
Reducing Power Flow Simulation Cost Using
Universal Function Approximators

by

Michael Bardwell

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science
in

Software Engineering and Intelligent Systems

Department of Electrical and Computer Engineering

University of Alberta

c⃝ Michael Bardwell, 2019

Abstract

By integrating universal function approximators into existing simulation

software, it is possible to reduce the cost of repeating simulations and

thereby increase research output. In this thesis, support vector regression,

random forest and artificial neural networks are deployed as universal

function approximators. It is shown in an applied non-linear power flow

problem that each model can achieve a maximum absolute error below 2%,

and a root mean squared error below 0.2%. For selecting the number of

hidden layer neurons in a single hidden layer artificial neural network, a

method known as extrema equivalence is trialled. The extrema equivalence

algorithm successfully identifies the approximately most sparse hidden

layer size that produces near-perfect R2 scores for smooth, continuous

functions. Lastly, a generic file management software is proposed that

can be implemented into simulation programs to save users time when

re-simulating the same models with different inputs.

ii

Acknowledgements

I would like to thank my supervisor, Dr. Petr Musilek, for tremendous
support throughout graduate school and for his dedicated work editing my
conference papers and thesis, as well as for always pushing me to find op-
portunities. I would also like to thank Peter Atrazhev, Daniel May, Steven
Zhang, Jason Wong, Carolina Quiroz Juarez and Tomas Barton for directly
influencing my publications, whether through co-authoring or substantive
discussions.

My parents, Sama Banaei and Ivy Naling deserve acknowledgement for
putting up with my peculiarities throughout this journey. It is an honour
knowing my success is their success.

Thank you to the University of Alberta for the quality working environ-
ment and engaged professors.

The support provided by Future Energy Systems under the Canada
First Research Excellence Fund (CFREF) and the Natural Science and Engi-
neering Research Council (NSERC) of Canada is gratefully acknowledged.

iii

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Capturing a Simulation Model 2
1.3 Motivation . 4

2 Related Work 10
2.1 Function Approximation . 10
2.2 Optimizing Simulations . 12

3 Background 15
3.1 Function Approximation . 15

3.1.1 Artificial Neural Networks 15
3.1.2 Support Vector Machines 20
3.1.3 Random Forest . 21
3.1.4 Model Generalisation Error 22

3.2 Data Analysis and Manipulation 25
3.2.1 Correlation . 25
3.2.2 Dimensionality Reduction 26
3.2.3 Scoring . 26

3.3 Power System Load Flow Simulations 28

4 Experimental Results and Analysis 30
4.1 Extrema Equivalence . 30

4.1.1 Problem and Objective 30

iv

4.1.2 Introduction . 31
4.1.3 Results . 31
4.1.4 Discussion . 36

4.2 Function Approximation: Non-Linear Power Flow 40
4.2.1 Problem and Objective 40
4.2.2 Introduction . 40
4.2.3 Results . 43
4.2.4 Discussion . 52

5 Simulation Approximation Methodology 54
5.1 Data Selection and Preparation 54
5.2 File Manager . 55

6 Conclusion 61

v

List of Figures

1.1 Ball on top of a square plate 2
1.2 Finite element analysis results 3
1.3 Simulation of stresses on a beam 5
1.4 A traditional electric grid . 6
1.5 A modern electric grid . 6
1.6 Non-linear power flow (PF) analysis: sample size 8
1.7 PF analysis: number of houses 8

3.1 Artificial neural networks (ANNs) 15
3.2 Limited capacity ANNs . 20
3.3 Gauss-Seidel and Newton-Raphson root-finding methods . 28

4.1 Detected extrema in two dimensional (2D) data set 32
4.2 Detected extrema in three dimensional (3D) data set 33
4.3 Approximating a sinusoidal function 33
4.4 Detected extrema in logarithmic function data set 34
4.5 Approximating a log function 35
4.6 Approximating a reciprocal function 36
4.7 Extrema algorithm runtime 37
4.8 Detected extrema in uniform and stochastic data sets 38
4.9 Thirteen node test feeder . 41
4.10 Load distribution at node 632 42
4.11 Voltage distribution at node 632 42
4.12 Load versus voltage at highly correlated node 44

vi

5.1 Simulation program flow chart 57

vii

List of Tables

3.1 k-fold cross validation . 24

4.1 Extrema detection algorithm metrics 32
4.2 Pearson’s r correlation between loads 43
4.3 Pearson’s r correlation between load and voltage magnitude 45
4.4 Kendall’s τ correlation between load and voltage magnitude 45
4.5 Permutation importance results 46
4.6 Random forest (RF) training parameters 46
4.7 Baseline RF results varying N 47
4.8 RF results with reduced features 47
4.9 RF results with slack bus (node 650) removed 48
4.10 Support vector regression (SVR) training parameters 48
4.11 SVR results averaged over all labels 49
4.12 SVR results with slack bus (node 650) removed 49
4.13 SVR grid search with N = 1e4 50
4.14 ANN training parameters . 50
4.15 ANN results with slack bus (node 650) removed 51
4.16 ANN grid search . 51

5.1 Runtime comparison of simulation software 60

viii

Abbreviations

2D two dimensional.

3D three dimensional.

Adam adaptive moment estimation.

ANN artificial neural network.

CPU central processing units.

DER distributed energy resource.

EE extrema equivalence.

FEA finite element analysis.

FM file manager.

GPU graphics processing units.

IEEE institute of electrical and electronics engineers.

ILR identity linear regression.

LBFGS limited-memory Broyden-Fletcher-Goldfarb-Shanno.

LIDAR light detection and ranging.

ix

MAXAE max absolute error.

MEANAE mean absolute error.

ODE ordinary differential equation.

PCA principle component anaylsis.

PF non-linear power flow.

PIMP permutation importance.

PyPSA python for power system analysis.

ReLU rectified linear unit.

RF random forest.

RMSE root mean squared error.

RW random walk metropolis algorithm.

SGD stochastic gradient descent.

SVM support vector machine.

SVR support vector regression.

x

Symbols

E set of extrema.

M cardinality of E.

N number of samples.

w adjustable multipliers connecting neurons to each other.

ϕ transfer function applied to a neuron’s input.

σ basis function.

θ bias term.

xi

Chapter 1

Introduction

1.1 Problem Statement

Modern simulation techniques are slow and repetitive. High resolution,
complex simulations can take on the order of hours or days to come to
completion. When these simulations are completed, it is possible the re-
searcher or practitioner has to run another, restarting the whole process.
The institutional solution to this is often to purchase faster, more expensive
computers to speed up the process.

Since the outputs of a simulation are the desired results, researchers
often neglect to capture the simulation model itself. The model, a mathe-
matical mapping of input to output, is viewed as a black box, often deleted
post-simulation only for the same model to be rerun later on a different in-
put sequence. What if it was possible to mimic the relations within this box
using machine learning techniques?

Machine learning and simulations are both extensively studied fields
on their own, but in research areas like non-linear power flow (PF), little
work has been done on meshing the two together. This thesis focuses on
accurately capturing the PF simulation model, which can be applied in the
electric power industry. Many institutions use simulations to make crucial
decisions affecting the power vital to daily life.

It will be shown that the additional expense to the simulation is rela-

1

tively small. Subsequent simulation runs on the same topology are then
very inexpensive, as instead of running iteration-based solvers, the user
can rely on the instant output of a function map. This succeeds in allevi-
ating slow, repetitive tasks that plague industry and academic institutions
alike.

1.2 Capturing a Simulation Model

To briefly illustrate function mapping, imagine someone is trying to model
the stress of a plate with a ball on top (Fig. 1.1).

xo

1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

x1

1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

f(
x 0

,x
1
;D

)
0.48

0.49

0.50

0.51

0.52

Steel Plate With Ball on Top

Figure 1.1: Ball on top of a square plate

The researcher places the plate and the ball in the finite element analysis
(FEA) simulator; this is what we will refer to as the model. They could also
input model parameters such as plate metal, the ball weight, etc... xo and
x1 are the independent variables, also known as inputs or features. Stress,

2

S, is the dependent parameter, also known as an output, label or target.
The researcher then runs the simulation. The FEA simulator iteratively

determines the value of stress at each point x0, x1 and returns an output S,
at that index. The resulting stress profile is shown in Fig. 1.2a.

(a) Plot of FEA simulation output

-1
.0

-0
.8

-0
.6

-0
.4

-0
.2 0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x0

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0
x 1

Heatmap of Simulation Output

(b) Heatmap of FEA simulation output

Figure 1.2: Finite element analysis results for stress created by ball on plate.
The anomaly in the top left-hand corner of (b) is used to demonstrate how
asymmetric simulation outputs can increase the complexity when selecting
basis functions to approximate a simulation

The researcher notices an asymmetry in the box in Fig 1.2a and wants a
closer look. They will have to create a new set of inputs, more concentrated
on the area with the asymmetry and rerun the whole simulation over again.
This time-costly problem is persistent in simulation-based research. Often,
the solution is to buy faster and more expensive computers.

An alternative solution is to approximate the underlying mapping of
the model itself (Fig. 1.2a) using a continuous function. If the approxima-
tion is good enough, it can be used in place of the simulation.

Looking at Fig. 1.2a, it is possible to deduce that

S = −cos(0.5πx0) · cos(0.5πx1) · e−(x2
0+x2

1); x0, x1 ∈ [−1, 1] (1.1)

perfectly fits the data collected by the researcher. The researcher can input
their data into this continuous function instead of the simulation and get

3

the same results faster. This is, however, a very inefficient process. The
researcher may spend hours guessing if the data is noisy or includes subtle
asymmetries as we see in the top left corner of the FEA heatmap (Fig. 1.2b).

One automated approach to approximating functions for data sets is to
assume the basis functions, σ, in a large series

S(x) =
i

∑ ai · σ(bix + θi), (1.2)

and fit the coefficients, ai, bi and offset θi, using a solver given an input set
x and output set S.

The researcher could use any combination of polynomial/periodic/-
exponential basis functions, for example, to develop a useful approxima-
tion. However, there are basis functions and fitting methods that have been
proven to universally approximate most bounded, smooth, multivariate
functions1,

Rninput → Rnoutput : ninput, noutput ∈ Z. (1.3)

The important takeaways from this example are:

1. A model is the static mapping defined in the simulator by model pa-
rameters. It is the Rninput → Rnoutput correspondence between the fea-
ture and output vectors

2. If a researcher can approximate the underlying model with a contin-
uous function, they will not need to rerun expensive simulations

1.3 Motivation

Why would a researcher want to approximate the output of a simulation?
Is it not more convenient and accurate to use the simulation itself to pro-
duce the results? It is definitely the most accurate, but the expensive nature

1Multivariate describes models with multiple dependent variables, whereas multivari-
able describes models with multiple independent variables [1]

4

of simulations in both time and computational requirements can be miti-
gated by creating a function map. Imagine running stress simulations like
in Fig. 1.3. Each simulation requires hours of calculations, so it would
greatly benefit the user if they had unlimited access to an inexpensive ap-
proximation of their model.

Figure 1.3: Simulation of stresses on a beam. Image use complies with
Adobe Stock standard license

Now we turn our attention towards the feature application in this the-
sis, modern power systems.

The electric power system, or grid, is vital to modern civilization. Start-
ing at the turn of the 19th century, companies like the Edison Illuminat-
ing Company and Westinghouse Company were providing power to thou-
sands of local homes2. This has exploded into the modern grid today, an-
nually delivering over 25551.3 TWh of electrical energy globally3.

2https://power2switch.com/blog/how-electricity-grew-up-a-brief-history-of-the-
electrical-grid/

3https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-
economics/statistical-review/bp-stats-review-2018-full-report.pdf

5

Historically, grids were designed to be vertically integrated, with mar-
ket signals controlling generation facilities, which feed transmission utili-
ties, which feed distribution companies, who supply power directly to res-
idential, commercial and industrial consumers alike.

Generation Transmission Distribution

Consumers

Figure 1.4: A traditional "vertical" electric grid. Consumers only receive
power generated in non-local facilities

Today, with the advent of cheap and efficient distributed energy resources
(DERs), grids are moving away from centralised, scheduled generation,
towards distributed, non-scheduled generation4.

