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 ABSTRACT -« Lt e

. R

Two oompamon algonthms are dcveloped for construcung Pade frgctaons along “an off-

: dlagonal patb of the Pade table for a function —A{)/ B(z), where A(z)!;_fnd B(g) are forma]

powu xerics over a ﬁcld ) . . 4 oy

[:9
o 4

OnJ of the algorithms oomputes the first n Pade fractions along th; off- dxagonal in time

O(nz) When A(z) and B(z) are finite power series (l.c polyno:mals), it is swwn that the '

algonthm is eqmvalcnt to Euclid’s extended -algorithm. for computmg gteatmt oommon divisors. "

The other algorithm, a generahzanon of the first, proceeds along the off - dJagonal in, qua-

.. dratic stcps, and is of complexity O(n logz n). When A(z) and B(z) are polynomials, the’

‘4

second algonthm beoom a fast Euchd’s extended algonthm for oompungxg grwtmt gommon dw%
~ sors. ’Ihe algonthm is of the same complexity as other fast greatest corarmon divisor meth“o;ls, but

¥

its iterative naturc ‘provides a pracnml advantagc during implementation.

The algonthros may also he ‘used for computing Pade fracnons along an ann dxﬁ”gonal path

of the Pade table, ax well. The fast algonthm is of the same oomplemy as othép fast algorithms
sl

for an‘l dxagonal computations. Howevcr nt has the advantage of being able to determmc easily

any specific Pade fraction along the anu-dlagonal. 3

Finally, it is shown that two successive Pade fractions can be used t~ obtain the inverse of

{ Hankel and Toeplitz. matrices in time O (n log? n).

» . . ‘
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CHAPTER 1 '
INTRODUCTION
The Pade table of a fomal power series d
’ A@Z)=3a (1.1')
“A=0
is a doubl rray of rational functions.
S 17
u A
Uuld) _ 2 | |
Vo () = — (1.2)
=0
} L

determined in cuch a manner that the Matdaurin expansion of U, (z)/ .(z) agrees with A(z) as

far as possible. The power series A(z) is said to be nermal if , for each pair (m.n), this agreement
is exact through the power z®*". 'Ihe foundatlon for the development of Pade theory was laid by
Cauchy(1821) itlhis famous “Cour’ d’Analyse”. Later, Frobenius(1881) developed the basic algoe-

rithmic aspects of the theory, and Pade(1892) treated in de}hi_l certain abnormal cases.

Since Pade’s hmei(Pade tabl&s have beoomc a classxml tool of annlysis. Their analytical pro-

perties have been studxed in great depth and are surveyed for example, by Gragg [GRA74] and by~ -

Baker [BAK75). Traditionally, it is assumed that the meffﬁcimts in (1.1) and (1.2) lie in the firld
of complex nuribers, and that the power series and the ratinna! functions are to be evaluated at

certain points in the complex plane.

Although the results obtained in this thesis are likely to have an impact in an analytical (or
numerical) setting, the effacts of this impact ate not evamined. The issues addressed are strictly
algebraic ones: that is, no consideration is given to the goodness of the approximation of (17) to

"
(1.1) Tnstead, the ohjzctive ia to provide an effective tnol to algebraically mnnipulate ratiomal fun -
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fions as truncated powm' smcs (for whxch the cost of opcrauom is relanvely cheap), and o

tramform back to rauonal form on requst Itis assumed that the coefﬁcxcnts lie in an arbl;rary

field. ,, . A L . - v L .

The oocfficxmts of the rational function (1. 2) sansfy an under-determined system. of lmear

equations, known as the Hankel system. Vatious propema of the farmly of solutions to the
Hankel sytem are described in"Chapter 2. All'the rmults gwcn are those of Pade, and are included
for the sakc of- oomplcteness and for reference ease. The Hl'nkd system can be solved directly for
the coefﬁmcnts of U (z) and V,,,, (z) With coeffidents over a ﬁeld Rxssannen [RIST3], for exam-
ple, prowda an algorithm which requires o(n?) anthmcuc operatlons over thc field. On the other
hand, with ooefﬁcxenls over an arbitrary mtcgral domain, Geddu [GED79] glVCS a fraction-free

algorithm which requires O(n*) arithmetic operatlons over the mtegral domain.

Various relationships are known to e:u‘st between neighboring elements in the Pade table.

These relationships hz-;ve been used to dcrive numerous O(n?) methods for eomputmg d sequmce-

of elements in the Padc table. A survcy and comgarison «f these methods are given in Brezifiski
[BRZ76], Claesseng,[CLA7S] and Wynn [WYNGO]. All these methods have a rnajor flaw; they may
fail in the abnormal case. In Chapter 3, a new relatmnshlp between elements lymg e]eng an' off-
chagonal path in the Pade table is derived. This leads to yet another O(nz) method, however, the
new method succeeds in the abnormal case. Furthermore, if the coefficient ﬁeld» has an appropriate
n-th root of unity (which permits fast multiplication and djvisinn of ‘polynomials), ihe asymptotic
coraplexity of the algorithm becomes O(n log? n).

The new a]gonthm can bc’apphed to the quotient of two power series. 'Ihen in particular,
it can be applied to the quouent of two ﬁmte power series (i.e. thc quoumt of two polynomials).
In Chapter 4, it is shown that if all elements along a specific off-diagonal of the Pade tabla' are
computed, then the new elgorithm is équivalent to Euclid’s extended algorithin for computing

preatest commeon divisers . Purthermore. if fast polynomial operations can be performed, the new

¢

I



| a]gorit'hm‘mn compute the greatest m divisar of two polynomials in O(n log? n) ari':m'neﬁc’ |
opcratnons 'Ihe algorithm has three advantagm ovu' the other fast methads (Moenck [MOE73]
Aho et al[AH074] and Brent et al [BRESO]) for computing geam"ammon dmsors ' is basi-
mlly an lteranve algorithm rather than a- reaﬁsxve one, and consequently, sxgniﬁmnt cost savmgs
can rmult durmg unplemcntanon. Seoond]y, it produas mtcrmedlate polynomxal remamder

quucnccs as a by product wluch is a valuable feature for some apphcations Finally, varmps

s
details about the nature of its behavior are easier to comprehénd. -,

The algonthm can bc apphed to trbc quouent of the recxprocals of two truncated power series
(polynomials). It is shown in Section 4.4 that this yields successive elements ‘a]ong an anti-diagomal

~¥

path of the Pade table,

"In Chapter 5, it is shown that two successive elements along the diagonal path of the Pade
table can be used to ﬁnd the inverse of a Hankel matnx Therefore, if fast’ polynomxal operatxons
are possible, the mvcrsc of a Hankc] matrix of order n can be ‘determined in O(n log? n) anth-
metic operations. 'Ihe new mversxon method handles abnormalmes with greater ease, and less cost,
than does Brent’ et al’s algorithm [BRESO] Furthcrmo?r-by proceeding along an anti-diagonal
path, the algorithm can be used to compute the inverse of a Toeplitz matrix of order » in time
O(n log? n). ”



_21. Introduction '

p
new; however, some of the proofs may be ongmal All of the proofs are obnuned du'ectly from the

properties oﬂ‘:}hnkcl systems

The highlight of this ‘chapter is (bronm(26 due to Pade wlnch comp]ctzly descri
famx]y of solutions to the Hankel system. We define one speaﬁc memba of thxs family to be a
scaled Pade fractxon Scaled Pade fractions mst umquely, and are f\mdamenml to the development

of subsequcnt algorithms

2.2. Pade Forms

22.1. Definitions

-

y

~ This chapter examines the theoretical background of Pade theory. None of the resulfs are

CHAPTER 2

'PADE THEORY X

9]

. /‘

¥

—~ ¥

The class P of formal powsr series over a field F consists of expressions of the form

with enefficients @, € F We denote the units of P by

’

d

. s -
A(2) = Yar
Y] :

L

. U= {M(z)-—za,z‘lao#:() A(z)eP}

- 4=0

Associated with each such unit gs a set of gational functions defined as follows:

Deofinition: T et A(y) « U,

.

andlet m and n be non-negative integers. The rational form

[

bes the

“\J

A



U,M(Z) —uo+ulz+ ot +u,_z'

. 2.1)
Von(2) voptwzr oo byt (
is called a Pade form of type (m. n) for Af7) jf
(3) V() # 0. and 2 7)
(0) ALY Var(s) - Unr(x) = O Y (2 )

The (algebraic) O-symbo' indicates that the rirht cide is a pruver series hﬂ_g;nn;np AN the pe

ekt e e m s b s 4 mpans that 4(=) Vw‘(~) S _ (1) ~ 0

From an apalytical point of view, this means ' ot the ratipal formy [ (2)/ V.. () s

deterriined <o that ite " Janvin ewponsi s =den wih o (7)) ae facoag oo e THE T emation

»

fQ RANTRIRI Y T i mpr mysteen ' L e taq et o, .
e . e Mo
{
1 ( .. .

L] 4 ! . 1' y K 01y

Ya v

1l ) 1 'l

O
A ' U Vot ’ -

1By conventt a0 if

T Throwy b
rhall 4+ v

b=

-
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- dE =1 2.6
AU a_.,,, Vo 0 :
The n;atﬁv
G nen a,
\ n. - | o | (2.7)
- T Oaget |

asrociated with the per v cmrine A(5) js colled A Pankel matrie. With this d-finition. the system

\l’ n" 'y
700 I IS B 2.8)
Vy \ [ .

Y %rent the deteyrmitoaryt ~f J{ "'V det ," \ QY‘d ]r' 1"’"”"‘ ) R |
hadel wr - 0

AN P

*r? Friatmvee grd Non nv)lq"wcm

Theoverr 2.1 (Frehenit ) There always ~xicte n non tivicl solution o the gysten:: (7 §) an

-

(YAY Tl alently Tl fegars of 1y re ("vy Y v Al e abvaye ~wrct

Py oof- Y‘QMGGYﬂ\N U (v 1)) catisfving (7 6) follows immediately ftom the fact

that the o b ] oV =7tk o v i Y ere vpetors of Jengt + and must thérefore be

| FITTEVIARTINE P [ t YoNelying (7Y e dyataed sdeply e



"1t is clear that if U%, and V%, is a solution of (2.5) and (2.6), then so is a- U, and a-Vi,,
where a is a non-zero constant. The non-uniqueness of the solution, however, is more profound

. than this; and the next-few results identify the true nature Af the family of solutions.

\
Lemma 2.2:  Let U...(z)/V.‘..'(z) be a Pade form of type (m, n) far A(7) €« U. and let D(z) be a
nom-zera polynomial of degree 3(D) < X. whire \ = minfm = 3(Uny), 1 - 3(Vas)) Then
7"_'_‘(1\/‘/'_“(1), where

r/.m(z) - U,,,_(z)n(z\ nn U (y) Uy

ie nleo n Pade form of tvpe (m, »n) for A7)

ki

Froal: With the I7_ (7)) and § m(v\ Aafined nbsin opntion (2 €) becrenes

n\ [ S ., (\
Y R ) Y
. . | (e
Yn ” B Vo

~fare t the zapn e Y N s " - S
7 0 0\
,I\ ‘w
g ,
) , "\
1
n
T




. 8
O —n G dy dy W LY
d, Va-a :
0 ’ -
L ap do Yo .
L -
That is,
)
ll'_ [ Oy V',‘ .
”," .a-n T Qg V’o .

