermal noise associated with Rsh and Rs, respectively.
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Figure 3.16: Photodiode noise model

Because the resistance (and thermal noise) of Rsh is always much greater than

that of Rs [40], we will only investigate the effect of Rsh. Using a Keithley 236, we

applied a DC voltage (1V) to the photodiode and measured about 1 nA of current

going through the photodiode; therefore, the Rsh is around 1×109 Ω. It is ideal

to use low bias voltages; however, we used a bias voltage of 1V because at lower

bias voltages, the Keithley 236 could not measure the current going through the

photodiode.

We calculated the photodiode current noise (epd) using the photodiode’s Noise

Equivalent Power (NEP) and responsivity (R). The photodiode current noise can be

calculated by equation (3.6),

e2
pd = (NEP×R)2×ENB. (3.6)

The NEP and R for the NT57-506 in photoconductive mode is 2.8×10−15 W/
√

Hz

and 0.65 A/W, respectively [84]. The NT57-506 photodiode datasheet does not state

the NEP and R values for the amplifier configured in photovoltaic mode. However,

the analysis method and the characterizing equations do not change and only the

NEP and R values change. For completeness, we will calculate and compare the

photodiode’s noise contribution from the NT57-506 photodiode configured in pho-

toconductive mode to another suitable photodiode configured in photovoltaic mode.
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3.7.4 Total Noise

To obtain the total noise, noise sources are added to the circuit and the input signals

are disconnected. The first stage of the multistage amplifier becomes the circuit

shown in Fig. 3.17. When there are multiple noise sources in the circuit and if they

are independent, the total noise in the circuit is the sum of the contribution from

each noise source.

Figure 3.17: First-stage amplifier noise model

We analysed the noise in our amplifier circuit by separating the noise sources

and used superposition to obtain the total noise [42]. As shown in Fig. 3.18(a), the

op amp was assumed to be noiseless, but configured in negative feedback with a

noisy resistor R f . The noise contributed by the noisy resistor is represented by a

voltage noise source e1. The noise contribution from the noisy R f is represented

by E1. Because the current going into the op amp’s terminals can be assumed to

be zero and the negative terminal of the op amp is a virtual ground, E1 is equal to

e1, as shown in equation (3.7). The (thermal) voltage noise e1 in VRMS from R f is

shown by equation (3.8).

36



(a) Noise due to the resistor (b) Noise due to the op amp

(c) Noise due to the photodiode

Figure 3.18: Noise equivalent circuits

E1 = e1 (3.7)

e2
1 =

∫
4KT R f d f (3.8)

The noise contribution from the op amp’s voltage noise (e2
n) can be analysed us-

ing Fig. 3.18(b). Assuming the voltage between the positive and negative terminals

of the op amp is zero, then the voltage drop across R f is the potential difference

between E2 and en. The current flowing into the op amp’s terminals is assumed to
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be zero, therefore the same current goes through R f . Using these two conditions,

the noise contribution from the op amp (E2
2) can be shown by equation (3.9).

E2
2 = e2

n

(
1+

R f

Rsh

)2

(3.9)

Similarly, the noise contribution from the photodiode (E2
3) can be analysed using

Fig. 3.18(c) and represented by equation (3.10),

E2
3 = e2

pdR2
f , (3.10)

where e2
pd is the photodiode current noise.

The overall noise (E2
out1) in the first stage amplifier represented by equation

(3.11), which is the summation of the noise contribution from R f , the op amp and

the photodiode.

E2
out1 = R2

f [
4KT
R f

+NEP×R]×ENB+ e2
w

(
1+

R f

Rsh

)2

[ fncln
(

fh

fl

)
+ENB]

(3.11)

Noise analysis for the second stage of the multistage amplifier can be performed

in a similar manner. Fig. 3.19 shows the circuit noise sources for the second stage

amplifier. e1 and e2 are the voltage noise sources associated with R1 and R2, respec-

tively. e3 is the noise from the first stage of the amplifier and en is the input referred

voltage noise source used to model the op amp. Using the same analysis method as

described in the first stage, it can be shown that equations (3.12 - 3.15) can be used

to represent the noise contribution from these noise sources. Using superposition

and substituting for the variables, equation (3.16) can be used to calculate the total

noise voltage (E2
out2) from both stages of the op amp in VRMS.

E1 = e1

(
R2

R1

)
(3.12)

38



E2 = e2 (3.13)

E3 = e3

(
1+

R2

R1

)
(3.14)

En = en

(
1+

R2

R1

)
(3.15)

E2
out2 = 4KT×ENB×R2

(
1+

R2

R1

)
+

(
1+

R2

R1

)2

[E2
out1+e2

w[ fncln
(

fh

fl

)
+ENB]]

(3.16)

Figure 3.19: Second stage amplifier noise model

As discussed, the total noise in the TTK amplifier consists of feedback resistor

noise, op amp noise, and the photodiode noise. Using equation (3.11), we calculated

the noise in the TTK’s current single-stage amplifier circuits. A summary of the

noise analysis parameters and the total noise from 0.1 Hz to 1.6 Hz is shown in

Table 3.2. R f is the feedback resistor used in the amplifier. Rsh is the measured shunt

resistance. f3dB is the simulated bandwidth of the op amp. ENB is the equivalent
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Parameter Value
R f (Ω) 1×109

Rsh (Ω) 1×109

f3dB (Hz) 1.6
ENB (Hz) 2.51
ew (V/

√
Hz) 15×10−9

fnc (Hz) 200
fh (Hz) 1.6
fl (Hz) 0.1
Photodiode NEP (W/

√
Hz) 2.8×10−15

Photodiode Reponsivity (A/W ) 0.65
eR f (VRMS) 6.45×10−6

eopamp (VRMS) 7.08×10−7

ephotodiode (VRMS) 2.88×10−6

Etotal (VRMS) 7.10×10−6

Table 3.2: Noise analysis parameter for the single stage amplifier in the TTK from
0.1Hz to 1.5 Hz.

noise bandwidth for a f3dB frequency of 1.6 Hz. ew and fnc were obtained from the

voltage noise density graph in the OPA 129’s datasheet. The values for fh and fl

were chosen because of the bandwidth of the amplifier. The photodiode’s NEP and

responsivity values were obtained from the specifications from the photodiode’s

datasheet. The total noise in the TTK single stage amplifier is 7.10×10−6 VRMS

and is dominated by the noise contributions from the feedback resistor, which is

6.45×10−6 VRMS.

Consequently, and the total noise (Eout2) in our multistage amplifier can be cal-

culated using equations (3.11) and (3.16). A summary of the noise analysis param-

eters and the total noise from 0.1 Hz to 160 Hz is shown in Table 3.3. Similar to

the notations used for the single stage amplifier, R f is the feedback resistor used in

the first stage of the amplifier, Rsh is the photodiode’s measured shunt resistance,

f3dB is the simulated bandwidth of the op amp, ENB is the equivalent noise band-

width for the f3dB frequency and ew and fnc were obtained from the voltage noise

40



density graph in the datasheets of the OPA 129 and OPA 2241. The values for fh

and fl were chosen because of the bandwidth of the amplifier. The photodiode’s

NEP and responsivity values were obtained from the specifications from the pho-

todiode’s datasheet. R1 and R2 were the resistors used in the second gain stage of

the op amp. Our analysis showed that the multistage amplifier has a total noise of

2.79×10−4 VRMS, which is higher than the single-stage amplifier used in the TTK

(7.10×10−6 VRMS). This is due to the increased of bandwidth from 1.6 Hz to 160

Hz and the amplification of the first-stage amplifier noise in the second stage. The

main source of noise in the first stage of the amplifier is due to the thermal noise of

R f . Whereas in the second stage, the main source of noise is from the amplification

of E2
out1, the output noise from the first stage. Our noise analysis provides valuable

noise metrics to compare noise associated with different design and showed that

multistage design are noisier than single stages.

3.7.5 Photovoltaic and Photoconductive Photodiode Compari-
son

As discussed, the NEP and R values for the NT57-506 photodiode configured in

photovoltaic mode are not stated in its datasheet. Since the analysis method re-

mains the same, and the only difference is the change in NEP and R values in cal-

culating the noise contribution for photodiodes configured in photoconductive and

photovoltaic modes, we will compare the noise contribution from the NT57-506 in

photoconductive mode to another suitable photodiode in photovoltaic mode. A suit-

able photodiode that can be configured in photovoltaic mode is the PIN-2DPI (OSI

Optoelectronics). This photodiode has a NEP of 2.1×10−15 W/
√

Hz and a respon-

sivity (R) of 0.55 A/W [89]. Using equation (3.6) and the parameters in Table 3.2,

we calculated the noise contribution from the PIN-2DPI photodiode configured in

photovoltaic mode to be 1.83×10−6 VRMS. This is a 35% noise reduction compared

to that of the NT57-506, which is 2.88×10−6 VRMS. Using equation (3.11), we cal-
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Parameter Multistage amplifier
R f (Ω) 1×107

Rsh (Ω) 1×109

Photodiode NEP (W/
√

Hz) 2.8×10−15

Photodiode Reponsivity (A/W ) 0.65
ew1 (V/

√
Hz) 15×10−9

ew2 (V/
√

Hz) 45×10−9

f3dB (Hz) 160
ENB (Hz) 250
fnc1 (Hz) 200
fnc2 (Hz) 1.5
fh (Hz) 160
fl (Hz) 0.1
R1 (Ω) 100
R2 (Ω) 1×104

ER1 (VRMS) 2.05×10−7

ER2 (VRMS) 2.05×10−8

Eopamp2 (VRMS) 1.75×10−4

EFirstStageAmp (VRMS) 2.18×10−4

Eout2 (VRMS) 2.79×10−4

Table 3.3: Noise analysis parameter for the multistage stage amplifier from 0.1Hz
to 160 Hz. Subscripts 1 and 2 of fnc and ew indicate the first stage and the second
stage op amp specifications, respectively.

culated the total noise in the single stage photovoltaic amplifier to be 6.74×10−6

VRMS, a slight reduction of noise compared to 7.1×10−6 VRMS, the total noise in the

photoconductive amplifier with the NT57-506. The reason that the improvement

in noise is small in the amplifier is because the thermal noise from the feedback

resistor dominates the noise contribution from the photodiode.

3.8 Recommendations

In the next amplifier design for the TTK optics board, I recommend using a two-

stage amplifier. The first stage (Fig. 3.1(a)) provides a current-to-voltage gain and

the second stage (Fig. 3.1(b)) provides a voltage gain. The third buffer stage is not
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necessary because the op amp from the second stage is capable of driving the ADC.

Hence adding a third stage only adds more noise from the the input referred noise of

the third op amp. The gain of the first stage of the amplifier should be maximized

to minimize noise as suggested by Leach et al. [90]. The gain of the first stage

should to be set to -1×108 V/A by using a feedback resistor (R f ) of 1×108 Ω. The

bandwidth of this amplifier should be lowered by changing the feedback capacitor

(C f ) to 100×10−12 F. This amplifier will be connected to a voltage gain stage of 11

V/V. The AC simulation of this proposed amplifier (Fig. 3.20) shows a bandwidth

of about 16 Hz, which is about ten times of the bandwidth of the current TTK

single-stage amplifier. The passage of a DNA peak (of a given size) usually takes

about a second and typical sampling rates for DNA detection are about 10 Hz to

obtain all available peak information. Hence, a bandwidth of 16 Hz is adequate for

detection and lowering the bandwidth from the current multistage amplifier design

reduces thermal noise and interference noise.

Figure 3.20: AC frequency simulation of the recommended amplifier. This ampli-
fier has a bandwidth of 16 Hz and a current-to-voltage gain of -1.1×109 V/A (or
180.8 dB)
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The voltage swing of the multistage amplifier can further be increased by adding

an offset adjustment circuitry and connecting to the second stage of the amplifier

as shown in Fig. 3.21. The reference voltage Vr can be adjusted by tuning the

potentiometer. The overall amplifier’s output voltage can be represented by Eq.

(3.17),

Vout = I f R f
R2 +1

R1
− R2Vr

R1
, (3.17)

where I f and R f are the photodiode current and the feedback resistor from the first

stage, respectively. By tuning Vr, the DC offset in Vout can be lowered effectively,

thus increasing the output voltage swing of the amplifier.

Figure 3.21: Recommended 2nd stage amplifier design to increase voltage swing

We also recommend exploring other op amps in the design of the multistage am-

plifier. One op amp to consider is the LMV792 op amp manufactured by National

Semiconductor. We compared the specifications of the LMV792 and the OPA129

op amp currently used in Table 3.4. The open loop gains for the two op amps are

very similar. However, the LMV792 op amp has a higher GBP (17 MHz) and lower

input referred voltage noise at various frequencies than the OPA129. Higher GBP
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Specifications OPA129 LMV792
Voltage noise at 10 Hz (nV/

√
Hz) 85 20

Voltage noise at 100 Hz (nV/
√

Hz) 28 10
Voltage noise at 1 kHz (nV/

√
Hz) 17 5.8

Gain bandwidth product (MHz) 1 17
Typical input bias current (fA) 30 50
Over loop gain (dB) 94 92
Cost ($) 8.98 2.50

Table 3.4: Specifications comparison between the OPA129 and LMV792 op amps

allows for wider bandwidth applications and low input referred voltage noise en-

ables a high SNR [85]. Since the current from the photodiode is in the range of nA,

a low noise op amp is essential to amplifier design.

At the time when we were building and testing the multistage amplifiers, we

were also working on the post-experiment signal processing aspect of this project.

We were making more progress on the signal processing side and we focused our

efforts on the signal processing instead. However, with the detailed design, analysis,

and testing procedures, and recommendations we have provided, it would be easy

for another person to build and implement the recommended multistage amplifier.

3.9 Conclusion

A multistage amplifier for the optical detection subsystem of the TTK was de-

signed, built, and tested. The multistage amplifier provided a higher bandwidth

(160 Hz) and voltage swing (4 V) compared to the single-stage amplifier currently

used, while maintaining the same current to voltage gain of -1×109 V/A. How-

ever, detailed noise analysis and measurements of the single-stage and multistage

amplifiers showed that the single-stage has lower noise compared to the multistage

amplifier due to the increase of bandwidth. Recommendations were made for future

improvements to the multistage amplifier design.
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Chapter 4

Wavelet Denoising

4.1 Introduction

Now that we have looked at improving the TTK’s amplifier circuits in Chapter 3 of

this thesis, we move to software signal processing of capillary electrophoresis (CE)

signals. In other words, we will investigate what can be done to improve CE signals

post experiment and data collection. We describe the removal of high-frequency

noise in CE signals in this chapter.

The use of a non-confocal optics has allowed for drastic cost and size reduc-

tions in the TTK compared to commercial devices that use confocal optics. This

is a step toward the realization of a point-of-care (POC) medical diagnostic device.

However, compared to the PMT-based detection method, the photodiode-based de-

tection method is not as sensitive and is more prone to noise interference. As a

result, a lower signal-to-noise ratio (SNR) and a higher limit of detection (LOD)

are issues commonly observed in the captured signals. We reviewed various types

of high-frequency noise observed in CE signals and methods to remove them in

Chapter 2. We made a contribution in Chapter 3 to the electronics side and now we

are focusing on post processing of recorded CE signals to extract relevant informa-

tion. We will be performing our signal processing with MATLAB software. Our

intent is to record the signal out of our electronics and perform post processing with

MATLAB.
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4.2 Theory

4.2.1 Discrete Wavelet Transform

Since CE signals are time dependent non-stationary signals, the wavelet transform

(WT) approach is commonly used in removing high-frequency noise in CE signals

because wavelets are localised in both time and frequency domain [46]. However,

no one has researched on the use of wavelets for noise removal in signals collected

by non-confocal CE instruments. For this reason, we will be incorporating WT into

the TTK signal processing.

WT analysis is a hybrid between time and frequency domain analysis [91]. WT

is similar to FT; but instead of representing the data in series of sinusoidal signals as

in the FT, WT represents data with a superposition of scaled and translated wavelets.

Fig. 4.1 shows examples of some commonly used wavelets for denoising [46].

WT decomposes a signal onto a set of wavelet orthogonal basis functions. In

general, any function f (t) can be represented by a superposition of wavelets defined

by equation (4.1) [46]. C f ( j,k) are wavelet coefficients defined by equation (4.2):

f (t) =
∞

∑
j=−∞

∞

∑
k=−∞

C f ( j,k)ψ j,k(t) (4.1)

C f ( j,k) =
∫

∞

−∞

f (t)ψ j,k(t)dt (4.2)

where j and k are the scale and translation parameters for the wavelet, respectively.

ψ j,k(t) is the wavelet function and is defined by the scaled and translated version of

the mother wavelet ψ(t) shown in equation (4.3).

ψ j,k(t) =
1√
| j|

ψ(
t− k

j
) (4.3)

Equation (4.4) shows the discrete representation of the wavelet. a0 and b0 are

commonly set to 2 and 1, respectively.
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(a) Haar (b) Daubechies 5

(c) Symlet 5 (d) Coiflet 2

Figure 4.1: Four different types of wavelets: (a) Haar, (b) Daubechies 5, (c) Symlet
5 and (d) Coiflet 2.

ψ j,k(t) = a− j/2
0 ψ(a− j

0 t− kb0) (4.4)

To perform a discrete wavelet transform (DWT) , equation (4.2) is rewritten in

matrix form as shown in equation (4.5) and we calculate the DWT coefficient (w)

as follows:

w = W f , (4.5)

where W is an orthogonal matrix consisting of the wavelet basis functions. The

signal can then be reconstructed by the inverse WT with equation (4.6), where WT

represents the transpose matrix of W.
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f = WT w (4.6)

4.2.2 Wavelet Denoising

Haar, Coiflet, Daubechies, Symlet, Bior, Rbior, and Dmey are some of the com-

monly used wavelets for noise removal [92]. Different wavelet families make trade-

offs between their compactness and smoothness. Ten levels of wavelet decomposi-

tion are available in MATLAB software and its Wavelet Toolbox for noise removal

applications.

Figure 4.2: Fast decomposition of the DWT.

A fast algorithm to perform DWT was proposed by Mallat [55]. As shown

in Fig. 4.2 [46], the signal (a) and noise (d) wavelet coefficients are obtained by

decomposing the noisy signal by passing it through low-pass and high-pass filters.

The signal coefficients (a) from the current decomposition level are used as the

input for next decomposition level.
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Because wavelets have excellent time localisation properties, signal peaks are

decomposed into a small number of high-amplitude coefficients while noise is de-

composed into many low-amplitude coefficients [46]. The removal of noise can

be achieved by removing or reducing the coefficients that are smaller than a calcu-

lated threshold T . T is calculated by the threshold selection rule implemented in

the MATLAB wavelet toolbox. Four common methods are available to calculate

(T ) for wavelet denoising [93]: fixed form, rigorous Stein’s unbiased risk estimate

(SURE ), heuristic SURE, and minimax. The fixed form method calculates the

threshold (T) for w using equation 4.7,

T =
√

2× log(N) (4.7)

where N is the length of the signal. Using the rigorous SURE method, T is calcu-

lated by equation 4.8,

T =
√

2loge(Nlog2(N)) (4.8)

The heuristic SURE threshold is based on a combination of the rigorous SURE

and the fixed method. For a signal with a high SNR, heuristic SURE uses a rigorous

SURE threshold calculation method; if the SNR is low, the fixed form is used to

calculate the threshold [92]. The minimax method calculates the threshold value by

finding the minimax performance for mean square error [92].

There are two thresholding methods: soft and hard. In both thresholding meth-

ods, coefficients (w) smaller than the threshold (T ) are set to zero. The difference

between the two methods arises when the coefficients are larger than the threshold

value. In the soft thresholding method, coefficients are reduced by the threshold

value; in the hard thresholding method, the coefficient values are kept.

