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A bstract

An algorithm is presented which replaces the pixel-mapping operation in the 

Hough transform. Instead of performing the complete mapping, it estimates a range of 

param eter space and only performs the mapping in this range. It is somewhat able to 

adapt to image noise, and in high noise cases reverts to the full Hough transform with 

little additional overhead. The expression to estimate the range was generated with 

immune programming, and the performance of various clonal selection algorithms was 

compared and analysed on its components.
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Chapter 1

Introduction

Computer vision is an extremely exciting concept. The degree of environmen­

tal awareness tha t functional computer vision would allow would cause staggering 

advances in a huge number of fields, from transportation and autonomous navigation 

to industrial automation as well as a plethora of consumer applications and beyond.

Unfortunately, the barriers to achieving widely functional computer vision are 

staggering. The greater problem can be viewed as several smaller problems: feature 

extraction, object recognition, and environmental awareness. Feature extraction is 

the process of moving from raw pixels to features: knowing the location, size, etc of 

a square in an image, instead of knowing an image which contains a square. Object 

recognition is then the process of combining features into objects: knowing tha t there 

are letters on a page instead of knowing that there are shapes in a square. Finally, 

environmental awareness: knowing tha t there is a paper in front of you instead of 

knowing tha t there are letters on a page. None of these problems have been solved.

Several techniques for feature extraction exist, but none of them are excep­

tionally effective [1]. Some are reasonably fast, such as RANSAC [2], but begin are
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extremely sensitive to noise. Others, such as ones based on the Hough [3] and Radon 

[4] transforms are much less sensitive to noise, but also much slower. Significant 

research has been done to improve the speed of these algorithms, for example by 

parallelisation [5, 6, 7],

Computational intelligence is a blanket term  to describe any method by which 

the computer learns patterns or behaviours on its own. Collections of techniques 

have been developed which can be surprisingly powerful, based on the operation of 

the brain [8], the evolution of species [9,10], and most recently the immune system [11, 

12, 13, 14].

Techniques based on the immune system are called artificial immune system 

(AIS) techniques, and one of the more recent ones is Immune Programming [15]. 

Compared to genetic programming, it seems capable of solving complex computa­

tional problems very quickly, and there seems to be room for improvement.

This thesis presents a Hough-like feature extraction algorithm which relies on 

expressions generated by immune programming to reduce the amount of work required 

by choosing ranges of values to operate on. The ability of various types of immune 

programming to generate solutions is also examined in some detail.

2
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Chapter 2

Background

Some knowledge of fuzzy logic, image processing, evolutionary computation and 

artificial immune system methods is required to understand the material to follow. 

This section attem pts to provide an introduction to the material which should allow 

a reasonably knowledgeable reader to follow along.

2.1 Fuzzy Logic

Sometimes, applying boolean logic doesn’t  make sense. This happens frequently 

when working with imprecise data, most infamously with linguistic descriptions. Borel 

[16] coined the classic example:

One seed does not constitute a pile nor two nor three [...] from 
the other side everyone will agree tha t 100 million seeds constitute 
a pile. W hat therefore is the appropriate limit? Can we say tha t 
325 647 seeds don’t constitute a pile but 325 648 do?

Image processing, specifically feature extraction, is another area where crisp 

techniques frequently fail. Noise in the image makes the nature and placement of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A(x)

1.0

x< X

Figure 2.1: A crisp version of “is a pile” ...

features more ambiguous. An example will be presented in Section 2.3.2.

Fuzzy sets, first introduced by Zadeh [17], provide an extremely intuitive method 

for dealing with uncertainty and descriptions without crisp boundaries. It does this 

by introducing the notion of partial membership. Consider a crisp set A  inside a 

universe X:  any element x t would either be in A (A(xj) =  1) or not (A(xi)  =  0). 

W ith a fuzzy set, A(x,) could take on any value from 0 to 1, representing a smooth 

continuum of partial memberships between “completely not in” and “completely in.” 

Consider Figure 2.1. This could represent a crisp version of the seed problem. Here, 

x,  is the point tha t Borel mentioned, where with the addition of one seed, a pile 

appears. Figure 2.2 shows a fuzzy set equivalent, which has a smooth transition from 

“not a pile” to “a pile.”

The fuzzy version is much more believable than the crisp version. In this case, 

Xi is the first number of seeds which would definitely be called “a pile.” If one seed 

is removed, it is still mostly a pile, but slightly less so.

There is an im portant distinction to be made between the meaning of a partial 

membership and a probability, which is a tempting comparison to make. Bezdek [18] 

offers an example which clarifies the difference. A person is dying of thirst in the

4
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A(x)

X

Figure 2.2: ...and its more believable fuzzy equivalent.

desert, and they are presented with two bottles: bottle A, labeled “ppotaMe =  0.9” 

(fuzzy membership in the set of potable fluids); and bottle B, labelled “Ppotabie =  0.9” 

(probability of being a potable fluid). Bezdek states tha t the person should choose 

bottle A, since it will contain something like swamp water, while bottle B has a ten 

percent chance of being deadly poison.

2.1.1 O perations on Fuzzy Sets

As with normal sets, fuzzy sets have operations for union, intersection, and 

negation. Just as crisp sets are a subset of fuzzy sets, so are crisp set operations 

subsets of fuzzy ones:

( A n  B)  — min(A(:r), B ( x )) =  A(x) A B ( x ) (2.1)

(A U B) = max (A(x ) , B(x))  =  A(x)  V B(x)  (2.2)

A(x)  =  1 — A(x)  (2-3)

An entire class of functions frequently used with fuzzy sets are triangular norms 

(t-norms) and triangular co-norms (s-norms). Both are commutative, associative

5
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S-Norm T-Norm
0 s x  = 0
1 s X =  X

0 t  x  =  x

1 t  X  =  1

Table 2.1: S- and T-Norm Boundary Conditions

and monotonic: they differ only in their boundary conditions, which are shown in 

table 2.1.1.