Customers

Generation Transmission Distribution

Residential

Commercial

Industrial

Rooftop PV

?Generator

BESS

Figure 1.5: A modern "distributed" electric grid. It is different from Fig. 1.4
in that power is produced both locally and non-locally

When densely coupled with sensors and communication systems, these
distributed networks become smart grids. The societal importance of smart
grids is reflected in modern energy policy. There are four major objectives
that drive global energy policy [2]:

4From Bloomberg New Energy Outlook 2019 preview accessed August, 2019 from
https://about.bnef.com/new-energy-outlook/

6

1. Abundant energy supply chain

2. Infrastructure to convert the supply and transmit the energy

3. Consumer cost

4. Environmental conservation

Smart grids put us in a better position to optimize for these objectives with
features like:

1. Distributed energy resources (photovoltaic arrays, wind turbines,
batteries)

2. Urbanised infrastructure, reducing need for long transmission lines

3. Self-producing consumers and prosumers

4. Increased grid efficiency, acute demand-side management and the
adoption of electric vehicles

While smart grids come with a host of benefits, they are more complex from
a power and market perspective than the traditional grid shown in Fig. 1.4.
For starters, a more intensive communication network is required to link
devices kilometres apart and communication latency must be factored into
grid decisions. Typically, these designs are verified through co-simulations
[3] - [5].

The following figures were generated to show how long simulations
can get as the system becomes more complex.

7

0 200 400 600 800 1000
Sample Size (No. Timestamps)

5

10

15

20

25

30

35

Ru
nt

im
e

(s
)

Power Flow Simulation Runtime vs Sample Size For a
3 Node Network Connected in a Ring Topology

Real
Regression

Figure 1.6: PF simulation time versus network loading sample size. Run on
Intel Core i5-4210U CPU @ 1.70GHz and 16 GB of RAM

Fig. 1.6 shows that simulation runtime increases at approximately 0.034 s
per timestamp. So, a simulation that wants one second worth of data at a
sampling rate of 1 µs will take around 9 1

2 hours.

25 50 75 100 125 150 175 200
Number of Houses

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Ru
nt

im
e

(s
)

Power Flow Simulation Runtime vs Number of Houses
for a Radial Network

Real
Regression

Figure 1.7: PF simulation time versus number of houses. Run on Intel Core
i5-4210U CPU @ 1.70GHz and 16 GB of RAM

Fig. 1.7 shows an increase of around 0.016 s per house. A simulation of 10
million private households would take around 40 hours.

8

In summary, the motivation of this thesis is to show that it is possible to
approximate power flow simulations. This can be used to develop a tool to
reduce the need for repeated definition and execution of full power system
models, replacing them with equivalent models obtained using machine
learning. This tool could prove essential in institutions looking to improve
the availability of simulation results (e.g. to allow for fast deduction of
alternative system configurations in response to faults).

Chapter 2 surveys old and new function approximation techniques and
other simulation improvement approaches.

Chapter 3 outlines the essential background knowledge in machine
learning required for the project. The problem is broken down into
manageable pieces and the main application, PF analysis, is discussed.

Chapter 4 presents the results for key metrics defining each checkpoint
outlined in Chapter 3. The effectiveness of each approach is discussed.

Chapter 5 proposes a general method to implementing automated ap-
proximations into simulation software.

In Chapter 6, the major claims made in this thesis are re-affirmed and
future work is outlined.

This thesis will show that it is possible to approximate power flow sim-
ulations, such that the approximation captures the trend of the input/out-
put correspondence. It will be demonstrated that an analytical method to
select neural network hidden layer density produces excellent results for
multi-dimensional, smooth, sinewaves. Finally, the computational cost of
inserting function approximation and metadata storage into pre-existing
power flow simulation software is shown.

9

Chapter 2

Related Work

2.1 Function Approximation

Approximation is differentiated into two categories: regression and inter-
polation. Interpolation, by definition, fills the space between samples ac-
cording to predefined rules whereas regression minimises a cost function.
The latter permits generalisation of a data set, which is useful for applica-
tions with limited or noisy training data.

Whether a model should be approximated using regression or interpo-
lation depends on how precisely that data used to train or fit the model
represents the whole data set. Typically, the root-finding iterative solvers
underlying simulations try to minimize error below a specified threshold,
within a predetermined number of iterations. Despite ensuring the best
accuracy, coupling a long simulation with expensive interpolation tech-
niques can become too costly for many users. For time-sensitive use cases,
tolerance can be set higher at the cost of precision. For example, in the
case of ordinary differential equation (ODE) solvers such as Runge-Kutta
techniques [6] used in MATLAB Simulink1, low tolerance simulations
can take days. For faster results, users can increase the tolerance. In this
scenario, interpolation would then overfit the less precise data, whereas
regression can be used to develop a generalised model.

1https://www.mathworks.com/help/simulink/ug/types-of-solvers.html

10

This thesis is an extension of the work presented in [7]. A core find-
ing in the work is that identity linear regression (ILR) outperforms an ar-
tificial neural network (ANN) when approximating the voltage profiles of
a 3-node network computed using the python for power system analysis
(PyPSA) PF solver. In future work, the paper suggests that extrema be con-
sidered for analytically selecting the size of the hidden layer. The work also
suggests testing deep rectified linear unit (ReLU) networks. Other popular
regression methods will also be considered.

Hornik et al. propose that for every Borel measurable, Rn → Rm func-
tion f , there exists a multilayer feedforward network capable of approx-
imating f to any degree of accuracy [8]. Park and Sandberg prove Radial
Basis Functions are also universal approximators [9]. This is applied, for ex-
ample, by Zainuddin and Pauline on periodic, exponential and piecewise
continuous functions [10]. One issue not discussed in the seminal group of
papers was the functional approach to selecting hidden layer density for
a single hidden layer ANN. This is tackled by Zhang et al. in [11], whose
theory is explained in chapter 3 and experimentally tested in chapter 4.

ANNs are commonly used for classification in academia like [12], where
ANNs were trained to estimate the likelihood of deadly debris flow given
a satellite image of the terrain. May and El-Shahat used ANN-based re-
gression to model battery degradation [13]. Estimating surface roughness
given machining parameters is also a popular application [14] - [16].

Support vector machines (SVMs) have become popular because they
work well on small data sets. Support vector regression (SVR) is used to
model a three-dimension microwave packing structure [17] using the radial
basis function kernel,

K(x, xi) = exp(−γ · ∥x − xi∥2). (2.1)

The same group trained an SVR to produce accurate asphalt concrete per-
mittivity [18]. The simulation software in both papers was Ansoft HFSS.
Similarly in [19], SVR is deployed to model hysteresis curves of an Alu-

11

minum Nickel Cobalt Alloy. SVR was also used to generate fine-resolution
maps from coarse fractional images by fusing data sets such as: panchro-
matic images, digital elevation models, light detection and ranging (LI-
DAR) data multiple subpixel shifted images and prior information of build-
ings [20].

Random forest (RF), a extension of the decision tree concept, has also
been used for regression [21]. RF regression was used in [22] to build a
ultra-responsive space vector pulse width modulation controller. RF bias is
reduced using a boosting technique in [23], leading to improvements over
the original RF method of up to 82%.

Each regression method requires a solver to minimise its cost function.
For ANNs, one of the more popular variants is stochastic gradient descent
(SGD) [24]; an optimization technique applied to problems such as speech
recognition [25]. Kingma and Ba develop an adaptation of AdaGrad and
RMSProp [26] called adaptive moment estimation (Adam). Adam works
with dynamic objectives, sparse gradients and naturally adjusts its step size
using first and second moments of the gradient2.

Much of the recent applications of regression have been SVR and RF
based; likely because they have less parameters to tune and do not get stuck
in local minima. ANNs are studied in this thesis because their potential
capacity makes them a useful tool for function approximation. There is also
a substantial amount of ANN usage in classification problems, leading to
large training algorithm improvements that may be harnessed in the future.

2.2 Optimizing Simulations

There are many ways to enhance simulations. Some approaches aim to
reduce the amount of data handled by the simulator. Some parallelise the
work to analyse multiple features in one shot. Others optimise hardware
management to efficiently schedule task execution.

Reducing the amount of data handled by a simulation is largely divided

2https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-
learning/

12

into two streams: modifying model component behaviour and changing
component form. To identify areas for simplification, however, requires
embedded tracing methods. A manufacturing example in [28] orders ma-
chines by utilisation and converts the least used to constants. This method
is slow, however, because a human has to identify the heuristics for "utili-
sation".

Watson and Arrillaga discuss mixed time-frame simulation [29]. In
order to capture the long-time, constant nature of a generator (typically
solved using 200 ms steps) in an electromagnetic simulation (typically
solved using 50 µs steps) efficiently, the NETOMAC simulator integrates
instantaneous and stability modes at runtime. They also describe the very
simple, sparse-matrix technique, in which only non-zero elements are
stored and accessed, therefore reducing cost.

Larger projects, such as in aerospace engineering, require simulations
of virtual, multi-disciplinary prototypes. These heterogeneous models are
an amalgamation of simulations from independent domains, with each do-
main necessitating massive resources for timely completion. The authors
in [30] employ a distributed interactive environment on the cloud to con-
currently run independent models, reducing the simulation time of 100
cases from 6958 seconds to 172 seconds. This work could be extended by
considering the use of CloudSim to estimate scheduling and migration per-
formance for heterogeneous datacenters [31].

Some algorithms take a hardware approach to simulation cost reduc-
tion. Integrating critical channel traversing on the TasKit kernel demon-
strates two-to-three time speed improvements when compared to a splay
tree central-event-list based sequential kernel [32]. This is achieved through
automated load-balancing, regimenting cache-behaviour and multi-level
scheduling.

There are many ways to optimise simulation software to reduce cost.
Often researchers use GitHub issues to request new features, like permit-
ting asymmetric impedances or adding non-linear direct-current power

13

flow equations to PyPSA3. Other methods require a data-reduction or hard-
ware approach as described above. The remaining chapters prove the vi-
ability of a regression-based method, which when mixed with other ideas
can lead to a significant reduction in total simulation time.

3https://github.com/PyPSA/PyPSA/issues

14

Chapter 3

Background

3.1 Function Approximation

3.1.1 Artificial Neural Networks

A fully-connected, feedforward ANN, shown in Fig. 3.1, is a category of
model under the machine learning umbrella. It is defined as a specific
combination of input, hidden and output layers. The foundation of ANNs,
perceptrons, were initially proposed by Rosenblatt in the 1958 [33]. ANNs
come in a variety of widths and depths.

I
N
P
U
T

S
E
T

I
N
P
U
T

S
E
T

O
U
T
P
U
T

S
E
T

I
N
P
U
T

S
E
T

O
U
T
P
U
T

S
E
T

O
U
T
P
U
T

S
E
T

(a) (b) (c)

Figure 3.1: Feedforward, fully-connected, ANN topology examples. Each
circle is a computational unit or neuron. (a) has two hidden layers and five
outputs. (b) has one hidden layer and one output (c) has one hidden layer
and four outputs

The notation ab
c denotes b and c as orthogonal iterators, with b iterating

15

over columns and c over rows, for example. Indexing starts at one unless
otherwise noted. Any approximation with be denoted with a hat (e.g. ŷ).

For a fully connected network, in each layer, lk, lies a set of neurons, n,
otherwise known as computational units, or nodes. To calculate the output
for each node, i, one must know the weight vector wk

i , bias bk
i and input xk

i

to the node1. To calculate the output of neuron j in lk first find hk
j

hk
j = wk

j · xk
j + bk

j =
nk−1

∑
i=1

wk
i,j · xk

i,j + bk
j . (3.1)

An activation function, ϕ, is then applied as follows to produce an output

ok
j = ϕ(hk

j). (3.2)

Note the output vector, ok−1 is used as the input vector xk between
{l2, ..., lm}. To calculate the ANN output, ŷ, the outputs for each layer are
computed up to the last layer, lm. ŷ is then typically computed using a
linear activation function ϕ(h) = h,

ŷm
i = {hm

i , hm
i+1, ..., hm

n }. (3.3)

Calculating the output ŷ is known as a forward pass. For a set of ordered
pairs D = {(x1, y1), ..., (xN , yN)}, X = {x1, ..., xN}, each sample, N, can be
calculated in parallel and summed at the end. This is why training is typ-
ically done using hardware tailored for parallelisation (ex: graphics pro-
cessing units (GPU), multicore central processing units (CPU), computer
clusters) [34] [35]. The same is true for the backward pass.

For hidden layers, the activation function, ϕ, is typically a monotoni-
cally increasing, bounded differentiable function. In this thesis, a sigmoid
function [36], sometimes referred to as a squashing function [37] or logistic
function2 is defined as

1https://brilliant.org/wiki/feedforward-neural-networks/#formal-definition
2https://en.wikipedia.org/wiki/Logistic_function

16

ϕ =
1

1 + e−x . (3.4)

The sigmoid function belongs to a set of sigmoidal functions [37], [38] that
are very common in ANNs. A function is sigmoidal if for ϕ : R → R

lim
x→−∞

ϕ(x) = 0 and lim
x→∞

ϕ(x) = 1; (3.5)

it is bounded and monotonically increasing.
A univariate ANN, where ŷ ∈ R, is seen in Fig. 3.1 (b). These are

the most simple functions to prove the methodology with and will be ap-
proached first. After, multivariate functions, like in Fig. 3.1 (c); ŷ ∈ R4, will
be approximated.