A basic WT-based denoising algorithm consists of the following steps [92]:

1. Perform DWT with equation (4.5) and obtain the coefficient vector, w.
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2. Calculate threshold for w. Compare w to the calculated threshold, and

suppress or remove elements in w based on the thresholding method used.

3. Reconstruct the denoised signal using equation (4.6).

4.3 Methodology

4.3.1 Overview

Our work and theory in this chapter closely resembles the theory and work of refer-

ences [46,47,53,55–59,91–93]. Since there are over 4,000 wavelet parameter com-

binations (wavelet type, decomposition and threshold selection rule and threshold-

ing method) that can be used to remove noise in the MATLAB tool box, we decided

to use a brute force method to determine a set of reliable wavelet denoising param-

eters for various types of synthetic CE signals. A flowchart of our method is shown

in Fig. 4.3. CE signals with various characteristics were synthesized by a signal

generation function. Each synthetic signal was then subjected to wavelet denoising

with all of the available wavelet denoising parameters. The wavelet parameters that

resulted in the top 50 in each of the measured metrics (root mean square error, peak

height error, peak shift error) were considered as candidates for the top wavelet de-

noising parameters. Because the noise generated was white noise and noise varied

from signal to signal, this process was repeated for 30 iterations to improve reliabil-

ity. At the end of 30 iteration cycles, the wavelet denoising parameters that placed

in the top 50 most often were considered to be a reliable set of wavelet denoising

parameters for the synthesized signal type.

4.3.2 Signal Synthesis

Synthetic signals are often used in the literature to test the effectiveness of signal

processing algorithms. Not only can different types of synthetic data be rapidly

generated to model experimental signals, comparison between the post-processing
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Figure 4.3: Wavelet denoising parameter flow chart.

signal and the original synthetic data (without the addition of artifacts) can be read-

ily made. We synthesized several classes of CE signals in an attempt to mimic the

different types of CE signals observed in a CE instrument. We divided the char-

acteristics of CE signals into four types: baseline offset, peak shift, SNR, baseline

variation, resolution, peak height variations. We wrote MATLAB scripts to synthe-

size CE signals. The scripts prompt for specific parameters such as SNR, resolution,

baseline offset, and number of peaks and allowed for quick modifications and syn-

thesis of various CE signals. The noiseless peak shape in our synthesized signal

was modelled by curve fitting high SNR experimental CE signals with an empiri-

cally transformed Gaussian (ETG) function. The amount of noise in the synthetic

signal was specified by the SNR parameter, which defines the ratio of the amplitude
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of the maximum peak to the standard deviation of the noise. Baseline variation was

added to the signal by superimposing a sinusoidal signal with the signal peaks. The

amplitude of the baseline variation is dependent on the peak to baseline variation

ratio (PBR). Resolution (R) of the peaks dictates the time separating peaks and is

defined by equation 4.9,

R =
√

2ln(2)
µ1−µ2

σ1 +σ2
(4.9)

where µ and σ represent the peak location and the full width half maximum

(FWHM) of the peaks, respectively. The height difference between peaks can be

controlled by changing the peak degradation ratio (PDR), which defines the ratio

between peak heights.

One of the challenges in synthesizing CE signals is accurately modelling the

point spread function h(t) for the TTK. An approximation of h(t) can be obtained by

curve fitting an ETG function to a high-SNR experimental single peak signal. The

experimental signal we used to obtain h(t) and all of the experimental CE signals

shown in this thesis were collected by M.Sc. student Allison Bidulock using the

TTK with AML’s standard CE protocol as described in references [94] and [29].

1 µL of 4% linear polyacrylamide (LPA) sieving matrix and a 3 µL 0.01x Tris

TAPS-EDTA (TTE) buffer were used to fill the microfluidic chip channels. The

sample used was a 1 µL of Cy-5 reverse primer (end-labelled DNA) with a diluted

concentration of 0.749 ng/µL. CE was done by first injecting a voltage of 200 V

(or equivalent to a electric field of 222 V/cm) for 80 seconds, then separated by a

voltage of 600 V (67 V/cm) for 250 seconds. Detection was made 13 mm from the

CE channel intersection.

ETG functions have been reported to model CE peaks by [95–97]; ETG func-

tions are defined by equation (D.1),

h(t) =
2He0.5

(1+λlekl∗(tl−t))α +(1+λtekt∗(tt−t))β−1
, (4.10)
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where H is the maximum peak height, tt and tl are the half width times for the

leading and trailing edge, k, λ, α and β were used to adjust symmetrical properties

of the peak. The ETG parameters used to generate h(t) are summarized in Table

4.1. These parameters were manually tuned to fit the experimental signal peak’s

leading and trailing edge, as shown in Fig. 4.4. This h(t) is used throughout this

thesis as the point spread function (PSF) for the TTK.

We believe that the data synthesized are representative of real data because we

modelled our PSF to fit an experimental signal’s peak. We also added artifacts

to mimic the signal conditions observed in the experimental CE signals we have

collected using the TTK.

Figure 4.4: A normalized ETG function fitted to a CE run of a 1µL of Cy-5 end-
labelled DNA with a concentration of 0.749 ng/µL. AML’s standard CE protocol
was used.

4.3.3 Wavelet Denoising Loop

The 55 wavelets, 10 decomposition levels, 4 threshold selection methods, and 2

thresholding methods available in the MATLAB wavelet toolbox is equivalent to
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Leading Edge Parameters Trailing Edge Parameters
λ 0.8 1
k 2 2.4
t 3.2 0.6

α / β 1 1

Table 4.1: ETG parameters for modelling h(t).

4,400 different combinations of wavelet denoising parameters. Instead of perform-

ing a full sweep of all the denoising settings, a subset of parameters can be used to

find a set of reliable wavelet denoising parameters. We set the thresholding method

to soft because a soft threshold provides smoother peaks in the post processing sig-

nals compared to hard threshold [58, 98]. Among the threshold selection methods

available, the heuristic SURE method was selected because it automatically chooses

between the fixed form threshold method and the rigorous SURE method based on

SNR [92]. By setting the threshold selection rule and the thresholding method,

the number of simulations in each iteration is reduced from 4400 to 550, which

significantly reduces simulation time.

4.3.4 Wavelet Denoising Parameters Selection

Due to the randomness of the noise, we found the top wavelet denoising parameters

varied in different simulations of the same signals with the same SNR. To increase

reliability, thirty iterations of signal generation and wavelet denoising were per-

formed for every signal type. Each wavelet denoising parameter combination used

a counter to keep track of the number of times it yielded the top 50 metrics. The

ten wavelet denoising parameters that yielded most frequently in the top 50 met-

rics were considered as suitable wavelet denoising parameters for the signal tested.

A wavelet denoising parameter combination suitable for the most signal types was

considered the most reliable wavelet denoising parameter for CE signals.
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4.3.5 Evaluation Metrics

The root mean square error (RMSE), peak height error (PHE) and peak shift error

(PSE) between the original signal and the post-processing signal were the metrics

used to evaluate the performance of wavelet denoising parameters.

4.3.5.1 Root Mean Square Error

The RMSE was used to measure the error between the original noiseless signal and

the denoised signal. The RMSE is defined by equation (4.11),

RMSE =

√
n

∑
i=1

(x(i)− x̂(i))2, (4.11)

where n is the number of data points, x is the original signal and x̂ is the denoised

signal. The RMSE is useful in describing how well the post processing signal

matches the original signal. The RMSE is a good method to evaluate denoising

efficiency but it does not reveal information about peak preservation [99].

4.3.5.2 Peak Shift Error

Peak shift error (PSE) is a measure of peak preservation post signal denoising. The

PSE is defined by equation (4.12),

PSE =

n

∑
j=1
|p( j)− p̂( j)|

n
(4.12)

where p̂, p, and n represent the peak location post-processing, the true peak loca-

tion, and the number of peaks, respectively. In cases where there are multiple peaks

in the signal, the average of the peak shift error is used.

4.3.5.3 Peak Height Error

The peak height error (PHE) is another metric used to quantify peak preservation

post signal processing and is defined by equation (4.13),
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PHE =

n

∑
j=1

|y( j)− ŷ( j)|
y( j)

n
(4.13)

where y, ŷ and n represents the true and post-processing peak heights, and the num-

ber of peaks, respectively. In cases where there are multiple peaks in the signal, the

average of the peak height ratio error is used.

4.4 Results

4.4.1 Wavelet Denoising
4.4.1.1 Base Signal

We synthesized a base signal with 5 peaks, a SNR of 5 V/V, a resolution of 3, and no

baseline variation or offset, as shown in Fig. 4.5. Table 4.2 shows and sorts the top

10 wavelet denoising parameters by their occurrence count in the top 50 metrics.

The Wavelet and Lvl columns represent the type of wavelet and the decomposition

level of the wavelet denoising parameters.

We found that sym 8, sym 6, coif3, rbior6.8, and bior6.8 wavlets yielded RMSEs

below 0.09, PSEs less than 0.19 seconds, and PHEs less than 2%. Note that a

decomposition level of 8 is in 50% of the wavelets denoising settings for this signal

with a SNR of 5 V/V.

Since 30 iterations were performed, the highest possible count for each wavelet

parameter was 90 because three metrics were used to measure the performance.

The top 10 wavelet denoising parameters appearance counts were calculated to be

between 68 and 74 (76% to 82% of maximum count), which indicates that they were

highly reliable in terms of noise removal efficiency and peak preservation. After

finding some reliable wavelet denoising parameters for the base signal, variants of

the base signal were used to study the effect of signal changes on the top wavelet

denoising parameters.
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Figure 4.5: Example of the synthesised waveform of a base CE signal: 5 peaks,
SNR of 5 V/V, resolution of 3, and no baseline offset or variations.

Rank Wavelet Lvl Count RMSE PSE PHE
1 sym8 8 74 0.0877 0.1768 0.0173
2 sym6 8 72 0.0897 0.1645 0.0171
3 bior6.8 8 72 0.0864 0.1599 0.0169
4 coif3 9 71 0.0869 0.1816 0.0172
5 sym6 9 71 0.0876 0.1673 0.0169
6 coif3 8 70 0.0889 0.1743 0.0173
7 sym6 10 70 0.0871 0.166 0.0171
8 sym8 9 70 0.0857 0.1844 0.0165
9 rbior6.8 8 70 0.0879 0.1592 0.0175

10 rbior6.8 9 68 0.0861 0.1713 0.0183

Table 4.2: Top 10 wavelet denoising parameters for the base signal

4.4.1.2 Baseline Offset

Baseline offset is a common problem in the analysis of CE signals due to autofluo-

rescence of microfluidic chip walls. To mimic this effect, baseline offsets of 20 V

and 1000 V were added to the base signal as shown in Fig. 4.6(a) and Fig. 4.6(b),

respectively. The top 10 wavelet denoising parameters for the base signal with an

offset of 20 V is shown in Table 4.3. This table illustrates that the top 10 wavelet
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denoising parameters were the same top 10 wavelet denoising parameters found in

the base signal shown in Table 4.2. The RMSEs were calculated to be below 0.09,

the PSE were less than 0.18 seconds, and the PHE were no greater than 0.35%.

For the signal with an offset of 1000 V, a majority (9/10) of the top 10 wavelet

denoising parameters were the same as those of the base signal, as shown in Table

4.4. The only difference was that the rbior2.8 wavelet was in the top 10 list for

a base signal with an offset of 1000 V in the baseline. From these simulations,

we conclude that the baseline offset in CE signals has very little effect on wavelet

denoising parameters.

(a) Baseline offset of 20 V (b) Baseline offset of 1000 V

Figure 4.6: Synthetic base signal with a baseline offset.

4.4.1.3 Peak Shift

CE peak locations depend on experimental conditions such as injection voltage,

separation voltage, and the sample tested. As a result, peak locations vary from

experiment to experiment and it is important determine the effects of peak shifts on

wavelet denoising parameters. To investigate the effects of peak shift, we compared

the top wavelet denoising parameters between the base signal and the base signal

shifted by 50 seconds (Fig. 4.7). In the top wavelet denoising parameters for the

shifted signal shown in Table 4.5, all except the bior5.5 wavelet are the same as the
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Rank Wavelet Lvl Count RMSE PSE PHE
1 sym8 8 74 0.0875 0.1767 0.0032
2 bior6.8 8 72 0.0861 0.1588 0.0031
3 sym6 8 71 0.0898 0.1652 0.0031
4 bior6.8 9 70 0.0835 0.1643 0.0032
5 sym6 9 69 0.0875 0.1637 0.003
6 coif3 8 68 0.0886 0.1728 0.0034
7 sym6 10 68 0.0874 0.1642 0.003
8 bior6.8 10 67 0.083 0.1635 0.0034
9 rbior6.8 8 67 0.0879 0.1576 0.0033

10 coif3 10 66 0.0857 0.1779 0.0032

Table 4.3: Top 10 wavelet denoising parameters for the base signal with a baseline
offset of 20 V.

Rank Wavelet Lvl Count RMSE PSE PHE
1 rbior6.8 8 77 0.0887 0.1635 0.0001
2 coif3 8 76 0.0899 0.1802 0.0001
3 sym6 8 76 0.0906 0.1709 0.0001
4 sym6 9 75 0.0888 0.1723 0.0001
5 sym8 8 75 0.089 0.1844 0.0001
6 rbior2.8 8 74 0.0896 0.1697 0.0001
7 rbior6.8 9 72 0.0865 0.1741 0.0001
8 sym6 10 71 0.088 0.171 0.0001
9 bior6.8 8 71 0.0877 0.164 0.0001

10 bior6.8 9 71 0.0856 0.1707 0.0001

Table 4.4: Top 10 wavelet denoising parameters for the base signal with a baseline
offset of 1000 V.

wavelet parameters seen in the base signal. The top wavelet denoising parameters

yielded a very low RMSE of less than 0.09, a PSE less than 0.24 seconds, and PHE

less than 2%. Shifting the peaks in the base signal did not significantly change the

top wavelet denoising parameters for the base signal.
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Figure 4.7: Base signal shifted by 50 seconds.

Wave Wavelet Wave Wave Wave Wave Wave
1 sym6 8 70 0.088 0.2319 0.0155
2 bior5.5 8 67 0.087 0.2197 0.0148
3 bior6.8 8 67 0.0852 0.2287 0.0149
4 bior6.8 9 64 0.0831 0.2307 0.0154
5 rbior6.8 8 64 0.0871 0.2241 0.0134
6 bior6.8 10 62 0.083 0.2292 0.0167
7 rbior6.8 9 62 0.0853 0.223 0.0149
8 sym6 9 61 0.0864 0.2281 0.0164
9 coif3 9 60 0.0863 0.2401 0.0158
10 bior5.5 9 60 0.0861 0.2183 0.0166

Table 4.5: Top 10 wavelet denoising parameters for the base signal shifted by 50
seconds.

4.4.1.4 SNR Level

It is important that the wavelet denoising not only remove noise in the signal, but

also preserve signal information. As shown in Fig. 4.8, CE signals with various

SNR values were simulated to study wavelet denoising parameters for noisy CE

signals. We found that for signals with low SNR, a high decomposition level is re-
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quired to remove noise. This is because WT with high decomposition breaks down

the signal into smaller coefficients. The relationship between SNR and decomposi-

tion level is illustrated by the top 10 wavelet denoising parameters for a base signal

with various levels of noise as shown in Tables 4.6 – 4.9.

(a) Base signal with SNR of 50 V/V (b) Base signal with SNR of 10 V/V

(c) Base signal with SNR of 8 V/V (d) Base signal with SNR of 2 V/V

Figure 4.8: Base signal with various SNR levels.

The top wavelet denoising parameters for the base signal with a high SNR of

50 V/V (Fig. 4.8(a)) are shown in Table 4.6. We noticed that decomposition level

5 is in 9 out of the top 10 wavelet denoising parameters. For the base signal with a

medium SNR of 10 V/V shown in Fig. 4.8(b), the top wavelet denoising parameters

shown in Table 4.7 illustrates that level 6 decomposition provided excellent denois-

ing capabilities as demonstrated by the low RMSE (< 0.07), PSE (< 0.12 seconds),

and PHE (< 1%). As the SNR of the signal decreased to 8 V/V (Fig. 4.8(c)), levels
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Rank Wavelet Lvl Count RMSE PSE PHE
1 dmey 6 87 0.0127 0.0237 0.0021
2 dmey 5 86 0.0176 0.0507 0.0023
3 sym8 5 85 0.0177 0.0482 0.0025
4 sym6 5 84 0.0177 0.0494 0.0026
5 rbior6.8 5 84 0.0177 0.0503 0.0025
6 bior6.8 5 83 0.0176 0.0498 0.0025
7 coif4 5 82 0.0176 0.0449 0.0024
8 coif5 5 81 0.0176 0.0512 0.0022
9 db8 5 81 0.0176 0.0536 0.0022

10 sym7 5 81 0.0176 0.0506 0.0023

Table 4.6: Top 10 wavelet denoising parameters for the base signal with a SNR of
50 V/V.

Rank Wavelet Lvl Count RMSE PSE PHE
1 sym8 6 76 0.062 0.0987 0.0097
2 bior6.8 6 76 0.062 0.0996 0.0099
3 dmey 6 76 0.0614 0.0953 0.0097
4 db9 6 75 0.0618 0.1043 0.0093
5 coif5 6 73 0.0617 0.0914 0.009
6 db8 6 73 0.0615 0.1131 0.0089
7 db10 6 73 0.0617 0.1023 0.0096
8 sym6 6 73 0.0619 0.104 0.0098
9 coif4 6 72 0.0617 0.0938 0.0097

10 bior5.5 6 72 0.0616 0.1134 0.0095

Table 4.7: Top 10 wavelet denoising parameters for the base signal with a SNR of
10 V/V.

7 and 8 decomposition were required to provide adequate denoising (Table 4.8).

For the base signal (SNR 5 V/V) shown in Fig. 4.5, we found that levels 8 or 9

decomposition provided very good noise removal and peak preservation properties.

As shown in the top 10 wavelet denoising parameters for the base signal (Table

4.2), the RMSE is below 0.09, the PSE is less than 0.19 seconds, and a PHE is less

than 2%. As the SNR of the signal decreased to 2 V/V, as shown in Fig 4.8(d), we

found that levels 9 and 10 wavelet decompositions were required (Table 4.9). With
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Rank Wavelet Lvl Count RMSE PSE PHE
1 bior6.8 7 69 0.0628 0.1504 0.0145
2 rbior6.8 8 68 0.0643 0.1479 0.0138
3 sym6 8 67 0.068 0.1557 0.0127
4 sym8 8 66 0.0642 0.1703 0.0122
5 coif3 8 64 0.0666 0.1672 0.013
6 sym8 7 64 0.0637 0.1669 0.0127
7 bior6.8 8 61 0.0658 0.1505 0.0135
8 bior5.5 7 60 0.0634 0.1412 0.0176
9 rbior2.8 8 60 0.0652 0.1541 0.0147

10 sym6 9 59 0.0684 0.1567 0.0129

Table 4.8: Top 10 wavelet denoising parameters for the base signal with a SNR of
8 V/V.

Rank Wavelet Lvl Count RMSE PSE PHE
1 coif5 10 40 2.2089 22.2203 1.1972
2 db10 10 37 2.2136 9.5295 1.1892
3 sym7 10 37 2.2115 21.0887 1.1865
4 db8 10 34 2.2074 0.9643 1.2102
5 db10 9 34 2.2116 9.5295 1.2012
6 coif5 9 33 2.209 22.2203 1.2058
7 db10 8 33 2.2128 9.5295 1.205
8 sym7 9 33 2.2116 21.0887 1.183
9 dmey 10 33 2.2049 NaN 1.179
10 db8 9 31 2.2038 0.9643 1.2013

Table 4.9: Top 10 wavelet denoising parameters for the base signal with a SNR of
2 V/V.

a combination of the low SNR and high decomposition level, the RMSE rose above

2, peaks shifted more than 20 seconds in some cases, and peak height changed by

more than 110%.