2.1 .2  C om paring Fuzzy Sets

Since equality is a crisp measure, it is less meaningful when applied to fuzzy 

sets or fuzzy membership values. For example, consider the universe consisting of the

set A, B.  C,  a fuzzy set A  with membership values 0,0.5,1 and another fuzzy set B

with membership values 0,0.49,1. The two are clearly not equal, but they are almost 

identical.

To account for this, we start with the following definition:

(A =  B)(x)  = 0.5{[A(x)(f>B(x)} A [B(x)4>A(x)\ +  \A(x)4>B(x)] A \B(x)4>A{x))} (2.4)

Where <f> is residuation, defined as:

A(x)(pB(x) = sup [A(x)tc < B(x)] (2.5)
ce[o,i]

With t  defined as max(0, x  +  y — 1), this simplifies to equation 2.6, a measure 

of equality frequently referred to as resemblance.

(A = B)(x) = 1 -  |A{x) -  B{x)\  (2.6)

6
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-1 0 1
-2 0 2
-1 0 1

Figure 2.3: The Sobel mask for the horizontal derivative

2.2 Edge D etection

An edge detection algorithm is one which, given an input image, returns another 

image which has bright pixels on edges in the original image. This is usually done 

by convolving the input image with a mask which approximates a derivative of the 

image at the centre pixel.

One simple edge detection algorithm is the Sobel algorithm. It works with 

two masks, which calculate the numerical first derivative horizontally and vertically. 

These masks are shown in Figures 2.3 and 2.4 respectively

If Gh is the brightness of the centre pixel after convolution with the horizontal 

mask, and Gv is the brightness for the vertical mask, the brightness of that pixel in 

the Sobel edge image will be the value of G from equation 2.7.

G = \ G h\ + \Gv\ (2.7)

Another common edge detection algorithm is the Laplacian, which convolves 

the image with a single mask which estimates the numerical second derivative. Since 

this algorithm uses a 5x5 mask instead of a 3x3 mask, it is far more sensitive to noise

-1 -2 -1
0 0 0
1 2 1

Figure 2.4: The Sobel mask for the vertical derivative

7
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-1 -1 -1 -1 -1
-1 -1 -1 -1 -1
-1 -1 24 -1 -1
-1 -1 -1 -1 -1
-1 -1 -1 -1 -1

Figure 2.5: The mask used in the Laplace edge detection algorithm

than the Sobel algorithm. Figure 2.5 shows the mask for the laplacian.

There are a large number of edge detection algorithms, and there are entire 

books on the subject.

2.3 T he H ough Transform

The Hough Transform is an essential algorithm in computer vision. It is an 

algorithm to help find parametric features in an image.

Consider a straight line. The most common parameterisation for straight lines 

is shown in Figure 2.6: a vector from one corner of the image to the closest point on 

the line.

p =  x  cos(9) +  y sin(0) (2.8)

where p is the length and 6 is the angle from the origin.

Consider a pixel in an image. The solutions to equation 2.9 represent all

of the possible lines which pass through (Xi,yj), If one takes a second point (xk,yi),  

the point where the curves for the two points intersect will be the parameterisation 

of the line connecting those two points, as illustrated by Figure 2.6.

p =  Xi cos(0) +  yj sin(0) (2.9)

The Hough transform starts with an edge image and a second, empty image

8
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Hough imageInput image

Figure 2.6: Co-linear pixels and their parameter-space mappings

representing the parameter space for features in the image. For every pixel (xi,Xj)  

in the image, the brightness of the pixel in the edge image is added to every pixel in 

the parameter image which lies under the curve. Once this is complete, the bright­

est points will represent the parameterisations of the lines crossing over the largest 

number of edge pixels and therefore will represent the most prominent lines in the 

image.

The size of the param eter image must be chosen somewhat carefully. It must 

be large enough to distinguish the smallest feature required anywhere on the image. 

For example, two parallel lines th a t are very close to each other might appear to be 

one line if the parmeter space image doesn’t have sufficient resolution to distinguish 

them. On the other hand, if the parameter space image is too large, somewhat 

noisy lines will appear as a large number of almost colinear lines. Additionally, the 

nature of the parameterisation means tha t the corner closest to the origin will have 

a higher resolution in param eter space than the corner opposite it [19]. Therefore, in 

some cases it is possible for both problems to occur in opposite corners of the image. 

This can be countered by having a non-linear parameter space image, at the cost of 

increased computational complexity, or using an alternate parameterisation.

9
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In general, the size of the parameter image must grow with the size of the input 

image, or increasing the image size would not improve accuracy. This brings up one of 

drawbacks of the Hough transform, which is its speed. Assume tha t the length of the 

Hough image on the p-axis grows proportionally to the diagonal length of the original 

image. Also, assume tha t the input image has a fixed aspect ratio. The p-axis length 

therefore grows with the root of the number of pixels in the input image. Since the 

length of the 0-axis should grow in similar proportion, the amount of work required to 

plot each pixel’s curve in Hough space also increases, since it involves, in the fastest 

case, yfn calls to Bresenham’s line algorithm [20], or a more expensive anti-aliased 

line algorithm. Since the ^Jn calls will result in O (\ /n)  pixels being drawn, they are 

treated as being constant time, meaning tha t the Hough transform’s speed is slightly 

worse than 0 (77.2 ). Since the atomic units are trigonometric functions, the algorithm 

can become very slow.

Although the Hough transform will never fail to find an answer, problems arise 

when dealing with noisy data, as shown in [21]. If edge pixels aren’t  precisely colinear, 

the Hough transform might consider a noisy line to be several lines, and the maxima 

in parameter space might not correspond to the best shape in the input space.

