
Computers are incredibly fast, accurate and stupid. Human beings are incredibly slow,
inaccurate and brilliant. Together they are powerful beyond imagination.

– Albert Einstein
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Abstract

In this thesis, we investigate the problem of decision-making in large two-player zero-sum

games using Monte Carlo sampling and regret minimization methods. We demonstrate four

major contributions. The first is Monte Carlo Counterfactual Regret Minimization (MC-

CFR): a generic family of sample-based algorithms that compute near-optimal equilibrium

strategies. Secondly, we develop a theory for applying counterfactual regret minimization

to a generic subset of imperfect recall games as well as a lossy abstraction mechanism for

reducing the size of very large games. Thirdly, we describe Monte Carlo Minimax Search

(MCMS): an adversarial search algorithm based on *-Minimax that uses sparse sampling.

We then present variance reduction techniques that can be used in these settings, with a

focused application to Monte Carlo Tree Search (MCTS). We thoroughly evaluate our al-

gorithms in practice using several different domains and sampling strategies.
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Chapter 1

Introduction

The main goal of research in artificial intelligence (AI) is to design algorithms that make

intelligent decisions. These algorithms could be used in automated navigation systems

for autonomous vehicles, robotic household aids, and computerized opponents in virtual

environments. In each of these examples, a decision-making algorithm is faced with several

options due to the dynamics of the environment and actions of the other agents (decision

makers). In general, other agents may have goals that conflict with the goal of a decision-

making algorithm. For example, two autonomous vehicles may want to use the same stretch

of road, or an automated opponent may want to prevent the human from completing its goal

in a simulated training mission. As a result, decision-making algorithms in these multi-

agent settings must account for the goals and intentions of other agents.

The extensive-form game formalism is a powerful and rigorous model for sequential,

multi-agent decision-making; thus, it is commonly used to describe such settings. Game

theory provides mathematical grounds for the notion of an optimal strategy, at least for

the large class of two-player zero-sum games, which has been the focus of much research

in computational game theory. For this class of games the Nash equilibrium profile is a

set of strategies, one for each player, describing a way to act that guarantees two impor-

tant properties for both players: i) employing the equilibrium strategy will result in the

highest possible payoff assuming the opponent is maximizing their payoff, and ii) the op-

ponent cannot use a different strategy to achieve a higher payoff than they would by using

their equilibrium strategy. Unsurprisingly, a significant amount of effort has been put into

designing algorithms that compute or approximate these equilibrium strategies efficiently.

The problem of finding Nash equilibria in two-player zero-sum games is challenging since

the strategic complexity of the game grows quickly as the size of the game increases. Yet,

the most interesting games to researchers — and players — are very large.
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The class of zero-sum games is made up of all games which are strictly competitive: a

player’s utility is defined as a negation of the opponent’s utility — “one player’s loss is the

other player’s gain”. Zero-sum games include classic games that humans have been inter-

ested in for many years (e.g., Chess, Checkers, Go) and model adversarial situations where

two agents are competing for a shared or often limited resource such as unclaimed land,

unallocated memory, unused bandwidth, or money. Studying how players act strategically

in these domains gives insight in how to predict the actions of self-interested agents, which

is vital in adversarial environments. For example, consider the problem of designing a robot

which will track a criminal suspect. The robot may need to follow the suspect to stay within

range of them while the suspect wants to get out of range or otherwise hinder the robot. The

decisions made in this interaction are where to move and what can be done to hinder each

agent. Knowing the opponent’s optimal strategy, or even a near-optimal strategy, is clearly

advantageous in this setting. Even the ability to characterize their strategy based on certain

facts would be useful.

Classical and Modern Research on Games

Programming computers to make rational decisions in large zero-sum games has been a

classic interest to the AI community [104; 96]. Results of these studies spawned an exciting

line of research in large extensive-form games, some of which were eventually solved [98;

109; 121; 29; 92; 2], and later inspired man versus machine competitions [100; 15; 48]. A

large portion of the existing research focuses on perfect information games: games where

information known by one or more agents is not hidden from those agents’ opponents (e.g.,

Chess, Checkers, and Go). Imperfect information games are games where some information

may be known to one or more players and hidden from other players, such as a hand of

playing cards. Imperfect information adds another level of complexity since agents must

base their reasoning on incomplete states of the game. A number of methods to reduce

the complexity of the problem have been well-studied in the perfect information setting;

unfortunately these methods are not directly applicable to imperfect information games. In

fact, until Koller, Megiddo, and von Stengel’s sequence-form linear programming method

was introduced in the early to mid 1990s [63], equilibria could only be computed on very

small imperfect information games.

Poker is an imperfect information game that has become a popular domain for research.

Initial studies date back to very simple versions of the game by von Neumann and Mor-

genstern [111]. Kuhn studied another small version of Poker [66] where each player is

2



dealt a single card from a 3-card deck and then play one round of betting with a sin-

gle chip. Kuhn’s simplified poker was later extended to a 13-card deck and analyzed by

Gordon [41]. The mid to late 90s and early 2000s saw an explosion of interest in com-

puter Poker, much of which originated from the University of Alberta [10; 82; 99; 8;

59; 64; 105]. By 2003, University of Alberta had developed PsOpti1 and PsOpti2, two

computer poker players that had been built by computing equilibria in a reduced version

of Texas Hold’em Poker using sequence-form linear programming [11]. A recent regret-

minimization algorithm called Counterfactual Regret Minimization (CFR) solved versions

of Texas Hold’em Poker with up to 1012 game states [124], one of the largest imperfect

information games solved to date. Fueled by the 2006 AAAI computer Poker competi-

tion [85], a group at Carnegie Mellon University used a slightly different approach to com-

pute good strategies to use in large Poker variants [91; 36]. Two man vs. machine Poker

competitions, similar to the famous IBM Deep Blue vs. Kasparov Chess match, were held

where a computer bot from the University of Alberta played against human experts [86;

114; 87]. Nash equilibrium strategies were employed in the University of Alberta’s “Po-

laris” program using CFR in these matches; at the second man-machine Poker match Polaris

defeated human experts.

Limit two-player Texas Hold’em is a large, strategic game which has become a standard

challenge problem used to measure the quality of game-theoretic algorithms. But what

about other games? In games with larger branching factors at decision nodes, such as Bluff

and No-limit Hold’em, the standard CFR variant (chance sampling) does not scale well.

Convergence to an acceptable strategy can take a very long time because each iteration

requires computing regret values for every action each player could have taken.

In recent years, Monte Carlo algorithms have been used to overcome the issues of scal-

ability to very large domains. One notable success in the study of games has been in com-

puter Go where researchers developed Monte Carlo Tree Search (MCTS) algorithms [31;

22; 17]. Unlike classical search algorithms, MCTS constructs a model of the game tree

incrementally over the course of its simulations. An action selection algorithm based on

the bandit literature, Upper Confidence bounds for Trees (UCT), is used to balance explo-

ration and exploitation of actions in each node of the tree [61]. MCTS algorithms with

enhancements have greatly improved the play of computer Go players [30].

In this thesis, we focus on computing equilibria and decision-making in large games,

with perfect and imperfect information, sing Monte Carlo sampling algorithms.

3



Overview of Contributions

The main contributions of this work are:

• A generalized family of game-tree sampling counterfactual regret-minimizing

algorithms (MCCFR). MCCFR converges faster in theory, and often in practice,

than the original no-sampling “vanilla” CFR. Our new sampling schemes ensure

faster convergence, particularly in games with large branching factors at decisions

nodes. MCCFR is described in detail in Chapter 4.

• A formalization of counterfactual regret minimization for a general subset of

imperfect recall games. The convergence guarantees of the original CFR applied

only to perfect recall games. We derive regret bounds and convergence rates for CFR

in these types of games. We then show the effects of an abstraction mechanism used

to reformulate very large games as much smaller imperfect recall games. This is

described in Chapter 5.

• Monte-Carlo *-Minimax Search (MCMS): a game-tree sampling search algo-

rithm for large, stochastic, perfect information games. MCMS uses sparse sam-

pling at chance nodes to reduce the complexity of searching all the subtrees and

maintains *-Minimax bound information to generate alpha-beta style cutoffs. We

give conditions that guarantee proper pruning with high probability and show its per-

formance in practice in three domains. MCMS is described in Chapter 6.

• Variance Reduction Techniques. The quality of Monte Carlo algorithms depends

directly on the their underlying estimators and sampling strategies. Hence, in Chap-

ter 7, we investigate the application of variance reduction techniques to these estima-

tors and show how they can be applied to MCTS and MCCFR. We present empirical

results showing their practicality in these settings.

Finally, we conclude and describe potential future work in Chapter 8.

Glossary

Most of the important terms in this thesis will be in bold when defined. A description of

each of these terms is contained in the glossary section, starting on page 128.
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Chapter 2

Background and Related Work

In this chapter we start by giving a summary of the game theory background needed for

the rest of the thesis. Then we mention and investigate relevant previous work in some

detail. The function of this section is to give sufficient background to properly motivate and

describe the algorithms in the remaining chapters.

2.1 Fundamental Game Theory

A normal form game, also known as a strategic-form game is a game where all players

choose a strategy to play simultaneously without knowledge of the other players’ choices,

all strategies are executed and utilities — usually in the form of payoffs — are given to each

player depending on the joint strategy chosen by all players.

Hereon we assume games will always contain two players; many of these definitions

apply to more than two players without loss of generality. A bi-matrix game is a normal

form game with two players whose payoffs are represented using a table. Example bi-

matrix games are given in Figure 2.1. In a normal form game player 1 is called the row

player and player 2 is called the column player. Each player has three strategies to choose

from: Rock, Paper, and Scissors. Each row represents a strategy (choice) of player 1, each

column a strategy (choice) of player 2. Rock, Paper, Scissors is a zero-sum game because

the payoffs for player 2 are the negation of player 1’s payoffs; in these cases it is convention

to show only player 1’s payoffs in the matrix. Otherwise, an entry in the matrix of the form

X , Y corresponds to a payoff of X to the row player and a payoff of Y to the column

player.

A pure strategy in a matrix game is a single choice that a player can make. Denote the

player 1’s set of pure strategies S1 and similarly S2 for player 2. For example, in the game

of Rock, Paper, Scissors: S1 = S2 = {Rock,Paper,Scissors}. A pure Nash equilibrium

5



Player 2

R

P

S

Player 1

R

0

S

0

P

+1

+1

+1−1

−1

−1

0

C

D

C D

Player 2

Player 1

0 , −10

−10 , 0 −1 , −1

−5 , −5

(a) (b)

Figure 2.1: (a) The Game of Rock, Paper, Scissors and (b) The Prisoner’s Dilemma

in a matrix game is a pair of pure strategies, one for each player, for which each player has

no incentive to deviate from the strategy unilaterally. Let us denote s1 ∈ S1 a pure strategy

for player 1, s2 ∈ S2 a pure strategy for player 2, s = (s1, s2) a pure strategy profile, and

ui(s) = ui(s1, s2) the payoff to player i when both players play s. Formally, we call s a

pure Nash equilibrium if and only if

∀s′1 ∈ S1,∀s′2 ∈ S2 : u1(s) ≥ u1(s′1, s2) and u2(s) ≥ u2(s1, s
′
2). (2.1)

In the Prisoner’s Dilemma the only Nash equilibrium is (D,D). In (D,C) player 2 would

rather have a payoff of -5 than -10, similarly for player 1 in (C,D). In (C,C) both players

would rather have a payoff of 0 than -1. This notion of Nash equilibrium is called pure

because both players choose D deterministically in their strategy. In Rock, Paper, Scissors

a pure strategy Nash equilibrium does not exist; using the same logic there is incentive for

one player to deviate at every joint strategy set.

A mixed strategy is a probability distribution over pure strategies1. Denote the set of

mixed strategies for player 1 as Σ1, similarly Σ2 for player 2, and Σ = Σ1 × Σ2. In Rock,

Paper, Scissors a mixed Nash equilibrium profile σ = (σ1, σ2) does exist, where σ1 ∈ Σ1

and σ2 ∈ Σ2. Here, σi is a probability distribution over Si for which one player has no

incentive to deviate unilaterally because their expected payoff would be the same or lower

if they did. In fact, it is more general to refer to expected payoffs rather than individual

payoffs, so by convention ui(σ) will represent an expected payoff. Formally,

ui(σ) = ui(σ1, σ2) = Eσ[ui(s)] =
∑
s1∈S1

∑
s2∈S2

σ1(s1)σ2(s2)ui(s1, s2). (2.2)

We also use σ−i to denote the strategies in σ belonging to player i’s opponents. To summa-

1Any pure strategy is also a mixed strategy with probability 0 on every choice except one, which has prob-
ability 1.
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rize, σ is a mixed Nash equilibrium if and only if

∀σ′i ∈ Σi : ui(σ) ≥ ui(σ′i, σ−i) (2.3)

holds for each player i.

An ε-Nash equilibrium σ is a profile where neither player can gain at most ε by unilat-

erally deviating from σi. More precisely, σ = (σ1, σ2) is an ε-Nash equilibrium if and only

if

∀σ′i ∈ Σi : ui(σ
′
i, σ−i)− ui(σ) ≤ ε (2.4)

holds for each player i. Note that because of the way ε-equilibria are defined, they can be

thought of as approximations to Nash equilibria. In fact, the definition of a Nash equilibrium

from Equation 2.3 is a special case of Equation 2.4 with ε = 0.

Suppose we have a strategy profile σ = (σi, σ−i). We call a strategy σi ∈ BR(σ−i)

a best response strategy to σ−i if it achieves the greatest possible payoff against σ−i.

Formally, if

∀σ′i ∈ Σi : ui(σi, σ−i) ≥ ui(σ′i, σ−i) (2.5)

then σi is a best response to σ−i. One property of a Nash equilibrium σ = (σi, σ−i) is that

∀i : σi is a best response to σ−i.

In a zero-sum game Nash equilibrium strategies are interchangeable: if σ = (σ1, σ2)

is an equilibrium profile and σ′ = (σ′1, σ
′
2) is another equilibrium profile2 then (σ1, σ

′
2)

and (σ′1, σ2) are also both Nash equilibrium profiles. In addition, when players employ an

equilibrium profile in zero-sum games the expected payoff to each player is the same for

every equilibrium:

ui(σ) = ui(σ
′) = ui(σ1, σ

′
2) = ui(σ

′
1, σ2).

In a zero-sum game, the game value is equal to the expected payoff to the first player when

players employ a Nash equilibrium profile σ: v = u1(σ). In other words, when both

players play equilibrium strategies, player 1 gets an expected payoff of v and player 2 gets

an expected payoff of −v. Suppose player 1 makes a slight adjustment to their strategy; the

new strategy is σ′1 and, as a result, ∃σ′2 ∈ Σ2 : u1(σ′1, σ
′
2) = minσ′′2∈Σ2

u1(σ′1, σ
′′
2) = v−ε1.

Player 1 has become exploitable by an amount ε1 ≥ 0. Player 2 can change to a strategy that

exploits this error and achieve u2(σ′1, σ
′
2) = −v + ε1. A similar argument can be made for

player 2 becoming exploitable by an amount ε2. Often the exploitability value εσ = ε1 +ε2

is used to measure the distance of a strategy to an equilibrium. In this work we will focus

on two-player, zero-sum games.
2In general, games may have more than one Nash equilibrium.
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2.1.1 Normal Form Game Solution Techniques

A solution technique refers to a method of finding a Nash equilibrium. Here, we will

give overviews of some of the classical methods for finding an equilibrium in these games,

beginning with pure equilibria.

One straight-forward algorithm to find a pure equilibrium follows from the definition.

For each entry in the matrix (r, c) first inspect all the entries in the column to ensure that

∀c′ ∈ S2 : u1(r, c) ≥ u1(r, c′), and similarly for all the entries in the row ∀r′ ∈ S1 :

u2(r, c) ≥ u2(r′, c). If these two conditions are met then (r, c) must be a pure equilibrium

by definition.

Another algorithm for finding pure equilibria is the iterated elimination of dominated

strategies. A dominated strategy for player 1, s1 ∈ S1, is one for which ∃s′1 ∈ S1, s1 6=

s′1,∀s2 ∈ S2 : u1(s′1, s2) > u1(s1, s2). Similarly for player 2. Clearly, dominated strate-

gies are never part of an equilibrium because there is incentive to choose s′1 over s1 for

every choice of the opponent. Therefore, s1 can be safely removed from the game since

it will never be considered part of any equilibrium, defining a new reduced game where

S′1 = S1 − {s1}. This is repeated alternately for each player until dominated strategies can

no longer be removed. If a single entry remains, it is a Nash equilibrium. If many entries

remain then they can be inspected individually as stated above.

If no pure equilibria exist then a mixed equilibrium must exist since every game has at

least one Nash equilibrium3. One way to find a mixed equilibrium is by following a method

inspired by the following fact4: for an equilibrium profile σ let σi represent the strategy

used by player i and σ−i the strategy used by the opponent,

1. If two pure strategies si, s′i ∈ Si have positive probability in σi then

u(si, σ−i) = u(s′i, σ−i) = maxs′′i ∈Si u(s′′i , σ−i).

2. If a pure strategy si ∈ Si has positive probability in σi and a different pure strategy

s′i ∈ Si has zero probability in σi then u(si, σ−i) ≥ u(s′i, σ−i).

We will refer to this fact as the best response condition [113].

A mixed strategy can be modeled as a set of variables whose values correspond to

the probability that a particular strategy si ∈ Si is played. Suppose σ−i is modeled in

3 This is true for all finite games; we will not discuss infinite games in this document. This was John Nash’s
famous result [76]. A modern version of the proof is found in section 3.3.4 of [106].

4This fact has been called different things by different people. Gintis calls it “The Fundamental Theorem
of Mixed Nash Equilibria” [38]; Von Stengel calls it “the best response condition” [113]; Osborne calls it
“Characterization of mixed strategy Nash equilibrium of finite games” [81].
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this way. Then, the expected payoff of a particular strategy s′ ∈ Si played against σ−i

can be expressed in terms of these variables. Another constraint can be constructed in the

same way using some other strategy s′′ ∈ Si, s′′ 6= s′. Equating these two formulas gives

an equation in unknown variables. This can be repeated until there are enough equations

to solve for the unknown variables analytically. For example, to find a mixed equilib-

rium in the Rock, Paper, Scissors, assume that the column player’s strategy distribution

is (R,P, S) = (α, β, 1 − α − β). Then the row player’s expected payoff when playing

R would be −β + (1 − α − β), when playing P would be α − (1 − α − β), and when

playing S would be −α + β. Equating these yields a mixed strategy for the row player of

(1
3 ,

1
3 ,

1
3). Repeating the process for the column player gives the same strategy; together

these two strategies form a mixed equilibrium profile. However, this method only applies

when the support5 of the equilibrium strategies is known. If strategies outside the support

are included, then the assumption that the payoffs are all equal cannot be made due to the

second part of the best response condition. For our Rock-Paper-Scissors example above,

we assumed that the support included all strategies.

For zero-sum games, another method to find a mixed Nash equilibrium is to formulate

the problem as a linear program (LP) and solve it using known LP-solving algorithms.

In this context, the row player uses row vector strategy x = (x1, . . . , xM ) and the column

player uses column vector strategy y = (y1, . . . , yN )T . Each vector represents a probability

distribution over Si: the entries represent probabilities of choosing one of the strategies

si ∈ Si. The expected payoff to player 1 in a zero-sum game is a matrix product that gives

a single (scalar) value z = xAy and to player 2 is −z, where A is the payoff matrix with

entries aij . Assuming that their opponent is playing to maximize their expected utility, the

row player wants to maximize z whereas the column player wants to minimize z. Since x

and y represent probability distributions there are linear constraints on their values: for the

row player 0 ≤ xi ≤ 1, and
∑
xi = 1. Similarly for the column player. One can obtain a

mixed Nash equilibria by solving an optimization problem whose objective function is

max
x∈Σ1

min
y∈Σ2

xAy. (2.6)

The best response condition states that y is a mixed best response to x if and only if each

strategy in the set {si ∈ Si : yi > 0} is also a pure best response to x. This condition

allows the LP to minimize over player 2’s pure strategies. The condition also allows the

removal of the miny from the LP objective function as it can be replaced by a number of

5The support of an equilibrium strategy is the set of strategies to which positive probability is assigned.
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maximize min
j∈{1,...,N}

M∑
i=1

aijxi maximize z

such that
M∑
i=1

xi = 1 such that z ≤
M∑
i=1

aijxi for all j ∈ {1, . . . , N}

xi ≥ 0 for all i ∈ {1, . . .M}
M∑
i=1

xi = 1

xi ≥ 0 for all i ∈ {1, . . . ,M}

Figure 2.2: The original optimization problem (left) and linear program (right) constructed
for player 1 to solve two-player, zero-sum, normal form games using the original objective
function (left) and the modified objective function (right). Here, player 1 has |S1| = M
strategies, player 2 has |S2| = N strategies, and the payoff matrix A, whose entries are aij
has M rows and N columns.

constraints over all strategies s2 ∈ S2; the value of xAy will be the same if y is mixed or

pure. The formulation of the optimization problem and resulting linear program for player

1 are shown in Figure 2.2.

2.1.2 Extensive Form Games and Classical Solution Techniques

We begin our description of extensive form games with elements common to both perfect

information and imperfect information games. We will then define the elements specific to

imperfect information games.

An extensive form game represents a game with sequences of actions taken in turn rather

than two single actions taken simultaneously. Extensive games represent the sequential

interaction of players’ choices: each turn, a single player chooses an action, and as a result

the game enters a new state. This interaction is structured as a game tree. A node in the tree

represents either a chance event (a die roll, hand deal, etc.) or a state of the game (whose

turn it is to play, what information is available to the player, etc.) while an arc represents

the outcome of a chance event or the effect of taking an action. The root node represents

the start of the game. Each leaf node represents the end of a game.

Denote N = {1, 2} as the set of players. Denote the finite non-empty set of actions

that player i can choose Ai, and each individual action as a ∈ Ai. A history is a particular

sequence of actions that may occur in the game, starting from the root of the tree. Denote

the set of histories H and histories themselves h ∈ H , including a special history ∅ called

the empty history. A terminal history is a history from root to leaf. Denote the set of
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terminal histories Z ⊆ H and individual terminal histories z ∈ Z. A successor of a history

h ∈ H , written h′ = ha, is a history that represents the history after having taken a from

h. A history h is a prefix history of some other history h′, written h v h′, if and only if

h′ = h, h′ is a successor of h, or there exists a set of intermediate histories {h1, h2, . . . , hn}

for n ≥ 1 such that h1 is a successor of h, hi+1 is a successor of hi, and h′ is a successor

of hn. Every player has a payoff function ui : Z → R that represents the utility given to

i ∈ {1, 2} at the end of a game. In two-player, zero-sum games, ∀z ∈ Z : u1(z) = −u2(z).

In a two-player, zero-sum extensive game with chance events, define the player function

P : H\Z → N ∪ {c}. The player function determines whose turn it is to act at a particular

history h ∈ H\Z, e.g., each node in the game tree can be labeled whose turn it is to act

at that state, P (h). Here, c is a special player called chance that uses a fixed strategy. We

define the set of actions available at h as A(h) = {a ∈ Ai : ha ∈ H,P (h) = i}. Also,

Ai ∩ Aj = ∅ for all i 6= j. We will restrict our discussion to finite games, so N,H,Z are

all finite, and each Ai is finite.

An information set is a set of histories where i is to act that cannot be distinguished by i

due to information not known by i. Formally, denote Ii the set of information sets belonging

to player i: a partition of {h : h ∈ H,P (h) = i} where A(h) = A(h′) whenever h and h′

are in the same part. In this thesis, we use a convention P (I) = i to mean P (h) such that

I ∈ Ii and h ∈ I . We also use A(I) to mean A(h) such that h ∈ I . We also define the

set of (information set, action) pairs for one player to be Ci = {(I, a)|I ∈ Ii, a ∈ A(I)}.

The sets C1 and C2 will mostly be used to specify the space complexity of the following

algorithms.

To further clarify the notion of information sets, we now give an example. In the ex-

tensive form version of the game of Rock, Paper, Scissors player 1 selects their action but

does not reveal it to player 2; instead it is written down on a piece of paper and placed

face-down. Then player 2 makes their choice, and both players reveal their choices simul-

taneously. Here, there are two information sets and |I1| = |I2| = 1: one containing the

empty history belonging to player 1, and one containing {R,P,S} belonging to player 2.

While Rock, Paper, Scissors is a simple example, a player may encounter many in-

formation sets while playing an extensive form game. For some history h ∈ H define

Xi(h) = ((I, a), (I ′, a′), (I ′′, a′′), · · · ) to be the sequence of player i’s (information set,

action) pairs that were encountered and taken to reach h in the same order as they are

encountered and taken in h. A two-player extensive form game has perfect recall if

∀i ∈ {1, 2},∀I ∈ Ii : h, h′ ∈ I ⇒ Xi(h) = Xi(h
′). Intuitively, this means that player
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Player 2
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Figure 2.3: (a) The game of Rock, Paper, Scissors in extensive form, and (b) An example of
a larger extensive form game. Matching colors denote groupings of nodes that correspond
to the same information set. The label oi = p denotes a chance outcome whose probability
is p.
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i does not forget any information that they discovered during their play up to h. Unless

otherwise noted, and excepting Chapter 5, games are assumed to have perfect recall. Some

examples of extensive form games are shown in Figure 2.3.

A behavioral strategy, is a function σi : Ii → ∆(Ai) that assigns a distribution over

actions, one for each information set, where ∆(Ai) is the set of probability distributions

over Ai. We denote the probability of taking action a in information set I ∈ Ii as σi(I, a);

further, we restrict players’ choices at I to only those available at I: ∀i ∈ N, ∀I ∈ Ii, ∀a 6∈

A(I) : σi(I, a) = 0. We denote by σ(I) a particular distribution over the action set A(I).

When it is obvious from the context, we will drop the subscript i and simply refer to the

probability σ(I, a). We also use the notation σ(h, a) to refer to the probability σ(I, a) such

that h ∈ I . The chance player, c, is a player that plays with a fixed mixed behavioral

strategy σc. A chance event is a history h such that P (h) = c. A chance event outcome,

or just chance outcome, is a particular action a ∈ A(h) such that h is a chance event.

Suppose players are using a strategy profile σ = (σ1, σ2). Define I(h) to be the infor-

mation set containing h. The probability of reaching h is defined to be

πσ(h) =
∏
h′avh

σ(h′, a).

We can split this product into each player’s contribution: πσi (h), πσ−i(h), where πσ(h) =

πσi (h)πσ−i(h). Note, specifically, that πσ−i(h) includes chance’s action probabilities. There-

fore, when i = 1, πσi (h) = πσ1 (h) and πσ−i(h) = πσ2 (h)πσc (h). Also, for some prefix h v z,

let πσ(h, z) =
∏
h′avz,h′ 6@h σ(h′, a) and define πσi (h, z) and πσ−i(h, z) similarly as before.

When both players employ σ, the probability of reaching an information set is defined to

be πσ(I) =
∑

h∈I π
σ(h). Also, we define πσ−i(I) =

∑
h∈I π

σ
−i(h). The expected utility of

two behavioral strategies can be computed by a game tree traversal that computes the sum

ui(σ) = ui(σi, σ−i) =
∑
z∈Z

πσ(z)ui(z).

Therefore, a Nash equilibrium in behavioral strategies can be defined as before where Σi is

replaced by the set of behavioral strategies.

Every extensive form game can be converted to a normal form game. A seminal result

by Kuhn [66] is that a mixed strategy of this converted normal form game corresponds

to a payoff-equivalent behavioral strategy in the extensive game it is representing: if σmi
is a mixed strategy in the converted normal form game and σbi is a behavioral strategy

representation of σmi in the extensive game, and similarly for opponent strategies, then

ui(σ
b
i , σ

b
−i) = ui(σ

m
i , σ

m
−i). Similarly, any behavioral strategy has a payoff-equivalent
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mixed strategy. Therefore, one way to solve an extensive form game is to first convert

to normal form, solve the normal form game, and then employ the solution’s behavioral

representation in the extensive form game. In the converted normal form game, a pure

strategy for player i is defined as a function si : Ii → Ai such that ∀I ∈ Ii, si(I) ∈ A(I).

Therefore, there are an exponential number of pure strategies belonging to player i. In

particular, if a game has a branching factor of |A(I)| ≥ 2 for all I , then the number of

pure strategies for player i is O(2|Ii|). Hence, the size of the converted normal form is

also exponential in |A(I)|. Many of the entries in the payoff matrix can be redundant; they

are duplicated because many combinations of pure strategies lead to the same leaves in the

game tree. There are methods to reduce the normal form game to remove these redundant

entries [113]. However, in general, the reduced size may still be exponentially large. As a

result, solving an extensive game by solving its converted normal form is impractical on all

but the smallest games.

2.1.3 Sequence-Form Linear Programming

Section 2.1.1 described how to solve a zero-sum normal form game by formulating the

problem as a linear program. The previous section described how an extensive game can be

converted to a normal form but with an exponential increase in the size of the description.

One way to formulate the problem of solving an extensive game as a linear program

while avoiding the exponential increase is to impose constraints influenced by the structure

of the game tree rather than the normal form’s mixed strategies. To achieve this goal, we

define and construct realization plans [63; 13]. As mentioned above, we have the set of

(information set, action) pairs of player i to be Ci = {(I, a)|I ∈ Ii, a ∈ A(I)}. Due to

perfect recall, I ∈ Ii uniquely identifies a sequence of all past information sets belonging

to i and actions taken by i before reaching I; let this sequence be Xi(I) = (c1, c2, . . . , cn),

possibly empty, where cj ∈ Ci. For c = (I, a) and some behavioral strategy σi, let σi(c) =

σi(I, a) be the probability of taking action a at I . A pure behavioral strategy s reaches I if

all the actions taken at past information sets lead to I . For a sequence Xi(I) we say that cj′

is an ancestor of cj if j′ < j and a parent if j′ = j − 1. A realization plan x fulfills

x(∅) = 1, x(I ′, a′) =
∑

a∈A(I)

x(I, a) (2.7)

where (I ′, a′) is a parent of (I, a) or ∅ if it has no parent. Realization plans and behavioral

strategies are interchangeable: to obtain a behavioral strategy from a realization plan simply

normalize {(a, x(I, a))|a ∈ A(I)}. To obtain a realization plan from a behavioral strategy,
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for each I ∈ Ii and a ∈ A(I) compute x(I, a) = σi(I, a)πσi (h) for some h ∈ I .

Given these constraints a new linear program is constructed that can be solved to find

a set of weights which correspond to the players’ goal of maximizing their payoffs. The

new linear program is defined using matrices which represent the structure of the exten-

sive game: E (structure of the information sets and actions for player 1), F (structure

of the information sets and actions for player 2), and A (expected payoff per 2-tuple

((I1, a1), (I2, a2)) used by each player). In E and F there is a row for every informa-

tion set and an entry in the row for the sequence that leads to the row’s information set

(with the value 1) and each other sequence for which this sequence is a prefix (with the

value -1). A has an entry for each combination of (I, a) pairs belonging to separate play-

ers; this matrix’s entries are all zero except for entries ((I1, a1), (I2, a2)) that together lead

to the end of a game (corresponding to leaves of the tree). Note that there may be multiple

terminal histories that satisfy the combination of (I, a) pairs due to chance nodes, which is

why the entry represents an expected payoff.

In Section 2.1, we described the problem of finding equilibria as maxx miny xAy,

where x and y are player strategies and A is a payoff matrix. Here, the descriptions of

the constraints and objective are more complex: x ∈ Q1, y ∈ Q2 where Qi is the set of

realization plans for player i. So the problem then becomes to find the solution to:

maxx∈Q1miny∈Q2xAy = miny∈Q2maxx∈Q1xAy (2.8)

with constraints derived from Equation 2.7. The order of the minimizing and maximizing

in Equation 2.8 can be swapped due to the minimax theorem [112]. This can be represented

as a linear program. Solving the LP using these matrices will give a realization plan for

each player, when converted to a behavioral strategies, correspond to Nash equilibrium

strategies.

Suppose the linear program has n variables and m constraints. The input size of the

LP has mn coefficients for the variables in the constraints, m numbers for the right-hand

size of the constraints, and n coefficients for the objective function. The size of the linear

program is L = mn + m + n. There are many existing algorithms that solve LPs. While

the simplex algorithm tends to work well in practice, it can run for O(2n) iterations. The

current best worst-case time complexity for solving LPs is O(n3.5L) [57; 1]. The variables

are the x(I, a) of the realization plans from Equation 2.7; there is one for each (I, a) pair of

a single player; there can be one per node of the tree in the worst case. Likewise, there will

be at least one constraint per information set. Therefore the worst-case time is polynomial in
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the size of the game tree. In imperfect information games, the upper bound for n is the sum

of the actions available at all their information sets, which can still be prohibitively large.

A game with 1 million choices per player could take time proportional to (106)
3.5

= 1021

to solve. Therefore, while the sequence form is a dramatic improvement over solving a

converted normal form game, the exponent of the polynomial still makes solving large

games impractical.

As for the space complexity: in general, the A matrix will have one non-zero entry

per ((I1, a1), (I2, a2)) ∈ C1 × C2 that leads directly to a leaf. Equation 2.7 describes an

information set tree for a single player i; if we imagine a constant branching factor for

both players at all nodes of |A(I)| = 2 then the number of leaves in this tree is at least
|Ii|+1

2 ≈ |Ci|
4 . It is possible that every leaf be paired with every leaf of the opponent’s

information set tree, so the amount of space required to store the A matrix is O(|C1||C2|).