Thersfore 117 and V' watiéfy equation (2.5), The fact that V', also satisfies (2.6) follows

frowm

a., .. a, ., v,
I
a,, [+ LV n
r
o
L SR a..]. |- . 1 0
J\ A 2
{
a, 4, o
’ e Y \1 N
. Vo
A, J a, oo (\
L Ay
- o
"
Va
O - n a, "
4 A 0
"
l" J "n
"v -




B (2.10)
o | -

In the last equality of (2.10), use was made bath of equation (2.9) and of equation (2.6) with

V‘-u - (O\.V,‘ Ay g -"0) . - ! ‘

The converse of Temma 2.2 is given by

Lemma 23.  let U',.(2)/V'..(z) be a Pade frrm of type (m, n) for A(z) « V1, and lat D(7)
* .

D(0) # 0, he a coramon divisor of U, and V... Then U, ()/V,.(z), where

U (2) = 11 (2)/ D) o~ Uy ERCARNATEA

e aleny v Pade form of type (e o) few 4(~)

Froof:  The argnmrents ‘or the prioaf gre similar to theee of the roeof of Lemma 20w

The con™im et 1M 2 00101t e S X i nege ey e ey b T R TR

. .
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1,

e o 10
‘ A@)V(E) - U@) = 0(26);'”, ]
-
4
2.2.3. General Structure of Pade Forms
Let H,, be given. If det(H,,) # O, then system (2.8) mdn'B'i‘lS.;a one-parameter family bof
solutions. Indeed, if det(H,..) # 0 and v, = 1 in (2.8), then the salytion of (2.8) for V.,(z) and

of (2.5) for U,,(z) is unique. Pade forms for which V(0) = 1, i.e., v, =%} are said to be normal-

t

ized. In addition, we have

A

Lemma 2.4. I det(H,,) # 0, then tht; solutions U, and V,,, of (2.5) and (2:6) are relatively

Proof: Suppose the comtrary, and Yet D(7) be a non-trivial common divisor of U, (2) zﬁ;d.}’,,,(z).
If D(0) = 0, then V., (0)'= 0, i.e, v = 0. Consequently, (2.8) has only the trivial sofution

“#nd this contradicts the definition of a Pade form.

Tt D) # 0, let D(z) = D(z)/P(0). Then, by Lemma 2.3, U'(z) = U(z)/D(z) and
V() = V(z)/D(z) are solutions to systeras (2.5) and (2.6). But V'(0) = V(0), and equation (2.8)
together with the condition that det(H..,) # 0 then imply that V'(z) = V(z). Thus, D(z) must be a

< nomia) of degree 7ero, which contradicts the initial assumption that D(z) is non-trivial. =

The comtcrga of T orrng ) 4. honwever | js not true, as can he ceen in the fr\llering exnmple.

Fxample 2.2:  Consider again the power series A(z) in example 2.1. Tt can be verified that a
Pade formo of type (4, 3) for A() is Uia(DWWVia(2) = (0 -7+ Y (1 2, ' 7)., where

Uga(=) md V() ore relatively prime. Fj{v‘vwrr,'the Hanke] mntris

H4’3""

WP
S~ A wN
A AW

[ 4

aenagdate ! v i the Pocde fovmy of tvpe (1 ) ie ripgyler | §n thet At(H, =0 w
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.

Given the Hankel matrix Hy,, let Ha_, .-, be its largest non-singular principal submatrix.

That is, \ is the smallest nm-neéétive integer for which det(H, - x_,,*,‘)'#0. From Lemma 24, a

- PaJde form "
. r --) .Z‘ '
U;-'-L,n—x(z) - lgou‘ ! T
) >~ v N -x(l) A— A .z; (211)
RN 1—20V‘ N

of type (m—X\,n—=\) for A(é) exists, where U, _, .-\(z) and V,,_, .-.(z) are relatively pnp:te

and vy # 0. The Pade form is unique up to a multiplicative corstant and satisfies- S
u;-'l Oy -n T Ay — V:_x
= . . . . (212)
T . 4
ug a_, . ag vo
|
and
G [ R Y SR | NN o
= (213
e e v 1'; n
Tn arkition '
¢ @
~\,’\ 3 A(Z\ . V: Aoa \(’) - ”': L] ‘(7\ - I ‘Erﬂ" (7 14‘
!\: ;on
DR
S

W‘hef‘e ’0*00 ;f k=~
Theorém 2.5t Let X be such that H,_, .., is the Jargest non-singular principal submatrix in
H.. , and let k he determined by (2.14):, Theh k > ). 'In addition, let /= min {:2\,k} , Thena

basis for the soln.v‘o;l space of . .

* LTREAN 3 N At ey
- . L3 X e e

A e

omE i e A K.":;@‘m\,) ®

o 99 o
! L L [CESE S A WA



°

Ouon+1 - -‘,' " Ouat]| Va

«

1 & <o OGuenl] Vo 0

o

is given by the /—A\+1 vectors
{(V;—-x: st tV;;Ol)') Y (Ol—hv:—X¢ . _' ) ,V;,sz—l)“}~

Proof: If A=0, then the theorem follows trivially from Lemma 2.4. If A#0, then the multipli-

“cation of (2.15) by

, . 1
n—X\ . o0
0 . .
\f- 1
(| Vo Vo
Ad
0 . .
\ Va -2 Vo
yields
‘a_..nyt .o a"*‘ 'Vu 1 .ro-.
G O enn ] = . (216)
To - Mok
0 "o ’zx—.t-»v | Vo | 0
in the case that k& ~ X\ | or
. v
—



-in the case that k = \ . Butrthe largest non-singdlar principal

. To

O ‘uun-l

a..I'?l—\

Or-a
ry

To r

’[ *
I &3 O o
) -4 lJ

Yo 0

13

N R (2.17)

»

submatrix in (2.16) has order n,

which violates the assumption that X\ #°0. Thus, when X\ # 0, only (2.17) is possible, which

proves that k = \ .

r

From (2.17), it follows that the -coeffcient matrix of (2.17) has rank n + \ — /, and there-

fore the solution spacc.of (2.1.'5) is of dimension / — X\ + 1.

easy to see that all the vcctor;
{(V:-\’ C

satisfy (2.17);; =

’ vv(.)’oi)'v T ,(OI—MV:—-Xo T

¢

. Corollary 2.6 (Pa\ae)_: The general solution of

A4
and

is given by © .

) i, [~ Sy T Ay
. Uy 'a.. e ao

But, using (2.13) and (2.14), it is

-

' !V(.)-Ol.x—l?'}

=



i

- where | and \ are defined qﬁwem.,Z.S and «;, 0'5.‘ i< - , is arbitfary.'

Proof: Linear combinations of the basis vectors for the sohition space can be written as

L

°

;m@=ﬁ%§vx

Va-x

¢

[ TR

0

.y

1]
O

%®=Pﬂ§w)

[0 ]

I

=0

L]
Vo

(S uy
=0 .

néxv‘.z‘) ’

v

14

(2.18)

(2.19)

which in polynomial form becomes (2.19). Furthermore, usixig equation (2.12) and the results of

Theorem 2.5, it follows that

| o

ap

for 0=<i=<i--\. Thus, the 4polyn6mial forma for U,.(z) corresponding to V,,(z) is given by

(2.18).



AN
2.3. Pade Fractions

2.3.1. Scaled Pade Fractions

Let H,, for A(z) € U be given, and let H,;_, ,_, be its largest non-singular principal subma-

LY

trix. If the rational function N N ‘ -
» -—x‘.z‘
. « u
Upran@) | 2" ' (2.20)
V:'---rn-.x(l) h, ‘
' z v 7
- i-0

is the Pade form of type (m~\,n--\) for A(z), then

Definition:  The scaled Pade fraction of type (m.n) fro A(z) is defined to be

Yon (2) = Sua(2) / Tan(z) , where

. B -\ .3
San(?) = 2 _’z ot , _ (2.21)
-0 ¢
< LR N .'
T.{2) = 2 S v . (2.22)
. i=0n

1
'I‘lwor.gm‘2.7: The scaled Pade fraction vy,. of type (m,n) for A(z) is a Pade form 9 type (m,n)

for A(z). Furthermore, v, is unique up to' s multiplicative crnstant.

Proof: The =caled Prde fraction is  obtsned simply by setting cv,_; #0 and

o Ty = v o Vinequations (2 1R and (7 19) of Corollary 2.6, ®m

’
As an immediate comsequence, we have

)

Covollary 2.8.  det(77 ) # 0if and only if T, (M # 0

PR = L ST

An alternative definition of scaled Pade fractions is guen by
; '\



<

Theorem 2.9. S, (z)/T.., (é), wh’é.re Taa(z) # 0 is the scaled Pade fraction of type (m,n) for A(z)
if' . . . : . el

(a) mm {m — 0(Sea) , n — 3(T,) }= 0, o | )

L]
(®) GCD(Swn , Tun) = 2™, for some Ay, 20, and

L@ AG)  Taa(®) — Saald) = O( ).

Proof: The result is an immediaté@équcmc of Theorem27.- =

-

~

Thus, when normaliied, the scaled Pade fraction of type (m exists uniquely, an,d'
in addition satisfies t’he systems (2.5) and (2.6). This is tremend tage for our purposes

over other definitions of Pade fractions described below, since it simplifies the -development of

algorithms in subsequent chapters.

2.3.2. &maén;led l;nde Fractions
et U, (2) / V. (2) be 2 Pade form of type (rﬁ,ﬁ) for A(z),'and let
| D(z) = r.:f:b(t)_, V).
(rapg [r;RA'r?] v’lf'o‘m«;« the Pade faction of type (r;:,n) for A("z) to he P (2) / Q.,.(z) , where

) \

Fo(z) = 1 () D(2)

(.7“‘(7) R V.m(7) D(z) , .
and in addition (),,.(0) = 1. '

That is,

Pa(2) = S (N =00 (1)



' ’
0m(®) = 2 T() = Vioaana ()
' where U}y ,-1(5) and Vi_, ,_,(2) are defined in (2.20). Thus, the Pade fraction of type (m,n)
always exists and is unique. However, P_.(z)/ Q..(z) s a mctr;ber of the famxly of Pade fn;fpe of
type (m,-n) for A(2) givén by (218) and 2.19) only if I = 2\ , or @Mmdy. if k> 2 m equa-
tion (2.14). Thus, inAthe cise that k = 2, ’the Pade fractiom is obtained from the Pad‘e form by
settiné oy = 1,a = .- -} = &,'_\ = 0 in equation (2.18) and (2.19). In the remaining <~ that
k ~ 2\ , the Pade fraction P,,,,(z) / Q... (z) does pot satisfy the systa‘m (".5) and (2 F)

Raker’s [BAK7S]y perspective is different in a very subtle way. e reguires that
P,..(2)/ Q,.(z) satisfies (2.5) and (3. 6) and in addition Q_ (0) = 1‘ anc'l (?(‘D(P_..Q_,;) =1 PRuat
once again, from Theotem 2 5. thic is possible only if ¥ > 2) | in which cace P,,..G\ Q. (2)ds
abtained by seting @ = l.ay; = - ~ =, =0 in the equations (218) and (2 19) Thus,
from Baker's point of view, a Pat? fraction may not. gxist hut \;"\mevrv it does, it is votger

satisfies systerus (2.5) and (2.6}



~ . CHAPTER 3 -

~. P
A e

COMPUTATION OF OFF-DIA(;ONAL SCALED PADE FRACTIONS
&

1

. 3.1. Introﬂticﬂon ’ E . -\

'In this chapter, derived is a riew reJationship between three scaled Pade fractions lying a}ong
an off-diagonal path of the Pade table for a pawer s;:ries A(z). This relationship is described in
Section 3 2 and is used in Section 3.3 to develop an algonthm to xtcratlvely mmpt‘a sequence of
scalerd Pade fractions along the off -diagonal path However the a]gonthm is not total]y xtcratwe
since the relatiomship recursively involves a scaled Pade fraction of a different power series A(7),
compy'ed from A(7). Ry doubling the step size along the off-diagogal path at each iteration, it is
chawn that the complexity of the algorithm for computing the n.th sraled Pade fraction along the.

