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ABSTRACT 

This thesis evaluated the safety effects of automated mobile enforcement at both the segment-

based level and city-wide level over a period of eight years. For the segment-based evaluation, 

the before-and-after Empirical Bayes (EB) method was used to account for the regression-to-the-

mean effect and other confounding factors. Locally developed safety performance functions and 

yearly calibration factors for different collision severities/types were developed by using a group 

of reference urban arterial roads. The results showed consistent reductions in different collision 

severities/types ranging from 14% to 20%, with the highest reductions observed for severe (i.e. 

injury and fatal) collisions. The comparison between continuous and discontinuous enforcement 

strategies on different arterials revealed that continuous enforcement was far more effective in 

reducing all collision severities and types. Moreover, the thesis also validated the spillover 

effects on nearby segments. For the city-wide evaluation, generalized linear regression models 

were adopted to investigate the relationship between the enforcement variables and the monthly 

number of collisions. It was found that both the deployment hours and the number of issued 

tickets had an inverse relationship with the collision frequency. The analysis results also 

suggested that 1,500 hours of deployment should be the threshold to guarantee significant 

impacts on collision reduction. 
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1 INTRODUCTION 

1.1 Background 

Traffic collision is a serious global issue causing around 1.2 million deaths and around 50 

million injuries each year (World Health Organization, 2013). In Canada, there were 2,006 

fatalities and 166,725 injuries in 2011 (Transport Canada, 2013). Traffic collisions not only 

cause harm to victims and their families, it is also a tremendous burden to society as a whole. 

The estimated total social cost of motor vehicle collisions that occurred in Canadian jurisdictions 

in 2004 was $63 billion (Transport Canada, 2007). This number was approximately 5% of the 

gross domestic product (GDP) of Canada in that year. However, these statistics were very likely 

to be underestimated due to the incomplete official police-reported data.  

The unintended and unexpected nature of collisions makes them seem to be random 

events. Nevertheless, many road collisions can be prevented if drivers always comply with traffic 

laws. A study in Norway has shown that fatalities could be reduced by 48% if 16 of the most 

frequent traffic law violations were eliminated (Elvik, 2001). A legislative framework that allows 

traffic law enforcement to be fairly and properly applied can directly lead to an increase in 

drivers’ compliance. The mechanism of traffic enforcement follows the deterrence theory, which 

can be further divided into general deterrence and specific deterrence (ESCAPE Consortium, 

2003). General deterrence is the impact of the threat of legal punishment on the public at large, 

while specific deterrence is the impact of actual legal punishment on those who have been 

apprehended. Speed enforcement is one of the most common types of traffic enforcement that 

has been adopted by a variety of countries. 

The goal of speed enforcement is to improve traffic safety through increasing drivers’ 

compliance to the speed limit. Excessive speed (driving above the speed limit) raises both the 

frequency and severity of collisions. A faster speed leaves drivers with less time to react to 

dangerous situations and increases the distance required to stop the vehicle. In accordance with 

the laws of physics, more kinetic energy needs to be absorbed when colliding at a higher speed, 

which will cause more harm to the victims. It was revealed that a 5% increase in mean speed 

may lead to an approximate 10% increase in injury collisions and 20% increase in fatal collisions 

(OECD, 2006). In Canada, collision statistics suggested that 27% of fatalities and 19% of serious 

injuries involved speeding (Transport Canada, 2013). In addition, it was found that 90% of 
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pedestrians hit by a vehicle at a speed of 30 km/h could survive, but the percentage dropped to 

only 20% when the speed was increased to 50 km/h (OECD, 2006). 

However, speed violation is a widespread phenomenon across different countries (Elvik, 

1997; Goldenbeld & Schagen, 2005). An extensive survey showed that on average 40% to 50% 

of drivers drove above the speed limit, and the percentage was higher on urban roads than rural 

roads or motorways in many countries (OECD, 2006). A study based on a national telephone 

survey of 2,002 Canadian drivers revealed that seven out of ten drivers admitted to having 

exceeded the speed limit at least occasionally (Transport Canada, 2007). Of the reasons given for 

speeding, the most common ones (with an agreement of more than 50%) are to avoid being late, 

belief that the speed limit is unreasonably low, and not paying attention to the driving speed. In 

addition, one in five drivers committed speeding because they simply enjoy the feeling of driving 

fast, which was found to be linked to more severe instances of speeding through regression 

analysis. It can be concluded that although the detrimental effects of speeding are generally 

agreed upon, the reason and extent of them are underestimated and unclear to the public. Since 

drivers were also found to have the psychology of keeping up with the flow of traffic (Transport 

Canada, 2007), it is necessary to enforce the speed limit where speeding significantly contributes 

to traffic collisions. 

Generally, there are two types of speed enforcement: conventional enforcement and 

automated enforcement. Conventional enforcement is conducted by police with speed 

measurement devices, such as laser guns. It involves immediate and direct interactions between 

enforcement officers and violators, which enable the verification of violators to be more 

objective. At the same time, police have the opportunity to detect suspicious activities and 

additional offenses, such as impaired driving (NHTSA, 2008). In addition, the enforcement 

operation is witnessed by a large population of drivers, enhancing the general deterrence of 

enforcement. However, conventional enforcement may result in traffic congestion at high traffic 

volume sites and may cause risk to personnel where roadside stopping is dangerous. Most 

importantly, it is extremely difficult for police to track and record multiple speeding vehicles 

simultaneously, which diminishes the detection rate as well as the fairness of the operation. 

Therefore, automated enforcement was proposed as a safer and more accurate alternative to 
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conventional enforcement and was introduced in many countries since the late 1980s (OECD, 

2006; Chen et al., 2000).  

The automated mechanism of the speed measurement detector and photo camera greatly 

reduces labour resources. The device can be operated as long as necessary with or without the 

presence of enforcement officers and can be either fixed at certain site or mobile by mounting it 

on enforcement vehicle. Mobile enforcement offers much more flexibility in operation than fixed 

enforcement. Each enforcement device can be easily rotated among multiple enforcement sites at 

different time periods according to needs, which greatly enlarges the coverage of the 

enforcement program. Another merit of mobile enforcement is its potential in covert operation. 

The existence of fixed cameras at specific sites is likely to become public knowledge, especially 

when the program continues for a long time period. Drivers were observed to slow down near 

enforcement devices and then speed up to compensate for lost time, which is the so-called 

“kangaroo effect” (Elvik, 1997). Mobile enforcement devices can be installed in unmarked 

vehicles and implemented at different sites, thereby increasing the unpredictability of 

enforcement and creating a wider range of deterrence effects.  

The safety effects of automated mobile photo enforcement at both the micro and macro 

level have been examined by many studies (Goldenbeld & Schagen, 2005; Chen et al., 2000; 

Luoma et al., 2012; Keall et al., 2001; Carnis & Blais, 2013). Most of these studies adopted an 

interrupted time-series analysis to evaluate the system-wide effects. In the very few studies that 

focused on site-based effects, the results were weakened due to the deficiencies in adopted 

methodologies (i.e., failures to account for the regression-to-the-mean effect and confounding 

factors, etc.) (Thomas et al., 2008). The deficiencies are usually caused by the difficulty in 

obtaining a large reference group with similar characteristics as the treatment group. In addition, 

most study periods of these evaluations were close to the programs’ implementation. Some 

studies found that the effectiveness of the enforcement program was highest during the starting 

stage but diminished over time (Goldenbeld & Schagen, 2005; Carnis & Blais, 2013). The 

effectiveness of automated mobile enforcement over a longer time period needs to be further 

investigated. Finally, a gap exists in the literature on the relationship between deployment 

resources and safety effects. This knowledge would be valuable for planning and operating an 

optimized mobile photo enforcement program. 
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1.2 Objectives of the Thesis 

The City of Edmonton’s mobile photo radar program was initiated as early as 1993. Currently, 

there are 10 covert trucks and three overt ones equipped with photo radar devices. More than 

1,000 enforcement sites were selected, based on collision, speed, and other criteria, covering 

different types of roads in the city. The general objective of this thesis is to evaluate the safety 

effects of the program at both the segment-based and city-wide levels. 

For the segment-based evaluation, there are three objectives. First, the thesis will attempt 

to estimate the effectiveness of automated mobile enforcement on urban arterial roads, using the 

before-and-after evaluation with Empirical Bayes (EB) adjustment as outlined in the Highway 

Safety Manual (AASHTO, 2010). Arterial roads handle the heaviest traffic volumes in cities, and 

the majority of collisions occur on these roads. Although arterial roads have always been 

important targets for enforcement operations, very few previous studies have explicitly evaluated 

the safety effects on them. The second objective is to investigate and compare the safety effects 

of different enforcement strategies by examining changes in collision frequency at continuously 

enforced sites (i.e., sites that were enforced each year during the after period) and those that are 

discontinuously enforced sites. This is because the enforcement resources are always limited and 

it is important to know how to distribute them to achieve better results. Finally, the spillover 

effect will be investigated by comparing enforced and unenforced arterial segments. This is to 

examine whether enforcement operations will have impacts on the safety of nearby segments. 

For the city-wide evaluation, there are two objectives. The first objective is to examine 

the relationship between monthly enforcement statistics and city-wide collisions through the 

generalized linear model. The enforcement statistics include the deployment hours and the 

number of issued tickets, representing the scales of general and specific deterrence, respectively. 

At the same time, the marginal safety effects of increasing 1,000 deployment hours and 10,000 

issued tickets are estimated in terms of collision reduction. The second objective is to investigate 

the threshold for deployment hours that can result in a significant impact on collision reduction. 

This threshold can be set as the minimum requirement for future enforcement operation. 
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1.3 Thesis Structure 

The remainder of this thesis is organized into the following chapters: 

Chapter 2 provides a literature review in three sections related to the topics of this thesis. The 

first section describes the extent and nature of the speeding problem and explains the mechanism 

of enforcement. The second section explains why Empirical Bayes is a more advanced method 

than the naïve or comparison group methods in conducting before-and-after evaluation. The last 

section summarizes the microscopic and macroscopic safety effects of automated mobile 

enforcement based on previous studies. 

Chapter 3 presents the data, methodology, and results of the segment-based evaluation. The 

results include the overall safety effects of the enforcement program, the comparison between the 

continuously enforced and discontinuously enforced segments, and the spillover effects of the 

enforcement. 

Chapter 4 provides the data, methodology, and results of the city-wide evaluation. The 

relationship between the monthly enforcement statistics and the number of collisions is revealed, 

and the marginal effects of deployment hours and issued tickets are estimated. A threshold for 

the minimum number of deployment hours is proposed in order to ensure the effectiveness of the 

enforcement program. 
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2 LITERATURE REVIEW 

2.1 Enforcement and Safety 

2.1.1 Speeding is a Road Safety Problem 

The automobile has conquered the world at a rapid pace since its inception in 1886. The adoption 

of the revolutionary assembly line by Henry Ford in 1913 opened the era of the mass production 

of automobiles (Williams et al., 1993). The number of registered vehicles in the world increased 

from 4.2 million in 1916 to 1.5 billion in 2010, while the global population increased from 

around 2 billion to 7 billion during the same period (Mäkinen et al., 2003). Even in the first 

decade of the 20
th

 century, the problems caused by speeding raised a need for regulations on 

roads. Frank Elliott in The Times mentioned the following:  

Motorists have shown from the beginning that they will not comply with any law which 

causes them inconvenience (such as the speed limit), or which, though easy to obey, they 

are not forced to obey (such as the regulation for number-plates). If that is to be their 

attitude, let us accept it for the time, and counter it by increased police activity, especially 

by the provision of more mobile police, until it is brought home to their minds that 

compliance with the law is their necessary contribution to the common wealth (Leerink, 

1938).  

Elliott’s words convey two important messages. The first one is that it is of human nature to 

commit speeding in exchange for reduced travel time. The second one is that this behaviour can 

hardly be eliminated without enforcement intervention. 

The first speed limit law specifically for automobiles was enacted in Connecticut, United 

States, on May 21, 1901, regulating the maximum speed to be 19 km/h on urban roads and 24 

km/h on rural roads. As Elliott mentioned nearly one century ago, people are always reluctant to 

follow rules that cause them immediate inconvenience. Speeding has always been a prevalent 

phenomenon in many countries. A survey conducted by the Working Group in 2004 clearly 

revealed the extent of the speeding problem (OECD, 2006). Questionnaires were sent to the 

OECD/ECMT countries (Organisation for Economic Co-operation and Development/European 

Conference of Ministers of Transport), and the results were shown in Table 2-1. It can be 

observed that speeding is common among the drivers of passenger cars regardless of country or 
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road type. On average, the percentage of speeding drivers is between 40% and 50%, but it can be 

as high as 80% on some motorways and urban roads. 

TABLE 2-1 Percentages of Speeding Drivers of Passenger Cars (OECD, 2006) 

 

Motorways Rural Roads Urban Roads 

Speed Limit 
Above the 

limit 

Speed 

Limit 

Above the 

limit 
Speed Limit 

Above the 

limit 

Austria  130 km/h 23% 100 km/h 18% 50 km/h 51% 

30 km/h 78% 

Canada 110 km/h 15 to 53% 80 km/h 15 to 45%   

100 km/h 15 to 81%   

Denmark 110 km/h 72% 80 km/h 61% 50 km/h 60% 

Iceland 90 km/h 80% 90 km/h 77%   

Ireland 112 km/h 23% 96 km/h 8% 64 km/h (Arterial Rd) 75% 

48 km/h (Arterial Rd) 86% 

48 km/h (Local St) 36% 

Korea 100 or 110 

km/h 

50% 60 km/h Not 

available 

50 km/h (Arterial Rd) 73% 

Netherlands 100 km/h 45% 80 km/h Approx. 

45% 

50 km/h (Local St) Approx. 45% 

120 km/h 40% 

Portugal 120 km/h 46% 90 km/h 55% 80 km/h (Arterial Rd) 50% 

50 km/h (Collector St) 70% 

Sweden 110 km/h 68% 30 to 110 

km/h 

58% (All 

state roads) 

  

Switzerland 120 km/h 38% 80 km/h 24% 50 km/h (Arterial Rd) 21% 

United 

Kingdom 

112 km/h 57% 96 km/h 9% 56 km/h (Arterial Rd) 27% 

48 km/h (Local St) 58% 

United 

States 

88 to 104 

km/h 

40 to 70% 88 km/h 47% 56 km/h (Arterial Rd) 73% 

48 km/h (Local St) 74% 
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As briefly explained in the introduction, higher speed allows less time for drivers to react, 

leading to an increase in both the frequency and severity of collisions. However, one may argue 

that although this rationale is logical, it cannot prove that exceeding the speed limit will 

significantly increase the risk of collisions. It is true that there are differences in driving skills 

among drivers. Professional racing drivers are able to safely operate a vehicle at a speed higher 

than speed limit, which is set as the maximum safe speed for the majority of drivers. However, 

the real risk of speeding does not lie in breaking the speed limit by 1 or 2 km/h but lies in driving 

without constraints. It is extremely difficult for ordinary drivers to estimate their own maximum 

safe speed, consequently exposing themselves to dangers when the speed is faster than what they 

can handle. 

A glimpse of the link between speeding and collisions can be seen from the facts that 

young male drivers were found to have higher propensity for speeding behaviour and were also 

more likely to be involved in speed-related fatal collisions than other demographics (Clement & 

Jonah, 1984; Bowie & Walz, 1994; Laapotti & Keskinen, 2004). Cooper (1997) conducted a 

study to investigate the relationship between speed violations and collisions, using data from 

approximately two million drivers in British Columbia, Canada. In the study, speed violations 

were divided into exceed-speed-limit (ESL) and speed-too-fast (STF) (i.e., travelling more than 

40 km/h above limit). Both variables were highly significant in logistic collision prediction 

models, and it was found that the estimates for ESL remained almost identical in models of 

different severity, while those for STF increased with the severity level. In the second part of the 

study, drivers were grouped according to the type and number of violations during the four-year 

period. The group average number of collisions increased regardless of the violation type when 

the number of violations increased from one to more than three. For the drivers that had only 

non-speeding violations, the group average number of collisions increased from 0.2 to 0.3. For 

the drivers with ESL but no STF, the group average number of collisions increased from 0.2 to 

0.6. For drivers with STF, the number increased from 0.5 to 1.1. Thus, it can be concluded that 

speeding, especially serious speeding, is related to more collisions. 

Kloeden et al. (2002) developed mathematical curves to describe the relationship between 

speed and the relative risk in urban areas with a 60 km/h speed limit in Adelaide, Australia. The 

speeds of passenger vehicles that were involved in injury collisions were compared with those of 
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passenger vehicles not involved in any collisions but travelling in the same direction, at the same 

location, time of day, day of week, time of year. Modified logistic regression modelling was used 

to fit the data, and the developed curve with a 95% confidence limit is plotted in Figure 2-1. It 

can be observed that the relative risk of injury collision involvement increased with speed 

exponentially, and the risk was found to approximately double for each 5 km/h increase in free 

travelling speed after exceeding the speed limit. The results confirmed the link between speeding 

and collisions. 