From these examples, we concluded that for signals with high SNR (> 10 V/V),

decomposition levels 5 and 6 are enough to remove the noise in CE signals. For

signals with medium SNR (5 – 10 V/V), decomposition levels of 7 or 8 could be

used to denoise signals. For signals with low SNR (< 5 V/V), decomposition levels
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of 8 or 9 were required. For signals with SNR below 2 V/V, we found that wavelet

denoising did not preserve the signals.

4.4.1.5 Baseline Variations

Due to unstable light source and autofluorescence of microfluidic chip walls, base-

line variation is observed in the CE data collected with the TTK [29]. To investigate

the effect of baseline variation on wavelet denoising parameters, we analysed the

base signal with peak-to-baseline variation ratio (PBR) of 3 and 1 as shown in Fig.

4.9(a) and Fig. 4.9(b), respectively.

As shown in Table 4.10 and Table 4.11, the top wavelet denoising parameters

for baseline variations of PBR of 3 and 1 are similar to those of the base signal. In

terms of the measured metrics, for the base signal with a PBR of 3 (Table 4.10) , the

RMSEs are below 0.09; the PSEs are less than 0.2 seconds; and the PHE is less than

2%. In baseline variations with a PBR of 1, the maximum PSE slightly exceeds 0.2

seconds and the maximum PHE is slightly above 2% and with RMSEs below 0.09

(Table 4.11). The top wavelet denoising parameters did not change with baseline

variation; however, the peak preservation metrics varied slightly for the base signal

with a PBR of 1.

(a) Peak-to-baseline variation ratio of 3 (b) Peak-to-baseline variation ratio of 1

Figure 4.9: Base signals with baseline variation.
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Rank Wavelet Lvl Count RMSE PSE PHE
1 sym8 8 79 0.0871 0.1844 0.0178
2 coif3 8 77 0.0885 0.1744 0.0169
3 sym8 9 76 0.085 0.1906 0.0179
4 rbior6.8 8 76 0.0876 0.1592 0.017
5 coif3 9 75 0.086 0.1804 0.0175
6 sym6 8 75 0.0894 0.1639 0.016
7 sym6 9 74 0.0873 0.1659 0.0166
8 bior6.8 8 74 0.0859 0.1651 0.017
9 coif3 10 73 0.0853 0.1803 0.0177

10 rbior6.8 9 73 0.0856 0.1702 0.0171

Table 4.10: Top 10 wavelet denoising parameters for the base signal with a PBR of
3.

Rank Wavelet Lvl Count RMSE PSE PHE
1 sym8 8 86 0.089 0.198 0.0193
2 coif3 8 85 0.0904 0.1822 0.0197
3 coif3 9 85 0.0878 0.188 0.0201
4 sym8 9 84 0.0867 0.2024 0.0192
5 sym6 8 83 0.0912 0.1704 0.0197
6 sym6 9 82 0.0891 0.173 0.0199
7 coif3 10 80 0.087 0.1874 0.0199
8 bior6.8 8 80 0.0876 0.171 0.0195
9 rbior6.8 8 79 0.0893 0.1606 0.0215

10 rbior6.8 9 77 0.0867 0.1691 0.0205

Table 4.11: Top 10 wavelet denoising parameters for the base signal with a PBR of
1.

4.4.1.6 Resolution

Peak resolution is defined as the ratio of the distance between two peaks and the

average peak width as shown in equation 4.9 [37]. Because CE signal resolution

decreases as the size of the microfluidic chip decreases, it is important to inves-

tigate the effects of high and low signal resolution on the top wavelet denoising

parameters. For a base signal with high resolution of 5, shown in Fig. 4.10(a),

66



we found that db6, db10, and rbior6.8, and bior6.8 wavelets provided the lowest

RMSE, PSE and PHE as shown in Table 4.12. All of the top wavelet denoising

parameters yielded RMSEs below 0.1, PSEs less than 0.26 seconds, and PHEs less

than 2%. For a base signal with low resolution of 1, as shown in Fig. 4.10(b), we

found that coif4, coif5, db7, and sym8 wavelets were the most suitable for wavelet

denoising providing RMSEs below 0.081, PSEs less than 0.16 seconds, and PHE

of no more than 1.7% (Table 4.13). The top wavelet denoising parameters strongly

depend on the resolution of signals.

(a) High resolution of 5 (b) Low resolution of 1

Figure 4.10: Various resolution signals types

4.4.1.7 Peak Height Variation

Peak height varies in different CE signals and it is important to identify the rela-

tionship between peak height variations and the top wavelet denoising parameters.

We used the peak degradation ratio (PDR) to change the peak height variation for

synthetic CE signals. Fig. 4.11 shows the base signal with a PDR of 1.7. In order to

prevent the 4th and 5th peaks from dipping below the noise threshold, we increased

the SNR of the signal to 10 V/V.

The top 10 wavelet denoising parameters for the base signal with a PDR of 1.7

are shown in Table 4.14. The top wavelets are db7, sym6, sym8, coif 3-5, bior5.5,
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Rank Wavelet Lvl Count RMSE PSE PHE
1 db10 8 60 0.0946 0.2479 0.0153
2 db10 10 58 0.0938 0.2487 0.0195
3 db6 8 56 0.0955 0.2782 0.0172
4 db10 9 55 0.0939 0.2449 0.0172
5 bior6.8 8 55 0.0966 0.231 0.0159
6 db6 9 53 0.0948 0.277 0.016
7 db10 7 53 0.0982 0.2587 0.0148
8 rbior6.8 8 53 0.0973 0.252 0.0165
9 db6 10 52 0.0948 0.2764 0.015

10 bior6.8 9 51 0.0961 0.2331 0.0171

Table 4.12: Top 10 wavelet denoising parameters for the base signal with a resolu-
tion of 5.

Rank Wavelet Lvl Count RMSE PSE PHE
1 coif5 8 86 0.0772 0.0773 0.0152
2 coif4 8 85 0.0757 0.1184 0.0148
3 db7 8 84 0.0808 0.1573 0.0155
4 sym8 8 83 0.0763 0.1798 0.0155
5 coif4 9 76 0.0702 0.1123 0.0153
6 coif5 9 75 0.0718 0.08 0.0148
7 coif4 10 73 0.0688 0.1122 0.0149
8 coif5 10 72 0.0709 0.0804 0.0144
9 db7 9 72 0.0755 0.1496 0.0159

10 db7 10 71 0.0742 0.1491 0.0162

Table 4.13: Top 10 wavelet denoising parameters for the base signal with a resolu-
tion of 1.

bior 6.8, rbior2.8, and rbior 3.5. With these wavelets and a decomposition level of

7, the RMSEs were below 0.05, the PSEs were less than 0.3 seconds, and PHE were

less than 3.1%.

4.4.1.8 Top Wavelet Denoising Parameters

The most reliable wavelets for CE signals with various characteristics is summa-

rized in Table 4.15. The left most column shows the various signal conditions
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Figure 4.11: Base signal with PDR of 1.7.

Rank Wavelet Lvl Count RMSE PSE PHE
1 db7 7 83 0.0465 0.2247 0.0275
2 sym8 7 83 0.0451 0.1923 0.028
3 coif3 7 82 0.0454 0.1909 0.0289
4 sym6 7 82 0.0457 0.1808 0.0291
5 bior5.5 7 82 0.0467 0.1716 0.0302
6 bior6.8 7 82 0.0454 0.1767 0.0285
7 rbior6.8 7 82 0.0462 0.1786 0.0288
8 coif4 7 81 0.0446 0.2472 0.0276
9 rbior2.8 7 81 0.0466 0.1867 0.0287

10 coif5 7 76 0.0447 0.2851 0.0283

Table 4.14: Top 10 wavelet denoising parameters for the base signal with a PDR of
1.7.

tested and the top row describes the severity of the conditions (as described in the

previous sections). The body of Table 4.15 shows the wavelets that appeared in the

top 10 for each simulation. Although there was no single wavelet that provided the

best noise removal and peak preservation performances for all signals, the sym8

wavelet was consistently placed in the top wavelets. The sym8 wavelet placed in

the top metrics for all signal types except for the signal with high resolution or low
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High Medium Low

Baseline Offset
sym6, sym8,
coif3, bior6.8,
rbior2.8, rbior6.8

sym6, sym8,
coif3, bior6.8,
rbior6.8

sym6, sym8,
coif3, bior6.8,
rbior6.8

Peak Shift
sym6, sym8,
coif4, bior5.5,
bior6.8, rbior6.8

-
sym6, sym8,
coif3, bior6.8,
rbior6.8

SNR
dmey, sym6-8,
rbior 6.8, bior
6.8, coif4 - 5, db7

dmey, sym6,
sym8, coif4-5,
bior6.8, bior3.9,
db8-10

dmey,
sym7,coif5,
db8, db10

Baseline Varia-
tion

sym6, sym8,
coif3, rbior6.8,
bior6.8

sym6, sym8,
coif3, bior6.8,
rbior6.8

sym6, sym8,
coif3, bior6.8,
rbior6.8

Resolution
db6, db10,
bior6.8, rbior6.8

sym6, sym8,
coif3, bior6.8,
rbior6.8

coif4 - 5, sym8,
db7

Peak Height Vari-
ation

db7, sym8,
rbior2.8, rbior6.8

-
sym6, sym8,
coif3, bior6.8,
rbior6.8

Table 4.15: Top wavelets for synthesized signals with various signal conditions.

SNR. For its ability to remove noise for various levels of SNR while preserving

peak information, the sym8 wavelet was the most reliable wavelet for the signals

we synthesized and tested. We believe that the reason sym8 wavelets works well in

wavelet denoising for various CE signals is because the shape of the wavelet scal-

ing function (Fig. 4.12(a)) and the near symmetric property of the wavelet basis

function (Fig. 4.12(b)) match with CE peaks. Both these functions are also smooth

with no discontinuities or sharp edges, like CE signals.

We tested various SNR levels of the base signal to determine the most reliable

decomposition level. Table 4.16 shows the most reliable wavelet decomposition

levels against SNR. In general, the higher the SNR, the lower the decomposition

level required. For a signal with SNR less than 5 V/V, denoising using wavelet

transform causes significant PSE and PHE because a level 9 or higher decomposi-
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(a) Sym8 scaling function (b) Sym8 wavelet basis function

Figure 4.12: Sym8 wavelet and scaling functions

SNR (V/V) Decomposition Level Required
>10 5, 6

7 to 10 7, 8
5 to 6 8, 9
<5 9, 10

Table 4.16: Wavelet decomposition level requirements for various SNR

tion is required. We believe that eight levels of decomposition provided the equiv-

alent of a low-pass filter with a cut-off frequency that is compatible for removal of

high-frequency noise in CE signals with low-frequency peaks.

In conclusion, the sym8 wavelet provided the most reliable wavelet denoising

metrics in terms of peak preservation and noise removal capabilities for all types

of signals except for the signal with high SNR and low resolution. Decomposi-

tion level 8 provided the most versatile and reliable denoising for low SNR sig-

nals. Although level 9 and 10 decomposition can remove more noise for signals

with very low SNR, they cause significant peak shifts and peak height errors in the

post-processing signal. It is interesting to note that for one-dimensional discrete

signals, such as CE signals, the decomposition level is analogous to low-pass filter-

ing (LPF): increasing the decomposition level lowers the cut-off frequency of the

LPF.
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4.4.1.9 Noise Removal of Synthetic Signals with Wavelet Transform

Figs. 4.13 – 4.18 illustrate the original noiseless and the denoised versions of the

synthetic signals tested in Section 4.4.1. In all of these figures, the noiseless signal is

shown by the blue line and the denoised signal is shown by the green line. By visual

inspection, these figures showed that the sym8 wavelet with level 8 decomposition

could be used to remove noise in various CE signals.

4.4.2 Comparison of Denoising Methods

We used the synthetic base signal shown in Fig. 4.5 to compare the performance of

various noise removal methods such as LPF, SG smoothing, MA. The base signal

was first denoised by a sym 8 wavelet with level 8 decomposition. The wavelet

denoised signal is shown in Fig.4.20(a) and the removed noise is shown in Fig.

4.20(b).

We performed FT on the base signal and its frequency contribution as shown

in Fig. 4.19. Since we observed that most of the signal power is in the very low

frequency band, we designed a digital finite impulse response (FIR) equripple LPF

with cut-off and stop band frequencies at 1.2 Hz and 1.5 Hz using MATLAB’s filter

analysis toolbox. This filter is the same filter used in a recent publication from the

AML [29]. Fig. 4.20(c) shows the signal denoised with the LPF method. By visual

inspection, the LPF denoised signal is noisier than the wavelet denoised signal.

Comparing the removed components shown in Fig. 4.20(b) and Fig. 4.20(d), we

observed that the LPF removed peak information in the peak regions, whereas in

wavelet denoising, very little or no peak information was removed.

To determine the best MA smoothing window and SG polynomial degree and

smoothing window, we performed parametric sweeps and found the smoothing win-

dows that yielded the lowest RMSE between the original noiseless signal and the

denoised signal. For SG smoothing, we set the polynomial to 10 and found that a

4.77 seconds smoothing window provided the lowest RMSE. For MA, we found

72



(a) Baseline offset of 20 V

(b) Baseline offset of 1000 V

Figure 4.13: Denoised signal with baseline offsets.
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Figure 4.14: Denoised signal with peak shift.

Figure 4.15: Denoised signal with various SNR levels.
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(a) PBR of 3

(b) PBR of 1

Figure 4.16: Denoised signal with baseline variations.
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(a) Resolution of 5

(b) Resolution of 1

Figure 4.17: Denoised signal with different resolutions.
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Figure 4.18: Denoised signal with peak height differences.

Figure 4.19: Frequency response of the base signal
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(a) Denoised signal with WT (b) Noise removed with WT

(c) Denoised signal with LPF (d) Noise removed with LPF

(e) Denoised signal with SG smoothing (f) Noise removed with SG smoothing

(g) Denoised signal with MA (h) Noise removed with MA

Figure 4.20: Noise removal and peak preservation: Comparison of various noise
removal methods.

78



WD LPF SG MA
RMSE 0.0825 1.4983 0.0855 0.0994
Noise 0.0512 0.1421 0.0758 0.0742

Table 4.17: RMSE and noise comparison between different denoising methods

that a 1.23 second moving average window resulted in the lowest RMSE. Both SG

and MA smoothing did not remove peak components, as shown in Fig. 4.20(f)

and Fig. 4.20(h); however, the SG (Fig. 4.20(e)) and MA (Fig. 4.20(g)) denoised

signals are noisier than the wavelet denoised signal (Fig. 4.20(a)).

Table 4.17 summarizes the baseline noise and the RMSE (between the noiseless

and the denoised signals) for the denoising methods discussed in this section. This

table shows that wavelet denoising (WD) achieved the lowest RMSE and the lowest

baseline noise among the denoising methods tested. Fourier filtering produced the

worst results because we did not adjust the cut-off frequency of the LPF for the

signal tested. Even though MA and SG can achieve RMSEs and baseline noise

similar to wavelet denoising, the parameters used for SG and MA were specifically

tuned and optimized for the signal tested. During a CE run, the user cannot tune the

signal processing parameter to obtain the best result.

Table 4.18 shows the post-processing peak locations for the denoising methods

described. We found that the average peak shift using wavelet denoising was 0.062

seconds, which was less than the peak shift of the LPF (4.18 seconds), SG (0.1

seconds), and MA (0.12 seconds).

Table 4.19 shows the PHE for the various denoising methods described. Al-

though the PHE for wavelet denoising (3.00%) is slightly higher than the PHE for

the LPF (2.31%) and SG (2.88%), we found that wavelet denoising provided a much

better post signal-processing SNR, as shown in Table 4.20.

The denoising capability of LPF, SG, and MA can be increased by lowering

the cut-off frequency or widen the smoothing window, but these manipulations can

distort the peak shape [47]. Wavelet denoising is an alternate method to remove
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Peak # True Peak Location (s) WD (s) LPF (s) SG (s) MA (s)
1 122.04 126.01 126.43 122.13 122.1
2 137.3 137.3 141.44 137.43 137.35
3 152.56 152.59 157.05 152.65 152.66
4 167.82 167.93 171.78 167.94 167.99
5 183.08 183.22 186.99 183.15 183.29

PSE (s) 0.062 4.178 0.1 0.118

Table 4.18: Peak shift error for different denoising methods.

Peak # True Peak Height WD LPF SG MA
1 5 4.63 4.87 4.74 4.55
2 5 5.00 5.26 5.03 4.87
3 5 4.83 4.99 4.84 4.73
4 5 4.92 4.87 4.87 4.71
5 5 4.87 4.95 4.86 4.72

PHE (%) 3.00 2.31 2.88 5.68

Table 4.19: Peak height error comparison for different denoising methods.

noise without distorting the signal shape.

4.4.3 Experimental Signals

We used the sym8 wavelet with level 8 decomposition wavelet denoising to remove

noise in various experimental CE runs collected with the TTK. All of the experi-

mental data collected with the TTK in this thesis were collected by M.Sc student

Peak # WD LPF SG MA
1 69.6 37.0 57.0 54.6
2 75.1 40.0 60.5 58.5
3 72.5 37.9 58.1 56.8
4 73.9 37.0 58.6 56.5
5 73.1 37.6 58.4 56.7

Average SNR (V/V) 72.8 37.9 58.5 56.6

Table 4.20: Post processing SNR comparison for different denoising methods.
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Allison Bidulock using our standard CE protocol as described in Section 4.3.2 and

references [94] and [29]. We showed four examples of pre-processing and post-

processing signals in Fig. 4.21. Fig. 4.21(a) and Fig. 4.21(c) show two CE runs of

Cy-5 primer (end-labelled DNA) with a concentration of 0.749 ng/uL. Wavelet de-

noising removed the noise in these single peak signals with low SNR and baseline

variation.

Fig. 4.21(e) shows the raw data of a CE run of a 0.5 µL BK virus PCR product

from a thermo-cycler. The first peak is the primer peak and has a length of 25 or

26 base pairs (bp). The second peak is the product peak at 299 bp. We believe

the third peak is an unspecified peak due to contamination or artifacts from the

unoptimised PCR recipe. This signal has high resolution with no overlapping peaks

and wavelet denoising was able to remove the high-frequency noise in this signal.

Wavelet denoising also removed the noise in a low resolution CE signal. The sample

tested was a 1µL DNA red ladder (11 peaks) with lengths from 50 to 550 bp, each

peak separated by 50 bp.

In these examples, we demonstrated that wavelet denoising can remove the

high-frequency noise in experimental CE signals with various levels of baseline

variations, SNR, and resolutions. However, wavelet denoising was not able to re-

move the low frequency baseline variations or improve the resolution of the signal.

We will explore alternative methods to resolve these issues in Chapter 5 and 6 of

this thesis.