Distributed voting is one method for dealing with this noise: instead of casting 

a vote for a specific curve in the parameter space, each point casts votes for a set of 

curves nearby, with vote strength decreasing with distance. The most computation­

ally efficient method would be to convolve the param eter space with a mask before 

searching for maxima. Han et. al. [21] demonstrated th a t it sufficient to perform a 

1-dimensional convolution along the p-axis when searching for lines and circles.

10
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2.4 E volutionary C om puting

Evolutionary computing is a collection of computational intelligence techniques 

tha t im itate natural evolutionary processes to develop solutions to a problem. They 

all follow a similar form.

The basic requirements for any evolutionary algorithm are a method of encoding 

solutions and a method of evaluating their fitness. For example, if one was using an 

evolutionary algorithm to fit some data to a polynomial of the form y = ax3+bx2+cx+d, 

one could encode solutions as a vector of the form (a, 6, c, d). An appropriate measure 

of fitness in this case would be the average error magnitude over a non-contiguous 

subset of the data, with 0 being a perfect fit.

An evolutionary algorithm starts by generating a population of random indi­

viduals. The fitness of these individuals is calculated, and another population is 

generated from the individuals with the best fitness. The process is reapeated until 

a maximum number of generations has been reached or the desired goal has been 

achieved.

The variation in evolutionary approaches centres around how new populations 

are generated from old ones. Traditionally, generating a new population primarily 

involved crossover, with some amount of mutation. Crossover in this sense is inspired 

by crossover between chromosomes tha t occurs in sexual reproduction: the two indi­

viduals are “snipped” and the resulting segments are mixed. Along with m utation at 

rates comparable to biological systems, the overall effect is an iterative improvement 

in fitness similar to that witnessed in natural selection. Eventually, and with some 

luck, the population will generate the desired solution.

11
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2.4.1 Clonal Selection

More recently, another evolutionary-style algorithm has emerged as part of an­

other set of techniques which im itate the human immune system, collectively called 

Artificial Immune System [14]. This technique, called clonal selection, mimics the 

evolution of T lymphocytes in the immune system. T  lymphocytes have antigen re­

ceptors, which latch onto and immobilise antigens, so they can be destroyed by B 

lymphocytes. Instead of using crossover, clonal selection uses cloning and hypermu­

tation. Hypermutation varies from m utation as it appears in normal evolutionary 

algorithms, since instead of being a probability tha t an individual will contain a 

mutation, it is the probability tha t an element within an individual will be mutated.

Artificial clonal selection uses a repertoire of individuals, just as genetic algo­

rithms use a population. The individuals in the repertoire are indistinguishable from 

those used in genetic algorithms. The measure of an individual’s quality in clonal 

selection is called an affinity measure.

One method of generating a new repertoire via clonal selection first involves 

sorting individuals by affinity. Then, the population is partitioned into three sections. 

The top section, consisting of the top performers, is cloned into the new population. 

The second section is hypermutated into the new repertoire, and the bottom section 

is replaced.

Another technique, developed by Musilek et al, [15], uses a more complex prob­

abilistic approach. It doesn’t require tha t the population be sorted by affinity, but 

it does require th a t the population affinities be normalized. It requires three param ­

eters: the probability of replacement (Pr), the probability of cloning (Pc) and the 

probability of hypermutation (Pm). This technique first generates a random number

12
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in the range of [0,1] and compares it to PT. If the random number is less, it generates 

a random individual and adds it to the new repertoire. Otherwise, it selects a member 

of the current repertoire (it chooses them sequentially) and generates another random 

number. If the random number is less than the individual’s normalized affinity (so 

the best member of the population, if it is selected, will always pass this test), then 

it is a candidate to go on to the next repertoire. A random number is generated, and 

if it is less than  Pc, the member is cloned into the new repertoire; otherwise, another 

random number is generated and compared to Pm to  determine if a hypermutated 

version will be added to the population.

The probabilistic approach has several advantages over the partition method for 

some classes of problems. It maintains a more diverse population and is therefore less 

prone to getting stuck at local minima. On most problems it also tends to  converge 

more quickly than partition-based algorithms.

2.4.2 G enetic Program m ing

Another class of evolutionary algorithms fall into the category of genetic pro­

gramming. Here, instead of having individuals representing parameters, the indi­

viduals are programs. Otherwise, there is no difference in the process, except tha t 

individuals must be executed in order to evaluate their performance.

Generally, genetic programs consist of a string of characters, representing op­

erations and data variables. Also, genetic programs tend to work with very simple 

architectures, usually tree- or stack-based virtual machines.

In the most basic form of genetic programming, several new difficulties can 

arise. For example, individuals can actually be invalid, if they represent code which 

cannot actually execute. This can prevent the algorithm from converging, since it

13
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effectively reduces the population size. It also makes it less likely th a t mutations will 

be meaningful improvements if they can invalidate the individual.

One way around the problem of program validity is the use of K-Expressions, as 

presented by Ferreira [10]. A K-Expression is a way of organising a genes tha t ensures 

validity and completeness. It breaks each gene into two parts, a head and a tail. The 

head can contain operations and data variables. The ta il’s length is determined by the 

length of the head, and can contain only data  variables. To execute a K-Expression, 

the head and tail are concatenated and converted into a tree. Since the tail cannot 

contain operations, all leaves in the tree are guaranteed to be data variables. The tree 

is then evaluated with a post-order traversal. Since the tree cannot have any cycles, 

K-Expressions cannot get stuck in an infinite loop.

2.5 C onvergence in E volutionary A lgorithm s

Due to the complexity of evolutionary algorithms and the problems they deal 

with, it is very difficult to predict -  or even understand -  their performance on any 

given problem. In a broader sense, however, some theory and terminology have been 

developed.

No Free Lunch theorems [22] explain the inconsistency in performance. In 

short, these state tha t the performance of all search algorithms, averaged over all 

cost functions, is equal. In other words, for every family of cost functions where 

genetic programming performs well, there is another where it performs dismally. The 

average performance of genetic programming -  or any other search algorithm, for that 

m atter -  is identical to the average performance of a random search.