 

FIGURE 2-1 Relationship between Relative Risk and Speed (Kloeden et al., 2002) 

One of the most well-known models established for the relationship between speed and 

collisions from the road perspective is Nilsson’s power model (Nilsson, 1982). The model 

suggested that change in collisions was correlated with change in speed to a certain degree of 

power. The basic formula of the model is shown in Equation (2-1). Y  denotes the number of 

collisions and v  is the mean speed of traffic. Subscript 0 and 1 represent the before period and 

the after period, respectively. P  is the degree of power needed to be estimated. 
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The degrees of power P  were estimated to be 4, 3, and 2 for fatal collisions, serious casualty 

collisions (including fatal collisions) and all casualty collisions, respectively (Nilsson, 2004). For 

example, if the mean speed of traffic reduced from 60 km/h to 50 km/h, the reduction in fatal 

collisions is estimated to be 52%. Since the formulas were developed based on the results from 

speed limit changes on rural roads in Sweden from 1967-1972, Cameron and Elvik (2010) 

examined whether the models were applicable in all road environments with meta-analysis 

techniques. As shown in Table 2-2, the estimation results indicated that the Nilsson’s model 

performed better for rural highways and freeways than urban roads. Although the estimated 

degrees of power increased with the collision severity level for urban roads, they were smaller 

than those for rural roads and freeways. The authors argued that mean speed alone may not be 

sufficient to represent the complex relationship between speed and safety in an urban 

environment (Baruya, 1998; Taylor et al., 2000). Several alternative models were introduced for 

urban roads, which incorporated other speed parameters, such as the coefficient of speed 

variation, proportion of vehicles exceeding the speed limit, and average speed of speeding 

vehicles. One more recent study by Elvik (2013) showed that change in collisions was not only 

related to change in speed but also to initial speed. The results showed that there were more 

changes in collisions when initial speed was higher. 

TABLE 2-2 Degree of Power Estimates for Different Road Environments (Cameron & 

Elvik, 2010) 

 

Rural roads/Freeways Urban/Residential roads 

 

Best estimate 
95% confidence 

interval 
Best estimate 

95% confidence 

interval 

Fatal collisions 4.1 (2.9, 5.3) 2.6 (0.3, 4.9) 

Casualties with fatal injury 4.6 (4.0, 5.2) 3 (-0.5, 6.5) 

Collisions with serious injury
1
 2.6 (-2.7, 7.9) 1.5 (0.9, 2.1) 

Casualties with serious injury 3.5 (0.5, 5.5) 2 (0.8, 3.2) 

Collisions with slight injury
2
 1.1 (0.0, 2.2) 1 (0.6, 1.4) 

Casualties with slight injury 1.4 (0.5, 2.3) 1.1 (0.9, 1.3) 

                                                 
1
 Serious injury refers to injuries need hospitalization. The definitions of the severity of collisions in this thesis are 

different and introduced in the next chapter. 
2
 Slight injury refers to injuries need only medical treatment but not hospitalization. 
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Given the harm of speeding, it is meaningful to investigate factors that impact drivers’ speeding 

behaviour. The normative influences (e.g., beliefs, attitude, and actions of important others) have 

been addressed by many studies (Conner et al., 2003; Elliot et al., 2005; Forward, 2009). A study 

was conducted based on a survey of 2,018 male drivers at the age of 18 and 28 (Møller & 

Haustein, 2014). The objective of the study was to investigate the role of peer influence on 

speeding behaviour. It was found that the perception of friends’ speeding was the most important 

predictor of speeding behaviour for both age groups: drivers who thought their friends often 

drive too fast were more likely to commit speeding. The self-reported extents of personal and 

friends’ speeding behaviours were compared between two groups. It was found that younger 

drivers were more likely to think themselves to be more prudent than their friends in driving. At 

the same time, their self-reported extents of their own and friends’ speeding behaviours were 

lower than those of the older group. The authors believed that the younger drivers were 

socialized into increased speeding behaviour due to peer pressure, while the older drivers used 

peer pressure mainly to justify their speeding behaviour. In addition, the survey results indicated 

that the majority of people held a neutral attitude towards friends’ speeding behaviour, different 

from the majority attitude of disagreement towards drinking and driving or driving under the 

influence of drugs. This result suggests that the risk of speeding was commonly underestimated 

among drivers. 

However, drivers’ propensity is not the only reason for speeding. They were also found to 

be influenced by the speed of vehicles around them and had the psychology of keeping up with 

the flow of traffic (Transport Canada, 2007; Zaldel, 1992; Fleiter et al., 2010). Connolly and 

Åberg (1993) proposed that the comparison between their own speed and the speed of nearby 

vehicles played an important role in drivers’ behaviour and defined this phenomenon as the 

social contagion process. Their concerns stemmed from the possible self-amplifying social 

psychology through comparing speed. To illustrate the comparison effects with an analytical 

approach, a graph developed by Schelling (1971; 1978) was introduced. Figure 2-2(a) represents 

the distribution of the speeding threshold for a population of drivers. It can be seen that around 5% 

of the population will always commit speeding and another 5% of the population will never 

commit speeding. The rest of the drivers will commit speeding depending on the percentage of 

speeding drivers nearby. Figure 2-2(b) shows the cumulative curve of the distribution in Figure 

2-2(a) and the curve has three intersections (B, C, and D) with the identity line. When the curve 
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is below the identity line, the percentage of speeding drivers is larger than the percentage of 

drivers whose speeding thresholds are reached, and therefore, the percentage of speeding drivers 

will decrease, vice versa. Therefore, the percentage of speeding drivers is stable around points B 

and D, but becomes unstable around point C. If the percentage of speeding drivers exceeds that 

of point C, it will keep increasing to point D. Field observation data of pairs of vehicles were 

used to validate the contagion model. It was found that 49.8% of the speeds of following vehicles 

were within 5 km/h range of the speeds of leading vehicles, which was significantly distinct from 

the speed differences between randomly selected vehicles. 

 

FIGURE 2-2 Distribution of Speeding Threshold (a) and Cumulative Curve (b)  

(Schelling, 1978) 

This subsection attempts to explain why speeding is a serious issue and needs to be managed. 

First of all, speeding is a common problem in many countries and occurs on various types of 

roads. Secondly, the relationship between speeding and collisions has been proved from the 

perspectives of both driver group and road segment. It was found that the relationship can be 

described with exponential and power models, indicating that the risk will rise dramatically with 

excessive speed. Finally, speeding behaviour is found to be influenced not only by normative 

factors but also the speed of surrounding traffic.  
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2.1.2 Mechanisms of Enforcement 

The mechanism of how traffic law enforcement increases compliance is illustrated in Figure 2-3 

(Mäkinen, 2003). Legislation specifying the laws and regulations forms the foundation of 

enforcement operations and directly influences the behaviour of drivers who are willing to 

comply with the rules. The actual possibility of getting caught and punished due to the 

enforcement operation is the objective risk of speeding. The perceived possibility by drivers is 

the subjective risk of speeding, which varies with regards to personal experiences. At the same 

time, support measures, such as public campaigns, may enhance the subjective risk. It is the 

subjective risk that modifies drivers’ behaviour and increases compliance to the speed limit. 

 

FIGURE 2-3 Enforcement Mechanism Model (revised from ESCAPE Consortium, 2003) 

The subjective risk is conceived through two types of effects: general deterrence and specific 

deterrence. According to Stafford and Warr (1993), the conventional practice of distinguishing 

general and specific deterrence with regards to different populations was misleading, because 

drivers who were punished can also be influenced by general deterrence. Instead, they proposed 

the following:  
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If deterrence is defined as the omission or curtailment of a criminal act out of fear of 

legal punishment (Gibbs, 1975), then general deterrence refers to the deterrent effect of 

indirect experience with punishment and punishment avoidance and specific deterrence 

refers to the deterrent effect of direct experience with punishment and punishment 

avoidance (Stafford and Warr, 1993). 

The proposed concept has three improvements compared with the conventional one. Firstly, it 

recognizes the fact that any person or population may be influenced by a mix of general 

deterrence and specific deterrence. Secondly, it takes punishment avoidance into consideration 

when assessing the effects of deterrence. Punishment avoidance refers to the experiences of 

committing speeding without been punished. The subjective risk will be greatly diminished if 

punishment avoidance happens frequently. Finally, it is consistent with the contemporary 

learning theory. For speed enforcement, general deterrence can be roughly measured by the 

number of deployment hours, while specific deterrence can be measured by the number of issued 

tickets. 

The mechanism of how subjective risk increases compliance can be explained from the 

perspective of economic theory, which relies on the assumption that the majority of drivers make 

rational decisions (Kenkel, 1993; Becker, 1968). Speeding is committed for the benefits of 

reduced travel time and excitement, but it also leads to some possible costs. Since speeding is an 

intentional behaviour under most circumstances, drivers have to make their decision whether to 

violate the speed limit or not by comparing the benefits with the possible costs. Suppose the 

benefits of speeding can be regarded as fixed or changing only slightly during a certain period of 

time. The decision is dictated mainly by the possible cost of speeding. Since safety and the other 

costs of speeding are difficult to estimate and often ignored by potential speeding drivers, the 

possible cost can be approximately calculated as the product of the speeding fine and the 

perceived possibility of being caught. This possibility is the subjective risk of enforcement and is 

influenced by both the objective risk and support measures. The link between subjective risk and 

objective risk is established through both general and specific deterrence. 

In order to make drivers more likely to give up the idea of speeding, Kenkel (1993) 

suggested three methods to increase the possible cost of speeding: increasing the probability of 

violation detection, raising the cost of violation, and reducing the delay of the punishment. 
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Increasing the probability of violation detection (objective risk) can be realized through either 

spending more deployment hours or reducing the enforcement threshold (i.e., the minimum 

speed for drivers to get a ticket). As for the cost of violation, it should be noted that a speeding 

fine may not be the only source of monetary penalty. In some jurisdictions, major speed violation 

(e.g., exceeding the speed limit by 30 km/h or more) will lead to an increase in vehicle insurance 

premiums, which is more expensive than a speeding fine. Reducing the delay of punishment can 

reinforce specific deterrence effects and prevent drivers from speeding again during the time 

between violation and punishment. 

Besides legal sanctions (e.g., demerit points and speeding fines), researchers proposed an 

extralegal sanction in the forms of self-imposed guilt and social disapproval, which were also 

found to have influences on deviant behaviours (Zimmerman, 2008), and therefore should be 

included as part of the cost of speeding. Although the extent of the extralegal sanction is difficult 

to measure and depends heavily on the personal norms and social status of drivers, it still 

reinforces the link between subjective risk and compliance to a certain extent. One example is 

that the adverse influences of being exposed for any violations will definitely cause many 

celebrities to be more cautious when driving.  

This subsection attempts to explain why traffic enforcement can be effective as a means 

to reduce speed. The enforcement operations physically create the risk of being caught for 

speeding. This objective risk is conceived by drivers as the subjective risk through both general 

deterrence and specific deterrence. The mechanism of how subjective risk modifies drivers’ 

behaviour can be explained with economic theory. It was suggested that a widespread and long-

term implementation should be adopted in order to maximize the collision prevention function of 

traffic enforcement (Newstead et al., 2001). Leivesley (1987) interpreted the impacts of traffic 

enforcement from the perspectives of short-term effects and long-term effects. In the short term, 

enforcement can modify drivers’ behaviour due to the fear of being caught and punished. In the 

long term, enforcement can gradually establish the social willingness to comply with traffic law. 

Given the firm relationship between speeding and collisions, an increased compliance to 

speed limit due to enforcement will finally result in improved road safety. Thus, the theoretical 

link between traffic enforcement and road safety is established. 
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2.2 Safety Evaluation 

Safety evaluations are conducted to examine the effectiveness of treatments. There are two types 

of evaluations: longitudinal evaluation, also known as before-and-after evaluation, and cross-

sectional evaluation. The before-and-after evaluation needs the collision data in the periods 

before and after the implementation, while cross-sectional evaluation compares the collision data 

in only the after period between treated and untreated sites. Since most of the treatments were 

intentionally applied to “hot spots” (i.e., sites with high collision frequency) to maximize the 

safety effects, the significant difference in collision frequency between the treated sites and the 

untreated sites makes before-and-after evaluation a more favourable approach than cross-

sectional evaluation for safety evaluation. There are three kinds of before-and-after evaluations: 

1) naïve before-and-after evaluation; 2) before-and-after evaluation with a comparison group; 

and 3) before-and-after evaluation with the Empirical Bayes method.  

2.2.1 Naïve Before-and-After Evaluation 

In naïve before-and-after evaluation, the collision frequency in the before period is used to 

predict what would have been the collision frequency in the after period had the treatment not 

been implemented. This method simply assumes that the collision frequency will remain the 

same between the before period and the after period had there been no treatment. The assumption 

is subject to several issues and will result in erroneous conclusions. 

The first issue is the regression-to-the-mean effect. This effect refers to the phenomenon 

that the collision frequency of one hot spot will decrease by itself, even without any treatment. 

The reduction witnessed at treated sites may be attributed to this effect, rather than the treatment, 

since these sites usually experience high collision frequency in the before period. Using a long 

before period is suggested in order to mitigate the possible impact of regression-to-the-mean 

effect.  

The second issue is the general trend of collision frequency, which can be also called the 

maturation. The general trend is caused by gradual changes, such as traffic volume, economy, 

and road facility improvement. The continuous increase of traffic volume is likely to contribute 

to more collisions in many jurisdictions. On the other hand, the improvement of the overall road 

safety system can result in a general trend of decreasing collisions. Thus, the reduction in 

collision frequency at treated sites may be due to the general trend. 
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The last issue is external factors. Compared with the general trend mentioned above, 

external factors can be more temporary but also have remarkable influences on the treated sites. 

Some typical examples of external factors include the change of the police reporting threshold, 

the occurrence of other safety countermeasures, and extraordinary weather conditions during the 

evaluation period. Failing to take these factors into consideration will influence the reliability of 

evaluation results. 

2.2.2 Before-and-After Evaluation with a Comparison Group 

The method of before-and-after evaluation with a comparison group uses the data of a group of 

comparison sites to help estimate the collision frequency that would have occurred if the 

treatment had not been applied. A numerical example is provided here to illustrate. Suppose that 

the treated sites had 100 collisions during the before period and 60 collisions during the after 

period, while the untreated comparison sites had 80 collisions during the before period and 60 

collisions during the after period. According to the naïve before-and-after method, the reduction 

would be 40 (100 minus 60) collisions or 40% (40 divided by 100). However, the data of 

comparison group indicated that the collision frequency decreased without the treatment. This 

decrease may be due to the general trend of safety improvement, or merely a rise in the police 

reporting threshold. Thus, by the comparison group method, the odds ratio is calculated as 

    8.0806010060  , which means the reduction percentage is “actually” 20%. 

As can be seen, the preciseness of this method depends on the similarity between the 

treated site and comparison site. Collision frequency, traffic volume, road geometric 

characteristics, and geographic proximity can be adopted as the criteria when selecting 

comparison sites. According to Hauer (1997), there are two principle assumptions for this 

method. The first one is that various factors have changed in the same manner from the before 

period to the after period for both the treated group and the comparison group. The second one is 

that the extents to which these two groups are affected by the factors are identical. It is 

recommended that the collision count of the comparison group be sufficiently large. When 

pseudo odds ratios are calculated using different periods of before data, their mean should be 

close to 1 with small variance. Another issue in selecting the comparison sites is collision 

migration. The treatment implemented in one site may cause an increase of collisions in 

surrounding areas. For example, the road improvement made at one site may reduce drivers’ 
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caution and increase the risk at unimproved areas. Therefore, it is suggested to select comparison 

sites that are not likely to be influenced by the treatment. 

Although the comparison group method is able to account for the influences of 

maturation and external factors, it still fails to address the regression-to-the-mean effect.  

2.2.3 Before-and-After Evaluation with Empirical Bayes 

The ultimate goal of any evaluation method is to estimate the expected number of collisions in 

the after period if the treatment had not been implemented. This task consists of two steps: 1) 

estimating the expected number of collisions in the before period and 2) predicting how this 

number will change as a result of maturation and external factors. As mentioned above, the naïve 

before-and-after method and comparison group method fail to account for the regression-to-the-

mean effect for the treated sites, which means they are not able to estimate the unbiased expected 

number of collisions for the before period. This problem should not be neglected because the 

treated sites are very likely to suffer from the regression-to-the-mean effect. Hauer (1997) 

showed an example of how the number of collisions would change over time in his book. In total, 

1,142 intersections in San Francisco with stop signs on minor approaches were grouped by the 

number of collisions in 1974. The average numbers of collisions of these groups were tracked 

during the following three years (1975-1977) and were plotted in Figure 2-4. The dash line in the 

figure represents the average number of collisions of all the intersections in 1974 and the 

numbers at the end of each line show the sample size of that group. It can be seen that all the 

lines move towards the average line regardless of the initial number of collisions in 1974. 
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FIGURE 2-4 Regression-to-the-Mean Effect (Hauer, 1997) 

It should be noted that the regression-to-the-mean effect should not be taken as an excuse for 

turning a blind eye to sites with high collision frequency. It shows how much the number of 

collisions can deviate from its expected value. Suppose the five intersections that had eight 

collisions in 1974 were chosen to be signalized and the average number of collisions decreased 

to three in 1975. If there were no influences of maturation and external factors, the actual 

reduction due to signal installation was only one collision, rather than five. Since it is quite 

common that the length of the before period with available data is limited, the estimation of the 

expected number of collisions in the before period is a very difficult task. 

To solve this problem, the Empirical Bayes method proposes that two types of clues 

should be used together to estimate the expected number of collisions in the before period. The 

first clue is the collision data of the entity of interest (let Y  denotes the number of collisions in 

the before period). The second clue is obtained from a group of other entities that have the 

similar traits as the entity of interest. This group is called the “reference population,” which has a 

mean of  E  and a variance of  Var . Thus, the best estimate of   for the entity of interest is 

 YE |  with a variance of  YVar | . Bayes’ theorem for probability distributions is used to 
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join the two clues together under two assumptions. The first assumption is that the distribution of 

s' in the reference group follows a Gamma probability density function, which is the prior 

distribution. The second assumption is that the collision frequency Y is Poisson-distributed due 

to its rare, discrete, random, and non-negative characteristics. Thus, the posterior distribution 

)|( Yp   also follows a Gamma distribution and is shown in Equation (2-2). The derivations of 

Equation (2-3) and (2-4) are presented in Appendix A. 
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As shown in Equations (2-3) and (2-4), w  is the weight of  E  in calculating  YE | . If 

 Var  is very small, w  will be close to 1 and  YE |  is similar to  E . Conversely, if 

 Var  is much larger than  E , which means   in the reference population is very diverse, 

 E  will have little influence on  YE |  and the expected number of collisions is mainly 

determined by the observed number of collisions. 

