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Abstract

Changes in gene expression have been thought to play a crucial role in various

types of cancer. With the advance of high-throughput experimental tech-

niques, many genome-wide studies are underway to analyze underlying mech-

anisms that may drive the changes in gene expression. It has been observed

that the change could arise from altered DNA methylation. However, the

knowledge about the degree to which epigenetic changes might cause differ-

ences in gene expression in cancer is currently lacking. By considering the

change of gene expression as the response of altered DNA methylation, we

introduce a novel analytical framework to identify epigenetic subnetworks in

which the methylation status of a set of highly correlated genes is predictive

of a set of gene expression. By detecting highly correlated modules as repre-

sentatives of the regulatory scenario underling the gene expression and DNA

methylation, the dependency between DNA methylation and gene expression

is explored by a Bayesian regression model with the incorporation of g-prior

followed by a strategy of an optimal predictor subset selection. The subsequent

network analysis indicates that the detected epigenetic subnetworks are highly

biologically relevant and contain many verified epigenetic causal mechanisms.

Moreover, a survival analysis indicates that they might be effective prognostic

factors associated with patient survival time.

The alterations in gene expression are often ignored as stochastic noises,

specifically those arising from variations in transcriptional regulation or bio-

chemical modifications within cells. To evaluate if such alterations contribute
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to cancer progression, we performed an expression-based analysis to detect

exclusively expression-altered (EEA) genes, i.e., genes with altered expression

not caused by genetic mutations, and we investigated the pattern of their

aberrant expression in breast cancer. Based on these investigations, we found

that the alterations in EEA genes are instigated by hypoxia-related molecu-

lar events, predominantly in two groups of genes that control chromosomal

instability (CIN) and remodel tumor microenvironment (TME). We conclude

that alterations are not stochastic and that hypoxia induces CIN and TME

remodeling to permit further tumor progression.
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Chapter 1

Introduction

Human cancer is one of the leading causes of morbidity and death around the

world [87]. According to World Health Organization’s report, approximately

10 million people are diagnosed with cancer and more than 6 million die of the

disease every year [87]. It is well known that cancer is a dynamic disease driven

by a series of abnormal genetic changes. These changes can occur at various

levels and take many different forms, including the gain or loss of chromosomes,

DNA (Deoxyribonucleic acid) point mutations, deletions and insertions, which

can alter the function or stability of their protein products, further causing

uncontrollable malignancy and damage to neighbour cells. With the develop-

ment of sequencing technologies, a large number of projects based on cancer

genomics takes the advantage of recent technologies to study the abnormali-

ties in genes that may drive the development and growth of cancer, in order to

improve the understanding of the biological mechanism of cancer and develop

new methods for the diagnosis and treatment of cancer patients.

In the past decades, a large number of studies have been started to investi-

gate and discover the genetic changes that could be associated with the growth

and development of different types of cancer [15][11][101][70]. The results of

these studies have illustrated the cancer genome landscape of genetic changes

and provided us a fundamental understanding of the molecular bias of multi-

ple cancer types [28][42]. For instance, numerous studies have identified the

high frequency of mutations in the HER2 gene and suggested that the HER2

gene might act as a prognostic factor in multiple types of cancer, including
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lung [64][92], bladder [70] and breast [15][6]. In addition to the study on ge-

netic mutations, a large scale of projects has sought to understand the role

of copy number alteration (gain or loss of chromosomes) in cancer progres-

sion [9][105]. For example, a study [9] has presented a high-resolution analysis

of somatic copy number alterations from thousands of tumor samples across

multiple cancer types, which demonstrated a strong tendency for significant

somatic copy number alterations in one cancer type to be also found in several

others. A recent finding [18] has revealed that tumors harboring a high level of

copy number alterations are unlikely to respond to immune checkpoint block-

ade immunotherapies, an increasingly promising treatment option for many

cancers. This finding may help doctors to recommend tailored therapies and

predict patient outcome.

The classic view that cancer progression is driven by genetic changes in-

cluding mutations and chromosomal abnormalities, and later on epigenetic

alterations have been considered as crucial in the progression of cancer. Epi-

genetic alteration refers to the functionally relevant changes to the genome

without changing DNA sequences [91], including DNA methylation, histone

modification, etc. Such epigenetic alterations have been investigated in nu-

merous studies [49][8], which revealed that they are likely to be responsible

for the reduced or increased expression in DNA repair genes and be the cause

of genetic instability characteristic of cancers in early cancer progression. The

change in DNA methylation leading to an aberrant gene expression has been

considered to play a crucial role not only in cellular development and differen-

tiation but also in disease progression [91]. Many studies have been conducted

for the identification of aberrant DNA methylation sites in cancer [91][36][94],

but there are fewer studies on the degree to which epigenetic changes might

cause differences of gene expression in cancer. Thus it motivates us to discover

the association between epigenetic changes and altered gene expression and in-

vestigate the varying level of DNA methylation that could drive differences in

gene expression. We expect that such investigations could shed light on novel

biological mechanisms and reveal potential therapeutic targets.

In addition, the pattern of genetic changes including mutations and copy
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number alterations has been widely and deeply explored in multiple types of

cancer. We noticed that relatively fewer studies regarding aberrant gene ex-

pression in cancer were performed compared to the study on genomic changes.

Since the changes in gene expression were often ignored as stochastic noise,

specifically those arising from variations in transcriptional regulation or bio-

chemical modifications within cells, we performed a computational analysis

aiming to address the questions: what are the most significant changes that

occur within the transcriptome (i.e., the set of all mRNA) of cancer cells and

how do they contribute to tumor development?

This thesis consists of two main sections. In Chapter 2, we introduce a

novel analytical framework for the discovery of associations between DNA

methylation and gene expression. Aberrant gene expression is considered as

the response of DNA methylation predictors and epigenetic subnetworks are

identified in which the methylation status of a set of highly correlated genes

is predictive of a set of gene expression. The subsequent pathway and net-

work analyses indicate that the detected epigenetic subnetworks are highly

correlated with cancer genes and cancer-related pathways. Multiple direct

causal epigenetic mechanisms are detected in our study and verified in studies

reported in the literature. A survival analysis reveals that the subnetworks

might be effective prognostic factors associated with survival time. These re-

sults indicate that the detected epigenetic subnetworks could be a starting

point to uncover underlying epigenetic mechanisms in breast cancer.

In Chapter 3, we perform a computational analysis based on the aberrant

gene expression in breast cancer, starting with the detection of exclusively

expression-altered (EEA) genes. Then the pattern of EEA genes across breast

cancer samples is investigated to learn how they contribute to cancer progres-

sion. We found that the alterations in EEA genes are not stochastic noises,

and that those alterations in early steps of cancer progression are instigated by

hypoxia-related molecular events, predominantly in two groups of genes that

control chromosomal instability (CIN) and remodel tumor microenvironment

(TME).

In summary, the work reported in this thesis makes new contributions

3



to cancer biomarker research. In Chapter 2, the detected epigenetic subnet-

works that contain verified epigenetic mechanisms may help uncover underly-

ing mechanisms in breast cancer. In Chapter 3, the analysis on EEA genes

highlights a therapeutic potential of targeting CIN and TME events in triple

negative breast cancer (TNBC) tumors. These results could help to discover

underlying cancer mechanisms and ultimately improve cancer diagnosis and

therapy.
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Chapter 2

Discovery of epigenetic
subnetworks

2.1 Introduction

2.1.1 Motivation

With the advance of high-throughput experimental techniques, a tremendous

amount of genomic-wide omics data has been available, which revolutionizes

the study of cancer by making it possible to discover potential biomarkers and

biological mechanisms at the genome level. The change in the expression level

of gene regulation has been considered to play an important role in various

types of cancers. To understand the roles of genes involved in cancer, a compar-

ison of gene regulation is typically performed for tumor and control conditions

to explore meaningful patterns and relationships in biological data. Differ-

ential expression analysis is usually conducted by testing the significance of

changes in the expression level of genes between two conditions such as disease

and control. It has been successful in discovering biomarkers associated with

the cancer phenotype and cancer progression [101][54][80]. For instance, Welsh

et al. [101] analyzed the patterns of gene expression between normal and tu-

mor samples of prostate cancer, which revealed important genes acting within

biochemical pathways and encoding diagnostic potential molecules. LaTulippe

[54] identified highly and significantly differentially expressed genes in multiple

functional categories revealing critical cellular activities that contribute to clin-

ical heterogeneity and provide diagnostic and therapeutic targets. Although
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Figure 2.1: An example of differential co-expression between normal and tu-
mor samples in breast cancer. Each dot denotes one sample. Figure (a)
presents gene expression levels of DDR1 and PRKCZ in normal samples and
(b) presents their gene expression levels in tumor samples. A strong co-
expression pattern between gene DDR1 and gene PRKCZ can be observed
in normal samples (a) but not in tumor samples (b).

differential expression studies have been successful in discovering cancer genes,

gene expression datasets contain more information than that differential ex-

pression analysis can extract [24]. Recent investigations have gone beyond

differential expression analysis and tried to identify genes involved in a dif-

ferential coexpression pattern. Differential coexpression refers to the changes

in a gene-gene correlation between two conditions (Fig. 2.1) and it can dis-

cover dysfunctional regulations that would not be discovered by differential

expression analyses [14][57].

Changes in gene expression in tumors typically are driven by two main

factors. One is the combination of mutations of transcription factor affinities

binding to DNA regulatory sequences, including the copy number variation,

point mutation and chromosomal alterations. Aside from that, epigenetic

mechanisms are the other main factor that causes the aberration of expression

levels of genes. Epigenetics is a relatively new research field and there are fewer

studies on epigenetic mechanisms that underlie gene regulation than studies on

genetic mutations. DNA methylation is one epigenetic mechanism, which can
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alter gene expression by causing the stable silencing or activation of particular

genes without changing DNA sequences. It remains throughout cell divisions

and can be inherited by daughter cells lasting for multiple generations. It is

of great interest to cancer study since it is potentially reversible and could

be returned to normal function with appropriate drugs, which makes it an

excellent target for anticancer therapies [33].

It has been observed that a large proportion of differential gene expres-

sion and differential co-expression relationships could arise from altered DNA

methylations [91]. The change in DNA methylation has led to differential

patterns of gene expression, considered as crucial in not only cellular devel-

opment and differentiation but also in disease progression [91]. Numerous

studies have been conducted to identify aberrant DNA methylation sites in

cancer [91][36][94]. However, we have relatively little knowledge about the de-

gree to which epigenetic changes might explain differences in gene expression

levels in cancer. Thus it motivates us to discover associations between altered

DNA methylation and aberrant gene expression and investigate the varying

level of DNA methylation that could drive differences in gene expression. We

expect such investigation could shed light on novel biological mechanisms and

reveal potential therapeutic targets.

2.1.2 Related work

The development of high-throughput profiling in biological researches enables

the vast amount of public large-scale genomic-wide DNA omics data available

for various types of cancer, which in turn provides the opportunity to ana-

lyze the epigenetic mechanisms at the whole genome level. A recent database

TCGA (The Cancer Genome Atlas) [100] has profiled and collected multidi-

mensional omics data at DNA, RNA, protein and epigenetic levels for hundreds

of clinical tumors, making the integrative analysis of epigenetic mechanisms

at the whole genome level possible. There is now a growing biological interest

in the analysis of methylation profiles to extract DNA methylation patterns

at a statistical level. For example, Hinoue et al. [34] identified four DNA

methylation-based subgroups of colorectal cancer exhibiting characteristic ge-
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netic and clinical features, which provided novel insights regarding the role of

subgroup-specific DNA hypermethylation in gene silencing. Varley et al. [95]

provided an atlas of DNA methylation across diverse and well-characterized

samples and analyzed dynamic DNA methylation patterns in 82 cell lines and

tissues, which discovered the role of DNA methylation in gene regulation and

disease. Gevaert et al. [26] developed an algorithm MethylMix to identify dif-

ferentially methylated genes and applied it to 12 cancer sites and performed a

pan-cancer analysis by combining all cancer sites. In addition, they identified

novel methylation-driven subgroups with clinical implications reflecting new

similarities across malignantly transformed tissues.

Although the pattern of DNA methylation has been extensively investi-

gated, how gene modules or pathways are deregulated through DNA methyla-

tion is far from understood. More specifically, approaches for simultaneously

analyzing methylation and gene expression data need to be developed to dis-

cover how DNA methylation deregulates gene expression in cancer. West et al.

[102] have proposed a method EpiMod to address whether differential DNA

methylation is associated with a given phenotype of interest in the context

of a protein interaction network. It started from constructing a weighted co-

methylation network in the context of the human interactome model in which

the edge weight represents the association between DNA methylation profiles

in two connecting genes, and subsequently applied a local community detection

algorithm (spin-glass) to identify differential methylation hotspots around dif-

ferentially methylated genes by maximizing the sum of weights. They demon-

strated the existence of epigenetic modules associated with phenotypes by ap-

plying the method to cancer and ageing. However this approach was restricted

to the DNA methylation data. Jiao et al. [40] proposed a new approach

FEM by expanding EpiMod by defining the edge weight as the combination of

two statistical associations of co-methylation and co-expression. Encoding the

two associations into edge weight allowed it to identify epigenetically dereg-

ulated modules in which genes showing coordinated differential methylation

and differential expression. They identified the previously known deregulated

pathway driving endometrial cancer development and an up-streamer of the
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well-known progesterone receptor tumour suppressor pathway. It is well ac-

knowledged that the existence of anti-correlations between DNA methylation

and gene expression, i.e., the changes in DNA methylation cause the silencing

of gene expression. The method FEM detected the anti-correlated epige-

netically correlated modules, however a recent study [95] found the positive

correlation between the two types of data that the increased methylation is

associated with the higher level of gene expression. By assuming the existences

of both negative and positive correlations, Ma et al. [63] has proposed a mul-

tiple network algorithm EMDN by constructing differential co-expression and

differential co-methylation networks respectively and subsequently identified

the common modules appeared at both networks. EMDN can recognize both

positively and negatively correlated modules. They demonstrated that the

identified modules can serve as biomarkers to predict breast subtypes and es-

timate the survival time of patients. However, Wang et al. [99] pointed out

that only a small proportion of the alteration in DNA methylation leads to

a corresponding change in gene expression at the same gene, therefore iden-

tifying gene modules restricted to the association between DNA methylation

and gene expression at the same or adjacent genes may miss important links

between the two changes. To overcome this limitation, they have proposed

a multivariate regression framework NsRRR to identify relationships between

any varying level of DNAmethylation and changes in expression of any genes.

