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1 Introduction

Suppose that E is a topological space, a < b and {Pn}, P are Borel probability measures on

the space DE[a, b] of E-valued right-continuous, left-hand-limit (cadlag) functions of [a, b]

with the Skorokhod topology (introduced in the separable-metric-space case by Skorokhod

[26] and extended to more general spaces in Mitoma [21] and Jakubowski [14] for example).

Then, one often deduces that Pn converges weakly to P by first showing the family {Pn}

is tight, which implies relative compactness on Hausdorff spaces, and then identifying P as

the unique limit point. Tightness is also a key property for establishing weak convergence in

multiple parameters as in the long time performance of approximate filters (see Budhiraja

and Kushner [5]) and for establishing existence of probability measures on DE[a, b] (see The-

orem 13.6 of Billingsley [3]). Previously in [4], we used homeomorphic methods to generalize

several basic weak convergence and measure separation results from Ethier and Kurtz [10],

Billingsley [3] and Kallianpur and Xiong [15]. However, we did not consider tightness nor

the related problems of establishing compact containment and modulus of continuity.

Establishing tightness of probability measures on topological spaces can be a challenging

problem. For example, Dawson [6], Perkins [24], Kurtz [18] and Kallianpur and Xiong [15],

to name just a few, all spend considerable effort proving tightness for random variables on

exotic spaces. Kallianpur and Xiong [15] include good basic material on weak convergence and

tightness, from which our present work has benefitted. Indeed, our motivation was to develop

tightness criterion in Skorokhod spaces systematically after the important contributions by

Bhatt and Karandikar [1] and Kallianpur and Xiong [15] and use these criterion to establish

general particle approximation of cadlag probability-measure-valued processes.

Mitoma [21] established a fundamental tightness result for probability measures on cadlag
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spaces of tempered distributions DS′(Rd)[0, 1]. Jakubowski [14] then generalized Mitoma’s

result to any completely regular space E instead of just S ′(Rd). In particular, Jakubowski

assumes that {Pα} is a collection of probability measures satisfying the compact containment

condition CCC such that Pα(f̃)−1 is tight for a set F̃ of continuous functions f̃ : DE[0, 1] →

DR[0, 1] and establishes conditions on F̃ that imply {Pα} itself is tight. While CCC can basi-

cally be finessed in the tempered distribution setting, it is otherwise often hard to establish

directly, meaning considerable work may be needed prior to applying Jakubowski’s results.

Herein, we obtain tightness results for DE[a, b]-valued random variables, where E is a com-

pletely regular space. Our developments further Jakubowski [14] and show that the assump-

tion E has metrizable compacts, together with the compact containment condition, reduces

the tightness problem on DE[a, b] to the case where E is a separable metric space, which

we also deal with. Our results trivially apply to recover Mitoma’s result that states test

function tightness on DR[0, 1] implies tightness on DS′(Rd)[0, 1]. We also study equivalences

to the modulus of continuity condition (MCC) as well as what in addition to MCC must

be assumed for tightness. This leads to a nice function-by-function method for establish-

ing tightness that avoids explicitly verifying CCC. To illustrate this, we take any cadlag

probability-measure-valued process V = {Vt, t ≥ 0} on a Polish space and construct cad-

lag E-valued Markov processes ΞN , whose laws L(ΞN
t ) are almost surely equal to Vt at an

arbitrarily fine partition of times {sN
n }, such that the empirical measures

1

mN

mN∑
j=1

Ξj,N of

conditionally independent copies of ΞN converge in path space in probability to V . His-

torically, measure-valued processses were constructed as the limit of empirical measures.

However, some of the most general construction results now use alternative methods (see

e.g. Fitzsimmons [12], Kouritzin and Long [17]). Our application herein shows, at least for

probability-measure processes on Polish spaces, that (exchangeable) particle approximation

is always available. In additional to its inherent interest, this fact could be important for

such things as simulation and establishing support properties of measure-valued processes
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(see e.g. Evans and Perkins [11], Liu and Zhou [19]).

Section 2 contains notation and a motivating application. Section 3 provides background on

completely regular spaces. Section 4 houses modulus of continuity and compact containment

conditions as well as equivalence results. Section 5 has containment and tightness results on

completely regular spaces, assuming a modulus of continuity condition. Section 6 deals with

minimal modulus of continuity conditions for pathspace tightness when compact containment

holds. The appendix contains necessary technical results.

2 Notation and Application

Herein, N = {1, 2, ...} and N0 = {0} ∪ N; B(E) are the Borel sets; M(E), MF (E), P(E)

are respectively the Borel measures, finite measures and probability measures; and M(E),

B(E), C(E), C(E) are respectively the Borel measurable, bounded measurable, continuous,

and continuous bounded R-valued functions on topological space E. When g ∈ B(E) and

µ ∈ MF (E), we let ĝ(µ) = µ(g) =
∫

gdµ be a function of µ. Further, when (E, r) is a metric

space, we let BL(E) denote the bounded, Lipschitz continuous R-valued functions on E with

‖g‖BL = supx |g(x)| + supy 6=x
|g(y)−g(x)|

r(x,y)
and Aη $ {y ∈ E : r(x, y) < η for some x ∈ A} for

any η > 0 and A ⊂ E. πt denotes the projection function from DE[a, b] to E for t ∈ [a, b] and

J(f) = {t ∈ (a, b] : ft− 6= ft} for f ∈ DE[a, b]. Finally, L(X) denotes the law of a random

element X and we use the following extended Vinogradov symbol (also used in [16]): Suppose

q (n, m) , r (n, m) are expressions depending upon two variables n, m. Then,

q(n, m)
n
� r(n, m) means ∃ cm > 0 such that q(n, m) ≤ cmr(n, m) ∀ n, m.

For clarity, cm depends only on m.
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In essence, our results in the sequel are simple tools for establishing tightness for existence

and weak convergence results, generalizing prior, heavily-cited results in e.g. Mitoma [21],

Jakubowski [14], Ethier and Kurtz [10] and Billingsley [3]. However, we investigate the

breadth of particle approximation in measure-valued processes as an illustrative example.

We construct our approximations using Theorem 1 below, a version of the Strassen-Dudley

coupling theorem naturally expressed in terms of the following Prohorov metric variant.

Definition 1 Let E be a metric space and p ≥ 1. Then, we define the p-Prohorov metric on

P(E) to be ρp(P, Q) = inf{ε > 0 : P (F ) ≤ Q(F ε) + εp ∀ closed F}.

The requirement p ≥ 1 ensures that εp + δp ≤ (ε + δ)p for ε, δ > 0 so one can adapt the

standard argument establishing that the Prohorov metric is truly a metric to our setting.

Moreover, these p-Prohorov metrics still topologize weak convergence when E is a separable

metric space. ρp becomes the standard Prohorov metric, denoted ρ herein, when p = 1.

Theorem 1 Let (E, d) be a separable metric space, p ≥ 1, µ ∈ P(E), and ξ1 be an E-valued

random variable on some probability space (Ω1,F1, P1). Then, there exists a non-negative

collection {gm}∞m=1 ⊂ BL(E) that is closed under multiplication, satisfies supm ‖gm‖BL ≤ 1

and strongly separates points (s.s.p.); another space (Ω2,F2, P2) and an E-valued random

variable ξ2 on (Ω1 × Ω2,F1 ⊗F2, P1 × P2) such that L(ξ2) = µ, E[g(ξ2)|F1 ⊗ {∅, Ω2}] =

E[g(ξ2)|σ(ξ1)⊗ {∅, Ω2}] for all g ∈ B(E) and

E
[
|gm (ξ2)− gm (ξ1) |p

∣∣∣∣ F1 ⊗ {∅, Ω2}
]
≤ 3

(
π2

12
m2 ρp (L(ξ1), µ)

)p

∀m ∈ N.

Proof. As this is part of our motivating application, we refer to results that follow. The

existence of the {gm}∞m=1 follows from (23) and Lemma 5 (to follow). These gm are uniformly

bounded by 1
2

and also have a Lipschitz constant of 1
2
. Then, G

.
= (g1, g2, ....) : E → G(E) ⊂[

0, 1
2

]∞
⊂ R∞ is a homeomorphism by Lemma 4 (to follow). G(E) is a separable metric
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space with metric r(θ, ζ) =
12

π2

∞∑
m=1

1

m2
|θm − ζm| ≤ 1 and we have that

r(G(x), G(z)) =
12

π2

∞∑
m=1

1

m2
|gm(x)− gm(z)| ≤ 6

π2

∞∑
m=1

1

m2
d(x, z) = d(x, z).