This section demonstrates that the Empirical Bayes method is more advanced than the 

other two methods in safety evaluation, due to its ability to account for the regression-to-the-

mean effect. The calculations of the expected number of collisions during the after period will be 

introduced in the next chapter. 
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2.3 Previous Works on Automated Mobile Enforcement Evaluation 

This section provides the safety evaluation results of automated mobile enforcement in the 

literature. The results are grouped into macroscopic effects and microscopic effects according to 

whether the evaluation targets include the unenforced sites. A summary of the results is provided 

in the last subsection. 

2.3.1 Macroscopic Effects of Automated Mobile Enforcement 

Carnis and Blais conducted an assessment of a French speed camera program (Carnis & Blais, 

2013).The national enforcement program started in 2003. In total, 2,756 speed cameras, among 

which 933 were mobile ones, had been installed nation-wide on public roads and the highway 

network in 2010. The study adopted interrupted time-series analyses using autoregressive, 

integrated, moving average (ARIMA) intervention time-series models. The interrupted time-

series analyses are considered suitable to examine the effects of an intervention on the behaviour 

of a time series (Biglan et al., 2000). The results showed that the introduction of the program was 

associated with significant reductions in both traffic fatalities and non-fatal injuries. Linear 

models with and without the enforcement variables were compared to estimate the reductions. A 

21% reduction was found in the fatality rate per 100,000 vehicles, and it was proved to be 

immediate and permanent. The stable safety effect on fatal collisions was attributed to the 

intensity of the program and high detection capacity of the enforcement devices. However, the 

reduction percentage in non-fatal injuries decreased from 26.2% after the implementation in 

2003 to 0.8% in 2010.  

Chen et al. (2000) investigated the safety effects of a covert mobile photo radar program 

(PRP) in British Columbia, Canada. The PRP was initiated in March 1996 with a province-wide 

deployment of 30 covert mobile speed cameras and a public media campaign. Warning letters 

were first mailed to the owners of speeding vehicles. Violation tickets replaced warning letters in 

August 1996. Naïve before-and-after analysis revealed a 50% reduction in the percentage of 

speeding vehicles and a 75% reduction in the percentage of seriously speeding vehicles (16 km/h 

over the speed limit) at the enforced sites. A pooled cross-sectional time-series analysis of 19 

monitoring sites across the province found a 2.4 km/h reduction in vehicles’ mean speed. The 

monthly numbers of collisions, injuries, and fatalities were analyzed with the interrupted time-

series method. Motor gasoline sale was incorporated in the models as a surrogate of vehicle 
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kilometres travelled. The results showed 25%, 11%, and 17% reductions in the numbers of 

daytime speed-related collisions, daytime traffic collision victims carried by ambulances, and 

daytime traffic collision fatalities, respectively. The reason for using only the daytime collision 

data was to avoid the potential effects of impaired driving road checks conducted during the 

same period. However, the evaluation used only the first year of data after the implementation, 

and there was a possibility that the effects may have diminished as time went on. 

The photo radar camera program was introduced to the city of Edmonton (Canada) in 

1993 and has continued ever since. Tay (2010) conducted a study to validate the effectiveness of 

both the presence of enforcement vehicles and speed tickets on collision reduction. Monthly data 

for the number of severe collisions (injury and fatal), deployment hours, number of issued tickets, 

and social employment rate were collected. A Poisson generalized linear regression model was 

adopted to examine the relationship between the monthly collision frequency and the 

independent variables. In addition, a trend variable and monthly dummy variables were also 

included in the model to account for the general trend in safety and seasonal variation. It was 

found that the model fitted the data well and all the variables in the model were highly 

significant except for some monthly dummy variables. Both the number of deployment hours 

and number of issued tickets had positive effects on collision reduction. The marginal effects 

were estimated to be 70 reduced collisions per 1,000 deployment hours and 6 reduced collisions 

per 1,000 issued tickets. To further validate the effectiveness of issued tickets, the variable was 

removed from the model, which resulted in a 7.7 increase in the 
2 statistic. Since the value is 

significantly larger than the critical value for one degree of freedom, the issued tickets were 

considered to have substantial effects on collision reduction. In addition, the increase of 

employment rate was also found to reduce the number of severe collisions. The possible 

explanation provided by the author was that the increased employment rate led to higher demand 

for safety and more revenue available for road maintenance, traffic enforcement, and public 

education. 

2.3.2 Microscopic Effects of Automated Mobile Enforcement 

Queensland, Australia, applied a randomized schedule method in its Random Road Watch (RRW) 

traffic-policing program. Instead of focusing only on high collision sites, each police division 

operated an individual program covering as many routes in the division’s territory as possible. 
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The time-of-day and day-of-week of the enforcement schedule at each site was generated 

randomly, making the operation highly unpredictable (Leggett, 1997). Newstead et al. (2001) 

adopted a quasi-experimental design framework with Poisson regression models to evaluate the 

effects of the program on different severities of collisions. The models include constants, trend, 

and enforcement variables, which were further specified to represent the enforced/unenforced 

segments and enforced/unenforced time. Only the data that belong to the enforced segment and 

enforcement time (from 6:00 AM to midnight) were considered as part of the treatment group, 

while the rest was considered to be the control group. The models were aggregated by road type 

and police region through adding constraints on the enforcement variables to estimate the overall 

effects. The results revealed that the highest reduction occurred in fatal collisions at 31%, and the 

reductions decreased with severity level. Although the effect on fatal collisions remained stable, 

the effects on other severities of collisions increased with the time after the implementation. The 

estimated benefit cost ratio for the program reached 55:1. In addition, the study examined the 

relationship between collision reduction and enforcement output variables (i.e., program 

coverage, offences detected, and hours enforced). It was found that although all of the output 

variables had a positive relationship with collision reduction, only the program coverage variable 

was significant. One limitation of the study was that the model fit was not considered due to the 

hierarchical chain of models. As for the potential bias caused by the regression-to-the-mean 

effect, the influence was minimized due to the 3-year study period, as well as a large number of 

enforced segments. 

Goldenbeld and Schagen evaluated a mobile enforcement program in one Dutch province 

(2005). The program started in 1998 and was intensified in 2001. The study examined both the 

speed and safety effects on 28 sections of rural roads with a speed limit of 80 km/h or 100 km/h. 

The mean speed and percentage of speeding vehicles were examined with repeated measures 

analyses. Significant reductions were found for each year from 1998 to 2002 compared with the 

preceding year, and the highest reductions were observed in the first year and the fourth year 

when the enforcement was intensified. The safety effects were examined using before-and-after 

analysis with a comparison group. The odd ratios for injury collisions and serious traffic 

casualties were both 0.79, indicating a 21% reduction. The comparison of the traffic volumes 

between the enforced roads and comparison roads showed a similar trend. However, there were 

several limitations of the study. The effects were estimated based on small numbers of casualties 
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and collisions, and the effects of other engineering countermeasures cannot be ruled out from the 

analysis. More importantly, although the enforced roads were selected based on a relatively long 

period of historical data, the regression-to-the-mean effect could have still influenced the 

estimation results. The authors suggested that the Empirical Bayes method as proposed by Hauer 

(1997) would be a solution to the problem.  

Speed cameras were introduced to New Zealand in 1993 and overtly operated on roads 

with speed-related collisions. A trial of covert enforcement was conducted in one of the police 

regions on open roads with a speed limit of 100 km/h in 1997. Keall et al. (2001) compared the 

effects of the two types of enforcement on speed and safety. The study used an interrupted time-

series design with open roads in the other police regions as the control area. Significant net 

reductions of 2.3 km/h and 2.9 km/h were found for mean speed and 85
th

 percentile speed, 

respectively. A logit model was used to examine the safety effects. Dummy variables for the 

enforcement and season, as well as a trend variable, were included in the model. The reduction in 

the number of collisions was estimated to be 22% (P=0.054) and 29% (P=0.066) in the number 

of casualties. Significant reductions in speed and collisions were also found when the analysis 

targets were expanded to include all roads in police region, indicating the covert enforcement 

had more general effects. In addition, the net change in speed was found to diminish with time, 

while the safety effect remained stable. It should be noted the reduction may have resulted from 

a huge increase in the number of issued speed tickets, from about 1% to 5% of the traffic. 

2.3.3 Summary of the Effects of Automated Mobile Enforcement 

A summary of the literature is presented in Table 2-3 with a brief description of the enforcement 

program, method, data, and major findings. In addition to the studies mentioned in the previous 

subsections, several other relevant works are also included. 
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TABLE 2-3 Summary of Automated Mobile Enforcement Studies 

Study Effect  Method Data and Study Period Program Description Major Findings 

Carnis and Blais 

(2013) 
Macro 

Interrupted time-series 

analyses with ARIMA 

models. 

Monthly non-fatal injuries 

and fatalities per 100,000 

registered vehicles. 

Before period=4 years, 

after period=7 years. 

1,823 fixed devices and 933 

mobile devices on public roads 

and highway. 

Nation-wide:  

Fatalities: -20.7% [-11.3; -30.3] (95% CI);  

Non-fatal injuries: overall -7.3% [+1.8; -

16.5] (95% CI, diminishes from 26.2% to 

0.79%). 

Chen, Wilson, 

Meckle, and 

Cooper(2000) 

Macro 

Simple before-and-after;  

time-series cross-

sectional analysis;  

interrupted time-series 

analysis. 

Monthly provincial data of 

daytime speed-related 

collisions, injuries, and 

fatalities. 

Before period=5 years, 

after period=1 year. 

30 mobile covert speed cameras 

with public media campaign. 

30,000 hours of deployment 

and 250,000 violation tickets in 

the first year. 

Province-wide:  

25% reduction in the number of daytime 

speed-related collisions;  

11% reduction in daytime traffic collision 

victims carried by BC ambulances;  

17% reduction in daytime traffic collision 

fatalities. 

Tay (2010) Macro 
Poisson generalized 

linear model. 

Monthly severe collision 

(includes injury collisions 

and severe collisions). 

Evaluated the on-going 

program with a study 

period of 4 years. 

5 mobile enforcement vehicles; 

1,560 deployment hours and 

12,534 violation tickets per 

month on average. 

Both deployment hours and violation 

tickets variables were significant in the 

model. 

The marginal effects of increasing 1,000 

hours of deployment and 1,000 issued 

tickets were estimated to be reductions of 

70 and 6 collisions, respectively. 

Camero, 

Cavallo, and 

Gilbert (1992) 

Macro 

Time-series analysis 

with ARIMA models;  

multivariate regression 

model. 

Monthly numbers of 

casualty collisions by 

severity. 

Before period=7 years, 

after period=2 years. 

54 covert speed cameras in 

Victoria state (mainly on 

arterial roads) with mass media 

public campaign;  

the enforcement had different 

targets in Melbourne 

metropolitan area and rural 

areas. 

20.9% [13.3, 27.9] (95% CI) reduction in 

casualty collisions in Victoria; 

21.1% [12.4, 28.9] (95% CI) reduction in 

casualty collisions in Melbourne; 

19.5% [10.7, 27.5] (95% CI) reduction in 

casualty collisions in Victoria rural areas. 

Christie, Lyons, 

Dunstan, Jones 

(2003) 

Macro 
Before-and-after analysis 

with comparison group. 

Number of injury 

collisions. 

Study period from 1996 to 

2000 (different sites had 

different initial date). 

101 mobile speed camera sites 

on different types of road in 

South Wales region. The 

intervention year ranged from 

1996 to 2000. 

Different lengths of routes that extended 

from the enforcement site were examined. 

The longest distance reached 500 metres 

with a significant reduction of 41%; 

No significant change with time in collision 

reduction during the first two years since 

the enforcement. 
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Table 2-3 Continued     

Study Effect  Method Data and Study Period Program Description Major Findings 

Newstead, 

Cameron, and 

Leggett (2001) 

Micro 

Quasi-experimental 

evaluation;  

Poisson regression 

model;  

multivariate regression 

analysis. 

Monthly collision data by 

different types of severity. 

Study period from January 

1986 to June 1997 

(different region had 

different initial date). 

Each of the police divisions 

(279) selected some 40 

enforcement sites. A 

randomized schedule was 

generated with a series of sites 

and time of day for 

enforcement. 

31% reduction in fatal collisions on 

enforced segments during the enforcement 

time;  

11% reduction in total collisions in areas 

outside metropolitan Brisbane;  

the benefit cost ratio for the program was 

estimated to be 55:1. 

Goldenbeld, and 

Schagen (2005) 
Micro 

Before-and-after analysis 

with comparison group. 

Number of serious traffic 

casualties and injury 

collisions. 

Before period=8 years, 

after period=5 years. 

The enforcement was 

conducted on rural roads with 

80 km/h or 100 km/h speed 

limit. The enforcement vehicles 

were covert but there were 

warning signs along the 

enforced roads. Public 

campaign accompanied the 

program. 

21% reduction in both the number of injury 

collisions and serious traffic casualties. 

Keall, Povey, 

and Frith (2001) 
Micro 

Time-series analysis 

with linear regression 

logit model. 

Monthly number of 

police-reported collisions 

and casualties. 

Before period=4 years, 

after period=1 year. 

A covert enforcement trial was 

conducted in one of the four 

police regions in New Zealand 

while the original overt 

enforcement was still on. Public 

campaign accompanied the 

program. 

22% (P=0.054) reduction in collisions, 29% 

(P=0.066) reduction in casualties, and 9% 

(P=0.006) reduction in the casualty-per-

collision rate. 

Chen, Meckle, 

and Wilson 

(2002) 

Micro 
Empirical Bayes method 

with comparison group. 

Police-reported collisions 

in the before and after 

period. 

Before period=2 years, 

after period=2 years. 

12 enforcement locations (not 

active at the same time) on a 22 

km highway. 

The total enforcement time is 

1,313 hours in the 2-year after 

period. 

14%±11% reduction in collisions at 

enforcement locations; 

19%±10% reduction in collisions at non-

enforcement locations; 

16%±7% reduction in collisions along the 

highway as a whole. 
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All the studies mentioned above confirmed the effects of automated mobile enforcement on 

traffic safety. The estimated collision reductions were usually between 10% and 30%. More 

reductions were observed for fatal and severe injury collisions than property-damage-only 

collisions (Carnis & Blais, 2013; Newstead et al., 2001). The comparison between covert and 

overt enforcement revealed that covert enforcement was able to achieve a larger reduction in 

collisions (Keall et al., 2001). The macro effect evaluations usually adopted an interrupted time-

series analysis to examine the effects of the introduction of intervention measures (Chen et al., 

2000, Carnis & Blais, 2013; Cameron et al., 1992), while the micro evaluation adopted a wide 

range of methods. Thomas et al. (2008) summarized several issues that need to be addressed 

when conducting evaluations. Ignoring any one of them may impact the reliability of the 

evaluation results: 

 Possible time trend effects (e.g., general trends in collisions); 

 Possible confounding factors such as concurrent treatments or enforcement, changes in 

data measure, and other factors; 

 Changes in the traffic volumes between the before and after period; and 

 Regression-to-the-mean effect. 

The first two issues can be accounted for by using a comparison group. However, this method is 

unable to address the last two issues. The Empirical Bayes (EB) method as proposed by Hauer 

(1997) is considered to be the standard of professional practice to deal with the regression-to-the-

mean effect and the change in traffic volumes (Goldenbeld & Schagen, 2005; Thomas et al., 

2008). However, EB method requires a sufficient number of reference sites with the same 

characteristics as the enforced sites to develop safety performance functions, which limits its 

application in many studies. The regression-to-the-mean effect is not likely to have strong 

impacts on macroscopic evaluation as long as the number of collisions is large enough. 

The phenomenon that unenforced roads are also influenced by enforcement activities is 

called the spillover effect, which can either increase or reduce collisions. The macroscopic 

collision reduction due to enforcement can be partly attributed to the spillover effect. Christie et 

al. (2003) found that the spillover effect of one mobile enforcement site can be as long as 500 

meters along the route extended in both directions. However, the spillover effect can also have 

an adverse impact on safety for two reasons. Firstly, although more often for fixed enforcement, 
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drivers were found to slow down near the enforcement site and then speed up after they passed 

the cameras. This is the so-called “kangaroo effect,” which will increase collisions at areas 

downstream of the enforcement site (Elvik, 1997). Secondly, some drivers might adjust their 

travel routes to avoid enforcement, which increases the traffic volume on alternative routes and 

causes more collisions. Thus, it is very important to exclude roads that may be influenced by the 

spillover effect from the comparison group or reference population. 

As mentioned in the first chapter, the objectives of this thesis are to evaluate the safety 

effects of automated mobile enforcement at the segment-based level and city-wide level. For 

segment-based evaluation, before-and-after evaluation with the Empirical Bayes method and 

yearly calibration factors were proposed to account for the issues discussed above. In addition, 

this thesis also examined the issues of continuous versus discontinuous enforcement effects and 

the spillover effects on nearby segments, which were rarely discussed in previous studies. For the 

city-wide evaluation, the generalized linear model was adopted to investigate the relationship 

between the monthly number of collisions and the enforcement variables. The interrupted time-

series analysis is not suitable here due to the early implementation date of the program. 
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3 SEGMENT-BASED EVALUATION 

This chapter evaluates the segment-based safety effects of automated mobile enforcement. There 

are three objectives of the evaluation. The first objective is to examine the safety effects of 

enforcement on urban arterial roads. The second one is to compare the effects of continuous and 

discontinuous enforcement. The third one is to investigate the spillover effects of enforcement. 