4.5 Conclusion

A method to determine a set of reliable wavelet denoising parameters for CE sig-

nals is presented in this chapter. Among the wavelet denoising parameters tested,

we found the Symlet 8 wavelet with level 8 decomposition provided the most re-

liable denoising for the synthetic CE signals we have examined. Wavelet denois-

ing with these parameters removed noise in both synthetic and experimental CE

81



(a) Low SNR signal (b) Low SNR denoised signal

(c) Baseline varying signal (d) Baseline varying denoised signal

(e) High resolution signal (f) High resolution denoised signal

(g) Low resolution signal (h) Low resolution denoised signal

Figure 4.21: Experimental CE signals denoised with sym8 wavelet and a level 8
decomposition.
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signals with various levels of SNR, baseline variation, baseline offset, resolution,

and peak shifts. Without additional parameter changes, wavelet denoising obtained

lower RMSE, PSE, and PHE between the true signal and the denoised signal com-

pared to traditional methods such as FT, SG, and MA. We were able to remove the

high-frequency (such as shot and thermal) noise in various CE signals with wavelet

denoising.
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Chapter 5

Baseline Variation Removal

5.1 Introduction

This chapter focuses on the baseline variation removal aspect of our signal process-

ing algorithm for capillary electrophoresis (CE) signals. Because the TTK uses a

non-confocal detection approach, the photo-detector collects more scattered excita-

tion light compared to confocal methods. This type of system is more sensitive to

laser intensity fluctuations which causes a baseline variation in electropherograms

and makes it difficult to distinguish from fluorescent signal peaks [29]. This type of

noise usually has low frequency compared to shot and thermal noise discussed in

chapter 3 and 4. Slow varying baseline variation with a high amplitude resembles

the shape of DNA peaks. The central challenge is to automatically identify and to

remove the fluctuations in the baseline that may resemble a passing DNA peak. Us-

ing wavelet transform (WT), we were not able to remove the low frequency baseline

variations in CE signals. The priority for the WT was to remove the high-frequency

Gaussian-like white noise. The reason we are not using wavelet transform to re-

move baseline variations in CE signals is because other people in literature had

already studied this problem and found that WT can only remove low baseline vari-

ations or linear baseline variations [46, 47, 66]. Thus, research of baseline variation

removal using WT was not worth the effort. We are exploring alternate techniques

that are applicable for the removal of baseline signal variations in the TTK.
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5.2 Baseline Variation Removal Algorithms

5.2.1 Iterative Polynomial Baseline Fit

Gan et al. showed that baseline variations in electropherograms can be removed by

an iterative polynomial curve fitting (IPBF) technique [60]. The idea is that since

any observed CE signal y(t) can be represented by equation (5.1):

y = b+ s+n+ ε (5.1)

where b, s, n, and ε represent baseline variations, signal peak, noise and measure-

ment errors, respectively. If n and ε are small and s is removed from equation (5.1),

then b can be estimated using the measured data, y. The idea of IPBF is to fit a low

order polynomial to yk−1 to obtain an estimate of bk, where k is the iteration level.

Peak removal is done by setting yk to bk if yk is greater than bk in peak regions.

This process is repeated until the difference between the current and the previous

baseline estimates ρ is smaller than a pre-specified error factor ρthr or it reaches a

maximum iteration count kmax. The initial estimate of the baseline b1 is obtained

by fitting a low-order polynomial to y. The pseudocode for the IBPF is outlined

in Appendix B. However, the IPBF requires the start and end coordinates of each

peak region. If these coordinates are not properly identified, then the IPBF base-

line estimate will not converge to the actual baseline variation. Since IPBF is an

iterative-based method, it cannot perform real time processing. With the baseline

variation removed from CE signals, signals peaks can be more easily identified.

5.2.2 Peak Region Detection

Finding the peak region coordinates is crucial for automation of baseline variation

removal because the IPBF requires the start and end coordinates of the peak regions.

The first derivative of the signal measures the rate of change of the signal and can

be used to calculate the peak regions. In an ideal world, y′ alone can be used to

85



find peak regions [69]. But in reality, using the first derivative threshold alone to

determine the peak region often leads to false peak region detection due to noise in

the signal. To address this problem, we have implemented a peak region detection

algorithm for CE signals by incorporating error checking mechanisms.

Our peak region detection algorithm is based on the threshold crossings in the

first derivative. Error checking mechanisms were employed to help distinguish be-

tween signal peaks and noise. In our algorithm, a peak region in y is defined by

the region where y′ exceeds the region threshold and has at least one sign change.

The peak region must be wider than the minimum peak region width. If two peak

regions are separated by less than a prespecified maximum peak region separation

time, then all the regions in between these two regions were also considered as peak

regions. We describe our peak region detection algorithm in detail in the following

steps:

1. Remove noise in the signal with WT denoising.

2. Calculate y′, the first derivative of the signal y.

3. Calculate the zone threshold ZT for y′, defined by equation (5.2),

ZT = ZT M×Median(ŷ′), (5.2)

where ZT M is the zone threshold multiplier and ŷ′ is a three point moving

average of y′. ZT is used to form peak region start and end coordinates.

This threshold calculation method was used in a peak location detection

algorithm [52]. We applied the same threshold calculation method for our

peak region detection algorithm.

4. Find all the coordinates where y′ crosses ZT and −ZT . Store and sort

these coordinates into an index array.
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5. Divide y′ into L− 1 zones using the index array, where L is the length

of the index array. Each point in the index array forms a start or end

coordinate of a zone, with the exceptions of the first and last points.

6. Compare the magnitude of each formed zone with the region threshold

(RT ), defined by equation (5.3),

RT = RT M×Median(ŷ′), (5.3)

where RT M is the region threshold multiplier. The zones with magnitude

greater than RT are considered candidates for peak region zones. RT is

used to differentiate between peaks and noise.

7. Compare the length of each peak region zone candidate to the minimum

zone width. If the width of a candidate peak region is smaller than the

minimum zone width, then the peak region candidate is removed from

the peak region zone candidate list. This verification is used to remove

zones with short duration that exceed RT . If a zone exceeds RT less than

the minimum zone width, then that zone is considered to be noise and is

removed from the candidate list.

8. For the remaining peak region zone candidates, check for peak region

candidates separated by less than the maximum zone separation time. If

any are found, change all the zones between the peak region candidates to

peak region candidates as well. This condition is used to compensate for

transitional zones formed between ZT and −ZT and overlapping peaks.

9. Store the remaining peak region candidates into peak region start and fin-

ish arrays using equation (5.4) and equation (5.5),

start[i] = index[i]+1, (5.4)
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and

f inish[i] = index[i+1], (5.5)

where i represents the peak region candidate number.

10. Check for peak regions with start and finish coordinates that are offset by

one data point. Peak start and finish coordinates that are offset by one

data point belong to the same peak region. Combine these peak regions

into one peak region by joining the first peak region start coordinate and

the last peak region end coordinate, and discard all the coordinates in

between.

11. Compare the length of the peak region to the minimum region width.

Discard the peak regions that do not satisfy this condition.

12. For a signal peak, the derivative of the peak signal will have a magnitude

that change signs at least once [52]. Verify that each peak region has at

least one sign change. If a peak region does not satisfy this condition,

remove the peak region.

13. Compare each peak region’s mean value to the mean of the entire sig-

nal. To verify that the peak regions have higher intensity than the overall

signal, discard all peak regions with means smaller than the mean of the

entire length of the signal. This step is used to remove noise.

14. If no peak regions are identified, treat the entire length of the signal as a

peak region. Otherwise, the remaining peak regions are considered to be

peak regions for a signal.
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5.2.3 Baseline Variation Algorithm Parameters

We started our analysis by testing our peak region detection algorithm and the IPBF

algorithm on a synthetic noisy multiple peak signal with added sinusoidal base-

line and noise, as shown in Fig. 5.1. This signal was synthesized by the method

described in Section 4.3.2 of this thesis. The starting baseline variation removal

parameters for a signal are summarized in Table 5.1. Gan et al. advised that the

polynomial order should be low and the error factor threshold ρthr should be set

to 1×10−3 [60]. We set ρthr to 1×10−7 and set kmax to a large number to ensure

convergence of the IPBF. The RT M was set to 3, the same value as another peak

location detection algorithm [52]. The ZT M was set to 2 to form zones in the first

derivative. RT M and ZT M are used to form regions in y′ to determine the peak

regions.

Figure 5.1: A synthetic multiple peak signal with baseline variation and noise (SNR
= 3 V/V).

The first baseline removal parameter we tested was ρthr. ρthr was used to test

the convergence between the current and the previous iteration of the baseline es-
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Parameter n kmax ρthr RT M ZT M
Value 10 200 1×10−7 3 2

Table 5.1: IPBF, peak region detection starting and synthetic signal parameters.

ρthr 10−2 10−3 10−4 10−5 10−6 10−7 10−8

RMSE 0.361 0.0704 0.0507 0.0493 0.0492 0.0491 0.0491

Table 5.2: Parametric sweep of error factor threshold ρthr.

timate. When ρ was smaller than ρthr, we considered that the IPBF had found an

adequate baseline estimation. To explore the effect of ρthr, we swept various values

of ρthr while keeping all other parameters in Table 5.1 constant. Table 5.2 shows

the RMSE between the true baseline and the estimated baseline for various ρthr val-

ues. The RMSE quantifies how well the baseline variation estimate matches the true

baseline variation. We found that the RMSE was initially high (0.361) for ρthr set

at 1×10−2. As we lowered ρthr toward 1×10−7, the RMSE converged to 0.0491.

As ρthr decreased, the RMSE between the true baseline and the baseline estimation

also decreased, until a limit was reached.

A maximum iteration count kmax was used to prevent the IPBF from iterating

beyond the point where iterating further did not lower ρ below ρthr. We swept kmax

and measured the RMSE between the true and estimated baselines. As shown in

Table 5.3, we found that the RMSE was high (0.307) when we set kmax to 10. As

we increased kmax to 30, the RMSE decreased to 0.0838. For kmax larger than 50,

the RMSE converged to 0.0789. Thus, increasing kmax lowered the RMSE, until a

limit was reached.

kmax 10 20 30 40 50 60 70 80
RMSE 0.307 0.112 0.0838 0.0796 0.0790 0.0789 0.0788 0.0788

Table 5.3: Parametric sweep of maximum iteration count kmax.
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n 5 10 15 20 25 30 35 40
RMSE 0.132 0.108 0.142 0.2046 0.371 0.404 0.366 0.353

Table 5.4: Parametric sweep of polynomial order degree n.

RTM 1 2 3 4 5 6 7 8 9
RMSE 0.23 0.11 0.092 0.092 0.093 0.099 0.098 0.40 0.40

Table 5.5: Parametric sweep of the region threshold multiplier RT M.

We performed a parametric sweep on the polynomial order degree (n) and mea-

sured the RMSE between the estimated and the true baseline variation. As shown

in Table 5.4, we found that the RMSE was lowest for n is 10. For large n, the

estimated baseline diverged near the end of the signal. If n was too small, the poly-

nomial could not estimate the baseline variation accurately.

The results from sweeping the region threshold multiplier RT M are shown in

Table 5.5. If the RTM was small (1 or 2), many false peak regions were detected due

to noise. When the RTM was too high (greater than 7), our peak region detection

algorithm found only peak regions with high amplitudes. For RT Ms between 3 and

7, the RMSEs were below 0.1. Thus a balance was achieved between high and low

RT Ms to ensure the success of correct peak region detection.

We also swept the zone threshold multiplier ZT M and measured the RMSE

between the true and the estimated baseline variations, as shown in Table 5.6. The

effect of varying the ZTM was very similar to the effect of varying the RT M: if the

ZT M was very low (0), the correct peak regions were not detected. If the ZT M was

set too high (greater than 3.5), our peak region detection algorithm considered only

a portion of the peak region as peak region.
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ZTM 0 0.5 1 1.5 2.5 3.0 3.5 4
RMSE 0.244 0.107 0.0699 0.0719 0.0733 0.0756 0.313 0.788

Table 5.6: Parametric sweep of zone threshold multiplier ZT M.

Parameter n kmax ρthr RT M ZT M
Value 10 60 1×10−7 3 2

Table 5.7: Suitable parameters for IPBF and peak region detection algorithms

5.3 Baseline Variation Removal Test Results

5.3.1 Synthetic Signals

A suitable set of baseline variation removal algorithm parameters derived from Sec-

tion 5.2.3 are shown in Table 5.7. With these parameters, we tested our baseline

removal algorithm on a synthetic multiple peak signal, as shown in Fig. 5.1. As in-

dicated by the vertical lines in its first derivative shown in Fig. 5.2, the peak regions

were accurately detected. RT and ZT are shown by horizontal dotted lines. Despite

the noise spikes that exceeded RT , our peak region detection algorithm did not de-

tect the noise spikes as peak regions. With the correct peak regions detected, the

IPBF removed the baseline variations as shown in Fig. 5.3. Fig. 5.4 shows the true

synthetic baseline and the estimated baseline. Throughout the length of the signal,

the baseline estimate matches the true baseline very closely despite the presence of

noise and the overlapping peaks in the noisy signal.

5.3.2 Median Subtraction Comparison

We compared our baseline variation removal algorithm with median subtraction

(MS), a method currently used in the TTK to remove baseline variations and offset.

Using the signal shown in Fig. 5.1, we performed a parametric sweep of various

median subtraction widths and measured the RMSE between true and estimated

baseline. The results are shown in Table 5.8. We found that a 23-second median
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Figure 5.2: The first derivative of the multi-peak synthetic signal with baseline
variation. The start and end coordinates of the peak region are indicated by green
and red vertical lines, respectively.

subtraction filter yielded the lowest RMSE at 1.42, which was larger than the IPBF’s

RMSE. Fig. 5.5 shows the synthetic signal with its baseline variation removed by

this median subtraction filter. With median subtraction, the post-processing signal

dipped into the negative fluorescent range which is a non-physical signal. MS also

caused the post-processing signal to dip in the leading edge of the leading peak and

the trailing edge of the trailing peak. MS failed to estimate the true baseline because

the peaks were overlapped [66]. This is because for signals with overlapping peaks,

if the median width is too large, the median values are calculated from multiple

peaks, which corrupts the peak shapes. But if the median width is too small, then

MS cannot remove high baseline variations.
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Figure 5.3: Synthetic signal with baseline variation removed by IPBF and peak
region detection.

Figure 5.4: Comparison of true baseline and estimated baselines.
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Seconds 1 5 10 15 20 23 27 30 35 40
RMSE 3.04 2.40 1.81 1.65 1.46 1.42 1.52 1.63 1.93 2.29

Table 5.8: Parametric sweep of median subtraction length.

Figure 5.5: Synthetic signal with baseline variation removed by a 23-second median
subtraction filter.

5.3.3 Baseline Variation and Noise Limits

We tested the limits of our baseline variation removal algorithm by calculating the

RMSE between the true and estimated baselines for signals with various peak height

to baseline variation ratio (PBR) and SNR. In our synthetic data, PBR was defined

as the ratio between the maximum peak height and the amplitude of the sinusoidal

baseline variation. As shown in Table 5.9, we found that the RMSE remained rela-

tively constant and below 0.1 for PBRs from 20 down to 0.75. The slight variation

in RMSE was due to noise variations. At a PBR of 0.5, the RMSE increased to

0.153. As the PBR decreased to 0.4, the RMSE increased drastically and the IPBF

began to fail to estimate baseline variations. At PBRs of 0.3 and lower, the IPBF
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PBR 20 10 1 0.75 0.5 0.4 0.3 0.2
RMSE 0.058 0.047 0.073 0.089 0.153 0.642 1.77 1.94

Table 5.9: RMSE between true and baseline variation removed signals with various
levels of PBR.

SNR 50 10 2 1.5 1.4
RMSE 0.0753 0.0665 0.0746 0.0773 0.101

SNR 1.3 1.2 1.1 1 0.75
RMSE 0.407 0.546 0.945 1.46 2.04

Table 5.10: RMSE between the true and the estimated signal for various levels of
SNR.

failed to match the baseline variation at all as indicated by RMSEs of 1.77 and 1.94

for PBRs of 0.3 and 0.2, respectively. The IPBF failed to remove the baseline vari-

ations at low values of PBR because our peak region detection algorithm could not

determine a threshold value that could be used to distinguish between the baseline

and the peak regions.

We also tested our baseline variation removal algorithm on signals with various

SNRs. As shown in Table 5.10, the IPBF removed the baseline accurately with

SNRs down to 1.5, as evidenced by the RMSE below 0.08. At a SNR of 1.4, the

RMSE rose to 0.101 and the trend continued with RMSE values of 0.407 and 2.04 at

SNRs of 1.3 and 0.75, respectively. At a SNR level of 0.5, our peak region detection

algorithm failed to find any peak regions as wavelet denoising did not remove an

adequate amount of noise and caused the peak region algorithm to fail to detect

peak regions.

5.3.4 Experimental Signals

Our baseline removal algorithm was tested using three experimental CE signals col-

lected with the TTK performed by Allison Bidulock: a single peak (Fig. 5.6), three
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separated peaks (Fig. 5.7), and multiple overlapping peaks (Fig. 5.8). The data was

collected using AML’s standard CE protocol as described in Section 4.3.2 and ref-

erences [29,94]. In the sub-figures shown in Figs. 5.6 – 5.8, (a) shows the denoised

signal and (b) shows the signal after the baseline variation has been removed. In

the Cy-5 end-labelled DNA with a concentration of 0.749 ng/µL single peak sample

shown in Fig. 5.6(a), despite the high baseline variation, the peak region is correctly

identified and the IPBF accurately estimated and removed the baseline variation. In

the 0.5µL thermo-cycler PCR product of BK virus sample with lengths of 26 and

299 bp as shown in Fig. 5.7(a), our baseline removal algorithm detected the proper

peak regions and removed the baseline variations. Where the peaks were severely

overlapped in the 1µL of DNA ladder (11 peaks, from 50 - 550 bp) sample, as

shown in Fig. 5.8(a), our peak region detection identified the overlapping peaks as

a single peak region algorithm and the IBPF removed the baseline variations.

(a) Denoised signal (b) Baseline removed signal

Figure 5.6: The peak region algorithm correctly identified the peak region and the
IPBF removed the baseline variations in a single peak experimental CE signal.

5.4 Conclusion

To address the baseline variation observed in the signals collected with the TTK,

we implemented a baseline variation removal algorithm which consists of the IPBF

97



(a) Denoised Signal (b) Baseline Removed Signal

Figure 5.7: Our peak region detection algorithm correctly identified the peak region
and the IPBF removed the baseline variations in an experimental CE signal with 3
separate peak regions.

(a) Denoised Signal (b) Baseline Removed Signal

Figure 5.8: Our peak region detection algorithm correctly identified the peak region
and the IPBF removed the baseline variations for an experimental CE signal with
overlapping peaks.

and our peak region detection algorithms. The combined algorithm removed base-

line variations in synthetic signals with a SNR and a PBR as low as 1.4 V/V and

0.75 V/V, respectively. We also demonstrated that this baseline variation removal

algorithm removed the baseline variations in CE signals with single, multiple, and

overlapped peaks regions.
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Chapter 6

Overlapping Peak Separation

6.1 Introduction

We improved the amplifier of the detection subsystem of the TTK in Chapter 3,

and then removed the high-frequency noise with the wavelet transform and the low

frequency baseline variations in Chapter 4 and Chapter 5. Now we will focus on

separating overlapping peaks for capillary electrophoresis (CE) signals.

Under ideal conditions, the output from a laser-induced fluorescent (LIF) CE

detection system is a train of impulses [80, 100]. However, unwanted convolution

with an unknown point spread function (PSF) is inevitable as a result of the imper-

fections in the optical, fluidic and electronic systems, which causes peaks to widen

and, in some cases, to overlap. Peak resolution is defined by the ratio of the dis-

tance between two peaks and the average peak width [37]. Overlapping peaks (or

low resolution) hinder data analysis because it is difficult to identify signal peaks in

low resolution signals. CE peak resolution can be increased by lengthening the mi-

crofluidic chip channel or by increasing separation times. However, these methods

often result in bulkier systems or longer diagnoses.