By considering expression levels of genes as responses of DNA methylation lev-

els, they extracted a group of genes in which the expression level of a subset

of genes could be regressed on the DNA methylation level of remaining genes.

Inspired by NsRRR, to further understand the relationship between gene

expression and DNA methylation, we propose a novel framework to identify

epigenetic subnetworks consisting of a set of genes with aberrant gene expres-

sion or aberrant DNA methylation level, in which the altered gene expression

are deregulated by DNA methylation. Different from NsRRR [99] which eval-

uated the association at the individual gene level, we extract a high level rep-

resentation of regulatory scenarios underling both gene expression and DNA

methylation in the form of gene modules, and then quantify the association
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between DNA methylation and gene expression at module level by a regression

model. Since module-level analysis could increase the association signal and

provide insight into the biological behaviours [97], we expect that regression

analysis at module level could provide complementary information to the anal-

ysis at single gene level [99] and shed light on the discovery of new epigenetic

mechanisms.

2.1.3 Contribution

We propose an analytical framework for the discovery of epigenetic subnet-

works in which aberrant gene expression is deregulated by DNA methylation

levels. More specifically, we consider aberrant gene expression as the response

of DNA methylation predictors. It starts with the discovery of predictor and

response modules on a weighted differential network, and subsequently quan-

tify the relationship between DNA methylation predictor modules and gene

expression response modules via a Bayesian regression model with the incor-

poration of known protein-interaction priors. For each response module, the

best subset of predictor variables are selected based on Bayesian information

criterion (BIC). Statistical significance tests and biological relevance analysis

are performed to assess the performance of the model.

The contribution lies in the following points:

(1) A novel method is proposed to detect epigenetic subnetworks by incor-

porating prior biological knowledge as g-priors [106], a type of priors for the

regression coefficients in Bayesian regression model. It detects more signifi-

cantly correlated epigenetic subnetworks than the alternative model without

prior information. It shows that encoding biological network information as

g-priors successfully guided the selection of epigenetic subnetworks.

(2) The detected epigenetic subnetworks are more enriched in biological pro-

cesses and signalling pathways compared with those detected by EMDN, which

indicates that evaluating the association between gene expression and DNA

methylation at the module level would increase the association signal and shed

light on the underlying mechanisms.

(3) The pathway analysis indicates that the detected epigenetic subnetworks
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are highly correlated with cancer genes and cancer-related pathways. More-

over, the subnetworks contain multiple direct causal mechanisms which are

verified in other scientific papers, which indicates the capability of our method

to detect the true epigenetic mechanisms. A survival analysis reveals that the

subnetworks might be effective prognostic factors associated with patient sur-

vival time. Overall, these results indicate that the detected epigenetic subnet-

works could be a starting point to uncover underlying epigenetic mechanisms

in breast cancer and reveals potential therapeutic targets.

2.1.4 Outline

Section 2.2 describes preliminary information and background knowledge, in-

cluding the introduction to dataset, significance test, and models used in our

method. In 2.3, we introduce the framework in detail, as well as evaluation

metrics. In 2.4 and 2.5, we present one simulation study and one case study,

respectively. In 2.6, we make a conclusion of this chapter.
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2.2 Background

The development of our method combines several threads of previous re-

searches. In this chapter, we first introduce the preliminary information about

the gene expression and DNA methylation data, as well as the approach to

differential analysis. Statistical significance tests are used, so we introduce the

basis of significance test and discuss several types of significance test. More-

over, we describe one existing algorithm for nonnegative matrix factorization,

which is employed for the detection of gene modules in this framework. The

development of this method depends on fundamental concepts of Bayesian re-

gression within the context of Bayesian inference, therefore in the last section

we discuss the theory of Bayesian regression model.

2.2.1 Introduction to dataset

High-throughput experimental techniques have generated large-scale omics

data to help the understanding of gene function and the enhancement of disease

treatment. In recent years, a tremendous amount of genomic data for various

types of cancers has been collected by the Cancer Genome Atlas (TCGA). It

uses different techniques to collect and analyze the cancer data from thousands

of patients for 30 different types of cancer, and the techniques include gene

expression profiling, copy number variation profiling, SNP genotyping, genome

wide DNA methylation profiling, microRNA profiling, and so on [100]. In this

chapter, we utilize two types of data, DNA methylation and RNA sequencing,

of 786 breast cancer samples from TCGA to study the epigenetically deregu-

lated subnetworks in breast cancer.

Gene expression

RNA sequencing (RNA-seq) utilizes the next-generation sequencing to reveal

the presence and quantity of RNA in a biological sample at a given moment

[98]. The sample RNA first undergoes fragmentation [67] and subsequently is

sequenced by a sequencing machine such as Illumina Genome Analyzer and Hi-

Seq in a massively parallel fashion. After aligning short reads to the genome,
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the read coverage depth can be counted to measure the expression level [22].

In this thesis, we collect HiSeq RSEM gene-normalized RNA-seq data from

TCGA[100] as gene expression data. In this work, we use Hi-Seq RNA-seq data

as gene expression data provided by the database TCGA [100] and quantified

at the gene level using RSEM (RNA-Seq by Expectation Maximization), which

is a software package for estimating gene and isoform expression levels for

RNA-seq data [58]. In total, we collect the expression data for 20531 genes in

786 tumor samples and 84 normal samples.

Data preprocessing After collecting gene expression data, the gene ex-

pression matrix X[xij] is obtained with samples in columns and genes in rows,

where xij represents the gene expression level of gene i in sample j. Then

the data preprocessing is performed. First, genes with missing values in more

than 30% of samples are removed. The remaining missing values are imputed

by using k -nearest neighbours (KNN) averaging method [93]. Supposing the

expression value of genen i in sample j (xij) is missing, KNN would find k (an

integer, typically small) nearest genes in sample j with the expression value

most similar to gene i in other samples by computing the Euclidean distance.

The missing value of xij is computed by averaging the expression levels of k

closest genes [93]. In this work, k is set to 10.

Differential analysis of gene expression data We identify genes that

are differentially expressed between conditions of tumor and normal while

constructing the differential gene expression network. Two criteria are applied

on the selection of differentially expressed genes: fold change and t-test. Fold-

change is a biological assessment of changes in gene expression between tumor

and normal conditions and the fold-change for gene g is estimated as:

fold-changeg = log2
GEtumor

g

GEnormal
g

, (2.1)

where GEtumor
g and GEnormal

g denote the average expression of gene g in tumor

and normal samples, respectively.
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The t-test statistic is used in hypothesis testing to determine if the gene is

significantly differentially expressed, which is defined as:

tg =
β̂g − β0

seg(β̂g − β0)
, (2.2)

where β̂g is the contrast estimator - the fold change of gene g between condi-

tions of tumor and normal, and β0 is set to 0 in our case. The seg(β̂g − β0)

stands for the standard error of differences in average expression values of gene

g between tumor and normal samples. However, t-test statistic has a drawback

that the vartiance estimates can be skewed by genes having a very low vari-

ance [39] which leads to a large t-statistic. Thus, those genes with a very low

variance can be falsely detected as differentially expressed. Moreover, t-test

has a low statistical power for studies with few samples [68]. Consequently,

an alternative strategy limma [85] has been proposed and widely accepted to

improve the power and accuracy of variance estimation. It uses Empirical

Bayes to derive the moderated t-statistic by borrowing information from the

population of other genes to aid with the inference about each individual gene.

It defines the variation as:

˜se2g =
d0se

2
0 + dgse

2
g

d0 + dg
, (2.3)

where se20 is the overall estimate variance for all genes, se2g the deviation vari-

ation for gene g, d0
d0+dg

the weight coefficient associated with all genes, and
dg

d0+dg
associated with gene g. The moderated t-statistic is defined as:

t̃g =
β̂g

˜seg
√
vg
, (2.4)

where vg denotes the corresponding diagonal element of the estimated covari-

ance matrix. Thus p-value is obtained from the moderated t-statistic imple-

mented by the package limma [85]. Since lots of tests for different genes are

performed simultaneously, the multiple testing problem occurs and results in a

large number of false positives. Thus, an adjustment for p-value is performed

for addressing the multiple testing problem by Benjamini and Hochberg’s cor-

rection [7], which introduces an adjusted p-value for each test to reduce the

number of false discoveries.
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We combine the two assessments fold-change and p-value to detect differ-

entially expressed genes from both biological and statistical points of views.

By convention, the threshold for p-value is commonly set to 0.05 or 0.01 [75].

We set a restrictive threshold for the adjusted p-value as 0.01 to select the sig-

nificantly differentially expressed genes. Genes are considered as differentially

expressed genes if p-values are less than or equal to 0.01 and the absolute value

of fold-change is larger than or equal to 2.

DNA methylation

Summarize DNA methylation value at the gene level DNA methy-

lation is the process by which the methylation groups are added to DNA

molecules [37], which can change the activity of a DNA segment without chang-

ing the DNA sequence. Illumina Methylation Assay provides a robust profiling

platform which uses the ”BeadChip” technology to generate a comprehensive

genome-wide profiling of human DNA methylation data [37]. The Human-

Methylation 450 BeadChip employs both Infinium I and Infinium II assay

technologies to enhance the breadth of coverage. It measures the methylation

level over 450k sites per sample at single-nucleotide resolution. Infinium I ap-

plies two bead types, one for methylated allele and the other for unmethylated

allele. Infinium applies II applies one bead type with a unique type of probe

allowing detection of both alleles [21]. Extracted from the assays, a β value is

defined as the ratio of intensities between methylated and un-methylated al-

leles across gene regions with sites in different regions, including 5’UTR, first

exon, gene body, TSS200, TSS1500 and 3’UTR, as shown in Fig. 2.2. We

use the Illumina Infinium 450k DNA methylation data for breast cancer from

TCGA.

In Illumina 450K DNA methylation data, many probes may map to dif-

ferent regions associated with the gene. Jiao et al. [40] proposed a scheme

designed for Illumina 450k DNA methylation data to summarize DNA methy-

lation values at a gene level, by assessing which methylation probes are most

predictive of the gene expression state. Then it was validated by demonstrat-

ing that it can successfully retrieve known genes and gene modules. Ma et
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Figure 2.2: Illuminal Infinium 450k provides coverage across gene regions. It
measures the methylation level across gene regions with sites in the TS1500,
TS200, 5’UTR, first exon, gene body, 3’UTR. (This figure was taken from the
datasheet [37].)

al. [63] followed this strategy to assign DNA methylation values to genes in

a breast cancer study and successfully identified known gene modules. There-

fore we follow this scheme to summarize DNA methylation values at the gene

level. Specifically, for a given gene with TSS200 probes, the average β-value

of probes mapping to TSS200 is used as the DNA methylation value. If no

probes mapped to TSS200, the average β-value of probes mapping to the first

exon is considered. If such probes are not available, the average value of probes

mapping to TSS1500 is used.

Differential analysis of DNA methylation level Similar to differential

analysis of gene expression data, we perform an Empirical Bayes t-test to

identify significantly methylated genes, i.e., genes with p-value less than 0.01.

Since no significant fold-change between tumor and normal samples in DNA

methylation data, we only use p-values to identify differentially expressed genes

from the statistical point of view without the assessment of fold-change.

2.2.2 Significance test

Typically, the statistical significance test begins with the statement of null

hypothesis that the observed result occurs by chance. A significance test is

designed to evaluate the strength of the evidence against the null hypothesis

[16]. A result having a statistical significance indicates that it is very un-

likely to have occurred given the null hypothesis [16]. It can be measured by

the p-value, referring to the likelihood of obtaining the result when the null
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hypothesis is true. Therefore a lower p-value indicates that the result has

a higher level of significance. A predefined significance level α indicates the

probability of the study rejecting the null hypothesis. It is typically defined

as 5% or lower [75]. The result is statistically significant if p-value < α [16].

Correlation testing via Fisher transformation

To detect significant differential co-expression/co-methylation relationships

between two conditions in gene expression or DNA methylation data, we per-

form correlation testing via Fisher transformation. We use Pearson correlation

coefficient ρ to evaluate the correlation between two genes X and Y in one

condition:

ρXY =
cov(X, Y )

σxσy

, (2.5)

where cov(X, Y ) stands for the covariance between variables X and Y and σ

indicates the standard deviation of the respective variable. The Fisher trans-

formation of the correlation coefficient ρXY is defined as follows:

F (ρXY ) =
1

2
ln(

1 + ρXY

1− ρXY

). (2.6)

If X and Y have a joint bivariate distribution or the number of samples n

is large enough, then F (ρXY ) is approximately normally distributed with the

mean 1
2
ln(1+ρXY

1−ρXY
) and standard error 1√

n−3 [55], where n is the number of

samples.

To test whether the correlations ρXY in two different conditions are the

same or different, a test statistic Z is defined as:

Z =
F1(ρXY )− F2(ρXY )√

1
n1−3 +

1
n2−3

, (2.7)

where F1(ρXY ) and F2(ρXY ) denote the Fisher transformation of ρXY in the

two conditions, and n1 and n2 represent the number of samples in two condi-

tions. It follows the distribution:

N(F1(ρXY )− F2(ρXY ),

√
1

n1 − 3
+

1

n2 − 3
). (2.8)

17



Under the null hypothesis, i.e., the correlations in the two conditions are the

same, the test statistic Z follows N(0, 1). Thus the p-value can be calculated

with a two-tailed test:

p− value = 2× (1− φ(|Z|)), (2.9)

where φ is the normal cumulative distribution function.

