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ABSTRACT 

 

  Two-dimensionally (2D) braided tubular composites have been utilized in 

a wide range of applications including medical equipment such as braided stents 

and catheters.  

 Catheters are long flexible tubes used in catheterization procedures, such 

as angiography and ablations. In this thesis, angiographic catheters were 

specifically targeted; which are referred as “catheters” for the remaining of the 

document.  Catheters are typically used with guidewires which provide structural 

support to the often low rigidity catheters. In some catheterization procedures, it 

may be beneficial to use a 2D braided catheter for increased control and 

maneuverability in the body. The 2D braided catheter, if designed properly, may 

provide all the required rigidities for a successful procedure and decrease the 

dependency to the guidewire compared to conventional catheters. Hence, use of 

2D braided catheters may decrease the procedure time, may provide superior 

control of the device due to its design, and may also decrease the inherent patient 

discomfort. A thorough understanding of 2D braided composites is of absolute 

necessity considering the delicate use of medical equipment, such as catheters, in 

the human body. The aim of this PhD thesis is to address the shortcomings of the 

available models in the literature by developing an analytical model geometrically 

consistent with small braided tubular structures and provide all the necessary tools 

possible to design a target specific braided catheter.  



 An analytical model that accounts for the effect of diameter of a braided 

tubular product on the elastic properties, needed for catheter design, was 

developed. Parametric studies were conducted to highlight the effects of the 

change in radius on elastic properties of braided composites. Case studies that 

underline the important geometrical parameters that affect predictions were 

conducted and findings discussed.   

 Effect of increased undulation length on elastic properties of braided 

composites was also investigated. The findings were compared to experimental 

work using three different fiber/matrix system composites. As predicted by the 

model, a decrease in the properties was observed experimentally; however, this 

decrease was found to be more important than predicted. Possible reasons for this 

behavior are discussed in the view of composite materials and geometrical factors.  

 The experimental findings of the open-mesh composites were also used to 

further validate a regression based model available in the literature. Lower 

linearity limit values for the regression based model were calculated for 

longitudinal elastic and shear moduli predictions.  

  



PREFACE 

 

 The thesis is presented in paper-format and contains six chapters. Chapter 

1 is an introduction to the work done and outlines the thesis objectives. Amongst 

the remaining five chapters, Chapters 2, 3, 4, and 5 were accepted or in-print in 

scientific journals, Chapters 6 has been submitted to a scientific journal and is 

under review.  

 This PhD study was geared towards design of braided catheters. It was 

aimed to provide an accurate predictive model to designers and provide all 

necessary tools to be able to have good control over the design of said catheters 

by having a wide range for design tailorability. This was done by dividing the 

PhD thesis into two main research streams to analyze the braided structure’s unit 

cell. The unit cell was analyzed in terms of (a) effect of curvature of the unit cell 

on the elastic properties of braided structures, and (b) effect of undulation length, 

and thus closed versus open mesh braided architectures, on the elastic properties 

of the braided structures. 

 Chapter 2 is a review paper that serves as the literature review of the 

study. The relevant models are presented and developed in the papers published in 

Chapters 3 and 4 of this thesis.  In Chapters 3 and 4 the curved-unit cell model is 

developed. In Chapters 5 and 6 open mesh structures are investigated.  



ACKNOWLEDGEMENTS 

 I postponed writing this section until the end. I wanted to make sure that 

this is really happening, and this long journey is really coming to an end. I 

enjoyed it. It was not always easy or fun, but people around me always made it 

easier to put a smile on my face.   

 I would like to start with Dr. Jason Carey. Jason, I have enjoyed your 

supervision, guidance, and friendship tremendously during this journey. I think 

we worked really well together, and I am looking forward to contributing much 

more to this field together in the coming years. I can only hope to be as good as a 

supervisor to my students in the future as you were to me. I learned a lot from 

you, benefited a lot from your knowledge and experience, and I am going to be 

always thankful for this. You always went above and beyond your duties as a 

supervisor, like you do to all of your students, and prepared me for the life of an 

academic, thank you. I would like to also thank you for your continuous financial 

support during this journey. 

 I would like to thank my supervisory committee members, Dr. Pierre 

Mertiny and Dr. Derek Emery, and to my Ph.D. defense examination committee 

members, Dr. Frank Ko and Dr. Samer Adeeb, for their valuable contributions to 

my work and for their time.  

 Stephanie’cigim, my beautiful wife, I thank you for all your support, and 

understanding. I know it was not an easy journey for you either, but I promise I 

will have more time for us after this.  



 I would like to thank my parents, Guler and Erol, for their support 

throughout all my studies. Their help, support, and confidence in me made it 

possible for me to complete this journey, thank you. My brother and sister, 

Korhan and Inci, you have always been there for me and I thank you for all your 

support, help, and understanding.  

 Dan Romanyk, the lab would have been very boring if we did not have our 

daily coffee breaks and  “nice” conversations. I would like to also thank you and 

Mr. Troy Awid for your help in conducting some of the experiments of this thesis.  

 I would like to extends my thanks also to the University of Alberta and the 

Mechanical Engineering Department for their financial support, and the 

Mechanical Engineering machine shop for their technical assistance during this 

study. 

 

 

 

 

 

 



TABLE OF CONTENTS 

Chapter 1 :  Introduction ......................................................................................... 1 
1.1. Thesis Objectives ......................................................................................... 3 

1.1.1. Curved-Model ....................................................................................... 4 
1.1.2. Open-mesh Structures ........................................................................... 4 

1.2. References.................................................................................................... 5 
Chapter 2 :  2-D braided composites: A review for stiffness critical applications . 6 

2.1. Introduction.................................................................................................. 7 
2.2. Common terminology .................................................................................. 7 
2.3. Braid Architecture........................................................................................ 9 
2.4. Introduction to 2-D Braids ........................................................................... 9 
2.5. Resin Impregnation of 2D Braided Fibers ................................................. 13 

2.5.1. Manual impregnation .......................................................................... 13 
2.5.2. Commingled fibers.............................................................................. 14 
2.5.3. Resin transfer molding based processes ............................................. 15 

2.6. Applications ............................................................................................... 17 
2.7. Typical challenges in applications: Joining Methods - Braided and 
Machined Holes in 2D Braided Composites..................................................... 22 
2.8. Elastic Constant Predictive Models ........................................................... 25 
2.9. Conclusion ................................................................................................. 50 
2.10. References................................................................................................ 52 

Chapter 3 :  Predicting the longitudinal elastic modulus of braided tubular 
composites using a curved unit-cell geometry...................................................... 72 

3.1. Introduction................................................................................................ 73 
3.2. Proposed model.......................................................................................... 76 

3.2.1. Geometric Characterization ................................................................ 79 
3.2.2. Theoretical approach........................................................................... 82 

3.3. Results........................................................................................................ 89 
3.4. Conclusions.............................................................................................. 100 
3.5. References................................................................................................ 101 

Chapter 4 :  Effect of diameter in predicting the elastic properties of 2D braided 
tubular composites .............................................................................................. 105 

4.1. Introduction.............................................................................................. 106 
4.2. Proposed model........................................................................................ 107 
4.3. Sensitivity ................................................................................................ 111 

4.3.1. Effect of radius of curvature (Case study-1)..................................... 111 
4.3.2. Effect of yarn thickness (Case study-2) ............................................ 116 

4.4. Literature based verification .................................................................... 118 
4.5. Experimental verification......................................................................... 120 

4.5.1. Methodology ..................................................................................... 120 
4.5.2. Results............................................................................................... 124 

4.6. Discussion ................................................................................................ 126 
4.7. Conclusions.............................................................................................. 128 
4.8. References................................................................................................ 130 



Chapter 5 :  Elastic properties of large-open-mesh 2D braided composites: model 
predictions and initial experimental findings...................................................... 133 

5.1. Introduction.............................................................................................. 134 
5.2. Motivation................................................................................................ 135 
5.3. Open-mesh Composites - Effect of undulation length on elastic properties
......................................................................................................................... 139 

5.3.1. Analytical model ............................................................................... 139 
5.3.2. Analytical model results ................................................................... 140 

5.4. Experimental verification......................................................................... 145 
5.4.1. Methodology ..................................................................................... 145 
5.4.2. Results............................................................................................... 147 

5.4.2.1. Open-mesh composites .............................................................. 147 
5.4.2.2. Open-mesh Composites without matrix-only regions (stent-like 
structures)................................................................................................ 151 

5.5. Discussion ................................................................................................ 153 
5.6. Conclusions.............................................................................................. 158 
5.7. References................................................................................................ 159 

Chapter 6 :  Experimental validation of a regression-based predictive model for 
elastic constants of open mesh tubular diamond-braid composites .................... 162 

6.1. Introduction.............................................................................................. 163 
6.2. Specimens production and Methodology................................................. 170 
6.3. Results and discussion ............................................................................. 177 

6.3.1. Experimental findings....................................................................... 177 
6.3.2. Regression model predictions ........................................................... 179 

6.3.2.1. Longitudinal elastic modulus ..................................................... 179 
6.3.2.2. Shear modulus............................................................................ 181 
6.3.2.3. Lower linearity limit (LLL) ....................................................... 182 

6.4. Discussion ................................................................................................ 187 
6.5. Conclusions.............................................................................................. 191 
6.6. References................................................................................................ 192 

Chapter 7 :  Summary, Conclusions, and Future work ....................................... 196 
 



LIST OF TABLES 

Table 3.1: Limits of the integrals for Equations 14 to 16. .................................... 88 
Table 3.2:  Yarn and resin properties used by Naik, R.A. (1996) [adopted from 

[13]]............................................................................................................... 89 
Table 3.3: Elastic properties used for Figures 3.6 and 3.7, respectively (data 

adopted from Carey et al. (2003), [16], for direct comparison purposes)..... 91 
Table 3.4: Elastic properties used in the calculations for Figure 3.8. ................... 94 
Table 3.5: Geometric measurements of the specimens used for validation.......... 97 
Table 4.1: Elastic properties used in the calculations for Figure 4.4 to Figure 4.9.

..................................................................................................................... 112 
Table 4.2: Properties of yarn and matrix used by Naik, R.A. (1996) [adopted from 

[6]]............................................................................................................... 119 
Table 4.3: Geometric measurements of the specimens used for validation........ 121 
Table 4.4: Elastic properties used in the calculations for Figure 4.13 and 

specimens. ................................................................................................... 122 
Table 5.1:  Elastic constants used in the model for predictions.......................... 141 
Table 5.2: Average dimensions with ± standard deviations for Exx specimens 

(adopted from [12])..................................................................................... 148 
Table 5.3: Average dimensions with ± standard deviations for Gxy.................. 149 
Table 5.4: Average specimen dimensions and experimental and predicted Exx and 

Gxy values (with ± standard deviations) for open mesh specimens without 
matrix-only regions (i.e. stent-like structures). ........................................... 151 

Table 6.1: Constituent and lamina elastic constants. (“*”Provided by 
manufacturer; “**” back calculated using Halpin-Tsai [15]; “***” 
experimental, see reference; “****” micromechanical models)................. 176 

Table 6.2: Specimen information and average (± standard deviation) dimensions 
as defined in equation 4. ............................................................................. 178 

 



LIST OF FIGURES 

Figure 2.1:  (a) various braided composites (first three from the left), different 
preform sizes (last two on the right); (b) braid architecture ( i.e., unit cell, 
braid angle, undulating region, matrix only region). ...................................... 8 

Figure 3.1: Top view of a unit cell........................................................................ 77 
Figure 3.2: Schematic representation of a curved unit cell on a tubular braided 

composite. ..................................................................................................... 78 
Figure 3.3: Zoomed-in section of the edge of the unit cell of Figure 3.2 

(exaggerated view). (in this figure φ is defined in the 0≤φ≤φc range) ......... 79 
Figure 3.4: Geometric characterization of the curved unit cell............................. 80 
Figure 3.5: Comparison of results of the proposed study (with infinite radius) to 

that of Naik, R.A. (1996) [13]. Line is used for Naik data for visual purposes 
of overlapping trends only. ........................................................................... 91 

Figure 3.6: Effect of curvature on Carey et al.'s prediction, [16], for hc = 0.16mm 
(inner figure is a zoomed-in section). ........................................................... 93 

Figure 3.7: Effect of curvature on Carey et al.'s, [16], prediction for hc= 0.5mm.94 
Figure 3.8: Comparison of the curved and flat model for Carey et al.’s 

experimental results [16, 23]......................................................................... 96 
Figure 3.9: Experimental and corresponding curved model prediction results of 

KLTE, KMTE, and KSTE specimens. (Error bars indicate the standard 
deviations for the experimental results and upper/lower predictions in the 
curved model results.) ................................................................................... 99 

Figure 4.1: Scanning Electron Microscope (SEM) picture of a tubular braided 
composite. Right figure: cross-sectional view perpendicular to the 
longitudinal direction of the tube. Left figure: Zoomed-in view of the figure 
on the right, showing the differences in top and bottom yarns of a tubular 
braided structure.......................................................................................... 108 

Figure 4.2: Schematic representation of a flat- and curved-unit cell. ................. 109 
Figure 4.3: Schematic representation of a curved unit cell and the thirteen regions 

within the unit cell. ..................................................................................... 110 
Figure 4.4: Average percent difference of flat versus curved model predictions for 

longitudinal elastic modulus. ...................................................................... 112 
Figure 4.5: Effect of radius of curvature on longitudinal elastic modulus with 

respect to braid angle. ................................................................................. 113 
Figure 4.6: Effect of radius of curvature on shear modulus with respect to braid 

angle. ........................................................................................................... 114 
Figure 4.7: Effect of radius of curvature on Poisson’s ratio with respect to braid 

angle (the three predictions overlap as the Poisson’s ratio is insensitive to the 
change in unit cell curvature.)..................................................................... 115 

Figure 4.8: Effect of yarn thickness on longitudinal elastic modulus with respect 
to braid angle............................................................................................... 117 

Figure 4.9: Effect of yarn thickness on shear modulus with respect to braid angle.
..................................................................................................................... 118 



Figure 4.10: Comparison of longitudinal elastic modulus (Exx), shear modulus 
(Gxy), and Poisson’s ratio (νxy) for the proposed model (Ayranci & Carey) 
versus Naik (1996). ..................................................................................... 120 

Figure 4.11: Torsion specimens (from top to bottom: KSTO, KMTO, KLTO). 122 
Figure 4.12: Specimen loaded on MTS TORSION-MASTER test apparatus.... 123 
Figure 4.13: Experimental and corresponding curved model prediction results of 

KLTO, KMTO, and KSTO specimens. (Error bars indicate the standard 
deviations for the experimental results and upper/lower predictions in the 
curved model results.) ................................................................................. 125 

Figure 5.1: Schematic representation of an isolated unit cell on a 2D braided 
tubular structure. ......................................................................................... 137 

Figure 5.2: Top views of schematic representation of unit cells for a braided 
structure used in this paper. (a) closed-mesh (or tight-mesh) and (b) open-
mesh unit cell. ............................................................................................. 138 

Figure 5.3: Predicted effect of undulation length (au) on (a) the longitudinal 
elastic modulus, (b) shear modulus, (c) Poisson’s ratio as a function of braid 
angle. ........................................................................................................... 143 

Figure 5.4: (a) Open mesh braided specimen with end fittings, (b) Open mesh 
specimen without matrix-only regions (stent-like structure). ..................... 145 

Figure 5.5: Experimental and predicted Exx values for the three composite 
systems of open mesh structures (experimental results were adopted from 
[12])............................................................................................................. 148 

Figure 5.6: Experimental and predicted Gxy values for the three composite 
systems for open mesh structures. .............................................................. 150 

Figure 5.7: Experimental and curved-model predictions of Exx and Gxy of 
Kevlar-epoxy composites with open mesh and without matrix-only regions 
(stent-like structure). ................................................................................... 152 

Figure 5.8: (a) Schematic representation of a closed mesh structure. Left hand 
side: no load is applied; Right hand side: loaded and stretched unit cell. (b) 
Schematic representation of an open mesh structure (exaggerated view). Left 
hand side: no load is applied; Right hand side: loaded and stretched unit cell.
..................................................................................................................... 155 

Figure 6.1: Open mesh single overlap braided unit cell; R1-R5 strand overlap; R6-
R9 resin rich areas; R10-R13 undulating strand regions. ........................... 164 

Figure 6.2: (a) braided preform production; (b) cured closed mesh braided 
composite tube. ........................................................................................... 165 

Figure 6.3: (a) Longitudinal elastic and (b) shear moduli to laminate ratios versus 
Vfo/Vf. (Vfo/Vf)* represents the lower linearity limit (LLL). [adopted from 
[16]]............................................................................................................. 169 

Figure 6.4: Schematic representation of the mold and the mandrel used for the 
production of the specimens [adopted from [22]]....................................... 173 

Figure 6.5: Sample specimen with small air bubbles on the outer surface. The 
resin rich area integrity is conserved with smooth surface and the high 
dimensional accuracy [adopted from [16]]. ................................................ 174 

Figure 6.6: An actual sample test specimen (a) and the actual mold halves and the 
Teflon mandrel (b). ..................................................................................... 175 



Figure 6.7: Comparison of the RBDM predictions (the regression equation 
predictions) for longitudinal elastic modulus (Equation 1) and experimental 
data. Also, LLL are presented..................................................................... 180 

Figure 6.8: Comparison of the RBDM predictions (the regression equation 
predictions) for shear modulus (Equation 3) and experimental data. Also, 
LLL is presented. ........................................................................................ 182 

Figure 6.9: Difference between upper and lower intercepts for longitudinal elastic 
modulus versus Em/Ef at three different laminate volume fractions.......... 185 

Figure 6.10: Repeated data from the original regression based paper [6]. ......... 188 
 



Glossary : 

- Braiding : A two dimensional, automated composite prefom manufacturing 

technique. 

- Braid angle : Angle between the longitudinal direction of the braided 

composite and deposited fiber strand. 

- Catheter : A small diameter flexible polymeric tubular product used in 

catheterization procedures. 

- Closed mesh braid : A braid architecture with a tight mesh due to minimal 

undulating and matrix-only regions.  

- CLPT : Classical Laminated Plate Theory 

- Cross-over regions : Sub-regions of a unit cell where braided strands crosses 

over each other. 

- Diamond braid : A braid architecture where braided fiber strands crosses each 

other in a 1x1 pattern.   

- Lamina : A single layer of a thin composite. 

- Laminate : A composite that is composed of multiple laminae. 

- Marix-only region : Sub-regions of a unit cell where there are no fibers. 

- Open mesh braid : A braid architecture with long undulating regions and large 

matrix-only regions. 

- Stent : A medical device that has a meshed structure used to provide 

additional support to damaged vessels in the body. 

- Undulating regions : Sub-regions of a unit cell where the fiber strands travel 

from one crossover region to the other. 



- Unit cell : A small (imaginary) repeating element in a braided composite that 

is assumed to represent the behavior of the overall structure. 

- Mandrel : A cylindrical rod or tube device used during braiding to deposit 

fibers on to form the preform. 

Nomenclature : :  

- 1, 2, 3 : Lamina coordinate system 

- x, y, z : global coordinate system of the unit cell. 

- au : Undulation length. 

- β: Undulation angle of a strand. 

- 0ε  : Strains of the midplane of a laminate, CLPT. 

- 
0k  : Curvature of the midplane of a laminate, CLPT. 

- φ  : arch angle 

- ν : Poisson’s ratio. 

- A : Extensional stiffness  matrix, CLPT. 

- B : Coupling stiffness matrix, CLPT. 

- D : Bending stiffness matrix, CLPT. 

- E11 : Longitudinal elastic modulus of a lamina. 

- E22 : Transverse elastic modulus of a lamina. 

- Em : Elastic modulus of matrix. 

- Exx : Longitudinal elastic modulus of a braided structure. 

- Eyy : Transverse elastic modulus of a braided structure. 

- G12 : Shear modulus of a lamina. 

- Gm : Shear modulus of matrix. 



- Gxy : Shear modulus of a braided structure. 

- hc : Strand thickness. 

- I : Moment of inertia. 

- J :Polar moment of inertia. 

- Kt : Stress concentration factor. 

- LLL : Lower linearity limit. 

- M : Bending moments per unit length, CLPT. 

- N : Normal forces per unit length, CLPT. 

- Q  : Stiffness matrix of a lamina. 

- Q  : Stiffness matrix of the laminate defined with respect to the global 

laminate coordinates. 

- Vf : Fiber volume fraction of a strand. 

- Vfo : Fiber volume fraction of a unit cell. 

- Wy : Strand width. 
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CHAPTER 1:  INTRODUCTION 

 
 Catheters are tubular products utilized in arterial and venous circulation of 

patients to deliver or withdraw fluids, including blood and medication, and collect 

data [1]. Catheters are generally used along with a guidewire [2] as they are stiffer 

compared to catheters. Guidewires provide support and increased stiffness during 

a procedure as well as guide the catheter to its target in the body.  

  Although a very common procedure, catheterization can be 

uncomfortable for patients. In some procedures, it may be possible to improve 

catheterization procedures by designing an alternative catheter that has all the 

required rigidities for a specific procedure [3, 4] with increased controllability and 

maneuverability. Use of 2D braided catheter may shorten the catheterization 

procedure time, decrease the inherent patient discomfort, and may also provide 

superior control of the device due to its design. The 2D braided catheters may be 

designed to be stiff and torquable but also flexible enough to obtain optimal 

catheterization parameters.   

 Carey et al, [3, 5], listed axial (AE), flexural (EI), and torsional (GJ) 

rigidities as important parameters for catheter characterization; where E and G are 

the longitudinal elastic and shear moduli, and A, I and J are the area, first moment 

and polar moment of inertia, respectively. 2D braiding provides the designer good 

control over parameters that affect rigidities and thus on a successful catheter 

design and end product. 
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 There are many different types of catheters and guidewires with many 

different specifications and materials [2]; hence, the braided catheters must have a 

wide range of design tailorability to be able to compete with the existing catheters 

and guidewires. A previous study, [4], has documented the catheterization 

procedure, different types of currently available catheters and their materials [4].  

 When designing a braided composite catheter, a designer may control 

three major parameters, namely, fiber/matrix properties, angle of the fiber yarn 

with respect to the longitudinal direction (braid angle), and geometry of the braid 

architecture (unit cell). 

 Selection of fiber and matrix is a matter of the specified design 

requirements given that they must adhere to medical equipment standards such as 

sterilization and biocompatibility. Schneider [2], Carey et al [3], and many others, 

listed a number of materials that may be used for conventional as well as braided 

catheters.  

 Changing the braid angle of a braided composite has a direct effect on the 

mechanical properties of the end product. Due to available computerized systems 

used in the braiding machines, operators have good control over the braid angle of 

the end products.  

 2D braided composites have a repeating structure called “unit cell”. Many 

identical unit cells come together to form the braided structure; therefore, 

properties of one unit cell is assumed to be representative of the entire structure 

that has the same unit cell configuration. Control over the geometry of the unit 

cell provides one level of control over the rigidities. 



 

3 

1.1. Thesis Objectives 

 
 There are a number of available models in the literature that were 

proposed to predict the elastic properties of braided composites; however, these 

models are mostly developed for high stiffness applications and large structures. 

Hence, they were developed either for flat-braided structures or researchers 

assumed that using a flat unit cell would be sufficient accurate for large tubular 

braided structures. This assumption may be acceptable for large diameter tubular 

structures because a unit cell on a large diameter tubular structure may be 

considered almost flat as its radius of curvature will be minimal. On the other 

hand, if the diameter of the tubular structure is small, the effects of the geometry 

on the unit cell may play an important role in predicting elastic properties.  

 The objective of this thesis is to develop a model that addresses the 

shortcomings of the previous models and give the braided catheter designer a 

better understanding and control of the braided composites to design with accurate 

predictions.   