path i (n lng’m)‘ assuming fact prlvnnmial methode are ueed

-

The slgarithm of Section 3.3 can be uced tn compute scaled Pade fractions for the quotlent
A( Y/R(7) of two power series A(z) and R(»). This can be acmmphshed by formally computing
the inverse of R(7), multiplying it by - A(7), and then applymg the algonthm to ‘the result. The

dm'nnanng orst of thig prM‘dep 1s the rot f oewy putu\g the anCl’SP of B(Z) This coct, Werever,

o Ve eliminated hy an obrions medifiention of 1he perithm. which is given in Section 3 4

rsize ~long the off Aioge aal path i« shertemed, all ccaled Pade fractions along the
path can b o muted: The recursive eall alluded to ;ar]ier then bemrm trivial, and the reculting
élgm?t.hm. giv M oin Seoim :i'“,'hmnes truly itcrmiv‘e. n the‘lcase that the ptb is aloné the di?lg.-
mg' the algorithr s idetical to the ame give by Cal ay and Kac [CABPY)  'hic algmiﬂ%* ~an

ULV CRAREE L R Rt LA LA ! W { 1 cyrpele ety 47(’1’)‘



3.2. Prellminary Results

2,
- The = = 1 1de fractione can be Rrranged in o Aevb'y infnite array as felloe:

Al T oo el N glad Pade frach ne

TN . ) RS vy

.
Y 1 Yory Y- Yo
Yo v Yoo o Yo Yo .
vV \ .

o (eetemiled) wmenled Ty le tatda' for A7) Thae o difig

n el e g ot plle sy pr o ded e d 0 Ty
|\ \ v , ,
! § o0 ) i
LAY
Ya
Trt m oand bre nem neg e T ategee Wothoy - o e '

1

- N .

Mote hat tha (exten” ™ sn ]t 7 Crpemie R gy e g
1IN L e & A i

1
.




- o , R ~ 20

? '\‘

with the construction of the scaled Pade fraction +y..(z), given that Ty(A) already - éxists.

Without loss of genmnhty, assume that m = n (otherwxse the same arguments can be' an:hcd to
1/A(z)eU) e ) "

M=N+(m-n). . (3.3)

Then, (m, n) and (M, N hoth lie along the (m—n)th off-diagonal path of the scaled Pade table

L
TOAY (rem Figure 1)
. N L "
cs ——— -+ .
oML
\\\ -
(e N
\‘w
Ml[ o
" : N MN)
enrn DN
: AN
: &
: .
- R -
f ) -
: AN
J AN
Fpure ' 1
1 A ', . oo e (N =\ (YA ,V-r,aq;.,“ (') T) heve wyyee

Al <) " .(,‘ v" ( 'w.- < ong 1 _"‘"‘ (34)
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where N = 0, and Rl(O) #+ Oi.f ‘ Wan <o, let
2% = GCD(Sun ,Tuw) - (3.5)
To construct ym.(z) , two separate cases, puw = (n—N) and pury < (n—N), erise. T‘hesw two

cases are considered sepdfately in Theorem 3.1 and Thearem 3.4.

Theorem 3.1: ¥ gy ™ (m NY in (34 hen the renlv] Tt nrtom

-y"(v\ = S (VT (1) is given by

S (N = 7 S0 (3.6)

y AU 2 IESEE AN VR R AR
Proofs  Cloarly frem relation (3.3), it follows that

AT N NVR(Sy,

< gl A N

Similartv A(T,.) < n . Furthermore, it is Sear that minf m (S ). n- (T )1 = 0 fiom thr

,--.'..,,11" .,.:,[.J\f 'M-:a“m).)\"'("("w)} = p.1kir,g ﬂ‘,. famt Yh“} (,, N) ooy E ;‘,f‘ Ny ‘:y.,“
[ LA S ter = g » (/‘(7)7\‘1(.“ .. R”k( o
. e e
7O me
A ]
7 R.(:)
_— Y- "
RRTR VA YR JUNE SR VMEUPALE AYE SUUL O BT




+
4]
FOI‘ the case  Myn < (""'N) y la
. 4
M‘=M_k~)l—1, ! ' (3-8)
N =N- Ay —1 (3.9)
(see Fignre 2 1) Clearly, the scaled fraction v,,«,+(z) for A(z) satisfies
AG)  Tyodd) = Syepeld) = 277 R(a), | (3.10) |
hete Ro(0) # 0 Tn addition, by Theorem 2.7 and by the d=finition of M and N, it follows that
Sun(z) / Tn(2) # S0, o(2) / T, o\ o(2) - (3.11)
Fromo the two unit power series, Ry(7) and Ry(z) given hy (3.4) and (3.10), respectively, :
rmstruct the nunique power series !
A(z2) = Ry(2)./ Ry(2) . (3.12)
g
Nssociated with X(?)G‘J, Tet ’ }
» K]
/ i
N m=n—N "’ ) YIS ) 7 (3.13) 3
A=n=N- =1, | I CET) I 3
Menw: arcyme thet the 7 :runicated scated Pade table; I‘-;(X), for A(z) has been constructed, as well. '

That it as= cie ot e (T 7)) scaled Tade fraction, ;;;(z) = §-.(7) / T=:(2), surh that

Ay To (oY S_ () - 0(-7 7)) 319

o ot lable
The «nled Farde fractieme vy, (7). 'Yy'N‘(’\ nd ;:.;(" provide sufficient information to
abtain direly 2 Pac'e form of type (m,n) for A(z) Thic Pade form is constructed in Temma 29

bel v Tt ig shevn tatee in Theeery 200 that this farm ie pleo the smaled Pade fraction of type



Lemma 3.2: Lot v < (n—N) in equation (3.4),; and let
| Sun(2) = () 55 ) ,—Az- Son(@) Tz :(2) - (3.16)
Tun(2) = 2 "% Ty (2) §; {2) - - r,.N.(Q) T, (317
where a = Ay + pyy + 2. Then S,,(z) / T, (2) is a Pade form of type (m,n) for A(z).
Proof:

A Sn)

]

max{a(7 Sy 522), (7S, Taz))
< mx{ ’—XMN +M + ";,'0 + M‘ + m
=max{ ~Nyy + M + (n - N + )\,

{m

’ .
Ouw ity +2) 8 (M= Ry =D 0 (0 N o= iy - 1)

]

max{m & m}

£
Similarly,  4(7..) < n  Moreover, the fact that S, (z)/Ty.(2). S . (7). Typen (7Y and

s:(7) 'F:-:(’) ar~ the sealed FTade fractions vields immediatelv that
min{m - AS. .0 AT ) 0
Toohe more frem (0 1y (1 Yy, (1172) and (3 15), it folliige that

ey T e o EARE) ‘“'7'\4'\'(2)‘7.::(”‘ " Tu N ‘7)7.:::(7“

o G (Va7 € (T

'“F‘;;(’\ {4(7)7',,\-(7) '{'.(N(7)}
TTLMAGNT, ey s ()

RPN I R T AT RS



= T Ry () S—(z) - Rale) Tar®)}

= R O () R@) / Re) = )}

_Rx(z) z""”’“m_‘wl o(z-"‘l_+l)

O(Z“ +N*.¢.‘~—-A‘N¢HE+E+1)

=0(=*). =

In order that S, /T., in (3.16) »1d (3.17) be a scaled Pade fraction of type, (m, n), it
. With this intent, consider again the .

remains to show that GCD(S.,Tws) = 2™ for some X
(m )~k entry of T.(A), and let | (
O (3.18)
A= - X;F -1, (3.19)
where . ‘ -
5= < e Gonn 7o) | (3.20)
The scaled Pade fraction y_. _(z) for A(z) satisfies
T Fope= Og(F77)
AT (3.21)
and. in additiom.
(z) Sols) -
T--(z) T__!-;f,(.z). L .

‘

1R(2)= QE(z‘ ) means. that R(z) is a power sencs whose ﬁrst non-zr.ro coefﬁcxcm is thc
v -

w - -

boefﬁcxem of 2‘ exactly



- e

:.-.-, where m" ‘and n" are given

- - . o PN - SRR
: e - - - - - .
-
-
-

. Lemma 3.3: Let

]

- 5.00)

<

N ) - "- LI Y ' " - .
whete o = Nyy + gy # 20

(m*, n") for A(z), where

LA "y RO
) w1
N _
L. . o n_=n- k.;;_]\--

Proof:  The proof is identical to the proof of Lemma 3.2. =

A

\

Theorem 3.4: letp,, <(n—N) in equation (3.4), and let

Yna(2) = Sua (2) / Tpa(2)

be defined by (3.16) and (3.17). Then +y,,.(z) is a scaled Pade fraction of type (m, n) for

v

A(2). S .
Proof: Jrt
Gun(2) = GCD(Spn Ty

We first show that 4(G,,) <X.., where

™A

A(Gn.) > N5 -, and proceed by contradiction. et

U+ +(2) = 7O Sna(2) 7 Gon(2),,

Vo) =2 7% 1 ()7 G,

@

\:— -» ; o A(’ﬁ Vu",.'(l) - U 'u‘.(zw).' ,.‘..:~ “
R Lt : v g

%— z-x"N S;,_ N (z) E;f.'i'(é)'— £S5,

T @) =T, v @)Sg () ~ z. Tu

is given hy (3.20)

@, -,

emy e

(3.24)

«n(?) f;-i.(z) w e

 p2) f- )

Then ;o o(z) = 5,04@) LT o(z) is & Pade form. of type .

3 ' (3.26)

Suppose  that

ST el e L e N

[REEN
. S

75) and (326 Then A(U,) % ', 2o <y and



e s

. .
' !, ) ‘ 26
= 3 {A(z)T..(z) Sun @ Gon ) 5
; ) =..0((k.v—l)+(-#u+l)) . /

L] '1-».-9:-‘*»1

=o(" TR,

Thus, U_. -(z)/V .5 (2) nsaPadefonnoftype (m , ) for A(z).
.

ButS..(z)/T..(z) given by Lemma 3.3, walsoaPadeformoftype (m",n"). Then,

from .the general structure of Pade forms gwen in equations (2 18) and (2 19) of Corollary 26,0t

ffollowsthat N L ’ )
s%.). .T : .(z) U_;.l_.(z) /IvV;.‘..(z)". R
N = 5@/ Tar(e), R
or, equivalently, that | ;'\\)
:S‘__.l.&z‘) r_.(;) - s_,kz) T_...(z)'_,= 0. - @27

Replacing S,,,(z) / T .(z) and 8o ./T ..+ in equation (3.27) by the t:xpanded forms (3. 16),

(3.17), (3:23) and (3.24), it follows that ' S )

£z ‘MN{vMN(z)r (2 — 8, -(z) Tun (DOMHS;:) Ta o2) - S, or(2) T ~(2)}=0.

l

N

Thus, either S, 4 (2)/ Ty (2) = S, - -(z)/T . .(z), oS- A2/ Too(2) = E__.‘..(z,)/r'__._,(z),

which contradicts (3.11) and (3.22).