The work from this chapter is currently under review as R. Li, K. El-Basyouny, A. Kim, “A 

Before-and-After Empirical Bayes Evaluation of Automated Mobile Speed Enforcement on 

Urban Arterial Roads”. 

3.1 Data Description 

This evaluation covered the time period between January 2005 and December 2012. The 

enforced segment is defined as one approach of the roadway that had the same direction as the 

enforcement operation. Yearly data on deployment, traffic counts, collisions by severity/type, 

and road geometry were collected from different databases for the City of Edmonton, Alberta, 

Canada. The following severities and types of collisions were included: 

 Severe Collisions (sum of fatal and injury collisions); 

 Property Damage Only (PDO) Collisions; 

 Total Collisions (sum of Severe and PDO collisions); 

 Speed-Related PDO Collisions; and 

 Speed-Related Collisions. 

Only mid-block collisions were considered in this analysis. This is due to the fact that 

intersection collisions have distinct characteristics and may not be directly influenced by speed 

enforcement. A statistical summary of the evaluated segments data is shown in Table 3-1. 
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TABLE 3-1 Summary Statistics of the Evaluated Segments Dataset 

 
Average 

Standard 

Deviation 
Minimum Maximum 

Average Yearly* Deployment Hours 37.2 53.4 1.0 279.6 

Segment Length (metres) 962 508 184 3233 

Median (0: no, 1: yes) 0.5 0.5 0 1 

Unsignalized Intersection Density (/km) 4.2 3.1 0 15.8 

Average Yearly AADT 9781 5094 2079 22960 

Average Yearly Severe Collisions 0.6 0.7 0.0 3.1 

Average Yearly PDO Collisions 3.1 3.7 0.3 23.9 

Average Yearly Total Collisions 3.8 4.3 0.3 27.0 

Average Yearly Speed-Related PDO Collisions 1.8 1.8 0.1 11.3 

Average Yearly Speed-Related Collisions 2.4 2.4 0.2 14.4 

* Average Yearly means the average of the yearly data during the study period 

 

3.2 Methodology 

3.2.1 Safety Performance Function 

Safety performance functions (SPF) are regression models that are used to estimate the predicted 

average collision frequency for a specific type of road segment or intersection. In this evaluation, 

the generalized linear model (GLM) was adopted to examine the relationship between the 

number of collisions and explanatory variables. A negative binomial (NB) error structure was 

used to describe the collision distribution. Previous research has shown that NB distribution is 

able to better describe overdispersed collision data than Poisson distribution, which limits the 

mean to be equal to the variance (Lu et al., 2014; Chen & Persaud, 2014). The specifications of 

the NB model are presented below (El-basyouny & Sayed, 2010). 

Let iY  denote the number of collisions at site ),...,3,2,1( nii   with a mean of i . It is 

assumed that the numbers of collisions at each site are independent and follow that 

)(Poisson ~| iiiY                                                            (3-1) 

To address overdispersion for unobserved/unmeasured heterogeneity, it is assumed that 

)( exp iii u                                                               (3-2) 
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where i is determined by a set of covariates representing site-specific characteristics multiplied 

by a corresponding set of regression parameters to be estimated. The term )( exp iu represents a 

multiplicative random effect. The negative binomial model is obtained by the assumption 

),( Gamma~|)( exp iu                                                     (3-3) 
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where  is the inverse dispersion parameter. The probability function, mean, and variance of the 

negative binomial distribution are given by 

iy

i

i

ii

i
iii

y

y
yYP 






































)(!

)(
),|(                                  (3-6) 

iiYE )(                                                                  (3-7) 






2

)( i
iiYVar                                                            (3-8) 

where iy  is the number of observed collisions. A standard SPF model form for road segments 

was selected. In the model, the predicted yearly average number of collisions is the dependent 

variable, while traffic volume and road geometric characteristics are the independent variables. 

The model form is shown in Equation (3-9). 

                       

MedianUNSDLV 43210 )ln()ln()ln(                                (3-9) 

Where: 

 

              =         predicted yearly average number of collisions 

V              =         annual average daily traffic 

L              =          length of segment (km) 

UNSD       =        density of unsignalized intersections (/km) 

Median     =        dummy variable for the presence of median 

40        =        regression parameters 
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The goal of developing local SPFs is to obtain an average number of collisions given the traffic 

volume and geometric characteristics of a particular road segment. This number serves as a 

“baseline” in the local environment. Thus, the quality of the reference segments population is 

crucial to the accuracy of prediction. A sufficient sample size is also important to strengthen the 

statistical power of the models. To this end, a thorough selection of reference segments was 

conducted within the scope of the whole city. The criteria for the selection are listed below: 

 Arterial road segment; 

 Similar traffic volume; 

 Similar collision frequency; 

 No enforcement; and 

 Not upstream/downstream of or adjacent to enforced segments. 

In total, 266 arterial segments were selected to develop the local SPFs. The parameters were 

estimated in SAS through the GENMOD procedure (SAS Institute Inc., 2012), which uses 

maximum likelihood estimation with the Newton-Raphson algorithm. The goodness of fit of the 

models was measured by scaled deviance (SD) and Pearson
2 , which are widely used for NB 

models. Both SD and Pearson
2  are asymptotically 

2  distributed with pn   degrees of 

freedom, where n  is the number of observations and p  is the number of regression parameters 

(Aitkin et al., 1989). The calculations for SD and Pearson
2  are shown in Equations (3-10) and 

(3-11). 
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3.2.2 Yearly Calibration Factor 

The SPFs contain only traffic volume and road geometric variables and are calibrated with 

aggregated data during the study period. Thus, they are not able to capture the annual fluctuation 

in collision frequency caused by confounding factors, such as weather condition, roadway 
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improvement, and general trends in traffic safety (Ye et al., 2013). The yearly calibration factor 

is calculated as the ratio between the sum of the observed number of collisions and the sum of 

the number of collisions predicted by SPFs in the same year, using the reference segments data, 

as shown in Equation (3-12). The assumption made here is that the impacts of confounding 

factors on collision frequency are similar between the reference segments and the enforced 

segments. The predicted number of collisions by SPF will be adjusted through multiplying the 

corresponding yearly calibration factor to obtain a more accurate prediction.  






Allsites

ij

Allsites

ij

ij

N

C


                                                               (3-12) 

Where: 

C              =         yearly calibration factor 

N             =         observed number of collisions 

              =         predicted number of collisions 

i               =         collision severity/type 

j              =         year 

 

3.2.3 Before-and-After Evaluation with Empirical Bayes Method 

The regression-to-the-mean (RTM) effect reflects the random variation of collision frequency in 

the absence of any external factors. In other words, the high collision frequency at one site will 

decrease after a period of time even if no countermeasure is implemented. Since most 

jurisdictions give more priority to sites with high collision frequency for enforcement, significant 

reduction obtained using conventional evaluation methods may be biased due to ignorance of the 

RTM effect. The Empirical Bayes (EB) method proposed by Hauer (1997) explicitly addressed 

this issue by incorporating the collision information of reference sites into the evaluation. The 

EB method is also able to account for changes in traffic volume and length of the before and 

after periods. The evaluation procedure is described below. 

 The first step is to calculate the expected number of collisions for the before period of 

each site. The expected number of collisions is the sum of the weighted observed number of 

collisions and the predicted number of collisions adjusted by the yearly calibration factors. The 

calculations for the expected number of collisions are shown in Equations (3-13) and (3-14). In 
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this evaluation, the minimum length of the before period was two years, and the minimum length 

of the after period was one year. 

BBB NwwE  )1(                                                       (3-13)                                                           

B

w



1

1
                                                               (3-14) 

Where: 

w           =        weight used in calculating the expected number of collisions 

BE         =        sum of the expected number of collisions for the entire before period 

B         =        sum of the predicted number of collisions for the entire before period 

BN        =        sum of the observed number of collisions for the entire before period 

           =        inverse dispersion parameter of SPF 

 

The second step is to calculate the expected number of collisions for the after period. A 

multiplier is developed to account for the differences in the period length and traffic volume 

between the before and the after period. This multiplier is the ratio between the predicted 

collisions for the after period and the predicted collisions for the before period. The expected 

number of collisions for the after period can be calculated by applying this multiplier to the 

expected number of collisions for the before period, as shown in Equation (3-15). 
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Where: 

AE          =        sum of the expected number of collisions for the entire after period 

A          =        sum of the predicted number of collisions for the entire after period 

 

The third step is to calculate the overall odds ratio of collision reduction ( ) and its standard 

error, shown in Equations (3-16), (3-17), and (3-18).  
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Where: 

AN          =        sum of the observed number of collisions for the entire after period 

 

The last step is to assess the statistical significance of the estimated collision reduction 

percentage, which is calculated as )1(100  with a standard error of )(100 SE . The ratio 

between the reduction percentage and its standard error is compared with the critical values for 

significance. If the value of the ratio is greater than 1.97, the collision reduction percentage is 

significant at the 95% confidence level. If the value of the ratio is greater than 1.65, the collision 

reduction percentage is significant at the 90% confidence level; otherwise, it is not significant at 

the 90% confidence level. 

 

3.3 Results and Discussions 

3.3.1 SPFs and Yearly Calibration Factors 

The local SPFs were developed using the data and methodology described above. The models’ 

goodness of fit was measured by two statistics: scaled deviance and Pearson
2 , shown in Table 

3-2. As demonstrated in the table, all the statistics are smaller than the critical value of 
2  

distribution, indicating that the models fit the data relatively well. The estimation results for the 

regression parameters are shown in Table 3-3. All the parameters are highly significant, except 

for the median parameter in the speed-related PDO collision model. The signs of the parameters 
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are intuitive. The collision frequency increases with traffic volume, segment length, and 

unsignalized intersection density, while it decreases when there is a median present. All the 

shape parameters were highly significant, which validates the overdispersion of the data. The 

yearly calibration factors by year and by collision severity/type are shown in Table 3-4.  

 

TABLE 3-2 SPFs Model Goodness of Fit 

 

Severe 

Collision 

PDO 

Collision 

Total 

Collision 

Speed-related 

PDO Collision 

Speed-related 

Collision 

Scaled Deviance 294.01 281.19 279.93 282.08 279.94 

Pearson 
2  269.84 286.41 288.19 294.99 289.37 

Degrees of freedom 261 261 261 261 261 

2

05.  299.68 299.68 299.68 299.68 299.68 

 

 

TABLE 3-3 SPFs Estimates Results 

 

Severe 

Collision 

PDO 

Collision 

Total 

Collision 

Speed-related 

PDO Collision 

Speed-related 

Collision 

Intercept -10.25* -5.87* -6.00* -6.48* -6.73* 

AADT 1.05* 0.74* 0.78* 0.75* 0.81* 

Length 0.44* 0.36* 0.38* 0.40* 0.41* 

UNSD 0.06* 0.07* 0.07* 0.07* 0.06* 

Median -0.28* -0.32* -0.31* -0.15 -0.18** 

Dispersion Parameter 0.38* 0.34* 0.34* 0.34* 0.34* 

* Significant at 99% level    ** Significant at 95% level 
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TABLE 3-4 Yearly Calibration Factors 

Year 
Severe 

Collision 

PDO 

Collision 

Total 

Collision 

Speed-related 

PDO Collision 

Speed-related 

Collision 

2005 1.19 0.81 0.88 0.86 0.95 

2006 1.43 0.95 1.03 0.99 1.11 

2007 1.20 1.00 1.03 0.99 1.05 

2008 0.98 1.11 1.09 1.12 1.09 

2009 0.74 1.19 1.12 1.22 1.10 

2010 0.80 1.10 1.05 1.11 1.03 

2011 0.72 0.91 0.88 0.81 0.79 

2012 0.90 0.98 0.97 0.92 0.92 

 

3.3.2 Overall Before-and-After Evaluation 

In total, 93 enforced arterial road segments were evaluated with the before-and-after EB method, 

following the procedure described in the methodology section. For each site, the adjusted yearly 

average predicted number of collisions was calculated using the corresponding traffic volume 

data and calibration factor of that year. Finally, the overall collision reduction percentages and 

their statistical test ratios by collision severity/type are shown in Table 3-5. The results suggest 

that there were significant reductions in all severities/types of collisions. The highest reduction 

occurred in severe collisions at 20.1%. The results are consistent with those of previous studies: 

Newstead et al. (2001) found a 31% reduction in fatal collisions and an 11% reduction in total 

collisions in the Queensland Random Road Watch program; Goldenbeld and Schagen (2005) 

estimated a 21% reduction in injury collisions; the covert enforcement program in New Zealand 

led to a 22% reduction for the police reported collisions (Keall et al., 2001). In addition, the 

results here also indicate that enforcement had greater impacts on severe and speed-related 

collisions, in comparison to the others listed in Table 3-5. 

 

TABLE 3-5 Overall Before-and-After Evaluation Results 

 

Severe 

Collision 

PDO 

Collision 

Total 

Collision 

Speed-Related 

PDO Collision 

Speed-Related 

Collision 

Collision Reduction (%) 20.1 14.3 14.5 17.9 18.5 

Statistical Test Ratio 2.3* 3.29* 3.64* 3.3* 3.91* 

* Significant at 95% level 
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For enforcement programs, sites were usually selected based on historical data and the expertise 

of authorities. However, jurisdictions that somehow lack a comprehensive dataset or experience 

in automated mobile enforcement may find it useful to have certain criteria and thresholds for 

site selection. Thus, the 93 segments were classified into groups based on the site selection 

criteria in the literature to examine the potential thresholds for effective enforcement (Ko et al., 

2013): 

 The average number of collisions per year during the before period; 

 The average AADT during the before period; and 

 The average collision rate during the before period (average number of collisions per 

million vehicle kilometres travelled per day). 

 

For each criterion and collision severity/type, the 93 enforced segments were divided into three 

groups according to pre-specified thresholds. After the classification, the safety evaluation was 

conducted within each group, and the results are shown in Table 3-6.  

In general, greater reductions were achieved for the segments that had a high collision 

frequency or high collision rate in the before period. For example, a 20% significant reduction is 

expected to be achieved if the segment has more than three speed-related collisions per year or 

more than one speed-related collision per million vehicle kilometres travelled per day. The 

evaluation results based on the AADT criterion revealed that segments with an average AADT 

between 7,000 and 12,000 experienced the highest reductions ranging from 26% to 31%. 

It should be noted that the magnitude of reduction is the outcome of both the 

characteristics of enforced segments (e.g., collision frequency, AADT, and collision rate) and the 

assigned enforcement resources. Thus, the 93 segments were reclassified by deployment hours 

(both total and average yearly) to examine their effects on collision reduction. The evaluation 

results are shown in Table 3-7. It can be observed that there were significant reductions, 

regardless of the collision severity/type, for the segments that had total deployment hours above 

70 or average yearly deployment hours above 30. However, the average values of the total and 

average yearly deployment hours of these segments were actually 310 and 96 respectively, which 

are much higher than the thresholds. Nevertheless, the results do indicate that longer deployment 

hours can lead to greater collision reduction.  
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TABLE 3-6 Evaluation Results by Site Selection Criteria 

  Criterion Collision AADT Collision Rate 

Severe 

Collision 

Threshold < 0.3 [0.3, 1) ≥ 1 < 7000 [7000, 12000) ≥ 12000 < 0.2 [0.2, 0.4) ≥ 0.4 

Reduction (%) 15.1 27.1** 19.1 12.7 26.2** 19.2 14.1 25 22.4** 

Group Size 30 36 27 31 33 29 43 23 27 

Average Total Hours a 85.6 151.4 98.3 44.9 111.4 193.3 149.9 82 86.7 

Average Yearly Hours b 26.5 46.6 36.4 14.4 36.3 62.4 43.1 28.8 34.8 

PDO 

Collision 

Threshold < 1.5 [1.5, 3) ≥ 3 < 7000 [7000, 12000) ≥ 12000 < 0.6 [0.6, 1.1) ≥ 1.1 

Reduction (%) 8.3 13.6 16.6* 16.7** 27.4* 5.5 -3.5 20.5* 17.4* 

Group Size 31 34 28 31 33 29 29 31 33 

Average Total Hours 130.2 96.7 119.6 44.9 111.4 193.3 165.9 97.2 86.3 

Average Yearly Hours 33.4 34.6 44.4 14.4 36.3 62.4 45.5 33.8 32.9 

Total 

Collision 

Threshold < 1.5 [1.5, 3.5) ≥ 3.5 < 7000 [7000, 12000) ≥ 12000 < 0.8 [0.8, 1.5) ≥ 1.5 