 In this Ph.D. thesis, the unit cell of a braided structure was analyzed from 

two different points of view to have a thorough understanding of the unit cell 

architecture effects on elastic properties. First, the effect of unit cell curvature, 

and second, the effects of the undulation length between overlapping strands in 

the unit cell on the properties are investigated. It is hypothesized that including 

curvature in an analytical model will account for some of the variation found 

between existing models and experimental data.  It is further hypothesized that 

there are differences in elastic properties between open and closed mesh braids. 
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1.1.1. Curved-Model 

 
 An analytical model, which considers the effects of radius of curvature of 

the unit cell on the elastic properties as a function of braid angle will be developed 

and compared to predictions of the flat-unit cell models. Validation will be 

performed using experimental data. Case studies will be conducted to understand 

the sensitivity of the model to unit cell geometry.  

1.1.2. Open-mesh Structures 

 
 Unit cells can be divided into two main types, namely: closed-, and open-

mesh structures. Increasing the undulation length in a unit cell, would 

consequently introduce regions that do not have any reinforcing fiber into the 

structure hence creates an “open-mesh” structure and eventually causes a decrease 

in the properties. Although in many applications of braided composites, this 

decrease is undesirable and avoided by using closed-mesh structures 

(consequently, this may be the reason why open-mesh structures were not 

investigated a lot in the literature), for design of braided catheters, this presents an 

invaluable tool to be able to target specific rigidities. Hence, as part of this PhD 

thesis, a parametric study that outlines the effect of having different sizes of open 

mesh structures will be conducted and results will be compared to experimental 

data. Finally, experimental results of open-mesh structures will be used to 

further validate a previously developed regression based model for braided 

composites. An objective will be to determine the model lower linearity limit.          
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CHAPTER 2:  2-D BRAIDED COMPOSITES: A REVIEW FOR 

STIFFNESS CRITICAL APPLICATIONS 

 
A version of this chapter was published as: 

 
Ayranci, C., Carey, J., 2D braided composites: A review for stiffness critical 

applications, Composite Structures 85 (1), pp. 43-58, (2008). 
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2.1. Introduction  

Braiding has been used since 1800’s to produce textile fabrics. New 

demands for high production rate manufacturing of high quality composite 

materials have focused attention on braiding. A conventional braiding machine 

has fiber carriers moving in a circular pattern [1]. Half of the carriers move 

clockwise, the others counterclockwise, in an intertwining serpentine motion 

producing a desired braid pattern, such as 2-dimensional tubular and flat braids.  

The braiding process competes with other composite material or 

composite preform manufacturing, techniques such as filament winding, 

pultrusion, and tape lay-up. The advantages and disadvantages of 2D are 

discussed in the following sections.  

 

2.2. Common terminology 

Braiding: A composite material preform (Figure 2. 1 (a)), manufacturing 

technique. A braiding machine is used to intertwine fibers to create desired braid 

architecture before or during the impregnation of the fibers. 

Braid angle: The angle between the longitudinal direction of the braided preform 

and the deposited fiber, Figure 2. 1 (b).   

Volume fraction: Relative amount of one constituent of the composite to the 

remaining constituents.  

Unit cell: An imaginary small repeating element on a braided composite, Figure 2. 

1 (b). 
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Crossover regions: Regions where intertwining fiber tows are deposited on top of 

each other in a unit cell. 

Undulation region: The region where fiber tows undulate from one crossover 

region to the other, Figure 2. 1 (b). 

Matrix only region: Remaining parts of the unit cell where fiber undulations or 

fiber crossovers do not exist, Figure 2. 1 (b).  

 

 (a)  (b) 

Figure 2.1:  (a) various braided composites (first three from the left), 

different preform sizes (last two on the right); (b) braid architecture ( i.e., 

unit cell, braid angle, undulating region, matrix only region). 
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2.3. Braid Architecture  

 Braiding is a composite material preform manufacturing technique where 

a braiding machine deposits continuous, intertwined, fiber tows to create desired 

reinforcing braid architecture before or during the impregnation of the fibers. 

There are three commonly used braid architectures: Hercules braid, regular 

braid, diamond braid. Hercules braid is a braid where each yarn passes over and 

then above three other yarns, where in regular braid each yarn crosses over and 

below two yarns, and finally if each yarn crosses over and below one other yarn in 

a repeating manner, it is called a diamond braid [2, 3]. Adding axial fibers along 

the mandrel axis is called a triaxial braid, and it increases bending and tension 

strength and also stiffness of braided composite materials. Triaxial braids need to 

be formed/braided on a mandrel due to the geometric nature of the process, 

whereas it is sometimes possible to produce a biaxial braided preform without the 

use of a mandrel. Tubular triaxial braids resist to radial shrinkage, and flat triaxial 

braids resist to shrinkage in width under tensile loads. Hence, these preforms are 

compatible as reinforcements in pultrusion process [3]. 

2.4. Introduction to 2-D Braids 

 The most common commercial applications of braided composites are, but 

not limited to, over-braided fuel lines, braided air ducts, rocket launch tubes, and 

aircraft structural parts [1]. Other possible applications are catheters, automotive 

shaft reinforcement, sporting equipment, etc.  
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Conventional braiding machines produce preforms either vertically or 

horizontally. Most braiding machines are said to be Maypole-type machines due 

to the serpentine or maypole strand carrier path. There are also Rotary braiders 

which use two rotating tables. Although they have higher production rates than 

Maypole braiders, they can not produce flat braids.  Flat braids must be produced 

by carriers following two intersecting serpentine paths; however the intersecting 

paths form a single path by removal of the horn-gear. This forces the carriers to 

reverse their motion at the end of the track and form a flat braid instead of 

completing a circular track on the machine to form a tubular braid [2, 3]. Maypole 

and Rotary tubular braid preforms are the same in terms of their architectures [2].  

Fibers used to produce braided preforms can be dry or prepreg [1]. The braiding 

process competes well with filament winding, pultrusion, and tape lay-up. 

Braiding compares favorably in terms of structural integrity of components, 

design flexibility, damage tolerance, repair ability, and low manufacturing cost 

[4].  Braiding advantages are high rate of strand deposition on the mandrel, ability 

to produce complex shapes, low capital investment cost [1], and minimal labor 

cost [3]. The most important braiding process disadvantage is the difficulty in 

producing low braid angle preforms.   

Munro et al [5] presented a direct comparison of braiding to one of its 

major competitors, filament winding. Advantages and disadvantages of both high 

production rate reinforced composite manufacturing techniques were highlighted 

with respect to design and manufacturing methodology and manufacturing 

aspects. They emphasized that it was not possible to determine the better process 
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since both have similarities, advantages and disadvantages compared to the other 

and the selection of the manufacturing technique would largely be product 

dependent [5]; however, ease of conformability of preforms of braiding 

technology can be seen as an advantage over mostly geodesic path dependent 

filament winding technique. 

The kinematic analysis of the braiding process has been studied since 

1950’s [6, 7, 8, 9]. Du and Popper [7] proposed a detailed time dependent model 

that predicts the microgeometry of a fiber preform braided on an axisymmetric 

mandrel in terms of the relationship between braid angle, fabric cover factor, yarn 

volume fraction, convergence zone length and rate of braid formation.  The model 

also outlines limits of the braiding process as a result of jamming of yarns [7].  

Early studies showed that the crimp angle and braid angle affect the 

strength and stiffness of the braided composites. Phoenix [10] presented 

experimental findings that verify that an increase in the crimp angle or the braid 

angle causes decrease in the strength of the braided composite [10]. Smith and 

Swanson [11] investigated the stiffness and strength properties of 2D braided 

carbon/epoxy composites under biaxial tension and compression loading. 

Influential factors on stiffness were fiber volume, braid angle, percentage of fibers 

in the braid and axial directions [11].  

Braided composites are usually used in applications that require high shear 

and torsional strength and stiffness. A ±45° braid angle was proven suitable for 

such applications [3, 12]. They also offer increased transverse moduli, transverse 

strength, damage tolerance, dimensional stability and near net shape 
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manufacturing capabilities [13]. The transverse moduli and strength, and 

dimensional stability of braided composites arise from off-longitudinal-axis 

oriented fibers. Damage tolerance results from the locking mechanism between 

the intertwined fibers of the braid architecture that prevents or limits yarn 

delamination.  Low velocity impact damage tolerance capability of laminated 

composites has long been recognized and methods of further improving the 

damage tolerance of the composites have been studied [14]. Braiding is listed as 

one of the manufacturing techniques to produce aircraft primary structures at 

lower cost and with better damage tolerant properties. Jackson and Kuykendall 

[15, 16] reported on studies investigating resin transfer molding (RTM) 

impregnated 2D braided preforms as one manufacturing technique used to 

produce aircraft primary structures at lower cost and with better damage tolerant 

properties.  They indicated that RTM technique makes possible to achieve up to 

60% fiber volume fractions. Thicker parts can be achieved by adding any desired 

number of braided layers; this is an advantage of 2D braiding.  Lack of through 

the thickness tows and long manufacturing times for multi-lamina stacking 

procedures were listed as the disadvantages of the 2D braids [15, 16]. The authors 

indicated that 3D braiding addressed these disadvantages; however, the high cost 

of the 3D braiding machinery was a major disadvantage.  As an example, for their 

study, authors indicated that the 2D braided components cost 10% less than that 

of the 3D braided components, and hence 2D braiding was chosen as the 

manufacturing technique [15]. 
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2.5. Resin Impregnation of 2D Braided Fibers  

2.5.1.  Manual impregnation 

One of the limiting factors of broader use of composite materials is from 

inconsistent mechanical properties due to stress concentrations originating from 

the voids that occur in the materials as a result of non-homogeneous impregnation 

of fibers.  

During the manufacturing process of the braided composites, fiber 

impregnation is as important as preform production. Manual impregnation of the 

preform, such as brushing or massaging resin into the preform, is the simplest and 

least expensive method but has its limitations [17, 18].  In this type of 

impregnation, to avoid premature cure, resins with long gel time must be selected.  

Furthermore, product quality depends highly on the skill level of the operator 

applying the resin onto the preform, and this can lead to inconsistent mechanical 

properties. This can be addressed by using preimpregnated (prepreg) fibers [17, 

18]. Kruesi et al [19] suggested use of an impregnation ring that preimpregnates 

fibers prior to their deposition onto the mandrel. This is done by a controlled 

amount of resin applied to the fibers through small pores while they are passing 

through the proposed impregnation ring. It was reported that very low void 

content, ranging from 3.71% and 1.74%, was achieved. Also high fiber volume 

fractions in excess of 60% were achieved [19]. This process may provide 

consistent specimen fiber volume fraction while also decreasing production time.  
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2.5.2.  Commingled fibers 

In some applications thermoplastic (TP) resins may be preferred over 

thermosetting resins. One of the reasons for using TP resins is to decrease 

composite manufacturing time, because TP resins do not need chemical reaction 

time as the thermoset resins. Fujita et al [20] investigated commingled and un-

commingled yarns as impregnating systems to increase the uniformity of 

mechanical properties of braided composites.  In commingled yarns, reinforcing 

fibers and matrix fibers are commingled together, while for un-commingled yarn, 

the reinforcing fibers and matrix fibers are placed next to each other. Specimens 

were manufactured by compression molding. The commingled yarn specimens 

required lower pressures and shorter holding times compared to un-commingled 

specimens [20]. Additional advantage of thermoplastic resins is the greater 

fracture toughness compared to thermosetting resins [21]. 

Bechtold et al [22] modeled the impregnation process for braided and 

pultruded tubes. Due to the difficulty in braiding preimpregnated thermoplastic 

tapes, powder impregnated or commingled yarns were used. Braided commingled 

yarns are preheated slightly above the thermoplastic melting temperature prior to 

entering the heated pultrusion die. The complete melting process of the 

thermoplastic and subsequent impregnation of the fibers occurs in the heated die, 

which is followed by a pressurized cooling stage through a die for calibration 

purposes [22]. 
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2.5.3. Resin transfer molding based processes  

Brookstein [17, 18] underlined that consistency in fiber volume fractions 

and hence mechanical properties may also be achieved by using other automated 

impregnation techniques such as Resin Transfer Molding (RTM) [17, 18]. RTM 

creates high fiber volume composites with very low void content. This leads to 

homogeneous products. In addition, near net shape products are possible to 

produce.  Circumferential frames, keel frames, and window frames are some 

examples of RTM manufactured braided composites [23, 24].  

In RTM, a completed preform is put in a tool or mold. The part and the 

resin are heated to optimal temperature for the resin to have minimal viscosity. 

Resin is then applied to the preform under pressure. Later the necessary curing 

procedure for the specific resin is followed [25]. Minimal machining requirement 

of these products decrease the end cost. It also avoids the negative effects of 

machined composite parts, such as stress concentration factors introduced at the 

machined location of the part. Also due to the damage of matrix in the machined 

region, environmental effects such as moisture and other existing chemicals effect 

the fibers, matrix, and the interface and hence this effect the strength and elastic 

properties of the machined composites. 

Michaeli et al [26] used RTM to manufacture a braid reinforced tubular 

composite where the reinforcement was placed over a flexible tubing and inserted 

into the RTM mold. The tube was pressurized and resin injected. Good fiber 

placement and controlled impregnation as well as good surface finish were 

achieved.  
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 However, resin permeability through the preform plays a major role in the 

quality of products manufactured by RTM. Charlebois et al [27] reported on 

permeability characteristics and mechanical properties of braided fabrics. Authors 

investigated permeability of 2D biaxial braided glass fibers at three braid angles 

±35°, ±45°, ±50°, and found that change in braid angle effect the fiber volume 

fraction and thus permeability. Permeability of ±45° and ±50° angles decreased as 

the fiber volume fraction was increased. However, permeability of ±35° angle was 

not affected from the fiber volume fraction change [27]. 

 Vacuum assisted resin transfer molding (VARTM) has also been used to 

manufacture braided composites [28]. VARTM offers low cost for high volume 

production, large and complex shapes capabilities and high fiber volume fractions 

compared to hand lay up [29]. VARTM process requires that a dry preform be 

placed in a mold (or tool), low viscosity resin be transferred to the preform under 

vacuum, followed by the resin curing procedure. It is used by many industries 

[30]. Some other advantages of VARTM and RTM are their low volatile organic 

chemical (VOC) emission and good part surface quality production ability [31]. 

RTM and VARTM provide cost reductions in composite materials 

compared to using prepregs. Prepreg materials offer good toughness to the 

composites; however, the resins used have high viscosities that can not be used 

with the RTM/VARTM techniques. Pederson et al [28] addressed this issue and 

proposed to achieve better toughness using RTM. For this, the resin system 

toughening agent that is used in the prepreg materials had to be manufactured in a 

fiber form and directly braided into the preform along with the reinforcing fibers 
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(without compromising braid structural integrity). Experimental results 

demonstrated similar mechanical properties between proposed RTM and 

conventional prepreg autoclave manufactured composites [28]. 

Uozumi et al [32] proposed a new technique to manufacture near-net-

shaped composites using RTM impregnated 2D braiding, followed by a forging 

process to minimize cost as compared to 3D braiding. “I”, “J”, “T”, “Z” shaped 

composites are listed as producible. Authors found superior tensile properties with 

the braided specimens compared to equivalent aluminum specimens, suggesting 

possible aircraft applications for weight savings. Also, the braiding/RTM process 

was reported to have approximately 34% cost savings compared to the hand-lay-

up/ autoclave process [32].  

2.6. Applications 

Braid reinforced composite materials have a broad range of industrial 

applications. Based on the aforementioned advantages, such as the specific 

strength, these materials are preferred increasingly over the conventional 

engineering metals. This section outlines some of the broad applications of 

braided composites. 

Brookstein [17, 18] listed structural columns, rods, shafts, pressure 

vessels, and plates as some classical applications where braid reinforcement had 

replaced conventional materials. Brookstein suggested, with no theoretical or 

experimental evidence to support the claims, the structural limits of braided 

structure.  It was stated that braided structure could be used for tensile load 

carrying applications if the braid angle did not exceed 15°.   In the cases of 
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compression loading and thin-wall buckling, delamination could be overcome by 

the circumferential reinforcing nature of braided fabrics (if 20 % of the fiber 

placement was at a ±45° braid angle). Shafts were listed as ideal components 

manufactured using composite materials, where axially placed fibers provide 

stiffness, and ±45° braid provided torque transmission reinforcement. He showed, 

through modeling, that 54.74° braided pressure vessels are also good candidates 

for braided composite applications [17, 18].  

2D braiding may be used to manufacture structural components as well. 

Kobayashi et al [33] reported manufacturing a T-shape braided graphite epoxy 

composite truss joint. Authors proposed a different continuous production 

manufacturing method for structural components such as T-shaped trusses. At the 

end of the process the whole T-Shape had two layers of continuous triaxial 

braiding. In this study EPIKOTE 828 epoxy resin with an amin system hardener 

(KC1118). Fibers were impregnated in a vacuum and an autoclave was used for 

curing. It was reported that the braided T-shaped truss joint had higher strength 

than a similar cloth tape component [33].  

 Hamada et al [34, 35] reported a new technique to produce tubular braided 

products that are more resistant to interlaminar delamination, also referred to as 

through-the-thickness toughness. The technique uses a conventional 2D braider in 

a multireciprocal fashion to produce a multi-layer braided laminate. Through-the-

thickness fibers were simultaneously added to the braid through a three track 

system where the spindles travel from one track to the other creating a three 

dimensional structural network of strands.  It was observed that propagation of 
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interlaminar delamination was impeded during lateral compression tests of said 

manufactured tubular braided specimens [34, 35]. 

Due to their specific strength and tailorable mechanical properties, 

composites have long been the preferred materials for aviation [15, 23, 24, 32, 

36]. White [36] reported on manufacturing, testing, and cost analysis of a Kevlar 

49©/epoxy blade spar. Ballistic tests were done to evaluate the structural damage. 

After complete armor penetration, static retesting of spar section did not show any 

detectable changes in the elastic behavior, which was attributed to the braided 

fabric delamination resistance.  Also, ultrasonic C-scan inspection of the structure 

was assessed and satisfactory results were observed. Finally, the cost evaluation 

of the braided structure revealed 33% savings compared to filament wound glass 

blade spar [36]. 

The sports equipment industry highly utilizes the benefits offered by 

braided composite materials. Casale et al [37] reported on design and fabrication 

of a braided bicycle frame using Kevlar/graphite braided hybrid preforms 

impregnated with Epon 828 epoxy resin and D-230 curing agent. The frame was 

manufactured by braiding the four-piece frame over a foam core and subsequent 

joining process. Five prototype bicycles were produced [37].  

Production of braid reinforced laminated wood baseball bats have been 

reported by Axtell et al [38, 39]. Reversed balloon molding was used to 

manufacture the bats.  During this process an elastomeric tube was inflated and 

the molded component pushed onto it.  The tube was subsequently deflated to 
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wrap the part for the curing process. Following curing, the tube was again inflated 

forcing the cured product out. 

Neogi et al [40, 41] published their findings on design analysis and 

fabrication of a self deployable structural element, constructed of a foam core, 

internal bladder, braided load carrying preform and an outer jacket, which was 

originally developed to minimize payload volume on space shuttle missions. The 

proposed structure had a minimum volume at the onset; using a resistance wire 

embedded in the foam core as a heat source, the structure expanded and cured. A 

carbon/epoxy system was chosen for the braid because of low coefficient of 

thermal expansion, high longitudinal and torsional stiffness and interlaminar 

strength. As a result of the study, 80% volume savings were achieved compared to 

original designs. The authors suggested using a triaxial braid structure due to the 

lower specific stiffness of the final product compared to aluminum structures. 

They also listed emergency sailboats, deployable antennas and tent frames as 

other possible applications of deployable structures [40, 41]. 

Braided composites have also been suggested for use with structural 

reinforced concrete components since flexural strength and ductility of reinforced 

concrete members can be improved with braided composite jackets [42]. Life 

spans of reinforced concrete structures can be improved by using corrosion 

resistant and high specific strength braided fiber reinforced polymer (FRP) rebars 

instead of conventional steel rebars. The non-ductile behavior of braid reinforced 

FRP rebars were also addressed by researchers:  Hampton et al [43], and Lam et 

al [44] reported on hybrid Kevlar-Carbon FRP rebars manufactured using a 
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braiding/pultrusion process exhibiting desirable ductile behavior similar to 

conventional steel rebars [43, 44]. 

Karbhari et al [45, 46] studied crush performance and energy absorbing 

capabilities of braided composites. Braid energy absorbing capabilities could be 

eventually used in industrial applications such as car bumpers. They reported that 

triaxially braided composites increased the energy absorbing performance of the 

braided composites [45], and the occurrence of damage prior to onset of crushing 

affected crush performance [46]. 

Braid reinforced composite materials have been extensively studied for 

biomedical applications. Hudgins et al [47, 48] suggested replacing the natural 

intervertebral disc with a prosthetic intervertebral disc. The proposed disc had a 

core of elastomeric polymer and a braid reinforced outer shell. Braided shells 

proved to provide compressive strength to the design [47, 48]. Moutos et al [49] 

reported tubular braided structures with elastomeric cores that were manufactured 

and tested to mimic the properties of anterior cruciate ligaments [49].  Reinhardt 

et al [50] underlined the high numbers of hip replacement surgeries conducted 

every year in the world, and the need for a design that would have tailorable 

mechanical properties, enhanced fatigue life, and biocompatibility. Authors 

proposed a design that consisted of balsa wood core with six layers of braided 

carbon preforms manufactured by RTM using a vinyl ester matrix. The study was 

designed as a basis for future studies but early mechanical performance of the 

design were reported to be excellent; however, resin biocompatibility issues were 

left for future studies [50].  Another example of biomedical application of braided 
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composites, braided carbon/PEEK composite bone plates, were fabricated and 

tested by Fujihara et al [51].  Braided fabric reinforcement was chosen for this 

work based on better in plane properties and out of plane delamination resistance. 

Promising results encouraged researchers to further investigate the effect of the 

braid angles and plate thicknesses on the bending performance of the composite 

plates; braid angle was identified as important for thick plates. For example, it 

was suggested that a 2.6 mm thick plate with a 10° braid angle was suitable for 

forearm treatments [51, 52, 53].  Finally in dentistry, braided composites were 

used in dental posts that require varying stiffness along the shaft.  This was 

obtained by varying the braid angle along the post shaft [54].  

Braided tubular products can also be used as catheters in medical field. 

Carey et al published a study about the design of fiber reinforced composite 

catheters [55]. They analyzed the required rigidities of conventional catheters and 

set design objectives to achieve these targets by use of braided composites [55].    

 

2.7. Typical challenges in applications: Joining Methods - Braided 

and Machined Holes in 2D Braided Composites 

Composite materials, including braided composites, may be manufactured 

to near net shape to avoid any post-manufacturing processes; however, there are 

also numerous applications that require multi-part assembly with other composite 

or non-composite components. Assembly may be accomplished through adhesive 

or polymeric bonding as well as mechanical joints. Use of adhesives involves 

studying adhesive shear strength, surface finish of substrates and coupling agents. 
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For the purposes of this review, mechanical joints were investigated since they 

require holes or other shape openings in the structures and will have effects on the 

integrity of the parts.  

Composite materials are susceptible to develop stress concentrations 

around holes and cutouts. Tsiang et al [56] and Brookstein [57] compared the 

effect of integrally formed braided holes and machined holes on strength of 

cylindrical braided composites. Specimens with braided and machined holes were 

tested under tensile loads. In average, specimens with braided holes were 

observed to bear loads that were 1.23 times higher than that of machined holes. 

Observations on specimen failure modes were presented; however, limited 

micromechanical discussions to explain the observed phenomena were provided. 

In another set of tensile experiments, load was applied through pins inserted into 

the braided and machined holes. On average, specimens with braided holes 

supported 1.8 times greater loads than those with machined holes. This was 

associated to the fiber discontinuity at the machined holes [56, 57].  