Hence, it follows that G(F γ) ⊂ G(F )γ for any γ > 0, (closed) F and the p-Prohorov distance

between the law of X
.
= G(ξ1) and Q

.
= µG−1 satisfies ρp(L(X), Q) ≤ ρp (L(ξ1), µ) . Let

ρp (L(ξ1), µ) > 0 since otherwise we could just take ξ2 = ξ1. Now, we let n ∈ N and partition[
0, 1

2

]
into

A1 =
[
0,

1

2n

]
and Ai =

(
i− 1

2n
,

i

2n

]

for i = 2, 3, ..., n. Next, we consider the nn disjoint sets of the form

BI = Ai1 × Ai2 × · · · × Ain × R∞,

where I = (i1, i2, ..., in) with ij ∈ {1, ..., n}. Hence, the nn disjoint sets

EI = BI ∩G(E) ∈ B(G(E)) = B(R∞) ∩G(E)

partition G(E) and have diameter no more than δn $ 1
2n

+ 6
π2

1
n
. (G(E) is a Borel set if E is also

complete by Parthasarathy [23, Corollary I.3.3]. However, we do not need that fact.) Now, by

the proof of Ethier and Kurtz [10, Lemma 3.1.3] (with S = G(E), N = nn, E0 = ∅, δ = δn)

for all ε > ρp (L(X), Q) there is a random variable Zε ∈ H
.
= (G(E)nn+1 × [0, 1]) on an

independent probability space (Ωε
2,F ε

2, P
ε
2) and a measurable mapping h : G(E)×H → G(E)

such that Y ε .
= h(X, Zε) satisfies L(Y ε) = Q and {(r(X, Y ε) ≥ ε+δn} ⊂ C ∈ F ε

2 (see (3.1.28)

of [10] and note E0 = ∅), where P ε
2(C) < εp. Setting ξε

2 = G−1(Y ε), we thereby get

E[g(ξε
2)|F1 ⊗ {∅, Ωε

2}] =
∫
Ωε

2

g(G−1 ◦ h(X, z))P ε
2(dz) = E[g(ξε

2)|σ(ξ1)⊗ {∅, Ωε
2}] and
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E [|gm (ξε
2)− gm (ξ1) |p| F1 ⊗ {∅, Ωε

2}] = E
[
|Y ε

m −Xm|p
∣∣∣∣ F1 ⊗ {∅, Ωε

2}
]

(1)

≤
(

π2

12

)p

m2pE
[
rp(Y ε, X)

∣∣∣∣ F1 ⊗ {∅, Ωε
2}
]

<

(
π2

12

)p

m2p ((ε + δn)p + εp) .

The result follows by letting n be large enough, ε be close enough to ρp (L(X), Q) and using

the fact ρp(L(X), Q) ≤ ρp (L(ξ1), µ). 2

Now, we establish our compact-time-interval measure-valued-process representation result.

An advantage of this coupling approach is that our particles are Markov processes.

Theorem 2 Let −∞ < a < b < ∞; E be a Polish space; and {Vt, t ∈ [a, b]} be a process

on (Ω,F , P ) with DP(E)[a, b]-valued paths. Then, there are numbers mN → ∞ and an en-

larged probability space supporting conditionally-independent and identically-distributed E-

valued cadlag Markov processes {Ξ1,N , ..., ΞmN ,N} such that the empirical processes V N
t

.
=

1
mN

mN∑
i=1

δΞi,N
t

converge in probability to V on DP(E)[a, b] as N →∞.

Remark 1 Here and below, we sometimes use V ω
t to denote the probability measure at time

t and random occurrence ω ∈ Ω. The enlarged probability space has the form

(
Ω× Ω,F ⊗ F , QV (ω)(dω)P (dω)

)

and conditionally independent means given {∅, Ω} ⊗ F . This conditional independence to-

gether with the identical distribution of the copies implies that our particles are exchangeable.

Remark 2 The proof to follow will reveal: 1) the empirical measures V N are non-anticipative.

2) mN can be taken arbitrarily (provided mN → ∞) if there exist β(ω), C(ω) > 0 such that

ρp(V
ω
t , V ω

s ) ≤ C(ω)|t − s|β(ω) a.s. In this case, we would replace the definition of sN
k below

with sN
k = a + (b− a)k2−N for k = 0, 1, ..., l(N) = 2N .
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Remark 3 The original purpose of this result was to illustrate the methods developed in

Sections 4 and 5 of this paper. Notice in the sequel that, after set up, there are basically three

steps. Moreover, there is no need to verify any compact containment condition explicitly.

Finally, the verification of the modulus of continuity condition is made relatively easy.

Proof. Set Up Part a: Define particles and empirical measure approximation.

Let {gn} ⊂ BL(E) be the collection given by Theorem 1, take {vN} to be positive numbers

decreasing to 0 and define the stopping times (with respect to FV
t

.
= σ{Vs, s ≤ t})

τN
0 = a, τN

i = inf{t > τN
i−1 : max

k≤N
|Vt(gk)− VτN

i−1
(gk)| > vN} ∧ (τN

i−1 + vN) ∧ b ∀i ≥ 1 (2)

{sN
k }

l(N)
k=0 =

N
∪

M=1
{τM

i }∞i=1 (3)

so a = sN
0 < sN

1 < · · · < sN
l(N) = b and {sN

k }
l(N)
k=0 ⊂ {sN+1

k }l(N+1)
k=0 . Let δN = min

i
{sN

i − sN
i−1},

set |ρN |p =

[
l(N)−1∑

k=0

(
ρp(VsN

k+1
, VsN

k
)
)p
] 1

p

for some p ≥ 2 and take numbers mN such that

P

 lim
N→∞

|ρN |2p δ
− 2

q

N

mN

≤ 1

 = 1, (4)

where 1
p

+ 1
q

= 1. V is a DP(E)[a, b]-valued random variable by [10, Theorem 3.1.7 and

Proposition 3.7.1]. Using the quenched approach, we fix a V ∈ DP(E)[a, b] such that

lim
N→∞

|ρN |2p δ
− 2

q

N

mN

≤ 1. (5)

Since we will later average over V , we note that each VsN
k

is σ(V )-measurable. Now, using

Theorem 1 for each j, k starting with k = 0 and independent {ξj,N
0 }mN

j=1, we construct in-

dependent E-valued Markov chains {ξj,N

sN
k

, k = 0, 1, ..., l(N)}mN
j=1 on some probability space

(Ω,F , QV ) such that L(ξj,N

sN
k

) = VsN
k

for all k = 0, 1, ..., l(N); j = 1, ...,mN and

E
{∣∣∣∣gn

(
ξj,N

sN
k+1

)
− gn

(
ξj,N

sN
k

)∣∣∣∣p |FN
sN
k

}
≤ 3

(
π2

12
n2 ρp

(
VsN

k
, VsN

k+1

))p

(6)
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for all n ∈ N, j = 1, ...,mN and k = 0, 1, ..., l(N) − 1, where FN
sN
k

= σ{ξj,N

sN
0

, ..., ξj,N

sN
k

, j =

1, 2, ...,mN}. In particular, this implies by Jensen’s inequality that

∣∣∣∣E {
gn

(
ξj,N

sN
k+1

)
− gn

(
ξj,N

sN
k

)}∣∣∣∣p ≤ 3

(
π2

12
n2 ρp

(
VsN

k
, VsN

k+1

))p

(7)

for all n ∈ N, j = 1, ...,mN and k = 0, 1, ..., l(N) − 1. Next, we set tN = max{sN
n : sN

n ≤ t}

for t ≥ a, define Ξj,N
t = ξj,N

tN
for t ≥ a and recall V N

t
.
= 1

mN

mN∑
j=1

δΞj,N
t

. Each {V N
t , t ≥ a}

and each {Ξj,N
t , t ≥ a} is a cadlag {GN

t }-Markov process that is constant between jumps at

{sN
n }

l(N)
n=0 and after b for each j, N , where GN

t
.
= FtN . The expectations here and below are

with respect to QV , i.e. with V fixed.

Set Up Part b: Explain metric-space compactification of space of probability measures.

By Example 1 (to follow), the countable collection {ĝn}, defined by ĝn(µ) =
∫

gndµ, s.s.p.

on P(E) so Ĝ
.
= (ĝ1, ĝ2, ....) : P(E) → Ĝ(P(E)) ⊂

[
0, 1

2

]∞
⊂ R∞ is a homeomorphism by

Lemma 4 (to follow) and %(µ, ν) =
√∑∞

n=1 2−n|ĝn(µ)− ĝn(ν)|2 defines an alternate metric for

weak convergence of probability measures on E. Further, by Ethier and Kurtz [10, Theorem

3.1.7] and Theorem 6 herein, P(E) has a (Stone-Čech) metric space compactification P(E)

such that P(E) is a Borel subset of P(E) and the homeomorphism Ĝ can be extended to

a homeomorphism G : P(E) → G(P(E)) ⊂ R∞. (We are using different metrics for the

topology of weak convergence. We just need to know that there is one complete metric,

the normal Prohorov metric here, to conclude P(E) is a Borel subset.) Now, we extend the

homeomorphism Ĝ to a homeomorphism G̃ : DP(E)[a, b] → DG(P(E))[a, b] ⊂ DR∞ [a, b] by

G̃(x)(t) = G(x(t)) and G̃−1(y)(t) = G
−1

(y(t)) (8)

(see [10, Problem 3.11.13] for continuity). Then, DP(E)[a, b] is Borel measurable in DP(E)[a, b]

by the development of Ethier and Kurtz [10, Theorem 3.5.6], Parthasarathy [23, Corollary

I.3.3] and the argument in Theorem 6. We imposed our Polish space condition in this theorem

to obtain this measureability and use [10, Corollary 3.3.2] in lieu of a lot of work below.
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Step 1: Establish a modulus of continuity condition for empirical measures.