Hypergeometric test

To evaluate the biological relevance of identified epigenetic subnetworks to the

known gene reference sets, a gene set enrichment analysis is performed by a

hypergeometric test. Reference sets are obtained from multiple databases and

genes in the same reference set are typically involved in the same biological

pathway. Let g indicate the number of genes in the reference set, f indicate

the gene population size, and d denote the number of genes in the detected

subnetwork. The number of genes in the overlap between the subnetwork

and the reference set is denoted by n. The variable n follows a hypergeometric

distribution under the null hypothesis that the identified epigenetic subnetwork

is irrelevant to the reference set. The p-value measuring the significance of

enrichment is the tail probability of observing n or more genes in the reference

set [78]:

p− value =

min(g,d)∑
k=n

(
g
k

)(
f−g
d−k

)(
f
d

) . (2.10)

Given an epigenetic subnetwork, if the p-value is less than 0.05, we consider

it to be significantly enriched in the reference gene set.

2.2.3 Nonnegative matrix factorization

Clustering property

Nonnegative matrix factorization (NMF) is a group of algorithms that can

factorize the nonnegative matrix V into nonnegative matrices U and W with

lower ranks:

V = UW. (2.11)
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The approximation of V can be achieved by minimizing the Forbenius norm

distance between V and UW:

minU,W||V−UW||F , subject to U ≥ 0,W ≥ 0, (2.12)

where V ∈ R
m×n
+ , U ∈ R

m×k
+ , W ∈ R

k×n
+ , R+ denotes the nonnegative real

numbers and || · ||F denotes the Forbenius norm. Typically k < min{n,m}
and it is assumed to be much smaller than n or m. Assuming that n samples

are represented as columns in V = [v1, v2, ..., vn], NMF clusters the columns

of input data V into k clusters. The columns of U represent the basis of a

latent k-dimensional space and columns of W provide the representation of

v1, v2, ..., vn in the latent space [48]. The clustering assignment of each sample

can be obtained by W, i.e., the largest entry in the corresponding column W

is used to assign membership labels for each data column.

Similarity matrix factorization

The standard NMF could achieve good clustering results when the input data

have a linear cluster structure. However, it cannot detect a nonlinear cluster

structure. To overcome this issue, Kuang et al. [48] proposed SymNMF deal-

ing with the case where data are embedded in a nonlinear relationship. The

algorithm takes the similarity matrix An×n as input, where the element mea-

sures the pairwise similarity between data. The formulation of the nonnegative

similarity matrix is represented as:

minH≥0||A−HHT ||F , (2.13)

where H is a nonnegative matrix with the size n × k and k is the predefined

number of clusters. Similar to the standard NMF, the approximated matrix

H captures the cluster structure and the clustering assignment for the ith data

is the largest value in the ith row of H.

SymNMF is developed on the basis of the projected Newton algorithm

[10]. The projected Newton algorithm aims to find the local minimum of the

objective function by using the gradient descent with the inverse of a Hessian

matrix at the current point as the search direction. In the gradient descent,

19



one goes from the current point towards the negative of the gradient of the

function, which leads to the fastest decrease of the objective function. The

incorporation of the Hessian matrix allows the method to use second-order

information when scaling the gradient, but it results in a high computational

complexity. SymNMF made two improvements on the projected Newton algo-

rithm to reduce computation cost by delaying the update of the scale matrix

and setting the scale matrix as a block diagonal matrix. In this work, we

aim to find the module structure with a high density in which genes may be

involved in the same regulatory pattern. Two similarity matrices for both

gene expression and DNA methylation data are constructed to measure the

probability that genes belong to the same module. SymNMF is applied to the

similarity matrices to find the module structure.

2.2.4 Bayesian regression

Bayesian linear regression with prior

Bayesian linear regression is a linear regression approach supplemented by

additional information in the form of a prior probability distribution within

the context of Bayesian inference. The standard regression model can be

considered as the explanation of response yi, where i = 1, ..., n, using a given

k × 1 predictor vector xi:

yi = xT
i βi + εi, (2.14)

where βi is the vector of regression coefficients with size of k × 1, and εi is

the prediction error that is independent, identically normally distributed with

N(0, σ2). The parameter βi can be estimated by minimizing the sum of the

squared residuals (SSR). SSR is a measure of model fit quantifying differences

between observed and predicted responses:

SSR(b) =
n∑

i=1

(yi − xT
i βi)

2 = (y −Xb)T (y −Xb), (2.15)

where X is an n× k design matrix in which each row is a predictor vector xT
i ,

y is the response vector comprised of [y1, ..., yn]
T , and b is an estimated vector

with size k × 1. The global minimum can be found by taking the first order
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partial derivative of SSR with respect to b and setting the equation to zero:

0 =
dSSR

db
(β̂) =

d

db
(yy′ − b′X ′y − y′Xb+ b′X ′Xb)|b=β̂ = −2X ′y + 2X ′Xβ̂;

(2.16)

β̂ = (XTX)−1XTy. (2.17)

The estimator β̂ obtained by minimizing SRR is referred to as ordinary least

squares (OLS) estimator.

In contrast to the standard linear regression, the prior probability distribu-

tions for the unknown parameters (β, σ2) are employed in Bayesian regression.

The prior probability distirbutions are usually called priors, representing the

prior belief about parameters before any evidence is taken into account. In

this work, we encode the knowledge of biological relatedness between the re-

sponse and the predictor as Zellner’s g-prior [106] to guide the estimation of

regression coefficients.

The g-prior for the regression coefficients β follows a multivariate normal

distribution with the prior mean β0 and the data dependent covariance matrix:

β|σ2 ∼ Normal(β0, g(XTX)−1σ2), (2.18)

where the parameter g is a constant that controls the uncertainty relative to

the variance around the prior mean. The g-prior for parameter σ2 is specified

as:

π(σ2) ∝ 1

σ2
(2.19)

Based on Bayes’ theorem, the posterior distribution can be parameterized as:

p(β, σ2|y) ∝ p(β|σ2, y)p(σ2|y). (2.20)

The marginal posterior distributions [106] are given as:

p(β|σ2, y) ∝ N(
g

g + 1
(βols +

β0

g
),

g

g + 1
σ2(XTX)−1); (2.21)

p(σ2|y) ∝ IG(
n

2
,
SSR2

2
+

1

2(g + 1)
(βols − β0)X

TX(βols − β0)), (2.22)

where IG represents the inverse gamma distribution. From the above equa-

tions, the posterior mean for parameter β [106] can be obtained:

E(β|y) = g

g + 1
(
β0

g
+ βols). (2.23)
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Bayesian Information Criterion

Bayesian Information criterion (BIC) is a criterion for model selection [83] and

is defined as:

BIC = −2ln(L̂) + dln(n), (2.24)

where n is the number of samples, d is the number of parameters estimated by

the model and L̂ is the maximum likelihood value of the model that measures

the overall performance of model fit. BIC introduces a penalty for the number

of predictors in the model dln(n) to avoid the problem of overfitting. A lower

value of BIC indicates a better model fit.

Significance test for regression coefficients

We would like to know that given a regression model, whether or not each

predict variable makes contribution to explain the model. Since we assume

the prediction error ε is normally and independently distributed with a mean

of zero and variance of σ2, t-test on regression coefficients can be performed to

check the significance of the regression coefficient. Consider that a k-variable

regression model with n observations:

Y = βX + ε, (2.25)

to determine the significance of an individual predictor variable, denoted as

xp, the null and alternative hypotheses are set:

H0 : βp = 0, H1 : βp �= 0. (2.26)

If the null hypothesis H0 is true, the change of xp would not give rise to the

change of Y and there is no significant correlation between Y and xp. The test

statistic is calculated based on t-test:

tp =
βols
p − β0

SE(βols
p )

=
βols
p

SE(βols
p )

∼ τn−k−1,

(2.27)

where βols
p is the OLS estimator and SE(βols

p ) is the standard error for xp. β0

is the specified value in the null hypothesis, taken to be 0. The standard error
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can be obtained by:

SE(βols
p ) =

√
SSR(βols

p )

n− k − 1
, (2.28)

where SSR(βols
p ) is the sum of squared error for βols

p . The t-score tp has a t-

statistic with n−k− 1 degrees of freedom in the null hypothesis is true. Since

it is a two-tailed test, p− value can be calculated as 2× (1− P (t ≤ |tp|)). If
the p− value is less than the predefined threshold, we can say the variable xp

is of significance in the regression model.
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Figure 2.3: Overall framework.

2.3 Method

In this section, the method for the detection of epigenetic subnetworks is in-

troduced in detail.

2.3.1 Overall framework

As shown in Fig. 2.3, the method consists of three main steps. In the first step,

differential networks are constructed for gene expression and DNA methyla-

tion data in the context of the human interactome network, respectively. Edge

weights are assigned according to the differential levels of gene co-expression

(co-methylation) between tumor and normal conditions (Fig. 2.3A). Secondly,

the similarity matrices are constructed by mapping the edge weights to the val-
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ues of matrix elements. The gene expression and DNA methylation modules,

in which genes are involved in a regulatory pattern, are discovered by the non-

negative matrix factorization to the respective similarity matrix (Fig. 2.3B).

Since multiple DNAmethylations can drive a systematic change in a expression

regulatory pattern, we consider DNA methylation modules as predictors and

gene expression as responses. The relationships between DNA methylation

predictor modules and gene expression response modules are quantified via a

Bayesian regression model with the incorporation prior biological relatedness

encoded as g-prior. For each response module, the best subset of predictor

variables are selected based on BIC (Fig. 2.3C). Finally, the response mod-

ules with its corresponding predictors compose the epigenetic subnetworks, in

which the differential expression regulatory pattern results from the varying

level of DNA methylation of predictors.

2.3.2 Detection of predictor and response modules

Construction of differential networks

Since the differential expression (DE) has a cascading effect with the emergence

of differential co-expression effects (DCE) due to the underlying biological

network structures [52], we combine the effects of DE and DCE in the context

of a human protein-interaction network [104] to construct the differential gene

expression network. The level of DCE between each pair of interacting genes in

the protein-interaction network is evaluated. As introduced in section 2.2.2, we

use Pearson correlation coefficient ρt and ρn to evaluate the correlation between

two genes X and Y in tumor and normal conditions, respectively. Then Fisher

transformations are applied to the Pearson correlation coefficients. Recall that

the Fisher transformation is defined as:

F (ρ) =
1

2
ln

1 + ρ

1− ρ
. (2.29)

The statistic Z is defined to assess the difference in gene correlation between

tumor and normal conditions:

Z =
F (ρt)− F (ρn)√

1
nt−3 +

1
nn−3

, (2.30)
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where nt and nn denote the number of tumor and normal samples, respectively.

The absolute value of Z is used as the edge weight on a pair of interacting

genes in the protein interaction network.

The statistical significance on the statistic Z is evaluated:

p-value = 2× (1− φ(|Z|)). (2.31)

After the Benjamini-Hochberg correction, gene pairs with adjusted p-value less

than 0.05 are considered to be significantly differentially co-expressed between

tumor and normal conditions. To filter out irrelevant genes and reduce false

positives, genes are removed that do not show significant DCE with differen-

tially expressed genes in the network.

Analogous, differential methylation data network is constructed in the same

way.

Detection of predictor and response modules

The constructed differential networks provide valuable information about the

gene regulatory patterns, since a larger value of the edge weight indicates a

higher probability that the pair of genes are involved in a gene regulatory

module. To detect gene modules, two similarity matrices Ar[aij] and Ap[aij]

are constructed, based on the differential gene expression DNA methylation

network. The matrix element aij represents the value of the edge weight

between the gene i and gene j in the differential network. The discovery

of module structures based on the similarity matrix can be formulated as a

problem of symmetric nonnegative matrix factorization (NMF). The input

similarity matrix Ar[aij] (Ap[aij]) with size n× n can be factorized into a low

rank matrix H that encodes the latent information embedded in the original

similarity matrix, i.e.

A ≈ H ×HT , (2.32)

where H with size n× k gives the information on module indicators, i.e., the

matrix element hij in H indicates the confidence of assigning gene i to module

j, where i = 1, 2, ..., n and j = 1, 2, ..., k. The factorization of matrix A can be
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achieved by minimizing the loss function:

minH≥0 ‖ A−H ×HT ‖, subject to H ≥ 0. (2.33)

We solve this problem using the algorithm SymNMF proposed by Da. et

al [48]. The output H contains the information on module memberships.

Specifically, for each row hi in H, gene i is assigned into the kth clusters if hik

is the maximum element.

Significance test leading to the optimal selection of predictor and
response modules.

The rank K (i.e., the column number of matrix H) determines the number of

modules, which is a key parameter that needs to be explored. The choice of

K in NMF is often an application-dependent and long-standing problem [108].

In this work, given the weighted differential network where the edge weight

indicates the extent of the correlation between two genes, the task is to detect

densely connected modules with high modularity. Note that not all detected

modules by NMF would have above-average modularity, since it is possible

that non-correlated genes would be grouped into a cluster representing isolated

associations. Thus the modularity of the detected modules is evaluated by

calculating module density [62]:

density(Mik) =

∑
p∈Mik,q∈Mik

A[apq]

|Mik| × (|Mik| − 1)
, (2.34)

where Mik indicates the ith module under the rank k and A is the similarity

matrix.

A permutation test is performed to assess the statistical significance of

module density by randomly generating modules with the same size as the

detected module in the background differential network. This procedure is

repeated 1000 times, i.e., for each detected module, 1000 random modules are

generated. Under the null hypothesis, the density of random modules is equal

to or greater than the observed modules. The significance level (p-value) of

the density for the observed module Mik is calculated as:

p(Mik) =

∑b=1000
b=1 I{density(M b

ik) ≥ density(Mik)}
1000

, (2.35)
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where density(M b
ik) indicates the density score of the bth permuted module.

If the adjusted p-value is less than 0.05 after the Bonferroni correction, the

observed module is considered to be statistically significant.

