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Trying to determine the structure o f a protein by UV spectroscopy was like trying 
to determine the structure o f a piano by listening to the sound it made while being

dropped down a flight o f stairs.

-  Francis Crick, British Molecular Biologist
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Abstract

High performance and accurate protein function prediction is a challenging problem 

in Bioinformatics. Many contemporary ontologies, such as Gene Ontology, have a 

hierarchical structure that can be exploited to improve the prediction accuracy, and 

lower the computational cost of protein function prediction. The structure of the 

hierarchy is leveraged in two ways: First, a novel method of creating hierarchy- 

aware training sets for machine-learned classifiers is introduced and shown to be the 

most accurate method. Second, the hierarchy is used to reduce the computational 

cost of classification. A sound methodology for evaluating hierarchical classifiers 

using global cross-validation is introduced. Biologists often use BLAST to identify 

potential functions of new proteins. Therefore, hierarchical methods are compared 

to BLAST as a baseline, and show improvements in predictive performance, and 

coverage. This dissertation focuses on the prediction of protein function within the 

Gene Ontology, but the techniques are applicable to hierarchical classification in 

general.
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Chapter 1 

Introduction

In the wake of the Human Genome Project, there has been increased attention to 
research at the proteome level. While the term genome refers to all of the genes in 
an organism, the term proteome refers to all of the proteins expressed by all of the 
genes in an organism. Proteins are fundamental to life as we know it, performing a 
variety of essential functions. Protein functions include catalyzing reactions, struc­
tural and mechanical roles, storage and transport of other molecules. As proteins are 
studied, knowledge is gained about what these proteins do in an organism, where 
in the cell they perform their functions, and which higher level processes they are 
involved in. This knowledge is important because knowledge about proteins gives 
insights into drug discovery, gene therapy, and the understanding of how all life 
functions. However, the process of analyzing proteins is very time consuming.

The term wet lab is often used to refer to a biological laboratory, where experi­
ments are performed on the biological entities themselves. In contrast, dry lab refers 
to working with computational tools, or working with theory. Automated computa­
tional tools can help researchers analyze proteins by giving good leads about what 
proteins do in the cell. Some lengthy experiments can be bypassed or shortened 
when some knowledge about proteins is known a priori to work in the wet lab. 
Computational protein function prediction is therefore a companion to laboratory 
methods.

Through the study of thousands of proteins, various documents have been pub­
lished in biological literature describing various aspects of proteins. However, many 
times, different researchers will use different terminology to describe similar traits 
of proteins. Standard vocabularies provide a method of communicating ideas in a 
consistent way. These standard vocabularies are called ontologies.

Standardizing the way research is described supports the use of automated meth­
ods. If the knowledge contained in all publications describing proteins in various 
organisms were to be stored in a database, ideally the knowledge should be stored 
using a common vocabulary, independent of the specific wording the authors used 
to describe their research. Knowledge representation is important to computational 
tools such as databases, and tools used by molecular biologists such as predictive 
systems. Furthermore, standardized vocabularies help scientists in any domain by

1
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Figure 1.1: The Central Dogma of Molecular Biology

The process o f protein synthesis. DNA is used to create RNA (transcription), which is then used to 
create proteins (translation). The image is courtesy o f the U.S. Department of Energy Human 
Genome Project.

providing a canonical way of describing their research results.
This dissertation focuses on leveraging an ontology that represents protein func­

tions in a consistent manner. The large amount of protein data that is available is 
used to create a system that can predict the function of unknown proteins. However, 
before delving into the computational aspect of the research, a basic understanding 
of the biology involved in this research domain is presented.

1.1 The Central Dogma of Molecular Biology
The Central Dogma of Molecular Biology [17] states that information in a cell is 
transferred from DNA to RNA to protein1. This process is shown in Figure 1.1, and 
is often referred to as protein synthesis.

A protein is a linear chain of amino acids. Since there are only 20 amino acids 
commonly found in organisms, each amino acid can be represented by a letter of 
the alphabet (for example the amino acid Glutamine is represented with the letter 
Q). Therefore, any protein can be represented as a string of these letters (Figure 
1.2). When a protein is synthesized in the ribosome, the amino acids are attached

'Originally the central dogma referred to the theory that no information is ever transferred from 
protein to DNA. Contemporary use of the term describes this and also the process of protein synthe­
sis [52].

9
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> P 1 8 0 7 7  -  R35A.HUMAN
MSGRLWSKAIFAGYKRGLRNQREHTALLKIEGVYARDETEFYLGKR 

CAYVYKAKNNTVTPGGKPNKTRVIWGKVTRAHGNSGMVRAKFRSNL 

PAKAIGHRIRVMLYPSRI 
>Q9W VI9 -  JIP 1.M 0U SE
MAERESGLGGGAASPPAASPFLGLHIASPPNFRLTHDISLEEFEDE 
DLSEITDECGISLQCKDTLSLRPPRAGLLSAGSSGSAGSRLQAEML 
QMDLIDAAGDTPGAEDDEEEEDDELAAQRPGVGPPKAESNQDPAPR 

SQGQGPGTGSGDTYRPKR. . .

Figure 1.2: Two proteins in FASTA format

The human protein R35A, which has UniProt accession number PI8077 is 110 amino acids in 
length. Experimental results show that the protein is a structural constituent of the ribosome, and is 
involved in RNA binding [3]. The mouse protein JIP1 has UniProt accession number Q9WVI9, 
and is 706 amino acids in length. Experimental results show that JIP1 .MOUSE is involved in 
protein kinase binding and kinesin binding [3]. Only the first 156 amino acids o f the sequence for 
JIPI.MOUSE is shown.

together in a chain. This protein sequence, shown in Figure 1.2 is called the pri­
mary structure of a protein. As a protein is synthesized, the chain begins to curl, 
and fold into helices and beta sheets. This is known as the secondary structure of 
a protein. This secondary structure of the protein will then fold and orient itself 
in 3-dimensional space. This is called the tertiary structure (or 3D structure). The 
function of a protein is dependent on the arrangement of at least one of these struc­
tures. For example a protein which has a structural role will be able to perform this 
function because of its tertiary structure. On the other hand, a protein which binds 
to other proteins in the cell may only perform this function because of a functional 
domain in its primary structure. A domain refers to a section of a protein which is 
responsible for that protein being involved in a reaction.

However, a protein’s primary structure, or sequence, is the basis of any struc­
tural orientations it may assume. Furthermore, evolutionary mechanisms affect 
proteins in such a way that biologically important regions of the sequence are con­
served. Additionally, a protein’s secondary and tertiary structures are fully depen­
dant on the primary structure. Therefore, a protein’s function must be related in 
some way to its primary structure. This dissertation attempts to utilize a large 
amount of protein sequence data to predict the molecular function of novel pro­
teins.

The molecular function of a protein describes the protein’s activities at the 
molecular level [4], and specifies the tasks it performs. When proteins are char­
acterized, many aspects of their role are studied, such as their structure, their inter­
actions on a chemical level, their location in the cell, and their function. Ideally this 
knowledge is published, and freely accessible in one of many protein databases. 
The term annotation refers to a single piece of knowledge known about a protein,

3
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Growth of Protein Sequence Databases
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Figure 1.3: Database Growth

The Swiss-Prot and TrEMBL databases have quickly increased in size since their inception in 
1986. The Swiss-Prot database is a human curated and annotated protein database, while the 
TrEMBL database is a computationally annotated supplement to Swiss-Prot. It is clear that the 
human annotators cannot keep up with the huge amount o f protein sequences that have been added 
to the TrEMBL database. Automated annotation is required to make better use of the sequence 
information that is available. Data courtesy o f  the NIAS DNA Bank (National Institute of 
Agrobiological Sciences. Japan). Image and caption courtesy of Poulin [39].

such as its function.

1.2 Bioinformatics
The rate at which sequencing methods are producing genomic and proteomic data is 
far outpacing the rate at which these sequences are being experimentally annotated 
and understood. This trend is depicted in Figure 1.3. The number of human anno­
tated proteins (Swiss-Prot, PDB) is small compared to the number of proteins for 
which only the sequence is known (TrEMBL, GenPept). In response, there has been 
a growing focus on ways to speed up the process of determining protein function 
through the use of computer systems that predict protein function.

1.2.1 Protein Function Prediction and Determination
In response to the overwhelming increase in protein sequence data, there has been 
much research in automated computational protein function prediction as demon­
strated by the literature (Chapter 2.4.1) and the Automated Function Prediction Spe­
cial Interest Group meeting at the 2005 Intelligent Systems for Molecular Biology

4
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Figure 1.4: Protein Function Prediction

When unannotated proteins are input into the prediction system, the result is a prediction of what 
function(s) each of these proteins perform.

conference [2],
Protein function determination refers to the process of performing wet lab ex­

periments to discover what function a protein serves. These methods can involve 
studying the protein’s structure through Nuclear Magnetic Resonance or X-ray crys­
tallography. Also, information about when proteins react or bind such as assays, and 
2-hybrid interactions are useful to understand the functions that a protein performs. 
Many approaches exist to understand what individual proteins do, however all of 
them are costly in terms of equipment and manpower.

Protein function prediction provides biologists with predictions of the most 
likely functions that proteins perform (Figure 1.4). This can help in the process 
of protein function determination by providing likely functions proteins perform, 
and thus which experiments should be carried out. These methods should be highly 
accurate to be useful, and they should be high-throughput so they can be used for a 
large amount of data.

Another desirable feature of a prediction system is transparency [46]. Trans­
parency refers to how well a user can understand why certain predictions were made. 
This can build a user’s trust in the prediction system and thus can give clues as to 
the best experiments that should be performed in the wet lab. Alternatively, a user 
may decide that a prediction is incorrect by looking at the data used to make the pre­
diction. Either way value is added when transparency is a feature of the prediction 
system.

Prediction methods often use machine learning approaches to model the prob­
lem domain. Machine learning leverages large datasets to extend knowledge about 
existing data, and supports the study of new, data. Protein function prediction can 
speed up, and increase the quality of, protein function determination. Protein func­
tion prediction is a confluence of research in the biological sciences, mathematical 
and statistical sciences, computing science, and philosophy.

5
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1.2.2 Ontologies
In general, prediction is a mapping from instances to class. Before creating a pre­
diction system, the type of predictions that it can make must be predefined. For 
example, in protein function prediction, we need to know what the possible protein 
functions are. An ontology is a set of terms describing the problem domain in a 
standardized way, and defines the possible predictions that can be made. This ad­
dresses the issue of different researchers using different terminology to describe the 
same functions. For example the terms “peroxiredoxin activity” and “thioredoxin 
peroxidase activity” both refer to the catalysis of the reaction shown in Equation 
1.1. Through the use of an ontology, this reaction is described through a standard­
ized term, so that there is no future confusion about what is being described.

Reduced Thioredoxin +  HoOo = Oxidized Thioredoxin -I- H2O (1-1)

Figure 1.5 shows a possible ontology for protein function. A variety of func­
tions that proteins could perform are shown, and various wet lab experiments could 
imply that a protein performs each of them. Upon closer inspection it is evident that 
some functions are more similar to each other than others. For example, the func­
tions “nucleotide binding” and “protein binding” are more similar to each other 
than either function is to “hydrolase activity”. Furthermore, some functions are 
more general descriptions of the same function. For example, “peptidase activ­
ity” is a specific type of “hydrolase activity”, in that every protein that performs 
the function “peptidase activity” necessarily performs the function “hydrolase ac­
tivity”. To represent these relationships between functions, the ontology can be 
structured in a hierarchy as shown in Figure 1.6. An unstructured ontology such as 
the one shown in Figure 1.5 is often called a fiat ontology, whereas a hierarchically 
structured ontology such as the one shown in Figure 1.6 is called a hierarchical 
ontology.

Although flat ontologies such as GeneQuiz [9] and others [42] are suitable for 
describing the general function of proteins, a more sophisticated approach is essen­
tial in describing more specific functions of proteins. Furthermore, different exper­
iments to verify the function of proteins provide different levels of detail about that 
protein’s functions, which leaves many proteins with incomplete or general annota­
tions. Hierarchical ontologies are an effective way of addressing these issues.

In hierarchical ontologies such as EC [30], SCOP [37] and Gene Ontology [22], 
both general and specific knowledge is represented in a hierarchical structure, where 
general terms are represented by nodes near the root of the graph and specific terms 
are represented by nodes near the leaves of the graph. The ontology shown in 
Figure 1.6 is actually a part of the Gene Ontology molecular function hierarchy, 
represented more completely (if illegibly) in Figure 1.7.

6
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An ontology describing some possible protein functions that may be deduced from experiments.
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Figure 1.6: A Structured Ontology

The same protein functions shown in Figure 1.5. however the intuitive relationships between the 
functions are shown using a hierarchical structure. This ontology is a subset of the Gene Ontology 
hierarchy.

7
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Figure 1.7: Gene Ontology

The Gene Ontology molecular function hierarchy of terms is a standardized way o f describing the 
functions proteins perform in the cell. The hierarchical structure represents general to specific 
functions from left to right. Only the first three levels o f the ontology are shown (Used courtesy o f  
Poulin [39]).

1.3 Research Goal
The general goal of the research described in this dissertation is to produce a tech­
nique for accurate and efficient protein function predictions from protein sequences 
[21]. A high level diagram demonstrating the approach taken in this dissertation is 
shown in Figure 1.4. The thesis of this dissertation is that the structure of a hier­
archical ontology encodes important information about the problem domain that is 
important when creating an accurate and efficient prediction system. Related work 
in hierarchical classification has confirmed this (Chapter 2.4.2). This dissertation 
presents novel ways that the hierarchy can be exploited in the context of protein 
function prediction. However, the techniques presented should be generalizable to 
general hierarchical classification.

Ultimately, the result of this research will be incorporated into the Proteome 
Analyst [46] suite of web tools, which will make it publicly available, and easily 
accessible.

1.4 Contributions
This dissertation presents a system called Classification in a Hierarchy Under Gene 
Ontology (CHUGO), that exploits the hierarchical structure of the GO to make 
faster and more accurate predictions of protein function. The issue of evaluating

8
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predictions within a hierarchical ontology is examined. Also, a novel method of 
exploiting the structure of a hierarchical ontology to create predictors is presented 
and evaluated. This dissertation shows how to exploit the hierarchical nature of GO 
to lower the computational cost of predicting within the ontology without compro­
mising accuracy. Finally, it shows that the precision and recall of a classification 
system can be improved when the hierarchical knowledge is utilized.

This dissertation makes contributions in three main areas:

1. Evaluation Methodology - In hierarchical ontologies, precision, recall, and 
cross-validation are concepts that must be re-visited. This dissertation defines 
and illustrates a hierarchy-aware evaluation methodology.

2. Training Set Design - Structured ontologies are encoded with important in­
formation about relationships between terms, and are a way of representing 
incomplete data. This dissertation presents a novel and effective approach to 
training set design that exploits the inherent structure of a hierarchical ontol­
ogy. By considering the structure of the ontology, our algorithms increase the 
F-measure of hierarchical classification from 46% to 70%.

3. Accurate and efficient protein function prediction - This dissertation ex­
ploits the structure of a hierarchical ontology at prediction time to improve 
predictive performance, and lower computational costs. CHUGO can in­
crease recall for those proteins that are similar to experimental proteins by 
2%, and in the case of proteins that are dissimilar to the set of experimental 
proteins, precision can be increased by 37%, and recall by 12%. The compu­
tational cost of local predictors can be lowered to as low as 2% of the cost of 
running all local predictors when the hierarchy is considered.

1.5 Outline
Chapter 2 first introduces necessary terminology and concepts in machine learning. 
Next related work in protein function prediction and general hierarchical classifica­
tion are discussed. Finally each of the tools used in this dissertation are introduced.

Chapter 3 describes the data set used for all experiments described in this dis­
sertation. The issues that are raised when predicting within a hierarchical ontology 
are described and addressed. Chapter 3 concludes by presenting a first attempt at 
protein function prediction within the Gene Ontology.

In Chapter 4 protein function prediction is revisited. First, the way training ex­
amples are selected for each local predictor is explored while keeping the structure 
of the ontology in mind. Second, it is demonstrated that the structure of the ontol­
ogy can be used to lower the cost of prediction without a penalty to accuracy. The 
chapter concludes by revisiting the issue of cross-validation in a hierarchy.

9
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Each predictor method is described in detail in Chapter 5, and then optimized. 
These predictors are then combined into ensemble classifiers which are used to 
predict each molecular function in the ontology.

Chapter 6 applies the prediction technologies presented in the previous chap­
ters. Other approaches of lowering the computational cost of prediction are also 
presented. The issue of coverage is also addressed, and CHUGO is shown to have 
a higher coverage than BLAST and Protfun.

10
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Chapter 2 

Background and Related Work

Since the inception of automated procedures there has been a large increase in the 
amount of data that needs to be processed and understood. Machine learning is a 
way of addressing these issues, by automating and facilitating the process of under­
standing relationships and patterns in data.

Proteomics research is an area where this issue is relevant. The amount of pro­
tein sequence data available far surpasses our ability to determine and catalog the 
function of each protein sequence. This chapter will introduce machine learning 
in general, and make these concepts concrete by connecting them to a real world 
example -  protein function prediction.

2.1 Machine Learning
Machine learning [7][23] is an area of Artificial Intelligence that attempts to “learn” 
patterns and behaviors from real world data. There are two major areas of machine 
learning: supervised and unsupervised learning.

In unsupervised learning, raw unlabeled data is given as input, and the goal is to 
find patterns in this data. These patterns give information about similarities in the 
instances in the data set, but ultimately must be interpreted by users knowledgeable 
in the problem domain since no a priori knowledge about the data is given as input.

In supervised learning, the data given as input also includes associated labels 
with each instance in the data set. The labels are descriptions of the problem do­
main. The goal of supervised learning is to learn a function representing the data 
set, which can then be used to predict labels for future instances where the labels 
are unknown.

This dissertation only deals with the latter case of supervised learning.

2.2 Classification
In supervised learning we are given instances and corresponding labels for each 
of these instances. The case when these labels come from a finite, discrete set. is

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



called classification. The more general case, when the labels can be any real value 
is called regression. Since the topic of this dissertation is protein function prediction 
and it is an example of the former, regression will not be described further.

In the classification of proteins by their function, each data instance is a pro­
tein, and each instance’s label is that protein's function. One common approach in 
machine learning is to represent each instance as a feature vector, x. Each com­
ponent of the vector is a feature that describes some aspect of that instance. In 
protein function prediction, this vector can contain various biological properties of 
a protein [49], annotations describing similar proteins [46], or other attributes (see 
Chapter 2.4.1). Feature vectors are not the only way to represent instances. For 
instance, the protein sequence can be modeled directly [39].

Each function is represented by a label (also called a class). Therefore, along 
with each instance, a corresponding label, y, is given. Each labeled instance is 
represented by an attribute, label pair: (x. y ), and each label must be one of a 
standard set of terms (the ontology). Gene Ontology contains the possible functions 
a protein may perform.

An important observation is that a protein may perform more than one function. 
For example, the protein JIP1 .MOUSE performs the functions “Kinesin Binding” 
and “Protein Kinase Binding”. These two functions are the labels for the protein 
JIP1 .MOUSE. This has important consequences in the construction of a prediction 
system, and in evaluating such a system. This will be addressed in Chapter 3.2.

The goal of classification is to use the labeled data (also called the training set) 
to create a classifier (Equation 2.1). A classifier is a model or function that, when 
applied to an instance, x, returns a prediction of its class, y. During evaluation, the 
prediction for an instance y  is compared with the instance’s true label y and scored 
in some way.

f {x)  = y (2.1)

Supervised learning occurs in two stages (Figure 2.1). First, the process of cre­
ating a classifier is called learning or training. Here, one of a variety of algorithms 
is applied to the labeled data set to create the prediction function f (x) .  Second, the 
process of running a query instance (a protein instance whose label should be pre­
dicted) through a classification function and returning a predicted label, is called 
prediction or classification. Some terminology that will be used throughout this 
dissertation is summarized in Table 2.1.

2.3 Hierarchical Classification
In traditional classification problems, the set of candidate labels, Y , are independent 
of each other, meaning that they are not related. This arrangement of labels is 
commonly called a flat ontology, shown in Figure 1.5. In hierarchical classification
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Figure 2.1: The two stages of supervised learning

Supervised learning occurs in two stages. The first, shown horizontally is called training, and 
describes the process of creating a classifier function from data. The second, shown vertically is 
called prediction, and describes the use o f a classifier function to make predictions on new 
instances.

Table 2.1: Terminology

Summary of terms used throughout this dissertation. Examples are given in the domain o f protein 
function prediction. Synonyms are also given in the term column.

Term Definition Example

Instance, x A single data element. Protein,
JIP1 .MOUSE

Ontology, Label 
Set, Valid Classes

A standard set of terms describing the problem do­
main.

Gene Ontology

Label. Class, 
Node

An element in the ontology that describes an instance “Hydrolase
Activity”

Predicted Label. 
y . Classification. 
Prediction

A label predicted by a classifier. “Kinesin Bind­
ing”. “Protein 
Kinase Binding”

Annotated Label.
y

A label assigned by an oracle, considered as truth “Kinesin Bind­
ing", “Protein 
Kinase Binding”

Feature, x, An attribute of an instance. These can be obtained 
through a variety of methods. Features are the com­
ponents o f the attribute vector x.

Molecular Weight
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Figure 2.2: The three aspects of Gene Ontology annotations.

the labels are arranged in a hierarchy, where the nodes in the hierarchy represent 
the candidate labels, and the edges represent the relationship between the labels. 
The fact that the labels are not independent raises several issues during training, 
prediction, and evaluation.

A structured ontology encodes important information about how the labels re­
late to each other. This dissertation shows that it is unwise to ignore these relation­
ships. This information describes which functional annotations are similar to each 
other, and thus aids in the creation of training data for classifiers. This structure can 
also be exploited to increase the predictive accuracy and lower the computational 
cost of a classification system. Previous work has also shown that this structure 
can be exploited in other ways (Chapter 2.4.2). tabrterminology summarizes some 
machine learning terminology.

2.3.1 Semantics of a Hierarchy
The Gene Ontology (GO) controlled vocabulary is an ontology of terms describing 
three aspects of protein annotations. Each aspect is organized into a hierarchy (Fig­
ure 1.6). The three aspects of the GO hierarchy are molecular Junction, biological 
process, and cellular component [22] (Figure 2.2). Each of these aspects are an in­
dependent hierarchy in the Gene Ontology. That is, no node within a single aspect 
is connected to any of the nodes within the other two aspects. This fact allows us 
to focus on any single aspect at a time without considering the others. This disser­
tation focuses on protein function prediction, so only the molecular function aspect 
is used for all experiments in this dissertation.

In hierarchical ontologies, the edges represent relationships between labels. 
These edges generally represent two types of relationships. These are: the is-a 
relationship, and the part-of relationship. The is-a relationship denotes a child be­
ing a more specific description than its parent. In the molecular function aspect of 
GO, the term “metal ion binding” is a child of the term “ion binding”, since it is a 
more specific description of molecular function (Figure 2.3). Any protein that is a 
“metal ion binding” protein is also, by definition, an “ion binding” protein.

The part-of relationship describes a sub-component relationship. That is, a child
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Figure 2.3: The ion binding node and its children

The relationship between the nodes is the is-a relationship. Children nodes are conceptually 
specializations o f parent nodes. These nodes are part of the molecular function aspect of the Gene 
Ontology.

N ucleus

N uclear
E xosom e

Nuclear
Chromosome N ucleo lus Nucleoplasm

Figure 2.4: The nucleus node and some of its children

The relationship between the nodes is the part-of relationship. Children nodes are conceptually 
part-of parent nodes. These nodes are part o f the cellular component aspect of the Gene Ontology.

class is a component of the parent class. In the cellular component aspect, the 
component “nuclear chromosome” is part-of the component “nucleus” (Figure 2.4).

Within the molecular function aspect of GO, the relationship between the major­
ity of the nodes is the is-a relationship, with the part-of relationship only occurring 
for two terms (the children of “telomerase activity” - not in figures). We limit our­
selves to only those nodes under an is-a relationship. This allows us to treat the 
hierarchy's edges uniformly.

When structuring an ontology in a graph, each label is referred to as a node. 
Some nodes in the graph are called leaf nodes if they have no children (such as 
“metal ion binding”, “anion binding” and “cation binding” in Figure 2.3). All other 
nodes are referred to as non-leaf nodes.

If a protein’s function is “ion binding”, then implicitly, it is also a “binding”
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protein. This intuition is called the True Path Rule by the Gene Ontology Consor­
tium [4], If a protein is annotated with a certain node, then it is implicitly annotated 
with all of this node’s parent nodes all the way up to the root node as well. This 
propagation of annotations allows for the labels of a protein to be consistent. Intu­
itively, it would be inconsistent to consider a protein a “ion binding” protein, but 
not a “binding” protein.

A difficulty with hierarchical ontologies is scoring. The hierarchy encodes intu­
ition about which nodes are closer to each other than others, however it is difficult 
to measure wrong predictions in the hierarchy. This issue is addressed further in 
Chapter 3.2.2.

Another difficulty is that knowledge about an area is constantly changing, and 
this may affect how this knowledge is organized. To address this issue the GO con­
sortium meets regularly to update, and sometimes reorganize the ontology. There is 
also a user meeting that allows for users of the ontology to voice their concerns [6].

Ontologies have also been an area of research in Philosophy since the days of 
the ancient Greeks [5]. Understanding how to represent knowledge into ontologies 
gives us a better understanding of our own thought processes. Having a predefined 
ontology also promotes the standardization of terms in future use. Furthermore, 
having an understanding of the semantics of a hierarchy, and how to apply them 
correctly helps to alleviate inconsistencies in scientific knowledge. Philosophical 
principles help to make the structure and wording of an ontology more consistent 
and formal, and have been applied to the Gene Ontology [45].

2.3.2 Hierarchical Classification of Protein Function
Our data set consists of proteins that have been annotated with their Gene Ontology 
molecular functions. These annotations are derived from experiments performed 
on these proteins, electronic predictions of these protein’s functions, or putative 
functions based on homology and other methods. Putative functions refer to those 
that are commonly accepted as true. Our dataset does not use all of these annota­
tions, since they are not equally reliable. However, it is important to note that each 
of these annotations represent the most specific experiment performed to assess a 
particular protein’s function, but may not be the absolute correct answer.

