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| - ABSTRACT

\ThiSvthesis is concerned with the study.of the
gravitational collapse”of suherically symmetric thin
dust and flulo shells,, along with a study of a class

of statlonary clectromagnctlc vacuum lelGS in wnlch

[
charge" equals mass

L 3

‘"he features of . SchwarZSchlld and Belssner—

P .

ordstro&?geometrlos are @utllned and ‘the equatlons

‘e

for dlscu531ng the structurc an dynamlcs of 1nf1n1te—

S1mal shells are derlved | The collapse of thln shell“

w1th charge and mass, empty and with rnterlor charge & { *fi
and mass,. non- radlatlng and radratlng 1s olscussed Co-
‘ano the collapse ‘paths are traced out on‘Graves Brlll

diagrams - schematlc representatlons of an analytlcally—

extended Reissner—Nordstrom manlfold.) In a separaﬁe'

study, it 1s shown how a new class of sE; ionaryﬁeléc;‘;
tromagnetlc vacuum flelds can be. generated from- Lhe

y

source frce LlﬂStEln—MaXWLll equatlons. o 5‘

v
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CHAPTER 1
INTRODUCTION

)

One of the most peculiar effects to surface from

i

Einstein's equations is the phenomenon of gravitational .

vcollapse. The equilibrium of a star is a complex;

delicate matter. In its‘hormal stafe, a star consists
of a nearly spherical gas distribution which is in hy~-

drostaticfand thermal‘equilibrium A condition of

v

vhydrostatlc equlllbrlum 1nd1cates that the grav1tatlonal

force balances the pressure force actlng on each unlt

R
v of mass. Thermal equlllbrlum means that the energy

generated .per mass unlt equals the enerqgy radlated from

the surface of each mass unit. A v1olatlon of elther_

equlllbrlum condltlon leads. to astructural changes and
the evolutlon" of the star. Stars with masses much

larger than the sun's mass, which cannot shed a critical'

amOunt of mass, collap > to states where general relaxl—‘
A
57

VlSth effects domlnate. In the follow1ng pages I

* discuss a number of tOplCS chosen for thelr 81gn1f1cance

because they 1llustrate the p051tlon of "black holes"»'n

rrelatlv1ty,

‘

§1.1 Space—time'struCture in-General Relativity'

In: general relat1v1ty, phy51cal laws are formula—‘»

ted in terms of geometrlcal structures,— topology,



connexion, and metric. A topology defines concepts ”

of, nearness, limits,.continuity,fand connectedness; A

connexion prov1des a means - of parallel transport for

‘vectors, and a means of formlng ‘derivatives and diffe-

lengths, and causal~relations,' /

rential equations. A metric defines inner prodUcts,

3 ~ :
On a macroscopic level, space-time 1is- considered

! . . ‘ N / o
to be a four-dimensional smooth manifold. This 1s a

or singularitieé‘ In Wheeler's words [1], "

) . _ AR ' y

"Space 1s like an ocean which looks flat to an

aviato¥ _who flies high above it./ on closer
\\;/ \ ' " . r

'approach, the'dYnamic structure of the.sﬁttase
R RS . :
is seen (quantum fluctuations)- .... The topology

of the ocean is recognized to be nonr~Euclidean.®

‘In this manifold, a thSically well-defined metric which

defines a pseudo-Riemannian structure is determined.

When.the_line element,. ds, "is integrated along a par-'f

'ticle's ldvline, theoparticle's proper time: lapse is

-

o

giVen; ‘In this manner, the notion of "clocks" may be

tled to general relat1v1ty Space -time is assumed to

be | locally Minkowskian; and clocks, locally, obey the

laws of spec1al relat1v1ty In'the'framework of

special relat1v1ty, if two events E. and E' ‘are related
2

‘such that ds® 5‘0 (+2 s;gnature), one event can causally

~influence the other. ‘This property should per51st

- reasonable assumption excgpt, perhaps, at isolated points

o



I 4

glebally, that ie, in genere% feietivitf. 'Fpem,the
grav1tatlonal potcntlals,ngﬂvi1and'nsing the methods
of. dlfferentlal geometry, a Riémann tcnsor lS cons-
tructcd whlch is. a measure of the geode51c dov1atlon
0£ two test particle§\\\fhb Einsteln~tensor 1s'formed

from contractions of the Riemann tensor as follows:

o

Fromjthe contracted Bianeﬁi'identities,"one can show

_that the,diveréenCQfOfAthe,EinStein tensor varishes.
The energy momentum tensor, Tuv' which enfolds all of"

the fields excent grav1tatlonal also has( a vaniéhing

s

'\\ diVergence.'”Einsteln s:equatlons ate these two
- ) - - N I : : . R

conserved, "energy-like" quantities

G = =81 T .
v ) Hv

~

An axiomatic summary ‘of general relativity

follows:

(1) Space- tlme is Rlemannlan, normal hyperbollc
At any»event, E, co- or@1nates may be 1ntroduced such

that
i(dsz)E =;dx? +oay® + az? - aen’ .

(2)°  The field eguations are

G = -8m T )
Cuv ATV

Y



.

(3) : Phys*cal meanlng of the metrlc- rf':,r
L . Ty | | |
SR Let E» B! be nelghborfng events with co- ordlnates
x¥ iﬁg-dx/.

14

1

Aniobserver_momentarlly at ol measures tne

. - *) - -
se ration of E, E' as ' -); , o ‘ \
[ (g o+ 1 v v»ldxudxv} Coa “spatial
uv c2 uov ‘ T
- L voax¥ R | 7tem.oral 3 ' S
‘ 2 U P L
where vM = dxu/dr lsbhis four velocity. _',-:g S
) . . ), o . ) ) .» "’ .
(4) The world line of a free, spihless, uncharqéd o
! ‘ N . . . | . . - v1 o q
particle ' is a time-like geodesic. ' o
. ‘ : ,/A"‘ ;
- Y (.‘v.‘y : .
- (5) “The world line of “llqht ray in vacu g@sﬁa"null
. ) ‘ - ht‘)/ )’ :
geodesic [2]. i

¢

©

@,31.2 ,Some Evidence for the 'Existence of Collapsed Stars -
R . ’ '
Black Holes.

Untll a few vears ago, general relat1v1st1c(eijectsv>j%é
dla not seem to be very relevant to  those bodles under
ob@ervatlon by astronomers. Black holes, or "frozen stars’
‘had been predicted bijppenheimer and Snyder in 1939.[3],

but they proved'to be an observational ohimera. in order

to understand the dlfflculty 1nvoLved in plnnlng down a

a2

‘black hole, I will trace the later stages of stellar S

3

evolutlon."

,r :
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- ; L >

The evolhtlonary dlrectlon of a star is towards

. . "

depletlon of nuclear fuel and 1ncrea3e of" 1nternal .
e »
temperature arfd . de%51ty The theory of stellar struc— *

Y

.»ture 1n slow evolutlon has been worked out an? supported
h ? -&: '% iy . -
,by observatlonad euidence of lum1n051ty, radii, spectra, !

and so on. In ‘the very late stages ofwétellarﬁevolutlon, P " af
o 4 _ _ 8 L tion -

I

g&e assumes that the nhuclear fuel is exhaustéd and'thaﬁ\ S
the temperatu§e is 0°K; then, the varlous matter dlStrl—

s =

butions which ¢an have hydrostatlc equlllbrlum are found
One such equlllbrlum state %S“p0551ble for stars

rw1th a mass. less than 1.2 M@y[4]% In’thls state, nucleL
o ‘ Qu' .

rare well separated but electron shells ‘are’ crushed -

! 3

The pressure of the degenerate electron ga <n these ;

nWhitefdwarfﬁ stars balances the gravitaéZinal forbe.
For a’mass between 1.2 and'éjd M the stable

" state is that of a rneutron star..‘(Thisfrangeiis quite

e

uncertaln, and” depbnds on the collapse model and

';assumptlons of 1n1t1al states ). 15 ].' These\stars o
. | . :

have a’ radlus of about 10 km and a density comparable
. to”that of an atomic nucleus,4 Thenmagnetlc fleld and~ ,?

“rotation of these collapsed'stars produce pulsed.radio,

e

optical 'and x-ray em1551ons accompanled by acceleratlon %
‘of partlcles to relat1v1st1c veloc1t1es. These pulsars
most llkely generate grav1tatlonal waves. The Crab and

.Vela pulsars are examples of pulsars known to have been'

produced by supernova explosions. = N .

- S _ , e oo



'For a mass larger than about 2 M_, no equilibrium

configuration exists, and an observer sees the asynpto-

tic approach of the collapsing star to a certain radius

at,whichfitiappears to be "frozen". The collapsc is

accompanied by an exponential decay in luminosity.

The observer is a victim of the relativistic retarda*&.

tion of time. From the poiﬁt of view of a comoving

observer, the collapse is.not. really "frozen".at a

- . . K2

certain stage, but continues inwards; however, at a

C . N

star's-"gravitational»radius", photons are infinite' s

'red—shifted and any events occurring~inside'this radius

are inaccessible to an external observer.

-

The evidence for the existence of such frozen

stars or black holes is Stlll tentatlve. Using a,one'

sy

s meter long alumlnum cyllnder whlch resonates at 1660 ‘hz,

\

Weber [6] clalms to have found hlgh frequency pu¥ses

of grav1tatlonal ’adlatlon whlch have an energy flow of

order lOSAergs—cm /sec. Black holes 1n formatlon or

a

collls1on could be capable of produclng such grav1ta—~

tional radiation x1thout causing observable electro—

‘ magnetlc radjatinon. Weber s results are by no’.means

il

- confirmed.

‘Recent edvances 1n X-ray astronomy, coupled’to

'\

'prec1se optlcal data prov1de nmore ev1dence for collapsed

stars, a generlc term for whlte dwarf 7tars,2neutron

r

.

- ) .

P
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stars; and black holes. Collapsed stars may be dis-
" tinguished from normal stars by their'pulsations -
small objects generate short pulse'lengths.' Several

xX-ray sources undergo intenSity fluctuations in as .

&

short a time as 30 msec. Such fluctuations could come

from a collapsed object - Two x- ray sources that cgn be

identified with eclip51ng binary star systems in which

one of the stars is a collapsed star .are Hercules X- l

and Cygnus Xfl.

‘ﬁErcules il'haS:been determined by Cromptonaand
Hutcnings [7]‘td be an eclipsing binary St:r system%i”
which has a 1.7 day eclipse period. - The‘occulting
objectvhas a mass of 2 5 Myr and the‘x=rag source a

/‘mass of 1. 3D4 and a l 24 second pulsation,péiiod

¢
Giaconni 18] ‘has shown that rotation cannot be the

;

energy source; rather, accretion of matter onto the

X-ray source by gas streaming from the companion star

is the most likely energy source.

_Cygnus X-1 is more intriguing. Therintensity‘

'of X=-rays emitted often doubles in 50 msec, and there
His no prediétable.periOdiCity of pulses. - Optical ob— 5\\
servations‘indicate tnat Cygnus'X—l nay,consist’of a
lZ"Mﬁ supergiant,and a 3 M@lblack hole orbiting it

every 5. 6 days.v The'aperiodic fluctuations in x—ray3
intenSity prOVides the theoretical ba51s for this sﬁecu— -

\
lation, The 'reasons for- periodiCity and aperiodiCity



are sketched below.
| .There is good evidence for_"gas—streaming"

between binary'star companions, but no X—-rays usually.
’emerge A stream of matter falling towards a collapsed
object could generate X-rays because the - accelerated
particles would create "hot_spots on the surface of,
say, a'white dwarf star, which woulddthen radlate X—
rays. Radlatlon back pressure would temporarlly’slow
the stream, produc1ng roughly perlodlc varlatlons og‘
intensity. An exact perlod1c1ty would be assoc1ated
w’'th rapid rotation of the object. A black hole has

@o tangible surface to support‘these "hot ppots";'howf
.ever,‘éel!dovich has-calculated that‘the gravitatlonal.

e

field of-a black hole Qould-compress the particle'stream'

11 op.

until it reaChed:temperatures-OE the order of 10
The resultant radiation could have apériodic‘intensity_
fluctuations. The process_of xeray.emisslon is‘not_so
_51mple as the gas- streamlng argument suggests. When"
matter slowly accretes on a collapsed object from a
companlon star it is llhgly“that a‘dlsk forms-aroundv
the object Thorne'sand-Zel'douich;s associates have
’calcuﬁated the tlme averaged behav1or of the x- ray
‘spectrum for a dlsk type accretlon onto black holes,

and the results are characterlstlc of the spectrum from

Cygnus X—l [9].‘ o . : S l'ﬂjf,Q;



The diversity of evidence for slack holes is
not overwhelmihg; hoWever;'the evidence which I have
menticned has been harvested by astronomers in the

last few years.

,51'3 Spherical Gravitational Collapse

jin this thesis, discussion will be confined
mostly to ﬁhe gtavitatiohalbcoLlapsé of sphericall§'.
symmetric mattér distfibutibﬁs, or to spherical'shells
whicﬁ are qualiﬁative analogues to Sphericél‘matterv
diétributiQns in many‘reséects;]'
Tho;pe [10] .outlines the four‘stages involved

in the collapse of a star:

(1) Instability
., -~ Late in its evolution, a star consumes all of

its nuclear fuel. This-leads to instability through

an altered equation of state. V' <.
(2) . Implosion = .

'Inétapility leadé'to a rapid collapse of the
¥ ' . L _ - v .
dense core with a trailing outer envelope of matter.

(3) Horizon f

o The stellar surface Crossés theﬂgravitational“
radius in a finite time as measured by a‘co~movihg
observer. A distant observer sees’ the star asymptotically

S



approach its gravitational radius which defines a
surface of infinite red shift. This surface acts
as an "event horizon" which encloses a region of

space time which ,annot communlcate with the out51de

universe.
(4§ ‘Singularity
The collapse continues to r = 0 where density

and ‘tidal forces are infinite.

The implosion stage of collapse can be stopped
by fast exothermic reactions at hlgh temperatures. If.
a-star has enough fuel left to explode éuring the
collapse, it will cast‘off a'shell of matter; A star
w1th a mass greater than arouno 2 M cannot cast off
enough of 1ts mass to stop the collapse [11}; ,‘ B

The sin ularlty stage of the collapse 1s not

N

inevitable for collap51ng shells of matter as will be

‘Shown later. The shell may contract to a minimum
r;&ius;and then "bounce" or re- expand into another
reglon of space time.