In order to properly explain No Free Lunch theorems, the concepts of explo-

14
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ration and exploitation must be presented. An exploration-based search will not rely 

on existing knowledge. Random and sequential searches are entirely based on explo­

ration: there’s no assumption tha t the (n +  l) th  element will be any more or less 

a valid solution than  the nth. Exploitation, on the other hand, does make use of 

existing knowledge. Binary search is exploitative: it assumes tha t the solution space 

has order. Grabbing the (n +  l) th  element of an array must give a larger result than 

grabbing the nth, or the search will fail.

The speed advantage of exploitative algorithms is derived from the knowledge 

implicitly present in the algorithm, and tha t advantage will quickly deteriorate if the 

knowledge is less meaningful. For example, in a backpropagation based neural net­

work, the value of the learning rate has a huge impact on the network’s performance. 

In essence, it is a parametric assumption about the smoothness of the solution space. 

If this assumption isn’t  valid, the network will perform poorly.

For evolutionary algorithms, the fitness function is the source of implicit knowl­

edge. Their power lies in that the exploitative element isn’t deterministic, but rather 

is used to guide a random search. Therefore, the two factors affecting the perfor­

mance of an evolutionary algorithm are the degree to  which the knowledge in the 

fitness function is exploited in choosing the next generation and the degree to which 

the fitness function actually reflects the quality of an individual.

This brings up an im portant issue with genetic programming, or any evolution­

ary algorithm which determines structure. In most cases, numerical performance is 

the only computationally feasible fitness function, but, especially in structure prob­

lems, numerical performance can be poorly correlated with actual performance.

15
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Chapter 3

A lgorithm

The intent of this thesis is to design a more computationally efficient version of 

the mapping of a pixel from an image into the param eter space. The existing version, 

which -  for straight lines -  involves plotting the curve p = Xi cos(6) +  yj sin(0 ) into 

the param eter space image, has a computational complexity of O(V^)- However, in 

most cases, there is at most one line passing through each pixel, so most of this work 

is redundant.

By designing a constant time calculation to approximately determine the angle 

of any line passing through a given pixel, it would be possible to plot only a small 

section of the curve for each pixel, or -  if the algorithm is accurate enough -  to  plot 

a computationally inexpensive approximation.

The algorithm is broken into two key sections, which operate on 5x5 subimages. 

The first calculates two values: the weighting to apply to  the vote of the subimage’s 

centre pixel -  equivalent to calculating i t ’s edge strength -  and a signal-to-noise 

measure p.

If the vote strength is above a certain minimum threshold, the second section
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of the algorithm will estimate the angle 9 of a line passing through the centre of the 

5x5 subimage. This involves scaling the pixel values in the subimage to the range of 

pixel values [0 , 1], 77 as calculated above can be used as the input to an empirically 

determined profile n(x) of how the algorithm’s performance degrades in the presence 

of additive gaussian noise. This provides a range [9 — n(rj),9 +  n(r])} th a t should 

contain the actual angle of a line passing through the image.

The angle approximation part of the algorithm is discovered using clonal selec­

tion.

3.1 S trength  and C ertain ty  E stim ation

The first value calculated for the strength estimation is the edginess of the pixel

at the centre of the subimage, S. This is equivalent to  convolving the centre pixel

and its neighbours with a 3x3 Sobel mask, as described earlier.

If S  is less than some threshold, no further calculation is performed for the 

subimage. Otherwise, the pixel values of the subimage are scaled to the range [0,1] 

and the average magnitude of the second derivative is calculated in four directions: 

horizontally, vertically, and diagonally up and down (from left to right).

1 4 2
~  30 ^  ̂  ^  — ^Pi,j+1 +  Pi,j+2 I (3-1)

2—0 j — 0

1 4 2
^  y " y  ] 1 P j , i  ~~ 2 p j :i + 1 + P j , i + 2I (3.2)

2—0 j — 0 

^  2  2

I Pi,j 2pi+l,j+l +  Pi+2,j+2\ (3.3)
i=0 j =0

17
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4 2

d1I — — 
u 187̂  X ]  X /  ^  _  +  Pj-2,i+2| (3.4)

i = 2  j —0

If the image is noise-free with a strong line passing through the centre, at 

least one of these directions will be roughly colinear with it, so the average magni­

tude of the second derivative should be small. When noise is added, the smallest of 

these values will tend to be larger. Therefore tj, as defined by equation 3.5, where 

dmax =  max(dh,dv,du,d,i), will tend to be very small in clean images and signifi­

cantly larger in noisy ones.
  dhdvdudd

T]~~(~dyU'max )

To generate the noise profile presented in the analysis, a 5x5 array of 0-mean 

random numbers was generated and added with saturation to the pixels of the subim­

age. Figure 3.1 shows a scatter plot of 7) versus the average magnitude of this array. 

As the diagram shows, small values of r) are strongly correlated to clean images.

The certainty measure involves fitting a correlation between 77 and a profile of 

how the angle approximation’s performance degrades with noise. The details of this 

calculation appear in the analysis section.

3.2 A ngle A pproxim ation

The angle approximation operates on the resemblance of pixels diametrically 

opposite the centre pixel in the image. Before calculating resemblances, the pixel 

values are to the range [0 , 1], which can be treated as a membership value in the set 

“white.” Initially, the angle approximation was intended to  be a single expression 

which would operate over the entire range from [0 , 7r], but in initial experiments its 

performance was dismal. Instead, it was broken into two separate expressions: one

18
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Figure 3.1: r) versus average noise magnitude.