Storing E and F requiresO(|C1|) andO(|C2|), respectively, so the total the amount of space

required to store the entire linear program is O(|C1||C2|+ |C1|+ |C2|).

2.2 Iterative Learning and Regret Minimization

The techniques from Sections 2.1.2 and 2.1.3 are classical methods for computing equilib-

ria in two-player, zero-sum extensive form games. These classical techniques determine

the equilibrium strategies by solving an optimization problem inspired by von Neumann’s

minimax theorem [112].

A different approach to computing Nash equilibria is to learn them over time by re-

peatedly modifying strategies in a specific way while collecting information that is used

to compute a series of ε-Nash equilibria. The idea is to incrementally improve upon the

current solution such that ε→ 0 over time, so that the sequence of intermediate solutions is

converging to a Nash equilibrium (i.e. ε = 0).

There are many iterative solution techniques for computing approximate equilibria in

extensive form games. Here, we start with a survey of the most recent, relevant techniques

but then focus primarily on counterfactual regret minimization as it is the most relevant to

the construction of the MCCFR family of algorithms presented in Chapter 4.

2.2.1 Excessive Gap Technique for Finding Nash Equilibria

Sequence-form linear programming (see Section 2.1.3) tends to work quite well in practice

on games with a few thousand information sets. However, even the best linear programming

solvers struggle with games that have millions of information sets. The full optimization
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problem described in Section 2.1.3 can be reformulated into a relaxed optimization problem

that is easier to solve. The resulting solution may be sub-optimal by some amount (ε).

One way to iteratively improve on ε-equilibria is to reformalize the optimization prob-

lem in Equation 2.8 by perturbing the objective function to make it smooth (differentiable)

and convex. Let O be the original optimization problem, S[O] be the smoothed optimiza-

tion problem, µ0 be the initial parameters of S[O], and ε0 be the initial suboptimality of

a solution to S[O] with respect to the optimal solution to O. Gradient decent along the

objective function is used to find a new set of parameters µ1; these new parameters lead to

a new ε1. The process is repeated generating ε-equilibria with ε decreasing in the limit as

the number of iterations tends to infinity. This idea is applied through Nesterov’s excessive

gap technique (EGT) [36; 46].

The key result that makes this method possible is that the difference between the optimal

value of the original optimization problemO (Equation 2.8) and the smoothed optimization

problem S[O] is bounded when the smoothed functions satisfy an excessive gap condition.

Recall that that Qi is the set of realization plans for player i. From Section 2.1.3 we can

rewrite Equation 2.8 in a slightly different form:

max
x∈Q1

f(x) = min
y∈Q2

φ(y)

where

f(x) = min
y∈Q2

{z}, φ(y) = max
x∈Q1

{z},

and

z = xAy.

If we have strongly convex functions di and scaling constants µ1, µ2 > 0 we define smoothed

functions:

fµ2(x) = min
y∈Q2

{z + µ2d2(x)}

φµ1(y) = max
x∈Q1

{z − µ1d1(y)}

If these smoothed functions satisfy the excessive gap condition ∀x ∈ Q1,∀y ∈ Q2, fµ2(x) ≥

φµ1(y), then the difference between the non-smooth functions is bounded as follows: 0 ≤

φ(y) − f(x) ≤ µ1D1 + µ2D2, where Di is the maximum value of di over all realization

plans for i.

The EGT algorithm iteratively generates values (µk1, µ
k
2,x

k,yk) for k = {0, 1, · · · }

and will compute an ε-equilibrium inO(1
ε ) iterations. Starting with an initial point (x0,y0)

that satisfies the gap condition, each iteration of EGT shrinks one of the µi parameters so
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that µk+1
i < µki while preserving the gap condition on (xk+1,yk+1). The shrink procedure

depends on the function

sargmax(di,Ay) = max
x∈Q1

{x(Ay)− di(x)} (2.9)

which finds the optimal x in the smoothed optimization problem if the opponent uses y.

The sargmax in Equation 2.9 is defined for player 1 but can be similarly defined for player

2. The gradients of the fµ2 and φµ1 are followed by computing new points and parameters

through applications of sargmax.

The computation of sargmax can be efficient because of the following result. There

exist certain specialized functions6, di, which make sargmax into a closed-form expression.

For example, this is true when using a particular x from a simplex domain:

∆n = x ∈ Rn : x ≥ 0,
∑
xi∈x

xi = 1

When the domain is the set of realization plans, Q, then sargmax can be computed by

repeatedly applying the closed form functions for simplices [36]. The game tree can be

broken down into a set of simplices, one for each information set, and a tree traversal can

be used to calculate the optimal values needed for a given realization plan and choice of

nice prox function.

2.2.2 Regret Minimization and Games

A multi-round multi-armed bandit problem is a situation where an agent must make re-

peated decisions amongst a fixed number of action K. Each action (pulling of a bandit

arm) gives a payoff, possibly drawn from some distribution, but whose mean payoffs are

unknown. When the decision-maker decides to choose an action, it receives a single pay-

off from that arm. The intent is to make a series of decisions which results in the highest

total payoff. The problem is an online learning problem because the agent only discovers

its payoff for making the decision after it has been made. Therefore, agents must decide

between exploring (trying its actions) and exploiting (choosing the action with the highest

estimated expected utility).

Suppose some online learning algorithm makes decisions for T steps and observes a

sequence of (action, utility) pairs: ((a1, u1), (a2, u2), . . . , (aT , uT )) where it ∈ {1, . . . ,K}

is the decision made at step t, ut is the utility earned by the decision-maker at step t, and uta
is the utility for choosing action a at step t. In general, the algorithm choosing the actions

6Referred to as “nice prox functions” by the authors of [36; 46]
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and process determining the rewards are stochastic, so we will talk about expected values.

Define the expected regret of not taking action a at every time step as

RT (a) = E

[
T∑
t=1

(ati − at)

]
. (2.10)

One way to measure the quality of an online learning algorithm is to measure its accumu-

lated external regret:

RT = max
i∈{1,...,N}

RT (i) = max
i∈{1,...,K}

E

[
T∑
t=1

(ati − at)

]
(2.11)

In other words we measure how much the algorithm regrets not taking the best single deci-

sion in hindsight. Define the average regret to be R̄T = RT /T . The general goal is to have

low regret. We say that an algorithm is a regret minimization algorithm if the algorithm’s

average regret, approaches 0 over time:

lim
T→∞

R̄T = lim
T→∞

RT

T
= 0. (2.12)

By convention, the payoffs are often normalized with respect to the maximum range, i.e.,

to the range [0,1], without loss of generality.

There is a large field of research devoted to finding good ways to make decisions in these

environments. Often, statistical assumptions are made about the environment, e.g. that the

payoff distribution of each arm is fixed. In general, the payoffs or payoff distributions for

each decision are not fixed; they can be chosen by an adversary. Since this situation is more

relevant to describing how online learning algorithms apply to game-solving, we choose to

focus on it.

Often in the online learning literature, negative payoffs are incurred (losses) and rather

than maximize total payoff, the goal is to minimize total loss. A loss lti refers to a loss of

choosing decision i at time t. One way to minimize regret if the losses lti are binary (lti ∈

{0, 1}) and the loss for every option is revealed after each step is to use the Randomized

Weighted Majority (RWM) algorithm [75; 13]. A decision problem is repeated, and at each

time step the decision-maker chooses a strategy from a distribution where the probability

of selecting strategy i is

wi∑N
j=1wj

, where wi = (1− η)Li

where η is a small constant and Li =
∑T

t=1 l
t
i . If η is set to min(

√
(lnK)/T , 1/2), this

rule leads to a regret of at most O(
√
T lnK) [13, Theorem 4.5]. The Hedge algorithm is a

generalization of RWM that can be applied when lti ∈ [0, 1] [28].
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The Exp3 algorithm mixes its choice between Hedge and a uniformly random strat-

egy [5]. The RWM and Hedge algorithms require that the losses for each action be revealed

at each time step. The Exp3 algorithm circumvents this by defining a simulated reward vec-

tor where all payoffs are 0 except the chosen action, and multiplies the payoff it receives by

the inverse of the probability of choosing that action. Using this rule, Exp3 can guarantee

that the regret is no more than O(T
2
3 (N lnN)

1
3 ).

There is an important connection between regret minimization and game theory. In

constant-sum games, which subsume zero-sum games, if two players play against each

other for T time steps and player i has accumulated regret RTi , then the average payoff for

player i is at least vi−
RTi
T , where vi is the minimax game value to player i [13]. Therefore,

if the strategies are chosen according to any regret-minimizing algorithm, then the average

payoff approaches the minimax game value. Define an average strategy profile σ̄T in a

normal form game to be one where

σ̄i
T (s) =

∑T
t=1 σ

t
i(s)

T
, s ∈ Si (2.13)

holds for every player i. The average strategy is defined similarly for behavioral strategies

in an extensive form game as

σ̄i
T (I, a) =

∑T
t=1 π

σt
i (I)σt(I, a)∑T
t=1 π

σt
i (I)

, I ∈ Ii (2.14)

where σt is the strategy profile used by all players at step t.

In constant-sum games, if the average regret R̄T < ε for both players, then the average

strategy profile σ̄T is a 2ε-equilibrium. This is known as a folk theorem; for details, see [13].

This folk theorem inspires game-theoretic algorithms that can compute Nash equilibria by

minimizing regret over repeated plays.

Counterfactual Regret Minimization

The counterfactual regret of not playing action a ∈ A(I) at I is the difference in the

expected utility of playing a at I versus playing σ(I) at I , weighted by the opponents’

probability of reaching I [124; 123]. The counterfactual regret minimization algorithm

(CFR) minimizes the maximum counterfactual regret (over all actions) at every information

set.

Let ZI be the subset of terminal histories where a prefix of that history is in I; for

z ∈ ZI denote z[I] as that prefix. Define counterfactual value as:

vi(σ, I) =
∑
z∈ZI

πσ−i(z[I])πσ(z[I], z)ui(z) (2.15)
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which is the sum of the expected payoff for having reached I weighted by the opponent’s

probability of reaching I .

The immediate counterfactual regret for a specific information set is defined as:

RTi,imm(I) =
1

T
max
a∈A(I)

T∑
t=1

(
vi(σ

t
I→a, I)− vi(σt, I)

)
(2.16)

where σtI→a is identical to σt except that a is taken at I , The algorithm produces new

strategies at each iteration by employing a regret minimizer at each information set over the

counterfactual values.

The CFR algorithm, at time step t, computes a regret value:

r(I, a) = vi(σ
t
I→a, I)− vi(σt, I) (2.17)

for each information set I and each action a ∈ A(I). This regret value represents how

much a player i regrets playing σi instead of choosing to play σI→a.

In counterfactual regret minimization, regret-matching is applied at each information

set to update strategies. Define the cumulative counterfactual regret at information set I for

action a up to time T as

RTi (I, a) =
T∑
t=1

r(I, a).

To produce new strategies, regret-matching normalizes the positive portions of accumu-

lated regret for each action [43; 42]. More precisely, the strategy that regret-matching

produces at I for a ∈ A(I) is:

σT+1(I, a) =


RT,+i (I,a)∑

a′∈A(I) R
T,+
i (I,a′)

if the denominator is positive;

1
|A(I)| otherwise

, (2.18)

whereRT,+i (I, a) = max{RTi (I, a), 0}. Regret-matching yields sublinear regret as a result

of satisfying the conditions of Blackwell’s approachability theorem [12]. It is tempting to

ask why mix over these actions instead of greedily choosing the action with the highest

regret? Zinkevich et. al. also showed that minimizing the immediate counterfactual regret

also minimizes the average overall regret R̄T . Therefore, the average profile approaches a

Nash equilibrium over time in the case of zero-sum games.

The algorithm is summarized in Algorithm 1. We refer to this algorithm as Vanilla CFR

when there is no sampling applied, not even at chance nodes.
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Algorithm 1 Counterfactual Regret Minimization (Vanilla CFR)

1: Initialize regret tables: ∀I, ∀a ∈ A(I), rI [a]← 0.
2: Initialize cumulative strategy tables: ∀I, ∀a ∈ A(I), sI [a]← 0.
3: Initialize initial profile: σ1(I, a)← 1/|A(I)|
4:

5: function CFR(h, i, t, π1, π2):
6: if h is terminal then
7: return ui(h)
8: else if h is a chance node then
9: π′1 ← π1 if i = 1 else σc(h, a) · π1

10: π′2 ← π2 if i = 2 else σc(h, a) · π2

11: return
∑

a∈A(h) σc(h, a) CFR(ha, i, t, π′1, π′2)
12: end if
13: Let I be the information set containing h.
14: σt(I)← RegretMatching(rI) using Eq. 2.18
15: vσ ← 0
16: vσI→a [a]← 0 for all a ∈ A(I)
17: for a ∈ A(I) do
18: if P (h) = 1 then
19: vσI→a [a]← CFR(ha, i, t, σt(I, a) · π1, π2)
20: else if P (h) = 2 then
21: vσI→a [a]← CFR(ha, i, t, π1, σt(I, a) · π2)
22: end if
23: vσ ← vσ + σt(I, a) · vσI→a [a]
24: end for
25: if P (h) = i then
26: for a ∈ A(I) do
27: rI [a]← rI [a] + π−i · (vσI→a [a]− vσ)
28: sI [a]← sI [a] + πi · σt(I, a)
29: end for
30: end if
31: return vσ
32:

33: function Solve():
34: for t = {1, 2, 3, · · · , T} do
35: for i ∈ {1, 2} do
36: CFR(∅, i, t, 1, 1)
37: end for
38: end for

22



Theorem 1 (Theorem 4 of [124]). When using Vanilla CFR, the average regret for player

i is bounded by

R̄Ti ≤
∆u,i|Ii|

√
|Ai|√

T

where |Ai| = maxI∈Ii |A(I)| and ∆u,i = maxz,z′∈Z(ui(z
′)− ui(z)).

Therefore, the algorithm can find an ε-Nash equilibrium in O( 1
ε2

) iterations. Recall the

definition of Ci from Section 2.1.3. Vanilla CFR needs to store a regret and a value for the

average strategy for every (I, a) pair for both players. Therefore, the memory required by

CFR is O(|C1|+ |C2|), which is an improvement over the product of |C1| and |C2| required

by sequence-form linear programming.

To obtain chance-sampled CFR that is used by most of the Poker implementations,

instead of recursively calling CFR for each outcome in lines 9 to 11, a single one is sampled

a ∼ σc(I) and the probability σc(I, a) is not included in π−i. The reason for the latter

change will become clear when chance-sampled CFR is described as an MCCFR algorithm

in Chapter 4.

In practice, there is a straight-forward pruning optimization that can be applied to this

algorithm. Notice that when π−i = 0, then regret update on line 27 can be skipped. Fur-

thermore, once π−i is set to 0, it will remain so for the remainder of the sub-tree and all

the regret updates in the sub-tree can be skipped. The algorithm still needs to traverse the

sub-trees for the average strategy update on line 28. If ever both π−i = πi = 0, then it is

safe to prune the remaining sub-trees because both regret and average strategy increments

will always be 0. For the remainder of this thesis, we assume that CFR and chance-sampled

CFR algorithms always include this pruning optimization.

Online Convex Programming and No-Regret Learning

Convex programming is a generalization of linear programming. The goal is to minimize

a convex cost function c : X → R where X is some n-dimensional convex set. An online

convex programming (OCP) problem is an iterative process where at each step the function

ct(x) is not known until a feasible hypothesis x ∈ X is chosen for it, and it can change

after every step t. The general goal is to minimize the cost; performance is measured by

minimizing the regret of not picking a particular choice x.

Generalized Infinitesimal Gradient Ascent (GIGA) is an algorithm that minimizes re-

gret by making adjustments to the strategies (distributions over choices) by following the

gradient of the observed cost function [122]. The gradient ∇ct(x) is assumed to be given.
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A greedy projection algorithm is used to select the next point; essentially, an x is chosen

from the feasible set of hypotheses that is closest to xt−ηt∇ct(xt), where ηt is the learning

rate at time t. With an appropriately chosen ηt, the regret bound for this algorithm is shown

to be sublinear in the number of steps T , therefore its average regret approaches 0 over time.

GIGA can be applied to two-player games by assuming each play is an instance of an OCP,

where the cost function is the payoff received for each players’ choice of actions. For a

particular choice of learning rates, the average regret over time goes to 0, so this algorithm

suggests a way to compute the optimal strategies as the average of the empirical play.

A more recent algorithm for solving OCPs is Lagrangian Hedging (LH) [40]. In LH, the

state is maintained as an accumulated regret vector, s, updated at each time step. The main

idea is to steer this vector s over time towards “safe sets” (s vectors where ∀x ∈ X, s·x ≤ 0)

by using appropriate potential functions F (s) whose gradients are denoted f(s). These

potential functions have the property that their value is high when s is far from safe and

low when s is close to safe. The next hypothesis xt is chosen based on f(st) at each

step, and st+1 is updated to incorporate the regret from the newly observed losses. LH

is a generalization of previous online learning algorithms; the choice of potential function

is the parameter that differentiates instances. In fact, it generalizes the weighted majority,

regret-matching, and Hedge algorithms. As with GIGA, LH can be applied to repeated

games in self-play to learn an equilibrium or to learn how to play a best response against a

fixed opponent, as was applied to One-Card Poker: a small yet strategic game. Experiments

show that two adaptive players playing against each other converge to a Nash equilibrium.

However, when using LH to solve extensive form games, the hypothesis space is the set

of realization plans (see section 2.1.3) which is difficult to define a potential function for;

in this case, an alternate optimization form of the algorithm can be used instead. In the

optimization form, F (s) and its gradient are computed by solving an optimization problem.

However, this optimization problem takes the form of a quadratic program, and one must

be solved at each step.

2.3 Monte Carlo Sampling and Game-Playing

The Monte Carlo technique is a general term used for methods or algorithms that approxi-

mate values through sampling. For example, a Monte Carlo algorithm for the bandit prob-

lem might try each arm a certain number of times, n, receiving xi on each trial, and es-

timate its mean return to be
∑n
i xi
n . When n is large enough, the law of large numbers
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assures that this sample mean is a good estimate for the true mean of the underlying dis-

tribution. Given the estimated means of each arm the algorithm would then reason about

them; for example, after a certain number of exploration trials, by choosing the one with

the highest estimated mean from then on. The quantity sought may be computed exactly,

but only with significant resources; Monte Carlo methods are often used when the com-

putation is impractical and an approximation suffices since it is usually less costly [26;

4]. The main idea can be extended to many settings; in extensive games or game trees,

either actions or histories are sampled and the sample mean payoff gives an estimate for the

expected payoff of a state or history.

As an example, consider a game state at the top of game tree (start of the game); suppose

we want to know the expected payoff received when playing action a and then both players

follow σ1 and σ2. This value can be computed precisely by traversing the entire sub-tree

under a. The expected payoff can also be estimated by running simulations until the end of

the game, sampling an action from σ1 or σ2 at each game state, and computing the mean

payoff.

2.3.1 Importance Sampling

Importance sampling is a technique used to measure the expected value of a quantity that is

made up of random variables drawn from a distribution that is either impossible or otherwise

inconvenient to sample from [116]. To do so, a different sampling distribution is used and

then a correction is made for the change in distribution. For a (discrete) random variable

X ∼ f that takes on values in a finite set X , suppose we want to measure:

Q = E[h(X)] =
∑
x∈X

h(x)f(x)

A Monte Carlo estimate would take a sample (x1, x2, · · · , xn) from X ∼ f and use the

values as estimates for the sum to compute an overall estimate

Q̃MC =
1

n

n∑
i=1

h(xi)

However, f can be difficult or impossible to sample from. Suppose g is a probability density

function that is easy to sample from. We can redefine our quantity

Q =
∑
x∈X

h(x)f(x) =
∑
x∈X

h(x)f(x)
g(x)

g(x)
=
∑
x∈X

h(x)f(x)

g(x)
g(x) = Eg(Y ),
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where Y = h(X)f(X)/g(X) and Eg(Y ) is expected value of Y under probability distri-

bution g. Now, we can instead sample X1, · · · , Xn ∼ g and estimate Q by

Q̃IS =
1

N

N∑
i=1

Yi =
1

N

N∑
i=1

h(Xi)f(Xi)

g(Xi)
.

Here, the value of f(Xi)/g(Xi) boosts the importance of h(Xi) with respect to estimating

the desired quantity. The aim, if possible, is to choose a distribution g such that the samples

from g will be biased towards the most important ranges of Xi for estimating the desired

quantity.

2.3.2 Perfect Information Games, Game-Playing, and Search

Game-playing is different than game-solving in that it seeks to answer the research ques-

tion “How can one design an agent that plays game x well?” Computing a Nash equilib-

rium before employing its strategies during play is one approach to designing computer a

Poker-playing agent. However, there are other approaches and algorithms that are used for

decision-making in game-playing. The decision of which approach to take usually depends

the size of the game, whether it has perfect or imperfect information, and the competition

structure (e.g., whether offline computation in advance is allowed.)

In this subsection, we define perfect information games and search. It is important to

note that the literature and corresponding community use different terms to refer to the

same concepts presented earlier in this chapter. To remain consistent with this literature,

we use the appropriate notation for the context. In particular, we will use the notation in

this subsection for chapters 6 and 7. To avoid confusion, we will emphasize the similarities

in these concepts and link both names explicitly.

A perfect information game is a special type of extensive game: specifically, a perfect

information game is one without any hidden information known only by a strict subset of

the players. Chess, Checkers, and Go are classical examples of perfect information games

without stochasticity (without chance nodes) whereas Backgammon is a classical example

of a perfect information game with stochasticity. In perfect information games, information

sets each contain a single history each are instead referred to as states. At each state s ∈ S,

there is an optimal action a ∈ A(s) that is part of a max-min or min-max (equilibrium)

strategy7. In imperfect information games, we described strategies σi(I) as distributions

(mixes) over the actions available A(I). In perfect information games, there is no need to

7S is the analogue to I.
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mix over your actions to mislead the opponent. Therefore, most algorithms search for a

single optimal action rather than entire strategies.

A finite, two-player zero-sum game of perfect information can be described as a tuple

(S, Z,A,P, u1, s1), which we now define as a specific kind of Markov Decision Process

(MDP). The state space S is a finite, non-empty set of states, with Z ⊆ S denoting the

set of terminal states. As before, the action space A is a finite, non-empty set of actions.

The transition probability function P assigns to each state-action pair (s, a) ∈ S × A a

probability measure over S that we denote by P(· | s, a). The utility function u1 : Z 7→

[vmin, vmax] ⊂ R gives the utility of player 1, with vmin and vmax denoting the minimum

and maximum possible utility respectively. Since the game is zero-sum, the utility of player

2 in any state s ∈ Z is given by u2(s) = −u1(s). The player index function P : S → {1, 2}

returns the player to act in given state s if s ∈ S \Z, otherwise it returns 1 in the case where

s ∈ Z to emphasize that the payoffs at the leaves are with respect to player 1.

Each game starts in the initial state s1 with P (s1) = 1 and proceeds as follows; for

each time step t ∈ N: first, player P (st) selects an action at ∈ A in state st, with the next

state st+1 generated according to P(· | st, at). Player P (st+1) then chooses a next action

and the cycle continues until some terminal state sT ∈ Z is reached. At this point player 1

and player 2 receive a utility of u1(sT ) and u2(sT ) respectively.

The minimax value of a state s ∈ S is defined by

V (s) =



max
a∈A

∑
s′∈S
P(s′ | s, a)V (s′) if s /∈ Z and P (s) = 1

min
a∈A

∑
s′∈S
P(s′ | s, a)V (s′) if s /∈ Z and P (s) = 2

u1(s) otherwise,

(2.19)

Note that we always treat player 1 as the player maximizing u1(s) (Max), and player 2

as the player minimizing u1(s) (Min). In games without stochasticity (no chance nodes)

P(s′ | s, a) is simply considered to be 1 if the next state following s is s′ and 0 otherwise.

Since we apply our techniques to games with stochasticity in Chapters 6 and 7, we present

the general case here.

In most large games, computing the minimax value for a given game state is intractable.

Because of this, an often used approximation is to instead compute the finite horizon mini-

max value. This requires limiting the recursion to some fixed depth d ∈ N and applying a

heuristic evaluation function hi : S 7→ [vmin, vmax] when this depth limit is reached. Thus

given a heuristic evaluation function h1(s) : S → R defined with respect to player 1 that
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satisfies the requirement h1(s) = u1(s) when s ∈ Z, the finite horizon minimax value is

defined recursively by

Vd(s) =



max
a∈A

Vd(s, a) if d > 0, s 6∈ Z, and P (s) = 1

min
a∈A

Vd(s, a) if d > 0, s 6∈ Z, and P (s) = 2

h1(s) otherwise,

(2.20)

where

Vd(s, a) =
∑
s′∈S
P(s′ | s, a)Vd−1(s′), (2.21)

For sufficiently large d, Vd(s) coincides with V (s). The quality of the approximation de-

pends on the heuristic evaluation function, the search depth parameter d, and the domain.

The minimax search algorithm performs a shallow search of the game tree online re-

porting the best possible move given a particular search depth and estimated payoff [93].

An example minimax tree for a perfect information game without chance nodes is shown in

Figure 2.4. The current player’s state is represented by the root of this tree; they are trying

to maximize their payoff and their opponent is trying to minimize it. The search algorithm

looks ahead by using depth-limited depth-first search, recursively alternating minimizing

and maximizing the values returned by each move.

Alpha-beta pruning is an optimization that reduces the size of the minimax tree by

cutting out subtrees that will not change the value returned. At node (a) in Figure 2.4, the

parent has already determined an action that gives a utility of 5. Therefore, once the value

of 8 is found at node (a) the value returned could only get larger by searching the other

actions; the parent will choose 5 regardless. Similarly, at node (b) since the algorithm is

minimizing, the value returned could only be smaller than 4; the entire subtree is pruned.

In practice, these cutoff points are implemented by maintaining a lower bound (α) and an

upper bound (β) at each node, starting at−∞,+∞. At a Max node, if a value v returned by

a recursive traversal of a subtree below an action and v > α, then the new lower bound is set

to v. Similarly at Min nodes, the upper bound can be reduced as subtrees are visited. This

bound information is propagated to the children recursively. If the [α, β] window (interval)

ever becomes empty due to β < α then any future search is provably wasteful as a better

value has already been found. In the example above, at node (a) the parent sends down a

window of [−∞, 5], and a value of 8 is returned by the subtree causing a cutoff of every

other subtree at that node.

The minimax tree represents a subtree of the full game tree; payoff values at the leaves
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Figure 2.4: An example minimax tree for a perfect information game without chance node.
Alpha-beta pruning is demonstrated on an alternating move game.

are estimates returned by the heuristic evaluation function h1. Consider now, an algorithm

we will call full minimax, which is not a depth-limited approximation; in other words,

rather than stopping early and returning heuristic evaluations, it continues to the end of the

game in every case, returning the true payoff values. The path that full minimax recom-

mends, the so-called principal variation, would be one taken by players employing one

particular pure Nash equilibrium profile. In addition, the path computed by full minimax is

a path taken by a (pure behavioral strategy) solution to the sequence-form linear program

constructed from Equation 2.8. Even the regret minimization techniques above can be ap-

plied to perfect information games, since every finite perfect information extensive game

(with perfect recall) is a finite imperfect information extensive game (with perfect recall)

with the added restriction that |I| = 1 for all I ∈ Ii. The problem is that the space and

time complexities are functions of I (hence S). In perfect information games, a pure Nash

equilibrium always exists; due to the interchangeability of Nash equilibria in two-player

zero-sum games, it suffices then from some state s to search for a single action that is part

of a pure equilibrium strategy. Minimax and other search algorithms take advantage of a

specific property of perfect information games to make better use of computation time.

Other search-based techniques are also used in the perfect information setting for solv-

ing games, e.g., pattern databases and proof number search [25; 3; 98].

Monte Carlo Sampling in Game Tree Search

Monte Carlo methods are also commonly used in search. In single-agent problems, a strat-

egy is commonly referred to as a policy, denoted π. In general, π can be a stochastic policy

and there may be stochasticity in the transitions from state to state (just like a mixed strat-

egy), so St is a random variable representing the state the agent is in at time t. At each time t,
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the agent chooses an actionAt ∼ π(· |St). In the general case, when problems are modeled

as MDPs, the system then responds with a state-reward pair (St+1, Rt+1) ∼ P(· |St, At),

where St+1 ∈ S and Rt+1 ∈ [vmin, vmax].

A canonical example of online Monte-Carlo planning is 1-ply rollout-based planning

[9]. It combines a default policy π with a one-ply look-ahead search. At each time t < n,

given a starting state st, for each at ∈ A and with t < i < n, E [Xst,at |Ai ∼ π(· |Si)]

is estimated by generating trajectories St+1, Rt+1, . . . , An−1, Sn, Rn of agent-system

interaction. From these trajectories, sample means X̄st,at are computed for all at ∈ A. The

agent then selects the action At = arg maxat∈A X̄st,a, and observes the system response

(St+1, Rt+1). This process is then repeated until time n. Under some mild assumptions,

this technique is provably superior to executing the default policy on its own [9].

One of the main advantages of rollout based planning compared with exhaustive depth-

limited search is that a much larger search horizon can be used. This is particularly useful

in episodic tasks where n ≈ 1000 or less. Let π∗ be the optimal policy which maximizes

the expected return8. The disadvantage of rollout-based planning is that if π is suboptimal,

then E [Xst,a |Ai ∼ π(· |Si)] < E [Xst,a |Ai ∼ π∗(· |Si)] for at least one state-action pair

(st, a) ∈ S × A, which implies that at least some value estimates constructed by 1-ply

rollout-based planning are biased. This can lead to mistakes which cannot be corrected

through additional sampling. The bias can be reduced by incorporating more knowledge

into the default policy, however this can be both difficult and time consuming.

Monte Carlo Tree Search (MCTS) is a recent technique used to sample actions on-

line [18; 14]. MCTS is a general technique for Monte Carlo game-playing inspired by the

Upper Confidence Bounds for Trees (UCT)9 algorithm [61]. MCTS is a best-first search

algorithm that incrementally builds a tree in memory. MCTS constructs asymptotically

consistent estimates of the return under the optimal policy from simulation trajectories. It

uses a default policy to generate trajectories of agent-system interaction. The construction

of a search tree is also interleaved within this process. Initially, the search tree consists of

a single node, which represents the current state st at time t. One or more simulations are

then performed. We will use Tm ⊂ S to denote the set of states contained within the search

tree after m ∈ N simulations. Associated with each state-action pair (s, a) ∈ S × A is an

estimate X̄m
s,a of the return under the optimal policy and a count Tms,a ∈ N representing the

8In a 2-player adversarial setting, π∗ is a minimax-optimal strategy, as described in Section 2.3.2.
9In this thesis, our techniques are applicable to the general setting and so we choose to refer to MCTS rather

than to UCT. However, all of our techniques are applicable to UCT and much of the algorithm described in this
section was initially presented in the original paper by Kocsis & Szepesvári (2006). As such, we may use the
terms MCTS and UCT interchangeably.
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Selection Expension Simulation Backpropagation

The selection function is applied
recursively until a leaf node is

reached

One or more nodes
are created

The result of this game is
backpropagated in the tree

One simulated
game is played

Selection Expansion Simulation Backpropagation

The selection function is
applied recursively until

a leaf node is reached

One or more nodes
are created

The result of this game is
backpropagated in the tree

One simulated
game is played

           Repeated X times

Figure 2.5: A summary of the Monte Carlo Tree Search (MCTS) algorithm. Image provided
by Guillaume Chaslot.

number of times this state-action pair has been visited after m simulations, with T 0
s,a = 0

and X̄0
s,a = 0.

Each simulation can be broken down into four phases, selection, expansion, rollout

and backup. Selection involves traversing a path from the root node to a leaf node in the

following manner: for each non-leaf, internal node representing some state s on this path,

the UCB [6] criterion is applied to select an action until a leaf node corresponding to state

sl is reached. If U(Bs) denotes the uniform distribution over the set of unexplored actions,

define Bms = {a ∈ A : Tms,a = 0}, and Tms =
∑

a∈A T
m
s,a, then UCB at state s selects

Am+1
s = arg max

a∈A
X̄m
s,a + C

√
log(Tms )/Tms,a, (2.22)

if |Bms | = ∅, or Am+1
s ∼ U(Bms ) otherwise. The ratio of exploration to exploitation is

controlled by the positive constant C ∈ R. In the case of more than one maximizing

action, ties are broken uniformly at random. Provided sl is non-terminal, the expansion

phase is then executed, by selecting an action Al ∼ π(· | sl), observing a successor state

Sl+1 = sl+1, and then adding a node to the search tree so that Tm+1 = Tm ∪ {sl+1}.

Higher values of c increase the level of exploration, which in turn leads to more shallow

and symmetric tree growth. The rollout phase is then invoked, which for l < i < n,

executes actions Ai ∼ π(· |Si). At this point, a complete agent-system execution trajectory

(at, st+1, rt+1, . . . , an−1, sn, rn) from st has been realized. The backup phase then assigns,

for t ≤ k < n,

X̄m+1
sk,ak

← X̄m
sk,ak

+ 1
Tmsk,ak

+1

(
n∑

i=k+1

ri − X̄m
sk,ak

)
, Tm+1

sk,ak
← Tmsk,ak + 1,
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to each (sk, ak) ∈ Tm+1 occurring on the realized trajectory. Notice that for all (s, a) ∈

S × A, the value estimate X̄m
s,a corresponds to the average return of the realized simu-

lation trajectories passing through state-action pair (s, a). After the desired number of

simulations m has been performed in state st, the action with the highest expected return

at = arg maxa∈A X̄
m
st,a is selected. With an appropriate value of C, as m→∞, the value

estimates converge to the expected return under the optimal policy [61]. However, due to

the stochastic nature of the algorithm, each value estimate X̄m
s,a is subject to error, in terms

of both bias and variance, for finite m.