Training

Training is the process of adjusting the network weights and biases such
that the model can better approximate D. Training is typically performed
using backpropagation which requires an error function, E . This thesis uses
the popular mean squared error function,

E(X) =
1
N

N

∑
i=1

(ŷi − yi)
2. (3.6)

To determine which direction the weights need to be adjusted, the gradient
of E with respect to w is required. If we denote ak

i = ∑
nk−1
j=0 wk

i,j · ok−1
j , where

wk
i,0 = bk

i and ok−1
0 = 1 then

∂E
∂wk

i,j
=

∂E
∂ak

j

∂ak
j

∂wk
i,j

= δk
j

∂ak
j

∂wk
i,j

. (3.7)

Where δk
j is often referred to as the error signal. Using this formula, it is

possible to derive the gradient for any layer in the network. For example,
the equation for the final layer, m, is

∂E
∂wm

i,1
= δm

1 om−1
i = (ŷ − y)ϕ′(am

1)o
m−1
i , (3.8)

17

and for the hidden layers, l1 − lm−1 is

∂E
∂wm

i,1
= δk

j ok−1
i = ϕ′(ak

j)o
k−1
i

nk+1

∑
z=1

wk+1
j,z δk+1

z . (3.9)

Because of the sum rule in differentiation, it is also possible to paral-
lelise backpropagation. This makes deep ANNs more viable, since the
training cost can be divided across multiple computational units, for ex-
ample.

Before training starts, ANN weights must be properly initialised. It is
often done according to insight from He et al. [39] and Glorot and Bengio
[40]. The magnitude of the weights should be inversely proportional to
the number of input connections (or fan-in) to reduce overshooting. The
input weights for each node are initialized randomly according to a zero-
mean Gaussian distribution with a standard deviation of 2√

nk−1
. Each node

is given a bias for affine transformation, initialised to zero.
ANNs are notoriously hard to parameterise, specifically their width

and depth. A novel technique to select the number of neurons for the hid-
den layer in a single hidden layer ANN is introduced below.

Extrema Equivalence

Zhang et al. [11] argue that for any continuous function, f (x), defined on
a compact set C ∈ Rn, a single hidden-layer ANN with sigmoidal activa-
tion, can create an extrema equivalent function, g(x). Extrema equivalence
(EE) is denoted as f (x) ▷◁ g(x) and means both f (x) and g(x) contain the
same set of extrema, E= {(x1, f (x1), . . . , (xM, f (xM))}. For multivariable
functions the residual of | f (x) − g(x)| is bound such that

| f (x)− (
M

∑
i=1

ciσ̃(wix + θi) + c0| < ϵ ∀x ∈ EL ∪ [a, b]. (3.10)

M is defined as the number of extrema in f , g. ϵ is a constant. ci is the
output weighting for each neuron and c0 is a bias term. wi represents the
fan-in weight vector. θi is the bias term for each neuron.

18

Note that for univariable functions, Zhang et al. prove M + 1 hid-
den layer neurons are required to create an extrema equivalent function.
It is also important to emphasise that the work only claims to approximate
the points in E within the given tolerance. Thus, the algorithm is a starting
point for evaluating which hidden layer size will produce the best approx-
imation, with minimal hidden layer neurons, of the total data set.

To calculate M we must first define extremum. A point, xi is considered
an extremum if the following inequalities are satisfied:

f (xi) > max{ f (xk1), f (xk2), ..., f (xki)}+ η (3.11)

f (xi) < min{ f (xk1), f (xk2), ..., f (xski)} − η (3.12)

where {xk1 , xk2 , ..., xki} forms a polytope surrounding xi. This algorithm
was implemented in Python and the results are demonstrated in chapter 4.

To demonstrate the capacities of different hidden layer sizes, the results
of single hidden layer ANNs with nhidden layers = 1, 2, 3, 4 were plotted in
Fig. 3.2. The ANN in the top left figure was trained on a single neuron,
meaning that the network was a simple sigmoid function. The curve of
the sigmoid activation function is obvious; the negative bias has vertically
translated the function such that the upper bound of the sigmoid function,
yx→inf ≈ 0.5. At n = 2, we can see two sigmoidal shapes converging. At
n = 3, 4, the sigmoidal shape disappears and the network begins to look
like the original model.

19

Figure 3.2: Overlay of actual and approximated values of limited capac-
ity ANNs. Keeping everything else the same, the number of hidden layer
neurons was 1: top left, 2: top right, 3: bottom left, 4: bottom right. Each
network was fed 400 samples

3.1.2 Support Vector Machines

SVR, an application of SVMs was introduced in 1995 by Cortes and Vapnik
[44]. SVR training operates on the structural risk minimum. The idea is to
map vectors into high-dimensional space Z using non-linear functions and
then find the optimal separating hyperplane with maximum margins. For
example, if

wo · xi + b = 0 (3.13)

is the optimal hyperplane between two classes, the hyperplane (wo, b0)

20

maximises the distance ρ between the support vectors in each class,

ρ(w0, b0) =
2√

w0 · w0
. (3.14)

More generically3, for a linear function f = ⟨w, x⟩+ b,

minimise
1
2
∥w∥2 + C

N

∑
i=1

(ξi + ξ∗i)

subject to ∀ i :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
yi − ⟨w, xi⟩ − b ≤ ϵ + ξi

⟨w, xi⟩+ b − yi ≤ ϵ + ξ∗i

ξi, ξ∗i ≥ 0

|ξ|ϵ =

⎧⎨⎩0 i f |ξ| < ϵ

|ξ| − ϵ otherwise,

(3.15)

where f (x) has at most ϵ error from the sample y, C is the penalty parame-
ter that offsets the number of deviations larger than ϵ with keeping w small
(aka f flat). ξi, ξ∗i are slack variables, analogous to "soft margins". The cost
function in (3.15) is a convex optimisation problem, which, unlike many
ANN scenarios allows for solvers to always find the global solution [45].

3.1.3 Random Forest

Random Forest (RF) is an ensemble method introduced by Breiman in 2001
[21]. The algorithm is described as "a collection of tree-structured classi-
fiers h(x, Θk) : k = 1, ... where Θk are independent, identically distributed
random vectors and each tree casts a unit vote for the most popular class at
input x".

Assuming the training set is randomly drawn from the data set
D = {X, Y}, the MSE is given as

3https://www.mathworks.com/help/stats/understanding-support-vector-machine-
regression.html

21

EX,Y(Y − h(x)2), (3.16)

where h(x) is any numerical predictor. To form the predictor, the algorithm
takes an average over k of the trees h(x, Θk).

It is noted by the RF creator that for regression, RF correlation increases
slowly with number of features. Therefore, a large number of features are
required to reduce test-set error. Li et al. [46] propose a multinomial RF
framework to fix the gap in Breiman RF which sees results not optimally
converging as sample size increases.

3.1.4 Model Generalisation Error

After a regressor is trained, its accuracy and precision are determined by
various heuristics. If the model fails to capture the overall trend of the
data, it is deemed underfitted. One common error that leads to underfitting
is poor parameter selection; it is hard, for example, to capture a line with a
parabolic model.

For ANNs, one approach to ensuring that the model will not underfit
is to increase the capacity. This is often achieved by making the network
deeper (more layers) and wider (more neurons per layer). The issue with
capacity is that biasing decreases and variance grows as model capacity
increases [48], which leads to overfitting. The failures of adding capacity
to solve underfitting are explored in [49]. The authors in [50] find that for
larger networks both bias and variance decrease with network width. To
solve overfitting, a regularisation term is typically added.

SVRs also rely on adding regularisation terms to their cost function to
prevent overfitting. For RFs, overfitting is mitigated by averaging multiple
decision tree models. It is more likely that SVM and RF suffer from model
selection overfitting caused by errors in the model selection tools like k-fold
cross validation [51].

22

Model generalisation boils down to two metrics

1. Bias: the accuracy of the model

2. Variance: the precision of the model.

Getting a well generalised model is heavily dependent on the way data is
used during the model construction process. Sample selection and section-
ing is the first step in any training process.

Selecting Number of Samples

Before training a model, users must have a basic understanding of how
many samples, N, are available to them, and how many they need. Raudys
and Jain discussion on pattern recognition systems for two class problems
concludes that N should scale with the number of features and the com-
plexity of the decision rule [54]. For simulation approximation in this the-
sis, N is selected via an experimental approach, where N is increased by or-
der of magnitude until the score saturates or the memory requirements are
too large for the computer. In MATLAB’s function approximation class4,
the discretised points of which there are N, are referred to as breakpoints.
The class provides the user with the option to explicitly specify breakpoint
locations, or to use even spacing.

Training, Validation and Test Sets

After selecting N, the next step to training a model is to split the data into
training, validation and test sets. First, a test set should be split off to avoid
data snooping bias. Guyon recommends the size of the test set be inversely
proportional to the probability of error, p [55]. For example, Guyon looked
at the error rate for digit classifiers and found the best models had a rate
under 1%. After making a few assumptions, the authors suggested the
following model

4https://www.mathworks.com/help/fixedpoint/examples/fixed-point-function-
approximation.html

23

n ≃ 100
p

. (3.17)

Where n is the number of samples. For the digit classifier, the test set should
have 10 000 samples.

The proper percent of the remaining data that should be allocated to
training versus validation was studied in a sister paper by Guyon [56]. The
author recommends scaling the validation-to-training set ratio according to√︄

ln N
hmax

, (3.18)

where N is the size of the family of recognisers (e.g. how many ANNs are
being tested) and hmax is the largest complexity within those families (e.g.
number of parameters in an ANN). Often, an 80/20-80/20 rule is recom-
mended, where 20% of the full data set is test data and 20%/80% of the
remainder is allocated to validation/training data respectively.

k-Fold Cross Validation

It is possible for two models to both achieve high scores when trained on
one data set, so which is better? One method to determine the best model is
k-fold cross validation [57]. A shuffled set is divided into k folds (or groups)
and each combination of k-1 folds is used as the training set.

Fold 1 Fold 2 Fold 3
Round 1 Validation Set Training Set 1 Training Set 2
Round 2 Training Set 1 Validation Set Training Set 2
Round 3 Training Set 1 Training Set 2 Validation Set

Table 3.1: k-fold cross validation

Each set is scored against the outlier fold. Assuming the data set is
large enough that each fold would be a representative sample of the data
set, the model with the most consistent scores (lowest standard deviation)
is likely the best. The value of k is usually chosen to be 5 or 10, which has

24

been found through experimentation to yield reasonable variance/bias5. A
counter argument to this is presented in [51], where it is shown that vari-
ance between k-fold estimations is commonly underestimated in model se-
lection criterion leading to poor selection.

3.2 Data Analysis and Manipulation

3.2.1 Correlation

Before training a model, it is important to analyse the available data sets for
relationships. First, the relation between features should be calculated us-
ing bivariate correlation techniques. Two popular techniques include Pear-
son’s r,

rxy =
∑n

i=1(xi − x̄)(yi − ȳ)√︁
∑n

i=1(xi − x̄)2
√︁

∑n
i=1(yi − ȳ)2

, (3.19)

and Kendall’s τ,

τ =
nc − nd

(
N

2
)

, (3.20)

where nc is the number of concordant pairs and nd, the number of discor-
dant pairs. To calculate nc, go element-by-element two vectors at a time; if
sign(Ai − Ai−1) = sign(Bi − Bi−1) add one to nc, if not add one to nd. For
example, if A = {1, 2, 3}, B = {1, 3, 2}, nc = 1, nd = 1 so τ = 0.

r provides a measure for how linearly related two variables are, assum-
ing that both are normally distributed and homoscedastic6 (e.g. each sam-
ple is the same distance from a fitted regression line). τ is a measure of
the ordinal association between variables. In other words, τ represents the
probability that the data is in the same order versus not in the same or-
der [58].

The next step in analysis is to calculate the relationship between fea-

5https://machinelearningmastery.com/k-fold-cross-validation/
6https://www.statisticssolutions.com/correlation-pearson-kendall-spearman/

25

tures and labels (or targets). The aforementioned correlation techniques
can be used. Another method to determine the importance of features to
a model is known as permutation importance (PIMP) [59]. To implement
PIMP, train a model normally and calculate a score. Then, shuffle the data
randomly for one feature at a time and re-calculate the score. The features,
that when shuffled, degrade the score the most are evidently more impor-
tant to the prediction power of the model.