Following the study of Brookstein et al, Wang and his co-workers 

published contradictory findings [58, 59, 60]. Authors outlined that, in the 

previous studies, the overall wall thickness of the tube specimens were not 

controlled due to excess resin surrounding the holes. It was suggested that these 

thicker resin rich regions contributed to the increased the local bearing strength. In 

Wang and his co-workers’ studies, wall thickness was kept constant. Change in 

fiber angles in the surrounding regions of the holes resulted in decreased bearing 

strength. They concluded that similar or greater bearing strengths were found for 
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machined holes as compared to braided holes. Other studies on 3-D braided 

composites support their findings [58, 59, 60, 61]. 

However, Fujita et al [62] published studies on comparison of machined 

holes versus braided holes on flat braided bars, and they found results parallel to 

that of Brookstein et al. They stated that machined holes have lower bearing 

strengths; however, their work concentrated on the effect of hole diameter on 

bearing strength. Smaller diameters caused more local disturbance on the 

orientation of fibers than larger diameters leading to resin rich regions and lower 

bearing strengths than their larger counterparts. Results were validated using 

numerical analysis. They concluded that fiber orientations around the holes 

significantly affected the bearing strength and failure mode [62]. They did not 

comment on the issue (i.e. the resin-rich regions surrounding the holes) raised by 

Wang et al.  

Ohki et al [63], Ohki et al [64], and Nakai et al [65] evaluated the effect of 

machined versus braided holes in end loaded flat-braided specimen with a 

centralized hole. Specimens with braided holes had higher strength properties 

during both static and fatigue testing. From microscopic observations, authors 

conclude that the damage mechanism of the machined holes is related to the fiber-

resin interface, while the damage mechanism of the braided holes is related to the 

reorientation of the continuous fibrous strand path caused by the presence of the 

hole [63, 64, 65]. 
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2.8. Elastic Constant Predictive Models 

 Mechanical behavior of 2D braided composites can be discussed in terms 

of elastic behavior, plastic behavior, and failure behavior such as ultimate strength 

and failure mechanism [66]. This review, due to the broadness of the topic, 

focuses on elastic behaviors of braided composites. Important publications about 

the remaining two categories are listed for bibliographical purposes but not 

detailed. 

Elastic property prediction of 2-D braided composites has been studied far 

more than their plastic behavior and failure behavior. Braided structures are 

assumed to behave linearly in the elastic range. In the plastic region, a non-linear 

behavior is observed which increases the complexity of the problem. 

Nevertheless, a number of studies have been published regarding plasticity 

behavior and failure characteristics of braided composites [67, 68, 69, 70, 71, 72, 

73, 74].  Other papers that have dealt with elastic properties, as well as strength 

and failure mechanisms, will be covered in detail.         

The majority of braid analysis developed to date can find its origins in 

earlier woven fabric composite and laminated composite analysis; hence, this 

review also outlines major studies published in these fields to create a basis for 

the overall discussion. In this view, braided composites can be seen as a specific 

form of woven fabric composites, or textile composites [75]. 

Some of the models discussed are based on the well known Classical 

Laminate Plate Theory (CLPT). During the discussions of this review, it is 
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assumed that readers are familiar with the well documented CLPT analysis, such 

as by Jones [76].     

In early 1970s, Halpin et al [77] developed a model predicting elastic 

stiffness and thermal expansion properties of short fiber composites from a 

laminate analogy. This laminate analogy was extended to 2 and 3 dimensional 

woven fabric composites.   Authors reported that predicted and experimental 

results for woven fabric composites were compared and found to be “qualitatively 

correct”.  

Whitney and Halpin [78], analyzed laminated anisotropic tubes subjected 

to combined tension or compression, internal pressure, and torque. Authors listed 

the governing equations as equilibrium, compatibility, strain and curvature 

displacement, and constitutive relations.  The analysis was done using Donnel’s 

approximations.  

Some of the most influential studies that followed were published by 

Ishikawa and Chou [79, 80, 81] who proposed and compared three stiffness and 

strength predictive models that formed the basis to many subsequent textile fabric 

composite models, namely, the “mosaic”, “fiber undulation”, and “bridging” 

models. The models study the smallest repeating unit of the fabric, the unit cell. 

The properties of the unit cell are assumed to be representative of the overall 

composites. Mosaic model treats the system as an assemblage of asymmetric 

cross-ply laminates. The model uses the Classical Laminate Plate (CLPT) theory 

as the basis of the analysis. The model was analyzed using both iso-strain and iso-

stress assumptions to respectively obtain upper and lower bound composite 
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stiffness properties. The fiber undulation model was developed to validate and 

improve the mosaic model. Undulation (crimp) and continuity characteristics of 

the fibers in woven fabric composites omitted in the mosaic model were 

considered. Due to physically occurring matrix only regions, this model also 

allowed the recognition of changes in the overall fiber volume fraction of the unit 

cell. The undulating fibers, assumed to follow a path described by a sinusoidal 

function, were used to calculate stiffness matrices of CLPT analysis. The local 

stiffness matrices used in the calculation of the CLPT A, B, D matrices were 

computed as a function of the local undulation angle (called “local off-axis angle” 

by Ishikawa and Chou). The authors stated that the undulation of the fibers 

reduced the effective stiffness of the composite in the longitudinal direction, and 

that the maximum strain occurs at the mid-point of the undulating fiber. The 

bridging model was developed for satin weave fabrics and is therefore out of the 

scope of this review [79, 80, 81].  

Ishikawa and Chou also characterized geometric and material properties of 

hybrid woven fabrics [82], and investigated effects of these fabric parameters on 

elastic properties by using the mosaic model. In this model, due to the hybrid 

nature of the fabric, in-plane and bending moduli (Aij, and Bij matrices) are no 

longer uniform in the repeating region. Gaps that may exist between the fibers 

were neglected and a close mesh configuration was adapted. In this report, 

Ishikawa and Chou also investigated the thermal expansion coefficients and 

thermal bending coefficients. Investigation was conducted using the mosaic 
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model and one dimensional fiber undulation model. Agreement was found 

between experimental and theoretical results [82]. 

Tsiang et al [83] investigated the longitudinal and transverse mechanical 

properties of triaxial braided graphite/epoxy cylinders using a simple 

micromechanics theory based model. The braid architecture was modeled as a 

structure composed of unidirectional-ply and bias-angle ply yarns. The brief 

description of the model provided stated that material properties were calculated 

by applying the principle of superposition to the two sub-layers.  Results for the 

longitudinal and transverse elastic modulus and Poisson’s ratio were provided, 

and were stated to be in reasonable agreement with experimental results.  

Yang et al, [84], proposed a predictive model for triaxially braided 

composites elastic properties. Unlike woven fabric models (45° fiber deposition 

angle), this model, based on the Ishikawa and Chou’s fabric undulation model 

[79], assumes 60° fiber deposition angle. The model utilizes the geometrical 

characterization of the braid architecture where the triaxial fabric composite is 

treated as an assemblage of three laminae; bias and longitudinal yarn laminae. The 

corrugated yarns impregnated with matrix are taken into account in the initial 

calculation, and the contribution of the matrix only regions are subsequently 

considered using a Rule of Mixtures prediction. The upper bound is calculated 

from a laminate that consists of three laminae stacked together with fibers in the 

bias braid and longitudinal angles, and the lower bound is calculated from the 

proposed model. As a result of the analysis, the stiffness of the non-orthogonal 
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woven fabrics was determined to be strongly influenced by the fiber deposition 

angles. The model was not verified experimentally [84].  

In a later study, Yang et al [85] proposed the “Fiber Inclination Model” 

based on a modified CLPT to predict the elastic properties of three dimensional 

textile (woven and braided) composites. Here, the unit cell used for the analysis is 

assumed to be composed of an assemblage of inclined unidirectional laminae. The 

idealized unit cell was described as fiber bundles oriented in four body diagonal 

directions. All the yarns in one direction were assumed to form inclined laminae 

after matrix impregnation. The rest of the analysis was explained as an extension 

of the fiber undulation model developed by Ishikawa and Chou. In the analysis, 

contribution of pure matrix regions to the stiffness matrices were neglected 

(interested reader may refer to the original text for the modifications and 

necessary assumptions). Authors recognized and underlined that the CLPT 

ignores the interactions of fiber yarns at the interlocking points and stated that it is 

still a convenient technique for the analysis. Predictions and experimental findings 

were in good agreement [85].  

Whyte [86] proposed an analytical model, the Fabric Geometry Model 

(FGM), to predict the properties of three dimensionally braided structures. FGM 

is based on a modified CLPT where the unit cell is defined as repeating volumes. 

The stiffness matrix is developed for each yarn in the unit cell by calculating the 

stiffness matrix of the equivalent unidirectional lamina and transforming it into 

the structural coordinate system. The contributions of each yarn are superimposed 

with respect to their volumetric contribution. Authors also suggest calculating the 
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strain at every new strain level to account for the non-linear behavior of the 

materials [86]. Pastore and Gowayed [87] underlined two major disadvantages of 

the FGM model presented earlier. First, the theoretical mathematical derivation is 

not compatible with the basic transverse isotropy used in the model. Secondly, the 

transformation matrices used for the stiffness calculations are not consistent. In 

their paper, authors address these problems.  They compared stiffness averaging 

and compliance averaging techniques, and they compared predicted and 

experimental results for triaxially braided, as well as orthogonal glass reinforced 

composites. The self consistent FGM model, as it was called, was used to predict 

elastic properties results using both stiffness averaging and compliance averaging 

technique. Authors highlighted that in all cases the stiffness averaging technique 

provided better predictions.  

Ko et al and Lei et al, [2, 88], presented the Finite Cell Model (FCM) in 

which the unit cell for the structure was defined as an assemblage of brick-shaped 

elements. The FCM defines the composite as a “space truss” and hence each yarn 

is considered individually. The yarns are assumed to be diagonals of the unit cell 

and analyzed as pin-jointed two-force truss members, which makes this model 

suitable for finite element analysis.    

Soebroto et al [89] published a design framework for braided tubular 

composites.  The objective was to fill a gap in the field by creating a link between 

textile preform manufacturers and structural designers creating design curves such 

as effect of braid angle on fabric diameter and transverse speed required for a 

given braider to achieve a certain diameter tubular braided preform. They also 
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used FGM model by Whyte [86], to predict elastic properties and strength of 2D 

braids.  Soebroto et al theoretical predictions, taken approximately from a graphic, 

were reported in the range of 5 to 85 degrees. Experimental verification was done 

for 20 and 70 degrees braid angles and appear to follow the general trend with the 

models published after them, such as the longitudinal elastic modulus decreases as 

the braid angle changes increases. However, for the region between 30 to 60 

degrees, their predictions appear nearly linear compared to other models that have 

a more curved shape. Again, FGM was originally developed for three 

dimensionally braided composites and does not include undulating fiber strands. 

Hence, following the comparison of linear versus curved predictions of the 

different models, it may be concluded that for two dimensionally braided 

composites more sensitivity in the results may be obtained by methods that 

account for fiber undulation [89].  

 A woven fabric study was published by Naik and Shembekar [90, 91, 92] 

as a series of three publications, namely, lamina and laminate analysis and 

laminate design. Naik and Shembekar indicated that the early elementary laminate 

theory models developed, such as mosaic and undulations models by Ishikawa 

and Chou, were simple but not accurate because of the one dimensional nature of 

these models leading to large discrepancies between predicted and experimental 

results. Conversely, authors indicated, numerical models were accurate but 

complex. To address early model concerns, Naik and Shembekar proposed simple 

but accurate generalized two-dimensional models to predict the elastic properties 

of woven fabric composites. Their models account for fiber continuity and 
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undulation in both the weft and warp directions, matrix only regions and cross 

sectional geometry of the yarns in the unit cell. The Naik and Shembekar two 

dimensional model was an extension of the Ishikawa and Chou one dimensional 

model. Only non-hybrid two-dimensional plain weave fabric lamina was 

considered. The unit cell was divided into straight cross ply, undulated cross ply, 

and matrix only regions. The undulating tow paths were modeled using sinusoidal 

functions. The elastic constants were calculated using a Cylindrical Assemblage 

Model (CAM) in the principal material directions. Each infinitesimal region of the 

unit cell was analyzed using CLPT [90, 91, 92].  

 In the analysis, the unit cell is assumed to be comprised of sub-sections 

along and perpendicular to the loading directions. Each sub-section is comprised 

of infinitesimal pieces. A uniform, unidirectional, in-plane load was assumed to 

be applied to the woven fabric. The infinitesimal sub-sections in the unit cell, 

which are in series with the loading direction, were assumed to be under constant 

stress. On the other hand, the infinitesimal sub-sections that are parallel to the 

loading axis were assumed to have constant strain in their mid-planes [90, 91, 92]. 

Following this approach, they created two models: Series Parallel Model (SPM) 

and Parallel Series Model (PSM). The SPM was created by assembling all the 

infinitesimal pieces in series with the loading direction under iso-stress condition, 

and then assembling all the sections along the loading direction under iso-strain 

condition. The PSM was created by following the same approach in the reverse 

order. Naik and Shembekar stated that the SPM provides the lower bounds of the 

in-plane stiffness constants, whereas the PSM provides the upper bounds of the 
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stiffness constants. Following experimental verification PSM was recommended 

for woven fabric composites. It should be underlined that PSM was developed for 

woven fabric composites, which can not be generalized to include braided 

structures that may have different angle orientations [90, 91, 92].    

Finally, Naik and Shembekar [92] underlined the superior properties and 

advantages of woven fabric composites to that of unidirectional composites such 

as shorter build time, complex shape capability and ease of mold impregnation 

because of the intertwined structure. Authors highlighted the fact that the elastic 

behavior of a unidirectional lamina and a thin laminate are the same, whereas this 

may not be necessarily true for a woven fabric lamina and thin woven fabric 

laminate because of the macroscopically heterogeneous nature of the woven fabric 

lamina; they also outlined the limited number of studies published in this field 

[92]. Authors studied the effect of stacking sequence or shift of laminae to obtain 

optimal laminates. Since this is beyond the scope of this review, interested readers 

are referred to the original publication [92].      

Masters et al [93] studied the mechanical properties of triaxially braided 

composites both analytically and experimentally, which could serve as a database 

of experimental results for comparison purposes with predicted results of models 

available at the time. The experiments used 2x2 braided AS4/epoxy resin 

composite flat panels impregnated by RTM. Braid angle, size of the braided yarn 

and size of the longitudinal yarn were varied to obtain three different 

architectures. A processing science model was used to construct the braided unit 

cell geometry. Mechanical properties of the braided composites were predicted 
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using four different approaches, namely, laminate, corrected laminate, diagonal 

brick, and finite element model. Laminate model was the simplest model where 

all the tows were treated as unidirectional plies in a symmetric laminate. A 

correction factor was applied to this model to compensate for the ignored fiber 

undulations to create the corrected laminate model. Diagonal brick model [94] is 

an extension of the above FCM. The finite element model was based on a 

previous model proposed by one of the authors of the paper, Foye R.L., where the 

unit cell was analyzed as a combination of sub-cells. They found that all model 

predictions were comparable to experimental findings and the differences between 

them were not significant; however, finite element method predictions were best. 

Also studied was the sensitivity of experimental measurements to strain gage 

sizes. Findings concluded that large gage sizes, such as the 2.54 cm gage length of 

some extensometers, were preferable [93]. Master and Ifju [95] later published a 

detailed study where they outline Moire interferometry, X-Ray radiography, and 

surface replication techniques as alternatives to inspecting or testing methods for 

braided composites [95]. 

A review paper that utilizes experimental results to compare stiffness 

predictive models available at the time was published by Falzon et al in 1993, 

[96]. Authors categorized the models into three types, namely, the elementary 

models such as fabric geometry model (FGM); the laminate theory models such 

as “fiber undulation model” and “mosaic model”; and, finally numerical models. 

Authors stated that the elementary models are unsuitable for strength calculation; 

the laminate models are unable to predict out-of plane elastic properties; while 
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finite element models are complex [96]. Although these observations were true at 

the time, in subsequent years, improvements were made to these models to 

address these concerns.          

Redman and Douglas [97] proposed a simple analytical model to 

determine the elastic properties of triaxially braided composites. The model 

utilizes a unique combination of Rule of Mixtures prediction and CLPT. Unlike 

many of the previous models presented, the Redman and Douglas model, due to 

this unique modeling approach combination, does not require the use of a unit 

cell. The length between neighboring fibers was assumed to be big enough to 

neglect the effect of undulating fibers. The triaxial braid is considered to have 

three separate plies that all coexist in the same space. Each ply is assumed to have 

a thickness equal to the full braid layer and assumed to have primary fiber tows 

and effective matrix material. Effective matrix material is assumed to be 

composed of two secondary fiber tows and matrix material, and is analyzed using 

CLPT as a symmetric laminate. This model may be a good alternative to obtain 

fast preliminary design results prior to a detailed analysis [97].  

Following Masters et al, [93], Naik et al [98] conducted an analytical and 

experimental study on the effects of braiding parameters on 2-D triaxially braided 

composites. Braiding parameters were listed as braid angle, yarn size and axial 

yarn content. A Repeating Unit Cell (RUC) was isolated and used for the analysis. 

Each yarn in the RUC was discretely modeled and sliced. The three dimensional 

effective stiffness of the RUC was calculated using a volume averaging technique 

under iso-strain assumption. Although the analysis was conducted in three 
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dimensions with respect to the XYZ global coordinate axis, the predicted elastic 

properties mainly showed sensitivity to braiding parameter in the longitudinal and 

transverse directions. The elastic properties in the thickness direction were much 

less sensitive to changes in braid angle or percent axial yarn content. This may be 

the underlying reason to why many braiding models following this study analyzed 

braids only in the axial and transverse direction, such as Carey et al, [75]. 

Stiffness properties were not affected by yarn sizes, but were affected by braid 

angle and axial yarn content. Increasing the braid angle increased transverse and 

shear elastic moduli, but decreased longitudinal elastic modulus. It was also 

reported that the out of plane elastic and shear moduli were insensitive to these 

parameters [98].  

Following Naik et al, Naik [99] published a study to extend on the 

previous work. He implemented the analysis in a program code called TEXCAD 

used for braided as well as other textile composites. The work was also extended 

to predict strength of woven and braided composites [99, 100, 101].   

Raju and Wang [102] reported a detailed study about classical laminate 

theory models for woven fabric composites derived from, but not limit by the 

simplification of, the Ishikawa and Chou models [79]. They first identified a 

repeating unit in the woven fabric composite, which was further divided into unit 

cells. This geometrical characterization was done for plain weave, 5-and 8-harness 

satin weave structures; this review covers only the plain weave case. A uniform 

membrane strain and curvature are assumed at the midplane of the unit cell. The 

unit cell was divided into four regions, each subsequently divided into four sub-
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regions composed of undulating and non-undulating regions. As was the case for 

Ishikawa and Chou’s fiber undulation model, Raju and Wang’s model accounts 

for the undulating fibers; however, they use a more accurate geometry to 

characterizes undulating fibers in the fill and warp directions than its predecessor. 

The undulating fibers are assumed to follow a sinusoidal shape function as with 

the model by Naik and Shembekar [90]. CLPT stiffness matrices A, B, and D of 

the unit cells are calculated as follows. First the A, B, and D matrices of all four 

sub-regions are calculated by integrating the Stiffness matrix, Q, over the volume 

of each sub-region. Then, these are summed over each sub-region to obtain A, B, 

D matrices for each region in the unit cell. Finally, all four regions are summed to 

obtain unit cell A, B, D matrices.  Authors state that the integrals involving the 

undulating strand stiffness were calculated numerically without specifying the 

method selected. In the model, coefficients of thermal expansions were also 

obtained.  Predicted results were compared to many other available models; most 

matched favorably. It should be noted that, as mentioned, the study was conducted 

for woven fabrics; hence, fill and warp strands were always perpendicular [102]. 

Gowayed et al [103] proposed a finite element model to predict the elastic 

properties of textile composites. This model addresses the short comings of the 

Unit Cell Continuum Model (UCCM) by Foye [104]. The UCCM utilizes a unit 

cell that is divided into subcells. Displacements of the subcells are calculated 

using Virtual Work, and summed to calculate the total displacement. However, 

Gowayed et al suggested that the UCCM does not clearly differentiate between 

fiber and matrix material properties in the analysis. They state that if the 
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difference between the properties of fiber and matrix materials is large, such as for 

the case of fiber reinforced composites, the solution becomes inaccurate. Authors 

suggested correcting this by using the UCCM along with Whyte’s FGM model 

[86], where composite material fibers and matrix constituents are treated 

separately and their contribution to the global stiffness matrix are calculated 

through superimposing each contribution with respect to their relative volume 

fraction. The model was verified experimentally [103].  

Nakai et al [105], Hamada et al [106], and Nakai et al [107] attempted to 

use the unit cell predictions to design and predict behavior of braided cylinders 

upon loading using numerical analysis. The analysis was comprised of a micro 

analysis, modeling individual resins and fibers as straight lines, and of a macro 

analysis, which combined the micro models, to form structural elements. They 

also studied the influence of braiding structure on torsional properties of braided 

composite tubes. 

Naik and Ganesh [108] studied two dimensional orthogonal plain weave 

fabric laminae through a thermoelastic analysis. The authors claimed that most of 

the models developed until then, [90, 109, 110], do not consider the actual strand 

geometry and cross section; hence, the fiber volume fraction was not included in 

the models. The few models that included these were complex. Consequently, 

they outlined a two dimensional closed form analytical method which takes into 

consideration the strand undulation and continuity in fill and warp directions, 

strand cross section, fiber volume fraction, and possible gaps between two 

adjacent strands. In their model, a unit cell that is composed of three layers, fill 
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and warp fibers and matrix, is used. Strand cross section, strand cross sectional 

shape in woven form and the strand undulations are defined by shape functions. 

Authors compared both circular and sinusoidal functions for strand undulations 

and concluded that the sinusoidal functions offered better predictions. As many 

before, Naik and Ganesh defined the unit cell of the composite as an asymmetric 

cross-ply laminate. This laminate is assumed to consist of one pure matrix and 

two unidirectional laminae. The thermoelastic properties of woven fabric lamina 

were calculated using CLPT under the assumptions that CLPT is applicable to a 

unit cell and the bending deformations of a unit cell are constrained by the 

surrounding unit cells. The undulating angle of the strands is assumed to vary 

linearly [108]. In their study, twelve material systems with different strand and 

weave geometries were analyzed. The results were compared to a previous model 

by the same author and experimental data. They concluded that the proposed 

model provides acceptable and quick results. The effect of the ratio of strand 

thickness to strand width on elastic constants was also investigated in the study 

and the results are provided in a graphical form. They also suggested that the twist 

of the strand along the fiber undulation direction should be investigated; however, 

later, Carey et al, [75], calculated this to be negligible in 2-D braided structures 

[108].  

Byun et al [111] proposed a novel braiding and pultrusion manufacturing 

technique during which the fiber tows are preimpregnated and subsequently 

braided on a Teflon mandrel. Impregnated preforms are cured in a curing die and 

cut into pieces. Authors proposed an analytical model for elastic properties of 



 

40 

braided products that first calculates the effective compliance matrix of a yarn 

based on its length then uses this information to obtain the effective stiffness of 

the composite by averaging the stiffness constants of the axial yarn, braided yarn, 

and matrix as functions of their volume fraction in the composite. The model does 

not allow for open-mesh braid configuration. Limited experimental data was 

provided [111].   

A three dimensional tow inclination model was proposed by Branch et al 

[112] to calculate elastic constants of two dimensional textile and three 

dimensional braided composites. The global constitutive equation of the 

composite material is derived using an iso-strain approach for the unit cell and 

averaging all tow segments and matrix within the unit cell [112]. 

Tsai et al [31] used a CLPT-based model to predict stiffness and strength 

of braided tubular composites. They introduced two models, bridge and crimp, 

that are similar to those of Ishikawa and Chou [79]. The experimental and 

predicted values were generally not in god agreement; however, better agreement 

was found with the crimp model.  

