
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and continuing

from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited w ithout perm ission.

Trying to determine the structure o f a protein by UV spectroscopy was like trying
to determine the structure o f a piano by listening to the sound it made while being

dropped down a flight o f stairs.

- Francis Crick, British Molecular Biologist

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited w ithout perm ission.

University of Alberta

P r e d i c t i n g P r o t e i n F u n c t i o n U s in g M a c h i n e -L e a r n e d
H ie r a r c h i c a l C l a s s if ie r s

by

Roman Eisner

A thesis submitted to the Faculty of Graduate Studies and Research in partial ful
fillment of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Fall 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON1K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de i'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

0-494-09157-6

Your file Votre reference
ISBN:
Our file Notre reference
ISBN:

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par r Internet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

L'auteur conserve la propriete du droit d'autaur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n’y aura aucun contenu manquant

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To Linda, who gave me a purpose.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

High performance and accurate protein function prediction is a challenging problem

in Bioinformatics. Many contemporary ontologies, such as Gene Ontology, have a

hierarchical structure that can be exploited to improve the prediction accuracy, and

lower the computational cost of protein function prediction. The structure of the

hierarchy is leveraged in two ways: First, a novel method of creating hierarchy-

aware training sets for machine-learned classifiers is introduced and shown to be the

most accurate method. Second, the hierarchy is used to reduce the computational

cost of classification. A sound methodology for evaluating hierarchical classifiers

using global cross-validation is introduced. Biologists often use BLAST to identify

potential functions of new proteins. Therefore, hierarchical methods are compared

to BLAST as a baseline, and show improvements in predictive performance, and

coverage. This dissertation focuses on the prediction of protein function within the

Gene Ontology, but the techniques are applicable to hierarchical classification in

general.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I would like to thank Linda for being there for support during the more stressful
times. I also appreciate the fact that my family has supported all of my decisions.
I would like to thank Duane Szafron and Paul Lu for being great Supervisors, who
gave me plenty of creative freedom, and indispensable guidance. I also thank the
entire Proteome Analyst research group for constructive discussions, and for many
good times.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 Introduction 1
1.1 The Central Dogma of Molecular B io logy.. 2
1.2 Bioinformatics .. 4

1.2.1 Protein Function Prediction and D eterm ination................... 4
1.2.2 O nto log ies ... 6

1.3 Research G oal... 8
1.4 Contributions... 8
1.5 Outline .. 9

2 Background and Related Work 11
2.1 Machine Learning... 11
2.2 Classification... 11
2.3 Hierarchical C lassification... 12

2.3.1 Semantics of a Hierarchy... 14
2.3.2 Hierarchical Classification of Protein F u n c tio n 16

2.4 Related W o rk ... 18
2.4.1 Protein Function Prediction ... 18
2.4.2 Hierarchical Classification..21

2.5 Introduction to T o o ls .. 23
2.5.1 B L A ST ... 23
2.5.2 Support Vector Machines... 24

PFAMSVM ... 26
Proteome Analyst S V M .. 26

2.5.3 Probabilistic Suffix Trees... 27
2.6 S u m m ary ... 28

3 Hierarchical Classification using Local Predictors 29
3.1 D a ta S e t.. 29

3.1.1 The Gene Ontology controlled vocabulary.................................29
3.1.2 The UniProt D a tab a se .. 30
3.1.3 The Gene Ontology Annotation P ro je c t.....................................30

3.2 Evaluation Issues within a Hierarchical O n to logy32
3.2.1 Scoring Predictions.. 32
3.2.2 Scoring Predictions in a Hierarchy..34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2.3 Cross-Validation in a Hierarchical Ontology..............................37
3.3 Predicting Protein Function with Local Predictors................................. 39
3.4 S u m m ary ..41

4 Hierarchy-Aware Local Predictors 42
4.1 Training Set D esign ..42

4.1.1 Exclusive vs. Inclusive C lassifiers..43
4.1.2 Comparison of Training Set Design S chem es...........................46
4.1.3 Top-Down Search R ev isited ... 51
4.1.4 Robustness to Incomplete Annotations....................................... 52

4.2 Global Cross-Validation R ev is ited ...54
4.3 S u m m ary ..55

5 Optimizing Predictors of Protein Function 58
5.1 PFAM-SVM...58
5.2 PA-SVM... 59
5.3 Probabilistic Suffix T re e s ...60
5.4 B L A S T ...62
5.5 Combining Predictors... 64

5.5.1 Characterizing Predictors..65
5.5.2 Ensemble M ethods...66

5.6 S u m m ary ..66

6 Experiments for Hierarchical Classification of Protein Function 68
6.1 Proteins with Good BLAST H i t s .. 68

6.1.1 BLAST-N-Union.. 70
6.1.2 BLAST-Search-N.. 70
6.1.3 Evaluation of Candidate Generating M ethods...........................71

6.2 Proteins with No Good BLAST H i t s ..73
6.3 C o v e rag e ..76
6.4 Comparison to P ro tF un ..77
6.5 S u m m ary ..77

7 Conclusion 79
7.1 Discussion of R esu lts ... 79
7.2 Future W ork ...80
7.3 S u m m ary ..81

Bibliography 82

A Data Set Information 86

B Supplementary Results 88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C The Pruned Ontology

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

2.1 Terminology...

3.1 Binary Confusion M atrix ..
3.2 Training local predictors using Proteome Analyst features.............
3.3 Lowering the cost of using Local Predictors.....................................

4.1 Various Training Set Construction S ch em es..................................
4.2 Comparison of Training Set Schemes ...
4.3 Exceptions for Training Set Schemes..
4.4 Comparison of Training Set Schemes on Smaller Ontology
4.5 Lowering the cost of using Local Inclusive Predictors.....................
4.6 Lowering the cost of using Local Less Inclusive Predictors............
4.7 Comparing the worst and best global splits of the data for training

inclusive classifiers using PA-SVM..

5.1 Optimizing PFAM Predictors...
5.2 Parsing other Swiss-Prot fields for PA C lassifie rs.........................
5.3 PST Parameter Search S p a c e ..
5.4 Results of PST Parameter Search...
5.5 Varying E-value for B L A S T ..
5.6 Using more than one BLAST H i t ...
5.7 Intersections of Good Performing Node S e ts
5.8 Combining Predictors..

6.1 Histogram of How Often X Hits are found by BLAST...................
6.2 Performance on proteins with Good BLAST re su lts
6.3 Exploiting BLAST R esu lts ...
6.4 Comparing Methods for Lowering Prediction Cost
6.5 Performance on proteins with no Good BLAST re su lt...................
6.6 Coverage against model organisms..
6.7 Comparison to P ro tFun...

A.l Evidence Code H is to g ram ...
A.2 General Data Set S ta tis tics ...

B.l Parameter Search for the PST order ...

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

o oJO
40
40

47
48
48
50
51
51

56

59
60
61
62
63
64
65
66

69
70
73
74
75
76
77

87
87

88

W
1n

> Parameter Search for Smoothing t e r m ... 89
Parameter Search for Window L e n g th ... 89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1 The Central Dogma of Molecular B io logy .. 2
1.2 Two proteins in FASTA fo rm at... 3
1.3 Database G ro w th .. 4
1.4 Protein Function Prediction... 5
1.5 A Flat Ontology.. 7
1.6 A Structured O n to lo g y ... 7
1.7 Gene O n to lo g y .. 8

2.1 The two stages of supervised le a rn in g .. 13
2.2 The three aspects of Gene Ontology annotations.....................................14
2.3 The ion binding node and its children .. 15
2.4 The nucleus node and some of its children.. 15
2.5 A protein (JIP1-MOUSE) and its GO annotations........................... 18
2.6 The ProtFun ontology.. 20
2.7 The Proteome Analyst ontology ..21
2.8 A Support Vector M ach in e ... 24
2.9 SVM Transparency..26

3.1 An Evaluation Example... 36
3.2 5-Fold Cross-Validation... 38

4.1 An Exclusive Classifier System ...44
4.2 Inclusive Training Set Construction Scheme for Node N45
4.3 An Inclusive Classifier S y stem ...46
4.4 Inclusive classifiers are more Robust to Incomplete D a t a53
4.5 The Best Global Split of the Data S e t... 55
4.6 The Worst Global Split of the Data S e t .. 56

5.1 Improvements for each Local PST Predictor... 63

6.1 BLAST NN Miss D istance... 71
6.2 Using BLAST-Search-N to Generate Candidate N o d e s 72
6.3 Comparing BLAST and CHUGO on Pruned Ontologies...................... 75

B.l Evaluating BLAST with Varying E -V alu e .. 90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

In the wake of the Human Genome Project, there has been increased attention to
research at the proteome level. While the term genome refers to all of the genes in
an organism, the term proteome refers to all of the proteins expressed by all of the
genes in an organism. Proteins are fundamental to life as we know it, performing a
variety of essential functions. Protein functions include catalyzing reactions, struc
tural and mechanical roles, storage and transport of other molecules. As proteins are
studied, knowledge is gained about what these proteins do in an organism, where
in the cell they perform their functions, and which higher level processes they are
involved in. This knowledge is important because knowledge about proteins gives
insights into drug discovery, gene therapy, and the understanding of how all life
functions. However, the process of analyzing proteins is very time consuming.

The term wet lab is often used to refer to a biological laboratory, where experi
ments are performed on the biological entities themselves. In contrast, dry lab refers
to working with computational tools, or working with theory. Automated computa
tional tools can help researchers analyze proteins by giving good leads about what
proteins do in the cell. Some lengthy experiments can be bypassed or shortened
when some knowledge about proteins is known a priori to work in the wet lab.
Computational protein function prediction is therefore a companion to laboratory
methods.

Through the study of thousands of proteins, various documents have been pub
lished in biological literature describing various aspects of proteins. However, many
times, different researchers will use different terminology to describe similar traits
of proteins. Standard vocabularies provide a method of communicating ideas in a
consistent way. These standard vocabularies are called ontologies.

Standardizing the way research is described supports the use of automated meth
ods. If the knowledge contained in all publications describing proteins in various
organisms were to be stored in a database, ideally the knowledge should be stored
using a common vocabulary, independent of the specific wording the authors used
to describe their research. Knowledge representation is important to computational
tools such as databases, and tools used by molecular biologists such as predictive
systems. Furthermore, standardized vocabularies help scientists in any domain by

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1.1: The Central Dogma of Molecular Biology

The process o f protein synthesis. DNA is used to create RNA (transcription), which is then used to
create proteins (translation). The image is courtesy o f the U.S. Department of Energy Human
Genome Project.

providing a canonical way of describing their research results.
This dissertation focuses on leveraging an ontology that represents protein func

tions in a consistent manner. The large amount of protein data that is available is
used to create a system that can predict the function of unknown proteins. However,
before delving into the computational aspect of the research, a basic understanding
of the biology involved in this research domain is presented.

1.1 The Central Dogma of Molecular Biology
The Central Dogma of Molecular Biology [17] states that information in a cell is
transferred from DNA to RNA to protein1. This process is shown in Figure 1.1, and
is often referred to as protein synthesis.

A protein is a linear chain of amino acids. Since there are only 20 amino acids
commonly found in organisms, each amino acid can be represented by a letter of
the alphabet (for example the amino acid Glutamine is represented with the letter
Q). Therefore, any protein can be represented as a string of these letters (Figure
1.2). When a protein is synthesized in the ribosome, the amino acids are attached

'Originally the central dogma referred to the theory that no information is ever transferred from
protein to DNA. Contemporary use of the term describes this and also the process of protein synthe
sis [52].

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

> P 1 8 0 7 7 - R35A.HUMAN
MSGRLWSKAIFAGYKRGLRNQREHTALLKIEGVYARDETEFYLGKR

CAYVYKAKNNTVTPGGKPNKTRVIWGKVTRAHGNSGMVRAKFRSNL

PAKAIGHRIRVMLYPSRI
>Q9W VI9 - JIP 1.M 0U SE
MAERESGLGGGAASPPAASPFLGLHIASPPNFRLTHDISLEEFEDE
DLSEITDECGISLQCKDTLSLRPPRAGLLSAGSSGSAGSRLQAEML
QMDLIDAAGDTPGAEDDEEEEDDELAAQRPGVGPPKAESNQDPAPR

SQGQGPGTGSGDTYRPKR. . .

Figure 1.2: Two proteins in FASTA format

The human protein R35A, which has UniProt accession number PI8077 is 110 amino acids in
length. Experimental results show that the protein is a structural constituent of the ribosome, and is
involved in RNA binding [3]. The mouse protein JIP1 has UniProt accession number Q9WVI9,
and is 706 amino acids in length. Experimental results show that JIP1 .MOUSE is involved in
protein kinase binding and kinesin binding [3]. Only the first 156 amino acids o f the sequence for
JIPI.MOUSE is shown.

together in a chain. This protein sequence, shown in Figure 1.2 is called the pri
mary structure of a protein. As a protein is synthesized, the chain begins to curl,
and fold into helices and beta sheets. This is known as the secondary structure of
a protein. This secondary structure of the protein will then fold and orient itself
in 3-dimensional space. This is called the tertiary structure (or 3D structure). The
function of a protein is dependent on the arrangement of at least one of these struc
tures. For example a protein which has a structural role will be able to perform this
function because of its tertiary structure. On the other hand, a protein which binds
to other proteins in the cell may only perform this function because of a functional
domain in its primary structure. A domain refers to a section of a protein which is
responsible for that protein being involved in a reaction.

However, a protein’s primary structure, or sequence, is the basis of any struc
tural orientations it may assume. Furthermore, evolutionary mechanisms affect
proteins in such a way that biologically important regions of the sequence are con
served. Additionally, a protein’s secondary and tertiary structures are fully depen
dant on the primary structure. Therefore, a protein’s function must be related in
some way to its primary structure. This dissertation attempts to utilize a large
amount of protein sequence data to predict the molecular function of novel pro
teins.

The molecular function of a protein describes the protein’s activities at the
molecular level [4], and specifies the tasks it performs. When proteins are char
acterized, many aspects of their role are studied, such as their structure, their inter
actions on a chemical level, their location in the cell, and their function. Ideally this
knowledge is published, and freely accessible in one of many protein databases.
The term annotation refers to a single piece of knowledge known about a protein,

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Growth of Protein Sequence Databases
1800000

1600000

1400000

1200000

g 1000000

m 800000

600000

400000

200000

0 L - - - - - - - - - -

86 88 90 92 94 96 98 00 02 04
D ate

Figure 1.3: Database Growth

The Swiss-Prot and TrEMBL databases have quickly increased in size since their inception in
1986. The Swiss-Prot database is a human curated and annotated protein database, while the
TrEMBL database is a computationally annotated supplement to Swiss-Prot. It is clear that the
human annotators cannot keep up with the huge amount o f protein sequences that have been added
to the TrEMBL database. Automated annotation is required to make better use of the sequence
information that is available. Data courtesy o f the NIAS DNA Bank (National Institute of
Agrobiological Sciences. Japan). Image and caption courtesy of Poulin [39].

such as its function.

1.2 Bioinformatics
The rate at which sequencing methods are producing genomic and proteomic data is
far outpacing the rate at which these sequences are being experimentally annotated
and understood. This trend is depicted in Figure 1.3. The number of human anno
tated proteins (Swiss-Prot, PDB) is small compared to the number of proteins for
which only the sequence is known (TrEMBL, GenPept). In response, there has been
a growing focus on ways to speed up the process of determining protein function
through the use of computer systems that predict protein function.

1.2.1 Protein Function Prediction and Determination
In response to the overwhelming increase in protein sequence data, there has been
much research in automated computational protein function prediction as demon
strated by the literature (Chapter 2.4.1) and the Automated Function Prediction Spe
cial Interest Group meeting at the 2005 Intelligent Systems for Molecular Biology

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GOA ^ ,c UniProt
Predictions

^ of Protein
Function

Unknown
Proteins

Protein Function Prediction
System

Input V Output

Figure 1.4: Protein Function Prediction

When unannotated proteins are input into the prediction system, the result is a prediction of what
function(s) each of these proteins perform.

conference [2],
Protein function determination refers to the process of performing wet lab ex

periments to discover what function a protein serves. These methods can involve
studying the protein’s structure through Nuclear Magnetic Resonance or X-ray crys
tallography. Also, information about when proteins react or bind such as assays, and
2-hybrid interactions are useful to understand the functions that a protein performs.
Many approaches exist to understand what individual proteins do, however all of
them are costly in terms of equipment and manpower.

Protein function prediction provides biologists with predictions of the most
likely functions that proteins perform (Figure 1.4). This can help in the process
of protein function determination by providing likely functions proteins perform,
and thus which experiments should be carried out. These methods should be highly
accurate to be useful, and they should be high-throughput so they can be used for a
large amount of data.

Another desirable feature of a prediction system is transparency [46]. Trans
parency refers to how well a user can understand why certain predictions were made.
This can build a user’s trust in the prediction system and thus can give clues as to
the best experiments that should be performed in the wet lab. Alternatively, a user
may decide that a prediction is incorrect by looking at the data used to make the pre
diction. Either way value is added when transparency is a feature of the prediction
system.

Prediction methods often use machine learning approaches to model the prob
lem domain. Machine learning leverages large datasets to extend knowledge about
existing data, and supports the study of new, data. Protein function prediction can
speed up, and increase the quality of, protein function determination. Protein func
tion prediction is a confluence of research in the biological sciences, mathematical
and statistical sciences, computing science, and philosophy.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2.2 Ontologies
In general, prediction is a mapping from instances to class. Before creating a pre
diction system, the type of predictions that it can make must be predefined. For
example, in protein function prediction, we need to know what the possible protein
functions are. An ontology is a set of terms describing the problem domain in a
standardized way, and defines the possible predictions that can be made. This ad
dresses the issue of different researchers using different terminology to describe the
same functions. For example the terms “peroxiredoxin activity” and “thioredoxin
peroxidase activity” both refer to the catalysis of the reaction shown in Equation
1.1. Through the use of an ontology, this reaction is described through a standard
ized term, so that there is no future confusion about what is being described.

Reduced Thioredoxin + HoOo = Oxidized Thioredoxin -I- H2O (1-1)

Figure 1.5 shows a possible ontology for protein function. A variety of func
tions that proteins could perform are shown, and various wet lab experiments could
imply that a protein performs each of them. Upon closer inspection it is evident that
some functions are more similar to each other than others. For example, the func
tions “nucleotide binding” and “protein binding” are more similar to each other
than either function is to “hydrolase activity”. Furthermore, some functions are
more general descriptions of the same function. For example, “peptidase activ
ity” is a specific type of “hydrolase activity”, in that every protein that performs
the function “peptidase activity” necessarily performs the function “hydrolase ac
tivity”. To represent these relationships between functions, the ontology can be
structured in a hierarchy as shown in Figure 1.6. An unstructured ontology such as
the one shown in Figure 1.5 is often called a fiat ontology, whereas a hierarchically
structured ontology such as the one shown in Figure 1.6 is called a hierarchical
ontology.

Although flat ontologies such as GeneQuiz [9] and others [42] are suitable for
describing the general function of proteins, a more sophisticated approach is essen
tial in describing more specific functions of proteins. Furthermore, different exper
iments to verify the function of proteins provide different levels of detail about that
protein’s functions, which leaves many proteins with incomplete or general annota
tions. Hierarchical ontologies are an effective way of addressing these issues.

In hierarchical ontologies such as EC [30], SCOP [37] and Gene Ontology [22],
both general and specific knowledge is represented in a hierarchical structure, where
general terms are represented by nodes near the root of the graph and specific terms
are represented by nodes near the leaves of the graph. The ontology shown in
Figure 1.6 is actually a part of the Gene Ontology molecular function hierarchy,
represented more completely (if illegibly) in Figure 1.7.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Structural
Molecule
Activity

Transporter
Activity

Hydrolase
ActivityBinding

Signal
T ransducer

Activity

Pep tidase
Activity

D eacetylase
Activity

Catalytic
Activity

Protein
Binding

FMN
Binding

Nucleotide
Binding

Figure 1.5: A Flat Ontology

An ontology describing some possible protein functions that may be deduced from experiments.

Molecular
Function

Structural
Molecule
Activity

Signal
Transducer

Activity

Catalytic
Activity

Transporter
ActivityBinding

Protein
Binding

Hydrolase
Activity

Binding

Figure 1.6: A Structured Ontology

The same protein functions shown in Figure 1.5. however the intuitive relationships between the
functions are shown using a hierarchical structure. This ontology is a subset of the Gene Ontology
hierarchy.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1.7: Gene Ontology

The Gene Ontology molecular function hierarchy of terms is a standardized way o f describing the
functions proteins perform in the cell. The hierarchical structure represents general to specific
functions from left to right. Only the first three levels o f the ontology are shown (Used courtesy o f
Poulin [39]).

1.3 Research Goal
The general goal of the research described in this dissertation is to produce a tech
nique for accurate and efficient protein function predictions from protein sequences
[21]. A high level diagram demonstrating the approach taken in this dissertation is
shown in Figure 1.4. The thesis of this dissertation is that the structure of a hier
archical ontology encodes important information about the problem domain that is
important when creating an accurate and efficient prediction system. Related work
in hierarchical classification has confirmed this (Chapter 2.4.2). This dissertation
presents novel ways that the hierarchy can be exploited in the context of protein
function prediction. However, the techniques presented should be generalizable to
general hierarchical classification.

Ultimately, the result of this research will be incorporated into the Proteome
Analyst [46] suite of web tools, which will make it publicly available, and easily
accessible.

1.4 Contributions
This dissertation presents a system called Classification in a Hierarchy Under Gene
Ontology (CHUGO), that exploits the hierarchical structure of the GO to make
faster and more accurate predictions of protein function. The issue of evaluating

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

predictions within a hierarchical ontology is examined. Also, a novel method of
exploiting the structure of a hierarchical ontology to create predictors is presented
and evaluated. This dissertation shows how to exploit the hierarchical nature of GO
to lower the computational cost of predicting within the ontology without compro
mising accuracy. Finally, it shows that the precision and recall of a classification
system can be improved when the hierarchical knowledge is utilized.

This dissertation makes contributions in three main areas:

1. Evaluation Methodology - In hierarchical ontologies, precision, recall, and
cross-validation are concepts that must be re-visited. This dissertation defines
and illustrates a hierarchy-aware evaluation methodology.

2. Training Set Design - Structured ontologies are encoded with important in
formation about relationships between terms, and are a way of representing
incomplete data. This dissertation presents a novel and effective approach to
training set design that exploits the inherent structure of a hierarchical ontol
ogy. By considering the structure of the ontology, our algorithms increase the
F-measure of hierarchical classification from 46% to 70%.

3. Accurate and efficient protein function prediction - This dissertation ex
ploits the structure of a hierarchical ontology at prediction time to improve
predictive performance, and lower computational costs. CHUGO can in
crease recall for those proteins that are similar to experimental proteins by
2%, and in the case of proteins that are dissimilar to the set of experimental
proteins, precision can be increased by 37%, and recall by 12%. The compu
tational cost of local predictors can be lowered to as low as 2% of the cost of
running all local predictors when the hierarchy is considered.

1.5 Outline
Chapter 2 first introduces necessary terminology and concepts in machine learning.
Next related work in protein function prediction and general hierarchical classifica
tion are discussed. Finally each of the tools used in this dissertation are introduced.

Chapter 3 describes the data set used for all experiments described in this dis
sertation. The issues that are raised when predicting within a hierarchical ontology
are described and addressed. Chapter 3 concludes by presenting a first attempt at
protein function prediction within the Gene Ontology.

In Chapter 4 protein function prediction is revisited. First, the way training ex
amples are selected for each local predictor is explored while keeping the structure
of the ontology in mind. Second, it is demonstrated that the structure of the ontol
ogy can be used to lower the cost of prediction without a penalty to accuracy. The
chapter concludes by revisiting the issue of cross-validation in a hierarchy.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Each predictor method is described in detail in Chapter 5, and then optimized.
These predictors are then combined into ensemble classifiers which are used to
predict each molecular function in the ontology.

Chapter 6 applies the prediction technologies presented in the previous chap
ters. Other approaches of lowering the computational cost of prediction are also
presented. The issue of coverage is also addressed, and CHUGO is shown to have
a higher coverage than BLAST and Protfun.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Background and Related Work

Since the inception of automated procedures there has been a large increase in the
amount of data that needs to be processed and understood. Machine learning is a
way of addressing these issues, by automating and facilitating the process of under
standing relationships and patterns in data.

Proteomics research is an area where this issue is relevant. The amount of pro
tein sequence data available far surpasses our ability to determine and catalog the
function of each protein sequence. This chapter will introduce machine learning
in general, and make these concepts concrete by connecting them to a real world
example - protein function prediction.

2.1 Machine Learning
Machine learning [7][23] is an area of Artificial Intelligence that attempts to “learn”
patterns and behaviors from real world data. There are two major areas of machine
learning: supervised and unsupervised learning.

In unsupervised learning, raw unlabeled data is given as input, and the goal is to
find patterns in this data. These patterns give information about similarities in the
instances in the data set, but ultimately must be interpreted by users knowledgeable
in the problem domain since no a priori knowledge about the data is given as input.

In supervised learning, the data given as input also includes associated labels
with each instance in the data set. The labels are descriptions of the problem do
main. The goal of supervised learning is to learn a function representing the data
set, which can then be used to predict labels for future instances where the labels
are unknown.

This dissertation only deals with the latter case of supervised learning.

2.2 Classification
In supervised learning we are given instances and corresponding labels for each
of these instances. The case when these labels come from a finite, discrete set. is

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

called classification. The more general case, when the labels can be any real value
is called regression. Since the topic of this dissertation is protein function prediction
and it is an example of the former, regression will not be described further.

In the classification of proteins by their function, each data instance is a pro
tein, and each instance’s label is that protein's function. One common approach in
machine learning is to represent each instance as a feature vector, x. Each com
ponent of the vector is a feature that describes some aspect of that instance. In
protein function prediction, this vector can contain various biological properties of
a protein [49], annotations describing similar proteins [46], or other attributes (see
Chapter 2.4.1). Feature vectors are not the only way to represent instances. For
instance, the protein sequence can be modeled directly [39].

Each function is represented by a label (also called a class). Therefore, along
with each instance, a corresponding label, y, is given. Each labeled instance is
represented by an attribute, label pair: (x. y), and each label must be one of a
standard set of terms (the ontology). Gene Ontology contains the possible functions
a protein may perform.

An important observation is that a protein may perform more than one function.
For example, the protein JIP1 .MOUSE performs the functions “Kinesin Binding”
and “Protein Kinase Binding”. These two functions are the labels for the protein
JIP1 .MOUSE. This has important consequences in the construction of a prediction
system, and in evaluating such a system. This will be addressed in Chapter 3.2.

The goal of classification is to use the labeled data (also called the training set)
to create a classifier (Equation 2.1). A classifier is a model or function that, when
applied to an instance, x, returns a prediction of its class, y. During evaluation, the
prediction for an instance y is compared with the instance’s true label y and scored
in some way.

f {x) = y (2.1)

Supervised learning occurs in two stages (Figure 2.1). First, the process of cre
ating a classifier is called learning or training. Here, one of a variety of algorithms
is applied to the labeled data set to create the prediction function f (x) . Second, the
process of running a query instance (a protein instance whose label should be pre
dicted) through a classification function and returning a predicted label, is called
prediction or classification. Some terminology that will be used throughout this
dissertation is summarized in Table 2.1.

2.3 Hierarchical Classification
In traditional classification problems, the set of candidate labels, Y , are independent
of each other, meaning that they are not related. This arrangement of labels is
commonly called a flat ontology, shown in Figure 1.5. In hierarchical classification

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

unknow n
Proteins

Annotated
Proteins £33

M achine Learning

TRAINING

" ^ — ti 'ji
 ' '

Classifier

Predictions
of Protein
Function

*• a . a» a

Figure 2.1: The two stages of supervised learning

Supervised learning occurs in two stages. The first, shown horizontally is called training, and
describes the process of creating a classifier function from data. The second, shown vertically is
called prediction, and describes the use o f a classifier function to make predictions on new
instances.

Table 2.1: Terminology

Summary of terms used throughout this dissertation. Examples are given in the domain o f protein
function prediction. Synonyms are also given in the term column.

Term Definition Example

Instance, x A single data element. Protein,
JIP1 .MOUSE

Ontology, Label
Set, Valid Classes

A standard set of terms describing the problem do
main.

Gene Ontology

Label. Class,
Node

An element in the ontology that describes an instance “Hydrolase
Activity”

Predicted Label.
y . Classification.
Prediction

A label predicted by a classifier. “Kinesin Bind
ing”. “Protein
Kinase Binding”

Annotated Label.
y

A label assigned by an oracle, considered as truth “Kinesin Bind
ing", “Protein
Kinase Binding”

Feature, x, An attribute of an instance. These can be obtained
through a variety of methods. Features are the com
ponents o f the attribute vector x.

Molecular Weight

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Gene Ontology

Cellular
C om ponen t

Biological
P ro c e s s

Molecular
Function

Figure 2.2: The three aspects of Gene Ontology annotations.

the labels are arranged in a hierarchy, where the nodes in the hierarchy represent
the candidate labels, and the edges represent the relationship between the labels.
The fact that the labels are not independent raises several issues during training,
prediction, and evaluation.

A structured ontology encodes important information about how the labels re
late to each other. This dissertation shows that it is unwise to ignore these relation
ships. This information describes which functional annotations are similar to each
other, and thus aids in the creation of training data for classifiers. This structure can
also be exploited to increase the predictive accuracy and lower the computational
cost of a classification system. Previous work has also shown that this structure
can be exploited in other ways (Chapter 2.4.2). tabrterminology summarizes some
machine learning terminology.

2.3.1 Semantics of a Hierarchy
The Gene Ontology (GO) controlled vocabulary is an ontology of terms describing
three aspects of protein annotations. Each aspect is organized into a hierarchy (Fig
ure 1.6). The three aspects of the GO hierarchy are molecular Junction, biological
process, and cellular component [22] (Figure 2.2). Each of these aspects are an in
dependent hierarchy in the Gene Ontology. That is, no node within a single aspect
is connected to any of the nodes within the other two aspects. This fact allows us
to focus on any single aspect at a time without considering the others. This disser
tation focuses on protein function prediction, so only the molecular function aspect
is used for all experiments in this dissertation.

In hierarchical ontologies, the edges represent relationships between labels.
These edges generally represent two types of relationships. These are: the is-a
relationship, and the part-of relationship. The is-a relationship denotes a child be
ing a more specific description than its parent. In the molecular function aspect of
GO, the term “metal ion binding” is a child of the term “ion binding”, since it is a
more specific description of molecular function (Figure 2.3). Any protein that is a
“metal ion binding” protein is also, by definition, an “ion binding” protein.

The part-of relationship describes a sub-component relationship. That is, a child

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.3: The ion binding node and its children

The relationship between the nodes is the is-a relationship. Children nodes are conceptually
specializations o f parent nodes. These nodes are part of the molecular function aspect of the Gene
Ontology.

N ucleus

N uclear
E xosom e

Nuclear
Chromosome N ucleo lus Nucleoplasm

Figure 2.4: The nucleus node and some of its children

The relationship between the nodes is the part-of relationship. Children nodes are conceptually
part-of parent nodes. These nodes are part o f the cellular component aspect of the Gene Ontology.

class is a component of the parent class. In the cellular component aspect, the
component “nuclear chromosome” is part-of the component “nucleus” (Figure 2.4).

