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ABSTRACT The tendency toward electrification of marine vessels has led the evolution of the all electric
ship (AES). The harsh operating environment of the AES makes the shipboard power system (SPS) vul-
nerable, so a powerful monitoring system for fault detection and localization (FDL) is essential for safe
navigation. We propose a machine learning based FDL method for monitoring the system condition with
the problem of imbalanced training dataset. The generative adversarial network (GAN) comprising of deep
convolutional neural networks was employed to synthesize numerous valid samples. Feature extraction and
selection technologies were applied to time-series signals to reduce features for monitor training. Finally,
the random forest (RF) model was trained using the augmented training dataset, combining real data with
generated ones by GAN, to verify the capability of the GAN-RF based FDL method. Both real training and
testing data were collected from the SPS model established in PSCAD/EMTDC. The results demonstrated
that the monitor could distinguish different conditions in real-time with the help of hardware implementation
on the FPGA and a 99% classification accuracy was achieved with excellent anti-noise capability.

INDEX TERMS All electric ship, correlation based feature selection, deep convolutional neural networks,
fault detection and localization, field-programmable gate array, generative adversarial networks, multivariate
empirical mode decomposition, mediumvoltage direct current, machine learning, random forest, real-time
systems.

I. INTRODUCTION
Since human beings intended to explore land that had not
been set foot on, marine transportation has been an indispens-
able tool to know about and communicate with the world.
The tendency toward electrification of ocean-going vessels
leads to an evolution to the all electric ship (AES). Conven-
tional architectures of the shipboard power system (SPS) are
medium-voltage AC (MVAC) and low-voltage DC (LVDC).
Nowadays, the improvement of thermal, mechanical and in-
sulated properties of high-voltage DC equipment pushes for-
ward the development of medium-voltage DC (MVDC) dis-
tribution networks (i.e. 1kV-35kV [1]) for the AES [2], [3].
MVDC SPS provides a promising solution for significantly

higher power demand of the AES, since lower currents need
to be handled than LVDC as well as bulky low-frequency
transformers and phase angle synchronizers are eliminated
compared with MVAC [1]. However, the electrification sys-
tem on AES is more vulnerable than terrestrial systems due
to harsh environment at sea and the requirement of switching
between different voyage modes. Even a minor fault among
myriad components of the SPS may result in a catastrophe;
thus a powerful monitoring system for fault detection and
localization (FDL) of AES is crucial for safe navigation.

Machine learning has become a hot spot for dealing with
FDL problems in the maritime industry [4]. In [5] a deep
learning network has been designed to classify different faults
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in rolling bearings of ship borne antenna according to the
extracted features by multiscale inner product. Bayesian in-
ference have been adopted for diagnosis diesel engine faults
in [6]. Fault detection and health monitoring for the ship
propulsion system has been researched based on the support
vector machine (SVM) [7]. Reference [8] combined random
forest (RF) algorithm with the shuffled frog leaping algorithm
(SFLA) in order to locate the rudder fault. To the best of the
authors’ knowledge, few works have been reported to monitor
and detect the faults may occur in the entire SPS of an AES.

To efficiently take advantage of the valuable data, feature
selection and extraction which pick out a representative set
of features for constructing a best-matched machine learning
model are significant steps in the data preprocessing. Em-
pirical mode decomposition (EMD) is one of the popular
signal-processing methods. It has been widely applied in the
fault diagnosis field [9]–[13], since the information of both
time and frequency domain can be obtained from a series of
intrinsic mode functions (IMFs) decomposed by EMD. For
detecting multiple fault types of the AES, multichannel sig-
nals are sampled from various components of the power sys-
tem. The traditional EMD can only decompose the signals one
by one with different decomposition scales [14]. Multivariate
empirical mode decomposition (MEMD) was developed [15]
as an extension of EMD to solve the mode-mixing issue for
multichannel signals. The information fusion between differ-
ent channels are considered by MEMD that can align common
frequency modes across channels in same index IMFs. After
extracting temporal and spectral statistic characteristics using
MEMD, features for establishing the model can be further
decreased by selecting a feature subset that contains features
highly correlated with the prediction, yet uncorrelated with
each other [16]. Filter methods estimate the worth of fea-
tures using heuristics directly from data. They are proved to
perform similar to but execute considerably faster than the
wrapper methods that estimate the worth of features according
to the learning algorithm [17]–[19]. In this work, we adopt a
filter named correlation based feature selection (CFS) method.