MCTS has been successfully applied to game-playing and have received much atten-

tion. One notable example is the game of Go where it has allowed creation of strong com-

puter players [31; 30]. In the general game-playing competition [32], MCTS-based players

have been shown to have strong performance [27]. In this setting no model of the game is

known apriori, so sampling online can be used to estimate the quality of each move at a tree

node.

What about imperfect information games? The search and game-playing communities

have been applying search methods (including Monte Carlo Tree Search methods) to im-

perfect information games. The main technique used here is called determinization: when

faced with a decision, sample a state from the current information set, applying a search

method to this sampled perfect information game rooted at the sampled state, and aggre-

gating the results. Determinization-based techniques have been applied in with empirical

success in Bridge [37], Skat [101; 72], Dou Di Zou [89], Magic: The Gathering [24], and

Scotland Yard [80]. Perfect Information Monte Carlo (PIMC) search uses determinization

and minimax-based classical search, and was applied to Skat and Poker [73]. A recent

algorithm, Information Set Monte Carlo Tree Search, searches the players’ individual in-

formation set trees rather than the perfect information game tree [23].

Unfortunately, determinization-based MCTS players playing against each other in an

imperfect information game may not converge to a Nash equilibrium when obtaining a

mixed strategy by normalizing visit counts. One counter-example is shown on a small

game of biased Rock Paper Scissors [103]. Another empirical example is shown on Kuhn

Poker [88], but in this case the algorithm seems to avoid dominated strategies. Whether

determinization-based MCTS algorithms could be modified so that equilibria are approached

over time remains an open question. However, in the perfect information setting, given in-

finite resources UCT will recommend an action that is part of an equilibrium [61], even in

games with more than two players [107].
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Chapter 3

Games

In this chapter, we describe the extensive form games that will be referred to throughout the

thesis. The games presented here are used as domains for empirical investigations of the

algorithms that follow.

3.1 Imperfect Information Games

Recall that an imperfect information game is an extensive game where some information

may only be revealed to a strict subset of the players. In this section, we describe the

imperfect information games used throughout the thesis.

Figure 3.1: Bluff’s game board.
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3.1.1 Bluff

Bluff, also known as Liar’s Dice, Dudo, and Perudo, is a dice-bidding game. In our version,

Bluff(D1,D2), each die has six sides with faces , , , , , and a star: ?. Each player

i rolls Di of these dice and looks at them without showing them to their opponent. Each

round, players alternate by bidding on the outcome of all dice in play until one player “calls

bluff”, i.e., claims that their opponent’s latest bid does not hold. A bid consists of a quantity

of dice and a face value. A face of ? is considered “wild” and counts as matching any other

face. For example, the bid 2- represents the claim that there are at least two dice with

a face of or ? among both players’ dice. To place a new bid, the player must increase

either the quantity or face value of the current bid (or both); in addition, lowering the face

is allowed if the quantity is increased. The losing player removes a number of dice L from

the game and a new round begins, starting with the player who won the previous round.

The number of dice removed is equal to the difference in the number of dice claimed and

the number of actual matches; in the case where the bid is exact, the calling player loses a

single die. When a player has no more dice left, they have lost the game. A utility of +1 is

given for a win and −1 for a loss.

We refer to Bluff(D1, D2) as a single-round of the full game. The full game is composed

of multiple rounds, where each subsequent round is considered a subgame. For example,

suppose after a game of Bluff(D1, D2) the loser loses L dice; then the next round of the is

either Bluff(D1, D2−L) or Bluff(D2, D1−L), depending on which player lost. Therefore,

in Bluff(2,2) the game values of Bluff(1,1) are precomputed and then used as payoffs at

the leaves of Bluff(2,1), whose game values are then re-used as leaf payoffs for Bluff(2,2).

Similarly for Bluff games with Di ≥ 3. In Bluff(2,2), the total number of histories |H| ≈

1010.

Unlike games like limit Texas Hold’em Poker, the number of information sets in Bluff

is due to the number of possible bidding sequences. There are
(
Di+5

5

)
unique outcomes

when player i rolls their Di dice [60]. The number of possible bids is 6(D1 + D2). Since

the bidding sequence does not depend on either player’s dice, a bidding sequence can be

directly represented as a binary string. For example, a bidding sequence of 1- , 1- , 1- ,

1-?, 2- can be represented by the binary string 1011011. Therefore, there are 2D1+D2

unique bidding sequences. Each bidding sequence belongs to exactly one player and so

the number of information sets per bidding sequence is equal to the number of different

unique die-roll outcomes. Therefore, the total number of information sets belonging to both
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players in a game of Bluff, when D1 = D2, is
(
Di+5

5

)
26D1+6D2 . Bluff(1,1), Bluff(2,2), and

Bluff(3,3) have 24576, 352 million, and 3.848× 1012 information sets, respectively.

3.1.2 One-Card Poker

One-Card Poker, abbreviated OCP(N ), is a simplified two-player game of Poker described

by Geoffrey Gordon [40; 39]. Each player is dealt a single card from a deck of N cards.

The first player can bet or pass. If the first player bets, the second player can call or fold. If

the first player passes, the second gets the option to bet or pass, where a bet causes the first

player to have to decide whether to call or fold. The game ends on two passes, a call, or a

fold. On a fold, the betting player gets 1$ (and the folding player loses $1). On two passes

or a call, the player with the highest card wins $2 or $1 respectively (and the other player

loses the same amount). In OCP(500), |H| ≈ 22.4 · 106 and there are approximately 2000

information sets among both players. Note that OCP(3) is equivalent to Kuhn’s simplified

version of poker [65].

3.1.3 Die-Roll Poker

Die-roll poker, abbreviated DRP, is a simplified two-player poker game that uses dice rather

than cards. To begin, each player antes one chip to the pot. There are two betting rounds,

where at the beginning of each round, players roll a private six-sided die. The game has

imperfect information due to the players not seeing the result of the opponent’s die rolls.

During a betting round, a player may fold (forfeit the game), call (match the current bet),

raise (increase the current bet) by a fixed number of chips, with a maximum of two raises

per round. In the first round, raises are worth two chips, whereas in the second round, raises

are worth four chips. If both players have not folded by the end of the second round, a

showdown occurs where the player with the largest sum of their two dice wins all of the

chips in the pot.

3.1.4 Imperfect Information Goofspiel

Goofspiel(N ) is a two-player card game where each player is given a private hand of bid

cards with values 1 to N . A different deck of N point cards is shuffled and the cards are

placed face up in a stack. On their turn, each player bids for the top point card by choosing

a single card in their hand and revealing the chosen card simultaneously. Whoever bid the

highest value gets the point card and adds the point total to their score. In the case of a tie,

the point card is discarded. Whether they won or lost the bid, both players discard the card
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Figure 3.2: An 8-node circle graph and four-connected 3-by-3 graph used in Princess and
Monster games.

they used to bid. This bidding process is repeated until players have no bid cards left. The

player with the highest score wins and receives a utility of 1. The losing player receives a

utility of -1.

Our imperfect information version of Goofspiel has two changes. First, only whether

the player won or lost a bid is revealed, not the cards that were used to bid. Second, the point

card stack is sorted in a known (descending) order rather than being randomly shuffled. The

former change increases the degree of imperfect information in the game, since the original

Goofspiel is a simultaneous move game only having very short-term imperfect information.

The latter change allows us to better control the size of the game.

In Goofspiel(7), |H| ≈ 98.3 · 106 and |I| ≈ 3.3 · 109.

3.1.5 Princess and Monster

Princess and Monster, abbreviated PAM(tmax, G), is a pursuit-evasion game based on a

similar continuous game [49, Research Problem 12.4.1]. The monster and princess take

turns moving to nodes on a graph G in a “dark room” where neither knows the location of

the other. Unlike the original problem, both princess and monster are restricted to moving

to adjacent nodes. A time step counter is incremented after the monster moves and then

the princess moves, where t = 0 initially. There is a time limit; if the monster catches the

princess (both occupy the same node in the graph) within the time limit it gets a payoff of

tmax − t + 1. Otherwise, its payoff is −tmax. The princess gets the inverse payoff of the

monster: +tmax if uncaptured or a negative value based on the number of time steps she

remained uncaptured −tmax + t− 1.

We consider two different graphs shown in Figure 3.2: the 8-node circle graph with

opposing starting positions and a 9-node 3-by-3 grid world graph with random starting

positions.
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In Princess and Monster on the 3-by-3 grid, |H| ≈ 91.4 · 106 and |I| ≈ 20 · 103.

3.1.6 Latent Tic-Tac-Toe

Latent Tic-Tac-Toe is a more interesting version of the classic two-player game where play-

ers take turns claiming squares in a 3x3 grid. In Latent Tic-Tac-Toe each players’ moves are

“delayed”. Whenever it is a player’s turn they write down their move secretly and it is only

revealed to take effect at the beginning of their next turn. This means the opponent will have

to take make their own move without knowing the opponent’s latest. The delayed moves

are valid if the target square is empty at the time it is revealed. If a delayed move is not

valid when it is revealed then the move is lost. The goal of each player remains to get three

squares in a straight line (horizontal, vertical, or diagonal). The winning player receives a

utility of +1 and the losing player receives -1. In Latent-Tic-Tac-Toe, |H| ≈ 70.4 · 106 and

|I| ≈ 16 · 106.

3.1.7 Phantom Tic-Tac-Toe

As in regular tic-tac-toe, phantom tic-tac-toe (PTTT) is played on a 3-by-3 board, initially

empty, where the goal is to claim three squares along the same row, column, or diagonal.

However, in PTTT, players’ actions are private. Each turn, a player attempts to take a square

of their choice. If they fail due to the opponent having taken that square on a previous turn,

the same player keeps trying to take an alternative square until they succeed. Players are

not informed about how many attempts the opponent made before succeeding. The game

ends immediately if there is ever a connecting line of squares belonging to the same player.

The winner receives a payoff of +1, while the losing player receives−1. In PTTT, the total

number of histories |H| ≈ 1010 and |I| ≈ 5.6 · 106.

3.2 Perfect Information Games

Recall that a perfect information game is an extensive game where |I| = 1 for all I ∈ Ii
for every player i. In other words, information is never known only to a strict subset of the

players.

3.2.1 Pig

Pig is a turn-based jeopardy dice game that can be played with one or more players [97].

Players roll two dice each turn and keep a turn total. At each decision point, they have two

actions, roll and stop. If they decide to stop, they add their turn total to their total score.
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Figure 3.3: EinStein Würfelt Nicht! player board and components. Source: http://

boardgamegeek.com/image/128344/einstein-wurfelt-nicht.

Normally, dice rolls add to the players turn total, with the following exceptions: if a single

is rolled the turn total will be reset and the turn ended; if a is rolled then the player’s

turn will end along with their total score being reset to 0. These possibilities make the game

highly stochastic.

3.2.2 EinStein Würfelt Nicht!

EinStein Würfelt Nicht! (EWN) 1 is a tactical dice game played on a 5 by 5 grid. Each

player, red or blue, starts with their 6 dice or pieces (labeled , , . . . , ) in the top left

corner squares or bottom-right corner squares. The goal is to reach the opponent’s corner

square with a single die or capture every opponent piece. Each turn starts with the player

rolling a white die off the board which indicates which of their dice they can move this turn.

Pieces can only move toward the opponent’s corner square or off the board; if they move a

die over a square containing another die (belonging to them or the opponent), it is captured.

EWN is a popular game played by humans and computer opponents on the Little Golem

online board game site http://www.littlegolem.net.

3.2.3 Can’t Stop

Can’t Stop is a dice game where the goal is to obtain three complete columns by reaching

the highest level in each of the 2-12 columns [95]. On a player’s turn, they choose to either

roll or stop. If the player chooses to roll, they roll 4 dice and from the four dice they group

the dice into two pairs of two dice each. For example, suppose the player rolls ,

the valid pairings are ( , ), and ( , ), or simply (2, 7) and (4, 5); the player
1Translated as “Einstein does not play dice!”
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Figure 3.4: Can’t Stop player board and components.

chooses one of these and moves their turn progress markers (white tokens in Figure 3.4) up

one level in each column. A player has only three turn progress markers that they can use

each turn; when all three are on the board, no more new ones can be placed that turn and the

white markers may not be moved to different columns that turn. The player then chooses

to roll or stop again. If the dice are rolled and no legal pairing (i.e., a pair that sums to two

columns, at least one of which the player may advance on) can be made, the player loses

all of the progress made towards completing columns on this turn. If the player chooses

to stop, their turn ends and they move their permanent player markers in their color up to

the level reached by the turn progress markers and then remove the turn progress markers

from the board. The opponent takes their turn either after the player stops or after the

player rolls no legal pairings. A key component of the game involves correctly assessing

the risk associated with not being able to make a legal dice pairing given the current board

configuration.

3.2.4 Dominion

Dominion is a popular turn-based, deck-building card game [108]. Each player incremen-

tally builds a deck of cards, which initially contains seven 1-money cards (Coppers) and

three 1-victory point cards (Estates).

On their turn, a player draws a hand of 5 cards. The player is allowed to play a single

action card (silver cards, e.g., Smithy from Figure 3.5), then can buy a single card from

the common pool of money cards, victory point cards, and 10 unique action card stacks.

Action cards have certain effects that allow you to buy more cards, get more money, draw

more cards, and earn victory points. Bought cards are placed into the discard pile, which

is reshuffled into the deck when it runs out. The victory point cards have no effect during
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Figure 3.5: Dominion game cards.

the game. At the end of each turn, players take any remaining cards in their hand and place

them into their discard pile. Players alternate turns until the stack of Province cards runs

out or there are three of ten stacks of action cards run out. The goal is to get more victory

points than your opponents.

Due to the large variance in expected utility between each 5-card combination that can

be drawn, stochasticity has a large effect on the outcome of a single game of Dominion.

The amount of money cards combined determines what card the player can add to their

deck; some unlucky draws early in the game could mean not being able to buy the better

money cards and leading to the strength of the deck growing slower than the opponent’s. In

addition, if a player draws no action cards or more action cards than one can play in a turn,

they can lose potential action effects which are often significant.
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Chapter 4

Monte Carlo Counterfactual Regret
Minimization

In this chapter, we present Monte Carlo sampling for counterfactual regret minimization.

The contents of this chapter are based on the paper [70], which was produced in collabora-

tion with Martin Zinkevich, Kevin Waugh, and Michael Bowling. We will most often refer

to the technical report version of the paper [71], which contains additional material referred

to by this chapter.

Recall from Section 2.2.2, the counterfactual regret minimization (CFR) algorithm (Al-

gorithm 1) is an iterative procedure where at time step t ∈ {1, 2, . . . , T}, players em-

ploy strategy profile (σt1, σ
t
2). The algorithm computes a regret r(I, a) of not taking action

a ∈ A(I) for every action a and every information set I ∈ Ii. A regret minimization pro-

cess then computes a new profile (σt+1
1 , σt+1

2 ), t is incremented, and the procedure contin-

ues. One critical aspect of the CFR algorithm to remember, for the purposes of equilibrium

approximation, is that the strategy approaching equilibrium is the average strategy σ̄T ; the

strategies σt are discarded after each trial. The algorithm maintains tabulated cumulative

regrets for each action at each information set, which determines the subsequent strategies.

4.1 Sampled Counterfactual Regret

Recall that the definition of counterfactual value for player i using profile σ (Equation 2.15)

is:

vi(σ, I) =
∑
z∈ZI

πσ−i(z[I])πσ(z[I], z)ui(z).

This value represents an expected utility to player iwhen reaching information set I weighted

by the probability of the opponent playing such that I is reached. Recall that the counter-

factual regret of not playing with a strategy σtI→a that chooses a particular action a at I but
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follows σti everywhere else (Equation 2.17) is:

rt(I, a) = vi(σ
t
I→a, I)− vi(σt, I). (4.1)

The main idea behind Monte Carlo CFR (MCCFR) is to instead define unbiased estimators

of counterfactual value and regret. Each iteration, MCCFR then samples only parts of the

game tree and applies the regret minimization process to the sampled subtree using the es-

timated values instead of the true values. Since the estimates are unbiased, the estimated

values approach the true values in expectation. In this chapter, we formalize these notions.

We show that as long as care is taken in how to sample these subtrees, approaching approx-

imate equilibria is possible with high probability. We prove regret bounds (that directly

imply convergence rates) for two particular sampling schemes, show empirical results, and

survey a number of applications of MCCFR in the current literature.

Define Q = {Q1, Q2, Q3, . . .} be a set of subsets of the Z such that
⋃
Q∈QQ = Z.

Note, in particular, thatQ is not necessarily a partition because we do not requireQi∩Qj =

∅. We refer to an element of Qj ∈ Q as a block of terminal histories Q ⊆ Z, and the set Q

as the set of all possible blocks. On each iteration t, MCCFR first samples a block Qj with

probability qj > 0 using some sampling scheme. Then, MCCFR computes counterfactual

values and regrets for each information set I such that z ∈ Qj , h @ z, h ∈ I . Let

q(z) =
∑
j:z∈Qj

qj (4.2)

be the probability that z is contained in the block that is sampled at some iteration1. The

sampled counterfactual value is defined as:

ṽi(σ, I|j) =
∑

z∈Qj∩ZI

1

q(z)
πσ−i(z[I])πσ(z[I], z)ui(z). (4.3)

Note that as long as we guarantee q(z) ≥ δ > 0 then the sampled counterfactual regret is

well-defined; δ is the lowest probability of sampling any z and will become a critical part

of the bounds in Section 4.5.

When the intersectionQj∩ZI is empty, the block contains none of the terminal histories

passing through I and hence the value is 0. The sampled counterfactual value ṽi(σ, I|j) is

essentially a function of a random variable whose distribution is defined by the sampling

scheme over the possible blocks Q. The following lemma relates the expected value of

ṽi(σ, I|j) with vi(σ, I).
1In general, a different sampling scheme may be used at every iteration; here, we intentionally omit t from

the definition of qj as it simplifies the notation. For any statements about q(z) and qj , assume an implicit
∀t ∈ {1, 2, . . .}.
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Lemma 1. E [ṽi(σ, I|j)] = vi(σ, I).

Proof.

E [ṽi(σ, I|j)] =
∑
j

qj ṽi(σ, I|j) (4.4)

=
∑
j

∑
z∈Qj∩ZI

qj
q(z)

πσ−i(z[I])πσ(z[I], z)ui(z) (4.5)

=
∑
z∈ZI

∑
j:z∈Qj qj

q(z)
πσ−i(z[I])πσ(z[I], z)ui(z) (4.6)

=
∑
z∈ZI

πσ−i(z[I])πσ(z[I], z)ui(z) = vi(σ, I) (4.7)

Equation 4.6 follows from the fact thatQ spans Z. Equation 4.7 follows from the definition

of q(z) from Equation 4.2.

Lemma 1 shows that ṽi(σ, I|j) is an unbiased estimator of vi(σ, I). Therefore, the

sampled counterfactual regret values

r̃t(I, a) = ṽi(σ
t
I→a, I)− ṽi(σt, I) (4.8)

match the true regret values rt(I, a) in expectation.

A high-level description of the MCCFR algorithm is given in Algorithm 2. Lower-level

pseudo-code is given below.

How the blocksQj are sampled has a large impact on the theoretical guarantees and em-

pirical performance of the algorithm. These particular definitions of a block set and sampled

counterfactual value allows us to generalize the previous algorithms. When Q = {Z} then

the sampled counterfactual value is equal to the counterfactual value and the algorithm sim-

plifies to “vanilla” CFR without any sampling at all. If the terminal histories in the same

block are grouped together because of realizing the same outcomes at chance nodes, the

algorithm simplifies to the chance sampling variant used in previous Poker agents. Addi-

tionally, we present two new sampling schemes below.

The time complexity of MCCFR will depend on the sampling scheme used. For in-

stance, in Vanilla CFR the time per iteration is linear in the size of the game tree. In a

game that contains a single chance node at the root that has 4 outcomes with equally-sized

trees below each outcome, then one iteration of chance-sampled CFR will take roughly a

quarter of the time taken by a Vanilla CFR iteration. We will mention the time complexity

of each MCCFR algorithm in the corresponding section. On the other hand, every instance

of MCCFR (including Vanilla CFR) stores the strategy space, and so the space complexity
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Algorithm 2 Monte Carlo Counterfactual Regret Minimization

1: Require: a sampling scheme S
2: Initialize regret tables: ∀I ∈ I, ∀a ∈ A(I) : rI [a]← 0
3: Initialize cumulative strategy tables: ∀I ∈ I,∀a ∈ A(I) : sI [a]← 0
4: Initialize initial profile: ∀I ∈ I, ∀a ∈ A(I) : σ(I, a)← 1/|A(I)|
5: for t ∈ {1, 2, 3, . . .} do
6: for i ∈ N do
7: Sample a block of terminal histories Q ∈ Q using S
8: for each prefix z[I] of each terminal history z ∈ Q with P (z[I]) = i do
9: σi(I)← RegretMatching(rI ) using Eq. 2.18

10: for a ∈ A(I) do
11: Let r̃ ← r̃(I, a), the sampled regret for not taking a
12: rI [a]← rI [a] + r̃
13: sI [a]← sI [a] + AverageStrategyIncrement(sI , t, σi, I, a)

is O(|C1| + |C2|). When space is a limiting factor, abstraction techniques can be used to

decrease the memory consumption; we will discuss abstraction more in Chapter 5.

4.2 Outcome Sampling

In outcome sampling MCCFR we choose Q so that each block contains a single terminal

history, i.e., ∀Q ∈ Q, |Q| = 1. On each iteration we sample one terminal history and only

update each information set along that history. The sampling probabilities, qj must specify

a distribution over terminal histories. We will specify this distribution using a sampling

profile, σ′, so that q(z) = πσ
′
(z). Note that any choice of sampling policy will induce a

particular distribution over the block probabilities q(z). As long as σ′i(I, a) > ε, then there

exists a δ > 0 such that q(z) ≥ δ, thus ensuring Equation 4.3 is well-defined.

The algorithm works by sampling z using policy σ′, storing πσ
′
(z). The single history is

then traversed forward to compute each player’s probability of playing to reach each prefix

of the history, πσi (h) and then backward to compute each player’s probability of playing

the remaining actions of the history, πσi (h, z). During the backward traversal, the sampled

counterfactual regrets at each visited information set are computed (and added to the total

regret).

When using outcome sampling, there are two cases. Either z[I]a is a prefix of z (action

a was taken at I in our sampled history), or z[I]a is not a prefix and a was not taken in z.

44



When we have the former,

r̃(I, a) = ṽi(σ
t
(I→a), I)− ṽi(σt, I) (4.9)

=
ui(z)π

σ
−i(z[I])πσ(z[I]a, z)

πσ′(z)
−
ui(z)π

σ
−i(z[I])πσ(z[I], z)

πσ′(z)
(4.10)

=
ui(z)π

σ
−i(z[I])

πσ′(z)
(πσ(z[I]a, z)− πσ(z[I], z)) (4.11)

= W · (πσ(z[I]a, z)− πσ(z[I], z)) (4.12)

where

W =
ui(z)π

σ
−i(z[I])

πσ′(z)
(4.13)

When z[I]a is not a prefix of z, then ṽi(σt(I→a), I) = 0, so

r̃(I, a) = 0− ṽi(σt, I) (4.14)

= −W · πσ(z[I], z) (4.15)

There is still the question of how to design the sampling profile σ′. It is sensible to sample

information sets that are likely to occur given the players’ strategies. The most straight-

forward way to ensure exploration while doing this is to use an ε-greedy approach. When

traversing the tree and at information set I , with probability ε choose an action uniformly at

random, otherwise sample it according to the player’s current strategy σt(I). We call this

sampling method epsilon-on-policy exploration.

Since only a single history is sampled, each iteration takes time linear in the depth of the

tree as is unaffected by the game’s branching factor. The downside is having to constantly

explore, leading to choosing actions that may clearly never be played.

In outcome sampling a single sampled history can be re-used for both players; we call

this the parallel form of outcome sampling. Here, we present only the simple case here

where the updating player i will alternate, (the alternating form), however we will show

the difference in practice in Section 4.6.

Before presenting more specific pseudo-code, we still need to discuss computing the

average strategy σ̄T . Therefore, we present outcome sampling in Algorithm 3 contained in

Section 4.4.

4.3 External Sampling

In external sampling we sample only the actions of the opponent and chance (those choices

external to the player). We have a block Qτ ∈ Q for each pure strategy of the opponent and
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chance, i.e.,, for each deterministic mapping τ from I ∈ Ic ∪ IN\{i} to A(I). The block

probabilities are assigned based on the distributions fc and σ−i, so

qτ =
∏
I∈Ic

σc(I, τ(I))
∏

I∈IN\{i}

σ−i(I, τ(I)).

The blockQτ then contains all terminal histories z consistent with τ , that is if ha is a prefix

of z with h ∈ I for some I ∈ I−i then τ(I) = a. The σ−i used to sample the opponent’s

and chance’s (deterministic) strategy is not mixed with exploration as is done in outcome

sampling, therefore the sampling is entirely on-policy in this case.

In practice, we will not actually sample τ but rather sample the individual actions

that make up τ only as needed. The key insight is that these block probabilities result

in q(z) = πσ−i(z). The algorithm iterates over i ∈ N and for each does a post-order

depth-first traversal of the game tree, sampling actions at each history h where P (h) 6= i.

In games where information sets are composed of histories solely due to the outcome of

chance events being hidden from some players (e.g., Bluff, Poker), then storing the choice

of action sampled by P (h) 6= i is unnecessary; due to perfect recall the algorithm will

never visit more than one history from the same information set during this traversal. In the

general case, some actions taken by player i may only be partly revealed (e.g., Goofspiel,

Phantom Tic-Tac-Toe), and so multiple histories in information sets belonging to −i may

be visited, therefore the choice of action sampled must be stored to ensure that the deter-

ministic strategy sampled by the opponent remains consistent over all visited histories. For

each visited information set belonging to i, the sampled counterfactual regrets are computed

(and added to the total regrets).

When using external sampling and updating I belonging to player i and z[I]a is a prefix

of z, then πσ−i(z[I], z) = πσ−i(z[I]a, z) since a is taken by i, not the opponent. Also note

that q(z) = πσ−i(z). So, the regret works out to be:

r̃(I, a) = ṽi(σ
t
(I→a), I)− ṽi(σt, I) (4.16)

=
∑

z∈Q∩ZI

ui(z)π
σ
−i(z[I])

q(z)
(πσ(z[I]a, z)− πσ(z[I], z)) (4.17)

=
∑

z∈Q∩ZI

ui(z)π
σ
−i(z[I])πσ−i(z[I], z)

q(z)

(
πσ(z[I]a, z)− πσ(z[I], z)

πσ−i(z[I], z)

)
(4.18)

=
∑

z∈Q∩ZI

ui(z)π
σ
−i(z)

q(z)
(πσi (z[I]a, z)− πσi (z[I], z)) (4.19)

=
∑

z∈Q∩ZI

ui(z) (πσi (z[I]a, z)− πσi (z[I], z)) (4.20)

46



Since a single action is sampled at opponent information sets, the time required by each

iteration is still exponential in the branching factor, but the exponent (which is equal to the

depth in the case of Vanilla CFR), is divided by two (in a strictly alternating move game),

and so each iteration takes roughly time proportional to the root of the size of the tree. If

there are chance nodes, outcomes are also sampled and hence each iteration can take less

than the root of the size of the tree.

4.4 Average Strategy Computation

Recall from Section 2.2.2, when using CFR the strategy approaching an approximate equi-

librium is in fact σ̄T . If the goal is to compute an approximate equilibrium then, the profile

that is retrieved once all the iterations are done is this average strategy profile.

The average strategy is defined, in Equation 2.14, as

σ̄i
T (I, a) =

∑T
t=1 π

σt
i (I)σt(I, a)∑T
t=1 π

σt
i (I)

, I ∈ Ii

In vanilla CFR, only the numerator is accumulated for each action a at an information set

I . When σ̄iT (I, a) is needed, the value maintained can be normalized over the values kept

for all the other actions since
∑

a∈A(I)

∑T
t=1 π

σt
i (I)σt(I, a) =

∑T
t=1 π

σt
i (I). The average

strategy increment to action a at I is therefore πσ
t

i (I)σt(I, a); in practice, this increment is

achieved via several smaller increments πσ
t

i (h)σt(I, a) over all h ∈ I . That is, the recursive

traversal is over the game tree and not the information set tree. Since a full pass is done

every iteration, the average strategy is computed exactly.

Computing the average strategy in MCCFR is generally less clear because only some

of the information sets are visited each iteration. However, the computation of the average

strategy at an information set should include how a player acted there over all T iterations.

There are several approaches to solve this problem, which we describe below. Unlike in

Vanilla CFR and chance-sampled CFR, the average strategy updates are applied on the

opponent’s turns to enforce the unbiasedness of the update to the average strategy.

One way to solve this problem is to have a counter at each information set cI initially

set to 0. When h is sampled and h ∈ I , the sum maintained for each action a is incremented

by (t − cI)πσ
t

i (h)σt(I, a) and then cI is set to t. In effect, this weights the usual update

to the average strategy by (t − cI), the number of time steps since we have last seen I .

This is equivalent to performing (t − cI) updates to the average all at once, assuming the

player had played the recently-computed strategy for all (t − cI) iterations since it was

last sampled. Doing this is incorrect, as the increment to the average strategy should be
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the sum of terms πσ
t

i (I) over iterations {t, t + 1, · · · }. We call this method optimistic

averaging. There are several disadvantages to this method. The first, as noted above, is

that it is only a heuristic approximation of the proper update. The second is that an extra

variable is required increasing the amount of memory needed by O(I). The third is that

when the computation is finished and σ̄T is needed, many of the information sets may not

be up-to-date (cI < t); therefore, when retrieving the average strategy, one final average

strategy update is required at each information set.

Algorithm 3 Alternating Outcome Sampling with Opt. Avg. and ε-on-policy Exploration

1: Initialize: ∀I ∈ I : cI ← 0
2: Initialize: ∀I ∈ I, ∀a ∈ A(I) : rI [a]← sI [a]← 0
3: OutcomeSampling(h, i, t, πi, π−i, s):
4: if h ∈ Z then return (ui(h)/s, 1)
5: if P (h) = c then sample a′ and return OutcomeSampling(ha′, i, t, πi, π−i, s)
6: Let I be the information set containing h
7: σ(I)← RegretMatching(rI )
8: Let σ′(I) be a sampling distribution at I
9: if P (I) = i then σ′(I)← ε · Unif(I) + (1− ε)σ(I)

10: else σ′(I)← σ(I)
11: Sample an action a′ with probability σ′(I, a)
12: if P (I) = i then
13: (u, πtail)← OutcomeSampling(ha′, i, t, πi · σ(I, a), π−i, s · σ′(I, a))
14: for a ∈ A(I) do
15: W ← u · π−i
16: Compute r̃(I, a) from Equation 4.12 if a = a′ else Equation 4.15
17: rI [a]← rI [a] + r̃(I, a)
18: else
19: (u, πtail)← OutcomeSampling(ha′, i, t, πi, π−i · σ(I, a), s · σ′(I, a))
20: for a ∈ A(I) do
21: sI [a]← sI [a] + (t− cI) · π−i · σ(I, a)
22: cI ← t
23: return (u, πtail · σ(I, a))

One traversal of outcome sampling MCCFR with optimistic averaging for a single

player i is presented in Algorithm 3. The h, t, and i parameters represent the current pre-

fix, time step, and update player. The s parameter represents the product of the sampling

probabilities up to h. The πi and π−i represent reach probabilities for each player. Unif(I)

is the uniform distribution that assigns probability 1/|A(I)| to all actions a.

Another averaging method is to simply boost the magnitude of the update to the aver-

age strategy by the inverse probability of sampling the current history 1
q(h) . For example, in

outcome sampling using epsilon-on-policy exploration, this term is 1
πσ′ (h)

whereas the term
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Algorithm 4 External Sampling with Stochastically-Weighted Averaging

1: Initialize: ∀I ∈ I, ∀a ∈ A(I) : rI [a]← sI [a]← 0
2: ExternalSampling(h, i):
3: if h ∈ Z then return ui(h)
4: if P (h) = c then sample a′ and return ExternalSampling(ha′, i)
5: Let I be the information set containing h
6: σ(I)← RegretMatching(rI )
7: if P (I) = i then
8: Let u be an array indexed by actions and uσ ← 0
9: for a ∈ A(I) do

10: u[a]← ExternalSampling(ha, i)
11: uσ ← uσ + σ(I, a) · u[a]
12: for a ∈ A(I) do
13: By Equation 4.20, compute r̃(I, a)← u[a]− uσ
14: rI [a]← rI [a] + r̃(I, a)
15: return uσ
16: else
17: Sample action a′ from σ(I)
18: u← ExternalSampling(ha′, i)
19: for a ∈ A(I) do
20: sI [a]← sI [a] + σ(I, a)
21: return u

is 1

πσ
t
−i(h)

in external sampling. Similar to optimistic averaging, this effectively applies the

increment a number of times, but the number of times is determined by the current sampling

strategy. This method attempts to correct the frequency of the updates back to the uniform

distribution. We call this method stochastically-weighted averaging. One problem with

this method is that the magnitude of the updates may have a large variance. When the likeli-

hood of sampling an event is very small, the update has large weight; any error in the update

will get magnified and may dominate over any future updates. However, this increment is

an unbiased estimate of the true increment for the same reason that counterfactual value is

an unbiased estimate of the true counterfactual value: effectively, it is an application of im-

portance sampling to the average strategy update. Algorithm 4 presents external sampling

with stochastically-weighted averaging. One benefit of using stochastically-weighted aver-

aging in external sampling is that the reach probabilities no longer need to be propagated

down the tree since they cancel out in both the regret update and average strategy update,

simplifying the presentation of the algorithm.