Within the molecular function aspect of GO, the relationship between the major
ity of the nodes is the is-a relationship, with the part-of relationship only occurring
for two terms (the children of “telomerase activity” - not in figures). We limit our
selves to only those nodes under an is-a relationship. This allows us to treat the
hierarchy's edges uniformly.

When structuring an ontology in a graph, each label is referred to as a node.
Some nodes in the graph are called leaf nodes if they have no children (such as
“metal ion binding”, “anion binding” and “cation binding” in Figure 2.3). All other
nodes are referred to as non-leaf nodes.

If a protein’s function is “ion binding”, then implicitly, it is also a “binding”

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

protein. This intuition is called the True Path Rule by the Gene Ontology Consor
tium [4], If a protein is annotated with a certain node, then it is implicitly annotated
with all of this node’s parent nodes all the way up to the root node as well. This
propagation of annotations allows for the labels of a protein to be consistent. Intu
itively, it would be inconsistent to consider a protein a “ion binding” protein, but
not a “binding” protein.

A difficulty with hierarchical ontologies is scoring. The hierarchy encodes intu
ition about which nodes are closer to each other than others, however it is difficult
to measure wrong predictions in the hierarchy. This issue is addressed further in
Chapter 3.2.2.

Another difficulty is that knowledge about an area is constantly changing, and
this may affect how this knowledge is organized. To address this issue the GO con
sortium meets regularly to update, and sometimes reorganize the ontology. There is
also a user meeting that allows for users of the ontology to voice their concerns [6].

Ontologies have also been an area of research in Philosophy since the days of
the ancient Greeks [5]. Understanding how to represent knowledge into ontologies
gives us a better understanding of our own thought processes. Having a predefined
ontology also promotes the standardization of terms in future use. Furthermore,
having an understanding of the semantics of a hierarchy, and how to apply them
correctly helps to alleviate inconsistencies in scientific knowledge. Philosophical
principles help to make the structure and wording of an ontology more consistent
and formal, and have been applied to the Gene Ontology [45].

2.3.2 Hierarchical Classification of Protein Function
Our data set consists of proteins that have been annotated with their Gene Ontology
molecular functions. These annotations are derived from experiments performed
on these proteins, electronic predictions of these protein’s functions, or putative
functions based on homology and other methods. Putative functions refer to those
that are commonly accepted as true. Our dataset does not use all of these annota
tions, since they are not equally reliable. However, it is important to note that each
of these annotations represent the most specific experiment performed to assess a
particular protein’s function, but may not be the absolute correct answer.

This issue can cause problems during the evaluation of our predictors. For ex
ample, a protein that is annotated as only an “ion binding” protein, but in actuality
is a “anion binding” protein (Figure 2.3), would non-intuitively give us a better
score when we predict it as “nor anion binding”. This is because a future exper
iment may show that this protein is indeed “anion binding”, however “not anion
binding” matches the annotations, which we consider as the correct answer dur
ing evaluation. Our predictor may answer “anion binding” because of legitimate,
machine-leamed similarities between the protein and other proteins in the “anion
binding” set. Furthermore, a future experiment may show that the protein is indeed
“anion binding".

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When annotating proteins with Gene Ontology terms, each protein can be as
signed multiple terms. A protein may be assigned multiple Gene Ontology func
tion terms for two reasons. First, a protein may have multiple functional domains
or react to more than one molecule. For example the protein JIP1 .MOUSE is an
notated with “Kinesin Binding” and “Protein Kinase Binding” (shown in Figure
2.5). Neither of these terms is a direct specialization of the other, so there is no
ancestor/descendant relationship between these terms in GO.

Second, due to the hierarchical nature of Gene Ontology, a protein may be ex
plicitly annotated with a GO term and also the parent of this GO term. This a result
of what each Gene Ontology annotation represents. For example, one experiment
may show that a protein is an “ion binding” protein. Another experiment may be
more specific and show' that a protein is an “anion binding” protein. These anno
tations may represent the same function that a protein performs. We later show
that it is useful to explicitly represent all GO terms describing a protein’s functions
according to the true path rule.

There are two unusual labels in the GO hierarchy that are treated differently dur
ing experiments. These are the “unknown” (0005554), and “obsolete” (0008369)
nodes. A protein mapped to the “unknown” node has been experimented on and
no positive results have been found, in contrast with those proteins that have not
been studied at all and so have no GO annotations. The “obsolete” node describes
annotations to GO terms that were removed in a newer release of GO. These obso
lete nodes are moved so they become children of the term “obsolete”. If a protein
maps to either one of these nodes or one of their child nodes (in the case of “obso
lete”), these annotations are removed from the data set, since they do not provide
any useful information.

For each protein, experimental annotations are provided. The set of those nodes
that are explicitly annotated for a protein will be called the mapped nodes. Ac
cording to the semantics of the hierarchy, all of the parent nodes of the mapped
nodes apply to this protein as well. If all of these annotations are propagated up
ward in the hierarchy according to the true path rule, we arrive at the set of labeled
nodes. In Figure 2.5 “protein kinase binding” and “kinesin binding” are the mapped
nodes, and “protein kinase binding”, “kinase binding”, “enzyme binding”, “protein
binding”, “binding”, “kinesin binding”, and “cytoskeletal protein binding” are the
labeled nodes. The set of mapped nodes are those explicitly annotated to a pro
tein, and the set of labeled nodes are those inferred from the ontology and the set
of mapped nodes. This terminology will become useful later when evaluation is
discussed.

Classification of protein function within the Gene Ontology vocabulary is a gen
eral form of hierarchical classification in several ways. First, the hierarchy allows
for multiple parents. In other words, the structure of the hierarchy is a directed-
acyclic graph (DAG), where a node can descend from two or more parent nodes,
such as in Figure 2.5 “Receptor Binding” descends from “Binding” and “Signal
Transducer Activity”. This is a more general form of hierarchical ontologies that

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.5: A protein (JIPl_MOUSE) and its GO annotations

Each protein can be assigned multiple terms. Also note that Receptor Binding has two parent terms
making the ontology a Directed Acyclic Graph (DAG). Only part of the ontology is shown.

are tree-shaped, where a node can only have a single parent. Second, each protein
can be assigned more than one mapped node in the hierarchy. This restricts the
types of classification technology that can be used since the prediction system must
be able to predict more than one label for each instance.

2.4 Related Work

2.4.1 Protein Function Prediction
The prediction of protein function is important to supplement the labour-intensive
process of protein function determination. Predictions for the functions of proteins
can help select likely candidates for further study, such as in pharmaceutical re
search. Alternatively, when studying a single protein, function predictions can give
good leads as to which experiments should be performed to further elucidate the
protein’s functions. A variety of approaches to protein function prediction exist.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

One approach is to use the protein's structure (i.e. tertiary structure) to predict
a protein’s functions [38]. Since this approach requires that the protein’s structure
be solved (or at least predicted accurately) it provides limited coverage across all of
the proteins in any particular organism.

Another approach uses documents describing proteins to predict the functions
of these proteins [27]. This technique also has extremely limited coverage on a per-
organism basis. Not only does information have to be published about a protein for
this technique to work, but also the documents must be correctly associated with
the protein in question (which documents discuss which protein may not always be
easily discernible information) and correctly parsed, which may be difficult.

Coverage can be improved by using sequence-based approaches. By far the
most commonly used method is BLAST [8]. BLAST is an efficient way to search
a database of protein sequences for sequences similar to a query protein. Other
techniques attempt to leverage the results of a BLAST search to make more accurate
predictions [49]. However, merely validating BLAST results will not improve the
coverage of a predictor. Furthermore, we demonstrate (Chapter 6) that BLAST does
not work well for predicting functions when the most similar sequences found are
below the 10-3 E-value threshold. We found that this often limits the coverage of
these predictors to approximately 60% of the proteins in a proteome.

Proteome Analyst (PA) is another tool that utilizes BLAST. PA uses the anno
tations associated with similar proteins to predict the functions of query proteins
[46]. Proteome Analyst does not consider the hierarchy when creating its predic
tors. However the hierarchy is used to create the pruned ontology shown in Figure
2.7. Those nodes with a large number of annotated proteins are kept in the ontology,
in a way that is consistent with the structure of Gene Ontology. That is, a node is
never included in the ontology without its parent node being included as well.

Protfun [24] is another example of a sequenced-based predictor. It uses local
sequence properties, such as predicted post-translational modifications, sorting sig
nals and properties computed from amino acid composition as input for predictions.
No a priori knowledge of the protein is required, other than its sequence. However,
Protfun does not exploit knowledge of the hierarchy during the training of its clas
sifiers, or during the selection of its ontology (Figure 2.6). Furthermore, the set of
14 GO terms that it predicts is relatively small (and only 9 of the 14 nodes are part
of the molecular function aspect of GO). In the future, we would like to incorpo
rate biological features such as those used by protfun in local predictors using our
training set design schemes.

Other methods attempt to represent sequences in more complex ways. PFAM
uses Hidden Markov Models to represent protein families [12]. These Hidden
Markov Models can then be used to predict whether unknown proteins fit into each
of these protein families with varying degrees of confidence. We use these predic
tors as features for some of our classifiers.

InterProScan [10] combines a variety of prediction and database tools into a
single prediction system. When a query protein is run through InterProScan it is

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Signal
T ra n sd u c e r

Activity

S tructural
M olecule
Activity

Transporter
Activity

[Channel or .
• Pore Class '
 ̂ Transporter J
. Activity /

' Ion
I Transporter
\ Activity

ProteinReceptor
Activity

' Alpha Type \
(Channel ■
\ Activity

Growth
Factor

Activity

Ion C hannel
Activity

Horm one
Activity

Voltage
Gated Ion
Channel
Activity

Cation
Channel
Activity

Figure 2.6: The ProtFun ontology

A general molecular function ontology, used by the ProtFun 2.2 prediction system. Solid nodes are
those that ProtFun uses in its prediction ontology. Dashed nodes are those that are not in the
ProtFun ontology, but are intermediate nodes of those that are included. Protfun also includes 5
nodes from the biological process aspect of Gene Ontology, which are not shown.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.7: The Proteome Analyst ontology

A general molecular function ontology, created by pruning the original Gene Ontology vocabulary,
and used by the Proteome Analyst online system.

assigned a variety of InterPro codes. Some of these codes can then be mapped to
the Gene Ontology, if they represent functional classes. These InterPro codes are
included within Proteome Analyst features, which are then incorporated into our
prediction system.

King et al [26] present another approach that is only based on the existing an
notations of proteins. The system examines existing annotations, and predicts an
notations that often correlate with the existing predictions. This is done because
the authors correctly observe that protein annotations are often incomplete. They
note that protein annotations are incomplete because “...there are genes whose at
tributes are not yet all known, and because there is literature that has not yet been
digested by the database curators” [26]. However, in Chapter 4.1.4 we argue that
even existing annotations are incomplete, because they may become more specific
in the future. The methodology presented by King et al also suffers from a fact
that functions that are often correlated may not always occur together. In CHUGO,
each function is predicted individually, where correlations would occur as a natural
result of the prediction process.

2.4.2 Hierarchical Classification

The machine learning literature has described attempts to utilize the structure of
a hierarchical ontology to improve classification. Kiritchenko et al [28] used the
hierarchy to increase the number of training instances at each node, by first making
the training data for local predictors more consistent with the ontology. We extend

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

this work by investigating different degrees of consistency with the hierarchy when
creating our predictors.

Koller and Sahami consider the hierarchy during the creation of training sets,
and compare these results to considering the ontology without any structure [29].
Their results show a close predictive performance with the two methods where our
experiments show a much wider gap. We believe this is because their hierarchy
describes web documents, which can actually be classified to non-leaf nodes in
the ontology, whereas in Gene Ontology a protein is assigned to a non-leaf node
because of incomplete information. That is, we may know that a protein binds to
a metal, but we may not know which metal. Therefore, with complete knowledge,
we believe that all proteins should be annotated with leaf nodes in Gene Ontology,
whereas in the classification of web documents, assigning an instance to a non-leaf
node is valid.

Chakrabarti et al [15] and King et al [26] showed that the structure of the on
tology can be exploited to define the structure of a Bayesian network. Similarly,
the structure of the ontology can also be used to define the underlying structure of a
hierarchical mixture of experts model [43]. Although our system does not use more
complex models such as these, they could be combined with our training set design
schemes to potentially increase predictive performance.

Sharma and Poole showed that when the semantics of the hierarchy are consid
ered in a Bayesian Network, the computation of probabilities can be converted to
an equivalent flat model for some given evidence [44]. Although their research is
not directly related to ours, the fact that they consider the semantics of the hierarchy
during prediction is related to the methods of training set construction presented in
this dissertation.

Other research [35] has shown that a statistical technique known as shrinkage
can be used to set the parameters in a hierarchy of predictors. Here, the ontology is
exploited as prior knowledge to understand which classes are closely related, and
thus, which parameters should have similar settings.

Dekel et al [18] use a hierarchy to change the formulation of Support Vector
Machines with the hierarchy in mind. Wang et al [51] used a similar approach to
modify the way Association Rules are created, keeping the hierarchy in mind. In
principle, these approaches could be combined with our own.

It has also been observed [1] that a top-down decision model in hierarchical
classification could have poor results since all predictors along the path to the true
label must agree. Also, other methods of training individual term predictors were
mentioned but not explored. Our methods of training set design allow for a more
inclusive classifier in which the top-down model is more feasible, and thus we can
reduce computational complexity without a resulting loss of precision and recall.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.5 Introduction to Tools
In general, predictors over a hierarchy fall into two categories: global predictors,
and local predictors. Global predictors are executed once per protein, and predict
labels over the entire ontology. For example, the commonly used sequence sim
ilarity search tool, BLAST [8], can be used as a Nearest-Neighbor (NN) tool in
the domain of protein function prediction. A typical use case of BLAST would be
searching a trusted database such as Swiss-Prot for proteins similar to a protein of
interest, such as JIP1-MOUSE. The results of a BLAST search would be proteins
similar to JIPI-MOUSE (the nearest neighbors). The user would then examine the
annotations of these similar proteins and then assume that JIPI-MOUSE performs
the same, or similar functions. Since this process does not depend on the size of
the ontology, its computational cost does not increase as the size of the ontology
increases1. In general, all NN predictors can be used as global predictors.

In contrast, local predictors only predict a single label at a time. For example,
a single local predictor would only predict whether a protein does or does not have
the molecular function “transporter activity”. In machine learning, this is called
a binary predictor because the output is one of two possibilities (“transporter ac
tivity” or “not transporter activity”). Local predictors attempt to model a specific
molecular function, and when given an unknown protein decide whether this pro
tein belongs to this functional class of proteins or not. Since local predictors have
the potential to model the subtle differences between molecular functions more ac
curately, they have the potential to help improve the accuracy of protein function
prediction. However, the overall computational cost of using local predictors is
much higher than using a global predictor, and is dependent on the size of the on
tology.

We use a variety of machine learning approaches and feature extraction meth
ods. Support Vector Machines (SVMs) and Probabilistic Suffix Trees (PSTs) are
used to create local predictions at each GO node. BLAST (a global predictor) is ex
ploited for its accuracy and computational efficiency. The remainder of this Chapter
will describe each in detail. Evaluations of each tool, and how the technologies are
combined are discussed in Chapter 5.

2.5.1 BLAST
The results of a BLAST search against a database is a list of proteins that are similar
to the query protein. This list of proteins is ordered according to how similar they
are to the query protein. The user can decide which proteins are similar enough
to their query protein and examine their annotations. However, proteins that are
not similar to well-studied proteins will not return a good BLAST result, so the
biologist must decide to either examine proteins that are not very similar to their
protein of interest, to look for other sequence information, or to proceed with “wet

'BLAST'S complexity does, however, increase with the size o f the database being searched.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.8: A Support Vector Machine

A Support Vector Machine works by finding a hyperplane which splits the data according to its
labels. Each dot represents a training instance. Black dots are labeled with one class, and white
dots are labeled with the other. The dimensionality of the space in which the hyperplane is
formulated is defined by the number of features that can be assigned to each instance. In practical
applications the data is not as easily divided as shown in the figure. For a more detailed description
of SVMs see Hastie et al [23]. Image courtesy of Poulin [39].

lab” experiments (possibly without any initial idea of the protein’s function).
The results of a BLAST search are a set of protein sequences in the database,

ranked by their similarity. Whether a BLAST result is good enough to accept as
potentially homologous is decided by the user. The predictions are ranked and it is
up to the user of the system to set a score for which the results are acceptable. We
therefore use the same approach of setting this threshold such that precision and
recall are maximized during evaluation. This is discussed further in Chapter 5.4.

BLAST is so commonly used that it has become a verb (e.g. “BLASTing a
sequence”). Due to the ubiquitous use of BLAST, our system will be compared to
BLAST in terms of predictive accuracy, coverage, and computational cost. Also,
BLAST provides important information that can be used to increase the accuracy
and decrease the computational cost of local predictors.

2.5.2 Support Vector Machines
Support Vector Machines [48] (SVMs) are a way of learning a classifier function
(Equation 2.1) from labeled data, which have proven to be accurate in a wide range
of machine learning applications. Other advantages of SVMs are that they have
good theoretical justifications, and provide the ability to model data in higher di
mensional spaces. SVMs work by splitting the feature space of instances, according
to their labels (Figure 2.8).

For the input to SVM, each protein must be represented by a feature vector.
We use two methods to represent a protein as a feature vector, which be discussed
in detail seperately. SVMs are used to train local predictors for each molecular
function term in the ontology.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In Figure 2.8, the hyperplane is a linear discriminant. Support Vector Machines
can use a dual formation that allows for the use of kernels, which allow hyperplanes
to be non-linear in the feature space. Although these more complex formulations
of SVMs sometimes prove to be more accurate, we limit ourselves to linear SVMs.
We use linear SVMs because they prove to be very accurate on a wide range of
problem domains, and their results are easily explainable to users. The linear SVM
representation of the classifier function is:

/ (x) = sign(x - W - b) (2.2)

The prediction for an instance, x is predicted as positive if the sign of x ■ w — b
is positive, and vice versa. Remember that each SVM is a local predictor for a
single molecular function. So, for the SVM trained at the node “electron transfer
activity”, the predictor tells us whether or not a protein enables the movement of
electrons throughout or in between cells.

In Equation 2.2, the weight vector, W, and the bias term b are calculated during
training. An advantage to using linear SVMs is that the weight vector and bias terms
are meaningful. Figure 2.9 shows an example where the feature vector contains 4
terms, and is run through a classifier function. The classifier function has been
trained, and is represented by the weight vector W = < 0.95. -0.44,0,0.5 > , and
the bias term b = 0.6.

The instance being predicted contains features < xi , x 2,x z >, whereas the
feature x 4 is absent. These feature could represent any property of the instance
(such as the protein’s tertiary structure, or biochemical properties) and in general
could be real values. For simplicity, consider the case when the features are either
0 or 1 depending on whether the associated token is present or absent from the
instance, respectively.

In Equation 2.2, the two vectors x and w are combined using the dot product,
which is the sum of the product of each vector’s components (Equation 2.4). Since
the dot product is intuitive, each term in the sum of Equation 2.4 can be thought of
as a contribution to the prediction of the SVM. Therefore, x x will contribute 0.95 to
the prediction (a positive contribution) since it is present, x 2 will contribute -0.44 to
the prediction (a negative contribution) since it is present, and x :i will not contribute
anything to the prediction of the SVM classifier (since it is probably uncorrelated
with the predicted label). Finally, x4 contributes nothing to the prediction since its
associated token is not present in the instance. The final prediction of the classifier
is negative for this particular function. In real-world applications the feature vector
is often thousands of terms long, which makes the training of an SVM much more
difficult than this simple example suggests. Therefore, a standard SVM library is
usually used to implement the SVM model. We use the LIBSVM [16] implemen
tation of SVMs.

This example shows that linear SVMs show great potential for explainability
[41]. To users of the system, the predictions can be made intuitive by viewing

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i X i W i X i w \

1 1 0.95 0.95
2 1 -0.44 -0.44
"> 1 0 0
4 0 0.5 0

b = 0.6 (2.3)
f (x) = sign(x ■w — b)

- sign(^2(xiWi) - b) (2.4)
j=i

= sz^n((0.95 — 0.44 + 0 + 0) — 0.6)
- $ign(—0.09)
= negative

Figure 2.9: SVM Transparency

An example showing how the results o f a linear SVM prediction are interpretable by users. Each
feature's contribution to the prediction is that feature's value (x,) multiplied by the corresponding
weight in the classifier function (To,).

each feature’s contribution to the final prediction. Because we want to build user
confidence in the prediction system, we believe this transparency of predictions is
vital to an automated system, and thus linear SVMs are used for all experiments.

PFAM SVM

The PFAM database [12] is a collection of domains shared by functionally similar
proteins. Each PFAM domain is created by first performing a multiple sequence
alignment on a set of similar proteins (similar in terms of function and/or structure).
These domains are then used to construct Hidden Markov Models, which can then
be used to detect these domains in others protein sequences. A single protein may
contain more than one PFAM domain.

For our predictors, each protein is run through HMMer [20], which detects
PFAM domains in sequences. If a protein has a PFAM domain, this domain is
used as a feature describing the protein. Currently, there are over 7000 domains in
the PFAM database.

Proteome Analyst SVM

Proteome Analyst (PA) is a tool used for predicting the general function [46][47]
and subcellular localization [34][33] of proteins. The PA tool works by taking an
input protein sequence, and finding similar sequences in Swiss-Prot using BLAST.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PA then extracts information from the annotations of these similar proteins from
Swiss-Prot. This information is then used as features for a naive Bayes classifier.

For our experiments, we use Proteome Analyst to extract features for proteins
in the data set. Although the web-based Proteome Analyst site uses naive Bayes
classifiers, for our experiments, PA is used to extract features, which are then used
to train Support Vector Machine classifiers. An SVM classifier is trained using PA
features for each node in the ontology.

2.5.3 Probabilistic Suffix Trees
Probabilistic Suffix Trees [13] (PSTs) are a way of representing strings as variable
length Markov chains. Since proteins can be represented as a string of amino acids.
PSTs readily apply. PSTs have been shown to be good predictors of molecular
function in the past [39].

Given a protein sequence (such as the one shown in Figure 1.2), s = s i . . . sm,
where s* represents a single amino acid, we can create a probability model of a set
of sequences using a Markov chain [39]:

P (.s) = P { $ i S 2 . . . S m - i S m) (2.5)

= P (.S i) P (s 2 | s i) P (s 3 |s iS 2) . . .

P(^m—1 |^i - • - STn_2)P (5 nj|Si . . . Sm -i) (2.6)

= P (5 l) P (S 2 |S l) P (5 3 | 5 2) . . .

P(Sm -l|sm-2)P(Sm|Sm-l) (2-7)
m

= P (s l) l [P { s i \ s i- 1) (2 .8)
i= 2

Going from Equation 2.6 to Equation 2.7 is done through the first-order markov
assumption. We investigate several n-order markov models in Chapter 5.3. Al
though it may initially seem non-sensical to look at individual amino acid distribu
tions in a protein to predict function, it does prove to be accurate for some functions
[40]. Other functions depend on larger functional domains, and these are modelled
by varying the value of n.

To make a local predictor for molecular function using PSTs, we create a model
for the proteins annotated with a molecular function (the positive model, P+(.s)),
and also a model for those that are not (the negative model P_ (s)). The probabilities
of these two models are then combined into a single score using a log-odds ratio
(Equation 2.9). We then find the log-odds ratio threshold that maximizes precision
and recall during cross-validation for each PST local predictor. This score is then
used for future predictions.

log-odds ratio (s) = log (2-9)

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.6 Summary
Protein function prediction is an important problem in Bioinformatics. Machine
learning has proven to be an effective way of leveraging the vast amount of data that
has come out of many proteomic sequencing projects. Hierarchical ontologies such
as Gene Ontology provide a standardized set of terms describing protein functions.

Recent work has shown that the hierarchical structure of these ontologies demon
strate great potential for improving the quality and efficiency of machine learning
algorithms. We use a wide variety of bioinformatics approaches to predict protein
function, and will attempt to leverage the hierarchy to improve the quality of these
predictors.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Hierarchical Classification using
Local Predictors

There are several considerations for evaluating a prediction system over a hierar
chical ontology such as GO, as opposed to a flat ontology. These considerations
stem from the fact that the predictions must be consistent with the semantics of
the hierarchy. This Chapter first discusses data set construction for the experiments
described in this dissertation. Then, the issues that are imposed by working within
the context of a hierarchical ontology are addressed. Finally, the use of traditional
machine learning predictors in the context of hierarchical classification is examined
using a specific local approach.

3.1 Data Set
Our data set consists of protein sequences, and their respective molecular functions.
This data set is created using a combination of three sources: the Gene Ontology
controlled vocabulary, the UniProt protein database, and the Gene Ontology Anno
tation project’s annotations for proteins in the UniProt database.

3.1.1 The Gene Ontology controlled vocabulary
The molecular function ontology is taken from the Gene Ontology website [4]. The
Gene Ontology contains three aspects of protein annotation (Figure 2.2), but all
experiments in this dissertation focus on the molecular function aspect. The August
28,2004 version of the GO molecular function ontology is used.

The ontology defines the possible molecular function annotations. These are
standardized terms used to describe potential functions that proteins perform, and
the structure of the ontology defines the logical relationship between these terms.
These functions range from general (near the root of the ontology), to specific (near
the leaves of the ontology).

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since the knowledge of biological systems is constantly changing, the Gene On
tology Consortium regularly releases new versions of the ontology. As knowledge
about the possible functions of proteins is gained, terms are added to the ontol
ogy. As our understanding of this knowledge changes, the structure of the ontology
can change. Terms may be removed if they are felt to be redundant, the wording
of functions may be changed if their intent is unclear, and parts of the ontology
may be restructured if they do not adhere to the intended semantics of the hier
archy. Although the ontology is not perfect, there is a great deal of information
about biological knowledge encoded within its structure that will be useful in later
experiments.

3.1.2 The UniProt Database
Our protein sequence data is obtained from the UniProt database [11]. The UniProt
database consists of protein annotations, along with protein sequences. Release 27
of TrEMBL, and release 44 of Swiss-Prot (which together comprise UniProt release
2.0) are used.

The UniProt database is a joint database, containing Swiss-Prot and TrEMBL
databases [14]. The Swiss-Prot database contains high-quality, human-curated pro
tein annotations. The TrEMBL database contains electronically annotated proteins
that have not yet been added to Swiss-Prot. Although the annotations in TrEMBL
are of a lower quality, we only use the sequence data, which is reliable. Initially,
our data set was created using only proteins from the Swiss-Prot database, since it
is often considered to be of higher quality. However, our experiments have shown
that each predictor has performed similarly on the entire UniProt database, which
shows that the GOA annotations for proteins in the UniProt database, and the se
quence data itself is of consistent quality with the Swiss-Prot database. Using the
UniProt database also results in a larger ontology after pruning. The Gene Ontol
ogy annotations for the proteins are derived from the Gene Ontology Annotation
project.

3.1.3 The Gene Ontology Annotation Project
The Gene Ontology Annotation (GOA) project [3] at the European Bioinformatics
Institute assigns GO terms to proteins in the UniProt database. Each of these an
notations is accompanied by an evidence code, which states how each was derived.
To create a reliable data set, only those annotations that were not assigned using
computational methods are used. As shown by evidence codes, all experiments in
this dissertation were derived from a biological experiment, rather than a computa
tionally predicted annotation. This allow for more confidence in the labellings, and
ensures that as little bias as possible is introduced into the data set, while keeping
the data set large. Bias is impossible to avoid completely, since the biologists an
notating proteins will have an inherent bias as to which will be studied, and due to

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

inherent flaws in experimental methods. The August 11, 2004 version of the GOA
mapping file is used. Table A.l (in Appendix A) shows how many annotations exist
for proteins in Swiss-Prot and UniProt for each of these annotation codes.

Annotation evidence codes that are included in the data set:

1. IDA (inferred from direct assay) - Refers to a biological experiment using
direct assays.

2. IEP (inferred from expression pattern) - The annotation is inferred from
the timing or location of expression of a gene, as measured by an experiment.

3. IGI (inferred from genetic interaction) - Experimental data about interac
tions between genes.

4. IMP (inferred from mutant phenotype) - Annotations derived from muta
tions or abnormal levels of products.

5. IPI (inferred from physical interaction) - Interaction data such as yeasty-
hybrid interactions.

6. TAS (traceable author statement) - Knowledge with a traceable experi
ment, or “common knowledge”, as in text books, etc.

Annotation evidence codes that are not included in the data set:

1. IC (inferred by curator) - Annotations that are reasonably inferred from
existing GO annotations. Since we do not know how the annotations that
these are inferred from were obtained, we exclude these annotations.

2. IEA (inferred from electronic annotation) - These annotations are obtained
through some form of computational method such as BLAST, or from another
database. In the former case, we can not assume BLAST will elucidate the
true function of a protein, and in the latter case we do not know how the entry
was annotated.

3. ISS (inferred from sequence or structural similarity) - This is a computa
tional method.

4. NAS (non-traceable author statement) - Since this knowledge is not trace
able, it is ambiguous.

5. ND (no biological data available) - Ambiguous.

6. NR (no record) - Ambiguous.

The final dataset consists of 14,362 proteins, each labeled with their experimentally-
verified functions. UniProt provides the proteins, Gene Ontology provides the on
tology, and the GOA project provides the molecular function annotations for many

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the proteins in UniProt. The combination of these sources maps proteins to the
Gene Ontology hierarchy of terms, as depicted in Figure 2.5. Only those proteins
in the UniProt database that have valid annotations in the GOA project are kept in
our dataset.

There are 7,399 nodes in the August 11, 2004 version of the GO molecular
function hierarchy. However, to create accurate local GO term predictors, a suffi
cient number of positive training instances is required. Therefore, only those GO
terms that have at least 20 proteins annotated at or below them in the hierarchy are
considered. This decreased the size of the ontology to 406 nodes. More statistics
about the hierarchy are summarized in Table A.2 (in Appendix A), and the entire
ontology is shown in Appendix C.

3.2 Evaluation Issues within a Hierarchical Ontology
To be able to objectively evaluate a prediction system, two requirements must be
met. First, a quantifiable measure of the quality of predictions is required to com
pare various methods. There exist standard measures of precision, recall, and ac
curacy for traditional classification problems [33], but these measures do not apply
to the case when instances can have one or more labels. Also, when the ontology
has a structure, different types of errors should be scored differently, whereas in tra
ditional evaluation schemes all prediction errors are treated uniformly. With some
modifications, the traditional precision and recall metrics can be modified to extend
to hierarchical classification and multiply labeled instances. Several other measures
have also been proposed in literature, and they will be examined as well.

Second, predicting the function of unknown proteins is the ultimate goal of this
thesis. Thus, the prediction process should simulate the classification of unknown
proteins when evaluating performance. In machine-learning terminology, test error
(prediction quality on previously unseen instances) is considered more important
than training error (prediction quality on the data used for training). Traditionally
this is accomplished using hold-out sets, or cross-validation [7], This causes com
plexities in the context of hierarchical classification, and must be dealt with care
fully. The following two sections of this Chapter will address these requirements in
detail.