Robitaille et al [113] stated the importance of realistically characterizing 

preform geometry for use in predictive models. They proposed a method to 

describe preform interlacing geometrical patterns by a series of vectors. Authors 

indicate that the geometries can be used in predictive models as well as 

permeability studies of preforms to obtain optimal impregnation of fibers. In a 

subsequent study [114], the group underlined the difficulty in characterizing the 

complete structures for such purposes; hence, they presented an algorithm to 
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generate geometric characterization of unit cells for textile and composite 

materials. Possible useful applications were calculation of local permeability 

values and local stress distributions in these materials. Their examples are mostly 

aimed towards permeability calculations. 

Wong et al [115] investigated permeability models and proposed two new 

numerical models, namely, grid average and stream surface methods. Grid 

average simplifies the unit cell domain to a rectangular grid in the longitudinal 

and transverse directions plane from which the permeability tensor components 

are calculated. In the Stream Surface model the unit cell domain is first divided 

into basic volumes that consisted of open channels and porous tows from which 

permeability can also be calculated.  

Aggarwal et al [116] proposed an analytical model for their braided dental 

post and bone plate calculations. It was stated that many current models for 

braided composites ignored unit cell inter-yarn gap for which they proposed a 

micromechanical model. Here undulating fibers and yarn cross sections were 

considered. The geometrical characterization was based on a unit cell, authors 

called Repeating Unit Cell (RUC). Each sub-cell in the RUC is treated as 

assemblage of spatially oriented unidirectional laminates of transversally isotropic 

properties. The stiffness of the RUC was calculated using a modified CLPT. They 

assumed that the CLPT is applicable in infinitesimal subcells generated within the 

RUC. The subcells consisted of two braiding yarns and a single matrix lamina. 

Experimental results were used to validate the model.  Only longitudinal elastic 
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modulus results were provided; good agreement between predicted and 

experimental results was found.  

In another work, Aggarwal et al [117] proposed an analytical model based 

on a repeating unit cell (RUC) approach for in-plane elastic constants of two-

dimensional braided composites. The geometric model considers yarn undulations 

and inter-yarn gap using a sinusoidal shape functions. Under iso-stress and iso-

strain assumptions engineering constants of each sub-cell is calculated and 

averaged over the RUC volume. The paper considers flat braids. Both upper and 

lower braiding yarns follow the same undulation path but have different cross 

sectional area shapes. Yarns in the unit cell were calculated as an assemblage of 

small straight yarns. This approach was also followed in the local undulating yarn 

segments. They performed a sensitivity analysis of the yarn thickness/yarn width 

(t/a) ratio and concluded that in-plane elastic constants decrease slightly as the 

ratio increases. Intern yarn gap was found to affect the RUC volume fraction and 

consequently mechanical performance. Also, changes in yarn aspect ratio affect 

the undulation and therefore mechanical performance [117].  

Byun [118] proposed a detailed model to predict geometrical 

characteristics, undulation yarn angle, fiber volume fraction and three dimensional 

engineering constants of 2D braided composites. Byun underlined the simplicity 

of the calculation procedures compared to lamination theory [93] and yarn-

discretization [98] models. First, a geometric model of the triaxial braid is 

developed; yarn shape parameters measured from photomicrographs are used to 

characterize yarn geometric relationships within the unit cell, which lead to the 
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prediction of the undulation angle, fiber volume fraction and elastic constants. 

The resin impregnated yarns are modeled as unidirectional composite rods. The 

effective compliance matrix of the unidirectional composite is found through 

simple transformation through the undulation angle and subsequent averaging of 

the transformed compliance matrix. The author stated that after transformation the 

specific geometry of the yarn is no longer significant and it can be treated as 

layers of orthotropic materials. It is assumed that, once loaded, each layer 

undergoes iso-strain. The effective stiffness of the composite is found by 

averaging the stiffness of each layer based on volume. The stiffness matrix is 

inverted to get the compliance matrix, from which engineering constants of the 

triaxially braided composite are obtained. The model was experimentally verified: 

predicted and experimental fiber volume constants were in good agreement; 

however, the undulation angle was under-predicted. In the conclusions author 

suggested more experiments were needed to support the model predictions.  

Harte and Fleck [119, 71] studied the necking and tensile behavior of 

braided tubes. Elastic moduli of which were predicted using laminate plate theory. 

The mechanics of neck propagation was investigated; the authors concluded that 

braided structures can be very effective in energy absorbing applications because 

they deform in tension at constant stress for large extensional strains. Failure 

mechanisms of braided composites under compression and torsion were also 

investigated. 

Huang [66, 120, 121, 72] underlined that, for woven and braided fabrics, 

many of the available models were developed for elastic behavior (i.e. small 
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displacements) and there are very few models for plastic behavior and strength 

predictions. Authors proposed a micromechanical model, the bridging model, for 

woven and braided fabrics capable of determining elastic, plastic and ultimate 

strength behavior of fiber composites under any arbitrary load condition. 

Concisely, in the model the overall applied load on the composite is explicitly 

correlated with the stress states developed in the fiber and matrix constituents.  

Huang [66, 120, 121, 72] divided the woven/braided composite into a repeating 

unit cell (RUC) further divided into four sub-elements consisting of two yarns and 

pure matrix regions. Each sub-element component, assigned a local coordinate 

system, can be locally treated as a unidirectional composite. Relative coordinate 

transformations are provided with respect to the global axes. Yarn undulations are 

defined by sinusoidal functions. Following the iso-strain assumption, an average 

stiffness/compliance of the sub-element is determined. Based on the iso-stress 

assumption, the overall stiffness/compliance matrix of the unit cell is obtained 

using the contributions of each sub-element.  To be more comprehensive on the 

approach, Huang uses a “bridging matrix”, to correlate the volume averaged stress 

increments in the fiber and matrix of the representative volume element. This 

matrix represents the load carrying contribution of one of the constituents in the 

composite with respect to the other constituent (i.e. contribution of fiber with 

respect to matrix). The model utilizes this relationship in the calculation of the 

volume averaged stress relationship. The bridging matrix is populated differently 

when finding elastic or plastic response, or ultimate tensile strength. The results 

compared favorably to the experimental studies and other models available in the 
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literature. Here, Huang also studied the effect of gap-ratio of braided fabrics on 

the predicted properties via a parametric study [66, 120, 121, 72]. Huang’s model 

is correlated with experimental data and results. Differences between 

experimental and predicted results are less than 13% [122, 123]. 

A computational micromechanical model was developed by Ivanov and 

Tabiei [124] to predict elastic properties of woven fabric composites. The model 

is based on a micromechanical approach and homogenization technique. It is 

claimed that due to the efficiency of the model it is suitable for large scale finite 

element analysis. Similar to other models, a unit cell of the composite is divided 

into four sub-cells with respect to its fill and warp yarns. Direction of the yarns in 

each cell is characterized by the braid and undulation angles. The homogenization 

technique used was summarized in three steps by the authors: first, partitioning 

the constituent stiffness matrices by choosing iso-strain and iso-stress 

components; second, calculating the interim matrices; and, finally, calculating the 

partitions of the effective stiffness matrix [124].   

Yan and Van Hoa [125] developed a macrostructure model to predict the 

mechanical behavior of 2-D triaxially braided composites. Authors used the 

elastic deformation energy of a unit cell to calculate the effective stiffness of the 

braided composites. They used this model to predict elastic properties and to 

conduct a parametric study [126]. The elastic property predictions were compared 

to results of Master et al [93]. In their parametric study, they separated 

independent parameters (yarn and composite geometrical parameters, and 

constitutive material constants) that affect the analysis of braided composites. 
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These parameters can be used for guidance in designs using triaxial braided 

composite structures.  

Tabiei and Yi [127] compared several numerical analysis methods and 

proposed a new one to predict the elastic properties of woven fabric composites. 

Their model is a simplified version of the earlier “method of cells” for woven 

composites by Tabiei et al [128]. The authors claimed that the new method is 

more computationally efficient and requires less memory than the previous 

methods that were too complex and required high numbers of calculations; thus 

addressing one of the major disadvantages of analyzing braided composites using 

numerical analysis.   

Quek et al [129] proposed an analytical model for the effective elastic 

stiffness of a 2D triaxially flat braided composite capable of investigating the 

effect of imperfections on stiffness. A Representative Unit Cell (RUC) comprised 

of two braid tows, one axial tow and one matrix layer is developed for the braid 

geometry. The model uses a Concentric Cylinder Model (CCM) to predict, with 

respect to local coordinate axes of the fibers, the elastic constants of the tows in 

the composite. The contribution of the undulating fibers, which affect the stiffness 

in the ply direction, is calculated by averaging transformed local fiber stiffness 

over one complete undulation cycle, called wavelength in the paper. Finally, the 

stiffness in the ply directions is transformed to the global coordinate system. 

Stiffness contributions of each ply are assembled together as a function of their 

volume fraction within the RUC to predict overall RUC elastic constants. The 

predicted results are compared to experimental and finite element model results; 
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results are in agreement. Based on their results, the authors underline the 

advantages of using the proposed model in terms of time and computational 

memory savings compared to finite element models, which they state should only 

be used if ultimate strength is required. Analytical models are preferable for 

elastic properties. Finally, a parametric study revealed that braid fiber plies in the 

RUC have the largest effect on elastic properties.  

Carey et al, [75], proposed a model to predict elastic constants of 2D-

diamond-braided fiber composites. The model is a generalization of the model 

developed by Raju and Wang in which the geometry of a braid unit cell is 

analyzed by dividing the unit cell into thirteen regions. These regions are 

categorized as overlapping strands, strand undulation, and matrix only regions. 

Model was capable of limiting the physically possible braid angles for a unit cell 

based on strand geometry. In the model, unidirectional lamina elastic constants 

are found using micromechanical models.  The longitudinal modulus and major 

Poisson’s ratio are calculated using Rule of Mixture predictions. Transverse and 

in-plane shear moduli are calculated with Halpin-Tsai equations, while out-of-

plane shear modulus and Poisson’s ratio were calculated using stress partitioning 

parameter and a method proposed by Ko, respectively [75].  The macro model is 

based on a modified CLPT where a volume weighted stiffness matrix is calculated 

using the thirteen regions. Stiffness matrices of undulation regions are calculated 

using the Gauss-Legendre numerical iteration. Stiffness matrices are subsequently 

transformed to the loading direction axis. Comparison of the predicted results to 

results of other models and experimental findings were in god agreement. Later 
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they performed a sensitivity analysis of the effect of constituent elastic constants 

on braid elastic constants. The model is found to be mainly sensitive to 

longitudinal fiber elastic modulus, and matrix elastic and shear moduli. Authors 

later used the findings of the model to design a braided composite catheter 

through calculations of axial, flexural and torsional rigidities of braided 

composites [75, 130, 55].  

In another publication, Carey et al, [131], claimed that, although accurate 

and promising, available elastic property predictive models for woven/braided 

structures are lengthy. They proposed a regression based model simpler than other 

available models, for use in the preliminary stages of design with braid/woven 

composites. The geometrical characterization of the braid unit cell was done in a 

generalized manner that compensates for different braids angles and open-mesh 

braids. Using previously developed analytical models, elastic constants of braids 

and laminates possessing the same angle-ply geometry are calculated. A unit cell 

fiber volume fraction was determined. Normalized elastic modulus values are 

plotted with respect to unit cell fiber volume fractions. A linear relationship was 

observed between braid and laminate longitudinal and transverse elastic moduli 

values and fiber volume fractions. This model is underlined to be a very 

promising pre-design tool for such composites [131].  

Recently, finite element models used for predicting engineering properties 

of 2x2 braided composites were developed by Tang et al [132], Goyal et al [133], 

and Goyal and Whitcomb [134]. Tang et al and Goyal et al studied the effect of 

waviness ratio, a relation between the thickness of lamina with an undulating yarn 
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and the undulation length, and the braid angle on the elastic properties of braided 

2x2 braided composites. Transverse properties were found to be more sensitive to 

these parameters. On the other hand, the out-of-plane modulus was found to be 

almost insensitive. Later, stress concentrations of 2x2 braided composites were 

investigated by researchers from the same group Goyal and Whitcomb [134]. 

Potlori and Mannan [135], and Potlori et al [136] used finite element 

analysis to determine the mechanics of non-orthogonal structures such as braided 

structures [135]. Flexural and torsional behaviors of biaxial and triaxial braided 

composite structure were also investigated. Flexural and torsional rigidities, 

calculated using a modified CLPT, analysis were in good agreement with 

experimental findings [136].  

Very recently, Lomov et al, [137], published a detailed work on finite 

element analysis (FEA) of textile composites that provides an algorithm of the 

necessary steps to textile composites FEA [137].  Since 2007, Tsai et al, [138], 

Zheng and Binienda [139], and Pickett et al, [140] also published studies to 

predict the elastic properties of braided composites using FEA analysis.  

Ayranci and Carey [141] indicated that almost none of the models used for 

predicting tubular braided structure elastic constants consider tube diameter in the 

geometric definition of the unit cells. Authors modified the analytical models 

developed by Raju and Wang, [102], and Carey et al., [75] to compensate for the 

curvature in the unit cell [141].  
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2.9. Conclusion 

In this report, braiding technique used for composite materials 

manufacturing was reviewed. Advantages and disadvantages of 2D and 3D 

braiding were outlined. Resin impregnation of fibers and different methods to 

achieve proper impregnation were listed. A broad range of applications of 2D 

braided composite materials were listed to show the nearly endless possibilities 

and advantages of 2D braids, which reinforce the notion of braiding as a strong 

alternative to other types of composite manufacturing techniques available. A 

large number of analytical models used to predict the elastic properties of braided 

composites were outlined and discussed. 

2D-Braided composite materials offer numerous advantages over the 

conventional materials. The recent improvements in their fabrication techniques 

and understanding of their mechanical behaviors through predictive models 

contribute to the increasing popularity of these materials.  

The investigation conducted in this chapter help to underline the gaps 

existing in the literature crucial for this thesis. Very limited data exist related to 

the investigation of the effect of radius of curvature of unit cells and the effect of 

undulation lengths of unit cells (i.e. open versus closed mesh braided structures) 

on the elastic properties of 2D braided composite materials.  

The works presented in Chapters 3 to 6 were conducted to address these 

shortcomings. Chapters 3 reports on development and verification of an analytical 

model that utilizes a curved-unit cell for the predictions, and important parameters 

that affect the elastic properties using case studies. Chapter 4 was written to 
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outline the important parameters of the developed model using a sensitivity study, 

and also to document the experimental verification of the shear modulus 

predictions of the model. 

 Chapters 5 and 6 investigate the open-mesh braided composites by 

comparing analytical versus experimental findings. Chapter 5 was written to 

outline the comparison of analytical and experimental findings of open-mesh 

braided composites by analyzing the effects of undulation length on elastic 

properties of 2D braided tubular composites. Also, the applicability of the 

proposed model in Chapters 3 and 4 to stent-like structures, another medical 

device that may be manufactured using braiding, was investigated. Chapter 6 was 

written to further validate a previously developed regression based model using 

open-mesh experimental data, and determine Lower Linearity Limits of the model 

for practical design applications. 
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CHAPTER 3:  PREDICTING THE LONGITUDINAL ELASTIC 

MODULUS OF BRAIDED TUBULAR COMPOSITES USING A 

CURVED UNIT-CELL GEOMETRY 

 

A version of this chapter was published as: 

 

Ayranci, C., Carey, J.P., Predicting the longitudinal elastic modulus of braided 

tubular composites using a curved unit-cell geometry, Composites Part B: 

Engineering, 41 (3), 229-235, 2010. 
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3.1. Introduction 

 Braiding has been used for years to produce textile fabrics [1].  Increasing 

demand to produce fast, better, and automated composite material preforms 

forced researchers and engineers to utilize braiding as one of the techniques that 

fulfills this requirement.  Braiding is one of the top choices of composite 

manufacturers for many applications due to the advantages it offers; such as 

increased toughness, control over fiber deposition angle and fast fiber deposition 

rate.  Some of these applications can be listed as braided air ducts, aircraft 

structural parts, automotive shafts, braided catheters, braided stents and braided 

composite dental posts [1-5].  

 Optimal use of braided composites is possible via use of accurate models 

to predict their mechanical properties. Over the years, researchers developed both 

numerical and analytical models. Although accurate, numerical models are found 

to be rather lengthy due to the complex geometry requirements for stiffness 

calculations [6].  Analytical models, on the other hand, can provide sufficiently 

accurate data with less processing time and computer power requirements [5]. 

 Many of the analytical models developed for woven-fabric and braided 

composites utilize Ishikawa and Chou’s work developed for woven fabrics [7].  

Authors proposed mosaic, fiber undulation, and bridging models that utilize the 

well-known Classical Laminate Plate Theory (CLPT) as a base for the 

calculations.  The fiber undulation model was extensively modified and used by 

the braiding community as this model accounts for the undulation of the fibers 

between the cross-over regions of a braided structure for more accurate results.   
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 Redman and Douglas predicted the tensile elastic properties of braided 

composites using a combination of rule of mixtures and Classical Laminate Plate 

Theory (CLPT) [8]. The authors neglected the undulating strand in their study by 

assuming the length between two neighboring strands to be large.  

 Soebroto et al. used Fabric Geometry Model (FGM) to predict the 

engineering properties of braids [9]. FGM uses a simplified geometry of the 

reinforcing elements and volumetrically combines the stiffness of these elements 

[9]. This model treats the reinforcement as a linear element hence may be seen as 

omitting the effect of undulation in the predictions.  

 Falzon et al. investigated a number of models to predict the stiffness of 

woven composites [6]. The authors divided the models into three main categories, 

namely, elementary models that rely on a generalized Hook’s law, CLPT models, 

and numerical models (i.e. finite element models).  The authors concluded that 

elementary models were simple but not suited for strength analysis, laminate 

theory models were limited to in-plane property predictions and not suitable for 

complicated architectures, and finite element models were suited for strength 

analysis but required detailed geometrical details [6].  

 Since, many new models have been published in the literature, and with 

the use of advanced computing capabilities both numerical and analytical models 

have developed to account for the limitations of the earlier models and to predict 

elastic properties of braided composites [10-16].  A detailed investigation of these 

works, along with others, has been published [5]. 
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 Many of these models were developed for flat-braided structures and 

predicted the properties through a flat unit-cell, or neglected the effects of 

curvature in tubular braids such as in works of Aggarwal et al. and Carey et al.  

[12,16]. This assumption may be acceptable for tubular structures with relatively 

large radii; however, it maybe not be for braided structures with smaller radii, 

such as braided catheters and stents.   

 Medical use of braided composites is rapidly increasing. The delicate use 

of braided tubular medical tubes in the human body requires thorough 

understanding of their mechanical properties. Hence, accurate models that predict 

composite material elastic properties must be developed and verified 

experimentally. 

 Carey et al. modified Raju and Wang’s predictive model, developed for 

woven composites based on a generalized CLPT analysis, to predict elastic 

properties of diamond braided composites [16, 17]. Unlike some of the available 

simplified models, Carey et al.’s model included the possible effect of open-mesh 

regions (i.e. matrix only regions due to extensive undulating regions); however, 

the model neglected the effects of the curvature on the unit cell and assumed a flat 

unit cell even for tubular braided composites.  

 Potluri et al. (2006) and Potluri and Manan (2007) investigated the 

thicknesses of braided tows [18, 19]. The authors calculated the thickness of the 

tows to find the softened tow properties for use in a Modified Lamination Theory 

based model, which was also used by Byun in flat braided triaxial composites 

[10]. The authors suggested the thicknesses should be individually investigated. 
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Authors did not include the open mesh regions, although their unit cell indicates 

these regions, and did not study the effect of tube radius on the properties. 

 The proposed model is based on Carey et al.’s model; however, it is 

developed to evaluate and recognize the effects of the curvature on the elastic 

properties of the unit cell as a function of the tubular braided composite’s 

diameter.   

3.2. Proposed model 

 An initial version of the model was presented earlier [20]. Here, the 

detailed derivation, comparison of results with other available models and 

experimental results presented in the literature, and in-house experimental results 

are presented to validate the model.    

 In two-dimensional tubular braided composites, fibers are deposited on a 

cylindrical mandrel and impregnated by a matrix material.  In this process, the 

diameter of the mandrel gains importance since each unit cell and the fiber-tow 

geometry in the unit cell would have a more pronounced effect depending on the 

diameter of the mandrel, i.e. curvature of the unit cell.   

 Figure 3.1 presents the top-view of an isolated unit cell. The unit cell is 

composed of three different regions, namely: crossover (where fiber tows lay on 

top of each other), undulating, and matrix-only regions.  The strand thicknesses in 

the crossover regions of large-diameter tubular braids can be assumed almost 

identical as the radius of curvature of the unit cell can be assumed infinite; hence, 

the elastic properties of such structures can be predicted using flat-unit cell 

geometry.   
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 In reality, the unit cell of a tubular braided structure has a curved 

geometry, (Figure 3.2), and the radius of curvature of the unit cell is a function of 

the tubular diameter. As the diameter of the tubular braid decreases, the 

thicknesses of the strands deposited on the mandrel become uneven, (Figure 3.3). 

The change in the curvature of the unit-cell and the un-even strand thickness must 

be accounted for through geometrical characterization of the unit cell to obtain 

more accurate elastic property predictions.  

 

 
Figure 3.1: Top view of a unit cell. 
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Figure 3.2: Schematic representation of a curved unit cell on a tubular 

braided composite. 
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Figure 3.3: Zoomed-in section of the edge of the unit cell of Figure 3.2 

(exaggerated view). (in this figure φ is defined in the 0≤φ≤φc range) 

 

3.2.1. Geometric Characterization 

 Schematic representation of a curved unit cell is shown in Figure 3.4.  The 

unit cell is characterized with respect to the radius (r) of the unit cell (i.e. radius of 

the tubular braided structure), the arc angle (φc) covered by the unit cell, and the 

longitudinal direction (y) of the unit cell/tubular braided structure. The braid angle 

(θ) is defined as the angle between the fibers and the longitudinal direction of the 

unit cell.  The thirteen regions (defined as by Carey et al. [16]) of the unit cell are 

   -θ  
 Layer 

   +θ  
 Layer 

Matrix only 
region 

φc 

φ 

rin

r-

r+



 

80 

shown using boxed-numbers in Figure 3.4.  Regions 1 to 5 represent the crossover 

regions. In these regions there are no undulating fibers; therefore, the composite 

can be modeled as a cross-ply laminate.  Regions 6 to 9 and 10 to 13 are the 

matrix-only regions and undulation regions, respectively.   

 

Figure 3.4: Geometric characterization of the curved unit cell. 
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each other. Similarly, lines 4, 5, 6, 7, and 9 are assumed parallel to each other. 

The magnitude of the lengths of lines 4, 8, 9 and 10 are same and equal to L, 

where L is a function of the strand width, Wy: 

 

))2/(2cos( πθ −
= yW

L  (1)

 

  In the case of an unfolded and flattened unit cell, a Cartesian coordinate 

system, x-y, can be defined (x-direction being perpendicular to the previously 

defined y-direction).  For this flat unit cell, for example, line-2 can be defined via 

angle γ, the complementary angle of the braid angle θ, as [16]: 

 

)tan(2 γ⋅= xy  (2)

 

 The thicknesses of the tows used in most of the braiding applications are 

relatively small. Hence, it is assumed that upon unfolding the curved unit cell, the 

top layer of the unit cell does not buckle and Equation (2) can be modified and 

written as Equation (3) with )( ϕ⋅r  being the arch length of the curved unit cell:  

)tan()(2 γφ ⋅⋅= ry  (3)

 

 The unit cell was geometrically characterized by defining lines 1 to 10 

using the aforementioned approach. The layers that create the thickness of the unit 
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cell, fiber tows and the matrix, were projected onto a mandrel surface. In the 

model, an area-weighted approach was used to calculate unit cell elastic 

constants; therefore, defining the geometry of the unit cell plane which lies on the 

mandrel is assumed to be sufficient. 