!.t i f ' . - . v  v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 3.2: Solving for the remaining quadrants.

which approximates the angle of lines between [0,7r / 4 ] (#i), and one which operates 

over the entire range of [0,7r] but only identifies if a line falls in the range of [0, 7t / 4 ] 

(qi). When combined, these two expressions will identify and estimate angles in one 

quadrant of the problem space. The two expressions in the angle approximation have 

been discovered using clonal selection. Flipping the subimage vertically will yield the 

expressions for [37t/4, 7r] (04 and p4), and by flipping the subimage across the diagonal 

y = x, the expressions for the remaining two quadrants are discovered. These steps 

are clarified in Figure 3.2.

Since resemblance is commutative and the image as presented as the resem­

blance of pixels on opposite sides of the centre pixel:

Pi , j  R.P4—i ,4— j  (^ '^)

Therefore, flipping the image vertically is equivalent to flipping the resemblances 

horizontally, so becomes r 4_ij .

For a given subimage I, let qmax be number of the quadrant identifier which 

returns the largest value; for example, qmax will be 1 if qi(I)  is the largest. The final 

output of the angle approximation will then be:

20
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A(I)  =

^l(-0 Qmax — 1

f  — @2(1) Qmax =  2

f  +  $3(-0 Qmax =  3

7T -  04 (J) gmaa; =  4

(3.7)

3.3 M apping Into P aram eter Space

Given the strength and angle range from the strength estimator and the angle 

estimator, mapping the pixel into param eter space can be done more efficiently.

In higher noise cases, where the angle range is larger, the mapping process 

would remain the same, except th a t the curve would only need to be plotted for a 

section of the param eter space.

In cases where the range is smaller it is sufficient to replace equation 2.9 with 

a first or second order taylor series expansion centred around the estimated angle. 

The small error induced by this can be countered with the fuzzy distributed voting 

method described in [2 1 ].

3.4 T he C om plete A lgorithm

The complete algorithm is as follows:

(1) Examine the first pixel where it is possible to select a 5x5 subimage with tha t 

pixel at the centre.

(2) Calculate the Sobel edge strength. If less than some minimum threshold, go 

on to the next pixel.

21
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(3) Scale the pixels in the subimage to the range [0,1]

(4) Calculate 77.

(5) Evaluate the four quadrant classifier expressions.

(6 ) Evaluate the angle approximator expression corresponding to the quadrant 

classifier with the highest output.

(7) Calculate the range of angles to plot based on the estimated angle and 77. 

This step depends on the specific expressions, and is done later on.

(8 ) Add the edge strength to every parameter image pixel under the relevant 

portion of equation 2.9.

(9) Repeat steps 2 through 8  for all pixels which can be the centre of a 5x5 

subimage.

22
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Chapter 4

Experim ental D esign

The angle approximation for [0, 7t / 4] and the expression to identify the first 

quadrant in the range [0,7r], were grown by clonal selection. This section explains the 

data that was used to generate the expressions, as well as the K-Expression grammar 

composition and clonal selection algorithms used.

4.1 Training D ata

The training data  for both expressions was a set of resemblances for 5x5 images 

with lines passing through them, in the form shown in Figure 4.1. This form of data  

was used to ensure tha t the expression would remain accurate even if the line were not 

passing directly through the centre of the image. For both expressions, the range of 

displacements (p) was [0, l/x/2] pixels, which is the longest unique length. Anything 

larger than tha t will overlap with an adjacent pixel. For the angle approximation, 

the angle (6) varied from [0,7r / 4 ], and for the quadrant classifier, [0,7r].

Due to the symmetry of the resemblance data, as well as due to the commu-
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Figure 4.1: Training data parameterisation.

tativity of fuzzy resemblance operations, the data for images (p,6) and (—p,6)  is 

identical. Therefore, the training data covers the entire range of images tha t the 

algorithm could be presented with.

4.2 A IS Configuration

For training both expressions, the K-Expression grammar contained a basic set 

of fuzzy set operations, one contrast enhancing operation (sin), the data variables, and 

a handful of constants. In earlier experiments for the quadrant classifier expression, 

drastic sum and product were added to the grammar, since they allow abrupt changes 

in value. They were removed since they lead to extremely noise-sensitive expressions, 

and the addition of noise to prevent sensitivity harmed convergence. See table 4.2.

One of the distinct features of this grammar is the fact tha t elements are 

weighted. The rationale for this decision lies in the number of operations compared 

to the number of data variables. In most experiments presented in the literature, 

there are between one and three data variables. In this experiment, there are seven­

teen, including constants, compared to 7 operations in the angle approximation. If all 

members of the grammar were evenly weighted, this would make it needlessly difficult

24
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Symbol Meaning Arity f ( x ) Weight
R Resemblance 2 1 -  ||Xi -  x 2\\ 5
U Bounded Sum 2 X i +  X 2 -  X i X 2 5
n Bounded Product 2 X i X 2 5
V Max 2 max(xi, x 2) 5
A Min 2 min(xi, x 2) 5
u Drastic Sum 2 3(0)
u Drastic Product 2 3(0)
—1 Negation 1 1 —  X\ 5

sin Sine 1 sin(7ra:i) 2
r U D ata variable 0 Pl,l RP5,5 1
r 2,l D ata variable 0 P2,l RP4,5 1
r 3,l D ata variable 0 4*3,1 R 4*3,5 1
r 4,l D ata variable 0 4*4,1 R 4*2,5 1
r 5,l Data variable 0 4*5,1 R 4*1,5 1
r l,2 D ata variable 0 Pi,2 RP5,4 1
r2,2 D ata variable 0 P2,2 RP4,4 1
r 3,2 D ata variable 0 P3,2 RP3.4 1
r 4,2 D ata variable 0 Pi,2 RP2,4 1
r 5,2 D ata variable 0 P5,2 RPl,4 1
r P3 D ata variable 0 Pi,3 RP4.3 1
r 2,3 D ata variable 0 P2,3 RP5,3 1
1/4 Constant 0 1/4 1
1/3 Constant 0 1/3 1
1/2 Constant 0 1/2 1
2/3 Constant 0 2/3 1
3/4 Constant 0 3/4 1

Table 4.1: Grammar composition

25
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to generate longer K-Expressions: more than 2/3 of randomly generated expressions 

would not contain an operation.