3.2.1 Scoring Predictions

Proteins can be assigned multiple labels (each protein is assigned an average of 1.35
experimentally verified functions in GOA). However, some classifier technologies
can only predict one label per instance. Two options are available. The first is
to try to change the formulation of a classification algorithm so that it can predict
multiple functions. Another approach in such cases is to build a series of “local”
binary predictors that predict “yes” or “no” for each term in the ontology. These

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3.1: Binary Confusion Matrix

A confusion matrix is a visual representation of predicted labels vs. known labels for each instance
that has been run through a binary classifier. Each of these entries are mutually exclusive.

Predicted Positive Predicted Negative
Known Positive
Known Negative

True Positive (TP)
False Positive (FP)

False Negative (FN)
True Negative (TN)

are called binary since they predict one of two values, and local since they predict
for a single node in the ontology.

A binary classifier is trained for each term in the ontology, and during the pre
diction process, each classifier returns a positive or negative prediction for their
corresponding term in the ontology. For example, the local predictor for the GO
node “enzyme inhibitor activity” only predicts whether an instance does or does
not perform the function of inhibiting the activity of an enzyme.

When evaluating the predictions of a single binary classifier, there are four cat
egories that each prediction can fall into: True Positives (TP), False Positives (FP),
True Negatives (TN), and False Negatives (FN), which are summarized in Table
3.1. This arrangement of predictions for a classifier is called a confusion matrix.
For example, if an instance is known to be a positive, but the classifier predicts
negative, then this instance is a False Negative, and so on.

The precision measure, shown in Equation 3.1, shows how many of the positive
predictions from a binary classifier were actually labeled with that term. Recall,
shown in Equation 3.2, is the percentage of the positive instances that are predicted
as positive by the predictor. An ideal classifier has high precision and high recall.

T P
Precision = T p + F p (3.1)

T P
Recall = — ----— (3.2)

T P + F N

If a molecular biologist is using a predictive system to obtain an idea of a pro
tein’s function, precision and recall would have different levels of importance de
pending on the situation. If the biologist is concerned with having those functions
that are predicted as positive as being very likely to be correct, then precision should
be high. In this case, this is usually accompanied by an increase in correct functions
being predicted as negative (false negatives). If the biologist is concerned with mak
ing sure all of the true functions are predicted as positive, then recall should be high.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Similarly, there will often be an increased amount of incorrect positive predictions
(false positives).

To optimize a predictive system, a single measure of its performance is required.
A first approach may be to use accuracy (Equation 3.3). However, when working
within a large ontology where most of the labels are negative, accuracy will always
be high when a small number of labels are predicted, even if our predictions are not
correct at all. In the data set used for experiments, approximately 2% of the terms
are assigned to each protein on average, which leaves 98% as negative. Accuracy
tends to be high in this case because True Negatives (TN) would dominate the
accuracy score, keeping it high even when prediction quality is intuitively poor.

An alternative is to use an average of precision and recall. This is a standard
machine learning approach, and is called the F-measure, shown in Equation 3.4.
F-measure uses a harmonic mean as a weighted average of precision and recall.
When (5 is set to I, precision and recall are given equal weighting. As the value
of 0 increases from 1, recall is given more weight. As the value decreases from
1, precision is given more weight. 0 can be adjusted in accordance with which
measure is considered more important. For all experiments, we use 0 = 1.

T P + T N
Accuracy = ——— ——----— ----—— (3.3)

T P + T N + F P + F N

_ (0~ + 1) x Precision x Recall
F - measure = v--— ---- ---------— — ---- — , 0 £ 0, oo (3.4)

p~ x Precision + Recall

These measures work for a single classifier, whether it be binary or multi-class,
as long as a maximum of one label can be predicted per instance. However, since
proteins can be assigned multiple positive labels, these measures do not apply in
their current form.

3.2.2 Scoring Predictions in a Hierarchy
In hierarchical classification, all resulting predictions must obey the true path rule.
Therefore, as a post-processing step, all positive predictions are propagated upward
in the ontology. This means that even if a protein could only perform a single func
tion, a single annotation would represent multiple terms in the hierarchy. Therefore,
the issue of multiply labeled instances implicitly applies to all prediction within a
hierarchy, not just when multiple terms are explicitly assigned to instances.

One solution is to compute precision and recall for each local predictor as shown
above, and then average the results. This is also called hierarchical macro averag
ing [36] by Moskovitch et al. This approach however gives each class in the hier
archy equal weighting. A class that may describe half of the instances is given the
same weighting as a class that describes only 1% of instances. Another approach
is to compute scores for each instance and average these scores. This approach is

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

called hierarchical micro averaging [36]. Here, equal weight is given to proteins
regardless of how many functions they serve, or how many functions are predicted
for each. Both approaches suffer from bias. Our approach however is based on pre
dicted and annotated labels, and therefore class distributions are intrinsically taken
into account.

Intuitively, predictions that are "close” to the correct label should score bet
ter than predictions that are in an unrelated part of the hierarchy. An evaluation
methodology should be simple, intuitive, and consistent with the true path rule. For
the evaluation methodology we first take the predicted labels for each protein, and
add all of these labels’ ancestor nodes in the hierarchy to the set of predicted la
bels. This makes the prediction consistent with the true path rule. If the protein has
another predicted label in an unrelated part of the hierarchy, those labels and their
propagated labels are also added to the set of predicted labels. This propagation
is applied to the correct labels for proteins as well. Now that both the labeled and
predicted sets are computed for a protein, the True Positive, True Negatives, False
Positives, and False Negatives are tabulated between these two sets. This is done
for each protein in the data set, and TP, TN, FP, and FN are calculated over the
entire set. Then, the formulas for precision and recall are applied as usual.

Failure to follow the true path rule, leads to distorted evaluation metrics. In
corporating propagation into the evaluation of predictions allows for a graduated
scoring system where distance in the ontology is intrinsically taken into account.
Hierarchical precision and recall reflect how close, conceptually, predictions are to
the correct labels in the ontology.

For example, consider a term hierarchy where A is the parent of B which is the
parent of C (Figure 3.1). Assume that protein Pj is labeled {B } by an oracle and
protein P2 is labeled {C } by an oracle. By the true path rule, the labeling really
should be {A , B } for Pi, and {.4. B . C} for P> after propagation (shown by circles
in Figure 3.1). Assume that for protein Pi we predict the label to be {C }, which is
different than the oracle. By the true path rule, we then predict the labels {A. B, C}
(shown by x’s in Figure 3.1) for P t as well. Similarly, for P2 we predict the label
to be {B} and propagate to get {.4. B}. Both of the initial labels for Pi and P2
are different than the oracle, which misleadingly suggests a poor prediction. But,
hierarchical precision and recall allow for an evaluation scheme which is more in
tune with intuition.

Despite the differences with the oracle, our prediction for Pi should have perfect
recall, since it correctly recalled that P\ has terms {A. B}. But the precision is 2/3
since only 2 out of the 3 predicted labels were correct, which is an intuitively sound
penalty for the imperfect prediction. Similarly, our prediction for P2 should have
perfect precision, since every predicted term is correct, but recall is 2/3 since only
2 out of 3 correct labels were recalled. This example shows that predicting too
high in the hierarchy (i.e. P2) reduces recall, but does not affect precision and that
predicting too low in the hierarchy (i.e. Pi) reduces precision, but does not affect
recall. Lastly, a prediction that is in the wrong part of a hierarchy altogether (not

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Instance A B C Precision Recall

P i (x) (x) X 2/3 2/2

P? (X) o 2/2 2/3

X = Predicted
Q = Labeled

Figure 3.1: An Evaluation Example

Predicting too deep in the hierarchy (e.g. P i) results in high recall but at a cost o f precision.
Predicting too shallow in the hierarchy (e.g. A) results in high precision but at a cost o f recall.

shown in the example) will have neither high precision nor high recall. The ability
to handle close predictions and altogether wrong predictions are important aspects
of this hierarchical evaluation methodology.

The original, formal presentation of this approach to multiclass precision and
multiclass recall was made by Poulin [39] and in this dissertation, it is extended to
hierarchies by propagating labels according to the true path rule. Independently, the
same approach was used by Kiritchenko et al [27], also in the domain of GO, and a
formal definition was published later [28]. These measures are known as hierarchi
cal precision and hierarchical recall. A similar scoring metric was also presented
by Wu et al [53], but it is a single measure, and thus lacks the intuitive value of pre
cision and recall. Since all experiments are within a hierarchy, precision and recall
will be used to refer to hierarchical precision and hierarchical recall respectively for
the remainder of this dissertation.

Other approaches, such as the one presented by Lin [31], have attempted to
model the distances between classes in the hierarchy by using information content
of the classes. Lord et al have shown that these measures do correlate with se
quence similarity [32], however there are two problems with this approach. First
the assumption in the paper is that sequence similarity from BLAST is the ground
truth for representing Gene Ontology classes. Second, all of the measures presented
lack the ability to represent both precision and recall in an intuitive manner within
a hierarchy that our measures of hierarchical precision and hierarchical recall have.

The major downside to our approach is that it assumes that each edge in the
hierarchy represents the same distance. For example, it is unclear how the distance

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

between the nodes “nucleic acid binding” and “DNA binding” compares to the dis
tance between the nodes “kinase regulator activity” and “kinase inhibitor activity”.
Several attempts have been made to quantify these differences [31] [51] [50]. How
ever, in this dissertation we do not attempt to address this issue, opting instead
for our evaluation measures which provide the intuitive measures of precision and
recall.

Another important aspect of evaluating predictions is coverage. Coverage is
the percentage of proteins for which we are able to make predictions (Equation
3.5). If no predictions are given for a protein whatsoever, the prediction system has
not contributed anything to the knowledge of the protein and coverage would be
lowered. Therefore, a predictive system should have a high coverage to push the
bounds of protein annotation as much as possible, while retaining high precision
and recall so that the predictions are useful.

N um berO flnstancesW ithPredictions
COVeraSe = T^alNumberOflnsta— , (3 ' 5)

The measures of Precision, Recall, and F-measure will be given the most im
portance when evaluating experiments throughout this dissertation. Although recall
indirectly measures coverage, the issue of coverage will be addressed when it is rel
evant.

3.2.3 Cross-Validation in a Hierarchical Ontology

A classifier may perform well on the training data (the data given to create the
classifier), but users of a classification system are generally more concerned with
how well it will perform on new instances. That is, when we are faced with an
unknown protein (that was not in the training set), we wish to know how well we
can predict its molecular function. Although this is impossible to know exactly,
there are several ways of approximating the prediction of unknown proteins for
evaluation purposes.

The simplest method is to divide the entire data set into two parts. The first
part is used as the training set, and the second is used as a testing set. This method
is called hold-out validation, and ensures that during the creation of the classifier,
there is no knowledge of the testing set. When the evaluation is performed, we
simply measure the performance of the classifier on the test set. The problem is that
the set chosen for evaluation may have a disproportional amount of proteins that the
classifier performs well or poorly on. Therefore, the result of the evaluation in hold
out validation may not be indicative of the performance of the final classification
system applied to unknown protein sequences.

To address this problem, a technique called cross-validation is often used (Fig
ure 3.2). For all experiments, 5-fold cross-validation is used. In 5-fold cross-
validation, the data set is first split up into 5 parts of equal size. Then, for 5 it
erations, one fold is withheld as the test set, and the remaining 4 folds are used as

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Full

Set

Fold #1

Fold #2
\

Fold #3

Fold #4

Fold #5 J

Fold #1
Test Set

Fold #1
Training

Set

Figure 3.2: 5-Fold Cross-Validation

In iteration 1. fold 1 is used as test data, and all other folds are used as training data (shown in
fisure). For 5 iterations, each fold is used as testing data, and all others are used as training data.

the training set to create classifiers. Precision, recall and F-measure are computed
for the predictions made for each fold. The statistics for the 5 folds are averaged
to give an accurate representation of the predictive performance of the classifier on
future instances.

An advantage of cross-validation is that it helps guard against the problem of
overfitting. Overfitting refers to a classifier performing very well on training data,
but poorly on new, test data. Since cross-validation simulates the process of predict
ing on unknown data, overfitting can be recognized by poor predictive performance
during cross-validation.

When evaluating a system of local predictors in a hierarchical classification sys
tem, this limits the way in which cross-validation can be performed. One approach
is to perform cross-validation on each of the local predictors individually. This way,
when splitting the data set into 5 folds at a node, we can ensure that a sufficient
number of positive training instances are kept in each of the folds. The classifiers
trained for each fold will then perform similarly to the classifier in the final system.
This method will be referred to as local cross-validation.

In the absence of a hierarchical ontology, local cross-validation is sound. The
problem with local cross-validation is best illustrated with an example. Suppose
protein Pi is annotated with labels A and B (as in Figure 3.1), and that the local
cross-validation folds at A and B are not identical. Now, consider the case when the
predictor for node A predicts negative and the predictor for node B predicts positive
for Pi. Since our predictions must obey the true path rule, we may choose to prop
agate the positive prediction at B upward in the ontology1. During this propagation
the negative prediction at A must be overridden with a positive prediction. Thus,
there is interaction between the predictions for A and B. During cross-validation, a

'The argument can be reversed if we choose to propagate negative predictions downward instead
of predicting positive predictions upward. Either way the predictions must be consistent with the
true path rule.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

predictor can only use those instances within the current fold’s training set to make
predictions. Since the training sets were not the same (due to different splits of
the data into folds) at A and B, the prediction at B used data which was in ,4’s
training set. and in £?’s testing set, indirectly. This is a violation of the purpose of
cross-validation, since in testing data has an influence on prediction.

Therefore, in hierarchical classification, the protein should either be in the test
set (1 fold) or the training set (the remaining 4 folds) in a consistent, global manner
across all GO terms and nodes. This strategy will be referred to as global cross-
validation. With this approach, protein Pi is always in the same fold (e.g. fold 2 of
5) for all nodes. Thus, when globally evaluating the fold containing Pi, no predictor
for any node should use knowledge of Pi directly, or indirectly. However, a global
split of the data into folds that both maintains the local node distributions (the num
ber of positive and negative training instances are constant across the folds at each
node) and is globally consistent in assigning instances to folds may be difficult to
obtain. For example, if we try to preserve the distribution of a specific label, then
by splitting the instances into folds within this label, we may have forced another
label’s training data distribution to become vastly different from the original data
set (since a global partitioning of the data is being used). Failure to maintain local
node distributions results in fewer training instances for some folds, which results
in poor classifier performance. As discussed above, failure to do global fold assign
ment leads to an inconsistent use of training versus test instances. To obtain good
accuracy, the number of positive and negative training instances in each fold should
be approximately the same.

The first approach was to ignore local node distributions. The training set was
randomly split into 5 folds, and these folds were used to evaluate the predictors
during cross-validation in a consistent manner using the scoring method presented.
Other approaches will be discussed in Chapter 4 of this dissertation to address the
local node distribution problem.

3.3 Predicting Protein Function with Local Predic
tors

Table 3.2 shows the results of evaluating PA-SVM predictors (Proteome Analyst
features for SVMs) for each node in the Gene Ontology hierarchy. Precision is
quite high, but the method suffers from a low recall.

In this case, the PA-SVM predictors for each node in the ontology must be
computed for each query sequence. This can be costly, especially when compared
to the low cost of running a global predictor such as BLAST. The cost in Table 3.2
is the number of predictors that had to be computed for each protein. In this case,
since there is one predictor for every node in the ontology, and there are 406 nodes
in our pruned ontology this cost is the execution of 406 local predictors.

One approach to lowering the computational cost of predicting in a hierarchy

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3.2: Training local predictors using Proteome Analyst features

An SVM classifier is trained for each node in the GO hierarchy. Statistics shown are during global
cross-validation. Precision. Recall, and F-measure are all the hierarchical variants presented in
Chapter 3.2.1.

Measure Value
Precision 0.758

Recall 0.328
F-measure 0.458

Cost per Protein (Number of 406
Local Predictors Computed)

Table 3.3: Lowering the cost of using Local Predictors.

A top-down approach is used to lower the computational cost o f predicting within the hierarchy.
The computational cost cannot be lowered with this method without a significant penalty to recall.

Method Precision Recall F-measure
Average Cost
per Instance

All PA-SVM 0.758 0.328 0.458 406
Top-Down PA-SVM 0.572 0.002 0.004 10

TD-1 PA-SVM 0.719 0.099 0.173 72
TD-2 PA-SVM 0.728 0.163 0.266 181
TD-3 PA-SVM 0.749 0.232 0.354 291

is to use a top-down decision model. In a top-down model, we start at the root
node, and check all children nodes. If any of the children node’s local predictors
predict positive, then those terms are added to the list of predicted labels and we
test the child nodes of the positive predicted labels. Then we recursively apply the
decision algorithm until we reach the leaves of the ontology, or until all current
local predictors predict negative.

The results of using a top-down model (also called a pachinko machine [29])
are shown in the row marked “Top-Down” PA-SVM in Table 3.3. This method has
lowered the cost of prediction from running 406 predictors to an average of 10 per
protein. However, the recall of the predictor has been significantly reduced.

The loss of precision by using the top-down approach may be counter-intuitive
initially. One reason for this is that general classes may be harder to represent
than more specific classes. These general classes actually contain more variation
in functional classes that more specific ones. This point was also previously made

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

by Wang et al [51]. A top-down approach requires that predictors near the root be
accurate. Otherwise the prediction system will not make predict beyond high level
nodes.

One way to address this problem is to not record the decision made at a node
permanently. For instance we could allow a negative prediction at a node, and
still compute the children nodes. The approach called “TD-1 PA-SVM” uses this
technique, and computes children nodes of a negative prediction once. If a node,
and all of its children nodes predict negative, then the search stops. The other
approaches, “TD-N PA-SVM” use the same approach, but they accept N negative
predictions in a row during the top-down search. In this approach, if a node predicts
negative, and one of its descendant nodes predicts positive, the true path rule is used
to override the negative prediction.

However, no matter how much the cost is lowered, the prediction system will
still produce low recall. Also, when the recall is almost as high as computing all
local predictors (TD-3 PA-SVM), then the cost is not much lower than computing
all nodes. Leaving out some nodes from the prediction can only increase precision,
and will often reduce recall. In Table 3.3 we can see that recall is in fact the area
that this prediction technique suffers the most. Therefore, before considering low
ering the computational cost of using local predictors, we must first increase the
predictors’ recall.

3.4 Summary
The data set used for experiments is a combination of three reliable sources: the
Gene Ontology Annotation project at EBI, the molecular function aspect of the
Gene Ontology, and sequence data from the UniProt database. We only use those
protein annotations that correspond to reliable experimental results when creating
and evaluating predictors. This way we introduce the least amount of bias as possi
ble into our predictors.

When predicting within a hierarchical ontology such as GO, the issues of eval
uation functions, and cross-validation must be revisited. Even when not predicting
within a hierarchical ontology, but when multiple labels per instance are valid, the
evaluation functions must be readdressed. We present a way of addressing these
issues in the context of protein function prediction, but they apply to hierarchical
classification in general.

Finally, we showed that building a local predictor at each GO node using Pro-
teome Analyst features for SVMs produces a classification system that has high
precision but low recall. Furthermore, each local predictor must be computed for
every query protein. We can lower the cost of this predictive system by using a
top-down decision model, however we notice a large negative impact to precision
and recall with this approach.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Hierarchy-Aware Local Predictors

In Chapter 3, local predictors were created without fully exploiting the structure
of the Gene Ontology. The ontology’s structure was considered during evaluation,
since doing otherwise would be unsound (it would violate the true path rule), but
the structure was not considered during the construction of local predictors. Fur
thermore, during prediction time it was difficult to lower the computational cost
of prediction without penalizing predictive performance. In this Chapter, the cre
ation of local predictors will be readdressed with the ontology’s structure in mind
to attempt to create better predictors.

The issues that were addressed in Chapter 3 - global cross-validation and a scor
ing scheme - still apply here, since these issues are independent of how predictors
are created and used. However, the issue of global cross-validation is revisited, to
attempt to maintain local node distributions between folds. No matter which pre
diction method is used, the same scoring methodology is applied. Therefore, the
issue of scoring predictions will not be readdressed.

First, the issue of training set construction of local predictors is explored. It is
shown that local predictors can perform better when the hierarchy is considered dur
ing their construction. A spectrum of methods are explored for training set design,
and each is evaluated.

Second, the idea of lowering the computational cost of prediction using local
predictors is revisited using a new training methodology. When using an inclusive
training strategy (defined later in this chapter), the top down approach can reduce
computational cost without incurring a large penalty to precision and recall.

The issue of global cross-validation is then readdressed. Better splits of the data
are found so that a sufficient number of positive training examples are maintained
across each fold during cross-validation. The effect of this fold design is evaluated.

4.1 Training Set Design
For local predictors, we must train classifiers before any prediction is performed.
To obey the spirit of cross-validation, only those sequences in the current fold’s

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

training set can be used to create the local predictors for each GO node. However,
it is valid to use the sequences in the training set in any way to create each node
predictor, therefore a spectrum of methods which we denote exclusive to inclusive
will be compared.

4.1.1 Exclusive vs. Inclusive Classifiers
During the construction of a local predictor, the proteins that will be used to rep
resent the positive model (representing this particular molecular function), and the
negative model (those outside the particular molecular function) are selected. In
Chapter 3, we chose all those proteins which w'ere explicitly assigned a GO term
.V as that term’s positive training data, and all other proteins as the term’s negative
training data. This approach is the traditional method used to create classifiers when
the ontology is fiat.

However, this approach ignores the relationships between the terms in the on
tology when creating the training set. Although this approach may seem naive, this
training set design could, in theory, produce a classification system that predicts
perfectly in terms of hierarchical precision and hierarchical recall. In fact, previous
research in hierarchical classification has shown that this method can perform quite
well on some data sets [29].

Intuitively, when using this approach for training set design, we are creating a
local predictor that will only predict positively for those proteins that belong exactly
at this node, and not to any more general or specific node, as shown in Figure 4.1.
Those proteins which belong at a particular node are predicted as negative by all
local predictors1 except for the one where it belongs (according to the GOA anno
tations). We call these classifiers exclusive classifiers, since proteins are excluded
from all nodes except for the exact location where it is annotated. Of course, a post
processing step is needed if an exclusive classifier is used, since all parent nodes of
the predicted node would be added to the prediction to satisfy the true path rule.
This should not be regarded as an error in prediction since the exclusive classifier
is behaving exactly the way it has been designed - to pick the most specific node in
the hierarchy that applies to the protein.

However, as Chapter 3 showed, this approach did not show promising results in
terms of recall. Also, when attempting to lower the cost of the local predictors, there
was a large decrease in recall since the classifiers are exclusive. Figure 4.1 shows
intuitively why a system of exclusive local predictors will perform poorly when
using a top-down approach. A top down predictor would stop before reaching node
N since there are negative predictions at parent nodes.

There are a series of observations that can be made which will make the training
sets for each local predictor more consistent with the ontology:

1. The descendant nodes of N are not good negative instances for the predictor
at N since they are positive according to the true path rule. Including these

'Assuming the protein does not have another, unrelated function, for simplicity.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.1: An Exclusive Classifier System

A perfect exclusive classifier only predicts positive exactly where an instance should lie. The
correct label for this instance is N . The predictions for each local exclusive classifier are shown by
check marks for positive, and X's for negative.

instances as negative in the training set could confuse the classifier training
algorithm, since they are actually positive. Therefore these instances are ex
cluded from the set of negative examples. This strategy is labeled as less
exclusive in Table 4.1.

2. All descendants of N are not only poor negative examples, but they could
in fact be used as positive training examples for N , due to the nature of the
is-a relationship in the GO hierarchy. Ignoring this observation will limit
the number of positive training examples that are presented to the classifier
training algorithm. This approach has previously been presented in [28]. This
method is called less inclusive in Table 4.1, and is consistent with the true path
rule, and the nature of an is-a hierarchy in general.

3. To be most consistent with the hierarchy, observe that those proteins that
are annotated as ancestors of N could in fact be instances of N. As was
discussed in Chapter 3, proteins are annotated with the most specific function
terms for which experiments have been performed. Since it is common for
future experiments to supply more specialized terms, it could be dangerous
to include proteins annotated with ancestor terms in constructing a negative
training set for a term. On the other hand, we do not know that these proteins
will be specialized to N in the future (they may be specialized to a sibling or
not specialized at all), so they should not be included in the positive training
set either. Therefore, they are not used in training at all. This most consistent

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Negative Training
/ Examples

' Positive Training
1 Examples

Figure 4.2: Inclusive Training Set Construction Scheme for Node N

The training set design for an inclusive local predictor at node N . Proteins mapped to parents of
the current node (.4]. Ao) are not included in positive or negative training sets due to ambiguity.

approach is called inclusive in Table 4.1, and is depicted in Figure 4.2.

Intuitively, an inclusive classifier predicts positive for any proteins belonging
within that node, and any proteins below that node. The result is that when a node
belongs at node N , positive predictions are returned for the node predictor at node
N , and all of the ancestor nodes of N (Figure 4.3). This is because all proteins
below the current node were included in the positive training set.

Training set rule 3 disallows any proteins labeled with a node in the negative
training sets of predictors for this node’s child terms. One could also argue that
future experiments could add any arbitrary new term to a protein, so that no neg
ative training instances can be used with confidence. This is a good point, but it
applies anytime a classification task can have multiple positive answers and nega
tive (experimental) evidence is not available, not recorded, or incomplete. However,
negative training instances are required and at least the more common case of more
specific annotations following less specific ones is guarded against.

Assuming that we have a perfect classification system, both exclusive and inclu
sive classifiers in a hierarchy would perform perfectly on test data, due to the way
hierarchical precision and hierarchical recall are calculated. When using perfect
exclusive predictors, if a protein should be assigned GO node A*, every node in the
hierarchy will return a negative prediction, except for node N that returns a positive
prediction. During evaluation, this prediction is propagated upward, and evaluates
at 100% for precision and recall.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.3: An Inclusive Classifier System

A perfect inclusive classifier predicts positive at each node it belongs to. according to the true path
rule. The correct label for this instance is N . The predictions for each local exclusive classifier are
shown by check marks for positive, and X's for negative.

In the inclusive case, given a protein that belongs at node N , a perfect term
predictor for N predicts positive, and so do all of TV’s ancestors in the hierarchy.
Here, the classification would evaluate at 100% precision and recall as well.

The less inclusive and less exclusive classifiers represent the intermediate points
in the spectrum between the two training set designs. Since it is possible for both
exclusive and inclusive designs to have perfect precision and recall, there is no a
priori reason to choose inclusive or exclusive classifiers. However, real data and
therefore classifiers trained from that data are often far from perfect. Thus, local
predictors will often perform differently in practice than they do in theory. Thus,
all four schemes to construct training data, which range from exclusive to inclusive
in their nature, have been evaluated.

4.1.2 Comparison of Training Set Design Schemes
The four training methods (summarized in Table 4.1) were evaluated. For sim
plicity, the training methods were evaluated with a single technology. In this case,
Proteome Analyst features in conjunction with Support Vector Machines were used.
The PA-SVM classifier was chosen for this experiment since it has proven to be re
liable during the lifetime of the Proteome Analyst project. The issues presented,
however, apply to all local predictor methods, although the numerical scores could
vary.

Table 4.2 summarizes the results of cross-validation for each of the four training

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.1: Various Training Set Construction Schemes

This table describes four methods for choosing instances for a local predictor at node N . N
denotes all proteins mapped directly to .V. Descendants!N) are all proteins mapped to descendant
nodes o f N (C \ and C2 in Figure 4.2). and Ancestors! .V) are all proteins mapped to ancestor nodes
of iV (.4.1 and .4o in Figure 4.2).

Method Positive Examples Negative
Examples

Not Used

Exclusive N Not N -

Less Exclusive N Not[A' U
Descendants(iV)]

Descendants(A')

Less Inclusive N U Descendants(Ar) Not[AT U
Descendants(A’)]

Inclusive N U Descendants(JV) Not [A'
U Descendants(A’)
U Ancestors(Af)]

Ancestors(Ar)

set construction methodologies. The precision of all four techniques is comparable,
but there are significant differences in recall and F-measure.

The column “exceptions per protein” in Table 4.3 describes how often a local
predictors predict positive, and an ancestor node’s local predictor predicts negative.
This is equivalent to the number of negative predictions that must be overridden
with positives when we propagate to make predictions consistent with the true path
rule. The fewer the exceptions, the more consistent the technique is with respect to
the true path rule. By their nature, exclusive classifiers are more likely to have many
exceptions, while inclusive classifiers are likely to have few exceptions (as depicted
in Figure 4.1 and Figure 4.3). The data in Table 4.3 matches this intuition. As
previously discussed, the evaluation methodology requires that we first propagate
positive predictions upward in the ontology before computing precision and recall,
which ameliorates the effect of exceptions, so our test is fair to all four strategies.
The differences between techniques can be explained via differences in the size of
the positive training set, and noise in the data used for training.

The column “exception precision” is the number of propagated predictions that
are actually correct. That is, when a local predictor predicts positive, and this pre
diction is inconsistent, we must propagate the positive prediction upward in the hi
erarchy. When overriding ancestor terms with positive predictions, exception preci
sion measures how often these overridden predictions were correct. The exclusive

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.2: Comparison of Training Set Schemes

Each evaluation used the same split o f the data for global cross-validation. The best values in each
column are marked with bold text. The 959f Confidence Interval for the F-measure is also shown.

Method Precision Recall F-measure 95% Cl
(F-measure)

Exclusive 0.758 0.328 0.458 ±0.007
Less Exclusive 0.777 0.404 0.531 ±0.008
Less Inclusive 0.773 0.638 0.699 ±0.009

Inclusive 0.753 0.652 0.699 ±0.009

Table 4.3: Exceptions for Training Set Schemes

Exceptions per Protein is the number of times that a positive prediction at a node has negative
prediction at ancestor nodes. Exception precision is the precision on propagating positive
predictions upward in the ontology.

Method Exceptions per Protein Exception Precision
Exclusive 1.524 0.794

Less Exclusive 1.739 0.805
Less Inclusive 0.052 0.481

Inclusive 0.092 0.467

4S

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and less exclusive schemes show the highest exception precision, which may be
unintuitive. However, these schemes by their nature will have a lot of exceptions,
many of which are the correct answer. Inclusive schemes, however, have very few
exceptions. When an inclusive classifier system does have exceptions, it is straying
from the theory of a perfect inclusive classifier, indicating that something may be
wrong with the predictions being made. Therefore, a low exception precision for
inclusive classifiers is not only expected, but also matches the intuition of a per
fect inclusive classifier. In any case, the effects of the exception precision do not
have a large impact on the performance of inclusive classifiers, since the exceptions
happen so infrequently.

One may argue that the results in Table 4.2 are not fair to the exclusive and
less exclusive training schemes because the ontology was selected in a way that is
biased toward more inclusive schemes. Recall from Chapter 3.1.3 that the ontol
ogy was selected by keeping all nodes that had 20 or more proteins mapped at or
below them in the ontology. This is biased toward less inclusive and inclusive clas
sifiers, since the criteria for selecting nodes in the ontology is the same as selecting
positive training examples for inclusive and less inclusive classifiers. To evaluate
each classifier approach in a manner that is more fair to the exclusive methods, we
pruned the ontology to the nodes that have 20 or more proteins mapped directly to
them. This resulted in an ontology of 137 nodes. The results in Table 4.4 show how
well each local predictor scheme performs on these 137 nodes. Similarly, this data
shows that the more inclusive schemes are superior.

It is important to note however that exclusive classifiers do predict some func
tions very well. For example, the exclusive local predictor for the GO term “olypep-
tide N-acetylgalactosaminyltransferase activity” scored 100% precision and 100%
recall during cross validation. This node had 27 proteins assigned to it directly, and
27 through propagation (that is, all known proteins of this function were mapped
directly to this node).