Thus, 8(G.,) < Ao . But, . \

z-TF=Gco(s-- T: 0,

' ‘Wthh unphes thatz “ dwnda both S_,,(z) and T,_,,(z) in equat:ons (3 16) and (3 17) 'Ihat is, z. M

dmdes G_,, (z) and oonsequently :

e s e e s P
e n L e Dol 4 L
CaTL T e . P LIRS



» L = e e e,

| - Gul) =1

'Ihus S,,,,.(z) / T_.(z) gwm in Lemma 3.2s not enly a Pade form of type (m,n) for A(z), but also
the scalcd Pade fraction of typ:‘ (m, n) for A(z), whcrc

 GCD(Spa s Tan) = 2™

L v

o

Theorem 35:  Let sy < (1=N) in-(3.8) and It ug(6) = - SLE() / T be sl pade

o f e .1 fr AC). 3

o =1 . G
and . |
e T S (3.29)
where y ' ‘
: :
levm = GCD(SMI ’ Tn-) ) ) (330)

then the scaled Pade fraction of type“(m'~,n°) for A(z) is -;_.u-(z) = S_.“.(z))Tu.n.(z), where

S+ () and T +(z) are given by equation (3.23) and (3.24).

Proof: The theorem follows using argumerts idcﬂtital' 10 those of proof of Theorem 3.4, ,and :

using tHe results of Lemma 3.3. ®

A simple example for the off-diagonal crmputation is pressnted.
- -

Excmple:  Let A(;-)J= 147 +2+2° +7%4 2%+ -~ . This example constructs the
scaled Pade fraction yu(z)' = S7.6(2) / T14(2) of type (7,6). for A(z). Sincem — n = 1, the e
struction proceeds alor_xg,thc' 1st off-diagonal»patﬁ of the scaled Pade table ['(A).
| Assumé/t-hkit\l‘g‘(/&') |s already:avai]able, from which it can be determined that the scaled
Pade ﬁa&im m,a(s).‘qu type (M,N) = (4,3)-i5 given by
\ ' e e

S .
N e T aag




3 _ ,f ,
P 0 ’ /‘* - : o * 8
m@, ;‘“8 1‘12_ jf z,z’-;v' - oy
From (3, 4) the mdual for su(z)/n,(z) .;gvmby T LT _
L a0Tee s Rl(z)zmﬂ';”* o em
whcre.R.,(z) = —1>+ zr— 2+ 27 + . | | ;

Consequcnﬂy, -equation £3 32) ,vwlds that i, 3 = 07 Sinte llis <n =N, Thedrem 3=4 ls apphca-

- . : x

blc: Observe that- I ' : S ‘:‘_'
e _. _z*ﬁf._! =0 -‘-GCP(Sts ;T4jj, -

~and consequently the predecessor of 'y‘ 3(z) along the lst off dxagonal path is. 'y“ (z) = '73 2(2)

N Therefore A z(z) is eontamed in I‘;(A) and is found to bc

_ 5, 2(2) i
’ 73,2(17 T (Z) = zz ¢
The residual for §, ;(z) / Ty z(z) is given from
A(Z) Ta z(z) - 53.2('2) = Ro(z) z’”” - | ;'. - (B33

: ;IfhéreRG(Z) =l4z+2+5+ - -ﬁ-"; T
Ihé two residuals R, (z)- and Ry(z) give the rwdu.al power series A(z)e U, where ) B

A(2) = Ro(a) / Ri(2)

N ,
= -1 - 2z - ?_77 .. 223 - . . (3.34)
Using equation (3.13) and (3.14)..
R N
F=n—N+M\y =3

“and in order to apply Theorem -3. 4, it is therefore requu'ed to obtam the smled Pade ftacnon .

- -

" ¥32(2) of type (3.2) and its predecmsor for A(z) Assummg that I';(4) is available, from it can be

a1

S O T T SR

Arraroa i Avwide

I R

et s
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» determined that “ ee ) )
’ \ ‘ o B e
S N - Sncz) —z = - I ' . R
P ‘73 z(f) = e ’ P
ST S ‘ Ts.z(z) - g _ ( 5) ey

wt A -

) S'umlarly, the predec&ssor of % z(z) aJong the first off- dxagonal path of I‘,(A) is given by '

710(2) = sx o(z) /Tw(l) =(-1- 21)/1 ,
- Now by applying the formulae (3 16) and (3. 17) the (7,6) cntry of L(A) is mpma by
: S”(z)—(l—z+zz--z’+z‘)(z—-z’)-—z"(z’)(z )
Trde) = (L=24 2 = 2)(~2 = &) = £ (@) ~ ),
where a = X‘j + “4‘3"*' 2=2. mlls,
v1.6(2) = S-,,a(z) / Tq14(2) =-z(-1 =)/ f(—l + 7%). (3.36)
Note th'at;l.o(z) is not used for computing.y, ¢(z). It is used instead in formulae (3.23) and (3.24) -
for oompunng the predecessor of.y, ¢(z}+ Since
. I - L
/ N z ) =z =7 = GCD(S)J 9 Tg_z), - . ) i

——r—re—

it.is known-thas the predecessor 18 y,,.(z), which is deierminéd by (3.23) and (3.24) to be . - .

,

- L 55‘(2) ( 1* z N zz zi__:- .E-) o } . |
¥s.l2) = 7s.4(1) (~1~z2z+2"~74 ) " "-

3.3. Fast Off-diagonal Algorithm for a Single Power Series

'3.3.1. The Algorithm
The algorithm given in this section constructs the scaled Pade fraction v,,, of type (mh,nv) for

A(z) in a quadratic fashion. The jteration assumes the existence of
YView(2) = Sun(2) / Tun(2) . (3.37

where M — N+ (m—n), and where for notational convenience we set

£
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. ) PP e T I »
' : i © . - . ‘T' : .‘ 0. ‘v_ . ' c. - ’ ;
. A R "' ‘o '. N ‘Sl ='S~N(Z) o ’ T o . (3.38) )
N 3 _ o _ . : _
. Ty = Ton(2) . . (3.39) -
Also assumed to exist is the predecessor o
R T @ = s--(z)/ (z) T Y
of 'ym,(z) on the the (m-n) th; off- dlaganal path of I‘(A) whcrc
( ' N‘ =N - X‘m -1 ) ) ¥
and - . ; :
= GCD(Sun ,Tun) - o ] 8
. Co " - ]
Again for not_a'tior;al convenience, we set . . a ..
7 s .
SO = SN'N'(Z) (241) ' [
i N - ¢ - - —

__T..(z) | B o (3.42)'

. " To advance the solution ﬁ'om N to N+: (that is, to oonstruct y,”, ~+,(z)) whm-e s, xs ﬂie
&, .
step size, the algorithm first computes Hary suc:h that

A(Z)Tl - s‘ , ‘Mo N*7r‘x" 1 z‘l*N*um-o-l I(Z)
\\ : o \
N where .
w = GCD( S, , )

cand Ry0) # 0 if py <25 + Ayt - RS ) “;*:;

¥ pyy =5, then v, ,‘,_,,, ((z) is comstructed. trivially by means of Theorem 3.1. Otherwise,
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" Theorems 3.4 and 3.5 are applied.

\2 . INPUT: A, m,n , where

y (1) mandn are nm-ncgi;?iive integers with m = n , and

(2) A is aunit power series . ( Note that only A mod 77" " js required )

Sy S
14 .
QUITPUT: T, T,]| - where

(1) S, /T, is the scaled Pade fraction of, type (m, ») for A, and

R

(2) 8o/ Tgis the scaled Pade fraction of type (m—\,.—1, n-X.. ' 1) for 4, given that

t

- = GOD(S,Ty)

'Step 1+ # Initialization #

Loy
M ~ (m -~ n)
V-0
Sy So Al2) rgd W N M
7.‘ .,-‘n . ' 0"

Mep M A C ol nlgtaim qf rley ";"V,' "’

-

[ o |
« - min{2 N o T}

. . . LAl .
Q‘nv “+ H o Vervamipntioie 3gtacie ¥



I v =0 then et | o
Step ‘4: # Cél.c:ulati.on of scalmg factor for S, / T, #
Determine Ayy such that 2% = GCD( §,,T; )
Step 8:  # C@uraﬁm of residual for vy, = §, '/ T, #
Compute . and R, fuch that
(AT, - §) mod PR R AL 3 ,
where R (0) # 0if 11y 7 294Ny

-

Step € # Identification of Caces #

}

W T ¢ ”

then # Cacr of Theorem 21 &

SI SO S] $o Lo 0
T, Ta 1, .l

gn to step 10
Ve ' Cage f 1) T B I B 2
et rley
o ! At e Ty ¢ PRICEN2 DR BT ORI 1 [ ]
" SR JVN
. '
4t ';--wr e yes of o P ) . 7: o

PR s J
4
7
way (
i
!
]

it € ol X, ke el et

LT e L s s

PSSO,

RPN TR

ek e



»
Step % # Crenputation of residen! power series [

Oy AT

(AG) Ty - So) mod

where R,(0) + 0.

;(2\

#

Mo

-

FLsY Y (moad
Ty e of yagye! 1
So ,

- T TNy

At oy
S .
. .

'
)
A t
g'

\ { v(,'
N :,.},,‘ é,’g

LAYV YR

;;1)



e \l‘ . L 3 v - > . i :
,_ My, = {Ty(A) for all AeU} (3.44)
) . ».». . w* ,v,f&i," L0 gl:y'«&;. . s . ;_ . - u o A—ﬁ
. < \‘for N = O’IL’
.

The proof proceeds hv induction an 0, fori =0,1,2, - --. Cearly the algorithm is correct

- .

T te ol v o that 3f s olgerithes it eorrect for 0, . then it is also correct for Qy ., . where

, [1 . if N=0 (3.45)

NN Y i,

]

Trt A(7) ¢ U he nn aihvtrary nnjt pew ep seriee Tt it chvnwn that the algorithm correctly computes

‘:{-‘,_) wherem = o ond 1 7w e N T g.’\. v that it is correct for () .

1 <pm=e N then 0 Y (AY Y, and by the indnctive hvpothesis the algorithm

T e O R A 1Y

W oo oML et M o1 4 (o ) By the indurtive hypothesic. the algarithm (using
Vi

S ats Y s eoppemete ffNGY - SN (EY 0 TAN ) - "N(4{ e N, . wd its predecessor

(- . ] ot . . LS P et ol an LIy et e Vs oenee
f
)
, Shepr o b e 2 of he dyewith noared et MY g i e
PR E o L I S YRR M o
' BN ] - AT R A



If pyy = s, then by Theorem 3.1, step 5 correctly yields v!4(2) . Furthermore, from equa-

goms (3.6) and (3.7),

v GOD(SA () TR Y)

N oy

Comsoemnntly the 1o Aeeeggen f v 1) i given by

FELA AN ".S“ () [

|")
i
e - N V' B .
v’ e )\T L - 1 N
Lt
1 » 1
' h vy o
W !
1
" <! \“\ =~ 3
TH- pelynevnl Tl ) comnpneted i atep 5 theeefrre safefie: 700 o () oand ie of depoar 7 0 7

Tov acdilit’ wy, ster R e luc s na 'V\]meninl R,V of depgree 55 1 1 osvoh that R Y 0 % nee
l'l!(vnﬂ\_ mn-‘nph torme e eeitahle o R"f!) nnyed R”( ) e mymte H e O the yesicn 1 i
- - . !
. T . . . , . ]
prer series A(x) mied - defined v 1T 4% Ry the jnch T bop qhecis sty U here

fore corrrey mew e YUy fT A R O, om0 e e



3.3.3. Cost Analysis

Let C(m,n) be the cost of computing the scaled Pade fraction of type (m,n) and its predeces-

sor for an arbitrary. power series.A(z) € U usmg Algorithm- 1. ‘_For‘thc sake ef sxmp}xc:ty, assume-

O=n=m=21. The case that m > 21 is considered later. In this section, asymptotic esti- -
mates of C(m.n) are derived hy cbunting the number of operations (additions, subtractions, multi-
pucaiims and divisions in ¥) performed by thegplgorithm. A detailed cost analysis and an ihple-
menttion ‘of the algon'.ﬂun are d&scritkd by Verheijen [VERS3], who compares Algoﬁthm 1 with

thei alpovithms for calculating Pade fractions.