Where the previous two methods are heuristic methods that attempt to fix the problem

of proper averaging, there is a correct way to compute the average strategy. The method

involves some extra book-keeping at each parent information set. This averaging method
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Algorithm 5 Outcome sampling with lazy-weighted averaging and ε-on-policy exploration

1: Initialize: ∀I ∈ I, ∀a ∈ A(I) : w(I, a)← 0
2: OSampLWA(h, i, t, πi, π−i, s, w1, w2):
3: if h ∈ Z then return (ui(h)/s, 1)
4: if P (h) = c then sample a′ and return OSampLWA(ha′, i, t, πi, π−i, s, w1, w2)
5: Let I be the information set containing h
6: σ(I)← RegretMatching(rI )
7: Let σ′(I) be a sampling distribution at I
8: if P (h) = i then σ′(I)← ε · Unif(I) + (1− ε)σ(I)
9: else σ′(I)← σ(I)

10: Sample an action a′ with probability σ′(I, a)
11: Let w′1 ← w1

12: Let w′2 ← w2

13: if P (h) = i then
14: w′i ← wi · σ(I, a′)
15: w′i ← w′i + w(I, a′)
16: (u, πtail)← OSampLWA(ha′, i, t, πi · σ(I, a), π−i, s · σ′(I, a), w′1, w′2)
17: for a ∈ A(I) do
18: W ← u · π−i
19: Compute r̃(I, a) from Equation 4.12 if a = a′ else Equation 4.15
20: rI [a]← rI [a] + r̃(I, a)
21: for a ∈ A(I) do
22: sI [a]← sI [a] + (wi + πi) · σ(I, a)
23: if a = a′ then w(I, a)← 0
24: else w(I, a)← w(I, a) + (wi + πi) · σ(I, a)
25: else
26: w′−i ← w−i · σ(I, a′)
27: w′−i ← w′−i + w(I, a′)
28: (u, πtail)← OSampLWA(ha′, i, t, πi, π−i · σ(I, a), s · σ′(I, a), w′1, w′2)
29: for a ∈ A(I) do
30: sI [a]← sI [a] + (w−i + π−i) · σ(I, a)
31: if a = a′ then w(I, a)← 0
32: else w(I, a)← w(I, a) + (w−i + π−i) · σ(I, a)
33: return (u, πtail · σ(I, a))
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is presented with outcome sampling in Algorithm 5. The main idea is to maintain weights

w(I, a) at each (I, a) pair that keep track of a sum of reach products. These weights are

initialized to 0 and are updated whenever the probability σt(I, a) changes, or the node is

visited with non-zero weight passed down from above. The value w(I, a) represents a sum∑
t∈NotSampled(T,I,a) π

t
i · σti(I, a) where P (I) = i and NotSampled(T, I, a) is a subset

of time steps {t⊥ + 1, t⊥ + 2, · · · , T} where T is the current iteration and action a was

not sampled at I since the last time the average strategy was updated t⊥. Effectively, this

weight accumulates the portions of the reach likelihoods over time, and when action a is

sampled, the sum is pushed down to the children. This sum of products is missing the

reach probabilities from below, so these are multiplied into the terms on line 26; upon the

return of the recursive call w(I, a) is set back to zero on lines 23 and 31 to indicate that

the accumulating reach probabilities have been passed forward and the process starts over.

The weights essentially annotate changes that still need to be applied to the average strategy

below (I, a) and will be pushed forward the next time a is sampled at I . We call this method

lazy-weighted averaging. For the same reason as optimistic averaging, this method leaves

information sets that have not been visited in a while out-of-date, and requires a similar

final update to the average strategy to be applied after the last iteration. More importantly,

more memory is required to store the weights at each (I, a). Since a weight is required for

each (I, a), using this averaging scheme can increase the required memory by 50% since

only two values are required for each (I, a) pair: a cumulative regret rI [a], and an average

strategy total sI [a].

4.5 Regret Bounds and Convergence Rates

In this section, we give the regret bounds for MCCFR algorithms. Unlike the original CFR

bounds, we will show a probabilistic bound on that holds with probability 1− p.

First, we need to return to the simplest form of regret-matching. Recall the setup of

this problem from Section 2.2.2. Let A be a finite set of actions and u1, u2, · · · , uT be any

sequence where ut : A → R and maxa,b∈A |ut(a) − ut(b)| ≤ ∆t is the payoff range at

time t. We will define the cumulative regret of not playing with action a over all the trials

similarly to Equation 2.10:

RT (a) =
T∑
t=1

rt(a) where rt(a) = ut(a)−
∑
b∈A

σt(b)ut(b),

where σt is a mixed strategy used at time t. Recall x+ = max(0, x) and define RT,+sum =
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∑
a∈AR

T,+(a). Regret-matching is a procedure that assigns:

σT+1(a) =

{
RT,+(a)

RT,+sum
if RT,+sum > 0;

1/|A| otherwise

We can refer to the average regret R̄T,+(a) = RT,+(a)/T . If R̄ is replaced into the equation

above, there is no effect since the values are normalized and T > 0, but we require this

notion for the proofs.

Theorem 2. When regret-matching is used:

∑
a∈A

(R̄T,+(a))2 ≤ |A|
T 2

T∑
t=1

(∆t)2.

The proof and associated lemmas are given in Appendix A.1.1. Theorem 2 gives a gen-

eral bound on the regret of regret-matching that we will use to bound the regret at each

information set. In particular, we will use the following:

Corollary 1. When regret-matching is used, then maxa∈A R̄
T,+
i (a) ≤

√
|A|

∑T
t=1(∆t)2

T .

Proof. When maxa∈A R̄
T,+(a) is non-positive, the result is trivial. Otherwise, there is at

least one positive value, and:(
max
a∈A

R̄T,+(a)

)2

= max
a∈A

(
R̄T,+(a)

)2
≤
∑
a∈A

(
R̄T,+(a)

)2
≤ 1

T 2

T∑
t=1

|A|(∆t)2 by Theorem 2.

Now, we move |A| out of the sum and take the square root of both sides.

We now present four lemmas which will be used to support the main theorem below.

Lemma 2 (A Variant of Markov’s Inequality). For any random variable X:

Pr[|X| ≥ k
√
E[X2]] ≤ 1

k2
.

Proof. Markov’s property states, if Y is always non-negative, then Pr(Y ≥ jE[Y ]) ≤ 1
j .

By setting Y = X2,

Pr(X2 ≥ jE[X2]) ≤ 1

j
⇒ Pr(|X| ≥

√
jE[X2]) ≤ 1

j
⇒ Pr(|X| ≥ k

√
E[X2]) ≤ 1

k2
,

where the last step is obtained by setting k =
√
j.
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Lemma 3. If a1 . . . , an are non-negative real numbers in the interval [0, 1] where
∑n

i=1 ai =

S, then
∑n

i=1(ai)
2 ≤ S.

Proof. The proof is trivial since ai ∈ [0, 1], then ∀ai, (ai)2 ≤ ai.

Lemma 4. If b1 . . . , bn are non-negative real numbers where
∑n

i=1 b
2
i = S, then

∑n
i=1 bi ≤√

Sn.

Proof. First note that (bi − bj)2 ≥ 0⇒ b2i + b2j ≥ 2bibj . Now,(
n∑
i=1

bi

)2

=

n∑
i=1

b2i +
∑
i<j

2bibj ≤
n∑
i=1

b2i +
∑
i<j

(b2i + b2j ) = n

n∑
i=1

b2i

Taking the root of both sides gives the result.

Lemma 5. If a1 . . . , an are non-negative real numbers where
∑n

i=1 ai = S, then
∑n

i=1

√
ai ≤

√
Sn.

Proof. Let bi =
√
ai and apply Lemma 4.

Lemma 6. For any two reals x, y ∈ R : (x+ − y+)2 ≤ (x− y)2.

Proof. First, a function f : < → < is said the be L−Lipschitz if |f(x)− f(y)| ≤ L|x− y|.

The function f(x) = (x)+ is 1−Lipschitz since it is equal to 0 when x is negative, and its

growth rate is equal to 1 afterward. Therefore |(x)+ − (y)+| ≤ |x− y| ≤ (x− y)2.

We are almost ready to present the main theorem. Before doing so, we need a few more

definitions. Recall the definition of a history h: it is a sequence of actions from the start of

the game. Suppose we are playing Bluff(1,1), one sequence may be h = (chance chooses

for player 1, chance chooses for player 2, player 1 bids 1-3, player 2 bids 1-4, player

1 bids 1-5, player 2 bids 2-4), or compactly h = ( , , 1-3, 1-4, 1-5, 2-4). Define a

subsequence ~ai(h) to be the sequence of actions taken by player i in the order they were

taken in h, so that ~a1(h) = (1-3, 1-5). We can simply refer to one such sequence belonging

to player i, ~ai ∈ ~Ai = {~ai(h) : h ∈ Hi}. Denote Ii(~ai) to be the set of information sets

where player i’s action sequence is ~ai, and the set of them to be Bi = {Ii(~ai) : ~ai ∈ ~Ai}.

Note that Bi is a partition of Ii. An element B ∈ Bi is a set of information sets that could

occur given a particular subsequence ~a, such as all the information sets I where player 1 bid

1-3 and then bid 1-5. Finally defineMi =
∑

B∈Bi

√
|B|; this value tells us something about

the size and structure of the game and is bounded by
√
|Ii| ≤ Mi ≤ |Ii|. For example, in

a single-player game without chance nodes, each B is a singleton due to perfect recall, so
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Mi = |Ii|. Consider Figure 4.1; this game has M2 =
√
|Ii| since there a single B with

|B| = 4.

We now present the general MCCFR theorem.

Theorem 3. For any p ∈ (0, 1], when using any algorithm in the MCCFR family such that

for all Q ∈ Q and B ∈ Bi,

∑
I∈B

 ∑
z∈Q∩ZI

πσ(z[I], z)πσ−i(z[I])

q(z)

2

≤ 1

δ2

where δ ≤ 1, then with probability at least 1− p, average overall regret is bounded by,

R̄Ti ≤

(
Mi +

√
2|Ii||Bi|√

p

)(
1

δ

)
∆u,i

√
|Ai|√
T

.

Proof. Recall the definitions of counterfactual regret rt(I, a) and sampled counterfactual

regret at time t from Equations 4.1 and 4.8. Now, define the cumulative immediate coun-

terfactual regret and its sampled equivalent:

RTi (I) = max
a∈A(I)

T∑
t=1

rti(I, a) RT,+i (I) =

(
max
a∈A(I)

T∑
t=1

rti(I, a)

)+

R̃Ti (I) = max
a∈A(I)

T∑
t=1

r̃ti(I, a) R̃T,+i (I) =

(
max
a∈A(I)

T∑
t=1

r̃ti(I, a)

)+

Let Qt ∈ Q be the block sampled at time t. Note that we can bound the difference

between two sampled counterfactual values for information set I at time t by,(
ṽi(σ

t
(I→a), I)− ṽi(σt, I)

)
≤ ∆t

u,i(I) ≡ ∆u,i

∑
z∈Qt∩ZI

πσ(z[I], z)πσ−i(z[I])

q(z)

where ∆u,i = maxz∈Z ui(z)−minz∈Z ui(z) is the largest difference of the utility between

any two leaves. By the condition stated in the theorem, we have:

∑
I∈B

∆t
u,i(I)2 ≤

∆2
u,i

δ2
. (4.21)

1

2 2 2 2

Figure 4.1: A game with M2 =
√
|I2|.
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We now apply Corollary 1 to bound the sampled cumulative regret at I:

R̃T,+i (I)

T
≤

√
|A(I)|

∑T
t=1(∆t

u,i(I))2

T
(4.22)

Given some part B ∈ Bi, we can sum over all I in B. Define A(B) = maxI∈B A(I):

∑
I∈B

R̃T,+i (I)

T
≤

√
|B||A(B)|

∑
I∈B

∑T
t=1(∆t

u,i(I))2

T
by Lemma 5 (4.23)

≤

√
|B||A(B)|

∑T
t=1

∑
I∈B(∆t

u,i(I))2

T
(4.24)

≤

√
|B||A(B)|

∑T
t=1 ∆2

u,i/δ
2

T
by Equation 4.21 (4.25)

≤
∆u,i

√
|B||A(B)|
δ
√
T

(4.26)

Now we can bound the average over all information sets by

∑
I∈Ii

R̃T,+i (I)

T
=
∑
B∈Bi

∑
I∈B

R̃T,+i (I)

T
since Bi is a partition of Ii (4.27)

≤
∑
B∈Bi

∆u,i

√
|B||A(B)|
δ
√
T

by Equation 4.26 (4.28)

≤
∆u,i

√
|Ai|

∑
B∈Bi

√
|B|

δ
√
T

since
√
|Ai| ≥

√
|A(B)| (4.29)

≤
∆u,iMi

√
|Ai|

δ
√
T

by definition of Mi (4.30)

We will now prove that RT,+i (I) and R̃T,+i (I) are similar which lets us apply the

CFR theorem [124, Theorem 3] allowing us to bound the current overall regret by the

per-information set regret. This last portion is tricky. Since the algorithm is randomized,

we cannot guarantee that every information set is reached, let alone that it has converged.

Therefore, instead of proving a bound on the absolute difference of R and R̃, we focus on

proving a probabilistic connection.

In particular, we will bound the expected squared difference between
∑

I∈Ii
RT,+i (I)

T

and
∑

I∈Ii
R̃T,+i (I)

T in order to prove that they are close in expectation, and then use a

variant of Markov’s inequality to bound the absolute value. We begin by focusing on the

similarity of the counterfactual regret (R
T,+
i (I)
T and R̃T,+i (I)

T ) in every node, by focusing on

the similarity of the counterfactual regret of a particular action at a particular time (rti(I, a)

and r̃ti(I, a)). By the Lemma 1, we know that E[rti(I, a)− r̃ti(I, a)] = 0.
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For I ∈ Ii,

(
RT,+i (I)− R̃T,+i (I)

)2
=

( max
a∈A(I)

T∑
t=1

rti(I, a)

)+

−

(
max
a∈A(I)

T∑
t=1

r̃ti(I, a)

)+
2

≤

(
max
a∈A(I)

T∑
t=1

rti(I, a)− max
a∈A(I)

T∑
t=1

r̃ti(I, a)

)2

by Lemma 6

≤

(
max
a∈A(I)

T∑
t=1

(
rti(I, a)− r̃ti(I, a)

))2

≤ max
a∈A(I)

(
T∑
t=1

(
rti(I, a)− r̃ti(I, a)

))2

≤
∑

a∈A(I)

[
T∑
t=1

(
rti(I, a)− r̃ti(I, a)

)2
+2

T∑
t=1

T∑
t′=t+1

(
rti(I, a)− r̃ti(I, a)

) (
rt
′
i (I, a)− r̃t′i (I, a)

)]
. (4.31)

We now take the expectation of both sides. Note that

E
[(
rti(I, a)− r̃ti(I, a)

) (
rt
′
i (I, a)− r̃t′i (I, a)

)]
= E

[
E
[
(rt
′
i (I, a)− r̃t′i (I, a)) | rti(I, a), r̃ti(I, a)

] (
rti(I, a)− r̃ti(I, a)

)]
and that E

[
(rt
′
i (I, a)− r̃t′i (I, a)) | rti(I, a), r̃ti(I, a)

]
= 0 since for t′ > t, r̃t

′
i is an unbi-

ased estimate of rt
′
i given σt

′
. Thus from equation (4.31), we have

E
[(
RT,+i (I)− R̃T,+i (I)

)2
]
≤

∑
a∈A(I)

T∑
t=1

E
[(
rti(I, a)− r̃ti(I, a)

)2]

≤
∑

a∈A(I)

T∑
t=1

E
[(
rti(I, a)

)2
+
(
r̃ti(I, a)

)2]

≤
∑

a∈A(I)

T∑
t=1

[(
πσ

t

−i(I)
)2

∆2
i +

(
∆t
i(I)

)2]
. (4.32)

We can now bound the expected sum of squared differences by
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E
[(∑

I∈Ii

(
RT,+i (I)− R̃T,+i (I)

))2
]

≤ E

∑
I∈Ii

∣∣∣RT,+i (I)− R̃T,+i (I)
∣∣∣
2

≤ E

√|Ii|∑
I∈Ii

∣∣∣(RT,+i (I)− R̃T,+i (I)
)∣∣∣2
2 by Lemma 4

= |Ii|
∑
I∈Ii

E
[(
RT,+i (I)− R̃T,+i (I)

)2
]

≤ |Ii|
∑
I∈Ii

∑
a∈A(I)

T∑
t=1

[(
πσ

t

−i(I)
)2

∆2
i +

(
∆t
i(I)

)2] by equation (4.32)

≤ |Ii||Ai|
∑
B∈Bi

T∑
t=1

[∑
I∈B

(
πσ

t

−i(I)
)2

∆2
i +

∑
I∈B

(
∆t
i(I)

)2]

≤ |Ii||Ai|
∑
B∈Bi

T∑
t=1

[
∆2
i +

∆2
i

δ2

]
by Lemma 16 of [71] and equation 4.21

≤ 2|Ii||Ai||Bi|T∆2
i

δ2
(4.33)

Finally, with probability 1− p, we can bound the regret by

RTi ≤
∑
I∈Ii

RT,+i (I) by the original CFR Theorem 3 of [124]

=
∑
I∈Ii

(
RT,+i (I)− R̃T,+i (I) + R̃T,+i (I)

)

≤

∣∣∣∣∣∣
∑
I∈Ii

(
RT,+i (I)− R̃T,+i (I)

)∣∣∣∣∣∣+
∑
I∈Ii

R̃T,+i (I)

≤ 1
√
p

√√√√√E

∑
I∈Ii

(
RT,+i (I)− R̃T,+i (I)

)2+
∆iMi

√
|Ai|T

δ

by Lemma 2 and equation (4.30)

≤

(√
2|Ii||Bi|√

p
+Mi

)(
1

δ

)
∆i

√
|Ai|T by equation (4.33) (4.34)

Dividing both sides by T gives the result.

We will finish this section by using the general MCCFR theorem to give the specific bounds

for both outcome sampling and external sampling. A tighter bound for Vanilla CFR and
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chance-sampled CFR can be obtained as well using these bounds based on Mi and |Bi|; see

[71, Section A.7] for the derivation.

4.5.1 Outcome Sampling Bound

Theorem 4. For any p ∈ (0, 1], when using outcome-sampling MCCFR where ∀z ∈ Z

either πσ−i(z) = 0 or q(z) ≥ δ > 0 at every time step, with probability 1 − p, average

overall regret is bounded by

R̄Ti ≤

(√
2|Ii||Bi|√

p
+Mi

)(
1

δ

)
∆u,i

√
|Ai|√
T

Proof. We simply need to show that,

∑
I∈B

 ∑
z∈Q∩ZI

πσ(z[I], z)πσ−i(z[I])

q(z)

2

≤ 1

δ2
.

Note that for all Q ∈ Q, |Q| = 1. Also note that for any B ∈ Bi there is at most one

I ∈ B such that Q ∩ ZI 6= ∅. This is because all the information sets in Q ∩ ZI all have

player i’s action sequence of a different length, while all information sets in B have player

i’s action sequence being the same length. Therefore, only a single term of the inner sum is

ever non-zero.

Now by our assumption, for all I and z ∈ ZI where πσ−i(z) > 0,

πσ(z[I], z)πσ−i(z[I])

q(z)
≤ 1

δ

as all the terms of the numerator are less than 1. So the one non-zero term is bounded by

1/δ and so the overall sum of squares must be bounded by 1/δ2.

4.5.2 External Sampling Bound

Theorem 5. For any p ∈ (0, 1], when using external-sampling MCCFR, with probability

at least 1− p, average overall regret is bounded by

RTi ≤

(√
2|Ii||Bi|√

p
+Mi

)
∆u,i

√
|Ai|√
T

. (4.35)

Proof. We will simply show that,

∑
I∈B

 ∑
z∈Q∩ZI

πσ(z[I], z)πσ−i(z[I])

q(z)

2

≤ 1 (4.36)
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Since q(z) = πσ−i(z), we need to show,

∑
I∈B

 ∑
z∈Q∩ZI

πσi (z[I], z)

2

≤ 1 (4.37)

Let σ̂t be a deterministic strategy profile sampled from σt where Q is the set of histories

consistent with σ̂t−i. So Q ∩ ZI 6= ∅ if and only if I is reachable with σ̂t−i. By [71, Lemma

10], for all B ∈ Bi there is only one I ∈ B that is reachable; name it I∗. Moreover, there is

a unique history in I∗ that is a prefix of all z ∈ Q∩ZI∗ ; name it h∗. So for all z ∈ Q∩ZI∗ ,

z[I∗] = h∗. This is because σ̂t−i uniquely specifies the actions for all but player i and B

uniquely specifies the actions for player i prior to reaching I∗.

Define ρ to be a strategy for all players (including chance) where ρj 6=i = σ̂j but ρi = σi.

Consider a z ∈ Q ∩ ZI . z must be reachable by σ̂−i, so πρ−i(z) = 1. So∑
z∈Q∩ZI∗

πσi (z[I∗], z) =
∑

z∈Q∩ZI∗
πρi (h∗, z) (4.38)

=
∑

z∈Q∩ZI∗
πρ(h∗, z) (4.39)

≤
∑
z∈ZI∗

πρ(h∗, z) ≤ 1 (4.40)

So, ∑
I∈B

 ∑
z∈Q∩ZI

πσi (z[I], z)

2

≤ 1 (4.41)

How do these bounds compare to the original CFR bound? If we assume a constant

tolerance error probability 1− p, then the original CFR bound is roughly on the same order

as the external sampling bound (Equation 4.35). This means that the number of iterations

required to reach an ε-equilibrium are the same in both cases, except that in external sam-

pling MCCFR we have this probability of error p. If we assume that one can tolerate an

error rate of p, then we can treat this as a constant and so the bound is boosted by a con-

stant number of iterations. However, the time spent per iteration in external sampling for a

balanced game is roughly the square root of the time spent per CFR iteration. Therefore,

external sampling does achieve an asymptotic improvement in convergence speed.

For the case of outcome sampling, there is the additional term 1
δ . The δ parameter is the

smallest probability of sampling any one terminal history z ∈ Z. For 1
δ to be maximized,

one would choose δ = 1
|Z| . For a large game, this can be very small and so the bound for
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outcome sampling can be largely affected. However, if total time is the quantity of interest:

each iteration of outcome sampling is |Z| times faster than an iteration of Vanilla CFR, so

the requirement of |Z| times as many iterations cancels out with the speedup term.

4.6 Empirical Evaluation

In this section, we present a number of experiments to determine the behavior of MCCFR

in practice.

In all of the following experiments, we measure the convergence rate of the algorithm

by computing the exploitability value described in Section 2.1 at certain stopping points

during their execution. The exploitability value can be obtained by running a best re-

sponse algorithm twice, one for each player. Suppose the game value (expected value for

the first player if both players play an equilibrium) is v, and suppose we have a profile

σ = (σ1, σ2). The best response algorithm computes maxσ′2∈Σ2
u2(σ1, σ

′
2) = −v + ε1

and maxσ′1∈Σ1
u1(σ′1, σ2) = v + ε2. If σ is an equilibrium, then it must be the case that

ε1 = ε2 = 0. Before reaching equilibrium, the exploitability value εσ = ε1 + ε2 can be

obtained by summing the best response values (as the value of the game v cancels in the

sum). For games with entirely public actions, the best response algorithm can be computed

using expectimax [102; 53]. When actions are hidden or only partially observable, the best

response algorithm is slightly more complex. These best response algorithms are described

in Appendix B.

As each sampling algorithm samples different portions of the tree, the time required

by each iteration varies. Therefore, we chose not to measure convergence as a function of

iterations. On the other hand, plotting the exploitability over time can be biased by specific

implementation decisions. Therefore, we use the cumulative number of nodes touched as

the value on the x-axes, which is equivalent to the total number of prefix histories enumer-

ated over all iterations so far. For reference, a single-threaded implementation of external

sampling written in C++ compiled using g++ version 4.6.3 in Ubuntu Linux visits about 3

million nodes per second on Bluff(1,1) on an Intel Core 2 Duo E6850 CPU at 3.00GHz.

4.6.1 Outcome Sampling with Varying Parameter Settings

We start by presenting experiments on outcome sampling with optimistic averaging, in two

games: Bluff(1,1) and Goofspiel(6). Recall from Algorithm 3 that outcome sampling uses

an ε-on-policy exploration strategy to choose which action to sample next: with probability

(1−ε), a move is sampled from the current strategy σ(I), otherwise a random action inA(I)
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Figure 4.2: Outcome Sampling on Bluff(1,1) (left) and Goof(6) (right) with various param-
eter settings. The horizontal axes represent cumulative nodes touched and the vertical axes
represents the exploitability value εσ. Logarithmic scales are used for both axes. Each line
is an average over 5 runs with error bars representing 95% confidence intervals. Due to the
very small width of the error bars, the dots on the graph may seem to have a different shape
than those in the legend. Each Bluff graph uses the exact same vertical range; similarly, for
the Goofspiel graphs.
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Figure 4.3: Outcome Sampling on Bluff(1,1) (left) and Goof(6) (right) using lazy-weighted
averaging. The horizontal axes represent cumulative nodes touched and the vertical axes
represents the exploitability value εσ. Logarithmic scales are used for both axes. Each line
is an average over 5 runs with error bars representing 95% confidence intervals. Due to the
very small width of the error bars, the dots on the graph may seem to have a different shape
than those in the legend. Each Bluff graph uses the exact same vertical range as Figure 4.2;
similarly, for the Goofspiel graphs.

is sampled. Recall from Section 4.2 that in outcome sampling one can re-use the sampled

terminal history to update the sampled regrets of both player’s information sets (the parallel

form). Our initial goals are to find a reasonably good setting for the exploration constant ε,

and compare the performance of the alternating form to the parallel form.

The resulting convergence rates are shown in Figure 4.2. Like the bound, the empirical

exploitability tends to drop roughly proportional to an inverse square function with respect

to time. Therefore, to compare and analyze convergence rates, we use logarithmic scale

on both axes. On these graphs, a line with a steeper (more negative) slope than another

indicates a faster convergence.

The first observation is that when using the parallel form, the convergence rate can

be slow or erratic when ε > 0.6. Even when using lower values of ε, the parallel form

does not seem to be converging faster than the alternating form, which does not exhibit

the irregularity when ε > 0.6. We believe that the cause of this is due to the updates to

the average strategy being too noisy due to too much exploration. Therefore, we conclude

that the alternating form presented above is safer to use in practice. In both games, when

using the alternating form, 0.5 ≤ ε ≤ 0.8 appears to be a good interval for this value, with

ε = 0.6 being a good choice overall. In addition, we ran alternating outcome sampling
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Figure 4.4: External Sampling on Bluff(1,1) (left) and Goof(6) (right) using optimistic and
stochastically-weighted averaging. The horizontal axes represent cumulative nodes touched
and the vertical axes represents the exploitability value εσ. Logarithmic scales are used for
both axes. Each line is an average over 5 runs with error bars representing 95% confidence
intervals. Due to the very small width of the error bars, the dots on the graph may seem to
have a different shape than those in the legend. The Bluff graph uses the exact same vertical
range as Figures 4.2 and 4.3; similarly, for the Goofspiel graphs.

on these two games with stochastically-weighted averaging, which has higher variance but

shows a slight improvement over optimistic averaging in both games.

Finally, we ran alternating outcome sampling with lazy-weighted averaging; the results

are shown in Figure 4.3. We see the convergence rates for lazy-weighted averaging are

slower than stochastically-weighted averaging and, in the case of Goofspiel, slower than

optimistic averaging; this might be due to the heuristic nature of the first two averaging

schemes. When the average strategy is updated at an information set using optimistic av-

eraging, the update player’s reach strategy πi is assumed to have been equal to the current

one since the last update time cI ; so (T − cI)πTi could be a better (more informed) value

than
∑T

t=cI
πti . As for stochastically-weighted averaging, since the updates to the average

strategy are divided by σ′(h), the magnitude of the updates are boosted by 1
σ′(h) ; therefore,

when it is time to take the best response, these value estimates could be represent a value

which is many iterations ahead of T . Overall, lazy-weighted averaging also requires addi-

tional storage and overhead in terms of computation time (to compute the weights and to

patch the average strategy at the end); therefore, stochastically-weighted averaging appears

to work best in practice on these games.
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4.6.2 External Sampling with Different Averaging Schemes

The next simple experiment was run to determine which averaging scheme worked best

with external sampling. The experiments were repeated using the same games as before.

The results are shown in Figure 4.4. Since stochastically-weighted averaging leads to faster

convergence in practice for both external and outcome sampling, requires less memory, and

does not need a patch to be applied after the iterations are done, we conclude that it is the

most practical averaging scheme of the three2

4.6.3 Convergence Rate Comparison in Large Games

The next set of experiments aims to compare the relative empirical performance of each

sampling algorithm. For this set of experiments, we compare Vanilla CFR, chance-sampled

CFR (where applicable), outcome sampling MCCFR, and external sampling MCCFR. These

experiments are run on a number of significantly larger games: Bluff(2,1), One-Card Poker

with a 500-card deck, Princess and Monster, Latent Tic-Tac-Toe, and Goofpsiel(7). The

results are shown in Figure 4.5.

There are several observations that can be made about the empirical performance of

MCCFR from these graphs. Generally, the MCCFR variants (including chance-sampling)

outperform vanilla CFR. For example, in Goofspiel, both MCCFR variants require only

a few million nodes to reach εσ < 0.5 where CFR takes 2.5 billion nodes, three orders

of magnitude more. In fact, external-sampling outperforms CFR by considerable margins

in all of the games. Note that pruning optimization is key to vanilla CFR being at all

practical in these games. For example, in Latent Tic-Tac-Toe the first iteration of CFR

touches 39 million nodes and the next few iterations each touch only between 5 and 10

million nodes. This is because pruning is not possible in the first iteration. We believe this

is due to dominated actions in the game. After one or two traversals, the players identify

and eliminate dominated actions from their policies, allowing these subtrees to be pruned.

This is especially apparent in Bluff where outcome sampling performs relatively poorly.

We believe that this is due to the high proportion of bad actions available and the size

of the corresponding subtrees below them; since outcome sampling constantly explores

these actions always have a chance of being sampled, where even pruning with Vanilla

CFR can avoid these. In certain cases such as One-Card Poker, Princess and Monster, and
2Members of the Computer Poker Research Group claim that across several independent implementations,

after billions of iterations, external sampling using stochastically-weighted averaging convergences signifi-
cantly faster than using optimistic averaging, in abstract versions of Two-Player Limit Texas Hold’em[55].

64



0.0001

0.001

0.01

0.1

1

100000 1e+06 1e+07 1e+08 1e+09 1e+10

One-Card Poker (500)

CFR
CS
OS
ES

0.001

0.01

0.1

1

100000 1e+06 1e+07 1e+08 1e+09 1e+10

Bluff(2,1)

CFR
CS
OS
ES

0.1

1

10

100000 1e+06 1e+07 1e+08 1e+09 1e+10

Princess and Monster

CFR
CS
OS
ES

0.01

0.1

1

100000 1e+06 1e+07 1e+08 1e+09 1e+10

Latent Tic-Tac-Toe

CFR
OS
ES

0.01

0.1

1

100000 1e+06 1e+07 1e+08 1e+09 1e+10 1e+11

Goofspiel(7)

CFR
OS
ES

Figure 4.5: Comparison of CFR and MCCFR on a variety of games. The horizontal axes
represent cumulative nodes touched and the vertical axes represents the exploitability value
εσ. Logarithmic scales are used for both axes. Each line is an average over 5 runs with error
bars representing 95% confidence intervals. Due to the very small width of the error bars,
the dots on the graph may seem to have a different shape than those in the legend. CFR
refers to Vanilla CFR while CS refers the chance-sampled CFR. Outcome sampling MC-
CFR (OS) and external sampling MCCFR (ES) both use stochastically-weighted averaging,
and OS uses an exploration constant of ε = 0.6.
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Goofspiel, the eventual relative convergence rates (slopes) appear to be comparable, but the

initial information gained at the start of the trials lead to better overall convergence rates

in MCCFR. In games like One-Card Poker, where there are many combinations of chance

outcomes that effectively lead to the same payoff, Vanilla CFR will converge particularly

poorly, and the benefit of sampling is greater.