Reduction (%) 2.9 7.1 19.4* 16.3** 26.5* 6.4 -1.8 22.9* 17.4* 

Group Size 28 32 33 31 33 29 33 29 31 

Average Total Hours 148.8 86 113.8 44.9 111.4 193.3 193.4 52.2 89.5 

Average Yearly Hours 39.5 31.4 40.7 14.4 36.3 62.4 55 20.4 33.9 

Speed-

Related 

PDO 

Collision 

Threshold < 1 [1, 2) ≥ 2 < 7000 [7000, 12000) ≥ 12000 < 0.4 [0.4, 0.8) ≥ 0.8 

Reduction (%) 28.8* 6.1 20.2* 24.7* 30.5* 7.6 6.9 19.4** 22.7* 

Test Ratio 33 32 28 31 33 29 30 31 32 

Average Total Hours 127.2 102.3 114.4 44.9 111.4 193.3 160.6 98.5 87.5 

Average Yearly Hours 35.1 34.7 42.3 14.4 36.3 62.4 42.4 37.1 32.3 

Speed-

Related 

Collision 

Threshold < 1.3 [1.3, 2.8) ≥ 2.8 < 7000 [7000, 12000) ≥ 12000 < 0.5 [0.5, 1) ≥ 1 

Reduction (%) 16.7 13.5 21.5* 22.6* 30.1* 9.5 4.5 23.1* 22* 

Group Size 33 31 29 31 33 29 28 31 34 

Average Total Hours 124 125.3 92.9 44.9 111.4 193.3 186.4 84.2 83.7 

Average Yearly Hours 33.3 43.6 34.6 14.4 36.3 62.4 50 31.6 31.6 

* Significant at 95% level     

** Significant at 90% level 

a
 Average total deployment hours per site 

b
 Average yearly deployment hours per site (Total deployment hours divided by the number of enforcement years) 
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TABLE 3-7 Evaluation Results by Deployment Hours 

 
Criterion Total Deployment Hours Average Yearly Deployment Hours 

 
Threshold < 15 [15, 70) ≥ 70 < 9 [9, 30) ≥ 30 

Severe Collision 

Reduction (%) 6.2 22.9 27.3* 17.2 11.2 29.1* 

Group Size 31 31 31 33 31 29 

Average Collisions a 0.7 0.8 0.8 0.6 0.9 0.9 

Average AADT b 8599 9388 11597 8335 9618 11858 

Average Collision Rate c 0.3 0.3 0.2 0.2 0.3 0.2 

PDO Collision 

Reduction (%) 14.4** 6.8 18.5* 14.9** 10 16.8* 

Group Size 31 31 31 33 31 29 

Average Collisions 3.2 3.2 3.4 2.6 3.1 4.1 

Average AADT 8599 9388 11597 8335 9618 11858 

Average Collision Rate 1.4 1 1.1 1.1 1.2 1.2 

Total Collision 

Reduction (%) 13** 8.5 18.9* 13.8** 9.6 18.3* 

Group Size 31 31 31 33 31 29 

Average Collisions 3.9 4 4.1 3.2 4 5 

Average AADT 8599 9388 11597 8335 9618 11858 

Average Collision Rate 1.7 1.3 1.3 1.3 1.5 1.4 

Speed-Related 

PDO Collision 

Reduction (%) 10.7 15.3 23.7* 10.7 20.6* 21.4* 

Group Size 31 31 31 33 31 29 

Average Collisions 1.8 1.9 2 1.5 2 2.3 

Average AADT 8599 9388 11597 8335 9618 11858 

Average Collision Rate 0.7 0.6 0.7 0.6 0.7 0.7 

Speed-Related 

 Collision 

Reduction (%) 11.7 15.6** 24.1* 11.6 18.1* 23.4* 

Group Size 31 31 31 33 31 29 

Average Collisions 2.5 2.7 2.8 2.1 2.9 3.2 

Average AADT 8599 9388 11597 8335 9618 11858 

Average Collision Rate 1 0.9 0.9 0.9 1.1 0.9 

* Significant at 95% level     

** Significant at 90% level 

a Average yearly collisions in the before period per site  

b Average AADT in the before period per site 

c Average collision rate in the before period per site 
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3.3.3 Continuous versus Discontinuous Enforcement Evaluation 

Among all the enforced segments, some were enforced each year during the after period, while 

others were not, due to limited enforcement resources. In this subsection, the safety effects on the 

continuously enforced segments were compared with those on the discontinuously enforced 

segments using the same methodology. The purpose is to determine which enforcement strategy 

is more effective in reducing collisions. Before conducting the evaluation, it was critical to 

control for both site characteristics and the number of deployment hours, since they were found 

to be related to safety effects. As shown in Table 3-8, enforced segments were selected to ensure 

that both groups had similar collision data, traffic volume, and deployment hours. The evaluation 

results are provided in Table 3-9. It can be observed that the continuously enforced segments had 

larger reductions for all severities/types of collisions compared to the segments that were 

discontinuously enforced. The implication of the results is that continuous enforcement is a 

preferred strategy leading to greater collision reduction than discontinuous enforcement. 

 

TABLE 3-8 Continuously Enforced versus Discontinuously Enforced Segment Data 

  Group Size Collisions 
a 

AADT 
a 

Collision Rate
 a 

Deployment 

Hours
 b 

Continuously Enforced 23 3.2 9272 1.4 55.4 

Discontinuous Enforced 23 3.1 8683 1.2 58.5 

a
 Average value per site in the before period 

b
 Average value per site in the after period 

 

TABLE 3-9 Continuous versus Discontinuous Enforcement Evaluation Results 

  
Severe 

Collision 

PDO 

Collision 

Total 

Collision 

Speed-related 

PDO Collision 

Speed-related 

Collision 

Continuous 
     

Collision Reduction (%) 32.1 28.7 27.7 27.3 26.7 

Statistical Test Ratio 1.74** 3.22* 3.35* 2.38* 2.64* 

Discontinuous 
     

Collision Reduction (%) 17.9 8.5 8.6 15.0 13.4 

Statistical Test Ratio 1.01 0.91 0.99 1.37 1.36 

* Significant at 95% level    ** Significant at 90% level 
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3.3.4 Spillover Effects 

The spillover effect refers to the phenomenon of nearby enforcement operations influencing 

collisions on unenforced areas. It should be noted that although the analysis targets of this 

evaluation are road segments, the enforcement was conducted only at a specific site within each 

segment. Since significant collision reductions have been found on the enforced segments, the 

range of the spillover effect of the enforcement should be comparable to the length of the 

enforced segments, of which the average is around 1,000 meters. This coincides with the results 

estimated by Christie at el. (2003) that the spillover effect can extend to 500 meters along the 

route in both directions from the enforcement locations.  

 Additional evaluations were conducted to further investigate the spillover effect. Firstly, 

unenforced segments upstream/downstream of the enforced segments were evaluated. Secondly, 

unenforced segments that were the adjacent approach (i.e., in opposite directions) of the enforced 

segments were evaluated. In total, there were 75 upstream/downstream segments (39 upstream 

and 36 downstream). A statistical summary of the upstream/downstream segments data is shown 

in Table 3-10, and the evaluation results are shown in Table 3-11. 

 

TABLE 3-10 Summary Statistics of the Upstream/Downstream Segments 

  Average 
Standard 

Deviation 
Minimum Maximum 

Segment Length (metres) 534 341 123 1653 

Median (0: no, 1: yes) 0.6 0.5 0 1 

Unsignalized Intersection Density (/km) 3.9 2.9 0 11.6 

Average Yearly AADT 11549 5214 1811 29328 

Average Yearly Severe Collisions 0.5 0.5 0 2.9 

Average Yearly PDO Collisions 2.5 2.3 0.8 12.6 

Average Yearly Total Collisions 3.0 2.7 1.0 15.5 

Average Yearly Speed-related PDO Collisions 1.4 1.2 0.3 6.9 

Average Yearly Speed-related Collisions 1.9 1.6 0.6 8.7 

* Average Yearly means the average of the yearly data during the study period 
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TABLE 3-11 Upstream/Downstream Segments Evaluation Results 

  
Severe 

Collision 

PDO 

Collision 

Total 

Collision 

Speed-Related 

PDO Collision 

Speed-Related 

Collision 

Overall 
     

Collision Reduction (%) -3 -10.8 -11.3 -1.5 -3.3 

Statistical Test Ratio -0.21 -1.58 -1.78** -0.18 -0.44 

Upstream 
     

Collision Reduction (%) -15.2 -8.3 -11.3 1.1 -4.6 

Statistical Test Ratio -0.74 -0.86 -1.25 0.09 -0.43 

Downstream 
     

Collision Reduction (%) 12.6 -13.5 -11 -4.3 -1.5 

Statistical Test Ratio 0.67 -1.38 -1.24 -0.34 -0.14 

** Significant at 90% level 

 

The results showed that there were increases in the number of collisions for all severities/types of 

collisions. However, the increases were not significant at the 90% level except for the total 

collisions. The magnitudes of the increases were larger for the PDO and total collisions than for 

the other collisions. The results were similar for the separate evaluations for the upstream and 

downstream segments, except for the severe collisions: a decrease on the downstream segments 

and an increase on the upstream segments. All the effects were not significant at the 90% level. 

Considering the evaluation results of the upstream/downstream segments, it is safe to conclude 

that the segments used to calibrate the SPFs were not significantly affected by the enforcement. 

Next, 39 enforced segments that did not have enforcement on their adjacent approaches 

were selected. A comparison of the enforced and unenforced segments’ statistics is provided in 

Table 3-12, and the evaluation results are shown in Table 3-13. The results show that for the 

enforced segments, only severe and speed-related collisions were significantly reduced, while for 

the unenforced segments, only the PDO collisions, total collisions, and speed-related PDO 

collisions were significantly reduced. One possible explanation for this phenomenon might be 

the different effects of general and specific deterrence. Although the enforcement operations 

were planned to be covert, some drivers were able to recognize the enforcement vehicles. It may 

be easier for drivers on the adjacent approach to observe the enforcement vehicle and therefore 

slow down, resulting in reduced PDO and total collisions. Severe and speed-related collisions on 

the enforced segments were reduced because of the specific deterrence to the aggressive 
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violators that refuse to slow down until punished. Once again, the results confirm that 

enforcement is capable of improving safety. 

 

TABLE 3-12 Summary Statistics of the Enforced and Unenforced Segments 

  Average 
Standard 

Deviation 
Minimum Maximum 

Segment Length (metres) 983 670 184 3233 

Median (0: no, 1: yes) 0.5 0.5 0 1 

Unsignalized Intersection Density (/km) 4.5 2.9 0 10.3 

Average Yearly AADT 10350 4351 2278 21891 

Enforced Segments     

Average Yearly Severe Collisions 0.7 0.9 0 3.1 

Average Yearly PDO Collisions 3.8 4.9 0.4 23.9 

Average Yearly Total Collisions 4.5 5.7 0.5 27.0 

Average Yearly Speed-Related PDO Collisions 2.0 2.3 0.1 11.3 

Average Yearly Speed-Related Collisions 2.7 3.1 0.3 14.4 

Unenforced Segments     

Average Yearly Severe Collisions 0.5 0.7 0 2.8 

Average Yearly PDO Collisions 2.3 2.3 0.1 10.1 

Average Yearly Total Collisions 2.8 2.9 0.1 12.6 

Average Yearly Speed-Related PDO Collisions 1.4 1.4 0 6.0 

Average Yearly Speed-Related Collisions 1.9 2.0 0 8.8 

* Average Yearly means the average of the yearly data during the study period 

 

TABLE 3-13 Enforced versus Unenforced Segments Evaluation Results 

 

Severe 

Collision 

PDO 

Collision 

Total 

Collision 

Speed-Related 

PDO Collision 

Speed-Related 

Collision 

Enforced 
     

Collision Reduction (%) 26.1 1.8 4.5 9.2 14 

Statistical Test Ratio 2.17* 0.27 0.75 1.1 1.98* 

Unenforced 
     

Collision Reduction (%) 2.5 14.6 14.1 15.4 11.1 

Statistical Test Ratio 0.16 2.02* 2.15* 1.73** 1.38 

* Significant at 95% level    ** Significant at 90% level 
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4 CITY-WIDE EVALUATION 

This chapter evaluates the city-wide safety effects of automated mobile enforcement. The first 

objective is to examine the relationship between monthly enforcement statistics and city-wide 

collisions. The marginal safety effects of 1,000 deployment hours and 10,000 issued speed 

tickets are estimated in terms of collision reduction. The second objective is to investigate the 

threshold of deployment hours that can generate significant collision reduction. 

4.1 Data Description 

The same study period as the segment-based evaluation (January 2005 to December 2012) was 

used in this evaluation. The monthly number of collisions and enforcement statistics were 

collected and aggregated for the city-wide level. The severities/types of collisions are listed 

below: 

 Severe Collisions (sum of fatal and injury collisions); 

 Property Damage Only (PDO) Collisions; 

 Total Collisions; 

 Speed-Related PDO Collisions; and 

 Speed-Related Collisions. 

In the previous chapter, only midblock collisions were considered. The hypothesis was that the 

effects of enforcement should be mainly reflected by the midblock collisions, rather than the 

intersection collisions. Since this chapter evaluates the macroscopic effects of enforcement, both 

midblock collisions and all collisions (midblock plus intersection collisions) are examined.  

The enforcement statistics are the monthly deployment hours and number of issued 

tickets. The monthly deployment hours include all the enforcement hours of the program in one 

month. It should be noted that the number of issued tickets is an approximation of the number of 

violations during the enforcement. Some violations were not converted to speed tickets due to 

difficulties in validation and verification (e.g., multiple vehicles in one photo, unrecognizable 

vehicle plate number). However, the number of issued tickets accurately represents the number 

of drivers who were affected by specific deterrence. Usually, drivers receive speed tickets around 

one week post-violation, which makes the number of issued tickets reasonably examinable on a 

monthly basis.  
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In addition, the employment rate was collected to account for socio-economic factors. 

According to Tay (2010), the employment rate had an inverse relationship with the number of 

severe collisions, which may be due to the increase of revenue for road facility improvement and 

citizens’ demand for safety. 

In total, there are 96 monthly data entries. Summary statistics of the monthly data are 

provided in Table 4-1. It was found that the midblock collisions make up around 40% of all 

collisions, with the lowest 30% for severe collisions and the highest 46% for speed-related PDO 

collisions. Data series are plotted in Figures 4-1 to 4-5 to better illustrate their monthly trends 

and variations. For the collision data, only severe, total, and speed-related collisions are plotted 

to avoid duplications. 

TABLE 4-1 Summary Statistics of the Dataset 

  Average 
Standard 

Deviation 
Minimum Maximum 

Average Monthly Deployment Hours 2003 855 654 3608 

Average Monthly Number of Issued Tickets 13258 5553 3481 27369 

Average Employment Rate (%) 68.6 1.5 65.9 71.7 

Midblock Collisions     

Average Monthly Severe Collisions 116 35 55 185 

Average Monthly PDO Collisions 752 230 405 1584 

Average Monthly Total Collisions 868 237 537 1742 

Average Monthly Speed-Related PDO Collisions 501 157 277 1108 

Average Monthly Speed-Related Collisions 617 167 375 1266 

All Collisions     

Average Monthly Severe Collisions 384 96 215 611 

Average Monthly PDO Collisions 1806 520 1106 3308 

Average Monthly Total Collisions 2190 528 1450 3720 

Average Monthly Speed-Related PDO Collisions 1094 323 665 2095 

Average Monthly Speed-Related Collisions 1479 336 949 2507 
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FIGURE 4-1 Monthly Trend of All Collisions 

 

FIGURE 4-2 Monthly Trend of Midblock Collisions 
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FIGURE 4-3 Monthly Trend of Deployment Hours 

 

FIGURE 4-4 Monthly Trend of Issued Tickets 
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FIGURE 4-5 Monthly Trend of Employment Rate 

The variations of the monthly collision data show clear seasonal patterns. More total and speed-

related collisions occurred during the winter months, due to poor road conditions caused by snow 

and ice. However, the pattern is the opposite for severe collisions: less severe collisions occurred 

during the winter months. The explanation is likely to be that the slower speed during the winter 

months decreases the severity of collisions. The trends of the midblock collisions are very 

similar to those of all collisions, and the percentage of speed-related collisions among total 

collisions is slightly higher for the midblock collisions. The monthly deployment hours 

experienced a substantial increase at the end of 2009, rising from around 1,500 hours to around 

3,000 hours. The monthly number of issued tickets shows a clear seasonal pattern with more 

tickets issued during the summer months, which validates the higher speed of traffic during that 

time. Finally, the employment rate seems to fluctuate with a cycle of four years. 
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4.2 Methodology 

The generalized linear model (GLM) is adopted to examine the relationship between the monthly 

number of collisions and explanatory variables. The most commonly used collision distributions 

are Poisson and negative binomial (NB) distributions (Ye et al., 2013; El-basyouny & Sayed, 

2013). Although some studies used Poisson distribution in GLM models for system-wide 

collisions (Newstead et al., 2001; Tay, 2010), it can be observed from Table 4-1 that the variance 

of the data is larger than the mean, indicating the possibility of overdispersion in the data. The 

NB distribution was found to be able to better describe the overdispersed data than Poisson 

distribution (Lu et al, 2014; Chen & Persaud, 2014). According to Miao (1994), although model 

parameters estimated under Poisson distribution are close to the true values, the variances of 

them tend to be underestimated, leading to an overstated significance level. To address these 

concerns, this research compares both distributions to determine which distribution is more 

suitable for the city-wide collision data. The NB distribution has been introduced in the previous 

chapter. Thus, only Poisson distribution is described below. 
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iY  denotes the number of collisions in month )321( , ... , n, , i i   and iy is the observed number 

of collisions in that month, which is assumed to follow Poisson distribution with mean i . The 

i  is calculated as shown in Equation (4-2), where ijx  are a set of independent variables and j

are the regression parameters to be estimated. In the model, the monthly deployment hours, 

number of issued tickets, and employment rate were the independent variables. It should be 

noted that since deployment hours and the number of issued tickets were generated from the 

same event, it is impossible for them to be absolutely independent of each other (e.g., increased 

deployment hours may be associated with increased number of issued tickets). However, the 

correlation coefficient between these two variables was only 0.13. As can be observed in Figure 

4-3 and Figure 4-4, the deployment hours do not show clear seasonal variation and increased 
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greatly during the study period, while the number of tickets shows an obvious seasonal pattern. 