This issue can cause problems during the evaluation of our predictors. For ex­
ample, a protein that is annotated as only an “ion binding” protein, but in actuality 
is a “anion binding” protein (Figure 2.3), would non-intuitively give us a better 
score when we predict it as “nor anion binding”. This is because a future exper­
iment may show that this protein is indeed “anion binding”, however “not anion 
binding” matches the annotations, which we consider as the correct answer dur­
ing evaluation. Our predictor may answer “anion binding” because of legitimate, 
machine-leamed similarities between the protein and other proteins in the “anion 
binding” set. Furthermore, a future experiment may show that the protein is indeed 
“anion binding".
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When annotating proteins with Gene Ontology terms, each protein can be as­
signed multiple terms. A protein may be assigned multiple Gene Ontology func­
tion terms for two reasons. First, a protein may have multiple functional domains 
or react to more than one molecule. For example the protein JIP1 .MOUSE is an­
notated with “Kinesin Binding” and “Protein Kinase Binding” (shown in Figure
2.5). Neither of these terms is a direct specialization of the other, so there is no 
ancestor/descendant relationship between these terms in GO.

Second, due to the hierarchical nature of Gene Ontology, a protein may be ex­
plicitly annotated with a GO term and also the parent of this GO term. This a result 
of what each Gene Ontology annotation represents. For example, one experiment 
may show that a protein is an “ion binding” protein. Another experiment may be 
more specific and show' that a protein is an “anion binding” protein. These anno­
tations may represent the same function that a protein performs. We later show 
that it is useful to explicitly represent all GO terms describing a protein’s functions 
according to the true path rule.

There are two unusual labels in the GO hierarchy that are treated differently dur­
ing experiments. These are the “unknown” (0005554), and “obsolete” (0008369) 
nodes. A protein mapped to the “unknown” node has been experimented on and 
no positive results have been found, in contrast with those proteins that have not 
been studied at all and so have no GO annotations. The “obsolete” node describes 
annotations to GO terms that were removed in a newer release of GO. These obso­
lete nodes are moved so they become children of the term “obsolete”. If a protein 
maps to either one of these nodes or one of their child nodes (in the case of “obso­
lete”), these annotations are removed from the data set, since they do not provide 
any useful information.

For each protein, experimental annotations are provided. The set of those nodes 
that are explicitly annotated for a protein will be called the mapped nodes. Ac­
cording to the semantics of the hierarchy, all of the parent nodes of the mapped 
nodes apply to this protein as well. If all of these annotations are propagated up­
ward in the hierarchy according to the true path rule, we arrive at the set of labeled 
nodes. In Figure 2.5 “protein kinase binding” and “kinesin binding” are the mapped 
nodes, and “protein kinase binding”, “kinase binding”, “enzyme binding”, “protein 
binding”, “binding”, “kinesin binding”, and “cytoskeletal protein binding” are the 
labeled nodes. The set of mapped nodes are those explicitly annotated to a pro­
tein, and the set of labeled nodes are those inferred from the ontology and the set 
of mapped nodes. This terminology will become useful later when evaluation is 
discussed.

Classification of protein function within the Gene Ontology vocabulary is a gen­
eral form of hierarchical classification in several ways. First, the hierarchy allows 
for multiple parents. In other words, the structure of the hierarchy is a directed- 
acyclic graph (DAG), where a node can descend from two or more parent nodes, 
such as in Figure 2.5 “Receptor Binding” descends from “Binding” and “Signal 
Transducer Activity”. This is a more general form of hierarchical ontologies that
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Figure 2.5: A protein (JIPl_MOUSE) and its GO annotations

Each protein can be assigned multiple terms. Also note that Receptor Binding has two parent terms 
making the ontology a Directed Acyclic Graph (DAG). Only part of the ontology is shown.

are tree-shaped, where a node can only have a single parent. Second, each protein 
can be assigned more than one mapped node in the hierarchy. This restricts the 
types of classification technology that can be used since the prediction system must 
be able to predict more than one label for each instance.

2.4 Related Work

2.4.1 Protein Function Prediction
The prediction of protein function is important to supplement the labour-intensive 
process of protein function determination. Predictions for the functions of proteins 
can help select likely candidates for further study, such as in pharmaceutical re­
search. Alternatively, when studying a single protein, function predictions can give 
good leads as to which experiments should be performed to further elucidate the 
protein’s functions. A variety of approaches to protein function prediction exist.
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One approach is to use the protein's structure (i.e. tertiary structure) to predict 
a protein’s functions [38]. Since this approach requires that the protein’s structure 
be solved (or at least predicted accurately) it provides limited coverage across all of 
the proteins in any particular organism.

Another approach uses documents describing proteins to predict the functions 
of these proteins [27]. This technique also has extremely limited coverage on a per- 
organism basis. Not only does information have to be published about a protein for 
this technique to work, but also the documents must be correctly associated with 
the protein in question (which documents discuss which protein may not always be 
easily discernible information) and correctly parsed, which may be difficult.

Coverage can be improved by using sequence-based approaches. By far the 
most commonly used method is BLAST [8]. BLAST is an efficient way to search 
a database of protein sequences for sequences similar to a query protein. Other 
techniques attempt to leverage the results of a BLAST search to make more accurate 
predictions [49]. However, merely validating BLAST results will not improve the 
coverage of a predictor. Furthermore, we demonstrate (Chapter 6) that BLAST does 
not work well for predicting functions when the most similar sequences found are 
below the 10-3 E-value threshold. We found that this often limits the coverage of 
these predictors to approximately 60% of the proteins in a proteome.

Proteome Analyst (PA) is another tool that utilizes BLAST. PA uses the anno­
tations associated with similar proteins to predict the functions of query proteins 
[46]. Proteome Analyst does not consider the hierarchy when creating its predic­
tors. However the hierarchy is used to create the pruned ontology shown in Figure 
2.7. Those nodes with a large number of annotated proteins are kept in the ontology, 
in a way that is consistent with the structure of Gene Ontology. That is, a node is 
never included in the ontology without its parent node being included as well.

Protfun [24] is another example of a sequenced-based predictor. It uses local 
sequence properties, such as predicted post-translational modifications, sorting sig­
nals and properties computed from amino acid composition as input for predictions. 
No a priori knowledge of the protein is required, other than its sequence. However, 
Protfun does not exploit knowledge of the hierarchy during the training of its clas­
sifiers, or during the selection of its ontology (Figure 2.6). Furthermore, the set of 
14 GO terms that it predicts is relatively small (and only 9 of the 14 nodes are part 
of the molecular function aspect of GO). In the future, we would like to incorpo­
rate biological features such as those used by protfun in local predictors using our 
training set design schemes.

Other methods attempt to represent sequences in more complex ways. PFAM 
uses Hidden Markov Models to represent protein families [12]. These Hidden 
Markov Models can then be used to predict whether unknown proteins fit into each 
of these protein families with varying degrees of confidence. We use these predic­
tors as features for some of our classifiers.

InterProScan [10] combines a variety of prediction and database tools into a 
single prediction system. When a query protein is run through InterProScan it is
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Figure 2.6: The ProtFun ontology

A general molecular function ontology, used by the ProtFun 2.2 prediction system. Solid nodes are 
those that ProtFun uses in its prediction ontology. Dashed nodes are those that are not in the 
ProtFun ontology, but are intermediate nodes of those that are included. Protfun also includes 5 
nodes from the biological process aspect of Gene Ontology, which are not shown.
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Figure 2.7: The Proteome Analyst ontology

A general molecular function ontology, created by pruning the original Gene Ontology vocabulary, 
and used by the Proteome Analyst online system.

assigned a variety of InterPro codes. Some of these codes can then be mapped to 
the Gene Ontology, if they represent functional classes. These InterPro codes are 
included within Proteome Analyst features, which are then incorporated into our 
prediction system.

King et al [26] present another approach that is only based on the existing an­
notations of proteins. The system examines existing annotations, and predicts an­
notations that often correlate with the existing predictions. This is done because 
the authors correctly observe that protein annotations are often incomplete. They 
note that protein annotations are incomplete because “...there are genes whose at­
tributes are not yet all known, and because there is literature that has not yet been 
digested by the database curators” [26]. However, in Chapter 4.1.4 we argue that 
even existing annotations are incomplete, because they may become more specific 
in the future. The methodology presented by King et al also suffers from a fact 
that functions that are often correlated may not always occur together. In CHUGO, 
each function is predicted individually, where correlations would occur as a natural 
result of the prediction process.

2.4.2 Hierarchical Classification

The machine learning literature has described attempts to utilize the structure of 
a hierarchical ontology to improve classification. Kiritchenko et al [28] used the 
hierarchy to increase the number of training instances at each node, by first making 
the training data for local predictors more consistent with the ontology. We extend

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



this work by investigating different degrees of consistency with the hierarchy when 
creating our predictors.

Koller and Sahami consider the hierarchy during the creation of training sets, 
and compare these results to considering the ontology without any structure [29]. 
Their results show a close predictive performance with the two methods where our 
experiments show a much wider gap. We believe this is because their hierarchy 
describes web documents, which can actually be classified to non-leaf nodes in 
the ontology, whereas in Gene Ontology a protein is assigned to a non-leaf node 
because of incomplete information. That is, we may know that a protein binds to 
a metal, but we may not know which metal. Therefore, with complete knowledge, 
we believe that all proteins should be annotated with leaf nodes in Gene Ontology, 
whereas in the classification of web documents, assigning an instance to a non-leaf 
node is valid.

Chakrabarti et al [15] and King et al [26] showed that the structure of the on­
tology can be exploited to define the structure of a Bayesian network. Similarly, 
the structure of the ontology can also be used to define the underlying structure of a 
hierarchical mixture of experts model [43]. Although our system does not use more 
complex models such as these, they could be combined with our training set design 
schemes to potentially increase predictive performance.

Sharma and Poole showed that when the semantics of the hierarchy are consid­
ered in a Bayesian Network, the computation of probabilities can be converted to 
an equivalent flat model for some given evidence [44]. Although their research is 
not directly related to ours, the fact that they consider the semantics of the hierarchy 
during prediction is related to the methods of training set construction presented in 
this dissertation.

Other research [35] has shown that a statistical technique known as shrinkage 
can be used to set the parameters in a hierarchy of predictors. Here, the ontology is 
exploited as prior knowledge to understand which classes are closely related, and 
thus, which parameters should have similar settings.

Dekel et al [18] use a hierarchy to change the formulation of Support Vector 
Machines with the hierarchy in mind. Wang et al [51] used a similar approach to 
modify the way Association Rules are created, keeping the hierarchy in mind. In 
principle, these approaches could be combined with our own.

It has also been observed [1] that a top-down decision model in hierarchical 
classification could have poor results since all predictors along the path to the true 
label must agree. Also, other methods of training individual term predictors were 
mentioned but not explored. Our methods of training set design allow for a more 
inclusive classifier in which the top-down model is more feasible, and thus we can 
reduce computational complexity without a resulting loss of precision and recall.
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2.5 Introduction to Tools
In general, predictors over a hierarchy fall into two categories: global predictors, 
and local predictors. Global predictors are executed once per protein, and predict 
labels over the entire ontology. For example, the commonly used sequence sim­
ilarity search tool, BLAST [8], can be used as a Nearest-Neighbor (NN) tool in 
the domain of protein function prediction. A typical use case of BLAST would be 
searching a trusted database such as Swiss-Prot for proteins similar to a protein of 
interest, such as JIP1-MOUSE. The results of a BLAST search would be proteins 
similar to JIPI-MOUSE (the nearest neighbors). The user would then examine the 
annotations of these similar proteins and then assume that JIPI-MOUSE performs 
the same, or similar functions. Since this process does not depend on the size of 
the ontology, its computational cost does not increase as the size of the ontology 
increases1. In general, all NN predictors can be used as global predictors.

In contrast, local predictors only predict a single label at a time. For example, 
a single local predictor would only predict whether a protein does or does not have 
the molecular function “transporter activity”. In machine learning, this is called 
a binary predictor because the output is one of two possibilities (“transporter ac­
tivity” or “not transporter activity”). Local predictors attempt to model a specific 
molecular function, and when given an unknown protein decide whether this pro­
tein belongs to this functional class of proteins or not. Since local predictors have 
the potential to model the subtle differences between molecular functions more ac­
curately, they have the potential to help improve the accuracy of protein function 
prediction. However, the overall computational cost of using local predictors is 
much higher than using a global predictor, and is dependent on the size of the on­
tology.

We use a variety of machine learning approaches and feature extraction meth­
ods. Support Vector Machines (SVMs) and Probabilistic Suffix Trees (PSTs) are 
used to create local predictions at each GO node. BLAST (a global predictor) is ex­
ploited for its accuracy and computational efficiency. The remainder of this Chapter 
will describe each in detail. Evaluations of each tool, and how the technologies are 
combined are discussed in Chapter 5.

2.5.1 BLAST
The results of a BLAST search against a database is a list of proteins that are similar 
to the query protein. This list of proteins is ordered according to how similar they 
are to the query protein. The user can decide which proteins are similar enough 
to their query protein and examine their annotations. However, proteins that are 
not similar to well-studied proteins will not return a good BLAST result, so the 
biologist must decide to either examine proteins that are not very similar to their 
protein of interest, to look for other sequence information, or to proceed with “wet

'BLAST'S complexity does, however, increase with the size o f the database being searched.
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Figure 2.8: A Support Vector Machine

A Support Vector Machine works by finding a hyperplane which splits the data according to its 
labels. Each dot represents a training instance. Black dots are labeled with one class, and white 
dots are labeled with the other. The dimensionality of the space in which the hyperplane is 
formulated is defined by the number of features that can be assigned to each instance. In practical 
applications the data is not as easily divided as shown in the figure. For a more detailed description 
of SVMs see Hastie et al  [23]. Image courtesy of Poulin [39].

lab” experiments (possibly without any initial idea of the protein’s function).
The results of a BLAST search are a set of protein sequences in the database, 

ranked by their similarity. Whether a BLAST result is good enough to accept as 
potentially homologous is decided by the user. The predictions are ranked and it is 
up to the user of the system to set a score for which the results are acceptable. We 
therefore use the same approach of setting this threshold such that precision and 
recall are maximized during evaluation. This is discussed further in Chapter 5.4.

BLAST is so commonly used that it has become a verb (e.g. “BLASTing a 
sequence”). Due to the ubiquitous use of BLAST, our system will be compared to 
BLAST in terms of predictive accuracy, coverage, and computational cost. Also, 
BLAST provides important information that can be used to increase the accuracy 
and decrease the computational cost of local predictors.

2.5.2 Support Vector Machines
Support Vector Machines [48] (SVMs) are a way of learning a classifier function 
(Equation 2.1) from labeled data, which have proven to be accurate in a wide range 
of machine learning applications. Other advantages of SVMs are that they have 
good theoretical justifications, and provide the ability to model data in higher di­
mensional spaces. SVMs work by splitting the feature space of instances, according 
to their labels (Figure 2.8).

For the input to SVM, each protein must be represented by a feature vector. 
We use two methods to represent a protein as a feature vector, which be discussed 
in detail seperately. SVMs are used to train local predictors for each molecular 
function term in the ontology.
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In Figure 2.8, the hyperplane is a linear discriminant. Support Vector Machines 
can use a dual formation that allows for the use of kernels, which allow hyperplanes 
to be non-linear in the feature space. Although these more complex formulations 
of SVMs sometimes prove to be more accurate, we limit ourselves to linear SVMs. 
We use linear SVMs because they prove to be very accurate on a wide range of 
problem domains, and their results are easily explainable to users. The linear SVM 
representation of the classifier function is:

/ ( x) =  sign(x - W - b )  (2.2)

The prediction for an instance, x  is predicted as positive if the sign of x ■ w — b 
is positive, and vice versa. Remember that each SVM is a local predictor for a 
single molecular function. So, for the SVM trained at the node “electron transfer 
activity”, the predictor tells us whether or not a protein enables the movement of 
electrons throughout or in between cells.

In Equation 2.2, the weight vector, W, and the bias term b are calculated during 
training. An advantage to using linear SVMs is that the weight vector and bias terms 
are meaningful. Figure 2.9 shows an example where the feature vector contains 4 
terms, and is run through a classifier function. The classifier function has been 
trained, and is represented by the weight vector W = <  0.95. -0.44,0,0.5 > , and 
the bias term b = 0.6.

The instance being predicted contains features < xi ,  x 2,x z  >, whereas the 
feature x 4 is absent. These feature could represent any property of the instance 
(such as the protein’s tertiary structure, or biochemical properties) and in general 
could be real values. For simplicity, consider the case when the features are either 
0 or 1 depending on whether the associated token is present or absent from the 
instance, respectively.

In Equation 2.2, the two vectors x  and w are combined using the dot product, 
which is the sum of the product of each vector’s components (Equation 2.4). Since 
the dot product is intuitive, each term in the sum of Equation 2.4 can be thought of 
as a contribution to the prediction of the SVM. Therefore, x x will contribute 0.95 to 
the prediction (a positive contribution) since it is present, x 2 will contribute -0.44 to 
the prediction (a negative contribution) since it is present, and x :i will not contribute 
anything to the prediction of the SVM classifier (since it is probably uncorrelated 
with the predicted label). Finally, x4 contributes nothing to the prediction since its 
associated token is not present in the instance. The final prediction of the classifier 
is negative for this particular function. In real-world applications the feature vector 
is often thousands of terms long, which makes the training of an SVM much more 
difficult than this simple example suggests. Therefore, a standard SVM library is 
usually used to implement the SVM model. We use the LIBSVM [16] implemen­
tation of SVMs.

This example shows that linear SVMs show great potential for explainability 
[41]. To users of the system, the predictions can be made intuitive by viewing
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i X i W i X i  w \

1 1 0.95 0.95
2 1 -0.44 -0.44
"> 1 0 0
4 0 0.5 0

b =  0.6 (2.3)
f ( x )  = sign(x ■w — b)

- sign(^2(xiWi) -  b) (2.4)
j=i

=  sz^n((0.95 — 0.44 +  0 +  0) — 0.6)
-  $ign(—0.09)
=  negative

Figure 2.9: SVM Transparency

An example showing how the results o f a linear SVM prediction are interpretable by users. Each 
feature's contribution to the prediction is that feature's value (x,)  multiplied by the corresponding 
weight in the classifier function (To,).

each feature’s contribution to the final prediction. Because we want to build user 
confidence in the prediction system, we believe this transparency of predictions is 
vital to an automated system, and thus linear SVMs are used for all experiments.

PFAM SVM

The PFAM database [12] is a collection of domains shared by functionally similar 
proteins. Each PFAM domain is created by first performing a multiple sequence 
alignment on a set of similar proteins (similar in terms of function and/or structure). 
These domains are then used to construct Hidden Markov Models, which can then 
be used to detect these domains in others protein sequences. A single protein may 
contain more than one PFAM domain.

For our predictors, each protein is run through HMMer [20], which detects 
PFAM domains in sequences. If a protein has a PFAM domain, this domain is 
used as a feature describing the protein. Currently, there are over 7000 domains in 
the PFAM database.

Proteome Analyst SVM

Proteome Analyst (PA) is a tool used for predicting the general function [46][47] 
and subcellular localization [34][33] of proteins. The PA tool works by taking an 
input protein sequence, and finding similar sequences in Swiss-Prot using BLAST.
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PA then extracts information from the annotations of these similar proteins from 
Swiss-Prot. This information is then used as features for a naive Bayes classifier.

For our experiments, we use Proteome Analyst to extract features for proteins 
in the data set. Although the web-based Proteome Analyst site uses naive Bayes 
classifiers, for our experiments, PA is used to extract features, which are then used 
to train Support Vector Machine classifiers. An SVM classifier is trained using PA 
features for each node in the ontology.

2.5.3 Probabilistic Suffix Trees
Probabilistic Suffix Trees [13] (PSTs) are a way of representing strings as variable 
length Markov chains. Since proteins can be represented as a string of amino acids. 
PSTs readily apply. PSTs have been shown to be good predictors of molecular 
function in the past [39].

Given a protein sequence (such as the one shown in Figure 1.2), s = s i . . .  sm, 
where s* represents a single amino acid, we can create a probability model of a set 
of sequences using a Markov chain [39]:

P (.s)  =  P { $ i S 2 . . . S m - i S m ) (2.5)

=  P ( .S i ) P ( s 2 | s i ) P ( s 3 |s iS 2) . . .

P(^m—1 |^i - • - STn_2)P (5 nj|Si . . . Sm -i) (2.6)

=  P ( 5 l ) P ( S 2 |S l ) P ( 5 3 | 5 2 ) . . .

P(Sm -l|sm-2)P(Sm|Sm-l) (2-7)
m

=  P ( s l ) l [ P { s i \ s i- 1) (2 .8 )
i= 2

Going from Equation 2.6 to Equation 2.7 is done through the first-order markov 
assumption. We investigate several n-order markov models in Chapter 5.3. Al­
though it may initially seem non-sensical to look at individual amino acid distribu­
tions in a protein to predict function, it does prove to be accurate for some functions 
[40]. Other functions depend on larger functional domains, and these are modelled 
by varying the value of n.

To make a local predictor for molecular function using PSTs, we create a model 
for the proteins annotated with a molecular function (the positive model, P+(.s)), 
and also a model for those that are not (the negative model P_ (s)). The probabilities 
of these two models are then combined into a single score using a log-odds ratio 
(Equation 2.9). We then find the log-odds ratio threshold that maximizes precision 
and recall during cross-validation for each PST local predictor. This score is then 
used for future predictions.

log-odds ratio (s) =  log (2-9)
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2.6 Summary
Protein function prediction is an important problem in Bioinformatics. Machine 
learning has proven to be an effective way of leveraging the vast amount of data that 
has come out of many proteomic sequencing projects. Hierarchical ontologies such 
as Gene Ontology provide a standardized set of terms describing protein functions.

Recent work has shown that the hierarchical structure of these ontologies demon­
strate great potential for improving the quality and efficiency of machine learning 
algorithms. We use a wide variety of bioinformatics approaches to predict protein 
function, and will attempt to leverage the hierarchy to improve the quality of these 
predictors.
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Chapter 3

Hierarchical Classification using 
Local Predictors

There are several considerations for evaluating a prediction system over a hierar­
chical ontology such as GO, as opposed to a flat ontology. These considerations 
stem from the fact that the predictions must be consistent with the semantics of 
the hierarchy. This Chapter first discusses data set construction for the experiments 
described in this dissertation. Then, the issues that are imposed by working within 
the context of a hierarchical ontology are addressed. Finally, the use of traditional 
machine learning predictors in the context of hierarchical classification is examined 
using a specific local approach.

3.1 Data Set
Our data set consists of protein sequences, and their respective molecular functions. 
This data set is created using a combination of three sources: the Gene Ontology 
controlled vocabulary, the UniProt protein database, and the Gene Ontology Anno­
tation project’s annotations for proteins in the UniProt database.

3.1.1 The Gene Ontology controlled vocabulary
The molecular function ontology is taken from the Gene Ontology website [4]. The 
Gene Ontology contains three aspects of protein annotation (Figure 2.2), but all 
experiments in this dissertation focus on the molecular function aspect. The August 
28,2004 version of the GO molecular function ontology is used.

The ontology defines the possible molecular function annotations. These are 
standardized terms used to describe potential functions that proteins perform, and 
the structure of the ontology defines the logical relationship between these terms. 
These functions range from general (near the root of the ontology), to specific (near 
the leaves of the ontology).
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Since the knowledge of biological systems is constantly changing, the Gene On­
tology Consortium regularly releases new versions of the ontology. As knowledge 
about the possible functions of proteins is gained, terms are added to the ontol­
ogy. As our understanding of this knowledge changes, the structure of the ontology 
can change. Terms may be removed if they are felt to be redundant, the wording 
of functions may be changed if their intent is unclear, and parts of the ontology 
may be restructured if they do not adhere to the intended semantics of the hier­
archy. Although the ontology is not perfect, there is a great deal of information 
about biological knowledge encoded within its structure that will be useful in later 
experiments.

3.1.2 The UniProt Database
Our protein sequence data is obtained from the UniProt database [11]. The UniProt 
database consists of protein annotations, along with protein sequences. Release 27 
of TrEMBL, and release 44 of Swiss-Prot (which together comprise UniProt release 
2.0) are used.

The UniProt database is a joint database, containing Swiss-Prot and TrEMBL 
databases [14]. The Swiss-Prot database contains high-quality, human-curated pro­
tein annotations. The TrEMBL database contains electronically annotated proteins 
that have not yet been added to Swiss-Prot. Although the annotations in TrEMBL 
are of a lower quality, we only use the sequence data, which is reliable. Initially, 
our data set was created using only proteins from the Swiss-Prot database, since it 
is often considered to be of higher quality. However, our experiments have shown 
that each predictor has performed similarly on the entire UniProt database, which 
shows that the GOA annotations for proteins in the UniProt database, and the se­
quence data itself is of consistent quality with the Swiss-Prot database. Using the 
UniProt database also results in a larger ontology after pruning. The Gene Ontol­
ogy annotations for the proteins are derived from the Gene Ontology Annotation 
project.

3.1.3 The Gene Ontology Annotation Project
The Gene Ontology Annotation (GOA) project [3] at the European Bioinformatics 
Institute assigns GO terms to proteins in the UniProt database. Each of these an­
notations is accompanied by an evidence code, which states how each was derived. 
To create a reliable data set, only those annotations that were not assigned using 
computational methods are used. As shown by evidence codes, all experiments in 
this dissertation were derived from a biological experiment, rather than a computa­
tionally predicted annotation. This allow for more confidence in the labellings, and 
ensures that as little bias as possible is introduced into the data set, while keeping 
the data set large. Bias is impossible to avoid completely, since the biologists an­
notating proteins will have an inherent bias as to which will be studied, and due to
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inherent flaws in experimental methods. The August 11, 2004 version of the GOA 
mapping file is used. Table A.l (in Appendix A) shows how many annotations exist 
for proteins in Swiss-Prot and UniProt for each of these annotation codes.

Annotation evidence codes that are included in the data set:

1. IDA (inferred from direct assay) - Refers to a biological experiment using 
direct assays.

2. IEP (inferred from expression pattern) - The annotation is inferred from 
the timing or location of expression of a gene, as measured by an experiment.