For an affinity measure, numerical performance over a subset of 256 elements 

was used. This is larger than usual for an affinity measure, but anything less would 

not be large enough to reasonably represent the problem space.

For the angle approximation, the average ( E i tavg ) and maximum ( E l j n a x )  error 

values were recorded. The affinity for the individual was then defined in terms of the 

Hamming length of a vector composed of these values, as well as the performance of 

other members of the population, as in equation 4.2. The error vector is used as a 

basis for the affinity function because the expression must not just have a low average 

error, it must consistently perform well over the entire range of input. The additional 

weighting to the average error is included since, in experiments, it tended to be about 

1/3 the magnitude of the maximum error, and because once the maximum error is 

reasonably low, improvements in the average error should take for forefront.

E i  =  \ \ 3 E i ta v g \\ +  l l - E / m a z l l  (4-1)

A  = 1 -  El ~  Ehest (4.2)Tp_____ Tp ' /
-E 'w orst -E^best

For the quadrant classifier, a misclassification rate was recorded, and this was 

used as E i  in 4.2, and A  was cubed to decrease the average affinity of the population, 

which tended to be quite high.

4.3 C lonal Selection  A lgorithm s

Four different selection algorithms were used, and their relative performances 

compared. The partition and probabilistic methods as described in the background

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



were used, as well as one variant of the partition method and two variants of the 

probabilistic method.

The modified partition method clones the top partition, and m utates the top 

and middle partitions, instead of only the middle. It is believed tha t this algorithm 

will achieve noticeably higher performance, since cloned individuals do not move in 

the problem space and therefore do not help the population to converge. By only 

cloning the top performers, the original algorithm removed the top performers in the 

population from the search.

The modified version of the probabilistic selection algorithm varies only in tha t 

it clones the top performers before selecting the remainder of the population according 

to the original algorithm. The benefit of this approach is tha t smaller improvements 

are guaranteed to be maintained. In the original version, these small improvements 

can be lost if the affinity difference is small. Also, situations can arise where the 

probabilistic algorithm will suddenly perform worse: if the proportion of individuals 

with a high affinity is small, it is possible to lose all of the best performing members 

entirely by chance. In fact, this was observed in several experiments.

For all experiments, the partition methods used partitions at 10% and 50% of 

the total population sizes. The values of Pr, Pc, and Prn for the probabilistic methods 

tended to be around 0 .2 0 , 0.08, and 0.16 for the original probabilistic algorithm for 

the angle estimator; 0.40, 0.05, and 0.25 for the variant on the estimator and 0.4, 0.02 

and 0.35 for the variant on the quadrant classifier.

27
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Chapter 5

R esults

Tables 5.1 and 5.2 show performance results from the graphed runs. These 

results are fairly normal for these problems. It should be noted, however, tha t the 

parameters of the probabilistic algorithms were not fine-tuned, so their optimal per­

formance could be considerably higher.

For the angle approximation, the maximum and average error was recorded for 

the fittest individual every generation. Figures 5.1 to 5.4 show typical results for 

the four clonal selection algorithms, displayed every fifth generation for the sake of 

neatness.

In the probabilistic algorithm, notice the occasional increases in error. This is

Selection Method Partition Probabilistic Modified Part. Modified Prob.
Head Length 32 32 32 32

Population Size 500 500 500 500
Hypermutation Rate 0.06 0.06 0.06 0.06
Gen. to Eavg < 0.05 145 125 1 0 1 0

Gen. to E avg < 0.03 260 310 2 0 80
E avg at G=500 0.0248 0.0280 0.00911 0.0170

Table 5.1: Clonal selection performance, angle approximation
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Selection Method Partition Probabilistic Modified Part. Modified Prob.
Head Length 64 64 64 64

Population Size 1000 1000 1000 1000
Hypermutation Rate 0.04 0.04 0.04 0.04
Gen. to E avg <  0.05 45 N /A 20 700ooor—Ho

0.046 0.070 0.043 0.043

Table 5.2: Clonal selection performance, quadrant identifier

the a side effect of the selection algorithm, which will be discussed in more detail in 

the analysis chapter.

For the quadrant classifier, the misclassification rate was recorded for the fittest 

individual, also every generation. There is no graph for the probabilistic algorithm, 

because its behaviour was unpredictable and it consistently failed to converge within 

the allotted 500 generations. This will be discussed in more detail in the analysis 

section.

Equation 5.1 shows the expression for the angle approximator, and equation 5.2 

shows the expression for the quadrant classifier.

Pi = sm ((^ ((r0,iU ri;2)V rlj2)R (l/4 V (rl i ln r li0) ) ) )R (( l/2 U ( l/4 n r ii3))n(--iroi2Rri,3)) 

A = ({Pi U (r0,4 U (r0j2 V r0,4))) fl (r2aRsm(ro!3))) U r u  (5.1)

Qi = (ri,3Rsin((ro,i U ((1/3 A sm (rM)) fl (r0t3Rr0,o))))) V r M 

Q2 =  (3/4 V r 0,0)R(rijo U rlfi)

Q =  sin(Qi n  Q2) (5.2)

The output of the angle approximator over the range of angles [0,7r] and dis­

placements [0, -^] is shown in Figure 5.8. Since 0 and n are congruent, the approxi-
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Figure 5.1: Highest affinity individual, partition algorithm, angle approximation
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Figure 5.2: Highest affinity individual, modified partition algorithm, angle approxi­
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mator performs extremely well in the noiseless case. Figure 5.9 shows magnitude of 

approxim ator’s error in the noiseless case.
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Figure 5.9: Angle approximator error, clean images
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Chapter 6

A nalysis

The analysis of the results comprise two distinct parts. First, and most obvious, 

is the performance of the Hough transform approximation, using the expressions 

developed by clonal selection. This is covered in the first part of the chapter.