There is one more challenge for industrial fault detection
using machine learning methods which highly rely on the
data collected from real-world application scenarios. The data
of faulty conditions are far fewer than for the normal con-
ditions, i.e. the data for training machine learning are most
likely imbalanced. Training using the imbalanced data directly
leads to more weights assigned to the major class. As a con-
sequence, ostensibly great results may turn out to be false.
Generating synthetic samples is one of the solution. Recently,
generative adversarial networks (GANs) combining two deep
neural networks are studied to generate additional samples for
imbalanced problems [20]–[23]. We propose a FDL method
incorporating GAN into random forest algorithm (GAN-RF)
with extracted and selected features to monitor the SPS of an
AES. In the off-line construction stage, the collected data from
an AES model and generated data from GAN are exploited
to train the RF model after data preprocessing. In the on-line
monitoring stage, the hardware based on field-programmable

FIGURE 1. Notional ring-bus power system for AES under MVDC [1].

gate array (FPGA) is implemented for parallel preprocessing
and prediction.

The remainder of this paper is organized as fol-
lows. Section II briefly describes the model simulated in
PSCAD/EMTDC and selected conditions for diagnosis in the
SPS of an AES. Section III elaborates the algorithm prelim-
inaries involved in the proposed GAN-RF method, including
generating synthetic samples, feature extraction and selection
as well as classification. Section IV presents the discussion
of the experimental results including data preparation, feature
selection, generated samples, noise resistance and hardware
implementation, followed by the conclusions in Section V.

II. MODEL DESCRIPTION
The architecture of a high-performance SPS for the AES fed
by MVDC is ring-bus configuration (Fig. 1) as recommended
in [1]. Both port and starboard DC buses running longitudi-
nally along the ship can be powered by one main and one aux-
iliary power generation modules simulated by synchronous
generators on each side through bow and stern cross-hull dis-
connects. A “split-plant” configuration can be set when open-
ing the bow and stern cross-hull disconnect switches. There
are four zonal loads from bow to stern along the ship contain-
ing different service loads. Critical loads, such as propulsion
motors with their modular multilevel converter (MMC) drive
inverters, are directly connected to either port or starboard
buses through the auto-switches. The low-voltage DC or AC
loads in the four zones are supplied by the ring-bus via DC/DC
and DC/AC converters and controlled by the circuit breakers.
An energy storage system with a bi-directional power capa-
bility can provide additional support to meet the quality of
service (QoS) requirement. A simplified SPS model with the
port-side bus only shown with black-line in Fig. 1 operating
in the split-plant configuration is created in PSCAD/EMTDC.

A. SELECTED CONDITIONS
Eleven conditions are simulated by the PSCAD/EMTDC
model. There are 1 normal and 10 faulty conditions in total
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TABLE 1. Selected Conditions in the Modeled AES System

that may occur in the components of generators, propulsion
motors, converters, loads and buses. The specific locations
of the faults are summarized in Table 1. The three types
of phase-to-phase short-circuit faults (i.e. A-B, B-C or A-
C) in three-phase AC systems are labeled to the same fault
class. Minor faults such as open-circuit in diodes of rectifiers
and IGBTs of MMC and converter are also selected to be
monitored.

III. PRELIMINARIES AND PROPOSED METHOD
In this section, all the algorithms involved in the proposed
FDL method for the AES are elaborated. Two stages, includ-
ing the off-line construction stage and the on-line monitoring
stage, for training and testing our intelligent monitoring sys-
tem are described in detail. In the former stage, features are
extracted from the raw time-series data from the simulated
model in PSCAD/EMTDC using MEMD. A GAN is designed
to generate more valid samples of faulty scenarios based on
the training dataset with extracted features to equalize the
imbalanced data distribution between normal and faulty con-
ditions. Then samples generated by the GAN model augments
the imbalanced ones from PSCAD/EMTDC to become the
new balanced training data. Finally, the selected features by
CFS embodying both temporal and spectral statistics of the
raw data are used to train a RF model that is capable of
distinguishing different conditions of the SPS. In the latter
stage, the data preprocessing and the constructed RF model
are implemented in the FPGA to ensure the evaluation of the
system condition can be made in real-time.