3. IGI (inferred from genetic interaction) - Experimental data about interac­
tions between genes.

4. IMP (inferred from mutant phenotype) - Annotations derived from muta­
tions or abnormal levels of products.

5. IPI (inferred from physical interaction) - Interaction data such as yeasty- 
hybrid interactions.

6. TAS (traceable author statement) - Knowledge with a traceable experi­
ment, or “common knowledge”, as in text books, etc.

Annotation evidence codes that are not included in the data set:

1. IC (inferred by curator) - Annotations that are reasonably inferred from 
existing GO annotations. Since we do not know how the annotations that 
these are inferred from were obtained, we exclude these annotations.

2. IEA (inferred from electronic annotation) - These annotations are obtained 
through some form of computational method such as BLAST, or from another 
database. In the former case, we can not assume BLAST will elucidate the 
true function of a protein, and in the latter case we do not know how the entry 
was annotated.

3. ISS (inferred from sequence or structural similarity) - This is a computa­
tional method.

4. NAS (non-traceable author statement) - Since this knowledge is not trace­
able, it is ambiguous.

5. ND (no biological data available) - Ambiguous.

6. NR (no record) - Ambiguous.

The final dataset consists of 14,362 proteins, each labeled with their experimentally- 
verified functions. UniProt provides the proteins, Gene Ontology provides the on­
tology, and the GOA project provides the molecular function annotations for many
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of the proteins in UniProt. The combination of these sources maps proteins to the 
Gene Ontology hierarchy of terms, as depicted in Figure 2.5. Only those proteins 
in the UniProt database that have valid annotations in the GOA project are kept in 
our dataset.

There are 7,399 nodes in the August 11, 2004 version of the GO molecular 
function hierarchy. However, to create accurate local GO term predictors, a suffi­
cient number of positive training instances is required. Therefore, only those GO 
terms that have at least 20 proteins annotated at or below them in the hierarchy are 
considered. This decreased the size of the ontology to 406 nodes. More statistics 
about the hierarchy are summarized in Table A.2 (in Appendix A), and the entire 
ontology is shown in Appendix C.

3.2 Evaluation Issues within a Hierarchical Ontology
To be able to objectively evaluate a prediction system, two requirements must be 
met. First, a quantifiable measure of the quality of predictions is required to com­
pare various methods. There exist standard measures of precision, recall, and ac­
curacy for traditional classification problems [33], but these measures do not apply 
to the case when instances can have one or more labels. Also, when the ontology 
has a structure, different types of errors should be scored differently, whereas in tra­
ditional evaluation schemes all prediction errors are treated uniformly. With some 
modifications, the traditional precision and recall metrics can be modified to extend 
to hierarchical classification and multiply labeled instances. Several other measures 
have also been proposed in literature, and they will be examined as well.

Second, predicting the function of unknown proteins is the ultimate goal of this 
thesis. Thus, the prediction process should simulate the classification of unknown 
proteins when evaluating performance. In machine-learning terminology, test error 
(prediction quality on previously unseen instances) is considered more important 
than training error (prediction quality on the data used for training). Traditionally 
this is accomplished using hold-out sets, or cross-validation [7], This causes com­
plexities in the context of hierarchical classification, and must be dealt with care­
fully. The following two sections of this Chapter will address these requirements in 
detail.

3.2.1 Scoring Predictions

Proteins can be assigned multiple labels (each protein is assigned an average of 1.35 
experimentally verified functions in GOA). However, some classifier technologies 
can only predict one label per instance. Two options are available. The first is 
to try to change the formulation of a classification algorithm so that it can predict 
multiple functions. Another approach in such cases is to build a series of “local” 
binary predictors that predict “yes” or “no” for each term in the ontology. These
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Table 3.1: Binary Confusion Matrix

A confusion matrix is a visual representation of predicted labels vs. known labels for each instance 
that has been run through a binary classifier. Each of these entries are mutually exclusive.

Predicted Positive Predicted Negative
Known Positive 
Known Negative

True Positive (TP) 
False Positive (FP)

False Negative (FN) 
True Negative (TN)

are called binary since they predict one of two values, and local since they predict 
for a single node in the ontology.

A binary classifier is trained for each term in the ontology, and during the pre­
diction process, each classifier returns a positive or negative prediction for their 
corresponding term in the ontology. For example, the local predictor for the GO 
node “enzyme inhibitor activity” only predicts whether an instance does or does 
not perform the function of inhibiting the activity of an enzyme.

When evaluating the predictions of a single binary classifier, there are four cat­
egories that each prediction can fall into: True Positives (TP), False Positives (FP), 
True Negatives (TN), and False Negatives (FN), which are summarized in Table 
3.1. This arrangement of predictions for a classifier is called a confusion matrix. 
For example, if an instance is known to be a positive, but the classifier predicts 
negative, then this instance is a False Negative, and so on.

The precision measure, shown in Equation 3.1, shows how many of the positive 
predictions from a binary classifier were actually labeled with that term. Recall, 
shown in Equation 3.2, is the percentage of the positive instances that are predicted 
as positive by the predictor. An ideal classifier has high precision and high recall.

T P
Precision = T p  + F p  (3.1)

T P
Recall = — ----—  (3.2)

T P  + F N

If a molecular biologist is using a predictive system to obtain an idea of a pro­
tein’s function, precision and recall would have different levels of importance de­
pending on the situation. If the biologist is concerned with having those functions 
that are predicted as positive as being very likely to be correct, then precision should 
be high. In this case, this is usually accompanied by an increase in correct functions 
being predicted as negative (false negatives). If the biologist is concerned with mak­
ing sure all of the true functions are predicted as positive, then recall should be high.
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Similarly, there will often be an increased amount of incorrect positive predictions 
(false positives).

To optimize a predictive system, a single measure of its performance is required. 
A first approach may be to use accuracy (Equation 3.3). However, when working 
within a large ontology where most of the labels are negative, accuracy will always 
be high when a small number of labels are predicted, even if our predictions are not 
correct at all. In the data set used for experiments, approximately 2% of the terms 
are assigned to each protein on average, which leaves 98% as negative. Accuracy 
tends to be high in this case because True Negatives (TN) would dominate the 
accuracy score, keeping it high even when prediction quality is intuitively poor.

An alternative is to use an average of precision and recall. This is a standard 
machine learning approach, and is called the F-measure, shown in Equation 3.4.
F-measure uses a harmonic mean as a weighted average of precision and recall.
When (5 is set to I, precision and recall are given equal weighting. As the value 
of 0  increases from 1, recall is given more weight. As the value decreases from 
1, precision is given more weight. 0  can be adjusted in accordance with which 
measure is considered more important. For all experiments, we use 0  =  1.

T P  + T N
Accuracy = ——— ——----— ----—— (3.3)

T P  + T N  + F P  + F N

_ (0~ + 1 )  x Precision x Recall
F  -  measure = v--— ---- ---------— — ---- — , 0  £ 0, oo (3.4)

p~ x Precision +  Recall

These measures work for a single classifier, whether it be binary or multi-class, 
as long as a maximum of one label can be predicted per instance. However, since 
proteins can be assigned multiple positive labels, these measures do not apply in 
their current form.

3.2.2 Scoring Predictions in a Hierarchy
In hierarchical classification, all resulting predictions must obey the true path rule. 
Therefore, as a post-processing step, all positive predictions are propagated upward 
in the ontology. This means that even if a protein could only perform a single func­
tion, a single annotation would represent multiple terms in the hierarchy. Therefore, 
the issue of multiply labeled instances implicitly applies to all prediction within a 
hierarchy, not just when multiple terms are explicitly assigned to instances.

One solution is to compute precision and recall for each local predictor as shown 
above, and then average the results. This is also called hierarchical macro averag­
ing [36] by Moskovitch et al. This approach however gives each class in the hier­
archy equal weighting. A class that may describe half of the instances is given the 
same weighting as a class that describes only 1% of instances. Another approach 
is to compute scores for each instance and average these scores. This approach is
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called hierarchical micro averaging [36]. Here, equal weight is given to proteins 
regardless of how many functions they serve, or how many functions are predicted 
for each. Both approaches suffer from bias. Our approach however is based on pre­
dicted and annotated labels, and therefore class distributions are intrinsically taken 
into account.

Intuitively, predictions that are "close” to the correct label should score bet­
ter than predictions that are in an unrelated part of the hierarchy. An evaluation 
methodology should be simple, intuitive, and consistent with the true path rule. For 
the evaluation methodology we first take the predicted labels for each protein, and 
add all of these labels’ ancestor nodes in the hierarchy to the set of predicted la­
bels. This makes the prediction consistent with the true path rule. If the protein has 
another predicted label in an unrelated part of the hierarchy, those labels and their 
propagated labels are also added to the set of predicted labels. This propagation 
is applied to the correct labels for proteins as well. Now that both the labeled and 
predicted sets are computed for a protein, the True Positive, True Negatives, False 
Positives, and False Negatives are tabulated between these two sets. This is done 
for each protein in the data set, and TP, TN, FP, and FN are calculated over the 
entire set. Then, the formulas for precision and recall are applied as usual.

Failure to follow the true path rule, leads to distorted evaluation metrics. In­
corporating propagation into the evaluation of predictions allows for a graduated 
scoring system where distance in the ontology is intrinsically taken into account. 
Hierarchical precision and recall reflect how close, conceptually, predictions are to 
the correct labels in the ontology.

For example, consider a term hierarchy where A is the parent of B  which is the 
parent of C  (Figure 3.1). Assume that protein Pj is labeled {B }  by an oracle and 
protein P2 is labeled {C }  by an oracle. By the true path rule, the labeling really 
should be {A , B }  for Pi, and {.4. B . C}  for P> after propagation (shown by circles 
in Figure 3.1). Assume that for protein Pi we predict the label to be {C }, which is 
different than the oracle. By the true path rule, we then predict the labels {A. B,  C}  
(shown by x’s in Figure 3.1) for P t as well. Similarly, for P2 we predict the label 
to be {B}  and propagate to get {.4. B}.  Both of the initial labels for Pi and P2 
are different than the oracle, which misleadingly suggests a poor prediction. But, 
hierarchical precision and recall allow for an evaluation scheme which is more in 
tune with intuition.

Despite the differences with the oracle, our prediction for Pi should have perfect 
recall, since it correctly recalled that P\ has terms {A. B}.  But the precision is 2/3 
since only 2 out of the 3 predicted labels were correct, which is an intuitively sound 
penalty for the imperfect prediction. Similarly, our prediction for P2 should have 
perfect precision, since every predicted term is correct, but recall is 2/3 since only 
2 out of 3 correct labels were recalled. This example shows that predicting too 
high in the hierarchy (i.e. P2) reduces recall, but does not affect precision and that 
predicting too low in the hierarchy (i.e. Pi) reduces precision, but does not affect 
recall. Lastly, a prediction that is in the wrong part of a hierarchy altogether (not
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Instance A B C Precision Recall

P i (x ) (x) X 2/3 2/2

P? (X) o 2/2 2/3

X = Predicted 
Q  = Labeled

Figure 3.1: An Evaluation Example

Predicting too deep in the hierarchy (e.g. P i ) results in high recall but at a cost o f precision. 
Predicting too shallow in the hierarchy (e.g. A )  results in high precision but at a cost o f recall.

shown in the example) will have neither high precision nor high recall. The ability 
to handle close predictions and altogether wrong predictions are important aspects 
of this hierarchical evaluation methodology.

The original, formal presentation of this approach to multiclass precision and 
multiclass recall was made by Poulin [39] and in this dissertation, it is extended to 
hierarchies by propagating labels according to the true path rule. Independently, the 
same approach was used by Kiritchenko et al [27], also in the domain of GO, and a 
formal definition was published later [28]. These measures are known as hierarchi­
cal precision and hierarchical recall. A similar scoring metric was also presented 
by Wu et al [53], but it is a single measure, and thus lacks the intuitive value of pre­
cision and recall. Since all experiments are within a hierarchy, precision and recall 
will be used to refer to hierarchical precision and hierarchical recall respectively for 
the remainder of this dissertation.

Other approaches, such as the one presented by Lin [31], have attempted to 
model the distances between classes in the hierarchy by using information content 
of the classes. Lord et al have shown that these measures do correlate with se­
quence similarity [32], however there are two problems with this approach. First 
the assumption in the paper is that sequence similarity from BLAST is the ground 
truth for representing Gene Ontology classes. Second, all of the measures presented 
lack the ability to represent both precision and recall in an intuitive manner within 
a hierarchy that our measures of hierarchical precision and hierarchical recall have.

The major downside to our approach is that it assumes that each edge in the 
hierarchy represents the same distance. For example, it is unclear how the distance
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between the nodes “nucleic acid binding” and “DNA binding” compares to the dis­
tance between the nodes “kinase regulator activity” and “kinase inhibitor activity”. 
Several attempts have been made to quantify these differences [31] [51] [50]. How­
ever, in this dissertation we do not attempt to address this issue, opting instead 
for our evaluation measures which provide the intuitive measures of precision and 
recall.

Another important aspect of evaluating predictions is coverage. Coverage is 
the percentage of proteins for which we are able to make predictions (Equation
3.5). If no predictions are given for a protein whatsoever, the prediction system has 
not contributed anything to the knowledge of the protein and coverage would be 
lowered. Therefore, a predictive system should have a high coverage to push the 
bounds of protein annotation as much as possible, while retaining high precision 
and recall so that the predictions are useful.

N um berO flnstancesW ithPredictions  
COVeraSe =  T^alNumberOflnsta— ,   ( 3 ' 5 )

The measures of Precision, Recall, and F-measure will be given the most im­
portance when evaluating experiments throughout this dissertation. Although recall 
indirectly measures coverage, the issue of coverage will be addressed when it is rel­
evant.

3.2.3 Cross-Validation in a Hierarchical Ontology

A classifier may perform well on the training data (the data given to create the 
classifier), but users of a classification system are generally more concerned with 
how well it will perform on new instances. That is, when we are faced with an 
unknown protein (that was not in the training set), we wish to know how well we 
can predict its molecular function. Although this is impossible to know exactly, 
there are several ways of approximating the prediction of unknown proteins for 
evaluation purposes.

The simplest method is to divide the entire data set into two parts. The first 
part is used as the training set, and the second is used as a testing set. This method 
is called hold-out validation, and ensures that during the creation of the classifier, 
there is no knowledge of the testing set. When the evaluation is performed, we 
simply measure the performance of the classifier on the test set. The problem is that 
the set chosen for evaluation may have a disproportional amount of proteins that the 
classifier performs well or poorly on. Therefore, the result of the evaluation in hold­
out validation may not be indicative of the performance of the final classification 
system applied to unknown protein sequences.

To address this problem, a technique called cross-validation is often used (Fig­
ure 3.2). For all experiments, 5-fold cross-validation is used. In 5-fold cross- 
validation, the data set is first split up into 5 parts of equal size. Then, for 5 it­
erations, one fold is withheld as the test set, and the remaining 4 folds are used as
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Figure 3.2: 5-Fold Cross-Validation

In iteration 1. fold 1 is used as test data, and all other folds are used as training data (shown in 
fisure). For 5 iterations, each fold is used as testing data, and all others are used as training data.

the training set to create classifiers. Precision, recall and F-measure are computed 
for the predictions made for each fold. The statistics for the 5 folds are averaged 
to give an accurate representation of the predictive performance of the classifier on 
future instances.

An advantage of cross-validation is that it helps guard against the problem of 
overfitting. Overfitting refers to a classifier performing very well on training data, 
but poorly on new, test data. Since cross-validation simulates the process of predict­
ing on unknown data, overfitting can be recognized by poor predictive performance 
during cross-validation.

When evaluating a system of local predictors in a hierarchical classification sys­
tem, this limits the way in which cross-validation can be performed. One approach 
is to perform cross-validation on each of the local predictors individually. This way, 
when splitting the data set into 5 folds at a node, we can ensure that a sufficient 
number of positive training instances are kept in each of the folds. The classifiers 
trained for each fold will then perform similarly to the classifier in the final system. 
This method will be referred to as local cross-validation.

In the absence of a hierarchical ontology, local cross-validation is sound. The 
problem with local cross-validation is best illustrated with an example. Suppose 
protein Pi is annotated with labels A  and B  (as in Figure 3.1), and that the local 
cross-validation folds at A  and B  are not identical. Now, consider the case when the 
predictor for node A  predicts negative and the predictor for node B  predicts positive 
for Pi. Since our predictions must obey the true path rule, we may choose to prop­
agate the positive prediction at B  upward in the ontology1. During this propagation 
the negative prediction at A  must be overridden with a positive prediction. Thus, 
there is interaction between the predictions for A  and B. During cross-validation, a

'The argument can be reversed if we choose to propagate negative predictions downward instead 
of predicting positive predictions upward. Either way the predictions must be consistent with the 
true path rule.
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predictor can only use those instances within the current fold’s training set to make 
predictions. Since the training sets were not the same (due to different splits of 
the data into folds) at A  and B, the prediction at B  used data which was in ,4’s 
training set. and in £?’s testing set, indirectly. This is a violation of the purpose of 
cross-validation, since in testing data has an influence on prediction.

Therefore, in hierarchical classification, the protein should either be in the test 
set (1 fold) or the training set (the remaining 4 folds) in a consistent, global manner 
across all GO terms and nodes. This strategy will be referred to as global cross- 
validation. With this approach, protein Pi is always in the same fold (e.g. fold 2 of 
5) for all nodes. Thus, when globally evaluating the fold containing Pi, no predictor 
for any node should use knowledge of Pi directly, or indirectly. However, a global 
split of the data into folds that both maintains the local node distributions (the num­
ber of positive and negative training instances are constant across the folds at each 
node) and is globally consistent in assigning instances to folds may be difficult to 
obtain. For example, if we try to preserve the distribution of a specific label, then 
by splitting the instances into folds within this label, we may have forced another 
label’s training data distribution to become vastly different from the original data 
set (since a global partitioning of the data is being used). Failure to maintain local 
node distributions results in fewer training instances for some folds, which results 
in poor classifier performance. As discussed above, failure to do global fold assign­
ment leads to an inconsistent use of training versus test instances. To obtain good 
accuracy, the number of positive and negative training instances in each fold should 
be approximately the same.

The first approach was to ignore local node distributions. The training set was 
randomly split into 5 folds, and these folds were used to evaluate the predictors 
during cross-validation in a consistent manner using the scoring method presented. 
Other approaches will be discussed in Chapter 4 of this dissertation to address the 
local node distribution problem.

3.3 Predicting Protein Function with Local Predic­
tors

Table 3.2 shows the results of evaluating PA-SVM predictors (Proteome Analyst 
features for SVMs) for each node in the Gene Ontology hierarchy. Precision is 
quite high, but the method suffers from a low recall.

In this case, the PA-SVM predictors for each node in the ontology must be 
computed for each query sequence. This can be costly, especially when compared 
to the low cost of running a global predictor such as BLAST. The cost in Table 3.2 
is the number of predictors that had to be computed for each protein. In this case, 
since there is one predictor for every node in the ontology, and there are 406 nodes 
in our pruned ontology this cost is the execution of 406 local predictors.

One approach to lowering the computational cost of predicting in a hierarchy
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Table 3.2: Training local predictors using Proteome Analyst features

An SVM classifier is trained for each node in the GO hierarchy. Statistics shown are during global 
cross-validation. Precision. Recall, and F-measure are all the hierarchical variants presented in 
Chapter 3.2.1.

Measure Value
Precision 0.758

Recall 0.328
F-measure 0.458

Cost per Protein (Number of 406
Local Predictors Computed)

Table 3.3: Lowering the cost of using Local Predictors.

A top-down approach is used to lower the computational cost o f predicting within the hierarchy. 
The computational cost cannot be lowered with this method without a significant penalty to recall.

Method Precision Recall F-measure
Average Cost 
per Instance

All PA-SVM 0.758 0.328 0.458 406
Top-Down PA-SVM 0.572 0.002 0.004 10

TD-1 PA-SVM 0.719 0.099 0.173 72
TD-2 PA-SVM 0.728 0.163 0.266 181
TD-3 PA-SVM 0.749 0.232 0.354 291

is to use a top-down decision model. In a top-down model, we start at the root 
node, and check all children nodes. If any of the children node’s local predictors 
predict positive, then those terms are added to the list of predicted labels and we 
test the child nodes of the positive predicted labels. Then we recursively apply the 
decision algorithm until we reach the leaves of the ontology, or until all current 
local predictors predict negative.

The results of using a top-down model (also called a pachinko machine [29]) 
are shown in the row marked “Top-Down” PA-SVM in Table 3.3. This method has 
lowered the cost of prediction from running 406 predictors to an average of 10 per 
protein. However, the recall of the predictor has been significantly reduced.

The loss of precision by using the top-down approach may be counter-intuitive 
initially. One reason for this is that general classes may be harder to represent 
than more specific classes. These general classes actually contain more variation 
in functional classes that more specific ones. This point was also previously made
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by Wang et al [51]. A top-down approach requires that predictors near the root be 
accurate. Otherwise the prediction system will not make predict beyond high level 
nodes.

One way to address this problem is to not record the decision made at a node 
permanently. For instance we could allow a negative prediction at a node, and 
still compute the children nodes. The approach called “TD-1 PA-SVM” uses this 
technique, and computes children nodes of a negative prediction once. If a node, 
and all of its children nodes predict negative, then the search stops. The other 
approaches, “TD-N PA-SVM” use the same approach, but they accept N  negative 
predictions in a row during the top-down search. In this approach, if a node predicts 
negative, and one of its descendant nodes predicts positive, the true path rule is used 
to override the negative prediction.

However, no matter how much the cost is lowered, the prediction system will 
still produce low recall. Also, when the recall is almost as high as computing all 
local predictors (TD-3 PA-SVM), then the cost is not much lower than computing 
all nodes. Leaving out some nodes from the prediction can only increase precision, 
and will often reduce recall. In Table 3.3 we can see that recall is in fact the area 
that this prediction technique suffers the most. Therefore, before considering low­
ering the computational cost of using local predictors, we must first increase the 
predictors’ recall.

3.4 Summary
The data set used for experiments is a combination of three reliable sources: the 
Gene Ontology Annotation project at EBI, the molecular function aspect of the 
Gene Ontology, and sequence data from the UniProt database. We only use those 
protein annotations that correspond to reliable experimental results when creating 
and evaluating predictors. This way we introduce the least amount of bias as possi­
ble into our predictors.

When predicting within a hierarchical ontology such as GO, the issues of eval­
uation functions, and cross-validation must be revisited. Even when not predicting 
within a hierarchical ontology, but when multiple labels per instance are valid, the 
evaluation functions must be readdressed. We present a way of addressing these 
issues in the context of protein function prediction, but they apply to hierarchical 
classification in general.

Finally, we showed that building a local predictor at each GO node using Pro- 
teome Analyst features for SVMs produces a classification system that has high 
precision but low recall. Furthermore, each local predictor must be computed for 
every query protein. We can lower the cost of this predictive system by using a 
top-down decision model, however we notice a large negative impact to precision 
and recall with this approach.
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Chapter 4 

Hierarchy-Aware Local Predictors

In Chapter 3, local predictors were created without fully exploiting the structure 
of the Gene Ontology. The ontology’s structure was considered during evaluation, 
since doing otherwise would be unsound (it would violate the true path rule), but 
the structure was not considered during the construction of local predictors. Fur­
thermore, during prediction time it was difficult to lower the computational cost 
of prediction without penalizing predictive performance. In this Chapter, the cre­
ation of local predictors will be readdressed with the ontology’s structure in mind 
to attempt to create better predictors.

The issues that were addressed in Chapter 3 -  global cross-validation and a scor­
ing scheme -  still apply here, since these issues are independent of how predictors 
are created and used. However, the issue of global cross-validation is revisited, to 
attempt to maintain local node distributions between folds. No matter which pre­
diction method is used, the same scoring methodology is applied. Therefore, the 
issue of scoring predictions will not be readdressed.

First, the issue of training set construction of local predictors is explored. It is 
shown that local predictors can perform better when the hierarchy is considered dur­
ing their construction. A spectrum of methods are explored for training set design, 
and each is evaluated.

Second, the idea of lowering the computational cost of prediction using local 
predictors is revisited using a new training methodology. When using an inclusive 
training strategy (defined later in this chapter), the top down approach can reduce 
computational cost without incurring a large penalty to precision and recall.

The issue of global cross-validation is then readdressed. Better splits of the data 
are found so that a sufficient number of positive training examples are maintained 
across each fold during cross-validation. The effect of this fold design is evaluated.

4.1 Training Set Design
For local predictors, we must train classifiers before any prediction is performed. 
To obey the spirit of cross-validation, only those sequences in the current fold’s
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training set can be used to create the local predictors for each GO node. However, 
it is valid to use the sequences in the training set in any way to create each node 
predictor, therefore a spectrum of methods which we denote exclusive to inclusive 
will be compared.

4.1.1 Exclusive vs. Inclusive Classifiers
During the construction of a local predictor, the proteins that will be used to rep­
resent the positive model (representing this particular molecular function), and the 
negative model (those outside the particular molecular function) are selected. In 
Chapter 3, we chose all those proteins which w'ere explicitly assigned a GO term 
.V as that term’s positive training data, and all other proteins as the term’s negative 
training data. This approach is the traditional method used to create classifiers when 
the ontology is fiat.

However, this approach ignores the relationships between the terms in the on­
tology when creating the training set. Although this approach may seem naive, this 
training set design could, in theory, produce a classification system that predicts 
perfectly in terms of hierarchical precision and hierarchical recall. In fact, previous 
research in hierarchical classification has shown that this method can perform quite 
well on some data sets [29].

Intuitively, when using this approach for training set design, we are creating a 
local predictor that will only predict positively for those proteins that belong exactly 
at this node, and not to any more general or specific node, as shown in Figure 4.1. 
Those proteins which belong at a particular node are predicted as negative by all 
local predictors1 except for the one where it belongs (according to the GOA anno­
tations). We call these classifiers exclusive classifiers, since proteins are excluded 
from all nodes except for the exact location where it is annotated. Of course, a post­
processing step is needed if an exclusive classifier is used, since all parent nodes of 
the predicted node would be added to the prediction to satisfy the true path rule. 
This should not be regarded as an error in prediction since the exclusive classifier 
is behaving exactly the way it has been designed -  to pick the most specific node in 
the hierarchy that applies to the protein.