We expect that with an appropriate value of the rank K, most significant

modules showing local regulation patterns would be detected. A wide range

value of K is explored and we select the value of K leading to the largest

number of detected significant modules as the optimal K. This procedure is

performed for both DNA methylation and gene expression data. The optimal

values of kp and kr are respectively obtained for DNA methylation predictor

modules and gene expression response modules, respectively. With the optimal

values of kp and kr, modules with the adjusted p-value less than 0.05 are

selected as DNA methylation predictor modules and gene expression response

modules, respectively.

Module quality measures

The module density measures whether or not genes in identified modules are

densely connected. The other measure of module quality, separability score

[51], is employed to evaluate whether or not a detected module is well separated

from other modules in the differential network. The separability score between

two modules Mi and Mj is determined by the inter-module adjacency and

intra-module adjacency:

separability(Mi,Mj) = 1− interAdj(Mi,Mj)√
density(Mi)× density(Mj)

, (2.36)

where density(Mi) and density(Mj) are the intra module densities (defined in

Eq. 2.34) for module Mi and Mj, respectively. The inter-module adjacency

interAdj(Mi,Mj) is defined as:

interAdj(Mi,Mj) =

∑
p∈Mi

∑
q∈Mj

A[apq]

ninj

, (2.37)

where A is the similarity matrix and ni and nj are the number of genes in

Mi and Mj, respectively. The closer the separability score is to 1, the more

separated are the Mi and Mj. The permutation test for the observed sepa-

rability score is performed to obtain the significance level. The separability
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and density scores measure the homogeneity and separateness of the detected

modules [51]. We use these two measures to validate if the modules are well

detected.

2.3.3 Detection of epigenetic subnetworks

In this section, we aim to identify the relationships between predictors and

responses by detecting the set of predictors that best explains the variation

in expression in the response module. We use the eigengene [50] as the repre-

sentative of each module in one synthetic profile, since it allows to relate the

module to the clinical trait of interest in an easy way and it can also be used as

a feature in more complex predictive models including the Bayesian inference

model [23]. To select the best subset of predictors for each response, Bayesian

linear regression model with an informative g-prior is employed to compute all

possible regression models for a response module. The biological relatedness

between predictors and responses is encoded as an informative g-prior to guide

the search of association between predictors and responses. The best subset of

predictors for each response is selected according to the criterion of Bayesian

information criterion (BIC).

Module eigengene

We treat each modules as a single unit by constructing the representative

eigengene [50]. The eigengene is defined as the first principal component based

on singular value decomposition [2]. In detail, let Y = (yil) denote the gene

expression profile for a response module, where i = 1, 2, ..., n denotes the index

of genes and l = 1, 2, ...,m corresponds to the tumor samples. The expression

profile for each gene, i.e., each row of Y , is standardized to have the mean 0

and the variance 1. The singular value decomposition of Y is represented as:

Y = UDV T , (2.38)

where U is an orthogonal matrix with size n × m and the columns of U are

referred to as the left-singular vectors. V is the orthogonal matrix with size

m × m and the columns of V and D is an m × m diagonal matrix of the
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singular values. The first column of V is referred to as the module eigengene.

Similarly, eigengenes of DNA methylation predictor modules are obtained from

methylation profiles in the same way.

To evaluate if the module eigengene can represent the module profile well,

we calculate the proportion of variances explained by the module eigengene

[35] as follows:

varExplained(E) =
|d1|2∑
j |dj|2

, (2.39)

where d1 is the first element in the diagonal matrix D. The large value of

varExplained indicates that the module eigengene is properly generated and

it can represent the profile well.

Bayesian regression with g-prior

We assume that the response module is associated with a set of predictors via

a linear regression model. Given a response module eigengene Yi and a set of

predictor module eigenegenes Xγ, the prediction error

εiγ = Yi − βiγ ×Xγ, (2.40)

is assumed to be independent and identically distributed with mean 0 and vari-

ance σ2, where the parameter βiγ indicates the vector of regression coefficients.

Assuming that the response Yi conditional on Xγ is subject to a multivariate

normal distribution:

Yi|Xγ, βiγ, σ
2 ∼ Normal(βiγXγ, σ

2
iγI), (2.41)

where σ2
iγI is a variance co-variance matrix that has error σ2

iγ on the diagonal

and zeros for the remaining elements.

We employ Zellener’s g-prior [107] to include the prior biological relatedness

between responses and predictors. Intuitively, the g-prior controls the uncer-

tainty in the prior belief relative to the variance of the observations around

the mean, and the prior distribution of βiγ conditional on variance σ2
iγ is for-

mulated as:

βiγ|σ2
iγ ∼ Normal(β0

iγ, giγ(X
T
γ Xγ)

−1σ2
iγ), (2.42)
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where β0
iγ is the initial guess of mean vector, the term XT

γ Xγ is the variance-

covariance matrix that provides a prior covariance structure, and σ2
iγ is data-

dependent covariance matrix that can be scaled by a user-defined positive

factor giγ. The prior information can be integrated into the model by changing

the parameter in the prior distribution, thus we can propose a prior guess of

the vector of regression coefficients and encode the corresponding prior belief

in giγ.

As introduced in detail in section 2.2.4, the posterior distribution of βiγ is

given by

p(βiγ|σ2
iγ, Xγ, Yi) ∼ N(

giγ
giγ + 1

(
β0
iγ

giγ
+ βols

iγ ),
σ2
iγgiγ

giγ + 1
(XT

γ Xγ)
−1), (2.43)

where βols
iγ = (XT

γ Xγ)
−1XT

γ Yi is the OLS estimator of βiγ, and the vector of

regression coefficients βiγ can be estimated by the posterior mean and prior

giγ:

β̃iγ =
giγ

1 + giγ
+

1

1 + giγ
βols
iγ . (2.44)

The posterior distribution of σ2
iγ follows the inverse-gamma distribution and

can be estimated as

p(σ2
iγ|Xγ, Yi) ∼ IG(

nγ

2
,
SSRiγ

2
+

(β0
iγ − βols

iγ )XTX 1
1+giγ

(β0
iγ − βols

iγ )

2
) (2.45)

where nγ is the number of predictors in Xγ and SSRiγ is the sum of squares

of the residuals of β0
iγ.

Encode prior biological information as g-prior

We evaluate the biological relatedness between each response Yi and each pre-

dictor Xj based on the human protein interaction network [104]. The greater

number of interactions between genes in predictor and genes in response, the

higher degree of biological relatedness between them. We define the biological

relatedness riγ between Xj and Yi as:

rij =
2E

ij

N ij

, (2.46)

where N ij is the total number of genes in predictor Xj and response module Yi.

The parameter Eij denotes the number of interactions between genes in the
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predictor and the response. Then a weight parameter μ is added to control the

relative influence of the prior biological relatedness in the Bayesian regression

model:

gij = μrij. (2.47)

When μ = 0, we treat all predictors equally and no prior information is in-

cluded in the model. The larger the value of gij is, the more confident we are

about that the predictor Xj is associated with response Yi.

Two factors, the prior coefficient vector β0
iγ and the scalar giγ, need to be

set. In practice, we set β0
iγ to be a vector with all elements having values of

zeros, which reflects our prior belief in the very subtle dependence between

the predictors and responses. The parameter giγ is originally formulated as a

constant to control the confidence in the coefficient β0
iγ. Specifically, a large

value of giγ leads the regression coefficients to be centered around βols
iγ . On

the other hand, values of giγ with a small value leads to the solution centered

around β0
iγ. We extend the formulation of giγ as a scalar vector 
giγ to allow

for different levels of the control in the elements in β0
iγ. Each entry in 
giγ

corresponds to one predictor, controlling the confidence in the prior belief

relative to the variance of the observations around the mean. In this case,

the scalar vector 
giγ constructed for response Yi and the predictor set Xγ is

composed of [gix], where x indicates the index of predictors in the set Xγ.

Best Predictor Subset Selection Based on BIC.

Assuming that kp predictors are obtained, there are totally 2kp combinations

of predictor variables for each response. We use BIC as the measure to select

the best model. Recall that BIC is defined as:

BIC = −2ln(L̂) + kln(n), (2.48)

where n is the number of observations, k is the number of parameters estimated

by the model and L̂ is the maximum likelihood value of the model. The

expected value of BIC is calculated as:

E[BICiγ] = nE[In(σ2
iγ)] + kγIn(n), (2.49)
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where n is the number of samples and kγ is the number of predictors in the

set γ. The expected value of ln(σ2
iγ) is calculated as:

E[ln(σ2
iγ)] = Digamma(

n

2
)−In(

SSRiγ

2
+
(β0

iγ − βols
iγ )GiγX

T
γ XγGiγ(β

0
iγ − βols

iγ )

2
),

(2.50)

where Giγ is a square matrix in which diagonal elements are
√

1
1+ �giγ

and the

remaining elements are all zeros, and SSRiγ is the sum of squares of the

residuals of the ordinary least squares βols
iγ . Given a response module, the

combination of predictors with the smallest expected value of BIC would be

selected.

Survival analysis

We hypothesized that the detected modules or subnetworks might be effective

prognostic parameters that are associated with the survival time of patients.

Thus, a survival analysis was performed. Since the coefficient in a Cox regres-

sion model is related to the hazard, i.e., a positive value represents a worse

prognosis and a negative value indicates a positive association with survival

time [12]. Thus, we devise the prognostic index scores for patients based on

the coefficients in the Cox regression model of each module or subnetwork.

The prognostic index score for a patient i with a response or predictor module

k is defined as:

PIki = βcox
k Eki, (2.51)

where βcox
k is the Cox regression coefficient for module k and Eki is the value

of eigengene of module k for patient i.

For a subnetwork k, the multivariate Cox regression is performed and the

prognostic index score for the patient i is defined as:

PIki =
∑
c∈k

βcox
c Eci, (2.52)

where βcox
c is the Cox regression coefficient for a module variable c in the

subnetwork k and Eci is the value of module eigengenec for the patient i.

Then we divide patients into two groups based on the prognostic index

scores: low-risk (the PI score < 30th percentile of the entire PIs) and high-risk
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(the PI score > 70th percentile of the entire PIs). Kaplan-Meier estimator

is used to generate the survival curves for two groups, followed by the Log-

rank test to the significance level on the difference of the survival time in two

groups.
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2.4 Simulation study

To test if the proposed Bayesian regression model can identify true relation-

ships between predictors and responses, we first applied the method to the

simulation datasets. We simulated predefined epigenetic subnetworks con-

sisting of a set of predictors and a response. The result of simulation study is

presented to characterize the ability of our method in detecting true epigenetic

subnetworks.

2.4.1 Simulation dataset

We generated three sets of studies corresponding to different strengths of as-

sociation cr = (0.3, 0.5, 0.7) within response modules. In each study, we gen-

erated four predictor modules, and simulated different levels of associations

from Φ = (0.03, 0.05, 0.1, 0.2, 0.3) between predictors and responses to detect

the true relationships with respect to different strengths of associations. Since

the structure of epigenetic subnetworks was known, the performance of the

model can be evaluated by comparing the detected structure to the predefined

structure.

First, we simulated four DNA methylation predictors x1, x2, x3, x4 corre-

sponding to different correlation signals cp = (0.3, 0.5, 0.3, 0.5), with the same

size n×p, where n and p indicate the number of samples and variables, respec-

tively. In practice, we set n = 200 and p = 25. Let xm
i denote the methylation

level of the variable m in the ith predictor module, which is generated as:

xm
i ∼ N(0,Σm

i ), (2.53)

where Σm
i ∼ Inverse−Wishart(60, (1−ci)I+ciJ), ci is the association signal

taken from cp, Ip×p is the identity matrix and Jp×p is a matrix with all entries

as 1.

We generated three response modules y1, y2, y3 with size n× q, correspond-

ing to different levels of correlations, in order to test if different levels of corre-

lation within responses would affect the outcome of our method. In practice,

we set n = 200 and q = 30. Thus, three response modules with correlation
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signals cr = (0.3, 0.5, 0.7) were generated in a similar way as the predictor

modules.

We further simulated subnetwork structures by assuming that specific pre-

dictors and responses contribute to the non-random associations. Let xj and

yi denote the profile of the jth module in x and the ith module in y, respec-

tively. The dependency between response yi and a specific set of predictors is

added. Thus the new profile of the ith response ySi was obtained as follows:

ySi = yi +
∑
i∈Si

xiA+ E, (2.54)

where Si indicates the set of predictors having associations with yi, A is a

matrix of size p × r with elements carrying the association signal from Φ =

(0.03, 0.05, 0.1, 0.2, 0.3), and E is the random noise matrix with size n × q

generated from the independent normal distribution with mean 0 and variance

1. In practice, we set S1, S2 and S3 as {x1}, {x2}, {x1, x2}, respectively, which
means that the response modules y1 and y2 are regulated by predictors x1

and x2 respectively, while y3 is regulated by both x1 and x2. No predictor is

specified for response module y4.

In addition, we generated a gene-interaction network G to simulate the

biological relatedness between responses and predictors by using two parame-

ters: pc is the probability of the connection between the predictor and response

that belong to the same epigenetic subnetwork, and pcn is the probability of

the connection between the predictor and response not in a a same epigenetic

subnetwork. We set pc = 0.1 and pcn = 0.05 such that predictor modules and

response modules in the same subnetwork are relatively densely connected,

whereas there are fewer links in the rest of epigenetic subnetworks.

2.4.2 Result

Three sets of dataset are simulated corresponding to different levels of correla-

tions within response modules. We applied our method to the three datasets

starting with the construction of module eigengenes. Fig. 2.4 shows the sim-

ulated methylation profile of two predictor modules across 200 samples with

36



-0.4

0.0

0.4

0 50 100 150 200
Sample

V
al

ue
(a) c=0.3

-0.4

0.0

0.4

0 50 100 150 200
Sample

V
al

ue

(b) c=0.5

Figure 2.4: Methylation levels of simulated module genes (grey lines) and
eigengene (black line) in 200 samples. (a) The correlation signal within the
module is 0.3. (b) The correlation signal is set to 0.5.

correlation signal 0.3 and 0.5, respectively. An intuitive illustration of eigen-

gene is shown by the black line in Fig. 2.4. It is highly correlated with the

methylation profiles in the module.