Define the DR[a, b]-functions ζN,n
t = VtN (gn) and fix (g, ζN) ∈ {(gn, ζ

N,n)}∞n=1∪{(gl+gn, ζ
N,l+

ζN,n)}∞l,n=1. Given η > 0, we use (2,3) to choose M such that sups,t∈[sM
i−1,sM

i )|Vt(g)− Vs(g)| <

η and note sups,t∈[sM
i−1,sM

i ) |ζN
t − ζN

s | = 0 when N ≤ M and sups,t∈[sM
i−1,sM

i )|ζN
t − ζN

s | ≤

sups,t∈[sM
i−1,sM

i )|Vt(g)− Vs(g)| < η otherwise. Hence, {ζN} satisfies the modulus of continuity

condition (MCC) defined in Section 4 below as processes. Next, for a ≤ s < t ≤ b

|ĝ
(
V N

t

)
− ĝ

(
V N

s

)
− ζN

t + ζN
s |=

∣∣∣∣∣∣ 1

mN

mN∑
j=1

[
g
(
ξj,N

tN

)
− g

(
ξj,N

sN

)]∣∣∣∣∣∣ (9)

=

∣∣∣∣∣∣
tN∫

sN

1

δNmN

mN∑
j=1

{
g
(
Ξj,N

u+δN

)
− g

(
Ξj,N

u

)}
du

∣∣∣∣∣∣
≤ |tN − sN |

1
q

δNmN

 b∫
a

∣∣∣∣∣∣
mN∑
j=1

{
g
(
Ξj,N

u+δN

)
− g

(
Ξj,N

u

)}∣∣∣∣∣∣
p

du


1
p

by Holder’s inequality, where g
(
ξj,N

u

)
= g

(
ξj,N

u

)
− E[g

(
ξj,N

u

)
] and q satisfies 1

p
+ 1

q
= 1.

Next, by the fact p ≥ 2, Jensen’s inequality and the Marcinkiewicz-Zygmund inequality

E


 b∫

a

∣∣∣∣∣∣
mN∑
j=1

{
g
(
Ξj,N

u+δN

)
− g

(
Ξj,N

u

)}∣∣∣∣∣∣
p

du


1
p

 (10)

= E


∑

k

sN
k+1∫

sN
k+1

−δN

∣∣∣∣∣∣
mN∑
j=1

{
g
(
Ξj,N

u+δN

)
− g

(
Ξj,N

u

)}∣∣∣∣∣∣
p

du


1
p



= δ
1
p

NE


∑

k

∣∣∣∣∣∣
mN∑
j=1

{
g
(
ξj,N

sN
k+1

)
− g

(
ξj,N

sN
k

)}∣∣∣∣∣∣
p

1
p


N
� δ

1
p

N


∑
k

E


mN∑

j=1

∣∣∣∣{g
(
ξj,N

sN
k+1

)
− g

(
ξj,N

sN
k

)}∣∣∣∣2


p
2




1
p

≤ δ
1
p

Nm
1
2
N

∑
k

E

 1

mN

mN∑
j=1

∣∣∣∣{g
(
ξj,N

sN
k+1

)
− g

(
ξj,N

sN
k

)}∣∣∣∣p


1
p

.

Thus, by Jensen’s inequality and (6,7,9,10) there are K1, K2 > 0 independent of δ, N so that
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E

 sup
a≤s<t≤b

t−s≤δ

|ĝ
(
V N

t

)
− ĝ

(
V N

s

)
− ζN

t + ζN
s |

 (11)

≤K1
ν(δ, N)

δ
1
q

Nm
1
2
N

∑
k

E

 1

mN

mN∑
j=1

∣∣∣∣g (ξj,N

sN
k+1

)
− g

(
ξj,N

sN
k

)∣∣∣∣p


1
p

≤K2
ν(δ, N)|ρN |p

δ
1
q

Nm
1
2
N

,

where ν(δ, N) = supa≤s<t≤b
t−s≤δ

|tN − sN |
1
q ≤ (δ + vN)

1
q by (2,3). Now, given η > 0, we set

δ =
(

η2

2K2

)q
and then use (5,11) to find an N0 = N0(η) such that

E

 sup
a≤s<t≤b

t−s≤δ

|ĝ
(
V N

t

)
− ĝ

(
V N

s

)
− ζN

t + ζN
s |

 ≤ η2 ∀N ≥ N0. (12)

MCC for {V N} follows by Markov’s inequality and Proposition 14 b (to follow).

Step 2: Establish convergence of finite dimensional distributions.

One has by independence of {Ξj,N}mN
j=1 and the fact L(ξj,N

tN
) = VtN that

E[(%(V N
t , VtN ))2] =

∞∑
n=1

2−nE|V N
t (gn)− VtN (gn)|2 (13)

=
∞∑

n=1

2−n 1

m2
N

mN∑
j=1

(
E[g2

n(ξj,N
tN

)]− E[gn(ξj,N
tN

)]2
) N
� m−1

N → 0.

Also, VtN → Vt (surely) for t ∈ {b} ∪ J(V )C so convergence in probability,

QV (%(V N
t , Vt) ≥ ε) → 0 (14)

for any ε > 0, follows from (13). Then, convergence in probability at multiple times a ≤ t1 <

t2 < · · · < td ≤ b with each ti ∈ {b} ∪ (J(V ))C ,

QV (max
i

%(V N
ti

, Vti) ≥ ε) → 0 ∀ ε > 0, (15)

11



follows immediately from (14). This is equivalent to convergence of the finite dimensional

distributions (fdds) of V N to those of the deterministic V on P(E). Convergence of the fdds

on P(E) follows from Ethier and Kurtz [10, Corollary 3.3.2].

Step 3: Conclude convergence in probability in DP(E)[a, b].

Tightness of
{
V N

}
in DP(E) [a, b] with respect to QV follows from Step 1 and Theorem 15

d) below. Relative compactness then follows since DP(E) [a, b] is Hausdorff so convergence of

the fdds implies V N ⇒ V on DP(E) [a, b] . However, DP(E) [a, b] ∈ B(DP(E) [a, b]) so V N ⇒

V on DP(E) [a, b] by [10, Corollary 3.3.2]. Since V is deterministic, we get convergence in

probability,

lim
N→∞

QV (ρ̃(V N , V ) > ε) = 0 ∀ε > 0, (16)

where ρ̃ is the DP(E) [a, b] metric defined in terms of Prohorov metric ρ in (24) below. Finally,

QV (ρ̃(V N , V ) > ε) is (an expectation that is) measurable with respect to σ(V ) so

Q(ρ̃(V N , V ) > ε) → 0 ∀ε > 0, (17)

by dominated convergence, where Q is the probability measure defined on Ω× Ω by

Q(A) =
∫
Ω

∫
Ω

1A(ω, ω)QV (ω)(dω)P (dω) ∀ A ∈ F × F . 2 (18)

We give a [0,∞), almost-sure version of the previous result.

Theorem 3 Let E be a Polish space and {Vt, t ≥ 0} have DP(E)[0,∞) paths. Then, there are

numbers mN →∞ and conditionally-i.i.d. E-valued cadlag Markov processes on an enlarged

probability space {Ξ1,N , ..., ΞmN ,N} such that the empirical processes V N .
= 1

mN

mN∑
i=1

δΞi,N → V

a.s. on DP(E)[0,∞).

12



Proof. Let {sN
k }∞k=0 be as in (2,3) but with a = 0 and b = ∞, set σK = s1

K for K ∈ N

so σK ≤ Kv1 and take l(N, K) = {k : sN
k = σK}. Let δN,K = min

i≤l(N,K)
{sN

i − sN
i−1}, set

|ρN,K |p =

[
l(N,K)−1∑

k=0

(
ρp(V

ω
sN
k+1

, VsN
k
)
)p
] 1

p

for some p ≥ 2 and take numbers mK
N such that

P

 lim
N→∞

|ρN,K |2p δ
− 2

q

N,K

mK
N

≤ 1

 = 1, (19)

where 1
p

+ 1
q

= 1, so mN
.
= max

K≤N
mK

N satisfies P

 lim
N→∞

|ρN,K |2p δ
− 2

q
N,K

mN
≤ 1, ∀K ∈ N

 = 1. Now,

fix V so that

lim
N→∞

|ρN,K |2p δ
− 2

q

N,K

mN

≤ 1, ∀K ∈ N. (20)

Next, we define tN = max{sN
n : sN

n ≤ t}, Ξj,N
t = ξj,N

tN
and V N

t
.
= 1

mN

mN∑
j=1

δΞj,N
t

for t ≥ 0 on

some probability space (Ω,F , QV ) as in the proof of Theorem 2. Each {V N
t , t ≥ 0} and each

{Ξj,N
t , t ≥ 0} is a cadlag {GN

t }-Markov process that is constant between jumps at {sN
n }∞n=0

for each j, N , where GN
t

.
= σ{ξj,N

sN
: a ≤ s ≤ t, j ≤ mN}.

Now, we let T, η > 0 and pick K so that σK ≥ T . Using the proof of Theorem 2, we find

that {V N |[0,σK ]} is tight with respect to QV . Therefore, by the only if part of Corollary 21

(to follow): Given η > 0, there is a compact set KT,η ⊂ P(E) and a δ > 0 satisfying

inf
N

QV (V N
t ∈ KT,η for t ∈ [0, T ]) ≥ 1− η and sup

N
QV (w′

ρ(V
N , δ, T ) ≥ η) ≤ η,

where w′
ρ(x, δ, T ) = inf{ti} maxi sups,t∈[ti−1,ti)

ρ(xt, xs) and {ti} ranges over all partitions of

the form 0 = t0 < t1 < · · · < tn−1 < T ≤ tn with mini∈{1,2,...,n}(ti − ti−1) > δ and n ∈ N.