Thus, it is acceptable to keep them together in the models. 

Monthly dummies, employment rate, and trend variables are added to the model to 

account for monthly change factors, socio-economic factors, and the general trend, respectively. 

In addition, another dummy variable is included to account for the increase of the PDO collisions 

reporting threshold since 2011. The model form is shown in Equation (4-3). The parameters were 

estimated in SAS through the GENMOD procedure (SAS Institute Inc., 2012), which uses 

maximum likelihood estimation with the Newton-Raphson algorithm. 

DummiesMonthly              

Threshold Trend Employment Tickets Hour )ln(

166

543210








         (4-3) 

Where: 

 

                   =          predicted monthly collision frequency 

Hour              =         monthly deployment hour 

Tickets           =         monthly number of issued tickets 

Employment =         employment rate (%) 

Trend             =         trend variable 

Threshold       =         dummy variable (0 before 2011, 1 after) 

160            =         regression parameters 

 

The marginal effect of one variable can be estimated by taking the partial differential of Equation 

(4-2). For the generalized linear model with the log link function, the marginal effect is the 

product of the predicted value of the dependent variable and the corresponding coefficient of the 

variable, as shown in Equation (4-4). The predicted number of collisions can be replaced with 

the data mean to obtain an overall marginal effect. 

j
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The goodness of fit of the model is measured by scaled deviance (SD) and the Pearson
2 , which 

are widely used statistics for the NB and Poisson model (Ye et al., 2013). Both SD and Pearson

2  are asymptotically 
2  distributed with pn   degrees of freedom, where n  is the number of 

observations and p  is the number of regression parameters (Aitkin et al., 1989). The 

calculations of SD and Pearson
2  for the NB model are introduced in the previous chapter. The 

calculations for the Poisson model are shown in Equations (4-5) and (4-6). 
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It has been found that these statistics may be not valid to assess the fit of the model when the 

mean of the data is low, which is often referred to as low sample mean problem (Wood, 2002). 

For example, the SD is usually too small, suggesting the goodness of fit is too good to be true, 

when the sample mean is low and the sample size is big. However, there is a gap in the literature 

on the properness of these statistics if the sample mean is very high (e.g., city-wide data). As can 

be observed in Equation (4-6), compared with the calculation of Pearson
2 for the NB model, 

the variance is replaced with the mean in the denominator, which is the property of Poisson 

distribution. However, the summary statistics of the data suggest that the variance of the data is 

much larger than the mean. This will result in a larger value of Pearson
2  for the Poisson model, 

which may underestimate the fit of the model. 

 

4.3 Results and Discussions 

4.3.1 Poisson versus NB Models 

The SD and Pearson
2  of the models are shown in Table 4-2. The number of observations is 96, 

and the number of regression parameters is 16 for severe collision models and 17 for other 

models. This is because the severe collision models do not need to include the threshold variable, 

which is set only for models containing PDO collisions. Therefore, the degree of freedom is 80 

for severe collision models and 79 for the other models. The critical values for 
2 distribution 
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with degrees of freedom of 80 and 79 are 101.88 and 100.75, respectively. Thus, if SD and 

Pearson
2  are smaller than these critical values, the models fit the data well. It can be seen that 

all the statistics of NB models are smaller than the critical values. However, the statistics of 

Poisson models are much larger than the critical values. 

TABLE 4-2 Models’ Goodness of Fit 

 

Severe 

Collision 

PDO 

Collision 

Total 

Collision 

Speed-Related 

PDO Collision 

Speed-Related 

Collision 

Degrees of freedom 
80 79 79 79 79 

2

05.  101.88 100.75 100.75 100.75 100.75 

All Collisions 
     

Poisson 
Pearson

2   318.24 3044.40 2961.87 1870.09 1807.33 

Scaled Deviance 318.13 2970.73 2909.29 1830.57 1783.65 

NB 
Pearson

2   94.55 99.60 98.59 98.84 97.67 

Scaled Deviance 94.63 95.79 95.83 95.59 95.65 

Midblock Collisions  

    

Poisson 
Pearson

2   231.99 1864.03 1910.40 1278.58 1323.64 

Scaled Deviance 236.15 1811.91 1863.65 1249.88 1298.99 

NB 
Pearson

2   92.36 99.61 99.29 98.53 98.20 

Scaled Deviance 95.10 95.67 95.73 95.46 95.53 

 

The estimation results for the regression parameters of models using all collisions and midblock 

collisions only are shown in Table 4-3 and Table 4-4, respectively. For the models using all 

collisions, most of the monthly dummies are significant (at least 90% level), except for January 

and November in NB models. This is reasonable because December is chosen as the baseline and 

these two months are close to December. Some summer and fall monthly dummies have positive 

signs for severe collisions, indicating more severe collisions occurred during those months. The 

situation is the opposite for other types of collisions. This is consistent with the data trends 

described in the data section.  
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The deployment hour variable is significant only in Poisson models, not including the 

severe collision model. The number of issued tickets variable is significant in Poisson models 

and NB models except for the severe collision model. Both of the enforcement variables have 

negative signs in the models, suggesting that enforcement reduced collisions, regardless of the 

severity and type.  

The employment rate variable is significant with a positive sign in all the models except 

for the NB severe collision model. This means the increase in employment rate will lead to more 

collisions, which may be due to the increased traffic volume. The trend variable is significant in 

all the models, with a negative sign for severe collision models and a positive sign for the other 

models, which means that the number of severe collisions has a decreasing trend while that of 

PDO collisions has an increasing trend. The police reporting threshold variable is found to be 

highly significant in all the models, which is intuitive because the raised threshold should have 

an immediate impact on the number of recorded collisions. 

The estimation results of the models using midblock collisions only are very similar to 

those of the models using all collisions. The November dummy variable becomes significant in 

all the models, indicating the midblock collisions are less sensitive to the adverse effects of snow 

and ice than intersection collisions (i.e., the number of midblock collisions is still significantly 

less in November than in December). The number of issued tickets variable is significant in all 

the models except for the NB severe collision model. However, the deployment hour variable is 

still not significant in either the NB model or the Poisson severe collision model. 
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TABLE 4-3 Parameter Estimates Results for Models Using All Collisions 

Parameter Intercept Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Hour Tickets Employment Trend Threshold Dispersion 

Severe 

Collision 

Poisson 

Estimate 5.835 -0.107 -0.225 -0.097 -0.253 -0.097 -0.037 -0.055 0.022 0.098 0.067 -0.057 -0.001 -0.027 0.008 -0.008 NA NA 

P Value 0.000 0.000 0.000 0.000 0.000 0.001 0.217 0.076 0.493 0.001 0.017 0.033 0.896 0.077 0.050 0.000 NA NA 

NB 
Estimate 5.631 -0.106 -0.215 -0.092 -0.253 -0.102 -0.032 -0.051 0.026 0.104 0.068 -0.057 0.009 -0.023 0.011 -0.008 NA 0.006 

P Value 0.000 0.023 0.000 0.060 0.000 0.061 0.553 0.365 0.662 0.045 0.188 0.237 0.667 0.393 0.143 0.000 NA 0.000 

PDO 

Collision 

Poisson 

Estimate 5.751 -0.032 -0.210 -0.155 -0.428 -0.408 -0.365 -0.384 -0.375 -0.316 -0.241 -0.079 -0.027 -0.124 0.029 0.007 -0.449 NA 

P Value 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 NA 

NB 

Estimate 6.039 -0.019 -0.209 -0.159 -0.440 -0.421 -0.376 -0.398 -0.387 -0.322 -0.248 -0.084 -0.037 -0.103 0.024 0.007 -0.428 0.015 

P Value 0.000 0.766 0.001 0.020 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.197 0.319 0.016 0.052 0.000 0.000 0.000 

Total 

Collision 

Poisson 
Estimate 6.335 -0.050 -0.219 -0.154 -0.407 -0.359 -0.313 -0.331 -0.308 -0.247 -0.193 -0.079 -0.020 -0.107 0.024 0.004 -0.364 NA 

P Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 NA 

NB 

Estimate 6.596 -0.039 -0.217 -0.156 -0.415 -0.369 -0.321 -0.341 -0.318 -0.251 -0.198 -0.083 -0.028 -0.090 0.020 0.004 -0.343 0.012 

P Value 0.000 0.497 0.000 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.159 0.409 0.019 0.078 0.000 0.000 0.000 

Speed-

Related 

PDO 

Collision 

Poisson 

Estimate 5.146 -0.042 -0.213 -0.122 -0.390 -0.379 -0.353 -0.370 -0.337 -0.306 -0.258 -0.103 -0.025 -0.122 0.030 0.008 -0.570 NA 

P Value 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.000 NA 

NB 
Estimate 5.567 -0.025 -0.207 -0.124 -0.397 -0.388 -0.357 -0.378 -0.343 -0.308 -0.260 -0.104 -0.040 -0.103 0.023 0.008 -0.542 0.015 

P Value 0.000 0.694 0.002 0.074 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.116 0.299 0.017 0.066 0.000 0.000 0.000 

Speed-

Related 

Collision 

Poisson 

Estimate 6.050 -0.065 -0.225 -0.127 -0.367 -0.316 -0.278 -0.296 -0.249 -0.206 -0.182 -0.097 -0.015 -0.097 0.022 0.004 -0.417 NA 

P Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.044 0.000 0.000 0.000 0.000 NA 

NB 

Estimate 6.350 -0.054 -0.220 -0.126 -0.370 -0.320 -0.281 -0.300 -0.254 -0.207 -0.183 -0.098 -0.024 -0.084 0.018 0.004 -0.394 0.011 

P Value 0.000 0.325 0.000 0.033 0.000 0.000 0.000 0.000 0.001 0.001 0.004 0.083 0.458 0.022 0.101 0.000 0.000 0.000 

Parameters significant at 90% and higher level are marked with grey fill colour. 
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TABLE 4-4 Parameter Estimates Results for Models Using Midblock Collisions Only 

Parameter Intercept Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Hour Tickets Employment Trend Threshold Dispersion 

Severe 

Collision 

Poisson 

Estimate 4.117 -0.167 -0.341 -0.104 -0.269 -0.071 -0.002 0.014 0.058 0.065 0.020 -0.132 -0.011 -0.059 0.018 -0.009 NA NA 

P Value 0.000 0.000 0.000 0.030 0.000 0.188 0.970 0.806 0.322 0.203 0.704 0.007 0.577 0.034 0.025 0.000 NA NA 

NB 

Estimate 3.975 -0.178 -0.344 -0.117 -0.276 -0.088 -0.002 0.010 0.058 0.062 0.015 -0.141 -0.001 -0.057 0.020 -0.009 NA 0.013 

P Value 0.000 0.015 0.000 0.129 0.001 0.303 0.980 0.914 0.532 0.448 0.857 0.065 0.970 0.182 0.104 0.000 NA 0.000 

PDO 

Collision 

Poisson 
Estimate 4.438 -0.064 -0.285 -0.131 -0.460 -0.435 -0.381 -0.421 -0.391 -0.385 -0.279 -0.127 -0.049 -0.115 0.037 0.006 -0.411 NA 

P Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 NA 

NB 

Estimate 4.606 -0.043 -0.278 -0.134 -0.475 -0.448 -0.394 -0.438 -0.405 -0.389 -0.285 -0.130 -0.059 -0.091 0.034 0.006 -0.394 0.022 

P Value 0.000 0.576 0.000 0.105 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.099 0.198 0.076 0.024 0.000 0.000 0.000 

Total 

Collision 

Poisson 

Estimate 4.888 -0.081 -0.297 -0.134 -0.442 -0.391 -0.335 -0.365 -0.333 -0.328 -0.244 -0.130 -0.043 -0.107 0.033 0.004 -0.349 NA 

P Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 NA 

NB 
Estimate 5.085 -0.061 -0.292 -0.136 -0.453 -0.402 -0.346 -0.379 -0.345 -0.330 -0.249 -0.132 -0.053 -0.086 0.030 0.004 -0.329 0.019 

P Value 0.000 0.402 0.000 0.082 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.078 0.223 0.078 0.037 0.001 0.000 0.000 

Speed-

Related 

PDO 

Collision 

Poisson 

Estimate 3.878 -0.101 -0.305 -0.131 -0.464 -0.443 -0.398 -0.423 -0.373 -0.376 -0.299 -0.170 -0.046 -0.120 0.040 0.005 -0.480 NA 

P Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 NA 

NB 

Estimate 4.183 -0.079 -0.297 -0.136 -0.475 -0.453 -0.407 -0.438 -0.386 -0.377 -0.304 -0.171 -0.056 -0.097 0.035 0.006 -0.457 0.022 

P Value 0.000 0.306 0.000 0.106 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.034 0.230 0.064 0.024 0.000 0.000 0.000 

Speed-

Related 

Collision 

Poisson 
Estimate 4.531 -0.118 -0.318 -0.135 -0.438 -0.379 -0.329 -0.345 -0.296 -0.298 -0.247 -0.168 -0.038 -0.107 0.034 0.003 -0.382 NA 

P Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 NA 

NB 

Estimate 4.810 -0.098 -0.312 -0.138 -0.443 -0.386 -0.336 -0.354 -0.306 -0.297 -0.250 -0.167 -0.048 -0.089 0.030 0.003 -0.358 0.019 

P Value 0.000 0.169 0.000 0.076 0.000 0.000 0.000 0.000 0.002 0.001 0.003 0.025 0.269 0.066 0.037 0.017 0.000 0.000 

Parameters significant at 90% and higher level are marked with grey fill colour. 
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So far, the following can be concluded (PDO collisions are used to generally represent all the 

severities/types of collisions except for severe collisions): 

 More severe collisions occur in summer months, while more PDO collisions occur in 

winter months; 

 There is an increasing trend for PDO collisions and a decreasing trend for severe 

collisions; 

 The number of issued tickets has an inverse relationship with the number of PDO 

collisions; and 

 The employment rate has a positive relationship with the number of PDO collisions. 

The question here is whether the number of deployment hours can influence the number of 

collisions or not. Although the estimates of the Poisson and NB models are close to each other, 

the deployment hour variable is highly significant in Poisson models but insignificant in NB 

models. It has been found that the highly significant parameters in the Poisson model may be 

caused by the underestimated variance, which is also the reason for the huge differences in 

goodness of fit statistics between the two models.  

The 2R  is chosen as a supplementary index to compare the goodness of fit of the two 

models. One of the merits of using 2R  is that the calculation is not related to the distribution of 

models as shown in Equation (4-7). Models with higher 2R  value are considered to be able to 

better describe the data. 

 
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


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2

2

2 1
yy

y
R

i

ii 
                                                            (4-7) 

where iy  is the observed number of collisions in month i ; i  is the predicted number of 

collisions in that month; and y  is the average of the observed numbers of collisions in the study 

period. The values of 2R  are presented in Table 4-5. 
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TABLE 4-5 Comparison of 2R  between Poisson and NB Models 

 

Severe 

Collision 

PDO 

Collision 

Total 

Collision 

Speed-Related 

PDO Collision 

Speed-Related 

Collision 

All Collisions 
     

Poisson 0.850 0.762 0.732 0.770 0.728 

NB 0.847 0.759 0.729 0.766 0.725 

Midblock Collisions 
     

Poisson 0.749 0.665 0.640 0.686 0.636 

NB 0.742 0.679 0.638 0.668 0.619 

 

It can be observed that the 2R of the models using all collisions are better than the models using 

midblock collisions only. As for the type of collisions, severe collision models have the highest

2R . This may be due to less variation in severe collisions than other types of collisions. The 

value of 2R  is likely to be related to the homogeneity of the data, which explains why 2R  of the 

total collision models are lower than either severe collision models or PDO collision models. 

The differences in 2R  between Poisson and NB models are marginal. Poisson models 

have slightly higher 2R  than NB models, except for the PDO collision model using midblock 

collisions only. The results indicate that both models have similar and satisfying goodness of fit. 

To better illustrate the preciseness of the models, the models with the highest 2R  value (the 

Poisson severe collision model using all collisions) and the lowest 2R  value (NB speed-related 

collision model using midblock collisions only) are plotted against the observed data in Figure 4-

6 and Figure 4-7, respectively.  

Since 2R  values suggest both models can describe the data relatively well, it is clear that 

the unreasonably high values of the goodness of fit statistics of Poisson models are caused by the 

specifications of formulas. Although the significance of the deployment hour variable is not 

determined, it can be interpreted that the number of deployment hours does have some influences 

on collision reduction, but it is not as significant as that of the issued tickets. 
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FIGURE 4-6 Poisson Severe Collision Model Using All Collisions 

 

FIGURE 4-7 NB Speed-Related Collision Model Using Midblock Collisions Only 
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4.3.2 Marginal Effects of Enforcement Variables 

The marginal effect is the expected change of the dependent variable (number of collisions) as a 

function of the change in a certain explanatory variable while keeping all the other variables 

constant. As described in the methodology section, the marginal effect of one variable in the 

model with the Log-link function can be calculated as the product of the predicted number of 

collisions and the estimated parameter of that variable. Thus, the magnitude of the parameter can 

be regarded as the reduction ratio. Usually, the mean of the observed numbers of collisions is 

used to replace the predicted number of collisions to obtain the overall marginal effect of one 

variable. Since the estimation results for parameters of the Poisson and NB models are close to 

each other, the calculations are based on the estimation results for Poisson models. The marginal 

effects of increasing 1,000 deployment hours and 10,000 issued tickets are shown in Table 4-6.  