While generally external-sampling appears to be the best choice overall, outcome sam-

pling has a slightly faster convergence rate in Goofspiel(7). This is likely due to the structure

of the specific Goofspiel variant we chose. Since the point cards are arranged from high-

est down to lowest, the strategy to play in the first few turns is critical to having the most

points in the game. Comparatively, outcome sampling will apply more updates at the top

of the tree (per node touched) than any of the other CFR algorithms, so it may be learning

the right strategy at these critical decision points early. This observation suggests a pos-

sible extension: a sampling scheme that is tailored to the game’s structure that focuses on

sampling important parts of the tree for faster convergence. The on-policy and ε-on-policy

schemes we describe above do tend to focus on the areas that players will play in, but these

policies are built by learning; injecting some amount of prior knowledge of the domain into

the sampling scheme may help.

4.7 Discussion and Applicability of MCCFR

The idea of sampling parts of the tree was originally motivated by the success of chance-

sampled CFR in Poker. In this chapter, we described a framework for sampling, but the

questions remains: why sample at all? What is the benefit of sampling and when is it

preferred to not sampling? Other than the general improvement shown in Section 4.5,

there may be situations where there is simply not enough time available to to run a single

iteration of Vanilla CFR. In this case, an MCCFR algorithm may have time time to run

several iterations. As we saw in Section 4.6, MCCFR’s short-term convergence speed is

much better than CFR in practice. In the extreme case of real-time decision-making in

imperfect information games, outcome sampling may be preferred since several iterations

are likely possible and more time is spent learning about the actions at the root of the tree.

Given some fixed longer amount of time, more iterations of MCCFR can be completed, and

the sampling scheme gets progressively more informed as learning compounds faster since

subsequent iterations make use of what was learned on past iterations.

Given a game or a particular problem, how does one choose the appropriate sampling
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mechanism to use when employing an MCCFR algorithm? Many games have a high

branching factor, but the relative importance of each action is quite different; often there

are a number of bad actions that skilled players never play. In these cases, the sampling

scheme can incorporate domain knowledge (sampling the bad moves less); also, using the

sampling schemes that are a function of the current strategy (outcome sampling and exter-

nal sampling), these bad moves are likely to be identified quickly. Since outcome sampling

always explores, however, these actions may still be taken at later iterations. Since external

sampling provides a better bound, and from results of experiments in Section 4.6, external

sampling is the variant we expect to work better in practice (of the two) most often. On

the other hand, the experiments in Goofspiel may provide evidence that outcome sampling

will converge faster in games where the importance of each action decreases from root to

leaf. Outcome sampling may also be expected to do well when the variance in the payoffs

are low, since there is little detriment to exploring in these cases. Finally, in the imperfect

information search setting, there is often limited search time, and so a slight modification

of outcome sampling can be used that samples the current information set (the one given to

the search algorithm describing the current situation) more often.

While we present regret-matching as the underlying regret minimizer at each informa-

tion set, in principle any regret minimizer can be used in CFR and MCCFR. The conver-

gence rates will of course differ from the ones we present here, but the convergence to an

equilibrium will be preserved. In CFR and chance-sampled CFR, regret-matching is a par-

ticularly suitable choice because it assigns zero to actions with negative cumulative regret,

leading to many opportunities to prune subtrees using the optimization described in Sec-

tion 2.2.2. In MCCFR, there is substantially less benefit to pruning, since there are less

instances where the optimization can be applied. Therefore, one straight-forward extension

would be to use the Hedge algorithm, described in Section 2.2.2, for sampling actions at

each information set. The reward signals would be the same sampled counterfactual values

described here, but the strategy update would change.

Finally, we give a conjecture: ensuring that the current strategy σt is fully mixed (i.e.,

∀I ∈ I, a ∈ A(I) : σt(I, a) 6= 0) at every iteration t (as guaranteed by a Hedge-based CFR

algorithm) may lead to convergence to a sequential equilibrium and/or trembling-hand-

perfect equilibrium.

Overall, the MCCFR framework offers flexibility of tailoring the focus of the algorithm

while still maintaining its theoretical guarantees (with high probability) in the long-term.

External sampling MCCFR is currently the preferred CFR variant of choice used by the
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Computer Poker Research Group for 3-player limit Poker and no-limit Poker, where it has

advanced the state of the art, even in the Poker setting [55]. Hyperborean, the winner of the

3-player Heads Up Limit competition, as well as the Bankroll Instant Run-off part of the

no-limit competition, is based on external sampling MCCFR [84]. Also, the winning agent

of the Heads-Up Limit Poker Competition 2012 was based on an implementation of Public

Chance-Sampling (PCS), another MCCFR algorithm described below [84; 50].

4.8 Applications and Extensions

This section contains a survey of the literature describing algorithms which are based on or

have extended MCCFR. Each description is a summary of the work3 and is intentionally

brief; for more detail, please see the citations.

4.8.1 Monte Carlo Restricted Nash Responses

The restricted Nash response (RNR) technique is an algorithm for producing robust best re-

sponses [54]. Suppose there exists a gameG and some fixed popular strategy σfix that play-

ers often employ. Generally playing a best response to this fixed strategy is not advisable

because the best response itself can be highly exploitable. The RNR technique describes a

new game G′ with a single chance node at the top determining, with some probability p,

whether the opponent will be restricted to playing σfix. This new game G′ is constructed

in such a way that the unrestricted player does not know which subgame they are in (the

one with a fixed opponent versus the one with a learning opponent). Running CFR in G′

will yield an equilibrium strategy for both players; however, the equilibrium strategy for the

unrestricted player will have been constructed from plays against a regret-matching learner

100(1−p) % of the time and against the fixed strategy 100p % of the time. In their original

work, Johanson et. al. (2008) showed that using the equilibrium strategy from G′ in G pro-

vides the best trade-off (given p ∈ [0, 1]) between exploiting the fixed strategy and being

exploitable to an arbitrary rational opponent.

The sampling version of RNR, called MCRNR, uses outcome sampling on this modified

game [88]. In that work, MCRNR was shown to converge faster than vanilla RNR in four

different domains.
3The author of this thesis is a co-author of each of the four publications described in this section.
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4.8.2 Public Chance Sampling

Public Chance Sampling (PCS) is another sampling scheme that involves classifying chance

nodes into categories: known to all players (public), and known to only the one player

(private) [52]. In chance sampling CFR, a single outcome is sampled every time a chance

node is encountered; the subtree considered at every iteration is one consistent with all the

sampled outcomes. In PCS, only the public chance nodes are sampled (e.g., flop cards in

Poker). Private chance nodes can only affect the strategy used by the player who knows

the outcome, since these private outcomes determine which information set that player will

reach. By reformulating the algorithm sightly, PCS maintains vectors (of size n) of all the

players’ reach probabilities, one per outcome (of n possible outcomes) of the private chance

events, and only the public tree of the game need be traversed and most computations

become vector operations.

For example, in Bluff, every chance event is private, so PCS traverses only the public

tree defined by all the possible valid bidding sequences rather than the full game tree which

also contains chance nodes determining the private rolls of both players. For each player,

PCS maintains a vector of reach probabilities, one per private outcome (a roll in Bluff). At

leaf nodes these two vectors describe a matrix of possible outcomes given the sequence of

public actions (bidding sequence), with each cell corresponding to different possible game

outcome due to chance. The expected utility computation for this sequence of public actions

is then O(n2), but can often be reduced by exploiting (domain-dependent) similarities in

the utility function over the range of possible outcomes into an O(n) calculation.

4.8.3 Generalized MCCFR and Probing

When using MCCFR, sampling introduces variance in its estimates. In MCCFR algorithms,

the sampled counterfactual value for an action that was not sampled in the block of histo-

ries is defined to be zero. Generalized MCCFR proposes any general estimator of the

counterfactual value, v̂, and bounds are derived in terms of the variance and bias on the

estimates [33].

A new sampling technique, called probing, is proposed to reduce the variance of the

estimates computed by the MCCFR estimate ṽ. When an action a is not sampled at infor-

mation set I by MCCFR, instead of assuming ṽ(σI→a, I) = 0, an estimate is obtained via

a single roll-out of the game to a leaf (a “probe”) where both players sample actions on-

policy. Probing is shown to reduce the variance and lead to faster convergence in practice

in Goofspiel(7), Bluff(2,2), and Texas Hold’em.
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4.8.4 Average Strategy Sampling

Since the average strategy σ̄T is the one converging to an equilibrium, it seems sensible that

the strategies used during the trials be influenced (informed) by their converging equilibrium

strategies; this is precisely what is done in Average Strategy Sampling[34]. For example, if

action a and information set I has 0 probability in every equilibrium strategy, the average

strategy may have very low probability of taking this action; this information is useful in

directing the strategy selection.

Recall from Algorithms 1 to 5 that the average strategy probability at for a ∈ A(I) at

some I is σ̄T (I, a) = sI [a]/
∑

b∈A(I) sI [b]. In average strategy sampling, the subtree below

action a ∈ A(I) is sampled independently with probability

ρ(I, a) = max

{
ε,

β + τsI [a]

β +
∑

b∈A(I) sI [a]

}

or with probability 1 if ρ(I, a) > 1 or if the denominator is equal to 0. Here, ε ∈ (0, 1], τ ∈

[1,∞), and β ∈ [0,∞) are parameters that affect the influence of the average strategy.

When β = 0, τ acts as a threshold: a always gets sampled if its probability is at least 1/τ .

Early in the trial sequence, the average strategy is not near convergence and so β acts as

way to control how much influence there is in the first iterations.

4.9 Chapter Summary and Conclusion

In this chapter, we presented Monte Carlo Counterfactual Regret Minimization, a general

family of sample-based algorithms for minimizing counterfactual regret and computing ap-

proximate equilibria. The convergence rate of MCCFR depends on the sampling scheme

chosen and the structure of the game it is run on. In theory, external sampling has an asymp-

totically better bound than outcome sampling due to the lack of the 1
δ term. If computation

time is the measure of performance, and we fix a tolerance probability p, then the theory

claims that external sampling will provide a better convergence rate than Vanilla CFR and

chance-sampled CFR. We have shown that the performance of MCCFR in practice is highly

game-dependent, but that external sampling MCCFR does tend to have a faster convergence

rate than Vanilla CFR and chance-sampled CFR on most of our game domains.
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Chapter 5

Regret Minimization in Games with
Imperfect Recall

In a game with perfect recall, every player remembers (perfectly) all of the information

that was revealed to them and the order in which it was revealed. Most algorithms that

compute an equilibrium or an approximate equilibrium for imperfect information games

(e.g., Sequence-form Linear Programming, Counterfactual Regret Minimization) require

that games have this property of perfect recall.

From a computational standpoint, the necessity of perfect recall is unfortunate since

|Ii| grows quickly with every bit of information revealed to each player i. In some cases,

requiring perfect recall is outright wasteful. As an extreme example, suppose two players

choose to play a regular game of Texas Hold’em poker. Before the game, they flip a coin;

the outcome of the coin flip does not affect the game whatsoever. This is a new game with

twice as many information sets. As a result, algorithms consume twice as much memory

and can take twice as long to compute the same ε-equilibrium.

In single-agent settings, the Markov property allows an algorithm to forget information

from the past states, allowing the algorithm to make decisions based only on the current

state. No such property exists in the multi-player imperfect information setting. However,

clearly there are instances (as in the example above) where forgetting a piece of information

should be safe and have no effect on the strategies players would use to play the game.

In recent years, members of the Computer Poker Research Group (CPRG) have apply-

ing chance-sampled CFR to abstract poker games. Suppose we have a game (e.g., Two-

Player Limit Texas Hold’em). An abstract game is generally a smaller game; we will con-

sider abstractions that are obtained by merging information sets together. The aim is to

merge “similar” or identical information in the sense that any information lost in the merge

should be strategically unimportant. Then, the process is to find an equilibrium in the small
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game and convert the strategy to one usable in the larger game. Some of the CPRG ab-

stractions are perfect recall abstractions (i.e., the resulting smaller game also has perfect

recall). For example, Poker hands are classified into buckets, which are classifications of

chance node outcomes into a coarser set as a function of some notion of hand strength [51,

Section 2.5]. Over the last few years, the CPRG have also used a form of abstraction based

on forgetting the bucket their hand was classified into from previous rounds, which can

dramatically decrease the overall size of the game and performs well in practice [118].

However, CFR is not guaranteed to compute an approximate equilibrium in an imperfect

recall game. In this chapter, we will show that in fact convergence can be guaranteed under

certain conditions.

5.1 Imperfect Recall Games

Recall from Section 2.1.2 that a game has perfect recall if

∀i ∈ N, ∀I ∈ Ii,∀h, h′ ∈ I : Xi(h) = Xi(h
′),

where Xi(h) is the sequence of (information set, action) pairs taken by player i in the same

order that they are taken in h.

In a game of perfect recall, what a player knows at I and knew at every step up to I

must be consistent for every history part of I . What this definition effectively guarantees is

that player i remembers any information revealed to them during the game and the order in

which it was revealed.

Perfect recall is very commonly assumed in extensive-form games with imperfect in-

formation because otherwise fundamental results no longer hold. The most well-known

example of such problems is shown through the Absent-Minded Driver paradox [83]. Con-

sider the single-player game in Figure 5.1a. The problem is this: a man has to drive home

from a bar. There are two intersections along the way, where he can choose to turn right

or to keep going straight. If he turns right at either intersection, the game ends immedi-

ately. The man is absent-minded – and the intersections are strikingly similar looking! –

so he doesn’t remember if he has been through an intersection or not when arriving at one.

Turning right at the first intersection means getting lost and results in a payoff of 0. If he

turns right at the second intersection, he makes it home and receives a payoff of 4. Go-

ing straight twice results in a payoff of 1, resulting in a longer way home. Piccione and

Rubinstein claimed that this creates a paradox; before leaving the bar the driver considers

the pure strategy of driving straight to be optimal, since turning right will lead to 0. But
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Figure 5.1: Two examples of games with imperfect recall.

when coming up to any given intersection, it is the correct one with probability 1
2 , and so

there is incentive to turn right. This means that the driver’s rationality is inconsistent: if no

information changes and players’ utilities remain constant, there should be no difference in

reasoning before and during the game. If the driver is allowed to randomize, then a similar

argument can be constructed; the optimal strategy apriori is for the driver to turn right with

probability 1
3 giving expected payoff 4

3 . Yet, when the intersection is reached, it is the cor-

rect one with probability 2
5 , so the value of turning is 2

5 · 4 + 3
5 · 0 = 8

5 . Again, the driver

would rather always turn, which is inconsistent with the initial plan.

Now suppose the payoff for going straight were changed to 0, then there would be two

pure strategies that give payoffs of 0. Any mixed strategy over these two in a perfect recall

game will always result in an expected payoff of 0, but a mixed strategy of (1
2 ,

1
2) leads to

an expected payoff of 0.25 in this game. In effect, mixed and behavioral strategies are no

longer equivalent in imperfect recall games. This difference between perfect and imperfect

recall games was first observed by Kuhn in his initial work on extensive form games [66].

As another example, consider the game shown in Figure 5.1b, based on [62, Example

2.4]. Here, there are no chance events and only player 2 has imperfect recall: after taking

their first action, they immediately forget which one they took. The pure strategy sets are

S1 = {l, r} and S2 = {LL,LR,RL,RR}. The optimal mixed strategy for player 1 is to

choose l and r each with probability 1
2 . Similarly, player 2 also mixes equally between LL

and RR, assigning 0 to both LR and RL. If players could employ these mixed strategies,

player 2 would assure themselves an expected payoff of 2. However, if player 2 employs a

behavioral strategy with σ(I2,L) = x and σ(I3,L) = y then the payoff is at most

max
x,y∈[0,1]

min{4xy, 4(1− x)(1− y)} = 1,
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which is no longer optimal for player 2. Therefore, the mixing over pure strategies allows

the player to make use of information that is not allowed by the structure of the game and

results in a higher payoff.

In this chapter we relax the requirement of perfect recall for CFR-based algorithms

by deriving regret bounds for a general class of imperfect recall games. We present two

classes of imperfect recall games that are motivated by the use of abstraction. The first

class is composed of imperfect recall games were information that is truly irrelevant is

shown to be safe to forget. The second quantifies a regret penalty that is paid when one of

the conditions required by the first class is relaxed. In addition, we present empirical results

to analyze the effects of games from both of these classes as well as further evidence or

practical uses of abstractions outside these classes, adding to previous results in Poker [118].

The contents of this chapter form an expanded version of the recently published paper at

the International Conference on Machine Learning [67]. In particular, Richard Gibson,

Neil Burch, and Michael Bowling contributed to the development of the content in this

chapter, which was initially based on previous unpublished work by Martin Zinkevich,

Kevin Waugh, and Michael Bowling.

We concentrate on adapting the original CFR algorithm to handle imperfect recall

games. Therefore, the algorithm we use to apply our ideas is the original CFR algorithm,

not Monte Carlo CFR.

5.2 Well-Formed Imperfect Recall Games

We start with some definitions that will be needed throughout the chapter. Define X−i(h)

to be the (information set, action) pairs belonging to i’s opponent in the same order that

they were encountered and taken in h. Define X(h) to be the full interleaving sequence

of (information set, action) pairs encountered and taken by both players along h. Define

X(h, z) to be the sequence of (information set, action) pairs from h to z, where h is a prefix

of z, and define Xi(h, z) and X−i(h, z) similarly as above.

Throughout the chapter, we will use a running example. Recall the game Die-Roll

Poker (DRP(N )) from Section 3.1.3. DRP is naturally a game with perfect recall; players

remember the exact sequence of bets made and the exact outcome of each die roll from

both rounds. Consider now the imperfect recall version of DRP, called DRP-IR, where at

the beginning of the second round, both players forget their first die roll and only know the

sum of their two dice. DRP-IR is an abstraction of DRP where any two histories are in the
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same (abstract) information set if and only if the sum of the player’s private dice is the same

and the sequence of betting is the same. DRP-IR has imperfect recall since histories that

were distinguishable in the first round (e.g., a and a ) are no longer distinguishable in

the second round (e.g., a followed by a and a followed by a , since both sum to 6).

We begin by restricting our discussion to games where players cannot reach the same

information set twice in a single game. We say that a game is strictly informative if for all

i ∈ N and h, h′ ∈ Hi

h v h′, h 6= h′ ⇒ I(h) 6= I(h′), (5.1)

where I(h) represents the information set containing h. For example, the absent-minded

driver is not strictly informative but the game shown in Figure 5.1(b) is. In this thesis, we

only consider games that are strictly informative; this is because the counterfactual value,

Equation 2.15, would not be well-defined otherwise (since the prefix z[I] could not be

unique).

We will say that a game Γ′ = 〈N,A′, H, Z, P, σc, u, I ′〉 is an abstract game, or ab-

straction, of Γ = 〈N,A,H,Z, P, σc, u, I〉 if for all i ∈ N and h, k ∈ Hi: I(h) = I(k)

implies I ′(h) = I ′(k), where Hi = {h | h ∈ H,P (h) = i}. A typical use of abstraction is

to reduce the size of the game by ensuring that |I ′| < |I|.

For games Γ = 〈N,A,H,Z, P, σc, u, I〉 and Γ̆ = 〈N,A,H,Z, P, σc, u, Ĭ〉, we say that

Γ̆ is a perfect recall refinement of Γ if Γ̆ has perfect recall and Γ is an abstraction of Γ̆.

The information available to players in Γ̆ is never forgotten, and is at least as informative

as the information available to them in Γ. For example, DRP is a perfect recall refinement

of DRP-IR. Every game has at least one perfect recall refinement by simply making Γ̆ a

perfect information game (Ĭ = {h} for all Ĭ ∈ Ĭi). Furthermore, a perfect recall game is a

perfect recall refinement of itself. For I ∈ Ii, we define

P̆(I) = {Ĭ | Ĭ ∈ Ĭi, Ĭ ⊆ I}

to be the set of all information sets in Ĭi that are subsets of I . Note that our notion of

refinement is similar to the one described by Kaneko & Kline in [56]. Our definition differs

in that we consider any possible refinement, whereas Kaneko & Kline consider only the

coarsest such refinement.

Definition 1. For a game Γ and a perfect recall refinement Γ̆, we say that Γ is a well-

formed game with respect to Γ̆ if for all i ∈ N , I ∈ Ii, Ĭ , Ĭ ′ ∈ P̆(I), there exists a

bijection φ : ZĬ → ZĬ′ and constants kĬ,Ĭ′ , `Ĭ,Ĭ′ ∈ [0,∞) such that for all z ∈ ZĬ :
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(i) ui(z) = kĬ,Ĭ′ui(φ(z)),

(ii) πc(z) = `Ĭ,Ĭ′πc(φ(z)),

(iii) In Γ, X−i(z) = X−i(φ(z)), and

(iv) In Γ, Xi(z[Ĭ], z) = Xi(φ(z)[Ĭ ′], φ(z)).

We say that Γ is a well-formed game if it is well-formed with respect to some perfect recall

refinement.

Recall that ZI is the set of terminal histories containing a prefix in the information set

I , and that z[I] is that prefix. Intuitively, a game is well-formed if for each information

set I ∈ Ii, the structures around each Ĭ , Ĭ ′ ∈ P̆(I) of some perfect recall refinement

are isomorphic across four conditions. Conditions (i) and (ii) state that the corresponding

utilities and chance frequencies at each terminal history are proportional. Condition (iii)

asserts that the opponents can never distinguish the corresponding histories at any point

in Γ. Finally, condition (iv) states that player i cannot distinguish between corresponding

histories from Ĭ and Ĭ ′ until the end of the game.

Consider again DRP as a perfect recall refinement of DRP-IR. In DRP, the available

actions are independent of dice outcomes, and the final utilities are only dependent on the

final sum of the players’ dice. Therefore, in DRP the utilities are equivalent between, for

example, the terminal histories where player i rolled a followed by a , and the terminal

histories where player i rolled a followed by a (condition (i)). In addition, the chance

probabilities of reaching each terminal history are equal (condition (ii)). Furthermore, the

opponents can never distinguish between two isomorphic histories since player i’s rolls are

private (condition (iii)). Finally, in DRP-IR, player i never remembers the outcome of the

first roll from the second round on (condition (iv)). Thus, DRP-IR is well-formed with

respect to DRP, with constants kĬ,Ĭ′ = `Ĭ,Ĭ′ = 1.

Any perfect recall game is well-formed with respect to itself since P̆(I) = {I}, φ

equal to the identity bijection, and kĬ,Ĭ′ = `Ĭ,Ĭ′ = 1 satisfies Definition 1. However,

many imperfect recall games are also well-formed, with DRP-IR being one example. An

additional example is presented in Section 5.5. We now show that CFR can be applied to

any well-formed game to minimize average regret.

Theorem 6. If Γ is well-formed with respect to Γ̆, then the average regret in Γ̆ for player i

of choosing strategies according to CFR in Γ is bounded by

R̆Ti
T
≤

∆iK
√
|Ai|√

T
,
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where K =
∑

I∈Ii maxĬ,Ĭ′∈P̆(I) kĬ,Ĭ′`Ĭ,Ĭ′ .

The proof of this theorem is presented in Appendix A.2. The result of this theorem is

that counterfactual regret minimization can be applied in the imperfect recall game. For

example, in DRP-IR, since kĬ,Ĭ′ = `Ĭ,Ĭ′ = 1 the regret bound works out to be equivalent

to the CFR regret bound in [124], except that |I| in the abstract game is much smaller.

There is a subtle but important point about this result regarding abstraction: for some game

Γ and a perfect recall abstraction of Γ, say Γ′: Γ′ is not necessarily always well-formed

by Definition 1. However, it is possible to have two games with perfect recall, one being

a well-formed abstraction of the other, where this result will hold; one example is a game

and its equilibrium-preserving lossless abstraction obtained by GameShrink [35, Chapter

5]. In general, abstraction (even if both games have perfect recall) may create pathological

situations that pose a problem for regret minimization and equilibrium computation [117].

How can the CFR algorithm be applied with these new definitions? In fact, it is quite

straight-forward; the algorithm we discuss in this chapter is almost identical to Algorithm 1

from Chapter 2. There are two notable changes. The first is that the information set on

line 13 is within the imperfect recall game Γ, not its perfect recall refinement Γ̆. The

second is that for proper averaging, the average strategy is maintained in the full game. In

particular, h is always a valid sequence of actions in the full game Γ̆. The external regret

that is being minimized is the one in the perfect recall refinement. The reduction of the

state space allows CFR to be applied to a smaller game. However, if computation of an ε-

equilibrium is the ultimate goal, then the computation of the average strategy is problematic,

since it must be done in the perfect recall refinement. We discuss this issue is in detail in

Section 5.4.

5.3 Skew Well-Formed Imperfect Recall Games

We now present a generalization of well-formed games for which a regret bound can still

be derived.

Definition 2. For a game Γ and a perfect recall refinement Γ̆, we say that Γ is a skew

well-formed game with respect to Γ̆ if for all i ∈ N , I ∈ Ii, Ĭ , Ĭ ′ ∈ P̆(I), there exists a

bijection φ : ZĬ → ZĬ′ and constants kĬ,Ĭ′ , δĬ,Ĭ′ , `Ĭ,Ĭ′ ∈ [0,∞) such that for all z ∈ ZĬ :

(i)
∣∣∣ui(z)− kĬ,Ĭ′ui(φ(z))

∣∣∣ ≤ δĬ,Ĭ′ ,
(ii) πc(z) = `Ĭ,Ĭ′πc(φ(z)),
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(iii) In Γ, X−i(z) = X−i(φ(z)), and

(iv) In Γ, Xi(z[Ĭ], z) = Xi(φ(z)[Ĭ ′], φ(z)).

We say that Γ is a skew well-formed game if it is skew well-formed with respect to some

perfect recall refinement.

The only difference between Definitions 1 and 2 is in condition (i). While utilities must

be exactly proportional in a well-formed game, in a skew well-formed game they must only

be proportional up to a constant δĬ,Ĭ′ . Note that any well-formed game is skew well-formed

by setting δĬ,Ĭ′ = 0.

For example, consider a new version of DRP called Skew-DRP(δ) with slightly mod-

ified payouts at the end of the game. Whenever the game reaches a showdown, player 1

receives a bonus δ times the number of chips in the pot from player 2 if player 1’s second

die roll was even; otherwise, no bonus is awarded. The pot is then awarded to the player

with the highest dice sum as usual. Analogously, define Skew-DRP-IR(δ) to be the imper-

fect recall abstraction of Skew-DRP(δ) where in the second round, players only remember

the sum of their two dice. Now, Skew-DRP-IR(δ) is not well-formed with respect to Skew-

DRP(δ). To see this, note that the utilities resulting from the rolls , and the rolls ,

and the same sequence of betting are not exactly proportional because the second roll is

odd but is even (utilities are off by δ times the pot size). However, Skew-DRP-IR(δ) is

skew well-formed with respect to Skew-DRP(δ) with δĬ,Ĭ′ = δ times the maximum pot size

attainable from I .

Unfortunately, there is no guarantee that regret will be minimized by CFR in a skew

well-formed game. However, we can still bound regret in a predictable manner according

to the degree in which the utilities are skewed:

Theorem 7. If Γ is skew well-formed with respect to Γ̆, then the average regret in Γ̆ for

player i of choosing strategies according to CFR in Γ is bounded by

R̆Ti
T
≤

∆iK
√
|Ai|√

T
+
∑
I∈Ii

|P̆(I)|δI ,

where K =
∑

I∈Ii maxĬ,Ĭ′∈P̆(I) kĬ,Ĭ′`Ĭ,Ĭ′ and δI = maxĬ,Ĭ′∈P̆(I) δĬ,Ĭ′`Ĭ,Ĭ′ .

The proof is similar to that of Theorem 6 and is included in Section A.2. Theorem 7

shows that as T approaches infinity, the bound on our regret approaches
∑

I∈Ii |P̆(I)|δI .

Our experiments in Section 5.5 demonstrate that as the skew δ grows, so does our regret in

Skew-DRP(δ) after a fixed number of iterations.
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Remarks. Theorems 6 and 7 are, to our knowledge, the first to provide such theoret-

ical guarantees in imperfect recall settings. However, these results are also relevant with

regards to regret in the full game when CFR is applied to an abstraction. Recall that if Γ

has perfect recall, then Γ is a perfect recall refinement of any (skew) well-formed abstract

game. Thus, if we choose an abstraction that yields a (skew) well-formed game, then ap-

plying CFR to the abstract game achieves a bound on the average regret in the full game, Γ.

This is true regardless of whether the abstraction exhibits perfect recall or imperfect recall.

Previous counterexamples show that abstraction in general provides no guarantees in the

full game [117]. In contrast, our results show that applying CFR to an abstract game leads

to bounded regret in the full game, provided we restrict ourselves to (skew) well-formed

abstractions. If such an abstract game is much smaller than the full game, a significant

amount of memory is saved when running CFR.

5.3.1 Relaxing the Conditions

Well-formed games are described by four conditions provided in Definition 1. Recall that

Koller & Megiddo prove that determining a player’s guaranteed payoff in an imperfect

recall game is NP-complete [62]. However, Koller & Megiddo’s NP-hardness reduction

creates an imperfect recall game that breaks conditions (i), (iii), and (iv) of Definition 1. In

this section, we discuss the following question: For minimizing regret, how important is it

to satisfy each individual condition of Definition 1?

Skew well-formed games and Theorem 7 show that one can relax condition (i) of Def-

inition 1 and still derive a bound on the average regret. In addition, most of our PTTT and

Bluff abstractions from the Section 5.5 do not satisfy condition (iii), but CFR still produces

reliable results. This suggests that it may be possible to relax condition (iii) in a similar

manner to the relaxation of condition (i) introduced by skew well-formed games. While we

leave this question open, we now demonstrate that breaking condition (iii) can lead CFR to

a dead-lock situation where one player has constant average regret.

Let us walk through the process of applying CFR to the game in Figure 5.2. Note

that this game satisfies all of the conditions of Definition 1, except for condition (iii). To

begin, the current strategy profile σ1 is set to be uniform random at every information set.

Under this profile, when player 1 is at I3, each of the four histories are equally likely.

Thus, vi(σ1
(I3→l), I3) = vi(σ

1
(I3→r), I3) = vi(σ

1, I3) = 0, and so r1
1(I3, l) = r1

1(I3, r) =

0. Similarly for actions p and c at I1 and I2. Player 2, however, has positive immediate

counterfactual regret for passing (p) at histories ac and ec (to always receive ξ utility) and
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Figure 5.2: A zero-sum game with imperfect recall where CFR does not minimize average
regret. The utilities for player 1 are given at the terminal histories, where ξ ∈ (0, 1). Nodes
connected by a bold, dashed curve are in the same information set for player 1 (player 2 has
perfect information).

for continuing (c) at bc and de (to always avoid receiving −ξ utility), and has negative

immediate counterfactual regret for continuing at ac and ec and for passing at bc and dc.

Therefore, the next profile σ2 still has player 1 playing uniformly random everywhere,

but player 2 now always passes at ac and ec, and always continues at bc and dc. On the

second iteration of CFR, the positive regrets for player 1 at I3 remain the same because the

histories bcc and dcc are equally likely. Also, player 2’s positive regrets remain the same

at all four histories in H2. However, player 1’s expected utility for continuing at I1 or I2

is now negative since player 2 now passes at ac and ec, and player 1 gains positive regret

for passing at both I1 and I2. This leads us to the next profile σ3 = {(I1, p) = 1, (I2, p) =

1, (ac, p) = 1, (bc, p) = 0, (dc, p) = 0, (ec, p) = 1, (I3, l) = 0.5}. One can check that

running CFR for more iterations yields σt = σ3 for all t ≥ 3. The average regret for playing

this way will be constant and hence does not approach zero because player 1 would rather

play σ′1 = {(I1, p) = 1, (I2, p) = 0, (I3, l) = 0} and get u1(σ′1, σ
3
2) = (1− ξ)/4 > u1(σ3)

for ξ ∈ (0, 1). A similar example can be constructed where condition (iii) holds, but

chance’s probabilities are not proportional (breaking condition (ii)).

In some sense, the example highlights the importance of conditions (ii) and (iii): break-

ing either of these in isolation can lead to a loss of convergence guarantees. If (ii) or (iii)
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can be relaxed, then the relaxation must take these tricky scenarios into account. Despite

the problem of breaking condition (iii), condition (iv) of Definition 1 can be relaxed. Rather

than enforcing player i’s future information to be the same across the bijection φ, we only

require that the corresponding subtrees be isomorphic, allowing player i to re-remember

information that was previously forgotten. The details for this relaxation are presented in

the extended technical report [68]. It is not clear that this relaxation is possible in skew

well-formed games, nor does it seem to provide any practical advantage, so we omit its

presentation in this thesis.

5.4 Average Strategy Computation

Recall the folk theorem property from Section 2.2.2: when running the CFR algorithm, the

strategy that is converging to an equilibrium is the average strategy (Equation 2.14). What

we have shown above is that minimizing regret in a well-formed imperfect recall game Γ

will also minimize regret in its perfect recall refinement Γ̆. However, the strategy that is

converging is the average strategy in Γ̆. In general, for I ∈ I,

σ̄i
T (I, a) =

∑T
t=1 π

σt
i (I)σt(I, a)∑T
t=1 π

σt
i (I)

=

∑T
t=1

∑
h∈I π

σt
i (h)σt(I, a)∑T

t=1

∑
h∈I π

σt
i (h)

(5.2)

will not be equal to σ̄(Ĭ , a) for Ĭ ∈ P̆(I).

To see why this is true, imagine two separate prefix histories of DRP-IR:

h1 : Player i rolls , −i rolls something, check, raise, call, i rolls , −i rolls something.

h2 : Player i rolls , −i rolls something, check, raise, call, i rolls , −i rolls something.