 The difference between the thicknesses of the layers of the unit cell has to 

be defined. With respect to Figure 3.3 and Figure 3.4, the inner radius of the 

curved unit cell was defined as rin. The radius of the top of the –θ ply, and top of 

the +θ ply were defined as r- and r+, respectively. The outer radius of the curved 

cell is assumed to have a thin layer of matrix rich region (omitted in Figure 3.4) 

and this radius was defined as rm.  Equation (4) can be geometrically derived 

using these radii and hc as the thickness of the wet strands, and tm as the thickness 

of the matrix layer. (i.e. Equation 4 is derived by assuming a constant cross 

sectional area and parametrically calculating the radii as the inner radius changes).  
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3.2.2. Theoretical approach 

 In the model, the undulating strands were assumed to follow a sinusoidal 

path defined by the function )(dh   [16, 17]: 

 



 

83 

2
))cos(1()(

c

u
d

h
a
dh ⋅+= π  (5)

 

where au is the length of the entire undulating region projected onto the mandrel 

surface, and d  is the projected length of the undulation as uad ≤≤0 . Hence, the 

undulation angle, β, was calculated from the derivative of )(dh  with respect to the 

projected length, d . 

 Following the calculation of laminae properties using micromechanical 

models, properties are transformed into the y-direction for all regions except 

matrix-only regions. 

 Transformations of the non-undulating regions were done using Equation 

(6) [16]; 
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 Similarly, stiffness matrices ( ⎥⎦
⎤

⎢⎣
⎡ −

uQ ) of regions 10 to 13, i.e. undulating 

regions, were calculated using Equations (9) and (10) [16, 17, 21]; 
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(10) 

 

 If the unit cell is divided into small finite intervals, it was assumed that 

each of these intervals is tangent to the mandrel; therefore, other than the ones 

listed above, the undulating and non-undulating regions do not need any 

additional transformation to match the unit cell curvature.   

 

 Earlier, the Classical Laminate Plate Theory (CLPT) was modified for 

woven structures, Raju and Wang, [17], and it was generalized for braided 

structures, Carey et al., [16], to predict the elastic constants. These works were 
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taken as a base for the proposed model. The general equation of the CLPT can be 

written as: 
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where volume weighted matrices are defined as:  
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where A, B and D are the well known extensional stiffness, coupling stiffness, and 

bending stiffness matrices, respectively. PA is the projected cross sectional area of 

the unit cell onto the mandrel surface. The A, B and D matrices are defined and 

calculated separately for the thirteen regions of the unit cell using the general 

Equation (13).  

 

[ ]

[ ]

[ ] φ

φ

φ

φ

φ

φ

ddydrrQD

ddyrdrQB

ddydrQA

y r

y r

y r

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥⎦
⎤

⎢⎣
⎡=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥⎦
⎤

⎢⎣
⎡=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥⎦
⎤

⎢⎣
⎡=

−

−

−

2

 (13)

 



 

87 

 Here, as an example, formulae used for the calculations of Region 1 is 

provided via Equations 14 to 16. These equations provide a more detailed look at 

Equation (13), where [Qc(θ)], [Qc(-θ)] and [Qm] are the stiffness matrices for +θ 

strand ply, -θ strand ply, and matrix ply, respectively. The integration limits for 

equations 14 to 16 are provided in Table 3.1 as an example for Region 1. The 

limits, i.e. a to j, are derived from the geometrical boundaries of Region 1 as seen 

in Figure 3.4. 
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Table 3.1: Limits of the integrals for Equations 14 to 16. 
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 Remaining eight regions (i.e. regions 2 to 9) can be derived following the 

same procedure described.  For undulating regions (i.e. regions 10 to 13), Gauss-

Legendre numerical integration method was used with n=10 as data was not 

changing after the tenth order.  

 The elastic constants of the curved unit cell are determined using the 

inverse of the overall stiffness matrix of Equation (11) as outlined in Equations 17 

and 18 [16, 22], where t is the thickness of the unit cell and assuming in plane 

loading: 
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3.3. Results 

 In this section, the proposed “curved model” is first compared to other 

models available in the literature. Then, it is validated using experimental data 

available in the literature and in-house experimental results.  

 

Table 3.2:  Yarn and resin properties used by Naik, R.A. (1996) 

[adopted from [13]]. 

 
 

E11 (GPa) 
 

E22 (GPa) G12 (GPa) ν12 ν23 

Hercules 
3501-6 epoxy 3.45 3.45 1.28 0.35 0.35 

AS4 graphite 
yarn 144.8 11.73 5.52 0.23 0.30 

 
Note: E, G, and ν are used for Elastic Modulus, Shear Modulus, and Poisson’s ratio, respectively.  
Directions 1, 2, and 3 indicate longitudinal, transverse, and thickness directions, respectively.  
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 Naik, R.A. (1996) published a study that included stiffness prediction of 

two dimensionally braided composites [13]. The model was implemented in a 

personal-computer based code, TEXCAD.  Naik used AS4 graphite fibers and 

Hercules 3501-6 epoxy matrix for the analysis. Table 3.2 outlines the yarn and 

matrix elastic properties used by Naik (1996). Yarn width and yarn thickness were 

1.411 mm and 0.09 mm, respectively.  Results of Naik,, which were read off a 

graph, are compared with the proposed model (Figure 3.5) [13].  During the 

prediction, the curvature of the unit cell was set to be near infinite to omit the 

effects of curvature and to properly compare the results to that of Naik’s flat cell 

model. This was done by setting the radius of curvature for the curved model to 

near relative infinity using a 500 mm diameter (as the model becomes insensitive 

to the changes in radius at this radius, i.e. infinite radius).As can be seen in Figure 

3.5, the two models are in agreement.  This gives confidence to the results of the 

proposed model for flat braided structures (i.e. infinite radius of curvature).   
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Figure 3.5: Comparison of results of the proposed study (with infinite radius) 

to that of Naik, R.A. (1996) [13]. Line is used for Naik data for visual 

purposes of overlapping trends only. 

 

Table 3.3: Elastic properties used for Figures 3.6 and 3.7, respectively 

(data adopted from Carey et al. (2003), [16], for direct comparison purposes). 

 

 
 

E11 (GPa) 
 

E22 (GPa) G12 (GPa) ν12 ν23 

AS4 fiber  228 40 24 0.26 0.1 

Epoxy 
Resin  4.2 4.2 1.62 0.3 0.3 
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 Figure 3.6 presents the effect of curvature for a case presented by Carey et 

al. [16].  Yarn width and yarn thickness for this case were taken as 3.14 mm and 

0.16 mm, respectively. The unit cell was composed of AS4 carbon fibers, and 

epoxy polymer resin matrix; the specific name of the epoxy was not provided, 

only the properties were listed. The fiber volume fraction of the yarns was taken 

as 0.43.  The elastic properties, (Table 3.3), used for the calculations, are adopted 

from Carey et al. for direct comparison purposes with the results. Figure 3.6 

presents the predictions for the flat model versus curved model. Curved unit cell 

results were obtained by setting the radius of curvature as 10 mm. Due to the 

relatively thin strand thickness assumed by Carey et al., 0.16 mm, the predicted 

effects of curvature had only approximately 1.6% difference in results compared 

to the flat unit cell model. It is difficult to visualize the difference for the given 30 

to 60 degrees braid angle range, in Figure 3.6; therefore, an inset image zooming-

in between 30 to 34 degrees braid angles was added, highlighting the small 

difference between the models.  Although one might argue that a difference of 

1.6% is not significant, this is due to the very small strand thickness of the 

investigated case of Carey et al.  Using a different case study in which every 

parameter above is maintained with the exception of the strand thickness, which is 

increased to 0.5 mm, this effect is more noticeable.  Results are presented in 

Figure 3.7; the effect of curvature becomes much more pronounced as the strand 

thickness increased, leading to a difference between predictions of the flat- and 

curved-unit cell of 4.7%.  During the design of braided tubular products, such as 
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medical catheters, 4.7% difference in predictions may offer additional valuable 

tailorability in the design parameters and prevent critical arterial damage.  

 

 
Figure 3.6: Effect of curvature on Carey et al.'s prediction, [16], for hc = 

0.16mm (inner figure is a zoomed-in section). 
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Figure 3.7: Effect of curvature on Carey et al.'s, [16], prediction for 

hc= 0.5mm. 

Table 3.4: Elastic properties used in the calculations for Figure 3.8.  

 
 

E11 (GPa)
 

E22 (GPa) G12 (GPa) ν12 ν23 

Epon 825 – 
Ancamine 

1482 
3.5 3.5 1.35 0.3 0.3 

Kevlar 49 
fiber 130 7.3 2.86 0.35 0.1 
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Kevlar 49 – 
Epoxy 

Lamina 
(Experimental 

properties 
based on 

Flanagan and 
Munro (1986)  

[24]) 

79.7 5.9 1.5 0.33 - 

 

 The proposed model has also been compared to the experimental findings 

of Carey et al. and in-house experiments for validation purposes. Carey et al. 

reported experimental longitudinal elastic modulus findings of 42.5 and 50 degree 

braided composite tubes. The specimens were braided on 11.1 mm and 12.7 mm 

outer diameter mandrels. The properties of the materials used for the specimens 

are tabulated in Table 3.4 [16]. The unit cells for the specimens were reported to 

have a strand width and thickness of 3.1 mm and 0.38 mm, respectively [23]. 

Using these values, flat model of Carey slightly over-predicted the results [16]. 

The experimental longitudinal modulus was reported as 6.3 GPa (±0.11 standard 

deviation) and 4.7 GPa (±0.085 standard deviation) for 42.5 and 50 degrees braid 

angles, respectively. Results of the experimental findings, flat-unit cell, and the 

curved unit cell for the diameters reported in the said study are plotted in Figure 

3.8. The over-prediction of the flat unit cell model is clearly seen; however, the 

predictions for the two different diameters of the curved unit cell are in much 

better agreement with the reported experimental results. The percent difference, 

for the 42.5° braid angle, between the experiments versus flat-model and the 

experiments versus the curved model were, 8.10% and 2.41%, respectively.  
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Similarly, the percent difference, for the 50° braid angle, between the experiments 

versus flat-model and the experiments versus the curved model were, 4.33% and 

2.37%, respectively.     
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Figure 3.8: Comparison of the curved and flat model for Carey et al.’s 

experimental results [16, 23]. 

 

 In house experiments for three different diameter braided tubular 

specimens were also conducted to validate the proposed curved-unit cell 

predictive model. Kevlar 49 fiber and Epon 825/Ancamine 1482 curing agent 

matrix system (Table 3.4) was used in preparation of the specimens. The curing 

cycle of the composites is detailed by Munro and Flanagan [24]. Three different 

size Teflon-mandrels were used for the specimens.  Teflon-mandrels enabled easy 
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removal of the cured specimens from the mandrel.  Specimens were tested using a 

MTS-810 testing machine (MTS Systems Corporation Eden Prairie, MN, USA) 

along with a 25.4 mm (1-inch) gage length extensometer (MTS 634.12E-24). 

During the experiments 1 mm/min loading rate was used to obtain a failure of the 

specimen within 1 to 10 minutes (ASTM D 3039/D 3039M – 08).   

 For ease of discussion, in this text, the specimens are referred to as KLTE 

(Kevlar - Large diameter - Tensile test specimen), KMTE (Kevlar -Medium 

diameter - Tensile test specimen), and KSTE (Kevlar - Small diameter - Tensile 

test specimen).  Table 3.5 lists the geometric measurements taken from the 

specimens as well as the number of specimens tested for each diameter. Braid 

angle was measured by wrapping transparent paper on the specimens to trace the 

yarn paths using a marker and measuring the angle using a protractor. 

Measurements were taken for five different yarns to obtain a standard deviation. 

Table 3.5: Geometric measurements of the specimens used for 

validation. 

 
Number 

of 
Specimens 

Braid 
Angle 

(θ, deg) 
(±Standard 
Deviation) 

Strand 
width 

Wy (mm) 
(±Standard 
Deviation) 

Outer 
Diameter 
OD, (mm) 

(±Standard 
Deviation) 

Thickness 
t (mm) 

(±Standard 
Deviation) 

KLTE 5 54.1 (±0.5) 1.99 (±0.06) 10.22 
(±0.05) 0.28 (±0.01) 

KMTE 5 51.4 (±0.7) 1.85 (±0.03) 8.61 (±0.05) 0.30 (±0.13) 

KSTE 5 48.1 (±0.9) 1.74 (±0.07) 7.14 (±0.01) 0.30 (±0.01) 
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 Figure 3.9 shows the longitudinal elastic modulus values for the KLTE, 

KMTE, and KSTE specimens and includes experimental results and 

corresponding curved-model prediction results for the dimensions listed in Table 

3.5. The error bars in the figure refer to standard deviations in the case of 

experimental findings, and to upper and lower predictions in the case of the 

curved model. The predictions for the curved model were obtained for the average 

values of the geometrical measurements for the unit cell. The upper and lower 

value predictions for the curved unit cell were obtained using one standard 

deviation above and one standard deviation below the average unit cell 

measurements, respectively.  Very good agreement between the experiments and 

predictions can be observed.  
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Figure 3.9: Experimental and corresponding curved model prediction 

results of KLTE, KMTE, and KSTE specimens. (Error bars indicate the 

standard deviations for the experimental results and upper/lower predictions 

in the curved model results.) 

 

 For KLTE specimens, average experimental longitudinal elastic modulus 

was found as 3.95 GPa (± 0.42 Standard Deviation) whereas the curved model 

predicted 4.12 GPa. Predicted value falls within the spread of standard deviation 

of the experimental finding; hence, the results are in very good agreement.     

 For KMTE specimens, average experimental longitudinal elastic modulus 
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predicted 3.98 GPa. Predicted value falls within the spread of standard deviation 

of the experimental finding hence the results are in very good agreement. 

 For KSTE specimens, average experimental longitudinal elastic modulus 

was found as 4.83 GPa (± 0.15 Standard Deviation) whereas the curved model 

predicted 4.48 GPa. The upper level prediction from the model for KSTE is 4.64 

GPa. The lower value of the experimental finding of 4.68 GPa (i.e. 4.83-0.15 = 

4.68) and the upper level prediction of the curved model (4.64 GPa) has only 

0.85% difference, which is an excellent agreement. 

 The effect of radius of curvature observed on the longitudinal elastic 

modulus values are similarly observed in shear modulus predictions and are 

currently being verified using experiments.  

3.4. Conclusions    

 This paper outlines the development and validation of an analytical model 

to predict the longitudinal elastic modulus of two-dimensionally braided tubular 

composites.  

 

1. The analytical model recognizes the effects of curvature on the unit cell 

via the thicknesses of the braided yarns to predict the properties. 

2. The model was first compared to the available flat models in the literature 

by setting the radius of curvature of the proposed unit cell large enough to 

prevent the effect of curvature to obtain comparable results. 

3. Effects of the tube curvature on the predicted elastic modulus were 

evaluated; the flat and curved models showed 1.6% and 4.7% differences 
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in the predictions for strand thicknesses of 0.16 mm and 0.5 mm, 

respectively.  

4. In the final step, the curved model findings were compared to reported 

experimental findings in the literature and in-house experiments and 

excellent results were obtained.  

5. The findings of this work are a valuable tool for design of medical 

equipment manufactured using two-dimensional braiding. 
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CHAPTER 4:  EFFECT OF DIAMETER IN PREDICTING THE 

ELASTIC PROPERTIES OF 2D BRAIDED TUBULAR 

COMPOSITES 
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4.1. Introduction 

 Braided composites have been increasingly used to replace other materials 

due to their intrinsic advantages. Some applications are stiffness critical; hence, 

analytical and numerical models have been proposed to predict elastic properties, 

many of which were discussed in a review article detailing the literature until 

2007, [1], and in more recent works [2 - 5].  

 Some have conducted parametric studies to determine the effects of 

constituents and geometric characteristics on elastic properties, identifying braid 

angle (θ), yarn aspect ratio (i.e. ratio of yarn width (Wy) to thickness (t)) , 

undulating yarn length (au), and variation in fiber and resin properties [6 - 11] as 

critical. All of the analytical work published in this field have studied or assumed 

flat unit cell braided composites. Although this may be a valid assumption for flat 

and tubular braided composites with large diameters, it is crucial to understand the 

effects of change in diameter on the properties for large and small diameter tubes.  

 An analytical model that recognizes the effects of mandrel diameter on the 

elastic constants of two-dimensionally braided tubular composites was developed 

and detailed in [12]. The model uses a curved unit cell to predict elastic constants 

where the radius of curvature of the curved unit cell is directly related to the 

mandrel diameter. 

 This paper outlines the extent of unit cell curvature effect on the 

longitudinal (Exx) and shear (Gxy) elastic moduli, and in-plane Poisson’s ratio (νxy) 

of braided tubular composites for stiffness critical applications. The experimental 

verification of findings for longitudinal elastic modulus is detailed in [12]. This 
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paper provides a comparison between predictive and in-house experimental 

results of shear modulus to verify the proposed model. 

4.2. Proposed model 

 During the manufacturing of two-dimensionally braided tubular 

composites, half of the spools on the braiding machine travel on a circular pattern 

in clockwise direction, and the remaining half  travel in counter clockwise 

direction during which all the spools follow a Maypole-type path to create the 

braided preform [13]. During this process, the bottom yarn of the overlapping 

strand pattern deposited on the mandrel is thicker than the top yarn due to the 

geometry of the placement of fibers (Figure 4.1). Analytical models available in 

the open literature use flat unit cells, Figure 4.2, to predict elastic constants, 

neglecting the overlapping strand thickness difference. The proposed model uses 

curved unit cell geometry, Figure 4.2, to account for the effects of the radius of 

curvature, i.e. r in Figure 4.3, on the elastic properties of the unit cell [12]. Radius 

of curvature (r) depends on the mandrel size used during the braiding process, and 

this, in return, affects the thickness of strands deposited on a mandrel. 
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Figure 4.1: Scanning Electron Microscope (SEM) picture of a tubular 

braided composite. Right figure: cross-sectional view perpendicular to the 

longitudinal direction of the tube. Left figure: Zoomed-in view of the figure 

on the right, showing the differences in top and bottom yarns of a tubular 

braided structure. 



 

109 

 

 

 

Figure 4.2: Schematic representation of a flat- and curved-unit cell. 

Flat unit cell

Curved unit cell

Flat unit cell

Curved unit cell
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Figure 4.3: Schematic representation of a curved unit cell and the thirteen 

regions within the unit cell. 

 

 The unit cell is divided into three different regions (Figure 4.3), namely, 

crossover (regions 1-5), matrix-only (regions 6-9), and undulating (regions 10-

13) regions. Similar to Raju and Wang [14] and Carey et al [15], a modified 

Classical Laminate Plate Theory (CLPT) is the basis of the model. Extensional 

stiffness, A, coupling stiffness, B, and bending stiffness matrices, D, of the three 

different regions are calculated separately, and then combined using a volume 

weighted averaging approach to obtain unit cell overall elastic constants. 

 In this paper, first the sensitivity of the proposed model to radius of 

curvature, and yarn thickness is outlined. Then, the proposed model is subjected 

to a literature based and experimental based verification. 
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4.3. Sensitivity 

4.3.1.  Effect of radius of curvature (Case study-1) 

 This study was conducted to outline the effects of unit cell curvature on 

elastic constants of tubular braided composites. In case study-1, only radius of 

curvature was varied while the remaining parameters were held constant to 

evaluate the effects of curvature. Yarn width and thickness were assumed 2 mm 

and 0.5 mm, respectively. Yarn properties used in this study are presented in 

Table 4.1. First, through an iterative study, for this particular case, it is found that 

the model becomes in-sensitive to change in curvature at a radius of curvature of 

500 mm. The percent difference between the predicted results of 500 mm and 250 

mm radius of curvature was found to be approximately 0.1%; therefore, a unit cell 

with 500 mm radius of curvature was accepted to be equivalent to a flat unit cell. 

Figure 4.4 shows the percent difference decrease in longitudinal elastic modulus 

predictions compared to the flat unit cell as a function of increase in radius of 

curvature. Very similar results in % difference of flat unit cell and curved unit 

cells is observed for shear modulus values; therefore the plot is not provided here. 

Figure 4.5, Figure 4.6, and Figure 4.7 outline the change in elastic properties 

versus braid angle as a function of radius of curvature (r) of the unit cell.  
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Figure 4.4: Average percent difference of flat versus curved model 

predictions for longitudinal elastic modulus. 

 

Table 4.1: Elastic properties used in the calculations for Figure 4.4 to 

Figure 4.9. 

 
 

E11 (GPa) 
 

E22 (GPa) G12 (GPa) ν12 ν23 

Matrix 
(Epoxy Resin) 3.50 3.50 1.35 0.30 - 

Yarn 
(Kevlar 49 – 

Epoxy) 
79.40 5.49 2.14 0.33 0.29 
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Figure 4.5: Effect of radius of curvature on longitudinal elastic modulus with 

respect to braid angle. 
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Figure 4.6: Effect of radius of curvature on shear modulus with 

respect to braid angle. 
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Figure 4.7: Effect of radius of curvature on Poisson’s ratio with respect to 

braid angle (the three predictions overlap as the Poisson’s ratio is insensitive 

to the change in unit cell curvature.). 

 

 Figure 4.5 shows the change in the longitudinal elastic modulus of two 

dimensionally braided structures as a function of radius of curvature. In the figure, 

the solid line represents flat unit cell (500 mm radius) predictions as a function of 

the braid angle. The remaining three dashed lines are for 30 mm, 10 mm and 6 

mm radius of curvature unit cell predictions. As can be seen in the figure, as the 

diameter decreases the longitudinal elastic modulus decreases. For this case study, 

the flat and 30 mm unit cell predictions have approximately 1.54% difference 

throughout the braid angles 30 to 60 degrees. The effect of curvature is more 

pronounced as the radius decrease. This is observed as approximately 7.2% 

differences between the flat and 6 mm radius unit cell predictions.   
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 Figure 4.6 shows the changes in shear modulus as a function of radius of 

curvature. Similar to elastic modulus results, flat, 30mm, 10 mm, and 6 mm radius 

unit cell predictions are plotted for angles between 30 and 60 degrees. Curved unit 

cell predictions with 30 mm radius are approximately 1.55% less than that of flat 

unit cell predictions. Differences between for the curved unit cell with 6 mm 

radius and the flat unit cell are approximately 7.2 % throughout the braid angle 

range.  

 Unlike the changes in the predictions of the moduli, no clear change in 

Poisson’s ratio has been observed in any cases; predictions overlap (Figure 4.7).  

4.3.2. Effect of yarn thickness (Case study-2)  

 It is also important to understand the effect of yarn geometry on the elastic 

properties; therefore, the data used for case study-1 was held constant with the 

exception of yarn thickness to conduct this study, which was reduced to 0.25 mm.  

 In case study-2, similar trends to that of case study-1 were observed. The 

longitudinal elastic (Figure 4.8) and shear moduli (Figure 4.9) values dropped 

gradually and Poisson’s ratio was again insensitive as the unit cell radius of 

curvature was decreased from infinity to 6 mm. However, the percent differences 

in the predicted values were different as opposed to the first case study. The 

change in the longitudinal elastic (Figure 4.8) and shear modulus (Figure 4.9) 

values between the flat and 30 mm radius, and flat and 6 mm radius unit cell 

predictions were approximately 0.8% and 4%, respectively.  
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Figure 4.8: Effect of yarn thickness on longitudinal elastic modulus 

with respect to braid angle. 
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Figure 4.9: Effect of yarn thickness on shear modulus with respect to braid 

angle. 

4.4. Literature based verification 

 Naik (1996) reported a study that predicts elastic constants of two-

dimensionally braided composites using a flat unit cell as a function of braid angle 

[6]. The model was reported to be implemented in a personal-computer based 

code, TEXCAD. Elastic constants predictions of the proposed model are 

compared to Naik’s findings [6] because of the clear description of the 

geometrical parameters used in his study allowing for a proper and repeatable 

comparison. These parameters were also being used in the proposed model 

making it easier to attempt to duplicate Naik’s results using the proposed model. 

In the study, AS4 graphite fibers and Hercules 3501-6 epoxy matrix were used. 