Besides modifying the CE system or protocol to overlapping separate peaks,

post signal-processing of CE signals can also separate overlapping peaks. The most

common peak separation technique is curve fitting [13], but this can only separate

overlapping peaks if noise is low and peak resolution is high. Initial estimates of
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the number of peaks, peak shape, and peak width are required for the curve fitting

method [70, 71]. Fourier self-deconvolution (FSD) with a Weiner smoothing filter

has been shown to separate overlapping peaks in [72–74]; however, this method

also requires a high SNR because artifacts are easily created [75]. For these rea-

sons, curve fitting and FSD are not suitable for automatic deconvolution of CE

signals. Olazabal at el. showed a method where signals were deconvoluted using

wavelet transform. But in their results, although peaks are effectively separated,

the deconvolved signal shifted and the peak shape are distorted from the original

signal [13, 76].

Numeric deconvolution methods, such as Jansson’s deconvolution have been

reported to separate overlapping peaks in chromatographic signals [77–81]. Jans-

son’s deconvolution can increase the resolution of chromatographic peaks with low

SNRs. To our knowledge, no one has used Jansson’s deconvolution to separate

overlapping peaks in CE signals. The main benefit of Jansson’s deconvolution is

that it does not require knowledge of the signal’s noise characteristics. The only pa-

rameters required are the impulse response of the system and the amplitude bound

of the signal [82]. To increase the usability and automation of Jansson’s deconvolu-

tion in a CE signal processing algorithm, we incorporated the use of normalization,

peak detection, and deconvolution factor.

6.2 Peak Separation Methods

6.2.1 Peak Separation by Fourier Transform

In a typical electropherogram, the signal observed y(t) can be modelled by equation

(6.1),

y(t) = x(t) ∗ h(t)+n(t) (6.1)

where h(t), x(t), n(t) represent the PSF, the true signal, and the noise in the sys-
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tem, respectively. A method to retrieve x(t) from y(t) uses the forward and inverse

Fourier transform (FT). Equation (6.2) represents the FT of equation (6.1):

Y = XH+N, (6.2)

where Y, X, H, N are the FT of y(t), x(t), h(t), and n(t), respectively. If the noise

is small, then by rearranging equation (6.2) and taking the inverse FT, an estimate

of the original signal ˆx(t), can be retrieved by equation (6.3),

ˆx(t) = F−1
(

Y
H

)
. (6.3)

It is possible to use the FT method to obtain an estimate of x(t), but since H

is band limited and has values close to zero in some frequencies, dividing by H

can cause the signal to diverge [79]. Variations of the FT by incorporating other

methods, such as a Wiener filter, have been been reported to deconvolve signals

[72–74]. Although effective, these method require require the prior knowledge and

precise modelling of the signal and noise.

6.2.2 Jansson’s Deconvolution
6.2.2.1 Theory

Jansson’s deconvolution algorithm used for deconvolving signals, proposed by Crilly

[79], is outlined in the following steps:

1. Set the initial estimate of xk to y. In the first iteration, the iteration count

k is set to 0.

2. Calculate the relaxation factor r(xk) defined by

r(xk) = b(1− 2
c

∣∣∣xk− c
2

∣∣∣), (6.4)

where c is the maximum height of the signal and b is a noise dependent

relaxation constant.
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3. Estimate the original signal using:

xk+1 = xk− r(xk)(ah ∗ xk− y), (6.5)

where xk and xk+1 represent the current iteration and the next iteration

of the estimated signal, respectively. The constant a is used to rescale

h(t) for proper convergence. h(t) was obtained by curve fitting an ETG

function to the signal of an experimental CE run of a 0.749 ng/µL of Cy-

5 end-labelled DNA sample (or primer product), as described in Section

4.3.2 of this thesis. A procedure to obtain h(t) is outlined in Appendix D.

4. Set xk+1(i) = MAX(xk+1(i), 0) for all data points i.

5. Set xk = xk+1.

6. Return to step 2 if the iteration level k is less than the specified iteration

level.

The idea behind Jansson’s deconvolution is that if we substitute k for k− 1 in

equation (6.5) and take the FT of it, it becomes:

Xk = Xk−1−R(Xk−1) ∗ (aHXk−1−Y). (6.6)

The convolution performed in equation (6.6) extends the bandwidth of Xk be-

cause R is a function of X, hence recovering the frequency component lost from

equation (6.1). Furthermore, according to Crilly, equation 6.5 converges to the in-

verse filter estimate as shown in equation 6.3, if k is large and H( f )> 0 [77].

6.2.2.2 Jansson’s Deconvolution for CE Signals

The parameters for Jansson’s deconvolution proposed by Crilly’s papers are in-

tended for chromatography signals [77–79]. Chromatography signals are generally

wider and more overlapped than CE signals; therefore, Jansson’s deconvolution
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parameters must be modified. If the same parameters were used, Jansson’s decon-

volution will be very sensitive to noise and artifacts will be created easily.

The relaxation constant b and the maximum iteration count kmax are the param-

eters which are used to adjust the noise tolerance in Jansson’s deconvolution. To

determine a relaxation constant b suitable for CE signals, we performed a paramet-

ric sweep of b on a 11-peak DNA ladder (50 - 550 bp) CE signal collected with

the TTK as shown in Fig. 6.1. This signal was obtained the using the standard CE

protocol as described in Section 4.3.2. This signal was processed by wavelet de-

noising (in Chapter 4) and IPBF (in Chapter 5). Although we were able to remove

the high-frequency noise and the low-frequency baseline variations in this signal,

the post-processing peaks are still overlapped.

Figure 6.1: Experimental CE run with 11 overlapping peaks (DNA Ladder).

The deconvolved signals of Fig. 6.1 using Jansson’s deconvolution with b set
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Figure 6.2: Parametric sweep of b from 0.01 to 2.

from 0.01 to 2 are shown in Fig. 6.2. We observed that as the relaxation constant

b increased, Jansson’s deconvolution separated the peaks more. If there was noise

in the signal, and b was greater than 0.3, Jansson’s deconvolution over deconvolved

and created artifacts. But if b was smaller than 0.06, insufficient peak separation

was achieved. It was crucial to find a value of b that minimized the creation of

artifacts and maximized peak separation. From the zoomed-in deconvolved signal

shown in Fig. 6.3, we observed that a b value of 0.01 provided the most peak

separation without introducing artifacts in the signal.

We also investigated the effect of the number of iterations performed in Jans-

son’s deconvolution. Fig. 6.4 shows the deconvolved signal at various iteration

levels. We observed that as the number of iterations increased, the more the over-

lapping peaks were separated; however, artifacts were created at higher iteration
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Figure 6.3: Zoomed-in peaks shown in Fig. 6.2

levels. This may not be an issue for high-precision and low-noise chromatography

signals. But for a photodiode-based CE device, deconvolving with too many itera-

tions creates artifacts. Since the main goal was to isolate overlapping peaks, only a

few iterations were required to separate peaks.

To evaluate the effect of the number of iterations in Jansson’s deconvolution,

we plotted the deconvolution factor ρ against the number of iterations. The decon-

volution factor is a measure of the difference between the current and the previous

iteration of the signal and is defined by equation (6.7),

ρ =
||xk− xk−1||

xk−1
. (6.7)

As shown in Fig. 6.5, we found that ρ dropped significantly during the first few

iterations and flattened out as the number of iterations increased.
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Figure 6.4: Deconvolved signal at various iteration level of Jansson’s deconvolu-
tion.

6.2.2.3 Jansson’s Deconvolution Modifications

Three modifications were made to Jansson’s deconvolution to automate its use for

CE signals. The first modification to Jansson’s deconvolution was normalization of

the signals and the PSF. Although a very simple process, normalization standardized

all signals and the PSF to a height of 1. Normalization set all signals to the same

range of values and allowed the signal bound parameters c in equation (6.4) and a

in equation (6.5) to be set to constants. These parameters were obtained by trial and

error testing on synthetic and experimental signals. We found that setting a to 1 and

c to 0.025 provided the most peak separation without creating artifacts.

To minimize the creation of artifacts, we incorporated peak detection in each it-

eration of the Jansson’s deconvolution. The number of detected peaks in the current
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Figure 6.5: Deconvolution factor ρ versus number of iterations

iteration were compared to the number of peaks detected in the previous iteration.

If they are not equal, then artifacts are created and the deconvolved signal from

previous iteration is reverted and used as the final deconvolved output. To ensure

adequate peak separation, a minimum of five iterations should be performed. An

iteration maximum count of 100 is used to stop iterating if the number of peaks

does not change through all of the iterations.

Another modification to Jansson’s deconvolution was the use of deconvolution

factor (ρ). ρ is defined by equation (6.7) and it calculates the similarity of the

estimated signal between the current and the previous iterations. The deconvolution

factor threshold (ρthr) is used to stop the iteration process when further iterating

does not improve peak separation significantly. Using the deconvolution factor plot,

as illustrated in Fig. 6.5, we set ρthr to 0.01. The implementation of a deconvolution
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factor threshold reduces the creation of artifacts.

The use of peak detection and deconvolution factor between the iterations al-

lowed Jansson’s deconvolution to stop iterating once artifacts are detected or peaks

are adequately separated in the deconvolved signal. Combined with the use of nor-

malization, the parameters required for Jansson’s deconvolution were set to con-

stants. These modifications allowed Jansson’s deconvolution to separate overlap-

ping peaks in a CE signal processing algorithm.

6.3 Results

6.3.1 Synthetic Signals
6.3.1.1 Convolved and Deconvolved Synthetic Signal

To verify that Jansson’s deconvolution could be used to retrieve the true signal from

a convolved signal, we synthesized a signal with five narrow pulses separated by

3.75 seconds and with widths of 0.3 seconds, as shown in Fig. 6.6(a). This signal

was convolved with a uniform Gaussian PSF shown in Fig. 6.6(b) and the convolved

signal is shown in Fig. 6.6(c). The deconvolved signal using Jansson’s deconvolu-

tion is shown in Fig. 6.6(d). We demonstrated that Jansson’s deconvolution could

retrieve the original signal from a noiseless-convolved signal.

6.3.1.2 Resolution Limit

To test the resolution limit of Jansson’s deconvolution, we synthesized and decon-

volved signals with various resolutions. We found that the lowest signal resolution

that Jansson’s deconvolution could separate without distorting the peak shapes was

0.7. Fig. 6.7(a) and Fig. 6.7(b) show the original and deconvolved signals, respec-

tively.
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(a) Delta Dirac pulses (b) Uniform Gaussian PSF model

(c) Convolved signal (d) Deconvolved signal output

Figure 6.6: Testing of convolution and Jansson’s deconvolution using a synthetic
signal.

6.3.2 Experimental Signals
6.3.2.1 Low Resolution Signal

The CE signal of a 1µL of DNA ladder sample was used to test and verify that

Jansson’s deconvolution can be used to separate overlapping peaks. As shown in

Fig. 6.8(a), this DNA ladder sample has 11 peaks: a primer peak (50 bp) and 10

product peaks (100 - 550 bp). It is the same signal as the signal shown in Fig. 6.1.

We showed it again here to compare the signal with and without Jansson’s decon-

volution. Fig. 6.8(b) shows the deconvolved signal by our Jansson’s deconvolution.
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(a) Original signal (b) Deconvolved signal

Figure 6.7: Limit of Jansson’s deconvolution signals with resolution of 0.7.

(a) Denoised Signal (b) Deconvolved signal

Figure 6.8: Jansson’s deconvolution of a DNA ladder, a low resolution signal.

6.3.2.2 High Resolution Signals

Since Jansson’s deconvolution will be applied to all signals in our signal process-

ing algorithm, the effect of Jansson’s deconvolution on high resolution signals was

tested. Fig. 6.9(a) shows a two non-overlapping peak (high resolution) CE signal.

This data was collected by the TTK using 0.5 µL of a thermo-cycled PCR product

of BK virus. The primer has a length of 26 bp and the product has a length of 299

bp. The deconvolved signal is shown in Fig. 6.9(b) and showed that our modified
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Jansson’s deconvolution can also be used for CE signals with high resolution.

(a) Denoised Signal (b) Deconvolved Signal

Figure 6.9: Jansson’s deconvolution of a high resolution signal.

6.3.3 Limitations and Assumptions

A limitation to Jansson’s deconvolution is that it requires the accurate modelling of

h(t). As described, we obtained h(t) by fitting an ETG function to the CE signal

of a Cy-5 end-labelled DNA (primer) sample with a concentration of 0.749 ng/µL.

For the TTK, we found that the h(t) used could separate peaks for both signals

with high and low resolution. If it was incorrectly modelled, artifacts can be easily

created by Jansson’s deconvolution.

It is very important to note that the TTK’s h(t) can vary from experiment to

experiment. This is because the optical detection subsystem requires very precise

alignment. Slight focus deviation from the optimal detection location can result in a

signal with a much lower SNR for the same experiment. There are also variabilities

in the manufacturing process of the microfluidic chips. For example, defects in the

microfluidic chips can limit the mobility of DNA molecules during CE injection

or separation. This changes the leading and trailing edges of a DNA peak and

thus, changing h(t). In this thesis, we assumed that all of the data collected was

performed with no deviation from the CE protocol. This means that if we were to
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find the h(t) for every data set, our signal processing algorithm will be even more

reliable and separate signals with lower resolution.

6.4 Conclusion

In this chapter we described the third and final step of our signal processing al-

gorithm for CE signals. We modified Jansson’s deconvolution algorithm and its

parameters to enable overlapping peak separation for CE signals. By adding peak

detection, deconvolution factor and normalization to Jansson’s deconvolution, we

minimized artifacts and maximized peak separation. We showed that Jansson’s de-

convolution retrieved the original signal and separated peaks with resolution as low

as 0.7 for synthetic signals. We also demonstrated that Jansson’s deconvolution can

separate peaks in experimental signals with both low and high resolutions.
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Chapter 7

Complete Capillary Electrophoresis
Signal Processing Algorithm

7.1 Introduction

So far we have separately presented various algorithmic components for CE signal

processing. In this chapter we will combine the previous algorithms together and

investigate the resulting effectiveness for both synthetic and experimental CE sig-

nals. We identified high-frequency noise, baseline variations, and low resolution as

three of the challenges in the signals recorded with the TTK.

Few previous researchers have addressed all of the issues (low SNR, baseline

variations, low resolution) in non-confocal CE genetic analysis instruments. Most

methods tackle only some of the problems. Shackman et al. developed a fast al-

gorithm for processing large amounts of CE data [97]. The algorithm developed in

this work possessed very impressive speed and throughput, but the technique used

a straight line to estimate baseline variations and it did not remove baselines with

high variation. Kaigala and Behnam et al. used Fourier filtering and a medium

subtraction to process their CE signals, but in cases of overlapping peaks, their sig-

nal processing yielded signals with peaks dipping below the baseline (or negative

peaks), which are non-physical signals [29].

We present a signal processing algorithm for CE signals with various levels of
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Description Variable Value
Wavelet type wtname Sym8

Wavelet decomposition level level 8
Wavelet threshold selection rule T PT R heuristic SURE

Wavelet threshold method SORH Soft

Table 7.1: Wavelet denoising parameters.

SNR, baseline variations, and resolutions. We will show that with proper signal pro-

cessing, we can lower the TTK’s LOD to that of a commercial system that utilizes

expensive confocal optics.

7.2 Complete Capillary Electrophoresis Signal Pro-
cessing Algorithm

High-frequency noise in raw CE signal is removed by a Symlet 8 (sym8) wavelet

with level 8 decomposition. The denoised signal is then passed into the IPBF and

peak region detection algorithms, where baseline variations are removed. A modi-

fied Jansson’s deconvolution is used to improve peak resolution by separating over-

lapping peaks. Tables 7.1, 7.2, 7.3, and 7.4 summarise the parameters used for

wavelet denoising, IPBF, peak region detection, and Jansson’s deconvolution, re-

spectively. We derived these parameters in Chapters 4, 5, and 6 of this thesis.

Figure 7.1: Overview of our complete CE signal processing algorithm consisting of
noise removal, baseline removal, and peak separation.
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Description Variable Value
Polynomial degree n 20

Maximum iteration level kmax 300
Iteration error threshold ρthr 1.00×10−6

Table 7.2: Iterative polynomial baseline fit parameters.

Description Variable Value
Zero threshold multiplier ZT M 2

Region threshold multiplier RT M 3
Maximum peak separation time (s) tPeakSepMax 5

Minimum span time (s) tSpanTimeMin 1.5

Table 7.3: Peak region detection algorithm parameters.

7.3 Test Results and Discussions

This section discusses the test results of our signal processing algorithm on experi-

mental CE data samples collected using the TTK by M.Sc student Allison Bidulock.

The CE protocol used is described in Section 4.3.2 and references [29] and [94]. We

showed four examples of pre-processing and post-processing signals in Fig. 4.21.

The dataset tested consists of CE runs with single and multiple peaks with low and

high SNR and, near constant and varying baselines. We show a subset of the pro-

cessed signals in this section. In each of the figures with sub-figures shown in this

section, sub-figure (a) shows the raw signal; sub-figure (b) shows the signal with the

Description Variable Value
Relaxation factor b 0.01

PSF scaling function a 0.025
Signal bound c 1

Maximum iteration count kmax 100
Peak detection parameter δ 0.1

Deconvolution factor threshold ρthrs 0.02

Table 7.4: Jansson’s deconvolution parameters.
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noise removed by wavelet denoising and the detected peak region(s); sub-figure (c)

shows the signal after the baseline variations have been removed with IPBF; sub-

figure (d) shows the signal with the peaks separated by Jansson’s deconvolution.

7.3.1 Single Peak Signals

With our signal processing algorithm, we processed CE signals of single peak Cy-5

end-labelled (or primer) with DNA concentrations of 0.749 ng/µL and 0.498 ng/µL.

Figs. 7.2, 7.3, and 7.4 show the signal processing stages for single peak signals

with small baseline variations and SNR of 22.5, 7.7, and 4.6 V/V, respectively. Our

signal processing algorithm removed noise and baseline variations and increased the

post processing SNR to 342, 67, and 98 V/V, respectively. We measured our SNR

by calculating the ratio between the height of the peak and the standard deviation

of the baseline before the peak arrivals (typically the first 50 seconds of the signal).

We also tested our signal processing algorithm on a single peak signal with high

baseline variation as shown in Fig. 7.5(a). This single peak signal has a baseline

variation 15% higher than the signal’s peak. Our peak region detection algorithm

detected the peak region correctly as shown by the vertical lines in Fig. 7.5(b). The

peak region detection algorithm is based on the rate of change of the signal (or y′)

rather than the magnitude of the signal. Since the rate of change of the baseline vari-

ation did not exceed the rate of change of the peak region threshold, our algorithm

identified the peak region correctly and removed the baseline variation, as shown in

Fig. 7.5(c). These processed samples showed that our signal processing algorithm

could successfully remove the baseline variation (caused by laser intensity fluctu-

ations) and the baseline offset (caused by autofluorescence) in single peak signals

with various levels of SNR and baseline variations.
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(a) Raw signal (b) Denoised signal

(c) Baseline variation removed signal (d) Deconvolved signal

Figure 7.2: Electropherogram of a 1 µL of Cy-5 end-labelled primer with concen-
tration of 0.749 ng/µL. The unprocessed signal for this CE electropherogram had a
medium SNR (22.5 V/V) and a varying baseline. The peak region was successfully
detected, the baseline variation was removed, and the signal SNR was improved to
342 V/V post processing.