When obtaining the aayrﬁpt;m'c cost 5dhatm, it is assumed that the algorithm makes use of
fast methads for polynamial and power series arithmetic. Tking fafl Fourier transforms, two poly-
nemials with coefficients in the field F and of degree M and/N. respectively, can be mtlltipiicated
in O((M + N)log(M 1+ NY) operations in F. Vking Newton's method and fast multiplication of
polynominls, the first N terms of the quotient of two power series in U can be obtained in
O(N log V) nperations in ¥ These and other fast m:thods for polynomial and power series
arithmetic are descrihed. for examplna in Ahn, Hoperaft and TMman [AHO74] and in lipson

(rar o

Vot k- ”')}Z n] Th it s easy to verify that the alporithr ter vinp o after b oiterations

gt fomy * AL FE D ’? f ;'q'ati/n\ H
1 i— 0
A L (v 1"
n-2 ; F
' ' gy
0 L i=0
N , . (3.49)
2 . otherwise,



M=N+(m-n). . . = . . (3.50)
Assume that during iteration i, the”scaled Pade fraction'S; 7 T; of type (M,N) and its predecessor

N (5 o , 4 - : . < )
Sl g T, dteavaitables ¢ ot Tt vl e tEaeianeie e et s et e e

- The first nontrivial step nequires the computation of the residual R(z) in step 5. Let

M . .
.Al(z) =Eajz~/.“ R - (351) .
’ j=0 [ s ’
and
N+2s-1
A?(Z) = . ay v ] ’zj . (3.52)
j-0 ,
) ey -

' )‘\\‘nl; A @ven hy step 4, it is knowt? that

: s
AT, ~ S, mod zu»N*znxwl
- : »
=AD T+ 2 AT, — 8 mod AT
%
=0 "), : A (3.53)
Since A\ T, and S, are both of degree at most M + N,”thcn pan and Ry(z) can be
obtained directly from zM°'A,T,. The product A,T, is ‘a ﬁolynomial of at most degree
N + 2« — 1 -~ AN. Thue, using fast pqunmnial multirlication, step 5 can be executed in’
(N log N) aperations B
If it is determined as ;rs“" of step S ;hat Baunv = ¢, then ctep A i rerfmmed trivially and
_the iteration is ~omplete  Otherwise, the alponthm rﬁntiplles in step 8 with the ~alculation of the
resicnrl R, of the prederessor scaled Pade fmrh'op Sq/ To. Making the sar'c nlmervatioms ag in \
‘ \ .

P

step 1 it {oloxg thet Py enn be obtained from the product of A 7, where

FERYoW .
s S A (171
i n

o ' T s A polvnomnial of dopgree at mret N Y ! Qivin the dep- e of the rwwhu-' 1w



bamdedby 2N+m+n—2)\,,,—1<4N stepSmbecxcmmdm O(NlogN) opcmums

'Ihcwmputatxm ofthcrtsxdual power series A(z)modz"“""r insmp9reqmresﬂxe

<

AR ‘"_”_Icgppu;a‘ﬁqp“bf“tﬁqﬁg‘f m+ﬁ 2:*4-)\,9, p.,,,,'*-ls».w termsofthequouentqf Ro/&

.....
- e,

Again; this may be pcrformed in O(N log N) opcratlom
In step 8, the recursive call of Algorithm 1 in order to-éompute the scaled Pade fraction of

"type (m, 7y for “A(z); " requires C(m ") operahons by’asSumpthn “For- laterpurposes u ls

unportanttoobservcthatOs;stmdthatnsmszN : _—

@

- The ﬁnal non; trmal step, reqmres cight polynon:na] m\ﬂuphcatloris 1o obtdin the scaled Pade-

fraction of typé (M+s N+s) and its predec&ssor for~Afz). S.memM %ﬂv, each pf the poly- _

'nomxal products are of degree. at most M + s < 3N Oonsequcntly, swp*8 an bc cxgcutcd m e

O(N log N) opcrat:ons:

& o RN R S A B kaiid T
- s + 2.

PR s3oner ,- e Bl 23 o
It is an easy matter to show that - '
C(m11 ”1) = C(m21 "2), (355)
g e " N ., v . . . .
whcnever m s mz and n, .S., ny. 'Ihe total cost of the z-th 1teranon 1s then bounded. by
s !

.C,(ﬁ, ) + c(2N) log (m)
< C(N,N) + c(N) log (N} - (3.56)
< C(2,2Y) weiZ |

»

orerations, for an appropriate constant ~. Consequently, we have

Theorem 3.6. Giventhat 0 <n=<m =< 2n, A]gonthm 1 can compute the scal~d Pade fracucm -

of type (m,n) for A(z) € U in time O(n Ing® n).

Pronf:  (Crmsider the recurrence relaton



@A) = Sle@, 2 v a2), k=l
e L m1 T . v

' where ¢ is a positive b_cinst_arit. ’Ih_en '

C(2*,2) = S[C(, 27 + ci2] + €2, 27 + ekt - -
) > o o o e e . ’1‘-1’ A ;‘

R FR

_ With r = 2*, results on recurrence relations (see Bentley, Hanken and Saxe [BEN80]) then yield

- I ’,‘ -_'_ - . . i‘.,. o ~ .
Cn, m) = lC@ 1) + 3]
" S

;fq(z, 1) + ck(k + 1) /2]

i

0(3 108 n). o .

-

- The théorem now follows, since from equation (3.56) for m and n satisfying0 < n < m = 2n

e A

Clm,n)s S[C@,27Y +ci2]. &

Lemma 3.’"7.:' Let m > n, and let A(z) e U. Determine an integer 8 = 1 such that '

-a

A(z) = A(2) + z“'"‘.’°A,(7)‘, ' o (3.57
where
A A(z) = A(z) mod 7 "' (3.58)

and A(0) # 0if 8 < ~. U b5<n.let S, 4(z)/T., (z) be the scaled Pade fraction of type

(n.n=8) far 1/A,(2) . 'The_n the scaled Pade fraction S.,(z) / T,,.(2) of type (m,n) for A(2) is

8 _ 4
given by h )



o

-

o

-

| ‘. Al('z)_s.,;,.v._(‘z')-"wi }1"--:*5i,.‘,.'_'.(2),' ,if‘s‘:s"ﬁ o
‘S..,.(z={ y R [ :

Ay2) 7, . .. otherwise,

| Sun-i(z), HB=n -
* 3 : ' ’ : . 34 .
47',,,,(: {z" , otherwise. S ! ¢ 60) :

L . v ‘ -ﬁ.
Proof: 18 =un,then, o e 3
a(snm) ?&(Alstwl:h"" fn—‘”aTu.l-'l) . . !" .

Ngwe

Also, (T,,) =

-

S max{ (0 S n) #n (o mE D EGEBE

=m. '

’; Fu‘fthérgnorc,c cith‘qrﬂa(.?_,_) =m and a(T,:,,) =n or both Moreover,
A(Z) ) TM(Z) _'Sn.n(z) ) .

= {Au(2) + 227" A2)} Sun a(2) = {ALED)Sunoa(z) + 20T, 0y (2))
= 227 {A(2)5, -0(2) = Thca(@)}

= 77" A ()0 )}

= 0@z ***Y).

GCD (Snn, Tan)
= GCD(AIS,,.:_.["{' zm_r-*aTn,n-br,Sn,l—G)
= GCD(ZM_"*aTn,u—b:‘ SA.A—B)

= GCD(Tu,u—B! SA,A—B)'

If 5> n, then dearly 3(S..) S m and 8(T..) =n. Moreover,

A(Z) ’ T,.,.(Z) - suu(z‘) ) )

SCMORES O 7A2)
= 7" A(2)

=0’(zu"l+l)" ) ”

~ R



P

B any’-GCD(S--?Tﬁ)=ff al ' | | b

'I‘he‘n‘kfm~3'8:, For arbltrary m 2 n, Algonthm 1 can oompute the scaled Pade fraction
oftype (m n) for A(z)eU in time O(m}ogm) + O(n logln)

Proof: « If 8> n in equation (3.57), the result is trivial.

If Ssn computat:onofme ﬁrst 2n—6+1tcrmsof 1/A2(z) rcqmres O(nlogn)

-

opcranons Usmg (3.55),

C(n,n—28) = C(n,n),

and consequently by Theotem 3.6, it foflc‘iyvé thiat the cost ‘of Mcor'np'z"v.ning-rthcv scaled Pade fraction
Sun- ,(z)/T.,, s(z) for 1/A,(z) is bounded by O(n log? n) operations. Fmally, the cost of

computmg Sma(z) in equation (3.59) is O(m log m) operatlons o

3.4. Fast Off-diagonal Algorithm for a Quotient Power Serdes ,

Let A(z), B(z) be unit power series and let

() = ~A(z) 7 B(z) (3.59)

be the quotient power series. Given the non-negative integers m = n, then Algorithm 1 OFF-

DIAG can be used to compute the scaled Pade fractions S, (2) / T,,.(7) of type (m A)for C(7). As

a result,

A()Tan(z) + B()San(z) = O™ 1) | (2 60)
Befowe applying the algorithm, the quotient
C(z) mod 27" = ~A(z)/B(z) mrd 7~ """ (3.61)

must be calculated. However, this division need be computed modulo 27"~ ', only, hv modifving
) . :



v ,\\‘. ’. ) T . ) = 42
Algorithm 1 asj_fqll'ows.:_ e T e
ALGORITHM 2: OFFDIAG _
% o

- INPUT: A(z), B(z'),lm, n , where
. o . \

(1) mandn are non-negauvc integers with m = n , and
v

w MRS

| )] A(z) B(z) dre tnit pOWer series | ( Notc that only A(z) mod z"'*"‘“l and B(z) mod ;"*"*‘ -

§$ S

OUTPUT: '[71 To] where‘ :

S

(1) 8,/ T,is the scaled Pade fraction-of type (m, n) foi'-—"A(z)\7}(f5',and

- are required ).

(2) So/To is the predecessor scaled Pade fraction of fype (m—Aa,—1,n—A.—1) for

~A(2) / B(2), giv'f:h that

.

2™ = GCD(S,,T,) .