For comparison, we applied the standard regression model without incorpo-

ration of prior knowledge to the simulated dataset. Results on three datasets

y1, y2 and y3 by two methods are shown in Table 2.1a, b and c, respectively.

Table 2.1a shows the result of identification on the first dataset y1, where ’g-

prior’ indicates the result of our method with the incorporation of g-prior and

’no prior’ indicates the result of the standard regression without prior. A wide

range of association strengths between responses and predictors were specified

from 0.03 to 0.3. When a = 0.03, a very weak association was specified between

the response and predictor. In the case where the single predictor is specified

to the response, our method can detect almost all true relationships. When

stronger associations a = 0.05, 0.1, 0.2, 0.3 are specified, our method identified

all the true relationships on y1, y2 and y3. However, for the method without

the incorporation with g-prior, it resulted in several false positives and cannot

identify true relationships as correctly as our method. For example, the false
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Table 2.1: Simulation results on three datasets by two methods

(a) Result on y1

response true predictor
identified predictors

a=0.03 a=0.05 a=0.1 a=0.2 a=0.3
g-prior no prior g-prior no prior g-prior no prior g-prior no prior g-prior no prior

y11 x1 x1
∗ x1

∗ x1
∗ x1

∗ x1
∗ x1

∗ x1
∗ x1

∗ x1 x1
∗

y12 x2 x2
∗ x2

∗, x3
∗ x2

∗ x2
∗ x2

∗ x2
∗ x2

∗ x2
∗ x2

∗ x2
∗

y13 x1, x2 x1
∗ x1

∗, x2
∗ x1

∗, x2
∗ x1

∗, x2
∗ x1

∗, x2
∗ x1

∗, x2
∗ x1

∗, x2
∗ x1

∗, x2
∗, x4

∗ x1
∗, x2

∗ x1
∗, x2

∗
y14 no predictor x3 x3 x4 x4 x4 x4 x3 x3 x3 x3

(b) Result on y2

response true predictor
identified predictors

a=0.03 a=0.05 a=0.1 a=0.2 a=0.3
g-prior no prior g-prior no prior g-prior no prior g-prior no prior g-prior no prior

y21 x1 x1
∗ x1

∗ x1
∗ x1

∗ x1
∗ x1

∗ x1
∗ x1

∗ x1
∗ x1

∗
y22 x2 x2

∗ x2
∗ x2

∗ x2
∗ x2

∗ x1
∗, x2

∗ x2
∗ x2

∗ x2
∗ x1

∗, x2
∗

y23 x1, x2 x1
∗, x2

∗ x1
∗, x2

∗ x1
∗, x2

∗ x1
∗, x2

∗ x1
∗, x2

∗ x1
∗, x2

∗ x1
∗, x2

∗ x1
∗, x2

∗ x1
∗, x2

∗ x1
∗, x2

∗
y24 no predictor x4 x4 x4 x4 x4 x4 x4 x4 x4 x4

(c) Result on y3

response true predictor
identified predictors

a=0.03 a=0.05 a=0.1 a=0.2 a=0.3
g-prior no prior g-prior no prior g-prior no prior g-prior no prior g-prior no prior

y31 x1 x1
∗ x1

∗ x1
∗ x1

∗ x1
∗ x1

∗ x1
∗ x1

∗ x1
∗ x1

∗
y32 x2 x2

∗ x2
∗ x2

∗ x2
∗ x2

∗ x1
∗, x2

∗ x2
∗ x2

∗ x2
∗ x1

∗, x2
∗

y33 x1, x2 x1
∗, x2

∗ x1
∗, x2

∗ x1
∗, x2

∗ x1
∗, x2

∗ x2
∗, x4

∗ x1
∗, x2

∗ x1
∗, x2

∗ x1
∗, x2

∗, x4
∗ x1

∗, x2
∗ x1

∗, x2
∗

y34 no predictor x2 x2 x2 x2 x2 x2 x2 x2 x2 x2

a indicates the association signal
∗ indicates the regression coefficient is statisti-
cally significant.

38



-0.2

-0.1

0.0

0.1

0.2

-0.2 -0.1 0.0 0.1 0.2
model

re
sp

on
se

(a)

-0.2

-0.1

0.0

0.1

0.2

-0.2 -0.1 0.0 0.1 0.2
model

re
sp

on
se

(b)

Figure 2.5: Fitting regression models. (a) The model for subnetworks con-
sisting of response y22 and predictor x2 with association signal 0.1. (b) The
model for subnetworks consisting of response y23 and predictor x1 and x2 with
association signal 0.1.

positive x2 was detected by the standard model for the response y22 and y32,

which was not specified in the relationship. Figure 2.5 shows the two examples

of fitted regression models constructed by our method.

2.4.3 Discussion

The simulation analysis demonstrated that our model can identify subnet-

works correctly even in the case where a very weak association is specified,

while the standard regression model without g-prior resulted in multiple false

positives. The g-prior in our method worked as a modifier on the shrinkage

incurred on each predictor parameter. A larger value of g-prior corresponds to

a smaller shrinkage incurred on the corresponding regression coefficient, mak-

ing the corresponding variable less likely to be shrunk out of the model. It is

worth nothing that it only modified the degree of shrinkage of a predictor, but
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not the correlation between responses or the order in which the predictors are

selected by the model.

40



2.5 Case study

In this section, the method was applied to a breast cancer dataset. We describe

the results of applying the ideas discussed in previous sections to the task of

detection of epigenetic subnetworks. The experiment procedures and results

are described and summarized.

2.5.1 Dataset

We collected sample matched level-3 Illumina 450k methylation data and

HiSeq RSEM gene-normalized RNA-seq data of breast cancer from TCGA

[100]. We followed the strategy used by Jiao et al. [40] to assign the methy-

lation value to a given gene, which was introduced in section 2.2.1 in detail.

After data preprocessing, we generated the sample matched gene expression

and DNA methylation profiles in 786 invasive ductal carcinoma tumor samples

as well as 84 normal samples.

In addition, TCGA provides the corresponding clinical information includ-

ing the patient status (alive or dead), the survival days (days to last follow-up

or days to death). Such information was also collected to perform the survival

analysis.

The information of the protein-protein interaction (PPI) was used in the

inference procedure. It refers to the physical contact of high specificity be-

tween two proteins and it has been studied from multiple perspectives such as

molecular dynamics, signal transduction and so on [20]. We downloaded the

PPI network from the Protein Interaction Network Analysis (PINA) platform

[104], which integrates and annotates the data from six public PPI databases

(MINT, IncAct, DIP, BioGRID, HPRD, and MIPS/MPact). The network

consists of 166776 edges and 16182 nodes.

2.5.2 Discovery of predictor and response modules

Significance test leading to the optimal selection of rank K

Differential gene expression and DNA methylation networks were constructed

by evaluating the differential co-expression and co-methylation in the PPI net-

41



work. Two respective similarity matrices were generated by mapping the edge

weight in the differential networks into the value of matrix elements, where

an element indicates the probability that two genes may be involved in a reg-

ulatory pattern, i.e., the same module. Next, SymNMF was performed on

these two similarity matrices to discover predictor and response modules. A

wide range of candidate values from 5 to 70 for the number of modules K

was explored. We expected that with an appropriate value of K, the most

number of modules showing significant high-density would be detected. Given

a candidate value for K, density scores were calculated for detected modules.

By performing the significance test, the statistical significance of the module

density was evaluated. Fig. 2.6 shows the number of the predictor and re-

sponse modules showing significant density with respect to the parameter K.

We observed that with the increase of K, the number of significant predictor

and response modules increases to a maximum point followed by a decrease

in the number of modules. The maximum number of the significant predictor

and response modules were detected when kp and kr are set to 50 and 49,

respectively. When K exceeded the optimal value, the number of significant

modules did not grow with the increase of K any more. It indicated that in the

case where K is greater than the optimal value, dissimilar genes were grouped

into more non-correlated modules. Finally, 21 significant predictor modules

and 39 significant response modules were detected with adjusted p-values less

than 0.05.

Module quality measures

Density-based measure As we discussed, we employed the module den-

sity to select the significant modules which remain densely connected in the

differential networks. Significance levels of density statistics were measured by

a permutation test. We showed the result of the permutation test in Fig. 2.7,

where we presented the density of observed modules as well as the distribution

of the densities of 1000 randomly modules. From Fig. 2.7, we can see that

the density scores for detected modules are significantly higher than random

scores.
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Figure 2.6: The number of predictor modules (a) and response modules (b)
showing significant density score with respect to the parameter rank. The
x-axis represents the candidate values for parameter K and y-axis represents
the number of significant modules.
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(b) Response module

Figure 2.7: Module density scores. (a) The density of identified predictor
modules. The red triangles represent observed density scores for predictor
modules and boxplots represent the corresponding density scores of 1000 ran-
domly generated modules. (b) The density of identified response modules. The
red triangles represent observed density scores for response modules and box-
plots represent the corresponding density scores of 1000 randomly generated
modules.
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Figure 2.8: Heatmaps of separability and density scores for predictors (left)
and responses (right).

Separability-based measure Next we evaluated the separability of identi-

fied modules to test if modules remain distinct from others. Separability scores

and corresponding p-value were calculated to evaluate the significance levels

of the separability for each pair of identified modules. By setting the threshold

of p-value as 0.05, we observed that all pairs of predictors and responses are of

significant separability. The p-values of separability scores for both predictor

and response modules were attached in Appendix A. Two heatmaps (Fig. 2.8)

shows the separability and the density scores between each pair of modules,

where the off-diagonal blocks represent the separability scores and the diagonal

blocks represent module density. Evaluations on the density and separability

revealed that the modules are well defined and genes within a module remain

densely connected as well as distinct from other modules.

Other measures We calculated varExplained, the proportion of the vari-

ance explained by module eigengenes, to check if the module profile is well

represented by the eigengene. Figure 2.9 shows the boxplots of varExplained

for predictor and response modules. The median values of varExplained for

predictors and responses were 0.82 and 0.80, respectively, which indicated the

eigengene can represent a large proportion of variance of the module profile.

In addition, we evaluated if the detected predictor and response modules
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Figure 2.9: The proportion of variance explained by eigengenes

are correlated with patient survival time. We selected the right-censoring tu-

mor samples, i.e., patients with known death time, to measure the correlation

between the module eigengene and the survival time of patients. The Pearson

correlation coefficients and the corresponding significance levels by the permu-

tation with z-test were calculated. The modules with p-value less than 0.05 are

considered to be associated with the patients survival time. We found that

13 out of 39 response modules are significantly correlated with the patient

survival time, while no significant correlations between predictors and survival

time were found. Fig. 2.10 showed scatterplots between eigengenes and the

patient survival time for the 13 response modules.

2.5.3 Discovery of epigenetic subnetworks

Effect of varying weights on prior

The Pearson correlation between the profiles of DNA methylation and gene

expression within each detected subnetwork are calculated to evaluate the per-

formance. The p-value on the correlation coefficients after adjustment by a

permutation test was obtained for each detected subnetwork. The Fisher’s

meta analyzed p-value was obtained by combining the set of p-values for all

subnetworks into one meta p-value using Fisher’s combined probability test to

evaluate the overall performance. The weight parameter μ on g-prior was set
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Figure 2.10: Scatterplots between the eigengenes of response modules and the
patient survival time. In each figure, a dot represents a patient, and the x-axis
and y-axis represent the profile of the module eigengene and the corresponding
patient survival days, respectively.
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Figure 2.11: Effect of different weights on performance. It shows the negative
logarithm of Fisher’s meta analyzed p-value with different weight values.

to control the relative influence of prior biological relatedness to the discovery

of epigenetic subnetwork. We measured the sensitivity of our method to the

weight μ from a wide range of candidates [0, 0.2, 0.4, 0.6, 0.8, 1, 2, 4, 6, 8, 10].

Different sets of epigenetic subnetworks were detected and the Fisher’s meta

analyzed p-values were obtained with respect to different values of the param-

eter μ.

Fig. 2.11 shows the negative logarithm of Fisher’s meta-analyzed p-value

for each μ. When μ = 0, no prior information was incorporated. As the value

of μ increases, the performance increases to a certain point then followed by

a decrease. The best performance was obtained when μ = 1, therefore we

selected the value of 1 leading to the most significant correlation within sub-

networks as the optimal weight value on the prior. We noticed that in the case

where μ = 0, not all detected subnetworks show a significant correlation, which

indicated that the incorporation with g-prior contributed to the discovery of

significant epigenetic subnetworks.

Table 2.2 shows the detailed regression results. For each response module,

the best subset of predictors was selected based on BIC. We assessed the signif-

icance level of regression coefficients in each detected subnetworks to evaluate

whether the slope of the regression line differs significantly from zero. Table

2.2 shows the detailed regression coefficient and the corresponding significance

level of each model. Except for the response module y18 and y21, all models

show a significant relationship between the predictor and the response. Thus,
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we removed the two subnetworks and finally 37 epigenetic subnetworks were

kept.

We calculated the confidence score (Table 2.2) of each selected predictor

xi for response yj, which measures the proportion of variance explained by xi

and the confidence in being a true regulation.