As the classifiers become more and more inclusive, recall and F-measure are
increased. It is also important to note that the less exclusive scheme has the highest
precision in both Table 4.4, and Table 4.2. However, this small increase in pre
cision over inclusive schemes (about 2.5%) comes at a large cost of recall (about
50%). Furthermore, if a molecular biologist was using the prediction system to
predict functions of proteins, and therefore find possible experiments that could be
performed on these proteins, recall is very valuable. A low recall will result in a
prediction system that could miss many important functions of proteins, and could
therefore cause the biologist to miss an important discovery. As long as precision is
kept reasonably high, it is desirable to give as much of a boost to recall as possible.

The key reason for the improved performance on the inclusive side of the spec
trum is that the number of positive training examples is increased, so the predictors
become better at recognizing those proteins that should belong at each node. The
largest jump in recall happens between less exclusive and less inclusive, so this
explanation matches the data.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.4: Comparison of Training Set Schemes on Smaller Ontology

Each evaluation used the same split of the data for global cross-validation. The best values in each
column are marked with bold text. Predictors are only evaluated on nodes which have more than 20
proteins mapped directly to them, which results in an ontology of 137 nodes. The 95% Confidence
Interval for the F-measure is also shown

Method Precision Recall F-measure 95% Cl
(F-measure)

Exclusive 0.744 0.361 0.486 ±0.014
Less Exclusive 0.759 0.430 0.549 ±0.010
Less Inclusive 0.756 0.648 0.698 ±0.008

Inclusive 0.734 0.660 0.695 ±0.008

Another factor affecting the better performance of inclusive classifiers is the im
provement in quality of the training data. First, as classifiers become more inclusive
by no longer using intuitively positive instances in the negative training set (going
from exclusive to less exclusive) there is a rise in recall. Second, by excluding am
biguously labeled instances from the negative training set (going from less inclusive
to inclusive) the noise in the negative training data is further reduced.

This approach prevents intuitively negative instances from being put into the
positive training set, and vice versa. For example, during the construction of a local
predictor for “ion binding”, the proteins that are labeled as “metal ion binding”
should not be used as negative training instances, since they are actually a type of
“ion binding”. Furthermore, the proteins labeled as “metal ion binding” proteins
can be used in the positive training set of the “ion binding” protein, since according
to the true path rule, they are specific examples of this function.

As the classifiers become more inclusive, there is a higher chance that a false
negative at a node will be offset by a true positive prediction at a descendant node,
which is desired. In a sense, inclusive local predictors reinforce each other along the
path in a hierarchy, whereas in a system of exclusive local predictors, one predictor
must make the correct call for each assigned label.

Although the training data for each node is selected differently, the test sets can
not change. The classifiers cannot choose to be evaluated only on some sequences,
since this would be contradictory to what we are attempting to infer from cross-
validation. By keeping the test sets constant, predictions based on various design
strategies are comparable, since they are evaluated on the same test proteins.

Support Vector Machines are used in these experiments, but the issue of training
set construction must be addressed regardless of which machine learning technol
ogy is used. Therefore the methods presented are applicable to all local predictors,
regardless of prediction technique specifics.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.5: Lowering the cost of using Local Inclusive Predictors.

When using an inclusive training set design, the cost o f using local predictors can be significantly
lowered using a top-down approach, without a significant impact on precision and recall. All
results shown in this table use the inclusive training set design scheme. The best values in each
column are marked with bold text.

Method Precision Recall F-measure
Average Cost
per Instance

PA-SVM 0.753 0.652 0.699 406
Top-Down PA-SVM 0.760 0.644 0.697 32

TD-1 PA-SVM 0.755 0.649 0.698 112
TD-2 PA-SVM 0.754 0.651 0.698 220

Table 4.6: Lowering the cost of using Local Less Inclusive Predictors.

When using a less inclusive training set design, the cost o f using local predictors can be
significantly lowered using a top-down approach, without a significant impact on precision and
recall. All results shown in this table use the less inclusive training set design scheme. The best
values in each column are marked with bold text.

Method Precision Recall F-measure Average Cost
per Instance

PA-SVM 0.773 0.638 0.699 406
Top-Down PA-SVM 0.782 0.630 0.698 32

TD-1 PA-SVM 0.776 0.635 0.698 112
TD-2 PA-SVM 0.774 0.637 0.699 220

4.1.3 Top-Down Search Revisited
The results in Chapter 3.3 showed that using an exclusive training set design strat
egy does not support the use of a top-down decision model to lower the cost of pre
diction. This matches the intuition for an exclusive classifier, since only the nodes
containing the true annotation of proteins will predict positive, and all parents will
predict negative.

The inclusive training set design intuitively matches the top-down decision model,
as shown in Figure 4.3. The results of training a top-down decision model on our
inclusive and less inclusive training set design schemes are shown in the first two
rows of Table 4.5 and Table 4.6.

The results match the intuition behind training set designs that are on the in
clusive side of the spectrum. Both inclusive and less inclusive classifiers are more

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

amenable to the top-down decision model. In both cases the simple Top-Down
approach has very similar recall to the recall obtained when running all node pre
dictors, and precision is in fact raised. The cost of this approach is only 8% of run
ning all predictors for the simple top-down approach, which is a significant savings.
This result shows that the more complex and computationally intensive methods of
TD-N PA-SVM classifier are not necessary when using more inclusive classifier
schemes.

The results in this section have shown that inclusive and less inclusive training
schemes are superior to exclusive and less exclusive schemes in two ways:

1. The inclusive and less inclusive classifiers have a significantly higher F-measure
during cross-validation than the exclusive and less exclusive schemes.

2. The inclusive and less inclusive classifiers’ cost can be lowered using a top-
down search scheme to selectively compute only some of the local predic
tors without a significant penalty to F-measure. The exclusive and less ex
clusive classifiers produced significantly lower F-measures when a top-down
approach was used.

Although the inclusive scheme intuitively seems more sound than the less in
clusive scheme, since ambiguous proteins are not used in its negative training set,
the difference between inclusive and less inclusive has thus far been only justified
by intuition. The next section will attempt to quantify this difference.

4.1.4 Robustness to Incomplete Annotations
The cross-validation experiment showed that excluding ancestors from the negative
training set (the inclusive strategy) only has a small advantage over the less inclusive
strategy. However, the actual advantages of an inclusive design may be greater
than shown by this experiment. The nature of cross-validation tests, and the fact
that an absence of a label in the GO hierarchy does not necessarily mean a label
is wrong, may lead to lower quantitative results for what is, arguably, the correct
design decision.

Specifically, proteins may not be annotated with all the labels that are appro
priate. As discussed earlier, a missing experiment results in an incomplete label.
A desirable goal is to have predictors that can predict labels more specific that are
not currently known. This systemic side-effect of taking the annotation as complete
truth (even when it is not complete) is a difficult issue to measure and address.

The results of cross-validation and using a top-down search are still inconclusive
as to which training scheme is better: inclusive or less inclusive. As discussed in
Chapter 4.1.2 the inclusive training scheme is intuitively superior due to the fact that
the Gene Ontology annotation data is incomplete. That is, including proteins anno
tated with an ancestor node as negative training examples is dangerous, because a
future experiment could show that they are in fact positive training examples.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m

»
&JOo
£

k.3

e

Figure 4.4: Inclusive classifiers are more Robust to Incomplete Data

Inclusive and Less Inclusive training schemes are trained for various degrees of incomplete training
data. Both are then evaluated on the most complete data available. Inclusive classifiers are more
robust to incomplete annotations. Note that the y-axis does not start at 0.

To test this theory the data was modified so that the annotations are less com
plete. This modified data was then used to train local predictors, but when eval
uating the predictions during cross-validation, the original unmodified annotations
were used to score the system's predictions. This experiment simulates incomplete
annotations.

For example, if a protein was annotated with node N in Figure 4.2, we would
make the annotation more incomplete by moving the annotation to node A\. This
is consistent with the previous labeling, but it is incomplete in that the knowledge
about the protein is now less specific.

In Figure 4.4, we make the data more incomplete by randomly choosing X%
of the proteins in the data set, and moving one of their annotations up a level in the
hierarchy. X is varied from 0 to 100%. The predictions are then evaluated using the
complete data, and results are compared using F-measure.

When the data was not altered (at 0% incomplete) the inclusive and less in
clusive schemes produce the same F-measure. However, as the training set became
more incomplete, the inclusive strategy maintains its high F-measure better than the
less-inclusive strategy. This is because we removed the ambiguous proteins from
the negative training set of the local predictors.

Although the graph shows the two training schemes to be equally good at 0% in
complete, even the full data set is incomplete. That is, the complete annotations for

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

all proteins is unknown. If the data were complete, each protein would be mapped
to a leaf node in the ontology. Therefore even though the two lines appear to be
together at the 0% incomplete point, if the complete data was known, the inclu
sive training scheme would likely have a higher F-measure than the less inclusive
training scheme.

These results show that the inclusive scheme shows more robustness to incom
plete data, and thus is better for predicting the functions of unknown proteins.
Therefore, for the remainder of this dissertation, all local predictors are trained
using an inclusive strategy.

4.2 Global Cross-Validation Revisited
In Chapter 3.2.3, the method of global cross-validation was explained. For all ex
periments described so far, the data set was split once, and then evaluated. This split
however did not take into account the individual node distributions when splitting
the data set into 5 partitions. Since the goal of cross-validation is to understand
how well the prediction system will perform on future instances, we must ensure
that each classifier has enough positive training instances to be representative of the
final system. Since some nodes have as little as 20 positive instances, it is possible
that some have very few training instances in some of the 5 folds of cross-validation.

In practice, it may be difficult (or impossible) to perfectly preserve local node
distributions2 and have a consistent, global split of the data. To address this issue,
5,000 candidate global splits of the data set were randomly generated, and the split
that matched the original data set’s node distribution most closely was chosen. This
was measured by the average squared deviation of each node in each of the 5 folds.

For example, if a node had 100 positive training instances and 10,000 negative
training instances in the original data set then its original distribution is 1% positive.
If, after splitting into 5 partitions, the node has 13 positive training instances and
1,800 negative training instances in fold 1, then the fold 1 distribution is 0.72%.
Therefore this node’s distribution has a change of -28% ((0.72 — 1.0)/1.0). The
squared deviation for each node in each fold was then averaged.

The best and worst splits (according to average squared deviation) are shown in
Figure 4.5 and Figure 4.6. Comparing the two figures, it is evident that there is less
variation from the original distributions in Figure 4.5. This suggests that a global
partition of the data is feasible, and that a sufficient amount of training data for all
nodes can be retained using a simple randomized approach.

To examine the effect of how the data is split on local predictors, the best and
worst splits of the data are used to train PA-SVM classifiers using the inclusive
training scheme (Table 4.7). The results show that there is not a significant impact
on the overall cross-validation accuracy from the choice of the global partition.

2Only the distributions for the training sets need to be preserved. If the distributions for the
testing sets vary this is not a concern since they are not used to train the classifier.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.5: The Best Global Split of the Data Set

Each dot represents a single node in a fold’s training set. The y-axis shows how far this node in this
fold’s training set deviates from the original node's distribution. The 5 largest changes are -40%,
25%. -24%, -22%. and -22%.

The goal of finding an optimal split is not to maximize precision and recall during
cross-validation. It is rather to have results that are indicative of how well the final
classification system will perform. Therefore, for the remaining experiments the
best split of the data was used for cross-validation.

4.3 Summary
We extended the work in Chapter 3 by considering the semantics of the hierarchy
when creating training sets for local predictors. We presented a spectrum of training
set design schemes and evaluate each using global cross-validation.

When more inclusive training set designs were used, it was possible to lower the
computational cost of prediction using a top-down approach, without a significant
penalty to precision and recall.

The differences in cross-validation between inclusive and less inclusive designs
was minor. However, the hypothesis is that inclusive classifiers will perform bet
ter on new proteins due to incomplete annotations in the data set. An experiment
simulating incomplete data has confirmed this.

Finally the issue of global cross-validation was readdressed. The presented
method of picking the best global split of the data did not result in a significant
change in cross-validation precision and recall. However, we will continue to use

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

le e teeeo
N o d * S i : * < L O 0 » r i t h » i c >

Figure 4.6: The Worst Global Split of the Data Set

Each dot represents a single node in a fold’s training set. The y-axis shows how far this node in this
fold's training set deviates from the original node's distribution. The 5 largest changes are -41%,
-35%. -35%. -35%. and -34%.

Table 4.7: Comparing the worst and best global splits of the data for training inclu
sive classifiers using PA-SVM

Picking a global split o f the data according to the average deviation of each node's distribution in
each of the folds training sets does not appear to have a large impact on cross-validation
performance o f local predictors.

Method Precision Recall F-measure 95% Cl
(F-measure)

Average
Deviation

Best Split
Worst Split

0.754
0.752

0.648
0.655

0.697
0.700

±0.010
±0.005

0.048
0.058

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the best global split of the data for all remaining cross-validation experiments.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Optimizing Predictors of Protein
Function

Now that a general training strategy has been derived for local predictors, each
local predictor technology will be optimized individually. Due to the pervasive use
of BLAST in the community, it will be used as a comparison method for predicting
protein function. BLAST will also be optimized so that the comparison is fair
between methods.

5.1 PFAM-SVM
PFAM (Protein FAMilies) uses Hidden Markov Models (HMMs) to model func
tional domains of proteins. Each of these protein families describes a functional
class of proteins. When creating these classes, proteins with similar functions are
collected, and then HMMs are trained on the part of the sequence that is conserved
between the proteins in the set. The result is an HMM that can be used to predict
whether a query protein belongs to this particular class of proteins.

These PFAM HMMs are run on all proteins in the data set, and when there is a
match between a PFAM family and a query protein, that family is used as a feature
for the protein. The confidence of each prediction is measured by E-value, which
is the expected number of proteins that would have matched the PFAM family by
random chance (which is intuitively the same as the E-value for BLAST). The lower
the E-value of a hit. the more similar it is to the query protein. The first row in
Table 5.1 shows the performance of using all PFAM matches as features for an
SVM classifier.

If the use of PFAM matches as features is more stringent (i.e. a lower E-value
threshold), the performance of the classifier can be increased. Table 5.1 shows that
if we only accept matches with E-value < 10-2, F-measure is maximized. As the
E-value cutoff becomes more stringent (i.e. lower) the number of families that are
used is decreased. This is because the number of PFAM families used as features
is defined as the number of families that are assigned to at least one protein in the

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.1: Optimizing PFAM Predictors

Only those PFAM matches below a certain E-value threshold are used as features. The best values
in each column are marked with bold font.

E-value
Threshold

Precision Recall F-measure 95% Cl
(F-measure)

Number of
PFAM Families

A ny 0.703 0.395 0.506 ±0.012 7,483
2 0.717 0.513 0.598 ±0.006 5,267

io- 1 0.736 0.577 0.647 ±0.009 2,640

h
-i

O
1 IO 0.740 0.575 0.647 ±0.009 2,438

10"3 0.737 0.571 0.643 ±0.008 2,388
IO"7 0.737 0.563 0.638 ±0.009 2,329

data set. When the E-value cutoff is low, there is less chance of each PFAM family
matching any protein.

Since the F-measure was maximized at a cutoff of E-value < 10-2 with the
lowest number of PFAM features used, these PFAM predictors will be used for all
experiments for PFAM-SVM for the remainder of this dissertation.

5.2 PA-SVM
When presented with a query protein, Proteome Analyst (PA) uses BLAST to find
similar proteins in the Swiss-Prot database. Next, the PA system looks at the exist
ing annotations for these similar proteins, and these annotations are used as features
for a classifier that predicts the function of the query protein. Currently, the PA sys
tem parses words from the Keywords, SUBCELLULAR LOCALIZATION, and Inter-
Pro fields of Swiss-Prot entries, which are then used as features for a classifier. The
Interpro and Keywords fields are parsed directly, and used as features, since they
use standard vocabularies. The SUBCELLULAR LOCALIZATION field is parsed
using a controlled vocabulary, because it is free-form. Parsing this field directly
would produce inaccurate results since there would be a lot of unimportant features
in free form text [34]. The results of using PA features for an SVM classifier at each
node are shown in the first row of Table 5.2.

There are many other fields in Swiss-Prot entries that PA currently does not
utilize. Although previous experiments [33] have shown that the three fields PA
currently uses produce the best results for the prediction of subcellular localization,
there may be potential to using other fields when predicting protein function across
a large ontology.

One approach is to use Gene Ontology names as a vocabulary for parsing phrases
from other fields in each Swiss-Prot entry. Using the names of the 406 nodes in our

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.2: Parsing other Swiss-Prot fields for PA Classifiers

Using traditional PA Features is compared to using PA features in conjunction with parsing other
fields with a controlled vocabulary (PA + Valid GO), and PA features in conjunction with parsing
the GO field (PA + GO Field).

Method Precision Recall F-measure 95% Cl
(F-measure)

PA Features 0.754 0.648 0.697 ±0.010
PA + Valid GO 0.766 0.591 0.667 ±0.010
PA + GO Field 0.759 0.626 0.686 ±0.012

pruned ontology as a vocabulary, the "SIMILARITY”, "FUNCTION’", and "SUB-
CELLULAR LOCATION" fields of Swiss-Prot entries were parsed. If any of the
terms in the vocabulary were found in any of those fields, that term was used as
a feature for the classifier, in addition to traditional PA features. This approach is
labeled “PA + Valid GO” in Table 5.2. This approach did not show an improvement
over the standard PA features.

Another approach is to look directly into the “GO” field of each Swiss-Prot
entry. This is called “PA + GO Field" in Table 5.2. Surprisingly this lowers recall,
and slightly raises precision.

None of the approaches to improving PA predictors showed improvements in
precision and recall. Although there was some improvement in precision, it was not
significant enough to make changes to the PA-SVM predictor. The sheer number of
combinatorial possibilities for parsing Swiss-Prot entries made pursuing this topic
further beyond the scope of this dissertation. Therefore, the PA method of choice is
the classic PA feature parsing algorithm.

5.3 Probabilistic Suffix Trees
Rather than using features to describe proteins (as the PA-SVM and PFAM-SVM
predictors did), Probabilistic Suffix Trees (PSTs) model the protein sequence di
rectly. PSTs are an efficient implementation of variable length Markov models
(VMM). As was described in Chapter 2.5.3, PSTs model the sequence by assum
ing that the probability of each amino acid is conditioned on the previous N amino
acids. Then, the probability of the protein is the product of the probabilities of each
of the amino acids. A VMM that uses the above model is called an A'-order Markov
model.

Several parameters can be tuned for PSTs. These are:

1. Smoothing Term - During the calculation of the probability of a sequence, a

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.3: PST Parameter Search Space

The possible parameter settings for PSTs when performing the brute force search o f the parameter
space.

Parameter Possible Values
Smoothing Term 10,1. 10--. 10-'j
Window Length 10, 20, 40.100, 200, 400. Global

Order 2. 3, 4, 5, 6

sequence may be encountered that was never seen in the training data. During
the calculation of the probability of this protein, the term for this unseen
sequence would be 0, which would make the probability of the sequence 0
(Equation 2.7). To safeguard against this, a process called smoothing [25] is
often used. Instead of assigning previously unseen examples a probability of
0, they are given a minimum value, which is the smoothing term.

2. Window Length - The window length is the number of amino acids in the
protein sequence that are considered when calculating the probability of the
protein. Sometimes the entire sequence is not relevant, because some biolog
ical functions are served by small regions of the sequence called functional
domains. This setting can also be set to “Global” to consider the entire se
quence of the protein when calculating its probability.

3. Order - An iV-order Markov model represents the probability of an amino
acid conditioned on the previous N amino acids. Keeping the order small
prevents overfitting, but keeping it large allows for more representative power.

For baseline performance, a PST was trained for each node using an inclusive
training strategy, and using the parameters Smoothing Term = 0.01, Order = 5,
and Window Length = Global. The results are shown in the first row of Table
5.4. To optimize these predictors, a brute force search through the parameter space
was performed. A finite set of parameter values was chosen which have shown
relevance in previous function prediction experiments [40]. The possible values for
each parameter are shown in Table 5.3.

For each node in the GO hierarchy, a local predictor was trained on one setting
of the parameters. Cross-validation was performed (using the global folds), and
the performance was recorded. The process was repeated for each setting of the
parameters. The parameter settings that result in the highest cross-validation F-
measure were kept for each node. At the end of the process, each local predictor
was trained using the parameters found to be the best for that particular node. The
performance of these optimized local predictors is shown in the second row of Table

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.4: Results of PST Parameter Search

After doing a brute force search through the predefined parameter space (Table 5.3). PSTs show an
increase in precision and recall. Results shown are overall statistics across all local predictors.

Method Precision Recall F-measure 95% Cl
(F-measure)

Baseline PST 0.549 0.588 0.568 ±0.008
PST Parameter Search 0.575 0.636 0.604 ±0.010

5.4. Histograms showing how often each parameter setting was used in optimal
settings are shown in Tables B.3, B.2, and B.l in Appendix B.

The average improvement of each node’s F-measure was +5% from the base
line parameter settings. None of the parameters showed a significant correlation
with each other, the largest correlation coefficient being -0.32 between Order and
Smoothing Term. All other parameter combinations had a smaller correlation coef
ficient. If some parameters did have a high correlation the parameter space could
be reduced for the future training of PST predictors.

The improvements for each of the nodes are shown in Figure 5.1. The graph
shows that the predictors that benefit from the parameter search the most are those
that lie near the middle of the F-measure score. Those nodes that perform very well
in the baseline are difficult to improve further, and those that perform very poorly
in the baseline are often difficult to represent and may not be amenable to PSTs no
matter what the parameter settings are.

5.4 BLAST
During cross validation, BLAST was run for each of the test proteins against the
current fold’s training set of proteins. A BLAST hit was considered a match for this
test protein against the current training set. Each BLAST hit was scored with an
E-value, which (as for PFAM) is the expected number of proteins that would have
matched the query protein in the database by random chance. So. as the E-value
increases, the less similar the match is to the query protein. If an E-value cutoff was
set to 10“ 1 no BLAST hits with E-value > 10-1 were accepted.

The BLAST predictor performs best when the threshold for accepting BLAST
hits is set at an E-value of 10-3 (Table 5.5). This is because proteins that have no
BLAST hit with E-value < 10-3 are proteins that are quite different from the set of
well-studied proteins. These proteins will not find a highly similar sequence during
cross-validation. Figure B.l in Appendix B shows similar results in graphical form.

In this approach, BLAST has been used as a Nearest Neighbor method where

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0. >3

e . 2 -

:3 t-

0 e . t 0 . 2 0 . 3 0 . 4 0 . 3 0 . 6 0 . T 0 . 0 0 . « 1
O r ig in * ! r -* * » s u r «

Figure 5.1: Improvements for each Local PST Predictor

Each point on the graph shows a single node. The x-axis shows the cross-validation performance of
this node using the baseline parameter settings. The y-axis shows the improvement in F-measure
after using a brute-force search of the parameter space.

Table 5.5: Varying E-value for BLAST

An E-value cutoff o f 10-:! results in the best BLAST predictor in terms of F-measure. "No
predictions" is the number o f proteins that had no valid BLAST hits found at this E-value
threshold. The best values in each column are marked with bold font.

E-value Precision Recall F-measure 95% Cl
(F-measure)

No Predictions

10 0.708 0.716 0.712 ±0.009 126
1 0.729 0.712 0.720 ±0.009 613

10-’ 0.752 0.705 0.727 ±0.008 1,181Cv“'fOf—t 0.767 0.696 0.730 ±0.007 1,637
10~5 0.774 0.688 0.729 ±0.008 1,927
10-9 0.782 0.674 0.724 ±0.009 2,344

0 0.831 0.300 0.441 ±0.017 9.550

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.6: Using more than one BLAST Hit

Performing the union on the annotations of more than one BLAST hit increases recall but decreases
precision. Intersecting the results of more than one BLAST hit decreases recall but increases
precision. All results use an E-\ alue cutoff o f 10-3 . The best values in each column are maked
with bold font.

Method Precision Recall
BLAST-NN 0.767 0.696

BLAST-2-Union 0.672 0.751
BLAST-3-Union 0.608 0.775
BLAST-5-Union 0.531 0.796
BLAST-7-Union 0.482 0.806

BLAST-All-Union 0.252 0.828
BLAST-2-Intersect 0.849 0.597
BLAST-3-Intersect 0.870 0.526
BLAST-5-Intersect 0.884 0.437
B LAST-7-Intersect 0.887 0.385

BLAST-50-Intersect 0.862 0.238

only the top BLAST hit’s functions are assigned to the query protein. Using just the
single most similar protein ignores other matches that could also be of good quality
in terms of E-value. Table 5.6 summarizes two ways of incorporating other BLAST
hits’ into predictions.

The BLAST-N-Union approach takes the top N BLAST hits, and performs the
set union operator on the labels associated with these hits. The BLAST-N-Intersect
approach takes the top N BLAST hits, and performs the set intersect operator on the
labels associated with these matches. That is, only labels that appear in all N hits
label sets are predicted for the query protein. The BLAST-N-Union method will
in general increase recall, but may suffer a penalty to precision, and the BLAST-
N-Intersect method will generally increase precision, but may suffer a penalty to
recall.

These methods can be used if a user is more concerned with recall (BLAST-N-
Union) or precision (BLAST-N-Intersect). BLAST NN will be used as the baseline
predictor. However. BLAST-N-Union will prove to be useful in Chapter 6 to lower
the computational cost of using local predictors.

5.5 Combining Predictors
This chapter has presented 4 different predictors for protein function: PA-SVM,
PFAM-SVM. PST, and BLAST, where all of these methods work in fundamentally

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.7: Intersections of Good Performing Node Sets

The number in square brackets under each heading is the total number of nodes on which the local
predictor performed well (F-measure > 60%) on. Each entry in the table is the intersection of the
nodes that the two predictors did well on. For example 177 nodes performed well (F-measure
> 60%) on both the PA-SVM and PFAM-SVM predictors.

PFAM-SVM
[184]

PA-SVM
[256]

PST
[162]

BLAST
[283]

PFAM-SVM - 177 111 182
PA-SVM - - 150 245

PST - - - 159

different ways. The next section of this Chapter will explore combining these pre
dictors at each node to improve the quality of local predictors.

5.5.1 Characterizing Predictors
When combining local predictors, the combined prediction system works best when
each predictor works well on a different subset of the data. This way, when the
predictors are combined, the weaknesses of one predictor are offset by the strengths
of another.

To see whether this is the case, we determined the set of nodes for which each
local predictor approach worked well (the nodes that have > 60% F-measure) -
see Table Table 5.7. The cutoff of 60% is an ad hoc choice, for which the local
predictors performed reasonably well. The intersection of each of these sets was
then computed. Ideally these intersections should be as small as possible if the
predictors are to have different strengths.

For example, BLAST had over 60% F-measure on 283 nodes. PFAM-SVM per
formed above the 60% F-measure mark on 182 of these 283 nodes. Out of the 184
nodes that PFAM-SVM performed well on, 182 of them BLAST also performed
well on. One interesting note, not shown in the table, is that the only node that all
four approaches had 0% precision and 0% recall on the node “protein C-terminus
binding”.

This result shows that there is a potential to combine the classifiers into an
ensemble. An ensemble is a way of combining classifiers using a weighted voting,
or some other learning function.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.8: Combining Predictors

Voting proves to be an accurate method of combining prediction technologies. Although using
SVMs in this way to learn weights is invalid, it does show the potential of using a weighted linear
function of the classifiers.

Method Precision Recall F-measure 95% Cl
(F-measure)

Voting - 1 0.535 0.819 0.647 ±0.005
Voting - 2 0.763 0.733 0.748 ±0.008
Voting - 3 0.846 0.609 0.708 ±0.009
Voting - 4 0.907 0.3S7 0.542 ±0.010

Linear SVM 0.776 0.708 0.741 ±0.005

5.5.2 Ensemble Methods
An ensemble is created at each node using a simple voting scheme. This ensemble
uses each local predictor discussed so far as input:

1. SVM with PFAM as features

2. SVM with PA features

3. PSTs

4. BLAST

For a Voting-N classifier, N or more positive votes must be given before the
function is predicted as positive for that classifier. For example, if at a node PFAM-
SVM and PA-SVM predict positive, and we are using a Voting-2 scheme, the func
tion is predicted as positive by the voting system. The results of varying N are
shown in Table 5.8.

Although using a simple voting technique for the predictors is not very sophis
ticated, it works quite well in practice. As a comparison, an SVM was used to learn
the weights for each predictor, given all of the prediction data. This is the best that
can be hoped for since the SVM is given the correct answer for training on all of the
data. Table 5.8 shows that there is not much potential in learning more complicated
linear weighting functions for the predictors, since the SVM did not perform better
than voting. Therefore, weighting functions were not pursued further.

5.6 Summary
Each prediction tool has been optimized individually. Local predictors were trained
using an inclusive strategy, and optimized based on their individual approaches.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PFAM-SVM was optimized by only accepting good PFAM matches. For PA-SVM,
different feature parsing methods were evaluated, but the traditional PA feature ex
traction algorithm proved to be the best out of the methods that were attempted. For
PSTs, a brute force search through the parameter space was performed. BLAST was
optimized using an E-value cutoff to avoid using poor BLAST hits for prediction.

These methods were then combined using a voting scheme that, although sim
ple, proved to have good results. These voting classifiers are used as predictors in
the next Chapter.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Experiments for Hierarchical
Classification of Protein Function

As shown in Chapter 5, the results of a BLAST search are quite accurate, when
highly similar sequences are found. Therefore, the information gained from running
a BLAST search is important since it is both accurate, and computationally efficient.

As was also demonstrated in Chapter 5, recall can be increased from using
BLAST alone when using a voting ensemble of PFAM, Proteome Analyst, Proba
bilistic Suffix Trees, and BLAST.

As Table 6.1 shows, there are a significant number of proteins where a good
BLAST hit is not found during cross-validation. This also occurs often during real
use of BLAST because a protein being studied may be far (in terms of sequence
similarity and thus homology) from the set of well studied proteins. Thus, these
two cases - when a protein has high sequence similarity to a protein in the training
set, and when it does not - will be examined separately.

In the case when a good BLAST hit is found for proteins, the BLAST result
can be used to lower the cost of running local predictors. The case when no good
BLAST hit is found is the more challenging, and arguably the more important sce
nario, because these are often proteins that are very different from the set of ex
perimentally annotated proteins. In this case, CHUGO performs much better than
BLAST NN. Finally, the local predictors presented in Chapter 5 are compared to
BLAST in terms of coverage.

6.1 Proteins with Good BLAST Hits
During cross-validation, 89% (12,725 out of 14.362) of the proteins in the data set
had at least one good BLAST hit. The results of using the voting scheme, presented
in Chapter 5, are shown again in Table 6.2. and are compared to each individual
predictor method for these proteins. To compare each method in t erms of compu
tational cost, each node predictor is assigned a cost of 1 for each time it is run, and
BLAST is assigned a constant cost of 1 since it is a global predictor and thus only

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6.1: Histogram of How Often X Hits are found by BLAST

Histogram of how often X number of hits are found per protein by BLAST during cross-validation
on the set of experimentally annotated proteins. The results use BLAST set at an E-value cutoff o f
l O - L

Number of Hits # of Proteins
0 1,637
1 1,259
2 944
3 784
4 607

> 5 9,131

run once per protein. Thus, the cost of 1219 for voting over the ontology is obtained
by the formula (N um berO f Nodes) x (NumberO f Predictor sAtEachNode) +
(C ostO f B L A S T). Since three local predictors are used at each node (PA-SVM,
PFAM-SVM, and PSTs) this value is 406 x 3 + 1 = 1219. The cost of calculating
the result of voting is not added since this is a trivial computation. Although the
costs of the various predictors in the ensemble would in fact vary, this measure of
cost gives an initial idea of how computationally intensive each approach is.