However, as Chapter 3 showed, this approach did not show promising results in 
terms of recall. Also, when attempting to lower the cost of the local predictors, there 
was a large decrease in recall since the classifiers are exclusive. Figure 4.1 shows 
intuitively why a system of exclusive local predictors will perform poorly when 
using a top-down approach. A top down predictor would stop before reaching node 
N  since there are negative predictions at parent nodes.

There are a series of observations that can be made which will make the training 
sets for each local predictor more consistent with the ontology:

1. The descendant nodes of N  are not good negative instances for the predictor 
at N  since they are positive according to the true path rule. Including these

'Assuming the protein does not have another, unrelated function, for simplicity.
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Figure 4.1: An Exclusive Classifier System

A perfect exclusive classifier only predicts positive exactly where an instance should lie. The 
correct label for this instance is N . The predictions for each local exclusive classifier are shown by 
check marks for positive, and X's for negative.

instances as negative in the training set could confuse the classifier training 
algorithm, since they are actually positive. Therefore these instances are ex­
cluded from the set of negative examples. This strategy is labeled as less 
exclusive in Table 4.1.

2. All descendants of N  are not only poor negative examples, but they could 
in fact be used as positive training examples for N , due to the nature of the 
is-a relationship in the GO hierarchy. Ignoring this observation will limit 
the number of positive training examples that are presented to the classifier 
training algorithm. This approach has previously been presented in [28]. This 
method is called less inclusive in Table 4.1, and is consistent with the true path 
rule, and the nature of an is-a hierarchy in general.

3. To be most consistent with the hierarchy, observe that those proteins that 
are annotated as ancestors of N  could in fact be instances of N. As was 
discussed in Chapter 3, proteins are annotated with the most specific function 
terms for which experiments have been performed. Since it is common for 
future experiments to supply more specialized terms, it could be dangerous 
to include proteins annotated with ancestor terms in constructing a negative 
training set for a term. On the other hand, we do not know that these proteins 
will be specialized to N  in the future (they may be specialized to a sibling or 
not specialized at all), so they should not be included in the positive training 
set either. Therefore, they are not used in training at all. This most consistent
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Figure 4.2: Inclusive Training Set Construction Scheme for Node N

The training set design for an inclusive local predictor at node N . Proteins mapped to parents of  
the current node (.4]. Ao) are not included in positive or negative training sets due to ambiguity.

approach is called inclusive in Table 4.1, and is depicted in Figure 4.2.

Intuitively, an inclusive classifier predicts positive for any proteins belonging 
within that node, and any proteins below that node. The result is that when a node 
belongs at node N , positive predictions are returned for the node predictor at node 
N , and all of the ancestor nodes of N  (Figure 4.3). This is because all proteins 
below the current node were included in the positive training set.

Training set rule 3 disallows any proteins labeled with a node in the negative 
training sets of predictors for this node’s child terms. One could also argue that 
future experiments could add any arbitrary new term to a protein, so that no neg­
ative training instances can be used with confidence. This is a good point, but it 
applies anytime a classification task can have multiple positive answers and nega­
tive (experimental) evidence is not available, not recorded, or incomplete. However, 
negative training instances are required and at least the more common case of more 
specific annotations following less specific ones is guarded against.

Assuming that we have a perfect classification system, both exclusive and inclu­
sive classifiers in a hierarchy would perform perfectly on test data, due to the way 
hierarchical precision and hierarchical recall are calculated. When using perfect 
exclusive predictors, if a protein should be assigned GO node A*, every node in the 
hierarchy will return a negative prediction, except for node N  that returns a positive 
prediction. During evaluation, this prediction is propagated upward, and evaluates 
at 100% for precision and recall.
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Figure 4.3: An Inclusive Classifier System

A perfect inclusive classifier predicts positive at each node it belongs to. according to the true path 
rule. The correct label for this instance is N . The predictions for each local exclusive classifier are 
shown by check marks for positive, and X's for negative.

In the inclusive case, given a protein that belongs at node N , a perfect term 
predictor for N  predicts positive, and so do all of TV’s ancestors in the hierarchy. 
Here, the classification would evaluate at 100% precision and recall as well.

The less inclusive and less exclusive classifiers represent the intermediate points 
in the spectrum between the two training set designs. Since it is possible for both 
exclusive and inclusive designs to have perfect precision and recall, there is no a 
priori reason to choose inclusive or exclusive classifiers. However, real data and 
therefore classifiers trained from that data are often far from perfect. Thus, local 
predictors will often perform differently in practice than they do in theory. Thus, 
all four schemes to construct training data, which range from exclusive to inclusive 
in their nature, have been evaluated.

4.1.2 Comparison of Training Set Design Schemes
The four training methods (summarized in Table 4.1) were evaluated. For sim­
plicity, the training methods were evaluated with a single technology. In this case, 
Proteome Analyst features in conjunction with Support Vector Machines were used. 
The PA-SVM classifier was chosen for this experiment since it has proven to be re­
liable during the lifetime of the Proteome Analyst project. The issues presented, 
however, apply to all local predictor methods, although the numerical scores could 
vary.

Table 4.2 summarizes the results of cross-validation for each of the four training
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Table 4.1: Various Training Set Construction Schemes

This table describes four methods for choosing instances for a local predictor at node N . N  
denotes all proteins mapped directly to .V. Descendants!N )  are all proteins mapped to descendant 
nodes o f N  (C \ and C2 in Figure 4.2). and Ancestors! .V) are all proteins mapped to ancestor nodes 
of iV (.4.1 and .4o in Figure 4.2).

Method Positive Examples Negative
Examples

Not Used

Exclusive N Not N -

Less Exclusive N Not[A' U 
Descendants(iV)]

Descendants(A')

Less Inclusive N  U Descendants(Ar) Not[AT U 
Descendants(A’)]

Inclusive N  U Descendants(JV) Not [A'
U Descendants(A’) 
U Ancestors(Af)]

Ancestors(Ar)

set construction methodologies. The precision of all four techniques is comparable, 
but there are significant differences in recall and F-measure.

The column “exceptions per protein” in Table 4.3 describes how often a local 
predictors predict positive, and an ancestor node’s local predictor predicts negative. 
This is equivalent to the number of negative predictions that must be overridden 
with positives when we propagate to make predictions consistent with the true path 
rule. The fewer the exceptions, the more consistent the technique is with respect to 
the true path rule. By their nature, exclusive classifiers are more likely to have many 
exceptions, while inclusive classifiers are likely to have few exceptions (as depicted 
in Figure 4.1 and Figure 4.3). The data in Table 4.3 matches this intuition. As 
previously discussed, the evaluation methodology requires that we first propagate 
positive predictions upward in the ontology before computing precision and recall, 
which ameliorates the effect of exceptions, so our test is fair to all four strategies. 
The differences between techniques can be explained via differences in the size of 
the positive training set, and noise in the data used for training.

The column “exception precision” is the number of propagated predictions that 
are actually correct. That is, when a local predictor predicts positive, and this pre­
diction is inconsistent, we must propagate the positive prediction upward in the hi­
erarchy. When overriding ancestor terms with positive predictions, exception preci­
sion measures how often these overridden predictions were correct. The exclusive
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Table 4.2: Comparison of Training Set Schemes

Each evaluation used the same split o f the data for global cross-validation. The best values in each 
column are marked with bold text. The 959f Confidence Interval for the F-measure is also shown.

Method Precision Recall F-measure 95% Cl 
(F-measure)

Exclusive 0.758 0.328 0.458 ±0.007
Less Exclusive 0.777 0.404 0.531 ±0.008
Less Inclusive 0.773 0.638 0.699 ±0.009

Inclusive 0.753 0.652 0.699 ±0.009

Table 4.3: Exceptions for Training Set Schemes

Exceptions per Protein is the number of times that a positive prediction at a node has negative 
prediction at ancestor nodes. Exception precision is the precision on propagating positive 
predictions upward in the ontology.

Method Exceptions per Protein Exception Precision
Exclusive 1.524 0.794

Less Exclusive 1.739 0.805
Less Inclusive 0.052 0.481

Inclusive 0.092 0.467
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and less exclusive schemes show the highest exception precision, which may be 
unintuitive. However, these schemes by their nature will have a lot of exceptions, 
many of which are the correct answer. Inclusive schemes, however, have very few 
exceptions. When an inclusive classifier system does have exceptions, it is straying 
from the theory of a perfect inclusive classifier, indicating that something may be 
wrong with the predictions being made. Therefore, a low exception precision for 
inclusive classifiers is not only expected, but also matches the intuition of a per­
fect inclusive classifier. In any case, the effects of the exception precision do not 
have a large impact on the performance of inclusive classifiers, since the exceptions 
happen so infrequently.

One may argue that the results in Table 4.2 are not fair to the exclusive and 
less exclusive training schemes because the ontology was selected in a way that is 
biased toward more inclusive schemes. Recall from Chapter 3.1.3 that the ontol­
ogy was selected by keeping all nodes that had 20 or more proteins mapped at or 
below them in the ontology. This is biased toward less inclusive and inclusive clas­
sifiers, since the criteria for selecting nodes in the ontology is the same as selecting 
positive training examples for inclusive and less inclusive classifiers. To evaluate 
each classifier approach in a manner that is more fair to the exclusive methods, we 
pruned the ontology to the nodes that have 20 or more proteins mapped directly to 
them. This resulted in an ontology of 137 nodes. The results in Table 4.4 show how 
well each local predictor scheme performs on these 137 nodes. Similarly, this data 
shows that the more inclusive schemes are superior.

It is important to note however that exclusive classifiers do predict some func­
tions very well. For example, the exclusive local predictor for the GO term “olypep- 
tide N-acetylgalactosaminyltransferase activity” scored 100% precision and 100% 
recall during cross validation. This node had 27 proteins assigned to it directly, and 
27 through propagation (that is, all known proteins of this function were mapped 
directly to this node).

As the classifiers become more and more inclusive, recall and F-measure are 
increased. It is also important to note that the less exclusive scheme has the highest 
precision in both Table 4.4, and Table 4.2. However, this small increase in pre­
cision over inclusive schemes (about 2.5%) comes at a large cost of recall (about 
50%). Furthermore, if a molecular biologist was using the prediction system to 
predict functions of proteins, and therefore find possible experiments that could be 
performed on these proteins, recall is very valuable. A low recall will result in a 
prediction system that could miss many important functions of proteins, and could 
therefore cause the biologist to miss an important discovery. As long as precision is 
kept reasonably high, it is desirable to give as much of a boost to recall as possible.

The key reason for the improved performance on the inclusive side of the spec­
trum is that the number of positive training examples is increased, so the predictors 
become better at recognizing those proteins that should belong at each node. The 
largest jump in recall happens between less exclusive and less inclusive, so this 
explanation matches the data.
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Table 4.4: Comparison of Training Set Schemes on Smaller Ontology

Each evaluation used the same split of the data for global cross-validation. The best values in each 
column are marked with bold text. Predictors are only evaluated on nodes which have more than 20 
proteins mapped directly to them, which results in an ontology of 137 nodes. The 95% Confidence 
Interval for the F-measure is also shown

Method Precision Recall F-measure 95% Cl 
(F-measure)

Exclusive 0.744 0.361 0.486 ±0.014
Less Exclusive 0.759 0.430 0.549 ±0.010
Less Inclusive 0.756 0.648 0.698 ±0.008

Inclusive 0.734 0.660 0.695 ±0.008

Another factor affecting the better performance of inclusive classifiers is the im­
provement in quality of the training data. First, as classifiers become more inclusive 
by no longer using intuitively positive instances in the negative training set (going 
from exclusive to less exclusive) there is a rise in recall. Second, by excluding am­
biguously labeled instances from the negative training set (going from less inclusive 
to inclusive) the noise in the negative training data is further reduced.

This approach prevents intuitively negative instances from being put into the 
positive training set, and vice versa. For example, during the construction of a local 
predictor for “ion binding”, the proteins that are labeled as “metal ion binding” 
should not be used as negative training instances, since they are actually a type of 
“ion binding”. Furthermore, the proteins labeled as “metal ion binding” proteins 
can be used in the positive training set of the “ion binding” protein, since according 
to the true path rule, they are specific examples of this function.

As the classifiers become more inclusive, there is a higher chance that a false 
negative at a node will be offset by a true positive prediction at a descendant node, 
which is desired. In a sense, inclusive local predictors reinforce each other along the 
path in a hierarchy, whereas in a system of exclusive local predictors, one predictor 
must make the correct call for each assigned label.

Although the training data for each node is selected differently, the test sets can­
not change. The classifiers cannot choose to be evaluated only on some sequences, 
since this would be contradictory to what we are attempting to infer from cross- 
validation. By keeping the test sets constant, predictions based on various design 
strategies are comparable, since they are evaluated on the same test proteins.

Support Vector Machines are used in these experiments, but the issue of training 
set construction must be addressed regardless of which machine learning technol­
ogy is used. Therefore the methods presented are applicable to all local predictors, 
regardless of prediction technique specifics.
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Table 4.5: Lowering the cost of using Local Inclusive Predictors.

When using an inclusive training set design, the cost o f using local predictors can be significantly 
lowered using a top-down approach, without a significant impact on precision and recall. All 
results shown in this table use the inclusive training set design scheme. The best values in each 
column are marked with bold text.

Method Precision Recall F-measure
Average Cost 
per Instance

PA-SVM 0.753 0.652 0.699 406
Top-Down PA-SVM 0.760 0.644 0.697 32

TD-1 PA-SVM 0.755 0.649 0.698 112
TD-2 PA-SVM 0.754 0.651 0.698 220

Table 4.6: Lowering the cost of using Local Less Inclusive Predictors.

When using a less inclusive training set design, the cost o f using local predictors can be 
significantly lowered using a top-down approach, without a significant impact on precision and 
recall. All results shown in this table use the less inclusive training set design scheme. The best 
values in each column are marked with bold text.

Method Precision Recall F-measure Average Cost 
per Instance

PA-SVM 0.773 0.638 0.699 406
Top-Down PA-SVM 0.782 0.630 0.698 32

TD-1 PA-SVM 0.776 0.635 0.698 112
TD-2 PA-SVM 0.774 0.637 0.699 220

4.1.3 Top-Down Search Revisited
The results in Chapter 3.3 showed that using an exclusive training set design strat­
egy does not support the use of a top-down decision model to lower the cost of pre­
diction. This matches the intuition for an exclusive classifier, since only the nodes 
containing the true annotation of proteins will predict positive, and all parents will 
predict negative.

The inclusive training set design intuitively matches the top-down decision model, 
as shown in Figure 4.3. The results of training a top-down decision model on our 
inclusive and less inclusive training set design schemes are shown in the first two 
rows of Table 4.5 and Table 4.6.

The results match the intuition behind training set designs that are on the in­
clusive side of the spectrum. Both inclusive and less inclusive classifiers are more
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amenable to the top-down decision model. In both cases the simple Top-Down 
approach has very similar recall to the recall obtained when running all node pre­
dictors, and precision is in fact raised. The cost of this approach is only 8% of run­
ning all predictors for the simple top-down approach, which is a significant savings. 
This result shows that the more complex and computationally intensive methods of 
TD-N PA-SVM classifier are not necessary when using more inclusive classifier 
schemes.

The results in this section have shown that inclusive and less inclusive training 
schemes are superior to exclusive and less exclusive schemes in two ways:

1. The inclusive and less inclusive classifiers have a significantly higher F-measure 
during cross-validation than the exclusive and less exclusive schemes.

2. The inclusive and less inclusive classifiers’ cost can be lowered using a top- 
down search scheme to selectively compute only some of the local predic­
tors without a significant penalty to F-measure. The exclusive and less ex­
clusive classifiers produced significantly lower F-measures when a top-down 
approach was used.

Although the inclusive scheme intuitively seems more sound than the less in­
clusive scheme, since ambiguous proteins are not used in its negative training set, 
the difference between inclusive and less inclusive has thus far been only justified 
by intuition. The next section will attempt to quantify this difference.

4.1.4 Robustness to Incomplete Annotations
The cross-validation experiment showed that excluding ancestors from the negative 
training set (the inclusive strategy) only has a small advantage over the less inclusive 
strategy. However, the actual advantages of an inclusive design may be greater 
than shown by this experiment. The nature of cross-validation tests, and the fact 
that an absence of a label in the GO hierarchy does not necessarily mean a label 
is wrong, may lead to lower quantitative results for what is, arguably, the correct 
design decision.

Specifically, proteins may not be annotated with all the labels that are appro­
priate. As discussed earlier, a missing experiment results in an incomplete label.
A desirable goal is to have predictors that can predict labels more specific that are 
not currently known. This systemic side-effect of taking the annotation as complete 
truth (even when it is not complete) is a difficult issue to measure and address.

The results of cross-validation and using a top-down search are still inconclusive 
as to which training scheme is better: inclusive or less inclusive. As discussed in 
Chapter 4.1.2 the inclusive training scheme is intuitively superior due to the fact that 
the Gene Ontology annotation data is incomplete. That is, including proteins anno­
tated with an ancestor node as negative training examples is dangerous, because a 
future experiment could show that they are in fact positive training examples.
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Figure 4.4: Inclusive classifiers are more Robust to Incomplete Data

Inclusive and Less Inclusive training schemes are trained for various degrees of incomplete training 
data. Both are then evaluated on the most complete data available. Inclusive classifiers are more 
robust to incomplete annotations. Note that the y-axis does not start at 0.

To test this theory the data was modified so that the annotations are less com­
plete. This modified data was then used to train local predictors, but when eval­
uating the predictions during cross-validation, the original unmodified annotations 
were used to score the system's predictions. This experiment simulates incomplete 
annotations.

For example, if a protein was annotated with node N  in Figure 4.2, we would 
make the annotation more incomplete by moving the annotation to node A\. This 
is consistent with the previous labeling, but it is incomplete in that the knowledge 
about the protein is now less specific.

In Figure 4.4, we make the data more incomplete by randomly choosing X%  
of the proteins in the data set, and moving one of their annotations up a level in the 
hierarchy. X  is varied from 0 to 100%. The predictions are then evaluated using the 
complete data, and results are compared using F-measure.

When the data was not altered (at 0% incomplete) the inclusive and less in­
clusive schemes produce the same F-measure. However, as the training set became 
more incomplete, the inclusive strategy maintains its high F-measure better than the 
less-inclusive strategy. This is because we removed the ambiguous proteins from 
the negative training set of the local predictors.

Although the graph shows the two training schemes to be equally good at 0% in­
complete, even the full data set is incomplete. That is, the complete annotations for
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all proteins is unknown. If the data were complete, each protein would be mapped 
to a leaf node in the ontology. Therefore even though the two lines appear to be 
together at the 0% incomplete point, if the complete data was known, the inclu­
sive training scheme would likely have a higher F-measure than the less inclusive 
training scheme.

These results show that the inclusive scheme shows more robustness to incom­
plete data, and thus is better for predicting the functions of unknown proteins. 
Therefore, for the remainder of this dissertation, all local predictors are trained 
using an inclusive strategy.

4.2 Global Cross-Validation Revisited
In Chapter 3.2.3, the method of global cross-validation was explained. For all ex­
periments described so far, the data set was split once, and then evaluated. This split 
however did not take into account the individual node distributions when splitting 
the data set into 5 partitions. Since the goal of cross-validation is to understand 
how well the prediction system will perform on future instances, we must ensure 
that each classifier has enough positive training instances to be representative of the 
final system. Since some nodes have as little as 20 positive instances, it is possible 
that some have very few training instances in some of the 5 folds of cross-validation.

In practice, it may be difficult (or impossible) to perfectly preserve local node 
distributions2 and have a consistent, global split of the data. To address this issue, 
5,000 candidate global splits of the data set were randomly generated, and the split 
that matched the original data set’s node distribution most closely was chosen. This 
was measured by the average squared deviation of each node in each of the 5 folds.

For example, if a node had 100 positive training instances and 10,000 negative 
training instances in the original data set then its original distribution is 1% positive. 
If, after splitting into 5 partitions, the node has 13 positive training instances and 
1,800 negative training instances in fold 1, then the fold 1 distribution is 0.72%. 
Therefore this node’s distribution has a change of -28% ((0.72 — 1.0)/1.0). The 
squared deviation for each node in each fold was then averaged.

The best and worst splits (according to average squared deviation) are shown in 
Figure 4.5 and Figure 4.6. Comparing the two figures, it is evident that there is less 
variation from the original distributions in Figure 4.5. This suggests that a global 
partition of the data is feasible, and that a sufficient amount of training data for all 
nodes can be retained using a simple randomized approach.

To examine the effect of how the data is split on local predictors, the best and 
worst splits of the data are used to train PA-SVM classifiers using the inclusive 
training scheme (Table 4.7). The results show that there is not a significant impact 
on the overall cross-validation accuracy from the choice of the global partition.

2Only the distributions for the training sets need to be preserved. If the distributions for the 
testing sets vary this is not a concern since they are not used to train the classifier.
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Figure 4.5: The Best Global Split of the Data Set

Each dot represents a single node in a fold’s training set. The y-axis shows how far this node in this 
fold’s training set deviates from the original node's distribution. The 5 largest changes are -40%, 
25%. -24%, -22%. and -22%.

The goal of finding an optimal split is not to maximize precision and recall during 
cross-validation. It is rather to have results that are indicative of how well the final 
classification system will perform. Therefore, for the remaining experiments the 
best split of the data was used for cross-validation.

4.3 Summary
We extended the work in Chapter 3 by considering the semantics of the hierarchy 
when creating training sets for local predictors. We presented a spectrum of training 
set design schemes and evaluate each using global cross-validation.

When more inclusive training set designs were used, it was possible to lower the 
computational cost of prediction using a top-down approach, without a significant 
penalty to precision and recall.

The differences in cross-validation between inclusive and less inclusive designs 
was minor. However, the hypothesis is that inclusive classifiers will perform bet­
ter on new proteins due to incomplete annotations in the data set. An experiment 
simulating incomplete data has confirmed this.

Finally the issue of global cross-validation was readdressed. The presented 
method of picking the best global split of the data did not result in a significant 
change in cross-validation precision and recall. However, we will continue to use
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Figure 4.6: The Worst Global Split of the Data Set

Each dot represents a single node in a fold’s training set. The y-axis shows how far this node in this 
fold's training set deviates from the original node's distribution. The 5 largest changes are -41%, 
-35%. -35%. -35%. and -34%.

Table 4.7: Comparing the worst and best global splits of the data for training inclu­
sive classifiers using PA-SVM

Picking a global split o f the data according to the average deviation of each node's distribution in 
each of the folds training sets does not appear to have a large impact on cross-validation 
performance o f local predictors.

Method Precision Recall F-measure 95% Cl 
(F-measure)

Average
Deviation

Best Split 
Worst Split

0.754
0.752

0.648
0.655

0.697
0.700

±0.010
±0.005

0.048
0.058
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the best global split of the data for all remaining cross-validation experiments.
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Chapter 5 

Optimizing Predictors of Protein 
Function

Now that a general training strategy has been derived for local predictors, each 
local predictor technology will be optimized individually. Due to the pervasive use 
of BLAST in the community, it will be used as a comparison method for predicting 
protein function. BLAST will also be optimized so that the comparison is fair 
between methods.

5.1 PFAM-SVM
PFAM (Protein FAMilies) uses Hidden Markov Models (HMMs) to model func­
tional domains of proteins. Each of these protein families describes a functional 
class of proteins. When creating these classes, proteins with similar functions are 
collected, and then HMMs are trained on the part of the sequence that is conserved 
between the proteins in the set. The result is an HMM that can be used to predict 
whether a query protein belongs to this particular class of proteins.

These PFAM HMMs are run on all proteins in the data set, and when there is a 
match between a PFAM family and a query protein, that family is used as a feature 
for the protein. The confidence of each prediction is measured by E-value, which 
is the expected number of proteins that would have matched the PFAM family by 
random chance (which is intuitively the same as the E-value for BLAST). The lower 
the E-value of a hit. the more similar it is to the query protein. The first row in 
Table 5.1 shows the performance of using all PFAM matches as features for an 
SVM classifier.

If the use of PFAM matches as features is more stringent (i.e. a lower E-value 
threshold), the performance of the classifier can be increased. Table 5.1 shows that 
if we only accept matches with E-value < 10-2, F-measure is maximized. As the 
E-value cutoff becomes more stringent (i.e. lower) the number of families that are 
used is decreased. This is because the number of PFAM families used as features 
is defined as the number of families that are assigned to at least one protein in the
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Table 5.1: Optimizing PFAM Predictors

Only those PFAM matches below a certain E-value threshold are used as features. The best values 
in each column are marked with bold font.

E-value
Threshold

Precision Recall F-measure 95% Cl 
(F-measure)

Number of 
PFAM Families

A ny 0.703 0.395 0.506 ±0.012 7,483
2 0.717 0.513 0.598 ±0.006 5,267

io- 1 0.736 0.577 0.647 ±0.009 2,640

h
-i

O
1 IO 0.740 0.575 0.647 ±0.009 2,438

10"3 0.737 0.571 0.643 ±0.008 2,388
IO"7 0.737 0.563 0.638 ±0.009 2,329

data set. When the E-value cutoff is low, there is less chance of each PFAM family 
matching any protein.

Since the F-measure was maximized at a cutoff of E-value < 10-2 with the 
lowest number of PFAM features used, these PFAM predictors will be used for all 
experiments for PFAM-SVM for the remainder of this dissertation.

5.2 PA-SVM
When presented with a query protein, Proteome Analyst (PA) uses BLAST to find 
similar proteins in the Swiss-Prot database. Next, the PA system looks at the exist­
ing annotations for these similar proteins, and these annotations are used as features 
for a classifier that predicts the function of the query protein. Currently, the PA sys­
tem parses words from the Keywords, SUBCELLULAR LOCALIZATION, and Inter- 
Pro fields of Swiss-Prot entries, which are then used as features for a classifier. The 
Interpro and Keywords fields are parsed directly, and used as features, since they 
use standard vocabularies. The SUBCELLULAR LOCALIZATION field is parsed 
using a controlled vocabulary, because it is free-form. Parsing this field directly 
would produce inaccurate results since there would be a lot of unimportant features 
in free form text [34]. The results of using PA features for an SVM classifier at each 
node are shown in the first row of Table 5.2.

There are many other fields in Swiss-Prot entries that PA currently does not 
utilize. Although previous experiments [33] have shown that the three fields PA 
currently uses produce the best results for the prediction of subcellular localization, 
there may be potential to using other fields when predicting protein function across 
a large ontology.