Roger Penrose has con51dered a number Of\ObjEC—
"tions to the .collapse plcture predlcted by general
relat1v1ty and. sketched by Thorne above. - They are. as

:follows:
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(1) . Densities in excess of - nﬁclear den51ty 1n51de
the collapsing object could modlfy the equatlon
of state. : :  ' .

12).‘ Anvexaqt vacuum ié aésumed outéide'the‘collags—

ing object.

(3) Zero net charge and zero magnetic field are
‘assumed. ’ | -

(4)" ~ Rotation is excluded. .

(5) Asymmetries are exélﬁded;

(6) . A "cosmologicévaOnstant" isn't cqnsidered;

(7) Quantum‘effects are ignored. o

(8) :Ceﬁeral relativi£y is &argely'untésted.

(9) ~ There is no apparent tie-up with ébsérvations.

With respect to (1), at the event horizon, r = 2m

L, _8 2
== =3

For a large enough maés, the deﬁsity of the collapsing

object as it crosses r =~2m could bé small. Objectlons
»

" to (2) thr ugh- (6) are really only Obj ections to handl-
ing more‘gomplex syStems,, There"are_nowlexact.solutions

that include angular momentum (Kerr {12]), charge and
L Y . ) ) X ' - -
magnetic moment (Newman [13]) with the addition of a

'*cosmological constant (Carter [14]). It seems likely
thatesjmmetries are radiated away during'ghe collapse -

{Israel [15]), and that matter in the vicinity of a

-

black hole: falls into ‘it.



:pGr@vitational quantuﬁ effects would only manlfest
. themielves locally in-regionsvof high densitytand.cur—p
vature. " These conditions exist well ihsideda black
‘hole and ﬁay he»importaht in the»deep interior.
Experimental relativiﬁy‘is still in its infancy;'
however advahces both’ihﬂohservations oflcollapsed
objects and in tests of-the ;alidity of relativity are

.l

oh—going processes (see Dicke [16]).

51;4.,Summary'of the Thesis

The preceding ‘introduction to black holes and

toﬂspherical graVitational-collapse is pursued in

detall in the case of. the collapse of fluid and ddst

shells. o

Chapter IT develops the geometrlcal background

and analytlc extemSLOns which are requlred in dlscu551ng

L}

the collapse paths of thin. shtlls,_concludlng Wlth a

12

rather general discussien of the metric Which‘describes

~the external fi?ldjof a charged;Qspheriwsymmetric dust
cloud. | o ~
| Chapter III develops the equatlons which charac—v
'terlze the structure and the dynamlcs of thin- shells
In Chapter IV, the equatlonsAof<Chapter'III are:
applied tovthe case of spherical shells.‘ The'equations
of.motion are;derived for both non-radiating and radiat-

ing shells, and a continuity equation is introduced.

<



Finally, some qualitative features of the motion of
a collapsing sheé&}are discussed..
N f. Chapter V ihtroahces specific cases of collaps-
ing shells which do not:radiate The cases generally
1ncrease in- complex1ty and the chapter ends with a
dlscu551on of/g-charged shell[éollapsing ohto_a black
holef o 'v“f o t ‘ | _ ?b ‘ ——
Chapter VI deals qualltatlvely with thc collapse
of a radlatlng dust shell w1th constant charge. - The
ways in which the ‘total mass and the proper mass vary ,;°'
in the course of thL collapse are used to cast . the Af\\
collapse path into one of the cases considered in
Chébter v. | |
‘ Chapter VII introduces a new.topic which applies Q
to statlc or steadlly mov1ng dlstrlbutlons of charged
'idust with tqual charge and mass densities. A class of
statlonary‘solutlons ‘to the source free Einstein-
Maxwell equations is ocrived.

)™

§1.5 ‘Notation-Used in the Thesis “ ' R -
- (1) v Throughout the the51s, Greek 1ndlces run from 1
to 4, and. Latln 1nd1ces run from l to 3. )

(2) hguv is varlously called the metric tensor, the

fundamental tensor, ‘or thc graV1tatlonal potentlal

~
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(3) A Signaturelof +2 is used. This means that'in

~a line element |

2 .V
d = dx"dx -
s gUV ‘ _ Gy .

the sign of each of the terms is givén-by (+,+,+,¥) wﬁen‘the

metric is written in a localized diagonal form. For”example,.

‘d527='df2 + r2d82 + r25in2é d¢2 - dT2 :
(4) « For curves, r,8,¢ = constant. -
: For ds® < 0, the curves are time-likeg, . \>_
- Py SR ’
2 . g? v
ds” > 0, the curves are space-l kM?
(5) - "Geometrized"™ units are used in which c = ¢ = 1.
(6) Ih Chapters III through VI,
[X] means the jump in X through a hypeisu;face, N
x| T - x|, - e

- s

X means L(X| + x|7).

Any other use should be clear:fromcthé context.

-+

- (7) \.’R+ or r, and R_ or r_ are used to denote the

outer and inner event horizons of a Reissner—-Nordstrdm

\

black hole. S ‘ : v Co
(8) - om'p.33, £ = 3E/0r; £__ = 3%E/3r%; £, = df/3t.

. - NePe22y r ! Trr ! t : p
A’partiél derivative may also be written as, for example, -

. . . . . BY . L .

i
A

1 H

.
3 v

-



CHAPTER II

SCHWARZSCHILD AND REISSNER-NORDSTROM GEOMETRIES

L

§2.1 Introduction o . ' .

In this chapter, we_oonsider‘the properties of

the Schwarzschild‘solution and'the;Reissner—Nordstrom
solution with the purpose of applying these'properties‘
to the gravitational collapse of thin shglls. Various
analytlc exten81ons of the space tlmetmanlfold are

derlved in -order to ellmlnate co- ordlnate 51ngular1tles.

§2.2 Schwarzschild Geometry ' N

T

The“Schwarzschild solUtﬁon describes the external
: i
vacuum graVLtatlonal fleld o£>any spherlcal matter dls—
'D
trlbutlon. Slnce stars exﬁﬁtlt near spherlcal symmetry,

and since nonspherlcal S 7 LeMmS: tend to be mathematlcally

'1ntractable, lt is 1mpdﬁgant to understand the subtleties

The

which shows the collapse from a dlfferent perspectlve.

’ Ny

InAits original co-ordinates, the Schwarzsch&ld metric
takes the form .
2o @-2M7har? 4 %ae® +sinfe a0®) - (1- 2 ar?

(2.1

15
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»

where r is the radial co-ordinate; 6 and ¢, the polar
”hnngS. Uho metric is 1nvar1ant under Lranslatlon of
the time co- ordlnate, T » T + const. And reflcctlon,

ST =T, In geometrlzed unlts, m may be 1dent1f1ed with

the body's'mass. Spheres of.cohstant r and T have.an
MY
intrinsic surface area of 4nr2. The fantastlc nature

of some events durlng the collapse of an object, is._ leSSv\

,mysterlous once the external space -time geometry is

explained.
When r = 2m, g44.vanishes,'gll becomes‘infinitet
and the metric form (2.1) breaks down; -This radius,

r =-2m, 1s called'the'gravitational‘radius of the body.
= g44dT <0)

2 2

. W : . -2
Outside .r = 2m, curves of constant r (ds

are time-like, and curves of constant T (ds“= glldr > 0)

are spaCe llke. Inside r = 2m,.their roles are reversed.

~

.

"The pathology of the co- ordlnate system at r = 2m is not -

a phy51cal 51ngular1ty,. ather, 1t shows the 1nadequacy

of (2. l) in- descrlblng the entlre manlfolx.v The Riemann

tensor does not become infinite at r = 2m: tidal gravi-'

'~tatlonal forces are flnlte. An observer who follows

the collap51ng body 1nwards enters a space time reglon'
that is not covered by -the (r, 6 ,0,T) co- ordlnates.
In order to solve the problem of the co- ordlnate

system's not coverlng all of the manlfold various ex-

ten51ons'w1ll be consrderedt Introduce a new time co- .



ordinate, u, such that u is constant along the path of
- any outgoing light ray. 'In the (r,6,¢,T) system, a

radial, outgoing light réy_sati@fies‘

de =.d¢ = 0
ds?= 0
<:\qi dr > 0 ;
dr N : . ”
k aT > O
it ]
sO .
7 .
dT = dr .
- A

-1
du = 4T - (1 - grﬂ)‘ ar
or
u =T - {r + 2m ln-(E; —‘l)}

in terms of which, the Schwarzschild metric is -

2

)

as?= -(1- Byqu?- 2au ar+ rfae’ | (ae®=ae’+sin®0ae?) .
| “ (2.2)
.By introducing an "advanced time", v, such that
a8, '
/e ' (1 - =)

r

(2.1) is transfofmed’to the Eddington-Finkelstein form



—

z
2 ar® 2
ds® = 5 +q& di” - (1 --=—) 4ar
m
(L .- =)
r~
4
= (1 - 2y dr L gp] —dr___arl + r2a,2
Pl - 2 (1 - 2
; . r rl-
o
= 2avdr - (1 - Mav® + et L (2.3

These co- ordlnate systems cover the.. ‘range 0 < r < o
w1thout becomlng 51ngular,>and,,taken'together,‘they
cover the entire time range. |

In tracing*the oollapsing surfaceinéing metric

Y . .
form (2.1), ono flnds that the llght cone of a co- mov1ng

‘observer bends’ inwards w1th the collap51ng surface,b

pulled by the 1ntense grav1tatlonal field. - An external

observer is still confronted by the "1mpenetrablllty"

"of the Schwarzschlld surface.. . This surface, an event

horizon, 1s in ‘Penrose's words, "the absolute'boundary

of all events which can betobserved.in_principle?by'an

¢

noutside,observertuv[l7].' Tho\qo~moving observer's

world—line must remain'timeélike4~however, a time-like

‘ world llne transports him to regions of decrea51ng r

L and 1ncrea51ng tldal forces ‘that are generated by in-

. . 1
crea51ng curvature. The 51ngular1ty at r = 0 1is an

1ntr1n5lc phy51cal 31ngular1ty, as 1s ev1dent from the

7

1nvar1ant scalar,

R(LV'BY(SR T r—6 :

ofByds 4.8m2 o T

18 -



what happens to'the3matter\{§ the vicinity of the.
. , o , ] 0

singularity is an interestiny§ problem which will not

pé considered here since the theory of general rela-
tivity is not applicable.
”ﬁmgifher‘of.the co-ordinate systems (r,0,¢,u) or

(r,6,¢,v)uéovbr the entire space r > 0, - < T < = by
themselvesﬁ] Eor general geometries, the'best situation

4 3

is a system 5fﬁaverlapping co—oré&nate7patches'which ~—

alléw all of the geometry to be probed. For Schwarzschild

geométry,'a single ¢fobal co-ordinate patch wa$ developed -

by Kruskal [lé]. Th form of the.metric differs
frdm'thé &Fe¢v) form by'fhe'transfqrmation‘uf§ -v. u =
const. defines a’SpHeriéally_éymmetric oﬁtgoingCOr
exploding null hypersurféce; whereas, v = const. definés.
mjg spheriéally symﬁeb%ic.;ngoingAOr collapsing'ﬁpll hyper— ‘
: surface- To'constructva:éingie global patch, first/tryi

\u,v,6,¢) as a co-ordinate systém.
I'é . .

.

Cov-u =_2{r'+-2m.2n (=

5= 1)} ‘ .’ . »v(2.4).
v+u = =27 , o
2 ‘2m

and ds

-(1 - 3?) dudv-+lr2d92. ,-ﬁf

Unfortunateiy; the d:lgfmihént%ofog vanishes at r =2m

and the metric is singular. Rewriting'(2.4) as



expl 28y = 1 - 20 (Syexp(E) 0 (2.5)

T
we see that (2.1) may be written

2m, -r/2m

as? =-(2he du av.+ r?an® (2.6)
‘with U '=,¥4me_u/4m , V= 4mev/4-m .

" That this metric form is ﬁ%nsingular for all r > O is
clear from studylng r as a functlon of U and v [19].

/The Kruskal metric (2.6) has the follOW1ng pro-

perties? v

(1) f. Any llne of constant Ued or V6¢ is a null llne
(2) E The metrlc 1s not deflned on the extreme top and
bottom shaded reglons of flgs l to 5. In theee reglohs

bgv/ 4m) >1 and r and gU are not deflned

.(3) - The boundary lines,UV/(4m ? =,l correépondfte.
'r = 0 and afe true Singﬁlarities of the manifold.
“(4) The transformatibns
. R o 1
U = —4me T/4m r/4m (5; - 1)
b AN m -

SN

~

v = 4meT/4m‘_er/4m (g; R
<« . ' - A } m ) . .

show that figs. l to 3 1llustrate the domalns of regularlty

of Schwarzschlld s co ordlnates, (r6¢T), "retarded"
Co—ordlnates (r6¢u); and "advanced" co ordlnates Az, 8 ¢ v)

- . M . . . . o N
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Figure 4. A statienary ohserver's world line
at gonstant ri i is shown (UV =
const. - 0)-. ‘ '

lFigure 5. A hyporsurface r = const. < 2m ™
ST ~1s shown (UV = const. > 0).. Seen[l9l.
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OthervprOperties of the Kruskal system are néted ™y
figures 1 to 5. For a more detailed discyssion, sde
Misner [20].

§2.3 FElectrodynamics in Relativity

s The ReissneffNordstrém solution differs
-phé Schwarzschiid,solufion in that’thé'spherical ﬁatter
distributidb also.has aﬁ electfical_charge. fore
vdispussing’Reissner—Nofdétrém geomeﬁry, the’r le of
electrodynamics in relativity_théo;y must be examined.
In sbéciai“relativity, electrodynamics'is-Chérac—f
”teﬁized By'thc stress tenso;;
¢ = L (phup
v o 4T va

Cvoaf

. R .
-% sMF PP | (2.7)
where the electromagnetic tenéori‘Fuv, may be determined

from a vector potential, AU' by
Foo = A - A L I (2.8)
‘In terms of'familiar field variables, E and H, F is

the matrix
Nt

0 <E . -E = =-E
X Ty z
o .
B, O H) o -H -
F o= | . Y : , (2.9)
2V ' . '
| H




The va satisfy Maxwell's equations:

F . + ’+ = . : . . . _.
UV, A ka,u FXu,v 0 . (2.10)

:'F“vnvl= J"¥ where J¥ _ four current . ©(2.11)
. 7 .

Extending these relations to apply to general rélativf@y,
the F will satisfy
SRVEY _ .

i

F + i .+ = .