A. FEATURE EXTRACTION AND SELECTION
1) FEATURE EXTRACTION BASED ON MEMD
Both temporal and spectral statistics information of the time-
series training data are extracted in this work. Temporal fea-
tures are calculated straightforwardly from the raw signals of

training data as following quantities:

μt = 1

N

N∑

i=1

xi, (1)

σt = 1

N − 1

N∑

i=1

(xi − μt )2, (2)

where N is the number of time steps of the original time-series
signal. μt is the mean and σt is the variance of a signal.

As for spectral features, signal processing such as EMD is
imperative. The EMD decomposes a signal into a set of intrin-
sic mode functions (IMFs) without leaving the time domain.
These IMFs carry different signal components with frequen-
cies ranging from high to low. The decomposition process
does not assume the data to be linear and stationary, which
is meaningful for analyzing real-world signals. The following
algorithm shows the calculation of IMFs from a given signal
x(t ) step-by-step [24]:

a) Create the upper envelope eu(t ) of all local maxima
in x(t ) and lower envelope el (t ) of all local minima using
interpolation.

b) From the upper and lower envelopes, get the middle
value m(t ) = (eu(t ) + el (t ))/2. Then decrease the value of
signal by the middle value of the envelope h1(t ) = x(t ) −
m(t ).

c) Check if this extracted signal h1(t ) is an IMF using the
standard stopping criterion:

0.2 ≤
∑T

t=0

∣∣h1,k−1(t ) − h1,k (t )
∣∣2

∑T
t=0

∣∣h1,k−1(t )
∣∣2 ≤ 0.3, (3)

d) If h1(t ) is not an IMF, repeat steps a) to c) until an
IMF c1(t ) = h1,k (t ) is obtained. In each iteration, input the
extracted signal instead of x(t ) and obtain h1,k (t ) in the kth
iteration.

e) A residual signal is gained as r1(t ) = x(t ) − c1(t ).
f) Repeat steps a) to e) n times with updated input of

the last residual signal and obtain rn(t ). At the end of the
decomposition, rn(t ) is a monotonic function that cannot be
decomposed into an IMF any more. Finally, the original signal
can be expressed as:

x(t ) =
n∑

k=1

ck (t ) − rn(t ). (4)

However, the EMD can only decompose multichannel sig-
nals one-by-one without considering the information fusion
between different channels. Therefore, a extension variant
multivariate EMD (MEMD) is adopted in our case, where
multiple voltage and current signals from various components
of the SPS in the AES are need to be analyzed. The key
concept for MEMD is to find the local mean of n-dimensional
multichannel signals by averaging generated n-dimensional
envelopes. These envelopes are obtained by projecting signals
along different directions in n-dimensional spaces [15]. The
results of the MEMD decomposition are several IMFs groups.
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The common frequency modes show up in the same order
IMFs of different groups.

Two spectral statistics are extracted from IMFs decom-
posed by MEMD from signals. The strongest center frequency
is the first one defined as the center frequency of the order of
IMF that has the strongest average power. This feature reflects
the dominant frequency band of the signal.

The instantaneous power is the square of amplitude of IMFs
given as

Qm(k) = Am(k)2. (5)

The average power of an IMF is given as

Q̄m =
N∑

k=1

Qm(k)/N. (6)

The center frequency is defined as

f̄m =
N∑

k=1

(Qm(k) · fm(k))/
N∑

k=1

Qm(k). (7)

The strongest center frequency is fmax = f̄m. The mth IMF
has the strongest power as

Q̄m = max
(
Q̄1, Q̄2 · · · Q̄M

)
. (8)

The second feature is energy entropy which reflects the
uncertainty of energy distribution in frequency domain. The
sum of the energies of all the IMFs leaving out the residual
should equal to the total energy of the original signal due to
the orthogonality of the MEMD, i.e. E = ∑M

i=1 Ei. We define
the energy weight of each IMF as qi = Ei/E . Then the energy
entropy is expressed as

s(q) = −
M∑

i=1

qi ln qi. (9)

2) FEATURE SELECTION BASED ON CFS
As mentioned above, four features (μt , σt , fmax, and s(q)) for
each signal are extracted from the time-series data. There are
32-channel voltage and current signals in total collected from
the SPS of the AES. Therefore, 128 (32 × 4) features for one
sample are required to be reduced and selected from. The
selected feature subset with features highly correlated with
the class, yet uncorrelated with each other is expected, i.e.
irrelevant and redundant features are the target to be elimi-
nated [16]. Correlation-based feature selection (CFS) is a filter
method that can pick out representative features according
to the correlation among features and class regardless of the
machine learning algorithm.