Therefore, {V N} is relatively compact on DP(E)[0,∞) by Ethier and Kurtz [10, Theorem

3.7.2]. Next, we get the fdd convergence exactly as Step 2 of the proof of Theorem 2. Hence,

V N ⇒ V on DP(E) [0,∞) . The proof is completed as in the last part of Step 3 of the proof

13



of Theorem 2 and then taking a subsequence so that almost sure convergence is attained. 2

3 Background

The following definition is motivated by [10] p. 113.

Definition 2 Let (E, T ) be a topological space and G ⊂ M(E). Then, i) G separates points

(s.p.) if for x 6= y ∈ E there is a g ∈ G with g(x) 6= g(y) and ii) G strongly separates points

(s.s.p.) if, for every x ∈ E and neighborhood Ox of x, there is a finite collection
{
g1, ..., gk

}
⊂ G such that infy/∈Ox max1≤l≤k |gl(y)− gl(x)| > 0.

Acronym s.s.p. will also be used for strongly separate points and strongly separating points

depending upon English context.

G s.s.p. means that for any x and neighborhood Ox there are ε > 0 and
{
g1, ..., gk

}
⊂ G such

that max1≤l≤k |gl(y)−gl(x)| < ε implies y ∈ Ox. Thus, G s.s.p. implies G s.p. (in a Hausdorff

space) and defines a topology T G through the basis

BG $ {{y ∈ E : max
1≤l≤k

|gl(y)− gl(x)| < ε}| g1, ..., gk ∈ G, ε > 0, x ∈ E, k ∈ N} (21)

on E that is finer than the original topology. This yields the following lemma:

Lemma 4 Let (E, T ) be a Hausdorff space, G ⊂ M(E) and Γ(x) $ (g(x))g∈G. Then, Γ has

a continuous inverse Γ−1 : Γ(E) ⊂ RG → E if and only if G s.s.p. Γ is an imbedding of E in

RG if and only if G ⊂ C(E) and G s.s.p.

Proof. If G s.s.p., then G s.p. so Γ−1 exists. T ⊂ T G so Γ−1 is continuous. 2

Given G ⊂ M(E) that may not s.s.p., we still define a topology T G (through BG or, equiva-

lently, pseudometrics max
1≤l≤k

|gl(y)−gl(x)|) that may differ from T . Clearly, G s.s.p. on (E, T G).

If G s.p. then (E, T G) is Hausdorff. In any case, if G = {gk}∞k=0 ⊂ M(E) is countable, then

14



ρ(x, y) $
∞∑

k=0

2−k (|gk(x)− gk(y)| ∧ 1) (22)

is a single pseudometric that generates T G. (See [9] p. 20 for a pseudometric definition.) If,

in addition, {gk}∞k=0 s.p., then (22) becomes a metric.

(22) illustrates the importance of reducing a strongly separating collection to countability.

Lemma 5 If (E, T ) has a countable basis and G ⊂ C(E) s.s.p., then there is a count-

able collection {gk}∞k=0 ⊂ G that s.s.p. Moreover, {gk}∞k=0 can be taken closed under either

multiplication or addition if G is.

Proof. See Blount and Kouritzin [4]. 2

The following classical topology result is the key to our homeomorphic methods.

Theorem 6 (Stone-Čech compactification) Suppose (E, T ) is a Hausdorff space; G ⊂ C(E)

s.s.p. and G(x) = (g(x))g∈G. Then, there exists a compact Hausdorff space E ⊃ E and a

homeomorphism G : E → G(E) ⊂ RG:

(1) E’s subspace topology on E is T ;

(2) G(E) is the RG closure of G(E);

(3) G|E = G;

(4) If E has a countable base and G = {gk} is taken to be countable, then E is metrizable

with a metric d that can satisfy either: d(x, y) =
∑∞

k=1 2−k(|gk(x)−gk(y)|∧1) or d(x, y) =√∑∞
k=1 2−k(|gk(x)− gk(y)|2 ∧ 1) for x, y ∈ E;

(5) If E is a complete, separable metric space and G = {gk} is taken to be countable, then

E, G(E) are Borel subsets of E, G(E) respectively.

Remark 4 The Stone-Čech compactification is usually defined with all continuous bounded

functions i.e. G = C(E). However, it is important for us to use a countable subclass G ⊂
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C(E) at times. Naturally, we only produce continuous extensions for the functions G.

Proof. This theorem follows from Lemma 4, Lemma 5, the development on p. 239 of

Munkries [22], and Corollary I.3.3 of Parthasarathy [23]. We explain the final item: By a

first application of [23, Corollary I.3.3] G(E) is a Borel measurable subset of R∞ and hence

of the compact subset G(E). A second application yields G
−1

(G(E)) = E ∈ B(E). 2

There is an equivalent way to view s.s.p. that clarifies some developments.

Lemma 7 Suppose E is Hausdorff and G ⊂ M(E). Then, G s.s.p. if and only if for any net

{xi}i∈I ⊂ E and point x ∈ E, one has g(xi) → g(x) for all g ∈ G implies that xi → x in E.

Proof. See Blount and Kouritzin [4]. 2

Notwithstanding the previous lemma, it is often difficult to determine if a collection of

functions s.s.p. The next example from Theorems 6 and 11 (a) of Blount and Kouritzin [4],

used to establish Theorem 2, shows that the s.s.p. property can sometimes be inferred.

Example 1 Suppose E is a topological space and G ⊂ B(E) s.p., s.s.p. and is closed under

multiplication. Then, the functions {φg(P ) $
∫
E gdP : g ∈ G} s.p. and s.s.p. on P(E) if

either G is countable or E has a countable base and G ⊂ C(E).

In the sequel, we will often assume that E is a completely regular (CR) space, i.e. Hausdorff

with the property that for any closed subset F ⊂ E and any x /∈ F , there exists f ∈ C(E)

such that f(x) = 0 and f(y) = 1 for every y ∈ F . (Note: Some authors do not include the

Hausdorff property within the definition of CR but it is convenient for us to.)

There are non-Polish, CR spaces of interest. For example, Mitoma [21], Holley and Stroock

[13] and others consider probability measures on cadlag spaces of tempered distributions

while Fitzsimmons [12], Meyer and Zhang [20] and others consider probability measures

on Lusin spaces. Any CR space E has a collection D of pseudometrics that determines its
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topology. We write (E,D) to denote such a framework. A Hausdorff space E is CR if and

only if some G ⊂ C(E) s.s.p. Indeed, it follows from Lemma 7 that

G $

{
gx,d $

l∏
i=1

1

2
(1− di(·, xi)) ∨ 0 : xi ∈ E, di ∈ D, l ∈ N

}
, (23)

is a collection of non-negative, continuous functions bounded by 1
2

that is closed under

multiplication and s.s.p. WhenD is a single metric each gx,d has bounded support, is Lipschitz

continuous and satisfies ‖g‖BL ≤ 1. The following result will help to explain our assumptions

in Theorem 20 to follow.

Proposition 8 Suppose E is a topological space and there is a countable collection G =

{gk}∞k=0 ⊂ C(E) that s.p. Then; each compact K ⊂ E is metrizable; the subspace topologies

on K, T |K and T G|K, are equal; and all compact subsets of DE[a, b] are metrizable as well.

Proof. G
.
= (g0, g1, ...) : E → R∞ is 1-1 and continuous so G : K → G(K) is a closed map,

hence a homeomorphism for any compact K. The remainder follows from Proposition 1.6

vii) of Jakubowski [14] (and time homeomorphism). 2

We are interested in cadlag function spaces with the usual Skorokhod topology (see [3], [10],

[14], [21], [26] also). For a CR space (E,D), we define DE[a, b] for some −∞ < a < b < ∞ to

be the space of all E-valued functions on [a, b] that are right continuous and have left-hand

limits (i.e. cadlag) with respect to the topology on E. The pseudometrics

d̃ (x, y) = inf λ∈Λ[a,b]

(
ess sup

a<t<b
| log λ′(t)| ∨ sup

t∈[a,b]
d (x (λ(t)) , y (t))

)
∀d ∈ D (24)

topologize DE[a, b] in the Skorokhod sense, where Λ[a,b] are the strictly increasing, continuous

mappings of [a, b] onto itself. Actually, these spaces are isometrically isomorphic to each other.

Definition 3 Suppose (E,D) and (E0,D0) are CR. Then, these spaces are isometrically

isomorphic if there is a bijective map Γ : E → E0 such that D = {d0(Γ(·), Γ(·)) : d0 ∈ D0}.
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Suppose (E,D) is CR, ρ : [0, 1]
onto→ [a, b] is an increasing homeomorphism that is a C1-

diffeomorphism on (0, 1) and λ = ρ◦λ◦ρ−1, x = xρ−1, y = yρ−1. Then, Λ[a,b] =
{
λ : λ ∈ Λ[0,1]

}

sup
t∈[a,b]

d
(
x
(
λ(t)

)
, y (t)

)
= sup

s∈[0,1]
d (x (λ(s)) , y (s)) ∀x, y ∈ DE[0, 1], d ∈ D and

ess sup
a<t<b

| log λ
′
(t)|= ess sup

0<s<1
| log λ′(s) + log ρ′(λ(s))− log ρ′(s)| ∀λ ∈ Λ[0,1]

for any λ ∈ Λ[0,1]. This immediately gives us the following result.