Yarn width and thickness were chosen as 1.411 mm (provided) and 0.09 mm 
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(back calculated from the data provided by Naik), respectively. Table 4.2 outlines 

the yarn and matrix elastic properties. 

Table 4.2: Properties of yarn and matrix used by Naik, R.A. (1996) 

[adopted from [6]]. 

 
 

E11 (GPa) 
 

E22 (GPa) G12 (GPa) ν12 ν23 

Matrix (Hercules 3501-
6 epoxy) 3.45 3.45 1.28 0.35 0.35 

Yarn (AS4 graphite) 144.8 11.73 5.52 0.23 0.30 

 
Note: Longitudinal, transverse, and thickness directions are represented by 1, 2, 

and 3, respectively. 
 

 

 Naik’s, results were read off a graph and presented in Figure 4.10 with the 

proposed model’s predictions with a near infinite (r=500mm) unit cell curvature. 

This curvature was used as the proposed model becomes curvature independent at 

this radius (Figure 4.4) and thus allows for a direct comparison between models. 

As can be seen in Figure 4.10, elastic constants of the two models are in good 

agreement. A maximum difference of 4.95%, 1.62%, and 3.12% are found for Exx, 

Gxy, and νxy, respectively.  
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Figure 4.10: Comparison of longitudinal elastic modulus (Exx), shear 

modulus (Gxy), and Poisson’s ratio (νxy) for the proposed model (Ayranci & 

Carey) versus Naik (1996). 

 

4.5. Experimental verification 

4.5.1. Methodology 

 Experimental verification of the model for longitudinal elastic modulus 

values was presented earlier [12]. The experimental results and analytical model 

predictions were in excellent agreement. Here, we compare and verify shear 

modulus predictions of the proposed curved model using in-house experiments. 

The experiments were conducted using three different diameter tubular braided 

specimens. For ease of discussion, the specimens are referred to as KLTO (Kevlar 
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- Large diameter - Torsion test specimen), KMTO (Kevlar -Medium diameter – 

Torsion test specimen), and KSTO (Kevlar - Small diameter - Torsion test 

specimen). Table 4.3 lists the geometric measurements taken from the specimens 

as well as the number of specimens tested for each diameter. 

 

Table 4.3: Geometric measurements of the specimens used for 

validation. 

 
Number 

of 
Specimens 

Braid 
Angle 

(θ, deg) 
(±Standard 
Deviation) 

Strand 
width 

Wy (mm) 
(±Standard 
Deviation) 

Outer 
Diameter 
OD, (mm) 

(±Standard 
Deviation) 

Thickness 
t (mm) 

(±Standard 
Deviation) 

KLTO 5 53.460 
(±0.378) 

1.984 
(±0.050) 

10.194 
(±0.051) 

0.285 
(±0.008) 

KMTO 5 51.56 
0.(513±) 

1.833 
(±0.052) 

8.591 
(±0.034) 

0.302 
(±0.011) 

KSTO 5 47.640 
(±0.532) 

1.773 
(±0.060) 

7.068 
(±0.040) 

0.303 
(±0.011) 

 

Epon 825/Ancamine 1482 curing agent matrix system and Kevlar 49 

fibers were used in the preparation of the specimens (Table 4.4). The curing cycle 

reported by Flanagan and Munro, [16], was followed during the preparation. 

Three different sizes of Teflon mandrels were used as mandrel. Teflon was chosen 

for easy removal of the specimens from the mandrel after the curing process. The 

specimens were cut to length and attached to end fittings following the removal 

from the mandrels (Figure 4.11).  

 

 



 

122 

Table 4.4: Elastic properties used in the calculations for Figure 4.13 

and specimens. 

 
 

E11 (GPa) 
 

E22 (GPa) G12 (GPa) ν12 ν23 

Epon 825 – Ancamine 
1482 3.5 3.5 1.3 0.3 0.3 

Kevlar 49 – Epoxy 
Lamina (Experimental 

properties based on [16]) 
79.7 5.9 1.5 0.33 - 

 

 

 
 

Figure 4.11: Torsion specimens (from top to bottom: KSTO, KMTO, 

KLTO). 

 

Specimens were tested under torsion loading (with compensation to assure 

no axial load was present) using a MTS-Torsion Master testing machine (MTS 

Systems Corporation Eden Prairie, MN, USA) equipped with a load cell of 2 Nm 

torsional load capacity (Figure 4.12). There is no specific ASTM standard for 

torsion testing of braided composite materials; therefore, the 0.03 degrees/second 

(approximately 2 degrees/minute) loading rate suggested in ASTM D 5448/D 
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5448M – 93 (Reapproved 2006) was followed (Standard Test Method for In-plane 

Shear Properties of Hoop Wound Polymer Matrix Composite Cylinders), to obtain 

a failure of the specimens within 1 to 10 minutes. Shear modulus of the specimens 

were calculated using:  

φJ
TLGxy =  

(1) 

where T, L, J, and φ are applied torque, length of the specimen, polar moment of 

inertia, and angle of rotation in radians, respectively [17]. Careful measurements 

of the specimen end-fittings and moving parts of the testing machine were taken 

to back calculate the component of angular twist occurring in these parts due to 

the applied loads. This support structure angular twist was subtracted from the 

experimental value to increase the accuracy of the results and to isolate the 

angular twist of the braided tube. During the comparison of the experimental data 

to predicted data, it was assumed that predicted properties of the unit cell 

represent the overall properties of the tubular structure.   

 

 

Figure 4.12: Specimen loaded on MTS TORSION-MASTER test 

apparatus. 
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4.5.2. Results  

 Figure 4.13 shows the shear modulus values for the KLTO, KMTO, and 

KSTO specimens and includes experimental results and corresponding curved-

model prediction results for the dimensions listed in Table 4.3. In this figure, the 

error bars are used to show the standard deviations in the case of experimental 

findings, and the upper and lower predictions in the case of the curved model. The 

curved model predictions were obtained for the average values of the geometrical 

measurements for the unit cell. One standard deviation above and one standard 

deviation below the average unit cell measurements were used to obtain the upper 

and lower value predictions for the curved unit cell, respectively. The agreement 

between the experiments and the predictions are observed to be very good. 
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Figure 4.13: Experimental and corresponding curved model prediction 

results of KLTO, KMTO, and KSTO specimens. (Error bars indicate the 

standard deviations for the experimental results and upper/lower predictions 

in the curved model results.) 

 

 For KLTO specimens, average experimental shear modulus was 11.19 

GPa (± 0.57 Standard Deviation) whereas the curved model predicted 12.38 GPa. 

The lower level prediction from the model for KLTO is 12.01 GPa. The upper 

value of the experimental finding of 11.76 GPa (i.e. 11.19+0.57=11.76) and the 

lower value prediction of the curved model (12.01 GPa) has only 2.1% difference 

which is a very good agreement compared to some reported differences that are 

above 10%, [10], between shear modulus predictions and experimental results. 
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 For KMTO specimens, average experimental shear modulus was found as 

11.59 GPa (± 0.46 Standard Deviation) whereas the curved model predicted 11.90 

GPa. The predicted value falls within the spread of standard deviation of the 

experimental finding; hence, the results are in very good agreement.  

 For KSTO specimens, average experimental longitudinal elastic modulus 

was found as 12.32 GPa (± 0.40 Standard Deviation) whereas the curved model 

predicted 12.50 GPa. Predicted value falls within the spread of standard deviation 

of the experimental finding; hence, the results are in very good agreement.  

4.6. Discussion 

 The observed differences in the predictions for longitudinal elastic and 

shear modulus may be an important window of tailorability for stiffness critical 

designs where accuracy is of importance, such as a braided catheter design [18]. 

 It is important to explain the differences between the results of the 

predictions in case studies 1 and 2 reported in this paper. An increase in the 

predictions can be observed upon comparison of Figure 4.5 and Figure 4.8 for 

longitudinal elastic modulus values, and Figure 4.6 and Figure 4.9 for shear 

modulus values. In both case studies, the undulation length of the yarns was set to 

be two times the height of a yarn; hence, it is expected to see a slight increase in 

the moduli predictions when the yarn thickness was decreased from 0.5 mm to 

0.25 mm as this results in a shorter undulation length. Also contributing to this 

increase is the steeper angle of undulation for the 0.5 mm yarn height case versus 

0.25 mm yarn height case. As the slope of the yarn inclination increases, this acts 

as an off-axis effect and causes a decrease in the moduli values.  
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 It may be argued from the two case studies that the decrease in radius of 

curvature of a unit cell cause a decrease in the longitudinal elastic and shear 

moduli values of a tubular braided composite. The effect of this decrease depends 

on the yarn thickness used in the braiding process as indicated in the two case 

studies. 

 Comparison of the proposed model with literature (Naik R.A. (1996)) 

outlines the relatively low difference in the predictions of the two models. This 

gives confidence in the results of the proposed model for flat braided structures 

(i.e. infinite radius of curvature). Although extreme care was taken during the 

measurements, small differences in the results may be attributed to the 

measurement errors, such as parallax error, as Naik’s data was read off from the 

graph. 

 The experimental results discussed for the verification of the model have 

low standard deviation values due to the consistent experimental results. Strongly 

agreeing experimental and predictive results confirm the findings of the proposed 

model. The small differences in the model and the experimental findings may 

partially be attributed manual preparation of the specimens. The specimens used 

in this study were manually impregnated using the epoxy resin and cured in the 

oven. An automated manufacturing technique may minimize the small 

inconsistencies observed in the results. One other reason for the differences may 

be the assumption of rectangular yarn cross section used in the unit cell geometry. 

As can be seen in Figure 4.1, the actual cross section of the yarns may be slightly 

closer to an elliptical (lenticular) shape rather than a rectangular shape; however, 
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for this study, the yarn shape was chosen to be rectangular to slightly simplify the 

integrations used in the model.  

 As mentioned above some stiffness critical designs, such as braided 

catheters, due to their field of application need thorough understanding of their 

properties. Verification of the findings of this study via experimental results open 

a new design tailorability window for use of braided tubular products in stiffness 

critical applications. 

4.7. Conclusions 

 This paper outlines the effects of change in radius of two-dimensionally 

braided tubular composites.  

1. The effects of the curved unit cell on longitudinal elastic and shear moduli 

and Poisson’s ratio results are outlined using two case studies. Up to 7.2% 

decrease in moduli values were observed. 

2. The Poisson’s ratio was found to be insensitive to the change in the unit 

cell in these case studies.  

3. The longitudinal elastic and shear moduli and in-plane Poisson’s ratio of 

two-dimensionally braided flat composites are predicted using the 

proposed model. The findings are compared to that of an available model 

in the literature and good agreement of results was observed. 

4. The shear modulus predictions were compared to that of in-house 

experimental results and excellent agreement were observed. 
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5. Findings outlined in this work can be considered as valuable tools in the 

design of stiffness critical applications of two-dimensionally braided 

tubular composites. 
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CHAPTER 5:  ELASTIC PROPERTIES OF LARGE-OPEN-
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5.1. Introduction 

 Two dimensional (2D) braiding has been utilized as an automated 

composite material preform manufacturing technique for decades and used in a 

broad variety of applications [1]. 2D braided preforms are most commonly 

manufactured using a Maypole type braiding machine, [2], where half of the 

continuous fiber loaded carriers move in clockwise direction and the remaining 

half move in counter-clockwise direction. During this motion, the carriers follow 

a serpentine path to create the necessary braid architecture. The majority of 2D 

braided composite applications require closed-mesh structures to minimize the 

matrix-only and undulating regions in an attempt to maximize the stiffness and 

strength of the structures as seen in braided structural columns, pressure vessels, 

aviation applications, sports equipment [3 - 5]. 

 There are also some stiffness critical applications that may require open-

mesh structures; such as braided catheters and stents [6, 7]. Utilization of braiding 

for medical applications is fairly recent compared to other traditional braiding 

applications. Very few researchers, [8 - 14], included open-mesh structures in 

their work; therefore, experimental data is very limited for large-open mesh 

structures, which maybe a valuable tool in the design of medical braided 

structures.   

 Tan et al (1997), [8], developed a theoretical model for “open-packing 

woven fabric unit cells” to investigate open-mesh woven fabrics linear elastic 

properties. Authors, [8], utilized data published by Naik and Shembekar (1992), 

[15], and compared their results to that of a finite element analysis (FEA) model. 
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They reported that the FEA model findings were 50% higher than their theoretical 

model for the shear modulus values, and the authors suggested that this may be 

due to the fact that the FEA model assumes an iso-strain condition as opposed to 

the iso-stress condition assumed by their theoretical model. Works of Tan et al 

(1997) and  Naik and Shembekar (1992) were both for woven fabric composites; 

hence, effect of undulation length with respect to the braid angle was not 

investigated.  

 Aggarwal et al (2001) [9], highlighted effects of change in gap space 

between braided yarns within the unit cell through a parametric study as part of an 

analytical model developed. Authors looked at the ratio of undulation length and 

yarn width. They investigated ratios only between 0 and 0.4. 

 Zhao and Hoa (2003) and Zhao et al (2003) published two papers on open-

hole triaxial woven fabrics typically used for satellite applications [10, 11]. These 

papers were investigating triaxially braided structures; therefore, a direct 

comparison of the results with this study is not possible.  

5.2. Motivation 

 In this paper the effect of undulation length on elastic properties of 2D 

braided tubular composites will be investigated and experimental and theoretical 

findings will be compared; in addition, the applicability of the proposed model to 

stent-like structures due to the recently improving use of braided composites in 

medical stent applications will be investigated. 

 Most available models predict elastic properties of braided structures by 

isolating and analyzing a repeating element in the structure, a unit cell, and 
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assuming properties predicted using this approach reflects the properties of the 

overall structure. 

 Figure 5.1 shows a schematic representation of an isolated unit cell of a 

2D braided tubular structure. Three main regions that exist are shown, namely; 

crossover, undulation, and matrix-only regions. Figure 5.2 shows top views of 

schematic representation of unit cells for a braided structure used in this paper, 

where Figure 5.2 (a) and (b) are examples of a closed-mesh (or tight mesh) and 

open-mesh unit cell, respectively. The crossover regions of Figure 5.2 (a) and (b) 

are identical. Increasing the undulation length (au) from Figure 5.2 (a) to (b) also 

causes an increase in the matrix-only regions (shown by the dark triangles in 

Figure 5.2 (b)) of the unit cell. Hence, it is reasonable to expect changes in the 

elastic properties of a braided structure as the undulation length increases. 
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Figure 5.1: Schematic representation of an isolated unit cell on a 2D braided 

tubular structure. 

 

Cross-over regions 

Matrix-only 
regions 

Undulating Regions 
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Figure 5.2: Top views of schematic representation of unit cells for a 

braided structure used in this paper. (a) closed-mesh (or tight-mesh) and (b) 

open-mesh unit cell. 

 

 The published data in the open literature for the investigation of the effect 

of the undulation length on braided structures is very limited. Almost all of the 

predictive models published in this field so far have been developed and verified 

using closed-mesh (or near closed-mesh) structures. Some researchers mention 

that their developed models take into account the undulation length; however, the 

model verification of these models are mostly done using experimental results of 

closed-mesh specimens (i.e. minimal undulation length) or near-closed-mesh 

specimens such as Aggarwal et al’s work [9]. An experimental study that clearly 

au 

(a)                      (b)



 

139 

addresses the effect of au on elastic properties is a gap that needs to be filled in the 

literature and could be useful for research and development and design purposes.   

  As aforementioned, most likely applications of open-mesh braided 

composites would be in the medical field, such as braided tubes, braided 

composite catheters, and braided stents, one of the other applications may be 

braided garden hoses. It is therefore also important to understand the limitations 

of the curved-model used to predict the elastic properties of the said composites, 

and understand how the model behaves if the structure is an open-mesh structure 

without matrix-only regions (i.e. stent-like structure). Stents are commonly used 

in the medical fields and there are a number of researchers, such as Yuksekkaya 

and Adanur [7], working on braided polymeric stents. Understanding the 

applicability of the model to stent-like structures is important. 

5.3. Open-mesh Composites - Effect of undulation length on 

elastic properties 

5.3.1. Analytical model 

 The predictive analytical model used in this study takes into account the 

radius of curvature of the unit cell and close- and open-mesh unit cell variants was 

published earlier [16]. Here, for completeness purposes, the model is explained 

briefly. The model analyzes the unit cell (Figure 5.1) using a modified Classical 

Laminate Plate Theory (CLPT) approach. The extensional stiffness, A, coupling 

stiffness, B, and bending stiffness, D, matrices of the three main regions in the 

unit cell are individually calculated using micromechanical models for the given 
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fiber-matrix combination and transformation matrices for the given geometrical 

properties of the placement of fibers in the unit cell. The calculated A, B, and D 

matrices of the individual regions are assembled using a volume averaging 

approach to calculate the overall unit cell properties.  

 The possible effects of a change in one or more of the unit cell regions can 

be immediately realized by investigating Figure 5.2 (a) and (b): as au increases, 

from Figure 5.2 (a) to Figure 5.2 (b), the ratio of volume occupied by matrix-only 

regions (with low stiffness properties) and crossover regions (with relatively 

higher stiffness properties due to the existing fibers) changes.  

5.3.2. Analytical model results 

 In this section, effects of change in au of a unit cell, as predicted by the 

model, is presented for longitudinal elastic (Exx) and shear (Gxy) moduli, and 

Poisson’s ratio (vxy) in Figure 5.3. A Kevlar-epoxy composite system has been 

used for this study, and the properties of the constituents are included in Table 

5.1. The yarn width and the thickness (tm) of the unit cell were taken as 4 mm and 

1.5 mm, respectively. The unit cell was assumed to have a radius of curvature of 

25 mm.  
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Table 5.1:  Elastic constants used in the model for predictions. 

 

 

 

 

 

Material  Elastic constants  
Constituent  E

f11
 

(GPa)  
E

f22
 

(GPa)  
G

f12
 

(GPa)  
ν

f12
 

Kevlar 49 fiber  130  7.3  2.86  0.35 
Carbon fiber*  220  13.8  9.0  0.2  
S2-glass  96.5  96.5  39.2  0.23 

  
  E

m
 -  G

m
 ν

m
 

Epon825/Ancamine1482 resin  3.5  -  1.3  0.3  
  

Lamina (V
f0

 =60%)  E
11 

(GPa) E
22

 (GPa) G
12 

(GPa)  ν
12

 

Kevlar 49/epoxy  79.7  5.9  1.5  0.33 
Carbon/epoxy  133 7.9  3.9  0.24 
S2-glass/epoxy  59.3  15.8  6.0  0.26 
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Figure 5.3 (a) 
 

 
 

Figure 5.3 (b)
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Figure 5.3 (c) 

 
Figure 5.3: Predicted effect of undulation length (au) on (a) the longitudinal 

elastic modulus, (b) shear modulus, (c) Poisson’s ratio as a function of braid 

angle. 

 

 Throughout this parametric study (Figure 5.3), only the parameter au was 

varied between one yarn thickness (1hc) and 10hc and the remaining parameters 

were kept constant. This change in au corresponds to an increase in the ratio of 

matrix-only region area to the overall unit cell projected area. The average ratios 

calculated were 0.024, 0.071, 0.226 and 0.415 for 1hc, 2hc, 5hc and 10hc cases, 
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respectively. It is reasonable to accept the 1hc unit cell to be a fully-closed mesh 

and 10hc unit cell to be a large-open mesh structure. In all three figures of Figure 

5.3, as au increases, a considerable decrease in the predicted values was observed. 

Hence, it maybe important to highlight the percent differences between 1hc and 

10hc unit cell cases, as the extreme scenario, in all three figures of Figure 5.3.  

 For the results shown in Figure 5.3 (a), at 30 degree braid angle, 58% 

difference was found between the Exx values of 1hc and 10hc undulation length 

cases; where the elastic modulus was 19.3 GPa and 8.1 GPa Exx for the 1hc and 

10hc undulation length cases, respectively. This percent difference gradually 

decreased down to 35% as braid angle was increased from 30 to 60 degrees.  

 In Figure 5.3 (b), for Gxy values, at 30 degree braid angle, 68% difference 

was found between the Gxy values of 1hc and 10hc undulation length cases. This 

percent difference gradually increased to 72% as braid angle was increased from 

30 to 45 degrees (45 to 60 degree range was the mirror image of 30 to 60 

degrees). It is also worth noting that the model became increasingly insensitive to 

the changes in braid angle as the au increased. This can be seen in the almost-

horizontal line of the 10hc undulation length case in Figure 5.3 (b). 

 In Figure 5.3 (c), for vxy values, at 30 degree braid angle, 35% difference 

was found between the vxy values of 1hc and10 hc undulation length cases. This 

percent difference gradually decreased to 1% as braid angle was increased from 

30 to 60 degrees. 
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5.4. Experimental verification 

 A set of in-house experiments were conducted to validate the 

predicted results of the open-mesh composites. Three most commonly used fiber 

types were chosen; namely; Kevlar, Carbon, and S2-Glass with an Epon 

825/Ancamine 1482 curing agent matrix system epoxy based matrix material was 

chosen (Table 5.1).  A picture of the specimen with attached end fittings is shown 

in Figure 5.4 (a). 

 

  
 

Figure 5.4: (a) Open mesh braided specimen with end fittings, (b) 

Open mesh specimen without matrix-only regions (stent-like structure). 

 

5.4.1. Methodology 

 Longitudinal elastic modulus was determined as a result of tensile tests. 

The gathered data were used to calculate the Exx from the slope of the stress-strain 

(a) 

(b) 
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curves. An MTS 810 material testing system equipped with a 100 kN maximum 

load cell and MTS 634.12E-24 extensometer were used for the experiments that 

were done with a loading rate of 1mm/min (ASTM D 3039/D 3039M – 08, 

Standard Test Method for Tensile Properties of Polymer Matrix Composite 

Materials).  

The shear modulus was determined with torsion test experiments using an 

MTS-Torsion Master testing machine (MTS Systems Corporation Eden Prairie, 

MN, USA) equipped with a load cell of 2 Nm torsional load capacity. No 

international testing standard exists for torsion testing of open-mesh braided 

composite materials; therefore, the 0.03 degrees/second (approximately 2 

degrees/minute) loading rate suggested in ASTM D 5448/D 5448M – 93 

(Reapproved 2006) was followed (Standard Test Method for In-plane Shear 

Properties of Hoop Wound Polymer Matrix Composite Cylinders), to obtain a 

failure of the specimens within 1 to 10 minutes. The data gathered during the tests 

were used to calculate the shear modulus using Equation (1):  

φJ
TLGxy =  

(1) 

 

where T, L, J, and φ are applied torque, length of the specimen, polar moment of 

inertia, and angle of rotation in radians, respectively [17]. Dimensions of the 

specimen end-fittings, manufactured from 4140 Steel for minimal deflection 

during testing, and moving parts of the testing apparatus were carefully measured 

to back calculate the amount of angular twist occurring in these parts during 
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testing. Later, the calculated angular twist of the parts, other than the specimen, 

was subtracted from the measured angular twist to increase the accuracy of the 

results and isolate the angular twist of the braided tube. 

5.4.2. Results 

5.4.2.1. Open-mesh composites 

 Table 5.2 presents the dimensional measurements of the tensile-test 

specimens used for all three types of braided composites (i.e. Kevlar-, Carbon, 

S2/Glass- epoxy composites). In this table, and in all the other tables used in this 

manuscript, θ, ID, OD, t, Wy refer to braid angle, inner and outer diameter, 

thickness of the braided tube, and width of a braiding strand, respectively. Figure 

5.5 shows experimental Exx findings with standard deviation, and predicted Exx 

findings that were calculated using the curved-unit cell model for the given 

dimensions.  Average, upper and lower predictions of the curved-unit cell model 

were also calculated for the Exx and presented in the figure. The average values of 

the geometrical measurements were used to obtain average-model predictions. 