_uvlk FvA[U qulv- (2.12)

T R (2.13)
-The covériant'deriVativc,'indicéted by "| or ;" along

with other mathematical operations and entities such as
Christoffel symbols are discussed in Chapter III.

One can show that since

; o QL

F . =F - F . T7. F
ST v A LV, A avrux o VA

S . . A
that (2.12) is equivalent to (2.10).

Using relations

pHVY - pHV £ FUVTH T pHaRV

I" sV , [SAY) [eAY]

.GVFU = 0 B
av

v _1 ;

ruv = 32g 9

g “,0



(2.13) may be shown to be equivalent to

{v=g "} = /=g s . - (2.14)

(2.14), and (2.12) or (2.10) are theugeneraf relativistid
. : : K \
statement of Maxwell's equations.

Q N . ":‘ '/\
| o | e
§2.4 Reissner-Nordstrom Geometry \
T |

The Relsener Nordstrom metrlc for the external

field of a charged Sphtrlcally symmetrie duvt cloud is
.'glven by

5 o2 ~1 ‘ . 2 5

ds®= (1- .2}1-‘1 +S5) ar?+ r?ag® -, (1- Do S yar® (2.15)
: r S r ‘

‘where it iS-aseumed that mass and charge are constant.
Thls co-ordinate system becomes singular at two radll,

which are found by settlng g44 = 0

!

r o= m+ (m°- e?)” for |e|l<m

r = m}—'(mz- e?)”
. ‘ t ‘ | .
Thus, where |e| < m, there are two event horizons.
Wwhen |e| = m, 944 = -(1l- m/r)z} and there is only one . .
. ! o N . ) N ‘l ] . .
event horizon at r = m. For |e| > m, there are no

event horizons.
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1

The metric (2.15) ﬁay be transformed té a
Kfuskal—iike system that does not become pathological 7
at r, and r_. The apalytic compleéion of the Reissner-

NérdstrSm manifola‘has'been done by Graves’and Brili

. for e2<:m?.and by’Cértef‘for e2= m2.[2£]; What“fallows

is. a -summary of their arduments by de la Cruz and Israel

R U
[22]: o | o ¥

Case 1': e“= m“ P ¢

In this case, the Reissner-Nordstrom metric

becomes C

, o m -2 S m2. o

as® = - BHTa? ¢ fae® - o =D %ar? L (2.16)
The. co~ordinate, T, is now timeflike'(g44 < 0) for all

'r. In order to deal with a time range of - < T < =,

introduce an angﬁlar time co-ordinate, 0, such that

"

NERE

T L
EH— tan 6 . 5 < 0.‘<
»(This‘6 shou1d not be confused with_the_polar angle 6 which

arises in,dQ ). The extended line element

P -2 5 : m 2
cas® = 1 -0 Tar® + %’ -an® (1-D 7 (@ tan 0)?
o ‘ (2.17)

représents a space-time which has a singularity only at
r =0, and is periodic. The r,6 map breaks down on

linesﬂr =m, 8 = (n+—%)ﬂ. That r f'm'is a regular part ' ]
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~of the manifoid can be verified by expressing the line
s N . : '
element in a form that is regular at r > 0:

%

. ‘ 5 . _ .
ds®=2avtar- (1- 0 av'? + r2qp? (2.18)
where advanced time v' is related to r and T by
: ' . L —2 :
dv' = (1 —_;) dr + 4T , - (2.19)

| In the-v'; r chart, followuany incoming»radral
nulloéeode31c v' = const. originating in a regionlr> m
to,r =0 (fig. 6).. ThlS chart prov1des a regular mapping .
of two adjoining regions, Ia’ and IIIa. By analogous use.
of a retarded t;ée parameter, a chart for IIIb and Ib;-
can be constructed. A repeating chain of overlapplng'

,

co—ordinate:patches,alfows;one to follow any null or

time-like geodeSic to r = 0. - é;y
Case 2 -“e2< 2 (Note: r,=r ; r.=1r )
- =T Tl e 2T - .
' E . . . ) . .
- In this case, the quadratic co—efficient f(r) =
2
(1 - %?v— S?) in the- Relssner Nordstrom metrlc has real
r . , .

unequal factors

2

- (t—r+)(r—r_) ) _ . -
f(r) = —> 0 <r_<r, (2.20)
' 'r T ' ' -

Incoming and‘outgoing'radial null geodesic have

equations v = const., ‘and u = const. where -



(2.21)
S (2.22)
hY
o
Y (2.23)
Intcgra?iéh-of (2.21) and (2.22)'yicids , ‘V Ry
,_.r2 / 2 . B
L4 Rnl —l[ - 2 Rn|1;~7lf = k Znjuv] (2.24)°
7 , p, 7 b= kanfuvl G
T ='}ya;ni§‘|_ o - R (2.25)
Consider the chart Uy, vy thainea by setting k = k,=
5 R o ‘ .
rl/(rl—r2)w- From . (2.24)
~ ‘ —r2/r2' r,-r
(X _4yX _ 2771 1 72 o -
V1= (;— l)(F~ 1) exp[———j— r] , Kr »,rz) .
. 1 2 ry

(2.26)

1There'isvno singularity at .r = rl. (ul;vv) gives a
regular maoplng of a subreglon of the manifold which
has r > r,. A co- ordlnate SLngularlty does develop at

r = ry however, and it 1is nccessary to;go over to another

chart before that happens. . o ' ;

. . . N A . o
) . [ o Y
@ -2‘4 - : ! ,‘. ) N
a . { ! .
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‘Figdre 6. This is a dlagram of the extended: Relssner—
a Nordstrom manifé&ld for e = m. Dashed lines
represent radial null geodesics.’ The time-

like curve KLM represents the hlstory of a
thin-shell which implodes in Ia, reverses
its motion at L after passing through the

'~ event- horizon at r = m, then re-expands - 1nto
Ib. This dlagram is.from [21].



~ Figure 7.

This diagram shows
Nordstrom manifold
indicate outer and
This may be called

the extended Reissner-
for e<m.  r, and r_
inner event horizons.
a Graves-Brill diagram.

30
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Define the chart Uy, vy) by'seﬁting k
2 :
"/ (ry

Ky
r,) dn' (2.24) and (2:25). Then
' —rl/r2 . r.-r
u,v - (L""l) (1~ 'r—) expl- 1 2 r] (r< r.) e Ty
272 T - r: ‘ T2, oo R R
2 1 . 2 ,

Vi
ER
-~ | ‘. L J/
and ‘this provides a regular covering for any. subrcgion’
with r«< ry. "In the domain of overlap, r,<r <r
charts are related'by

, thel. >
A
20 2 2 2 |
1o TR I T |

R I L A A B AP | (2.28)

~
-

/ R R
‘The éomplete manifold for e2<<m2 is a periodic latticé
of alternating’regions of type I (£> ri), type II -
._(r2< :<‘rl) and tYPe-III_(rf<?27j. Fig. 7 shows the

;Eresﬁlts of the preceding transformations.*

e

§2.5 A Radiating Reissner-Nordstrdm Metric

- -
The Reissner-Nordstrdm metric for the external

field . of a charged, spherically symmetrickdust cloud
has been given by /

. o 2 -;l'_ f‘ _
L@sz==(l“%?+97) ar®+ rlan? - (1- 28y
r : ‘ : .

e5ar?

By making”the.mass and charge functions of a retarded

Lo
time; t, the Reissner-Nordstrom metric is'tranSformed



. . . .
“ Ao

“into its radiating counterpart. The general form of

~such a spheri-symmetric metric is given by [23]
- . & '

2 2

2an?

‘ds

~F(r,t)dt? . 2drdt + r
| ,

= - - 228602 _oparar + x2a0? L (2.29)

S C ‘ ‘ : ' . )
If F(r,t) = 1- 2m(t)/r, we have the gase of a radiating
v .° R s

Vaidya metric, which was\fealt with by Israel [24].

-

For a radiating Reissner-Nordstrém background,

Flr,t) = 1 - Im(t) | e (£) . Y (2 30y
, r L2
. r L
o L 2 . : : -
f(r,t) = 2m(t) - S é?’ _— i : (2.31)
- . : - .\ S‘ﬁﬂ . . -

. For future }eferenCe in" calculations, we write I
5 ST T 4 » S 8
e out explicitly the components of the metric (2.29) which

% ) . L . - . - . :

Y are the gravitational potentials, or fundamental tensor

e

. ol = [0 o '_5. -1
: ] o x? 0 © Q‘b_ s (2.32)
) 0 0 rzgin.e 0 |
-1 0 0 ~F |

A



o
i Y, 3 | -1
g™ F o0 0 1) = e N
0 iz 0 h
T (2.33)
0 0 L 0 "
'J, r°sin“e
#\\ ‘ ,
-1 0 0 0

5

A dlfferentlal form calculatlon
- »
for components of the Elnsteln tensor

rLz'f.-o YR
e r : .
Sxoe - L
c% = 0 L o o -t (2.34)
B. 2r “rrx . o -
. 0 0 L 0
2r “rr
1 - 1
-z E 0 =i
\ r by 7
The energybtensor takes the form
TR 1opudy 1 %o _ap .
T ARTTE, 47 [F :Fva T vFaBF ] n(2'352
| r .
g H const.

is tangent to the out901ng nulljgeode51c t =
)

and A will be determined from (2.34) by applylng //

Elnsteln s fleld equatlons.; The second term on the

right is the electromagnetlc contrlbutlon 'T“v‘ repre¥

,sents a radlatlon—fllled exterior region to a spherical

C—_

33

(Appendix 1) gives

C .
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ehelliwhose.mass and charge change as a function of t
. as a result of redial:radiation of particles with the
speed of'light.
If we assume a‘vecto; potential
| i
A (t) = (0,00, &y o (2.38)
B r v . |
where _
| S 3 ) 3
- = A-\. - .
FU\) V,H H,V o ’ ) . v ( 7)
and'apply Einstein's equations, dsing (2.34), we get
Ti - Ti = - 9_<%> L . (2.38)
oo 8nr
2, B, T3 = e? (t) , ' o~
2 3 "8ﬂr4 . - (5.39)
- : .
1 1 ﬁ\(t) e (t)&(t), _ R | L
R S it B

44

r

w -
4 -
'd B \

-
CUE

Once the mechénism'forvdiscuSsing the collapse -

"of a thln shell h@s been derlved in the next Chapter,
.the results of—géctlons §2.4 and §2 5 will. be applled

to the case of.a charged dust shell in both a statlc

.~and a rad1at1Mg Relssner Nordstrom backgxound.




CHAPTER ITI

GENERAL SHELL THEORY

§3.1. Introduction

Q " The feééefes of spherical gravitational collapse
are preserved when oee'considers>ﬁhe collapse‘ef an
infinitesimal‘ehell of matter, a singular hyperSﬁrface.
Compressing a cleud of,dustvintoea eheiL results in
jump'discohtinuities) and one'must consider thefjuhe}'
tiee cohditioﬁs at the aiscentinueus surface. ¥ In
Newtonian-theory, ﬁhe j.ump diéeontinuitiee'of the
potential and its fi?stsderivativesiare calculated
across the»sﬁrface.'fin fela£iVity tQSerf, the eontini
uity-of the gravitational potentials depende on‘the
‘emooﬁhness with Which tﬁe ce—ordinate;system being used

?

covers the space time manlfold In order to av01d the
3
1capr1ces of wvarious co- ordlnate systems,'we characterlze

o

/the hypersurface by the extrinsic curvature of its Y

embedding in the four ‘dimensional background Rlemannian'

R

'maniﬁold. - : R - -
j'§3.2 A Description of the Shell Hypersurface
"é Let § be a smooth, time-like hypersurf-ce embedded
iﬁ/a four'dimehsional Riemannian manifold, - dividing .

it into two regions, V_) the region interioz' to the
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surface, andAV+, the'region exterior to the surface.“;“'
V has cofo:dinaﬁes x* and metric tensorféaé,. Z,.has 
intrinsic co-ordinates glvand metric tensor 9i5° The
extrinsic and intrinsic co—ordinateg are related by
some function N
N (R LA . S 1 D I
An infinitesimal displacement in J is given by
- "i a P ;
ax® = 22X ggt =z e, acgt . (3.2)
. T (1) ; :
sET e C
or by
= i '
ds —lg(i)dg (3.3) .
where we_have introduced three_lineafiy indgpeﬁdent
tangént'base vectors_g(i) whose''components areb
a  0xa _ : o v — Lo
e(l) = —_i— - . - . (3.4)
: 9g S
The metric of ) is given by
d = ds.ds = e,.,-e,.,dg"d : oo
s7 = dseds = ey eyt T B
- ied S
where. .
C 913 T S tEGy T %51 IR
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The following éntitics and operations provide

information about the structure of the hypersurface:

1) .Reciprocal'or“Duél Base Vectors

v

The' dual base vector is defined by

o™ sy, o G
where

iy, BN | v

211 2 egy 117

i3 _ i :
9779k Ok i
g = det(g i5) 7
, (1) o o gb L) e
~ Since e _(j) Uoj , E" L (j) , i# 3 .

. tangent tovi.