At this point it is player i’s turn. In DRP-IR, these two prefix histories are merged into one

information set I . However, previously (before player i checks), these histories are were

in two different information sets. Hence, the product πσi (h1) 6= πσi (h2) and the sum in the

numerator of Equation 5.2 will add these together since h1, h2 ∈ I .

One solution is to maintain and update the converging average strategy {σ̄(Ĭ) : Ĭ ∈ Ĭ}.

This is possible using the CFR algorithm since the only difference is in how the information

sets are retrieved given history h (Line 13 or Algorithm 1). This requires maintaining two

separate data structures, one for the abstract game Γ and one for full game Γ̆. However, if

the abstraction is used to save memory, this is undesirable as it still requires memoryO(|Ĭ|)

which is what is being avoided. We refer to this averaging scheme as full averaging.

81



So, as with MCCFR, we can resort to heuristic approximations. One reasonable approx-

imation is to simply save the strategy profiles at random iterations Tsave = {t1, t2, . . .} ⊂

{1, 2, · · · , T} to obtain a collection of profiles (σt1 , σt2 , σt3 , · · · ). Then, when employing

the strategy at information set I , use these strategies to compute a mixed σ̄(Ĭ) on-the-fly

from the saved strategies. This will require an amount of memory that is linear in the size

of the abstract game multiplied by |Tsave|.

Another approximation is to simply ignore the problem altogether. Computing σ̄ in the

abstract game effectively combines all the average strategy updates from Ĭ , Ĭ ′ ∈ P̆(I). As

a result, the strategy recommended by σ̄ will be a combination of what was learned along

the different prefixes in I . Since these prefixes are being combined to form I in the first

place, this seems sensible. We refer to this averaging scheme as abstract averaging.

In the next section, we will evaluate the performance of this in practice versus the proper

way to compute the average.

5.5 Empirical Evaluation

To complement the theoretical results, we apply CFR to both players simultaneously in

several zero-sum imperfect recall (abstract) games, and measure the sum of the average

regrets for both players in a perfect recall refinement (the full game). Along with the small

DRP domain and its variants, we also consider the challenging domains of phantom tic-tac-

toe and Bluff, described in sections 3.1.1 and 3.1.7.

We consider several different imperfect recall abstractions for DRP, Skew-DRP(δ),

PTTT, and Bluff. For the DRP games, we apply DRP-IR and Skew-DRP-IR(δ) respec-

tively as described in sections 5.2 and 5.3.

In Bluff, we use abstractions described by Neller and Hnath ([77]) that force players

to forget everything except the last r bids. These abstract games are not skew well-formed

because the players forget information that the opponent could previously distinguish.

In our first set of experiments, we evaluate the performance of full averaging versus

abstract averaging. We run two experiments using Vanilla CFR, on two separate games:

DRP-IR, and Bluff(1,1) with r = 4. We apply the full averaging mechanism as well as the

abstract averaging mechanism described in Section 5.4. The results, shown in Figure 5.3,

are encouraging. In both cases, the difference between the two is hardly noticeable. In

the case of DRP-IR, the values are in fact identical while in the case of Bluff(1,1) there are

small differences in the fourth decimal place. This shows promise for the abstract averaging
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Figure 5.3: Full averaging versus abstract averaging in DRP-IR and Bluff(1,1) r = 4. The
horizontal axes represent iterations while the vertical axes represents exploitability εσ in the
full game.

approach. However, more experiments and formal analysis are required to say anything

further. We include these results mainly to encourage further research; the remainder of our

experiments use full averaging.

The next set of experiments compares the performance of the algorithm applied to much

larger games. Our PTTT and Bluff experiments also investigate the effects of imperfect re-

call beyond skew well-formed games. In the full, perfect recall version of PTTT, each player

remembers the order of every failed and every successful move she makes throughout the

entire game. In our first abstract game, FOSF, players forget the order of successive failures

within the same turn. Clearly, there is an isomorphism between any two merged information

sets Ĭ , Ĭ ′ ∈ P̆(I) since the order of the actions does not affect the available future moves or

utilities. Players still remember which turn each success and each failure occurred, and so

the opponent’s sequences of actions must be equal across the isomorphism. Thus, FOSF is

well-formed. The remaining PTTT abstractions, however, are not even skew well-formed.

In FOI, players independently remember the sequence of failures and the sequence of suc-

cessful actions, but not how the actions interleave. In FOS, players remember the order

of failed actions, but not the order of successes. Finally, in FOE, players only know what

actions they have taken and remember nothing about the order in which they were taken.

FOI, FOS, and FOE are not skew well-formed because no isomorphism can preserve the

order of the opponent’s previous (I, a) pairs (breaking condition (iii) of Definitions 1 and

2).
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Game Abstr. Well-for. |C| Savings
DRP None Yes 2610 —
DRP DRP-IR Yes 860 67.05%

PTTT None Yes 11695314 —
PTTT FOSF Yes 9347010 20.08%
PTTT FOI No 1147530 90.19%
PTTT FOS No 1484168 87.31%
PTTT FOE No 47818 99.59%
Bluff None Yes 704643030 —
Bluff r = 10 No 295534218 58.06%
Bluff r = 8 No 108323418 84.63%
Bluff r = 6 No 22518468 96.80%
Bluff r = 4 No 2329068 99.67%
Bluff r = 3 No 543900 99.92%
Bluff r = 2 No 97608 99.97%
Bluff r = 1 No 12600 99.99%

Table 5.1: DRP, PTTT, and Bluff game sizes and properties. Here, |C| represents the total
number of (information set, action) pairs for both players.

The size of each DRP, PTTT, and Bluff game is given in Table 5.1, where we define

|C| = |C1 ∪ C2| to be the total number of (I, a) pairs for both players. Note that Skew-

DRP(δ) is the same size as DRP regardless of the skew, and recall that CFR requires space

linear in |C|.

For each game, we ran CFR on both players, meaning that each player’s opponent was

an identical copy of the same no-regret learner. Similar to Zinkevich et al. ([124]), we used

the chance sampling variant of CFR. The sum of the average positive regrets for each player

over a number of iterations is shown in Figure 5.4. The Skew-DRP-IR(δ) experiments show

that as δ increases, so does the regret as predicted by Theorem 7, though
∑

I∈Ii

∣∣∣P̆(I)
∣∣∣ δI

appears to be a very loose bound on the final regret.

In PTTT, regret appears to diverge from zero for FOI, FOS, and FOE, where FOS ap-

pears to provide slightly better strategies than FOI and FOE. While our theory cannot ex-

plain why FOS performs better, this does match our intuition that remembering information

about the opponent’s moves is important, and the importance of conditions (iii) demon-

strated in Section 5.3.1. For a small increase in average regret, FOS reduces the space

required by 87% compared to FOSF’s 20% reduction. Note that for both DRP and PTTT,

running CFR on the full, perfect recall game achieves the same regret as in the well-formed

abstractions (Skew-DRP-IR(0) and FOSF) and is thus not shown. In Bluff, we see that re-

gret consistently worsens as fewer previous bids are remembered. This suggests that a result
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Figure 5.4: Sum of average regrets for both players, (RT,+1 + RT,+2 )/T , as iterations in-
crease for Skew-DRP-IR(δ) (top), abstract games in PTTT (middle), and abstract games in
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horizontal axes represent iterations.
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similar to Theorem 2 for skew well-formed games may hold if condition (iii) of Definition

2 is less constrained, though the proper formulation for such a relaxation remains unclear.

Nonetheless, choosing r = 8 saves 85% of the memory with only a very small increase in

average regret after millions of iterations.

5.6 Chapter Summary and Conclusion

In this chapter, we have given a definition of well-formed game and skew well-formed

games for games with imperfect recall. We have shown that running CFR on well-formed

abstract games will still minimize regret in the full game and hence the full average strat-

egy approaches an ε-equilibrium. We have also given a relaxed definition that allows for

skewing of payoff, and derived the regret penalty that is paid for such a skew. We have also

shown the empirical performance of CFR run on well-formed games and skew well-formed

games, as well as games that are neither. To save memory, the average abstract strategy

must be accumulated, and while this appears to work well in practice, more formal analysis

is required to show how well this average abstract strategy approximates the full average

strategy.
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Chapter 6

Monte Carlo *-Minimax Search

The previous two chapters described algorithms for generating approximate equilibria in

large imperfect information games. In games of imperfect information, computing a mixed

Nash equilibrium may be important; players may be required to mix their strategies to make

it difficult for their opponent to determine their private information.

In this and the next chapter, we focus on game-playing algorithms for perfect informa-

tion games. As such, we will use the terminology associated with these models and their

literature as presented in Section 2.3.2.

Recall Monte-Carlo Tree Search (MCTS) from Section 2.3.2. MCTS has recently be-

come one of the dominant paradigms for online planning in large sequential games. At first,

MCTS was applied to games lacking strong Minimax players, but recently has been shown

to compete against strong Minimax players [90; 120]. MCTS performs particularly well

when a good evaluation function is unavailable and the branching factor is high. This is a

bad case for Minimax because of the exponential running time in the look-ahead depth. In

MCTS, the simulation always continue to the end of the game, so the returns are based on

true utility values.

Unlike classical games such as Chess and Go, stochastic game trees include chance

nodes in addition to decision nodes. How MCTS should account for this added uncer-

tainty remains unclear. The classical algorithms for stochastic games, Expectimax and *-

Minimax, perform look-ahead searches to a limited depth. However, both algorithms scale

exponentially in the branching factor at chance nodes as the search horizon is increased.

Hence, their performance in large games often depends heavily on the quality of the heuris-

tic evaluation function, as only shallow searches are possible.

One way to handle the uncertainty at chance nodes is to simply sample a single out-

come when encountering a chance node. This is common practice in MCTS when applied
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to stochastic games; however, the general performance of this method is unclear. Large

stochastic domains still pose a significant challenge. For example, MCTS is outperformed

by *-Minimax in the game of Carcassonne [45]. Unfortunately, the literature on the appli-

cation of Monte Carlo search methods to stochastic games is relatively small, possibly due

to the lack of a principled and practical algorithm for these domains.

In this chapter, we introduce a new algorithm, called Monte-Carlo Minimax Search

(MCMS), which can increase the performance of search algorithms in stochastic games

by sampling a subset of chance event outcomes. The work presented in this chapter is

an extended version of our work recently presented at the Computer Games Workshop

held at the European Conference on Artificial Intelligence [69], done in collaboration with

Abdallah Saffidine, Joel Veness, and Chris Archibald.

6.1 Ballard’s *-Minimax

Recall classical game search from Section 2.3.2. A direct computation of

arg max
a∈A(s)

Vd(s, a) or arg min
a∈A(s)

Vd(s, a)

(see Equation 2.20) in the stochastic setting is known as the Expectimax algorithm [94]. The

base Expectimax algorithm can be enhanced by a technique similar to alpha-beta pruning

for deterministic game tree search. This involves correctly propagating the [α, β] bounds

and performing an additional pruning step at each chance node. This pruning step is based

on the simple observation that if the minimax value has already been computed for a subset

of successors S̃ ⊂ S , the minimax value of the state-action pair (s, a) must lie within

Ld(s, a) ≤ Vd(s, a) ≤ Ud(s, a),

where

Ld(s, a) =
∑
s′∈S̃

P(s′ | s, a)Vd−1(s′) +
∑

s′∈S\S̃

P(s′ | s, a)vmin

Ud(s, a) =
∑
s′∈S̃

P(s′ | s, a)Vd−1(s′) +
∑

s′∈S\S̃

P(s′ | s, a)vmax.

These bounds form the basis of the pruning mechanisms in the *-Minimax [7] family of

algorithms. In the Star1 algorithm, each s′ from the equations above represents the state

reached after a particular outcome is applied at a chance node following (s, a). In practice,

Star1 maintains lower and upper bounds on Vd−1(s′) for each child s′ at chance nodes,
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Figure 6.1: An example of the STAR1 algorithm.

using this information to stop the search when it finds a proof that any future search is

pointless.

To better understand when cutoffs occur in *-Minimax, we now present an example

adapted from Ballard’s original paper. Consider Figure 6.1. The algorithm recurses down

from state s with a window of [α, β] = [4, 5] and encounters a chance node. Without

having searched any of the children the bounds for the values returned are (vmin, vmax) =

(−10,+10). The subtree of a child, say s′, is searched and returns Vd−1(s′) = 2. Since

this is now known, the upper and lower bounds for that outcome become 2. The lower

bound on the minimax value of the chance node becomes (2 − 10 − 10)/3 and the upper

bound becomes (2 + 10 + 10)/3, assuming a uniform distribution over chance events. If

ever the lower bound on the value of the chance node exceeds β, or if the upper bound for

the chance node is less than α, the subtree is pruned. In addition, this bound information is

used to compute new bounds to send to the other child nodes.

The Star1 algorithm is summarized in Algorithm 6. Recall from Section 2.3.2 that

we always treat player 1 as the player maximizing u1(s) (Max), and player 2 as the player

minimizing u1(s) (Min). The parameter c is a boolean representing whether or not a chance

node is the next node in the tree1. The outcome set o is an array of tuples, one per outcome.

The ith tuple has three attributes: a lower bound oil initialized to vmin, an upper bound oiu

initialized to vmax, and the outcome’s probability oip. The lowerBound function returns

the current lower bound on the chance node
∑

i∈{0,...,N−1} oipoil. Similarly, upperBound

returns the current upper bound on the chance node using oiu in place of oil. Finally, the

functions computeChildAlpha and computeChildBeta return the new bounds on the value

of the respective child below. Continuing the example above, suppose the algorithm is ready

to descend down the middle outcome. The lower bound for the child is derived from the
1Note that we assume that chance nodes and decision nodes alternate
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Algorithm 6 Star1
1: alphabeta1(s, d, α, β)
2: if d = 0 or s ∈ Z then return (h1(s), null)
3: else if P (s) = 1 (Max) then
4: α′ ← α
5: (v∗, a∗)← (−∞, null)
6: for a ∈ A(s) do
7: v ← Star1(s, a, d− 1, α′, β, true)
8: if v ≥ v∗ then (v∗, a∗, α′)← (v, a,max(v, α′))
9: if β ≤ α′ break

10: return (v∗, a∗)
11: else if P (s) = 2 (Min) then
12: β′ ← β
13: (v∗, a∗)← (+∞, null)
14: for a ∈ A(s) do
15: v ← Star1(s, a, d− 1, α, β′, true)
16: if v ≤ v∗ then (v∗, a∗, β′)← (v, a,min(v, β′))
17: if β′ ≤ α break
18: return (v∗, a∗)
19:

20: Star1(s, a, d, α, β, c)
21: if d = 0 or s ∈ Z then return (h1(s), null)
22: else if ¬c then return alphabeta1(s, d, α, β)
23: else
24: o← genOutcomeSet(s, a, vmin, vmax)
25: N ← |o|
26: for i ∈ {0, . . . , N − 1}
27: α′ ← computeChildAlpha(o, α, i); β′ ← computeChildBeta(o, β, i)
28: s′ ← applyActionAndChanceOutcome(s, a, i)
29: (v, a′)← Star1(s′, null, d− 1,max(vmin, α

′),min(vmax, β
′), false)

30: oil ← v; oiu ← v
31: if v ≥ β′ then return (lowerBound(o), null)
32: if v ≤ α′ then return (upperBound(o), null)
33: return (exactValue(o), null)

equation (2+o1pα
′+10)/3 = α. Solving for α′ here gives α′ = (3α−12)/o1p. In general:

α′ =
α− upperBound(o) + oipoiu

oip
, β′ =

β − lowerBound(o) + oipoil
oip

.

The performance of the algorithm can be improved significantly by applying a simple

look-ahead heuristic. Suppose the algorithm encounters a chance node. When searching

the children of each outcome, one can temporarily restrict the legal actions at a successor

(decision) node. If only a single action is searched at the successor, then the value returned

will be a bound on Vd−1(s′). If the successor is a Max node, then the true value can

only be larger, and hence the value returned is a lower bound. Similarly, if it was a Min
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Algorithm 7 Star2
1: Star2(s, a, d, α, β, c, p)
2: if d = 0 or s ∈ Z then return (h1(s), null)
3: else if ¬c then return alphabeta2(s, d, α, β, p)
4: else
5: o← genOutcomeSet(s, a, vmin, vmax)
6: N ← |o|
7: for i ∈ {0, . . . , N − 1}
8: α′ ← computeChildAlpha(o, α, i); β′ ← computeChildBeta(o, β, i)
9: s′ ← applyActionAndChanceOutcome(s, a, i)

10: (v, a′)← Star2(s′, null, d− 1,max(vmin, α
′),min(vmax, β

′), false, true)
11: if ¶(s′) = 1 then
12: oil ← v
13: if lowerBound(o) ≥ β then return (lowerBound(o), null)
14: else if P (s′) = 2 then
15: oiu ← v
16: if upperBound(o) ≤ α then return (upperBound(o), null)
17: for i ∈ {0, . . . , N − 1}
18: α′ ← computeChildAlpha(o, α, i); β′ ← computeChildBeta(o, β, i)
19: s′ ← applyActionAndChanceOutcome(s, a, i)
20: (v, a′)← Star2(s′, null, d− 1,max(vmin, α

′),min(vmax, β
′), false, false)

21: oil ← v; oiu ← v
22: if v ≥ β′ then return (lowerBound(o), null)
23: if v ≤ α′ then return (upperBound(o), null)
24: return (exactValue(o), null)

node, the value returned is an upper bound. The Star2 algorithm applies this idea via a

preliminary probing phase at chance nodes in hopes of pruning without requiring full search

of the children. If probing does not lead to a cutoff, then the children are fully searched,

but bound information collected in the probing phase can be re-used. When moves are

appropriately ordered, the algorithm can often choose the best single move and effectively

cause a cut-off with exponentially less search effort. Since this is applied recursively, the

benefit compounds as the depth increases. The algorithm is summarized in Algorithm 7.

The alphabeta2 procedure is analogous to alphabeta1 except when p is true, a subset (of size

one) of the actions are considered at the next decision node. The recursive calls to Star2

within alphabeta2 have have p set to false and a set to the chosen action.

Note that Star1 and Star2 are typically presented using the negamax formulation2. In

fact, Ballard originally restricted his discussion to regular *-minimax trees, ones that strictly

alternate Max, Chance, Min, Chance. We intentionally present the more general α − β

2In the negamax formulation, instead of having two separate cases (one for Max and one for Min) as seen
in in lines 3 to 18 of Algorithm 6, there is only a single case: always maximize. The values are negated at each
recursive call so that when Min is to act, they are maximizing the negation of the payoff to Max.
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formulation here because it handles a specific case, where Max and Min do not necessarily

alternate, encountered in two of our three test domains. For example, in two of our domains

we can observe a sequence: Max, Chance, Max, Chance.

In games where the outcome of a chance node determines the next player to play, the cut

criteria during the Star2 probing phase depends on the child node. The bound established

by the Star2 probing phase will either be a lower bound or an upper bound, depending on

the child’s type. This distinction is made in lines 11 to 16. Also note: when implementing

the algorithm, we have found better performance occurs when incrementally computing the

bound information [44].

6.2 Related Work

Before describing our approach, we will give an overview of two related algorithms that

have been applied in these settings.

6.2.1 MCTS with Double-Progressive Widening

Recall Monte Carlo Tree Search from Section 2.3.2. In recent years Monte Carlo methods

have seen a surge of popularity in tree search methods for games. An improvement of

practical importance has been established called Progressive Unpruning / Widening [21;

19]. The main idea here is to purposely restrict the number of actions; this width is gradually

increased so that the tree grows deeper at first and then slowly wider over time.

The progressive widening idea is extended to include chance nodes in the double pro-

gressive widening algorithm (MCTS+DPW) [20]. When MCTS+DPW encounters a chance

or decision node, it computes a maximum number of actions or outcomes to consider

k = dCvαe, where C and α are parameter constants and v represents a number of vis-

its to the node. At a decision node, then only the first k actions from the action set are

available. At a chance node, a set of outcomes is stored and incrementally grown. An out-

come is sampled; if k is larger than the size of the current set of outcomes and the newly

sampled outcome is not in the set, it is added to the set. When the branching factor at chance

nodes is extremely high, double progressive widening prevents MCTS from degrading into

1-ply rollout planning. We will use MCTS enhanced with double progressive widening as

one of the baseline algorithms for our experimental comparison.
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6.2.2 Sampling Methods for Markov Decision Processes

Computing optimal policies in large Markov Decision Processes (MDPs) is a significant

challenge. Since the size of the state space is often exponential in the number of proper-

ties describing each state, much work has focused on finding efficient methods to compute

approximately optimal solutions. One way to do this, given only a generative model of the

domain, is to employ sparse sampling [58]. When faced with a decision to make from a

particular state, a local sub-MDP is built using finite horizon look-ahead search. When tran-

sitioning to successor states, a fixed number c ∈ N of successor states are sampled for each

action. Kearns et al. showed that for an appropriate choice of c, this procedure produces

value estimates that are accurate (with high probability). Importantly, c was shown to have

no dependence on the number of states |S|, effectively breaking the curse of dimensionality.

This method of sparse sampling was improved by using adaptive decision rules based on

the multi-armed bandit literature to give the AMS algorithm [16]. Also, the Forward Search

Sparse Sampling (FSSS) [115] algorithm was recently introduced, which exploits bound

information to add a form of sound pruning to sparse sampling. The pruning mechanism

used by FSSS is analogous to what Star1 performs in adversarial domains.

We will now look at adapting these ideas in the game tree search setting.

6.3 Sparse Sampling in Adversarial Games

The performance of classical game tree search also suffers from a dependence on |S|. Like

Sparse Sampling for MDPs [58], we remove this dependence using Monte-Carlo sampling.

We define the estimated finite horizon minimax value as

V̂d(s) =



max
a∈A

V̂d(s, a) if d > 0, s 6∈ Z, and P (s) = 1

min
a∈A

V̂d(s, a) if d > 0, s 6∈ Z, and P (s) = 2

h(s) otherwise.

(6.1)

where

V̂d(s, a) = 1
c

c∑
i=1

V̂d−1(si),

for all s ∈ S and a ∈ A, with each successor state si ∼ P(· | s, a) for 1 ≤ i ≤ c.

Our main objective is to prove that for a sufficiently large value of c, these estimates are

accurate. Before doing so, we present a few building blocks. The non-trivial proofs of these

supporting lemmas and propositions are included in Appendix A.3.

93



Lemma 7. For all states s ∈ S, for all actions a ∈ A, for all λ ∈ (0, 2vmax] ⊂ R, for all

c ∈ N, given a set C(s) of c ∈ N states generated according to P(· | s, a), we have

P

∣∣∣∣∣∣
1

c

∑
si∈C(s)

Vd−1(si)

− Vd(s, a)

∣∣∣∣∣∣ ≥ λ
 ≤ 2 exp

{
−λ2c / 2v2

max

}
. (6.2)

Proposition 1. For all d ∈ N, for a state s ∈ S, if
∣∣∣V̂d(s, a)− Vd(s, a)

∣∣∣ < λ holds for all

a ∈ A, then
∣∣∣V̂d(s)− Vd(s)∣∣∣ < λ.

We now state our main result.

Theorem 8. Given c ∈ N, for any state s ∈ S, for all λ ∈ (0, 2vmax] ⊂ R, for any depth

d ∈ Z+,

P
(∣∣∣V̂d(s)− Vd(s)∣∣∣ ≤ λd) ≥ 1− (2c|A|)d exp

{
−λ2c / 2v2

max

}
.

Proof. We will use an inductive argument. First note that the base case is trivially satisfied

for d = 0, since V̂0(s) = V0(s) for all s ∈ S by definition. Now, assume that the statement

is true for some d− 1 ∈ Z+ i.e.

P
(∣∣∣V̂d−1(s)− Vd−1(s)

∣∣∣ ≤ λ(d− 1)
)
≥ 1− (2c|A|)d−1 exp

{
−λ2c / 2v2

max

}
. (6.3)

Next we bound the error for each state-action estimate V̂d(s, a). We denote by C(s) ⊆ S

the set of c ∈ N successor states drawn from P(· | s, a). So,
∣∣∣V̂d(s, a)− Vd(s, a)

∣∣∣
=

∣∣∣∣∣∣
1

c

∑
si∈C(s)

V̂d−1(si)

− Vd(s, a)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1

c

∑
si∈C(s)

V̂d−1(si)

−
1

c

∑
si∈C(s)

Vd−1(si)

+

1

c

∑
si∈C(s)

Vd−1(si)

− Vd(s, a)

∣∣∣∣∣∣
≤ 1

c

∑
si∈C(s)

∣∣∣V̂d−1(si)− Vd−1(si)
∣∣∣+

∣∣∣∣∣∣
1

c

∑
si∈C(s)

Vd−1(si)

− Vd(s, a)

∣∣∣∣∣∣ (6.4)

The first step follows from the definition of V̂d(s, a). The final step follows by the fact that

|a − b| ≤ |a − c| + |c − b| and simplifying. The RHS of Equation (6.4) consists of a sum

of two terms, which we analyze in turn. The first term

1

c

∑
si∈C(s)

∣∣∣V̂d−1(si)− Vd−1(si)
∣∣∣
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is the average of the error in c state value estimates at level d− 1. Now, the event that

1

c

∑
si∈C(s)

∣∣∣V̂d−1(si)− Vd−1(si)
∣∣∣ > λ(d− 1)

is a subset of the event that a single estimate is off by more than λ(d − 1). Therefore, we

have

P

1

c

∑
si∈C(s)

∣∣∣V̂d−1(si)− Vd−1(si)
∣∣∣ > λ(d− 1)



≤ P

⋃
si∈C

∣∣∣V̂d−1(si)− Vd−1(si)
∣∣∣ > λ(d− 1)


≤

∑
si∈C

P
(∣∣∣V̂d−1(si)− Vd−1(si)

∣∣∣ > λ(d− 1)
)

≤ c (2c|A|)d−1 exp
{
−λ2c / 2v2

max

}
. (6.5)

The penultimate line follows from the union bound. The final line applies the inductive

hypothesis.

We now consider the second term∣∣∣∣∣∣
1

c

∑
si∈C(s)

Vd−1(si)

− Vd(s, a)

∣∣∣∣∣∣
of the RHS of Equation (6.4). By Lemma 7 we have

P

∣∣∣∣∣∣
1

c

∑
si∈C(s)

Vd−1(s)

− Vd(s, a)

∣∣∣∣∣∣ > λ

 ≤ 2 exp
{
−λ2c / 2v2

max

}
. (6.6)

We now have a bound for each of the two terms in the RHS of Equation (6.4), as well

as the probability with which that bound is exceeded. Notice that the value of the RHS can

exceed the sum of the two terms’ bounds if either term exceeds its respective bound. Using

this, we get

P

1

c

∑
si∈C(s)

∣∣∣V̂d−1(si)− Vd−1(si)
∣∣∣+

∣∣∣∣∣∣
1

c

∑
si∈C(s)

Vd−1(si)

− Vd(s, a)

∣∣∣∣∣∣ > λd

 ≤
P

1

c

∑
si∈C(s)

∣∣∣V̂d−1(si)− Vd−1(si)
∣∣∣ > λ(d− 1)

+ P

∣∣∣∣∣∣
1

c

∑
si∈C(s)

Vd−1(si)

− Vd(s, a)

∣∣∣∣∣∣ > λ


by the union bound and the fact that x+ y ≥ K ⇒ x ≥ k1 or y ≥ k2, where K = k1 + k2;

specifically, the event on the left-hand side is a subset of the union of the two events on the

right-hand side.
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Continuing, we can apply Equations 6.5 and 6.6 to the above to get an upper bound of

c (2c|A|)d−1 exp
{
−λ2c / 2v2

max

}
+ 2 exp

{
−λ2c / 2v2

max

}
=

(
2 + c (2c|A|)d−1

)
exp

{
−λ2c / 2v2

max

}
≤ (2c)d (|A|)d−1 exp

{
−λ2c / 2v2

max

}
, (6.7)

where the final two lines follow from standard calculations and the fact that c > 1. Recall

from Equation 6.4 that

∣∣∣V̂d(s, a)− Vd(s, a)
∣∣∣ ≤ 1

c

∑
si∈C(s)

∣∣∣V̂d−1(si)− Vd−1(si)
∣∣∣+
∣∣∣∣∣∣
1

c

∑
si∈C(s)

Vd−1(si)

− Vd(s, a)

∣∣∣∣∣∣
This allows us to bound the probability that V̂d(s, a) differs from Vd(s, a) by more than λd,

by using Equation 6.7 as follows

P
(∣∣∣V̂d(s, a)− Vd(s, a)

∣∣∣ > λd
)

≤ P

1

c

∑
si∈C(s)

∣∣∣V̂d−1(si)− Vd−1(si)
∣∣∣+

∣∣∣∣∣∣
1

c

∑
si∈C(s)

Vd−1(si)

− Vd(s, a)

∣∣∣∣∣∣ > λd


≤ (2c)d (|A|)d−1 exp

{
−λ2c / 2v2

max

}
(6.8)

We know from Proposition 1 that if all of the chance node value estimates are accurate

then the decision node estimate must also be accurate. This allows us to consider the prob-

ability of the event that at least one of the chance node value estimates V̂1(s, a) deviates by

more than λd, that is,

P

(⋃
a∈A

∣∣∣V̂d(s, a)− Vd(s, a)
∣∣∣ > λd

)
≤
∑
a∈A

P
(∣∣∣V̂d(s, a)− Vd(s, a)

∣∣∣ > λd
)

by the union bound. Applying Equation 6.8, we get

P

(⋃
a∈A

∣∣∣V̂d(s, a)− Vd(s, a)
∣∣∣ > λd

)
≤ (2c|A|)d exp

{
−λ2c / 2v2

max

}
,

hence

1− P

(⋃
a∈A

∣∣∣V̂d(s, a)− Vd(s, a)
∣∣∣ > λd

)
≥ 1− (2c|A|)d exp

{
−λ2c / 2v2

max

}
.

Then by De Morgan’s law, we have

P

(⋂
a∈A

∣∣∣V̂d(s, a)− Vd(s, a)
∣∣∣ ≤ λd) ≥ 1− (2c|A|)d exp

{
−λ2c / 2v2

max

}
,
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which combined with Proposition 1 implies that

P
(∣∣∣V̂d(s)− Vd(s)∣∣∣ ≤ λd) ≥ 1− (2c|A|)d exp

{
−λ2c / 2v2

max

}
,

which proves the inductive step.

The proof is a straightforward generalization of the result of [58] for finite horizon,

adversarial games. The theorem shows that the higher the desired accuracy of the estimate,

the lower one must choose λ, in turn increasing the value that must be chosen for the sample

width c. For a particular tolerance parameter λ and depth d: as c grows, the probability of

V̂d(s) being an accurate estimate of the true value Vd(s) approaches 1.

The MCMS variants can be easily described in terms of the descriptions of Star1 and

Star2. To enable sampling, one need only change the implementation of getOutcomeSet

on line 24 of Algorithm 6 and line 5 of Algorithm 7. Instead of generating the full list

of moves, the new function samples c outcomes with replacement and assigns a uniform

distribution over the new outcome set of size c. We call these new variants Star1SS and

Star2SS. If all pruning is disabled, we obtain Expectimax with sparse sampling (ExpSS),

which computes V̂d(s) directly from the definition in Equation 6.1. The Star1SS method

computes exactly the same value as ExpSS, but can avoid useless work. The same can be

said for Star2SS, provided exactly the same set of chance events is used whenever a state-

action pair is visited; this additional restriction is needed due to the extra probing phase in

Star2. Note that while sampling without replacement may work better in practice, the proof

of Theorem 8 relies on the Hoeffding bound, which requires sampling with replacement.

6.4 Experiments

In this section, we present an empirical evaluation of MCMS.

Recall the descriptions of Pig, EinStein Würfelt Nicht! (EWN), and Can’t Stop from

Section 3.2. At least one MCTS player has been developed to play EWN [74].

To evaluate our algorithm, we performed two separate experiments. In all of our exper-

iments, a time limit of 0.1 seconds of search is used. MCTS uses utilities in [−100, 100]

and a tuned exploration constant value of 50. To make a more direct comparison to MCMS,

MCTS returns the value of the heuristic evaluation function at the leaves rather than using a

rollout policy. MCTS with double-progressive widening (DPW) uses parameters C and α

described in Section 2.3.2. All experiments were single-threaded and run on the same hard-

ware (equipped with Intel Core i7 3.4Ghz processors). The best sample widths for ExpSS,
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Star1SS, Star2SS, and (C,α) for DPW for Pig were (20, 2, 8, (5, 0.4)). For EWN and Can’t

Stop these parameters were set to (5, 2, 4, (3, 0.05)) and (5, 50, 18, (10, 0.2)) respectively.

These values were determined by running a number of round-robin tournaments between

players of the same type. The precise effect of the value of the sample width parameter on

the quality of the MCMS algorithm is not included here. We also suspect that a dynamically-

determined width (dependent on the current depth) may help. We leave both of these items

as potential future work.