Out of all available (reasonable) features, often some are not included
in training because they lack correlation with the target set. When decid-
ing to cut features, it is important to keep in mind that statistical models
will substitute the impact of missing variables with those included. This is
known as omitted variable bias [60].

3.2.2 Dimensionality Reduction

Once it is determined that certain features are unwanted, whether because
they are too related to other features or unrelated to the labels, they can ei-
ther be removed completely from the data or merged using principle com-
ponent anaylsis (PCA) [61]. With less features, models should train faster,
but in some cases removing features reduces model performance.

3.2.3 Scoring

Scoring has been used thus far as a generic term synonymous with model
performance. Scores are how users evaluate the precision and accuracy of
a machine learning model. Scoring can be split into runtime and post-run
categories.

Measurements must be made during training to gain insight into the
process. For example, sklearn’s MLP Regressor class uses squared loss to
make runtime decisions. Squared loss functions are especially sensitive to
increases in the variance of the frequency distribution of outliers, which is
useful for approximating simulation (solver-based) data which would only
contain outliers in rare non-convergent cases.

26

Post-run scores are often referred to as skill scores, with the coefficient
of determination, R2, being the most common. R2 depicts how much the
model explains the variability of the original data.

R2 = 1 − ∑N−1
i=0 (fi − f̂i)

2

∑N−1
i=0 (fi − f̄)2

, (3.21)

where f̄ is the mean of f (the function to be approximated) and f̂ is the
approximation. A score of 1 means the model explains the variability well.
In code, this can be connected to a Python Assert statement, for example,
to act as a litmus test. Some literature has recommended the adjusted skill
score which offsets the phenomenon where skill score naturally tends to
increase with the number of features [62].

For error analysis, the root mean squared error (RMSE) is used because
it is in the same units as the outputs but still penalises outliers like MSE,

RMSE =

√︄
∑N

i=1(f̂i − fi)2

N
. (3.22)

Other error measures used in this work include mean absolute error
(MEANAE)

MEANAE =
∑N

i=1(f̂i − fi)

N
, (3.23)

and max absolute error (MAXAE)

MAXAE = max{(f̂1 − f1), . . . , (f̂i − fi)} ∀i ∈ N. (3.24)

Scores become important when mapping correspondences over three
dimensions. It becomes hard to visualise the results past three dimensions
and therefore scores are relied upon to tell the user if the model is good or
not. In chapter 4, heuristics for each score are determined by reasonable
assertions based on the desired application; arguments are presented for
quantitative values which researchers in the field would consider usable.

27

3.3 Power System Load Flow Simulations

PF simulations are used for a variety of reasons. High sampling rate simu-
lations are used to capture electromagnetic events like line shorting for n-1
tests or circuit breaker closures to determine power-on transients. Slower
events like generator spin ups and power changes in large-inertia systems
like wind-turbines are captured using less frequently sampled simulations.
A commonly calculated property is bus voltage, which since the voltage at
each bus is relative to other buses, is an iteratively derived solution.

When the simulator starts, it initialises the loss function using the
model, and ports load information from a data set into the calculator. The
simulator then iteratively searches for the optimal solution. For power
system load flow (PSLF) programs, these solvers use techniques like
Newton-Raphson or Gauss-Seidel as seen in Fig. 3.3 to solve the non-linear
equation,

Vi =
1

Yii
·
(︄

S∗
i

V∗
i
−

n

∑
k=1,k ̸=i

Yik · Vk

)︄
. (3.25)

Where Y ∈ Cn is the networks bus admittance matrix, S ∈ Cn is the appar-
ent power matrix and V ∈ Rn is the bus voltage matrix. Individual buses
are represented by iterators i, k.

(x2) (x1) (x0)

f(x0)

f(x1)

5x1 - x2 + 2x3 = 12

3x1 + 8x2 - 2x3 = -25

x1 + x2 + 4x3 = 6

x1

x2

x3

1 2

0

0

0

x1 = 12/5 = 2.4

x2 = -25-3(2.4)+2(0)/8
x2 = -4.025

x3 = 6 - 2.4 - (-4.025)/4
x3 = 1.90625

3

x1 = ..

x2 = ..

x3 = ..

(A) Newton-Raphson (B) Gauss-Seidel

PyPSA
Power Flow
Simulation

Vi = 1
Yii
· S∗i

V∗i
−

n

∑
k=1,k!= i

Yik ·Vk

Figure 3.3: An example of (A) Gauss-Seidel and (B) Newton-Raphson iter-
ative root-finding methods

The iterative process can be avoided for repeated models by, for exam-
ple, capturing the mapping between the load and voltage information in

28

Eq. (3.25). Once captured, these approximations would have to be stored
using a file manager for re-importing in the future.

In this chapter, function approximation models, the extrema equiv-
alence algorithm for ANNs, data analysis and the math behind power
flow simulations were introduced. In the next chapter, EE is tested
for its approximation capability and runtime. PF simulations are then
approximated. Lastly, a framework for automating function mapping in
simulation software is presented.

29

Chapter 4

Experimental Results and
Analysis

4.1 Extrema Equivalence

4.1.1 Problem and Objective

Currently, ANN training primarily relies on search techniques for select-
ing optimal network parameters [42]. Search techniques are slow, because
many models have to be trained, an often expensive process.

Zhang et al’s extrema equivalence (EE) algorithm provides a reasonable
analytical starting point for optimising the hidden layer size for a single-
hidden layer feedforward ANN (simply referred to as ANN in the rest of
§4.1). The cost and accuracy of the technique is evaluated for potential use
in future experiments. Specifically, the following should occur in less time
than any reasonable hidden layer size search:

1. the EE algorithm must find all members of the extrema set E. The
cardinality of this set is M

2. using the M/M + 1 rule as the starting point for a hidden layer size
search, the "guided search" must find the optimal1 number of neurons

1The metric for optimal is application dependent (e.g. meeting an RMSE or R2 threshold)

30

4.1.2 Introduction

Uniform distributions can be visualised in 2D matrix form.

⎡⎢⎢⎢⎢⎣
x11 x12 x13 . . . x1N

x21 x22 x23 . . . x2N
...

...
...

. . .
...

xN1 xN2 xN3 . . . xNN

⎤⎥⎥⎥⎥⎦
Each point that is surrounded by four neighbours in a square is considered
a potential extrema candidate per Eq. 3.11/Eq. 3.12. The EE algorithm
must compare N points with 2n neighbours. The time-cost of the extrema
algorithm increases at the rate

O(N · 2n). (4.1)

N can be replaced with (Ni)
n in a uniform distribution, where Ni represents

the number of samples in any dimension. The total complexity for the test
set is then shown as

O((Ni)
n · 2n). (4.2)

The tests are run in the following sequence,

1. Verify that the extrema finder produces the right set E

2. Approximate a series of functions using M/M + 1 as a guide

3. Gauge how EE runtime scales with n, N

4.1.3 Results

The following univariate decaying sinewave function was used to test the
algorithm,

f (xi, xi+1, ..., xn) =
n

∏
i=0

sin(aπxi)e−xi , (4.3)

31

where a is a user-defined constant. The resulting number of extrema, M,
for decaying sinewaves of various dimensionality is tabulated.

n Create Data Set (s) M Find Extrema (s)
1 0.0003 3 0.0002
2 0.0166 9 0.0089
3 0.9642 27 0.4872
4 52.3575 81 25.2188

Table 4.1: Number of detected extrema, M, for n-dimensional decaying
sinewaves defined in Eq. 4.3; a = 1. "Create Data Set" is the amount of
time required to create the input and output data sets. "Find Extrema" is
the algorithm run time

These results are visualised for n = 1, 2 in Fig. 4.1 and 4.2, respectively. As
expected, both figures show extrema at the peaks of the data set, and the
number of extrema scales exponentially at the rate

Mn = (Mn=1)
n. (4.4)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

f(x
;D

)

Detected Extremum in Dataset D
f(x;D)
extremum

Figure 4.1: Detected extrema in two dimensional (2D) data set using EE
algorithm

32

xo

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

x1

1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

f(x
0,
x 1

;D
)

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Detected Extremum in Dataset D

(a)

-1
.0

-0
.8

-0
.6

-0
.4

-0
.2 0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x0

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

x 1

Detected Extremum

(b)

Figure 4.2: Detected extrema in three dimensional (3D) data set using EE
algorithm. (b) is a heatmap of (a)

Next, data sets drawn from various functions were approximated. nl1 ,
nl2 and nl3 refer to the size of the input, hidden and output layers respec-
tively. Function mapping techniques were applied to nl1 = 1, 2 data sets.
This makes it easy to visualise the results.

1 2 3 4 5 6 7 8
nhiddenlayer

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
2

1 2 3 4 5 6 7 8

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Tr
ai

ni
ng

 T
im

e
(s

)

Approximation Performance Versus nhiddenlayer Using LBFGS Solver

R2

Runtime

(a)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

f

Approximation of Dataset D
f(x;D)
f(x;D)

(b)

Figure 4.3: (a) Approximation performance in the form of R2 and training
time against nl1 . (b) Overlay of the real set D and the approximated values.
In D, there are three extrema (M = 3). The approximated function is Eq.
4.3 with a = 1.5 and N = 40

First, various hidden layer sizes are trialed to approximate the function
in Fig. 4.3b. The approximation is expected to be almost perfect around
nl2 = M. Indeed, the score saturates around nl2 = 3, which has a value of

33

0.98 as seen in Fig. 4.3a.
Next, a logarithmic function was tested.

f (xi, xi+1, ..., xn) =
n

∏
i=0

log10(|a · xi|). (4.5)

A single extrema was detected near the origin.

xo

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

x1

1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

f(x
0,
x 1

;D
)

2

0

2

4

6

8

10

12

Detected Extremum in Dataset D

Figure 4.4: Detected extrema in logarithmic function (Eq. 4.5; a=1) data set.
In D, there is one extrema (M = 1). The approximating function is Eq. 4.5
with a=1

The function is discontinuous at the origin and there is an obvious fold
into the middle of each edge. The approximation captures the folds well
per Fig. 4.5b, however, it struggles to approximate such a sharp peak. Us-
ing 15x more hidden layer neurons than what Zhang’s theory proposes, the
network is able to reach a near-perfect score.

34

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
nhiddenlayer

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

10

20

30

40

50

60

Tr
ai

ni
ng

 T
im

e
(s

)

Approximation Performance Versus nhiddenlayer Using LBFGS Solver

R2

Runtime

(a)

xo

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

x1

1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

f(x
0,
x 1

;D
)

2

0

2

4

6

8

10

Approximation of Dataset D

(b)

Figure 4.5: (a) Approximation performance in the form of R2 and training
time against nl1 . (b) Overlay of the real set D (circles) and the approximated
values (crosses). In D, there is one extrema (M = 1). The approximated
function is Eq. 4.5 with a = 1

Zhang’s theory does not claim to approximate the entire data set per-
fectly, just the extrema. In turn, it makes sense that models made up of
functions not-geometrically alike the sigmoidal activation neurons require
more basis functions than Zhang’s theory proposes.

Lastly, a much sharper peak was designed using a product of fractions.

f (xi, xi+1, ..., xn) =
n

∏
i=0

a
xi

. (4.6)

The data is so discontinuous in Fig. 4.6b that the network was not able to
train beyond R2 > 0.1 with a hidden layer size within 500 % of M.

35

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

40

20

0

20

40

60

80

100

f(x
;D

)

Detected Extremum in Dataset D
f(x;D)
extremum

(a)

xo

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

x1

1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

f(x
0,
x 1

;D
)

10000

0

10000

20000

30000

40000

Detected Extremum in Dataset D

(b)

Figure 4.6: (a) Extrema detection of 2D reciprocal function. In D, there are
two extrema (M = 2). (b) Extrema detection of 3D reciprocal function. In
D, there are two extrema (M = 2). The approximated function is Eq. 4.6
with a = 1

4.1.4 Discussion

Based on the results from the logarithmic and reciprocal functions, if re-
searchers are not receiving good results with hidden layer sizes close to the
number of extrema in their data set, there may be a discontinuity that has
to be accounted for by increasing the hidden layer size further.

The existance of discontinuities makes it difficult to confirm whether
randomly searching using a heuristic like binary search or order of mag-
nitude is slower than doing a linear search around the hidden layer size
proposed by the EE theory. With this in mind, the extrema detection al-
gorithm runtime becomes critical to whether or not Zhang’s work will be
used in further applications.