4

Step 1:  # Initialization #

i - -1
M~ (m~-n)
N -0

Sy So . ~-;t'(7) /B(2) (mod 2" M
T, To| ~ 1 0

Step 2:  #Calculation bf}step-sin- #

Pi-i+1
¢« ~min{? - N.n - N}



| Step 3: # Termination criterion # .
B ._‘, B -.. - '» . . 'cgy
. If s=0 - then exit '
- ' -
Step 4:  # Calculation of scaling factor for §, / T, #
Determine Ay such that ’ .
&

T MW= Gop(s,.Ty)

Step 5: # Computation of residual for yuy(z) = S, / T, #

>
Compute jp,y and R, such that

(AT, + BS,) mod 7*™"7 7" 1Rt

Y
M+ N+pa 1
p: WoUR, .

where R, (0) # Oif pmyy < 25+ N0

Step 6: - # Identification of Cases #

if pw = 5
then _# Case of Theorem 3.1 #

Sy So Sy Solz o

Ty To T, Taf] 0 1

go to step 11
else # (‘nsé of Theemem 3 1 and T8 @

go toy step 7
Step 7:  # Calculation of degrees for vesidual sealed Pade fractions #

Lol ) + XMN

| I LV

m
i



Step 8:  # Computation ofraid\ml for y‘.;.(z) =8,/Tp #
ComputcR; such that | ' . : —
(A-Ty + 3-so) ,,;M;“*"*‘*;-ZA.& - ko M-t
where Ro(0) # 0.

v Step 9:  # Computation of residual scaled Pade fractions #

S o N ' .
=" = | - OFFDIAG (R, R, m, 7)
T] To ’

Step 10:  # Advancement of scaled Pade fraction computation #

P S So sx So]. S S,
T To - tr1 T *w* w2 |T T,
Step 11:  # Calculation of dcgrem of S1 /T, #

M - M+
N « N+
goto step 2 »

Algorithm 2 is a generalization of Algorithm 1, since it can be used to produce scaled Pade
fractions for a single power series A(z) sunply be setting B(z) — -~ 1. Tt differs from Algorithm

1in rha' the Adivision

A(2) = ~Ro(2) /R\(7), mod »=* 7' 1 : (3.63)

in step 9 of Algorithm 1 is avoided. Instead, the division is delayed (i.e., immediately subsequent

- to, vather than prinr tn, the rernrsive rall of OFFTYIAG) until the initjalization
S -
5 3
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L - 8§ =—A()/B(z) mod 2~ (3.64)
in step 1 of Algorithm 2.
There are also various sign ciu%gés introduced in steps 1, S, 8 and 10, These account for
the f;nct. that the algonthm deals with Fhe power series -~A(z) / B(z) rather than A( 1\; R(7)
This notational change simplifies the development of subsequent results.
For irnplementétion purposes, Algorithm 2 can result in considerable savir-s in cost.  Practi-
cally, fast division is significantly slower than fast multiplication, by an asynw;tﬁ'ic constant of
apprecimately 7 (see Verheijen [VERR3)). For esram;;]e, i A(z)/R() is normal, then

m A4 1=7 and the division in step 1 of Algorithm 2 becnmes trivial Hoew~wer, the asymp-

.

totic cnet of Algatithm 2 remains the same < the asymptetic cost of Algesithyn 1 gisen ip section

113,

The proof of the corrertess of Algemithm 7 is nearly identicnl 1 tha prevsl § o e oone o f

Algarithi 1, and therefowe it is net given

3.5. Classical Of-diagonal Algorithm for a Onotient Tower Series

Fer €0 Tobethe ~oo 8 100 b fraetiom of type (VA Fee 0 00
(BRI AN A T 1
Vo e ¢ he

M

whete R0 iy, <~ Thus, 5 90V (-7 1) the s Tade Foaiede of
(M &, T EY for U (2)B2) the suee O 0 ] o XD 0 e b e PRI S

Uy oy U2 YL SRR TR B : oy



s_=%+1. A t,

By so selecting the step-size s, Algorithm 2 may be used to cfxnpute all Pade fractions along

the (M - N)—th off-dliagnna) path. With this choice f s, step 7 in Algorithm 2 gives .

’
m= Py * 1
n—=0
’ L‘
Capsrqurotly, the vr«nvrﬁ‘w call of (WDIAG n ~tep 10 reduces to
—— — ’ .!
S] so ’7"/77. ye? 7?""\1 zu
T | 0|
A epop 11 Hhan siel e -
— .y
S S S¢S, v WS, WL
. - e ? .
I, T, TS, L T, W T

%

STVPRNETS YA T,y = T it follewe from the provof ~f thecnem 3 4 that

K] - YT

cCP(S, S, ST S, T, 8 s 72 -1
Th"‘- the ahovr f""f'\""':'V"S can be geprentd (o0 by centnd T ale fenetiemy  of w .
(Y ¢ N+ s)

N T :
The full details afmide(‘ n \'gm;t,,ln 1 belemw Ty iy the rnoc:ry\f?u"txn of sub<e.

- d ‘x"'.
. . el g . .
rent YGQ“ ,’_ -'}j -,'\ti( ", 1§ g T l' T e \,""v) is """V. "‘V
q uits, ARG, i ed

/T ’ ! ’ .";s oy -

I v Cxprnife



(M

(H

-
a7
Y
mand - 2 vy negative ntegm A b om > apd %
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—
\
! L )
where R(0) # 0if puyw <2 (n — N).
<
Ster 4. # Calculatiom ~f step size #
tooomin (e + 1,0 N
Froe ™ Tdentificntion of Cnsee &
i 1wy N
then # Cace «f Therrem 3.1 #
S S S S [+ n
.. T 7 7.7 110 1
go ta step R
1o # (Case of Thaorem, 2 4 and Y & &
po e sten A
# Comvpuotation of yagih o for Voo e} 4 T
v;‘."'l- oo el hat
“ N .
(a-1,, " 'ond e '
] r ey »
V ey

et € qevled Tl frae e o somto oy o

A ' S‘ ‘vl SI . 1 f) ! T et 11 e
T 7 ], v ? '
‘ Al lasjemy o 6 e 1 ‘

i ™

N,
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gotosiepZ a

\In the case that B(‘z)= —~i and m = n, Algorithm 3 .is precisely the algorithm given by Cabay
and Kao [CABR3] ,for. computing diagonal Pade fra?:tions for a single power series. '[hei'r 0(n?)
algorithra ( sihce steps 3 am_:l 6 require only juN + 2 terms of a product polync.wrn?als. and since
me of the multipliers in 'ttep 7 is a polynomial of degre; Wy + 1. for small u,, . no advantage
can be gained from using fast methods for polvnemial arithraetic) is shown to be faster than other
N(n’) algorithms for compting diagenal Fade frartiens, snch as those of Trench [7Rr 65 and Ris.

sanen [RIS73]

The more interesting oheervation about Algerithm 3 is made in the n~xt chapter, however Tt
is shown that, when the given quotient power series is a rational fupction, Algarithm 3 alor;g nme
specific off dia‘goﬁa] path corresponds exactly ta Fuclid's extended algorithm for computing the
greatest comman diw’sor of the muneater and devominator of the g =0 ritional fiunction. Tn this

(]

cenee, Algorichin 3 s a generalizati o f T reeseh Ualgamithee T 0 cranan that e

L

"'Seto"“‘ ' a1 LI




CHAPTER 4

GREATEST COMMON DIVISOR COMPUTATIONS OF POLYNOMIAI;S: -

‘4.1. Imtroduction

In this chapter, Algorithm 2 and Algorithm -3 are examined when they are applied to
= A(z)/R(2), where A(z) and B(z) are polynomtals of degrees m and n respactively. .In addition, it

is nssummed that A(0)#£0 and B(0)+0.

To pe-i-mit the analysis, we need the following

Definition: The reciprocat of a polynomial
PZ)=pa+piz+ - +p 2 (4.1
of at most degree n is defined to be
P"(z) - P +p 4 4= 2 P(27Y). (4.2)

Tl e name ripinptes fom the fact shat the zereg of I'"(z) are the reciprocdls of those of P(z) if

+ 0
1oy .
r" (P = r(x) ; )
Mt Tappeenton of C iming the reqiprcx‘al polynomial is involiptary Aleo
Yy 0 1" () - Q7 (<), (4.4)
noved
[« 76— P () (4.5)

SN
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b}

Let A(z) be a unit power series. The first n+1 terms of A(z) ‘are> denoted by .

X

A@D=Fa’
o =0 ~
' = A(z) mod ! (4.6)
The reciprocal A3(z) of A, (z) is then given by
AR = éa,_, Z. ‘ (4.7)

4.2. Eudid’s Extended Algorithm
Theorem 4.1.  Algorithm 3 applied to ~A(z)/B(z), where A(z) and B(z) are polynomials of
degree m and n respectively, is equivalent to Fuclid’s extended algorithm for computing the

greatest common divisior of A*(z) and B” (z)

Proof: For cc.pleteness in presentation, assume that modulo operations are not performed in

steps 3 and 6 of Algorithm 3. Thus,

AT, -+ BS =N e R, (4.8)
AT, , " BS ,~M"'R . (19)
where R,(z) and R, ,(7) are pelynemiale nf degrees = N— v, Voaed N vaepertivels T Ry

taking r=eig =oegls of (4 R) and (4 ™) it {nllows that
TR L I M v nr (4 10)

arnvd

A" TP,V RT gk, RML (411

'™y ¢ myentiom @ po‘\""f‘"':"‘ of negative degrer is the 7ero pelyneminl )

[
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Let
0r1(2) = Ris(2) / R(z) mog 2% B CB Y
be a polynomial of degree w,y+1. Then
Ri-13) = Qi) - Ri(z) = 4% \’\ R(@), : (4.13)

for some p’olynomi‘al R(z) of degree m—N— Han —2. Taking reciprocals of (4.13), it follows that

RL\(@) ~ 08.1(2) - RIG) = R*). S @19

™

That is, OF,(z) and R*(z) are the quotient and remainder, respectively, on division of
R\ (z) by RN(2).

With Q,.(z) defined by (4.12), step 7 of Algorithm 3 yields

. LY
R RN . FMN
T '[51»«_1 51] z S:_-l Q" S 4 S,

BaN T2, BMN
T T] © g~ 0T,

, | (4.i5)”

which on taking reciprocals becomes -

. ‘-Si.*i 1 . Slk-l - Qil-fl ' slk Sl - : ' (416) . '
) 77+1 Tf T?’_x—Qfﬂ'Tf T:R
Looking ahead one iteration, we obtain
RM.= A" -Tf + B* - S},
='A"[11*--1 —'Ql’*l '”]"‘Bl'[sf-\ "an'sll]
=R, —Qf, "R (4.17)
“Thus, R™(z) = R%,(z) in equation (4.14).
Summarizing, let OF,, be the quotient on division of R, by R}. Then
Rf*l = le--i - Ql‘«v-l RI’

Sty =St - Ok, - SP ' (4.18)



7T+1=7f—1;Qf+1'7‘1's

which are the fundamental relations describing Euclid’s extended algorithm. : B B

To complete the proof, it remains to show that the initial conditions for Euclid's extended -
: - ~J :

algorithm are satisfied. Initialization in step 1 of Algorithm 3 yields ‘
k so S-)_ "Qo Zl'._"_1 ’ (4 19)
To T—I = 1 -0 ! ] . '
* where, as in (4.12), Qf is the quotient on division of A® by B*. Steps 3 and 5 with i = O then
A ] 1 +8- ( _Qo) = .zlu-:u+ u'u.,:‘o*l Ro . (420)

and
A Q+B - 1=l R B @) 1 )

Taking reciproicals of (4.19), (4.20) and (4.21), it follows that

R =B =1 T =0
RE=ar-0f B Si=-0f Th=1- "

(4.22)
O » o 8 4
4 ; v -~ ) . - . s

Corollary 4.2. At the i-th iteration of Algorithm 3, let S, / 7, be the scaled Pade fraction of type

(MN) for —A / B, such that
AT +B-5 = LALAAL "Rl .
Ry~ S — 2" 2R -5 =(-1)-A

R T~ R -T.,=(-1)" B | (4.23) .

St TS Ty= (ST A

Furthermore, the algorithm termiriates for some i = k, where ¥ <-n. On termination, S,,,/ T,., is



the scaled Pade fraction of type (m,n) for —A / B such that

A-Toy +B-S..=0. _ (@29
In addition,
" mra—~2A -1 .
A - Tk + B N S‘ =2z m Rk, (4.25)
where e
7™ = GCD(S¢+1 » Thi) : "

and ‘ : -

+
R; = GCD(A , B). -

Proof: From Euclid’s extended algorithm (4.18) with initial conditions (4.22), it follows that

(see, for example, McEliece [McET8)) @ - $
L RY, Sf—-Rf SR, = (=1) - A" |
REL,-TN=RTH = (-1 Bt | (4.26)

St Th - SPTR = (D

By using the correspondence established in theofem 4.1 and taking reciprocals, equations (4.26) -

result in equations (4.23).