©(2) . Vectors in",

’The dual.base Vectors are llnearly 1ndependent vectors

A : ~£~ i
&

K

L

v

‘Let A be any vector. tangent to Y. We can write

A =2Pe,_ =A e(p) e

‘where Ap are thb covarlant components of A, 'and Ap the

‘

'-‘contravarlant components.ﬂ The. metrlc tensor, g and

i]
i

' Qits 1nverse, g -, are used to ralse and lower 1nd1ces.
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-
(3)" Affine Connexion (Christoffel Symbols)
‘;ftf}Define
N ' ‘\P}; = g(h)- “_(l) = _e:(h) -—J__(l) = Phl (3.8)

where'ag(i)/-agj is the absoluté or intrinsic derivative
of e(i) defined w&th'respéct to the four-dimensional

— : # .
affine éonnexion. ‘Another wéy.of writing P?j may  be

found from

B o)y _ 8 h
e ,ye ™y = 2 sho g
BEJ (1) agj i
. (h)
() °Sy ’e
—_> 9 - = e() .
Thus L
L o ()
I'i. = - E(i). — (3.9) -
A second Christoffel symbol, r, ;. is defined by
9e (5 o
r. .. =e - (3.10)
2(13 =(2) 853 . )
It is related to Iy« by ;
h _ ho e
iy = 9T, s (3.11)

and may be writtén more- explicittly in terms of the

gfavitational‘pdtentials (metric tensor) as



Ty,
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(4) .~ Intrinsic Differéntiation of a Vector

The intrinsic, covariant derivative of a vector,

A, with'fespect to £¢' represents the projection of ‘the

‘derivative of A on the hypefsurféce, ).
: [ - . v

SRR
XN

. Let A(y) be a vector tangent to } and defined

on the curve £% = £t (y)

A = atye, (3.13)

B e .. + Al ST (3.14)
dy T & —(l)j" T

Now split déﬁy)/dy into ‘components tangential to )} and’

perpendicular to ).

daly) dn,  aa
dy [ ]][ ¥ [a§]i“

-

m‘OﬁlyAthé parallél component is accessible to an obser-

. ver on the hypersurface

. h | da aa
14 - e(h).[_:] = e = (3.16)
Wiy T W@y s A ;
o ©raahy h e iy ap3
| (@™ _oaa i) %) as
o | | 3E
da . dAa h i dg
(3.8) — [a‘y] - C R
| 4
Al

i

P . T 3amn



The intrinsic derivative of a vector A with respect to

14

- (3.18)

a parameter y is written
sal _aa" | nnioagd
sy -4y ij dy

The intrinsic derlvatlve of a nontangent vectdr'may also

be defined, -and represents the projection of the derlva—

tive of the vector on Z
. ¥

(5) Covariant Derivative of a Vector Field

J

For some value of i, let_gl =

“iah h ” - q
QAI-E Ahli = éé— + B ApAﬁéf
8§ sgr  PT o ag
. h L S - ' |
= éé_ + B, AP | o £ 3.19)

ag™t pi
- which is the covariant'derivative of the components Ah
of vector

h
A = A e(h)

Similarly, it may be shown that

oA

. h P, ' . .i | ST S
A, ., = —— =T A .. - g (3.20)
h|i ael hi “p o e
(6) - Extrinsic 3-Curvature

Let g-bé a space-like normal to/}pointihg from '

V_ to V, with properties e

5

40
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sn® o ' '
n — = 0 . by intrinsic differentiation
gl , ST
— 1 n_ |. (3.21)
sgt % B o ¥ -

The Chrlstoffel symbois, and the Riemann 3-tensor

~ defined by
J\a . .
h . . h _ . .h % h _ . _h
RUk = 935k %13 * Tiklps Iy Tok (3.22)
depend only on 955 and its de}ivatives‘— all intrinsic

quantities.: Properties of a non-intrinsic cheracter
are gived by the way the hypersurface “bendé" in the
- background manifold; that is, by the way that the normal

varies with respect to the intrinsic co-ordinates.
The extrinsic 3—curyatupe, Kij,vis defined by

-,

a : .
b owdelyy, o - . (3.23)
8¢ 3 . S .
o ana_ | e’y 'aé%i)
—> K, . = = -n —3l = -n 2 (3.24)
. ij (j) g <o 351 . a..agj
(7)- VGauss—WeinggytenAgguatiens; Gauss-Codazzi Equations
From (3.19), (3.24),
AT | pd - atk,.n®* . . (3.25)
3 (1) Tig ST
5

'TheAGauss-Weihgarten“equatiq§s (3.26), follow from .(3.10),

(3.24) : J o
. ‘ e



A
s N ) -
) _ k. on® D e . (3.26)
é{] ij . 1] (h)‘ ‘

Given an é(u,v) defined on x* = <" (u,v), the

Ri¢cci commutation relations are

(= & _) RSN . x (3.27)
Ju gv AV osu’ — Sy u oV ST

Taking /4% of (3.20), and using (3.23) and (3.26) along

-

with the Ricci commutation. relation yields the Gauss-

. Codazzi equations

’*?. : : ) / . -t N - . . .
oo By § _ o | g L o
Reiye® (@) ()1 (@) = Ravca ™ Fackpa ™ Kpckag)  (3-28)
” - S _ o . -
Rapys™ © %@ %@ = Focja 7 Kpaje) - (3.29)

Multiplyihg (3.28) by gbcgéd, (3.29) by g?d; and using

the ro.laticn

b B Ay”'-; By _ _EY
N L(b)é(c).ﬂ>g .= n"n!

(3.30)
yields SR

R-K_ K®P+ kS = -26 0" . (3.31)

(8) Surface Energy Tensor
If the 3-tensor defined by

Y.:. = K.. - K.. R ©(3.32)
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is nonzcro, the hypersurface represcnts a thin shell.

The Lanczos equations i »
- o _ v S 4 ‘ .
Yij _gin 8ﬂSij (y g Yij) /',ﬁ<3'33)-
S ‘ ij 2 “ij . P :

definé‘é symm;tricftensor, Sij’ called the surface
enerqgy teﬁsor. The surface cnergy tensor is the in-
tegral of the Einstein éensof aéroSs tﬁe surface layer.
This'may be shown as foliows:

Let the surface layer defined by boundéfy
surfaces ) and §' have thickness ¢ where ¢ - 0.

Using Gaussian co-ordinates based on E— 5

- o 1 , . ,
) isicﬁéracterized by x~ £ 0, and z+.by xl * €, The "
extrinsic 3—curvature‘is given by

4 A : ' A
o L1 3 I; 4 : _ .
SEIL S o (3:39)
and : . ’ , , '
’ 4 aKiL o . ' o
"R, % ———Il'+ Z. . : o (3.36)
13 7 3¥x 1] : : - ' ‘
where .
g+, = SR,. - KK,. + 2kFK__ .. (3.37
vfip ij 13 1 pj :
. _ _ .o_ 1 i -
Intsgrating RaB = 8ﬂ(1a6 5 gaBT)(a variant of Elnstelp S

field eqﬁatioh) through the layer gives .
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y jk 3 .
e 1 N ST S IO S 1 :
8 J (Tij 5 gijT)dx‘ [“a 1 dx™ + f Zijdx - (3.38)
0 .. 0 9% 0 :

Both Kij and.3Rij‘are finite as € + 0, so the last
integral on the right #ide tends to zero.
1 + -

€ .

. _ 4 1 * - _ . )

.. 8w J (Tij 2,gijj)dx fud Kij K..=v... (3.39)
5 .

By comparing (3939) and (3.38), one sees that

o )
€ .
. : 1 ' ‘ '
S.. = 1lim T, .dx . 25 . 3.40) .
i ) J Ti5¢ [25] - ( )
(9) Jump Condition for the Eleétromagnetic Field

The method just demonstrated of integrating

‘th:ough‘a surfacé lgﬁgr'Will now be usedlfo determine

bthe jumpbconditién‘ofitﬁe eiec£romagnetic field'pré—

- duced by a.charged surface through the'suiface.' Again,i
let the éurfaéé lafer defined by J~ and.z+ have thickness
¢ where ¢ >0, and use Gaussian co;ordinate based on Z—.%7;
Thevjump‘condition on the field is fodhd_as follows: .

For a charged surface,

—

:nglv = Ju_'inside the surface
- o ‘ . .‘- ) l * + .
) is characterized by x~ * 0; J. by x

ting from §  to 7T,

€ ‘ i SN .
J F“V!del= J gHaxt



FHY = MY pOVPH 4 pHapy
. | v ;Y .

oV av - ' o (3.43)

- a- ' h . !
The l;kt\two termsoon the right are finite as € -+ 0

SO
(3.42) is equiValent to \
£ : £ .
R : ol ’ .
- J FHY vdxl = J JHaxt ! (3.44)
. Loor .
L0 ' o . .
o ER e 2 3 el g o kel L (3.4s)
3 rl T, 12 '13 ,4 .-
0 N4 0
‘The last three terms“on the left are all flnlte acros..
“the surfece =~ the fleld and hence 1ts tangentlal deri-
vatlves are finite through the surface - therefore,
thelr integrals tend to zero
L J F“;i axl = ['Judxl o - ’ (3.46)
— EMy =‘J shaxl s
) : }

where [F“l] means Ful‘evaluatedvat Z+ minus FH1

'evaluated at J~. since FMV

“ishskew symmetric, jl= 0;
therefore ¥ = ] agH B (a$2,3,4).
_ AlsoL in this co-ordinate syetem
n, & (1,0,0,0) . - s (3.48)
, ' _— @ ! :
KO = =+H
‘E [F na]" 3.

(3.49)

: (3.47)-
5 _ ,

45
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,ep(a) are components of unit tangent vectors (dual base
vectors) to the hypérsurface.- Multipliﬁmg both sides

3.4 ’ | i
of ( 9) by eu(a) y;elds

HQ = jH¢ . .- .
Fe @) =3 %@ -~ - (3.50)

In this form of the equations, both sides are 4~

scalars which can be evaluated in arbit. vy 4-dimensional

co-ordinate systems.

§3.3 The Shell in Motion: Equations of Motion;

Continuity Equation

The Cdﬁcebts introduced in §3.2 will be_ﬁsed to
determine tﬂe equations of motion cf a‘collapsing shell
and t®» derive a continuity équation»descfibing the
enérgy'flow from the surface‘layer.

3

The jump of (3.31) across Ehe.hYpersurface is

: a By _ - ab .2 l+_b _w  wab, 2. 4- ‘ ‘ »
_2[Ga6n n"] = (-K_, K""4K ) | (~K_ K™ +K ) | from‘(3.3l)
- : ._,_v ) N N _;L‘ + _
= [K pIK p+ [KIK (where K,p,= 5(Kap * Kgp))
~ab Lo~
= —YabK ’f YK
L o ~ab
= =y, T YIplK
= grs_ k2P . ©(3.51)

ab™ . ‘ ’ ®
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By comparing f%.Sl) w;th GaB i —SHTaB,
. . A} :
Leabz a By - o .
S Kab .[Tan n}] . (3.52)
\

From (3.29), (3.32), (3.33)

sP = Z[r e® nf

Salb = [Tqﬁe(a)n ] »(3.53)
An ideal fluid shell has a surface energy tensor

s3P = (¢ +P)uduP + pg?P | . (3.54)

L

where ¢ is the surface enefgy deﬁsity; P, the surface

pféésur¢; and ua, the 4—Vélocitj of an observer on the’
surface. | | |

(3.52), (3.54) — & u?® =L (7 %P1~ pR) L (3.55)
- o ‘ . (o+ P) 4 : :
(3.33),(3.54) — vy o = ~gmew D) . (3.56)

-y
The ,4-acceleration of an element of the'sheil is (from
3.25),

%%— = e%i)uTjuj - naKijuluj PR - (3.57)

i
Since motions of the shell are in a direction normal to
the snell

-
’

éua i s . . ? e R
n 22 = —utulk. .o . (3.58)
o 8T . i3 , -
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from which,
Y - v ‘
g &7 | ~ Pwst | T 7YY VYap (3.59)
+ . o, - C
dua . 611 _ a b~
Ny 37| TR TT| T OTRWUWEK,, - (3.60)
From (3:55), (3.56), (3.59), (3.60)
e o g
. ou _ 9 -
[n, j55— ‘__BW(PW+'2) . - (3.61)
su® lﬂlk - Ca B : R
ny T = (0+P).{PK - I?aBn n"1) . . (3.62)

O Either (3.32f or (3.61) and (3.62) may be dsedv£o~deriveg
the equations of motion of the shell. Multiplying (3.53).

by u? yields alcontiﬁuityvequation;

s a, - ..a _ a B o ,  "
SL.(uu )Ja_f Pula = [TuBu nw] f . 5 (3.63)

-
1

- .

This equation ,will be eValuated for a charged, radiating:

shell later. o



CHAPTER IV

SPHERICAL SHELLS

' §4.1 Introduction

S N o '

ﬂThe_equatibns which wefe derived in the_lest
~chapter will be applied to the casc of é spherical
fluid.ehell. We then ailow}the ehcll:to havereharge'
and allow fbgythe possibilileoferadiation, In Sther
words, the shell is embedded‘inve fadietiﬁg Reissncr-
Nordstfémvbackground.; The Fquatlons of - motlen of the
;Kell lg such a backéréeﬁe ;re determlnea, and the
qualltatlve features of the motion of the collap81ng
.shel;,are discussed qelng the Graves—Brlllkdlagram

introduced in §2.4.

-84.2, Equations of Motion for a Spherieal Shell

A shellyof'radius R(t) has metric

as? = R%(nae® - a0 .,

" with components

) .

i

v

The. intrinsic co-ordinates are

Al
1

(8,4,7)

By .
-4\. . L)




wfu_ = -1 . o | (4.4)

For' the- backgroumd space time metrlc, we. shall ‘use the
general form of a spherl symmetrlc radlatlng metric

E which was 1ntroduced in §2. 5

-, as’ = -F(r,t)dt’ - édfdt + rqu2  | (4.5)
»,&ith comédﬁents-(zg32) and (2.33).
onfﬁhé'Shell, |
- —rat? —;édtéqr + R2a? . : . (4.65
f;iéﬁﬁ also
f“gélf‘f' as? = nan? - ar? . - e
Thué, equating‘(4.6) ana (4.7),”
;drz = th? +-2dtérés . ,' 1  1 ;i; o (é;B);

Dividing by_drziand s§1ving for. dt/dT;,



Lo

% .:‘ ": ’,-.L } .
S ,
VA : 5
C: dt _ - R «IR%s P

-
1

.= (x,0,0,-R) *, n”

.

s
1}

-

W
X

fwhgréﬂx is$ determined as fdllows: S

"

T
. —' FX° + 2XR = -1

~Solving for.iX . - .

. -'_ 3 ' ‘ -
Ty - - R+ R+ p ~ R+ T .0

Comparing with (4.9), we see that
dt _ - R+ R%+ F
X.: _— = v -

d'[ . ¥

(R(1),0,0,%X) , U, = (-X,;0,0,~FX-R)

i . o
= (FX+R,0,0,-X) -

4

(4.9)

<4._‘14)

If we assume that’the”shell is én;idealUfluid

surface energy tensor - -

-

 shell with

ig i3

= (q:f P)uiuj'+‘Pg.

Ty ’ .

(4.15)

‘the eqhétiqhs'of_motiOn.mayﬁbe found either directly

from ﬁherLahCZOS'equations'or.from'(3.61).

<



_From the Lanczos equations,

I 1 '
Yij-._v—‘Kij Klj = 8TT(Sij 5 g..S) . (4.16)

Il

‘ 1 i3
(c f quiu + g gijP

2P - g e 417

o ) g .
R P .Sj((o+P)uiuj + 2'gij) .