An information theory concept called symmetrical uncer-
tainty is adopted as the correlation measure to estimate the
worth of features for classification. For given feature Y and
feature (or class) X, the symmetrical uncertainty [16] between
them is

SUX,Y = 2.0 · H (Y ) + H (X ) − H (X,Y )

H (Y ) + H (X )
, (10)

FIGURE 2. Search for the best feature subset using FCBF.

where H (Y ) and H (X ) are marginal entropy, and H (X,Y ) is
joint entropy. The definitions [16] are as follows:

H (Y ) = −
∑

j

p
(
y j

)
log2

(
p
(
y j

))
, (11)

H (X,Y ) = −
∑

i

∑

j

p
(
xi, y j

)
log2 p

(
xi, y j

)
. (12)

The value of SU is normalized in the range of 0 to 1. Zero
value indicates X and Y are independent, otherwise either one
completely depends on the other.

The search approach for the best feature subset using fast
correlation-based filter (FCBF) [25] is illustrated in Fig. 2.
The value of SUi,c for each feature between the class is cal-
culated. The features with larger value of SU than threshold
δ (0.5 in our case) are added into set S

′
list and ranked in

descending order. The first element of S
′
list (Fp) is regarded

as a predominant feature and added to a new set Slist . Then
subsequent features are checked one-by-one if they are closely
associated with Fp via the SUp,q between Fp and Fq. If so, the
feature Fq is removed from S

′
list since it’s a redundant peer

to Fp. After all features are traversed, the next ranked feature
is updated as the new Fp. The iteration continues until all the
redundant peers to upper ranked features are removed and S

′
list

is empty. Finally, the best feature subset is selected as Slist .

B. GENERATING SAMPLES BASED ON GAN FOR
IMBALANCED DATA
The GAN [26] includes two different neural networks (i.e.
generator and discriminator), which play a minimax game to
find the optimal solution with competitive targets. The goal of
the generator is to manufacture samples, having the similar
probability distribution with original samples from random
inputs, which can deceive the discriminator; while the dis-
criminator is a classifier that should be able to distinguish the
fake samples from the real ones. The objective function for
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FIGURE 3. Training process of the GAN.

the generator and discriminator can be merged as follows:

min
G

max
D

J (D, G) = Ex∼pdata (x)
[
log D (x)

]

+ Ez∼pz(z)
[
log (1 − D (G (z)))

]
, (13)

where x is the real data and z is the input random noise. D(x) is
the output scalar of the discriminator that indicates the possi-
bility of x as real. G(z) is a nonlinear mapping of the generator
to data space. The cross-entropy is used to measure the loss.
The optimization objective of discriminator is to maximize the
likelihood of recognizing the observed data. The first item of
the right side of (13) is to recognize the real data better, and
the second one is to recognize the fake data better. On the
generator side, it wants D(G(z)) to earn the highest possibility
of D(x) to minimize J while the discriminator is trying to
maximize it. Parameters for generator and discriminator are
adjusted simultaneously using the gradient-based optimiza-
tion algorithm (such as Adam [27]) during backpropagation.
Fig. 3 displays how GAN is trained.

A popular variant is deep convolutional generative adver-
sarial networks (DCGANs) [28] which is regarded as a basic
architecture for most GANs today [29]. The promotions are:
1) batch normalizing most layers of both the generator and
discriminator, 2) using all-convolutional net without pooling
layers in the overall network, 3) transforming the input dimen-
sion of layers via transposed convolution with a stride, and
4) utilizing ReLU and LeakyReLU activation respectively in
generator and discriminator for most layers.