Furthermore, Euclid’s extended algorithm terminates for some k < n when

A" - Tf. +B* S, =R. =0 (4.27)
and

- -‘fj

A* -TF + BX - St = RE = GCD (A" , B%), C T (428)

where X = 3(RD), (SF1) = m ~ NoTh)sa—- 2SN <m-N andd(@H <n - )\

5

]

Taking reciprocals of (4.28) with respect to 2**~ * =} results in o

P TSR VER R

R RE TR SUU R Y S T e
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e - | &‘2\\ ' ’., ;‘ . Tp"‘ B-S, = z"-n'u- A -1, R,

where R,,(O)#O 'Ihus, S,/Tk |s the . smled Pade ﬁactxon of type (m— X\ ~1yn— X -1) for

—A/B. Takmg rec»promls“of (4 27) with r&spect to """ gives’

RN !b mn‘*B Shl"'o C e
C t ;‘""3;‘" | —ﬂ D
where a(s,.l) =m and 3(Tivy) = n. 'Ihus) Shl / g,ﬂ is the smled P&d fraction of 1 ny
# . A :
such that ’ .- : _ o SR W
DSt Tenr) =2 . ' (.
GCD(Sg+1 » Tewy) = 2 - . -‘(4 30)

Thus A=A\, |

4

As a consequence-of Corollary 4.2. Algorithm 3 computes co-multipliers S, and T, only,

such that
® . T8 + B - Sf = RF = GCD(A® , BY) . +(4.31)

The remainder RJ is available only if the multiplications in steps 3 and 6 are performed without the
- modulo operation. - ‘ |
N ‘ )

’

4.3. Fast GCD Computations . : -

Theorem 4.3. Algorit}u'g\?. applied to —A(z)/ B(z). where A(3) and B(z) are polynomials

of d.egree"m‘ and n, respectively, reéums the scaled Pade fraction S, / T, of type (m ) such that
R.TV + B" S‘{.=0 | (4.32)
and its predecessor S, / To of type (m-- )\,,,,. ~1.n- ., ~1) such that
A" T+ B S =R (4 33)

where
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Ry = GCD(A , B).
Proof: - Since scaled Pade fractions are unique, the result is an immediate consequence of

Corollary 42. w’.

The greéatest common divisor R, is not explicitly computed by Algorithm 2. However,

3(Ro) = Aua = n. Usiné fast multiplication, it can therefore be determined in O(n log n). As a

consequence of this and Theorem 3.8, we hav; : >

Theorem 4.3. Algorithm 2.'mn compute the greatest common diviso;, the cofactors and the

comultipliers of two polynomials of degrees m and r}, where m=n

*

, in time
O(rﬁ logm) + O(nloggn). ® - % -

Thus, Algorithm 2 for GCD»éomptmations-is basically of the same asymptotic complexity s
the fast algorithm of Moenck [MOE?S], Aho, Hopcroft and Ullman [AHO74] and: Brent, Gustavson

and Yun [BRES0], which are of complexity O( (m+n) log® (m+n) ). However, Algorithm 2 has

the adv'antage‘of being partly iterative (approximately half as many recursive calls are used in com-

parison with the other fast methods). This can result in significant cost savings in an implementa-

tion environment (Verheijen [VERS3]).

4.4. Aptidisganal Camputations

Let
A() = i a7 (4.34)
-0

be a unit power series, and let

N A A i T e
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s

d ' '
¢ - . Adr(z) = E 8q-1 4 ’ dZO, (435)
: T -0 : "

be the reciprocal of the first d+1 terms of A(z). In this section, we examine the intermediate
results obtained by Algorithm 2 2 while computing the scaled Pade fraction of type (n,n), 21=d,

for the two polynomials 1 + z A} (z) and B*(z) = —1.
At the i-th iteration of Algorithm 2, the scaled Pade fraction Syv(z) / Tyn(z) of type (N.N)
, . |

for —{1+z Af(2)} / B*(z) and its predecessor §, ., +(z) / T,-,+(2) are determined such that

>

{142 AT} Tan(z) ~ Sn() = 2N RG) (4:36)
{14 7 A5@S} - Tpopol2) = Sy p(2) = 2% 7 Ro(2) (4.37)
where
N = N-Agw- 1
and =

Y‘XMI = GCD(SNNTNN) .

Ry taking 1eciprcals of (4.36) and (4 37). it follows that

A TR(7) = RY(7) = ATV S8 () 18,0 (118)
Ay TPy PRy .t g ) TPy (1
where
ARNY - d N - (1
and
(RE) AN |

et e — S v e e [

T e accemed that vo tencation of pelypomin] operatirns takes place.

-




‘Theorem4'5:. LetM d— NandM' d/-—N’ ThenthesmledPadefracnonsoftype(M N)
and W™ N ) for A(z) are R’(z) / Thy(z) and R§(z) / ,,.N.(z) , rapccuvely

4

" Proot: From (4.38), (4.39), (4.40) and (4.41), clcarly the dcgree and order conditions for scaled

Pade fractions are satisfied. To: complcte the proof, let - . -
G@z) = Gco(m.  RY).

“Then, from (4.38), G(z) must divide not only T%, but z‘”S (z) as well &nce
GCD(SEy , Th) = 1, it follows that - | '
¢ ' . e :
G(z) = 2 : ‘
for some X = 0. Thus, RY(z) / T&(z) is' a scaled Pade fraction of type (M,N). Similarly,

R(2) / Thown(2) is 2 scaled Pade fraction of type (M. N). - ® .
Oo;erye that
MiN=d S  (4.42)
and
M +N =d . (4;“{'3)

e
’ {
The senled Pade fractions RY(2) / 1%, (2) and PA(7) /7:‘»'"(’) hoth lie along the 4 th anti-diagonal

rath of the scaled Pade table | {A). wheye

Pefinition  (see. for examp's, Brent [RRESD]). 'Ihc d- th anti-diagonal path of the scaled Pade

table l(A) for A wnit prwer merjre A(5) is defined to the set of all scaled Pade fractions of type

(i.7), where
i+j=d. - (4.44)

But, bv Theorem 4.5, the smleq Pade fraction RY(2) / TRu(z) and its, predecessor .

RA(z) TR. (7). nlong the d-th anti-diagamal path, are obtained by applying Fuclid’s extended
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algor'ithm to the redprocals of 1+ zAf(z) and B"(z) = -1. ﬂxat is, to the polynomials

Au(2) + 77 and —#"'. However,
GCD( A (z) + 27%, ~24"Y) = GCP( A,)(2) , —~7*"). (1.45)

This is precisely the result given by McElice [McE78]: namely, Fuclid’s extended algorithm applied
to Ay(z) and —2z*"" yields all the Pade fractions along the d-th anti-diagonal path of the Pade table
fof A(z). Equivalently, by Theorem 4.5, the same Pade fractions can bhe “btainei by applying
Algorithm 3 to the two polynomials 1 t 7 AZ(=) and B7(7) ~ =1, and then thling pacipr oenls of

the results. -

~ In addition, by Tﬁeﬂrem 4.5, Algorithm 2 can be user to compute any qj\eciﬁv.amlhfd Pade
\fraction RY(z)/ 7'5,}(7) of type (M, N), where M 4+ N =~ 4. aleng the d-th gnu'-di'agoml path for
A(z). This requires O( N log? N) Q.rithmetic operations tn compute, by Algorithm 2, the scaled
Pade fraciom Sw(zj /Tww(z) of type (N.N) for 1 + zANz), plus an  additional
O( (d- N) log (d—N) ) operations to determine Ri(7) which saticfies (4 26). Thi- asympt~‘ic ¢ wt iy
ﬁ)é same as the mstgf the*fast algorithm of Brent [RRFRN] for (vw;nfmﬁ"n ' meatet
divicor of A,(7) and - }” FHowev 1, th S PRATT gepithm cap 0 e ~aft

» Aleng e th anti Tapiamal opl
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THE TNVERSE OF HANKFJ, AND TOFPLITZ MATRICES

1. Intvoduction

T ay!
a, T,
2
v, - ) . ‘ ‘
arel the e e b T :-'""1' RN EE 4 ‘
H
!
A a” !
1
7
cotntedd T the Tl el iatrivee
N r
The forrula Arvised for the invires in cimilar to those piven hy Trench [TREAS], 7ohar : :

[7er "4} v Kailath ot ol [¥ 1 7R) et 3v ar o e pdvantag o heing successful in the ""'generafé
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. R .
’ Va-1
a a, 0 .
: = T (56) .
Y1
n'u 1 o a);u b : v 0
0 . . N

y =~ 7v.,.|) (".. [ ."r(\)'. (5-7)

LR Sorpos y -+ 0 Then. fren (5.6). (v,. \-“' T ,‘30,0)' satisfies . - ‘
7, a, n_”‘ \"...1 ] F 0 -l
‘ Ay a2 Gy 1 | Vo .
.Y
Ty, 1 0 0 i 0

that i, (v, , W M Toalse v aiom of (B.4Y 0 This implies det( 74, )) -+ Q, which is a con-
VRt L4
R ] 4 Ty { 1. "erﬂ ")" "'\é i W( 71'" “ 'I"
! . Vo, ! ; (f M
v
vhere Topren by (0
4 o [ ERAL J AN I 3] "Pﬂ(mpg

e 3 . O




Equivalently,
. ) _ i ’ {
‘ o V“_l “ b'll « .. blu .1 r 0 3 :
. . ,
0
Vo b, . b,
and (5 8) now follows since B., % symmetric. -

To obtain the remaining elements of B twe cases, 1 # 0 and ¢ 0

('7 1Y are tdent fied

-

Copae 1t Azsyme that ¢, + 0 Then (5.4) becrimes

v
9 r ) i S 1 r
" o a aulr 1 10
' I
1 a, n). 1 7\,‘ " ()
~o, 1' v "
1 1
" T a,
)
a, Moy 7 7o
A Ty 0
I‘ P, ’1""("’_ . ") M o ather v ;‘( (ﬁ fj) alen hoe o calptt oty [AT B B

R ‘W)i(]“"' ety v oneR' oy FEITAEN g(-'-l,ﬁ n oy

"

of the ~abatem of




bu = 1;1—1.1"‘ (tu-rl—l/‘O)i’:J , L,j= 1, -

where by, =0, j=1, -

Prof:  From (5.4)
tﬂ
[P,
Iy
However,
H

an

o paently | by eybety

B,
by by, Guey
’EM] = . [E\l,-' T 1-b-J'l] .
G2-1 '
bnl bm 0
\ i )
o - o] et y
by, by, ‘ K’
=1, - [bnlv Ut :bM]
— — Q-1
bu'-l,\ ) bn 1 k 0

tuting (5 17) into (5.12). it f~llows that

by 0 VI
;‘l b_l’
' ’;; 11 ':: n
t. b, ty bon
'
1 ;:u fy ;M

P I S I R S L -

(5.11)

'(5.12) |

(5.13)

(5.14)



Case 2. * Assumet, = 0. Consider the subsystemm
| a, S a, 1 a-fl
o || . |-] (5.15)
L n " a1 |

of (5.4). Then the matrix c‘)’n'the left-hand-side of (5.15) is nonsingular. For, suppose otherwise.