When applying a top-down approach, similar to that in Chapter 3.3, the cost
of prediction is lowered significantly. This is because each classifier in the voting
ensemble is trained using an inclusive training strategy. However, the results of
a BLAST search can be exploited to lower the cost of running local predictors
even below the cost of a top-down approach. Two methods of exploiting BLAST to
lower the cost of local predictors are presented. Both methods rely on using BLAST
results to find GO nodes that are likely to be annotated to a protein, and then running
local predictors only for these candidate nodes. Since the local predictors are not
being run for every node in the ontology, their overall cost is lowered.

A good method for generating candidate nodes would have two properties:

1. High Recall - A high recall for the candidate node set will ensure that the
final prediction recall will be high. After running predictors on the candidate
node set, the recall cannot increase, therefore the candidate set must have as
high of a recall as possible.

2. Minimal Size of Candidate Node Set - The size of the candidate node set
should be as small as possible. The smaller the size of the candidate node
set, the smaller the computational cost of verifying these nodes using local
predictors. As the size of the candidate node set approaches the size of the
entire ontology, the benefit of using candidate nodes is diminished.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6.2: Performance on proteins with Good BLAST results

Performance of various prediction approaches on proteins that produce a good BLAST hit during
cross-validation. Here, voting refers to the voting ensemble of BLAST NN. PA-SVM.
PFAM-SVM. and PST described in Chapter 5.5.

Method Overall Overall Average Cost
Precision Recall Per Protein

BLAST NN 77% 78% 1
PA-SVM 76% 69% 406

PFAM-SVM 75% 62% 406
PST 61% 64% 406

Voting 77% 80% 1219
Voting Top-Down 77% 79% 111

These two factors are competing forces. One easy method of raising recall is to
add all nodes to the candidate set, but the second criteria keeps this from happening.
The presented candidate generating methods meet the two above criteria, and are
therefore useful for lowering the cost of using local predictors.

6.1.1 BLAST-N-Union
In Chapter 5.4 it was shown that using more than one BLAST hit, and combining
the annotations of these hits using a union operation can significantly raise recall
when this set of annotations is used as a prediction. However, precision suffers as
a result. Since the recall is high, this set of nodes from the union operation can be
used as candidate nodes for local predictors.

This first candidate generating method, called BLAST-N-Union, uses multiple
BLAST hits’ annotations, where N denotes the number of hits used. Intuitively,
if the union of more than one BLAST hit’s annotations is used, more of the likely
functions will be covered by this candidate set. Performing the union of multiple
BLAST hits’ annotations increase recall, but decrease precision. However, since
this set is smaller than the entire ontology, and the recall is high, we can run our
predictors on this set of labels and improve precision while keeping computational
cost low.

6.1.2 BLAST-Search-N
As was demonstrated, BLAST NN does not always return correct predictions for
protein function, since precision and recall are not 100% (Chapter 5.4). Figure 6.1
demonstrates that when BLAST NN is incorrect, it tends to be close to the correct

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 6 8
BLAST H i t s D i* t» n c *

Figure 6.1: BLAST NN Miss Distance

When BLAST NN does not return the correct nodes from good hits, the nodes that are returned
tend to be close to the correct answer.

answer. The BLAST Miss Distance in the figure is the graph distance between the
predicted label for a protein, and the nearest annotated label for that protein. Graph
distance is the shortest path between these two nodes in the ontology.

This fact can be exploited to find candidate nodes for the computation of local
predictors. The results of a BLAST search can be used as a seed to begin searching
the ontology outward for candidate nodes. Since the structure of the ontology is
known during prediction, the nodes that are nearby the nodes found by BLAST NN
can be used as candidate nodes.

This second candidate generating method, called BLAST-Search-N, exploits
the annotations returned by BLAST and searches in the neighborhood of the top
BLAST hit's annotations (Figure 6.2). Here, N is the graph distance from the
seed annotations in which we add nodes to our set of candidate nodes. The set
of GO terms that BLAST NN returns is added to the candidate set, and all of the
terms in the A'-neighborhood are added to the candidate node set as well. As in
the first method, recall will be increased by searching in the neighborhood, and
the node predictors are used to compensate for the drop in precision by removing
false positives. Also, similar to the first proposed method, computational runtime is
lowered from running the validating predictors for all nodes.

6.1.3 Evaluation of Candidate Generating Methods
The advantage of the BLAST-Search-N and BLAST-N-Union approaches is that
they decrease the computational cost by not running all of the local node predic-

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.2: Using BLAST-Search-N to Generate Candidate Nodes

Those nodes which are returned from BLAST NN (marked S for seed) are added to the set of
candidate nodes. Those nodes within a graph distance of N (in this case N = 1) from these seed
annotations are also added to the set of candidate nodes (marked S i). Those nodes that are beyond
this distance do not have their local predictors computed (marked X) .

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6.3: Exploiting BLAST Results

Comparing methods of using BLAST to find candidate nodes, and then validating these nodes
using local predictor ensembles. The best values in each category are marked with bold text.

Candidate Generating
Method

Precision Recall Average Cost
per Protein

BLAST-1-Union 81% 75% 16
BLAST-2-Union 79% 78% 20
BLAST-3-Union 78% 79% 22

BLAST-10-Union 77% 80% 32
BLAST-Search-1 80% 77% 82
BLAST-Search-2 78% 78% 221
BLAST-Search-3 78% 79% 430

tors. This is done by only evaluating local predictors for the set of candidate nodes.
The results of using BLAST-Search-N and BLAST-N-Union as candidate node gen
erating methods for various values of N is presented in Table 6.3. An interesting
side effect is that constraining our candidate nodes for our predictors can also raise
precision since those GO terms that are unlikely to be assigned to an instance are
never considered. An important note is that regardless of which method is compu
tationally cheaper for finding the set of candidate GO term predictors to run, the
BLAST-Search-N method must be used when only a single good BLAST hit is
found (since there are no other good hits to union).

Although the BLAST-2-Union and BLAST-Search-3 methods produce similar
precision and recall, the BLAST-Search-3 method is more costly. Therefore, us
ing BLAST-2-Union whenever possible (when there are at least 2 good BLAST
hits) would be preferred, and BLAST-Search-3 should be used only when a single
BLAST hit is found.

The results of combining BLAST-2-Union and BLAST-Search-3 method are
shown in Table 6.4. This approach results in a cost that is approximately half of
using a top-down approach. An added advantage of this approach is that precision
is raised since the candidate node set is smaller. The combination of BLAST-2-
Union and BLAST-Search-3 is used by CHUGO whenever at least 1 good BLAST
hit is found against experimental data.

6.2 Proteins with No Good BLAST Hits
During cross-validation, 11% (1.637 out of 14,362) of the proteins in the data set
had no good BLAST hits. These are sequences that are disparate from those which

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6.4: Comparing Methods for Lowering Prediction Cost

Using BLAST-2-Union when possible, and otherwise using the BLAST-Search-3 method results in
a lower cost than the top-down approach. The BLAST-Search-3 and BLAST-2-Union approach is
incorporated into the CHUGO system.

Method Precision Recall Average Cost
per Protein

Voting Top-Down 77% 79% 111
BLAST-Search-3

and BLAST-2-Union 79% 79% 59
(CHUGO)

have been studied, and thus BLAST will not be able to find a similar sequence in the
database of studied proteins. One option is to simply accept the top BLAST result,
regardless of its E-value. However, this method proves to be quite inaccurate, as
shown in Table 6.5. Since our predictors of protein function model the sequences in
a variety of ways, they can make predictions on a wider range of protein sequences.

For the prediction of these proteins, the PFAM and PA predictors prove to be
the best combination of predictors to use in a voting ensemble (BLAST and PST
are too inaccurate). Since BLAST performs so poorly on these proteins, it cannot
produce good candidate nodes for lowering the cost of prediction. Therefore, a top-
down approach is used to lower the cost of Voting predictors. This approach is used
in CHUGO when no good BLAST hits are found against experimentally verified
data.

Some molecular functions may not be as amenable to certain machine learn
ing techniques as others. For example, some functional classes may depend on a
small portion of the protein sequence (such as a functional domain), whereas others
may be determined by the overall tertiary structure of the protein. Therefore, some
prediction technologies may be better suited to some functional classes than other
approaches.

To see if the reason that BLAST performs significantly worse than CHUGO on
these dissimilar proteins is due to this phenomenon, each predictor was evaluated
on a subset of the ontology (Figure 6.3). This subset was created for CHUGO by
starting with no nodes in the ontology. Next, the node that increases the perfor
mance of CHUGO by the largest margin (in terms of hierarchical F-measure) was
added to the ontology. Only nodes that made a consistent ontology were added. In
other words, a node was not added to the ontology unless all of its parents nodes
had been added. The process was repeated until all 406 nodes were added to the
ontology. The entire process was then repeated for BLAST. Although this greedy
approach could get caught in local maxima, it did give each prediction method a

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6.5: Performance on proteins with no Good BLAST result

Performance on proteins that do not produce a good BLAST hit during cross-validation. For
BLAST, any BLAST hit is accepted as a nearest neighbor, regardless of its E-value. In this case,
the voting ensemble is made up of PA-SVM and PFAM-SVM. with 1 vote required between the
two to make a positive prediction. The Voting Top-Down approach is incorporated into the
CHUGO system for proteins with no good BLAST hits.

Method Precision Recall F-measure 95% Cl
(F-measure)

Cost

BLAST 19% 20% 19% ±1.9% 1
PA-SVM 59% 25% 35% ±3.0% 406

PFAM-SVM 54% 21% 30% ±2.3% 406
PST 16% 10% 12% ±1.5% 406

Voting 55% 32% 41% ±2.5% 812
Voting Top-Down

(CHUGO)
56% 32% 41% ±2.4% 58

CHUGO0.6

u»

0.4

BLAST

02

250100 150 200 300 350 4000 50
S e e of Omoloav

Figure 6.3: Comparing BLAST and CHUGO on Pruned Ontologies

CHUGO produces a better classification system even when the ontology is created in each
predictors favor.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6.6: Coverage against model organisms

Not finding good BLAST result against experimental data accounts for a large percentage of
sequenced proteomes.

Organism Good BLAST Hit No Good BLAST Hit
D. melanogaster 60% 40%

S. cerevisae 62% 38%

fair chance to perform well on a consistent subset of the ontology.
Since the creation of the ontology is done separately for CHUGO and BLAST,

the two lines are not directly comparable. That is, when the size of the ontology is
50, the point for CHUGO does not represent the performance on the same ontology
as the point for BLAST. Although the two ontologies may not be comparable, the
graph does show that even when BLAST was given a fair chance at being evaluated
on a smaller ontology, CHUGO consistently performed better.

6.3 Coverage
Knowing how often a good BLAST hit is found during cross-validation is useful,
but ultimately a predictive system will be used on unknown proteins, possibly in
newly sequenced organisms. BLAST is used as a baseline because of its ubiquitous
use. It is therefore important to know how often each of the cases - when a protein
has a good BLAST hit against experimental data, or when it does not - would
occur in reality. To approximate how often future unknown sequences would not
result in a good BLAST hit, a BLAST query was run for each protein in two model
organisms against the entire data set of experimentally annotated proteins (Table
6.6).

Within an entire proteome, the number of proteins that do not find a good
BLAST hit against the experimental data set is much higher than found during
cross-validation. This shows an increased importance for the case of no good
BLAST hits found, since this happens more often in these proteomes. This differ
ence is most likely because there are many more proteins in these proteomes whose
function is unknown, and have no well-studied homologs. The effects would be
magnified when examining an organism that is not well studied (relative to those
shown in Table 6.6).

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6.7: Comparison to ProtFun

CHUGO outperforms ProtFun for the prediction o f the 1,637 proteins which do not find a good
BLAST hit during the cross-validation o f CHUGO.

Predictor Precision Recall
PST 0.153 0.067

BLAST NN 0.188 0.198
PA-SVM 0.727 0.247

PFAM-SVM 0.674 0.112
CHUGO 0.689 0.288
ProtFun 0.143 0.128

6.4 Comparison to ProtFun
As a final experiment, CHUGO predictions were compared to those made by an
other protein function prediction system, Protfun [24] version 2.2 (Table 6.7). Prot-
fun uses an ontology that contains 14 Gene Ontology nodes, where 9 of these nodes
are from the molecular function aspect (Figure 2.6). Both systems were evaluated
on their predictions for the 1,637 proteins which did not have a good BLAST hit
during cross-validation, and only on those 9 molecular function nodes which are in
the ProtFun ontology.

Even though the comparison is not completely fair to CHUGO (we do not have
control over the training set for ProtFun, and thus some of the submitted proteins
may have been used in the training of the system), Table 6.7 shows that CHUGO
outperforms Protfun by a large margin on these proteins. Since these proteins had
no good BLAST hit. the CHUGO system consisted of ensemble classifiers made
up of PA-SVM and PFAM-SVM at each of the 9 nodes. The results of using other
predictors presented in this dissertation are shown as well.

6.5 Summary
Since each of the local prediction methods presented in this dissertation are in
fact sequence-based, their performance on disparate proteins dwindles similarly to
BLAST-based predictors. However, since each tool models the protein sequence in
a different manner, combining the predictors provides a system that can make pre
dictions on a wider range of proteins. When dealing with these proteins, which are
very dissimilar to well-studied proteins, biologists would appreciate any leads they
can get before beginning lengthy experiments on them. Although CHUGO’s pre
dictors may not be extremely reliable on these disparate sequences, they do allow
for a large increase in predictive accuracy over simply using BLAST NN.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The results exploiting BLAST NN to lower the computational cost of prediction
within a hierarchy are applicable to the general problem of hierarchical classifica
tion. Any global prediction method can be used to generate candidate nodes for
which local predictors are computed, as long as the global predictor adheres to the
principles for candidate generating methods.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Conclusion

7.1 Discussion of Results
This dissertation has shown that it is beneficial to include knowledge about the hier
archical structure of an ontology during both training and prediction. Furthermore,
the increased cost of using local predictors can be lowered when the hierarchy’s
structure is considered by two different approaches. The first is a top-down ap
proach predictor to lower the cost. This can be done without a significant impact
on precision and recall when an inclusive training strategy is used. The second ap
proach applies when an accurate global predictor is available (in this case BLAST).
The predictions it produces can be used to find candidate nodes for local predictors,
lowering the overall cost of prediction. A hierarchy-aware evaluation methodology
was also outlined in this dissertation. This includes an intuitive scoring scheme
within a hierarchy, and a sound methodology for cross-validation.

The Gene Ontology hierarchy provides a mechanism to represent incomplete
information. Biological experiments vary in how specifically they determine pro
tein functions. Organizing these functions in a hierarchy allows these differences to
be made explicit.

The fact that the labels in GOA are incomplete in that most annotations are
not fully specified, makes the problem of protein function prediction different from
some other hierarchical classification problems. One such example is the hierarchi
cal classification of text documents [29]. In contrast to the work in this dissertation,
Koller et al showed that exclusive and inclusive classifiers perform similarly. How
ever, the structure of their ontology was created artificially, and thus each instance
was assigned to a leaf node (and therefore complete).

Furthermore, in domains such as web document classification [19], instances
may be validly assigned to non-leaf nodes. For example, a web page may be about
“Health and Fitness”, but not any more specific. This is contrasted with GO, where
proteins that are mapped to non-leaf nodes are only annotated at that node because
their annotations are incomplete.

When dealing with proteins which are far (in terms of sequence similarity, and

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

thus homology) from well-studied proteins, the biologists considering them would
likely appreciate any leads they can get before beginning lengthy experiments on
them. CHUGO is therefore a way of pushing the boundaries of sequence analysis,
and ultimately a way of speeding up the process of protein function determination
in general.

An important aspect to protein function prediction is that there may be a fun
damental limit to how well functions of proteins can be predicted from a protein’s
structures (primary, secondary, or tertiary). This is because proteins are very sen
sitive to their environment. Proteins “...may only be active in their native state,
over a small pH range, and under solution conditions with a minimum quantity of
electrolytes” [5]. It is highly likely that a protein’s environment is essential knowl
edge to determine what functions that protein can perform. Therefore, the lack of
this knowledge in a prediction system may set an upper bound on how well protein
functions can be predicted.

7.2 Future Work
In the future, it would be beneficial to include other types of local predictors of
protein function. One option is to use biological properties of proteins as features
for classifiers. This was shown to be effective by Jensen et al [24]. The addition
of other features could be added to CHUGO by using the hierarchy aware training
strategies presented in this dissertation.

Another aspect that could improve the performance of CHUGO is to make the
PA-SVM predictors more accurate. The results in Chapter 5.2 did not show promis
ing results for using other fields for prediction, however there is a large amount
of knowledge in the Swiss-Prot entries of proteins that shows great potential for
improvement. Other combinations of these annotations or more complex parsing
techniques may prove to be useful in leveraging this data.

In Chapter 4, four training schemes were evaluated. These schemes were based
on different degrees of consistency with the semantics of the hierarchy. However,
these are by no means the only possibilities for creating training sets. There are
many possibilities for choosing instances for positive and negative training sets.
For instance, the distance in the hierarchy could be used to decide whether an in
stance is far enough from the current node to be used as a negative training instance.
Other approaches could be attempted to increase the quality of all local prediction
technologies used in this dissertation.

Chapter 4 also attempted to use a randomized approach to find better global
splits of the data for cross-validation. An algorithmic approach could be used to
split the data in a way that would preserve local node distributions optimally. How
ever, the complexity of such an algorithm should be evaluated since it may prove to
be intractable.

Another topic that could use further attention is finding an even more efficient
way of using the local predictors when there are no good BLAST hits. Accepting

SO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a lower quality hit does not appear to be a good way of finding candidate terms to
compute, but perhaps there are other global predictors that could be used to seed the
search for candidate nodes in the hierarchy. For now. CHUGO uses the top-down
approach on proteins that do not find a good BLAST result.

It would also be desirable to have a better approximation of each predictor’s cost
during the comparison of prediction schemes, rather than assigning a constant value
for each. Although using the simple approach of assigning a constant cost to each
predictor is a good way of getting an idea of the total cost of different prediction
methods, a more accurate measure would be beneficial to deciding how expensive
CHUGO predictions really are.

The fact that there are so many variables to tune for each predictor (parameters
for each machine learning technology, feature selection, kernels, combinations of
predictors) shows that there is a large room for potential improvement by focusing
on each local predictor.

Finally, the experiments in this dissertation could be repeated for the other two
aspects of Gene Ontology - Cellular Component and Biological Process. The ap
proaches presented in this dissertation may not be as amenable to these other two
aspects as they are to Molecular Function, but it would be interesting to know if
they are. Knowing the Cellular Component and Biological Process for an unknown
protein would be useful information for molecular biologists.

7.3 Summary
High-throughput and accurate protein function prediction is important to closing the
gap between sequenced proteins and experimentally determined protein functions.
Ontologies such as GO help to alleviate this problem by providing standardized,
hierarchical vocabularies with which to describe the problem domain. This disser
tation has presented three novel methods to exploit the hierarchical nature of GO
to increase predictive performance, and to lower computational cost of using local
predictors. First, the hierarchy is utilized to increase the accuracy of local predic
tors by considering its structure during the construction of training sets. Second, the
hierarchy was used to lower the computational cost of running local term predic
tors by using a top-down approach or by exploiting predictions seeded by BLAST.
Third, an evaluation methodology that produces hierarchical precision and hier
archical recall was examined, and a sound method of global cross-validation was
presented.

The methods that have been presented may be applicable to many other do
mains where there is a standardized, hierarchical ontology, such as document clas
sification, medical diagnosis, web documents, and many others. By leveraging
the knowledge encoded in the hierarchical structure of these ontologies, prediction
methods can become more accurate and more efficient in domains where there are
a large number of classes.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] On learning hierarchical classification, http://citeseer.ist.psu.edu/38202.html,
1997.

[2] The automated function prediction special interest group meeting, held at
ISMB 2005. http://ffas.bumham.org/AFP, 2005.

[3] Gene Ontology Annotation @ EBI. http://www.ebi.ac.uk/GOA/, 2005.

[4] the Gene Ontology website, http://www.geneontology.org/. 2005.

[5] Wikipedia, the free encyclopedia, http://www.wikipedia.org, 2005.

[6] The GO consortium user meeting. Bergen, Norway, September 14 - 15 2005.

[7] E Alpaydin. Introduction to Machine Learning. The MIT Press, 2004.

[8] S Altschul, W Gish, W Miller, E W Myers, and D Lipman. A basic local
alignment search tool. Journal o f Molecular Biology, 215(3):403—410, 1990.

[9] M A Andrade, N P Brown, C Leroy, S Hoersch, A de Daruvar, C Reich,
A Franchini, J Tamames, A Valencia, C Ouzounis, and C Sander. Automated
genome sequence analysis and annotation. Bioinformatics, 15:391—412,1999.

[10] EM Zdobnov R Apweiler. InterProScan - an integration platform for the
signature-recognition methods in InterPro. Bioinformatics, 17(9):847-8,
2001 .

[11] R Apweiler, A Bairoch, CH Wu, WC Barker, B Boeckmann, S Ferro,
E Gasteiger, H Huang, R Lopez, M Magrane, MJ Martin, DA Natale C
O'Donovan, N Redaschi, and LS Yeh. UniProt: the Universal Protein knowl
edgebase. Nucleic Acids Research, 32:D115-D119, 2004.

[12] A Bateman, E Bimey, L Cerruti, R Durbin, L Etwiller, S R Eddy, S Griffiths-
Jones. K L Howe, M Marshall, and E L Sonnhammer. The Pfam protein
families database. Nucleic Acids Research, 30(l):276-280, 2002.

[13] G Bejerano and G Yona. Variations on probabilistic suffix trees: statistical
modeling and prediction of protein families. Bioinformatics, 17(1):23—4-3.
2001.

[14] B Boeckmann, A Bairoch, R Apweiler, MC Blatter, A Estreicher, E Gasteiger,
MJ Martin, K Michoud, C O’Donovan, I Phan, S Pilbout, and M Schnei
der. The SWISS-PROT protein knowledgebase and its supplement TrEMBL
in 2003. Nucleic Acids Research, 31:365-370, 2003.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://citeseer.ist.psu.edu/38202.html
http://ffas.bumham.org/AFP
http://www.ebi.ac.uk/GOA/
http://www.geneontology.org/
http://www.wikipedia.org

[15] S Chakrabarti, B E Dom, R Agrawal, and P Raghaven. Using taxonomy, dis
criminants and signatures for navigating in text databases. In Proc. o f the 23rd
International Conference on Very Large Databases, pages 446—455. 1997.

[16] C C Chang and C J Lin. LIBSVM: A library for support vector machines.
http://www.csie.ntu.edu.tw/ cjlin/libsvm, 2001.

[17] F Crick. On protein synthesis. In Symposium Society Experimental Biology,
number 12. pages 138-163, 1958.

[18] O Dekel. J Keshet, and Y Singer. Large margin hierarchical classification.
In Proc. o f the 21th International Conference on Machine Learning. pages
209-216, 2004.

[19] S T Dumais and H Chen. Hierarchical classification of Web content. In
Proceedings o f SIGIR-00, 23rd ACM International Conference on Research
and Development in Information Retrieval, pages 256-263, Athens, GR. 2000.

[20] S R Eddy. HMMER: Profile hidden markov models for biological sequence
analysis, http://hmmer.wustl.edu, 2001.

[21] R Eisner. B Poulin, D Szafron, P Lu, and R Greiner. Improving protein func
tion prediction using the hierarchical structure of the Gene Ontology. In IEEE
Symposium on Computational Intelligence in Bioinformatics and Computa
tional Biology, 2005.

[22] M Ashbumer et al. Gene Ontology: tool for the unification of biology. Nature
Genetics, 25:25-29,2000.

[23] T Hastie, R Tibshirani, and J Friedman. The Elements o f Statistical Learning.
Springer Series in Statistics. Springer, 2001.

[24] L J Jensen, H Staerfeldt, and Sren Brunak. Prediction of human protein func
tion according to Gene Ontology categories. Bioinformatics, 19:635-642,
2003.

[25] D Jurafsky and JH Martin. Speech and Language Processing. Prentice Hall,
2000.

[26] O D King, R E Foulger, S S Dwight, J V White, and F P Roth. Predicting gene
function from patterns of annotation. Genome Research, 13:896-904, 2003.

[27] S Kiritchenko, S Matwin, and A Fazel Famili. Hierarchical text categorization
as a tool of associating genes with Gene Ontology codes. In Proc. o f the Sec
ond European Workshop on Data Mining and Text Mining fo r Bioinformatics,
pages 26-30, Pisa, Italy, 2004.

[28] S Kiritchenko, S Matwin, and A Fazel Famili. Functional annotation of genes
using hierarchical text categorization. In Proc. o f the BioLINK SIG: Linking
Literature. Information and Knowledge for Biology (held at ISMB-05), De
troit, USA, 2005.

[29] D Koller and M Sahami. Hierarchically classifying documents using very
few words. In Proceedings o f the 14th International Conference on Machine
Learning, pages 170-178, 1997.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.csie.ntu.edu.tw/
http://hmmer.wustl.edu

[30] C Li, editor. Biochemical Nomenclature and Related Documents. Portland
Press, second edition edition, 1992.

[31] D Lin. An information-theoretic definition of similarity. In Proceedings o f the
15th International Conference on Machine Learning, pages 296-304, 1998.

[32] P W Lord, R D Stevens, A Brass, and C A Goble. Semantic similarity mea
sures as tools for exploring the Gene Ontology. In Proceedings o f the Pacific
Symposium on Biocomputing, pages 601-612, Lihue, Hawaii, 2003.

[33] Z Lu. Predicting protein sub-cellular localization from homologs using ma
chine learning algorithms. Master’s thesis, Department of Computing Science,
University of Alberta, Edmonton, Alberta, Canada, 2003.

[34] Z Lu, D Szafron, R Greiner, P Lu, D Wishart, B Poulin, J Anvik, C Macdonell.
and R Eisner. Predicting sub-cellular localization using machine-learned clas
sifiers in proteome analyst. Bioinformatics, 20:547-556, 2004.

[35] A K McCallum. R Rosenfeld, T M Mitchell, and A Y Ng. Improving text
classification by shrinkage in a hierarchy of classes. In Proc. of the 15th
International Conference on Machine Learning, pages 359-367, 1998.

[36] R Moskovitch, S Cohen-Kashi, U Dror, I Levy, A Maimon, and Y Shahar.
Multiple hierarchical classification of free-text clinical guidelines. In Work
shop on intelligent data analysis in medicine and pharmacology, 2004.

[37] A G Murzin, S E Brenner, T Hubbard, and C Chothia. SCOP: a structural
classification of proteins database for the investigation of sequences and struc
tures. Journal o f Molecular Biology, 247:536-540,1995.

[38] D Pal and D Eisenberg. Inference of protein function from protein structure.
Structure, 13(1): 121-130, 2005.

[39] B Poulin. Sequence-based protein function prediction. Master’s thesis, De
partment of Computing Science, University of Alberta, Edmonton, Alberta,
Canada, 2004.

[40] B Poulin. Personal communication. 2005.

[41] B Poulin, R Eisner, D Szafron, P Lu, R Greiner, and D Wishart. Visual ex
planation and auditing of evidence with additive classifiers. In Preparation.
2005.

[42] M Riley. Functions of the gene products of escherichia coli. In Microbiologi
cal Reviews, volume 57, pages 862-52, 1993.

[43] M E Ruiz and P Srinivasan. Hierarchical text categorization using neural
networks. Information Retrieval, 5(1):87—118, 2002.

[44] R Sharma and D Poole. Probabilistic reasoning with hierarchically structured
variables. In Proc. o f the 19th International Joint Conference on Artificial
Intelligence, Edinburgh. Scotland, 2005.

[45] B Smith, J Williams, and S Schulze-Kremer. The ontology of the Gene On
tology. In Proc. o f the 2003 American Medical Informatics Association Sym
posium, 2003.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[46] D Szafron, P Lu, R Greiner. D Wishart, Z Lu, B Poulin, R Eisner, J Anvik, and
C Macdonell. Proteome Analyst - transparent high-throughput protein anno
tation: Function, localization and custom predictors. In International Confer
ence on Machine Learning Workshop on Machine Learning in Bioinformatics
(ICML Workshop - Bioinfomiatics), pages 2-10. Washington. U.S.A., August
2003.

[47] D Szafron, P Lu, R Greiner. DS Wishart, B Poulin, R Eisner, Z Lu, J Anvik,
C Macdonell, A Fyshe, and D Meeuwis. Proteome Analyst: custom pre
dictions with explanations in a web-based tool for high-throughput proteome
annotations. Nucleic Acids Research, 32(2):W365-371, 2004.

[48] VVapnik. The Nature o f Statistical Learning Theory. Springer-Verlag, 1995.

[49] A Vinayagam, R Knig, J Moormann, F Schubert, R Eils, K Glatting, and
S Suhai. Applying support vector machines for gene ontology based gene
function prediction. BMC Bioinformatics, 5, 2004.

[50] K Wang, S Zhou, and Y He. Hierarchical classification of real life documents.
In Proceedings o f the 1st SIAM International Conference on Data Mining,
Chicago, US, 2001.

[51] K Wang, S Zhou, and S C Liew. Building hierarchical classifiers using
class proximity. In Proc. o f the 25th International Conference on Very Large
Databases, pages 363-374, 1999.

[52] E Werner. Genome semantics, in silico multicellular systems and the central
dogma. FEBS Letters, 579:1779-1782, 2005.

[53] H Wu, Z Su, F Mao, V Olman, and Y Xu. Prediction of functional mod
ules based on comparative genome analysis and Gene Ontology application.
Nucleic Acids Research, 33(9):2822-2837, 2005.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

Data Set Information

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table A.1: Evidence Code Histogram

The number of Gene Ontology Annotations provided by GOA for proteins in the Uniprot and
Swissprot databases.

Evidence Code Number of Annotations
for UniProt Proteins

Number of Annotations
for SwissProt Proteins

IEA 2,219,999 483,200
IDA 7,773 4,089
TAS 6,468 5,581
ISS 4,326 2,499
NAS 3,985 2,711
IPI 3,162 1,445
ND 1,312 827
IMP 1,056 729
NR 676 629
IGI 272 204
IEP 96 83
IC 42 24

Table A.2: General Data Set Statistics

General Statistics about the ontology, and the experimentally annotated data set.

Statistic Value
Original Number of Nodes 7,399

Number of Nodes in Pruned Ontology 406
Average Number of Parents Per Node (In Original Ontology) 1.154

Number of Nodes in Pruned Ontology with > 1 Parent 60
Number of Nodes in Original Ontology with > 1 Parent 1,036

Number of Proteins Used in Data Set 14,362
Mappings Per Protein 1.355

Labels Per Protein (Propagating from Mapped) 4.935
Maximum Depth to a Node in Pruned Ontology 10

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B

Supplementary Results

Table B.l: Parameter Search for the PST order

Performing a brute force parameter search for each node in the GO hierarchy. Histogram shows
how many of the 406 nodes had each setting o f the order.