7.3.2 Multiple Peak Signals

We also performed signal processing on CE runs with multiple peaks. Figs. 7.6, 7.7,

7.8 and 7.9 show four different three-peak BK virus (BKV) CE runs with various

level of SNR, baseline variations, and primary to secondary peak height ratio. The

samples used in Figs. 7.6 and 7.7 were 0.5µL of thermo-cycled PCR product mixed

with 3.5µL of 0.01xTTE and the samples used in Figs. 7.6 and 7.7 were 4µL of

PCR product from the TTK.

In all of these runs, the first peak is the primer peak (25 or 26 bp), the second

peak is the product peak (299 bp), and the third peak is an unspecific peak [29]. In
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(a) Raw signal (b) Denoised signal

(c) Baseline variation removed signal (d) Deconvolved signal

Figure 7.3: Electropherogram of a 1 µL of Cy-5 end-labelled primer with concen-
tration of 0.749 ng/µL. The raw signal in this CE electropherogram had a low SNR
of 7.7 V/V and near constant baseline. The signal processing was able to remove the
noise in the signal and improve the signal SNR to 67 V/V after baseline removal.

the electropherograms with three peaks shown in Fig. 7.6 and Fig. 7.7, the peak

height for all peaks is similar in magnitude. The difference between the two signals

is that the signal in Fig. 7.6(a) has a higher SNR than the signal in Fig 7.7(a).

In both electropherograms, our signal processing algorithm removed the noise and

correctly identified the peak regions and no artifacts were created. Fig. 7.8 and Fig.

7.9 show three-peak signals where the height of the primary peaks are significantly

higher than the heights of the secondary peaks. Despite the peak height differences,

our signal processing algorithm removed the noise, detected the peak regions and

removed the baseline variations in these signals.

We continued to test our signal processing algorithm on a 1µL of DNA ladder

118



(a) Raw signal (b) Denoised signal

(c) Baseline variation removed signal (d) Deconvolved signal

Figure 7.4: Electropherogram of a 1 µL of Cy-5 end-labelled primer with concen-
tration of 0.498 ng/µL. The signal processing stages for a CE signal with a low
SNR (4.6 V/V) and a varying baseline. Our signal processing algorithm improved
the SNR to 97.6 V/V and removed the baseline variations.

sample mixed with 3µL of 0.01xTTE, as shown in Fig. 7.10(a). This sample has

11 peaks (50 - 500 bp), where the first peak is the primer peak and the all other

peaks are product peaks (separated by 50 bp). The denoised signal and the iden-

tified peak region are shown in Fig. 7.10(b). Because the peaks overlapped, our

signal processing algorithm grouped the peaks as one peak region. The IPBF algo-

rithm removed the baseline variations in the signal as shown in Fig. 7.10(c), and

Jansson’s deconvolution separated the overlapping peaks as shown in Fig. 7.10(d).

The post-processing signal clearly showed 11 peaks. Our signal processing algo-

rithm removed the noise and baseline variations, and increased the resolution of a

DNA ladder sample. The same signal was processed by the current TTK software
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(a) Raw signal (b) Denoised signal

(c) Baseline variation removed signal (d) Deconvolved signal

Figure 7.5: Electropherogram of a 1 µL of Cy-5 end-labelled primer with concen-
tration of 0.749 ng/µL. Signal processing of a single peak signal with a medium
SNR and a baseline variation magnitude greater than that of the signal peak.

as shown in Fig. 7.11 [101]. Median subtraction used in the TTK signal processing

caused the peaks to dip below the baseline (negative peaks), which is a non-physical

signal.

7.3.3 Reliability Study

A total of 117 experimental CE runs performed by M.Sc student Allison Bidulock

with the TTK were analysed by our signal processing algorithm. Forty-four of

the CE runs were single-peak DNA primer samples and 73 of the CE runs were

multiple-peak BKV or DNA ladder samples.

Of the 44 runs with single-peak samples, our signal processing algorithm re-

moved the noise in the signal, correctly identified the peak regions, and success-
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(a) Raw signal (b) Denoised signal

(c) Baseline variation removed signal (d) Deconvolved signal

Figure 7.6: Signal processing stages of BKV from thermo-cycler with three peaks
with SNR of 69.2, 82, and 21.4 V/V. The baseline variation and noise were success-
fully removed.

fully removed the baseline variations and offsets in 32 runs. For the remaining 12

runs where additional peak regions were identified (due to abrupt baseline varia-

tions), four runs resulted in varying baselines and small artifacts were created in

three runs.

An example in which our signal processing algorithm detected an additional

peak region in a single peak signal (1µL of Cy-5 end-labelled DNA mixed with 3µL

of 0.01xTTE) is shown in Fig. 7.12(a). Our signal processing algorithm identified

an additional peak region near the beginning of the signal as shown in Fig. 7.12(b).

As shown in the first derivative of the denoised signal (Fig. 7.13), the abrupt base-

line variation at the beginning caused the first derivative of the signal to exceed the

upper and lower thresholds for more than the prespecified minimum peak width.
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(a) Raw signal (b) Denoised signal

(c) Baseline variation removed signal (d) Deconvolved signal

Figure 7.7: Signal processing stages of BKV from thermo-cycler with 3 peaks with
SNR of 14.4, 24.7, 7.5 V/V. The baseline variation and noise were successfully
removed.

This caused a false peak region detection. The error was amplified by deconvolu-

tion, which increased the height of artifacts. Our signal processing algorithm did

not remove abrupt baseline variations with long durations.

In the 74 CE runs with multiple peak samples, there were only four runs where

peak regions were not correctly detected. This led to the creation of artifacts and

varying baselines in these four runs. Fig. 7.14(a) shows the electropherogram of a

0.5 µL of BKV PCR product from a thermo-cycler mixed with 3.5 µL of 0.01xTTE.

It resulted in three-peak CE signal with a large baseline variation in the beginning

and a small unspecific peak near the end of the signal. As shown in Fig. 7.14(b), our

signal processing algorithm failed to detect the last peak because the first derivative

of the third peak did not exceed the peak region threshold. This could be corrected
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(a) Raw signal (b) Denoised signal

(c) Baseline variation removed signal (d) Deconvolved signal

Figure 7.8: Signal processing stages of a on-chip BKV sample with distributed peak
heights. Our algorithm denoised the signal and identified the peak regions.

by lowering the zone threshold (via a zone threshold multiplier), but it could lead

to longer peak region times for all peaks. Our signal processing algorithm did not

detect peaks with very small peak amplitudes relative to baseline variations.

Another limitation to our signal processing algorithm was that it did not com-

pletely separate the peaks for signals with low resolution. Jansson’s deconvolution

can separate signals with low resolution by setting the relaxation factor high or

increasing the maximum number of iterations. Because our goal was to separate

overlapping peaks without creating artifacts, we used a high deconvolution factor

threshold value. As a result, when peak resolution was low, our signal processing

algorithm did not separate the peaks completely, as shown in Fig. 7.15(d). This

sample shown in this figure is a 4 µL of BKV PCR product obtained from a on-chip

PCR performed on the TTK.
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(a) Raw signal (b) Denoised signal

(c) Baseline variation removed signal (d) Deconvolved signal

Figure 7.9: Signal processing stages of a on-chip BKV sample with distributed peak
heights. Our signal processing algorithm determined the peak region of each peak.

Using our signal processing algorithm on 117 CE runs, 14 (12%) of the post-

processing runs resulted in varying baselines or created artifacts because the SNR

of the raw signal was too low or the baseline variation to peak height ratio was

too high. However, signal processing success rate is hard to quantify and compare.

From our literature review of denoising, baseline variation removal, and overlapped

peaks separation algorithms, there was not a single journal article reported on their

signal processing success rate for synthetic or experimental signals. Clearly the

success rate of a signal processing is not easy to quantify.

Although a success rate of 88% might appear low, we believe it is because we

calculated our signal processing’s success rate based on the entire CE dataset col-

lected by M.Sc student Allison Bidulock. We did not take the external environments

that might have affected the quality of CE runs into account. External environments
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(a) Raw signal (b) Denoised signal

(c) Baseline variation removed signal (d) Deconvolved signal

Figure 7.10: DNA ladder CE electropherogram with a low SNR (about 6 V/V on
the highest peak). The automated signal processing algorithm denoised the signal,
removed the baseline and separated the overlapping peaks. The SNR of the highest
peak was found to be 396 V/V after processing.

Figure 7.11: Ladder sample processed by the current TTK software.
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(a) Raw signal (b) Denoised signal

(c) Baseline variation removed signal (d) Deconvolved signal

Figure 7.12: Signal processing stages of a single peak signal. An abrupt baseline
variation at the beginning of the signal created an artifact in the post signal process-
ing.

Figure 7.13: The first derivative of the signal shown in Fig. 7.12(b).
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(a) Raw signal (b) Denoised signal

(c) Baseline variation removed signal (d) Deconvolved signal

Figure 7.14: Signal processing stages of a three-peak CE signal with a varying base-
line. The small peak’s region could not be detected due to its low SNR compared
to the baseline variation.

such as laser misalignment, electronic noise (excluding amplifier and photodiode),

poor microfluidic channel coating, and bad reagents, all can have a huge effect

on the SNR and the baseline variation in the recorded electrophoergrams. We be-

lieve that our signal processing will have a much higher success rate if we filtered

out CE runs with these external experimental errors. We also believe that the re-

sults we have shown here are not phenomenological because we have successfully

processed (i.e/ removed noise and baseline variations, and separated overlapping

peaks) a wide array of CE data from the TTK, including CE runs that might have

affected the signal quality because of external factors.

Lastly, the performance of our complete CE signal processing algorithm could

be improved by changing the algorithm parameters for specific signals. However,
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(a) Raw signal (b) Denoised signal

(c) Baseline variation removed signal (d) Deconvolved signal

Figure 7.15: A case where our signal processing algorithm did not completely sep-
arate the overlapping peaks.

changing a set of parameters might work for one signal but could have adverse

effects on other signals. For example, the zone threshold multiplier can be lowered

to increase peak region sensitivity, but lowering it can lead to false peak region

detection in noisy signals. Using a higher level decomposition in WT removes

more noise in noisy signals but it distorts peak shapes. Increasing the relaxation

factor or decreasing the deconvolution factor threshold in Jansson’s deconvolution

increases peak separation, but artifacts are more easily created.

7.3.4 Resolution

The most recent published resolution for the TTK was 12 bp [29]. This journal arti-

cle used median subtraction to remove baseline offset and variations. As shown by

the processing of a ladder sample with 50-500 bp in Fig. 7.11, median subtraction
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caused the peaks to dip below the baseline reference and resulted in a non-physical

signal [101]. Because median subtraction distorts signals with wide or overlapping

peaks, the resolution for the TTK was calculated using BKV samples with separated

peaks.

The same ladder sample was processed with our signal processing algorithm

and the post-processing signal is shown in Fig. 7.10(d). The peak locations and

heights for the post processing signal are shown in Table 7.5. We calculated the

resolution (in bp) of the TTK using equation (7.1) [102],

RES(bp) =
(w1+w2)

2
∆M
∆t

(7.1)

where w1 and w2 are the full width at half maximum (FWHM) of the peaks, ∆t is the

separation time between the peaks, and ∆M represents the size difference between

the DNA molecules in bp. Because there are multiple peaks (or DNA molecules)

in this sample, we calculated the resolution of all adjacent peaks. The average

resolution for all adjacent peaks was calculated to be 20.5 bp. We believe that

our signal processing has a degraded resolution compared to median subtraction

because the median values calculated in the rising and falling regions of isolated

peaks, have higher values than the actual baseline. Subtracting the median values in

these regions effectively reduces peak widths. But as discussed, median subtraction

distorts signals with wide or overlapping peaks and cannot be used to calculate the

resolution for the DNA ladder sample.

7.3.5 Limit of Detection Improvement

We reprocessed experimental data recently published by the AML [29] and recal-

culated the LOD of the TTK using our signal processing algorithm. We used a

standard procedure to determine the LOD [103]. Three different concentrations

(0.749, 0.498, and 0.249 ng/µL) of Cy-5 DNA primer were used, and each concen-

tration was loaded twice and two CE runs were performed with each DNA primer
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Peak Number 1 2 3 4 5 6
Peak Amplitude (V) 0.0041 0.0018 0.0025 0.0032 0.0038 0.0042
Peak Time (s) 102.3 109.9 125.6 135.5 143.6 153.6
Peak FWHM (s) 3.8 8.5 2.6 3.2 3.1 5.1
Size (bp) - 50 100 150 200 250

Peak Number 7 8 9 10 11
Peak Amplitude (V) 0.0038 0.0034 0.0031 0.003 0.0028
Peak Time (s) 162.3 173 183.4 192 200.2
Peak FWHM (s) 4.3 3.8 3.5 3.2 6.5
Size (bp) 300 350 400 450 500

Table 7.5: Post-processing of red ladder peak information

load.

The raw data from these CE experiments were processed by our signal process-

ing algorithm, as shown in Fig. 7.16. The average post-processing peak heights for

0.749, 0.498, and 0.249 ng/µL primer concentration were 0.0659 V, 0.0442 V, and

0.0372 V, respectively. The average standard deviation of the post-processing noise

(first 50 seconds) was 50 µV. The LOD was calculated by fitting a best fit line to

the peak height against concentration plot. Linear extrapolation was used to find

the concentration where the peak height is three times of the noise. We found the

TTK’s LOD to be 1.7 pg/µL with our signal processing algorithm.

Our signal processing algorithm reduced the LOD of the TTK from 6 pg/µL [29]

to 1.7 pg/µL. The LOD using our signal processing algorithm is smaller than the

LOD of the µTK, which is a commercial CE genetic analysis instrument with a

LOD of 2.3 pg/µL [29]. No other LOD record for commercial devices could be

found during our review.

One of the key contributing factors for the LOD improvement is wavelet denois-

ing. As discussed in Chapter 4, wavelet denoising is excellent at peak information

preservation while removing noise. Wavelet denoising allowed for the removal of

noise while maintaining peak heights, hence increasing the post-processing SNR
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Figure 7.16: Limit of detection using our signal processing algorithm of 0.749,
0.498, and 0.249 ng/µL of DNA.

and decreasing the LOD.

7.3.6 Algorithm Limitations

Using AML’s standard CE protocol and our signal processing algorithm, the lowest

concentration of Cy-5 end-labelled DNA was 0.498 ng/µL. In synthesised CE sig-

nals, the lowest SNR our algorithm was able to process was 2 V/V. We also showed

that our algorithms can remove baseline variations for signals with peak to baseline

ratio as low as 1.4 V/V.

However, the implementation of Jansson’s deconvolution to separate overlap-

ping peaks and to improve resolution requires an accurate model of the TTK’s point

spread function. Our signal processing algorithm runs on parameters that was tune

specificly for TTK’s CE signals. If the point spread function was incorrectly mod-

elled or the experimental conditions are changed, then our algorithm may create

artifacts.
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7.3.7 Executable Signal Processing Function

Using the MATLAB compiler and the Microsoft Visual Studio 2008 compiler, we

turned our signal processing scripts into an executable program for Windows com-

puters. MATLAB is not required to run this program. This executable program

opens a dialog box and allows the user to select a text file saved by the TTK soft-

ware v3.2x from a CE run. It automatically parses through the text file and extracts

the raw data and performs wavelet denoising, IPBF, and Jansson’s deconvolution.

The executable saves the stages of processing in a JPEG image, as well as the de-

noised signal and the peak locations in text files. The user guide can be found in

Appendix A.7.

Our signal processing algorithm requires a powerful computer. Running our

signal processing algorithm on a modern computer with 2.8 GHz quad-core with 6

GB of memory, processing a sample signal took 16 seconds. Running on an older

computer with Pentium 4 1.7 GHz and 768 MB of memory, processing the same

signal took 140 seconds.

7.4 Applicability to the µTK

To demonstrate that our signal processing algorithm is generally applicable for dif-

ferent signals, we processed and analysed some CE runs performed on a µTK by

a M.Sc student Samira Movahedi. Wavelet denoising of CE signals with various

number of peaks and resolutions are shown in Fig. 7.17. Wavelet denoising was

able to remove the noise in these signals while preserving peak information. Base-

line offset and variation removal are not required for µTK signals because the area

of detection of PMT device is small and the baseline is so low that the laser vari-

ation has a negligible affect. We also performed Jansson’s deconvolution on the

denoised µTK signals. We found Jansson’s deconvolution created artifacts in all of

the signals we tested. This is because the point spread function (PSF) of the µTK is
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different than that of the TTK’s, which is used in our signal processing algorithm.

We believe that Jansson’s deconvolution can separate overlapping peaks for µTK

signals if an accurate model of the PSF was used.

7.5 Conclusion

In this chapter, we presented our signal processing algorithm for CE. Our algo-

rithm consists of wavelet denoising, iterative polynomial baseline fit, and Jansson’s

deconvolution. Without additional parameter tweaking, our CE signal processing

algorithm improved SNR, resolution, and removed baseline variations for various

types of CE signals gathered from an inexpensive non-confocal LIF-CE instrument.

Using our signal processing algorithm, we lowered the LOD of the TTK from 6

pg/µL to 1.7 pg/µL.
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(a) Raw signal (b) Denoised signal

(c) Raw Signal (d) Denoised Signal

(e) Raw Signal (f) Denoised signal

Figure 7.17: Wavelet denoising of signals from a µTK.
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Chapter 8

Conclusion

8.1 Summary

In this thesis, we looked at the extraction of information from the TTK. We have

made contributions to the TTK in two important areas: electronics and signal pro-

cessing algorithms.

Chapter 3 presented our contribution to the electronics which involved the de-

sign and test of a multistage amplifier that extends the bandwidth to extract extra

signal information compared to the TTK’s current electronics. This multistage am-

plifier has the same current to voltage gain (-1×109 V/A) as the existing single-stage

amplifier, with improved bandwidth (160 Hz from 1.5 Hz) and voltage swing (4 V

from 3.5 V). We performed a detailed noise analysis on our design and compared it

to the single-stage amplifier design. Our analysis showed that because we were suc-

cessful in extending the bandwidth, we noticed an increased presence of noise. We

then made recommendations that will help to lower the noise in a future multistage

amplifier design for the TTK.

In Chapter 4 we made a contribution to the signal processing aspects by studying

the parameters of wavelet transform denoising that would be most applicable to the

TTK system. We developed a method based on noise removal efficiency and peak

preservation metrics to find the most reliable wavelet denoising parameters for a

variety of CE signals. From our analysis, we found that the Symlet8 wavelet with
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level 8 decomposition provided the most reliable denoising among those signals

we tested. By comparing the peak preservation and noise removal performance

between wavelet denoising, Fourier filtering, Savitzky-Golay filtering, and moving

average, we found that wavelet denoising outperformed all the other noise removal

algorithms we tested. We showed that wavelet denoising provided a low root mean

square error (RMSE) of 0.0889, an average peak shift of 0.058 seconds, and a

peak height error of 2.5% for a synthetic CE signal with a SNR of 5 V/V. We then

demonstrated wavelet denoising for experimental CE signals.

Although wavelet transforms can be used to remove high-frequency noise, low

frequency noise, such as baseline variation in CE signals, requires a different treat-

ment. In Chapter 5 we presented an algorithm capable of removing baseline varia-

tion and found parameters that are applicable to the TTK. By combining our peak

region detection algorithm with an iterative polynomial baseline fit (IPBF) algo-

rithm, we accurately estimated and removed the baseline variations in synthetic CE

signals with SNR and peak-to baseline variation ratio as low as 1.4 V/V and 0.75

V/V, respectively. This algorithm was used in experimental signals and showed

that it can remove the baseline variations for signals with single and multiple peak

regions.