2.5.4 Follow up analysis.

Pathway enrichment test and network analysis

To determine the biological functional relevance of the detected epigenetic

subnetworks, we performed the pathway enrichment test using reference path-

ways in the databases KEGG [43], Reactome [17], Biocarta [73], GO [4] and

Canonical pathways (CP) downloaded from MSigDB [88]. The subnetwork is

considered to be enriched in a reference pathway if a p-value < 0.05 is obtained

by Hypergeometric test after correction. First, we examined the functional ho-

mogeneity of the detected subnetworks. A set of genes is defined as functional

homogeneity if they are enriched in at least one GO category [4]. We found

that all detected subnetworks exhibit significanct functional homogeneity since

they are all enriched in at least one reference set in GO. Table 2.3 shows the

ratio of enriched subnetworks in each database. All detected subnetworks are

enriched in at least one reference pathway from Reactome and CP, and 35 out

of 39 subnetworks (90%) and 28 out of 39 subnetworks (72%) were enriched in

KEGG and Reactome pathways, respectively. In addition, we evaluated the

proportion of reference sets enriched for epigenetic subnetworks (Table 2.3) and

found that 42.3%, 41.9%, 50.9%, 43.5% and 49.8% of reference sets in GO,

KEGG, CP, Reactome and Biocarta were enriched for detected subnetworks,

respectively. The results revealed that the detected epigenetic subnetworks

are of great biological relevance.

Next we asked if the detected subnetworks were related to cancer, especially

the breast cancer. We examined whether the genes in detected epigenetic sub-

networks are cancer-related biomarkers. We collected 2027 cancer genes from

allOnco database (http://www.bushmanlab.org/links/genelists), and 738
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Table 2.2: Regression results
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Table 2.3: The result of pathway enrichment tests in detected epigenetic sub-
networks.

Reference set GO Biocarta CP KEGG Reactome
The ratio of

enriched subnetworks
1 0.718 1 0.897 1

The ratio of reference sets
enriched for subnetworks

0.423 0.498 0.509 0.419 0.435

breast cancer driver genes from intogen [81] and OncoSearch [56]. On aver-

age, 20% of genes in the detected subnetworks were cancer genes and 9%

were breast cancer genes. Table 2.4 shows the breast cancer genes in detected

epigenetic subnetworks, where the third column ’ratio’ represents the ratio

between the number of cancer genes and the module size. We found that,

except for subnetwork 4, there is at least one breast cancer gene in each de-

tected subnetwork, which reveals that the epigenetic subnetworks are related

to breast cancer. In addition, multiple important breast cancer genes were

detected in the epigenetic subnetworks, like gene ERBB2 in subnetwork 19, a

known proto-oncogene, that encodes HER2, a member of the human epidermal

growth factor receptor. Genes TP53BP1 and TP53BP2 were also detected and

encode a member of the ASPP (apoptosis-stimulating protein of p53) family

of tumor suppressor p53 interacting proteins.

We took the epigenetic subnetwork 16 as an example and performed an

extensive analysis for it. The subnetwork 16 contained 20 cancer genes and 9

breast cancer genes (CDK2, PRLR, CDH1, ERBB3, TP53BP2, SRC, MBIP,

KDM1A and SERPINE1) and it was enriched in 12 KEGG pathways includ-

ing two pathways that are specific to the breast cancer: KEGG cell cycle and

KEGG P53 signalling pathway. Fig. 2.13 shows the network representation of

subnetwork 16, including genes involved in KEGG pathways and genes show-

ing correlations larger than 0.3. Genes acting as predictors were drawn as

circles and responses were drawn as squares. Multiple epigenetic mechanisms

were detected between predictors and responses. We found that the mecha-

nism between SFN and CDK2 in subnetwork 16 was supported by observations

that SFN is a frequently hypermethylated gene [41] [44] emerging as a new
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Table 2.4: Breast cancer genes in detected epigenetic subnetworks.
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inhibitor of CDK2 in breast cancer cells [53]. In addition, SFN has an impor-

tant function in preventing breast tumor cell growth [53] which suggests that

SFN may play a therapeutic potential role in cancer prevention by targeting

epigenetic machinery. We also observed that CCNA1 has been detected as

an epigenetic regulator in Fig. 2.13. Evidence in the literature showed that

the differential methylation pattern of CCNA1 was associated with the treat-

ment response in breast cancer and could potentially be a predictive marker

to anthracycline/mitomycine sensitivity [46]. Moreover, multiple researches

demonstrated that UHRF1 interacting with various proteins in multiple path-

ways results in the silencing of key tumor suppressor genes in breast cancer

[88][84]. In Fig. 2.13, we observed that the methylation pattern of UHRF1

was highly correlated with the expression of multiple breast cancer genes in-

cluding ERBB3, TP53BP2 and PRLR. In addition, genes like PLCG1 and

PTPN6 in subnetwork 16 were also likely to be epigenetic regulators, which

was supported by several researches [61][66]. Overall, these findings supported

the idea that our method successfully detects epigenetic subnetworks contain-

ing verified epigenetic mechanism, and the detected subnetworks could be a

starting point to uncover the underlying epigenetic mechanisms.

Survival analysis

We hypothesized that the profiles of gene expression or DNA methylation in

detected modules and subnetworks might be effective prognostic parameters

associated with survival time. As introduced in Method, we derived the prog-

nostic index score for each patient based on the module profiles. The patients

were divided into high-risk and low-risk groups and we performed the log-rank

test to validate if the survival times in the two groups are significantly different.

First, the survival analysis was performed on predictor and response modules.

The results showed that 8 of 39 response modules (Fig. 2.14) can divide pa-

tients into two groups in which the survival time of patients of high-risk and

low-risk are significantly different. However, no groups in predictor modules

showed significantly different survival time. Next the multivariate Cox pro-

portional regression was performed on epigenetic subnetworks and we detected
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Figure 2.12: Network analysis of the detected subnetwork 16 in breast cancer.
Genes that acted as predictors are represented by circles and responses are rep-
resented by squares. Pink nodes denote breast cancer driver genes and green
nodes denote cancer genes. A grey line indicates that a Pearson correlation
coefficient between a predictor and a response is larger than 0.03. Genes en-
riched in KEGG breast cancer pathways were connected by red dash lines and
the yellow dash lines denote other KEGG pathways. The names for KEGG
pathways are shown at the right bottom corner, where the red text indicates
the breast cancer specific pathways.
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Figure 2.13: Kaplan-Meier survival analysis for patients in response modules.

that 11 of 37 subnetworks (Fig. 2.15) were significantly associated with sur-

vival time. In addition to the detected 8 significant response modules, 3 more

responses in the subnetworks with the incorporation of DNA methylation pre-

dictors (subnetworks 1, 6, 36) showed the significant association with survival

time, which indicated that the combinations of DNA methylation predictors

and responses in the 3 subnetworks improve the classification of patients. It

revealed that predictors and response in these 3 subnetworks jointly impact

on the survival time.

Performance comparison

Ma et al. [63] detected 26 epigenetic modules by EMDN using TCGA breast

cancer data and calculated the ratio of enriched modules as well as the ra-

tio of enriched reference pathways. The method EMDN was compared with

two other methods, EpiMod and FEM. They showed that the results detected

by EMDN are more enriched than those achieved by EpiMod [102] and FEM

[40]. Since the breast samples used in EMDN, FEM, EpiMod [63] were iden-

tical to the data in our paper, we can compare the performance of epigenetic

subnetworks detected by EMDN directly. About 40% to 50% of subnetworks

detected by EMDN, EpiMod and FEM were enriched in at least one reference

set in GO, KEGG, CP, Reactome and Biocarta, which is much lower than the
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Figure 2.14: Kaplan-Meier survival analysis for patients in epigenetic subnetworks.

ratios achieved by our method. In our method, all of subnetworks detected

were enriched in GO, CP and Biocarta, and 89.7% and 79.8% of subnetworks

were enriched in KEGG and Reactome, respectively. However, one should note

that EMDN did not take protein-interactions into account while EpiMod and

FEM employed the PPI network, thus we conclude that incorporation with the

biological interaction network may contribute to the discovery of biologically-

relevant epigenetic subnetworks. The comparison with EMDN revealed that

our framework with incorporation with PPI networks can detect more enriched

subnetworks than EMDN, EpiMod and FEM.
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2.6 Conclusion

Recent technology developments have enabled simultaneous genomic profiling

of biological samples on multiple platforms, resulting in genome-wide DNA

methylation and gene expression data. However, a systematic analysis be-

tween the two types of data for discovering biologically relevant combinatorial

patterns is currently lacking. In this chapter, we present a method to evaluate

the association between gene expression and DNA methylation at the module

level by Bayesian regression with the incorporation of prior gene interaction

knowledge. We first identified gene expression responses and DNA methyla-

tion predictors on a weighted differential expression and methylation networks

respectively. Through a significance test, modules passing a p-value threshold

were considered as predictors or responses. Density-based and separability-

based measures in the significance test were used to validate if detected mod-

ules are densely connected and well separated from others. The results showed

that the detected modules are well defined and that genes within a module

show homogeneity and separability. Then we considered an eigengene as the

representative of module profiles for a large proportion of variance of module

profiles. With the incorporation of prior gene interaction networks as g-prior,

we performed Bayesian regression to discover the dependent relationship be-

tween predictors and responses, i.e., the best subset of predictors for each

response was selected. The application in breast cancer data demonstrated

superior performance of our method to detect biologically relevant epigenetic

subnetworks.

Overall, Our contributions lie in the following aspects:

(1) We proposed a novel method to detect epigenetic subnetworks by con-

sidering a set of highly correlated genes showing the pattern of differential

co-expression/methylation instead of considering a single gene as a predictor

or response. By comparing with EMDN, EpiMod and FEM which measure

the association between gene expression and DNA methylation at the individ-

ual gene level, our detected epigenetic subnetworks were much more enriched

in biological processes and signalling pathways, which indicates that evalu-
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ating the association between gene expression and DNA methylation at the

module level would increase the biological association and shed light on the

underlying mechanism. Furthermore, our method achieved a larger ratio of

enriched subnetworks than that achieved by EMDN. This higher achievement

in enrichment ratio is partially due to the construction of significant differen-

tial networks with the incorporation of gene interaction information to reduce

false positives. The incorporation of the biological interaction networks may

contribute to the discovery of enriched epigenetic subnetworks, however it

could filter out important cancer genes which were not included in the prior

network. Therefore it remained to be a trade-off between filtering out false

positives and discovering novel cancer mechanisms, which could be a future

research direction for investigation.

(2) By incorporating the prior biological knowledge as g-prior in a Bayesian

regression model, it detected more significantly correlated epigenetic subnet-

works than the alternative model without g-prior, which showed that encod-

ing biological network information as g-prior effectively guided the selection

of epigenetic subnetworks. It is possible to introduce other sources of prior

information, such as the derived regulatory interactions in the literature.

(3) The network analysis for the detected epigenetic subnetworks revealed

the direct causal mechanisms verified in other scientific papers, which indi-

cated the ability of our method in detecting true epigenetic mechanisms and

that the detected epigenetic subnetworks could be a good start to uncover un-

derlying epigenetic mechanisms. Moreover, the survival analysis for detected

modules and epigenetic subnetworks indicated that the derived modules might

be effective prognostic factors associated with the patients’ survival time.
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Chapter 3

Analysis of aberrant gene
expression in Breast cancer

3.1 Introduction

Alterations that occur within the transcriptome of cancer cells have been ob-

served in multiple types of cancers. Usually, normal cells respond to stress

by deploying repair or resistance tools to maintain their genetic integrity and

assure survival [38][74]. In contrast, cancer cells typically do not have in-

tact repair tools, which lead to genetic instability. Chromosomal instability

(CIN) is a form of genetic instability that causes changes in both the structure

and number of chromosomes [5][25][27][29][79][82]. For example, mutations

in CIN genes like BRCA1/2 increase the number of deletions up to 50 bps,

causing multiple defects within the genome [1]. Progressive accumulation of

CIN within a tumor allows development of cell populations with heterogeneous

properties. Some of these cells will carry selective survival advantages and will

be responsible for further tumor progression [65]. Likewise, overexpression of

APOBEC3, a member of the cytidine deaminase gene family, may generate

frequent C>T base substitutions also leading to tumor heterogeneity and pro-

gression along the malignancy pathway [32]. Understanding the sequence of

molecular events essential for tumor progression may not only benefit early de-

tection of malignancies, but may also allow the development of more effective

treatment and even prevention strategies. While the role of accumulating ge-

netic mutations in cancer progression has been extensively discussed, it is still
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not clear how alterations in gene expression contribute to cancer progression.

Changes in gene expression can be brought about by number of factors,

including epigenetic modifications, translation regulation, and differences in

mRNA and protein stability [3]. For example, increased activities of growth

factor, chemokine and cytokine receptors can set off specific signaling cascades

and subsequent changes in gene expression, without any direct involvement of

genetic mutations. However, what are the most significant changes that occur

within the transcriptome of cancer cells and how they may contribute to tumor

development is not clear. Here we use an aggressive malignancy in breast

cancer, triple negative breast cancer (TNBC), as a model to explore the role

of transcriptomic alterations during early cancer development that are caused

not by genomic mutations, but exclusively by differential gene expression. We

achieve this by focusing specifically on genes that are heavily up-regulated

in the non-amplified regions of the genome. We focused specifically on up-

regulated genes because direct inhibition of these molecules may provide viable

cancer treatment/prevention options at early stages of tumor development.

Remarkably, our analysis of RNA-seq data in 158 TNBC cases revealed that

there is indeed a set of expressional changes in two major groups of genes

controlled by hypoxia-related factors. These two groups included molecules

that regulate CIN and remodel tumor microenvironment (TME). This not

only reveals new potential targets for TNBC therapy, but also indicates a

critical role for hypoxia in early tumor development.
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3.2 Method summary

3.2.1 Dataset

The Cancer Genome Atlas (TCGA) that represents the largest collection of

patient samples with information on the mutation status, copy number aber-

rations (CNA), as well as gene expression patterns at different stages of tumor

development. We collected breast cancer samples from TCGA with informa-

tion on the CNA, gene expression as well as tumor information. According

to the tumor stage information, 1078 samples were classified into four stages:

from stage I to stage IV. According to the immunohistochemistry markers [71],

158 samples were classified as TNBC tumors in which the ER, PR and HER2

were all negative. With the tumor stage information, we classified TNBC tu-

mors into TNBC-stage I, TNBC-stage II, TNBC-stage III and TNBC-stage

IV. In addition, 114 normal samples were collected from TCGA for comparison

with tumor sample data.