TABLE 4-6 Marginal Effects of Enforcement Variables 

 

Severe 

Collision 

PDO 

Collision 

Total 

Collision 

Speed-Related 

PDO Collision 

Speed-Related 

Collision 

All Collisions 
     

1,000 Hour -1 -49 -44 -27 -22 

10,000 Tickets -10 -223 -234 -133 -144 

Midblock Collisions 
     

1,000 Hour -1 -37 -37 -23 -23 

10,000 Tickets -7 -86 -93 -60 -66 

 

 

4.3.3 Threshold for Deployment Hours 

In the previous subsection, the deployment hour variable is found to be significant in Poisson 

models (except for the severe collision model) but insignificant in NB models. Thus, the 

deployment hour variable is not as significant as the number of issued tickets, employment rate, 

trend, and threshold variables. The deployment hour variable represents the general deterrence of 

the enforcement program. Compared with specific deterrence generated by issuing speed tickets, 

the general deterrence is believed to be more temporary and has less spillover effect. If a driver 

only witnessed enforcement at a specific site but has never been issued any tickets, he or she may 

commit speeding when there is no enforcement in sight or speed up after passing the site. 

However, if the driver was issued a ticket, especially when being unaware of the enforcement, he 
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or she is very likely to recall the unpleasant experience each time at the same location for a 

period of time. The fear of being punished again makes the driver control his or her speed. 

The scenarios above explain why speed tickets are more significant than the presence of 

enforcement itself in reducing city-wide collisions. However, there should be a considerable 

amount of more self-disciplined drivers who are willing to modify their behaviours as long as the 

general deterrence is sufficiently strong. Although the threshold for general deterrence to modify 

behaviour varies among different individuals, it is assumed that there exists a certain threshold 

for deployment hours to have a significant impact on city-wide collisions. The threshold 

assumption can be proved with logical extremes: no significant effects when deployment hours 

approach none but highly significant effects when enforcement is everywhere at any time. 

The deployment hour variable is replaced with a deployment dummy variable to indicate 

whether deployment hours in one month reached a certain value of deployment hours or not. 

Although a higher value is more likely to result in significant estimation, it is hoped that the 

value can be as close to the actual threshold as possible to serve as a minimum requirement for 

deployment. The median of monthly deployment hour data is chosen as the value. According to 

the data, the median is around 1,500 hours and several months before the huge increase at the 

end of 2009 reached this value. 

It was found that the goodness of fit statistics for all the models except for the NB severe 

collision models reduced. This means that, in general, the replacement of the deployment hour 

variable with the deployment dummy variable increases the goodness of fit of the models. The 

exact reduction values are shown in Table 4-7. 
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TABLE 4-7 Reduction of Models’ Goodness of Fit Statistics 

 

Severe 

Collision 

PDO 

Collision 

Total 

Collision 

Speed-Related 

PDO Collision 

Speed-Related 

Collision 

All Collisions      

Poisson 
Pearson 

2  12.35 126.68 117.97 82.35 74.96 

Scaled Deviance 11.05 102.32 97.03 67.32 62.39 

NB 
Pearson 

2  -0.20 1.16 1.07 1.19 1.10 

Scaled Deviance -0.68 0.01 0.01 0.03 0.03 

Midblock Collisions      

Poisson 
Pearson 

2  0.84 40.79 35.39 39.50 32.92 

Scaled Deviance 0.77 31.76 27.42 32.75 27.14 

NB 
Pearson 

2  -0.29 0.81 0.72 0.91 0.75 

Scaled Deviance -0.28 0.04 0.03 0.10 0.07 

 

The estimation results for the regression parameters of models using all collisions and midblock 

collisions only are shown in Table 4-8 and Table 4-9, respectively. It can be observed that the 

deployment dummy variable is significant in all the models except for severe collision models. 

Although the employment rate variable became insignificant in NB models using all collisions, it 

remained significant in most of the models using midblock collisions only. In general, the 

estimation of each parameter does not change much due to the replacement. 

Next, the threshold value was changed to 1,400 hours and 1,600 hours (please see 

Appendix B for the estimation results). Their models’ goodness of fit statistics and parameters’ 

significance were compared with those of the 1,500 hour models. In the 1,400 hour models, most 

of the goodness of fit statistics increased, and the deployment dummy variable is insignificant in 

NB models. In the 1,600 hour models, most of the goodness of fit statistics also increased, and 

the deployment dummy variable was significant in Poisson models and NB models using 

midblock collisions only. In addition, the deployment dummy variable became highly significant 

in severe collision models. The results indicate 1,500 hours is the closest value to the actual 

threshold. This is because a lower or higher than actual value will either include “ineffective” 

months or exclude “effective” months, thus diminishing the models’ goodness of fit and 

parameters’ significance. However, the significant deployment dummy variable in severe 

collision models when the value is 1,600 hours may suggest that more deployment hours are 

needed in order to have a significant impact on severe collision reductions. 
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TABLE 4-8 Parameter Estimates Results for Models Using All Collisions (Dummy Deployment Variable) 

Parameter Intercept Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Deployment Tickets Employment Trend Threshold Dispersion 

Severe 

Collision 

Poisson 

Estimate 6.276 -0.090 -0.225 -0.084 -0.250 -0.102 -0.041 -0.052 0.037 0.100 0.069 -0.049 -0.048 -0.026 0.002 -0.008 NA NA 

P Value 0.000 0.001 0.000 0.002 0.000 0.001 0.165 0.092 0.249 0.000 0.014 0.064 0.000 0.085 0.674 0.000 NA NA 

NB 
Estimate 6.087 -0.093 -0.216 -0.082 -0.250 -0.102 -0.033 -0.048 0.039 0.106 0.071 -0.052 -0.039 -0.023 0.005 -0.008 NA 0.006 

P Value 0.000 0.045 0.000 0.089 0.000 0.055 0.533 0.386 0.503 0.039 0.164 0.275 0.123 0.382 0.565 0.000 NA 0.000 

PDO 

Collision 

Poisson 

Estimate 6.411 -0.017 -0.214 -0.153 -0.439 -0.430 -0.385 -0.397 -0.373 -0.327 -0.254 -0.076 -0.083 -0.117 0.019 0.007 -0.425 NA 

P Value 0.000 0.095 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 NA 

NB 

Estimate 6.499 -0.005 -0.212 -0.154 -0.448 -0.442 -0.394 -0.406 -0.379 -0.329 -0.258 -0.080 -0.081 -0.098 0.017 0.007 -0.414 0.015 

P Value 0.000 0.935 0.001 0.021 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.211 0.040 0.015 0.159 0.000 0.000 0.000 

Total 

Collision 

Poisson 
Estimate 6.934 -0.036 -0.224 -0.152 -0.417 -0.380 -0.332 -0.344 -0.306 -0.257 -0.205 -0.076 -0.071 -0.099 0.015 0.004 -0.339 NA 

P Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 NA 

NB 

Estimate 7.063 -0.027 -0.221 -0.153 -0.423 -0.389 -0.338 -0.351 -0.312 -0.259 -0.209 -0.080 -0.071 -0.085 0.013 0.004 -0.326 0.012 

P Value 0.000 0.634 0.000 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.166 0.048 0.020 0.245 0.000 0.000 0.000 

Speed-

Related 

PDO 

Collision 

Poisson 

Estimate 5.875 -0.027 -0.219 -0.121 -0.403 -0.405 -0.375 -0.386 -0.337 -0.319 -0.273 -0.101 -0.086 -0.113 0.019 0.008 -0.542 NA 

P Value 0.000 0.042 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 NA 

NB 
Estimate 6.102 -0.010 -0.211 -0.120 -0.406 -0.412 -0.378 -0.389 -0.335 -0.317 -0.273 -0.100 -0.090 -0.097 0.015 0.008 -0.525 0.015 

P Value 0.000 0.875 0.001 0.076 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.123 0.025 0.017 0.220 0.000 0.000 0.000 

Speed-

Related 

Collision 

Poisson 

Estimate 6.682 -0.052 -0.231 -0.126 -0.378 -0.338 -0.298 -0.310 -0.250 -0.218 -0.194 -0.096 -0.067 -0.088 0.013 0.004 -0.388 NA 

P Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 NA 

NB 
Estimate 6.872 -0.042 -0.225 -0.124 -0.379 -0.341 -0.299 -0.310 -0.250 -0.216 -0.194 -0.096 -0.070 -0.078 0.010 0.004 -0.373 0.011 

P Value 0.000 0.437 0.000 0.031 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.084 0.039 0.026 0.348 0.000 0.000 0.000 

Parameters significant at 90% and higher level are marked with grey fill colour. 
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TABLE 4-9 Parameter Estimates Results for Models Using Midblock Collisions Only (Dummy Deployment Variable) 

Parameter Intercept Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Deployment Tickets Employment Trend Threshold Dispersion 

Severe 

Collision 

Poisson 

Estimate 4.350 -0.156 -0.342 -0.096 -0.268 -0.076 -0.007 0.015 0.068 0.067 0.020 -0.127 -0.036 -0.059 0.014 -0.009 NA NA 

P Value 0.000 0.001 0.000 0.048 0.000 0.155 0.900 0.790 0.248 0.193 0.701 0.010 0.131 0.035 0.082 0.000 NA NA 

NB 
Estimate 4.205 -0.170 -0.344 -0.111 -0.275 -0.091 -0.004 0.010 0.065 0.062 0.015 -0.138 -0.025 -0.057 0.016 -0.009 NA 0.012 

P Value 0.000 0.022 0.000 0.149 0.001 0.287 0.959 0.909 0.484 0.445 0.854 0.071 0.525 0.182 0.195 0.000 NA 0.000 

PDO 

Collision 

Poisson 

Estimate 4.812 -0.047 -0.285 -0.123 -0.462 -0.451 -0.393 -0.424 -0.378 -0.386 -0.285 -0.118 -0.086 -0.117 0.031 0.005 -0.414 NA 

P Value 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 NA 

NB 

Estimate 4.903 -0.026 -0.280 -0.125 -0.478 -0.468 -0.410 -0.443 -0.390 -0.393 -0.294 -0.122 -0.094 -0.092 0.029 0.005 -0.399 0.021 

P Value 0.000 0.733 0.000 0.124 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.117 0.051 0.062 0.049 0.000 0.000 0.000 

Total 

Collision 

Poisson 
Estimate 5.191 -0.065 -0.297 -0.126 -0.443 -0.404 -0.345 -0.367 -0.320 -0.327 -0.249 -0.122 -0.074 -0.108 0.028 0.003 -0.352 NA 

P Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 NA 

NB 

Estimate 5.342 -0.046 -0.293 -0.128 -0.455 -0.419 -0.360 -0.383 -0.332 -0.333 -0.258 -0.124 -0.083 -0.087 0.026 0.003 -0.334 0.019 

P Value 0.000 0.527 0.000 0.096 0.000 0.000 0.000 0.000 0.001 0.000 0.002 0.093 0.068 0.063 0.067 0.001 0.000 0.000 

Speed-

Related 

PDO 

Collision 

Poisson 

Estimate 4.435 -0.082 -0.308 -0.124 -0.471 -0.464 -0.416 -0.431 -0.362 -0.381 -0.309 -0.163 -0.096 -0.118 0.031 0.005 -0.471 NA 

P Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 NA 

NB 
Estimate 4.689 -0.060 -0.301 -0.128 -0.482 -0.479 -0.429 -0.448 -0.373 -0.387 -0.317 -0.163 -0.108 -0.094 0.027 0.005 -0.449 0.021 

P Value 0.000 0.435 0.000 0.118 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.039 0.027 0.060 0.073 0.000 0.000 0.000 

Speed-

Related 

Collision 

Poisson 

Estimate 4.960 -0.101 -0.320 -0.128 -0.442 -0.396 -0.344 -0.350 -0.286 -0.301 -0.254 -0.161 -0.078 -0.106 0.027 0.002 -0.375 NA 

P Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 NA 

NB 
Estimate 5.213 -0.082 -0.316 -0.131 -0.449 -0.408 -0.354 -0.363 -0.294 -0.304 -0.261 -0.160 -0.089 -0.087 0.023 0.002 -0.353 0.018 

P Value 0.000 0.247 0.000 0.084 0.000 0.000 0.000 0.000 0.002 0.000 0.001 0.029 0.048 0.060 0.094 0.011 0.000 0.000 

Parameters significant at 90% and higher level are marked with grey fill colour. 
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5 CONCLUSIONS AND FUTURE RESEARCH 

5.1 Concluding Remarks 

In the segment-based analysis, a before-and-after evaluation with the Empirical Bayes method 

was used to examine the safety effects of automated mobile speed enforcement on urban arterial 

road segments. Local safety performance functions and yearly calibration factors for different 

severities/types of collisions were developed to increase the accuracy of the predicted number of 

collisions. Significant reductions were found for all severities/types of collisions with the highest 

reduction occurring in severe collisions, followed by speed-related collisions. The reductions 

ranged from 14% to 20%, which is consistent with previous research findings. The evaluation 

based on site selection criteria and deployment hours suggests that segments with higher 

collision frequencies/rates and longer deployment hours are likely to experience greater collision 

reductions. The comparison between continuously and discontinuously enforced segments 

revealed that the former experienced larger reductions in all severities/types of collisions. Finally, 

there were no spillover effects upstream or downstream of the enforced segments. However, 

there was a spillover effect on adjacent unenforced segments. Adjacent unenforced segments 

showed statistically significant reductions for PDO, total, and speed-related PDO collisions.  

In the city-wide analysis, the relationship between enforcement variables and monthly 

collisions is examined using the generalized linear models, while accounting for seasonal and 

socio-economic factors, general trend, and changes in the police reporting threshold. Poisson and 

negative binomial (NB) models were compared, and it was found that the number of issued 

tickets variable is significant in both models, while the deployment hour variable is significant 

only in Poisson models. Although the estimation results are similar for the two models, the 

goodness of fit statistics of Poisson models are much larger than those of NB models, which is 

due to the underestimation of variance in Poisson models. The 2R  of the models are calculated to 

be within the range of 0.62 and 0.85, indicating that all the models fit the data relatively well. 

The marginal effects of increasing 1,000 deployment hours and 10,000 issued tickets in terms of 

reduced total collisions were estimated to be 44 and 234, respectively. The deployment dummy 

variable was found to be significant when 1,500 hours was selected as the minimum monthly 

deployment length. 
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To compare the safety effects of enforcement at these two levels, average monthly 

collisions, deployment hours and issued tickets are used to estimate the overall city-wide 

collision reduction percentages (please see Appendix C, Table C-1). It is found that the range of 

the city-wide midblock collision reductions is from 10% to 25%, which is comparable to that of 

the segment-based midblock collisions reductions. However, the city-wide severe collision 

reduction is much smaller than the segment-based one, which is similar to the results of the 

spillover effects on unenforced adjacent segments. In fact, the city-wide reductions can be seen 

as the outcomes of the mixed impacts of enforcement and its spillover effects. It can be 

concluded that the spillover effect of severe collision is much lower than other severities/types of 

collisions. 

The effects of general deterrence and specific deterrence, as the fundamentals of the 

enforcement mechanism, deserve to be reviewed at this point. As mentioned in the spillover 

effect evaluation (Subsection 3.3.4), the reductions in severe collisions and speed-related 

collisions are likely to be caused by the specific deterrence while the reduction in PDO collisions 

is likely to be caused by the general deterrence. When the unit of analysis is an enforced segment, 

the specific and general deterrence can be simply represented by the issued tickets and presence 

of enforcement, respectively. However, when the analysis target is a city, the general deterrence, 

which refers to the deterrent effect with indirect experiences, can also be expressed as the 

number of issued tickets. This is because people share their experience of being punished with 

others, which may modify other peoples’ behaviours. The marginal effects of the deployment 

hours and issued tickets shed light on their percentages in reducing collisions (please see 

Appendix C, Figures C-1 and C-2). It is found that more than 60% of the city-wide midblock 

collisions and more than 75% of the city-wide all collisions were reduced due to the issued 

tickets. Although the spillover effect of severe collisions is low among other severities/types of 

collisions, more than 80% percent of reduced city-wide severe collisions were due to the issued 

ticket. Once again, this confirms the effectiveness of issuing speed tickets on severe collision 

reduction. 

The enforcement mechanism model in Subsection 2.1.2 illustrates how enforcement can 

improve drivers’ compliance to traffic law. The results from this research confirm the model yet 

bring more clues on the links between the enforcement variables, deterrence effects, and 
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collision reductions. Thus, a modified enforcement model is shown in Figure 5-1.There are two 

types of links in the figure. The solid lines represent the links that are substantial at both city-

wide level and segment level. The dash lines represent the links that are weak at segment level. 

The link between issued tickets and general deterrence is weak because that the possibility for 

someone to hear others were punished on specific road segments he/she usually drives on is low. 

The link between general deterrence and enforced segments is weak due to the fact that it is 

difficult for drivers to observe enforcement vehicles on enforced segments. The link between 

specific deterrence and unenforced segments is complex since the effects on different 

severities/types of collisions are inconsistent and may need further investigation.  

 

FIGURE 5-1 Modified Enforcement Model 
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In summary, the primary findings in this thesis are listed below: 

 There is a 20% reduction in midblock severe collisions and a 15% reduction in midblock 

total collisions on enforced segments; 

 The spillover effects of enforcement are validated on adjacent unenforced segments with 

a 15% reduction in midblock PDO collisions; 

 The minimum deployment hours to make significant reduction effects on city-wide 

collisions is estimated to be around 1,500 hours; and 

 Issued speed tickets are estimated to be responsible for 78% of total collision reduction 

and 87% of severe collision reduction at city-wide level. 