The rate of increase for the extrema detection algorithm is visualised in
Fig. 4.7.

36

1 2 3 4
n

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ti
m

e
(s

)
Runtime of Extremum Algorithm Versus Number

 of Dimensions
Runtime
Fit a 2bn: a=3e-06 b=5.57

(a)

10 20 30 40 50 60 70 80 90
N

0

5

10

15

20

25

30

Ti
m

e
(s

)

Runtime of Extremum Algorithm Versus Number
 of Samples

Runtime
Fit 4 + 16N+ 12N2

(b)

Figure 4.7: Plot of extrema algorithm runtime against (a) 20 samples of an n-
dimensional decaying sinewave function (b) N samples of an 3D decaying
sinewave function

The algorithm scales exponentially with n and polynomially with N. The
most effective way to keep costs low is to keep n small.

If n has already been reduced as much as possible to shrink algorithm
cost, the next best option is to reduce N. One method to keep N small is to
use a stochastic approach (Fig. 4.8b) instead of using a uniform distribution
(Fig. 4.8a). While a uniform distribution forces N = (Ni)

n, a stochastic dis-
tribution allocates the exact number of samples requested by the user. The
random nature of where the mapping is sampled provides an alternative
method to locate extrema.

37

xo

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

x1

1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

f(x
0,
x 1

;D
)

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Detected Extremum in Dataset D

(a)

xo

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

x1

1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

f(x
0,
x 1

;D
)

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Detected Extremum in Dataset D

(b)

Figure 4.8: (a) Detected extrema in a uniformly distributed data set. (b)
Detected extrema in a stochastically distributed data set

The cost of the stochastic approach can be shown as

O(2n · K), (4.7)

where the K-multiplier accounts for the cost of the proximity and direction
sub-algorithm. In its exhaustive form, the algorithm must take N passes
and compare each point to its N − 1 neighbours using the L2 norm that
performs n-time operations. In summary, K = nN(N − 1) which makes
the total cost

O(nN(N − 1) · 2n). (4.8)

When comparing 4.1 and 4.8, the stochastic algorithm is less expensive if
the following inequality is satisfied

nNstochastic(Nstochastic − 1) < Nuni f orm distribution. (4.9)

The uniform (Eq. 4.1) and stochastic (Eq. 4.8) time complexities demon-
strate that at best, for exhaustive algorithms, time scales in a polynomial
manner with respect to N. In contrast, backpropagation scales linearly with
respect to N. While there are many other factors involved in searches, such
as number of models trained and number of training epochs per model, it

38

is reasonable to assume that as N grows, the time advantage of starting a
search at an analytically selected number of hidden layer neurons disap-
pears. For function approximation, N is expected to grow with the need
for better approximations.

There are some technical challenges that increase the cost of the stochas-
tic algorithm. To find the neighbours of a reference point, every other point
P ∈ D; P ̸= re f erence must be evaluated for proximity and categorized by
cell; this is the exhausted algorithm version. An example of cells are the
four quadrants in a 2D cartesian plane. For reference points in Rn, there
are 2n possible cells for P to be placed in. Pseudo code for the algorithm is
shown below.

def which_cell(point, reference):

cell_string = ""

for dim in range(len(reference)):

if point[dim] > reference[dim]:

cell_string += '0'

elif point[dim] < reference[dim]:

cell_string += '1'

return int(cell_string, 2)

Organizing P by distance/direction ensures that the algorithm finds the 2n

points that form a four sided polygon around the reference point.
Dependent sampling methods like the random walk metropolis al-

gorithm (RW) [63] could be a sensible next step following uniform and
stochastic sampling. RW would create a subset of samples with an incli-
nation for samples from areas in the data with high variance. Borrowing
Zhang’s assumption, that extrema contain important information, this
would ensure the model is trained on a more representative sample. The
obvious drawback is the increased cost related to the RW algorithm.

Judging by the fitted curve in Fig 4.7a, applying the EE algorithm in a
nine-feature, thirteen-label data set would take months, much longer than
typical random searches. Therefore, the algorithm was not used in the fol-

39

lowing PF approximation experiments.

4.2 Function Approximation: Non-Linear Power Flow

4.2.1 Problem and Objective

PF simulations can be expensive. As shown back in Fig. 1.7, a simulation
of 10 million nodes could take almost 2 days. In practice, omissions in the
input profile, whether by mistake or intentionally, can lead to very costly
re-simulations.

The objective of §4.2 is to demonstrate the PF approximating process.
Ideally the model should meet IEEE simulation standards (taken from the
test feeder website2).

4-Bus Test Feeder Cases: ... Since the problems are so small,
very close agreement with the test feeder results is expected.
A good match would have an error less than 0.05%

Assuming voltage V and predicted voltage V̂ are in per-unit, the following
inequality should hold.

MAXAE(V(x), V̂(x))x∈Rn < 0.0005. (4.10)

4.2.2 Introduction

The example topology used for PF approximation comes from the insti-
tute of electrical and electronics engineers (IEEE). Since these circuits were
intended for evaluating new power-flow methods on multi-phase distribu-
tion system models [64], which PyPSA is not capable of, a "pseudo-IEEE"
circuit was built. Some modifications include:

2http://sites.ieee.org/pes-testfeeders/resources/

40

1. Unbalanced three-phase loading was summed into single phases

2. Neutral line parameters were substituted for phase line parameters

3. Latitude and Longitude were approximated

4. Switches were approximated as short lines

5. No voltage regulator was used

While the PF results do not line up one-to-one, the overall trends in the
results are consistent between original/modified networks.

First, the following topology is set up in PyPSA. The network diagram
contains all of the node numbers referenced in this section. The network
topology is determined by node-line/transformer-node connections as
well as generation placement.

646 645 632 633 634

611 684 671 692 675

652 680

650

Figure 4.9: IEEE 13 Node Test Feeder. Copy of original work in [66]

The second step is setting up the inputs (snapshots of node loading)
to the simulation. The load profiles, all similar to Fig. 4.10, generated by
sampling N points from a uniform distribution bounded by [0, 0.5], were
imported into the simulation.

41

0.0 0.1 0.2 0.3 0.4 0.5
Load (pu)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Fr

eq
ue

nc
y

(x
10

3)

Histogram of Load 632

Figure 4.10: Load distribution at node 632 for PF simulation

Next, for the third step, the power flow simulation is run and the output
is collected. The outputs from this simulation include snapshots of line
loading, real/reactive voltage magnitude and the voltage phase angles at
each bus. Each voltage profile looked similar to Fig 4.11.

0.90 0.92 0.94 0.96 0.98
Load (pu)

0

5

10

15

20

25

30

35

Fr
eq

ue
nc

y
(x

10
2)

Histogram of Voltage at Node 632

Figure 4.11: Voltage distribution at node 632 for PF simulation

42

4.2.3 Results

Data Analysis

First a correlation matrix is used to determine feature-to-feature relation-
ships.

load-632 load-634 load-645 load-646 load-652 load-671 load-675 load-692 load-611
load-632 1.00 0.00 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00
load-634 1.00 0.00 0.00 0.00 0.00 -0.01 0.00 0.00
load-645 1.00 0.00 -0.01 0.00 -0.01 0.00 0.00
load-646 1.00 0.01 0.00 0.00 0.00 0.00
load-652 1.00 0.00 0.00 0.00 0.00
load-671 1.00 -0.01 0.00 0.00
load-675 1.00 0.00 0.00
load-692 1.00 0.00
load-611 1.00

Table 4.2: Pearson’s r correlation between loads in 13-node network

Looking at the non-diagonal elements in Table 4.2, all of the features are
weakly related and should be kept so long as they relate to a target. Since
the feature sets were created by randomly sampling uniform distributions,
this was expected. Next a plot of the voltage/load data is presented.

43

0.0 0.1 0.2 0.3 0.4 0.5
load-652

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00
vm

ag
-6

52
Voltage Versus Load At Node 652

Figure 4.12: Plotting load versus voltage data at the most correlated node
in the 13-node network

Pearson’s r is calculated on a few assumptions: homoscedasticity and
normally distributed variables. It is obvious from Fig. 4.12 that neither con-
dition is met; the spread is very heteroscedastic and neither variable is nor-
mally distributed. Despite the aforementioned drawbacks, there is clearly
a linear trend and therefore r may provide useful insight. To verify the re-
sults, Kendall’s τ, a non-parametric alternative that is only conditional on
the data being ordinal, is used. If both r and τ show the same trends, more
confidence can be placed in any derived inferences.

44

load-611 load-632 load-634 load-645 load-646 load-652 load-671 load-675 load-692 row average
vmag-611 -0.60 -0.16 -0.16 -0.16 -0.17 -0.46 -0.32 -0.31 -0.32 -0.29
vmag-632 -0.34 -0.32 -0.32 -0.32 -0.33 -0.34 -0.33 -0.32 -0.33 -0.33
vmag-633 -0.31 -0.29 -0.51 -0.29 -0.30 -0.31 -0.30 -0.29 -0.30 -0.32
vmag-634 -0.31 -0.29 -0.51 -0.29 -0.30 -0.31 -0.30 -0.29 -0.30 -0.32
vmag-645 -0.24 -0.22 -0.22 -0.55 -0.56 -0.24 -0.23 -0.22 -0.23 -0.30
vmag-646 -0.21 -0.20 -0.20 -0.49 -0.67 -0.21 -0.20 -0.20 -0.21 -0.29
vmag-652 -0.41 -0.14 -0.14 -0.14 -0.15 -0.70 -0.28 -0.28 -0.28 -0.28
vmag-671 -0.41 -0.20 -0.20 -0.20 -0.21 -0.41 -0.40 -0.40 -0.40 -0.31
vmag-675 -0.39 -0.19 -0.19 -0.19 -0.20 -0.39 -0.38 -0.48 -0.39 -0.31
vmag-680 -0.41 -0.20 -0.20 -0.20 -0.21 -0.41 -0.40 -0.40 -0.40 -0.31
vmag-684 -0.50 -0.17 -0.17 -0.17 -0.18 -0.50 -0.34 -0.34 -0.35 -0.30
vmag-692 -0.41 -0.20 -0.20 -0.20 -0.21 -0.41 -0.40 -0.40 -0.40 -0.31
column average -0.38 -0.21 -0.25 -0.26 -0.29 -0.39 -0.32 -0.33 -0.33

Table 4.3: Pearson’s r correlation between load and voltage magnitude

load-611 load-632 load-634 load-645 load-646 load-652 load-671 load-675 load-692 row average
vmag-611 -0.42 -0.10 -0.10 -0.10 -0.11 -0.31 -0.21 -0.20 -0.21 -0.20
vmag-632 -0.23 -0.21 -0.21 -0.21 -0.22 -0.22 -0.22 -0.21 -0.22 -0.22
vmag-633 -0.20 -0.19 -0.35 -0.19 -0.20 -0.20 -0.20 -0.19 -0.20 -0.21
vmag-634 -0.20 -0.19 -0.35 -0.19 -0.20 -0.20 -0.20 -0.19 -0.20 -0.21
vmag-645 -0.15 -0.14 -0.14 -0.37 -0.38 -0.15 -0.15 -0.14 -0.15 -0.20
vmag-646 -0.14 -0.13 -0.13 -0.33 -0.48 -0.14 -0.13 -0.13 -0.13 -0.19
vmag-652 -0.27 -0.09 -0.09 -0.09 -0.10 -0.50 -0.18 -0.18 -0.18 -0.19
vmag-671 -0.27 -0.13 -0.13 -0.13 -0.14 -0.27 -0.27 -0.26 -0.27 -0.21
vmag-675 -0.26 -0.12 -0.12 -0.12 -0.13 -0.26 -0.25 -0.32 -0.26 -0.21
vmag-680 -0.27 -0.13 -0.13 -0.13 -0.14 -0.27 -0.27 -0.26 -0.27 -0.21
vmag-684 -0.34 -0.11 -0.11 -0.11 -0.12 -0.34 -0.23 -0.22 -0.23 -0.20
vmag-692 -0.27 -0.13 -0.13 -0.13 -0.14 -0.27 -0.27 -0.26 -0.27 -0.21
column average -0.25 -0.14 -0.17 -0.17 -0.20 -0.26 -0.21 -0.22 -0.22 -0.20

Table 4.4: Kendall’s τ correlation between load and voltage magnitude

Both correlation methods produce similar trends. Node 650, the slack
bus, has a constant voltage of 1.0 and therefore r and τ cannot be cal-
culated (since constants have no standard deviation/all ranks are tied
respectively). The load/voltage profiles at each node are most strongly
self-correlated. On average, it appears that a few loads, specifically node
652 and 611 are more correlated than the others. This is confirmed using
permutation importance.