3.2.2 Identification of differentially expressed genes

We combine the two assessments fold-change and p-value to detect differen-

tially expressed genes from both biological and statistical points of views.

Fold-change is a biological assessment of changes in gene expression as repre-

sented in Eq. 3.1,

fold-changei = log2
mean(Etumor

i )

mean(Enormal
i )

, (3.1)

where Etumor
i and Enormal

i is the mean expression level of gene i in tumor and

normal samples, resepectively. Empirical Bayes moderated t-test was applied

to assess the statistical significance of differential expression. False discover

rate (FDR) is obtained after Benjamini and Hochberg correction. Limma

package in R [85] is employed to derive the two assessments of differentially

expressed genes. Genes are considered as up-regulated genes if FDR ≤ 0.01

and FC ≥ 2. Down-regulated genes are selected if FDR ≤ 0.01 and FC ≤ −2.

In addition, the frequency-based analysis for each affected gene is performed.

By maintaining a two-fold change in the expression level as a minimum re-
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quirement for a gene to be considered differentially regulated, the frequency

of changes in each differentially expressed gene is calculated as a percentage

of patients in whom the gene is up or down-regulated.

3.2.3 Evaluating the concordance between copy number
amplification and up-regulated gene expression

As changes in gene expression may arise from the accompanying chromoso-

mal amplifications and deletions and other types of mutations, to account for

this, we isolate the differentially expressed genes exclusively from the non-

amplified regions of the genome. We evaluate the associations between CNA

and up-regulations in gene expression and identify the up-regulations that are

driven by CNA. The CNA profile containing the information of the amplifi-

cation status of each gene in each patient is generated from TCGA. Only the

data of patients whose CNA profile and up-regulation status available are con-

sidered for this study. To avoid patient heterogeneities, only genes showing

amplification over 40% of patients are considered as cancer relevant ampli-

fication genes. CNA regions are identified by calculating the percentage of

amplification of genes on each chromosome region, and regions with at least

40% of amplification genes are considered as CNA regions. Then we analyze

the concordance between CNA and up-regulations by two metrics: fold CNA-

associated change and pearson correlation coefficients. For up-regulated gene

i at CNA regions, tumors are grouped into two groups S1
i , S

2
i , where S1

i and

S2
i denote patients with and without gene i getting amplified, respectively.

The fold CNA-associated change and empirical bayes t-test are assessed as the

same way in section 3.2.2. If gene shows at least 1 positive fold CNA-associated

change and FDR smaller than 0.01, it is considered to be associated strongly

with CNA. Secondly, pearson correlation coefficient is calculated to quantify

the correlation between CNA and gene expression. If a gene with the pearson

correlation coefficient larger than 0.3, it is considered as CNA-driven genes as

well.
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3.2.4 Analysis on the accumulation of aberrant expres-
sion

We isolate the differentially regulated genes without the affection of CNA or

mutations and name them exclusively expression-altered (EEA) genes. Then

we perform progression-based analysis on the up-regulation status of EEA

genes to get a general understanding about how those changes accumulate

across TNBC samples. Since each sample can provide a snapshot of the ac-

cumulation process of the molecular changes [90][31], we consider each tumor

sample is recorded at a specific time point during the accumulation of aber-

rant gene expression. To investigate the aberrant gene expression pattern

across TNBC samples, we group samples with similar up-regulation profile

into clusters. The binary profile is generated with up-regulation status (0 =

no up-regulation, 1 = up-regulation) in rows and patient in columns and the

hierarchical clustering with Euclidian distance based on the binary profile is

employed to group TNBC samples into clusters.

Assuming that no up-regulatory events appeared in normal status, the

sample profile with all zeros is generated representing normal status. The

clusters are ordered along a progression path according to the extent of the

accumulation of up-regulatory events, which is achieved by neighbour-joining

algorithm based on the distance matrix between mean up-regulation status

of each cluster. To determine the occurrence of up-regulatory events in each

cluster, we generate binary subset vectors to represent the occurrence of each

up-regulatory event in each cluster. Assuming four clusters are identified,

the subset vectors from (0, 0, 0, 1) to (1, 1, 1, 1) are generated representing

fifteen possible subsets of these clusters. For each up-regulatory gene, the

cosine similarity between the mean up-regulation profile and each subset is

calculated. The gene is assigned to the subset vector with the maximum

similarity to its mean up-regulation profile [69].
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3.2.5 Ingenuity pathway analysis and hypoxia analysis

Ingenuity pathway analysis (IPA) is performed on the genes from cluster 1 (the

cluster with shortest distance to the normal sample) as described in Kramer

et al. [47], The gene list is first annotated and the data set underwent vari-

ous analyses including for core expression to study the interactions. The gene

interactions are explored, built and different overlays including pathways, dis-

ease and function and molecule activity prediction were applied to obtain the

required outputs. Comparison analysis is also performed among the different

subpopulations (referred as clusters). Hypoxia analyses are performed using

the hypoxia database (http://www.hypoxiadb.com). This database includes

72,000 manually curated entries taken on 3500 proteins extracted from 73 peer-

reviewed publications selected from PubMed. As described in Khurana et al.,

it provides manually curated literature references to support the inclusion of

the protein in the database and establish its association with hypoxia [45].

3.2.6 Drug data analyses

The cell lines from the cancerRXgene database are divided into high cluster 1

expression and low cluster 1 expression. This is done by creating a table where

the rows were cell lines, the columns are cluster 1 genes and the intersection

at each row and column was the expression value of that gene in that cell

line. The expression values across all cell lines for each gene are then added

together and the mean and standard deviation are calculated. Then each cell

line is given a Z score for that gene Z = (x − x)/σ, where x is the value, x

is the mean and σ is the standard deviation. Each cell line then has all of its

Z scores summed together to give the total score of c1 gene expression. The

85th percentile and the 15th percentile are then taken to be the cluster 1 high

expression and cluster 1 low expression groups respectively. After grouping

the cell lines into high and low expression of cluster 1, analysis is ran on the

sensitivity of these cell lines to drugs. The drug data is obtained from the

cancerrxgene database. For each drug, the IC50 values from the database are

taken for each cell line of the high expression cell lines, and each of the low
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expression cell lines. The IC50 values for each group are then compared using

a Mann-Whitney-U test. Using the percent survival, we generate the graphs

and dose data from the cancerrxgene database and fitting a sigmoidal curve

to the resulting plot, using the literature IC50 value as an estimator. The

sigmoid curve used is of the form.
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3.3 Result

3.3.1 Identify differentially expressed genes in breast
cancer

To identify genes with aberrant expression patterns, we initially curated all

the genes that are differentially regulated. We used the breast cancer-specific

tumor samples from TCGA with information on the mutation status, CNA,

as well as gene expression patterns at different stages of tumor development.

Gene expression in breast tumor samples was compared to the expression of the

matching genes in normal samples using fold change and FDR after Empirical

Bayes moderated t-test with Benjamini-Hochberg correction. Our initial anal-

yses in overall breast cancer identified 586 genes that were up-regulated and

1446 genes that were down-regulated at multiple stages of cancer progression

(Fig. 3.2). We also ran a complementary analysis to identify differentially reg-

ulated genes in specifically in TNBC. We found 1127 genes to be up-regulated

and 1752 genes down-regulated across multiple stages of TNBC (Fig. 3.1a).

The Gene Set Enrichment Analysis (GSEA) indicated that the up-regulated

genes in TNBC are enriched for molecules involved in cell cycle regulation and

chromatin organization (p<0.001) (Fig. 3.1b). Results of our GSEA analy-

sis of genes differentially up-regulated in TNBC tumors correlated well with

the previously reported, differentially regulated genes from an independent co-

hort (p<0.001) (Fig. 3.1b) [86], which provides an additional support for the

relevance of our observations. While we found a higher abundance of down-

regulated genes, compared to the up-regulated genes, no similar significant

enrichment was observed within the pool of the down-regulated genes. Similar

results were obtained for overall breast cancer (Fig. 3.2b). Taken together,

these observations indicated that the application of our approach to the anal-

ysis of TCGA data allows identifying subsets of genes differentially regulated

in TNBC tumors.
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Figure 3.1: Identification of differentially expressed genes in TNBC. (a) Venn
diagram of differentially expressed genes in TNBC stage-specific tumors. The
number of up and down-regulated genes at each stage of tumor and at the
intersection between different stages have been represented. (b) Gene set en-
richment analysis for up-regulated genes across all TNBC tumor stages. Gene
Set Enrichment Analyses for 244 up-regulated genes (left) across four tumor
stages along with previously identified, differentially up-regulated genes (right
from Sotiriou et al [86]. (c) Frequency distribution of differential expression
in TNBC stage-specific tumors. Dot plot represents the fold change and the
frequency range of TNBC stage-specific differentially expressed genes, where
the red denotes up-regulated gene and the blue denotes down-regulated gene.
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Figure 3.2: Identification of differentially expressed genes in overall breast can-
cer. (a) Venn diagram of differentially expressed genes in overall tumor sam-
ples. (b) Gene set enrichment analysis for up-regulated genes across all tumor
stages. It shows the Gene Set Enrichment Analysis for 307 up-regulated genes
(left) across four tumor stages along with previously identified, differentially
up-regulated genes (right) from Sotiriou et al [86]. (c) Frequency distribution
of differential expression in overall patients. This plot presents the fold change
and the frequency range of stage-specific differentially expressed genes, where
the red denotes up-regulated gene and the blue denotes down-regulated gene.
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3.3.2 Not all differentially expressed genes are equally
deregulated across the population of breast cancer
patients.

While gene expression analysis to identify differentially regulated genes has

been a common approach in cancer biology, we attempted to determine, how

many of these genes are aberrantly expressed with high frequencies across the

population of TNBC patients. We rationalized that common aberrations found

in all patients should have arisen earlier in the development of the malignancy,

compared to alterations that were found only in a subset of patients. Therefore,

we have calculated a frequency of differential expression of each affected gene in

TNBC tumors or overall cancer tumors (Fig. 3.1c; Fig. 3.2c). Throughout this

analysis, we maintained a two-fold change in the expression level as a minimum

requirement for a gene to be considered differentially regulated. The frequency

of changes in each differentially expressed gene is calculated as a percentage

of patients in whom the gene is up or down-regulated. We found 254 genes

were up-regulated and 1197 genes were down-regulated in almost 70% of the

TNBC patients. Same analysis was performed for overall breast cancer as

well. Unfortunately, there were only two patient samples that were available

in TNBC-stage IV in TCGA dataset, which was not sufficient to minimize

random effects and carry out significance test. Therefore, we computed our

analyses using the larger number of samples involved in the first three stages

of TNBC.

Changes in gene expression may not only arise from aberrant expres-

sion from an endogenous promoter, but also from accompanying chromoso-

mal amplifications, deletions and other types of mutations. To account for

this, we isolated the differentially regulated genes exclusively from the non-

amplified/deleted regions of the genome. We identified 77 amplified chromo-

some regions from the TCGA dataset based on CNA, including several previ-

ously reported regions in 1q, 8q, 16p and 20q (Table 3.1) [30], as presented in

the circos plot for TNBC (Fig. 3.3a) or overall breast cancer (Fig. 3.4a). We

further evaluated the concordance of amplification and gene expression by fold
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change with FDR and pearson correlation coefficients. We considered genes

likely to be driven by CNA if their pearson correlation coefficient between ex-

pression and CNA was greater than 0.3, or they show significant differential

CNA-associated expression change (Fig. 3.4b,c). Subsequently, we filtered out

from our analysis 20 genes from TNBC patients that were in amplified regions

and had strong correlations with chromosome amplification.

We also used somatic mutational analyses of 560 breast cancer whole

genome sequencing database available at COSMIC to eliminate any gene that

might be differentially expressed because of a mutation [72]. By also excluding

13 genes whose loci information was ambiguous, we finally identified 219 exclu-

sively expression-altered (EEA) genes that elevated their expression in TNBC

(Fig. 3.3b) and therefore, may represent good therapeutic targets. Inter-

estingly, we observed multiple distinct patterns of up-regulation with varying

frequencies across different cancer stages (Fig. 3.3b). For example, some genes

were constitutively up-regulated across all stages (PLK1, UBE2C or KIF4A).

Similarly, certain genes were up-regulated mostly at later stages (CCNE1,

HMGB3 or NUF2). In contrast to this category, some genes were up-regulated

selectively at early stages but were gradually down-regulated through the later

stages (MMP1, MMP11 or MMP13). Among the 219 up-regulation events,

majority of changes occurred in chromosome 1 and 17 (Fig. 3.4d). Surpris-

ingly, although the expression of some initially up-regulated genes gradually

decreased, we did not observe any instance where their expression returned

back to normal levels (Fig 3.5).

3.3.3 Progression analysis based on the up-regulation
status of EEA genes

Since each sample can provide a snapshot of the accumulation process of the

molecular changes [90] [31], we considered each tumor sample is recorded at a

specific time point during the accumulation of aberrant gene expression. We

expected to gain a general understanding about how the aberrant expression

of EEA genes dynamically accumulated by analyzing the pattern of aberrant

expression across TNBC patients. First, based on the profile of up-regulation
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Table 3.1: Identified amplified chromosome regions.
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Figure 3.3: Elimination of amplified genes to identify 219 up-regulated events.
(a) Amplified chromosome cytobands and up-regulated genes locus. Track
A displays the cytoband diagram where the texts in red indicate identified
amplified regions. Track B and C display the frequency of genes showing
amplification and deletion respectively in at least in 40% of patients in each
cytoband. Genes in Fig. 3.1a were mapped to the Track D. (b) Fold change
and frequency distribution for genes showing up-regulation in at least 70% of
TNBC patients. Nodes in each column represent up-regulated genes with their
sizes indicating the frequency of samples and their colors representing the fold
change in the specific tumor stage. 72
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Figure 3.4: Expression pattern of up-regulated genes. (a) Amplified chromo-
some cytobands and up-regulated genes locus. Track A displays the cytoband
diagram where the texts in red indicate identified amplified regions. Track
B and C display the frequency of genes showing amplification and deletion
respectively at least in 40% of patients in each cytoband. Genes in Fig. 3.2a
were mapped to the Track D. (b and c) The evaluation on the concordance be-
tween gene expression and amplification. Nodes represent up-regulated genes
in overall breast cancer cases in amplified regions, showing pearson correlation
coefficient and fold CNA-associated change. Genes in red were considered
driven by copy number amplification either in overall breast cancer (b) or in
TNBC (c). (d) Distribution of the 219 up-regulated events according to their
chromosomal location. 73
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Figure 3.5: Box plots of gene expression at various stages of TNBC tumor. The
y-axis represents log2-transformed gene expression and x-axis denotes TNBC
stages.

status of EEA genes, we partitioned TNBC samples into groups so that the

samples within a group have more similar up-regulation profiles than other

samples in different groups. Hierarchical clustering was applied to group tumor

samples into clusters. The cluster structure was graphically represented in

Fig. 3.6a, which revealed that the most distinguishable cluster C1 is diverged

at the highest overhang with the highest dissimilarities from the remaining

samples. In addition, several distinguishable branches C2, C3 and C4 were

also clustered.