= KL - Ki. o o. - ‘ (4.18)
The components of the extrinsic 3—curvqturé‘are'

calculated as follows:

K96 = %) 38 | o (4.19)
R 0, P
63 _ uX _ [6) ’
©w) T 90 52 (4.20)
6na _ o dXG ' v :
55 - Mulag 5o T _nutqz ‘ . (4'2l)
o | S
. KE)G rluf'22 n TU,22 . (4.22)
The bnly non-vanishing component is —anl 29 . R
. ’ ;
i = nlr '_;!;nlagzz o1y
o 66 1,22 2 ’r y
. . . \\;
= (r ™R . - (4.23)
rQ o
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Similarly, S o : : gy
e dna 2 a  .
K¢¢ = e(¢) 5 - R 'sin e(rjan ) (4.24)
Sn o ‘
= g* & - _, 8u
Koo =9 53 Mo ET (4.25)

The equations of motion of the shell follow immediately

from (4.16); (4.23), (4.25).

oowt e - a
Yop = Kgg = Kgg = RIr n7]
= -8n((o+P)0 + 3 %) = -41r% . (4.26)
=kt kT = - gy
Yor T KTT 'KTT _ 8m (P + 2?
- su® :
= [na 5T 1. | R (4.27)

‘The first of these_eqdations, o

Rlr nQﬂ'= —4nR20f'
r Q-

is very useful in"characteriziﬁg the motion of a collap-

sing shell;rand willnbe often referreéd to later.

§4.3 A shell in a Radiating Reissner-Nordstrdm Background :

In,§2.5,‘we introducedjthé general form of a
sphe#iQSYmmetric metric which could be applied to a
charged, radiating shell. The non-vanishing cohponénts

X l‘- B i
- of the energy tensor ‘arid the Einstein tensor were"
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! K P
i A ¥

compdt@dithho qualitative features of the motion of’
BRI e S _ ‘ ' .

“-sueh a shell are examined.

Since the shell is radiating, we will look first

"at the continuity equation for the shell;

j s B @ By B
(oq )]j + Pu 15 © [Tun n,] . | (4-28)

N .

The'firS£iterm on the léft is the rate‘of increase of the
total'surface énergy/uﬁit area. Thevsecohd term is the
surfaceipréssure times the rate of,égpansidn.  The
right side.of”the équation iélthe radial énefgy flow

R Ca R ) )

from the shell. This iﬁterpretation>will be Qlear‘when

(4.28) is evaluated explicitly;

2R

| (ou3>_,j=§'(oR)'+9‘§
‘% [TdBu?ﬁBf>= [Taauanﬂ]
= FTi*ZJ
- Z1 [FtXZ]. .

87r:

Putting the equation together yields

| L.
oy- 4, OR 2PR _ -1 2 '
ORI Rt TR T ogmr T

e
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©a 2 da _ 1 . .2. o, -
<‘—-> d_T- ‘(4TTR O)+P. C_ltt_ —-..j_R[X }_“t] ‘(A: anrc) . (4.32)

ry
I
‘w.)

Now consider a sphei}éal shell,; charge e (t)y,

b

. . ‘ : WG . -
spherical distributﬁon of grafitationgl mass ml(t),

and charge el(f) ne%r itls center. We have defined the .

~mass m(t) falling in én éxteﬂggllfield due to a

charge and‘masé-of ‘the shell. and its interior as

-2 1
' (4.33).
m, - By -
r = R(t) is the equation.of'the hypérsurface.z, and
divides space~time intd‘two regions, vV, and V__with
metrics o ' - : o e
ds? = -F_ at?- 2datdr + rfae® T r<R(1)  (4.34)
+ | r >R(1)
i ~2my (t) -ef(t)_ T
rLos - ) L (@3
. : r :
S I E
2m2(t). e2(g) ] 3
F, o= (1 - = + 5 ) - (4.36)
. T -
: . o - _
Recall that an equétion of motion for a spheri-
cal Shell'is‘given by - S s
R[r n%] é'—4mR20

14
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_ﬁhere M 1s the totaL %p\er mas‘s of the shell, defined

(4.38)

Recall also that [r an Rl represents the jump in
< r

JR2+ F acrgisrthe shell. (4 37)- may be ‘written as

M _ [22 2 | - -
g = {R +F@ R™ + F_ R ‘ (4.39)
M -2 _ a2 -
- [5'7' &2+ pf] - & eE, (4.40)
. 2 2
m,-=m M ™+ el -¢e
.2 271 71 . oy =
— R+ F_ = = 4 2R =r n | __(4.41)
= m2—mi M2-Fei —eg a. b
tJR™+ F, = == - SR =r n : (4.42?

£4.4l) and (4. 42) represent the values-of the radlal
component of the normal to the surface at the inner
and outer surface of the shell o

We return to (4.37) to get_rne eguationcof'motion
for a dust‘sheli asja-quadratic eéuainn:

. » . a __ _ ‘_l___l‘i L
(4.37) «— r .n | - r o=y ,nT =" R (4.4?)

£
jod
0
@
=
I
KN
=
x
Q
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M
2 2
2 (m,-m,) (e5-e7) s
ni +ni = 22 L 23 1 . (4.44)
41RO ~ 47R" 0 . : :
From (4.43) and (4.44) we get A » T
‘4.’» '. \.~.
11 2 22 2.4
:MAf n_R - nyR = {R”(1+R") 2miR + el}
.. . '}.v M .
- {R2(1+R2)’—.2m2R +el}? . (4.45)
1 1. 2 2 | | |
n_ R + n+Rv— {2R(m2 ml) (e2’ él)}/M . | (4.46)
Adding (4.45) ‘and (4.46) anhd squaring the result gives’
& | ' : .&; -
e S : :
1+R% =n+ 24+ &
R 2
. — R
. 2
_ (my= my)
A =
M2 — '
R (4.47)
B - 2 2,2 |
B = m, + m, = (m2+ ml)(eQ-gel)/M
2 22 2 M 2. 2.
€ = (ey; —e])7/4M™+ — - (e“+el)/2  [26]

This equation is the relativistic analogue of  the
Newtonian equation'which expresseslenergy conse vaiicn
of the system:’

(e2¥el)2"(m2—ml)2  (mz—m

{T + Q + - R - >R ‘; Rl?ml = ccnst.
au = -pa(an? (2.2 3)
.T = %inetic energy

PN
(U = thermal energy .
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4.4 Somr Qualitative Features of the Motion bf a :
Col 'apsing Shell o e
. SN ‘V o
G We will now examine the Graves-Brill diagram

of fig. 7 moré‘closeyy. The following conditions are
important in determining the pafh éf £h§ éollapsing' &
shell on the diagram:w . u | - .
(1) The.nofmal is ditected perpendicularly to tﬁe
colléﬁsing éhéll, frdm the inéide to the outside.
(2)- © R <0 means that:the shell is moving inwards.
a

- (3) r o> 0 implies that the radius increases
- ’ * : .

as one moves outwards from the shell. This

quantity is just nl}'the radial component of nu,A

which is given by

- ' B
o nt = Fx + R =[R2 F .
.(4) The path of the shell mustbbe time-like during
the collapse.
(5) . Regions of constant radius agéfvariousiy time-
"like and space-like in different portiopé:of th%f

-Graves—Brill diagram.

For curves r,0,¢ = conit.,

A



. (1 —,%?-+§7) < 0. ;a- spa¢e—Iike curves
- :

— (r—r_)(r-r+) < 0 —» space-like curves
. hY

where r 1is the inner event horizon and r the

+I

outer. This condition holds for r.<r<r In

+° -

the dases where r >r

. *
+ and where r <r , the curves

r,0,¢ = const. are time-like. 'Sincerzr is
orthogonal to curveé of constant r, and since n .
is orthogonalvto and directed outwards from the
path of collapse, fig.>8 can be sketched to show
some possible collapse(paths.fpr the shell.

(6) ﬁbr paths 1 and‘z;.fig,fg., é'shall find a con-

‘dition on the turning points of) the motion:

‘ 2 . . . T '
r n% = +/R°+ F is real since r n% is the

r O ’

[

radial normal .component. At a turning point, -

R =0 efi”f > 0

. : 2
ERCEs . (l T r + 2‘) > 0 ) S
‘ oA : ot o '
A I‘;v”: ~ . ' 3 R
'n" i N - .
T > (r- (m- Jm?- e2)) (r= (m+ m?- e?)) > 0
‘ea-(r—r_)(r—r+) > Q : ,§

is a condition on.t@é turning points. Wwhat tﬁis’
means is that curves'r = const. must be time-like

at a stationary point and no such point
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&
1 -
r=-7o’
I |
I
: AN
Ta AN\ Ib
:;@“ S ’ Ye
| path 2 '

@."» Two collapse paths on a Gfaves%Brill
diagram. This is an illustrative case

L to show collapse from, "external space-
S o time", Ib, across both event horizons,
R S and”re-expansion in a distinct "external

spacetime" Ic.
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Thus, the Dossi-
4

~exists in the range r_<r <r+;
bility of having a turning point and a
"gravitational bounce" or re-expansion of the

shell exists in regions IIXla and IIIb. These

cases will be considered in the next chapter.
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_CHAPTER V. !

A CHARGED DUST SHELL IN A STATIC REISSNER-NORDSTROM

v

BACKGROUND

§5.1 Introduction

A space—time is called staﬁionary if a sysﬁem of
B A .

co-ordinates exists so that Iy 4=,0,P w,v.= 1,2,3,4.
; , , '

If also g;4=0, 1 = 1,2,3, so that the metric%ié cast . 3?
.into the form. | . ’ .
as? = 9ijdxidxj * g44(?§4)2__2 R Ry
: - AL - .
'qthe’spaceftime is callédlstatic. Any Spherically
iéy@métyié field in vacuo is static. Im this éhaptér/
:wé Egnside%,the céilapse of a duét shell, Qithout
rédiatioﬂ, in such:a‘ététic backgroundjmetric.’ A_
‘proof'wiil’bg given to showiﬁhaf aacharééd'shall
céllapéing onto én ﬁnCharged black hole cannot "dnlock“
the.blqck;hoie'by collapsihgvto a sihgularity ﬁhi¢h‘is
_:not.shiélded by an évent horizon. | o 4
T . . i . . \\-
§5.2 Collapse of an Empty Shell [27i A . '
Consider'an emptyfsheil with1ﬁass m, chafge é, e
forwmicn g
e "‘ ¥: | S . ] };//f‘ff(/
/ P 4 C
. 62
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i

const.

_properbmass M
.
An equation{of:mot;bp'is:obtained;from

. Ve

i

L+

"R

)=

Let

equation. for m:

\

114

-

e
R

b
\":‘: - ~ '
ﬂ‘ ’\'"»'«x':;'
Ny
(4.39)"
= -M
(5.2)

at thetNewtonian.analogue of this .

(5.3)

ThlS is 51mply a statement.that the total energY’ m, -

R
"

L)

equals the rest mass plus thermal energy of the shell,

M, plus the klnetic energy, éﬂ@R ’ plus the grav1tatlona1

, 7 1
potent1al»energy, > R
ehér' L gi’~ . o
? gy 7 | @

o

m

l%—U(R) M

If m>M> |e|

: SR S .
collapse is irreversible.

e

Define a potential function U(R)

plus\the electrostatlc field

such that _

(5.4)

, there are no, turning poﬁntszaahd the

This i; evident from-a graph
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plotting U(R) @ =0 (fig. 9 ).

Case. 1" : m>M> le|

In this case, there are two event horizons (real
5 . T

e_
=z

From (5.2), setting R = 0 yields

solutions .to ll’%? +

0)-, and no turning pdints.

“ S 2 2. " .

T T M%- e _ : ' '
Reurn T2 —m)_< 0 T ‘ _ (5.5)

o

Hencé, the shell collapses to zero radius. The normal

“to the shell T
C 2, 2
-1 _ at  m M~ ¥e ‘ ;
L Tl - (5.6)
changés sign at R = M2+e2/2M,’Which-lies between event
horizons B
——
r, =m + /mz— e2 4
"2 2
r_ =m-/m"-e .

.J,

Since the normal is positive in regionMIiIb,”and nega-
.tive in IIla, the shell must pass into IIla. The

collapse path is shown as path 1 Qf'figflo.

Case 2 : m>M le] > M
. Again from (5.2), setting R = 0,
M2- o2

Reurn = 20w S o ' (5.7)
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2 T

and m=M + e7=M7) . (5.8)
2R .
turn
Now we have three subcdses to considef:‘ \W
g' a) - m> el >M - L ) i
B : " In this case, _from (5.8), 0 < Riypn © M+]e\/2f

The turning point lies inside the ‘inner event horizon

‘ w
since
R R 2
' r - R, _. =m-vVm e ¥ > 0
- turn 2 (M-m) :
1 2.2 2 2 2 2 mise? g
—> 5 e M- mM(M"~e”) +m " M™ + T >0 (5.9)
| : | B S
"~ which is true for m> |e| > M. (Henceforth, R_ _ " . R_).
e o ) _ - turn-. T

CIf RT>>M, the radialvcbmponent,of the normal at

ﬁeiturning point is positive:
L 222 .
,.;1 BJ_M2+CZ__M te —M\/ZRT B M2ie?

T' M 2Ry, M . 7. 2MR

= 1= 2. (5.10)
T T s

The shell passes thréugh'région iIIb and'reéemergés in
I(path 2). | | |
E If RT<'M, nlIRT)< O; and the Sﬁell“passes throqgh
IIIa (path 3). - |
If Ry = M, nl(RT) = 0 at the point whé;e regions
I1Ia and IIIb meet.v The shell‘passes_through this point v

and re-expands into I (path 4). o ‘ .

¥



| Pt e \guht
6 " | s |

-

. -Figure 10. Various collapse paths. The shaded
area denotes the interior side of the
.shell . ‘ ' : "

. _é;‘ .
NN
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Figure 11.

‘collase path for Case 2¢.-

M

__
=7
é

—mm s STTTToATTTTTTTOS

;-’;-*-T-fﬂf

<

A modified Graves-Brill diagram

for |e] =.m. -Path 5 shows: the

=

)
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b) 18| >m> M

In this case, there is no even' horizon. The
shell collapses to R, and "bounces" by re-expanding. .
c) (m=|e|)>M S .

3

".In this case, there' is an event horizon at r, =m,

and a real turning point at

2 2 T
r = M- m” _ Mim _ M*él%l‘-__ (5.11)

T T 2(M-m) =~ 2

_ This turhing point lies inside the event horizon since’

M+m

" T 2 >0 ‘ (5.12)

:énd thé normai'at the ‘turning pointvis pQéitiVe.' A

path.for ﬁhe shell is shown as path 5 iﬁ fié. 11.