Our first experiment compares statistical properties of the estimates returned and ac-

tions recommended by MCMS and MCTS. At a decision point, each algorithm returns a

recommended move a ∈ A and acts as an estimator of its minimax value V̂ (s). Since Pig

has fewer than one million states, we solve it using the technique of value iteration which

has been applied to previous smaller games of Pig [78], obtaining the true value of each

state V (s). From this, we estimate the mean squared error, variance, and bias of each al-

gorithm: MSE[V̂ (s)] = E[(V̂ (s)−V (s))2] = Var[V̂ (s)]+Bias(V (s), V̂ (s))2 by taking 30

samples of each algorithm at each decision point. We define the regret of taking action a at

state s to be Regret(s, a) = V (s)− V (s, a), where a is the action chosen by the algorithm

from state s. We measure the average value of Regret(s, a) over the 30 samples at each

decision point for each algorithm. This experiment was performed on several games of Pig;

the results are shown in Figures 6.2, 6.3, and 6.4. We intentionally exclude a single plot

representing averages over many games because the locations of the peaks are different in

each game, making the plot difficult to read.

From the results of this first experiment, we see that the estimated bias of the values

returned by ExpSS is generally lower than both MCTS and the non-sampling algorithms.

The sample based estimates are particularly more accurate from turns 18 to 25, possibly due

to the fact that the ExpSS is reaching the leaves and returning a true value while the others

are not. The reduction in bias comes at cost of higher variance value estimates, especially

toward the end of the game. But, when combined, ExpSS shows lower mean squared error;

since the MSE grows quadratically in the bias (as opposed to linearly in the variance),

reducing the bias by just a smaller amount than the increase in variance can still result in a

more accurate estimator. Due to this increased variance, one potential future investigation

could be to apply one or more variance reduction techniques described in Chapter 7. ExpSS

also often exhibits lower regret than expectimax and Star1 but not always lower than MCTS.

In our second experiment, we computed the performance of each algorithm by playing

500 test matches for each paired set of players. Each match consists of two games where
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(d) Bias of returned value in one Game #1

Figure 6.2: Properties of MCMS on Pig (Game #1). Exp and ExpSS represent EXPECTI-
MAX without and with sparse sampling, respectively. DPW represents MCTS with double-
progressive widening.
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(d) Bias of returned value in one Game #2

Figure 6.3: Properties of MCMS on Pig (Game #2). Exp and ExpSS represent EXPECTI-
MAX without and with sparse sampling, respectively. DPW represents MCTS with double-
progressive widening.
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Figure 6.4: Properties of MCMS on Pig (Game #3). Exp and ExpSS represent EXPECTI-
MAX without and with sparse sampling, respectively. DPW represents MCTS with double-
progressive widening.
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ExpSS-Exp Star1SS-Star1 Star2SS-Star2

Pig 55.5 51.4 48.5
EWN 51.9 50.7 50.1

Can’t Stop 81.1 84.4 84.6

ExpSS-DPW Star1SS-DPW Star2SS-DPW MCTS-DPW

Pig 49.9 40.5 46.1 48.3
EWN 49.7 45.2 50.1 51.3

Can’t Stop 80.4 80.1 77.9 18.9

Table 6.1: Win percentage for p1 in a p1-p2 match of 1000 games in Pig (Pig Out), EWN,
and Can’t Stop.

players swap seats and a single random seed is generated and used for both games in the

match. The performance of each pairing of players is shown in Table 6.1.

The results from Table 6.1 show that the MCMS variants outperform their equivalent

non-sampling counterparts in all but one instance (Star2SS vs. Star2 in Pig); this might be

explained by the fact that since there are only 2 actions to choose from in Pig, it is easy to

determine a move ordering so that the Star2 probing phase works well enough without the

need for sampling. DPW also outperformed MCMS on Pig. This was somewhat expected

since it exhibited lower regret from the first experiment. In EWN, MCMS performs evenly

with DPW. Of the MCMS algorithms, Star2SS does best in EWN, likely due to the strictly

alternating roles which give higher chances for cutoffs to occur during the Star2 probing

phase. Finally, we see that MCMS wins by large margins in Can’t Stop, the domain with

the largest branching factor at chance nodes. This suggests that MCMS is well suited for

densely stochastic games.

6.5 Chapter Summary and Conclusion

In this chapter we present MCMS, a Monte Carlo sampling algorithm based on expecti-

max and Ballard’s *-Minimax. We have shown that, in theory, the estimates computed by

MCMS converge to the true Minimax values as the sample width c tends to infinity. In Pig,

we observe that this can increase variance toward the end of the game, but decrease the bias

and mean squared error in critical parts of the game. In medium-sized games, MCMS is

shown to compete with the state of the art, performing particularly well in Can’t Stop, the

largest of the three games.
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Chapter 7

Variance Reduction Techniques

While sampling techniques aim to reduce computation time by estimating quantities of

interest, the success of the approach depends critically on the variance of the estimators.

Suppose an algorithm needs to compute a quantity v, such as a counterfactual value in

CFR. Computing this value may take a long time, as in Vanilla CFR. Now suppose that we

now define two unbiased estimators for this quantity v̂1 and v̂2. Clearly, we want the most

precise value of v possible; if both estimators save the same amount of computation time

when estimating v then the more precise estimator (one with lower variance) is preferred.

Under ideal conditions the estimator would have zero variance which would lead to a direct

increase in performance. As this is rare in practice, we can ask ourselves how variance can

be reduced and how beneficial it is to reduce this variance.

Often there are ways to reduce the variance of an estimator by injecting some domain

knowledge. In this chapter, we survey some common methods used in the Monte Carlo

sampling literature. In particular, we describe the application of these variance reduction

techniques to Monte Carlo sampling. We will focus our application of each variance reduc-

tion technique to the single-player Monte Carlo Tree Search (MCTS) setting, as described

in Section 2.3.2. We will also show two straight-forward applications of these techniques

to MCCFR in Section 7.5.

We examine three variance reduction techniques: control variates, common random

numbers and antithetic variates. Each subsection begins with a short overview of each

variance reduction technique, followed by a description of how MCTS can be modified to

efficiently incorporate it. Each technique is evaluated in practice on three solitaire variants

of Pig, Can’t Stop, and Dominion. In all cases, solitaire variants of the games are used

where the aim is to maximize the number of points given a fixed number of turns. The work

presented in this chapter is an extended version of the work presented at the Twenty-Fifth
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Annual Conference on Neural Information Processing Systems (NIPS 2011) [110], done in

collaboration with Joel Veness and Michael Bowling.

In this chapter, given an independent and identically distributed sample (X1, X2, . . . Xn),

the sample mean is denoted by X̄ = 1
n

∑n
i=1Xi. Provided E [X] exists, X̄ is an unbiased

estimator of E [X] with variance Var[X]/n.

7.1 Control Variates

An improved estimate of E[X] can be constructed if we have access to an additional statistic

Y that is correlated withX , provided that µY = E[Y ] exists and is known. To see this, note

that if Z = X + c(Y − E[Y ]), then Z̄ is an unbiased estimator of E[X], for any c ∈ R. Y

is called the control variate. One can show that Var[Z] is minimized when c = c∗, where

c∗ = −Cov[X,Y ]/Var[Y ]. Given a sample (X1, Y1), (X2, Y2), . . . , (Xn, Yn) and setting

c = c∗, the control variate enhanced estimator

X̄cv =
1

n

n∑
i=1

[Xi + c∗(Yi − µY )] (7.1)

is obtained, with variance

Var[X̄cv] =
1

n

(
Var[X]− Cov[X,Y ]2

Var[Y ]

)
.

Thus the total variance reduction is dependent on the strength of correlation between X

and Y . For the optimal value of c, the variance reduction obtained by using Z in place of

X is 100 × Corr[X,Y ]2 percent. In practice, both Var[Y ] and Cov[X,Y ] are unknown

and need to be estimated from data. One solution is to use the plug-in estimator Cn =

−Ĉov[X,Y ]/V̂ar(Y ), where Ĉov[·, ·] and V̂ar(·) denote the sample covariance and sample

variance respectively. This estimate can be constructed offline using an independent sample

or be estimated online. Although replacing c∗ with an online estimate of Cn in Equation

7.1 introduces bias, this modified estimator is still consistent [79]. Note that X̄cv can be

efficiently computed with respect to Cn by maintaining X̄ and Ȳ online, since X̄cv =

X̄ + Cn(Ȳ − µY ).

Application to MCTS. Control variates can be applied recursively, by redefining the re-

turn Xs,a for every state-action pair (s, a) ∈ S ×A to

Zs,a = Xs,a + cs,a (Ys,a − E[Ys,a]) , (7.2)
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provided E [Ys,a] exists and is known for all (s, a) ∈ S × A, and Ys,a is a function of the

random variables At, St+1, Rt+1, . . . , An−1, Sn, Rn that describe the complete execution

of the system after action a is performed in state s. Notice that a separate control variate

will be introduced for each state-action pair. Furthermore, as E [Zst,at |Ai ∼ π(· |Si)] =

E [Xst,at |Ai ∼ π(· |Si)], for all policies π, for all (st, at) ∈ S × A and for all t < i < n,

the inductive argument used to establish the asymptotic consistency of UCT still applies

when control variates are introduced in this fashion [61].

Finding appropriate control variates whose expectations are known in advance can

prove difficult. This situation is further complicated in UCT where we seek a set of control

variates {Ys,a} for all (s, a) ∈ S ×A. Drawing inspiration from advantage sum estimators

[119], we now describe a general class of control variates designed for application in UCT.

Given a realization of a random simulation trajectory St = st, At = at, St+1 = st+1,

At+1 = at+1, . . . , Sn = sn, consider control variates of the form

Yst,at =
∑n−1

i=t I[b(Si+1)]− P[b(Si+1) |Si=si, Ai=ai], (7.3)

where b : S → {true, false} denotes a boolean function of state and I denotes the bi-

nary indicator function. We choose this specific definition (rather than the single-step

Yst,at = I(Si+1)) since in MCTS the value Xs,a is approximated using the results of sim-

ulated trajectories from root to leaf passing throughs, and in the game setting rewards are

only given as payoffs at the end of the game. However, the single-step control variate may

be a better way to apply control variates in general MDPs. In our case, the expectation

E[Yst,at ] =
∑n−1

i=t

(
E [I [b(Si+1)] | Si=si, Ai=ai]− P [b(Si+1) |Si=si, Ai=ai]

)
= 0,

for all (st, at) ∈ S×A. Thus, using control variates of this form simplifies the task to spec-

ifying a state property that is strongly correlated with the return, such that P[b(Si+1) |Si=

si, Ai=ai] is known for all (si, ai) ∈ (S,A), for all t ≤ i < n. This considerably reduces

the effort required to find an appropriate set of control variates for MCTS, and can naturally

be applied recursively in the tree.

When designing a control variates with this form, there are several things to consider.

First: the time required by the computation of b(Si+1) and P [b(Si+1) |Si=si, Ai=ai]

should be low. If the computational load added is high, then compute the values offline

for each state (or common states), is advisable. Secondly, the correlation of the control

variate with the reward should be high as the amount of variance reduced depends on this

correlation, as shown in Equation 7.1. Also, when choosing between control variates with
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the similar correlation, the ones with lower variance will offer more reduction in variance.

Finally, the rollout and selection policies may also have an effect on the quality of the

control variate.

Application to Test Domains. Our control variates for our domains have the form spec-

ified by Equation 7.3. In Pig, we use a boolean function that returns true if we have just

performed the roll action and obtain at least one . This control variate has an intuitive

interpretation, since we would expect the return from a single trajectory to be an underesti-

mate if it contained more rolls with a than expected, and an overestimate if it contained

less rolls with a than expected. In Can’t Stop, we used similarly inspired boolean func-

tion that returned true if we could not make a legal pairing from our most recent roll of the 4

dice. In Dominion, we used a boolean function that returned whether we had just played an

action that let us randomly draw a hand with 8 or more money to spend. This is a significant

occurrence, as 8 money is needed to buy a Province, the highest and most efficient scoring

card in the game. Strong play invariably requires purchasing as many Provinces as possible.

7.2 Common Random Numbers

Consider comparing the expectation of E[Y ] to E[Z], where both Y = g(X) andZ = h(X)

are functions of a common random variable X . This can be framed as estimating the value

of δY,Z = E[g(X)] − E[h(X)]. If the expectations E[g(X)] and E[h(X)] were estimated

from two independent samples X1 and X2, the estimator ĝ(X1)−ĥ(X2) would be obtained,

with variance Var[ĝ(X1)− ĥ(X2)] = Var[ĝ(X1)] + Var[ĥ(X2)]. Note that no covariance

term appears since X1 and X2 are independent samples.

Using common random numbers suggests setting X1 = X2 if Cov[ĝ(X1), ĥ(X2)] is

positive. This gives the estimator δ̂Y,Z(X1) = ĝ(X1)− ĥ(X1), with variance Var[ĝ(X1)]+

Var[ĥ(X1)]−2Cov[ĝ(X1), ĥ(X1)], which is an improvement whenever Cov[ĝ(X1), ĥ(X1)]

is positive. This technique cannot be applied indiscriminately however, since a variance in-

crease will result if the estimates are negatively correlated.

Application to MCTS. Rather than directly reducing the variance of the individual return

estimates, common random numbers can instead be applied to reduce the variance of the

estimated differences in return X̄m
s,a − X̄m

s,a′ , for each pair of distinct actions a, a′ ∈ A in a

state s. This has the benefit of reducing the effect of variance in both determining the action

at = arg maxa∈A X̄
m
s,a selected by UCT in state st and the actions arg maxa∈A X̄

m
s,a +
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c
√

log(Tms )/Tms,a selected by UCB as the search tree is constructed.

As each estimate X̄m
s,a is a function of realized simulation trajectories originating from

state-action pair (s, a), a carefully chosen subset of the stochastic events determining the

realized state transitions now needs to be shared across future trajectories originating from

s so that Cov[X̄m
s,a, X̄

m
s,a′ ] is positive for all m ∈ N and for all distinct pairs of actions

a, a′ ∈ A. Our approach is to use the same chance outcomes to determine the trajectories

originating from state-action pairs (s, a) and (s, a′) if T is,a = T js,a′ , for any a, a′ ∈ A and

i, j ∈ N. This can be implemented by using Tms,a to index into a list of stored stochastic

outcomes Es defined for each state s. By only adding a new outcome to Es when Ts,a ex-

ceeds the number of elements in Es, the list of common chance outcomes can be efficiently

generated online.

Application to Test Domains. To apply common random numbers, we need to specify

the future chance events to be shared across all of the trajectories originating from each

state. Since a player’s final score in Pig is strongly dependent on their dice rolls, it is natural

to consider sharing one or more future dice roll outcomes. By exploiting the property in

Pig that each roll event is independent of the current state, our implementation shares a

batch of roll outcomes large enough to drive a complete simulation trajectory. So that these

chance events do not conflict, we limited the sharing of roll events to just the root node.

A similar technique is used in Can’t Stop. We found this scheme to be superior to sharing

a single outcome at each state and applying the ideas above recursively. In Dominion,

stochasticity is caused by drawing cards from the top of a deck that is periodically shuffled.

Here common random numbers are implemented by recursively sharing pre-shuffled deck

configurations across the actions at each state. The motivation for this kind of sharing is

that it should reduce the chance of one action appearing better than another simply because

of “luckier” shuffles.

7.3 Antithetic Variates

Consider estimating the expected value of a function of a random variable E[h(X)] from

two identically distributed samples X = (X1, X2, . . . , Xn) and X′ = (X ′1, X
′
2, . . . , X

′
n).

To do this, one can compute ĥ(X,X′) = 1
2 [ĥ1(X) + ĥ2(X′)], the average of two unbiased

estimates ĥ1(X) and ĥ2(X′). The variance of ĥ(X,X′) is

1
4(Var[ĥ1(X)] + Var[ĥ2(X′)]) + 1

2Cov[ĥ1(X), ĥ2(X′)]. (7.4)
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The method of antithetic variates exploits this identity, by deliberately introducing a nega-

tive correlation between ĥ1(X) and ĥ2(X′). The usual way to do this is to construct X and

X′ from pairs of sample points (Xi, X
′
i) such that Cov[h1(Xi), h2(X ′i)] < 0 for all i ≤ n.

For example, consider the following solitaire game. One player has five turns. Each

turn, they only have a single action: roll a six-sided die. At the end of a game, the player

is awarded a sum a money equal to the sum of the dice rolls. How much money should

someone pay to play this game? The mean payoff is useful in answering this question.

One can estimated it by taking two samples, e.g., and , and computing

the estimated mean payoff to be 22+18
2 = 20. We can augment these two samples with

an additional two antithetic samples, e.g., and giving 22+18+13+17
4 =

17.5, which is a better estimate (in this case, perfect).

In other words, from X we construct an ĥ2(X′), such that it remains an unbiased esti-

mate of E[h(X)], and combined with ĥ1(X) gives lower variance estimate. In the example

above, this is done by choosing h2(X) = 7 − h1(X). Care needs to be taken when con-

structing such relationships; one must ensure that ĥ2(X′) remains an unbiased estimate of

E[h(X)]. In the example above, ĥ1 and ĥ2 are both the usual sample mean estimator, so by

linearity of expectation, ensuring that E[h1(X)] = E[h2(X)] is sufficient.

Application to MCTS. Like the technique of common random numbers, antithetic vari-

ates can be applied to UCT by modifying the way simulation trajectories are sampled.

Whenever a node representing (si, ai) ∈ S ×A is visited during the backup phase of UCT,

the realized trajectory si+1, ri+1, ai+1, . . . , sn, rn from (si, ai) is now stored in memory if

Tmsi,ai mod 2 = 0. The next time this node is visited (Tmsi,ai mod 2 = 1) during the se-

lection phase, the previous trajectory is used to predetermine one or more antithetic events

that will (partially) drive subsequent state transitions for the current simulation trajectory.

After this, the memory used to store the previous simulation trajectory is released. This

process alternates between the normal simulation and antithetically-mapped simulation of

trajectories following action ai.

Application to Test Domains. To apply antithetic variables, we need to describe how the

antithetic events are constructed from previous simulation trajectories. In Pig, a negative

correlation between the returns of pairs of simulation trajectories can be induced by forcing

the roll outcomes in the second trajectory to oppose those occurring in the first trajectory.

Exploiting the property that the relative worth of each pair of dice outcomes is independent
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of state, a list of antithetic roll outcomes can be constructed by mapping each individual

roll outcome in the first trajectory to its antithetic partner. For example, a lucky roll of

was paired with the unlucky roll of . Table 7.1 shows the full mapping.

Roll Pair Roll Pair Roll Pair Roll Pair Roll Pair Roll Pair

Table 7.1: Antithetic pairs of dice rolls for Pig.

When constructing such a mapping, it is important that outcomes be matched by prob-

ability of occurrence. To see why this is true, imagine a random variable X whose domain

is {100, 200, 80} and whose distribution is P(X = 100) = P(X = 200) = 1
4 ,P(X =

80) = 1
2 . So, E[X] = 1

2(100 + 200) + 1
4(80). Suppose we draw a sample X. An antithetic

sample X′ can be constructed by replacing every instance of 100 with 200 and vice versa.

The sample mean estimator of this new sample will be unbiased since X′ is obtained by a

simple relabeling of event values with that have the same probability. If two outcomes were

mapped with unequal probability of occurrence, then it may be possible that E[X ′i] 6= E[Xi]

and so the combined estimator may be biased.

As with common random numbers, since all chance events all have the same form in

Pig, we found that generating batches at the root worked better than recursively storing a

single antithetic outcome per every state-action pair. That is, we generate a batch of future

stochastic outcomes at the root for the normal simulation of (s, a) and then during the

antithetically-mapped simulation of (s, a), the previous batch is converted to an antithetic

batch by applying the antithetic mapping to each outcome in batch. These batches then

determine the effects of chance throughout a simulation.

In Can’t Stop, however, the situation is more complicated, since the relative worth of

each chance event varies from state to state (e.g., rolling is a good roll for a player

with a turn progress marker on the 3 column, but a bad roll for a player whose 3 markers are

already allocated to other columns). The solution was to develop a state-dependent heuristic

ranking function, which would assign an index between 0 and 1295 to the 64 distinct chance

events for a given state. Chance events that are favorable in the current state are assigned

low indexes, while unfavorable events are assigned high index values. During a normal

simulation, the ranking index i for each chance event is recorded. During the antithetically

mapped simulation trajectory, the previously recorded rank indices are used to compute the
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relevant antithetic event for the current state (e.g., using i′ = 1295− i). This approach can

be applied in a wide variety of domains where the stochastic outcomes can be ordered by

how “lucky” they are e.g., suppliers’ price fluctuations, rare catastrophic events, or higher

than average click-through-rates.

For Dominion, a number of antithetic mappings were tried, but none provided any sub-

stantial reduction in variance. The complexity of how cards can be played to draw more

cards from one’s deck makes a good or bad shuffle intricately dependent on the exact com-

position of cards in one’s deck, of which there are intractably many possibilities with no

obvious symmetries. So we do not explore antithetic variates further in Dominion. This

demonstrates one problem with antithetic variates: for complex domains, an antithetic pair-

ing may be difficult to find.

7.4 Empirical Evaluation in MCTS

Each variance reduction technique is evaluated in combination with the UCT algorithm,

with varying levels of search effort. In Pig, the default (rollout) policy plays the roll and

stop actions with probability 0.8 and 0.2 respectively. In Can’t Stop, the default policy

will end the turn if a column has just been finished, otherwise it will choose to re-roll

with probability 0.85. In Dominion, the default policy incorporates some simple domain

knowledge that favors obtaining higher cost cards and avoiding redundant actions. The

UCB constant c in Equation 2.22 was set to 100.0 for both Pig and Dominion and 5500.0

for Can’t Stop. These values of c are related to the range of the utility function; specifically,

they are half of the utility function’s range.

For control variates, we use a mixture of online and offline estimation to determine the

values of cs,a to use in Equation 7.2. When Tms,a ≥ 50, the online estimate

−Ĉov[Xs,a, Ys,a]/V̂ar[Ys,a]

was used. If Tms,a < 50, the constants 6.0, 6.0 and −0.7 are used for Pig, Can’t Stop and

Dominion respectively. These constants were obtained by computing offline estimates of

−Ĉov[Xs,a, Ys,a]/V̂ar[Ys,a] across a representative sample of game situations. This combi-

nation gives better performance than either scheme in isolation.

Three sets of experiments were performed. The first two are used to gain a deeper un-

derstanding of the role of bias and variance in UCT. The final set of results is used to assess

the overall performance of UCT when augmented with our variance reduction techniques.
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Figure 7.1: The estimated variance of the value estimates for the Roll action and estimated
differences between actions on turn 1 in Pig.

Recall from Section 6.4, when assessing the quality of an estimator using mean squared

error (MSE), it is well known that the estimation error can be decomposed into two terms,

bias and variance. Therefore, when assessing the potential impact of variance reduction, it

is important to know just how much of the estimation error is caused by variance as opposed

to bias. Since the game of Pig has ≈ 2.4× 106 states, we can solve it exactly offline using

Expectimax Search. This allows us to compute the exact expected return E[Xs1 |π∗] of

the optimal action (roll) at the starting state s1. We use this value to compute both the

bias-squared and variance component of the MSE for the estimated return of the roll action

at s1 when using UCT without variance reduction. This is shown in the leftmost graph

of Figure 7.1. It seems that the dominating term in the MSE is the bias-squared. This is

misleading however, since the absolute error is not the only factor in determining which

action is selected by UCT. More importantly, the difference between the estimated returns
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Figure 7.2: Variance of the estimator of the difference between the returns for the roll and
stop actions at turn 1 in Pig. Note: both axes use a log scale.

for each action is how UCT ultimately ends up choosing its action. As Pig has just two

actions, we can also compute the MSE of the estimated difference in return between rolling

and stopping using UCT without variance reduction. This is shown by the bottom graph in

Figure 7.1. Here we see that variance is the dominating component (the bias is within ±2)

when the number of simulations is less than 1024. The role of bias and variance will, of

course, vary from domain to domain, but this result suggests that variance reduction may

play an important role when trying to determine the best action.

In addition, we investigate how effective our variance reduction techniques are at reduc-

ing the variance between the estimated difference in returns of the roll and stop actions in

Pig on the first turn. We tested all three of the methods, as well as a hybrid method that used

both control variates and common random numbers. Figure 7.2 shows the variance of each

method, as the number of simulations increase, on a log-log scale. All of the techniques

lead to a substantial decrease in variance. In particular, the best method achieved lower

variance than the standard estimator even when using half as many simulations.

The technique of common random numbers was quite helpful, which makes sense as it

is designed specifically for decreasing the variance of differences between estimators. Fur-

thermore, the combination of control variates with common random numbers was comple-

mentary, with both seemingly removing independent portions of the variance. Interestingly,

as opposed to control variates and antithetic variates, the effectiveness of common random

numbers appears to degrade as the number of simulations is increased. We believe this to

be caused by the non-uniform behavior of the UCB policy, which increasingly skews the
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Figure 7.3: Performance Results for Pig, Can’t Stop, and Dominion with 95% confidence
intervals shown. Values on the vertical axis of each graph represent the average score.

simulations toward the actions with higher return estimates. This has the effect of reducing

how often common events can be shared across all of the actions for a particular state.

The next set of results reports the relative performance of the variance-reduced MCTS

algorithms. Figure 7.3 shows the results of our variance reduction methods on Pig, Can’t

Stop and Dominion. Each data point for Pig, Can’t Stop and Dominion is obtained by

averaging the scores obtained across 50000, 10000 and 10000 games, respectively. Such a

large number of games is needed to obtain statistically significant results due to the highly

stochastic nature of each domain. 95% confidence intervals are shown for each data point.

In Pig, the best combination of variance reduction techniques consistently outperforms the

base version of UCT, even when given twice the number of simulations. In Can’t Stop,

the best combination of variance reduction techniques gave a performance increase roughly

equivalent to using base UCT with 50-60% more simulations. The results also show a clear

benefit to using variance reduction techniques in the challenging game of Dominion. Here

the best combination of variance reduction techniques leads to an improvement roughly
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equivalent to using 25-40% more simulations. The use of antithetic variates in both Pig

and Can’t Stop gave a measurable increase in performance, however the technique was

less effective than either control variates or common random numbers. Control variates

was particularly helpful across all domains, and even more effective when combined with

common random numbers.

Although our UCT modifications are designed to be lightweight, some additional over-

head is unavoidable. Common random numbers and antithetic variates increase the space

complexity of UCT by a multiplicative constant. Control variates typically increase the

time complexity of each value backup by a constant. These factors need to be taken into

consideration when evaluating the benefits of variance reduction for a particular domain.

Note that surprising results are possible; for example, if generating the underlying chance

events is expensive, using common random numbers or antithetic variates can even reduce

the computational cost of each simulation. Ultimately, the effectiveness of variance reduc-

tion in MCTS is both domain and implementation specific. That said, we would expect our

techniques to be useful in many situations, especially in noisy domains or if each simula-

tion is computationally expensive. In our experiments, the overhead of every technique was

dominated by the cost of simulating to the end of the game.

7.5 Application to MCCFR

In this section, we describe two straight-forward applications of variance reduction in MC-

CFR: one based on antithetic variates, and the other on common random numbers. Both are

hybrids between Vanilla CFR and chance-sampling CFR.

Both applications are applied to Bluff(1,1). Recall the game of Bluff(1,1); the chance

nodes can be modeled in many different ways. Two ways to model Bluff(1,1) are shown

in Figure 7.4. For the purposes of this section, we assume that Bluff(1,1) is modeled using

the 7 chance-node model. In this model, we can classify the chance nodes as belonging to

a player i if the outcome of the chance node determines which information set a history in

its subtree is contained. In particular, one chance node belongs to player 1 and six chance

nodes belong to player 2. There is an identical model where one chance node belongs to

player 2 and six chance nodes belong to player 1.

Recall that Vanilla CFR iterates over and recursively traverses the subtree under every

outcome at chance nodes. In chance-sampled CFR, a single outcome is sampled at each

chance node and only the one subtree under the sampled outcome is traversed.
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Paired chance-sampling samples two outcomes at chance nodes. The outcomes are

paired antithetically like in Pig. In Bluff(1,1), we use the mapping (( , ?), ( , ), ( , )).

The justification for this choice is simple: the counterfactual value is a weighted value that

depends on πσ−i (which includes chance’s probabilities), and the chance outcome may affect

a player’s position and hence their expected value when using σi.

Common chance-sampling, like Vanilla CFR, uses domain knowledge to take advantage

of redundancy in the game model. Consider a hybrid version of Vanilla CFR and chance-

. . .

*

*

. . .

*

. . .

Figure 7.4: Two different ways to model how chance events occur in Bluff(1,1). The model
on the left has a single chance node with 36 outcomes. The model on the right has 7 chance
nodes, each with 6 outcomes.

0.01

0.1

1

10000 100000 1e+06 1e+07 1e+08

Variance Reduction Techniques in MCCFR on Bluff(1,1)

Chance Sampling
Paired Chance Sampling

Common Chance Sampling

Figure 7.5: The effects of variance reduction techniques applied to chance sampling in
MCCFR. As with most graphs from Chapter 4, the horizontal axis represents nodes touched
and the vertical axis represents exploitability εσ. Each line is an average over 5 runs with
error bars representing 95% confidence intervals.
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sampled CFR, which iterates over every chance outcome at chance nodes belonging to i,

and samples and chance nodes belonging to −i and public chance nodes (a chance node

belongs to a player if the outcome of the chance event is only revealed to that player, while

a public chance node is one where all players see the outcome of the chance event). When

reaching a chance node belonging to player 2, different outcomes may be sampled for each

outcome of player 1, when clearly the outcome of chance nodes for player 2 represent the

same strategic situation. Therefore, in common-chance sampling there is one important

modification: if a chance node belonging to −i is visited due to a different combination

of outcomes assigned to i, the same outcome that was sampled previously is re-used. For

example, in Bluff(1,1), and i = 1, then a single outcome is sampled and shared across each

of the six chance nodes belonging to player 2.

Both paired chance-sampling and common chance-sampling were compared to chance-

sampled CFR. The results are shown in Figure 7.5. We see that reducing the variance using

paired chance-sampling has a small but still statistically significant effect on the conver-

gence rate. We expect this benefit to be larger in games with more stochasticity. In contrast,

common chance-sampling converges slightly slower than chance sampling. While the vari-

ance is being reduced, the benefit of sampling is likely being lost due to traversing all of the

subtrees under outcomes at chance nodes belonging to i.

7.6 Chapter Summary and Conclusion

In this chapter, we have have described how to apply variance reduction techniques to

Monte Carlo tree search and to MCCFR. Common random numbers and are particularly

easy to implement and appear to be widely applicable. We have shown that antithetic vari-

ates can be applied via a remapping of chance node outcomes whenever a negative corre-

lation in utility can described by this mapping. A simple application of antithetic variates

also improved the performance of MCCFR in Bluff(1,1). Control variates require an addi-

tional expectation to be known, but the specific construction we present are practical since

the expectations are always zero. In our experiments, the combination of control variates

and common random numbers seemed to perform best in MCTS, and can result in up to an

effective doubling of the number of simulations for some games.
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Chapter 8

Conclusion

In this thesis, we investigated the problem of decision-making in large, two-player, zero-

sum extensive-form games with imperfect information and perfect information. In particu-

lar, we focus on equilibrium approximation and decision-making in large sequential games.

We introduced Monte Carlo Counterfactual Regret Minimization (MCCFR), analyzed

its general theoretical guarantees as well as the properties of two specific sampling schemes:

outcome sampling and external sampling. We proposed a new theory that shows how coun-

terfactual regret minimization can be applied to abstract games with imperfect recall, al-

lowing us to compute approximate equilibria for much larger games. Then, we presented

Monte Carlo *-Minimax Search, an asymptotically consistent sampling version of classic

expectimax and *-Minimax. Lastly we showed how variance reduction techniques from the

literature can be applied in the tree search setting. In all of these cases, the algorithms are

thoroughly evaluated in practice by presenting the results of experiments on a number of

domains.

What have we learned?

Monte Carlo Counterfactual Regret Minimization is a general family of sample-based al-

gorithms for minimizing counterfactual regret and computing approximate equilibria. Its

performance depends on the sampling scheme chosen and the structure of the game it is run

on. In theory, external sampling has a better bound than outcome sampling due to the lack

of the 1
δ term. If computation time is the measure of performance, and we fix a tolerance

probability p, then external sampling will provide a better convergence rate; this is because

the number of iterations required by Vanilla CFR and external sampling are comparable,

but iterations of external sample take roughly the root of the time taken by Vanilla CFR.

The performance of MCCFR in practice is highly game-dependent, with external sampling
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seeming to be the best overall choice.

When solving games using abstractions based on imperfect recall transformations, care

must be taken in how the abstract games are defined. Using the most strict definition of well-

formed games will ensure that CFR will also minimize regret in its perfect recall refinement,

at the same rate. A penalty in the bound is paid in skew well-formed games. Relaxing the

conditions of these definitions without losing convergence properties seems difficult. The

convergence rates of CFR on these abstract games in practice are rather mixed. Even when

a small payoff skew is introduced, the convergence rate can suffer quite heavily. And yet,

even when the game is not well-formed, memory can be saved with comparatively little

effect on the convergence rate. One possibility is that satisfying some conditions is more

important than others, but more investigation is required to make any further claims.

In stochastic games with perfect information, Monte Carlo *-Minimax Search provides

an alternative to the popular Monte-Carlo Tree Search. In theory, the estimates computed by

MCMS converge to the true Minimax values. In practice, we notice that MCMS can reach

lower depths in the same amount of time as *-Minimax, at the cost of increased variance but

typically at a higher accuracy (less bias and mean squared error). In head-to-head matches

in small to medium-sized densely stochastic games, MCMS is shown to compete with the

state of the art (MCTS with double-progressive widening). In a larger densely stochastic

game (Can’t Stop), MCMS beats both *-minimax and the state of the art convincingly.