One approach is to use Gene Ontology names as a vocabulary for parsing phrases 
from other fields in each Swiss-Prot entry. Using the names of the 406 nodes in our
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Table 5.2: Parsing other Swiss-Prot fields for PA Classifiers

Using traditional PA Features is compared to using PA features in conjunction with parsing other 
fields with a controlled vocabulary (PA + Valid GO), and PA features in conjunction with parsing 
the GO field (PA + GO Field).

Method Precision Recall F-measure 95% Cl 
(F-measure)

PA Features 0.754 0.648 0.697 ±0.010
PA + Valid GO 0.766 0.591 0.667 ±0.010
PA + GO Field 0.759 0.626 0.686 ±0.012

pruned ontology as a vocabulary, the "SIMILARITY”, "FUNCTION’", and "SUB- 
CELLULAR LOCATION" fields of Swiss-Prot entries were parsed. If any of the 
terms in the vocabulary were found in any of those fields, that term was used as 
a feature for the classifier, in addition to traditional PA features. This approach is 
labeled “PA + Valid GO” in Table 5.2. This approach did not show an improvement 
over the standard PA features.

Another approach is to look directly into the “GO” field of each Swiss-Prot 
entry. This is called “PA + GO Field" in Table 5.2. Surprisingly this lowers recall, 
and slightly raises precision.

None of the approaches to improving PA predictors showed improvements in 
precision and recall. Although there was some improvement in precision, it was not 
significant enough to make changes to the PA-SVM predictor. The sheer number of 
combinatorial possibilities for parsing Swiss-Prot entries made pursuing this topic 
further beyond the scope of this dissertation. Therefore, the PA method of choice is 
the classic PA feature parsing algorithm.

5.3 Probabilistic Suffix Trees
Rather than using features to describe proteins (as the PA-SVM and PFAM-SVM 
predictors did), Probabilistic Suffix Trees (PSTs) model the protein sequence di­
rectly. PSTs are an efficient implementation of variable length Markov models 
(VMM). As was described in Chapter 2.5.3, PSTs model the sequence by assum­
ing that the probability of each amino acid is conditioned on the previous N  amino 
acids. Then, the probability of the protein is the product of the probabilities of each 
of the amino acids. A VMM that uses the above model is called an A'-order Markov 
model.

Several parameters can be tuned for PSTs. These are:

1. Smoothing Term - During the calculation of the probability of a sequence, a
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Table 5.3: PST Parameter Search Space

The possible parameter settings for PSTs when performing the brute force search o f the parameter 
space.

Parameter Possible Values
Smoothing Term 10,1. 10--. 10-'j
Window Length 10, 20, 40.100, 200, 400. Global

Order 2. 3, 4, 5, 6

sequence may be encountered that was never seen in the training data. During 
the calculation of the probability of this protein, the term for this unseen 
sequence would be 0, which would make the probability of the sequence 0 
(Equation 2.7). To safeguard against this, a process called smoothing [25] is 
often used. Instead of assigning previously unseen examples a probability of 
0, they are given a minimum value, which is the smoothing term.

2. Window Length - The window length is the number of amino acids in the 
protein sequence that are considered when calculating the probability of the 
protein. Sometimes the entire sequence is not relevant, because some biolog­
ical functions are served by small regions of the sequence called functional 
domains. This setting can also be set to “Global” to consider the entire se­
quence of the protein when calculating its probability.

3. Order - An iV-order Markov model represents the probability of an amino 
acid conditioned on the previous N  amino acids. Keeping the order small 
prevents overfitting, but keeping it large allows for more representative power.

For baseline performance, a PST was trained for each node using an inclusive 
training strategy, and using the parameters Smoothing Term = 0.01, Order = 5, 
and Window Length = Global. The results are shown in the first row of Table
5.4. To optimize these predictors, a brute force search through the parameter space 
was performed. A finite set of parameter values was chosen which have shown 
relevance in previous function prediction experiments [40]. The possible values for 
each parameter are shown in Table 5.3.

For each node in the GO hierarchy, a local predictor was trained on one setting 
of the parameters. Cross-validation was performed (using the global folds), and 
the performance was recorded. The process was repeated for each setting of the 
parameters. The parameter settings that result in the highest cross-validation F- 
measure were kept for each node. At the end of the process, each local predictor 
was trained using the parameters found to be the best for that particular node. The 
performance of these optimized local predictors is shown in the second row of Table
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Table 5.4: Results of PST Parameter Search

After doing a brute force search through the predefined parameter space (Table 5.3). PSTs show an 
increase in precision and recall. Results shown are overall statistics across all local predictors.

Method Precision Recall F-measure 95% Cl 
(F-measure)

Baseline PST 0.549 0.588 0.568 ±0.008
PST Parameter Search 0.575 0.636 0.604 ±0.010

5.4. Histograms showing how often each parameter setting was used in optimal 
settings are shown in Tables B.3, B.2, and B.l in Appendix B.

The average improvement of each node’s F-measure was +5% from the base­
line parameter settings. None of the parameters showed a significant correlation 
with each other, the largest correlation coefficient being -0.32 between Order and 
Smoothing Term. All other parameter combinations had a smaller correlation coef­
ficient. If some parameters did have a high correlation the parameter space could 
be reduced for the future training of PST predictors.

The improvements for each of the nodes are shown in Figure 5.1. The graph 
shows that the predictors that benefit from the parameter search the most are those 
that lie near the middle of the F-measure score. Those nodes that perform very well 
in the baseline are difficult to improve further, and those that perform very poorly 
in the baseline are often difficult to represent and may not be amenable to PSTs no 
matter what the parameter settings are.

5.4 BLAST
During cross validation, BLAST was run for each of the test proteins against the 
current fold’s training set of proteins. A BLAST hit was considered a match for this 
test protein against the current training set. Each BLAST hit was scored with an 
E-value, which (as for PFAM) is the expected number of proteins that would have 
matched the query protein in the database by random chance. So. as the E-value 
increases, the less similar the match is to the query protein. If an E-value cutoff was 
set to 10“ 1 no BLAST hits with E-value >  10-1 were accepted.

The BLAST predictor performs best when the threshold for accepting BLAST 
hits is set at an E-value of 10-3 (Table 5.5). This is because proteins that have no 
BLAST hit with E-value < 10-3 are proteins that are quite different from the set of 
well-studied proteins. These proteins will not find a highly similar sequence during 
cross-validation. Figure B.l in Appendix B shows similar results in graphical form.

In this approach, BLAST has been used as a Nearest Neighbor method where
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Figure 5.1: Improvements for each Local PST Predictor

Each point on the graph shows a single node. The x-axis shows the cross-validation performance of 
this node using the baseline parameter settings. The y-axis shows the improvement in F-measure 
after using a brute-force search of the parameter space.

Table 5.5: Varying E-value for BLAST

An E-value cutoff o f 10-:! results in the best BLAST predictor in terms of F-measure. "No 
predictions" is the number o f proteins that had no valid BLAST hits found at this E-value 
threshold. The best values in each column are marked with bold font.

E-value Precision Recall F-measure 95% Cl 
(F-measure)

No Predictions

10 0.708 0.716 0.712 ±0.009 126
1 0.729 0.712 0.720 ±0.009 613

10-’ 0.752 0.705 0.727 ±0.008 1,181Cv“'fOf—t 0.767 0.696 0.730 ±0.007 1,637
10~5 0.774 0.688 0.729 ±0.008 1,927
10-9 0.782 0.674 0.724 ±0.009 2,344

0 0.831 0.300 0.441 ±0.017 9.550
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Table 5.6: Using more than one BLAST Hit

Performing the union on the annotations of more than one BLAST hit increases recall but decreases 
precision. Intersecting the results of more than one BLAST hit decreases recall but increases 
precision. All results use an E-\ alue cutoff o f 10-3 . The best values in each column are maked 
with bold font.

Method Precision Recall
BLAST-NN 0.767 0.696

BLAST-2-Union 0.672 0.751
BLAST-3-Union 0.608 0.775
BLAST-5-Union 0.531 0.796
BLAST-7-Union 0.482 0.806

BLAST-All-Union 0.252 0.828
BLAST-2-Intersect 0.849 0.597
BLAST-3-Intersect 0.870 0.526
BLAST-5-Intersect 0.884 0.437
B LAST-7-Intersect 0.887 0.385

BLAST-50-Intersect 0.862 0.238

only the top BLAST hit’s functions are assigned to the query protein. Using just the 
single most similar protein ignores other matches that could also be of good quality 
in terms of E-value. Table 5.6 summarizes two ways of incorporating other BLAST 
hits’ into predictions.

The BLAST-N-Union approach takes the top N BLAST hits, and performs the 
set union operator on the labels associated with these hits. The BLAST-N-Intersect 
approach takes the top N BLAST hits, and performs the set intersect operator on the 
labels associated with these matches. That is, only labels that appear in all N hits 
label sets are predicted for the query protein. The BLAST-N-Union method will 
in general increase recall, but may suffer a penalty to precision, and the BLAST- 
N-Intersect method will generally increase precision, but may suffer a penalty to 
recall.

These methods can be used if a user is more concerned with recall (BLAST-N- 
Union) or precision (BLAST-N-Intersect). BLAST NN will be used as the baseline 
predictor. However. BLAST-N-Union will prove to be useful in Chapter 6 to lower 
the computational cost of using local predictors.

5.5 Combining Predictors
This chapter has presented 4 different predictors for protein function: PA-SVM, 
PFAM-SVM. PST, and BLAST, where all of these methods work in fundamentally
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Table 5.7: Intersections of Good Performing Node Sets

The number in square brackets under each heading is the total number of nodes on which the local 
predictor performed well (F-measure >  60%) on. Each entry in the table is the intersection of the 
nodes that the two predictors did well on. For example 177 nodes performed well (F-measure 
>  60%) on both the PA-SVM and PFAM-SVM predictors.

PFAM-SVM
[184]

PA-SVM
[256]

PST
[162]

BLAST
[283]

PFAM-SVM - 177 111 182
PA-SVM - - 150 245

PST - - - 159

different ways. The next section of this Chapter will explore combining these pre­
dictors at each node to improve the quality of local predictors.

5.5.1 Characterizing Predictors
When combining local predictors, the combined prediction system works best when 
each predictor works well on a different subset of the data. This way, when the 
predictors are combined, the weaknesses of one predictor are offset by the strengths 
of another.

To see whether this is the case, we determined the set of nodes for which each 
local predictor approach worked well (the nodes that have >  60% F-measure) -  
see Table Table 5.7. The cutoff of 60% is an ad hoc choice, for which the local 
predictors performed reasonably well. The intersection of each of these sets was 
then computed. Ideally these intersections should be as small as possible if the 
predictors are to have different strengths.

For example, BLAST had over 60% F-measure on 283 nodes. PFAM-SVM per­
formed above the 60% F-measure mark on 182 of these 283 nodes. Out of the 184 
nodes that PFAM-SVM performed well on, 182 of them BLAST also performed 
well on. One interesting note, not shown in the table, is that the only node that all 
four approaches had 0% precision and 0% recall on the node “protein C-terminus 
binding”.

This result shows that there is a potential to combine the classifiers into an 
ensemble. An ensemble is a way of combining classifiers using a weighted voting, 
or some other learning function.
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Table 5.8: Combining Predictors

Voting proves to be an accurate method of combining prediction technologies. Although using 
SVMs in this way to learn weights is invalid, it does show the potential of using a weighted linear 
function of the classifiers.

Method Precision Recall F-measure 95% Cl 
(F-measure)

Voting - 1 0.535 0.819 0.647 ±0.005
Voting - 2 0.763 0.733 0.748 ±0.008
Voting - 3 0.846 0.609 0.708 ±0.009
Voting - 4 0.907 0.3S7 0.542 ±0.010

Linear SVM 0.776 0.708 0.741 ±0.005

5.5.2 Ensemble Methods
An ensemble is created at each node using a simple voting scheme. This ensemble 
uses each local predictor discussed so far as input:

1. SVM with PFAM as features

2. SVM with PA features

3. PSTs

4. BLAST

For a Voting-N classifier, N or more positive votes must be given before the 
function is predicted as positive for that classifier. For example, if at a node PFAM- 
SVM and PA-SVM predict positive, and we are using a Voting-2 scheme, the func­
tion is predicted as positive by the voting system. The results of varying N are 
shown in Table 5.8.

Although using a simple voting technique for the predictors is not very sophis­
ticated, it works quite well in practice. As a comparison, an SVM was used to learn 
the weights for each predictor, given all of the prediction data. This is the best that 
can be hoped for since the SVM is given the correct answer for training on all of the 
data. Table 5.8 shows that there is not much potential in learning more complicated 
linear weighting functions for the predictors, since the SVM did not perform better 
than voting. Therefore, weighting functions were not pursued further.

5.6 Summary
Each prediction tool has been optimized individually. Local predictors were trained 
using an inclusive strategy, and optimized based on their individual approaches.
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PFAM-SVM was optimized by only accepting good PFAM matches. For PA-SVM, 
different feature parsing methods were evaluated, but the traditional PA feature ex­
traction algorithm proved to be the best out of the methods that were attempted. For 
PSTs, a brute force search through the parameter space was performed. BLAST was 
optimized using an E-value cutoff to avoid using poor BLAST hits for prediction.

These methods were then combined using a voting scheme that, although sim­
ple, proved to have good results. These voting classifiers are used as predictors in 
the next Chapter.
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Chapter 6

Experiments for Hierarchical 
Classification of Protein Function

As shown in Chapter 5, the results of a BLAST search are quite accurate, when 
highly similar sequences are found. Therefore, the information gained from running 
a BLAST search is important since it is both accurate, and computationally efficient.

As was also demonstrated in Chapter 5, recall can be increased from using 
BLAST alone when using a voting ensemble of PFAM, Proteome Analyst, Proba­
bilistic Suffix Trees, and BLAST.

As Table 6.1 shows, there are a significant number of proteins where a good 
BLAST hit is not found during cross-validation. This also occurs often during real 
use of BLAST because a protein being studied may be far (in terms of sequence 
similarity and thus homology) from the set of well studied proteins. Thus, these 
two cases -  when a protein has high sequence similarity to a protein in the training 
set, and when it does not -  will be examined separately.

In the case when a good BLAST hit is found for proteins, the BLAST result 
can be used to lower the cost of running local predictors. The case when no good 
BLAST hit is found is the more challenging, and arguably the more important sce­
nario, because these are often proteins that are very different from the set of ex­
perimentally annotated proteins. In this case, CHUGO performs much better than 
BLAST NN. Finally, the local predictors presented in Chapter 5 are compared to 
BLAST in terms of coverage.

6.1 Proteins with Good BLAST Hits
During cross-validation, 89% (12,725 out of 14.362) of the proteins in the data set 
had at least one good BLAST hit. The results of using the voting scheme, presented 
in Chapter 5, are shown again in Table 6.2. and are compared to each individual 
predictor method for these proteins. To compare each method in t erms of compu­
tational cost, each node predictor is assigned a cost of 1 for each time it is run, and 
BLAST is assigned a constant cost of 1 since it is a global predictor and thus only
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Table 6.1: Histogram of How Often X Hits are found by BLAST

Histogram of how often X number of hits are found per protein by BLAST during cross-validation 
on the set of experimentally annotated proteins. The results use BLAST set at an E-value cutoff o f
l O - L

Number of Hits # of Proteins
0 1,637
1 1,259
2 944
3 784
4 607

> 5 9,131

run once per protein. Thus, the cost of 1219 for voting over the ontology is obtained 
by the formula (N um berO f Nodes) x (NumberO f  Predictor sAtEachNode) +  
(C ostO f B L A S T ). Since three local predictors are used at each node (PA-SVM, 
PFAM-SVM, and PSTs) this value is 406 x 3 +  1 =  1219. The cost of calculating 
the result of voting is not added since this is a trivial computation. Although the 
costs of the various predictors in the ensemble would in fact vary, this measure of 
cost gives an initial idea of how computationally intensive each approach is.

When applying a top-down approach, similar to that in Chapter 3.3, the cost 
of prediction is lowered significantly. This is because each classifier in the voting 
ensemble is trained using an inclusive training strategy. However, the results of 
a BLAST search can be exploited to lower the cost of running local predictors 
even below the cost of a top-down approach. Two methods of exploiting BLAST to 
lower the cost of local predictors are presented. Both methods rely on using BLAST 
results to find GO nodes that are likely to be annotated to a protein, and then running 
local predictors only for these candidate nodes. Since the local predictors are not 
being run for every node in the ontology, their overall cost is lowered.

A good method for generating candidate nodes would have two properties:

1. High Recall - A high recall for the candidate node set will ensure that the 
final prediction recall will be high. After running predictors on the candidate 
node set, the recall cannot increase, therefore the candidate set must have as 
high of a recall as possible.

2. Minimal Size of Candidate Node Set - The size of the candidate node set 
should be as small as possible. The smaller the size of the candidate node 
set, the smaller the computational cost of verifying these nodes using local 
predictors. As the size of the candidate node set approaches the size of the 
entire ontology, the benefit of using candidate nodes is diminished.
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Table 6.2: Performance on proteins with Good BLAST results

Performance of various prediction approaches on proteins that produce a good BLAST hit during 
cross-validation. Here, voting refers to the voting ensemble of BLAST NN. PA-SVM. 
PFAM-SVM. and PST described in Chapter 5.5.

Method Overall Overall Average Cost
Precision Recall Per Protein

BLAST NN 77% 78% 1
PA-SVM 76% 69% 406

PFAM-SVM 75% 62% 406
PST 61% 64% 406

Voting 77% 80% 1219
Voting Top-Down 77% 79% 111

These two factors are competing forces. One easy method of raising recall is to 
add all nodes to the candidate set, but the second criteria keeps this from happening. 
The presented candidate generating methods meet the two above criteria, and are 
therefore useful for lowering the cost of using local predictors.

6.1.1 BLAST-N-Union
In Chapter 5.4 it was shown that using more than one BLAST hit, and combining 
the annotations of these hits using a union operation can significantly raise recall 
when this set of annotations is used as a prediction. However, precision suffers as 
a result. Since the recall is high, this set of nodes from the union operation can be 
used as candidate nodes for local predictors.

This first candidate generating method, called BLAST-N-Union, uses multiple 
BLAST hits’ annotations, where N  denotes the number of hits used. Intuitively, 
if the union of more than one BLAST hit’s annotations is used, more of the likely 
functions will be covered by this candidate set. Performing the union of multiple 
BLAST hits’ annotations increase recall, but decrease precision. However, since 
this set is smaller than the entire ontology, and the recall is high, we can run our 
predictors on this set of labels and improve precision while keeping computational 
cost low.

6.1.2 BLAST-Search-N
As was demonstrated, BLAST NN does not always return correct predictions for 
protein function, since precision and recall are not 100% (Chapter 5.4). Figure 6.1 
demonstrates that when BLAST NN is incorrect, it tends to be close to the correct
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Figure 6.1: BLAST NN Miss Distance

When BLAST NN does not return the correct nodes from good hits, the nodes that are returned 
tend to be close to the correct answer.

answer. The BLAST Miss Distance in the figure is the graph distance between the 
predicted label for a protein, and the nearest annotated label for that protein. Graph 
distance is the shortest path between these two nodes in the ontology.

This fact can be exploited to find candidate nodes for the computation of local 
predictors. The results of a BLAST search can be used as a seed to begin searching 
the ontology outward for candidate nodes. Since the structure of the ontology is 
known during prediction, the nodes that are nearby the nodes found by BLAST NN 
can be used as candidate nodes.

This second candidate generating method, called BLAST-Search-N, exploits 
the annotations returned by BLAST and searches in the neighborhood of the top 
BLAST hit's annotations (Figure 6.2). Here, N  is the graph distance from the 
seed annotations in which we add nodes to our set of candidate nodes. The set 
of GO terms that BLAST NN returns is added to the candidate set, and all of the 
terms in the A'-neighborhood are added to the candidate node set as well. As in 
the first method, recall will be increased by searching in the neighborhood, and 
the node predictors are used to compensate for the drop in precision by removing 
false positives. Also, similar to the first proposed method, computational runtime is 
lowered from running the validating predictors for all nodes.

6.1.3 Evaluation of Candidate Generating Methods
The advantage of the BLAST-Search-N and BLAST-N-Union approaches is that 
they decrease the computational cost by not running all of the local node predic-
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Figure 6.2: Using BLAST-Search-N to Generate Candidate Nodes

Those nodes which are returned from BLAST NN (marked S  for seed) are added to the set of 
candidate nodes. Those nodes within a graph distance of N  (in this case N  =  1) from these seed 
annotations are also added to the set of candidate nodes (marked S i). Those nodes that are beyond 
this distance do not have their local predictors computed (marked X) .
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Table 6.3: Exploiting BLAST Results

Comparing methods of using BLAST to find candidate nodes, and then validating these nodes 
using local predictor ensembles. The best values in each category are marked with bold text.

Candidate Generating 
Method

Precision Recall Average Cost 
per Protein

BLAST-1-Union 81% 75% 16
BLAST-2-Union 79% 78% 20
BLAST-3-Union 78% 79% 22

BLAST-10-Union 77% 80% 32
BLAST-Search-1 80% 77% 82
BLAST-Search-2 78% 78% 221
BLAST-Search-3 78% 79% 430

tors. This is done by only evaluating local predictors for the set of candidate nodes. 
The results of using BLAST-Search-N and BLAST-N-Union as candidate node gen­
erating methods for various values of N  is presented in Table 6.3. An interesting 
side effect is that constraining our candidate nodes for our predictors can also raise 
precision since those GO terms that are unlikely to be assigned to an instance are 
never considered. An important note is that regardless of which method is compu­
tationally cheaper for finding the set of candidate GO term predictors to run, the 
BLAST-Search-N method must be used when only a single good BLAST hit is 
found (since there are no other good hits to union).

Although the BLAST-2-Union and BLAST-Search-3 methods produce similar 
precision and recall, the BLAST-Search-3 method is more costly. Therefore, us­
ing BLAST-2-Union whenever possible (when there are at least 2 good BLAST 
hits) would be preferred, and BLAST-Search-3 should be used only when a single 
BLAST hit is found.

The results of combining BLAST-2-Union and BLAST-Search-3 method are 
shown in Table 6.4. This approach results in a cost that is approximately half of 
using a top-down approach. An added advantage of this approach is that precision 
is raised since the candidate node set is smaller. The combination of BLAST-2- 
Union and BLAST-Search-3 is used by CHUGO whenever at least 1 good BLAST 
hit is found against experimental data.

6.2 Proteins with No Good BLAST Hits
During cross-validation, 11% (1.637 out of 14,362) of the proteins in the data set 
had no good BLAST hits. These are sequences that are disparate from those which
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Table 6.4: Comparing Methods for Lowering Prediction Cost

Using BLAST-2-Union when possible, and otherwise using the BLAST-Search-3 method results in 
a lower cost than the top-down approach. The BLAST-Search-3 and BLAST-2-Union approach is 
incorporated into the CHUGO system.

Method Precision Recall Average Cost 
per Protein

Voting Top-Down 77% 79% 111
BLAST-Search-3

and BLAST-2-Union 79% 79% 59
(CHUGO)

have been studied, and thus BLAST will not be able to find a similar sequence in the 
database of studied proteins. One option is to simply accept the top BLAST result, 
regardless of its E-value. However, this method proves to be quite inaccurate, as 
shown in Table 6.5. Since our predictors of protein function model the sequences in 
a variety of ways, they can make predictions on a wider range of protein sequences.

For the prediction of these proteins, the PFAM and PA predictors prove to be 
the best combination of predictors to use in a voting ensemble (BLAST and PST 
are too inaccurate). Since BLAST performs so poorly on these proteins, it cannot 
produce good candidate nodes for lowering the cost of prediction. Therefore, a top- 
down approach is used to lower the cost of Voting predictors. This approach is used 
in CHUGO when no good BLAST hits are found against experimentally verified 
data.

Some molecular functions may not be as amenable to certain machine learn­
ing techniques as others. For example, some functional classes may depend on a 
small portion of the protein sequence (such as a functional domain), whereas others 
may be determined by the overall tertiary structure of the protein. Therefore, some 
prediction technologies may be better suited to some functional classes than other 
approaches.

To see if the reason that BLAST performs significantly worse than CHUGO on 
these dissimilar proteins is due to this phenomenon, each predictor was evaluated 
on a subset of the ontology (Figure 6.3). This subset was created for CHUGO by 
starting with no nodes in the ontology. Next, the node that increases the perfor­
mance of CHUGO by the largest margin (in terms of hierarchical F-measure) was 
added to the ontology. Only nodes that made a consistent ontology were added. In 
other words, a node was not added to the ontology unless all of its parents nodes 
had been added. The process was repeated until all 406 nodes were added to the 
ontology. The entire process was then repeated for BLAST. Although this greedy 
approach could get caught in local maxima, it did give each prediction method a
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Table 6.5: Performance on proteins with no Good BLAST result

Performance on proteins that do not produce a good BLAST hit during cross-validation. For 
BLAST, any BLAST hit is accepted as a nearest neighbor, regardless of its E-value. In this case, 
the voting ensemble is made up of PA-SVM and PFAM-SVM. with 1 vote required between the 
two to make a positive prediction. The Voting Top-Down approach is incorporated into the 
CHUGO system for proteins with no good BLAST hits.

Method Precision Recall F-measure 95% Cl 
(F-measure)

Cost

BLAST 19% 20% 19% ±1.9% 1
PA-SVM 59% 25% 35% ±3.0% 406

PFAM-SVM 54% 21% 30% ±2.3% 406
PST 16% 10% 12% ±1.5% 406

Voting 55% 32% 41% ±2.5% 812
Voting Top-Down 

(CHUGO)
56% 32% 41% ±2.4% 58

CHUGO0.6

u»

0.4

BLAST

02
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Figure 6.3: Comparing BLAST and CHUGO on Pruned Ontologies

CHUGO produces a better classification system even when the ontology is created in each 
predictors favor.
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Table 6.6: Coverage against model organisms

Not finding good BLAST result against experimental data accounts for a large percentage of 
sequenced proteomes.

Organism Good BLAST Hit No Good BLAST Hit
D. melanogaster 60% 40%

S. cerevisae 62% 38%

fair chance to perform well on a consistent subset of the ontology.
Since the creation of the ontology is done separately for CHUGO and BLAST, 

the two lines are not directly comparable. That is, when the size of the ontology is 
50, the point for CHUGO does not represent the performance on the same ontology 
as the point for BLAST. Although the two ontologies may not be comparable, the 
graph does show that even when BLAST was given a fair chance at being evaluated 
on a smaller ontology, CHUGO consistently performed better.