Lemma 9 Suppose −∞ < a < b < ∞ and ρ (t) = a + t (b− a). Then, x = xρ−1 defines an

isometric isomorphism between CR spaces DE [0, 1] and DE [a, b].

Each DE[a, b] is CR with pseudometrics D̃ .
= {d̃ : d ∈ D} defining its topology and is isomet-

rically isomorphic to DE[0, 1] so results for DE[0, 1] can extend to DE[a, b] via isomorphism.

The topology on DE[a, b] is independent of the choice of pseudometrics D generating the

topology on E by (isometric isomorphism and) Jakubowski [14, Theorem 1.3]. Suppose S

is another topological space and f : E → S is continuous. Then, f̃ : DE[a, b] → DS[a, b],

defined by f̃(x)(t) = f(x(t)) for t ∈ [a, b], is also continuous. We also use f ◦ x to de-

note the function f̃(x). Let Cδ be the collection of all partitions {ti}n
i=0 satisfying a =

t0 < t1 < · · · < tn = b with min1≤i≤n(ti − ti−1) > δ and define the moduli of conti-

nuity wd(x, [c, d)) $ sup
c≤s<t<d

d(xt, xs), w′
d(x, δ) $ inf{ti}∈Cδ maxi wd(x, [ti−1, ti)), w”

d(x, δ) $

sup
a≤t1≤t≤t2<b

t2−t1≤δ

min{d(xt, xt1), d(xt2 , xt)} for each d ∈ D. Each x → w′
d(x, δ) is measurable by the

proof of Lemma 3.6.2 in [10]. Following Billingsley [2, pp. 119-120], one finds

wd(x, [a, a + δ)) + w”
d(x, δ) + wd(x, [b− δ, b)) ≤ 3w′

d(x, δ) and (25)

w′
d

(
x,

δ

2

)
≤ wd(x, [a, a + δ)) ∨ 6w”

d(x, δ) ∨ wd(x, [b− δ, b)). (26)

For notational ease, we write w,w′, w” for wd, w
′
d, w

”
d when d is absolute value or Euclidean

distance. Now, following Ethier and Kurtz [10, Theorem 3.6.3], we can characterize the
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compact sets of DE[a, b] when E is a complete metric space.

Theorem 10 Let (E, d) be a complete metric space and a < b. Then, A ⊂ DE [a, b] has

compact closure if and only if: a) There is a compact set K ⊂ E such that x (t) ∈ K for all

t ∈ [a, b], x ∈ A; and b) lim
δ→0

sup
x∈A

w′
d (x, δ) = 0.

For the general CR case Jakubowski [14, Proposition 1.6 vi)] (and isomorphism) establish:

Proposition 11 Let (E,D) be a CR space and a < b. Then, for any compact K ⊂ DE[a, b]

there is a compact K ⊂ E such that K ⊂ {x ∈ DE[a, b] : x(t) ∈ K ∀t ∈ [a, b]}.

4 Modulus of Continuity and Containment Conditions

Prohorov’s theorem states that tightness implies relative compactness for the distributions

Pα ◦ (Xα)−1 when E is Hausdorff (see Theorem 2.2.1 of [15]). It follows from Theorem 10

and Proposition 11 above that the compact containment and the modulus of continuity

conditions are important properties for establishing tightness on Skorokhod spaces.

CCC: Suppose E is a topological space. A family of processes {(Ωα,Fα, Pα), Xα} with

DE[a, b] paths satisfies the compact containment condition if: For all ε > 0, there is a

compact Kε ⊂ E such that infα Pα(Xα
t ∈ Kε, a ≤ t ≤ b) ≥ 1− ε;

It is often a lot of work to verify CCC directly. However, on dual spaces CCC sometimes

degenerates to the real-valued case, which may be relatively easy to verify.

Lemma 12 Let E = S ′ be the topological dual of a nuclear Fréchet space S. Then, {Xα}

satisfies CCC if {〈Xα, ϕ〉} does for each ϕ ∈ S.
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Proof. This result follows from the Fréchet space version of the uniform boundedness prin-

ciple (see Dieudonné [8]). The details are given on pp. 263-264 of Jakubowski [14]. 2

MCC with D, AMCC with D: Suppose E is CR, D is a collection of pseudometrics de-

termining the topology on E and {Xα} is a family of processes with DE[a, b] paths. Then,

{Xα} satisfies the modulus of continuity condition with D if: for every η > 0 and d ∈ D,

there is a δ = δd,η > 0 satisfying supα Pα(w′
d(X

α, δ) ≥ η) ≤ η, and {Xα} satisfies the

asymptotic modulus of continuity condition with D if: for every η > 0 and d ∈ D, there is

a δ = δd,η > 0 and a finite set A = Ad,η satisfying supα/∈A Pα(w′
d(X

α, δ) ≥ η) ≤ η.

It can be easier to verify AMCC than MCC. It follows from (25,26) that we can replace

w′
d(X

α, δ) above with wd(X
α, [a, +δ))+w”

d(X
α, δ)+wd(X

α, [b− δ, b)). In any event, we often

just need MCC to be true for some collection of pseudometrics.

MCC (AMCC): A family {Xα} with DE[a, b] paths satisfies the (asymptotic) modulus of

continuity condition if it satisfies MCC (AMCC) with some topology-determining D.

The following tightness result for Polish spaces is included for later reference.

Theorem 13 Suppose (E, d) is Polish and {Y α} are cadlag processes that satisfy (CCC)

and (AMCC with d). Then, {Y α} is a tight collection of DE[a, b]-valued random variables.

Proof. Given η > 0, n ∈ N, there are δn,η > 0, finite set An,η and compact Kn,η such that

sup
α/∈A

Pα(w′
d(Y

α, δn,η) ≥ η2−n) ∨ Pα(Y α
t /∈ Kn,η for some t ∈ [a, b]) ≤ η2−n−1. (27)

However, using Ulam’s theorem, recalling Theorem 10 and skrinking δn,η > 0 if necessary,

we can take A = ∅. Next, letting Kη =closure
( ∞⋂

n=1
Fn,η

)
, where

Fn,η $ {y ∈ DE[a, b] : w′
d(y, δn,η) < η2−n, yt ∈ Kn,η ∀t ∈ [a, b]},
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one finds by (27) that Pα(Y α /∈ Kη) ≤
∑∞

n=1 Pα(Y α /∈ Fn,η) ≤ η
∑∞

n=1 2−n = η. Moreover,

Kη is compact by Theorem 10 since 0 ≤ sup
y∈Fn,η

w′
r(y, δn,η) ≤ η2−n for all n and monotonicity

imply that limδ↘0 sup
y∈

∞⋂
n=1

Fn

w′
r(y, δ) = 0. 2

MCC is equivalent to three other conditions that are often easier to verify.

Proposition 14 Let E be CR and {Xα} have DE[a, b] paths. Then, the following are equiv-

alent to a) {Xα} satisfies MCC:

b) There is a class J ⊂ C(E) that s.s.p. such that for each g ∈ J ′ $ J∪{g1+g2 : g1, g2 ∈ J }

and η > 0 there are a δ > 0, finite set A = Aη,g and cadlag processes {ζα = ζα
η,g} satisfying

sup
α/∈A

Pα(w′
d(ζ

α, δ) ≥ η) ≤ η and sup
α/∈A

Pα(supa≤s<t≤b
t−s≤δ

|g(Xα
t )− g(Xα

s )− ζα
t + ζα

s | ≥ η) ≤ η;

c) There is a class G ⊂ C(E) that s.s.p. and satisfies: i) for each g0, ..., gk ∈ G, k ∈ N0,

(g0, ..., gk) ◦Xα satisfies AMCC in Rk+1 with | · |, and ii) for any g ∈ G and η > 0 there

is a K = Kη,g > 0 such that infα Pα(supa≤t≤b |g(Xα
t )| ≤ K) > 1− η; and

d) There is a class G ⊂ C(E) that s.s.p. and satisfies: i) for each g0, ..., gk ∈ G, k ∈ N0, and

a0, ..., ak ∈ R,
∑k

j=0 ajgj(X
α) satisfies AMCC in R with | · |, and ii) for any g ∈ G and

η > 0 there is a K = Kη,g > 0 such that infα Pα(supa≤t≤b |g(Xα
t )| ≤ K) > 1− η.

Remark 5 1) While b-d appear weaker than MCC, they are actually equivalent. 2) It follows

from the proof below that if any of a-d are true, then all parts are true with the finite sets A =

A = ∅ and b) is true with J being closed under addition. 3) Parts c) and d) are particularly

useful when each {g ◦Xα} satisfies CCC. 4) One might think that the last conditions in parts

c) and d) are some weak compact containment condition that does not appear in a) or b).

However, these conditions just ensure that the choice of G is good. They are not restrictive

on their own as one could choose G so they were true if it were not for the other constraints.

Proof of Proposition 14. Assuming a) holds, we let G ⊂ {d(e, ·)∧1 : e ∈ E, d ∈ D} s.s.p.