Value Occurence
5 156
4 117
6 116
3 13
2 4

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table B.2: Parameter Search for Smoothing term

Performing a brute force parameter search for each node in the GO hierarchy. Histogram shows
how many of the 406 nodes had each setting o f the smoothing term.

Value Occurence
n r 2 264
icr6 97

i 42
10 3

Table B.3: Parameter Search for Window Length

Performing a brute force parameter search for each node in the GO hierarchy. Histogram shows
how many of the 406 nodes had each setting o f window length.

Value Occurence
1,000 91
200 84
100 77
10 56
40 38
400 31
20 29

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e . 8

..a*'

8 . 4

- 4 0 e- 1 2 8 ■88- 1 8 8 - 1 4 0

E-valu* Threshold

Figure B.I: Evaluating BLAST with Varying E-Value

E-value is varied for accepting a BLAST hit for BLAST NN. Local precision refers to how precise
the matches added from the previous E-value are. This reinforces the results shown in [39],
although the curves are not as high since a more conservative data set is used here..

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C

The Pruned Ontology

This Appendix lists the pruned Gene Ontology used for the experiments in this dis
sertation. For readability, long node names are shortened. Not all 14,396 proteins
were used in experiments. Only those which mapped to at least one node in the
pruned ontology were kept. This lowered the size of the dataset to 14,362 proteins.
406 out of 7,399 original molecular function terms are in the pruned ontology. Some
terms are shown more than once due to multiple inheritance.

(D e p th) G O _ID »G O _N «ne - [I n h e r i t e d P r o t e i n s . M a p p e d P ro te in s) - < * C h i ld r e n , # P a r e n t s >

(0 0) 0 0 0 3 6 7 3 » " G e n e _ O n to lo g y " - (1 4 3 9 6 . 0] - < 1 , 0>
(0 1) 0 0 0 3 6 7 4 » * m o le c u la r _ f u n c t io n " - (1 4 3 9 6 . 01 - < 15. 1>
(0 2) 0 0 1 6 2 0 9 » " a n t i o x i d a n t a c t i v i t y " • (7 4 . 5J - < 4 . 1>
(0 3) 0 0 0 4 6 0 1 » " p e r o x i d a s e a c t i v i t y " - (5 5 . 18) - < 1 6 . 2>
(0 4) 0 0 0 4 6 0 2 » " g l u t a t h i o n e p e r o x i d a s e a c t i v i t y " - (2 1 . 20] - < 1 . 1>
(0 2) 0 0 0 5 4 8 8 » “b i n d i n g * - (7 1 0 5 . 25 J - < 3 8 . 1>
(0 3) 0 0 0 3 8 2 3 » * a n t i g e n b in d in g " - (5 3 . 251 - < 3 . 1>
(0 4) 0 0 4 2 6 0 5 » " p e p t i d e a n t i g e n b i n d in g * - (2 6 . 2 4] - < 2 . 2>
(0 3) 0 0 3 0 2 4 6 » " c a r b o h y d r a t e b i n d in g " - (1 3 7 , 10] - < 2 , 1>
(0 4) 0 0 3 0 2 4 7 » " p o l y s a c c h a r i d e b i n d in g " - (6 3 . 5J - < 6 . 2>
(0 5) 0 0 0 5 5 3 9 » " g ly c o s a i a i n o g ly c a n b i n d in g " - (5 4 , 51 - < 2 . 1>
(0 6) 0 0 0 8 2 0 1 » ”h e p a r i n b i n d in g " - (3 6 . 36] - < 0 . 1>
(0 4) 0 0 0 5 5 2 9 » " s u g a r b in d in g " - (6 4 . 391 - < 3 . 1>
(0 5) 0 0 4 8 0 2 9 » " m o n o s a c c h a r i d e b i n d in g " - (2 4 . 01 - < 7 , l>
(0 3) 0 0 0 8 1 4 4 » " d r u g b in d in g * * (2 8 . o] - < 8 . 1>
(0 3) 0 0 4 3 1 6 7 » " i o n b i n d in g " - (2 9 3 . 0] - < 3 . 1>
(0 4) 0 0 4 3 1 6 9 » * c a t i o n b i n d in g " - (2 7 1 . 0] - < 3 , 1>
(0 5) 0 0 0 5 5 0 9 » " c a l c iu r a i o n b i n d in g " - [1 2 4 , 123] - < 1 , 2>
(0 5) 0 0 4 6 9 1 4 » " t r a n s i t i o n r n e t a l i o n b i n d in g " - (1 5 2 . 0) - < 9 . 2>
(0 6) 0 0 0 5 5 0 6 » " i r o n io n b in d in g * - (2 3 . 10) - < 2 . 1>
(0 6) 0 0 0 8 2 7 0 » " = i n c i o n b i n d in g " - [9 7 . 97] - < 0 . 1>
(0 4) 0 0 4 6 8 7 2 » * m e t a l i o n b i n d in g " - (2 9 3 . 10J - < 5 . 1>
(0 5) 0 0 0 5 5 0 9 » " c a l c iu m i o n b i n d in g " - (1 2 4 , 1 2 3) - < 1 , 2>
(0 5) 0 0 0 0 2 8 7 » * a a g n e s i u » i o n b in d in g " - (2 1 . 2 1] - < 0 . l>
(0 5) 0 0 4 6 9 1 4 » " t r a n s i t i o n r n e t a l i o n b i n d in g " - (1 5 2 . 0] - < 9 , 2>
(0 6) 0 0 0 5 5 0 6 » " i r o n io n b i n d in g " - (2 3 . 10] - < 2 . 1>
(0 6) 0 0 0 8 2 7 0 » " s i n c i o n b in d in g * - [9 7 . 97] - < 0 . 1>
(0 3) 0 0 0 8 2 S 9 » " l i p i d b in d in g " - (1 0 4 . 19] - < 6 , 1>
(0 4) 0 0 0 5 5 4 3 » " p h o s p h o l i p i d b i n d in g " * [7 3 . 33] - < 4 . 1>
(0 5) 0 0 3 5 0 9 1 » " p h o s p h o i n o s i t i d e b i n d in g " - (2 3 . 3] - < 4 . 1>
(0 3) 0 0 4 2 1 6 5 » * n e u r o t r a n s m i t t e r b i n d in g " - [1 1 3 . 0] - < 5 . 1>
(0 4) 0 0 4 2 1 6 6 » " a c e t y l c h o l i n e b i n d in g " - [2 8 . 0) - < 1 . 1>
(0 5) 0 0 1 5 4 6 4 » " a c e t y l c h o l i n e r e c e p t o r a c t i v i t y " - [2 8 . 153 - < 2 . 3>
(0 4) 0 0 4 2 9 2 3 » " n e u r o p e p t i d e b i n d in g " - [4 6 . I I - < 2 , 2>
(0 5) 0 0 0 8 1 8 8 » " n e u r o p e p t i d e r e c e p t o r a c t i v i t y " - (4 6 . 15] - < 9 . 3>
(0 4) 0 0 3 0 5 9 4 » " n e u r o t r a n s m i t t e r r e c e p t o r a c t i v i t y " - (1 1 2 . 21 - < 4 . 2>
(0 5) 0 0 1 5 4 6 4 » * a c e t y l c h o l i n e r e c e p t o r a c t i v i t y " - (2 8 . 151 - < 2 . 3>
(0 5) 00 1 6 9 1 7 » * G A B A r e c e p t o r a c t i v i t y " - [3 1 . 1] - < 2 . 2>
(0 6) 0 0 0 4 8 9 0»"G A B A -A r e c e p t o r a c t i v i t y " - (2 7 , 2 7] - < 0 . 1>
(0 5) 0 0 0 8 1 8 8 » * n e u r o p e p t id e r e c e p t o r a c t i v i t y * - (4 6 . 15] - < 9 . 3>
(0 3) 0 0 0 3 6 7 6 » * n u c l e i c a c i d b i n d in g " - [2 0 5 7 . 12] - < 3 , 1>
(0 4) 0 0 0 3 6 7 7 » * D N A b in d in g " - (1 4 9 4 . 7 3 0] - < 23. 1>
(0 5) 0 0 0 3 6 8 2 » * c h r o m a t i n b i n d in g " - [7 8 . 781 - < 1 . 1>
(0 5) 0 0 0 3 6 8 4 » * d a m a g e d DNA b in d in g * - [5 1 . 51] - < 0 . 1>
(0 5) 0 0 0 3 6 9 0 » " d o u b l e - s t r a n d e d DNA b in d in g " - [4 2 , 39] - < 2 . 1>
(0 5) 0 0 0 3 6 9 7 » * s i n g l e - s t r a n d e d DNA b in d in g " - (4 S . 4 2] - < 2 . 1>
{05} 0 0 0 3 7 0 0 » " t r a n s c r i p t i o n f a c t o r a c t i v i t y * - (6 9 4 , 6 8 0] - < 1 . 2>
(0 4) 0 0 0 3 7 2 3 » " R N A b in d in g * - (5 3 0 . 2671 - < 16 . 1>
(0 5) 0 0 0 3 7 2 5 » * d o u b l e - s t r a n d e d RNA b in d in g " - [2 3 . 2 3] - < 0 . 1>
(0 5) 0 0 0 3 7 2 9 » * a R N A b i n d in g * - (1 8 6 . 50] - < 6 . 1>
(0 6) 0 0 0 8 2 4 8 » " p re -m R N A s p l i c i n g f a c t o r a c t i v i t y " - (9 7 , 97] - < 3 . 1>
(0 5) 0 0 0 3 7 2 7 » * • s i n g l e - s t r a n d e d RNA b in d in g * * - [2 6 . 13] - < 3 . 1>
(0 5) 0 0 3 0 5 1 5 » * ‘ snoRNA b i n d in g * * • [2 2 . 22] - < 0 . 1>
(0 4) 0 0 0 8 1 3 5 » * ' t r a n s l a t i o n f a c t o r a c t i v i t y , n u c l e i c a . . . * * - [6 1 . 2 5] - < 5 . 2>
(0 5) 0 0 0 3 7 4 3 » * ' t r a n s l a t i o n i n i t i a t i o n f a c t o r a c t i v i t y * * - (3 0 . 3 0] - < 0 . 1>
(0 3) 0 0 0 0 1 6 6 » * 'n u c l e o t i d e b i n d in g * * • [2 0 3 . 12] - < 5 . 1>
{04} 0 0 1 7 0 7 6 » " p u r i n e n u c l e o t i d e b i n d in g " • (1 9 5 . 0] - < 2 . 1>
(0 5) 0 0 3 0 5 5 4 » " a d e n y l n u c l e o t i d e b i n d in g " - [1 2 5 , 0] - < 5 . 1>
(O o) 0 0 0 S 5 2 4 » "A * rP b in d in g " - [1 1 8 . 113] - < 0 . 1>
(0 5) 0 0 1 9 0 0 1 » * g u a n y l n u c l e o t i d e b i n d in g " [7 4 , 7] - < 3 . 1>
(0 6) 0 0 0 5 5 2 5 » * G 7 P b in d in g * - [6 3 . 63] - < 0 . 1>

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{02} 0 0 1 9 8 2 5 » " o x y g e n b i n d in g " - [2 o . 2 5] - < 1 . 1>
{02} 0 0 0 1 8 7 1 » " p a t t e r n b i n d i n g - - [7 2 . 0] - < 4 . 1>
{04} 0 0 3 0 2 4 7 » " p o l y s a c c h a r i d e b i n d in g " - [6 2 . 51 < 6 . 2>
{05} 0 0 0 5 5 3 9 > > " g ly c o s a a in o g ly c a n b i n d in g " - [5 4 . 5] • < 2 . 1>
{06} 0 0 0 8 2 0 1 » " h e p a r i n b i n d in g " - [2 6 . 36] - <0 , 1 >
{02} 0 0 4 2 2 7 7 » " p e p t i d e b i n d in g " - [2 4 2 . 4] - < 5 . 1>
{04} 0 0 4 2 9 2 3 > > " n e u ro p e p t id e b i n d in g " - [4 6 . 1] - < 2 . 2>
{05} 0 0 0 8 1 8 8 > > " n e u ro p e p t id e r e c e p t o r a c t i v i t y " {46 . 15] - < 9 . 3>
{04} 0 0 4 2 6 0 5 » " p e p t i d e a n t i g e n b i n d in g * - [2 6 . 2 i] <2. 2>
{04} 0 0 0 1 6 5 3 » * p e p t i d e r e c e p t o r a c t i v i t y " • [1 7 7 . 12] < 2 . 2>
{05} 0 0 0 8 5 2 8 > > " p e p t id e r e c e p t o r a c t i v i t y . C - p r o t e i n . . . " - [l o o . 3] - < 2 1 . 2>
{06} 0 0 0 1 6 3 7 > > " G - p r o te in c h e m o a t t r a c t a n t r e c e p t o r < s c . . . " • [4 1 . 01 - < 2 . 1>
{0 7) 0 0 0 4 9 5 0 » " c h e a o k i n e r e c e p t o r a c t i v i t y * [4 1 . 2 1] < 3 . 2>
{06} 0 0 0 8 1 8 8 » " n e u r o p e p t id e r e c e p t o r a c t i v i t y * • [4 6 . 15] - < 9 . 3>
{06} 0 0 0 4 9 8 5 » " o p i o i d r e c e p t o r a c t i v i t y ' - [2 6 . 2] < 4 . !>
{04} 0 0 0 5 0 4 8 > > " s ig n a l s e q u e n c e b i n d in g " - [2 8 . 10! - <7 . 1>
{03} 0 0 0 5 5 1 5 > > " p r o t e i n b i n d in g " - [4 0 3 5 . 2 9 3 1] - < 7 0 . 1>
{04} 0 0 0 5 5 1 6 » " c a lm o d u l i n b i n d in g " - [4 5 . 45] < 1 . 1 >
{04} 0 0 1 9 9 5 5 » " c y t o k i n e b i n d in g " - [9 4 . 1] * < 6 . 1>
{05} 0 Q 1 9 9 5 6 » " c h e m o k in e b i n d in g " - [4 1 , 0] - < 4 . 1>
(0 6) 0004 9 5 0 » " c h e m o k in e r e c e p t o r a c t i v i t y " 141. 21} - < 3 . 2>
{05} 0 0 1 9 9 6 5 » " i n t e r l e u k i n b i n d in g " - [3 4 . 1] - < 2 8 , 1>
{06} 0 0 0 4 9 0 7 » * i n t e r i e u k i n r e c e p t o r a c t i v i t y * • [3 2 . 7] - < 2 7 , 2>
{04} 0 0 0 8 0 9 2 » " e y t o s k e l e t a l p r o t e i n b i n d in g * - [2 7 6 . 19] < 12 . 1>
{05} 0 0 0 3 7 7 9 » " a c t i n b i n d in g " - [1 3 1 . 118] - < 2 . 1>
{05} 0 0 1 5 6 3 1 » " t u b u l i n b i n d in g " - [1 1 4 . 11] * <4. 1>
{06} 0 0 0 8 0 1 7 > > " m ic r o tu b u le b i n d in g " - [9 9 . 99] < 2 . 1>
{04} 0 0 1 9 8 9 9 » * e n z y m e b i n d in g " - [1 0 7 , 1 8] - < 1 4 . 1 >
{05} 0 0 1 9 9 0 0 » 'k i n a s e b i n d in g " - [7 9 . 5] - < 1 . 1>
{06} 0 0 1 9 9 0 1 » " p r o t e i n k i n a s e b i n d in g * - [7 4 . 4 0] - < 5 . 1>
{04} 0 0 1 9 8 3 8 » " g r o w t h f a c t o r b i n d in g " - [3 3 . 0] <lt>, 1>
{04} 0 0 0 8 0 3 4 » " l i p o p r o t e i n b i n d in g " - [2 3 . 5] - < 4 . 1>
{04} 0 0 0 8 0 2 2 » " p r o t e i n C - t e r m in u s b i n d in g " - [2 o , 2 6] • < 0 . 1>
{04} 0 0 4 6 9 8 3 » " p r o t e i n d i m e r i z a t i o n a c t i v i t y " - [1 0 6 . 3! - < 2 , 1>
{05} 0 0 4 6 9 8 2 » " p r o t e i n h e t e r o d i m e r i z a t i o n a c t i v i t y * [4 5 . 45] - < 0 . 1>
{05} 0 0 4 2 8 0 3 » " p r o t e i n h o m o d im e r i z a t io n a c t i v i t y " - [6 8 . 6 8] - < 0 . 2>
{04} 0 0 1 9 9 0 4 » " p r o t e i n d o m ain s p e c i f i c b i n d i n g ' - [7 7 . 2 3] - < 1 5 . 1>
{05} 0 0 1 7 1 2 4 » " S H 3 d o m ain b i n d in g " - [2 7 . 2 7] < 3 . l>
{04} 0 0 4 2 8 0 2 » " p r o t e i n s e l f b i n d in g " - [9 7 . 17] - < 2 . 1>
{05} 0 0 4 2 8 0 3 » " p r o t e i n h o m o d im e r i z a t io n a c t i v i t y " [0 8 . 6 8] - < 0 . 2>
{04} 0 0 0 0 1 4 9 » "S N A R E b i n d in g " - [2 6 . 10] - < 1 . 1>
{ 0 4] 0 0 0 8 1 3 4 » " t r a n s c r i p c i o n f a c t o r b i n d in g " * [4 1 2 . 63) < 6 , 1>
{05} 0 0 0 3 7 1 2 » " t r a n s c r i p t i o n c o f a c t o r a c t i v i t y ’ - (2 5 9 . 46] < 2 . 2>
{06} 0 0 0 3 7 1 3 » " t r a n s c r i p t i o n c o a c t i v a t o r a c t i v i t y * [1 8 0 . 172] - < 2 . 1>
{06} 0 0 0 3 7 1 4 » " t r a n s c r i p t i o n c o r e p r e s s o r a c t i v i t y " - [1 4 9 . 149] - < 0 . 1>
{04} 0 0 5 1 0 8 2 » " u n f o ld e d p r o t e i n b i n d in g " - [7 7 . 77] - < 0 . 1>
{03} 0 0 0 5 1 0 2 » " r e c e p t o r b i n d in g " - [5 9 1 . 1 4 7] - < 5 3 . 2>
{04} 0 0 0 5 1 2 5 » " c y t o k i n e a c t i v i t y " - [1 7 3 , 55] - < 2 7 . 1 >
{05} 0 0 0 8 0 0 9 » " c h e a o k i n e a c t i v i t y " - [5 4 , 54] - < 0 , 2>
{05} 0 0 0 5 1 2 6 » " h e m a t o p o i e t i n / i n t e r f e r o n - c l a s s ;D200 . . . " - (3 7 . 7] - < 2 5 , 1>
{04} 0 0 0 1 6 6 4 » “G - p r o t e i n - c o u p l e d r e c e p t o r b i n d i n g ' - [6 5 . 9] - < 5 , 1>
{05} 0 0 4 2 3 7 9 » " c h e r a o k in e r e c e p t o r b i n d in g " - [5 4 . 0] - < 3 . 1>
{06} 0 0 0 8 0 0 9 » " c h e a o k i n e a c t i v i t y " - [5 4 , 5 4] - <0 . 2>
{04} 0 0 0 8 0 8 3 » " g r o w t h f a c t o r a c t i v i t y " - [8 6 . 65] - < 1 6 . 1>
{04} 0 0 0 5 1 7 9 » " h o r m o n e a c t i v i t y " - [7 1 , 4 4] - < 1 3 . 1>
{05} 0 0 0 5 1 8 4 » " n e u r o p e p t i d e h o rm o n e a c t i v i t y " - [2 1 . 21] - < 5 . 1>
{04} 0 0 0 5 1 7 8 » " i n t e g r i n b i n d in g " - [4 5 . 45} - < 0 , 1>
{02} 0 0 0 3 8 2 4 » " c a t a l y t i c a c t i v i t y " - [5 0 0 5 . 47) - < 4 6 . 1>
{03} 0 0 0 9 9 7 5 » " c y c l a s e a c t i v i t y * - [3 2 . 0] - <6 . 1>
{04} 0 0 0 4 3 8 3 » " g u a n y l a t e c y c l a s e a c t i v i t y " - [2 3 . 2 3] < 0 . 2>
{03} 0 0 0 4 3 8 6 » “h e l i c a s e a c t i v i t y " - [9 1 . 13] - < 4 . l>
{04} 0 0 0 8 0 2 6 » " A T P -d e p e n d e n t h e l i c a s e a c t i v i t y * - [4 2 . 0] < 2 . 2>
{05} 0 0 0 4 0 0 3 » " A T P -d e p e n d e n t DNA h e l i c a s e a c t i v i t y - [2 8 . 2 1] - < 3 . 3>
{04} 0 0 0 3 6 7 8 » "D N A h e l i c a s e a c t i v i t y " - [5 4 , 2 7] - < 4 . 1>
{05} 0 0 0 4 0 0 3 » " A T P -d e p e n d e n t DNA h e l i c a s e a c t i v i t y ' [2 8 . 2 1] - < 3 . 3>
{04} 0 0 0 3 7 2 4 » "R N A h e l i c a s e a c t i v i t y * - [3 2 , 1 7] - < 1 , l>
{03} 0 0 1 6 7 8 7 » " h y d r o l a s e a c t i v i t y " - [1 7 8 6 . 9] - < 15 . 1>
{04} 0 0 1 6 8 1 7 » " h y d r o l a s e a c t i v i t y , a c t i n g on a c i d a n h . . . " - (4 0 0 . 0] - < 3 , 1>
{05} 0 0 1 6 8 2 0 » " h y d r o l a s e a c t i v i t y , a c t i n g o n a c i d a n h . . . " - [8 6 . 0] - < 1 , 1>
{06} 0 0 4 2 6 2 6 » " A T P a s e a c t i v i t y , c o u p le d t o t r a n s m e . . . " - [8 6 . 2 0] - < 3 5 . 2>
{07} 0 0 4 2 6 2 5 » " A T P a s e a c t i v i t y , c o u p le d t o t r a n s m e m . . . ' - [6 2 , I I - < 3 , 1>
{08} 0 0 1 5 6 6 2 » " A T P a s e a c t i v i t y , c o u p le d t o t r a n s m . . . " - [5 5 . 3] - < 1 3 . 3>
{05} 0 0 1 6 8 1 8 » " h y d r o l a s e a c t i v i t y , a c t i n g o n a c i d a . . . " (4 0 0 . 1] - < 3 3 . 1>
{06} 0 0 1 6 8 8 7 » 'A T P a s e a c t i v i t y " - [2 1 2 . 4 4] - < 2 . 1>
{07} 0 0 4 2 6 2 3 » " A T P a s e a c t i v i t y , c o u p le d " - [1 7 0 . 21] < 7 . l>
{08} 0 0 0 8 0 2 6 » " A T P -d e p e n d e n t h e l i c a s e a c t i v i t y " - [4 2 , 0] - < 2 . 2>
{09} 0 0 0 4 0 0 3 » " A T P -d e p e n d e n t DNA h e l i c a s e a c t i v i t y ' - [2 8 , 2 1) - < 3 , 3>
{08} 0 0 4 2 6 2 6 » " A 7 P a s e a c t i v i t y , c o u p le d t o t r a n s . . . " - [8 6 . 2 0] - < 3 5 . 2>
{09} 0 0 4 2 6 2 5 » " A T P a s e a c t i v i t y , c o u p le d t o t r a n s m . . . " - [6 2 , 1] - < 3 . 1>
{10} 0 0 1 5 6 6 2 » " A T P a s e a c t i v i t y , c o u p le d t o t r a n . . . " - [5 5 . 3] - < 1 3 , 3>
{08} 0 0 0 8 0 9 4 » * D N A -d e p e n d e n t A T P ase a c t i v i t y " • [4 7 . 19] - < 4 . 1>
{0 9) 0 0 0 4 0 0 3 » " A T P -d e p e n d e n t DNA h e l i c a s e a c t i v i t y ' - [2 8 . 2 1] - < 3 , 3>
{06} 0 0 0 3 9 2 4 » " G T P a s e a c t i v i t y " - [1 4 5 . 1 4 5] < 0 . 1>
{04} 0 0 1 6 8 1 0 » " h y d r o l a s e a c t i v i t y , a c t i n g o n c a r b o n - . . . " - [1 5 2 , 0] - < 1 2 , 1>
{05} 0 0 1 6 8 1 4 » " h y d r o l a s e a c t i v i t y , a c t i n g o n c a r b o n * n . . . " - [4 5 . 0} - < 3 . 1>
{06} 0 0 1 9 2 3 9 » " d e a m in a s e a c t i v i t y " - [3 5 , 0] - < 24 . 1>
{05} 0 0 1 6 8 1 1 » " h y d r o l a s e a c t i v i t y , a c t i n g o n c a r b o n - . . . " - [8 8 . 1] - < 7 7 , 1>
{06} 0 0 1 9 2 1 3 » 'd e a c e t y l a s e a c t i v i t y ’ - [5 9 . 0] - <1S . 1>
{07} 0 0 0 4 4 0 7 » " h i s t o n e d e a c e t y l a s e a c t i v i t y - [5 6 . 48] - < 2 . 1>
{04} 0 0 1 6 7 8 8 » " h y d r o l a s e a c t i v i t y , a c t i n g o n e s t e r b o n d s " [6 3 4 . 4] - < 9 . 1>
(OS) 0 0 1 6 7 8 9 » " c a r b o x y l i c e s t e r h y d r o l a s e a c t i v i t y ' - [1 1 6 . 3] - <6 8 . 1>
{06} 0 0 1 6 2 9 8 » " l i p a s e a c t i v i t y " - [8 8 , 5] - < 5 . 1>
{ 07) 0 0 0 4 6 2 0 » " p h o s p h o l i p a s e a c t i v i t y " - [7 3 . 1] - < 5 . 1>
{08} 0 0 0 4 6 2 3 » * p h o s p h o l i p a s e A2 a c t i v i t y - [2 2 . 9] - < 2 . 1>
{OS) 0 0 0 4 6 2 9 » " p h o s p h o l i p a s e C a c t i v i t y • [2 5 . 11] < 2 . 2>
{05} 0 0 0 4 5 1 8 » " n u c l e a s e a c t i v i t y * - [1 4 4 . 3] - < 4 . l>
{06} 0 0 0 4 S 3 6 » " d e o x y r ib o n u c le a s e a c t i v i t y * - (4 4 . 5] - < 3 . l>
{07} 0 0 0 4 5 2 0 » " e n d o d e o x y r i b o n u c le a s e a c t i v i t y * - [3 1 . 1 1] - < 10 . 2>
{06} 0 0 0 4 5 1 9 » * e n d o n u c le a s e a c t i v i t y " - [9 2 . 17] - < 4 . 1>
{07} 0 0 0 4 5 2 0 » * e n d o d e o x y r i b o n u c le a s e a c t i v i t y " - 131 . 11] - < 1 0 . 2>
{07} 0 0 1 6 8 9 3 » " e n d o n u c le a s e a c t i v i t y , a c t i v e w i t h e . . . * - [4 2 . 0] - < 2 . 1>
{08} 0 0 1 6 8 9 1 » " e n d o r i b o n u c le a s e a c t i v i t y , p r o d u c i n . . . " - [3 8 . 1] - < 5 . 2>
{07} 0 0 0 4 5 2 1 » * e n d o r i b o n u c le a s e a c t i v i t y " - [4 5 . 5] - < 2 . 2>
(0 8) 0 0 1 6 8 9 1 » " e n d o r i b o n u c le a s e a c t i v i t y , p r o d u c i n . . . " - [3 8 . 1] - < 5 . 2>
{06} 0 0 0 4 5 2 7 » * e x o n u c le a s e a c t i v i t y " - [4 4 . 7] < 8 . 1>
{07} 0 0 0 8 4 0 S » " 3 '- 5 * e x o n u c le a s e a c t i v i t y • [2 8 . 15] • < 3 . 1>
{06} 0 0 0 4 5 4 0 » " r i b o n u c l e a s e a c t i v i t y " - [7 0 , 1 1] - < 9 . 1>