To gain insights into the progression path in the context of accumulation

of aberrant expression, we used the vector with 219 elements of all zeros rep-

resenting no up-regulations of EEA genes in normal status as the root vertex,

and constructed a tree-like structure by neighbour-joining to evaluate the ex-

tent of the accumulation of up-regulatory events for each cluster(Fig. 3.6b). It

showed that cluster C1 is most similar to normal status since it has the short-

est distance from root vertex, which suggested up-regulatory events occurred

in C1 may act as early events in the early step of the progression path. By

measuring the cosine similarity between the up regulation profile and subset

vector, we obtained the occurrence of those up-regulatory events in each clus-
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ter. We found that a burst of 83 up-regulation events occurred earliest in C1

and 205 up-regulatory events occurred in C2 including 76 events in C1. Also,

211 and 219 up regulation events occurred in C3 and C4, respectively.

We considered the 83 genes occurred in C1 may act as early potential

enabling factors within the early tumor progression. To confirm the relevance,

we next inquired if these changes in gene expression correlate with the loss of

expression of known tumor suppressors. Vogelstein and colleagues identified

70 tumor suppressor genes that when inactivated by intragenic mutations can

promote tumorigenesis [103]. We found a strong negative correlation in the

expression of the 83 EEA genes and the 74 tumor suppressors (Fig. 3.6c).

3.3.4 TME remodeling and CIN cooperatively drive TNBC

Since the analysis indicated that the 83 up-regulated EEA genes are cru-

cial early events in early tumorigenesis, we next explored the functionali-

ties of these genes. Interestingly, we found a large subset of genes that

are known to be involved in remodeling TME, including metalloproteinases

(MMP1, MMP11, MMP13, ADAMDEC1, ADAMTS14), chemokine receptors

and ligands (CXCL11, CXCL10, CCL11, CCR8), protease inhibitors (CST4,

CST1), pH maintenance factors (CAIX), and different collagens (COL9A3,

COL10A1). This emphasizes the critical role of extra-cellular matrix and

TME remodeling in early tumor progression. Similarly, we also identified sev-

eral of the EEA genes including, FOXM1, PLK1, BUB1, KIF2C, CDCA2,

CDC20, CDKN3, KNL1 to name a few, that are known for their role in CIN

and tumor development [96][59][19][77]. This may reflect a selective pressure

for additional genetic alterations in early tumors that would allow their further

progression. In addition, cluster 1 included genes like DEPDC1B and HMMR

that have known roles in both TME remodeling as well as CIN associated

functions. Overall, our identification of cluster 1 genes indicates that a burst

of expressional changes occurs simultaneously in both CIN and TME remod-

eling genes very early in tumor development. The literature evidence for the

role of cluster 1 genes in TME and CIN was listed in Appendix B.1. If both

CIN and TME remodeling ensue simultaneously, we should ask what possible
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Figure 3.6: Analysis based on the up-regulation profile of EEA genes. (a)
Hierarchical clustering. Different colors show TNBC patients clustered into
four clusters, represented as Red for Cluster 1 (C1), Purple for Cluster 2 (C2),
Blue for Cluster 3 (C3) and Green for Cluster 4 (C4). (b) The accumulation
of up-regulatory events along the progression line. The figure shows the pro-
gression path based on gene up-regulations from the normal to each cluster.
Heat maps with genes in columns and TNBC samples in rows display the up-
regulation status (yellow: no up-regulation; blue: up-regulation) for different
TNBC clusters. (c) Correlation clustergram of cluster 1 genes compared to
known tumor suppressors. Red indicates negative correlation and green indi-
cates positive correlation. The panel on the right represents the significance of
the correlation as a heat map. Blue indicates significance (<0.05) and white
indicates lack of significance (>0.05).

76



factors could drive such changes. To address this, we used recently published

causal analyses tools [47] available in the Ingenuity Pathway Analysis(IPA). In

particular, we performed Upstream Regulator Analysis, and Causal Network

Analysis to curate all interactions of cluster 1 genes (Fig. 3.7a,b). Interest-

ingly, a large subset of direct up-stream interactions as well as causal inter-

actions of both the CIN and TME genes (cluster 1), are hypoxia responsive

genes [45] (Fig. 3.7a,b; Appendix B.2 and B.3). Invariably, almost 50% of

the cluster 1 genes are also associated with poor prognosis (Fig. 3.8a and Fig.

3.9). This strongly suggests that very early in the course of tumor progression

gradually increasing hypoxic conditions induce both CIN and TME remodeling

to permit survival of cancer cells and their further evolution at later stages of

malignancy. Having identified a set of 83 EEA genes that act in early TNBC

tumors, we sought to identify drugs that can benefit TNBC treatment and may

potentially be also used for cancer prevention. To do this, we selected breast

cancer cell lines that overexpress cluster 1 genes and analyzed their sensitiv-

ity to drugs using the cancerRXgene database (http://www.cancerrxgene.org).

This database provides information on cell line drug sensitivity. The data for

265 drugs and multiple cell lines was examined to identify compounds that

are more effective when used selectively with cell lines that highly express

cluster 1 genes. We found four drugs, bleomycin, pevonedistat, ponatinib,

and WIKI4, that showed a significant decrease in the IC50, for cell lines that

highly expressed cluster 1 genes (Fig. 3.8b). Consistent with our identification

of several cluster 1 genes being involved in CIN (Fig. 3.7a), our drug anal-

yses indicate that cell lines with high expression of cluster 1 genes are more

sensitive to a DNA damaging agent, bleomycin (Fig 3.8b).

3.4 Discussion

Differential gene expression analyses have been traditionally used to examine

fluctuations within the transcriptome in a given context for decades. This has

been a powerful strategy to identify biomarkers and drug targets. However,

tumor genome sequencing has provided new opportunities to re-examine these
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Figure 3.7: IPA analyses showing extensive interaction between hypoxia re-
sponsive genes with members of cluster 1 genes. (a) Upstream regulator anal-
ysis was performed with IPA for the cluster 1 genes and all the interactions
retrieved are presented. Cluster 1 genes are classified into those that are as-
sociated with CIN or TME. The upstream genes that are hypoxia responsive,
are highlighted in red. (b) Causal network analysis was performed with IPA
for the cluster 1 genes and all the interactions retrieved are presented. Cluster
1 genes are classified into those that are associated with CIN or TME. The
upstream genes that are hypoxia responsive, are highlighted in red.
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Figure 3.8: Survival plot, Drug response and a model describing the role of
cluster 1 genes in tumor evolution. (a) Representative relapse free survival
plots of breast cancer patients with low and high expression of cluster 1 genes
(b) Dose response curves and IC50 values of drugs targeting cell lines with
low and high expression of cluster 1 genes. (c) Schematic model showing the
effect of simultaneous burst of CIN and TME-associated genes in response to
hypoxia during early cancer initiation.
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Figure 3.9: Relapse free survival plot in breast cancer patients having low and
high expression of cluster 1 genes.
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Figure 3.10: Percentage of patients that either overexpress or carry mutations
in some of the key cancer genes.

fluctuations in the context of tumor progression. We rationalize that common

aberrations detected across all patients arose earlier in the development of the

malignancy compared to alterations that were found only in a subset of pa-

tients. Based on this, our strategy in this work is to explore the frequency of

changes in the expression pattern of genes at different stages of TNBC pro-

gression. This is similar to previous studies that explored dynamic changes in

mutations or CNA for a given patient at a given stage [89][90][69]. Changes in

gene expression, unless constitutively observed, are often ignored as stochastic

noise, specifically those that arise from variations in transcriptional regulation

or biochemical modifications within cells. Our analyses deliver a number of

important observations. First, compared to mutational changes, alterations

within the transcriptome are more common and occur at high frequency. For

example, the highly significant mutations in genes like PIK3CA or KRAS are

observed in 30% of breast cancer patients. In contrast, overexpression of

PLK1 or FOXM1 genes is observed in over 90% of patients (Fig. 3.10). Sec-

ond, more genes are down-regulated compared to up-regulated genes. Third,

during cancer progression, the initial singular burst of changes in expression

pattern, results in simultaneous accumulation of overexpression of multiple

EEA genes. Fourth, early changes in the expression of EEA molecules occur

in genes that remodel TME and maintain chromosomal stability. This is most

likely because survival within the progressively changing biological landscape

during early stages requires cancer cells to both actively adjust to their mi-
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croenvironment for their needs and to enhance CIN to facilitate their plasticity

and adapt. Indeed, our unbiased genome-wide investigation reveals a strong

functional connection between these two mechanisms and a crucial role of

their coordinated effort in establishing early tumors. Interestingly, some TME

genes, including MMP1, MMP11 and MMP13 proved to be up-regulated at

early stages and gradually down-regulated through the later stages, although

never achieving their normal levels. This suggests that their activities are es-

sential at all stages of cancer progression, but their higher activity is required

in early tumors, where the TME is not adjusted yet to the needs of malignant

cells. Fifth, while we know that hypoxic TME can trigger tumor metastasis

and invasion at later stages of cancer progression, our causal network anal-

yses suggest that increasing hypoxia may be responsible for the cooperative

induction of CIN and TME remodeling much earlier than previously appre-

ciated (Fig. 3.8c). As hypoxic environment is also known to promote the

propagation of tumor initiating cells (TICs) [60][13], we suspect that the ex-

pressional changes of EEA genes may facilitate this process. This is consistent

with our finding that drugs like bleomycin and WIKI4 that efficiently elimi-

nate TIC-enriched cell populations, cause selective lethality to cancer cell lines

that overexpress cluster 1 genes (Fig. 3.8b).

Although CIN is nearly ubiquitous in cancer cells, and is considered as

an important factor in tumor development, our findings indicate that hypoxic

TME of early tumor may function as a trigger of genetic instability. This

model is consistent with previous observations, showing that repeated cycles of

hypoxia, can down-regulate a number of DNA repair pathways in cancer cells,

ultimately leading to genetic instability. In regards to this, the Glazer group

has provided one of the first quantitative assessments of how genetic instability

can be instigated by TME [76]. Interestingly, several of the core EEA genes

that maintain genome stability were experimentally shown to be involved in

tumor development [96][59][19][77]. Although some of these examples might

be indicative of a direct role for CIN genes in tumorigenesis, in the context of

our analyses, we suggest that overexpression of these genes may have enabled

cancer cells to acquire properties that allowed them to survive at the early
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time and thus, to develop detectable tumors (Fig. 3.8c). In summary, our

unbiased comprehensive analyses of the transcriptome directly link the early

onset of hypoxia to the collective burst of CIN and TME remodeling factors,

which highlights a therapeutic potential of targeting these molecules in TNBC

tumors in their earliest detectable stage.
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Chapter 4

Conclusion

Recent technology has enabled the multi-platform genomic profiling of bio-

logical samples, resulting in genome-wide genetic data in multiple types of

cancer. The discovery of cancer biomarkers is of great importance to under-

standing the biological mechanism of cancer and providing insights into the

early diagnosis and efficient treatment of cancer. In this thesis, we have pre-

sented a computational method for the discovery of epigenetic mechanisms and

a computational analysis based on the aberrant expression in breast cancer,

both of which contribute to the discovery of cancer-related biomarkers and

mechanisms.

In Chapter 2, we proposed a novel method for the systematic analysis

between alterations of DNA methylation and gene expression at the module

level using a Bayesian regression model with the incorporation of prior gene-

interaction knowledge. We discovered the dependency between DNA methy-

lation predictor and gene expression response, which contained verified epige-

netic causal relationships. The results revealed that the detected epigenetic

subnetworks are significantly enriched in multiple cancer-related pathways.

Hence, they are of great biological relevance and could be a starting point to

uncover underlying epigenetic mechanisms.

In Chapter 3, we performed a computational analysis based on aberrant

gene expression in breast cancer. We explored the frequency of expressional

changes at different stages of TNBC and investigated the pattern of aberrant

expression in cancer progression. Our analysis delivered a number of important
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observations. Compared to mutational changes, alterations within the tran-

scriptome were more common and occurred at a high frequency. The initial

singular burst of changes in expression resulted in simultaneous accumulation

of overexpression of multiple EEA genes. Early changes in the expression of

EEA molecules occur in genes that remodel TME and maintain chromosomal

stability. Also the analysis highlighted a therapeutic potential of targeting

these molecules in TNBC tumors.
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Appendix A

Significance level of separability
scores

Appendix A.1: Significance level of separability scores of predic-
tor modules.
Appendix A.2: Significance level of separability scores of response
modules.
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Appendix B

Analyses of cluster 1 genes and
its interactions

Appendix B.1: Literature evidence for the role of cluster 1 genes
in TME and CIN.
Appendix B.2: The upstream regulator of cluster 1 genes, along
with their association with CIN or TME and hypoxia responsive-
ness.
Appendix B.3: The causal network genes of cluster 1 genes, along
with their association with CIN or TME and hypoxia responsive-
ness.
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