The second part deals with analysing the performance of the clonal selection 

algorithms used to generate the expressions.

6.1 A lgorithm  Perform ance

Figure 6.1 shows a scatter plot of the error of the angle estimation as a function 

of the estimated angle, on data  with added gaussian noise and a € [0,0.5]. Notice the 

relatively low error values for all but the first quadrant: this is a result of the selection 

of qmax • Figure 6.2 shows the response of the quadrant identifier for the first quadrant 

as a function of a. At higher values of sigma, the estim ated angle consistently settles 

to 0.4. The mirrored expressions will also settle out to 0.4, so at higher noise levels 

Qmax will depend more on the order of comparisons in the implementation than on
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the values themselves. As it is currently implemented, the first quadrant is usually 

selected in high noise environments.

Conveniently, this allows almost all of the error incurred by misclassification to 

be ignored by treating angles in the first quadrant as completely uncertain: the entire 

range of [0, tt] will be plotted.

Figure 6.3 shows the error as a function of ytrj, but only when the estimated 

angle is greater than | .  It also shows the curve e =  ^/rj +  0.1, which fits almost all of 

the points comfortably.

The final expression for the range of angles to be plotted, 9, given an estimated 

angle 9e and 77, is shown in equation 6.1.

For both partition methods, the affinity of cloned, mutated, and replaced in­

dividuals was recorded. For the original probabilistic method, clone and mutant 

affinities were recorded, along with the average affinity.

Figures 6.4 and 6.5 show a plot of the average error for an angle approximator 

experiment using the modified partition method, as well as the recorded affinity data. 

Since the affinity function is normalised, it doesn’t  significantly reflect the improve­

ment in the population, except in the short downward spikes in the affinity of the 

cloned individuals.

Then, Figures 6 .6  and 6.7 show the same results for the original partition 

method. The same downward spikes in the affinity of cloned individuals are ob-

[0, t t ]
(6 .1)0

[&e ~  V v  ~  0 .1 , 9e +  +  0 .1] otherwise

6.2 Clonal Selection  Perform ance
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Figure 6.1: Error as a function of estimated angle

C la ss if ie r  O u tp u t

Figure 6 .2 : Quadrant identifier response with increasing a
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Figure 6.3: E rro r versus th e  ro o t of r j ,  w ith  fitting  curve
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served, but the recovery time is significantly longer. This is related to the handling 

of the top partition, as is discussed below.

Figures 6.8 and 6.9 show the errors and the clone and m utant affinities as well 

as the average affinity of the population for an experiment using the probabilistic 

method, altered to use the two random number clone selection method described 

below. The average affinity is used because there is no direct correspondence between 

randomly generated individuals and individuals in the existing population.

No figures are included for the modified probabilistic method. In these experi­

ments, the clone affinity resembles the clone affinity in the modified partition method, 

albeit with slightly more noise due to the inclusion of a small number of generally 

lower affinity individuals. The m utant and average affinities resemble those from 

the original partition method. They offer no additional insight into the convergence 

process.

Also, there are no figures for the quadrant identifier experiments, because they 

convey considerably less information than the graphs for the angle approximation. 

In the quadrant identifier experiments, the average affinity value tended to be very 

high. This occurred since any expression which evaluated to zero for any input value 

had a 75% rate of successful classification, but any expression which evaluated to 

one had a 25% classification rate. As a result of this skew in the population affinity, 

the experiments converge more slowly. Also, since the improvement in performance 

over the entire experiment seems less significant (88% to 96%) and the improvement 

occurs less frequently and in smaller increments, the affects of breakthroughs on the 

population were not clearly visible.
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6.2.1 Probabilistic M ethod  A nalysis

The probabilistic method generally failed to converge on the quadrant classifier 

problem. This is because of extinction: the fitter individuals might not be included 

in the next repertoire, by chance.

Equation 6.2 shows the probability tha t the individual under consideration will 

be cloned into the next generation’s repertoire using the original probabilistic method. 

In the experiments run in [15], P r  and P c  were set at approximately 0.5 and 0.1 

respectively. This results in a probability of 0.05 tha t the fittest indivudal in the 

repertoire will be cloned, per iteration through the repertoire.

On the other hand, the probability th a t an individual will be added to the next 

repertoire when a given individual i is being considered is given by 6.3. W ith the 

same values for P r  and P c , and a value of 0.30 for P m , this probability evaluates to 

0.5 +  0.185.4,. Regardless of the distribution of affinity values, this will usually fill 

the next repertoire in no more than three passes through the current repertoire. This

puts the average probability of the single fittest member being cloned into the next

repertoire at least once at less than 0.15.

P G + 1 =  P r  n A P C (6.2)

P n e w , i  = P r  U ( A ,  fl (P c U P m ) )  (6.3)

There are several ways of decreasing the likelihood of extinctions in this algo­

rithm: one is to reduce P r , which will increase the number of passes through the 

current repertoire required to create the next one, and the other is to increase P c , 

which will increase the number of cloned individuals at the expense of a more stagnant 

population.
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Some modifications to the algorithm can also be made: when deciding if an 

individual will be cloned, another random number can be generated and compared 

to the affinity. This will decrease the probability tha t individuals with a lower fitness 

will be cloned. Combined with a higher value for Pc, this creates a number of clones 

comparable to the original algorithm, but will have a higher average clone affinity. 

The downside is tha t the highest affinity individuals tend more towards cloning and 

less towards mutation, which slightly increases stagnation in the population. W ith 

this adjustment, the probabilistic algorithm performed well for the angle approxima­

tion (as the results of Figure 6.8), but was still unable to converge for the quadrant 

identifier.