The upper and lower predictions were obtained using one standard deviation 

above and one standard deviation below the average unit cell measurements, 

respectively. 
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Table 5.2: Average dimensions with ± standard deviations for Exx 

specimens (adopted from [12]). 
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Figure 5.5: Experimental and predicted Exx values for the three 

composite systems of open mesh structures (experimental results were 

adopted from [12]). 

 

 In Figure 5.5, average experimental and curved-model predicted Exx 

values for Kevlar-epoxy specimens are 2.85 GPa and 4.15 GPa, respectively. The 

Specimen  
type 

Samples θ 
(deg) 

ID  
(mm) 

t  
(mm) 

Wy  
(mm) 

au  
(mm) 

Kevlar/ 
epoxy 5 44.19 ± 

1.63 
24.71 ± 

0.28 
1.51 ± 
0.15 

3.81 ± 
0.68 

1.50 ± 
0.32 

Carbon/ 
epoxy 5 41.80 ± 

0.11 
24.54 ± 

0.19 
1.58 ± 
0.09 

3.40 ± 
0.22 

2.00 ± 
0.51 

S2-glass/ 
epoxy 4 46.00 ± 

1.30 
24.53 ± 

0.47 
1.48 ± 
0.04 

3.34 ± 
0.54 

3.89 ± 
0.08 
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ratio of predicted and experimental findings is 1.46. Average experimental and 

curved-model predicted Exx values for Carbon-epoxy specimens are 3.03 GPa and 

8.88 GPa, respectively. The ratio of predicted and experimental findings is 2.93.

 Average experimental and curved-model predicted Exx values for S2-

Glass-epoxy specimens are 1.44 GPa and 6.41 GPa, respectively. The ratio of 

predicted and experimental findings is 4.45. 

 Table 5.3 presents the dimensional measurements of the torsion-test 

specimens used for all three types of braided composites. Figure 5.6 outlines the 

experimental Gxy findings (along with their standard deviation) and predicted Gxy 

findings that were calculated using the curved-unit cell model for the given 

dimensions. The calculations of the average, upper and lower predictions of the 

curved-unit cell model were done using the same technique above for Exx. 

Table 5.3: Average dimensions with ± standard deviations for Gxy. 

 

 

 

Specimen  
type 

Samples θ 
(deg) 

OD  
(mm) 

t  
(mm) 

Wy  
(mm) 

au  
(mm) 

Kevlar/ 
epoxy 5 50.56 ± 

2.16 
27.56 ± 

0.13 
1.27 ± 
0.11 

4.70 ± 
0.27 

4.34 
± 0.70 

Carbon/ 
epoxy 3 41.93 ± 

1.15 
27.72 ± 

0.06 
1.05 ± 
0.04 

3.72 ± 
0.33 

3.85 
± 0.43 

S2-glass/ 
epoxy 5 38.89 ± 

0.72 
27.65 ± 

0.04 
1.04 ± 
0.01 

3.51 ± 
0.43 

3.78 
± 0.52 
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Figure 5.6: Experimental and predicted Gxy values for the three composite 

systems for open mesh structures. 

 As seen in Figure 5.6, average experimental and curved-model predicted 

Gxy values for Kevlar-epoxy specimens are 1.60 GPa and 6.86 GPa, respectively. 

The ratio of predicted and experimental findings is 4.29. Average experimental 

and curved-model predicted Gxy values for Carbon-epoxy specimens are 2.75 GPa 

and 10.66 GPa, respectively. The ratio of predicted and experimental findings is 

3.88. Average experimental and curved-model predicted Gxy values for S2-Glass-

epoxy specimens are 1.75 GPa and 5.54 GPa, respectively. The ratio of predicted 

and experimental findings is 3.17. 



 

151 

5.4.2.2. Open-mesh Composites without matrix-only regions (stent-like 

structures) 

 Comparison of the predictive model and the experimental results for stent 

like structures were done conducting tensile and torsion tests and calculating Exx 

and Gxy results. Figure 5.4 (b) shows one of the open mesh braided composite 

specimens without-matrix only regions prepared for this purpose. Table 5.4 

outlines the geometric dimensions of the specimens. Only Kevlar-epoxy 

composites were used in this preliminary study.   

Table 5.4: Average specimen dimensions and experimental and 

predicted Exx and Gxy values (with ± standard deviations) for open mesh 

specimens without matrix-only regions (i.e. stent-like structures). 

 

 Figure 5.7 outlines the experimental and predicted results of Exx and Gxy 

values. During the experimental and predictive model calculations for the 

longitudinal elastic and shear moduli, the hollow sections of the stent-like 

Specimen 
type 

Number 
of 

Samples 

θ 
(deg) 

OD  
(mm) 

t  
(mm) 

Wy  
(mm) 

au  
(mm) 

 
Tensile test  

specimens (for 
Exx 

calculations) 
 

6 43.48 
± 1.94 

26.00 ± 
0.13 

0.302 ± 
0.01 

1.84 ± 
0.11 

6.31 
± 0.65 

 
Torsion test  

specimens (for 
Gxy 

calculations) 
 

5 37.3± 
4.26 

26.07 ± 
0.09 

0.29 ± 
0.02 

1.97 ± 
0.24 

6.88 ± 
0.33 
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structure was omitted because the structure does not have any matrix-only regions 

(Figure 5.4 (b)). The predictive model calculations were done by assigning zero 

values to the extensional stiffness, A, coupling stiffness, B, and bending stiffness, 

D, matrices of the matrix-only regions. The hollow sections were not taken into 

account in the calculation of Exx and Gxy results (i.e. cross sectional area was 

determined by omitting the contribution of the hollow sections). 
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Figure 5.7: Experimental and curved-model predictions of Exx and Gxy of 

Kevlar-epoxy composites with open mesh and without matrix-only regions 

(stent-like structure). 

 

 Experimental Exx results were found to be 2.64 GPa (± 0.8 GPa Standard 

Deviation) whereas the model predicted the average Exx as 2.08 GPa, with upper 

and lower bound Exx predictions of 2.5 GPa and 1.79 GPa for the given 

dimensions, respectively. 
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 Experimental Gxy results were found to be 6.37 GPa (± 1.35 GPa Standard 

Deviation) whereas the model predicted the average Gxy as 4.62 GPa for the 

dimensions, with again the upper and lower bound Gxy predictions of 5.17 GPa 

and 4.03 GPa for the given dimensions, respectively. 

5.5. Discussion 

 The curved-unit cell predictive model that was used for this study has been 

verified in a previous study, [16], by the authors for closed-mesh braided 

structures. Figure 5.5 and Figure 5.6 clearly indicate that the model is over-

predicting compared to the experimental results if the structures are open-mesh 

braided composites, i.e. large au. The high ratio between predicted and 

experimental results (for Exx: 1.46, 2.93, 4.45 for Kevlar, Carbon, S2-Glass-epoxy 

composites, respectively; and for Gxy: 4.29, 3.88, 3.17 for Kevlar, Carbon, S2-

Glass-epoxy composites, respectively) indicate a need for an explanation for 

differences between the experimental and analytical results for open-mesh 

structures. 

 The analytical model used for this study, similar to most models in the 

field, assumes a uniform-strain approach for the unit cell under investigation. 

Hence, upon application of a load, the model assumes different regions of the unit 

cell experience identical strain. This is schematically shown in Figure 5.8 (a) for a 

closed-mesh structure. In Figure 5.8 (a), the figure on the left hand side is a 

closed-mesh structure with zero strain (i.e. no load has been applied) and the 

figure on the right hand side is the same unit cell but elongated due to an applied 

load. In this figure, it is acceptable to assume a uniform strain upon loading as the 
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adjacent regions of the unit cell have similar elastic properties due to the minimal 

undulating and matrix-only regions.  

 On the other hand, Figure 5.8 (b) shows a schematic representation of an 

open-mesh unit cell structure (exaggerated drawing for demonstration purposes). 

In Figure 5.8 (b), left hand side is the original unit cell (i.e. no load has been 

applied), and right hand side is the elongated unit cell. Upon application of a 

tensile load to an open-mesh unit cell, it is not unreasonable to expect a non-

uniform strain (possibly due to bending of the undulating yarns) that is similar to 

the one shown in the right hand side of Figure 5.8 (b). A similar concept was 

observed and discussed by Zhao et al 2003, [11], for their triaxial woven fabric 

composites. Reasons behind the expectation of this type of deformation are due to 

the fact that, unlike the closed-mesh unit cell, the adjacent regions of the open-

mesh unit cell do not have similar elastic properties (eg. the non-reinforced 

matrix-only regions versus the crossover regions) and also, possible off-loading-

axis alignment of the yarns may introduce additional bending moments to the 

structure which may also be contributing to the differences in the experimental 

and predicted results.  
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Figure 5.8: (a) Schematic representation of a closed mesh structure. 

Left hand side: no load is applied; Right hand side: loaded and stretched unit 

cell. (b) Schematic representation of an open mesh structure (exaggerated 

view). Left hand side: no load is applied; Right hand side: loaded and 

stretched unit cell. 

Force

Force
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 Experimental elastic modulus (E) was calculated as the slope of stress (σ)-

strain (ε) curve using Equation 2: 

ε
σ

=E  (2) 

 

 During the experiments, if the strain recorded is larger (than predicted by 

the model) due to the aforementioned reasons (i.e. non-uniform strain) and 

schematic explanation in Figure 5.8 (b), it can be seen from Equation 2 that the 

elastic modulus would be determined lower than the model. A similar explanation 

for the shear loading can be imagined for the Gxy results. Hence, as the au 

increases in open mesh structures; such as braided tubular structures, braided 

composite catheters, it may be necessary to use a correlation factor for the 

model’s predictions to compensate for the original uniform-strain assumption of 

the model. Unfortunately, it was not possible to draw a conclusive correlation 

factor due to the lack of large data bank available at this point; however, it is 

suspected that undulation length, braid angle, thickness of the specimen, and 

strand thickness, and fiber/epoxy choice may all contribute to the difference in 

results, because the model is highly sensitive to all these parameters. The 

correlation factor may be determined by a detailed controlled parametric 

experimental study where only one parameter at a time is changed to understand 

the effects. The ratios of predicted versus experimental findings should be the 

start point for the correlation factor determination.   
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 For the stent-like structures, upon investigation of Figure 5.7, it is seen 

that the experimental and predicted results are in agreement. Although the average 

predicted and experimental Exx results have approximately 21 % difference (2.64 

GPa versus 2.08 GPa), the predicted Exx results fall within the spread of 

experimental findings. The average predicted and experimental Gxy results have 

approximately 27% difference (6.37 GPa versus 4.62 GPa), but the upper value of 

the Gxy prediction (5.17 GPa) falls within the spread of the experimental data (i.e. 

due to 6.37±1.35 GPa the spread is from 5.02 GPa to 7.72 GPa). Although the 

percent differences in both Exx and Gxy cases are relatively high, having the spread 

of experimental and predictive results overlap gives confidence in the model. 

 It is also important to mention the possible contribution of interface 

shearing to the differences in results of the stent-like structures. There are hollow 

sections in the structure; therefore, when a load is applied, the undulating strands 

tend to align parallel to the loading direction. This re-alignment may cause 

excessive shear forces between the interface of the top and bottom yarns of the 

crossover regions which in return may be contributing to the differences in 

analytical and experimental results.  

 The analytical model used for this study is very sensitive to changes in 

dimensions and other parameters. The specimens used for this work were 

prepared using hand manufacturing technique (i.e. braided preform was 

impregnated by manual application of resin). This technique may have caused 

some misalignment in the fiber yarn directions leading to a large spread of data 

(especially in the case of stent-like structures). Hence, if the manufacturing 
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technique is improved (i.e. automated), it is believed that the model can be used 

for stent-like structures successfully. This will be addressed in future work. 

 The selection of extensometer gage length may also be an important factor 

as every unit cell on the structure may not be identical due to the hand 

manufacturing technique used for the specimens. For both open mesh specimens 

and stent-like specimens this may have an effect on the results.  

5.6. Conclusions 

 This paper outlines the effects of having an open-mesh versus closed-mesh 

structure for specifically biomedical applications of braided composites.  

1. Effects of undulation length on elastic properties of braided composites are 

outlined using an analytical model. 

2. Experimental results for longitudinal elastic (Exx) and shear (Gxy) moduli of 

three different types of open-mesh braided composites (Kevlar-, Carbon-, and 

S2 Glass-Epoxy braided tubes) were investigated. 

3. Predicted versus experimental Exx and Gxy results are compared and it was 

observed that the model that was previously proven for closed-mesh braided 

structures has always over-predicted compared to the experimental findings. 

4. Findings of the study suggests a need for a correlation factor for most of the 

CLPT based analytical predictive models that are successfully used for closed-

mesh structures in the field.  

5. Findings also suggest the need for further investigation of the elastic 

properties/behavior of open mesh braided composites. 
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6. Finally, preliminary experiments with open-mesh braided specimens without 

matrix-only regions (i.e. stent-like structures) are conducted. Experimental 

and predictive results are in agreement.  
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CHAPTER 6:  EXPERIMENTAL VALIDATION OF A 

REGRESSION-BASED PREDICTIVE MODEL FOR ELASTIC 

CONSTANTS OF OPEN MESH TUBULAR DIAMOND-BRAID 

COMPOSITES 
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6.1.  Introduction 

 Braided composites are increasingly used for structural, aerospace, 

military and biomedical applications. The advantages of braids, such as properties 

variations through reinforcement positioning, increased toughness and greater 

resistance to delamination, production of complex parts and cost, have long been 

identified [1-3].  Although discussed to certain degree by various authors, the 

prediction of the elastic constants of large open mesh braided composites has not 

been clearly characterized. 

 Braided composites are formed by a series of angle-ply overlapping fiber 

strands. There are three main types of 2D braids: the single-overlapping diamond 

braid, the double overlap, or regular braid, and the triple strand overlapping 

Hercules braid. The focus of this work is the investigation of open-mesh diamond 

braids that have relatively large resin rich regions. A schematic view of the unit 

cell used for this study is shown in Figure 6.1 where resin rich regions, R6 to R9, 

between overlapping strands, R1 to R5, and undulating strands, R10 to R13, are 

illustrated. A closed-cell braided composite, compared to an open-mesh braided 

composite, has no or minimal resin rich regions. Open-mesh braided composites 

can be utilized in low stiffness critical applications that require various levels of 

axial, flexural and torsional reinforcement.  
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Figure 6.1: Open mesh single overlap braided unit cell; R1-R5 strand 

overlap; R6-R9 resin rich areas; R10-R13 undulating strand regions. 

 

 The development of braided composites was presented by Ko et al [4].  
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configurations have been established [1, 5]. Conventionally, during the production 

of braided composites first the preform  is produced as seen in Figure 6.2 (a). The 

preform is then coated with resin and cured following a strict resin-specific curing 

cycle and finally removed from the mandrel Figure 6.2 (b). This process is 

successfully utilized for manufacturing closed mesh braids impregnated by resin 

that form rigid tubes of interlocked fibers. Figure 6.2 (b) shows a closed mesh 

braided Kevlar 49/epoxy composite with a 25.4mm diameter. 

 

 

 

      (a)     (b) 

Figure 6.2: (a) braided preform production; (b) cured closed mesh 

braided composite tube. 

 

 Elastic behavior of unidirectional composites, laminates and closed mesh 

braids has been detailed in previous works.  It was shown [3, 6] that elastic 

constants for closed mesh composite materials were lower than that of laminates.  
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It was further shown that as the fiber volume fraction decreases, or the more open 

the braid configuration, the elastic constants continue to decrease; the limit of 

which has not been evaluated [6]. 

 A number of models have been proposed to predict the elastic properties 

of laminate woven and braided composites. In 1997 Tan et al reviewed a number 

of these models [7]. These models can be listed as: Classical Laminate Plate 

Theory (CLPT) based models [8 - 11], the Fabric Geometry Model (FGM) [4], 

Finite Element Analysis (FEA) [12] and the Four-Cell Method (FCM) [13] that  

were used to predict longitudinal elastic (Ex), transverse elastic (Ey), and shear 

(Gxy) moduli as well as major Poisson’s ratio (νxy) of the said composites.  A 

thorough review of these models was presented in Ayranci and Carey (2008) [14]. 

 Carey et al [6] developed an empirical Regression-Based Design Model 

(RBDM) for prediction of open and closed mesh braid elastic constants. Authors, 

[6], claimed the RBDM model to be simpler and computationally less time 

consuming.  Authors reported the RBDM to be successful at predicting the 

longitudinal elastic modulus (less than 4 % error) and showed similar success as 

previous works at predicting the shear modulus of closed mesh braids. Carey et al 

[6] presented four empirical equations, that were based on linear regression 

analysis, to predict Ex, Ey, Gxy and νxy for braided/woven composites as a function 

of the laminate elastic constants at the same braid/weave angle (E0
x, E0

y, G0
xy, 

ν0
xy), as well as the braid/weave (Vfo) and laminate (Vf) fiber volume fractions for 

various braid configurations and with various material combinations. Equations 
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(1) to (3), repeated for completeness, are the equations for three in-plane elastic 

constants.  The longitudinal elastic modulus of a θ angle plied composite is: 
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The transverse elastic modulus of a θ angle plied composite is: 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

f

fo
yy V

V
EE )()( 0 θθ  (2)

The shear modulus of a θ angle plied composite is: 
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where the slope, m, was defined following a Halpin-Tsai formulation [15]. Carey 

et al [6] was not able to determine an expression for the shear modulus regression 

equation’s intercept; however they concluded that the intercept was a function of 

the resin properties. 

 The results of the major Poisson’s ratio could not be predicted by a simple 

regression as in the earlier cases [6]. Authors found the influence of the resin to be 

more significant as a rigid epoxy matrix showed a gradual decrease of 

)(/)( 0 θνθν xyxy  with decreasing Vfo/Vf  as well as a decrease in )(/)( 0 θνθν xyxy  

as the braid angle neared 45°, while using a flexible polyurethane matrix only 

showed a slight decrease of )(/)( 0 θνθν xyxy  with a decrease of Vfo/Vf [6]. 
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 ffo VV /  of an open mesh braid can be calculated using the following 

equation developed for tube geometry: 

YX
aWL

V
V uye

f

fo

⋅

+
=

2)cos()sin(4 2 θθ
 (4)

where, Wy, hc, au, t and θ are the strand width, the wet strand thickness, the 

undulation length, the tube wall thickness and the braid angle, respectively. The 

parameter Le is defined as a function of Wy and braid angle as 

)2/2cos(/ πθ −= ye WL . 

 Figure 6.3 show typical )(/)( 0 θθ xx EE  versus ffo VV /  (Figure 6.3 (a)) 

and )(/)( 0 θθ xyxy GG  versus ffo VV /  (Figure 6.3 (b)) plots [16].  The 

longitudinal and transverse elastic moduli figures should be identical.   
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Figure 6.3: (a) Longitudinal elastic and (b) shear moduli to laminate ratios 

versus Vfo/Vf. (Vfo/Vf)* represents the lower linearity limit (LLL). [adopted 

from [16]]. 

 

 As discussed originally, [6], the longitudinal elastic modulus and shear 

modulus cannot have their physical intercepts at 0 and -b, respectively, as 

determined by the RBDM for a fiber/rigid epoxy resin composite.  The data 

approaches horizontal asymptotic values below a value of Vfo/Vf which will be 

termed the lower linearity limit (LLL), 
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 Carey et al discussed the physical significance of a Vfo/Vf = 0 for both 

longitudinal elastic and shear moduli [6]. The intercepts of Figure 6.3 (a) will vary 

from a value of Em/E11 at a braid angle of 0° to Em/E22 at a braid angle of 90°, 
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where E11 is the longitudinal elastic modulus and E22 is the transverse elastic 

modulus of a fiber composite lamina. 

 Similarly, for shear modulus, the intercept (Figure 6.3 (b)) will range 

between Gm/G12 or Gm/G21, for laminate angles between 0° and 90°, respectively 

and Gm/ G0
xy(π/4) for a cross-ply laminate at 45°. It should be noted that G12 and 

G21 are the same. 

 From the review of the literature, it was found that the prediction of elastic 

constants of open-mesh diamond braids has not been adequately studied.  The 

objective of this work is to further validate the longitudinal elastic and shear 

moduli regression equations using experimental data from in-house experiments 

as well as from the literature; determine the LLL for the RBDM model equations; 

and, assess the findings of the regression based predictive model for Ex, Ey and 

Gxy for large open mesh composites. 

6.2. Specimens production and Methodology 

 The experimental results of the open-mesh braided composites used in this 

study were published earlier by the same authors for verification of an analytical 

model [17].   

 Reinforced tubing is used for various applications, such as flexible piping 

[18], catheters [19] and other medical applications. On the other hand, very 

limited data is available in the open literature regarding the production, testing 

and prediction of properties of open mesh composites. Anderson [20] reported on 

a degradable mandrel for thermoset and thermoplastic composites ; however, this 

method requires a new mandrel for every specimen. Semsarzadeh et al. [21] 
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proposed use of a rotating mold for a collapsible mandrel to be used for jute 

reinforced polyester structures. 

 Carey et al [22] stated that an ideal production method should produce 

geometrically accurate tubes, excellent surface smoothness, avoid crack formation 

and voids, ensure the integrity of the resin rich areas, be reusable and simple to 

use. Following the curing, removal of braided tubular composites from the 

mandrel is difficult. Although use of a mold release agent is helpful, adhesion and 

mechanical keying of the composite to the mandrel is unavoidable. Removal of 

the cured specimen from the mold requires large shear forces. Carey et al, [22] 

stated that use mold release was shown to be effective in the case of most closed 

mesh tubes, but production of open mesh braids using low viscosity thermoset 

epoxy resins was difficult. In open mesh braids, geometrical accuracy and surface 

smoothness of matrix-only regions can not be achieved easily, and result in 

cracks, voids, or complete failure of matrix-only regions. Specimens have 

regularly broken during production due to the fragility of the resin in pilot tests 

[22].  

 The test specimens of the study were produced using a steel mandrel with 

Teflon outer-liner. The reason for not using a Teflon-only mandrel was the fact 

that when the specimens are put into the oven at 110 degrees Celcius, the residual 

stresses in the Teflon-only mandrel caused it to warp. This was eliminated by 

inserting a steel mandrel inside a thin Teflon tube (i.e. the outer-liner).  A mold 

assembly was designed, [22], to capture the resin during the curing process and to 

obtain a smooth and dimensionally accurate exterior surface.  The mandrel /mold 
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assembly is illustrated in Figure 6.4. The mold was machined from two blocks of 

steel. The inner surfaces of the mold were ground for dimensional accuracy and 

smoothness.  The mandrel is aligned using two alignment rings.  The function of 

these rings is to keep the mandrel centered in the mold. The mold is aligned using 

simple dowel pins. The specimens were cured in the oven and after removal from 

the mold, the specimens were easily removed from the mandrel utilizing the 

advantages offered by the Teflon mandrel. 
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Figure 6.4: Schematic representation of the mold and the mandrel used for 

the production of the specimens [adopted from [22]]. 

 

 Excellent quality specimens were produced using this method. The matrix 

only regions of the specimens had excellent integrity and dimensional accuracy. 

Also, excellent fiber impregnation and inner and outer surface quality was 

achieved. In a small number of the specimens air bubbles (Figure 6.5) was 

observed.   
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Figure 6.5: Sample specimen with small air bubbles on the outer 

surface. The resin rich area integrity is conserved with smooth surface and 

the high dimensional accuracy [adopted from [16]]. 

 

 

 Figure 6.6 shows an actual sample test specimen (Figure 6.6 (a)) along 

with the Teflon mandrel and the two halves of the mold (Figure 6.6 (b)) used for 

the production of the specimens. 

 

Minimal air bubbles Pure resin areaMinimal air bubbles Pure resin area
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Figure 6.6: An actual sample test specimen (a) and the actual mold 

halves and the Teflon mandrel (b). 