6.3 Coverage
Knowing how often a good BLAST hit is found during cross-validation is useful, 
but ultimately a predictive system will be used on unknown proteins, possibly in 
newly sequenced organisms. BLAST is used as a baseline because of its ubiquitous 
use. It is therefore important to know how often each of the cases -  when a protein 
has a good BLAST hit against experimental data, or when it does not -  would 
occur in reality. To approximate how often future unknown sequences would not 
result in a good BLAST hit, a BLAST query was run for each protein in two model 
organisms against the entire data set of experimentally annotated proteins (Table 
6.6).

Within an entire proteome, the number of proteins that do not find a good 
BLAST hit against the experimental data set is much higher than found during 
cross-validation. This shows an increased importance for the case of no good 
BLAST hits found, since this happens more often in these proteomes. This differ­
ence is most likely because there are many more proteins in these proteomes whose 
function is unknown, and have no well-studied homologs. The effects would be 
magnified when examining an organism that is not well studied (relative to those 
shown in Table 6.6).
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Table 6.7: Comparison to ProtFun

CHUGO outperforms ProtFun for the prediction o f the 1,637 proteins which do not find a good 
BLAST hit during the cross-validation o f CHUGO.

Predictor Precision Recall
PST 0.153 0.067

BLAST NN 0.188 0.198
PA-SVM 0.727 0.247

PFAM-SVM 0.674 0.112
CHUGO 0.689 0.288
ProtFun 0.143 0.128

6.4 Comparison to ProtFun
As a final experiment, CHUGO predictions were compared to those made by an­
other protein function prediction system, Protfun [24] version 2.2 (Table 6.7). Prot- 
fun uses an ontology that contains 14 Gene Ontology nodes, where 9 of these nodes 
are from the molecular function aspect (Figure 2.6). Both systems were evaluated 
on their predictions for the 1,637 proteins which did not have a good BLAST hit 
during cross-validation, and only on those 9 molecular function nodes which are in 
the ProtFun ontology.

Even though the comparison is not completely fair to CHUGO (we do not have 
control over the training set for ProtFun, and thus some of the submitted proteins 
may have been used in the training of the system), Table 6.7 shows that CHUGO 
outperforms Protfun by a large margin on these proteins. Since these proteins had 
no good BLAST hit. the CHUGO system consisted of ensemble classifiers made 
up of PA-SVM and PFAM-SVM at each of the 9 nodes. The results of using other 
predictors presented in this dissertation are shown as well.

6.5 Summary
Since each of the local prediction methods presented in this dissertation are in 
fact sequence-based, their performance on disparate proteins dwindles similarly to 
BLAST-based predictors. However, since each tool models the protein sequence in 
a different manner, combining the predictors provides a system that can make pre­
dictions on a wider range of proteins. When dealing with these proteins, which are 
very dissimilar to well-studied proteins, biologists would appreciate any leads they 
can get before beginning lengthy experiments on them. Although CHUGO’s pre­
dictors may not be extremely reliable on these disparate sequences, they do allow 
for a large increase in predictive accuracy over simply using BLAST NN.
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The results exploiting BLAST NN to lower the computational cost of prediction 
within a hierarchy are applicable to the general problem of hierarchical classifica­
tion. Any global prediction method can be used to generate candidate nodes for 
which local predictors are computed, as long as the global predictor adheres to the 
principles for candidate generating methods.
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Chapter 7 

Conclusion

7.1 Discussion of Results
This dissertation has shown that it is beneficial to include knowledge about the hier­
archical structure of an ontology during both training and prediction. Furthermore, 
the increased cost of using local predictors can be lowered when the hierarchy’s 
structure is considered by two different approaches. The first is a top-down ap­
proach predictor to lower the cost. This can be done without a significant impact 
on precision and recall when an inclusive training strategy is used. The second ap­
proach applies when an accurate global predictor is available (in this case BLAST). 
The predictions it produces can be used to find candidate nodes for local predictors, 
lowering the overall cost of prediction. A hierarchy-aware evaluation methodology 
was also outlined in this dissertation. This includes an intuitive scoring scheme 
within a hierarchy, and a sound methodology for cross-validation.

The Gene Ontology hierarchy provides a mechanism to represent incomplete 
information. Biological experiments vary in how specifically they determine pro­
tein functions. Organizing these functions in a hierarchy allows these differences to 
be made explicit.

The fact that the labels in GOA are incomplete in that most annotations are 
not fully specified, makes the problem of protein function prediction different from 
some other hierarchical classification problems. One such example is the hierarchi­
cal classification of text documents [29]. In contrast to the work in this dissertation, 
Koller et al showed that exclusive and inclusive classifiers perform similarly. How­
ever, the structure of their ontology was created artificially, and thus each instance 
was assigned to a leaf node (and therefore complete).

Furthermore, in domains such as web document classification [19], instances 
may be validly assigned to non-leaf nodes. For example, a web page may be about 
“Health and Fitness”, but not any more specific. This is contrasted with GO, where 
proteins that are mapped to non-leaf nodes are only annotated at that node because 
their annotations are incomplete.

When dealing with proteins which are far (in terms of sequence similarity, and
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thus homology) from well-studied proteins, the biologists considering them would 
likely appreciate any leads they can get before beginning lengthy experiments on 
them. CHUGO is therefore a way of pushing the boundaries of sequence analysis, 
and ultimately a way of speeding up the process of protein function determination 
in general.

An important aspect to protein function prediction is that there may be a fun­
damental limit to how well functions of proteins can be predicted from a protein’s 
structures (primary, secondary, or tertiary). This is because proteins are very sen­
sitive to their environment. Proteins “...may only be active in their native state, 
over a small pH range, and under solution conditions with a minimum quantity of 
electrolytes” [5]. It is highly likely that a protein’s environment is essential knowl­
edge to determine what functions that protein can perform. Therefore, the lack of 
this knowledge in a prediction system may set an upper bound on how well protein 
functions can be predicted.

7.2 Future Work
In the future, it would be beneficial to include other types of local predictors of 
protein function. One option is to use biological properties of proteins as features 
for classifiers. This was shown to be effective by Jensen et al [24]. The addition 
of other features could be added to CHUGO by using the hierarchy aware training 
strategies presented in this dissertation.

Another aspect that could improve the performance of CHUGO is to make the 
PA-SVM predictors more accurate. The results in Chapter 5.2 did not show promis­
ing results for using other fields for prediction, however there is a large amount 
of knowledge in the Swiss-Prot entries of proteins that shows great potential for 
improvement. Other combinations of these annotations or more complex parsing 
techniques may prove to be useful in leveraging this data.

In Chapter 4, four training schemes were evaluated. These schemes were based 
on different degrees of consistency with the semantics of the hierarchy. However, 
these are by no means the only possibilities for creating training sets. There are 
many possibilities for choosing instances for positive and negative training sets. 
For instance, the distance in the hierarchy could be used to decide whether an in­
stance is far enough from the current node to be used as a negative training instance. 
Other approaches could be attempted to increase the quality of all local prediction 
technologies used in this dissertation.

Chapter 4 also attempted to use a randomized approach to find better global 
splits of the data for cross-validation. An algorithmic approach could be used to 
split the data in a way that would preserve local node distributions optimally. How­
ever, the complexity of such an algorithm should be evaluated since it may prove to 
be intractable.

Another topic that could use further attention is finding an even more efficient 
way of using the local predictors when there are no good BLAST hits. Accepting

SO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



a lower quality hit does not appear to be a good way of finding candidate terms to 
compute, but perhaps there are other global predictors that could be used to seed the 
search for candidate nodes in the hierarchy. For now. CHUGO uses the top-down 
approach on proteins that do not find a good BLAST result.

It would also be desirable to have a better approximation of each predictor’s cost 
during the comparison of prediction schemes, rather than assigning a constant value 
for each. Although using the simple approach of assigning a constant cost to each 
predictor is a good way of getting an idea of the total cost of different prediction 
methods, a more accurate measure would be beneficial to deciding how expensive 
CHUGO predictions really are.

The fact that there are so many variables to tune for each predictor (parameters 
for each machine learning technology, feature selection, kernels, combinations of 
predictors) shows that there is a large room for potential improvement by focusing 
on each local predictor.

Finally, the experiments in this dissertation could be repeated for the other two 
aspects of Gene Ontology -  Cellular Component and Biological Process. The ap­
proaches presented in this dissertation may not be as amenable to these other two 
aspects as they are to Molecular Function, but it would be interesting to know if 
they are. Knowing the Cellular Component and Biological Process for an unknown 
protein would be useful information for molecular biologists.

7.3 Summary
High-throughput and accurate protein function prediction is important to closing the 
gap between sequenced proteins and experimentally determined protein functions. 
Ontologies such as GO help to alleviate this problem by providing standardized, 
hierarchical vocabularies with which to describe the problem domain. This disser­
tation has presented three novel methods to exploit the hierarchical nature of GO 
to increase predictive performance, and to lower computational cost of using local 
predictors. First, the hierarchy is utilized to increase the accuracy of local predic­
tors by considering its structure during the construction of training sets. Second, the 
hierarchy was used to lower the computational cost of running local term predic­
tors by using a top-down approach or by exploiting predictions seeded by BLAST. 
Third, an evaluation methodology that produces hierarchical precision and hier­
archical recall was examined, and a sound method of global cross-validation was 
presented.

The methods that have been presented may be applicable to many other do­
mains where there is a standardized, hierarchical ontology, such as document clas­
sification, medical diagnosis, web documents, and many others. By leveraging 
the knowledge encoded in the hierarchical structure of these ontologies, prediction 
methods can become more accurate and more efficient in domains where there are 
a large number of classes.
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Appendix A 

Data Set Information
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Table A.1: Evidence Code Histogram

The number of Gene Ontology Annotations provided by GOA for proteins in the Uniprot and 
Swissprot databases.

Evidence Code Number of Annotations 
for UniProt Proteins

Number of Annotations 
for SwissProt Proteins

IEA 2,219,999 483,200
IDA 7,773 4,089
TAS 6,468 5,581
ISS 4,326 2,499
NAS 3,985 2,711
IPI 3,162 1,445
ND 1,312 827
IMP 1,056 729
NR 676 629
IGI 272 204
IEP 96 83
IC 42 24

Table A.2: General Data Set Statistics 

General Statistics about the ontology, and the experimentally annotated data set.

Statistic Value
Original Number of Nodes 7,399

Number of Nodes in Pruned Ontology 406
Average Number of Parents Per Node (In Original Ontology) 1.154

Number of Nodes in Pruned Ontology with > 1 Parent 60
Number of Nodes in Original Ontology with > 1 Parent 1,036

Number of Proteins Used in Data Set 14,362
Mappings Per Protein 1.355

Labels Per Protein (Propagating from Mapped) 4.935
Maximum Depth to a Node in Pruned Ontology 10
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Appendix B 

Supplementary Results

Table B.l: Parameter Search for the PST order

Performing a brute force parameter search for each node in the GO hierarchy. Histogram shows 
how many of the 406 nodes had each setting o f the order.

Value Occurence
5 156
4 117
6 116
3 13
2 4
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Table B.2: Parameter Search for Smoothing term

Performing a brute force parameter search for each node in the GO hierarchy. Histogram shows 
how many of the 406 nodes had each setting o f the smoothing term.

Value Occurence
n r 2 264
icr6 97

i 42
10 3

Table B.3: Parameter Search for Window Length

Performing a brute force parameter search for each node in the GO hierarchy. Histogram shows 
how many of the 406 nodes had each setting o f window length.

Value Occurence
1,000 91
200 84
100 77
10 56
40 38
400 31
20 29
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Figure B.I: Evaluating BLAST with Varying E-Value

E-value is varied for accepting a BLAST hit for BLAST NN. Local precision refers to how precise 
the matches added from the previous E-value are. This reinforces the results shown in [39], 
although the curves are not as high since a more conservative data set is used here..
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Appendix C 

The Pruned Ontology

This Appendix lists the pruned Gene Ontology used for the experiments in this dis­
sertation. For readability, long node names are shortened. Not all 14,396 proteins 
were used in experiments. Only those which mapped to at least one node in the 
pruned ontology were kept. This lowered the size of the dataset to 14,362 proteins. 
406 out of 7,399 original molecular function terms are in the pruned ontology. Some 
terms are shown more than once due to multiple inheritance.

( D e p th )  G O _ID »G O _N «ne -  [ I n h e r i t e d P r o t e i n s .  M a p p e d P ro te in s )  - < * C h i ld r e n ,  # P a r e n t s >