45

Weight Feature
0.5001 ± 0.0455 load-652
0.3612 ± 0.0254 load-611
0.1867 ± 0.0200 load-671
0.1355 ± 0.0120 load-646
0.1347 ± 0.0103 load-675
0.1344 ± 0.0107 load-692
0.1052 ± 0.0035 load-645
0.0465 ± 0.0021 load-631
0.0307 ± 0.0023 load-632

Table 4.5: Results from permutation importance algorithm run on RF model
using data from modified IEEE 13 network

Training

All models were trained using sklearn Python modules [43], and k-fold cross
validation was used to ensure trained models were data-agnostic. In §4.2.3
tables, MEANAE is shorthanded as mae.

First, an RF model was trained using the following hyperparameters.

Parameter Default Value
Number of Estimators 100

Criterion mse
Max Depth None

Table 4.6: RF training parameters

The model’s R2 results scale with N, and at 100000 samples the RF out-
performs the linear regression model. There is a problem with the MAXAE
result; it is two orders of magnitude too high.

46

N_samples 100 1000 10000 100000
rf_fit_time 0.1381 0.7730 9.7295 131.2990

rf_score_time 0.0272 0.0463 0.4541 6.0899
rf_test_r2 0.4721 0.7134 0.8193 0.9233

rf_test_rmse 0.0061 0.0045 0.0033 0.0020
rf_test_mae 0.0047 0.0034 0.0025 0.0013

rf_test_maxae 0.0169 0.0177 0.0170 0.0210
linear_fit_time 0.0058 0.0019 0.0089 0.1492

linear_score_time 0.0012 0.0023 0.0112 0.1944
linear_test_r2 0.8608 0.9032 0.9053 0.9058

linear_test_rmse 0.0015 0.0014 0.0014 0.0014
linear_test_mae 0.0011 0.0011 0.0011 0.0011

linear_test_maxae 0.0049 0.0051 0.0065 0.0075

Table 4.7: Baseline RF results varying N

Both the correlation and permutation importance matrices suggest most
nodes contain valuable information for the model. Using PCA, the nine-
feature data set was reduced to 6, 7 and 8 features. While the time to train
the model reduced by 27%, 15% and 8%, the score also decreased 12%, 9%
and 4% respectively. Depending on the application, this trade off may be
acceptable for the user.

n_features 6 7 8
rf_fit_time 96.8466 111.7810 121.0650

rf_score_time 5.2078 5.4140 5.4762
rf_test_r2 0.8141 0.8366 0.8807

rf_test_rmse 0.0041 0.0037 0.0028
rf_test_mae 0.0026 0.0024 0.0018

rf_test_maxae 0.0395 0.0311 0.0207
linear_fit_time 0.1376 0.1096 0.1093

linear_score_time 0.2050 0.1995 0.2112
linear_test_r2 0.9058 0.9058 0.9058

linear_test_rmse 0.0014 0.0014 0.0014
linear_test_mae 0.0011 0.0011 0.0011

linear_test_maxae 0.0084 0.0083 0.0080

Table 4.8: RF results with PCA reduced features. N = 1e5

47

The slack bus was then removed and the R2 results increased by
roughly 4% over the best current score (in Table 4.7). Even with the 27%
improvement in MAXAE, it is still two orders of magnitude above the
desired benchmark.

n_samples 100 1000 10000 100000
rf_fit_time 0.1230 0.7485 9.2767 123.6820

rf_score_time 0.0278 0.0557 0.4026 5.0141
rf_test_r2 0.5929 0.7792 0.8917 0.9619

rf_test_rmse 0.0066 0.0048 0.0034 0.0020
rf_test_mae 0.0054 0.0037 0.0026 0.0014

rf_test_maxae 0.0169 0.0184 0.0161 0.0152
linear_fit_time 0.0026 0.0014 0.0083 0.1391

linear_score_time 0.0013 0.0022 0.0132 0.1969
linear_test_r2 0.9806 0.9806 0.9818 0.9813

linear_test_rmse 0.0015 0.0014 0.0014 0.0015
linear_test_mae 0.0012 0.0011 0.0011 0.0011

linear_test_maxae 0.0046 0.0059 0.0074 0.0078

Table 4.9: RF results with slack bus (node 650) removed from label set

A random search was run to find the optimal number of estimators and
max depth. The search was conclusive in that the more estimators and
more depth (test included up to 100 in each) the better the result.

All of the linear fit results necessary for comparison have been shown.
Next, an SVR model was trained using the following hyperparameters.

Parameter Default Value
Kernel rbf

γ 1
n f eatures·σ(input)

C 1.0
ϵ 0.0002

Table 4.10: SVR training parameters. σ: variance

The baseline results show SVR requires much less data than RF to achieve
better scores. At N = 1000, the SVR model trains 83% faster than its RF

48

counterpart in Table 4.7 and receives a 67% better MAXAE score.

N samples 10 100 1000
svr_fit_time 0.0006 0.001 0.13

svr_score_time 0.001 0.002 0.03
svr_test_r2 -65 0.74 0.88

svr_test_rmse 0.011 0.0036 0.0020
svr_test_mae 0.010 0.0027 0.0016

svr_test_maxae 0.014 0.0093 0.0069

Table 4.11: SVR results averaged over all labels

When the slack bus is removed, R2 results improve by 9%. The MAXAE
is 51% better than the equivalent RF score and 1% over the best linear re-
gression score. However, losing the slack bus resulted in a 7% drop from
the best SVR MAXAE.

N samples 10 100 1000
svr_fit_time 0.0006 0.001 0.14

svr_score_time 0.002 0.002 0.03
svr_test_r2 -70 0.82 0.96

svr_test_rmse 0.012 0.0038 0.0022
svr_test_mae 0.011 0.0029 0.0017

svr_test_maxae 0.015 0.0100 0.0074

Table 4.12: SVR results with slack bus (node 650) removed from label set

A randomised search was run with N = 10000 and the mode(R2) =

0.98. Unfortunately the MAXAE was not captured in this experiment, how-
ever the RMSE values are 35% better than the previous experiment. A sim-
ple ratio estimates the mode(MAXAE) values in Table 4.13 at 0.0047.

49

fit (s) kernel gamma epsilon C r2 rmse std
42 linear scale 0.0009 4.7 0.98 0.00142 0.00001
30 linear auto 0.0011 4.1 0.98 0.00142 0.00001
3 rbf auto 0.0006 0.5 0.98 0.00143 0.00000
2 linear scale 0.0016 0.3 0.98 0.00143 0.00001
6 rbf auto 0.0012 3.2 0.98 0.00143 0.00001
3 linear auto 0.0015 0.4 0.98 0.00143 0.00001
3 rbf auto 0.0003 0.2 0.98 0.00143 0.00000

4812 poly scale 0.0017 4.4 0.94 0.00276 0.00009
3717 poly scale 0.0009 1.9 0.93 0.00277 0.00009

5 sigmoid auto 0.0009 4.7 -1.05E+01 0.03685 0.00121

Table 4.13: SVR grid search with N = 1e4. Table has been trimmed to
remove similar parameters for readability

Lastly, ANNs were trained with the following hyperparameters.

Hyperparameter Default Value
Solver lbfgs

L2 Penalty 1e-6
Batch Size min(200, N)

Initial Learning Rate 1e-6
Maximum Iterations 3000

Tolerance 1e-9
Number of Iterations With No Change (Saturation) 100

Table 4.14: ANN training parameters

Limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) is se-
lected as the default solver because it is the least likely to get stuck in
a local minimum or on a plateau3. For larger data sets ADAM is likely
the best solver because the number of computations scales less than
LBFGS with data/features, and adjusts parameters in-flight making it
usually faster than SGD. It also performs comparably to other known
stochastic optimization methods4 [26]. However, Keskar argues that SGD

3https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html
4http://ruder.io/optimizing-gradient-descent/

50

outperforms ADAM in later stages of training, which would lead to better
approximations [41].

Training with small data sets typically lead to unusable networks (R2

scores below 0) much like the scores for N = 100, 1000 below.

N samples 100 1000 10000 100000
dnn_fit_time 0.8411 2.9870 26.1736 123.0660

dnn_score_time 0.0017 0.0029 0.0190 0.2396
dnn_test_r2 -13371.8000 -7001.4600 0.2571 0.9687

dnn_test_rmse 0.9304 0.7839 0.0094 0.0018
dnn_test_mae 0.8868 0.7340 0.0073 0.0014

dnn_test_maxae 1.3626 1.2036 0.0412 0.0116

Table 4.15: ANN results varying N with slack bus (node 650) removed from
label set. Each ANN model had two 10-neuron hidden layers

While 0.97 is among the best R2 score a non-linear regression network
achieved, the MAXAE value is 68% worse than the best confirmed SVR
score. A random search was run to find trends in solver, hidden layer size
and activation function categories.

fit (s) solver h_l_s activation r2 rmse std mae
458 adam (5,) relu 0.90 0.0033 0.0000 0.0026

4 lbfgs (7, 7) relu 0.87 0.0038 0.0002 0.0028
5 lbfgs (7, 6) relu 0.86 0.0038 0.0005 0.0028
4 lbfgs (7, 8) log. 0.82 0.0046 0.0010 0.0034

13013 sgd (6, 6) relu 0.72 0.0059 0.0003 0.0045
4 lbfgs (5, 9) tanh 0.68 0.0057 0.0022 0.0044
3 lbfgs (7, 6) relu 0.59 0.0060 0.0034 0.0046
2 lbfgs (7, 9) log. 0.34 0.0082 0.0030 0.0064

763 adam (6,) log. 0.19 0.0097 0.0001 0.0076
10248 sgd (6,) log. 0.14 0.0101 0.0000 0.0079

Table 4.16: ANN grid search with N = 1e5. "h_l_s": hidden layer size

The ReLU activation function typically outperformed the logistic sig-
moid function. This is corroborated by the fact that linear regression mod-
els have been out-performing most models, and ReLU is a linear activation

51

function when the inputs are positive. Another interesting observation is
that the LBFGS solver is faster than Adam, even with N = 100000. Often,
root-finding methods become costly with large samples, but in this sce-
nario perhaps there were few local minima for the method to get caught in.
Lastly, SGD had very long run times. This is likely due to plateaus in the
solution space; since SGD had a constant, small learning rate, it required
many iterations to reach optimum. This could likely be improved by using
an adaptive learning rate, but based on Adam’s performance it is unlikely
that would outperform LBFGS.

4.2.4 Discussion

This research concludes that the model with the combination of
fastest / most accurate approximation is an SVR model with an RBF
kernel. The MAXAE score of 0.0069 outperforms the next best, a linear
regression model, by 8%. Unfortunately, the MAXAE scores are still 1280%
off the IEEE recommended tolerance. Based on the MEANAE of 0.0016
and a standard deviation an order of magnitude below (a common trend
seen in all models - omitted for brevity), only an infinitesimal number of
points would stay in-bounds. This work is applicable to those interested in
observing trends in PF data and not for precision use.

RF models trained in a much more consistent time than ANNs and had
similar results. The results show that the RF score scaled quickly with more
samples. With the knowledge that RF performs better, in general, on net-
works with more features, it will likely outperform SVRs score-wise and
ANNs time-wise on topologically larger, more sample dense PF problems.

Fit time for SVR models scales very fast. In Table 4.12, the fitting time
grew 67% and 139% between N = 10/100 and N = 100/1000 respectively.
In the randomised search, linear models (equivalent to linear regression)
and rbf models performed the same, with polynomial and sigmoid kernel
models significantly behind.

ANNs were the most difficult to train. They failed often, reaching very
large, negative scores. This was 3x less likely when using LBFGS over

52

Adam. Increasing sample size was the most obvious way to improve re-
sults. The randomised search in Table 4.16 showed that while Adam could
achieve the best scores (R2 = 0.9, an 3.4% improvement over the next best),
it took 113x more time than the next best model which was trained using
LBFGS.

In Wolport’s famous "No Free Lunch" paper [68], he describes that un-
less you make assumptions about the data, it is impossible to select one
model over another a priori. Based on the work in this thesis and by our
group in [7], the input/output correspondence for PF simulations appears
to be very linear even in high dimension problems. Results show it is best
to use an SVR model with an RBF kernel for approximating the network.

53

Chapter 5

Simulation Approximation
Methodology

After discerning the best model to approximate a PF network with, this
chapter describes a high-level architecture of how to insert the function ap-
proximation process into a simulation program. First, proper data manage-
ment methodology is introduced, which provides theory on how to select
the input domain for a simulation.