In this work, the 128 features extracted from the imbal-
anced training dataset are first normalized in the range [−1, 1]
and regarded as the real inputs of the discriminator with
size of 8 × 16 × 1. The fake inputs are generated from 100-
dimension random noise by the generator. Two deconvolution
layers (having 64 and 32 filters respectively) directly con-
nected to batch normalization layers and filtered by Rectified
Linear Unit (ReLU) activation function are adopted. The ker-
nel size of 2 are set to upsample noise inputs to the same size
as real inputs. Last convolution layer with tanh activation is to
change the channel dimension of the fake inputs into 1. As for
the discriminator, two convolution layers with 64, 128 filters
are designed to distinguish whether the input is real or fake.
The detailed architecture of the generator and discriminator
inside GAN is presented in Fig. 4 and the hyper-parameters
are listed in Table 2. The parameters for deconvolution and

FIGURE 4. Architecture of the deep convolutional generator and
discriminator inside GAN.

TABLE 2. Parameters of the Generator and Discriminator Inside GAN

convolution layers represent the number of filters, kernel size
and stride respectively. The batch size for training is 256
and the optimizer for both generator and discriminator is
Adam [27] with learning rate of 10−5 and 10−4.

C. CLASSIFICATION BASED ON RF
Random Forest (RF) is an ensemble learning algorithm that
combines multiple weak learners and makes the final decision
by vote or average [30]. The single weak learners are com-
prised of different decision trees. For given training dataset X
with N samples and M features, each decision tree Ti is trained
using randomly selected m (m = log2 M + 1) features and N
samples with replacement from X (i.e. bootstrap samples).
Unpruned trees are grown in accordance to the information
gain metric of selected features based on C4.5 methodol-
ogy [31]. The independent and identical distribution of trees
that effectively avoids overfitting is guaranteed by the two
random sampling rules for samples and features. In the end,
the random forest averages the predictions of individual trees
to determine the final classification. Internal unbiased estimate
of the generalization error is able to be made since around
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FIGURE 5. Examples of simulation results under different system conditions.

36% samples (called out-of-bag) are not selected during the
decision tree building process.

In the on-line monitoring stage, the RF classifier is imple-
mented on the FPGA. The algorithm of RF is suitable for par-
allel operation since individual trees which are independent
with each other can be computed in parallel. Furthermore,
only logic operations are executed in the tree model. The input
is classified by comparing the feature values with thresholds
preset inside the model, i.e. no add, multiply or other complex
operations are needed when prediction.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
The proposed GAN-RF method with feature extraction and
selection for the FDL in SPS is verified by sufficient number
of experiments. Data for training and testing are collected
from the established PSCAD/EMTDC model, and training
data under faulty conditions for RF model are further gen-
erated by the GAN based on existing samples. 11 conditions
including 1 normal and 10 faults are simulated and prepared to
be distinguished. Real-time FDL implementation of SPS has
been carried out on an hardware platform consisting of the
Xilinx XCVU37P FPGA. Data preparation and experiment
results are elaborated in this section.

A. DATA PREPARATION
The established model in PSCAD/EMTDC provides the
dataset for FDL monitoring system to be trained and tested.
In order to simulate faulty conditions, faults are injected to
the system after it reaches the steady-state. The start time of

sampling is at the fault injected time point which randomly
distributed at any point among one specific period of the
system after stabilization considering the differences when a
fault occurs at different points of an AC period. There are
32-channel voltage and current signals for each sample and
100 time steps with sampling frequency of 5 kHz are collected
for each signal. For training, 600 samples under the normal
condition and 100 samples under each faulty conditions are
obtained. Another 150 samples for each one of the 11 condi-
tions are prepared for testing. The simulation results of part
current and voltage signals of randomly selected samples for
each system condition are depicted in Fig. 5. It is clear that
the curves are very similar in the 100-time-step range, so the
difficulty of classifying each other in a very short time directly
from the raw time-series dataset can be imagine.

B. FEATURE EXTRACTION AND SELECTION
The aforementioned 4 features (i.e. μt , σt , fmax, and s(q))
are extracted from each signal. For one sample, there are 128
features in total after feature extraction using MEMD since
32-channel raw signals are sampled from the simulated model.
The description of each signal is listed in Table 3. The IMFs of
three signals decomposed by MEMD are presented in Fig. 6.
Finally, 50 features bold in Table 3 are selected as the best
feature subset based on CFS. The parenthesis behind a signal
tab represents the extracted features based on that signal: M
for mean, V for variance, F for strongest center frequency,
and E for energy entropy.
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TABLE 3. Signals for Each Sample Collected From Simulated Model

The bold ones are the selected signals.
The symbols in the parenthesis represent the extracted features based on the signal: M
for mean, V for variance, F for strongest center frequency, and E for energy entropy.