Then, for every η ∈ (0, 1), one finds by the triangle inequality that
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sup
α

Pα(inf
{ti}

max
i

sup
s,t∈[ti−1,ti)

|(g0(X
α
t ), ..., gk(X

α
t ))− (g0(X

α
s ), ..., gk(X

α
s ))| ≥ η)

≤ sup
α

Pα(inf
{ti}

max
i

sup
s,t∈[ti−1,ti)

√
k + 1 max

0≤l≤k
dl(X

α
t , Xα

s ) ≥ η) ≤ η
√

k + 1

for all gl(·) = dl(el, ·) ∈ G and c) holds with Aη = ∅. (The last equation in c) holds trivially

since G is uniformly bounded by 1.) Moreover, assuming c) holds and letting D = {d :

d(x, y) = |(g0(x), ..., gk(x))− (g0(y), ..., gk(y))|, k ∈ N0 with g0, ..., gk ∈ G}, one finds that D

is a collection of pseudometrics determining the topology on E. Now, (g0(X
α), ..., gk(X

α))

satisfies AMCC holds by i) and CCC by ii) so a) holds by Theorems 13 and 10 with E = Rk+1.

When b) holds, g ∈ J ′, and η > 0, one finds

|g(Xα
t )− g(Xα

s )| ≤ sup
a≤σ<τ≤b

τ−σ≤δ

|g(Xα
τ )− g(Xα

σ )− ζα
τ + ζα

σ |+ |ζα
t − ζα

s | (28)

for t− s ≤ δ and some {ζα} satisfying AMCC. It follows that there is a δ > 0 such that

sup
α/∈A

Pα(w(g(Xα), [a, a + δ)) + w”(g(Xα), δ) + w(g(Xα), [b− δ, b)) ≥ 2η) (29)

≤ sup
α/∈A

Pα(w(ζα, [a, a + δ)) + w”(ζα, δ) + w(ζα, [b− δ, b)) ≥ η)

+ sup
α/∈A

Pα

3 sup
a≤σ<τ≤b

τ−σ≤δ

|g(Xα
τ )− g(Xα

σ )− ζα
τ + ζα

σ | ≥ η


≤ 2η

so {g ◦Xα} (is bounded and) satisfies AMCC and hence is tight in DR[a, b] for each g ∈ J ′

by Theorem 13. c) holds with G = J by Corollary 23 of the Appendix (with S = Rk+1,

Y α = (g0(X
α), ..., gk(X

α)) for g0, ..., gk ∈ J and G = {π0, π1, ..., πk} being the projection

functions) and Theorem 10. When c) holds, we let J $ {gK : g ∈ G, K > 0}, where

gK(x) $ −K ∨ g(x) ∧ K, to find that J ⊂ C(E) s.s.p. and (gK
0 (Xα), ..., gK

k (Xα)) satisfies

AMCC for gK
0 , ..., gK

k ∈ J . Hence, gK
i (Xα) + gK

j (Xα) satisfies AMCC with | · | by Cauchy-

Schwarz so b) follows by taking ζα as gK
i (Xα) or gK

i (Xα) + gK
j (Xα). c) to d) follows from

the Cauchy-Schwarz-based bound
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Pα

inf
{ti}

max
i

sup
s,t∈[ti−1,ti)

∣∣∣∣∣∣
k∑

j=0

ajgj(X
α
t )−

k∑
j=0

ajgj(X
α
s )

∣∣∣∣∣∣ ≥ η


≤Pα

inf
{ti}

max
i

sup
s,t∈[ti−1,ti)

|(g0, ..., gk)(X
α
t )− (g0, ..., gk)(X

α
s )| ≥ η√∑k

j=0 a2
j

 .

Finally, it follows from (A.30) of Holley and Stroock [13] that there are (finitely many)

θ1, ..., θm ∈ Rk+1 with each |θi| = 1 such that |v| ≤ 2 max
i=1,...,m

|θi · v| for all v ∈ Rk+1 and so d)

implies c) through the bound

Pα(w((g0, ..., gk)◦Xα, [a, a + δ)) + w”((g0, ..., gk)◦Xα, δ) + w((g0, ..., gk)◦Xα, [b− δ, b)) ≥ η)

≤
m∑

i=1

Pα

w
 k∑

j=0

θi
jgj◦Xα, [a, a + δ)

+ w”

 k∑
j=0

θi
jgj◦Xα, δ

+ w

 k∑
j=0

θi
jgj◦Xα, [b− δ, b)

≥ η

2

 . 2

5 Tightness and Containment assuming MCE

Proposition 14 provides equivalent conditions that can be verified in lieu of MCC.

MCE: Let E be CR. Then, cadlag {Xα} satisfies the modulus of continuity equivalence

condition if it satisfies one (hence all) of a-d in Proposition 14.

When E has a countable basis MCE has further equivalences related to tightness:

Theorem 15 Let E be CR with a countable basis and {Xα} be E-valued processes with

cadlag paths. Then, the following are equivalent to a) {Xα} satisfies MCE:

b) There is a collection {gk}∞k=0 ⊂ C(E) that s.s.p. such that the metric

d(x, y) =
∞∑

k=0

2−k (|gk(x)− gk(y)| ∧ 1) ∀ x, y ∈ E

generates the topology on E and {Xα} satisfies MCC with d;

c) There is an imbedding G = (g0, g1, ....) : E → R∞ such that {gk} ⊂ C(E) and
{
G̃(Xα)

}
is tight in DR∞ [a, b]; and
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d) {Xα} is tight in DE[a, b], where (E, d) is the Stone-Čech metric-space compactification

of E so d generates the original topology on E.

Proof. When a) holds, we use Remark 5, Proposition 14 c), bounding g → gK (as in the

proof of Proposition 14) and Lemma 5 to find {gk}∞k=0 ⊂ C(E) that s.s.p. and (g0, ..., gk)◦Xα

satisfies MCC with | · | for each k. b) follows by noting

Pα (w′
d(X

α, δ) ≥ 2η) ≤ Pα

inf
{ti}

max
i

sup
s,t∈[ti−1,ti)

Kη∑
k=0

2−k|gk(X
α
t )− gk(X

α
s )| ≥ η


for Kη = d− log2 ηe and then using Cauchy-Schwarz. Next, assuming b) holds, we define the

imbedding G : E → R∞ by G(x) = (g0(x), g1(x), ...) and find Y α = G̃(Xα) satisfies MCC as

well as CCC since each gk is bounded. Hence, c) holds by Theorem 13. Assuming c), using

Theorem 6 and noting that DG(E)[a, b] is closed in DR∞ [a, b], one finds that d) follows by

Lemma 24 below (with S = DE[a, b], Ŝ = DR∞ [a, b], Fn = S for all n and G defined by

G(x)(t) = Γ(x(t)) for x ∈ S).

Given (E, d) such that {Xα} is tight in DE[a, b] and d induces the original topology on E,

we let η > 0 be arbitrary, set d = d
∣∣∣
E
, and find a δ > 0 so that supα Pα(w

′
d(X

α, δ) ≥ η) ≤ η

by Theorem 10 so a) follows. 2

Theorem 15 generalizes an approach of [1]. They used the imbedding G : E → R∞, and

assumed conditions implying those in Proposition 14 b). If we can show MCE and have a

countable basis like on a separable metric space, then {Xα} is tight in DE[a, b]. Still, the goal

is usually to show tightness on DE[a, b], which is attained by assuming CCC in addition.

Corollary 16 Let E be CR with a countable basis, {Xα} have cadlag paths and MCE holds.

Then, {Xα} is tight on DE[a, b] if and only if CCC holds.

Proof. Let E be the Stone-Čech metric space compactification and Ĩ : DE[a, b] → DE[a, b]

be the identity imbedding. By CCC there are compact Kn ⊂ E and closed Fn = {x ∈
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DE[a, b] : x(t) ∈ Kn, a ≤ t ≤ b} such that infα P (Xα ∈ Fn) > 1 − 1
n
. {Kn} are compact in

E, {Fn} are closed in DE[a, b] and P (Xα)−1(Ĩ)−1 is tight by Theorem 15. Hence, {Xα} is

tight by Lemma 24 below. Conversely, CCC holds when {Xα} is tight by Proposition 11. 2

Pointwise containment (c.f. p. 128 of [10]) can often be used with MCC to establish CCC.

PCP: Let (E, d) be a metric space. A family of E-valued processes {Xα} satisfies the

pointwise containment property if: For all η > 0 and t ∈ [a, b], there is a compact Kη,t ⊂ E

such that infα Pα(Xα
t ∈ Kη

η,t) ≥ 1− η.

If each Xα has cadlag paths, then infα Pα(Xα
t ∈ Kη

η,t) ≥ 1− η for t in a dense subset of [a, b]

that includes {b} implies PCP.

PCP is related to the pointwise tight condition (used in e.g. [1]):

PTC: Suppose E is a topological space. A family of E-valued processes {Xα} satisfies the

pointwise tight condition if: For all η > 0 and a ≤ t ≤ b, there is a compact Kη,t ⊂ E such

that infα Pα(Xα
t ∈ Kη,t) ≥ 1− η.

Clearly, PTC implies PCP (on a metric space). However, the proof of Theorem 17 (to follow)

also establishes that PCP implies PTC if the metric space is complete. We use PCP for

generality since we do not always assume completeness.

The combination MCC, PCP holding in the same complete metric implies CCC.

Theorem 17 Let (E, d) be a metric space, {Xα} have DE[a, b] paths and MCC, PCP both

hold with metric d. Then, i) for any η > 0 there is a closed totally bounded set Bη such that

inf
α

Pα(Xα
t ∈ Bη for all t ∈ [a, b]) ≥ 1− η

and ii) CCC holds when (E, d) is complete.
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Notice that we required MCC in the same metric as PCP rather than just MCE. This fact

is what makes CCC often difficult to establish directly and is the reason we avoided showing

it in our application. For clarity, we include the following simple example.