 Thi$'figuré is a.modified Graves-Brill diagram for
" which }el‘=;m. | |

Case 3 + M>m

¢

“,©  Again we consider three subcases:

R SR ' . , .
Y 7 In this case, thére are -event ho-izons, but no
/ s N v.v.‘ . .. . . . . : .

ot

ytﬁrning'point.  The‘Solution,f0r the turniog point
" represents fhe'initial‘fadius;from which the collapse

begins. 'This radius lies outside the outer event horizor:
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AT o
T 2‘/,}M-—m
"2 2 ;
m- M
o =) +‘RTm> 0
IR (M—m) : ’
-kRT m > > 0
— P
Rp —m > 0 . ‘
Also (g —m)z-%‘(mz—ez) '(M;M —e2) 5-;\\\\;;

< T
2 /2 2
- RT > m '+ @ij'e = Ry (5.;3)
At Eheziniﬁiairvélues of collapse, R, ’
.’,' fya : v_ . e2v M2
,m = total energy = M + BT T IR (5.14)
: ST i ~
2 2 2 :
: o MT- e _ M- e _ '
Re= 3y ~ 7 @ 2 42 R;, - (5.15)
. ~2(M'—M-*‘2R. +—2R.)
, i 77

Now we must determine in which ‘region the collapse

’beginsl' From'(5.8),_we see that for RT > M%[el/2,
“M>m >e.  If RT> M, then 3T> R+_and n (RT) > 0. The

'éollapse thué begins‘in a Ib region. 'nl chahges sign

‘at M2+e2/2M which lies ‘between the event horizons, and
the collapse proceeds to r = 0 in.the IIIa region. An

.



Figure 12.
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D A

Collapse path for Case 3a. The shell
explodes from a singularity, emerges
into an "external spacetime", and
collapses to a singularity.

-



interesting way of looking at this case is to’cdhsider

that the shell has expanded f om a point, producing
L : i
an external singularity at r 0. It briefly expands

into an exterior space, and ¢ Rp s it again collapses

to a point in IIXa (path 6, fig. 12).

If M>R,> M+ |e|/2, Ry

1 ' ,

T > R+ and n (RT)< 0. ?he
. . . i ’;-«‘l

collapse begins = in the Ia region and proceeds 1into

ITa and IIIa.

b) =~ M»>|e|l>m

/
In.%hié case, OEsRT'<M+{e|/2 and thé shell staggg//f
from rest and dollapses to R'= 0 with R = -, This casg
‘is not phySically realizable, however,vsince‘ni is less
”_than.zérO‘for values of R less than M°+e?/2m, which is
.less‘than R, . This means that the radius>decrééses along

the outward pointing normal, which is cleariy not the

case in our external space.
o .

) M > Gn==é) o .

'

"horizon at R;= m. ‘The turn-

There is one event
. i Id

ing point, Ry, = M+m /2 lies‘outside'R+ and represents

the initial,collapse_radius. Again, however, nl(RT)<-O.

§5.3 Can a Black Hole be Unlocked? Collapse of a

Charged Shell with Interior Mass

7>Consider a shell with mass m and charge e for

-

which

yisde

i
gﬂ&‘;‘-’ik

A
Lo
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e,= 0 ) -

m, = interior mass at the shell's. centre

e
proper mass M = const. /
m_= m+m

2 1

We return to (4.47) to use the guadratic form of the

equationsof motion, which, in this case become

:> (RR)Z = (8%- 1)R® + BR + C o (5.16)
_ < m - ,
_ 2. 1 ,
.
) (m,-m.)e
B =z m.+ m,- 2» l, 2 (5.18)
1 2 2
‘ M
_ (e%4 M)2 :
4C = — - - (5.19)

N .

From (4.42), the normal to the outer surface of the

éhell:is given‘by 

‘ + . 2m eg .(M2+e§) e e
r n% =i [RO41-545 =0 - (5.20)

rQ R r

.If we conéider the ipteridr mass,'hl, to repfe-.
vbgent a black holé with an event lorizon at R = Zﬁi,
the collapsing‘shell would "uélocx" the black hole if
it.could collapse to a naked singularity without form-
ing an event hérizoq} The follbwing theorem shows that -

this is not possible: . B

4
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\T
Theorem: There are no solutions to (QflG) with

collapse to R = 0 satisfying

e, > m, 1 >0 o e, = 0 N (5.21)
r n% > 0 . _ (5.22)
S o : .

(@]

'The condltlon \e | >m, assures that the total
’charge of the black hole and shell is greater than the
total mass of the blaqk hole and shell so no event
horlzon will form during the‘collapse. The condition
of aipositive radial compohent efithe outward poihting
normal,-:'ana:>0, is necessary.fotvahtholi%pse without
an event horizon. The_proof of the:theorem-depends'oh

three cases:

0 < 1 .
8 = 1
6> 1
© (1) 6 "< 1 *{positive binding energy) (fig.13)
E Mz— eg SRR
Let a = 4Mml
Zml . ’ , .
X = g w? RO is the radius for which R=0
(R. = R.i = RT)
m
]
B= 5
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(5.16) ~— (62— 1)RS # BR_ + C = 0
. O l'. O .
e (02- L+ (1+2ah)t 4 a%= 0
2 X
X
e x = (1+—2a0)+»;l+-4a9*'4a_ P (5.23)
. 2a '

Rewriting (5.20) in terms of aB,0 and.evaluating:at,jg“'}‘

Ry . : .
A 1 - - P ) "'¢:
g E(a,B8,0) (5.24)
2+ 2a07% /1 + 4a0 + 4a’ ~ .
621 ;~‘ | -é) o . ; ' .
- Y0 (1 +Y 1+4a0+4a“ + 2a) . (5.25) *

a ) ' . . ! . ' . K .
We want to show that E(a,B,8) < 0 for all a,B,06

satlsfylng (5.21) . For fixed‘valhes of ¢,5, E is.an

f.\.

\ 1n¢rea51ng functlon of a and hcnce is largest when a

us largest compatlble with (5 21) .
Y;-
2 . . 5
max 4Mm, ' ap - - 07 ‘ 'O o
Thus .
E(a,B,0) < E__ (#,8) = Ela . .6,0) o (5.27)
. y\ K
(5.26), (5.27) -—ﬁ>
((B,0) = - f% (1-8°+6 )4-6/19-1a0+-4a2' . (5.28)

L . ok
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If we can show that E___ is negative, then*r n
. R . max : .

‘Multiply=+ (5.28) by the positivé expression,

+{j% (1—62+82) +'6‘JI;;4a6+>4a2‘

R . S e

do

_and set B = yi-0:

e /T i
ijax T (1=67+270) + 01 + 4a0 +_4a

. ~_‘___l__2_ (1_62) (l_2y0+y2)2 <ﬁv’0 I for e < 1. ) '
4‘(4y_6) A ) . .

A L (5.29)

Thus, E ' <0 and hehge, r naiﬂ< 0 for o<1, Violatingq
max - . . . S aus L _ S, )

‘ : e . g

(5.22) - T N

5

- . - . -
ST R
,-'-‘»,-'.(ll“)‘ .8 > ‘l,.‘ : S : R

; Y :

R : R - 1

\

. Collapse H%%R = 0-is only pOssible-iﬁ two cases:
© > i B - N N ' : . o B
) e . N

a) , In (5.16),°B > 0, B > sc(0®-10y (Fig: 14)4
-, 9 r -'"’ o 2 . * by
“These Condiﬁidnsfimplyloéz §H/m§ f.m% or ‘that e, <m,,
. ’ o ‘ ’ . T ' r L

;_,~whidh‘éontradiété (5,215.;

by ;}:§2_§_4C(0271)14(ﬁ@g. 15y o T
S e T e 3

B T P A T
 Let \“§2— 4c(U2—l) = 00%) /82, wheretQ(o?) is a-ﬁgif£37//

gic.ih Uz‘definéd?by' ?‘ o ' "4 ;o

2w (amgm, - 202) 4 (moein Y “ G
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'Figure 13. Craph of eguation 5.16 for
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Figure 15.
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Graph of 5.16 for (ii) b.



~Hence, Q(U2) > 0 for alr G} therefore case (b) is

The -discriminant of Q(U2) is

2, 2 o ) o e
lel(mz-tz) < O‘ fox\_ L2’7m2 . (5.31)
impossible.

iii) o= 1

o : _ o+
. N - L §
~In this, case, b = 0, hence r n“ < 0 contra-
T max . y ,

dicting (5.22). = . o

¢ *

There are thus, no physically realizable 51tua—
. . IR

" .toons in WDlCh a. charged infinitesimally thin dust shell

~

ﬁ%onfiEMé tQ-thL? atérkal 1n thks Chapter st:tés that

n -

collaps1ng onto an lnterlor black hole unlocksf the -

black 1ole by remOVLng the event horlzon and proceeds
Eo form a. naked Slngularlty'e The theorcm supports both .

Penrose s Cosmlc Lensors ip" hypothe81s [28} and the
P :

Hawklng statement of th%sthlrd law of black hole

a 8

meqhanlcs [29} “The "Cosmlc Lensorshlp"thypothe51s

’
a

states that all naked 51ngularltles mqst be C othed;-
) . . - . . 57 :
by event ‘borlzons. The thlrd law 1n the ferm wnlch S

o ,..;,_; B, - ‘.“.‘ Cew
X v

<7

it is 1mp0531ule to convert a black hole w1th fe1<1ﬁw 1‘

v -‘ N Y ) .o - . "

“into an extremal"“black hole (w1tn je| = m)‘Ln a finite

number of steps. ‘ v , o L



.CHAPTER VI
\ - >
;
‘L

“ ’ = :
A RADIATING DUST SHELL WITH CONSTANT CUHARGE

i6.1 intrOduction

. Ih this chapter, we shall examihe'the behaviour

of a charged shell:which radiates entities such as

’

pﬁotons-—.mass but not charge. The way ?P_which t,

m(t), M(t), m(t) and M(1) vary from R >r,) to R«%f(zwill
¢ a : s . .
. be exaflined. Finally, the effect of these varying
. L% ‘ - . ] . '
- dquantities on the collapse path ©f the shell will be

~studied. y »
¥ ,

W

7,"“..- . ., ) ‘ » / B . | . r’_ B k ' -
56.2 BehaViour of the'Total Mass and Proper Mass . i

R SR T B g

. A §hell with a mass m(t) and a constant-charge i -
“e willphaQe evént<hérizoh$ set at, e

-

| | ﬁﬁjto)'i,m<to) + 4m¢

(t ) __ez')..’f "' :;;- ::*‘ Tex (6.1) ¢ ,‘

O S SR SRR S o
P A S S T P T R
N - S R A T S T

J

iw'fﬁhgf& to.aﬁévti_arc ﬁhe'retgrded times af'%ﬁich the ,

" shell crosses the outer and inﬁér‘hdrizons. :wéféhail"
- e TR T c o
examine *the behaviour of t, m'(t), M'(t), m" (1), and

. ‘ . . " . : N .

M' (1) in its regions.delimited by'ﬁhc event horizohé,

L}
. . -

;
A

L
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©In this region,

2m( ) e

F = B . ‘ . :
. ‘l r 2) 0 . I f
N . r L. Y
_ . t.
) - . '.'/,.‘
R=me
¥ 1 . ¥ - !
r ' n =n > 0 /
IALE . - B
. “ L
! R+ r n: Tt
¥ = - P & C_ (_ﬂ_E > 0 e
= ' F dt -

. E'Sin§é“t is -the proper-tlmé on the'shell) dT,>p
) %n-allvregions.. Thus, X and t tend to infinity as R
R ) , . s ' RIS ' ] .
ténds to r, . R e : e ;

v . ~

The proper mass of the shell as a functlon of

proper time 'is related to»the proper.mass as a func—,v

~ 4 . N
tion .of retarded time by e , .
. RS . [ i N . . 3 By
) 5 ~ 3
{:) B " - v ! (‘it P . ” L ' ¢ .
Lt T M Ty, = MY () == = XM (E) S e
- 4 " /"ﬁ—[ . .
. :

A sn Ll radlatlng photons loses roper mass, so the
3 P :

- -’. \n« -.,‘ - -

. Quantlty M’( 3 is negatlve in all reglons

et -, - - '“~. B
LT From the contmnui@y equatlon,\(4 32), in the case
S R ] *V(» O T . S B R

. ‘where P =«O;>ml:»el=VO, e = constdnt, g
. o T - -
o) = Avnz[TiXZ] = mt{e)x . (6.4)
: /; - .



Singce \\
o ‘ m;kt) = Xm' (t) ;

MU(1) = Xm' (1)

’

MY(F) = (XM (E) &

v

vO‘

“4 as R »r
N L -
A
: 1

 Collecting theseequations:

.
¢
\\‘-5'»
\
A
S
;a2 >
.
L4
\
.
;

w
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(6.5)

(6.6)

Cowds

. e

P
. . Vo
. o
PERY A
R ~
s .
o b
B F b
X L
.



Vv
[en]

M (t)

(6.9)

A
(@]

m!' (t)

m'(t) >0 .

Cage 3 : R £ r_
. ) . S
There are two subcdses to consider:

In region IIIb of the Graves-Brill diagram,

Z‘
ot .
N
o

& m' (1) < 0 = .
- Im region-IIla,
- - -
o A - ¥
.. r n -< 0:
i ’,O' . . ‘ ) .
e e g T
> S . .
_’F 0 e BN .
. 'R < 0.
o ‘ o . : ' . )
X‘_< QJ ' v t."" _—oo as -R - r .
A ‘ N . T

IANSY :‘;‘ 0

nt ()7 0 o (6.11)

m'([ .)'.‘/\" d' - ’ - L -’



.%Frompthe aonefcaicuiations, we can_ sketch'tho
‘”graph of fig. 16. Insrde the outer event horizon, t,
the'retarded time, or,‘"the external observer‘s time"
has no meanrhg Howe?er T, the proper time of a co-
mov1hg observer Ancreases towards the future, ahd is
useful in characterizing the motlon of the shell. We
see from,the_graph that while the proper mass decreaees
in all regions, the total mass (grayitatlonal mass’) ,
m(I),'osciliateS, and its behaviohr Jetermines the
collapse path followed by the shell.. mkt’ ihereases
'in the reglon between the event horizons because the
radr?tlon from the collap51ng shell is "dragged back" by

,,'-,v"

theﬁgrav1tatlonal 'field and plles up on . the 51ngular1ty
L .