Finally, we show that applying variance reduction techniques in the context of tree

search and MCCFR can be helpful. Common random numbers and are particularly easy to

implement and seem widely applicable. Antithetic variates require some careful construc-

tion but are also rather straight-forward. Control variates require an additional expectation

to be known, but the trajectory-based form presented makes this more practical. In practice,

the combination of control variates and common random numbers can increase performance

of MCTS to a level equivalent to a doubling in the number of simulations.

8.1 Future Work

Here, we list a number of potential future research questions based on this work.

1. Pure CFR. Pure CFR is an idea originally proposed to the University of Alberta

Computer Poker Research Group by Oskari Tammelin, a hobbyist programmer inter-

ested in MCCFR. In Pure CFR, deterministic strategies τ t1 and τ t2 are sampled from

the σt1 and σt2. Then, Vanilla or chance-sampled CFR computes regret assuming both
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players play these sampled deterministic strategies. Pure CFR seems like another

MCCFR sampling scheme, and so it may be possible to derive theoretical properties

from the general MCCFR theorem as was done for outcome and external sampling.

From an implementation standpoint: since many of the σ(I, a) are zero, the CFR

algorithm can prune many sub-trees. Also, if the payoffs are expressed as integers,

the products πi, π−i and values vi will always be integer values, leading to faster

operations and less memory overhead.

2. Averaging in Imperfect Recall Abstractions. The full averaging scheme used to

show the convergence rates of the imperfect recall abstract game requires memory

linear in the size of the full game. In Section 5.4, we show that in practice using

the abstract averaging seems show a very small loss in convergence rate. However,

there is no theoretical analysis to explain this or to answer when it may be true. This

is important, as the most recent Poker AI competition bots tend to apply CFR to

imperfect recall abstractions without averaging in the full strategy space.

3. MCMS Follow-up. While we have shown that the performance of MCMS is com-

petitive with the state of the art in Can’t Stop, we ultimately hope to show that it can

perform well in larger games such. We hope to obtain a detailed analysis of the effect

of the width parameter in MCMS, including dynamically-determined widths based

on depth. In addition, we are interested in whether the bound from Theorem 8 can

be used to inspire specific values of the sample width c to use in practice. Finally, we

hope to derive a convergence bound for the case of sampling without replacement.

4. Variance Reduction. Variance reduction may be a practical tool to enhance mod-

ern Monte Carlo search based AI in adversarial domains. We have shown that the

techniques can be practical in two-player games in MCCFR, and the extension to

two-player MCTS seems natural. Also, since MCMS introduces variance, it also

seems like an appropriate setting to apply these techniques. Other techniques, such

as stratified sampling, did not work very well in our unreported exploratory experi-

ments; it would be nice to know why this is, or to discover the circumstances under

which search can benefit from stratified sampling.

5. Full Bluff AI and FSICFR Follow-up. Neller and Hnath’s FSICFR [77] is a more

efficient form of chance-sampled CFR specifically designed for Bluff-like games.

There is no formal analysis or proof of this claim. Also, their paper does not show
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FSICFR converging to an equilibrium in practice by minimizing exploitability, not

even for Bluff(1,1). An interesting research direction would be to formally prove

the equivalence of their algorithm and chance-sampled CFR as well as analyzing

FSICFR’s complexity. An interesting follow-up would be to solve larger abstractions,

and create an AI for Bluff(5,5), the version of the games played by humans. Defeating

expert-level humans at this game would make it the largest imperfect information

game for such a feat: excluding all of its subgames, Bluff(5,5) has 252 · 260 ≈ 2.9 ·

1020 information sets compared to Two-Player Limit Texas Hold’em, which has an

estimated 3.2 · 1014 information sets.
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[101] J. Schäfer. The UCT algorithm applied to games with imperfect information. Mas-
ter’s thesis, Otto-von-Guericke-Universität Magdeburg, 2008.

[102] T. Schauenberg. Opponent modelling and search in Poker. Master’s thesis, University
of Alberta, Spring 2006.

[103] M. Shafei, N. Sturtevant, and J. Schaeffer. Comparing UCT versus CFR in simul-
taneous games. In Proceeding of the IJCAI Workshop on General Game-Playing
(GIGA), 2009.

[104] C. Shannon. A chess-playing machine. Scientific American, pages 48–51, 1950.

[105] J. Shi and M. Littman. Abstraction models for game-theoretic Poker. In Computers
and Games, Lecture Notes in Computer Science, pages 333–345. Springer-Verlag,
2001.

[106] Y. Shoham and K. Leyton-Brown. Multiagent Systems: Algorithmic, Game-
Theoretic, and Logical Foundations. Cambridge University Press, 2009.

[107] N. Sturtevant. An analysis of UCT in multi-player games. International Computer
Games Journal, 31(4):195–208, 2008.

126



[108] D. X. Vaccarino. Dominion. Rio Grande Games, 2008.

[109] E.C.D. van der Werf, H.J. van den Herik, and J.W.H.M. Uiterwijk. Solving Go on
small boards. International Computer Games Association Journal, 26(2):92–107,
2003.

[110] J. Veness, M. Lanctot, and M. Bowling. Variance reduction in Monte-Carlo tree
search. In J. Shawe-Taylor, R.S. Zemel, P. Bartlett, F.C.N. Pereira, and K.Q. Wein-
berger, editors, Advances in Neural Information Processing Systems 24, pages 1836–
1844. 2011.

[111] J. von Neumann and O. Morgenstern. The Theory of Games and Economic Behavior.
Princeton University Press, 1947.

[112] J. von Neumann and O. Morgenstern. The Theory of Games and Economic Behavior.
Princeton University Press, 2nd edition, 1947.

[113] B. von Stengel. Equilibrium computation for two-player games in strategic and ex-
tensive form. In Algorithmic Game Theory, chapter 4. Cambridge University Press,
2007.

[114] AAAI Man vs. Machine Poker Organizing Committee. The first man vs.
machine Poker championship, 2007. http://www.poker-academy.com/
man-machine/results.php.

[115] T. J. Walsh, S. Goschin, and M. L. Littman. Integrating sample-based planning and
model-based reinforcement learning. In Proceedings of The Twenty-Fourth AAAI
Conference on Artificial Intelligence (AAAI 2010), 2010.

[116] L. Wasserman. All of Statistics. Springer Science+Business Media Inc., 2004.

[117] K. Waugh, D. Schnizlein, M. Bowling, and D. Szafron. Abstraction pathologies in
extensive games. In The Eight International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 781–788, 2009.

[118] K. Waugh, M. Zinkevich, M. Johanson, M. Kan, D. Schnizlein, and M. Bowling. A
practical use of imperfect recall. In Proceedings of SARA 2009: The Eighth Sympo-
sium on Abstraction, Reformulation and Approximation, 2009.

[119] M. White and M. Bowling. Learning a value analysis tool for agent evaluation. In
Proceedings of the Twenty-First International Joint Conference on Artificial Intelli-
gence (IJCAI 2009), pages 1976–1981, 2009.

[120] M. H. M. Winands and Y. Björnsson. Evaluation function based Monte-Carlo Lines
of Action. In Proceedings of the 12th International Conference on Advances in
Computer Games, ACG’09, pages 33–44, Berlin, Heidelberg, 2010. Springer-Verlag.

[121] J. Yang, S. Liao, and M. Pawlak. On a decomposition method for finding solution in
Hex game. International Conference on Application and Development of Computer
Games in the 21st Century, pages 96–111, 2001.

[122] M. Zinkevich. Online convex programming and generalized infinitesimal gradient
ascent. In Proceedings of Twentieth International Conference on Machine Learning
(ICML-2003), 2003.

[123] M. Zinkevich, M. Johanson, M. Bowling, and C. Piccione. Regret minimization
in games with incomplete information. Technical Report TR07-14, University of
Alberta, September 2007.

[124] M. Zinkevich, M. Johanson, M. Bowling, and C. Piccione. Regret minimization in
games with incomplete information. In Advances in Neural Information Processing
Systems 20 (NIPS), 2008.

127

http://www.poker-academy.com/man-machine/results.php
http://www.poker-academy.com/man-machine/results.php


Glossary

abstract averaging A method of computing the average strategy when minimizing coun-

terfactual regret in an abstract game of imperfect recall which involves by combining

the updates from all Ĭ , Ĭ ′ ∈ P̆(I).

abstract game a strictly smaller game Γ′ than some other game Γ such that the abstract

game is smaller (every abstract information set is a composition of one or more in-

formation sets in the larger game) .

alternating form a particular implementation of outcome sampling where the regret is up-

dated for actions at each information set belonging to a single player, alternating the

update player on each new sample.

behavioral strategy a set of distributions over actions A(I), one for each information set

I ∈ Ii for player i.

best response strategy a strategy that yields the maximum payoff against a particular set

of strategies used by the opponents.

block a subset of the terminal history set Q ⊆ Z.

chance event a history h ∈ H\Z such that P (h) = c.

chance event outcome a particular action a ∈ A(h) when h is a chance event.

counterfactual regret the regret for not taking some action a at information set I and

instead playing with some strategy σt(I), weighted by the opponent’s probability of

reaching I , π−i(I).

determinization a method used in imperfect information search algorithms involving sam-

pling a state from the current information set and then running a search algorithm on

the perfect information game rooted at the sampled node.
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epsilon-on-policy a process to ensure exploration by sampling action a at I according to

distribution ε · Unif(I) + (1− ε) · σ(I, a).

exploitability a value εσ = ε1 + epsilon2 assigned to a profile σ where σ1 is exploitable

by some amount ε2 and σ2 is exploitable by some amount ε1.

external regret The sum of the differences in utility of playing the single best option and

utility of the actual option chosen, over all T trials/iterations.

external sampling A sampling scheme for MCCFR where no sampling is done at nodes

belonging to player i while opponent and chance actions are sampled on-policy.

full averaging A method of computing the average strategy when minimizing counterfac-

tual regret in an abstract game of imperfect recall which involves computing the full

average strategy separately from the accumulated regret.

full minimax The minimax algorithm that is not depth-limited and therefore continues

searching to the leaves of the game tree, returning only true payoff values (never

stopping early to return heuristic evaluations).

history a particular sequence of actions taken by players; in a perfect recall game every

history corresponds to a unique node in the game tree.

information set a set of histories I ∈ Ii that a player (i) cannot distinguish between due

to information not known by that player.

lazy-weighted averaging a correct way compute the average strategy in MCCFR which in-

volves storing partial previous updates in branches that were not sampled and pushing

these updates down as actions are sampled.

minimax value the expected value of the utility at a state in a perfect information game,

assuming that both players employ a minimax strategies in the subgames of all the

optimal actions.

mixed Nash equilibrium a collection of mixed strategies, one for each player, for which

each player has no incentive to deviate from unilaterally.

mixed strategy a probability distribution over pure strategies.
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normal form game a game where all players choose a single action (pure strategy) to play

simultaneously without knowledge of the other players’ choices.

optimistic averaging a method of computing the average strategy in MCCFR that involves

keeping a counter cI of the last time I was visit ted, and performing (cI − t) updates

to the average when visiting I .

outcome sampling an MCCFR sampling scheme where each block Q ∈ Q contains ex-

actly one terminal history, i.e. |Q| = 1.

parallel form a particular implementation of outcome sampling where the regret is up-

dated for each action at each information set belong to both players from a single

sample.

perfect recall each player remembers the information that is revealed to them while play-

ing and the exact order in which each piece of information is revealed to them.

policy The analogue of a strategy in perfect information games, particularly single-agent

problems. A policy is a collection of probability distributions of the form π(a|s) over

actions a ∈ A at state s.

prefix history a history h v h′ such that h′ 6= h and h′ is a successor of h or there exists

a set of intermediate histories {h1, h2, . . . , hn} for n ≥ 1 such that h1 is a successor

of h, hi+1 is a successor of hi, and h′ is a successor of hn.

pure Nash equilibrium a collection of pure strategies, one for each player, for which each

player has no incentive to deviate from unilaterally.

pure strategy a single decision in a normal form game; a collection of tuples {(I, a) : I ∈

Ii, a ∈ A(I)} for player i such that every I appears exactly once in an extensive-form

game.

pure strategy profile a collection of pure strategies, one per player; in this thesis most

commonly a pair of pure strategies.

regret A quantification, based on difference in utility, of the amount a regret associated

decisions that were made during the course of a number of trials 1, 2, · · · , T versus a

set of other decisions that could have been made instead.

130



regret minimization an iterative process that leads to zero average external regret as the

number of iterations T approaches infinity.

regret-matching A process where a new distribution is obtained by normalizing the posi-

tive portions of a regret vector, or using a uniform distribution if all entries are non-

positive.

sampled counterfactual value an estimator of the counterfactual value at I given a strat-

egy profile σ and a sampled block Qj .

states a node in an extensive-form game tree, also called a history in games with perfect

recall (both in perfect and imperfect information games).

stochastically-weighted averaging a method of updating the average strategy in MCCFR

where the updates are weighted by the inverse probability of sampling the history,

approximated by 1
q(h) .

strictly informative a property of a game that ensures that two distinct histories, one being

a prefix of the other, are never in the same information set.

terminal history a history from root to leaf.
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Appendix A

Proofs

A.1 MCCFR Theorem Proofs

Lemma 8. For all real a, define a+ = max(a, 0). For all a, b, it is the case that(
(a+ b)+

)2 ≤ (a+)2 + 2(a+)b+ b2

Proof.

(a+ b)+ ≤ (a+ + b)+ ≤
∣∣a+ + b

∣∣
Squaring both sides gives the result.

A.1.1 Regret-Matching

Lemma 9. If regret-matching is used, then∑
a∈A

R̄T,+(a)rT+1(a) ≤ 0.

Proof. If R̄T,+sum ≤ 0, then for all a ∈ A, R̄+
T (a) = 0, and the result is trivial. Otherwise:∑

a∈A
R̄T,+(a)rT+1(a) =

∑
a∈A

R̄T,+(a)(uT+1(a)− uT+1(σt))

=

(∑
a∈A

R̄T,+(a)uT+1(a)

)
−

(
uT+1(σt)

∑
a∈A

R̄T,+(a)

)

=

(∑
a∈A

R̄T,+(a)uT+1(a)

)
−

(∑
a′∈A

σT+1(a′)uT+1(a′)

)
R̄T,+sum

=

(∑
a∈A

R̄T,+(a)uT+1(a)

)
−

(∑
a′∈A

R̄T,+(a′)

R̄T,+sum

uT+1(a′)

)
R̄T,+sum

=

(∑
a∈A

R̄T,+(a)uT+1(a)

)
−

(∑
a′∈A

R̄T,+(a′)uT+1(a′)

)
= 0
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Theorem 2 When regret-matching is used:∑
a∈A

(R̄T,+(a))2 ≤ 1

T 2

T∑
t=1

|A|(∆t)2.

Proof. We prove this by induction on T . The base case (for T = 1) is trivial. Assuming

this holds for T − 1, we prove it holds for T . Since R̄T (a) = (T−1)
T R̄T−1(a) + 1

T r
T (a), by

Lemma 8:

(R̄T,+(a))2 ≤
(

(T − 1)R̄T−1,+(a)

T

)2

+ 2
T − 1

T 2
R̄T−1,+(a)rT (a) +

(
rT (a)

T

)2

Summing over all a ∈ A gives:∑
a∈A

(R̄T,+(a))2 ≤
∑
a∈A

((
T − 1

T

)2

(R̄T,+(a))2 + 2
T − 1

T 2
R̄T−1,+(a)rT (a) +

1

T 2
(rT (a))2

)

By Lemma 9, the middle term
∑

a∈A R̄
T−1,+(a)rT (a) = 0, so pushing the sum through:

∑
a∈A

(R̄T,+(a))2 ≤

((
T − 1

T

)2∑
a∈A

(R̄T−1,+(a))2

)
+

(
1

T 2

∑
a∈A

(rT (a))2

)
By the induction hypothesis:∑

a∈A
(R̄T−1,+(a))2 ≤ 1

(T − 1)2

T−1∑
t=1

|A|(∆t)
2.

and since |rT (a)| ≤ ∆T :

∑
a∈A

(R̄T,+(a))2 ≤ 1

T 2

(
T−1∑
t=1

|A|(∆t)2

)
+
|A|(∆T )2

T 2
=

1

T 2

T∑
t=1

|A|(∆t)2.

A.2 Proofs of Theorems 6 and 7 for Imperfect Recall Games

To prove Theorems 6 and 7, we need to first make an observation about regrets and prove

a lemma whose result we be used in the proof. By the definition of counterfactual value

(equation 2.15), the regrets between Γ and a perfect recall refinement Γ̆ are additive; specif-

ically, for I ∈ Ii in Γ,

RTi (I, a) =
∑

Ĭ∈P̆(I)

RTi (Ĭ , a). (A.1)

We now provide a lemma that generalizes [124, Theorem 4] by showing that if the

immediate counterfactual regrets of each Ĭ ∈ P̆(I) are proportional up to some difference

D, then the average regret can be bounded above:
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Lemma 10. Let Γ̆ be a perfect recall refinement of a game Γ. If for all I ∈ Ii, Ĭ , Ĭ ′ ∈ P̆(I),

and a ∈ A(I), there exist constants CĬ,Ĭ′,a, DĬ,Ĭ′,a ∈ [0,∞) such that

1

T

∣∣∣RT,+i (Ĭ , a)− CĬ,Ĭ′,aR
T,+
i (Ĭ ′, a)

∣∣∣ ≤ DĬ,Ĭ′,a, (A.2)

then the average regret in Γ̆ is bounded by

R̆Ti
T
≤

∆iC
√
|Ai|√
T

+
∑
I∈I
|P̆(I)|DI ,

where

C =
∑
I∈Ii

max
Ĭ,Ĭ′∈P̆(I),a∈A(I)

CĬ,Ĭ′,a and DI = max
Ĭ,Ĭ′∈P̆(I),a∈A(I)

DĬ,Ĭ′,a.

Proof.

R̆Ti ≤
∑
Ĭ∈Ĭi

max
a∈A(I)

RT,+i (Ĭ , a) by [124, Theorem 3]

=
∑
I∈Ii

∑
Ĭ∈P̆(I)

max
a∈A(I)

RT,+i (Ĭ , a) by definition of a perfect recall refinement

≤
∑
I∈Ii

|P̆(I)|RT,+i (Ĭ∗, a∗) where Ĭ∗ = arg max
Ĭ∈P̆(I)

max
a∈A(I)

RT,+i (Ĭ , a)

and a∗ = arg max
a∈A(I)

RT,+i (Ĭ∗, a)

≤
∑
I∈Ii

|P̆(I)|
(
CĬ∗,Ĭ∗∗,a∗R

T,+
i (Ĭ∗∗, a∗) + TDĬ∗,Ĭ∗∗,a∗

)
by (A.2),

where Ĭ∗∗ = arg min
Ĭ∈P̆(I)

RTi (Ĭ , a∗)

≤
∑
I∈Ii

|P̆(I)|CĬ∗,Ĭ∗∗,a∗

 1

|P̆(I)|

∑
Ĭ∈P̆(I)

RTi (Ĭ , a∗)

+

+ T
∑
I∈Ii

|P̆(I)|DI

because the minimum is less than the average and (·)+ is monotone increasing

=
∑
I∈Ii

CĬ∗,Ĭ∗∗,a∗R
T,+
i (I, a∗) + T

∑
I∈Ii

|P̆(I)|DI by (A.1)

≤
∑
I∈Ii

CĬ∗,Ĭ∗∗,a∗T

√√√√√ ∑
a∈A(I)

(
RT,+i (I, a)

T

)2

+ T
∑
I∈Ii

|P̆(I)|DI

≤
∑
I∈Ii

CĬ∗,Ĭ∗∗,a∗∆i

√
|A(I)|

√
T + T

∑
I∈Ii

|P̆(I)|DI

by [71, Theorem 6]

≤ ∆iC
√
|Ai|
√
T + T

∑
I∈Ii

|P̆(I)|DI .

Dividing both sides by T establishes the lemma.
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Note that if Γ has perfect recall, then the constants CI,I,a = 1 and DI,I,a = 0 for all I ∈ Ii
and a ∈ A(I) satisfy the condition of Lemma 10. In this case, C = |Ii| and DI = 0, and

so RTi /T ≤ ∆i|Ii|
√
|Ai|/

√
T , recovering Theorem 4 of [124].

We now use Lemma 10 to prove Theorems 6 and 7:

Proof. We will show that for all I ∈ Ii, Ĭ , Ĭ ′ ∈ P̆(I), and a ∈ A(I),

1

T

∣∣∣RT,+i (Ĭ , a)− kĬ,Ĭ′`Ĭ,Ĭ′R
T,+
i (Ĭ ′, a)

∣∣∣ ≤ δĬ,Ĭ′`Ĭ,Ĭ′ , (A.3)

which, by Lemma 10, proves the theorem.

Fix I ∈ Ii, Ĭ , Ĭ ′ ∈ P̆(I), and a ∈ A(I). Firstly, for all z ∈ ZĬ and σ ∈ Σ, by conditions

(ii) and (iii) of Definition 2, we have

πσ−i(z) = πc(z)
∏

(I,a)∈X−i(z)

σ(I, a)

= `Ĭ,Ĭ′πc(φ(z))
∏

(I,a)∈X−i(φ(z))

σ(I, a)

= `Ĭ,Ĭ′π
σ
−i(φ(z)) (A.4)

and by condition (iv) of Definition 2, we similarly have

πσi (z[Ĭ], z) = πσi (φ(z)[Ĭ ′], φ(z)) (A.5)

and

πσi (z[Ĭ]a, z) = πσi (φ(z)[Ĭ ′]a, φ(z)). (A.6)

We can then bound the positive part of the immediate counterfactual regret RT,+i (Ĭ , a):

RT,+i (Ĭ , a) =

(
T∑
t=1

rti(Ĭ , a)

)+

=

 T∑
t=1

∑
z∈ZĬ

πσ−i(z)(π
σ
i (z[Ĭ]a, z)− πσi (z[Ĭ], z))ui(z)

+

≤ (
T∑
t=1

∑
z∈ZĬ

`Ĭ,Ĭ′π
σ
−i(φ(z))(πσi (φ(z)[Ĭ ′]a, φ(z))

− πσi (φ(z)[Ĭ ′], φ(z)))(kĬ,Ĭ′ui(φ(z)) + δĬ,Ĭ′))
+

by equations (A.4), (A.5), (A.6), and condition (i) of Definition 2

(A.7)
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= (
T∑
t=1

∑
z∈ZĬ′

`Ĭ,Ĭ′π
σ
−i(z)(π

σ
i (z[Ĭ ′]a, z)

− πσi (z[Ĭ ′], z))(kĬ,Ĭ′ui(z) + δĬ,Ĭ′))
+

since φ is a bijection

≤

 T∑
t=1

∑
z∈ZĬ′

kĬ,Ĭ′`Ĭ,Ĭ′π
σ
−i(z)(π

σ
i (z[Ĭ]a, z)− πσi (z[Ĭ], z))ui(z)

+

+

 T∑
t=1

∑
z∈ZĬ′

δĬ,Ĭ′`Ĭ,Ĭ′π
σ
−i(z)(π

σ
i (z[Ĭ]a, z)− πσi (z[Ĭ], z))

+

≤ kĬ,Ĭ′`Ĭ,Ĭ′R
T,+
i (Ĭ ′, a) +

T∑
t=1

δĬ,Ĭ′`Ĭ,Ĭ′π
σ
−i(Ĭ

′)

≤ kĬ,Ĭ′`Ĭ,Ĭ′R
T,+
i (Ĭ ′, a) + TδĬ,Ĭ′`Ĭ,Ĭ′ , (A.8)

where the last line follows because πσ−i(Ĭ
′) =

∑
z∈ZĬ′

πσ−i(z[Ĭ
′]) ≤ 1 in a perfect recall

game Γ̆. Similarly,

RT,+i (Ĭ , a) ≥ kĬ,Ĭ′`Ĭ,Ĭ′R
T,+
i (Ĭ ′, a)− TδĬ,Ĭ′`Ĭ,Ĭ′ , (A.9)

which together with equation (A.8) and dividing by T establishes (A.3), completing the

proof.

Note that Theorem 6 immediately follows from Theorem 7 since a well-formed game is

skew well-formed with δĬ,Ĭ′ = 0 for all Ĭ , Ĭ ′ ∈ P̆(I).

A.3 Proofs of Supporting Lemmas for Theorem 8

Lemma 7. For all states s ∈ S , for all actions a ∈ A, for all λ ∈ (0, 2vmax] ⊂ R, for all

c ∈ N, given a set C(s) of c ∈ N states generated according to P(· | s, a), we have

P

∣∣∣∣∣∣
1

c

∑
si∈C(s)

Vd−1(si)

− Vd(s, a)

∣∣∣∣∣∣ ≥ λ
 ≤ 2 exp

{
−λ2c / 2v2

max

}
.

Proof. First note that vmin ≤ Vd(s) ≤ vmax, and since each game is zero-sum, vmin =

−vmax. Also, clearly Es′∼P(· | s,a)[Vd−1(s′)] = Vd(s, a) by definition. This lets us use a
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special case of Hoeffding’s Inequality, implied by [47, Theorem 2], which states that for a

independent and identically distributed random sample X1, . . . , Xc it holds that

P

(∣∣∣∣∣1c
c∑
i=1

Xi − E[X]

∣∣∣∣∣ ≥ λ
)
≤ 2 exp

{
−2λ2c2 /

c∑
i=1

(b− a)2

}
, (A.10)

provided a ≤ Xi ≤ b. Applying this bound, setting b−a to 2 vmax and simplifying finishes

the proof.

Proposition 1. For all d ∈ N, for a state s ∈ S, if
∣∣∣V̂d(s, a)− Vd(s, a)

∣∣∣ < λ holds for all

a ∈ A, then
∣∣∣V̂d(s)− Vd(s)∣∣∣ < λ.

Proof. Recall, Vd(s) = maxa∈A Vd(s, a) and V̂d(s) = maxa∈A V̂d(s, a) for any state s ∈

S. Also define a∗ = arg maxa∈A Vd(s, a) and â∗ = arg maxa∈A V̂d(s, a). Now, it holds

that

V̂d(s)−Vd(s) = V̂d(s, â
∗)−Vd(s) ≤ [Vd(s, â

∗)+λ]−Vd(s) ≤ [Vd(s, a
∗)+λ]−Vd(s) = λ,

and also

V̂d(s)− Vd(s) = V̂d(s, â
∗)− Vd(s) ≥ V̂d(s, a∗)− Vd(s) ≥ [Vd(s, a

∗)− λ]− Vd(s) = −λ,

hence
∣∣∣V̂d(s)− Vd(s)∣∣∣ < λ.
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Appendix B

Best Response Algorithms

Here, we describe the best response algorithms use to compute the exploitability value εσ

reported in in the CFR and MCCFR experiments.

We present here two versions of the best response algorithm. The first form has been

very well described in previous work [53] (for an introduction, see [102, Chapter 3]), but

will help in understanding the generalized form, so we summarize it here. The generalized

form is required for games that have hidden or partially hidden actions, such as Goofspiel,

Princess and Monster, Latent Tic-Tac-Toe and Phantom Tic-Tac-Toe.

Given a profile σ = (σ1, σ2), e.g., CFR’s average strategy after T iterations, the best

response algorithm computes maxσ′1∈Σ1
u(σ′1, σ2) or maxσ′2∈Σ2

u(σ1, σ
′
2), or both when

computing εσ. To do this, expectimax is used where one player (−i) is considered a fixed

player and at each node h ∈ H−i plays σ−i(I) where h ∈ I; the other player (i), at

information sets where P (I) = i, computes a strategy σ∗i = maxa∈A(I) u(σ∗i,I→a, σ−i).

Since a pure strategy best response always exists, the best response algorithm is a slightly

more complex (due to information sets) application of expectimax in a single-player game,

and is summarized in Algorithm 8.

In many games, such as Bluff and Poker, the outcomes of the chance events only affect

the payoffs at the leaves, not the actions that are available to the players. Further, the

chance outcome can be separated into public outcomes observable by all players, private

outcomes observable only to i or only to −i. In these games, the best response algorithm

can simply traverse the public tree (including the public chance actions) and compute the

opponent’s action distribution D−i at each of their information sets for each full outcome

private to the opponent o ∈ C−i, where each o ∈ C−i is a sequence of chance outcomes

occurring at nodes private to −i. The private chance outcomes of the opponent are never

truly assigned to a history until Line 5 where o ◦ h represents turning the public action
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Algorithm 8 Best Response Algorithm for Bluff and Poker Games

1: Initialize chance outcome vector ~π−i = (πc(o))o∈C−i
2: function BestResponse(h, i, ~π−i):
3: if h is terminal then
4: D−i ← Normalize(~π−i)
5: u←

∑
o∈C−i u(o ◦ h) ·D−i(o)

6: return u
7: else if h is a public chance node or private chance node belonging to i then
8: return

∑
a∈A(I) BestResponse(ha, i, ~π−i)

9: else if h is a private chance node belonging to −i then
10: Choose any a ∈ A(I) as a dummy outcome and return BestResponse(ha, i, ~π−i)
11: end if
12: Let D−i be the opponent’s action distribution
13: ~π′−i ← ~π−i
14: v ← −∞
15: vσ[a]← 0 for all a ∈ A(I)
16: w[a]← 0 for all a ∈ A(I)
17: for a ∈ A(I) do
18: if P (h) = −i then
19: (w[a], ~π′−i)← ComputeWeight(I, a, ~π−i)
20: end if
21: vσ[a]← BestResponse(ha, i, ~π′−i)
22: if P (h) = i and vσ[a] > v then
23: v ← vσ[a]
24: end if
25: end for
26: if P (h) = −i then
27: D−i ← Normalize(w)
28: v ←

∑
a∈A(h)D−i(a) · vσ[a]

29: end if
30: return v
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a a ab b b a a ab b b

Figure B.1: When all player’s actions are fully observable (left), such as in Bluff and Poker,
taking an action a from one information set I will take you to the same I ′, regardless of
the prefix history a was taken from. However, this may not be the case in games with only
partially observable actions (right), such as Goofspiel.

sequence h into a full terminal history by assigning the private chance outcomes o. To

determine the opponent’s strategy distribution at an opponent node given only a sequence of

public actions, the ComputeWeight function first computes the new opponent reach vector

~π−i by multiplying each entry by σ(I, a) for the information set I matching h and o, then

assigns a weight w[a] =
∑

o∈C−i ~π
′
−i[o]. Normalizing these weights at Line 27 will give

probability that they will play a given all their possible private outcomes by Bayes’ rule.

Now, suppose the game has hidden or partially observable actions. In other words, when

some player takes an action a from information set I , the next information set will depend

on the particular prefix history h ∈ I , possibly because h has some hidden actions taken by

the opponent. The difference is illustrated in Figure B.1. In our version of Goofspiel, the

players are only informed whether they won or lost, the card they played is never revealed.

Suppose player 1 plays a card face down. It’s not player 2’s turn and they respond by

playing a 7; player 2 can either win the point card or lose it (two different information sets),

but it will depend on what card player 1 played.

We now describe a generalized version of the best response algorithm that will work for

games with hidden actions. As before, we have a player i computing the best response and

a fixed player −i. At each information set, two additional arrays are required to compute

the expected value of and action a ∈ A(I) : tI [a] and bI [a]. The algorithm requires

three passes. The first pass set tI [a] = bI [a] = 0 for all I and collects the depths of

information sets I ∈ Ii. This list of depths is then sorted in decreasing order so that the

highest depths are first. There are several second passes, described in Algorithm 9, which

essentially proceeds by iterative-shallowing: each one repeatedly called with depth d taken

from sorted list in decreasing order. The last pass returns the expected value at each node by

computing a linear combination at chance and opponent nodes, and selecting the maximum
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of t[a]
b[a] at nodes belonging to i.

Algorithm 9 Generalized Expectimax Best Response (GEBR)

1: function GEBR-Pass2(h, i, d, l, π−i):
2: if h is terminal then
3: return ui(z)
4: else if h is a chance node then
5: return

∑
a∈A(h) σc(a|h) · GEBR-Pass2(ha, i, d, l + 1, π−i · σc(a|h))

6: end if
7: Let I be the information set containing h
8: v ← 0
9: if P (I) = i and l > d then

10: Choose a = arg maxa∈A(I)
t[a]
b[a]

11: return GEBR-Pass2(ha, i, d, l + 1, π−i)
12: end if
13: for a ∈ A(I) do
14: π′−i ← π−i
15: if P (I) = −i then
16: π′−i ← π−i · σ(I, a)
17: end if
18: v′ ← GEBR-Pass2(ha, i, d, l + 1, π′−i)
19: if P (I) = −i then
20: v ← v + σ(I, a) · v′
21: else if P (I) = i and l = d then
22: tI [a]← tI [a] + v′ · π−i
23: bI [a]← bI [a] + π−i
24: end if
25: end for
26: return v

In the second passes, the expected values below each (I, a) are computed by traversing

over each prefix h ∈ I for all I at depth d. Lines 22 and 23 compute the expected value

below (I, a) by accumulating a sum of the opponent’s reach probability given each prefix

h ∈ I . When the pass reaches a node whose depth is higher than d, then the best action has

been computed by a previous update pass and the best one is chosen on Line 10.

While this best response algorithm is much slower in practice, it computes the correct

value for any finite two-player zero-sum extensive-form game.
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