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{07} 0 0 0 4 5 2 1 » " e n d o r i b o n u c le a s e a c t i v i t y " - [4 5 , 5] - < 2 . 2>
{03} 0 Q 1 6 8 9 1 » * e n d o r ib o n u c l e a c e a c t i v i t y , p r o d u c i n . . . " - [3 8 , 1] - < 5 , 2>
{05} 0 0 4 2 5 7 8 » " p h o s p h o r i c e s t e r h y d r o l a s e a c t i v i t y " - [3 6 2 . 1] - < 3 . 1>
{0 *5 } 0 0 0 8 0 8 1 » " p h o s p h o r i c d i e s t e r h y d r o l a s e a c t i v i t y " [S 5 . 0] - < 22 . 1>
{07} 0 O 4 7 3 9 4 » 'g ly c e r e p h o s p h © in o s ic © 2 i n o s i t o l p h c s p . . - * - [3 6 , 0} - < 1 . 1>
{ 08) 0 0 0 4 1 1 2 » " c y c l i c - n u c l e o t i d e p h o s p h o d i e s t e r a s e . . . " - [3 6 . 2) - < 3 . 1>
{09} 0 0 0 4 1 1 4 » " 3 ' . 5 * - c y c l i c - n u c l e o t i d e p h o s p h o d ie . . . " - [3 2 , 6] - < 6 . 1>
{07} 0 0 0 4 6 2 9 » * p h o s p h o l i p a s e C a c t i v i t y " - [2 5 . 11} - < 2 , 2>
{Do} 0 0 1 6 7 9 1 » " p h o s p h o r i c m o n o e s t e r h y d r o l a s e a c t i . . . " • [2 9 1 . 9] - < 6 2 . 1>
{07} 0 0 0 4 4 3 7 » * i n o s i t o l o r p h o s p h a t i d y l i n o s i t o l p h . . . " - [2 8 , 6 } - < 1 0 , 1>
{07} G 0 0 4 7 2 1 » " p h o s p h o p r o te i n p h o s p h a ta s e a c t i v i t y * - [1 9 5 . 2 2] - < 5 . 1>
{08} 0 0 0 4 7 2 2 » " p r o t e i n s e r i n e / t h r e o n i n e p h o s p h a t a . . . " • [5 7 . 22] - < 9 . 1>
{08} 0 0 0 4 7 2 5 » " p r o t e i n t y r o s i n e p h o s p h a ta s e a c t i v i t y " - [9 4 . 67] - < 6 . 1>
{08} 0 0 0 8 1 3 8 » " p r o t e i n t y r o s i n e / s e r i n e / t h r e o n i r . e . . . " - [2 3 . 18] - < 2 , 1>
{05} 0 0 1 o 7 9 0 » ' t h i o l e s t e r h y d r o l a s e a c t i v i t y " - [3 7 . 0] < 17 , 1 >
(0 4) 0 0 1 6 7 9 8 » " h y d r o l a s e a c t i v i t y , a c t i n g o n g l y c o s y l . . . " • [1 2 9 . 5] - < 3 , 1>
{05) 0 0 1 o 7 9 9 » “h y d r o l a s e a c t i v i t y , h y d r o l y s i n g N - g l y . . . " [2 9 . 0] - < 1 9 . 1>
[0 5 } 0019104>>"DN A N - g l y c o s y l a s e a c t i v i t y " - [3 0 . 6] • < 5 . 1>
{05} 0 0 0 4 5 5 3 > > " h y d r o la s e a c t i v i t y , h y d r o ly s i n g O - g l y . . . " - [8 5 . 0] - < 6 1 . i>
{04} 0 0 0 8 2 3 3 > > “p e p t i d a s e a c t i v i t y " - (4 6 7 , 3 0] - < 1 0 , 1>
{ 05) 0 0 0 S 2 3 4 » " c y s t e i n e - t y p e p e p t i d a s e a c t i v i t y " - [1 1 3 . 19] - < 6 . 2>
{06* 0 0 0 4 1 9 7 » ’ c y s t e i n e - t y p e e n d o p e p t i d a s e a c t i v i t y " - [7 1 . 2 4] - < 11 . 2>
{07} 0 0 3 0 6 9 3 » " c a s p a s e a c t i v i t y " - [2 0 , 2 0] - < 0 , 1>
{06} 0 0 0 4 8 4 3 » " u b i q u i t i n - c p e c i £ i c p r o t e a s e a c t i v i t y - (4 4 . 33] • < 1 . 1>
{05} 0 0 0 4 1 7 5 » " e n d o p e p t i d a s e a c t i v i t y " - [2 5 2 . 4 0] - < 8 . 1>
(C o) 0 0 0 4 1 9 7 » " c y s t e i n e - t y p e e n d o p e p t i d a s e a c t i v i t y " - [7 1 . 24] - < 1 1 , 2>
{07) 003 0 6 9 3 » " c a s p a s e a c t i v i t y " - [2 0 . 2 0] - < 0 , 1>
{ 0o) 0 0 0 4 2 2 2 > > " m e ta l lo e n d o p e p t id a s e a c t i v i t y * - (6 4 . 43} - < 28 . 2>
{06} 0 0 0 4 2 5 2 > > " s e r in e - ty p e e n d o p e p t i d a s e a c t i v i t y ' - [5 9 . 2 3] - < 45. 2>
{ 05) 0 0 0 8 2 3 8 » " e x o p e p t i d a s e a c t i v i t y " - (8 0 , 3] - < 7 . l>
{ 06) 0 0 0 4 1 7 7 » " a m i n o p e p t i d a s e a c t i v i t y ” - 128 , 18] - < 1 1 . 1>
{06} C 0 0 4 1 8 0 » " c a r b o x y p e p t id a s e a c t i v i t y * - [3 0 . 14] - < 5 . 1>
{06} 0 0 0 8 2 3 5 » " m e t a l l o e x o p e p t i d a s e a c t i v i t y " - (2 8 , 1] - < 11 , 2>
{05} 0 0 0 8 2 3 7 » " m e t a l l o p e p t i d a s e a c t i v i t y " - [1 4 0 , 4 7] - < 5 . 1>
{06} 0 0 0 4 2 2 2 » “a e t a l l o e n d o p e p t i d a s e a c t i v i t y " - [6 4 . 43] • < 28 . 2>
{06} 0 0 0 8 2 3 5 » " m e t a l l o e x o p e p t i d a s e a c t i v i t y " - [2 8 , 1] • < 11 . 2>
{05} 0 0 0 8 2 3 o » " s e r i n e - t y p e p e p t i d a s e a c t i v i t y " - [9 5 . 4 3] - < 5 . 1>
{0oJ 0 0 0 4 2 5 2 » " s e r i n e - t y p e e n d o p e p t i d a s e a c t i v i t y - (5 9 , 23] - < 45. 2>
{03} 0 0 1 6 8 S 3 » " i s o a e r a s e a c t i v i t y " - (1 1 1 , 0] - < 1 2 , 1>
{04} 0 0 1 6 S 6 0 » " i n t r a m o l e c u l a r o x i d o r e d u c t a s e a c t i v i t y - [4 6 , 3] - < 14 . 1>
{04} 0 0 1 6 8 6 o » " i n t r a a o l e c u l a r t r a n s f e r a s e a c t i v i t y " - [2 3 . 0] - < 2 3 . 1>
{03} 0 0 1 6 3 0 1 » " k in a s e a c t i v i t y " * [1 0 2 4 , 5 1] - < 5 5 . 1>
{04} 0 0 1 9 2 0 0 > > " c a rh o h y d r a te k i n a s e a c t i v i t y " - [4 3 . 0] * < 1 9 , 1>
{04} 0 0 0 4 4 2 8 » " i n o s i t o l o r p h o s p h a t i d y l i n o s i t o l k i n a s e . . . " - [4 6 . 8] - < 5 . 2>
(0 4) 0 0 0 1 7 2 7 » “ l i p i d k i n a s e a c t i v i t y " - [3 5 , 0] - < 5 . 1>
(0 4) 0 0 1 9 2 0 5 » ’ n u c le o b a s e , n u c l e o s i d e , n u c l e o t i d e k i n a . . . " - [4 5 , 0] - < 5 , 2>
{ 05) 0 0 1 9 2 0 6 » " n u c l e o s i d e k i n a s e a c t i v i t y " - [2 0 , 0] - < 4 . 1>
{05} 0 0 1 9 2 0 1 » " n u c l e o t i d e k i n a s e a c t i v i t y " - [2 0 . 2] - < 5 . 1>
{04} 0 0 0 4 o 7 2 » " p r o t e i n k i n a s e a c t i v i t y " - [7 8 1 . 2 3 2] - <6 . 2>
(0 5) 0 0 0 4 6 7 4 » " p r o t e i n s e r i n e / t h r e o n i n e k i n a s e a c . . . " - [4 7 0 . 2 1 3] - < 1 9 , 1>
{06} 0 0 0 4 6 8 3 » " c a l a o d u l i n r e g u l a t e d p r o t e i n k i n a s e a . . . " - (6 8 . 0] - < 7 . 1>
{07} 0 0 0 4 6 8 5 » " c a l c iu m - a n d c a lm o d u l i n - d e p e n d e n t p . . . " - [S 3 . 53] - < 0 , 1>
{07} 0 0 0 4 6 8 7 » “m y o s i n - l i g h t - c h a i n k i n a s e a c t i v i t y " - [3 9 . 39] - < 0 . 1>
{06} 0 0 0 4 6 8 0 » 'c a s e i n k i n a s e a c t i v i t y " - [2 6 , 1 0] - < 2 , 1>
{06} 0 0 0 4 6 9 3 » " c y c l i n - d e p e n d e n t p r o t e i n k i n a s e a c t i . . . " - [2 8 . 28] - < 0 , 1>
{06} 0 0 0 4 6 9 7 » " p r o t e i n k i n a s e C a c t i v i t y " - [2 2 . 16] - < 4 , 2>
{ 0 6) 0 0 0 4 7 0 2 » * r e c e p t o r s i g n a l i n g p r o t e i n s e r i n e / t h r . . . " - (6 9 . 4] - < 7 , 2>
{07} 0 0 1 6 9 0 9 » " S A P k i n a s e a c t i v i t y " - [2 0 , 0] - < 5 . 1>
{05} 0 0 0 4 7 1 3 > > " p r o t e i n - t y r o s i n e k i n a s e a c t i v i t y " - [1 3 4 . 53] • < 3 . l>
{06} 0 0 0 4 7 1 4 » " tr a n s m e m b ra n e r e c e p t o r p r o t e i n t y r o . . . " - [6 9 . 38] - < 1 1 , 2>
{05} 0 0 1 9 1 9 9 > > " t r a nsmemb r a n e r e c e p t o r p r o t e i n k i n a s e . . . " • [8 6 , 0] - < 3 . 2>
{06} 0 0 0 4 7 l 4 » 't r a n s m e m b r a n e r e c e p t o r p r o t e i n t y r o . . . " - [6 9 . 38] - < 1 1 , 2>
{03} 0 0 1 6 8 7 4 » " l i g a s e a c t i v i t y " - [2 3 4 , 2] - < 9 , 1>
{04} 0 0 1 6 8 7 9 » * l i g a s e a c t i v i t y , f o rm in g c a r b o n - n i t r o . . . " - [1 3 0 . 0] - < 2 1 . 1>
{05} 0 0 1 6 8 8 1 » " a c i d - D - a a i n o a c i d l i g a s e a c t i v i t y " - [9 1 . 1] - < 2 9 . 1>
{06} 0 0 0 4 8 4 2 » " u b i q u i t i n - p r o t e i n l i g a s e a c t i v i t y " - (7 0 . 7 0] < 0 . 1>
{04} 0 0 1 6 8 7 5 » ' l i g a s e a c t i v i t y , f o rm in g c a r b o n - o x y g e n . . . " - [4 3 , 0] - < 1 . 1>
{05} 0 0 1 6 8 7 6 » " l i g a s e a c t i v i t y , fo rm in g a a i n o a c y l - t R K . . . * - [4 3 . 0] - < 5 . 1>
{06} 0 0 0 4 8 1 2 » " tR N A l i g a s e a c t i v i t y * - [4 3 , 0] - < 2 1 . 2>
{04} 0 0 1 6 8 7 7 » " l i g a s e a c t i v i t y , f o rm in g c a r b o n - s u l f u r . . . " - (3 7 . 0] - < 3 . 1>
{05} 0 0 1 5 6 4 5 » " f a t t y - a c i d l i g a s e a c t i v i t y " - [2 2 , 5] - < 2 , 1>
{04} 0 C 1 6 8 8 6 » " l i g a s e a c t i v i t y , f o rm in g p h o s p h o r i c e s t . . . " - (5 1 . 0] - < 3 . 1>
[0 5) 0 0 0 8 4 5 2 » "R N A l i g a s e a c t i v i t y " - [4 4 , 0] - < 3 . 1>
{ 06) 0 0 0 4 8 1 2 » " tRNA l i g a s e a c t i v i t y " - [4 3 . 0] - < 2 1 . 2>
{03} 0 0 1 6 8 2 9 » " l y a s e a c t i v i t y " - [1 8 1 . 7] - < 1 3 , 1>
{04} 0 0 1 6 8 3 0 » " c a r b o n - c a r b o n l y a s e a c t i v i t y " - [4 8 , 0] - < 3 , 1>
{05} 0 0 1 6 8 3 1 » " c a r b o x y - l y a s e a c t i v i t y * - [3 1 , 3] - < 8 6 , 1>
{04} 0 0 1 6 8 3 5 » " c a r b o n - o x y g e n l y a s e a c t i v i t y " - [6 4 , 0] - < 8 . 1>
{05} 0 0 1 6 8 3 6 » " h y d r o - l y a s e a c t i v i t y " - [5 1 , 0] - < 1 0 7 , 1>
{04} 0 0 1 6 8 4 9 » * p h o s p h o r u s - o x y g e n l y a s e a c t i v i t y " - (3 5 . 3] - < 7 . 1>
{05} 0 0 0 4 3 8 3 » " g u a n y l a t e c y c l a s e a c t i v i t y " - [2 3 , 2 3] - < 0 , 2>
(0 3) 0 0 1 6 4 9 1 > > " o x id o re d u c ta s e a c t i v i t y " - [6 8 8 . 19] - < 7 1 , 1>
{04} 0 0 1 5 0 3 6 » 'd i s u l f i d e o x i d o r e d u c t a s e a c t i v i t y " - [2 0 . 0] - < 3 , 1>
{04} 0 0 1 S 0 0 2 » " h e m e - c o p p e r t e r m i n a l o x i d a s e a c t i v i t y " - [2 5 . 0] • < 2 . 1>
{05} 0 0 0 4 1 2 9 » " c y to c h r o m e - c o x i d a s e a c t i v i t y " - (2 5 . 251 - < 0 , 4>
{04} 0 0 0 4 4 9 7 » " m o n o o x y g e n a s e a c t i v i t y " - [7 1 , 2 5] - < 1 4 1 , 1>
{05} 0 0 0 8 3 9 5 » " s t e r o i d h y d r o x y la s e a c t i v i t y " - [2 4 , 8] - < 17 , l>
{04} 0 0 1 6 6 1 4 » * o x i d o r e d u c ta s e a c t i v i t y , a c t i n g o n C K . . ." - [1 2 3 . 1] - < 39 . 1>
{05} 0 0 1 6 6 1 6 » " o x i d o r e d u c t a s e a c t i v i t y , a c t i n g o n . . . " - [1 0 9 . 0] - < 2 4 2 . 1>
{04} 0 0 1 6 6 7 5 » " o x i d o r e d u c t a s e a c t i v i t y , a c t i n g o n h e m e . . . " - [2 5 . 0] - < 3 . 1>
{05} 0 0 1 6 6 7 6 » " o x i d o r e d u c t a s e a c t i v i t y , a c t i n g o n h e m . . . " - [2 5 . 0] - < 1 . 1>
{06} 0 0 0 4 1 2 9 » " c y to c h r o m e - c o x i d a s e a c t i v i t y " - (2 5 . 2 5] - < 0 . 4>
{04} 0 0 1 6 6 5 1 » * o x i d o r e d u c ta s e a c t i v i t y , a c t i n g o n N A D ..." - [6 6 . 2] - < 12 , 1>
{05} 000395 4 » "N A D H d e h y d r o g e n a s e a c t i v i t y " - [3 8 . 1] - < 1 . 2>
{06} 005013 o » "N A D H d e h y d r o g e n a s e (q u in o n e) a c t i v i t y * - (3 7 . 0] - < 1 , 1>
{07} 000S 1 3 7 » "N A D H d e h y d r o g e n a s e (u b iq u in o n e) a c t . . . " - (3 7 , 37] - < 0 . 5>
(0 5) 0 0 1 6 6 5 5 » " o x i d o r e d u c t a s e a c t i v i t y , a c t i n g o n N A D ..." - [3 9 . 1] - < 7 . 1>
(0 6) 0 0 0 8 1 37»*N A D H d e h y d r o g e n a s e (u b iq u in o n e) a c t i . . . " [3 7 . 37] - < 0 . 5>
{04} 0 0 1 6 7 0 5 » " o x i d o r e d u c t a s e a c t i v i t y , a c t i n g o n p a i . . . " - (7 4 . 0] - < 7 4 . 1>
{05} 0 0 1 6 7 0 9 » * o x i d o r e d u c ta s e a c t i v i t y , a c t i n g o n p . . . " - [2 1 . 0] - < 1 0 0 . 1>
{04} 0 0 1 6 6 8 4 » 'o x i d o r e d u c t a s e a c t i v i t y , a c t i n g o n p e r o . . . " - [5 5 . 3] - < 1 . 1>
{05} 0 0 0 4 o 0 1 » " p e r o x i d a c e a c t i v i t y " - [5 5 . 1 8] - < 16 . 2>
{06} 0 0 0 4 6 0 2 » " g l u t a t h i o n e p e r o x i d a s e a c t i v i t y " - [2 1 . 20] - < 1 , l>
{04} 0 0 1 6 6 6 7 » " o x i d o r e d u c t a s e a c t i v i t y , a c t i n g o n s u l . . . " - [3 3 . 1] - < 1 1 . 1>
{04} 0 0 1 6 9 0 3 » " o x i d o r e d u c t a s e a c t i v i t y , a c t i n g o n t h e . . . " - [6 5 . 0] - < 1 3 . 1>
{05} 0 0 1 6 6 2 0 > > " o x id o r e d u c ta s e a c t i v i t y , a c t i n g o n t h . . . " • [4 8 . 4] - < 6 1 . 1>
(0 6) 0 0 0 4 0 2 S > > " a ld e h y d e d e h y d r o g e n a s e a c t i v i t y " • [2 3 . 17] <2 , i>

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{04} 0 O 1 6 6 2 7 » " o x i d o r e d u c t a s e a c t i v i t y , a c t i n g or. t h e . . . * - 145 . 0] • < 29 . 1>
{04} G 0 1 o e 4 S » * o x i d o r e d u c t a s e a c t i v i t y , a c t i n g o n t h e . . . * - {28 . 0] - < 1 9 . 1>
{04} C C l© 6 3 8 > > * o x id o re d u c ta s e a c t i v i t y , a c t i n g o n t h e . . . ” - [2 o . 03 - < 1 3 . 1>
{03} 0 C 0 S o 3 °> > * sm a ll p r o t e i n c o n j u g a t i n g enzym e a c t i v i t y * - [4 8 . 13 - < 2 . 1>
(0 4) 0 C 0 4 S 4 0 > > * u b ig u i t in c o n j u g a t i n g en zy m e a c t i v i t y ’ - [4 3 . 43 J - < 0 . l>
{03} C 0 1 6 7 4 0 > > * t r a n s f e r a s e a c t i v i t y " - [1 9 1 1 . 4] - < 1 9 . 1>
{04} C C 1 6 7 4 6 » " t r a r . s f e r a s e a c t i v i t y , t r a n s f e r r i n g a c y . . • ’ - [1 7 6 . 03 * < 3 . 1>
{05} 0 0 1 6 7 4 7 > > ‘ t r a n s f e r a s e a c t i v i t y , t r a n s f e r r i n g g . . . * - [1 5 5 . 33 - < 2 9 , 1>
{Co} 0 0 0 8 4 1 5 > > ’ a c y l t r a n s f e r a s e a c t i v i t y * - [1 4 9 . 83 - < 15 . 1>
{07} 0 0 1 6 4 0 7 » * a c c t y l t r a n s f e r a s e a c t i v i t y " - [9 1 , 9] - < 6 . 1>
{08} 0 G C 3 Q S 0 > > * N - a c e ty l t r a n s f e r a s e a c t i v i t y " - [6 7 , 93 - < 2 7 . 2>
{09} 0 0 0 4 4 6 9 » " l y s i n e N - a c e t y l t r a n s £ e r a s e a c t i v i t y * - [3 2 . 03 • < 1 . 1>
{10} 0 0 0 4 4 0 2 » * h i s t o n e a c e t y l t r a n s f e r a s e a c t i v i t y * - 1 3 2 . 2 1] - < 4 . 1>
{07} 0 0 1 6 4 1 0 > > * N - a c y l t r a n c f e r a s e a c t i v i t y * - [7 3 . 33 - < 1 2 . 1>
{03} 0 0 0 8 0 8 0 » * N - a c e t y l t r a n s f e r a s e a c t i v i t y " - [6 7 , 93 - < 2 7 . 2>
{09} 0 0 0 4 4 6 8 » * l y s i n e N - a c e t y l t r a n s f e r a s e a c t i v i t y * - 1 3 2 , 03 • < 1 . 1>
{10} 0 0 0 4 4 0 2 » * h i s t o n e a c e t y l t r a n s f e r a s e a c t i v i t y " - [3 2 . 213 < 4. 1>
{07} 0 0 0 8 3 7 4 > > * 0 - a c y l t r a n s f e r a c e a c t i v i t y * - [3 6 , 13 - < 3 2 . 1>
{04) 0 0 1 6 7 o 5 > > * t r a n s f e r a s e a c t i v i t y , t r a n s f e r r i n g a l k . . . * - [8 8 . 13 - < 4 6 , 1*
{05} 0 0 0 4 3 6 4 > > * g lu ta th io n e t r a n s f e r a s e a c t i v i t y * - [3 6 , 363 - < 0 . 1>
(05} 0 0 0 4 6 5 9 » " p r e n y l t r a n s f e r a s e a c t i v i t y * - [2 7 , 33 - < 9 , 1>
{04} 0 0 1 6 7 5 7 > > " t r a n s f e r a s e a c t i v i t y , t r a n s f e r r i n g g l y . . . " - [2 8 7 , 33 - < 7 , 1>
{051 0 0 0 S 3 7 3 > > ‘ s i a l y l t r a n s f e r a s e a c t i v i t y " - [3 6 , 15] - < 11 . 1>
{05} 0 0 1 6 7 5 8 > > " t r a n s f e r a s e a c t i v i t y , t r a n s f e r r i n g h . . . " - [2 2 0 . 23 • < 3 9 . 1>
{06} 0 0 0 8 3 7 6 > > " a c e t y l g a l a c t o s a m i n y l t r a n s f e r a s e a c t i v i t y * - [3 7 , 3] * < 9 , 1>
{ 07) 0 0 0 4 6 5 3 > > " p o ly p e p t id e N - a c e t y l g a l a c t o s a m i n y l t . . . * - [2 7 . 27} - < 0 . 1>
{06} 0 0 0 S 3 7 5 > > “a c e t y l g l u c o s a m i n y l t r a n s f e r a s e a c t i v i t y * - [2 6 . 123 - < 2 9 . 1>
{06} 0 0 0 8 4 1 7 > > " f u c o s y l t r a n s £ e r a s e a c t i v i t y " - [2 2 , 153 - < 5 . 1>
{06) 0 0 0 3 3 7 S > > " g a l a c t o s y l t r a n s f e r a s e a c t i v i t y " - [4 1 , 123 - < 3 3 , 1>
{06} 0 0 0 0 0 3 0 » ’ m a n n o s y l t r a n s f e r a s e a c t i v i t y ’ - [3 9 . 93 - < 1 4 . 1>
{05} 0 0 1 6 7 6 3 > > ’ t r a n s f e r a s e a c t i v i t y , t r a n s f e r r i n g p e . . . * - [3 0 . 23 - < 3 8 . !>
(0 4) 0 0 1 6 7 o 9 > > * t r a n s f e r a s e a c t i v i t y , t r a n s f e r r i n g n i t r . . . * - [2 4 . 0] - < 4 . 1>
{05} 0 0 0 8 4 8 3 > > * t ra n s a m in a s e a c t i v i t y " - [2 3 , 23 - <72. 1>
{04} 0 0 1 6 7 4 i > > - c r a n s f e r a s e a c t i v i t y , t r a n s f e r r i n g o n e . . . " - [1 4 1 . 0] - < 3 . 1>
{05} 0 0 0 8 1 6 8 > > * m e t h y l t r a n s f e r a s e a c t i v i t y " - [1 3 5 , 133 - < 20 , 1>
{06} 0 0 0 8 1 7 0 » " N - m e t h y l t r a n s f e r a s e a c t i v i t y " - [4 7 . 33 - < 1 6 , 1>
(0 7) 0 0 1 6 2 7 8 » * l y s i n e N - m e t h y l t r a n s f e r a s e a c t i v i t y " - [2 8 . 03 - < 1 . 2>
{08} 0 0 1 6 2 7 9 » * p r o t e i n - l y s i n e N - m e t h y l t r a n s f e r a s e . . . * - [2 8 . I I - < 3 , 2>
{09} 0 0 1 8 0 2 4 » * h i s t o n e - l y s i n e N - m e t h y l t r a n s f e r a s e — " - [2 6 , 43 - < 5 , 2>
{ 0 o } C 0 0 8 2 7 o » " p r o t e i n m e t h y l t r a n s f e r a s e a c t i v i t y " - [6 0 , 133 - < 6 . 1>
{07} 0 0 4 2 0 5 4 » ’ h i s t o n e m e t h y l t r a n s f e r a s e a c t i v i t y " - [3 8 . 133 - < 1 . 1>
{08} 0 0 1 8 0 2 4 > > * h i s t o n e - l y s in e N - m e t h y l t r a n s f e r a s e . . . " - [2 6 . 43 • < 5 . 2>
{07} 0 0 1 6 2 7 9 > > * p r o te i n - l y s in e N - m e t h y l t r a n s f e r a s e a . . . * - [2 8 . 1] - < 3 . 2>
{08) 0 0 1 8 0 2 4 » * h i s t o n e - l y s i n e N - m e t h y l t r a n s f e r a s e . . . " - [2 6 . 4] - < 5 . 2>
{06} 0 0 0 8 1 7 3 » " R N A m e t h y l t r a n s f e r a s e a c t i v i t y " - [2 1 . 1] - < 3 , 1>
{06} Q 0 0 S 7 5 7 > > * S -a d e n o s y lm e th io n in e - d e p e n d e n t m e t h . . . ’ - [7 9 . 2 J - < 1 1 1 , 1>
{07} 0 0 1 6 2 7 8 » * l y s i n e N - m e t h y l t r a n s f e r a s e a c t i v i t y * - [2 8 , 0] - < 1 . 2>
{08} 0 0 1 6 2 7 9 » * p r o t e i n - l y s i n e N - m e t h y l t r a n s f e r a s e . . . " - [2 3 . 13 - < 3 . 2>
{09} 0 0 1 8 0 2 4 » " h i s t o n e - l y s i n e N - m e t h y l t r a n s f e r a s e . . . ’ - [2 6 . 4} < 5 . 2>
{04} 0 0 1 6 7 7 2 » * t r a n s f e r a s e a c t i v i t y , t r a n s f e r r i n g p . . . * - [1 1 1 5 . 23 - < 1 1 . 1>
{05} 0 0 1 9 2 0 5 > > " n u c le o b a s e , n u c l e o s i d e , n u c l e o t i d e k i n . . . ’ - [4 5 , 03 - < 5 . 2>
{06} 0 0 1 9 2 0 6 » " n u c l e o s i d e k i n a s e a c t i v i t y " - [2 0 . 01 - < 4 , 1>
{06} 0 0 1 9 2 0 1 » " n u c l e o t i d e k i n a s e a c t i v i t y " - [2 0 . 2} - < 5 . 1>
[0 5) 0 0 1 6 7 7 9 » ’ n u c l e o t i d y l t r a n s f e r a s e a c t i v i t y " - [1 1 4 , 1] - < 5 8 , 1>
{06} 0 0 0 3 8 8 7 » " D N A - d i r e c te d DNA p o ly m e r a s e a c t i v i t y * - (3 4 , 113 - < 1 6 , 1>
{06} 0 0 0 3 8 9 9 » * D N A - d i r e c te d RNA p o ly m e r a s e a c t i v i t y " - (3 1 , 283 - < 1 . 1>
{05} 0 0 1 6 7 7 3 » * p h o s p h o t r a n s f e r a s e a c t i v i t y , a l c o h o . . . " - [9 2 4 . 01 - < 1 1 7 , l>
{06} 0 0 0 4 4 2 8 » * i n o s i t o l o r p h o s p h a t i d y l i n o s i t o l k i n a — * - [4 6 . 83 - < 5 . 2>
{06} 0 0 0 4 6 7 2 > > " p r o te in k i n a s e a c t i v i t y * - [7 8 1 , 232J - < 6 , 2>
{07} 0 0 0 4 6 7 4 > > * p r o te in s e r i n e / t h r e o n i n e k i n a s e . . . " - (4 7 0 . 2131 - < 1 9 , 1>
{08} 0 0 0 4 6 8 3 » * c a l a o d u l i n r e g u l a t e d p r o t e i n k i n a s e . . . " - [6 8 . 01 - < 7 . i>
{09} 0 0 0 4 6 8 5 » * c a l e i u m - a n d c a l m o d u l i n - d e p e n d e n t . . . * - [5 3 , 533 - < 0 . 1>
{09} 0 0 0 4 6 8 7 > > * m y o s i n - l i g h t - c h a in k i n a s e a c t i v i t y * - [3 9 . 39] • < 0 . 1>
{08} 0 0 0 4 6 8 0 » * c a s e i n k i n a s e a c t i v i t y " - [2 6 , 103 - < 2 . 1>
(OS) 0 0 0 4 6 9 3 » * c y c l i n - d e p e n d e n t p r o t e i n k i n a s e a c . . . * - [2 8 . 2 8] < 0 . 1>
{08} 0 0 0 4 6 9 7 » ‘ p r o t e i n k i n a s e C a c t i v i t y " - [2 2 . 16} - < 4 . 2>
{08) 0 0 0 4 7 0 2 » * r e c e p t o r s i g n a l i n g p r o t e i n s e r i n e / t . . . " - [6 9 , 43 - < 7 . 2>
(0 ?) 0 0 1 6 9 0 9 » * S A P k i n a s e a c t i v i t y " - [2 0 . 03 - < 5 . 1>
{07} 0 Q 0 4 7 1 3 » * p r o t e i n - t y r o s i n e k i n a s e a c t i v i t y * - [1 3 4 , 5 3] - < 3 , 1>
{08} 0 0 0 4 7 1 4 » * t r a n s m e m b r a n e r e c e p t o r p r o t e i n t y — * - [6 9 . 38J - < 1 1 . 2>
{07} 0 0 1 9 1 9 9 > > * tra n s m e m b ra n e r e c e p t o r p r o t e i n k i n a s . . . " - [8 6 , 01 - < 3 . 2>
{08} 0 0 0 4 7 1 4 » " t r a n s m e m b r a n e r e c e p t o r p r o t e i n t y . . . * - [6 9 . 383 - < 1 1 . 2>
{05} 0 0 1 6 7 7 6 » " p h o s p h o t r a n s f e r a s e a c t i v i t y , p h o s p h a t . . . " - [2 5 . 0] - < 2 0 . 1>
{04} 0 0 1 o 7 3 2 » * t r a n s f e r a s e a c t i v i t y , t r a n s f e r r i n g s u l f . . . " - [6 9 . 0] - < 4 . 1>
{05} 0 0 0 8 1 4 6 > > " s u l£ o t r a n s f e r a s e a c t i v i t y * - [6 6 , 33] - < 3 7 , 1>
{02} 0 0 3 C 2 3 4 > > "en zy m e r e g u l a t o r a c t i v i t y " - [6 2 5 . 1 4] - < 14, 1>
{03} 0 0 0 8 0 4 7 > > * en zy m e a c t i v a t o r a c t i v i t y " - [1 9 5 . 4 2] - < 1 7 . l>
{04} 0 0 0 S 0 9 6 » " C T P a s e a c t i v a t o r a c t i v i t y " - [1 0 0 , 46] - < 9 . 2>
{05} 0 0 0 5 1 0 0 » * R h o G T P ase a c t i v a t o r a c t i v i t y * - [2 6 , 2 6] - < 0 , 2>
{03} C 0 04857> > ‘ e n zy m e i n h i b i t o r a c t i v i t y " - [2 1 4 , 2 8] - < 1 7 . 1>
{04} 0 0 1 9 2 1 0 > > * k in a s e i n h i b i t o r a c t i v i t y " - [4 9 . 3] - < 1 . 2>
(0 5) 0 0 0 4 8 6 0 > > " p r o te in k i n a s e i n h i b i t o r a c t i v i t y " - [4 6 . 14] - < 6 , 2>
(0 6) 0 0 0 4 8 6 1 » " c y c l i n - d e p e n d e n t p r o t e i n k i n a s e i n h i . . . " - [2 8 . 283 - < 0 . 1>
{04} 0 0 3 0 4 1 4 > > " p r o te a s e i n h i b i t o r a c t i v i t y ’ - [9 2 . 11 - < 3 . 1>
{05} 0 0 0 4 8 6 6 > > * e n d o p e p t id a s e i n h i b i t o r a c t i v i t y " - [9 1 . 321 - < 5 . 1>
{06} 0 0 0 4 8 6 7 » * s e r i n e - t y p e e n d o p e p t i d a s e i n h i b i t o r . . . * - [4 5 , 41J - < 3 . 1>
{03} 00 2 0 6 9 5 > > * G T P ase r e g u l a t o r a c t i v i t y * - [2 3 4 . 0] - < 3 . 1>
{04} 0 0 0 5 0 9 6 > > * C T P ase a c t i v a t o r a c t i v i t y ’ - [1 0 0 , 46] - < 9 . 2>
{05} 000 5 1 0 0 > > * R h o G T P ase a c t i v a t o r a c t i v i t y * - (2 6 , 2 6] - < 0 , 2>
{04} 0 0 0 5 0 S 3 » * s m a l l G T P ase r e g u l a t o r y / i n t e r a c t i n g . . . * - [1 8 7 . 133 - < 1 8 , 1>
{05} 0 0 0 S 0 8 5 » " g u a n y l - n u c l e o t i d e e x c h a n g e f a c t o r a c . . . * - [8 8 . 4 3] * < 1 0 . 1>
{06} 0 0 0 5 0 8 9 > > "R h o g u a n y l - n u c l e o t i d e e x c h a n g e f a c t o . . . " - [2 4 , 2 4] - < 0 . 1>
{05} 0 0 0 5 1 0 0 » * R h o G T P ase a c t i v a t o r a c t i v i t y " - [2 6 , 2 6] - < 0 . 2>
{03} 0 0 1 9 2 0 7 > > * k in a s e r e g u l a t o r a c t i v i t y * - [1 1 0 . 2] - < 4 , 1>
{04} 0 0 1 9 2 1 0 > > " k in a s e i n h i b i t o r a c t i v i t y " - [4 9 . 3] - < 1 , 2>
{05} 0 0 0 4 8 6 0 » * p r o t e i n k i n a s e i n h i b i t o r a c t i v i t y " - [4 6 . 14] - < 6 . 2>
{06} 0 0 0 4 8 6 1 » " c y c l i n - d e p e n d e n t p r o t e i n k i n a s e i n h i . . . " - [2 8 . 28J - < 0 . 1>
{04} 0 0 1 9 8 8 7 > > 'p r o te in k i n a s e r e g u l a t o r a c t i v i t y " - [1 0 1 , 2] - < 9 . 1>
{05} 0 0 1 6 5 3 3 » * c y c l i n - d e p e n d e n t p r o t e i n k i n a s e r e g u l . . . " - [2 1 , 2 1] - < 0 . 1>
{05} 0 0 0 4 8 6 0 > > * p r o te in k i n a s e i n h i b i t o r a c t i v i t y " - [4 6 , 14] - < 6 . 2>
{06} 0 0 0 4 3 6 1 > > " c y c l in - d e p e n d e n t p r o t e i n k i n a s e i n h i . . . * - [2 8 . 283 - < 0 . 1>
{03} 0 0 1 9 2 0 8 > > “p h o s p h a t a s e r e g u l a t o r a c t i v i t y * - [4 7 . 11 - < 1 , 1>
{04} 0 0 1 9 8 8 8 > > " p r o te in p h o s p h a t a s e r e g u l a t o r a c t i v i t y * - [4 6 . 11 - < 9 . 1>
{02} 0 0 0 3 7 7 4 » * n o t o r a c t i v i t y * - [6 0 . 31] - < 2 , 1>
{03} 0 0 0 3 7 7 7 > > * m ic r o tu b u le m o to r a c t i v i t y " - [2 4 , 2 4] - < 2 . 1>
{02} 0 0 0 4 8 7 1 > > " s ig n a l t r a n s d u c e r a c t i v i t y " - [2 1 9 5 . 2191 - < 1 0 . 1>
{03} 0 0 0 4 8 7 2 > > * r e c e p t o r a c t i v i t y ’ - [1 2 6 2 . 2081 - < 2 4 . 1>