5.1 Data Selection and Preparation

This thesis demonstrated batch, model-based learning (as opposed to any
other combination of batch/online, model/instance) because our target func-
tion is stationary and a parameterized solution was deployed [52]. In other
words, data was used to train the parameters of a model such that it is
representative of the simulation where the data was sourced from.

Data sourcing and handling is an extremely important piece of the train-
ing process. One often-associated idiom is "Garbage in, garbage out." To
provide the best data to the model, consideration should be given to:

1. Amplitude

2. Feature space coverage

54

Amplitude is important because larger steps in solvers like gradient de-
scent skew towards larger values. Normalising the data set makes the im-
pact of each member during training more equivalent. This ensures the
model is more representative of sample density, not sample magnitude.
One must also consider sampling bias. Models trained on imbalanced data
(majority/minority classes) will be more sensitive to the majority class. For
regression, this would come across as a skew towards majority subsets in
feature space.

Feature space coverage is important because a model can only approxi-
mate what it is exposed to. A uniform distribution guarantees feature space
will be covered within a domain.

x ∈ Rn : x 1 = x 2 = ... = x n, (5.1)

where Nuni f orm = ∑n
i=0 len(x i). It may, however, be more effective to use a

stochastic feature space distribution where Nstochastic ≪ Nuni f orm,

x ∈ Rn : x i = random[Dstart, Dstop]. (5.2)

Where D is the domain. This is akin to typical Boltzmann machine imple-
mentations [48] [53]. The randomness can produce a representative sample
of the data set with smaller input cardinality than its uniform equivalent.

In summary, the larger and more dense your domain is, the more detail
the approximation can capture. Before training a model to approximate a
data set, input equilisation techniques should be used to reduce bias of any
kind. The aforementioned information should be applied when selecting
input data for the file manager (FM) system proposed below.

5.2 File Manager

After discerning the best model to approximate a PF network with, this
chapter briefly describes a high-level architecture of how to insert the
function approximation process into a simulation program.

55

Most simulation programs follow the same pattern.

1. A problem description containing the topological mapping between
atomic units is drafted using a graphical user interface or imported
as a text file. This creates the underlying model

2. Input data representing the specific behaviour of each unit is im-
ported into the model as a set of sample vectors

3. The simulation is run, feeding each sample vector to the ensemble of
units one snapshot at a time

Fig. 5.1 interrupts this process by inserting a FM after the initialisation
step. The FM reads the problem description and determines whether or not
it has seen it before. If it has not, it runs the solver as the simulation would
normally and uses the inputs from step 2, as well as the outputs from the
solver in step 3 to create an approximation. The approximation is then
appended to the problem description and saved to a folder. The next time a
problem description is read, the FM searches the folder for that description
and if it exists, the simulation feeds the inputs into the approximation to
get the outputs instead of using the solver.

56

 Simulation

Is Topology in File
Manager?

Initialise
Topology

Results

Problem
Description

Run Solver
Import

Approximation
No Yes

Approximate

Save model
with Topology
appended as

metadata

Inputs and Outputs Inputs and Outputs

SmartSim additions

Data Source*

Inputs

Data Source*

Inputs

* Same data source

Figure 5.1: Flow chart of simulation program with embedded file manager
and automatic approximating modules

After simulations are approximated, their metadata (simulation con-
text, approximation parameters) can be stored into a directory by a file
manager for future reference. When initialising any simulation, the file
manager first searches the directory for a simulation context matching the
reference context. If the same context is found, the approximation is used

57

instead of re-running the iterative simulation solver.
The slowest method of comparing simulation context would be an ex-

haustive search. The program would open each file, Fi : imax = total number
of files in the directory and compare the metadata with reference context,
R, line for line. This has a time complexity of O(Rn_lines · imax).

A faster approach would be to cross-reference keyed values in each file
to see if they match and assume that if they do, the files are the same. The
file manager checks a random keyed value. If a key, K, does not exist or the
value, V, is wrong, the contexts are not the same, Fi ̸= R. The probability
that the value is the same, depends on the number of possible variations for
that value. Assuming for V, there are C possible scalars randomly selected
from a uniform distribution,

P(VFi ,K == VR,K) =
1
C

. (5.3)

To decrease the probability of a false positive context equivalency, the
number of values tested, j, can be increased. The advantages of this
method come with its simple implementation and smaller time complexity
O(j · imax) < O(Rn_lines · imax).

The optimal method is string hashing, which is used by Python for dic-
tionary objects, for example. Using hashing methods like Division, Multi-
plication, Folding, Random Number Generator [69] [70], or a hash function
like Single Hash [71] and assuming each context is sorted by the same keys,
a unique value can be assigned to each context for O(B) lookup. For a sim-
ple hashing example, we could replace the first four characters, "sim, of the
sample PyPSA context file,

58

"simulationtype": "PyPSA",

"connections": [[0,1,0],[1,0,1],[0,1,0]],

"start_datetime": "2016-04-01 0:0:0",

"profiles": [{"load":true,"generation":true,"storage":false},

{"load":true,"generation":false,"storage":false},

{"load":true,"generation":false,"storage":false}],

"profile_path": "./",

"study": {"description":"binary2-m4y16-super-load"},

"lookup_table": false

with its ASCII-decimal equivalent,

"sim → 34 + 115 + 105 + 109.

This sum is divided by the desired size of the hash table and the given re-
sult would be the entries index. This strategy is used often, for example, in
Linux where the SHA-256 key is offered so users can check if a download
is corrupt.

A key improvement to the proposed simulation program would be to
accept both exact and approximate problem descriptions during the match-
ing process. For example, large PF networks with multiple slack buses may
contain sub-topologies that adequately mimic the topologies in standalone
networks.

The cost savings associated with this model are broken down into two
categories:

1. timemodel−training ≫ timemodel−evaluating

2. timemodel−training ≪ timemodel−evaluating.

Option 1 would occur if the model is expensive to train and evaluated
sparsely. In this case,

59

speed increase α nsimulations. (5.4)

In other words the speed increase will be proportional to the number of
times that problem description is used. Option 2 occurs if the model is
heavily evaluated, such as in the event that a computer relies on the simu-
lation for guiding another process. In case 2,

speed increase ∼ timeone−simulation

timeone−evaluation
(5.5)

A SVR example with N = 10000 shows the possible savings using the
FM. In the event that one hundred simulations were run, the FM would
provide answers 100x faster. If 1e8 simulations were run, the time advan-
tage scales to 100 000x.

Scenario 1 Simulation (m) 100 Simulations (m) 1e8 Simulations (m)
ttrain ≫ tevaluate ttrain ≪ tevaluate

Mapped
tsim = 420
ttrain = 14
tevaluate = 0.001

tcontrolled = 4e4
tapproxs = 4e2

tcontrolled = 4e10
tapprox = 1e5

Table 5.1: Runtime comparison of repeated simulations on regular simula-
tion software versus a simulation software with an embedded file manager

60

Chapter 6

Conclusion

The major objective of this thesis was to prove it was possible to approx-
imate non-linear, power flow simulations. Ideally, the maximum absolute
error for the approximation would be below 0.05% per the recommenda-
tion from the Institute of Electrical and Electronics Engineers. Multiple
experiments tested the regression ability of random forest, support vector
regression, fully connected feedforward artificial neural network and lin-
ear regression models. Each model was able to eclipse the 2% maximum
absolute error mark, with support vector regression producing the lowest
error at 0.69%. The training procedure and models used in this thesis are
best applied to problems where data trends are required, not precision.

The second goal was to provide an analytical method to select hidden
layer width for a three-layer ANN. An extrema-based algorithm was writ-
ten in Python and tested on sine, log, and reciprocal based n-dimensional
data sets. It is shown for the continuous, sine-based function that setting
the hidden layer size according to Zhang’s rule produces extremely ac-
curate approximations. Because the extrema detection algorithm runtime
scales exponentially with n, the algorithm in its current exhaustive form is
too costly for algorithms with more than five features and one thousand
samples. It is faster to run a random, order-of-magnitude search.

The final objective in this thesis was to suggest a method to reduce the
cost of repeating simulations on the same model. High-level simulation

61

program suggestions were presented, which by implementation would cre-
ate a fully automated, time-reduced simulation software. This is achieved
by inserting an approximation class based on the other research presented
in this thesis and metadata storage into pre-existing simulation code. Time-
saving theory was discussed and demonstrated in an example where, in the
more likely scenario, savings up to 100x could be achieved.

The next steps to improving the extrema detection algorithm include
optimising the polytope functions. For assurance that a point was an ex-
tremum, the current method assumes the point must have a neighbour in
every cell that is not an extremum. In big-O notation, this is O(2n). More
optimised polytope algorithms would only require n+1 cells to be filled
and would be O(n + 1). It may also be useful to pivot to numerical algo-
rithms such as simplex or steepest descent to find extremas as their time-
complexity does not scale exponentially with number of features.

Other universal approximation methods, including radial basis func-
tions or spline approximation, should be trialled. It may also be possi-
ble to use linear interpolation, however leading n-dimensional interpola-
tion functions such as Numpy’s LinearNDInterpolator crashed when pre-
sented with high-sample (>1000), high-dimension (>10) power flow data
sets. It would also be interesting to use Jackson Polynomials to evaluate
conversion rates. There are many conditions in which ANN training does
not converge. For instance, training on periodic functions often leads to
convergence in a local extremum, making a good approximation almost
impossible. Many authors have proposed solutions for local-convergence
scenarios, and this feature would significantly increase approximation ro-
bustness. It would also benefit the community to consider the nuances
of the time-reducing simulation metadata to an open source cloud envi-
ronment. What would the architecture look like? What type of security
policies would have to be put in place?

62

Bibliography

[1] B. Hidalgo and M. Goodman, “Multivariate or multivariable regres-
sion?” American journal of public health, vol. 103, no. 1, pp. 39–40, 01
2013.

[2] R. Lyster, “Smart grids: Opportunities for climate change mitigation
and adaptation,” Monash UL Rev., vol. 36, p. 173, 2010.

[3] C. Shum, W. Lau, T. Mao, H. S. Chung, K. Tsang, N. C. Tse, and L. L.
Lai, “Co-simulation of distributed smart grid software using direct-
execution simulation,” IEEE Access, vol. 6, pp. 20 531–20 544, 2018.

[4] S. Karnouskos and T. N. d. Holanda, “Simulation of a smart grid city
with software agents,” in 2009 Third UKSim European Symposium on
Computer Modeling and Simulation, Nov 2009, pp. 424–429.

[5] P. Oliveira, T. Pinto, H. Morais, and Z. Vale, “Masgrip — a multi-agent
smart grid simulation platform,” in 2012 IEEE Power and Energy Society
General Meeting, July 2012, pp. 1–8.

[6] M. H. Carpenter, D. Gottlieb, S. Abarbanel, and W.-S. Don, “The the-
oretical accuracy of runge–kutta time discretizations for the initial
boundary value problem: a study of the boundary error,” SIAM Jour-
nal on Scientific Computing, vol. 16, no. 6, pp. 1241–1252, 1995.

[7] M. Bardwell and P. Musilek, “Enhancing power flow simulations us-
ing function mapping,” in 2019 IEEE Canadian Conference on Electrical
and Computer Engineering (CCECE), 2019, pp. 1–5.

63

[8] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural networks, vol. 2, no. 5,
pp. 359–366, 1989.

[9] J. Park and I. W. Sandberg, “Universal approximation using radial-
basis-function networks,” Neural computation, vol. 3, no. 2, pp. 246–
257, 1991.

[10] Z. Zainuddin and O. Pauline, “Function approximation using artificial
neural networks,” WSEAS Transactions on Mathematics, vol. 7, no. 6, pp.
333–338, 2008.

[11] X. M. Zhang, Y. Q. Chen, N. Ansari, and Y. Q. Shi, “Mini-max ini-
tialization for function approximation,” Neurocomputing, vol. 57, pp.
389–409, 2004.

[12] R. Elkadiri, M. Sultan, A. M. Youssef, T. Elbayoumi, R. Chase, A. B.
Bulkhi, and M. M. Al-Katheeri, “A remote sensing-based approach for
debris-flow susceptibility assessment using artificial neural networks
and logistic regression modeling,” IEEE Journal of Selected Topics in Ap-
plied Earth Observations and Remote Sensing, vol. 7, no. 12, pp. 4818–
4835, Dec 2014.

[13] G. May and A. El-Shahat, “Battery-degradation model based on the
ann regression function for ev applications,” in 2017 IEEE Global Hu-
manitarian Technology Conference (GHTC), Oct 2017, pp. 1–3.