Example 2 Suppose E = R, ξ is uniformly distributed on [0, 1] and Y n
t

.
=


1

ξ−t
∧ n 0 ≤ t < ξ

0 t ≥ ξ

.

Then, {Y n} does not satisfy CCC nor MCC with Euclidean distance. However, letting

J = Cc(R), the continuous functions with compact support, and ζn
t = g(Y n

t ), we can verify

Proposition 14 b) so {Y n} satisfies MCC (with some collection of pseudometrics). Next, by

Theorem 15 there is a countable collection {gk} that s.s.p. and a new metric d (as in that

theorem) that generates the Euclidean topology and for which {Y n} satisfies MCC. Moreover,

it is relatively easy to see that {Y n} satisfies PCP with either metric. Therefore by Theorem

17, for any η > 0 there is a closed, totally bounded Bη ⊂ (E, d) such that

inf
n

Pn(Y n
t ∈ Bη for all 0 ≤ t ≤ 1) ≥ 1− η.

However, (E, d) is not complete and CCC does not hold.

Proof of Theorem 17. By isometry, we can just consider the case a = 0, b = 1. i) Using

MCC and letting n ∈ N, we take δ so that

sup
α

Pα( inf
{ti}∈Cδ

max
i

sup
s,t∈[ti−1,ti)

d(Xα
t , Xα

s ) ≥ η2−n−1) ≤ η2−n−1. (30)

Next, we let 1
m

< δ, set τ i = i
m

for i = 0, 1, ...,m and use PCP to find {Γη2−n−1,τ i
} such that

inf
α

Pα(Xα
τ i
∈ Γη2−n−1

η2−n−1,τ i
for i = 0, 1, ...,m) ≥ 1− η2−n−1. (31)

Using (30,31) and letting Γη,n =
m⋃

i=0
Γη2−n−1,τ i

, one finds that

inf
α

Pα(Xα
t ∈ Γη2−n

η,n for all 0 ≤ t ≤ 1) ≥ 1− η2−n.
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Therefore, letting Bη =closure(
∞⋂

n=1
Γη2−n

η,n ), we have that

inf
α

Pα(Xα
t ∈ Bη for all 0 ≤ t ≤ 1) ≥ 1− η. 2

Corollary 18 Let (E, d) be a metric space, {Xα} have DE[a, b]-paths and MCC, PCP hold

with d. Then, there is a countable union of totally bounded sets E0 ⊂ E and modifications

{X̂α} of {Xα} that are DE[a, b]-valued random variables taking values in the (separable)

subset DE0 [a, b].

Remark 6 The above Corollary could be thought of as performing two tasks: 1) It establishes

that there is a modification whose paths are in this separable subset E0 and 2) This modified

process can be taken to be a DE[a, b]-valued random variable, which is a measurability question

(see Ethier and Kurtz [10, Proposition 3.7.1] for example). This second step does not follow

a priori from [10] because we have not assumed separability of E.

Proof. Let E0 =
∞⋃
i=1

B1/i and S0 =
∞⋃
i=1

{
x ∈ DE[a, b] : xt ∈ B1/i, a ≤ t ≤ b

}
, where {Bη} are

the closed, totally bounded sets from Theorem 17 i) so Pα(Xα ∈ S0) = 1 and S0 ⊂ DE0 [a, b].

Now, we fix e0 ∈ E0 and take X̂α = Xα on {Xα ∈ S0} and X̂α
t ≡ e0 on {Xα ∈ S0}c. 2

6 Tightness and Modulus of Continuity assuming CCC

In this section, we investigate the question: What conditions in addition to CCC yield

pathspace tightness? If CCC is true, then we need only verify the conditional form of AMCC.

CMCC: A family of processes {Xα} with DE[a, b]-valued paths satisfies the conditional

modulus of continuity condition if there is a collection of pseudometricsD on E determining

the relative topology on compacts such that: For every η ∈ (0, 1
2
], d ∈ D and compact K

satisfying infα Pα(Xα
t ∈ K ∀a ≤ t ≤ b) ≥ 1 − η, there is a δ = δd,η,K > 0 such that

supα Pα(w′
d(X

α, δ) ≥ η|Xα
t ∈ K ∀a ≤ t ≤ b) ≤ η.
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Actually, there is a convenient condition that implies CMCC:

WMCC: Cadlag family {Xα} satisfies the weak modulus of continuity condition if there is

G ⊂ C(E) that s.p. on compacts and {g ◦ Xα} satisfies AMCC with | · | for all g ∈ G ′

$ G ∪ {f + h : f, h ∈ G};

WMCC is clearly weaker than the analogous condition in Theorems 3.1, 4.6 of Jakubowski

[14], which proved useful in Dawson [6, Section 3.7] and Perkins [24, Section II.4] for showing

tightness of measure-valued processes. MCC implies WMCC through Proposition 14 d) and

WMCC implies MCC if G ⊂ C(E) s.s.p. on E through Proposition 14 b).

Motivated by Proposition 14, we have important equivalences to CMCC.

Proposition 19 Let E be CR and {Xα} have DE[a, b]-valued paths. Then, the following are

equivalent to a) {Xα} satisfies CMCC:

b) There is a class J ⊂ C(E) that s.p. on compacts such that for each η ∈ (0, 1
2
], g ∈ J ′ $

J ∪{g1 +g2 : g1, g2 ∈ J } and compact K satisfying infα Pα(Xα
t ∈ K ∀a ≤ t ≤ b) ≥ 1−η,

there are δ = δη,g,K > 0, finite set A = Aη,g,K and cadlag processes {ζα = ζα
η,g,K} satisfying

i) supα/∈A Pα(w′(ζα, δ) ≥ η|Xα
t ∈ K ∀a ≤ t ≤ b) ≤ η and

ii) sup
α/∈A

Pα( sup
a≤s<t≤b

t−s≤δ

|g(Xα
t )− g(Xα

s )− ζα
t + ζα

s | ≥ η|Xα
t ∈ K ∀a ≤ t ≤ b) ≤ η;

c) There is a class J ⊂ C(E) that s.p. on compacts such that for each η ∈ (0, 1
2
], g0, ..., gk ∈

J and compact K satisfying infα Pα(Xα
t ∈ K ∀a ≤ t ≤ b) ≥ 1−η, one has supα/∈A Pα(w′((g0, ..., gk)◦

Xα, δ) ≥ η|Xα
t ∈ K ∀a ≤ t ≤ b) ≤ η for some δ = δη,g,K > 0 and finite set A = Aη,g,K.

d) There is a class J ⊂ C(E) that s.p. on compacts such that for each η ∈ (0, 1
2
], g0, ..., gk ∈

J , a0, ..., ak ∈ R and compact K satisfying infα Pα(Xα
t ∈ K ∀a ≤ t ≤ b) ≥ 1− η, one has

supα/∈A Pα(w′(
∑k

j=0 ajgj ◦ Xα, δ) ≥ η|Xα
t ∈ K ∀a ≤ t ≤ b) ≤ η for some δ = δη,g,K > 0

and finite set A = Aη,g,K.
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Moreover, WMCC implies a-d.

Proof. Let K satisfy infα Pα(Xα
t ∈ K ∀a ≤ t ≤ b) ≥ 1− η. Then, a-d) are reduced to a-d)

of Proposition 14 with E = K and conditional probability in place of Pα. The only difference

is that the pseudometrics and functions are defined on all E instead of just K. Hence, the

equivalence of a-d) follows from the proof of Proposition 14 with the following comments: In

showing a) is equivalent to c), we take G = {d(e, ·)∧1 : e ∈ E, d ∈ D} ⊂ C(E) and note that

the definition of D in terms of G does not depend upon K either. In the proof of b) implies

c), we only need {g ◦Xα} satisfy CCC and, in the other direction, we just let J = G since

the functions need not be bounded. WMCC implies b) by letting J = G and ζα
t = g(Xα

t ). 2

By Proposition 19, one need only verify WMCC or one of the conditions equivalent to CMCC.

CMCE: Let E be CR and {Xα} be cadlag. Then, {Xα} satisfies the conditional modulus

of continuity equivalence condition if it satisfies one (hence all) of a-d in Proposition 19.

Remark 7 Suppose CCC and CMCE are both true, η > 0, K satisfies infα Pα(Xα
t ∈

K ∀a ≤ t ≤ b) ≥ 1 − η, and J ⊂ C(E), {ζα} are as in Proposition 19 b). Then, for

each g ∈ J ∪ {g1 + g2 : g1, g2 ∈ J } there is a δ > 0 and finite set A such that

sup
α/∈A

Pα(w(g(Xα), [a, a + δ)) + w”(g(Xα), δ) + w(g(Xα), [b− δ, b)) ≥ 2η) (32)

≤ sup
α/∈A

Pα(w(ζα, [a, a + δ)) + w”(ζα, δ) + w(ζα, [b− δ, b)) ≥ η) ≥ η|Xt ∈ K ∀a ≤ t ≤ b)

Pα(Xα
t ∈ K ∀a ≤ t ≤ b)

+ sup
α/∈A

Pα( sup
a≤s<t≤b

t−s≤δ

3|g(Xα
t )− g(Xα

s )− ζα
t + ζα

s | ≥ η|Xα
t ∈ K ∀a ≤ t ≤ b)Pα(Xα

t ∈ K ∀a ≤ t ≤ b)

+ sup
α

Pα(Xα
t /∈ K for some t ∈ [a, b]).