Statistical analysis of the 8 examples in 50 current and
voltage features are summarized in Fig. 7(a) and (b). Each dia-
gram shows the mean value and standard deviation of the spe-
cific feature in the training dataset under 11 different system
conditions. On the one hand, it indicates the rationality and
effectiveness of the extracted and selected features since these
feature distributions between different system conditions are
diverse compared with Fig. 5, and some of the faults can be
easily distinguished only by a few features. For instance, the
mean of up in Fault 5 and the variance of u450 in Fault 7
are distinct from others. On the other hand, it also manifests
the necessity of a machine learning based classifier which
has the capability of learning the inherent rules from these
enormous and complicated feature distributions automatically
and then making correct evaluation of the system condition
from testing dataset timely.

C. GENERATED SAMPLES
One of the challenges for industrial fault detection using ma-
chine learning methods, as in our case, is that it is hard to

FIGURE 6. IMFs of three signals decomposed by MEMD.

FIGURE 7. Statistical analysis of features under 11 conditions.

obtain the balanced dataset since the data of faulty conditions
are commonly far fewer than that for the normal condition.
Training the imbalanced data directly causes more weights
assigned to the major class and further leads to lower the
accuracy of fault classification. Therefore, we exploit GAN
network to generated more samples to augment our dataset.
There are no universal metrics to evaluate the quality of the
generated data using GAN. Various metrics including incep-
tion score and frechet distance are monitoring during training.
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FIGURE 8. Change of metrics along GAN training steps.

Finally, the T metric [32], as defined in (14), combining two
empirical evaluation metrics: TSTR (Train on Synthetic Test
on Real) and TRTS (Train on Real Test on Synthetic) is intro-
duced to determine the eligible synthesized data to train the
FDL monitor model:

T = 2 · T ST R · T RT S

T ST R + T RT S
. (14)

We summarize the metrics changing along GAN training
steps in Fig. 8. From the left side figure, it’s clear that the score
and distance tend to converge at stable points after 10,000
steps. Synthesized dataset of different training steps from
the generator are collected, and then RF method with CFS
feature selection are applied between real dataset simulated
from PSCAD/EMTDC and synthesized dataset generated by
GAN network to calculate the TSTR and TRTS metrics. As
shown in the right side figure, TSTR and TRTS reaches a
high accuracy quickly for the first 10,000 steps, and then
keep growing gradually. After 100,000 training steps, they
are able to achieve the accuracy of around 96% and 91%
respectively. Finally, the best generated dataset is picked out
according to the T metric by trial and error. The distribution
of four features at different training steps (10000, 50000 and
100000 respectively) between real and fake data are compared
in Fig. 9. Different colors stand for different classes (fault
types). It displays the number of samples (vertical ordinate)
of each class located at a small range of specific values (hor-
izontal ordinate). It proves that the GAN network can learn
the distribution of the real dataset well with training steps
increasing.

D. NOISE RESISTANCE
We test the anti-noise capability of the proposed GAN-RF
method by adding different level of noise to the testing dataset.
The signals-to-noise ratios (SNRs) of 90, 70, 50, 30 and 10 dB
are introduced. In this experiment, we augment the simulated
training dataset from PSCAD/EMTDC by adding 500 more
samples generated by GAN for each faulty condition. There-
fore, the training dataset is balanced now with 600 samples for
each one of the 11 conditions. Then the RF method with CFS
feature selection is applied to classify the real testing dataset
with noise. The fault detection accuracy of the monitor with
different noise level using both imbalanced and augmented

dataset to train the RF model is presented in Fig. 10. It proves
that the GAN-RF based FDL method can resist the noise to
certain extent since the samples from GAN in the training
dataset include noise naturally. Only when the noise level
reaches a very high level, for instance, when the SNR is less
than 50 dB, the judgment of monitors may be unreliable.
However, it would not be normal for sensors to contain such
high-level noise. In addition, it is obvious that the accuracy is
improved from 96% (the TSTR result) to 99% combining real
data while training. In the TSTR experiments, many errors
occur when distinguishing the differences between the nor-
mal condition and minor faults. However, in the augmented
dataset, all of the samples for the normal condition are the real
data. Therefore, the real data must help with correction of the
RF model which explains the improvement of the accuracy.