[14] I. Asiltürk and M. Çunkaş, “Modeling and prediction of surface
roughness in turning operations using artificial neural network and
multiple regression method,” Expert systems with applications, vol. 38,
no. 5, pp. 5826–5832, 2011.

[15] P. V. B. Reddy, C. H. R. V. Kumar, and K. H. Reddy, “Modeling of
wire edm process using back propagation (bpn) and general regres-
sion neural networks (grnn),” in Frontiers in Automobile and Mechanical
Engineering -2010, Nov 2010, pp. 317–321.

64

[16] H. Majumder and K. Maity, “Predictive analysis on responses in
wedm of titanium grade 6 using general regression neural network
(grnn) and multiple regression analysis (mra),” Silicon, pp. 1–14, 2018.

[17] L. Xia, J. Meng, R. Xu, B. Yan, and Y. Guo, “Modeling of 3-d vertical in-
terconnect using support vector machine regression,” IEEE Microwave
and Wireless Components Letters, vol. 16, no. 12, pp. 639–641, Dec 2006.

[18] J. Meng, Y. Gao, and Y. Shi, “Support vector regression model for mea-
suring the permittivity of asphalt concrete,” IEEE Microwave and Wire-
less Components Letters, vol. 17, no. 12, pp. 819–821, Dec 2007.

[19] S. Zhang, M. Wang, P. Zheng, G. Qiao, F. Liu, and L. Gan, “An easy-to-
implement hysteresis model identification method based on support
vector regression,” IEEE Transactions on Magnetics, vol. 53, no. 11, pp.
1–4, Nov 2017.

[20] Y. Zhang, Y. Du, F. Ling, S. Fang, and X. Li, “Example-based super-
resolution land cover mapping using support vector regression,” IEEE
Journal of Selected Topics in Applied Earth Observations and Remote Sens-
ing, vol. 7, no. 4, pp. 1271–1283, April 2014.

[21] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–
32, 2001.

[22] M. A. Hannan, J. A. Ali, A. Mohamed, and M. N. Uddin, “A ran-
dom forest regression based space vector pwm inverter controller for
the induction motor drive,” IEEE Transactions on Industrial Electronics,
vol. 64, no. 4, pp. 2689–2699, April 2017.

[23] I. Ghosal and G. Hooker, “Boosting random forests to reduce bias; one-
step boosted forest and its variance estimate.”

[24] J. Kiefer, J. Wolfowitz et al., “Stochastic estimation of the maximum
of a regression function,” The Annals of Mathematical Statistics, vol. 23,
no. 3, pp. 462–466, 1952.

65

[25] L. Deng, J. Li, J. Huang, K. Yao, D. Yu, F. Seide, M. Seltzer, G. Zweig,
X. He, J. Williams, Y. Gong, and A. Acero, “Recent advances in deep
learning for speech research at microsoft,” in Proc. Speech and Signal
Processing 2013 IEEE Int. Conf. Acoustics, May 2013, pp. 8604–8608.

[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[27] J. Portsmouth, “Efficient barycentric point sampling on meshes,” arXiv
preprint arXiv:1708.07559, 2017.

[28] D.-J. van der Zee, “Model simplification in manufacturing simulation–
review and framework,” Computers & Industrial Engineering, vol. 127,
pp. 1056–1067, 2019.

[29] N. Watson and J. Arrillaga, Power Systems Electromagnetic Transients
Simulation. The Institution of Engineering and Technology, 2003.

[30] L. Guo, M. Wang, C. Ruan, T. Y. Lin, C. Yang, L. Wei, C. Geng,
C. Xing, and Y. Xiao, “A cloud simulation based environment for
multi-disciplinary collaborative simulation and optimization,” in 2017
IEEE 21st International Conference on Computer Supported Cooperative
Work in Design (CSCWD), April 2017, pp. 445–450.

[31] M. Zakarya and L. Gillam, “Modelling resource heterogeneities in
cloud simulations and quantifying their accuracy,” Simulation Mod-
elling Practice and Theory, vol. 94, pp. 43 – 65, 2019.

[32] Z. Xiao, B. Unger, R. Simmonds, and J. Cleary, “Scheduling criti-
cal channels in conservative parallel discrete event simulation,” in
Proceedings Thirteenth Workshop on Parallel and Distributed Simulation.
PADS 99. (Cat. No.PR00155), May 1999, pp. 20–28.

[33] F. Rosenblatt, “The perceptron: a probabilistic model for information
storage and organization in the brain.” Psychological review, vol. 65,
no. 6, p. 386, 1958.

66

[34] B. Li, E. Zhou, B. Huang, J. Duan, Y. Wang, N. Xu, J. Zhang, and
H. Yang, “Large scale recurrent neural network on gpu,” in 2014 In-
ternational Joint Conference on Neural Networks (IJCNN), July 2014, pp.
4062–4069.

[35] Zhongwen Luo, Hongzhi Liu, and Xincai Wu, “Artificial neural net-
work computation on graphic process unit,” in Proceedings. 2005 IEEE
International Joint Conference on Neural Networks, 2005., vol. 1, July 2005,
pp. 622–626 vol. 1.

[36] K.-I. Funahashi, “On the approximate realization of continuous map-
pings by neural networks,” Neural networks, vol. 2, no. 3, pp. 183–192,
1989.

[37] B. I. Hong and N. Hahm, “A note on neural network approxima-
tion with a sigmoidal function,” Applied Mathematical Sciences, vol. 10,
no. 42, pp. 2075–2085, 2016.

[38] H. N. Mhaskar, “Approximation properties of a multilayered feedfor-
ward artificial neural network,” Advances in Computational Mathemat-
ics, vol. 1, no. 1, pp. 61–80, 1993.

[39] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Sur-
passing human-level performance on imagenet classification.”

[40] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proceedings of the thirteenth interna-
tional conference on artificial intelligence and statistics, 2010, pp. 249–256.

[41] N. S. Keskar and R. Socher, “Improving generalization performance
by switching from adam to sgd.”

[42] J. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization,” Journal of Machine Learning Research, vol. 13,
2012. [Online]. Available: http://www.jmlr.org/papers/volume13/
bergstra12a/bergstra12a.pdf

67

http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf

[43] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[44] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273–297, 1995.

[45] A. J. Smola and B. Schölkopf, “A tutorial on Support Vector Regres-
sion,” Statistics and computing, vol. 14, no. 3, pp. 199–222, 2004.

[46] Y. Li, J. Bai, Q. Tang, Y. Jiang, C. Li, and S. Xia, “Multinomial ran-
dom forests: Fill the gap between theoretical consistency and empiri-
cal soundness.”

[47] G. M. Phillips, Interpolation and approximation by polynomials. Springer
Science & Business Media, 2003, vol. 14.

[48] S. Geman, E. Bienenstock, and R. Doursat, “Neural networks and the
bias/variance dilemma,” Neural Computation, vol. 4, pp. 1–58, 1992.

[49] Y. N. Dauphin and Y. Bengio, “Big neural networks waste capacity.”

[50] B. Neal, S. Mittal, A. Baratin, V. Tantia, M. Scicluna, S. Lacoste-Julien,
and I. Mitliagkas, “A modern take on the bias-variance tradeoff in neu-
ral networks.”

[51] G. C. Cawley and N. L. C. Talbot, “On over-fitting in model selection
and subsequent selection bias in performance evaluation,” Journal of
Machine Learning Research, vol. 11, pp. 2079–2107, 2010.

[52] A. Geron, Hands-On Machine Learning With Scikit-Learn & Tensorflow.
Concepts, Tools and Techniques to Build Intelligent Systems, N. Tache, Ed.
O’Reilly Media, Inc, 2017.

68

[53] G. Hinton, “Boltzmann Machines,” Mar. 2007. [Online].
Available: https://www.cs.toronto.edu/~hinton/csc321/readings/
boltz321.pdf

[54] S. J. Raudys and A. K. Jain, “Small sample size effects in statistical
pattern recognition: recommendations for practitioners,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 13, no. 3, pp.
252–264, Mar. 1991.

[55] I. Guyon, J. Makhoul, R. Schwartz, and V. Vapnik, “What size test set
gives good error rate estimates?” in IEEE Trans PAMI, 1996, pp. 52–64.

[56] I. Guyon, “A scaling law for the validation-set training-set size ratio,”
1997.

[57] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to
statistical learning. Springer, 2013, vol. 112.

[58] J. D. Gibbons and J. D. G. Fielden, Nonparametric measures of association.
Sage, 1993, no. 91.

[59] A. Altmann, L. Toloşi, O. Sander, and T. Lengauer, “Permutation
importance: a corrected feature importance measure,” Bioinformatics,
vol. 26, no. 10, pp. 1340–1347, 04 2010. [Online]. Available:
https://doi.org/10.1093/bioinformatics/btq134

[60] D. Clarke, “A convenient omitted variable bias formula for treatment
effect models,” Economics Letters, vol. 174, pp. 84–88, 2019.

[61] I. Jolliffe, Principal Component Analysis. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 1094–1096. [Online]. Available: https:
//doi.org/10.1007/978-3-642-04898-2_455

[62] K. Ohtani, “Bootstrapping r2 and adjusted r2 in regression analysis,”
Economic Modelling, vol. 17, no. 4, pp. 473–483, 2000.

[63] S. Chib and E. Greenberg, “Understanding the metropolis-hastings
algorithm,” The American Statistician, vol. 49, no. 4, pp. 327–335,

69

https://www.cs.toronto.edu/~hinton/csc321/readings/boltz321.pdf
https://www.cs.toronto.edu/~hinton/csc321/readings/boltz321.pdf
https://doi.org/10.1093/bioinformatics/btq134
https://doi.org/10.1007/978-3-642-04898-2_455
https://doi.org/10.1007/978-3-642-04898-2_455

1995. [Online]. Available: https://amstat.tandfonline.com/doi/abs/
10.1080/00031305.1995.10476177

[64] K. P. Schneider, B. A. Mather, B. C. Pal, C. . Ten, G. J. Shirek, H. Zhu,
J. C. Fuller, J. L. R. Pereira, L. F. Ochoa, L. R. de Araujo, R. C. Dugan,
S. Matthias, S. Paudyal, T. E. McDermott, and W. Kersting, “Analytic
considerations and design basis for the ieee distribution test feeders,”
IEEE Transactions on Power Systems, vol. 33, no. 3, pp. 3181–3188, May
2018.

[65] “Ieee application guide for ieee std 1547(tm), ieee standard for inter-
connecting distributed resources with electric power systems,” IEEE
Std 1547.2-2008, pp. 1–217, April 2009.

[66] W. H. Kersting, “Radial distribution test feeders,” IEEE Transactions on
Power Systems, vol. 6, no. 3, pp. 975–985, Aug 1991.

[67] G. Hinton, N. Srivastava, and K. Swersky, “Neural Networks for Ma-
chine Learning,” Online, Jan. 2019.

[68] D. H. Wolpert, “The lack of a priori distinctions between learning al-
gorithms,” Neural computation, vol. 8, no. 7, pp. 1341–1390, 1996.

[69] M. Singh and D. Garg, “Choosing best hashing strategies and hash
functions,” in 2009 IEEE International Advance Computing Conference,
March 2009, pp. 50–55.

[70] M. Ramakrishna and J. Zobel, “Performance in practice of string
hashing functions,” in Database Systems For Advanced Applications’ 97.
World Scientific, 1997, pp. 215–223.

[71] X. Gou, C. Zhao, T. Yang, L. Zou, Y. Zhou, Y. Yan, X. Li, and B. Cui,
“Single hash: Use one hash function to build faster hash based data
structures,” in 2018 IEEE International Conference on Big Data and Smart
Computing (BigComp), Jan 2018, pp. 278–285.

70

https://amstat.tandfonline.com/doi/abs/10.1080/00031305.1995.10476177
https://amstat.tandfonline.com/doi/abs/10.1080/00031305.1995.10476177

	Introduction
	Problem Statement
	Capturing a Simulation Model
	Motivation

	Related Work
	Function Approximation
	Optimizing Simulations

	Background
	Function Approximation
	Artificial Neural Networks
	Support Vector Machines
	Random Forest
	Model Generalisation Error

	Data Analysis and Manipulation
	Correlation
	Dimensionality Reduction
	Scoring

	Power System Load Flow Simulations

	Experimental Results and Analysis
	Extrema Equivalence
	Problem and Objective
	Introduction
	Results
	Discussion

	Function Approximation: Non-Linear Power Flow
	Problem and Objective
	Introduction
	Results
	Discussion

	Simulation Approximation Methodology
	Data Selection and Preparation
	File Manager

	Conclusion