In the previous section, it was explained tha t the quadrant identifier experi­

ments had relatively high average affinities. This means tha t the fittest individuals, 

even with a normalized affinity measure, are not significantly above the average in 

terms of numerical performance. Not only does this reduce the advantage enoyed 

by fitter individuals, it also reduces the number of passes through the population. 

This was countered by raising the affinity value to the sixth power, which lowered the 

average affinity without affecting the fittest individuals. This aided convergence in 

the modified probabilistic algorithm, but was insufficient to help the original version.

Also, saying th a t the probabilistic algorithm fails to converge at all is incor­

rect: it fails to converge within the length of the experiment. Figure 6.10 shows the 

data from a quadrant identifier experiment tha t was run for 15,000 generations, with 

parameters that seemed not to converge. Although there were frequent extinctions, 

in the later generations the population tended towards lower misclassifkation rates. 

Since an individual is considerably more likely to be m utated than  cloned, even when 

extinctions occur, m utants of the higher performance individuals will remain in the

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



population. Therefore, as long as Pm and Pc are not so small tha t even the m utants 

will die out, the repertoire will contain a growing number of individuals tha t are close 

to higher performance ones. In other words, even if the actual performance of the 

repertoire does not seem to improve, its potential for improvement continues to grow.

6.2.2 P artition  M ethod A nalysis

In the angle approximation problem, every other algorithm outperformed the 

original partition method. In the quadrant identifier problem, it outperformed the 

original probabilistic algorithm, but performed dismally compared to the modified 

versions. In both problems, the original partition method tended to stagnate consid­

erably.

The explanation for this lies in its treatm ent of the top partition, which is 

cloned. Cloned individuals do not add to the convergence of the algorithm: they only 

maintain current performance. To put it in evolutionary terms, the fittest survive, 

but they do not breed.

This is visible in Figure 6.7, where breakthroughs cause noticeable drops in 

the affinity of the cloned section of the population. Unlike the other algorithms, the 

individual responsible for the breakthrough is never m utated, so the recovery of the 

average clone affinity comes solely from the discovery of fitter individuals as a result 

of mutations from the considerably lower affinity second partition. Also, as the overall 

performance of the population improves, it becomes less likely tha t an individual from 

the second partition will be mutated into one which will outperform members of the 

cloned partition. This is reflected in the slower recovery later in the experiment as 

well as the dismal overall performance of the algorithm.
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Figure 6.10: A longer experiment showing gradual improvement.
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6.2 .3  R elative M erits o f Selection  A lgorithm s

For speed and simplicity of implementation, the modified partition algorithm 

is a clear winner. It converged consistently and quickly in most experiments. How­

ever, the high average clone and mutant affinities suggest tha t it generates a fairly 

homogenous repertoire fairly quickly, so it is expected to perform poorly on problems 

where the correlation between affinity and correctness is low, and to deal somewhat 

poorly with time-varying affinity functions.

The probabilistic method and its variant both seem to maintain more diverse 

populations, as is indicated by the lower clone and mutant affinities, and are therefore 

more likely to retain their performance in problems where the modified partition algo­

rithm might not. The modified probabilistic algorithm would generally be preferable 

since its performance is more consistent from generation to generation.

The original partition algorithm has no advantages that are not outdone by the 

other algorithms.
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Chapter 7

C onclusion

Feature extraction is one of the fundamental problems of computer vision, and 

one major category, based on the Hough and Radon transforms, seems to provide the 

best performance in the presence of noise. However, they are both slow.

This class of algorithms discovers parametric features by mapping pixels in the 

input (presumably an edge image) to  curves in another image which represents the 

parameter space of the feature. Since each pixel in the input image maps to a curve, 

performing the mapping is computationally intensive.

This thesis presents an algorithm to decrease the computational complexity of 

the mapping for parameterised lines by estimating a range of the parameter space 

to plot. In low noise images with decent contrast, the algorithm can narrow down 

the range of parameters to about 0.2 radians, about fifteen times smaller than the 

full [0,7r] range. As image noise increases, the range is increased until, in high noise 

images, the entire parameter space is plotted, rendering the algorithm identical to 

the Hough transform.

The centrepiece of the algorithm is a pair of expressions to estimate the angle of
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any line which might be passing through the image. These expressions were discovered 

using Immune Programming, a new computational intelligence technique which is 

a hybrid of genetic programming and clonal selection, an artificial immune system 

algorithm.

Several different clonal selection methods were implemented and tried on the 

problems, and their performance and function were analysed, providing some amount 

of insight into the relative merits of the different algorithms.

Two of the presented algorithms were new variants of existing methods. The 

modified partition method compensates for low exploitation of high-performance in­

dividuals in the original partition method and achieves excellent convergence speeds 

at the cost of developing a very specialised repertoire. The other was a modified 

version of Musilek’s probabilistic clonal selection method which guarantees tha t the 

highest affinity members of the population will survive, which compensates for a class 

of problems where the original version converges extremely slowly, although in most 

cases it does not necessarily improve convergence speed.

Immune programming and other immune-related techniques are still in their 

infancy, and although their initial results are impressive, there is room for improve­

ment, not only with clonal selection alone, but also by combination of various immune 

techniques.

Although the feature extraction algorithm presented here is, in most cases, con­

siderably faster than  the normal Hough transform, the feature extraction problem is 

still unsolved. The difficulty lies in the fact tha t the parameter image generated by 

Hough-like line-finding algorithms does not determine the endpoints of features, only 

the direction of features. Object recognition based on these algorithms therefore usu­

ally involves segmenting the image into many images containing a single region of
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data th a t might be a feature (for example, by region growing techniques) followed 

by several Hough transforms. Since segmentation algorithms tend to be extremely 

noise-prone, this is far from ideal. More effective holistic techniques might be possi­

ble, and could achieve considerably higher performance. Computational intelligence 

techniques could yield a path to this.
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