Finally, there are several limitations in this research. One limitation of the segment-based 

evaluation is that the deployment data before January 2005 is not available. Therefore, it is not 

possible to be absolutely certain that the evaluated segments had never been enforced prior to the 

study period. However, the possibility for one segment to have a two-year gap between 

enforcement periods is low. More importantly, the evaluation results would have been 

underestimated if there had been any enforcement prior to the study period. The evaluation also 

excludes the segments that were enforced throughout the entire study period or had a before 

period of only one year. Thus, the estimated reductions may not be able to represent all enforced 

segments. As for the city-wide evaluation, although the models are developed to account for as 

many factors that may influence collision frequency as possible, they are not able to take other 

enforcement programs and engineering treatments (if there were any) into considerations. 

However, the effects of these events should be much less than this program at the city-wide level. 

5.2 Future Research 

This thesis validates the safety effects of automated mobile enforcement at both the segment 

level and city-wide level. Further research may focus on the following topics: 

 Speed effects of enforcement and their relationship with safety effects; 

 Safety effects of enforcement on collector roads and local roads; 

 Establishing enforcement effectiveness models to explain the relationship between the 

magnitude of collision reduction and site characteristics; 
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 Investigating the relationship between other deployment variables (e.g., number of 

enforcement trips, number of enforced sites) and city-wide collisions; and 

 Drivers’ attitude towards automated mobile speed enforcement with regards to their 

demographic characteristics. 

All these topics add to the knowledge of automated mobile speed enforcement and will improve 

the effectiveness and efficiency of future enforcement programs. 
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APPENDIX A: Posterior Distribution Derivation Using Collision Frequency 

 

The Poisson distribution of Y given  is 

  !/| YeYp Y                                                            (A-1) 

The prior gamma distribution of   is 

     /)( 1ep                                                     (A-2) 
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The marginal distribution of Y  is 
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Which is a negative binomial distribution. The posterior distribution of   given Y   is 
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Which is a gamma distribution where  Y  is the shape parameter and  1  is the reciprocal 

of the scale parameter. The Empirical Bayes (EB) estimate is the posterior mean 
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Which is a weighted average of the prior mean    and the observed number of collisions Y . 
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Estimation of parameters   and  :  

Maximum Likelihood Estimators (MLEs) obtained using PROC GENMOD in SAS. 
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APPENDIX B: Estimation Results for Deployment Dummy Variable Models 

TABLE B-1 Parameter Estimates Results for Models Using All Collisions (1,400 Hours) 

Parameter Intercept Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Deployment Tickets Employment Trend Threshold Dispersion 

Severe 

Collision 

Poisson 

Estimate 6.097 -0.099 -0.232 -0.098 -0.261 -0.093 -0.037 -0.057 0.019 0.093 0.067 -0.056 -0.030 -0.021 0.005 -0.008 NA NA 

P Value 0.000 0.000 0.000 0.000 0.000 0.002 0.208 0.068 0.552 0.001 0.017 0.035 0.017 0.171 0.291 0.000 NA NA 

NB 
Estimate 5.943 -0.099 -0.221 -0.092 -0.258 -0.097 -0.031 -0.051 0.026 0.101 0.070 -0.056 -0.025 -0.019 0.007 -0.008 NA 0.006 

P Value 0.000 0.033 0.000 0.058 0.000 0.073 0.564 0.362 0.660 0.051 0.174 0.239 0.292 0.479 0.382 0.000 NA 0.000 

PDO 

Collision 

Poisson 

Estimate 6.075 -0.021 -0.223 -0.167 -0.452 -0.412 -0.375 -0.396 -0.392 -0.330 -0.250 -0.079 -0.062 -0.109 0.024 0.007 -0.440 NA 

P Value 0.000 0.040 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 NA 

NB 
Estimate 6.132 -0.012 -0.219 -0.166 -0.457 -0.421 -0.380 -0.403 -0.397 -0.331 -0.252 -0.085 -0.055 -0.095 0.023 0.007 -0.433 0.015 

P Value 0.000 0.853 0.001 0.015 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.193 0.140 0.024 0.052 0.000 0.000 0.000 

Total 

Collision 

Poisson 

Estimate 6.603 -0.041 -0.230 -0.163 -0.426 -0.363 -0.321 -0.341 -0.321 -0.259 -0.201 -0.080 -0.048 -0.095 0.020 0.004 -0.355 NA 

P Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 NA 

NB 

Estimate 6.708 -0.033 -0.226 -0.162 -0.430 -0.370 -0.325 -0.346 -0.326 -0.259 -0.202 -0.084 -0.045 -0.084 0.018 0.004 -0.345 0.012 

P Value 0.000 0.562 0.000 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.155 0.184 0.029 0.086 0.000 0.000 0.000 

Speed-

Related 

PDO 

Collision 

Poisson 
Estimate 5.437 -0.032 -0.226 -0.133 -0.412 -0.383 -0.361 -0.381 -0.353 -0.318 -0.267 -0.103 -0.057 -0.109 0.025 0.008 -0.563 NA 

P Value 0.000 0.017 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 NA 

NB 

Estimate 5.597 -0.018 -0.216 -0.131 -0.412 -0.388 -0.359 -0.381 -0.351 -0.315 -0.264 -0.104 -0.052 -0.098 0.023 0.008 -0.552 0.015 

P Value 0.000 0.773 0.001 0.060 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.115 0.171 0.023 0.057 0.000 0.000 0.000 

Speed-

Related 

Collision 

Poisson 

Estimate 6.289 -0.058 -0.235 -0.135 -0.383 -0.319 -0.285 -0.305 -0.261 -0.216 -0.188 -0.098 -0.039 -0.087 0.019 0.003 -0.408 NA 

P Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 NA 

NB 
Estimate 6.447 -0.049 -0.228 -0.132 -0.382 -0.321 -0.284 -0.304 -0.261 -0.214 -0.187 -0.098 -0.038 -0.079 0.016 0.003 -0.396 0.011 

P Value 0.000 0.370 0.000 0.026 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.080 0.236 0.032 0.110 0.000 0.000 0.000 

Parameters significant at 90% and higher level are marked with grey fill colour. 
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TABLE B-2 Parameter Estimates Results for Models Using Midblock Collisions Only (1,400 Hours) 

Parameter Intercept Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Deployment Tickets Employment Trend Threshold Dispersion 

Severe 

Collision 

Poisson 
Estimate 4.087 -0.167 -0.344 -0.107 -0.273 -0.072 -0.004 0.012 0.055 0.063 0.018 -0.132 -0.009 -0.058 0.018 -0.009 NA NA 

P Value 0.000 0.000 0.000 0.027 0.000 0.181 0.947 0.829 0.345 0.216 0.726 0.007 0.714 0.041 0.025 0.000 NA NA 

NB 

Estimate 3.975 -0.177 -0.344 -0.117 -0.277 -0.088 -0.002 0.009 0.057 0.062 0.015 -0.141 -0.001 -0.057 0.020 -0.009 NA 0.013 

P Value 0.000 0.016 0.000 0.127 0.001 0.301 0.978 0.915 0.534 0.451 0.859 0.065 0.973 0.188 0.110 0.000 NA 0.000 

PDO 

Collision 

Poisson 

Estimate 4.013 -0.057 -0.281 -0.125 -0.454 -0.422 -0.369 -0.407 -0.380 -0.372 -0.271 -0.118 -0.024 -0.126 0.042 0.005 -0.459 NA 

P Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.029 0.000 0.000 0.000 0.000 NA 

NB 
Estimate 4.089 -0.037 -0.276 -0.130 -0.471 -0.438 -0.384 -0.425 -0.396 -0.381 -0.279 -0.123 -0.029 -0.102 0.041 0.005 -0.445 0.022 

P Value 0.000 0.627 0.001 0.121 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.120 0.530 0.049 0.004 0.000 0.000 0.000 

Total 

Collision 

Poisson 

Estimate 4.436 -0.075 -0.291 -0.128 -0.433 -0.378 -0.322 -0.350 -0.320 -0.314 -0.235 -0.121 -0.014 -0.119 0.039 0.003 -0.396 NA 

P Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.161 0.000 0.000 0.000 0.000 NA 

NB 
Estimate 4.562 -0.056 -0.287 -0.131 -0.446 -0.391 -0.334 -0.365 -0.334 -0.320 -0.243 -0.125 -0.021 -0.098 0.037 0.003 -0.379 0.020 

P Value 0.000 0.441 0.000 0.099 0.000 0.000 0.000 0.000 0.001 0.000 0.004 0.097 0.635 0.046 0.006 0.002 0.000 0.000 

Speed-

Related 

PDO 

Collision 

Poisson 
Estimate 3.573 -0.093 -0.304 -0.128 -0.463 -0.432 -0.390 -0.412 -0.365 -0.367 -0.293 -0.162 -0.030 -0.127 0.044 0.005 -0.518 NA 

P Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.000 0.000 NA 

NB 

Estimate 3.828 -0.073 -0.299 -0.136 -0.477 -0.446 -0.400 -0.429 -0.382 -0.375 -0.301 -0.166 -0.039 -0.103 0.040 0.005 -0.497 0.022 

P Value 0.000 0.351 0.000 0.110 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.039 0.398 0.050 0.007 0.000 0.000 0.000 

Speed-

Related 

Collision 

Poisson 
Estimate 4.178 -0.113 -0.315 -0.131 -0.432 -0.368 -0.319 -0.333 -0.286 -0.287 -0.240 -0.161 -0.017 -0.117 0.039 0.002 -0.420 NA 

P Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.157 0.000 0.000 0.000 0.000 NA 

NB 

Estimate 4.424 -0.094 -0.311 -0.135 -0.441 -0.378 -0.328 -0.344 -0.299 -0.292 -0.246 -0.161 -0.026 -0.098 0.035 0.002 -0.398 0.019 

P Value 0.000 0.195 0.000 0.085 0.000 0.000 0.000 0.000 0.002 0.001 0.003 0.030 0.541 0.045 0.009 0.034 0.000 0.000 

Parameters significant at 90% and higher level are marked with grey fill colour. 
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TABLE B-3 Parameter Estimates Results for Models Using All Collisions (1,600 Hours) 

Parameter Intercept Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Deployment Tickets Employment Trend Threshold Dispersion 

Severe 

Collision 

Poisson 
Estimate 6.404 -0.103 -0.223 -0.098 -0.257 -0.101 -0.041 -0.049 0.027 0.102 0.071 -0.045 -0.071 -0.026 0.000 -0.007 NA NA 

P Value 0.000 0.000 0.000 0.000 0.000 0.001 0.164 0.114 0.409 0.000 0.012 0.090 0.000 0.081 0.971 0.000 NA NA 

NB 

Estimate 6.235 -0.101 -0.214 -0.092 -0.255 -0.103 -0.034 -0.046 0.030 0.107 0.072 -0.049 -0.062 -0.023 0.002 -0.007 NA 0.005 

P Value 0.000 0.025 0.000 0.052 0.000 0.052 0.522 0.402 0.593 0.034 0.152 0.303 0.030 0.372 0.778 0.000 NA 0.000 

PDO 

Collision 

Poisson 

Estimate 6.020 -0.031 -0.208 -0.160 -0.435 -0.416 -0.372 -0.385 -0.380 -0.317 -0.245 -0.073 -0.060 -0.124 0.024 0.007 -0.451 NA 

P Value 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 NA 

NB 
Estimate 6.137 -0.019 -0.206 -0.163 -0.444 -0.428 -0.381 -0.395 -0.388 -0.320 -0.250 -0.078 -0.059 -0.106 0.022 0.007 -0.438 0.015 

P Value 0.000 0.767 0.001 0.017 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.232 0.205 0.009 0.075 0.000 0.000 0.000 

Total 

Collision 

Poisson 

Estimate 6.604 -0.049 -0.218 -0.159 -0.414 -0.368 -0.320 -0.334 -0.313 -0.249 -0.198 -0.074 -0.052 -0.106 0.020 0.004 -0.361 NA 

P Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 NA 

NB 
Estimate 6.758 -0.039 -0.216 -0.161 -0.420 -0.377 -0.327 -0.341 -0.320 -0.251 -0.201 -0.078 -0.052 -0.091 0.017 0.004 -0.346 0.012 

P Value 0.000 0.494 0.000 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.183 0.210 0.013 0.129 0.000 0.000 0.000 

Speed-

Related 

PDO 

Collision 

Poisson 

Estimate 5.488 -0.041 -0.212 -0.129 -0.399 -0.390 -0.362 -0.374 -0.344 -0.309 -0.264 -0.098 -0.065 -0.121 0.024 0.008 -0.568 NA 

P Value 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 NA 

NB 

Estimate 5.739 -0.025 -0.205 -0.130 -0.403 -0.398 -0.364 -0.377 -0.346 -0.307 -0.264 -0.097 -0.069 -0.105 0.020 0.008 -0.550 0.015 

P Value 0.000 0.691 0.002 0.060 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.139 0.145 0.011 0.110 0.000 0.000 0.000 

Speed-

Related 

Collision 

Poisson 
Estimate 6.382 -0.065 -0.226 -0.134 -0.376 -0.326 -0.288 -0.300 -0.256 -0.210 -0.188 -0.094 -0.051 -0.094 0.017 0.004 -0.408 NA 

P Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 NA 

NB 

Estimate 6.594 -0.054 -0.220 -0.133 -0.377 -0.330 -0.289 -0.301 -0.258 -0.208 -0.187 -0.094 -0.055 -0.084 0.014 0.004 -0.392 0.011 

P Value 0.000 0.318 0.000 0.025 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.095 0.171 0.018 0.198 0.000 0.000 0.000 

Parameters significant at 90% and higher level are marked with grey fill colour. 
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TABLE B-4 Parameter Estimates Results for Models Using Midblock Collisions Only (1,600 Hours) 

Parameter Intercept Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Deployment Tickets Employment Trend Threshold Dispersion 

Severe 

Collision 

Poisson 
Estimate 4.937 -0.162 -0.338 -0.108 -0.277 -0.080 -0.010 0.023 0.064 0.071 0.024 -0.114 -0.114 -0.058 0.005 -0.008 NA NA 

P Value 0.000 0.000 0.000 0.024 0.000 0.137 0.845 0.684 0.273 0.161 0.636 0.020 0.000 0.035 0.517 0.000 NA NA 

NB 

Estimate 4.814 -0.172 -0.342 -0.119 -0.281 -0.093 -0.008 0.015 0.061 0.066 0.019 -0.125 -0.102 -0.058 0.007 -0.008 NA 0.011 

P Value 0.000 0.015 0.000 0.109 0.001 0.260 0.924 0.859 0.492 0.405 0.815 0.091 0.023 0.165 0.563 0.000 NA 0.000 

PDO 

Collision 

Poisson 

Estimate 5.008 -0.062 -0.283 -0.142 -0.474 -0.454 -0.397 -0.425 -0.401 -0.388 -0.288 -0.116 -0.118 -0.114 0.028 0.006 -0.411 NA 

P Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 NA 

NB 
Estimate 5.189 -0.045 -0.279 -0.151 -0.494 -0.473 -0.415 -0.445 -0.419 -0.395 -0.296 -0.119 -0.132 -0.089 0.025 0.006 -0.388 0.021 

P Value 0.000 0.550 0.000 0.064 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.123 0.018 0.067 0.100 0.000 0.000 0.000 

Total 

Collision 

Poisson 

Estimate 5.451 -0.079 -0.296 -0.146 -0.456 -0.409 -0.350 -0.370 -0.343 -0.331 -0.253 -0.120 -0.110 -0.105 0.024 0.004 -0.343 NA 

P Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 NA 

NB 

Estimate 5.671 -0.063 -0.293 -0.153 -0.471 -0.425 -0.366 -0.386 -0.359 -0.336 -0.260 -0.122 -0.125 -0.083 0.020 0.004 -0.320 0.019 

P Value 0.000 0.376 0.000 0.048 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.097 0.018 0.072 0.147 0.000 0.000 0.000 

Speed-

Related 

PDO 

Collision 

Poisson 
Estimate 4.585 -0.099 -0.305 -0.145 -0.482 -0.465 -0.418 -0.431 -0.387 -0.382 -0.311 -0.160 -0.127 -0.117 0.028 0.006 -0.470 NA 

P Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 NA 

NB 

Estimate 4.919 -0.082 -0.299 -0.156 -0.497 -0.481 -0.431 -0.448 -0.403 -0.387 -0.317 -0.160 -0.143 -0.093 0.023 0.006 -0.442 0.021 

P Value 0.000 0.281 0.000 0.059 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.041 0.012 0.062 0.129 0.000 0.000 0.000 

Speed-

Related 

Collision 

Poisson 
Estimate 5.213 -0.117 -0.319 -0.149 -0.456 -0.401 -0.349 -0.353 -0.310 -0.304 -0.258 -0.159 -0.115 -0.102 0.023 0.003 -0.366 NA 

P Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 NA 

NB 
Estimate 5.523 -0.101 -0.315 -0.157 -0.464 -0.413 -0.360 -0.365 -0.322 -0.306 -0.263 -0.157 -0.130 -0.084 0.018 0.003 -0.341 0.018 

P Value 0.000 0.149 0.000 0.040 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.030 0.013 0.066 0.187 0.002 0.000 0.000 

Parameters significant at 90% and higher level are marked with grey fill colour. 
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APPENDIX C: Supplementary Tables and Figures 

TABLE C-1 Comparison between Segment-Based and City-Wide Collision Reductions 

  
Severe 

Collision 

PDO 

Collision 

Total 

Collision 

Speed-Related 

PDO Collision 

Speed-Related 

Collision 

Segment-Based Midblock 

Collision Reduction (%) 
20.1 14.3 14.5 17.9 18.5 

City-Wide Midblock Collision 

Reduction (%) 
9.7 25.0 22.7 25.1 21.6 

City-Wide All Collision 

Reduction (%) 
4.0 21.8 18.2 21.1 15.9 

 

 

 

FIGURE C-1 Percentages of Reduced City-Wide All Collisions 
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FIGURE C-2 Percentages of Reduced City-Wide Midblock Collisions 
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