( 0 0 ) 0 0 0 3 6 7 3 » " G e n e _ O n to lo g y "  -  (1 4 3 9 6 . 0 ]  - < 1 , 0>
( 0 1 )  0 0 0 3 6 7 4 » * m o le c u la r _ f u n c t io n "  - (1 4 3 9 6 . 01 - < 15. 1>
( 0 2 )  0 0 1 6 2 0 9 » " a n t i o x i d a n t  a c t i v i t y "  • (7 4 . 5J - < 4 . 1>
( 0 3 )  0 0 0 4 6 0 1 » " p e r o x i d a s e  a c t i v i t y "  - (5 5 . 18) - < 1 6 . 2>
( 0 4 )  0 0 0 4 6 0 2 » " g l u t a t h i o n e  p e r o x i d a s e  a c t i v i t y "  -  (2 1 .  20 ] -  < 1 . 1>
(0 2 )  0 0 0 5 4 8 8 » “b i n d i n g * -  (7 1 0 5 . 25 J  - < 3 8 . 1>
( 0 3 )  0 0 0 3 8 2 3 » * a n t i g e n  b in d in g "  - (5 3 . 251 - < 3 . 1>
( 0 4 )  0 0 4 2 6 0 5 » " p e p t i d e  a n t i g e n  b i n d in g *  - (2 6 . 2 4 ]  - < 2 . 2>
( 0 3 )  0 0 3 0 2 4 6 » " c a r b o h y d r a t e  b i n d in g "  - (1 3 7 , 10 ] - < 2 , 1>
( 0 4 )  0 0 3 0 2 4 7 » " p o l y s a c c h a r i d e  b i n d in g "  -  (6 3 . 5J -  < 6 . 2>
( 0 5 )  0 0 0 5 5 3 9 » " g ly c o s a i a i n o g ly c a n  b i n d in g "  - ( 5 4 ,  51 - < 2 . 1>
( 0 6 )  0 0 0 8 2 0 1 » ”h e p a r i n  b i n d in g "  - (3 6 . 36 ] - < 0 . 1>
( 0 4 )  0 0 0 5 5 2 9 » " s u g a r  b in d in g "  - (6 4 . 391 - < 3 . 1>
( 0 5 )  0 0 4 8 0 2 9 » " m o n o s a c c h a r i d e  b i n d in g "  - (2 4 . 01 - < 7 , l>
( 0 3 )  0 0 0 8 1 4 4 » " d r u g  b in d in g *  * ( 2 8 .  o] - < 8 . 1>
( 0 3 )  0 0 4 3 1 6 7 » " i o n  b i n d in g "  -  ( 2 9 3 .  0] - < 3 . 1>
( 0 4 )  0 0 4 3 1 6 9 » * c a t i o n  b i n d in g "  - (2 7 1 . 0] - < 3 , 1>
( 0 5 )  0 0 0 5 5 0 9 » " c a l c iu r a  i o n  b i n d in g "  - [1 2 4 , 123] -  < 1 , 2>
( 0 5 )  0 0 4 6 9 1 4 » " t r a n s i t i o n  r n e t a l  i o n  b i n d in g "  - (1 5 2 . 0) -  < 9 . 2>
( 0 6 )  0 0 0 5 5 0 6 » " i r o n  io n  b in d in g *  - (2 3 .  10) - < 2 . 1>
( 0 6 )  0 0 0 8 2 7 0 » " = i n c  i o n  b i n d in g "  - [9 7 . 97] - < 0 . 1>
( 0 4 )  0 0 4 6 8 7 2 » * m e t a l  i o n  b i n d in g "  - (2 9 3 . 10J - < 5 . 1>
( 0 5 )  0 0 0 5 5 0 9 » " c a l c iu m  i o n  b i n d in g "  - (1 2 4 , 1 2 3 ) -  < 1 , 2>
( 0 5 )  0 0 0 0 2 8 7 » * a a g n e s i u »  i o n  b in d in g "  - (2 1 . 2 1 ]  - < 0 . l>
( 0 5 )  0 0 4 6 9 1 4 » " t r a n s i t i o n  r n e t a l  i o n  b i n d in g "  - (1 5 2 . 0] -  < 9 , 2>
( 0 6 )  0 0 0 5 5 0 6 » " i r o n  io n  b i n d in g "  - (2 3 .  10] - < 2 . 1>
( 0 6 )  0 0 0 8 2 7 0 » " s i n c  i o n  b in d in g *  - [9 7 . 97] - < 0 . 1>
( 0 3 )  0 0 0 8 2 S 9 » " l i p i d  b in d in g "  - (1 0 4 . 19] - < 6 , 1>
( 0 4 )  0 0 0 5 5 4 3 » " p h o s p h o l i p i d  b i n d in g "  * [7 3 . 33] - < 4 . 1>
( 0 5 )  0 0 3 5 0 9 1 » " p h o s p h o i n o s i t i d e  b i n d in g "  - (2 3 . 3] - < 4 . 1>
( 0 3 )  0 0 4 2 1 6 5 » * n e u r o t r a n s m i t t e r  b i n d in g "  - [1 1 3 . 0 ] -  < 5 . 1>
( 0 4 )  0 0 4 2 1 6 6 » " a c e t y l c h o l i n e  b i n d in g "  - [2 8 .  0) -  < 1 . 1>
( 0 5 )  0 0 1 5 4 6 4 » " a c e t y l c h o l i n e  r e c e p t o r  a c t i v i t y "  -  [ 2 8 .  153 -  < 2 . 3>
( 0 4 )  0 0 4 2 9 2 3 » " n e u r o p e p t i d e  b i n d in g "  - [4 6 . I I  - < 2 , 2>
( 0 5 )  0 0 0 8 1 8 8 » " n e u r o p e p t i d e  r e c e p t o r  a c t i v i t y "  -  ( 4 6 .  15] -  < 9 . 3>
( 0 4 )  0 0 3 0 5 9 4 » " n e u r o t r a n s m i t t e r  r e c e p t o r  a c t i v i t y "  -  (1 1 2 . 21 -  < 4 . 2>
( 0 5 )  0 0 1 5 4 6 4 » * a c e t y l c h o l i n e  r e c e p t o r  a c t i v i t y "  -  ( 2 8 .  151 -  < 2 . 3>
( 0 5 )  00 1 6 9 1 7 » * G A B A  r e c e p t o r  a c t i v i t y "  - [3 1 . 1 ] -  < 2 . 2>
( 0 6 )  0 0 0 4 8 9 0»"G A B A -A  r e c e p t o r  a c t i v i t y "  - ( 2 7 ,  2 7 ]  - < 0 . 1>
( 0 5 )  0 0 0 8 1 8 8 » * n e u r o p e p t id e  r e c e p t o r  a c t i v i t y *  - (4 6 .  15] -  < 9 . 3>
( 0 3 )  0 0 0 3 6 7 6 » * n u c l e i c  a c i d  b i n d in g "  - [2 0 5 7 . 12] - < 3 , 1>
( 0 4 )  0 0 0 3 6 7 7 » * D N A  b in d in g "  - (1 4 9 4 . 7 3 0 ] - < 23. 1>
( 0 5 )  0 0 0 3 6 8 2 » * c h r o m a t i n  b i n d in g "  - [ 7 8 .  781 - < 1 . 1>
( 0 5 )  0 0 0 3 6 8 4 » * d a m a g e d  DNA b in d in g *  - [5 1 . 51] - < 0 . 1>
( 0 5 )  0 0 0 3 6 9 0 » " d o u b l e - s t r a n d e d  DNA b in d in g "  - [ 4 2 ,  39 ] - < 2 . 1>
( 0 5 )  0 0 0 3 6 9 7 » * s i n g l e - s t r a n d e d  DNA b in d in g "  - (4 S .  4 2 ] - < 2 . 1>
{05} 0 0 0 3 7 0 0 » " t r a n s c r i p t i o n  f a c t o r  a c t i v i t y *  -  (6 9 4 ,  6 8 0 ] -  < 1 . 2>
( 0 4 )  0 0 0 3 7 2 3 » " R N A  b in d in g *  - (5 3 0 . 2671 - < 16 . 1>
( 0 5 )  0 0 0 3 7 2 5 » * d o u b l e - s t r a n d e d  RNA b in d in g "  - [ 2 3 .  2 3 ]  -  < 0 . 1>
( 0 5 )  0 0 0 3 7 2 9 » * a R N A  b i n d in g *  - (1 8 6 . 50 ] - < 6 . 1>
( 0 6 )  0 0 0 8 2 4 8 » " p re -m R N A  s p l i c i n g  f a c t o r  a c t i v i t y "  -  (9 7 , 97 ] -  < 3 . 1>
( 0 5 )  0 0 0 3 7 2 7 » *  • s i n g l e - s t r a n d e d  RNA b in d in g *  * -  [ 2 6 .  13] -  < 3 . 1>
( 0 5 )  0 0 3 0 5 1 5 » * ‘ snoRNA b i n d in g *  * • [2 2 . 22 ] - < 0 .  1>
( 0 4 )  0 0 0 8 1 3 5 » * ' t r a n s l a t i o n  f a c t o r  a c t i v i t y ,  n u c l e i c  a . . . * *  - [6 1 .  2 5 ] - < 5 . 2>
( 0 5 )  0 0 0 3 7 4 3 » * ' t r a n s l a t i o n  i n i t i a t i o n  f a c t o r  a c t i v i t y * * - (3 0 . 3 0 ] - < 0 . 1>
( 0 3 )  0 0 0 0 1 6 6 » * 'n u c l e o t i d e  b i n d in g *  * • [2 0 3 . 12] -  < 5 . 1>
{04} 0 0 1 7 0 7 6 » " p u r i n e  n u c l e o t i d e  b i n d in g "  • (1 9 5 . 0 ] - < 2 . 1>
( 0 5 )  0 0 3 0 5 5 4 » " a d e n y l  n u c l e o t i d e  b i n d in g "  - [1 2 5 ,  0 ] - < 5 . 1>
(O o) 0 0 0 S 5 2 4 » "A * rP  b in d in g "  - [1 1 8 . 113] - < 0 . 1>
( 0 5 )  0 0 1 9 0 0 1 » * g u a n y l  n u c l e o t i d e  b i n d in g "  [ 7 4 ,  7] - < 3 . 1>
( 0 6 )  0 0 0 5 5 2 5 » * G 7 P  b in d in g *  - [6 3 . 63] - < 0 . 1>
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{02} 0 0 1 9 8 2 5 » " o x y g e n  b i n d in g "  -  [2 o .  2 5 ]  - < 1 . 1>
{02} 0 0 0 1 8 7 1 » " p a t t e r n  b i n d i n g -  - [7 2 . 0] - < 4 . 1>
{04} 0 0 3 0 2 4 7 » " p o l y s a c c h a r i d e  b i n d in g "  - [6 2 . 51 < 6 . 2>
{05} 0 0 0 5 5 3 9 > > " g ly c o s a a in o g ly c a n  b i n d in g "  - [5 4 .  5] • < 2 . 1>
{06} 0 0 0 8 2 0 1 » " h e p a r i n  b i n d in g "  -  [2 6 .  36] - <0 , 1 >
{02} 0 0 4 2 2 7 7 » " p e p t i d e  b i n d in g "  - [2 4 2 . 4] - < 5 . 1>
{04} 0 0 4 2 9 2 3 > > " n e u ro p e p t id e  b i n d in g "  -  [4 6 .  1] - < 2 . 2>
{05} 0 0 0 8 1 8 8 > > " n e u ro p e p t id e  r e c e p t o r  a c t i v i t y "  {46 . 15] - < 9 . 3>
{04} 0 0 4 2 6 0 5 » " p e p t i d e  a n t i g e n  b i n d in g *  - [2 6 . 2 i]  <2. 2>
{04} 0 0 0 1 6 5 3 » * p e p t i d e  r e c e p t o r  a c t i v i t y "  • [1 7 7 . 12] < 2 . 2>
{05} 0 0 0 8 5 2 8 > > " p e p t id e  r e c e p t o r  a c t i v i t y .  C - p r o t e i n . . . "  - [ l o o .  3] - < 2 1 . 2>
{06} 0 0 0 1 6 3 7 > > " G - p r o te in  c h e m o a t t r a c t a n t  r e c e p t o r  < s c . . . "  • [4 1 .  01 - < 2 . 1>
{0 7 ) 0 0 0 4 9 5 0 » " c h e a o k i n e  r e c e p t o r  a c t i v i t y *  [4 1 . 2 1 ] < 3 . 2>
{06} 0 0 0 8 1 8 8 » " n e u r o p e p t id e  r e c e p t o r  a c t i v i t y *  • [4 6 . 15] - < 9 . 3>
{06} 0 0 0 4 9 8 5 » " o p i o i d  r e c e p t o r  a c t i v i t y '  -  [2 6 . 2] < 4 . !>
{04} 0 0 0 5 0 4 8 > > " s ig n a l  s e q u e n c e  b i n d in g "  - [2 8 . 10! - <7 . 1>
{03} 0 0 0 5 5 1 5 > > " p r o t e i n  b i n d in g "  - [4 0 3 5 . 2 9 3 1 ] - < 7 0 . 1>
{04} 0 0 0 5 5 1 6 » " c a lm o d u l i n  b i n d in g "  - [4 5 .  45 ] < 1 . 1 >
{04} 0 0 1 9 9 5 5 » " c y t o k i n e  b i n d in g "  - [ 9 4 .  1] * < 6 . 1>
{05} 0 Q 1 9 9 5 6 » " c h e m o k in e  b i n d in g "  -  [4 1 , 0] - < 4 . 1>
( 0 6 )  0004 9 5 0 » " c h e m o k in e  r e c e p t o r  a c t i v i t y "  141. 21} - < 3 . 2>
{05} 0 0 1 9 9 6 5 » " i n t e r l e u k i n  b i n d in g "  -  [3 4 . 1] - < 2 8 , 1>
{06} 0 0 0 4 9 0 7 » * i n t e r i e u k i n  r e c e p t o r  a c t i v i t y *  • [3 2 . 7 ] - < 2 7 , 2>
{04} 0 0 0 8 0 9 2 » " e y t o s k e l e t a l  p r o t e i n  b i n d in g *  - [2 7 6 . 19] < 12 . 1>
{05} 0 0 0 3 7 7 9 » " a c t i n  b i n d in g "  -  [1 3 1 . 118] - < 2 . 1>
{05} 0 0 1 5 6 3 1 » " t u b u l i n  b i n d in g "  -  [1 1 4 . 11] * <4. 1>
{06} 0 0 0 8 0 1 7 > > " m ic r o tu b u le  b i n d in g "  - [9 9 . 99] < 2 . 1>
{04} 0 0 1 9 8 9 9 » * e n z y m e  b i n d in g "  -  [1 0 7 , 1 8 ] - < 1 4 . 1 >
{05} 0 0 1 9 9 0 0 » 'k i n a s e  b i n d in g "  -  [7 9 .  5] - < 1 . 1>
{06} 0 0 1 9 9 0 1 » " p r o t e i n  k i n a s e  b i n d in g *  - [7 4 .  4 0 ] - < 5 . 1>
{04} 0 0 1 9 8 3 8 » " g r o w t h  f a c t o r  b i n d in g "  - [3 3 . 0 ] <lt>, 1>
{04} 0 0 0 8 0 3 4 » " l i p o p r o t e i n  b i n d in g "  -  [2 3 . 5] - < 4 . 1>
{04} 0 0 0 8 0 2 2 » " p r o t e i n  C - t e r m in u s  b i n d in g "  - [2 o , 2 6 ] • < 0 . 1>
{04} 0 0 4 6 9 8 3 » " p r o t e i n  d i m e r i z a t i o n  a c t i v i t y "  - [ 1 0 6 . 3! - < 2 , 1>
{05} 0 0 4 6 9 8 2 » " p r o t e i n  h e t e r o d i m e r i z a t i o n  a c t i v i t y *  [4 5 . 45 ] - < 0 . 1>
{05} 0 0 4 2 8 0 3 » " p r o t e i n  h o m o d im e r i z a t io n  a c t i v i t y "  - [ 6 8 . 6 8 ] - < 0 . 2>
{04} 0 0 1 9 9 0 4 » " p r o t e i n  d o m ain  s p e c i f i c  b i n d i n g '  - [ 7 7 .  2 3 ] - < 1 5 . 1>
{05} 0 0 1 7 1 2 4 » " S H 3  d o m ain  b i n d in g "  -  [2 7 .  2 7 ] < 3 . l>
{04} 0 0 4 2 8 0 2 » " p r o t e i n  s e l f  b i n d in g "  -  [9 7 .  17 ] - < 2 . 1>
{05} 0 0 4 2 8 0 3 » " p r o t e i n  h o m o d im e r i z a t io n  a c t i v i t y "  [ 0 8 . 6 8 ] - < 0 . 2>
{04} 0 0 0 0 1 4 9 » "S N A R E  b i n d in g "  -  [2 6 . 10 ] - < 1 . 1>
{ 0 4 ] 0 0 0 8 1 3 4 » " t r a n s c r i p c i o n  f a c t o r  b i n d in g "  * [4 1 2 . 63) < 6 , 1>
{05} 0 0 0 3 7 1 2 » " t r a n s c r i p t i o n  c o f a c t o r  a c t i v i t y ’ - ( 2 5 9 . 46] < 2 . 2>
{06} 0 0 0 3 7 1 3 » " t r a n s c r i p t i o n  c o a c t i v a t o r  a c t i v i t y *  [1 8 0 . 172] - < 2 . 1>
{06} 0 0 0 3 7 1 4 » " t r a n s c r i p t i o n  c o r e p r e s s o r  a c t i v i t y "  - [1 4 9 . 149] - < 0 . 1>
{04} 0 0 5 1 0 8 2 » " u n f o ld e d  p r o t e i n  b i n d in g "  - [7 7 .  77 ] - < 0 . 1>
{03} 0 0 0 5 1 0 2 » " r e c e p t o r  b i n d in g "  -  [5 9 1 . 1 4 7 ] - < 5 3 . 2>
{04} 0 0 0 5 1 2 5 » " c y t o k i n e  a c t i v i t y "  -  [ 1 7 3 , 55 ] - < 2 7 . 1 >
{05} 0 0 0 8 0 0 9 » " c h e a o k i n e  a c t i v i t y "  - [5 4 ,  54 ] - < 0 , 2>
{05} 0 0 0 5 1 2 6 » " h e m a t o p o i e t i n / i n t e r f e r o n - c l a s s  ;D200 . . . "  - (3 7 .  7] -  < 2 5 , 1>
{04} 0 0 0 1 6 6 4 » “G - p r o t e i n - c o u p l e d  r e c e p t o r  b i n d i n g '  - [6 5 . 9] - < 5 , 1>
{05} 0 0 4 2 3 7 9 » " c h e r a o k in e  r e c e p t o r  b i n d in g "  - [5 4 . 0] - < 3 . 1>
{06} 0 0 0 8 0 0 9 » " c h e a o k i n e  a c t i v i t y "  -  [5 4 , 5 4 ] - <0 . 2>
{04} 0 0 0 8 0 8 3 » " g r o w t h  f a c t o r  a c t i v i t y "  -  [ 8 6 . 65 ] - < 1 6 . 1>
{04} 0 0 0 5 1 7 9 » " h o r m o n e  a c t i v i t y "  -  [ 7 1 ,  4 4 ] - < 1 3 . 1>
{05} 0 0 0 5 1 8 4 » " n e u r o p e p t i d e  h o rm o n e  a c t i v i t y "  - [2 1 . 21 ] - < 5 . 1>
{04} 0 0 0 5 1 7 8 » " i n t e g r i n  b i n d in g "  -  [ 4 5 .  45} - < 0 , 1>
{02} 0 0 0 3 8 2 4 » " c a t a l y t i c  a c t i v i t y "  -  [ 5 0 0 5 . 47 ) - < 4 6 . 1>
{03} 0 0 0 9 9 7 5 » " c y c l a s e  a c t i v i t y *  -  [3 2 .  0] - <6 . 1>
{04} 0 0 0 4 3 8 3 » " g u a n y l a t e  c y c l a s e  a c t i v i t y "  - [2 3 .  2 3 ] < 0 . 2>
{03} 0 0 0 4 3 8 6 » “h e l i c a s e  a c t i v i t y "  -  [9 1 .  13 ] - < 4 . l>
{04} 0 0 0 8 0 2 6 » " A T P -d e p e n d e n t  h e l i c a s e  a c t i v i t y *  - [4 2 .  0] < 2 . 2>
{05} 0 0 0 4 0 0 3 » " A T P -d e p e n d e n t  DNA h e l i c a s e  a c t i v i t y  - [2 8 . 2 1 ] - < 3 . 3>
{04} 0 0 0 3 6 7 8 » "D N A  h e l i c a s e  a c t i v i t y "  - [5 4 , 2 7 ] - < 4 . 1>
{05} 0 0 0 4 0 0 3 » " A T P -d e p e n d e n t  DNA h e l i c a s e  a c t i v i t y '  [2 8 . 2 1 ] - < 3 . 3>
{04} 0 0 0 3 7 2 4 » "R N A  h e l i c a s e  a c t i v i t y *  - [3 2 , 1 7 ] - < 1 , l>
{03} 0 0 1 6 7 8 7 » " h y d r o l a s e  a c t i v i t y "  -  [1 7 8 6 .  9 ] - < 15 . 1>
{04} 0 0 1 6 8 1 7 » " h y d r o l a s e  a c t i v i t y ,  a c t i n g  on  a c i d  a n h . . . "  - (4 0 0 . 0] -  < 3 , 1>
{05} 0 0 1 6 8 2 0 » " h y d r o l a s e  a c t i v i t y ,  a c t i n g  o n  a c i d  a n h . . . "  - [ 8 6 . 0] -  < 1 , 1>
{06} 0 0 4 2 6 2 6 » " A T P a s e  a c t i v i t y ,  c o u p le d  t o  t r a n s m e . . . "  - [ 8 6 . 2 0 ] -  < 3 5 . 2>
{07} 0 0 4 2 6 2 5 » " A T P a s e  a c t i v i t y ,  c o u p le d  t o  t r a n s m e m . . . '  - [ 6 2 ,  I I  - < 3 , 1>
{08} 0 0 1 5 6 6 2 » " A T P a s e  a c t i v i t y ,  c o u p le d  t o  t r a n s m . . . "  - [5 5 .  3] - < 1 3 . 3>
{05} 0 0 1 6 8 1 8 » " h y d r o l a s e  a c t i v i t y ,  a c t i n g  o n  a c i d  a . . . "  (4 0 0 . 1] -  < 3 3 . 1>
{06} 0 0 1 6 8 8 7 » 'A T P a s e  a c t i v i t y "  -  [ 2 1 2 . 4 4 ] - < 2 . 1>
{07} 0 0 4 2 6 2 3 » " A T P a s e  a c t i v i t y ,  c o u p le d "  - [1 7 0 . 21 ] < 7 . l>
{08} 0 0 0 8 0 2 6 » " A T P -d e p e n d e n t  h e l i c a s e  a c t i v i t y "  - [4 2 , 0] -  < 2 . 2>
{09} 0 0 0 4 0 0 3 » " A T P -d e p e n d e n t  DNA h e l i c a s e  a c t i v i t y '  - [2 8 ,  2 1 ) -  < 3 , 3>
{08} 0 0 4 2 6 2 6 » " A 7 P a s e  a c t i v i t y ,  c o u p le d  t o  t r a n s . . . "  - [ 8 6 . 2 0 ] -  < 3 5 . 2>
{09} 0 0 4 2 6 2 5 » " A T P a s e  a c t i v i t y ,  c o u p le d  t o  t r a n s m . . . "  - [6 2 , 1] - < 3 . 1>
{10} 0 0 1 5 6 6 2 » " A T P a s e  a c t i v i t y ,  c o u p le d  t o  t r a n . . . "  - [5 5 . 3] -  < 1 3 , 3>
{08} 0 0 0 8 0 9 4 » * D N A -d e p e n d e n t  A T P ase  a c t i v i t y "  • [4 7 . 19] - < 4 . 1>
{0 9 ) 0 0 0 4 0 0 3 » " A T P -d e p e n d e n t  DNA h e l i c a s e  a c t i v i t y '  - [2 8 .  2 1 ] -  < 3 , 3>
{06} 0 0 0 3 9 2 4 » " G T P a s e  a c t i v i t y "  -  [1 4 5 . 1 4 5 ] < 0 . 1>
{04} 0 0 1 6 8 1 0 » " h y d r o l a s e  a c t i v i t y ,  a c t i n g  o n  c a r b o n - . . . "  - [1 5 2 , 0] -  < 1 2 , 1>
{05} 0 0 1 6 8 1 4 » " h y d r o l a s e  a c t i v i t y ,  a c t i n g  o n  c a r b o n * n . . . "  - [ 4 5 .  0} - < 3 . 1>
{06} 0 0 1 9 2 3 9 » " d e a m in a s e  a c t i v i t y "  - [3 5 ,  0 ]  - < 24 . 1>
{05} 0 0 1 6 8 1 1 » " h y d r o l a s e  a c t i v i t y ,  a c t i n g  o n  c a r b o n - . . . "  - [ 8 8 . 1] - < 7 7 , 1>
{06} 0 0 1 9 2 1 3 » 'd e a c e t y l a s e  a c t i v i t y ’ - [5 9 .  0] - <1S . 1>
{07} 0 0 0 4 4 0 7 » " h i s t o n e  d e a c e t y l a s e  a c t i v i t y  - [5 6 . 48 ] - < 2 . 1>
{04} 0 0 1 6 7 8 8 » " h y d r o l a s e  a c t i v i t y ,  a c t i n g  o n  e s t e r  b o n d s "  [6 3 4 . 4] - < 9 . 1>
(OS) 0 0 1 6 7 8 9 » " c a r b o x y l i c  e s t e r  h y d r o l a s e  a c t i v i t y '  - [1 1 6 . 3] - <6 8 . 1>
{06} 0 0 1 6 2 9 8 » " l i p a s e  a c t i v i t y "  -  [ 8 8 , 5] - < 5 . 1>
{ 07) 0 0 0 4 6 2 0 » " p h o s p h o l i p a s e  a c t i v i t y "  - [7 3 . 1] - < 5 . 1>
{08} 0 0 0 4 6 2 3 » * p h o s p h o l i p a s e  A2 a c t i v i t y  - [2 2 . 9] - < 2 . 1>
{OS) 0 0 0 4 6 2 9 » " p h o s p h o l i p a s e  C a c t i v i t y  • [2 5 . 11] < 2 . 2>
{05} 0 0 0 4 5 1 8 » " n u c l e a s e  a c t i v i t y *  - [1 4 4 . 3] - < 4 . l>
{06} 0 0 0 4 S 3 6 » " d e o x y r ib o n u c le a s e  a c t i v i t y *  - (4 4 . 5] - < 3 . l>
{07} 0 0 0 4 5 2 0 » " e n d o d e o x y r i b o n u c le a s e  a c t i v i t y *  - [3 1 . 1 1 ] - < 10 . 2>
{06} 0 0 0 4 5 1 9 » * e n d o n u c le a s e  a c t i v i t y "  - [ 9 2 .  17] - < 4 . 1>
{07} 0 0 0 4 5 2 0 » * e n d o d e o x y r i b o n u c le a s e  a c t i v i t y "  - 131 . 11] - < 1 0 . 2>
{07} 0 0 1 6 8 9 3 » " e n d o n u c le a s e  a c t i v i t y ,  a c t i v e  w i t h  e . . . *  - [4 2 . 0] -  < 2 . 1>
{08} 0 0 1 6 8 9 1 » " e n d o r i b o n u c le a s e  a c t i v i t y ,  p r o d u c i n . . . "  - [3 8 . 1] -  < 5 . 2>
{07} 0 0 0 4 5 2 1 » * e n d o r i b o n u c le a s e  a c t i v i t y "  - [4 5 . 5] - < 2 . 2>
(0 8 )  0 0 1 6 8 9 1 » " e n d o r i b o n u c le a s e  a c t i v i t y ,  p r o d u c i n . . . "  - [3 8 . 1 ] - < 5 . 2>
{06} 0 0 0 4 5 2 7 » * e x o n u c le a s e  a c t i v i t y "  - [ 4 4 .  7] < 8 . 1>
{07} 0 0 0 8 4 0 S » " 3 '- 5 *  e x o n u c le a s e  a c t i v i t y  • [2 8 . 15] • < 3 . 1>
{06} 0 0 0 4 5 4 0 » " r i b o n u c l e a s e  a c t i v i t y "  - [7 0 ,  1 1 ] - < 9 . 1>
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{07} 0 0 0 4 5 2 1 » " e n d o r i b o n u c le a s e  a c t i v i t y "  - [4 5 , 5] - < 2 . 2>
{03} 0 Q 1 6 8 9 1 » * e n d o r ib o n u c l e a c e  a c t i v i t y ,  p r o d u c i n . . . "  - [ 3 8 ,  1] - < 5 , 2>
{05} 0 0 4 2 5 7 8 » " p h o s p h o r i c  e s t e r  h y d r o l a s e  a c t i v i t y "  - [3 6 2 . 1] - < 3 . 1>
{0 *5 } 0 0 0 8 0 8 1 » " p h o s p h o r i c  d i e s t e r  h y d r o l a s e  a c t i v i t y "  [S 5 . 0] - < 22 . 1>
{07} 0 O 4 7 3 9 4 » 'g ly c e r e p h o s p h © in o s ic © 2  i n o s i t o l p h c s p . . -  * - [3 6 , 0} - < 1 . 1>
{ 08) 0 0 0 4 1 1 2 » " c y c l i c - n u c l e o t i d e  p h o s p h o d i e s t e r a s e . . . "  - [3 6 . 2) - < 3 . 1>
{09} 0 0 0 4 1 1 4 » " 3 ' . 5 * - c y c l i c - n u c l e o t i d e  p h o s p h o d ie . . . "  - [3 2 , 6 ] - < 6 . 1>
{07} 0 0 0 4 6 2 9 » * p h o s p h o l i p a s e  C a c t i v i t y "  - [2 5 . 11} - < 2 , 2>
{Do} 0 0 1 6 7 9 1 » " p h o s p h o r i c  m o n o e s t e r  h y d r o l a s e  a c t i . . . "  • [2 9 1 . 9] - < 6 2 . 1>
{07} 0 0 0 4 4 3 7 » * i n o s i t o l  o r  p h o s p h a t i d y l i n o s i t o l  p h . . . "  - [2 8 , 6 } - < 1 0 , 1>
{07} G 0 0 4 7 2 1 » " p h o s p h o p r o te i n  p h o s p h a ta s e  a c t i v i t y *  - [1 9 5 . 2 2 ] - < 5 . 1>
{08} 0 0 0 4 7 2 2 » " p r o t e i n  s e r i n e / t h r e o n i n e  p h o s p h a t a . . . "  • [5 7 . 22 ] - < 9 . 1>
{08} 0 0 0 4 7 2 5 » " p r o t e i n  t y r o s i n e  p h o s p h a ta s e  a c t i v i t y "  - [9 4 . 67 ] - < 6 . 1>
{08} 0 0 0 8 1 3 8 » " p r o t e i n  t y r o s i n e / s e r i n e / t h r e o n i r . e  . . . "  - [2 3 . 18] - < 2 , 1>
{05} 0 0 1 o 7 9 0 » ' t h i o l e s t e r  h y d r o l a s e  a c t i v i t y "  -  [3 7 . 0] < 17 , 1 >
(0 4 )  0 0 1 6 7 9 8 » " h y d r o l a s e  a c t i v i t y ,  a c t i n g  o n  g l y c o s y l . . . "  • [1 2 9 . 5] - < 3 , 1>
{05) 0 0 1 o 7 9 9 » “h y d r o l a s e  a c t i v i t y ,  h y d r o l y s i n g  N - g l y . . . "  [2 9 . 0] - < 1 9 . 1>
[ 0 5 } 0019104>>"DN A N - g l y c o s y l a s e  a c t i v i t y "  -  [3 0 . 6 ] • < 5 . 1>
{05} 0 0 0 4 5 5 3 > > " h y d r o la s e  a c t i v i t y ,  h y d r o ly s i n g  O - g l y . . . "  - [8 5 . 0] - < 6 1 . i>
{04} 0 0 0 8 2 3 3 > > “p e p t i d a s e  a c t i v i t y "  -  ( 4 6 7 , 3 0 ] -  < 1 0 , 1>
{ 05) 0 0 0 S 2 3 4 » " c y s t e i n e - t y p e  p e p t i d a s e  a c t i v i t y "  - [1 1 3 . 19] - < 6 . 2>
{06* 0 0 0 4 1 9 7 » ’ c y s t e i n e - t y p e  e n d o p e p t i d a s e  a c t i v i t y "  - [7 1 . 2 4 ] - < 11 . 2>
{07} 0 0 3 0 6 9 3 » " c a s p a s e  a c t i v i t y "  -  [2 0 , 2 0 ] - < 0 , 1>
{06} 0 0 0 4 8 4 3 » " u b i q u i t i n - c p e c i £ i c  p r o t e a s e  a c t i v i t y  - (4 4 . 33] • < 1 . 1>
{05} 0 0 0 4 1 7 5 » " e n d o p e p t i d a s e  a c t i v i t y "  -  [ 2 5 2 .  4 0 ]  - < 8 . 1>
(C o) 0 0 0 4 1 9 7 » " c y s t e i n e - t y p e  e n d o p e p t i d a s e  a c t i v i t y "  - [7 1 . 24 ] - < 1 1 , 2>