Therefore, it follows from (25,26) that there is a δ > 0 such that

sup
αA

Pα(w′(g(Xα), δ) ≥ 2η) ≤ 3η. (33)

It follows that {g ◦Xα} is tight by Ulam’s theorem and CCC.
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There is another modulus-of-continuity-type condition in use.

MMCC: Cadlag family {Xα} satisfies the mild modulus of continuity condition if there is

H ⊂ M(E) whose uniform-convergence-on-compacts closure contains C(E) and {h ◦Xα}

satisfies AMCC for all h ∈ H.

MMCC with H ⊂ C(E) was used in Kurtz [18, p. 628–629] to show DE[0,∞) tightness in

locally compact Polish spaces. For general Polish spaces, it appears in [10, Theorem 3.9.1].

The following result extends Theorem 3.1 i) of [14] while simplifying its proof.

Theorem 20 Suppose E is CR with metrizable compacts, and {Xα} have DE[a, b]-valued

paths. Then, the following are equivalent:

i) {Xα} satisfies CCC and MCE;

ii) {Xα} satisfies CCC and WMCC;

iii) {Xα} satisfies CCC and MMCC;

iv) {Xα} satisfies CCC and CMCE; and

v) Each Xα is indistinguishable from a DE[a, b]-valued random variable X̂α such that
{
X̂α

}
is tight on DE[a, b].

Proof. MMCC implies Proposition 14 b) hence MCE under CCC by letting J = C(E) and

ζα
t = h(Xα

t ). Moreover, v) implies CCC and that
{
h ◦ X̂α

}
is tight so it satisfies AMCC for

any h ∈ C(E) and MMCC is true. Therefore, we only need link the other four conditions.

We first show iv) implies v). By CCC there exists compact Kn such that infα Pα(Xα
t ∈

Kn, a ≤ t ≤ b) ≥ 1 − 1
n

for each n and by Remark 7 as well as Lemma 5 there is a

countable collection J ⊂ C(E) that s.s.p. on each Kn and {gk ◦ Xα} is tight for each k,

where {gk}∞k=1 $ J ∪ {f + g : f, g ∈ J }. Next, we define Fn $ DKn [a, b] (which is closed in

DE[a, b]), S0 =
∞⋃

n=1
Fn, the continuous maps G $ (g1, g2, ...) : E → R∞ (so G̃ : DE[a, b] →
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DR∞ [a, b]) and Ĝ : DE[a, b] → (DR[a, b])∞ by Ĝ(x) = (g̃(x))g∈{gk}∞k=1
. Then, Ĝ(Xα) is tight

in (DR[a, b])∞ since each g̃(Xα) is tight and by Theorem 22 (with S = Kn) of the Appendix

Ĝ : Fn → Ĝ(Fn) is a homeomorphism for each n = 1, 2, .... Now, Ĝ(Fn) = {y ∈ (DR[a, b])∞

: (y1(t), y2(t), ...) ∈ G(Kn) ∀t ∈ [a, b]} because Ĝ(Fn) = Ĝ ◦ (G̃)−1(DG(Kn)[a, b]). Moreover,

if {ym} ⊂ Ĝ(Fn) satisfies ym → y in (DR[a, b])∞, then (ym
1 (t), ym

2 (t), ...) → (y1(t), y2(t), ...)

for almost all t ∈ [a, b] (excluding the jump times in (a, b) for some yi). (See e.g. [2] p. 121

where it is established that xn
t → xt if xn → x in DR[a, b] and x is continuous at t.) Hence,

Ĝ(Fn) is closed by the closedness of G(Kn) and right continuity. To create X̂α, we note

(Xα)−1(S0) =
∞⋃

n=1

⋂
t∈Q∩[a,b]

(Xα
t )−1(Kn) (34)

is measurable by the closedness of each Kn. Fixing ∆ ∈ ⋃∞n=1 Kn and defining

Ŷ α $


Ĝ(Xα) on (Xα)−1(S0)

Ĝ(∆) otherwise

and X̂α $ Ĝ−1(Ŷ α),

one finds that
{
X̂α = Xα

}
= {Xα ∈ S0} is measurable, P

(
X̂α = Xα

)
= 1 and

{
X̂α ∈ O

}
=


⋃∞

n=1

{
Ŷ α ∈ Ĝ(O ∩ Fn)

}
∆ /∈ O

⋃∞
n=1

{
Ŷ α ∈ Ĝ(O ∩ Fn)

}
∪ (Xα)−1(Sc

0) ∆ ∈ O

(35)

for any open O ⊂ DE[a, b] and uses the proof of Proposition 3.7.1 of [10] to establish that

Ŷ α is a (DR[a, b])∞-valued random variable taking values in Ĝ(S0). Then, observing that

Ĝ(O ∩ Fn) is relatively open in (closed set) Ĝ(Fn) by the homeomorphism, we find that

X̂α is a DE[a, b]-valued random variable. v) follows from Lemma 24 of the Appendix with

Pα = P (X̂α)−1, S = DE[a, b], Ŝ = (DR[a, b])∞ and G = Ĝ.
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If v) holds, then CCC holds by Proposition 11 and {g̃(X̂α)} is tight for all g ∈ C(E) so

MCC holds by Theorem 10 and Proposition 14 b). Hence i) holds.

Next, i) implies ii) as explained just after the definition of WMCC.

Finally, Proposition 19 establishes that WMCC implies CMCE. 2

The extensions over [14] Theorem 3.1 i) are: the {Xα} are not assumed forthright to be

DE[a, b]-valued random variables, our WMCC condition is weaker than the condition used

there and we give alternatives to WMCC. The Ĝ(DK [a, b]) closedness is key to the proofs of

our result and Theorem 3.1 i) in [14].

We now extend Theorem 3.7.2 of [10] to the general-metric-space, compact-time-interval

case, generalize its MCC, and strengthen its relative compactness conclusion to tightness.

Corollary 21 Suppose (E, d) is a metric space and {Xα} are processes with DE[a, b]-valued

paths. Then, each Xα is indistinguishable from a DE[a, b]-valued random variable X̂α such

that
{
X̂α

}
is tight on DE[a, b] if any of (MCC, PCP with d complete), (MMCC, CCC) or

(WMCC, CCC) hold and only if (CCC) holds and for every η > 0 there is δ > 0 so that

sup
α

Pα(w′
d(X

α, δ) ≥ η) ≤ η.

Proof. This follows from Theorems 17 and 20 as well as Proposition 11 and Theorem 10. 2

Since PCP is less stringent than PTC this corollary generalizes Skorohod’s tightness theorem.

7 Appendix - Auxiliary Results

This appendix houses results that were referenced earlier. We first list a basic result which

follows from the proof of Theorem 1.7 of [14]. This result and its corollary were used in
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Proposition 14 and Theorem 20.

Theorem 22 Let S be CR, H1 ⊂ C(S) s.s.p. and H = H1 ∪ {f + g : f, g ∈ H1}. Then,

Ĝ : DS[a, b] → (DR[a, b])H is an imbedding, where Ĝ(x) = (g̃(x))g∈H for x ∈ DS[a, b].

This theorem has a particular corollary used in Proposition 14:

Corollary 23 Suppose S is CR, G ⊂ C(S) is countable and s.s.p.,H $ G ∪{g + h : g, h ∈ G},

{Y α} is a family of processes such that {h̃(Y α)} is tight on DR[a, b] for all h ∈ H. Then,

{H̃(Y α)} is tight on DRH [a, b], where H $ (h)h∈H : S → RH.

Proof. {(h̃(Y α))h∈H} is tight in (DR[a, b])H by Proposition 3.2.4 of [10]. Therefore, {H̃(Y α)}

tight in DRH [a, b] by Theorem 22 (with H1 $ G) and Lemma 24 (with Fn = S = DRH [a, b]

and (G(y))i (t) = yi(t) so G(Fn) = (DR[a, b])H = Ŝ).

The next lemma is used to prove of Proposition 14, Theorems 15, 20 and Corollary 23.

Lemma 24 Suppose S, Ŝ are topological spaces, {Pα}, {Qα} are collections of probability

measures on S, Ŝ, and for any n ∈ N there is an Fn ∈ B(S) satisfying infαPα(Fn) > 1− 1
n
.

If S0 $
⋃
n

Fn, G : S0 → G(S0) ⊂ Ŝ is a measurable mapping such that G : Fn → G(Fn) is

a homeomorphism for each n, G(Fn) is closed in Ŝ for each n, and Qα(A) $ PαG−1(A) for

all A ∈ B(Ŝ) and each α, then {Pα} is tight if {Qα} is. In particular, given ε > 0, there

exists a compact Kε ⊂ S0 such that infα Pα(Kε) ≥ 1− ε.

Proof. Fixing ε > 0 and taking compact K ⊂ Ŝ such that infαQα(K) ≥ 1− ε
2

as well as Fn

such that infαPα(Fn) > 1− ε
2
, we have that

Pα(G−1(K ∩G(Fn))) = Qα(K ∩G(Fn)) ≥ 1−Qα(Kc)− Pα(F c
n) > 1− ε

for all α. Moreover, using the G−1-continuity and the closedness of G(Fn), one has that

G−1(K ∩G(Fn)) is compact. 2
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