Then there exists a nontrivial vector [ a,.;, - - -, ] such that

a e ] [e 0 |
: . N (5.16)
d, " Gy, .9 [+ 31 0 -

However, by taking the transpose of (5.15), it follows from (5.16) that -

. Ay a, - ‘- a, a, .,

1
[(@ery o A20-1] N "R [AUTEE ’
- Do h I N
; 'O.v..
1
0

Copsroprently

y a,. 0 0
. . Me .
", My vy 0

hieh ;"\(\1;0@ that A (17 .) 0 This W"uwl:“';"\y\ ;lY\r‘”rv‘ (ALY
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a - a, ‘
‘de't ‘Q ' #0
‘_’ﬂo" R TR
Now, since 1, = 0, it fnilm'v; from (5.9) that det '(‘H,,.+1,,) =0. ‘Let
{ a9 ... a a.]
Hiow = | . L ‘.(5.18).{‘ .
- a, a3 -2 02:-1 o
_a..ﬂ Y ST |
Then, CXde;;lOn with respect to the last column yieiﬂs : <
a ... a,
dét(H:ﬂ,,) = det| . N TS . (5.19)
L S

.
Lemmn 5.4.  Assume 1, = 0, and Jet Bi.1a = (b))~ denote the inverse of H.,,. Then

.

bi/ = bl.—1./ 4 (,b’.- RERR /'O) b:j vi'j = 1v T an, (520)

where by, = 0, j=1. - -, n.

Proof:  The result follvs ucing arguments similar to those of the proof of Lemma 5.3. =

Theorem 5.5 Let (1, 1, - to) and (v. \ sz, - - ,vp)’ be given by (5.1) and (5.5),

respectively. Jf g # 0, then the inverse of the H.., is given by the Christoffel-Darboux formula
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-1 L Va-1 Vo
!
U U
na Y b ) N 0 0
fo Va-1
Va2 vo 01 |t f .
-l . : T (5.21)
Yo o 0 :
o ~ ¢

/

Proof: Consider the cas= t, # 0. Then equation (5.11) of Lemma 5.3 yields

5,.,. = —(tg/ 1,) b1a

and .
A@(,\ " _ _ - “
bl*"" = bl"‘ - (t“"'l / ‘0) bl\ll y U= 1, 2, toor,n.
Consequently,

bi'l‘ﬂ = ’;;,n + ('u~l/'n)'b1n ’ ‘i 1’ 2v TN, (522)

Since k. — b., . equation (5.22) inserted into (5.11) gives

b, = b—: 1w ('-'I-I/to)[b]*l.l - (ta-y/ 1) b1a ].

Thus,
byovis b= (1) (B - (i /) P
'fhwefﬁre,
by=bjrist 15" [teybia =t b 1.

From (5.8) of Lemma 5.2, it now follows that

-1 )
by = byt () [t jvar ~ faett Va1e ]
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Lhji=1,2",n, - (5.23)
where all ‘variables with subscripts outside the range 1,2, - - -, n are assumed to be zero. But
equatioh (5.23) corresponds exactly to (5.21). | | |

The case 1, = 0 makes use of Lemma 5.4, and the proofproceeds in a similé_f manner. ®

/

Vi
/

Now consider the nonsingulaf Hankel system
n,nx=-.- . x=b, 4 (524)

for an a'rbifrary vector b.. From (5.21), the computation of x =H.'-b canbe dan‘s' per-
forming four polynomial multiplications. Using fast polynomial multiplication methods, this
' ;'equires Oo(n log_n‘ ) arithmetic operations. By theorem 3.6, the polynomials T(z) and V(z) can'be

computed in O (n log? n) opera"tliom,‘ and therefore

Theorem 5.6. The system (5.24) ean be solved in O(n log? n) arithmetic operations.

2 00
H3’3 = 0 01 ,
01 4
and let

’

A@Q)=ay+2z+2°+472 +08 + - - -

be the associated unit power series. Then the scaled Pade fraction of type (3,3) for A(z) is given

by $(z) / T(z), where '

4 S(z)=_2at,+4(1—2a,,)—-16(1--200)22-%.(64—-ao)zJ

»



and”
. ' - T(z)—2 8z+ 322 -7,

k)

Thus, H, 3 is nonsingular, since T(0) = ¢, # 0. The predecessor of S(z) / T(z) is the scaled Pade
fraction U(z) / V(z) of type (2,2), where

U(z)-—'—aoz+2:1

and

V(z) = 2.
Therefore,. the solution-of system (5.4),
< |
I . .
200 1], 0 %
\ 001 4ff |=]o],
0140f]" 0
- To

is (t3,0,0,00)' = (—1, 32, =8, 2)"; and the solution of system (5.6),

332][] o

iS (v21 Vi VO)' (0’ 11 0)

The inverse Hs , is obtained by the Christoffl: Darbous formula (5.21) tobe -

1132 -8 2101 0 100 —-132~8
Hit = (w2 {|-8 2 o] ]o o 1 000 —1 32
2 00oo o 000



)

Since Toeplitz matrices are equivalent to Hankel matrices (simply by a change of notation),
‘g;
the results of theorem 5.6 apply to Toeplitz matrices, as wel}.

Consequently, by ‘Theorem 5.6, the inverse of a Toeplitz matrix of order n can be obtained in
O(n“l.ogz n) arithmetic operations. This is done with one call of Algonthm 1 for the computauon

of a specific scaled Pade fraction. The fasi elgoritiuf of Brent [BRESD] is also of complexity

o(n log2 n), but the oomputahon of the Toeplitz i inverse may reqmre as many as four calls of their -
O(n logz n) PRSDC algorithm for computmg a speaflc Pade fracnon In addition, each mll is bur-'

dened with complications, alluded to earlier in Section 4.4,

“r
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ad

CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

: $
_Central to the dassical theary of Pade approximants of power series are the ctmcq'ats of the

Pade form, which always exists but may not be umquc and the Pade fraction, which isg e but
in a certain sense may not exist. The fundamental dcﬁnmon introduced in this thesis is file scaled
Pade fraction which exists uniquely. It is shown that scaled Pade fractions satisfy a three-term rela-
tic;nship between elements aiong an off-diagonal path of the scaled Pade table. This relationship
circumvents t'hc problems of the degencrﬁtc case - i.n., the problems which plague cther relation.

ships such as those upm which the e-algorithm and the qd-algorithm are based.

The three term relationship is used to de\}elop an O(n?) algorithm ( Algcrithm 3 ) which
computes alon~ an off-dingemal path, a finite sequence of successive scaled Pade fractions. for the
quetient of two power series. In the case that the power series is npormal, Algorithm 3 is id.enti'c‘nl

N
to the ene descrihed by Brezinski [BRZ76). In the case that computations progress along the dingo-
nal, Algorithn 3 beermes that of Cahay and Kao [(1AR3] Furthermarg, it is shown that if th-
two power series are finite (i.e, polynomials), then Algorithm 3 with computations along cone
specific off-diagmal path s exactlyguivalert to Fuclid's extended algorithm for computing the -
greatest common divisor\ of two polynornials. Throe or, otbér off-diag mnl paths ran he used to
rompute greates! «vv m divicors, and' it remai s n entiet (o fotae - veganrehy to determina the

opﬁm al me

By doubling the step st each iteration, the three term relatiemchip gives rine 1o an
0(n log’ n) algorithm (Algorithm 1 or Algorithm 2). Tiu- cost cvmplexity aseumes the existence
of fast methods for polyn‘c.mi;ﬂ anthiretic The dacsion to double the spr..uiz,e (rather than to tri-
ple it, for example) is not accdental. We helieve that this choice is optimal (within the comstroints

"‘M'M “V fo-t rnl\ ool orithroe e v"r"\f'\t‘v)' mt [} fmma) pr(v-f 'ﬂv'r‘\:"n tor Y ahtagned
,

71
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When applied to poljndmials, Algorithm 2 at each iteration routinely produces intermediate.
polynomial remainder sequences. For this reason, and because Algorithm 2 is simply a fast version
of Algon'thinv 3, Alganthm '2 is. tnﬂy a fast Euclid’s extended algorithm. Thc PGCD, HGCD and
EMGCD algorithms of Moenck [MOE73], of Aho, Hopcroft and mman [AHO74), and of Brent,
Gustavson and Yun [BP:ESO], respectively, also computef grmta; corumon divisors with the same
ﬁt complexity, but these methods are simply GCD methods. -'mey do not produce intermediate
polynomial remainder sequences. In addition, the artificial splitting of polynomials used by these
methods to achieve their speed makes them difficult to understand. Finally, these methods are

ly rerursive, w.lhid\ makcs them more costly 1o imblemcm than Algorithm 2-Ghtch is semi- |
/“\z‘:m. ' | '

For tamputing scaled Pade fractions for a power <eries, Rrent ct al [BRE&)] have shown that
the EMGCD algorithm can be inodified, with substantial extra detail, to compute entries alang an
anti-diagonal path of the Pade table. We have shown that Algorithm 2 and Algerithm 3 can also -
be used to compute-such entries, routinely. From a practical point of view, however, it scems to
us that eompmtations along an anti diagrnal path are not as natural ag thcy are along an off.
dingnal path  Tf the chaice of the rati diagana' path is incorrect, computations must be re<tart-d.
For off dingonral ~cmputations, n need not be known apriori, and from an application pint ~f

viee this may he me of the most impertant comtributions of this thesia, -

Tt is not clenr at thic time whether or net the fast methnd, Algarithin 2, is usefyl in 8 - acti-

cal environment Tnitial experiments performed hy Verheijen [VER®3] indicate that the fast

-

s ]

method, Algorithm 7, mutperforms the classical ome, A\lgorithm 3, orly when n is greater than

appreximately 1600 However | ac for the fast methods for polynamial multiplicatinn, a hybrid of
/\‘gﬂfit‘\m 2 and Algmv’rhﬂfy\ T cheold nigﬁﬁmﬂy Iyerr this crvewn oyer ["\"\' Thig v"v"win‘ a rbh 3
! /

irt frr Caten research



v

\
V..

An effective implementation ‘of an off-diagonal algorithm should pro- = t+ ' ¢ elepynitial

’ toal in the‘.dw'gn of 8 symbolic and algeh?aic system. A 'ﬁqgle rrmtine ser v

(1) to obtain rational gppxmimants of power series,

(2) to convert.rational funtions fr.om their power series r"ﬁ@v-«-\raﬁ -
(?)  to compute greatest common divisors of palynamials ot

(1) 1o solve Hankel aqd Toeplitr systems of aquationg

The scope of this thesis includes thoee pover cerieg with Mﬁamu over a Fiald only. This
restriction is relevant wbenever dmsnon is required 'y the off diagomal nlgmithme Ty of i g 1
perform Pswdodivision,' rathe; than division, the nlgorithms can he madifed ;n that they nre
applicable to porver serias gver 8 Fuclidean domain rather thar a field Ve for Fiielid'e agtoq? 9
a‘lgmithm' the medified a‘gnrit!ur_ils'shal] ewericnee exprmential prowth of coefficients Uiz 2 arh
ject for future re<earch 10 determine if methads eimilar to theed of Calline [COTET] ean ' enem 1
keers the prowth tney Other plancible methods frw wtending the reults te Fucljdean

Vobich nend o W in setigar A include the (hineer Romnine'sy op 1 ¥ Tonss * alg- rithime

The ~v' neiom of yranlitr oy Tuclidean »vmaing in hden ox - opeaciel e the gt e

over scrier Ttoie of interect to determine hew thir crt v chim vyl ~wpae
rthe 3o foyy “olving blevk """“P“‘W‘Stel')‘. and vy evoqe N
! srries This revncing a nubicd foo futire prgren ®
Ao T D epee T ey gt e 2 TR B L EPRI L A T s . YR A . '
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