The focus Chapter 6 was to separate overlapping peaks observed in CE signals

to increase the number of biological applications for TTK. In this chapter we pre-

sented a modified Jansson’s deconvolution algorithm. By incorporating normaliza-

tion, peak detection, and a deconvolution factor into Jansson’s deconvolution, we

minimized artifacts while maximizing peak separation for CE signals. Our mod-

ified Jansson’s deconvolution isolated overlapping peaks in synthetic CE signals

with a resolution as low as 0.7 as well as experimental CE signals with low and

high resolutions.

In Chapter 7 we combined the methods we previous studied and used them

to perform signal processing on a large number of experimental CE signals. We
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showed that the combined algorithm improved SNR and resolution for various CE

experimental signals without additional tweaking of algorithm parameters. The

combined algorithm removed the noise and baseline variations in single peak sig-

nals with a SNR as low as 2.9 V/V. More importantly, the TTK’s LOD was reduced

from 5.8 pg/µL to 1.7 pg/µL, which is better than the µTK, a commercial CE instru-

ment used in the AML.

In conclusion, four main issues in regards to the processing of TTK’s CE signal

processing are presented and addressed in this thesis. First, we designed and tested

a multistage amplifier for the optical detection subsystem in the TTK to extract

additional signal information. Then we implemented wavelet transform and IPBF to

remove the high-frequency noise and baseline variation, the conditions commonly

observed in non-confocal CE systems. Lastly, we separated overlapping peaks to

enable future miniaturisation of microfluidics.

An inexpensive and portable genetic analysis instrument with a low LOD could

be used in a point-of-care (POC) mode in hospitals, clinics, and homes. Greater

accessibility to molecular medical diagnosis would help practitioners diagnose po-

tential problems early and lower the cost of diagnostic procedures.

8.2 Future Improvements

Our signal processing algorithm is currently implemented in MATLAB and an ex-

ecutable program for Windows PC. The current TTK software is written in Python.

An improvement to this project would be integrating the signal processing algo-

rithm with the TTK software by having the software call the executable program

automatically.

Another improvement to this project would be to build the recommended mul-

tistage amplifier and use it in a TTK to perform CE experiments. If this amplifier

to be successfully implemented, the higher bandwidth achieved has a potential to

provide more insight of noise characteristics and more advanced signal processing
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techniques can be used. In terms of future miniaturisation, integration of the mul-

tistage amplifier onto a CMOS circuit alongside a digital signal processing chip to

perform real time signal processing could lower cost and improve speed.
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Appendix A

MATLAB Code

A.1 Complete CE Signal Processing Algorithm

f u n c t i o n c o m p l e t e S i g n a l P r o c e s s i n g A p p

t i c

%Open a t e x t f i l e
[ f i l e , d i r ]= u i g e t f i l e ( ’ * . t x t ’ ) ;

f i l e n a m e l o c = s t r c a t ( d i r , f i l e ) ;
[ r a w d a t a , r e l a y o f f ]= c a p t u r e d a t a ( f i l e n a m e l o c ) ;

d i s p ( ’ P r o c e s s i n g . . . P l e a s e w a i t ’ )
%w a v e l e t d e n o i s e p a r a m e t e r s
wt name= ’ sym8 ’ ;
w t l e v e l =8 ;

%b a s e l i n e remova l p a r a m e t e r s
n =20; %10 i s good
m a x i l e v e l =300;
e r r o r =1E−6;

%d e c o n v o l u t i o n p a r a m e t e r s
b =1;
k max =100;
s h i f t =1 ;
d d e l t a = 0 . 1 ;

%n o i s e r e g i o n p a r a m e t e r s
n o i s e b = 0 . 0 1 ; %n o i s e s t a r t
n o i s e e =50; %n o i s e end

l o a d ( ’ p e a k f o r c o n v i s o l a t e d . mat ’ ) ;
h=h2 ( 1 : 1 3 0 0 ) ; %ETG

%%%%%%%%%%%%% T h r e s h o l d s %%%%%%%%

%1 and 2 workd f o r RL1 , 2
ztm =2; %was2 ,
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r tm =3; %was 3

zone mul =ztm ;
t h r e s h o l d m u l =rtm ;

%%%%%%%%%%%%%%%%

p e a k s e p t i m e m a x =10; %was 5
m i n s p a n t i m e = 1 . 5 ; %was 1 . 5

%b a s i c p a r a m e t e r s used f o r debugg ing
Ts = 0 . 0 1 ;
Fs =1/ Ts ;

f i l e n a m e =[ d i r , f i l e ] ;
f i l e n a m e = r e g e x p r e p ( f i l e n a m e , ’ \ . ’ , ’ ’ ) ;
f i l e n a m e = s t r r e p ( f i l e n a m e , ’ t x t ’ , ’ ’ ) ;

f i l e n a m e 2 =[ d i r , f i l e ] ;
f i l e n a m e 2 = r e g e x p r e p ( f i l e n a m e 2 , ’ \ . ’ , ’ ’ ) ;
f i l e n a m e 2 = s t r r e p ( f i l e n a m e 2 , ’ t x t ’ , ’ ’ ) ;

[ out1 , out2 , out3 , maxtab , o f f s e t , bpeaks , dpeaks , p e a k s t a r t , peak end ]
= c o m p l e t e C E s i g a l p r o c e s s i n g ( r a w d a t a , wt name , w t l e v e l , n , m a x i l e v e l , e r r o r ,
n o i s e b , n o i s e e , h , b , k max , d d e l t a , t h r e s h o l d m u l ,
zone mul , p e a k s e p t i m e m a x , m i n s p a n t i m e , f i l e n a m e , f i l e n a m e 2 ) ;
%p l o t ( r a w d a t a ) ;

f i d 2 = fopen ( [ f i l e n a m e , ’ d e n o i s e d . t x t ’ ] , ’w’ ) ;
f p r i n t f ( f i d 2 , ’ %12.12 f \n ’ , ou t3 ) ;
f c l o s e ( ’ a l l ’ ) ;

d i s p ( ’ P r o c e s s i n g comple t ed ’ )
t o c

end

A.2 Wavelet Denoising

f u n c t i o n [ o u t d e n o i s e d , o u t p u t b a s e l i n e , beg p , end p ]
= w t d e n o i s e b a s e l i n e ( x , name , l e v e l , n , m a x i l e v e l , e r r o r , t h r e s h o l d m u l ,
zone mul , p e a k s e p t i m e m a x , m i n s p a n t i m e , f i l e n a m e )
%f u n c t i o n [ o u t ]= w t d e n o i s e b a s e l i n e ( x , name , l e v e l , t o r i g i n a l , n , m a x i l e v e l , e r r o r , n o i s e b , n o i s e e )
%Th i s f u n c t i o n p e r f o r m s ’ name ’ w a v e l e t a t l e v e l . t o r i g i n a l i s t h e s i g n a l
%l e n g t h i n t ime , n i s t h e p o l y n o m i a l f i t t i n g o r d e r , m a x i l e v e l i s t e h max
%number o f i t e r a t i o n i n t h e c u r v e f i t t i n g , e r r o r i s t h e e r r o r f a c t o r ,
%n o i s e b and n o i s e e i s t h e b e g g i n i n g and end of t h e n o i s e p e r i o d . beg p and
%end p a r e t h e b e g i n i n g and end of t h e peak r e g i o n

Fs =100;

t p t r = ’ h e u r s u r e ’ ;
s o r h = ’ s ’ ;
s c a l = ’ one ’ ;

p1=wden ( x , t p t r , sorh , s c a l , l e v e l , name ) ;
o u t d e n o i s e d =p1 ;

[ p e a k r e g i o n s t a r t , p e a k r e g i o n e n d , s t a r t n , f i n i s h n ] =
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p e a k r e g i o n l o c a t i o n m o d 3 ( x ’ , t h r e s h o l d m u l , zone mul , p e a k s e p t i m e m a x , m i n s p a n t i m e , f i l e n a m e ) ;

beg p = s t a r t n ;
end p = f i n i s h n ;

[ o u t p u t , k , ro , b k ]= b a s e l i n e s u b p o l y m o d 4 ( p1 , beg p , end p , n , m a x i l e v e l , e r r o r ) ;

o u t p u t b a s e l i n e = o u t p u t ;

A.3 Iterative Polynomial Baseline Fit

f u n c t i o n [ o u t p u t , k , ro , b k ]= b a s e l i n e s u b p o l y ( y , beg p , end p , n , m a x i l e v e l , e r r o r )
%b a s e l i n e s u b p o l y ( y , beg p , end p , t , n , m a x i l e v e l , e r r o r ) i s a f u n c t i o n t h a t w i l l
%remove b a s e l i n e v a r i a t i o n s u s i n g an i t e r a t i v e p o l y n o m i a l f i t t e c h n i q u e t o remove t h e
%b a s e l i n e v a r i a t i o n s . y i n i s t h e i n p u t s i g n a l , beg p i s b e i n g i n g peak and
%end p i s t h e end peak l o c a t i o n ( i n s e c o n d s ) , n i s t h e i n d e x of po lynomia l ,
%t i s t h e l e n g t h o f t h e s i g n a l , m a x i l e v e l i s t e h maximum number o f
%i t e r a t i o n s . e r r o r i s t h e e r r o r f a c t o r used f o r c o m p a r i s o n s .

warn ing o f f ;
Fs =100;

y i n =y ;

y l e n g = l e n g t h ( y i n ) ;

x = ( 1 / Fs : 1 / Fs : y l e n g / Fs ) ’ ;

mm= l e n g t h ( beg p ) ;
nn= l e n g t h ( end p ) ;
i f (mm˜= nn )

e r r o r ( ’ number o f peak s t a r t and end does n o t e q u a l ! ’ ) ;
end ;

%form t h e peak r e g i o n
p e a k r e g = z e r o s ( l e n g t h ( y ) , 1 ) ; %i n i t i a l p e a k r e g v a r i a b l e f o r s t o r a g
f o r q =1:mm,

f o r j = beg p ( q ) : end p ( q ) ; %s e t p e a k r e g ( j ) t o one where j i s i t h e r e g i o n of t h e peaks
p e a k r e g ( j ) = 1 ;

end ;
end ;

%Step 1 and 2 . C a c u l a t e t h e p o l y n o m i a l f i t t i n g e q u a t i o n s
ro =1;
k =1;

y km1= y i n ;
b km1= y i n ;

w h i l e ( ( ro>e r r o r )&&(k<m a x i l e v e l ) )

[ a , s ]= p o l y f i t ( x , y km1 , n ) ; %c a l c u l a t e s p o l y n o m i a l approx
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b k = p o l y v a l ( a , x ) ; %c a l c u l a t e s a p p r o x i m a t e d y

%s i ( k )= s ; %What i s s i ?

y k =y km1 ;

f o r i =1 : l e n g t h ( y i n ) %scan t h e l e n g t h o f y
i f ( p e a k r e g ( i )==1) %check t o s e e o f i i s i n t h e peak r e g i o n a r e a

i f ( y km1 ( i )>b k ( i ) )
y k ( i )= b k ( i ) ;

end
end

end

%Step 4 , check f o r e r r o r c r i t e r i o n
ro =norm ( b k−b km1 ) / norm ( b km1 ) ; %f o r t h e d u r a t i o n o f t h e s i g n a l

%
rok ( k )= ro ;

b km1= b k ;
y km1= y k ;
k=k +1;

end ;

o u t p u t = y i n−b k ;

mean ( rok ) ;

end

A.4 Peak Region Detection

A.4.1 Peak Region Location
f u n c t i o n [ p e a k r e g i o n s t a r t , p e a k r e g i o n e n d , s t a r t n , f i n i s h n ]
= p e a k r e g i o n l o c a t i o n ( y , t h r e s h o l d m u l t i p l i e r f d 2 ,
z o n e t h r e s h o l d m u l t i p l i e r , p e a k s e p t i m e m a x , m i n s p a n t i m e , f i l e n a m e ) %

%Thi s f u n c t i o n w i l l re turn t h e peak r e g i o n s t a r t and t h e end by i n p u t t i n g
%t h e i n p u t

f i l e n a m e =[ f i l e n a m e , ’ d e r ’ ] ;
y1=y ;

%I n i t i a l i s a t i o n
Ts = 0 . 0 1 ;
Fs =1/ Ts ;
d e g r e e =5;
dx=Ts ;
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Step 1 : High Order Wavele t Trans fo rm

wt name= ’ sym8 ’ ;
w t l e v e l =8 ;

TPTR= ’ h e u r s u r e ’ ;
SORH= ’ s ’ ;
SCAL= ’ one ’ ;

y=wden ( y , TPTR , SORH, SCAL, w t l e v e l , wt name ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Step 2 : C a l c u l a t e t h e d e r i v a t i v e s and o p t i m a l Smoothing
%Opt imal S a v i t z k y Golay Smoothing . The o p t i m a l s e e k s f o r t h e o p t i m a l span when
%f o r t h e n t h d e g r e e p o l y n o m i a l SG smooth ing
% [ yout , span ,DW2]= o p t i m a l s a v i t z k y ( y , d e g r e e ) ;
y o r i g i n a l =y ;

y mean=mean ( y ) ;

%Take t h e d e r i v a t i v e s o f t h e s i g n a l and use o p t i m a l smooth e v e r y s t a g e .
yp= d e r i v a t i v e c w t ( y , ’ gaus1 ’ , 1 6 , dx , 1 ) ;

%End t a k i n g d e r i v a t i v e s

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Step 3 : T h r e s h o l d C a l c u l a t i o n s

t h r e s d d i v i d e r =300;
t h r s h d m u l t i p l i e r =300;
t h r e s y 1 =y mean+ c a l c u l a t e t h r e s h o l d ( y , 0 . 0 1 , 5 , t h r s h d m u l t i p l i e r ) ;
t h r e s y 2 =y mean +(max ( y)−y mean ) / t h r e s d d i v i d e r ; %max of y d i v i d e by a s e t c o n s t a n t

t h r e s f d = c a l c u l a t e t h r e s h o l d ( yp , 0 . 0 1 , 5 , 1 0 ) ; %t h i s f u n c t i o n l o o k s f o r t h e

t h r e s f d 2 = t h r s d c a l c ( yp , t h r e s h o l d m u l t i p l i e r f d 2 ) ; %t h e c o n s t a n t used t o be 5 f o r i n i t l a t e s t i n g
z o n e t h r e s h o l d = t h r s d c a l c ( yp , z o n e t h r e s h o l d m u l t i p l i e r ) ;

t h r e s s d = t h r s d c a l c ( ypp , 5 ) ;

t h r e s t d = t h r s d c a l c ( yppp , 5 ) ;

[ p e a k s t a r t , peak end , t h r , n e w s t a r t , n e w f i n i s h , index , z o n e e x c e e d s t h r e s h o l d ]
= r e g i o n d e t e c t ( yp , t h r e s f d 2 , p e a k s e p t i m e m a x , m i n s p a n t i m e , z o n e t h r e s h o l d , y ) ;

%Step 7 : V a r i a b l e Ass ignment

p e a k r e g i o n s t a r t = p e a k s t a r t ;
p e a k r e g i o n e n d = peak end ;

s t a r t n = n e w s t a r t ;
f i n i s h n = n e w f i n i s h ;

end

A.4.2 Region Detect
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f u n c t i o n [ s t a r t n , f i n i s h , t h r , n e w s t a r t , n e w f i n i s h , index , z o n e e x c e e d s t h r e s h o l d ] .
= r e g i o n d e t e c t ( yp , t h r e s f d 2 , p e a k s e p t i m e m a x , m i n s p a n t i m e , z o n e t h r e s h o l d , y )
%Th i s f u n c t i o n w i l l f i n d t h e peak r e g i o n c o o r d i n a t e s i n a s i g n a l .

Fs =100;
i f n a r g i n < 3 ,

p e a k s e p t i m e m a x =5;
m i n s p a n t i m e =1;

%p e a k s e p t i m e m a x =5;
end

p e a k s e p t i m e = p e a k s e p t i m e m a x * Fs ;
m i n s p a n w i d t h = m i n s p a n t i m e * Fs ;
d e g r e e =5;
dx = 0 . 0 1 ;

%i n i t i a l i z a t i o n .
s t a r t n =0;
f i n i s h =0;
p e a k s t a r t =0 ;
peak end =0;

% t h r =mean ( yp ) * 2 ;
t h r =0;
t h r = z o n e t h r e s h o l d ;

%t h r = t h r e s f d 2 * 2 / 3 ;

i n d e x = c r o s s i n g ( yp , [ ] , t h r ) ; %f i n d a l l t h e z e r o c r o s s i n g i n t h e 1 s t d e r i v a t i v e
l = l e n g t h ( i n d e x ) ;

i f l ==0;
e r r o r ( ’ no c r o s s i n g ! ’ ) ;

end ;

t h r ;
i n de x2 = c r o s s i n g ( yp , [ ] , − t h r ) ; %f i n d a l l t h e z e r o c r o s s i n g i n t h e 1 s t d e r i v a t i v e
l 2 = l e n g t h ( i n de x2 ) ;

i f l 2 ==0;
e r r o r ( ’ no c r o s s i n g ! ’ ) ;

end ;

%combine and s o r t a l l o f t h e c r o s s i n g c o o r d i n a t e s
i n d e x =[ index , i n de x2 ] ;

i n d e x = r e m o v e d u p l i c a t e ( i n d e x ) ; %remove same e l e m e n t s
i n d e x = s o r t ( i n d e x ) ;
l = l e n g t h ( i n d e x ) ;

z o n e e x c e e d s t h r e s h o l d = z e r o s ( 1 , l −1);
%Th i s loop l o o p s t h r o u g h a l l t h e change i n c o o r d i n a t e s and examines t o s e e
%which c r o s s t h e t h r e s h o l d . +1 i f i t e x c e e d s on t h e h igh end , −1 i f on t h e
%low end , and 0 i f i t d o e s n t c r o s s t h r e s h o l d on bo th ends .
f o r i =1 : l −1,

i f ( ( max ( yp ( i n d e x ( i ) + 1 : i n d e x ( i +1)))> t h r e s f d 2 ) && ( ( i n d e x ( i +1)− i n d e x ( i )+1)> m i n s p a n w i d t h ) )
z o n e e x c e e d s t h r e s h o l d ( i ) = 1 ;

%e l s e i f ( min ( yp ( i n d e x ( i ) : i n d e x ( i +1)))<=− abs ( t h r e s f d 2 ) )
e l s e i f

( ( min ( yp ( i n d e x ( i ) + 1 : i n d e x ( i +1)))<=− abs ( t h r e s f d 2 ) ) && ( ( i n d e x ( i +1)− i n d e x ( i )+1)> m i n s p a n w i d t h ) )
z o n e e x c e e d s t h r e s h o l d ( i )=−1;

e l s e z o n e e x c e e d s t h r e s h o l d ( i ) = 0 ;
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end ;
end ;

end ;

kkk =1;
z o n e e x c e e d s t h r e s h o l d ;

q= l e n g t h ( z o n e e x c e e d s t h r e s h o l d ) ; %number o f zones
%I f t h e r e a r e any zones t h a t n o t n o t above t h e t h r e s h o l d t h a t ’ s w i t h i n x
%s e c o n d s .
f o r i =1 : q−1,

i f ( z o n e e x c e e d s t h r e s h o l d ( i ) ˜ = 0 )
f o r j = i +1 : q , %look f o r t h e n e x t zone t h a t c r o s s e s t h e t h r e s h o l d

%found t h e n e x t above t h r e s h o l d zone
%added an e x t r a c o n d i t i o n where t h e s i g n have t o be d i f f e r e n t be tween t h e zones .
i f ( z o n e e x c e e d s t h r e s h o l d ( j ) ˜=0)% found t h e n e x t above t h r e s h o l d zone

i f ( ( i n d e x ( j )− i n d e x ( i +1))< p e a k s e p t i m e ) %i f t h e t ime d i f f e r e n c e between
%t h e above t h r e h s o l d zones