~

T

§ 6.3 . Some Collapse Paths

k]
4

Qualitatively, it-1is p0551ble to cast collapse

paths into one of the. cases of 55.2. We consider the.f@ﬁ

’

equations of motlon to be 3’ functlon of proper tlme

. “I’. R .‘ 2 . : . 2 ) ; . R ) "v .
- m(t), M7 (1) ~e 2" =2 S X , * :

- M(T)_+ ZM(rngrr;wal j’R‘,~;,r IR }?'}%{{
_anc Jobk“for turning points. The difference between the

case and those of 5.2 is that rn.§§.2, m, M, and e had
fixed Values: From: flg 16 we see that. ML:)'conStantly

de:reases”and m{i) oscillates. Thus 1n the reglon R > r+

’
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.
F>0 . X >0
v,‘y X<0 IIIb t F‘\ > O
A >0 IIla |
‘ * M(T) or m(t)
t(IITa) m(T) or M(t)
Q. > .
R(T)
—_—
T.

' '
"FiédﬂéfﬂéQ' Behavlotwof N(T) m(7) for-.a radiating L '1:
.0 %7 . shell., -The notaticn IIla or IIIb, refers o

to the regions in a Graves Brlll diagram.
o :Jv .



it is possiblevfbr, say, M(T) > ﬁ(~ﬁ§¥,e}' however, in
the regldn between the horlzens, rhe lotal energy may
have gnoWn 1a£§ér than the,proper mass, so m(1) > M(1)> e
and we are iooklng at case’ l 55.2.

¢ From fig. 16 we §ee that m(t) is a minimﬁm at r,.
At r_, m(t) may reach a‘maximum or mayvcontlnue 1ncreas—

ing, dependlng ‘on whether or not nl(R_) is posrtlve\or

.

negatlve. The same,sortﬂof analysis as-in 5.2 may be

carried out for ayvariety of ‘cases. One, line of inves-
!
tigation whlch could be pursued would ‘be to ‘set condltlons

-~
o

on the radlatlon proces;//for example, have. m(T) phange

as a step functi®n due /to a sudden burst of radiation.

/:
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e S " CHAPTER VII ' g

A CLASS OF STATIONARY ELECTROMAGNETIC VACUUM FIELDS[30]

’

57.i Introduction ’

A stationary space-time allows for consideration
of systems which exhibit steady motions. A space-time
is stationary if the metric is time independent in ‘some

system of co-ordinates; that 1is, if guv 4 = 0. In this
- - r -

\

chapter, it is shown how a new class of stationary
electromagnetic vacuum fields can be generated i:ro:i.
. .

solutions“of*Laplace's equation.

£l

These fields are a
stationary generalization of the statac electromagnetic
vacuum fields of Weyl, Majumdar, and Papapetfou, and

‘are plausibly interpreted as extérior'fields of static

or steadily moving distributions of charged dust having
numerically egual charge and mass densities.
. Coulomb's law and Newton's law of gﬁavity‘are

formally identical apart from a sign. |Hence, classi-

cally, aﬁy‘unstressed distribution of'matter'Can,bif

'Suitably charged, be maintained in neuttat-equilbrium
N '.." R «"‘. . . . ‘e - . . .
under a baLanCC'betwe%§1¢hc gravitational attraction

. . ) - . 19 . ‘- ’/
and clectrical- repulsion of 1ts parts. - S

/
/

Indications that this obvious Jewtonian fact
has a relativistic analog first emerged when Weyl [31]
# optained o partieular class of static clectromagnetic

BN
]
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vacuum fields later generalized by Majumdar [32] and
Papapetrou [33] to‘remove.Weyl;slqriginal restriction

to axial symmetry and further studied by'Bonnor (341
and’ Synge [35]. The Papépetrou—Maj%mdar fields are to
all appeéraneeé the external fields of statie sources
whose charge and mass are numerlcally equal (in rela-
tivistic.units: G = C = 1).  That they are lndeed
1nterpretable as external fields of static dlstrlbutlons

of charged dust having equal charge and mass densities

%

~.—.-has been shown bwaas [36], who has examined rhe.c6rres¥

«

pondlng 1nterlor fields. | o - -

- ,'" ; ’ LSS (R

Astrophy51cal bodies are. electrlcally neutral to

a'gbod apprdﬁimation, and the Papapetrou-Majumdar solu—

“1

tions have up to .now received little attention. It -

./. seems, however, that they caﬁ”play~a Useful, if limited,

astroPHySieél'role.in providing simple quasistétic
analogues for complex dynamical processes .like the
“dieappearance of asymmetries in gravitational collapse

" or the collision of black Holes. In reallty, such a

.

process always 1nvolves large klnetlc energles and at

present canAiny be handled by elaborate;numerlcal
integratione under the assumption ofksmall deeartures'
from spherical symmetry [(37], j38j. However, for
charged bodies,ih-heutral equilibrium the process

o

can be made arbitrarily slow, and the details easily
. oy .

s
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followcd as a sequence. of stationary configurétions.
While this procedurec pfevénts the cOnsideration of
features of undeniable observational iﬁpdr£anée;
such as the emission of gravitational waves, it is,
. for that very reason, ideally suited for.isolating.

‘f7>and'elucidating certain basic issues of principle
,relating to the final phéées\of the process. Some
. \\ - . .

~ .

of these questions are pursued in detail elsewhere [39].
: . > .

The purpose here.is to demonstrate that the ™ . .petrou-

- Majumdar ¢lass can be extended straightfor.arc “yom
Ctife static to thé‘stationary realm: in.oth»r3%v:ds,Jf
a.class of stationarywéolutions to the source free

p

Einstein-Maxwell equations are derived.

-

" §7.2 Stationary Fields

<
S

The metric of an arbitrary stationary field is

—~

conveniently expressed in the form [40]

)'.‘ v‘f

27 Hoov o -1 N 4 i,2 Y
ds,l—\guvdx dx’ = -f ‘Yijdx dx- + f(dk + widX ) . (7.1)
—~ f is'ahyftime,independent function. Qi»andbyij are

also independent of‘the.time'co—ordinate, x4..



-1 S
9o d‘f Yijffwiwj f@j
5 | | (7.2)
T fu, ' £ ' '
1 v /
: N
i SN
g"V ~fyid £l ‘ 3 -
) (7.3)
fu ,f_l-—i:'uu2 . .
. )
det gpv = ;f+2 det Yij g = det guv :
-2 o S o (7.4)
dgt guv = -f det Yij' Yy = det Yij
soo-g o= £ty D
.“ ‘~ :

The 3—vector;wm in (7.1) is_grb;prary'up‘to‘an additive
gradient amA(xl,xz,x3) corresponding to the possibility

4!
X =

of making arbitrary‘time translations x4 >
4 1.2 .3, - o
X' - A(x7,x",x7). It may be interpreted as an angular
velocity component; We can derive from it an invariant

"torsion vector"

4 - . . .
£ = /g™,
. S P qg
g - . SRR L o
or £ "1 .= -curl w - . . N R Y

in termsbof a three-dimensional vector calculus employ-

"ing Ymndxmdxn as bafe metric.

-
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.We next con51der a stationary electrqmagnetlc
field. F. = 3 A - 9 A in\the‘space—time (7.1).
-~ HVY, ) Vo W

The, condltlon of time 1ndependence 3

4A :7‘0 yieids e
 for the electrlc":bomponents | \g,‘ | : - ‘ 'f
. f . .-q‘

g e ;% N
Py =Nk U

in 4 - N R

mn ma nb md ma n4 S : -
F‘ =g g. +g ghF4b+g g Fa4 ' ‘ '

2P g2 (n, I " —'A4,l mny (7707

[

, ’ 04 ma 4b, md 4b " ma a4 ’
. F=9 9 Fptd g F4b+g g Py -
' _ 2 b.m 2mb, mb . . 22 |m . .
;— me,I‘D b+ (f W ow + g )abAllA' £ w A4 ‘ A
~ ; S ‘ N (7.8)
The sourcevfﬁee‘Maxwelliequations_' o T -
; N - ' \)' . . | ‘ :
opl-g) Wy g 0 (7.9)
for p = m glve the ’magnétic" cemponents, R BRI
o
(7.4), (7. 9) — o
an(/Vf"l ipmny _ o (7.10)
(Dpmn _ g 1 mnpy (7.11) ¢
- . — . p X B
Yo B Ky
~in terms of a‘méénetﬁc_éCalarﬁbéﬁeﬁtial ¢ where * S T
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N

N ) _ ,2," —_ ) j’lk

4

(7912)

S
All remaining components (7.6), (7.11) are then éém@\
veniently expressed in terms of ‘these six; for ekgﬁplé, ,

3

.

- 4).nd @) mn, oo oaoma v
- FP o= wp s TR §4mY . e (7.13) .

an identity which follows readily from (7.2) or (7.3).

Equation (7.10) with u = 4 how,yields, on Sprtitgting'

A

(7.13), (7.12), (7.6), and (7.5)

div(f—lVA4) = 7% vy  .“'“ o (7.14)14

-

Next, writing F (=anAm#-amAn) in terms of (7.6) and

mn
- (7.11) and expressing the cyclic identity; o .
©_ mnp T~ -
¢ _ aPan =0 ! 3
Cwe obtaip'_
/o aivietvg) = £7%wa, 0 Tt (7.s)

.[ If we‘nbw,introduce the complex scalar potential

 then (7.14) and (7.15) Combiné to give -

div(f“1v¢) = if‘zr,vw . RPN U ))

~

_ N I — _ ) R »
We have thus» reduced the entire set of Maxwell's equa-

tions to the. single compiex equation j7}l7).;
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§7.3 Gravitational . Field Equations
The Ric€i- tensor o /
: ‘ : -
R v _a . a' a B 'alvb i S N
R = . + - . .18
uv-_1?urvuzﬂaaruv“gr8uruvy Fﬁaruv S (7 X

. fef\the generél,stationery meﬁriq.(7.l) is ebnveniently

'expressed:in terms of a comp}ex’ﬁwvectpr G, defined‘

2fG = VE 4+ i1 . : co T (7.19)

~Then [41], |
2R, = aiv g+ (GF -@.G6 o (7:200)
4 _pif”2 A0 "Pd (3 ¢+ 6 GY) | 17.21a)
. 4 , p-.opal _ S
, 'si"
-2 (4¥ _mn % -
TR R = R :
(Ymeqn R qu 44) pq(Y)
4+ G .GY + G*e . . ©(7.22a)
.P\q P a v o S
'k“\«~;k' 1;/////ﬂ,
»
Herc R q( v denotes the RlCCl tensor formed from ‘the Q'

o 3—metric Y dx ax". S . /”’\\ ‘ég

For the electromagnetlc energy tensor

. > v Lo -
_ _ aB e L aB;
;4ﬂTpv El ua?va ’-4~gquuBF

!

~

one derives from the formulas of the previous section

é'Fqu“V = (vo)? - (vay x .
: S S R ' . '
N S SRS
8ﬂfk.T44 = (V)" + (A | (7.20b)



t

mpq : T

.
1 (4),m g e Dp¢UqA4 . : (7.21b)-

4 f LI, =

_4ﬂf—l (4)Tmn

— am¢an¢ +famA\anA

4° S
1 2 o S
Co5 Mgt + Al .« (7.22p)
with 3™ = g™ .. |
« B n- .. t . g -
We can.now impose .the Einstein field equations..
Ith = —8ﬂTuv:\~Fr0m(7.21a), (7.21b) , we find  ,_
ST Y S - )
curl T'= ~4Vp % VA, ‘ o N ’
“ | . . . '
= i curl(yvy* - yvy) e
so that the eduatiOn
T LRIy - piyr) = vy (7.23)

defines a real‘scalarvv*up to an additive constant.
b ] R . [} ) .

We next define a‘complex function [42] .
g =f - mw* +1y e L R 14//?;.24)
By virtue of (7.19) and;(7f23),' T S v
. L l . . -‘ . : L ) \-' B .
fg — §‘V€'+ w*vw . - v ) - : (7-25)

Substituting (7.25) into the field equations (7.20a),
o S . Nk | |
(7.20b) and employing (7.17) leads to [42]

.*;-‘fVZg =‘vgl(vg + 2¢*Vw} | .';: _ ' (7.26)



o

Y

while (7.17) itself .can be written

£0%p = Ty- (V6 + 29%0y)

;‘ané/ie note from (7;24).that‘QT >

>

o}

=
it

N oy

Finally, the field equations {7.22a), (7.

TR v

in which, for example,

zz:,(me; n) J(a £)onet f (3,6) (amg_’*')_"...‘

§

"

oo

\

(7.27)

L7.28)h

reduce: to

j(7.29)}'

The complete system of electromagnetlc and grav1tatlo%al

fleld equatlons for an arb;trary electromagnetlc

“vacuum field: are.summed up in (7.26),

§7.4 Generalized Pagapetrou—Maiumdar Solutions

(7.27) and

So far, our - conslderatlons have been qulte

general . We now examlne whether solutlons of the

system (7 26), (7 27) and . (7 29) ex1st for which

background metric is flat In thlS case equatlon

‘ llnear relatlon ’

v

( 7. 29) .

“the

(7 29)

-[w1th R (y) = 0] 1is satlsfled if and only 1f there is a-



N,

b = atbf with a*b + ab* = -~ =

(as one easily verifies, for example, by choosing
g_;'xl and £* = xz.as co-~ordinates). . Both £ ‘and ¢
contaln arbltrary addltlve‘constants, and 1t 1s con-

venlent to adjust these 1o} that g +1 when P o> O We

3

h thus obtain

v = 5 él§(l -8 L “?27530)

§ ® ~

95

in which the~arb1trary real constant a represents the -

"complexion" of the electromagnetlc fleld 3"\\LA

_.f we now substltute (7 BUf*lnto (7 26) ‘and-.

'
“~

(7.27), both reduce to. L T

v2r (1 f:g)'l} 0

which is LaplaCe s equatlon in Euclld'
W conclude by summarlzlng the procedure for
"Obtainlng the complete field: »}f. ‘
(a) :Write dOwn a solutionk%f_(f,3l)ﬂin‘terms of
any conVenient co—ordinates xm"v Suppose the
Euclldean llne element takes the form Ymn dx Max
vln these co—ordlnates |

. (b) "-Obtaln f, T, and w from the equations

Ep@ro@sin N\ .
if‘i’p: v {an[eL + £)/(1+, f;*)]}

Sy .

n.