 

 Three different composite material specimens (Kevlar/epoxy, 

Carbon/epoxy and S2-glass/epoxy) were constructed to evaluate the tensile 

longitudinal and shear elastic behavior of open mesh braids. Constituent and 

lamina properties are listed in Table 6.1. Curing schedule specified for the epoxy 

resin in the work by Flanagan and Munro [23] was followed. 
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Table 6.1: Constituent and lamina elastic constants. (“*”Provided by 

manufacturer; “**” back calculated using Halpin-Tsai [15]; “***” 

experimental, see reference; “****” micromechanical models) 

Material Elastic constants 

Constituent Ef11 

(GPa) 

Ef22 

(GPa) 

Gf12 

(GPa) 

νf12 

Kevlar 49 fiber 130* 7.3 [23] ** 2.86* 0.35* 

Carbon fiber* 220 13.8 9.0 0.2 

S2-glass* 96.5 96.5 39.2 0.23 

 Em  Gm νm 

Epon 825/ Ancamine  

1482 resin*** [23] 

3.5 - 1.3  0.3  

Lamina (Vf0 =60%) E11 

(GPa) 

E22 

(GPa) 

G12 

(GPa) 

ν12 

Kevlar 49/epoxy*** [23, 24] 79.7  5.9  1.5 0.33 

Carbon/epoxy****  133.4 7.9  3.9 0.24 

S2-glass/epoxy****  59.3 15.8  6.0 0.26 

 

 For the tensile tests, an MTS 810 material testing system, with an MTS 

20E-3, 100 kN maximum load cell and MTS 634.12E-24 extensometer were used 

to measure the tensile load-strain curves at a strain rate of 1mm/min. For the 

torsion tests, an MTS-Torsion Master testing machine (MTS Systems Corporation 
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Eden Prairie, MN, USA) with a load cell of 2 Nm torsional load capacity was 

used [17]. Specimens were twisted with a loading rate of 0.03 degrees/second.  

6.3. Results and discussion 

6.3.1. Experimental findings 

Specimen information is listed in Table 6.2 and a picture of a typical 

specimen, with resin rich areas highlighted, is found in Figure 6.5.  The small 

standard deviations in the specimen dimensions listed in Table 6.2 demonstrates 

the success in producing repeatable and high quality specimens. Some specimens 

had a minimal number of air pockets within the resin rich areas.  The three types 

of fibers (Kevlar, Carbon, S2-glass) provide a greater range of ffo VV for 

comparison of RBDM model and the experimental results. 
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Table 6.2: Specimen information and average (± standard deviation) 

dimensions as defined in equation 4. 

Tensile test specimens 

Specimen  

type 

Samples θ 

(deg) 

ID  

(mm) 

t  

(mm) 

Wy  

(mm) 

au  

(mm) 

Kevlar/ 

epoxy 
5 

44.19 ± 

1.63 

24.71 ± 

0.28 

1.51 ± 

0.15 
3.81 ± 0.68 1.50 ± 0.32 

Carbon/ 

epoxy 
5 

41.80 ± 

0.11 

24.54 ± 

0.19 

1.58 ± 

0.09 
3.40 ± 0.22 2.00 ± 0.51 

S2-glass/ 

epoxy 
4 

46.00 ± 

1.30 

24.53 ± 

0.47 

1.48 ± 

0.04 
3.34 ± 0.54 3.89 ± 0.08 

Torsion test specimens 

Specimen  

type 

Samples θ 

(deg) 

OD  

(mm) 

t  

(mm) 

Wy  

(mm) 

au  

(mm) 

Kevlar/ 

epoxy 
5 

50.56 ± 

2.16 

27.56 ± 

0.13 

1.27 ± 

0.11 
4.70 ± 0.27 4.34 ± 0.70 

Carbon/ 

epoxy 
3 

41.93 ± 

1.15 

27.72 ± 

0.06 

1.05 ± 

0.04 
3.72 ± 0.33 3.85 ± 0.43 

S2-glass/ 

epoxy 
5 

38.89 ± 

0.72 

27.65 ± 

0.04 

1.04 ± 

0.01 
3.51 ± 0.43 3.78 ± 0.52 
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 Average longitudinal elastic moduli (standard deviation) results of the 

experimental study were 2.85 (0.46) GPa, 3.03 GPa (0.77), and 1.44 (0.09) GPa 

for Kevlar/Epoxy, Carbon/Epoxy, and S2-Glass/Epoxy systems, respectively.  

Average shear moduli results of the experimental study were 1.6 (0.15) GPa, 2.75 

(0.41) GPa, and 1.75 (0.06) GPa for Kevlar/Epoxy, Carbon/Epoxy, and S2-

Glass/Epoxy systems, respectively.   

 

6.3.2. Regression model predictions 

6.3.2.1. Longitudinal elastic modulus 

 Very limited published documents available in the literature provide all of 

the necessary information from their experimental procedure, or have the correct 

braid/weave architecture, to compare with the current RBDM; therefore, the 

following findings from the previous experimental results by the authors [11] and 

the experimental results presented earlier are plotted in Figure 6.7 for comparison 

of experiments and regression based model findings.  
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Figure 6.7: Comparison of the RBDM predictions (the regression 

equation predictions) for longitudinal elastic modulus (Equation 1) and 

experimental data. Also, LLL are presented. 

 

 In the previous work of the authors, [11], specimens with three different 

diameters were tested, five specimens per diameter. Average findings for each 

diameter are repeated using the legend name “Ayranci-Carey experimental” in 

Figure 6.7. The results were 0.90, 0.87, 1.02 (GPa/GPa) for Ex/E0
x values versus 

0.91, 0.87, 0.92 for Vfo/Vf , respectively. The specimens were closed-mesh 

braided Kevlar/epoxy tubular composites.   
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 The findings presented earlier in this paper (Section 3.1) for the three 

types (Kevlar-, Carbon-, S2-Glass/Epoxy) of open mesh braided composites are 

also presented in Figure 6.7 by using the legend names “Kevlar/Epoxy”, 

“Carbon/Epoxy”, and “S2-Glass/Epoxy”.  Additionally, in Figure 6.7, predicted 

results of Ex/E0
x for these specimens using the measured geometry are included 

(legend names: “Kevlar/Epoxy predicted”, “Carbon/Epoxy predicted”, and “S2-

Glass/Epoxy predicted”). The predictions were done for comparison purposes 

using an analytical model presented by the authors earlier [11].  

 

6.3.2.2. Shear modulus 

          Previous shear modulus experimental results [17] were reproduced using 

the legend name “Ayranci-Carey experimental” in Figure 6.8.  Secondly, the 

findings presented above for the three types of open mesh braided composites are 

presented using the legend names “Kevlar/Epoxy”, “Carbon/Epoxy”, and “S2-

Glass/Epoxy”.  Additionally, predicted results of Gxy/G0
xy for the same specimens 

using the measured geometry are included (legend names “Kevlar/Epoxy 

predicted”, “Carbon/Epoxy predicted”, and “S2-Glass/Epoxy predicted”). The 

predictions were done using an analytical model presented by the authors earlier 

[11]. This was done for comparison purposes.  
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Figure 6.8: Comparison of the RBDM predictions (the regression 

equation predictions) for shear modulus (Equation 3) and experimental data. 

Also, LLL is presented. 

 

6.3.2.3. Lower linearity limit (LLL) 

 This work also wished to establish the LLL for RBDM based on 

constituent material properties for the longitudinal elastic and shear moduli 

regression equations. Initial development of the formulae presented here was 

presented earlier [16] and is repeated here for completeness purposes. 

Micromechanical models have long been developed for lamina longitudinal (E11) 

and transverse (E22) elastic moduli.  The longitudinal elastic modulus is typically 
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calculated from a rule of mixtures formula (equation (5)), while the transverse 

modulus is calculated from the Halpin-Tsai formulation (equation (6)) [15]. 
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and ξ is typically 2 for square or round fibers. 

 In order to define the LLL, the upper limit of the two intercepts seen in 

Figure 6.3 (a) will be selected as selecting a value lower than 22m EE  extends the 

region in which the linear regression is valid. In order to adopt a safe design 

model, it is assumed that the fiber and resin elastic moduli, Ef and Em, 

respectively, and the laminate fiber volume fraction are known.  This naturally 

leads to the boundary: 
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 Investigation of Equation (7) reveals that the LLL is dependent of 

constituent properties. This characteristic is essential for the RBDM to be a 

simpler model. For the Kevlar, Carbon and S2-glass test cases the LLL were 

calculated as 0.59, 0.44, and 0.22 (Figure 6.7), respectively, for laminate fiber 

volume fraction of 0.6. Below the LLL, it is expected that there is a point were the 

fiber strands are no longer effective reinforcements, in the same way that a 

minimum fiber volume fraction is necessary to have an effective lamina strength 

[25]. Hence it may be suggested that for longitudinal and transverse elastic moduli 

the range of values for which the RBDM is valid is: 

1
22

≤≤
f

fom

V
V

E
E

 (8)

 

 

 Since the LLL is defined using the upper horizontally asymptotic value, 

Em/E22, of Figure 6.3 (a),  an analysis of the possible range of intercepts for Figure 

6.3 (a) was performed using equations (5) and (6) to give an indication as to 

where the lower asymptotic value, Em/E11, would be located on the figure. This 

range of difference between Em/E22 and Em/E11 is plotted in Figure 6.9 for 

different ratios of Em/Ef at three typical laminate fiber volume fractions, fV = 0.5, 

0.6 and 0.7.  Using a typical elastic modulus for epoxy, 3.5GPa, for Em and using 

a wide range for the fiber elastic modulus, Ef, (20GPa to 230 GPa to include 

commonly used fibers such as graphite (E11=230 GPa), Kevlar (E11=130 GPa) and 

Glass fiber (E11=72 GPa)) a range of Em/Ef was selected.  From Figure 6.9 it was 
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found that the range between the intercepts in Figure 6.3 will not exceed 0.325 if 

Vf  remains between the commonly used range of 0.5 to 0.7. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9: Difference between upper and lower intercepts for 

longitudinal elastic modulus versus Em/Ef at three different laminate volume 

fractions. 
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cylindrical assemblage model (Equation 9) [27] provides the best predictions if 

Gm<<Gf. 
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 Similar to the longitudinal modulus case, selecting the upper limit of 

Gm/G12 to be the safest point at which for the LLL, (Vfo/Vf)* is calculated by 

equating equations (3) and (9) such that: 
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which leads to: 
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 where, m was defined earlier.  This can be seen in Figure 6.3 (b). For 

Kevlar, Carbon and S2-glass test cases the LLL were calculated as 0.45, Figure 

6.8, for laminate fiber volume fraction of 0.6.  Again, below the LLL, it is 

expected that the findings will show that there is a point were the fiber strands 

appear to no longer be effective reinforcements [25]. The range of values for 

which the RBDM is valid for shear modulus is: 
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6.4. Discussion 

 The regression based model was initially developed for closed- and open-

mesh braids, but it was only verified using experimental data of closed-mesh 

braids [6]. The closed mesh data used in Figure 6.7, legend name “Ayranci-Carey 

experimental”, proves the validity of model for closed-mesh braids once more as 

the experimental results agree well with the Regression equation line plotted on 

Figure 6.7.  On the other hand, the open-mesh braid experimental data presented 

in Figure 6.7 do not agree with the regression model as well as the closed-mesh 

braid results.  However, the third set of data, that was obtained using an analytical 

model (legend names: “Kevlar/Epoxy predicted”, “Carbon/Epoxy predicted”, and 

“S2-Glass/Epoxy predicted”), presented in Figure 6.7 again agree well with the 

regression based model for all three types of the open-mesh braided composites 

(Kevlar/Epoxy, Carbon/Epoxy, and S2-Glass/Epoxy). 

 The regression based model was originally structured using Ex/E0
x versus 

(Vfo/Vf) for a range of braid angles between 29.5 degrees and 62.5 degrees. Using 

regression equations for a number of angles in between this range, lead to the 

formation of the final formulae (Equation 1). The predictions for the two extreme 

cases, of 29.5 degrees and 62.5 degrees, used for this process are repeated here for 

the sake of the discussion, Figure 6.10.  As seen in Figure 6.10, the Ex/E0
x range 



 

188 

covered by the assigned regression equation (Equation 1) for any given value of 

(Vfo/Vf) narrows down as the (Vfo/Vf) approaches to unity. Hence, it may be 

reasonable to expect that the regression model to be more accurate as the braid 

structure gets closer to closed-mesh. Naturally, the opposite can be argued as the 

braid structure becomes more open-mesh (i.e. for Vfo/Vf values of 0.65 and 

lower.). 

 

Figure 6.10: Repeated data from the original regression based paper 

[6]. 

 

 Investigation of Figure 6.7 shows the Kevlar/, Carbon/, and S2-

Glass/Epoxy open mesh composites had average Vfo/Vf values of 0.7, 0.63, and 

0.46, respectively. Hence, similar to the discussion above, the results are closer to 
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the regression line as the Vfo/Vf gets larger; i.e. S2-Glass/Epoxy specimens have 

the smallest Vfo/Vf and are furthest away from the regression line, where as the 

Kevlar/Epoxy specimens are the closest.  The spread of all data presented in 

Figure 6.7 also shows a narrowing trend (similar to Figure 6.10) as the Vfo/Vf 

gets larger. 

 Other reasons behind the differences between the regression model and the 

experimental findings may be due to one of the basic assumptions used in the 

original development of the regression based model: the unit cell was assumed to 

be under uniform strain upon application of load. This assumption may be correct 

for closed-mesh braided structures, where regions R6 to R13 are very small 

compared to regions R1 to R5 (Figure 6.1), as regions with similar elastic 

properties are adjacent to each other. On the other hand, the assumption may be 

incorrect as the structure becomes open-mesh, because, as the undulation length 

increases, the elastic properties of the adjacent regions may not be similar to each 

other if one considers the low elastic modulus properties of matrix-only regions 

(R6 to R9). Hence, upon application of a load, it may be reasonable to expect non-

uniform deformations between the regions of a unit cell. This may result in a 

different loading mode such as bending of the undulating regions that are lacking 

lateral support due to the low modulus matrix-only regions.   

 An alternative or additional possibility, is that this could be seen as an 

analogous situation to geometric stress concentration factors, although verification 

of this statement would require a specific target-study on such effects the 

following discussion should provide theoretical support to the proposed notion. 
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The tubular open-mesh tensile test specimens were roughly 25 mm in diameter. 

Upon loading, due to the elongation, the structure is expected to decrease in 

diameter. If the structure was assumed to decrease down to 24 mm during a test, it 

may be argued the stress concentration developed in the structure may be 

approximated from the commonly used stress concentration factor diagrams for 

round stepped shafts under longitudinal loading. Norton gives the formula for the 

stress concentration factor of such a shaft as [28]:    

b
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⎜

⎝

⎛
=  (13)

  

where A and b are geometric parameters and r is the radius of the step, and d is the  

smaller (stepped down) diameter (24 mm for the case in hand). Using the assumed 

parameters above and assuming 10/dr = ,  parameters A and b are found as 

1.00480 and -0.17076, respectively. Hence, the stress concentration factor is 

found approximately as 1.48.  The ratio between the average of the open-mesh 

braid Kevlar/Epoxy longitudinal elastic modulus and the model prediction was 

roughly 1.46 which is very close to the stress concentration factors calculated 

above. The ratio between the average of the open-mesh Carbon/Epoxy and model 

prediction, and S2-Glass/Epoxy and the model prediction was 2.93 and 4.45, 

respectively. This can be explained in part by the brittleness of carbon and glass 

as compared to Kevlar; intensity of stress concentration factors is higher in brittle 

materials.  Furthermore, the differences could be indicative of localized behaviors 
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at the strand-resin rich region interface between two brittle materials (fiber and 

resin).  

 Similar to the longitudinal elastic modulus results, the closed mesh data 

used in Figure 6.8 for shear modulus results, legend name “Ayranci-Carey 

experimental”, proves the model validity for closed-mesh braids once more as the 

experimental result agrees well with the Regression equation line plotted on 

Figure 6.8. On the other hand, the open-mesh braid experimental data presented in 

Figure 6.8 do not show good agreement with the regression model as well as the 

closed-mesh braid results. However, the third set of data, that was obtained using 

an analytical model (legend names: “Kevlar/Epoxy predicted”, “Carbon/Epoxy 

predicted”, and “S2-Glass/Epoxy predicted”), presented in Figure 6.8 again agrees 

well with the regression based model for all three types of the open-mesh braided 

composites (Kevlar/Epoxy, Carbon/Epoxy, and S2-Glass/Epoxy). 

 The calculated LLL values are shown in Figure 6.7 and Figure 6.8. Almost 

all of the experimental data are at or above the LLL limit calculated; however, 

similar to Figure 6.3 (a) and (b), the spread deviation from the regression line 

increases as the Vfo/Vf gets closer to the LLL and show asymptotic behavior as 

predicted lending credence to the proposed approach. 

 

6.5. Conclusions 

 Experimental verification of a previously developed regression-based 

model was conducted for simpler initial design calculation purposes of braided 

composite materials. The results of the model match well with experimental 
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findings for close-mesh braided composites; however, for open-mesh braided 

composites the results show differences. In the paper, possible reasons for this 

behavior are discussed. The lower linearity limit (LLL) of the model for different 

fiber-matrix systems were calculated and discussed.  These initial experimental 

results comparison suggest a full characterization of the model can be possible by 

increasing the experimental data pool in the literature which is currently very 

limited.   
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CHAPTER 7:  SUMMARY, CONCLUSIONS, AND FUTURE 

WORK 

 The studies were conducted to provide an accurate model predict elastic 

properties of braided composite tubes to be used for braided medical catheters and 

other low stiffness requirement designs.  

 First, an analytical model that recognizes the effects of curvature on the 

unit cell of braided tubular composites as a function of the diameter of the tubular 

composite was developed. The model predictions were compared to and validated 

using a flat-model prediction available in the literature by setting a large-enough 

diameter for the curved-unit cell predictions to obtain comparable results. In a 

particular case study, results of curved- versus flat-model showed up to 4.7 % 

difference which may be an important difference for a catheter design. In another 

case study, between curved- and flat-model predictions, approximately 7.2% 

differences were observed for both the longitudinal elastic and shear moduli 

properties. On the other hand, Poisson’s ratio was found to be insensitive to the 

changes in the diameter of the braided tubular composites. Findings of 

longitudinal elastic and shear moduli of the curved-model were validated using 

experimental findings. For this purpose, tensile and torsion experiments were 

conducted for three different diameter braided composites. Excellent agreements 

were observed between the predicted and experimental results for both 

longitudinal and shear modulus.  
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 Properties of open-mesh braided tubular composites were predicted and 

compared to that of closed-mesh braided tubular composites using the developed 

analytical model. This was done by gradually increasing the undulation length in 

the unit cell. It was observed that elastic properties decrease as the undulation 

length increase. Results were compared to that of an in-house experiments that 

were conducted using three different fiber/matrix composite system, namely, 

Kevlar/Epoxy, Carbon/Epoxy, and S2-Glass/Epoxy. Analysis of the results 

showed that, as predicted by the analytical model, decrease in elastic properties 

were observed; however, comparison of experimental and predicted results 

showed that the decrease in the results of experimental findings were higher than 

the ones predicted. A conclusive correlation between experimental and predicted 

results was not reached. Possible reasons for this behavior were discussed and an 

experimental study was suggested to obtain a correlation factor. Preliminary 

experiments with open-mesh braided specimens without matrix-only regions (i.e. 

stent like structures) were also carried out. The proposed analytical model 

predictions and experimental results for these stent-like structures were in 

agreement.  

 Finally, experimental verification of a previously developed regression-

based model was done using the closed mesh experimental data (Chapters 3 and 

4) and experimental data collected for the open-mesh structures (Chapter 5). Good 

agreement with the closed-mesh results was obtained; however, differences in 

open-mesh results were observed. The possible reasons between differences in the 
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findings were discussed. Also, Lower Linearity Limits (LLL) of the model for 

different fiber/matrix systems were determined.  

 

Contributions 

 This PhD study contributed to the field of study in numerous ways:  

1. The developed curve model is more accurate then previous models, and 

provides a better tool to the designers to achieve more accurate designs for such a 

crucial device that is used in human body. The model investigates the effects of 

tube diameter, via unit cell radius of curvature, on the elastic properties of tubular 

braided composites that have not been previously done in the literature.  

2. Via parametric studies, the important parameters that have direct effect on 

the elastic properties of the braided composites have been determined. This again 

is a crucial tool for the designers to achieve better results. 

3. Effect of undulation length on elastic properties of braided catheters is 

underlined using the developed model. Catheters, due to their nature, may need 

changing rigidities throughout their lengths. One of the limited ways to achieve 

this is to change the braid angle. Having control over one more parameter, 

undulation length, is very important to give flexibility to the designer.  

4. Currently very limited experimental data are available in the literature 

about open mesh braided composites. Direct comparison results showed that the 

decrease in properties due to increase in undulation length is actually higher than 

the predicted values which highlighted an important gap in the literature that 

needs to be closed.  
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5. Further validation of a previously developed practical design model, 

regression based model, was conducted. Also, lower linearity limit for the 

predictions of this model was determined which tells the designers the theoretical 

limitations of the model.  

 

Future Work 

 The findings of this PhD thesis study contributes greatly to the 

improvement of braided catheter design. As a result of this work, there is a need 

for further investigations in following new areas: 

1. Catheters have small inner and outer diameters, as an example 

approximately 1 mm inner diameter and 2mm outer diameter. As a follow up to 

the works presented in Chapters 3 and 4, further investigation and validation of 

the model with real catheter size specimens are required. 

2. Using the developed model and experimental findings, design curves that 

specify critical braid diameters as a function of strand geometry should be plotted. 

3. Effect of curvature induced state of strain of the strands and fiber-matrix 

interface interactions on the model predictions should be investigated to further 

improve the model. Experimental results can be further analyzed using the 

curvature induced state of strain of the strands due to unit cell curvature. 

4. The model was developed assuming use of un-twisted strands. Effect of 

twisted strands on the elastic properties should be analyzed.  

5. The uniform strain assumption that was used in the model needs to be 

further investigated as it is suspected that the differences between the 
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experimental and predicted results for open-mesh braided structures may be 

related to this assumption.  

6. As a follow up on the work discussed in Chapters 5 and 6, an experimental 

study needs to be conducted to fully characterize the behavior and properties of 

open-mesh composites. The experimental data pool in the literature is currently 

very limited prohibiting a successful attempt to suggest a correlation factor 

between the open-mesh experimental results and model predictions.  

This is possible using a fully automated manufacturing technique. Homogenously 

impregnated, defect free specimens with high dimensional tolerances should be 

produced and tested to minimize the spread in data. Undulation length of the 

specimens must be gradually increased to plot practical design curves. 

7. This manufacturing technique is most likely extrusion as it satisfies the 

criteria listed above and it is the manufacturing technique used in conventional 

catheters. However, use of extrusion brings another challenge into the future work 

of braided catheters: homogeneous and complete impregnation of fibers. Current 

thermoplastic materials used for conventional catheters have relatively high melt 

viscosity values compared to thermoset materials. Higher melt viscosities prevent 

thermoplastic matrix from fully and homogeneously impregnating fibers used in 

the braiding process. To avoid this, a few preventive measures may be taken such 

as use of special fillers that decrease matrix viscosity, or pre-impregnate and cure 

the braided preform using a compatible thermoset resin, and then coat it using the 

thermoplastic matrix. 
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8. Catheters are commonly subjected to axial compression type of loading; 

hence, critical load, Pcr, that results in buckling of the braided tubular structures 

should be determined using overall unit cell length and undulation length. 

9. The buckling mode of failure should be investigated as a function of 

curvature in the braided strands. 

10. Development of 3-Dimensional non-contact strain measurement systems 

may be extremely valuable during test for braided composites. Use of 

extensometers or strain gages has their limitations, such as limited gage length or 

attaching the strain gage to an uneven surface due to the texture of the specimens. 

It may be especially very helpful in characterization of open-mesh braided 

structure properties, because it may help to identify the response of undulation 

lengths, such bending of the undulation length, upon loading.    

 

 
 
 