) %i f t h e t ime d i f f e r e n c e between t h e above t h r e h s o l d zones
f o r k= i +1: j −1, %change a l l zones i n b e t w e n t h e zones

z o n e e x c e e d s t h r e s h o l d ( k )= s i g n ( yp ( i n d e x ( k ) ) ) ;

end ;
b r e a k ; %e x i t t h e j = i +1 : q−1 f o r loop

end ;
end ;

end ;
end ;

end ;

kkk =2;
z o n e e x c e e d s t h r e s h o l d ;

%%%%%%%%%%%%%%%%
%%%%%%%%This f u n c i t o n l o o k s f o r a t l e a s t one change i n t h e zones t h a t
%%%%%%%%exceeded t h e t h r e s h o l d .
z o n e e x c e e d s t h r e s h o l d t e m p = z o n e c h a n g e s c h e c k ( z o n e e x c e e d s t h r e s h o l d ) ;

%save zones . mat z o n e e x c e e d s t h r e s h o l d z o n e e x c e e d s t h r e s h o l d t e m p ;%
z o n e e x c e e d s t h r e s h o l d = z o n e e x c e e d s t h r e s h o l d t e m p ;

%%%%%%%%%%%%%%%%%%%%%%

kkk =3;
z o n e e x c e e d s t h r e s h o l d ;

%Th i s loop g e t s r i d o f t h e r e g i o n s t h a t d idn ’ t c r o s s t h e t h r e s h o l on t h e
%p l u s and n e g a t i v e s i d e so t a h t i n f o r m a t i o n can be e a s i l y i n t e r p r e t e d .
k =0;
t h r e s h o l d f l a g =0;

f o r i =1 : l −1,
i f z o n e e x c e e d s t h r e s h o l d ( i ) ˜ = 0 ,

k=k +1;
s t a r t n ( k )= i n d e x ( i ) + 1 ;
f i n i s h ( k )= i n d e x ( i + 1 ) ;

zone ( k )= z o n e e x c e e d s t h r e s h o l d ( i ) ;
%t h i s i s used t o s t o r e t h e number o f zone t r a n s i t i o n s t h a t i s above t h e t h r e s h o l d
t h r e s h o l d f l a g =1;

end ;
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end

%Thi s p a r t o f t h e code g e t r i d o f o v e r l a p p i n g peaks
n e w s t a r t = s t a r t n ;
n e w f i n i s h = f i n i s h ;

ooo =1;
n e w s t a r t ;
n e w f i n i s h ;

w= s e e k f o r r e p e a t ( s t a r t n , f i n i s h ) ; %w s t o r e s t h e i n d e x e s o f r e p e a t s
n e w s t a r t (w+ 1 ) = [ ] ;
n e w f i n i s h (w ) = [ ] ;

i f ( l e n g t h ( n e w f i n i s h ) ˜ = 0 )

ooo =2;
n e w s t a r t ;
n e w f i n i s h ;

end ;

%%%%%%%%%%%%%%%%This s e c t i o n c he ck s f o r t h e r e a l peak r e g i o n
%m i n s p a n t i m e 2 =1* Fs ; %I t h i n k 3 s e c o n d s i s good f o r d e t e r m i n a t i o n o f a
%r e a l peak r e g i o n
temp1 = [ ] ;
temp2 = [ ] ;
k =1;
l = l e n g t h ( n e w s t a r t ) ;
f o r i =1 : l ,

i f ( ( n e w f i n i s h ( i )− n e w s t a r t ( i ))> m i n s p a n w i d t h *3)
%f i n i s h ( i )− n e w s t a r t ( i )
temp1 ( k )= n e w s t a r t ( i ) ;
temp2 ( k )= n e w f i n i s h ( i ) ;
k=k +1;

end ;

end ;

n e w s t a r t =temp1 ;
n e w f i n i s h =temp2 ;

ooo =3;
n e w s t a r t ;
n e w f i n i s h ;

% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%This s e c t i o n o f t h e code ch ec ks f o r
% peak a v e r a g e i n each s e c t i o n o f t h e loop .
% % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%r e g i o n
temp1 = [ ] ;
temp2 = [ ] ;
k =1;
l = l e n g t h ( n e w s t a r t ) ;
ym=median ( y )− .5* s t d ( y ) ;
%ym=median ( y )
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f o r i =1 : l ,
median ( y ( n e w s t a r t ( i ) : n e w f i n i s h ( i ) ) ) ;
i f ( median ( y ( n e w s t a r t ( i ) : n e w f i n i s h ( i )))>=ym)

temp1 ( k )= n e w s t a r t ( i ) ;
temp2 ( k )= n e w f i n i s h ( i ) ;
k=k +1;

end ;
end ;

n e w s t a r t =temp1 ;
n e w f i n i s h =temp2 ;

ooo =4;
n e w s t a r t ;
n e w f i n i s h ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%This s e c t i o n o f t h e code g e t s s e t s s t a r t n t o 1 and f i n i s h t o
%%%%%%%%%%%%%end of t h e s i g n a l ’ s l e g n t h when t h e r e a r e no peaks d e t e c t e d
s t a r t n ;
f i n i s h ;

i f ( ( l e n g t h ( n e w s t a r t )==0) | | ( ( l e n g t h ( n e w s t a r t )==1)
&& ( ( n e w s t a r t ==0) | | ( n e w f i n i s h = = 0 ) ) ) )
%i f t h e r e a r e no peak r e g i o n s d e t e c t e d .

% Then use t h e l e n g t h o f t h e s i g n a l a s t h e peak r e g i o n

n e w s t a r t =1 ;
n e w f i n i s h = l e n g t h ( yp ) ;

end ;

A.5 Jansson’s Deconvolution
f u n c t i o n [ out , ro , rms , peak num ]= jan deconv mod6 backup ( y , h1 , b , k max , d e l t a )

%j a n d e c o n v ( y , h1 , a , b , c , k max , s h i f t )
%Th i s f u n c t i o n c a l c u l a t e s t h e d e c o n v o l u t i o n o f y wi th h1 by u s i n g J a n s s o n ’ s
%method . a i s t h e s c a l e r m u l t i p l e o f h1 , b i s . . . c i s c r i t i c a l and
%a f f e c t s t h e pe r fo rmance , k max i s t h e maximum i n t e r a t i o n s , and s h i f t
%number i n t h e a l o g r i t h m .

y o r i g =y / max ( y ) ;
g=y ; %p r e s e r v e t h e c a p t u r e d image
h =( h1 / max ( h1 ) ) ; %n o r m a l i z e t o 1 ;
%h=h1 ;
s c a l e =1/ max ( y ) ;
y=y / max ( y ) ; % n o r m a l i z e c a p t u r e d image

s h i f t =1 ;

f =h ( end : −1 : 1 ) ; %%%Does t h i s e q u a l t o f ( t h (− t ) ?
hm=conv ( h , f ) ;
h= s h i f t c o n v (hm , h , f , s h i f t ) ;
gm=conv ( g , f ) ;
g= s h i f t c o n v (gm , h , g , −286) ; %286 random number based on t h e PSF i b e l i e v e .
g=g / max ( g ) ;
h=h / max ( h ) ;
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x o l d =g ; %s t e p one . I n i t i a l e s t i m a t e
y=g ;
% a= t r a p z ( y ) / t r a p z ( x o l d )
%a =10;

%s t e p two
%f o r k =1: k max ,

k =1;
c=max ( x o l d ) ;
peak num= z e r o s ( 1 , k max−1);
ro = z e r o s ( 1 , k max−1);
rms= z e r o s ( 1 , k max−1);
[ c max , c min ]= p e a k d e t ( y o r i g , d e l t a ) ;
%f i g u r e ; p l o t ( y o r i g ) ; v l i n e ( c max ) ;

%w h i l e ( ( ro>e r r o r )&&(k<k max ) )

w h i l e ( k<k max )

a = 0 . 0 0 2 5 ;
temp=conv ( ( a *h ) , x o l d ) ;

temp= s h i f t c o n v m o d 2 ( temp , h , x o ld , s h i f t + 5 0 ) ;
r2 = r e l a x ( x o ld , c , b ) ;

temp2= r2 . * ( y−temp ) ;
x new= x o l d +temp2 ;

f o r i =1 : l e n g t h ( x new ) , %s t e p f o u r
i f ( x new ( i )<0)

x new ( i ) = 0 ;
%x new ( i )= abs ( x new ( i ) ) ;

end
end

%%%%%%%%%%%E r r o r between t h e c u r r e n t i t e r a t i o n and t h e o r i g i a n l i n p o u t
ro ( k )= norm ( x o ld−x new ) / norm ( x o l d ) ;

rms ( k )= rmse ( x o ld , x new ) ;

[ c max , c min ]= p e a k d e t ( x o ld , d e l t a ) ;
[ d max , d min ]= p e a k d e t ( x new , d e l t a ) ;

d max ( : , 1 ) ;
i t e r =[ ’ x new a t i t e r a t i o n ’ , num2s t r ( k ) ] ;

rok = ro ( k ) ;
rmsk=rms ( k ) ;

l e n g t h ( c max ) ;
l e n g t h ( d max ) ;
i f ( ( k>3) && ( l e n g t h ( c max ) ˜ = l e n g t h ( d max ) | | ( ro ( k)<5E−3) ) )

% % % % % % % % % % f i g u r e ; p l o t ( x new ) ; v l i n e ( d max ) ;
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x new= x o l d ;
b r e a k ;

end ;

peak num ( k )= l e n g t h ( d max ( : , 1 ) ) − l e n g t h ( c max ( : , 1 ) ) ;
x o l d =x new ;
k=k +1;

end ;

A.6 Wavelet Denoising for µTK

f u n c t i o n wave le tdeno i seuTK
%Thi s f u n c t i o n w i l l be used t o pe r fo rm w a v e l e t d e n o i s i n g on uTK d a t a
%Prompt t h e u s e r t o s e l e c t . t x t f i l e s from uTK

[ f i l e , d i r ]= u i g e t f i l e ( ’ * . t x t ’ ) ;

d i s p ( ’ P r o c e s s i n g . . . P l e a s e w a i t ’ )
f i l e n a m e l o c = s t r c a t ( d i r , f i l e ) ;

%D e l e t e t h e h e a d e r rows %t h i s s t e p i s o p t i o n a l and would be i d e a l i f i t i s
%p o s s i b l e
[PMT, t ]= p a r s e u t k 2 ( f i l e n a m e l o c ) ;

%Per fo rm w a v e l e t t r a n s f o r m
name= ’ sym8 ’ ;
l e v e l =8 ;
t p t r = ’ h e u r s u r e ’ ;
s o r h = ’ s ’ ;
s c a l = ’ one ’ ;
d e n o i s e =wden (PMT, t p t r , sorh , s c a l , l e v e l , name ) ;

%P l o t and save t h e d a t a .
p l o t ( t ,PMT ) ;
x l a b e l ( ’ Time ( s ) ’ ) ;
y l a b e l ( ’PMT (V) ’ ) ;
t i t l e ( ’uTK Raw S i g n a l ’ ) ;
s a v e a s ( gcf , s t r c a t ( f i l e n a m e l o c , ’ raw . j p g ’ ) , ’ j p g ’ ) ;

f i g u r e ;
p l o t ( t , d e n o i s e ) ;
x l a b e l ( ’ Time ( s ) ’ ) ;
y l a b e l ( ’PMT (V) ’ ) ;
t i t l e ( ’ Denoised S i g n a l ’ ) ;

s a v e a s ( gcf , s t r c a t ( f i l e n a m e l o c , ’ d e n o i s e d . j p g ’ ) , ’ j p g ’ ) ;

f i d 2 = fopen ( [ f i l e n a m e l o c , ’ d e n o i s e d . t x t ’ ] , ’w’ ) ;
f p r i n t f ( f i d 2 , ’ Time ( s ) \ t PMT Raw (V) \ t PMT Denoised (V) \n ’ ) ;
p =[ t ;PMT; d e n o i s e ] ;
f p r i n t f ( f i d 2 , ’%f \ t %f i \ t %f \n ’ , p ) ;
f c l o s e ( ’ a l l ’ ) ;

d i s p ( ’ P r o c e s s i n g comple t ed ’ )
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f u n c t i o n [PMT, t ]= p a r s e u t k ( f i l e n a m e )

f i d = fopen ( f i l e n a m e ) ; % t h e o r i g i n a l f i l e

% r e a d column h e a d e r s
C t e x t = t e x t s c a n ( f i d , ’%s ’ , 30 , ’ d e l i m i t e r ’ , ’ | ’ ) ;

% r e a d numer ic d a t a
C d a t a 0 = t e x t s c a n ( f i d , ’%f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f ’ ) ;
f c l o s e ( f i d ) ;

t 1 = C d a t a0 {1 , 2 5} ( 1 : end , 1 ) ;
PMT1= C d a t a0 {1 , 2 6} ( 1 : end , 1 ) ;

i = f i n d ( ˜ i s n a n (PMT1 ) ) ;

PMT1 = PMT1 ( ˜ i s n a n (PMT1 ) ) ;
t 1 = t 1 ( ˜ i s n a n ( t 1 ) ) ;

k= l e n g t h ( t 1 ) + 4 ;
t 2 = C d a t a0 {1 ,1} ( k : end , 1 ) ;
PMT2= C d a t a0 {1 ,2} ( k : end , 1 ) ;

PMT=[PMT1 ’ , PMT2 ’ ] ;
t =[ t 1 ’ , t 2 ’ ] ;

%look f o r 5 c o n s e c t u t i v e z e r o s
z= z e r o s ( 5 , 1 ) ’ ;
i n d e x = f i n d s t r (PMT, z ) ;
s t a r t = i n d e x ( 1 ) + 5 0 ;

PMT=PMT( s t a r t : end ) ;
t = t ( s t a r t : end ) ;

A.7 Executable Program User Guide

• Install the MATLAB Compiler Runtime (MCR), MCRInstaller.exe. This

program contains the MATLAB default libraries and system files. This is

required so that MATLAB compiled executable program could be run on

computers without having MATLAB installed.

• After the MCR is installed, open TTKSignalProcessing.exe.

• Select the TTK output text file you wish to process.

• A command prompt window will pop up and while it is processing the

signal, it will say “Processing... Please wait.” Wait for “Processing is

completed” to proceed.
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• A figure will appear once processing is done. Showing stages of process-

ing: raw, wavelet denoised, baseline removed, and then peaks separated

signals. This figure is automatically saved in the folder where the raw text

file is located.

• Two text files are saved. One contains the post processing signal and the

other contains the peak locations.
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Appendix B

Iterative Polynomial Baseline Fit
Pseudo-code

1. In the first iteration, set the signal estimate y1(t) and the baseline estimate

b1(t) to the original measurement, y(t).

2. Set the iteration count k to 2.

3. Calculate the nth order polynomial coefficients pn for yk−1(t). The poly-

nomial coefficients are calculated using the MATLAB built-in function

polyfit.

4. Construct the baseline estimation bk(t) with pn using equation (B.1).

bk(t) =
n

∑
i=0

pi+1tn−i, (B.1)

5. Update the estimated signal by setting yk(t) to yk−1(t), where yk(t) and

yk−1(t) are the signal estimate in the kth and k−1th iterations.

6. Remove the peaks by comparing bk(t) with yk−1(t) in the regions of signal

peaks; if yk−1(i) > bk(i), then set yk(i)=bk(i), for i = 1,2, ...n where i is

in the region where yk−1(t)> bk(t).
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7. Calculate the error factor between current and previous iterations of the

baseline estimation, denoted by ρ and defined by equation (B.2). bk(t)

and bk−1(t) are the baseline estimate with polynomials at kth and k−1th

iterations, respectively.

ρ =
||bk−bk−1||

bk−1
(B.2)

8. If ρ is smaller than a prespecified error factor threshold ρthr or k reaches

kmax, then the baseline estimation is sufficient; otherwise, set bk−1(t) to

bk(t), yk−1(t) to yk(t), and increment k. Return to Step 3.

165



Appendix C

PSPICE Circuit Simulation

OPMODEL1. CIR − OPAMP MODEL SINGLE−POLE
*
IS 1 0 AC 1 PWL(0US 0V 0 . 0 1US 1V 1US 1V 1 . 0 1US 0V)
Cin 1 0 8PF
XOP 0 1 3 OPAMP1
RF 1 3 10MEG
CF 1 3 100PF

XOP2 3 4 5 OPAMP1
R1 4 0 1K
R2 4 5 100K
C2 4 5 1PF

RL 5 0 10

*
* OPAMP MACRO MODEL, SINGLE−POLE
* c o n n e c t i o n s : non− i n v e r t i n g i n p u t
* | i n v e r t i n g i n p u t
* | | o u t p u t
* | | |
. SUBCKT OPAMP1 1 2 6
* INPUT IMPEDANCE
RIN 1 2 10MEG
* DC GAIN=100K AND POLE1=100HZ
* UNITY GAIN = DCGAIN X POLE1 = 10MHZ
EGAIN 3 0 1 2 1MEG
RP1 3 4 100K
CP1 4 0 1 .5915UF
* OUTPUT BUFFER AND RESISTANCE
EBUFFER 5 0 4 0 1
ROUT 5 6 10
. ENDS

* ANALYSIS
.AC DEC 5 1 10MEG
.TRAN 0 . 1US 1MS
. PLOT AC VM( 3 )
. PROBE
.END
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Appendix D

Point Spread Function Modelling

D.1 Procedure

An approximation of the point spread function h(t) can be obtained by curve fitting

an empirically transformed Gaussian (ETG) function to a high-SNR experimental

single peak signal. h(t) for a a CE system can be obtained by the following:

1. Obtain single-size sample. i.e/ 1 µL Cy-5 reversed primer (end-labelled

DNA).

2. Perform standard CE with AML’s CE protocol [94]: 1 µL of 4% linear

polyacrylamide (LPA) sieving matrix and a 3 µL 0.01x Tris TAPS-EDTA

(TTE) buffer were used to fill the microfluidic chip channels. First inject

sample with a voltage of 200 V (or equivalent to a electric field of 222

V/cm) for 80 seconds, then separate the sample by a voltage of 600 V (67

V/cm) for 250 seconds. Detection was made 13 mm from the CE channel

intersection. Make sure the signal has high SNR (≥ 50 V/V).

3. Remove noise with sym8 wavelet.

4. Normalize the denoised signal to 1 by dividing the signal by its maximum

value.
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5. Fit curve with ETG. ETG functions are defined by equation (D.1),

h(t) =
2He0.5

(1+λlekl∗(tl−t))α +(1+λtekt∗(tt−t))β−1
. (D.1)

H is the maximum peak height, and because the signal is already nor-

malized, set to 1. tt and tl are the half width times for the leading and

trailing edge. Increase tt and tl to increase the length of the leading and

trailing edge, respectively. k, λ, α and β can be used to adjust symmetrical

properties of the peak. These parameters were manually tuned to fit the

experimental signal peak’s leading and trailing edge.

D.2 MATLAB Code For Generating PSF

f u n c t i o n [ o u t p u t ]=ETG(H, lamdal , k l , t l , a lpha , lamdat , k t , t t , be t a , t ime , Fs )

Ts =1/ Fs ;
t =Ts : Ts : t ime ;

Hbb=2*H* exp ( 0 . 5 ) ;
a =(1+ l am da l * exp ( ( k l * ( t l −t ) ) ) ) . ˆ a l p h a ;
b =(1+ l am da t * exp ( ( k t * ( t− t t ) ) ) ) . ˆ b e t a ;
o u t p u t =Hbb . / ( a+b−1);
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