{07) 003 0 6 9 3 » " c a s p a s e  a c t i v i t y "  -  [2 0 . 2 0 ]  - < 0 , 1>
{ 0o) 0 0 0 4 2 2 2 > > " m e ta l lo e n d o p e p t id a s e  a c t i v i t y *  - (6 4 . 43} - < 28 . 2>
{06} 0 0 0 4 2 5 2 > > " s e r in e - ty p e  e n d o p e p t i d a s e  a c t i v i t y '  - [5 9 .  2 3 ] - < 45. 2>
{ 05) 0 0 0 8 2 3 8 » " e x o p e p t i d a s e  a c t i v i t y "  - (8 0 , 3] - < 7 . l>
{ 06) 0 0 0 4 1 7 7 » " a m i n o p e p t i d a s e  a c t i v i t y ”  -  128 , 18] - < 1 1 . 1>
{06} C 0 0 4 1 8 0 » " c a r b o x y p e p t id a s e  a c t i v i t y *  -  [ 3 0 .  14] - < 5 . 1>
{06} 0 0 0 8 2 3 5 » " m e t a l l o e x o p e p t i d a s e  a c t i v i t y "  -  (2 8 , 1] - < 11 , 2>
{05} 0 0 0 8 2 3 7 » " m e t a l l o p e p t i d a s e  a c t i v i t y "  -  [ 1 4 0 , 4 7 ] - < 5 . 1>
{06} 0 0 0 4 2 2 2 » “a e t a l l o e n d o p e p t i d a s e  a c t i v i t y "  - [6 4 . 43 ] • < 28 . 2>
{06} 0 0 0 8 2 3 5 » " m e t a l l o e x o p e p t i d a s e  a c t i v i t y "  - [2 8 , 1] • < 11 . 2>
{05} 0 0 0 8 2 3 o » " s e r i n e - t y p e  p e p t i d a s e  a c t i v i t y "  -  [9 5 . 4 3 ] - < 5 . 1>
{0oJ 0 0 0 4 2 5 2 » " s e r i n e - t y p e  e n d o p e p t i d a s e  a c t i v i t y  - (5 9 ,  23 ] - < 45. 2>
{03} 0 0 1 6 8 S 3 » " i s o a e r a s e  a c t i v i t y "  -  ( 1 1 1 ,  0 ] -  < 1 2 , 1>
{04} 0 0 1 6 S 6 0 » " i n t r a m o l e c u l a r  o x i d o r e d u c t a s e  a c t i v i t y  - [4 6 ,  3] - < 14 . 1>
{04} 0 0 1 6 8 6 o » " i n t r a a o l e c u l a r  t r a n s f e r a s e  a c t i v i t y "  - [2 3 .  0] - < 2 3 . 1>
{03} 0 0 1 6 3 0 1 » " k in a s e  a c t i v i t y "  * [1 0 2 4 , 5 1 ] -  < 5 5 . 1>
{04} 0 0 1 9 2 0 0 > > " c a rh o h y d r a te  k i n a s e  a c t i v i t y "  -  [ 4 3 .  0] * < 1 9 , 1>
{04} 0 0 0 4 4 2 8 » " i n o s i t o l  o r  p h o s p h a t i d y l i n o s i t o l  k i n a s e . . . "  - [4 6 . 8 ] - < 5 . 2>
( 0 4 )  0 0 0 1 7 2 7 » “ l i p i d  k i n a s e  a c t i v i t y "  -  [3 5 ,  0 ] -  < 5 . 1>
( 0 4 )  0 0 1 9 2 0 5 » ’ n u c le o b a s e ,  n u c l e o s i d e ,  n u c l e o t i d e  k i n a . . . "  - [4 5 , 0] - < 5 , 2>
{ 05) 0 0 1 9 2 0 6 » " n u c l e o s i d e  k i n a s e  a c t i v i t y "  -  [2 0 ,  0] - < 4 . 1>
{05} 0 0 1 9 2 0 1 » " n u c l e o t i d e  k i n a s e  a c t i v i t y "  -  [2 0 .  2 ] - < 5 . 1>
{04} 0 0 0 4 o 7 2 » " p r o t e i n  k i n a s e  a c t i v i t y "  -  [7 8 1 . 2 3 2 ]  - <6 . 2>
( 0 5 )  0 0 0 4 6 7 4 » " p r o t e i n  s e r i n e / t h r e o n i n e  k i n a s e  a c . . . "  - [4 7 0 . 2 1 3 ] - < 1 9 , 1>
{06} 0 0 0 4 6 8 3 » " c a l a o d u l i n  r e g u l a t e d  p r o t e i n  k i n a s e  a . . . "  - ( 6 8 . 0] - < 7 . 1>
{07} 0 0 0 4 6 8 5 » " c a l c iu m -  a n d  c a lm o d u l i n - d e p e n d e n t  p . . . "  - [S 3 . 53] - < 0 , 1>
{07} 0 0 0 4 6 8 7 » “m y o s i n - l i g h t - c h a i n  k i n a s e  a c t i v i t y "  - [3 9 . 39 ] - < 0 . 1>
{06} 0 0 0 4 6 8 0 » 'c a s e i n  k i n a s e  a c t i v i t y "  -  [2 6 , 1 0 ] - < 2 , 1>
{06} 0 0 0 4 6 9 3 » " c y c l i n - d e p e n d e n t  p r o t e i n  k i n a s e  a c t i . . . "  - [2 8 .  28 ] - < 0 , 1>
{06} 0 0 0 4 6 9 7 » " p r o t e i n  k i n a s e  C a c t i v i t y "  -  [ 2 2 .  16 ] - < 4 , 2>
{ 0 6 ) 0 0 0 4 7 0 2 » * r e c e p t o r  s i g n a l i n g  p r o t e i n  s e r i n e / t h r . . . "  - ( 6 9 .  4 ] - < 7 , 2>
{07} 0 0 1 6 9 0 9 » " S A P  k i n a s e  a c t i v i t y "  -  [ 2 0 ,  0] - < 5 . 1>
{05} 0 0 0 4 7 1 3 > > " p r o t e i n - t y r o s i n e  k i n a s e  a c t i v i t y "  -  [1 3 4 . 53 ] • < 3 . l>
{06} 0 0 0 4 7 1 4 » " tr a n s m e m b ra n e  r e c e p t o r  p r o t e i n  t y r o . . . "  - [6 9 . 38 ] - < 1 1 , 2>
{05} 0 0 1 9 1 9 9 > > " t r a nsmemb r a n e  r e c e p t o r  p r o t e i n  k i n a s e  . . . "  • [ 8 6 , 0] - < 3 . 2>
{06} 0 0 0 4 7 l 4 » 't r a n s m e m b r a n e  r e c e p t o r  p r o t e i n  t y r o . . . "  - [6 9 . 38 ] - < 1 1 , 2>
{03} 0 0 1 6 8 7 4 » " l i g a s e  a c t i v i t y "  -  [ 2 3 4 ,  2 ] -  < 9 , 1>
{04} 0 0 1 6 8 7 9 » * l i g a s e  a c t i v i t y ,  f o rm in g  c a r b o n - n i t r o . . . "  - [1 3 0 . 0 ] - < 2 1 . 1>
{05} 0 0 1 6 8 8 1 » " a c i d - D - a a i n o  a c i d  l i g a s e  a c t i v i t y "  -  [9 1 . 1] - < 2 9 . 1>
{06} 0 0 0 4 8 4 2 » " u b i q u i t i n - p r o t e i n  l i g a s e  a c t i v i t y "  - (7 0 .  7 0 ] < 0 . 1>
{04} 0 0 1 6 8 7 5 » ' l i g a s e  a c t i v i t y ,  f o rm in g  c a r b o n - o x y g e n  . . . "  - [4 3 , 0 ] - < 1 . 1>
{05} 0 0 1 6 8 7 6 » " l i g a s e  a c t i v i t y ,  fo rm in g  a a i n o a c y l - t R K . . . *  - [4 3 .  0] - < 5 . 1>
{06} 0 0 0 4 8 1 2 » " tR N A  l i g a s e  a c t i v i t y *  -  [ 4 3 ,  0 ] - < 2 1 . 2>
{04} 0 0 1 6 8 7 7 » " l i g a s e  a c t i v i t y ,  f o rm in g  c a r b o n - s u l f u r  . . . "  - (3 7 . 0] - < 3 . 1>
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{05} 0 0 0 S 0 8 5 » " g u a n y l - n u c l e o t i d e  e x c h a n g e  f a c t o r  a c . . . *  -  [ 8 8 .  4 3 ]  * < 1 0 . 1>
{06} 0 0 0 5 0 8 9 > > "R h o  g u a n y l - n u c l e o t i d e  e x c h a n g e  f a c t o . . . "  - [ 2 4 ,  2 4 ] - < 0 . 1>
{05} 0 0 0 5 1 0 0 » * R h o  G T P ase  a c t i v a t o r  a c t i v i t y "  -  [2 6 , 2 6 ]  - < 0 .  2>
{03} 0 0 1 9 2 0 7 > > * k in a s e  r e g u l a t o r  a c t i v i t y *  -  [ 1 1 0 .  2 ]  -  < 4 , 1>
{04} 0 0 1 9 2 1 0 > > " k in a s e  i n h i b i t o r  a c t i v i t y "  -  [ 4 9 .  3 ]  -  < 1 , 2>
{05} 0 0 0 4 8 6 0 » * p r o t e i n  k i n a s e  i n h i b i t o r  a c t i v i t y "  -  [ 4 6 .  14] -  < 6 . 2>
{06} 0 0 0 4 8 6 1 » " c y c l i n - d e p e n d e n t  p r o t e i n  k i n a s e  i n h i . . . "  -  [ 2 8 .  28J - < 0 . 1>
{04} 0 0 1 9 8 8 7 > > 'p r o te in  k i n a s e  r e g u l a t o r  a c t i v i t y "  -  [1 0 1 , 2 ]  -  < 9 . 1>
{05} 0 0 1 6 5 3 3 » * c y c l i n - d e p e n d e n t  p r o t e i n  k i n a s e  r e g u l . . . "  - [ 2 1 ,  2 1 ]  - < 0 . 1>
{05} 0 0 0 4 8 6 0 > > * p r o te in  k i n a s e  i n h i b i t o r  a c t i v i t y "  -  [ 4 6 ,  14] -  < 6 . 2>
{06} 0 0 0 4 3 6 1 > > " c y c l in - d e p e n d e n t  p r o t e i n  k i n a s e  i n h i . . . *  - [ 2 8 .  283 - < 0 . 1>
{03} 0 0 1 9 2 0 8 > > “p h o s p h a t a s e  r e g u l a t o r  a c t i v i t y *  -  [ 4 7 .  11 -  < 1 , 1>
{04} 0 0 1 9 8 8 8 > > " p r o te in  p h o s p h a t a s e  r e g u l a t o r  a c t i v i t y *  -  [4 6 . 11 -  < 9 . 1>
{02} 0 0 0 3 7 7 4 » * n o t o r  a c t i v i t y *  -  [ 6 0 .  31 ] -  < 2 , 1>
{03} 0 0 0 3 7 7 7 > > * m ic r o tu b u le  m o to r  a c t i v i t y "  -  [ 2 4 ,  2 4 ]  - < 2 . 1>
{02} 0 0 0 4 8 7 1 > > " s ig n a l  t r a n s d u c e r  a c t i v i t y "  -  [2 1 9 5 . 2191 - < 1 0 . 1>
{03} 0 0 0 4 8 7 2 > > * r e c e p t o r  a c t i v i t y ’ -  [1 2 6 2 . 2081 -  < 2 4 . 1>
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{04} 0 0 0 4 S 7 9 > > * l ig a n d - d e p e n d e n t  n u c l e a r  r e c e p t o r  a c t i . . . "  -  [6 8 . 3 9 ) -  < 5 . 1>
{05} 0 0 0 1 7 0 7 > > * s t e r o i d  h o rm o n e  r e c e p t o r  a c t i v i t y "  -  [ 2 0 .  13 ] - < 5 , 1>
{04} 0 0 3 0 5 9 4 » * n e u r o t r a n s a i c t e r  r e c e p t o r  a c t i v i t y "  -  [ 1 1 2 .  2)  -  < 4 . 2>
{05} 0 0 1 5 4 6 4 > > * a c e ty l c h o l in e  r e c e p t o r  a c t i v i t y  -  [ 2 8 ,  1 5 ] -  < 2 . 3>
{05} 0016917>>"GABA r e c e p t o r  a c t i v i t y *  - [3 1 , 1] -  < 2 . 2>
{06} 0004890>>*GABA-A r e c e p t o r  a c t i v i t y "  -  [2 7 , 2 7 ] -  < 0 , 1>
{05} 0 0 0 8 1 8 8 > > " n e u ro p e p t id e  r e c e p t o r  a c t i v i t y "  -  [4 6 . 1 5 ] -  < 9 . 3>
{04} 0 0 0 8 3 2 9 > > ‘ p a t t e r n  r e c o g n i t i o n  r e c e p t o r  a c t i v i t y ’ -  [ 2 1 .  11) -  < 4 . 1>
{04} 0 0 0 1 6 5 3 > > " p e p t id e  r e c e p t o r  a c t i v i t y "  - [ 1 7 7 , 1 2 ] -  < 2 , 2>
{05} 0 0 0 8 5 2 8 > > * p e p t i d e  r e c e p t o r  a c t i v i t y .  G - p r o t e i n . . . *  -  [1 6 6 . 3 ] -  < 2 1 . 2>
{06} C 0 0 l6 3 7 > > - G - p r o t e i n  c h e n o a t t r a c t a n t  r e c e p t o r  a c . . . "  -  [4 1 . 0 ) -  < 2 . 1>
{07} 0 0 0 4 9 5 0 » " c h e m o k in e  r e c e p t o r  a c t i v i t y "  -  [4 1 .  2 1 ]  -  < 3 . 2>
{06} 0 0 0 3 1 8 8 > > * n e u r o p e p t id e  r e c e p t o r  a c t i v i t y "  -  [ 4 6 .  1 5 ] -  < 9 , 3>
{06} 0 0 0 4 9 8 5 > > " o p io id  r e c e p t o r  a c t i v i t y "  -  [2 6 , 3] -  < 4 , 1>
{04} 0 0 0 1 5 6 5 > > " p h o rb o l  e s t e r  r e c e p t o r  a c t i v i t y "  -  [ 2 2 ,  0] -  < 2 , 1>
{05} 0 0 0 4 6 9 7 > > " p r o te in  k i n a s e  C a c t i v i t y "  -  [2 2 . 16] -  < 4 , 2>
{04} 0 0 0 4 8 8 8 > > * tra n s m e m b ra n e  r e c e p t o r  a c t i v i t y ’ -  [ 9 4 5 . 7 6 ]  -  < 3 4 . 1>
{05} 0 0 1 5 4 6 4 > > ’ a c e t y l c h o l i n e  r e c e p t o r  a c t i v i t y *  -  [ 2 8 .  1 5 ] -  < 2 . 3>
{05} 0 0 0 4 9 3 0 > > " G - p r o te in  c o u p le d  r e c e p t o r  a c t i v i t y "  -  [4 8 1 ,  112] -  < 8 . 1>
{06} 0 0 0 l 5 8 4 > > " r h o d o p s i n - l i k e  r e c e p t o r  a c t i v i t y "  -  [ 3 4 6 ,  0] -  < 1 8 , 1>
{07} 0 0 0 8 2 2 7 > > " a m in e  r e c e p t o r  a c t i v i t y "  -  [ 6 8 ,  0] -  < 9 . 1>
{08} 0 C 0 4 9 3 5 > > " a d re n o c e p to r  a c t i v i t y "  -  [ 2 0 .  0 ] -  < 2 , 1>
{07} 0 0 0 8 5 2 8 > > * p e p tid e  r e c e p t o r  a c t i v i t y ,  G - p r o t e . . . "  -  [1 6 6 , 3 ] -  < 2 1 . 2>
{08} 0 0 0 1 o 3 7 > > * G -p r o te in  c h e m o a t t r a c t a n t  r e c e p t o r  . . . "  - [4 1 . 0] - < 2 . 1>
{09} 0 0 0 4 9 5 0 > > "c h e m o k in e  r e c e p t o r  a c t i v i t y *  -  [ 4 1 ,  21 ] -  < 3 , 2>
{03} C 0 0 8 1 8 3 > > ’ n e u r o p e p t id e  r e c e p t o r  a c t i v i t y "  -  [4 6 ,  15] -  < 9 , 3>
{08} 0 0 0 4 9 3 5 > > * o p io id  r e c e p t o r  a c t i v i t y *  -  [2 6 , 3 ] -  < 4 , 1>
{07} 0 0 0 5 5 2 7 > > ‘ t a s t e  r e c e p t o r  a c t i v i t y "  -  ( 2 7 ,  2 7 ]  -  < 0 , 1>
{06} 0 0 0 1 6 3 3 > > 's e c r e t i n - l i k e  r e c e p t o r  a c t i v i t y "  - [ 2 3 ,  0 ] -  < 1 2 , 1>
{05} 0016917>>*GABA r e c e p t o r  a c t i v i t y "  - [3 1 , 1] -  < 2 ,  2>
{06} 0 0 0 4 8 9 0 > > “GABA-A r e c e p t o r  a c t i v i t y "  -  (2 7 , 2 7 ]  -  < 0 , 1>
{05} 0 0 0 8 0 6 6 > > " g lu ta m a te  r e c e p t o r  a c t i v i t y '  -  [ 5 3 ,  9} -  < 2 , 1>
{06} 0 0 0 4 9 7 0 > > " io n o t r o p ic  g l u t a m a t e  r e c e p t o r  a c t i v i t y "  -  [3 2 . 4 ] -  < 3 . 1>
{05} 0 0 0 4 S 9 6 > > " h e m a t o p o i e t i n / i n t e r f e r o n - c l a s s  ( D 2 0 0 - . . . "  -  [5 8 , 1] -  < 1 0 , 1>
{06} 0 0 0 4 9 0 7 > > * i n te r le u k i n  r e c e p t o r  a c t i v i t y "  -  [ 3 2 .  7 ] -  < 2 7 , 2>
{05} 0045012>>"K H C c l a s s  I I  r e c e p t o r  a c t i v i t y "  -  [4 3 , 4 3 ]  -  < 0 . 1>
{05} 0 0 1 9 1 9 9 > > " tra n s m e m b ra n e  r e c e p t o r  p r o t e i n  k i n a s e  . . . "  -  [8 6 . 0] -  < 3 , 2>
{06} 0 0 0 4 7 1 4 > > " tra n s m e m b ra n e  r e c e p t o r  p r o t e i n  t y r o . . . "  -  [6 9 . 38 ] -  < 1 1 , 2>
{03} 0 0 0 5 1 0 2 > > * r e c e p to r  b i n d in g "  -  [5 9 1 , 1 4 7 ] -  < 5 3 , 2>
{04} 0 0 0 5 1 2 5 > > * c y to k in e  a c t i v i t y *  -  [1 7 3 , 55 ) -  < 2 7 , 1>
{05} 0 0 0 8 0 0 9 > > " c h e tn o k in e  a c t i v i t y "  -  ( 5 4 ,  5 4 ] -  < 0 , 2>
{05} 0 0 0 5 1 2 6 > > * h e m a t o p o i e t i n / i n t e r f e r o n - c l a s s  I D 2 0 0 - . . . "  -  [3 7 , 7 ]  -  < 2 5 . 1>
{04} 0 0 0 1 6 6 4 » * C - p r o t e i n - c o u p l e d  r e c e p t o r  b i n d in g "  -  [ 6 5 ,  9 ] -  < 5 , 1>
{05} 0 0 4 2 3 7 9 > > “ c h e m o k in e  r e c e p t o r  b i n d in g "  -  [5 4 , 0] -  < 3 , 1>
{06} 0 0 0 8 0 0 9 > > " c h e m o k in e  a c t i v i t y '  -  [5 4 ,  54 ] -  < 0 . 2>
{04} 0 0 0 8 0 8 3 > > * g ro w th  f a c t o r  a c t i v i t y "  -  [8 6 ,  65 ] -  < 1 6 , 1>
{04} 0 0 0 5 1 7 9 » * h o n r o n e  a c t i v i t y ’ - [7 1 , 4 4 ] -  < 1 3 . 1>
{05} 0 0 0 5 1 8 4 > > " n e u r o p e p t id e  ho rm o n e  a c t i v i t y "  -  [2 1 .  2 1 )  -  < 5 , 1>
(0 4 )  0 0 0 5 1 7 8 > > “ i n t e g r i n  b i n d i n g ’ -  [4 5 , 4 5 ] -  < 0 , 1>
{03} 0 0 0 5 0 5 7 > > " r e c e p to r  s i g n a l i n g  p r o t e i n  a c t i v i t y "  -  [ 2 3 7 ,  4 4 ]  -  < 1 5 . 1>
{04} 0 0 0 4 7 0 2 > > " r e c e p to r  s i g n a l i n g  p r o t e i n  s e r i n e / t h r e o . . . "  -  [6 9 , 4 ]  -  < 7 , 2>
{05} 0016909> > "SA P  k i n a s e  a c t i v i t y "  -  [ 2 0 .  0 ]  -  < 5 , 1>
{04} 0 0 0 5 0 6 6 > > * t ra n s memb r a n e  r e c e p t o r  p r o t e i n  t y r o s i n e . . . "  -  [7 3 , 9 ] -  < 2 . 1>
{05} 0 0 0 5 0 6 9 » " t r a n s m e m b r a n e  r e c e p t o r  p r o t e i n  t y r o s i n . . . "  -  [6 0 , 5 ] -  < 1 , 1>
{06} 0 0 0 5 070> > "S H 3/S H 2 a d a p to r  p r o t e i n  a c t i v i t y "  -  [ 5 5 ,  55 ] -  < 0 , 1>
{02} 0 0 0 5 1 9 8 > > " s t r u c t u r a l  m o le c u le  a c t i v i t y *  -  [ 4 3 5 ,  1 1 2 ]  -  < 1 6 ,  1>
{03} 0 0 0 5 2 0 1 > > * e x t r a c e l l u l a r  m a t r i x  s t r u c t u r a l  c o n s t i t . . . "  -  [4 2 , 4 0 ]  -  < 4 , 1>
{03} 0 0 0 5 2 0 0 > > * s t r u e tu r a l  c o n s t i t u e n t  o f  c y t o s k e l e t o n "  -  [ 1 1 0 ,  110] -  < 0 , 1>
{03} 0 0 0 8 3 0 7 > > ‘ s c r u c t u r a l  c o n s t i t u e n t  o f  m u s c le "  -  ( 3 7 ,  3 7 ]  -  < 0 . 1>
{03} 0 0 0 3 7 3 5 > > * s t r u c tu r a l  c o n s t i t u e n t  o f  r ib o s o m e "  -  [1 0 7 ,  1 0 7 ] -  < 0 , 1>
{02} 0 0 3 0 5 2 8 > > *  t r a n s c r i p t  i o n  r e g u l a t o r  a c t i v i t y *  -  [1 5 4 6 , 3 5 ]  -  < 14 , 1>
{03} 0 0 0 3 7 0 2 » * R N A  p o ly m e r a s e  I I  t r a n s c r i p t i o n  f a c t o . . . "  -  [ 3 6 1 ,  1 9 7 ) -  < 4 , 1>
{04} 0 0 1 6 2 5 1 > > " g e n e ra l  RNA p o ly m e r a s e  I I  t r a n s c r i p t i o . . . "  -  [5 8 , 2 8 ]  -  < 1 , 1>
{05} 0016455>>"RN A  p o ly m e r a s e  I I  t r a n s c r i p t i o n  m e d i a . . . "  -  [3 0 , 3 0 ] -  < 0 , 1>
{04} 0 0 0 3 7 0 4 » * s p e c i f i c  RNA p o ly m e r a s e  I I  t r a n s c r i p t ! . . . "  -  [9 3 , 8 5 ] -  < 1 , 1>
{03} 0 0 0 3 7 1 2 > > * t r a n s c r i p t i o n  c o f a c t o r  a c t i v i t y "  -  [ 3 5 9 ,  4 6 )  -  < 2 . 2>
{04} 0 0 0 3 7 1 3 » " t r a n s c r i p t i o n  c o a c t i v a t o r  a c t i v i t y "  -  ( 1 8 0 ,  1 7 2 ] -  < 2 , 1>
{04} 0 0 0 3 7 1 4 » * t r a n s c r i p t i o n  c o r e p r e s s o r  a c t i v i t y *  -  [1 4 9 .  1493 -  < 0 , 1>
{03} 0 0 0 3 7 0 0 > > * t r a n s c r i p t i o n  f a c t o r  a c t i v i t y *  -  [ 6 9 4 ,  6 8 0 ] -  < 1 , 2>
{03} 0 0 1 6 5 6 3 » * t r a n s c r i p t i o n a l  a c t i v a t o r  a c t i v i t y *  -  [1 5 0 , 1 4 2 ] -  < 1 ,  1>
{03} 0 0 0 3 7 l l » * t r a n s c r i p t i o n a l  e l o n g a t i o n  r e g u l a t o r  a c t . . . "  -  [3 3 . 8 ) -  < 5 , 1>
{04} 0 0 1 6 9 4 4 > > * P o l I I  t r a n s c r i p t i o n  e l o n g a t i o n  f a c t o r . . . "  -  [2 0 . 2 0 ]  -  < 0 . 1>
{03} 0 0 1 6 5 6 4 » " t r a n s c r i p t i o n a l  r e p r e s s o r  a c t i v i t y "  -  [ 1 5 4 ,  1 2 1 ] -  < 2 . 1>
{04} 0 0 1 o 5 6 6 » " s p e c i f i c  t r a n s c r i p t i o n a l  r e p r e s s o r  a c t . . . "  -  [3 3 , 3 3 ] -  < 0 . 1>
{02} 0 0 4 5 1 8 2 > > " t r a n s l a t i o n  r e g u l a t o r  a c t i v i t y "  -  [7 3 ,  10 ] -  < 3 ,  1>
{03} 0 0 0 8 1 3 5 » * t r a n s l a t i o n  f a c t o r  a c t i v i t y ,  n u c l e i c  a c . . . "  -  [6 1 ,  2 5 )  -  < 5 , 2>
{04} 0 0 0 3 7 4 3 > > * t r a n c l a t i o n  i n i t i a t i o n  f a c t o r  a c t i v i t y "  -  [ 3 0 ,  30) -  < 0 . 1>
{02} 0 0 0 5 2 1 5 » " t r a n s p o r t e r  a c t i v i t y ’ - [1 5 1 2 , 9 9 ) -  < 2 9 , 1>
{03} 0 0 0 5 2 7 5 » * a m in e  t r a n s p o r t e r  a c t i v i t y "  -  [ 1 2 4 ,  3 ]  -  < 1 7 ,  1>
{04} 0 0 1 5 1 7 1 » * a m in o  a c i d  t r a n s p o r t e r  a c t i v i t y *  -  (8 9 , 1 6 ] -  < 10, 2>
{05} 0 0 1 5 1 7 9 > > " L -a m in o  a c i d  t r a n s p o r t e r  a c t i v i t y "  -  [ 4 5 .  0 ] -  < 2 2 . 1>
{05} 0 0 1 5 1 7 5 > > " n e u t r a l  a m in o  a c i d  t r a n s p o r t e r  a c t i v i t y "  -  [2 7 , 1 6 ) -  < 1 1 , 1>
{04} 0 0 1 5 2 0 3 > > * p o ly a m in e  t r a n s p o r t e r  a c t i v i t y "  -  [ 2 2 .  0 ] -  < 6 . 1>
{03} 0 0 1 5 4 5 7 » “a u x i l i a r y  t r a n s p o r t  p r o t e i n  a c t i v i t y "  -  [ 5 3 ,  2 ]  -  < 5 , 1>
(0 4 )  0 0 1 6 2 4 7 > > - c h a n n e l  r e g u l a t o r  a c t i v i t y "  -  (5 1 . 1 ]  * < 5 . 1>
{05} 0 0 0 5 2 4 6 » " c a l c iu m  c h a n n e l  r e g u l a t o r  a c t i v i t y *  -  [ 2 4 .  2 4 ] -  < 1 , 1>
{03} 0 0 1 5 1 4 4 » " c a r b o h y d r a t e  t r a n s p o r t e r  a c t i v i t y "  -  [5 1 . 0] -  < 10 , 1>
{04} 0 0 1 5 2 4 5 » * m o n o s a c c b a r id e  t r a n s p o r t e r  a c t i v i t y *  -  [ 3 6 ,  0] -  < 3 , 1>
{05} 0 0 1 5 l4 9 > > * h e x o s e  t r a n s p o r t e r  a c t i v i t y "  -  [ 3 6 ,  0 ] -  < 1 5 , 1>
{06} 0 0 0 5 3 5 5 > > " g lu c o s e  t r a n s p o r t e r  a c t i v i t y *  -  [3 4 .  3 1 ]  -  < 5 , 1>
{03} 0 0 0 5 3 8 6 > > ”c a r r i e r  a c t i v i t y "  -  [3 2 1 , 5 ] -  < 6 , 1>
{04} 0 0 1 5 2 9 0 > > * e le c t r o c h e m ic a l  p o t e n t i a l - d r i v e n  t r a n s . . . "  -  [1 5 5 , 1 ) -  < 2 . 1>
{05} 0 0 1 5 2 9 1 > > " p o r te r  a c t i v i t y "  -  [ 1 5 4 .  0] -  < 4 0 . 1>
{06} 0 0 1 S 2 9 7 > > * a n t ip o r te r  a c t i v i t y "  -  [ 4 3 ,  0] -  < 1 3 , 1>
{07} 0 0 1 5 4 9 1 > > " c a t i o n : c a t io n  a n t i p o r t e r  a c t i v i t y *  -  (2 3 .  2] -  < 3 . 1>
{06} 0 0 1 5 2 6 2 > > " s y m p o r te r  a c t i v i t y *  -  [5 3 , 1 ] -  < 7 , 1>
{07} 0 0 1 5 2 9 4 > > " s o lu t e : c a t i o n  s y m p o r t e r  a c t i v i t y *  -  [ 3 9 ,  1] -  < 8 . 1>
{08} 0 0 1 5 3 7 0 > > " s o lu te :s o d iu m  s y m p o r t e r  a c t i v i t y *  -  (2 7 ,  0 ] -  < 13 , 1>
{04} 0 0 0 9 0 5 5 > > * e le c t r o n  c a r r i e r  a c t i v i t y "  -  [ 2 3 ,  2 3 ]  -  < 2 . 2>
{04} 0 0 1 5 3 9 9 > > - p r im a r y  a c t i v e  t r a n s p o r t e r  a c t i v i t y "  -  [ 1 3 7 ,  0] -  < 9 . 1>
{05} 0 0 0 4 1 2 9 > > " c y to c h ro m e -C  o x i d a s e  a c t i v i t y "  -  [2 5 . 2 5 ] -  <0, 4>
{05} 0008137>>*NADH d e h y d ro g e n a s e  ( u b iq u in o n e )  a c t i v i t y *  -  [3 7 , 3 7 ] -  < 0 . S>
(05}  0 0 1 5 4 0 5 > > * P  P - b o n d - h y d r o l y s i s - d r i v e n  t r a n s p o r t e . . . "  -  (6 3 , 0 ] -  < 1 1 . 1>
{06) 0 0 1 5 o o 2 > > * A T P ase  a c t i v i t y ,  c o u p le d  t o  t ra n s m e m . . . *  -  [5 5 , 3 ] -  < 1 3 . 3>
{03} 0 0 1 5 2 6 7 > > * c h a n n e l  o r  p o r e  c l a s s  t r a n s p o r t e r  a c t i v i t y "  -  [3 8 3 , 9 ] -  < 2 . 1>
{04} 0 0 1 5 2 6 8 > > * a lp h a - ty p e  c h a n n e l  a c t i v i t y ’ -  [ 3 7 2 .  0J - < 7 . 1>
{05} 0 0 0 5 2 4 3 > > ’ g a p  j u n c t i o n  fo rm in g  c h a n n e l  a c t i v i t y "  -  [2 9 ,  10 ] -  < 2 . 1>
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{05} 0 0 0 5 2 1 6 » " io n  c h a n n e l  a c t i v i t y "  - [3 1 8 , 15] -  < 8 . 1>
{06} 0 0 0 5 2 5 3 > > " a n io n  c h a n n e l  a c t i v i t y "  - 157 . 21 -  < 4 , 1>
{07} 0 0 0 5 2 5 4 > > ‘ c h l o r i a e  c h a n n e l  a c t i v i t y "  -  [ 5 0 .  221 -  < 8 . 1>
{06} 0 0 0 5 2 6 1 » " c a t i o n  c h a n n e l  a c t i v i t y  - [ 2 4 1 . 1 7 j  - < 11 , 1>
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