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{04} 0 0 0 4 S 7 9 > > * l ig a n d - d e p e n d e n t n u c l e a r r e c e p t o r a c t i . . . " - [6 8 . 3 9) - < 5 . 1>
{05} 0 0 0 1 7 0 7 > > * s t e r o i d h o rm o n e r e c e p t o r a c t i v i t y " - [2 0 . 13] - < 5 , 1>
{04} 0 0 3 0 5 9 4 » * n e u r o t r a n s a i c t e r r e c e p t o r a c t i v i t y " - [1 1 2 . 2) - < 4 . 2>
{05} 0 0 1 5 4 6 4 > > * a c e ty l c h o l in e r e c e p t o r a c t i v i t y - [2 8 , 1 5] - < 2 . 3>
{05} 0016917>>"GABA r e c e p t o r a c t i v i t y * - [3 1 , 1] - < 2 . 2>
{06} 0004890>>*GABA-A r e c e p t o r a c t i v i t y " - [2 7 , 2 7] - < 0 , 1>
{05} 0 0 0 8 1 8 8 > > " n e u ro p e p t id e r e c e p t o r a c t i v i t y " - [4 6 . 1 5] - < 9 . 3>
{04} 0 0 0 8 3 2 9 > > ‘ p a t t e r n r e c o g n i t i o n r e c e p t o r a c t i v i t y ’ - [2 1 . 11) - < 4 . 1>
{04} 0 0 0 1 6 5 3 > > " p e p t id e r e c e p t o r a c t i v i t y " - [1 7 7 , 1 2] - < 2 , 2>
{05} 0 0 0 8 5 2 8 > > * p e p t i d e r e c e p t o r a c t i v i t y . G - p r o t e i n . . . * - [1 6 6 . 3] - < 2 1 . 2>
{06} C 0 0 l6 3 7 > > - G - p r o t e i n c h e n o a t t r a c t a n t r e c e p t o r a c . . . " - [4 1 . 0) - < 2 . 1>
{07} 0 0 0 4 9 5 0 » " c h e m o k in e r e c e p t o r a c t i v i t y " - [4 1 . 2 1] - < 3 . 2>
{06} 0 0 0 3 1 8 8 > > * n e u r o p e p t id e r e c e p t o r a c t i v i t y " - [4 6 . 1 5] - < 9 , 3>
{06} 0 0 0 4 9 8 5 > > " o p io id r e c e p t o r a c t i v i t y " - [2 6 , 3] - < 4 , 1>
{04} 0 0 0 1 5 6 5 > > " p h o rb o l e s t e r r e c e p t o r a c t i v i t y " - [2 2 , 0] - < 2 , 1>
{05} 0 0 0 4 6 9 7 > > " p r o te in k i n a s e C a c t i v i t y " - [2 2 . 16] - < 4 , 2>
{04} 0 0 0 4 8 8 8 > > * tra n s m e m b ra n e r e c e p t o r a c t i v i t y ’ - [9 4 5 . 7 6] - < 3 4 . 1>
{05} 0 0 1 5 4 6 4 > > ’ a c e t y l c h o l i n e r e c e p t o r a c t i v i t y * - [2 8 . 1 5] - < 2 . 3>
{05} 0 0 0 4 9 3 0 > > " G - p r o te in c o u p le d r e c e p t o r a c t i v i t y " - [4 8 1 , 112] - < 8 . 1>
{06} 0 0 0 l 5 8 4 > > " r h o d o p s i n - l i k e r e c e p t o r a c t i v i t y " - [3 4 6 , 0] - < 1 8 , 1>
{07} 0 0 0 8 2 2 7 > > " a m in e r e c e p t o r a c t i v i t y " - [6 8 , 0] - < 9 . 1>
{08} 0 C 0 4 9 3 5 > > " a d re n o c e p to r a c t i v i t y " - [2 0 . 0] - < 2 , 1>
{07} 0 0 0 8 5 2 8 > > * p e p tid e r e c e p t o r a c t i v i t y , G - p r o t e . . . " - [1 6 6 , 3] - < 2 1 . 2>
{08} 0 0 0 1 o 3 7 > > * G -p r o te in c h e m o a t t r a c t a n t r e c e p t o r . . . " - [4 1 . 0] - < 2 . 1>
{09} 0 0 0 4 9 5 0 > > "c h e m o k in e r e c e p t o r a c t i v i t y * - [4 1 , 21] - < 3 , 2>
{03} C 0 0 8 1 8 3 > > ’ n e u r o p e p t id e r e c e p t o r a c t i v i t y " - [4 6 , 15] - < 9 , 3>
{08} 0 0 0 4 9 3 5 > > * o p io id r e c e p t o r a c t i v i t y * - [2 6 , 3] - < 4 , 1>
{07} 0 0 0 5 5 2 7 > > ‘ t a s t e r e c e p t o r a c t i v i t y " - (2 7 , 2 7] - < 0 , 1>
{06} 0 0 0 1 6 3 3 > > 's e c r e t i n - l i k e r e c e p t o r a c t i v i t y " - [2 3 , 0] - < 1 2 , 1>
{05} 0016917>>*GABA r e c e p t o r a c t i v i t y " - [3 1 , 1] - < 2 , 2>
{06} 0 0 0 4 8 9 0 > > “GABA-A r e c e p t o r a c t i v i t y " - (2 7 , 2 7] - < 0 , 1>
{05} 0 0 0 8 0 6 6 > > " g lu ta m a te r e c e p t o r a c t i v i t y ' - [5 3 , 9} - < 2 , 1>
{06} 0 0 0 4 9 7 0 > > " io n o t r o p ic g l u t a m a t e r e c e p t o r a c t i v i t y " - [3 2 . 4] - < 3 . 1>
{05} 0 0 0 4 S 9 6 > > " h e m a t o p o i e t i n / i n t e r f e r o n - c l a s s (D 2 0 0 - . . . " - [5 8 , 1] - < 1 0 , 1>
{06} 0 0 0 4 9 0 7 > > * i n te r le u k i n r e c e p t o r a c t i v i t y " - [3 2 . 7] - < 2 7 , 2>
{05} 0045012>>"K H C c l a s s I I r e c e p t o r a c t i v i t y " - [4 3 , 4 3] - < 0 . 1>
{05} 0 0 1 9 1 9 9 > > " tra n s m e m b ra n e r e c e p t o r p r o t e i n k i n a s e . . . " - [8 6 . 0] - < 3 , 2>
{06} 0 0 0 4 7 1 4 > > " tra n s m e m b ra n e r e c e p t o r p r o t e i n t y r o . . . " - [6 9 . 38] - < 1 1 , 2>
{03} 0 0 0 5 1 0 2 > > * r e c e p to r b i n d in g " - [5 9 1 , 1 4 7] - < 5 3 , 2>
{04} 0 0 0 5 1 2 5 > > * c y to k in e a c t i v i t y * - [1 7 3 , 55) - < 2 7 , 1>
{05} 0 0 0 8 0 0 9 > > " c h e tn o k in e a c t i v i t y " - (5 4 , 5 4] - < 0 , 2>
{05} 0 0 0 5 1 2 6 > > * h e m a t o p o i e t i n / i n t e r f e r o n - c l a s s I D 2 0 0 - . . . " - [3 7 , 7] - < 2 5 . 1>
{04} 0 0 0 1 6 6 4 » * C - p r o t e i n - c o u p l e d r e c e p t o r b i n d in g " - [6 5 , 9] - < 5 , 1>
{05} 0 0 4 2 3 7 9 > > “ c h e m o k in e r e c e p t o r b i n d in g " - [5 4 , 0] - < 3 , 1>
{06} 0 0 0 8 0 0 9 > > " c h e m o k in e a c t i v i t y ' - [5 4 , 54] - < 0 . 2>
{04} 0 0 0 8 0 8 3 > > * g ro w th f a c t o r a c t i v i t y " - [8 6 , 65] - < 1 6 , 1>
{04} 0 0 0 5 1 7 9 » * h o n r o n e a c t i v i t y ’ - [7 1 , 4 4] - < 1 3 . 1>
{05} 0 0 0 5 1 8 4 > > " n e u r o p e p t id e ho rm o n e a c t i v i t y " - [2 1 . 2 1) - < 5 , 1>
(0 4) 0 0 0 5 1 7 8 > > “ i n t e g r i n b i n d i n g ’ - [4 5 , 4 5] - < 0 , 1>
{03} 0 0 0 5 0 5 7 > > " r e c e p to r s i g n a l i n g p r o t e i n a c t i v i t y " - [2 3 7 , 4 4] - < 1 5 . 1>
{04} 0 0 0 4 7 0 2 > > " r e c e p to r s i g n a l i n g p r o t e i n s e r i n e / t h r e o . . . " - [6 9 , 4] - < 7 , 2>
{05} 0016909> > "SA P k i n a s e a c t i v i t y " - [2 0 . 0] - < 5 , 1>
{04} 0 0 0 5 0 6 6 > > * t ra n s memb r a n e r e c e p t o r p r o t e i n t y r o s i n e . . . " - [7 3 , 9] - < 2 . 1>
{05} 0 0 0 5 0 6 9 » " t r a n s m e m b r a n e r e c e p t o r p r o t e i n t y r o s i n . . . " - [6 0 , 5] - < 1 , 1>
{06} 0 0 0 5 070> > "S H 3/S H 2 a d a p to r p r o t e i n a c t i v i t y " - [5 5 , 55] - < 0 , 1>
{02} 0 0 0 5 1 9 8 > > " s t r u c t u r a l m o le c u le a c t i v i t y * - [4 3 5 , 1 1 2] - < 1 6 , 1>
{03} 0 0 0 5 2 0 1 > > * e x t r a c e l l u l a r m a t r i x s t r u c t u r a l c o n s t i t . . . " - [4 2 , 4 0] - < 4 , 1>
{03} 0 0 0 5 2 0 0 > > * s t r u e tu r a l c o n s t i t u e n t o f c y t o s k e l e t o n " - [1 1 0 , 110] - < 0 , 1>
{03} 0 0 0 8 3 0 7 > > ‘ s c r u c t u r a l c o n s t i t u e n t o f m u s c le " - (3 7 , 3 7] - < 0 . 1>
{03} 0 0 0 3 7 3 5 > > * s t r u c tu r a l c o n s t i t u e n t o f r ib o s o m e " - [1 0 7 , 1 0 7] - < 0 , 1>
{02} 0 0 3 0 5 2 8 > > * t r a n s c r i p t i o n r e g u l a t o r a c t i v i t y * - [1 5 4 6 , 3 5] - < 14 , 1>
{03} 0 0 0 3 7 0 2 » * R N A p o ly m e r a s e I I t r a n s c r i p t i o n f a c t o . . . " - [3 6 1 , 1 9 7) - < 4 , 1>
{04} 0 0 1 6 2 5 1 > > " g e n e ra l RNA p o ly m e r a s e I I t r a n s c r i p t i o . . . " - [5 8 , 2 8] - < 1 , 1>
{05} 0016455>>"RN A p o ly m e r a s e I I t r a n s c r i p t i o n m e d i a . . . " - [3 0 , 3 0] - < 0 , 1>
{04} 0 0 0 3 7 0 4 » * s p e c i f i c RNA p o ly m e r a s e I I t r a n s c r i p t ! . . . " - [9 3 , 8 5] - < 1 , 1>
{03} 0 0 0 3 7 1 2 > > * t r a n s c r i p t i o n c o f a c t o r a c t i v i t y " - [3 5 9 , 4 6) - < 2 . 2>
{04} 0 0 0 3 7 1 3 » " t r a n s c r i p t i o n c o a c t i v a t o r a c t i v i t y " - (1 8 0 , 1 7 2] - < 2 , 1>
{04} 0 0 0 3 7 1 4 » * t r a n s c r i p t i o n c o r e p r e s s o r a c t i v i t y * - [1 4 9 . 1493 - < 0 , 1>
{03} 0 0 0 3 7 0 0 > > * t r a n s c r i p t i o n f a c t o r a c t i v i t y * - [6 9 4 , 6 8 0] - < 1 , 2>
{03} 0 0 1 6 5 6 3 » * t r a n s c r i p t i o n a l a c t i v a t o r a c t i v i t y * - [1 5 0 , 1 4 2] - < 1 , 1>
{03} 0 0 0 3 7 l l » * t r a n s c r i p t i o n a l e l o n g a t i o n r e g u l a t o r a c t . . . " - [3 3 . 8) - < 5 , 1>
{04} 0 0 1 6 9 4 4 > > * P o l I I t r a n s c r i p t i o n e l o n g a t i o n f a c t o r . . . " - [2 0 . 2 0] - < 0 . 1>
{03} 0 0 1 6 5 6 4 » " t r a n s c r i p t i o n a l r e p r e s s o r a c t i v i t y " - [1 5 4 , 1 2 1] - < 2 . 1>
{04} 0 0 1 o 5 6 6 » " s p e c i f i c t r a n s c r i p t i o n a l r e p r e s s o r a c t . . . " - [3 3 , 3 3] - < 0 . 1>
{02} 0 0 4 5 1 8 2 > > " t r a n s l a t i o n r e g u l a t o r a c t i v i t y " - [7 3 , 10] - < 3 , 1>
{03} 0 0 0 8 1 3 5 » * t r a n s l a t i o n f a c t o r a c t i v i t y , n u c l e i c a c . . . " - [6 1 , 2 5) - < 5 , 2>
{04} 0 0 0 3 7 4 3 > > * t r a n c l a t i o n i n i t i a t i o n f a c t o r a c t i v i t y " - [3 0 , 30) - < 0 . 1>
{02} 0 0 0 5 2 1 5 » " t r a n s p o r t e r a c t i v i t y ’ - [1 5 1 2 , 9 9) - < 2 9 , 1>
{03} 0 0 0 5 2 7 5 » * a m in e t r a n s p o r t e r a c t i v i t y " - [1 2 4 , 3] - < 1 7 , 1>
{04} 0 0 1 5 1 7 1 » * a m in o a c i d t r a n s p o r t e r a c t i v i t y * - (8 9 , 1 6] - < 10, 2>
{05} 0 0 1 5 1 7 9 > > " L -a m in o a c i d t r a n s p o r t e r a c t i v i t y " - [4 5 . 0] - < 2 2 . 1>
{05} 0 0 1 5 1 7 5 > > " n e u t r a l a m in o a c i d t r a n s p o r t e r a c t i v i t y " - [2 7 , 1 6) - < 1 1 , 1>
{04} 0 0 1 5 2 0 3 > > * p o ly a m in e t r a n s p o r t e r a c t i v i t y " - [2 2 . 0] - < 6 . 1>
{03} 0 0 1 5 4 5 7 » “a u x i l i a r y t r a n s p o r t p r o t e i n a c t i v i t y " - [5 3 , 2] - < 5 , 1>
(0 4) 0 0 1 6 2 4 7 > > - c h a n n e l r e g u l a t o r a c t i v i t y " - (5 1 . 1] * < 5 . 1>
{05} 0 0 0 5 2 4 6 » " c a l c iu m c h a n n e l r e g u l a t o r a c t i v i t y * - [2 4 . 2 4] - < 1 , 1>
{03} 0 0 1 5 1 4 4 » " c a r b o h y d r a t e t r a n s p o r t e r a c t i v i t y " - [5 1 . 0] - < 10 , 1>
{04} 0 0 1 5 2 4 5 » * m o n o s a c c b a r id e t r a n s p o r t e r a c t i v i t y * - [3 6 , 0] - < 3 , 1>
{05} 0 0 1 5 l4 9 > > * h e x o s e t r a n s p o r t e r a c t i v i t y " - [3 6 , 0] - < 1 5 , 1>
{06} 0 0 0 5 3 5 5 > > " g lu c o s e t r a n s p o r t e r a c t i v i t y * - [3 4 . 3 1] - < 5 , 1>
{03} 0 0 0 5 3 8 6 > > ”c a r r i e r a c t i v i t y " - [3 2 1 , 5] - < 6 , 1>
{04} 0 0 1 5 2 9 0 > > * e le c t r o c h e m ic a l p o t e n t i a l - d r i v e n t r a n s . . . " - [1 5 5 , 1) - < 2 . 1>
{05} 0 0 1 5 2 9 1 > > " p o r te r a c t i v i t y " - [1 5 4 . 0] - < 4 0 . 1>
{06} 0 0 1 S 2 9 7 > > * a n t ip o r te r a c t i v i t y " - [4 3 , 0] - < 1 3 , 1>
{07} 0 0 1 5 4 9 1 > > " c a t i o n : c a t io n a n t i p o r t e r a c t i v i t y * - (2 3 . 2] - < 3 . 1>
{06} 0 0 1 5 2 6 2 > > " s y m p o r te r a c t i v i t y * - [5 3 , 1] - < 7 , 1>
{07} 0 0 1 5 2 9 4 > > " s o lu t e : c a t i o n s y m p o r t e r a c t i v i t y * - [3 9 , 1] - < 8 . 1>
{08} 0 0 1 5 3 7 0 > > " s o lu te :s o d iu m s y m p o r t e r a c t i v i t y * - (2 7 , 0] - < 13 , 1>
{04} 0 0 0 9 0 5 5 > > * e le c t r o n c a r r i e r a c t i v i t y " - [2 3 , 2 3] - < 2 . 2>
{04} 0 0 1 5 3 9 9 > > - p r im a r y a c t i v e t r a n s p o r t e r a c t i v i t y " - [1 3 7 , 0] - < 9 . 1>
{05} 0 0 0 4 1 2 9 > > " c y to c h ro m e -C o x i d a s e a c t i v i t y " - [2 5 . 2 5] - <0, 4>
{05} 0008137>>*NADH d e h y d ro g e n a s e (u b iq u in o n e) a c t i v i t y * - [3 7 , 3 7] - < 0 . S>
(05} 0 0 1 5 4 0 5 > > * P P - b o n d - h y d r o l y s i s - d r i v e n t r a n s p o r t e . . . " - (6 3 , 0] - < 1 1 . 1>
{06) 0 0 1 5 o o 2 > > * A T P ase a c t i v i t y , c o u p le d t o t ra n s m e m . . . * - [5 5 , 3] - < 1 3 . 3>
{03} 0 0 1 5 2 6 7 > > * c h a n n e l o r p o r e c l a s s t r a n s p o r t e r a c t i v i t y " - [3 8 3 , 9] - < 2 . 1>
{04} 0 0 1 5 2 6 8 > > * a lp h a - ty p e c h a n n e l a c t i v i t y ’ - [3 7 2 . 0J - < 7 . 1>
{05} 0 0 0 5 2 4 3 > > ’ g a p j u n c t i o n fo rm in g c h a n n e l a c t i v i t y " - [2 9 , 10] - < 2 . 1>

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{05} 0 0 0 5 2 1 6 » " io n c h a n n e l a c t i v i t y " - [3 1 8 , 15] - < 8 . 1>
{06} 0 0 0 5 2 5 3 > > " a n io n c h a n n e l a c t i v i t y " - 157 . 21 - < 4 , 1>
{07} 0 0 0 5 2 5 4 > > ‘ c h l o r i a e c h a n n e l a c t i v i t y " - [5 0 . 221 - < 8 . 1>
{06} 0 0 0 5 2 6 1 » " c a t i o n c h a n n e l a c t i v i t y - [2 4 1 . 1 7 j - < 11 , 1>
{07} 0 0 0 5 2 6 2 » " c a l c i u n c h a n n e l a c t i v i t y * - [8 9 . 2 8] - < 4 , 1>
{08} 0 0 0 5 2 4 5 > > " v c l t a g e - g a t e d c a lc iu m c h a n n e l a c t i . . . " - [4 7 , 4 0] - < 5 . 2>
{07} 0 0 0 5 2 6 7 > > " p o ta s s iu m c h a n n e l a c t i v i t y * - [7 2 . 2 5) - < 3 . 1>
{08} 0 G 0 5 2 4 9 » * v o l t a g e - g a te d p o ta s s iu m c h a n n e l a c . . . " - [4 6 , 1 7] - < 4 . 2>
{07} 0 0 0 S 2 7 2 > > ‘ s o d iu m c h a n n e l a c t i v i t y " - [2 8 . 4] - < 2 . 1>
{06} 0015276> > " l i g a n d - g a t e d io n c h a n n e l a c t i v i t y * - [1 0 2 , 7] - < 7 , 1>
{07} 0 0 0 5 2 3 0 > > * e x t r a c e l l u l a r l i g a r .d - g a t e d i o n c h a n n . . . - - [5 2 , 1] - < 2 , 1>
{OS} 0 0 0 5 2 3 1 > > * e x c i t a to r y e x t r a c e l l u l a r l i g a r . d - g a t . . . " - [4 8 . 0] - < 5 . 1>
{06} 0 0 0 5 2 4 4 > > " v o i ta g e - g a t e d io n c h a n n e l a c t i v i t y " - [1 1 5 . 3] - < 5 , 1>
{07} 0 0 0 5 2 4 5 > > 'v o l t a g e - g a t e d c a lc i u m c h a n n e l a c t i v i t y " - [4 7 . 4 0] - < 5 . 2>
{07} 0 0 0 5 2 4 9 > > " v o l ta g e - g a t e d p o t a s s i u m c h a n n e l a c t . . . " - [4 6 , 1 7] - < 4 . 2>
{03} 0 0 0 5 4 S 9 » " e l e c t r o n t r a n s p o r t e r a c t i v i t y * - [2 0 6 , 1 1 5] - < 25. 1>
{04} 0 0 0 9 0 5 5 » * e l e c t r o n c a r r i e r a c t i v i t y * - [2 3 , 2 3] - < 2 , 2>
{04} 0003954»"N A D H d e h y d ro g e n a s e a c t i v i t y " - [3 8 . 1] - < 1 , 2>
{05} 0 0 5 0 1 3 6 > > “NADH d e h y d ro g e n a s e : q u in o n e) a c t i v i t y " - [3 7 , 0] - < 1 , 1>
{06} 0008137>>"NADH d e h y d ro g e n a s e (u b iq u in o n e) a c t i . . . " - [3 7 , 37] - < 0 , 5>
{03} 0 0 0 5 4 7 8 » " i n t r a c e l l u l a r t r a n s p o r t e r a c t i v i t y " - [3 6 , 10J - < 4 , 1>
{03} 0 0 1 5 0 7 5 » * i o n t r a n s p o r t e r a c t i v i t y * - [3 6 7 . 4] - < 4 . 1>
{04} 0 0 0 8 5 0 9 » " a n io n t r a n s p o r t e r a c t i v i t y - [1 0 6 , 5) - < 3 , 1>
{05} 0Q 15103>>’ i n o r g a n i c a n io n t r a n s p o r t e r a c t i v i t y " - [4 2 , 0] - < 1 8 . 1>
{05} 0 0 0 8 5 1 4 > > " o rg a n ic a n io n t r a n s p o r t e r a c t i v i t y " - [6 9 , 20] - < 1 1 , 1>
{06} 0 0 0 3 0 2 8 > > * m o n o c a rb o x y lic a c i d t r a n s p o r t e r a c t i . . . " - [3 7 . 7] - < 1 8 , 2>
{04} 0 0 0 8 3 2 4 » ‘ c a t i o n t r a n s p o r t e r a c t i v i t y * - [2 6 4 . 1] - < 6 , 1>
{05} 0 0 1 5 6 6 2 » * A ? P a s e a c t i v i t y , c o u p le d t o t r a n s m e m b . . . " - [5 5 , 3] - < 1 3 . 3>
{05} 0 0 l 5 0 8 2 » ‘ d i - ■ t r i - v a l e n t i n o r g a n i c c a t i o n t r a n . . . " - [8 1 . 2] - < 1 3 . 1>
{06} 0 0 1 5 0 8 5 > > * c a lc iu m io n t r a n s p o r t e r a c t i v i t y " - [2 0 , 4] - < 1 . 2>
{06} 0 0 0 5 3 8 5 > > " t ir .c io n t r a n s p o r t e r a c t i v i t y " - [2 2 , 19] - < 5 , 2>
{05} 0 0 1 5 0 7 7 » * m o n o v a le n t i n o r g a n i c c a t i o n t r a n s p o r t . . . " - [1 3 7 , 2] - < 4 . 1>
{06} 0 0 1 5 0 7 8 > > 'h y d ro g e n io n t r a n s p o r t e r a c t i v i t y " - [1 2 5 , 3] - < 1 0 , 1>
{07} 0 0 0 4 1 2 9 » * c y to c h r o m e - c o x i d a s e a c t i v i t y " - [2 5 , 25] - < 0 , 4>
{07} 0008137»"N A D H d e h y d ro g e n a s e (u b iq u in o n e) a c t . . . * - [3 7 , 3 7] - < 0 . 5>
{06} 0 0 1 5 0 8 1 > > "so d iu m i o n t r a n s p o r t e r a c t i v i t y * - [4 3 . 3] - < 5 , 2>
{07} 0 0 08137»"N A D H d e h y d ro g e n a s e (u b iq u in o n e) a c t . . . " - [3 7 , 3 7] - < 0 , 5>
{05} 0 0 1 5 1 0 1 » * o r g a n i c c a t i o n t r a n s p o r t e r a c t i v i t y " - [2 3 . 12] - < 3 , 1>
{04} 0 0 4 6 8 7 3 » * m e ta l i o n t r a n s p o r t e r a c t i v i t y * - [1 2 8 , 0] - < 1 0 . 1>
{05} 0 0 1 5 0 8 5 » " c a lc iu m i o n t r a n s p o r t e r a c t i v i t y " - [2 0 . 4] - < 1 , 2>
{05} 0 0 1 5 0 8 1 » " s o d iu m io r . t r a n s p o r t e r a c t i v i t y " - [4 3 , 3] - < 5 . 2>
{06} 0 0 08137»"N A D H d e h y d ro g e n a s e (u b iq u in o n e) a c t i . . . " - [3 7 , 37 J - < 0 , 5>
{05} 0 0 4 6 9 1 5 » ‘ t r a n s i t i o n m e ta l i o n t r a n s p o r t e r a c t i — " - (5 7 , 0] - < 1 0 , 1>
{06} 0 0 0 5 3 8 5 » * z in c i o n t r a n s p o r t e r a c t i v i t y " - [2 2 , 19] - < 5 , 2>
{03} 0 0 0 5 3 1 9 » ‘ l i p i d t r a n s p o r t e r a c t i v i t y " - [5 3 . 2 5] - < 6 , 1>
{04} 0 0 0 5 5 4 8 » " p h o s p h o l i p id t r a n s p o r t e r a c t i v i t y " - [2 0 , 1] - < 4 , 1>
{03} 0 0 1 5 9 3 2 » * n u c le o b a s e , n u c l e o s i d e , n u c l e o t i d e a n d n . . . " - [2 7 , 0] - < 5 , 1>
{03} 0 0 0 5 3 4 2 » " o r g a n i c a c i d t r a n s p o r t e r a c t i v i t y * - [1 3 9 , 3] - < 4 , 1>
{04} 0 0 4 6 9 4 3 » " c a r b o x y l i c a c i d t r a n s p o r t e r a c t i v i t y " - [1 3 6 , 1] - < 4 , 1>
{05} 0 0 1 5 1 7 1 » * a m in o a c i d t r a n s p o r t e r a c t i v i t y " - [8 9 . 16] - < 1 0 . 2>
{06} 0 0 1 5 1 7 9 » " L - a m in o a c i d t r a n s p o r t e r a c t i v i t y " - (4 5 , 0] - < 2 2 , 1>
{06} 0 0 1 5 1 7 5 » " n e u t r a l am in o a c i d t r a n s p o r t e r a c t i . . . " - [2 7 , 1 6] - < 1 1 , 1>
{05} 0 0 0 8 0 2 8 » " m o n o c a r b o x y l i c a c i d t r a n s p o r t e r a c t i v i t y " - [3 7 , 7] - < 1 8 , 2>
{03} 0 0 0 5 3 4 4 » * o x y g e n t r a n s p o r t e r a c t i v i t y * - [2 0 , 2 0] - < 0 . 1>
{03} 0 0 1 5 1 9 7 » " p e p t i d e t r a n s p o r t e r a c t i v i t y - [2 7 . 8] - < 7 . l>
{03} 0 0 0 8 5 6 5 » " p r o t e i n t r a n s p o r t e r a c t i v i t y - [6 6 . 5 9] - < 1 3 , 1>
{03} 0 0 1 5 2 2 3 » * v i ta m in o r c o f a c t o r t r a n s p o r t e r a c t i v i t y " - [2 7 , 1] - < 1 5 , 1>

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