E. REAL-TIME HARDWARE IMPLEMENTATION
The data preprocessing and constructed RF model are imple-
mented on the FPGA to ensure the evaluation of the system
condition of the SPS can be made in real-time. The highly
parallel hardware architecture of FPGA matches well with
the structure of the random forest model, and also helps to
optimize the execution time of the data preprocessing.

The real-time monitoring system is implemented on the
Xilinx Virtex UltraScale+TM VCU128 FPGA board [33],
which provides the hardware environment for designs target-
ing the Virtex UltraScale+TM XCVU37P HBM FPGA with
2,852,000 programmable logic cells, 340.9Mb BRAM, and
9,024 DSP slices. The hardware platform for the on-line test-
ing experiment is presented in Fig. 11. The testing dataset
simulated and collected from PSCAD/EMTDC are saved in
the host PC which served as a real-time AES SPS model.
It outputs the time-series signals and communicates with the
FPGA monitor through PCIe 3.0 interface, while the FPGA
monitor updates the evaluation result of the system condition
with refreshed data. The oscilloscope displays the waveforms
of input signals and output results.

Thanks to the high-level synthesis (HLS) technology [34],
the development cycle of a new FPGA hardware implemen-
tation has been greatly reduced. The designer can concentrate
more on the algorithm itself by exploiting high-level program-
ming languages such as C/C++ rather than focusing on the
low-level details of hardware development using hardware
description languages (HDL). In this work, the algorithms of
preprocessing and RF are written with C++ language. Then
the codes with Q8.24 fixed-point data precision and optimiza-
tion directives for parallel hardware implementation, such as
pipeline, unroll, array partition and so forth, are synthesized
by HLS automatically and packaged as user-designed IP core.
Finally, the bitstream file is obtained after synthesis, imple-
mentation, bitstream generation processes, and programmed
to the FPGA board. The latency and resource consumption
on the FPGA for both data preprocessing and RF model are
summarized in Table 4. The latency and resources required
by RF model are significantly small compared with those for
preprocessing due to its inherently parallel structure and logic
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FIGURE 9. Comparison of feature distributions between real and fake data for: (a) the strongest center frequency of imb, (b) the energy entropy of um1,
(c) the variance of iac , (d) the strongest center frequency of up.

FIGURE 10. Classification accuracy under different noise levels.
FIGURE 11. Hardware platform configuration used in the on-line testing
experiment for the FDL monitoring system of AES SPS.
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TABLE 4. Latency and Resource Consumption of Hardware
Implementation on the Xilinx XCVU37P FPGA

operations used inside rather than other complex operations.
The total latency for calculating a 100-step sample is around
6 ms within which the breakers can successfully cut off the
fault circuit [35].

V. CONCLUSION
In this paper, an FDL method was proposed to monitor the
SPS condition of the AES based on the GAN-RF method in
real-time. In accordance to the fact that considerably fewer
data under faulty conditions than those under the normal con-
dition are available in real-world industry, GAN network was
explored to generate more valid samples and then augment
the training dataset for RF classifier. The entire SPS was es-
tablished in PSCAD/EMTDC which was used to simulate dif-
ferent normal or faulty conditions of the system. Both training
and testing time-series dataset were collect from the simulated
model. Then the temporal and spectral statistics information
of these raw data were extracted using MEMD. From the
experiment result, GAN network was proved to have the capa-
bility of learning the distribution of these extracted features.
Feature selection method CFS was conducted to further re-
duce the number of features for each sample. Finally, the ex-
perimental results manifested that the RF classifier, trained by
the augmented training dataset which combines imbalanced
data from simulated model and generated data by GAN, could
reach 99% accuracy of classifying 11 conditions of the SPS
with excellent anti-noise capability. Additionally, the real-
time monitoring including preprocessing and prediction could
be achieved within 6 ms by hardware implementation on the
FPGA. Although 11 conditions were selected as examples to
validate the proposed FDL method, other scenarios, such as
normal conditions with different loads and faulty conditions
that are unknown or unlabeled, will be further explored in our
future work.
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