Scurl w %'4f T . - “.(7132%

The spaceetime metric is given by (7.1).
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\ R
e n
A
ample gCharged Kerr llke Solutlons
W ’x\’SY.,‘;". ) "L ) .
KKerr Newman solution with m2'= e2 correspondé' PR
to the?s;mplest complex solutlon of (7.31). We choosé
L with R%=x%+,%4(z=ia)? .. (7.33)
real;conStants\aﬁd’x,y,z Cartesian oy
térms‘of oblafe'sphéroidal co— )
defined‘by- ‘
. : . 1/ L Ta - .
[(r—m)2+a2]“‘sine,e;¢«- .
z = (r- m) cos © 1” p : - o (7.34)
- . : ' a
=) ’ @; v ’ »
the Eucildean 3—metrlc becomes ' :
ymﬁdxmdxn =I(r—m)2+-a2coszé] gr. 5 + dez]
: ' P (r-m)™ + a’ o
‘ o+ [(r—m)2+-a2]sin26d¢2 © 0 (7.35)
'Further, we find - '
R=1r-m=-.ia cose '
< N
. ' _ [ (xr-m) + a“cos e]
t= 3. 2. 2 ©
r’ + a cos’ e -~
TN ’ /
0 " » - 'r\ ' ’



I

g :“elam/(r'w ia cos - 0) . o 7

ﬁﬂand[ after.a somewhat lengthy calculation,.

Y

Awmﬁx@:;f[(2mr-m2)a sinze]/(r—m)24-a2coszé]}d¢.

'?'Puttlng everythlng Q@gether, we recover the charged

5 L Kerr- metrlc w1th m?= e? in its usual form [43].

'._v

“ As a?natural generalization of (7.33), one may

.consider ' -
R - . “. . - .
‘," . \' n . m , -
e R ‘ k <
Ly =l ] K
:.;:/\ . - e . ‘
B WHere Ri‘z Yr—ck)?, ris the Luclldean p051t10n vector,.
NS | . \

‘1iAhd ck an arbltrary set-of complex, constant vectors.

[

The resultlng metrlc w1ll represent the fleld of a set

of arbltrarlly splnnlng,'charged Kerr-like particles in

‘
2.

w&neutral-equilibrium.' For the static analog of this
. ) A

solution, . representlng a set of Reissner- Nordstrom par—

‘

tlcles w1th e = mk, see [35]. An exten51ve analy515 of

solutlons of. the Elnsteln—Maxwell equatlons,'lncludlng

a dlscuss1on of what Hartle\and Hawklng call tQ?fIsraelj
) .

"Wilson metrlcs may be found in reference [44].



APPLL..DIX 1.

A  DIFFERENTIAL FORM cALCULATIQNgOF,G”v

The Einstein tensor for the spheri-symmetric
metric (2. 29) is most eas1ly computed u51nc the method

of differential forms " The tensor is calculated for

the —2 51gnature form of the metrlc in order to conform
0 4,

with [45], and thef+2 31gnature form_of GUV.lS glveh at '’ g

| the end of the calculatioﬁfi ' L ' o T

R A
B R |

) ds?,‘:f)(l: f—-(:;—rl-)dt +2drdt~r (@62 % sin? 6d¢ 2y oo
T : S 2
Ftt,r) = 2m(t) - e ét) o -
Let’ el = dr + 1 (1L - £).dt
et & = z -3
62 = rdf .
3. . /
07 = rsin6d¢
L
as? = 20%0% - (82 (632" L
%
914 T 941 T 922 933 = 1 other g, = 0
ab _
g\. - geb
dot = a%r + £ g%t - g BT gy : (2)
3 : 2 o 2’ 7T v .
_1 f 1,4
= 57 (G- getnet

98



@67 = d(rsin6d¢) ‘= sinfdride + rcosedends -
L gl Ll fy.4,03 1 o 23
= ¢ lo7-30 ) 071007 + % cotg o%he’
[ ‘ ) : 3 .
as? = a%t = 0 g S .
k S L
a_ _a, b ~ : , J
R
V N : - . ’ _ l _‘v_‘l4. _ .
ab T T¥pa T ®:9- wyy =0 0T, =gy, 0
(2), (6) — S N
i _1 f s .4 1 .2 1 _..3 1
‘w = E(E fr)e ’ w 2—‘A8 ’ w 3-.— BH ’ W 4‘
(3),(6) —
2 vez 2 2 3 2 1 £
W T W =0, wiy=CeT, W= - s (1-0) 0
S (4),(6) —
.3  ;‘63’_1,-3 _ cot8 63' 3 .o 3 -1 (1
B A v B3 TR Wit 5y
(7) —
©2 T T YT T TOpw g T ey 21 T
1 o 3 _ . %1 . f£..3 |
Wi Ty =gy - e E ’
_ 1, f Lo o1 . %
- A= ——(1;{, B=rgy (1=3)

drAde =

t
1.1,.2 1° £ o4 2
$0708° - = (1= 2ehe
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2 3 cotf . .3 cot8 '
w = -w = : 8 — C = -
3 2 r . r
“ . ‘ 3 2‘ 3 ®
4 4. . 2 B 4 _ 3 _ 0
Wi s 0rw,swy =gy Wy Ty T
4 1 _ . £ 4, |
Wy T T T T 2T (r fr)e -
Qab = d‘”ab + wach wcb Sécond equa::'ion.of_ str:\ft»ur;e.‘m_,,
;e . . . g ‘m'. )
£ab =E;Qba h .
. : )
. T e ,
L .. 1. 2f o T'r Trx,o:1l,.4 \ ‘
8y =3 34— - T8N
r r . ) l
1 1 £o1 2 fe 2y ? -
Q. = == (£ = Z)0in° - -5 8%e
2 2 r 2 -
.. 2r .2x
Y1 1 £33y
Q = —= (f. - Z)B"A8T - —= B87AD ™
3 2 r r 2
2r : 2r
1
a7, = 0 -
- £ )e%ne? -
', 0
2 f 2,3 .
19 3 = -76 AB ,
r
2 1 -
Rf, =9,
R = L £ - g )66t
Lo 2T T :
T 7

LI
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=-Ry41 =

. l‘
R4

Similarly, we get

_ L 2f ]
200 3
: A o

+

)

2
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[
. |
™

e

o i
whgre'Rijé = -R

i
njgkr

'Riemann tensor’vanish.

e

-Other tetrad components of the

-102

e

@
3

.
.
/ 8 .
1] '
4 .
fv) \'.v
r) ¢ :
- 9 N 4 2
: \ 3\‘»5:1
~ K]
et : )
K 3
1]
i\
{
,/.
T
»
1 .
kN
&l
1
o



Contracting to get the Ricci tensox,
. . ’ 1 ‘
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) ]
. i g N
YR = . —_—
UgY, MV i o
. £ £ VI
R rr . r r : Tt
i = —= = = —— = - = —
b Rig 2r © Roo 2+ Riz 7 Ryy 2
N . . r r r
Other R _ = 0. 3 ' +
v A

ConVerting from_tetrad.Components to,actgal co-ordinates -

b

Rabdx dx Rab .g‘
— 4 (drdt + —(1— —) dt-+ + R22
%%»_ _ -
+ Rf\l sin 6d¢2-¥ R ﬂdtz‘
=33 . T 44
= 2R, ,drdt + R d62' R 'd¢2 +
T 2Ry 2 : 33
a . f - -
zj;/% T ¢ Ra2 T TR 40 Rag
R
_ rr _f . o
Ryg = 3¢ @ -3+ ==
r
-~N0w_from'ﬁetric (L) !
v ,
9yy T o 0 R 1
0 - -r? 0~ 0
" 2 -
0 9] —r151n_0 0.
1 0 0/ (1-3
o
e

4 -
7
a6 2
Ryqdt”

e

= —f-sinzo ,
r




WV (Lo £
gh’ = (1 /r) 0 0 .1

, 1

0 - = 0 0

. ¢ '

0 0 - -1 :
. . 2 :
) r sin 8~._
7 - | .
1 q% 0 0

. [ .

. _pv _ 14, 22 X
R‘— g Ruv_— 2g JR14 + g R22;+ g
frr ff fr |

= —= + = 4+ =
rr r? r2
f 2f
= rr + X o
r 2
- r .
gl o= g4lg - _ Crr
179 P14 T
~\\.‘ f » B )
2 _..22. _  'r
Ry = 22 T2 N
R3 . 335 _ EE
379 B33 5 3 -y
o r4 . b '
~J4 14 44 £rr
Rig'= 9 Ryy +9 Ry = 50—
1 . " 14 11 e
Ry =9 Ryy ¥ 97°R 4 =+
i : r”
W oM _ R ou
G Vv R v 2 8 Vv
N e 0 0
. ;ﬁ » - . A
rr o
. _ Trr o
0 0 = O
EE 0 0o - EE
r? : 2
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. %

This‘Guv is for a -2 signatﬁfe metric. Changing to a

+2‘signature, 7 N
GH = |4+ =L -0 = 0 0
Y .2 . 4
. r. -
frr |
fir . I
& 0+ 5 - 0 ,
- ' R
f f ' -
t r ) ; . .
3 0 0+ = & | S
| r r- | : . .
j B ". ..
. w \g_



-y

(2]

131

14}

(51
161

[7]r

(81
[91-
[10]

/

/

[

i
REFERENCE$

/

J,A.(Wheeler, in Relaﬁiﬁity Groups and Topology,

From lecture notes by W. Israel.

J.R. Oppenheimer and H. Snyder, PhYs._Rev,:ég,

(1939) .

Ya.B. Zelddvich.anq I.Qﬁ Novikov,'Relativistic‘

' AStrophysics,’Vol ‘i /569, 370_(UniVersfty of

’

Chlcago Press, 1971)

See ref 4,

J. Weber in ref. 1,/ and K.S. Thbrne in Ref. 4.

D. Crompton, J.B. éutéhings, Astrophys. J..178,
L65 (1972) |
,R Glacconl, "Phy51cs Today"; May 1973

_W D. Metz, "Phy51cs Today", January 1972.

Dewitt and Dewitt, eds. (Gordon and.Breach; 1963).

B8

455

K.S._Thorne, in Gravitation.(W.H}nFreeman, 1973).
! ] . .

See'alsb‘K;S.iThorne, “Gréﬁitational Coliépse,

AN

. A'Review Tutoriél Article" (unpﬁblished 1968).

r[il]
(12]

[13]

r14)

[15]
[16]

R.H. Dicke, ref. 1.

See ref. 4, p. 369 R

oo o ‘
For references l2 13, and 14, see R. Penrose,
Rivista Del.Nuovo Cimento l,-252 (1969){”

'See'ref,'12.

.‘ . «

See ref. 12.

Y. Israel, Phys. Rev. 164, 1776 (1967).

, o 106'

o



107

7. [17] See ref. 12.
[18] M.D. Kruskal, Phys. Rev. 119, 1743 (1960) .
[19] C.W. Mlsner, in Astrophy51cs and General Relat@v1ty,

L

vol. 1, Chretlen, Deser, and Goldst

ny eds,
(Gordon and Breach, 1969). _ - o )

[20] See ref. 197 ~ : :
- [217 v. de la Ciuz and W. Israel, Il .Nuovo Cimento_LIA(
N.3, 744 (1967).

[22] See ref. 21.

P

: . )
[23] J. Plebanskl and J. Stachel, J. Math. Phys. 9, 269°

~

(1968)

[24] W. Israel, Phy31cs Letters 24A N. 3 (1967)

[25] ‘See W. Israel, Il Nuovo Cimepnto XLIVE, N. 1, 4349
(1966). Also'ref. .21. i |

f26] See J.E. Chase; Grav1tatlonal Inst%blllty and Collapse
of Charged Fluld Shells",Il Nuovo Clmento, LXVIIB N.2

(1970)

o

_[27} D.G. Boulware has performed S1m11ar calculatlons in
i
- "Naked Slngularltles énd the Relssner Nordstrom
Metric" (unpubllshed 1973)

[281'R.'Penrose, ref. 12.

==

[29] J .M. Berdeen, ﬁ. Carter andds. Hawking,‘Commuﬁ, Math.
Phys.!31, 161 170 (1973). |

[30] W. Israel and G. Wilson, J. Math. Phye. 13, N.6, 865
(1972) . a E '_ |

[31] H. wéy1, Ann. physik_gi, 117 (1917) .

[32]_s.b. Majumaar, Phys, Rev. 72,. 390 (1947).” o

[33] A.’Papepetrou; Proe.'Reya Irish Acad,.éél, 191 (1947).



108.
“[34] W.Bg\Bonnor, Pnoc}fPhys{‘Soo. (London)‘AGG[ 1451
(1953); 267, 225t24954)*

-[35] J.L. Synge, Relaf vity, The General Theory (North—

Holland Amsterdém, 1960), R.367.
«f36] AL Das, Proc. Roy. Soc. (London) A267, 1 (1962).
[37]-V. de la Cruz, J.E. Chase, and W. Israel, Phys. Rev,

petters 24, 423 (1970).°
C

[38] R. Price, Phys "Rev. D5, 2419 (1972)

139] J.B. Hartle and S.W. Hawklng, Commun. Math. Phys.V

26, 87 101 (1972). Also L. Parker, R. Ruffini,
D. Wilkins, Phys. jRev. D7, No.10, 2874 (1973). ~

[40] Greek indices run.from 1 to 4, Latin indices . from
1 to 3. LoWering and raisinglof Latin indices is

., always carried out with Ymn,ahd its inverse y ™
unless specifically noted by a left superscript 4.

d%ls, if‘Fuv is a giveh covariant teh%or,‘we write
FaP = Yamyan and (4)Féb'= gaU bvg |
. : Smn o, L uv

Perjes, J. Math. Phys. 11, 3383 (1970).

£., for the special case of axial symmetry, F.J.
wrnst, Phys. Rei&);ég, i%}se(lQGB),.where the'idea,‘
»;» of a'complex potential-is‘firét intrdduced; We
have_been informed>thet B.K. Harrison k1968,
unpubiished) hasicast the stationery electromagnetiC‘
vacuum equatlons into a form 51mllar to that glven

in Sees. 2 and 3. See also B.K. Harrlson, J. Math.

: Phys}.g,;l744 (1968).'TA,recent publioation by
L :



[43]

144]

[45]-

_general Etatlonary vacuum case. -

I S 109

-~

Erhst J. Math. Phys lZ' 2395 (1971) treats the

<

See, e. g B. Capte:, Phys. Rev. 174, 1559 (1968).

See ref. 39.

W. Israel, Differential Forms  in General Relat1v1ﬁy,“

Commun of the Dublln Instltute for Advanced Studies,

Series A, Ho. 19 (1970)-.



