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Abstract 

The high heterogeneity of petroleum reservoirs, represented by their spatially varying rock 

properties (porosity and permeability), greatly dictates the quantity of recoverable oil. In this work, 

the estimation of these rock properties, which is crucial for the future performance prediction of a 

reservoir, is carried out through a history matching technique using constrained ensemble Kalman 

filtering (EnKF) and particle filtering (PF) methods. The first part of the thesis addresses some of 

the main limitations of the conventional EnKF. The EnKF, formulated on the grounds of Monte 

Carlo sampling and the Kalman filter (KF), arrives at estimates of parameters based on statistical 

analysis and hence could potentially yield reservoir parameter estimates that are not geologically 

realistic and consistent. In order to overcome this limitation, hard and soft data constraints in the 

recursive EnKF estimation methodology are incorporated.  Hard data refers to the actual values of 

the reservoir parameters at discrete locations obtained by core sampling and well logging. On the 

other hand, the soft data considered here is obtained from the variogram, which characterize the 

spatial correlation of the rock properties in a reservoir. In this algorithm, the correlation matrix 

obtained after the unconstrained EnKF update is transformed to honour the true correlation 

structure from the variogram by applying a scaling and projection method. This thesis also deals 

with the problem of spurious correlation induced by the Kalman gain computations in the EnKF 

update step, potentially leading to erroneous update of parameters. In order to solve this issue, a 

covariance localization-based EnKF coupled with geostatistics is implemented in reservoir history 

matching. These algorithms are implemented on two synthetic reservoir models and their efficacy 

in yielding estimates consistent with the geostatistics is observed. It is found that the computational 

time involved in the localization-based EnKF framework for reservoir history matching is 

considerably reduced owing to the reduction in the size of the parameter space in the EnKF update 
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step. Also, the geostatistics-based covariance localization performs better in capturing the spatial 

heterogeneity and variability of the reservoir permeability than the traditional methods. In the 

second part of the thesis, we extend the history matching implementation using the particle 

filtering. Reservoir models, being nonlinear, the distributions of the noise and parameters are 

generally non-Gaussian in nature. Since the EnKF may fail to obtain accurate estimates when the 

distributions involved in the model are non-Gaussian, we attempt to use a completely Bayesian 

filter, the particle filter, to estimate reservoir parameters. In addition, the geostatistics-based 

covariance localization is also coupled with the particle filter and is found to perform better than 

the filter without any localization.  
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The results of Chapter 2 and Chapter 3 of this thesis have been submitted as Abhinandhan Raghu, 
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Chapter 1 

Introduction 
 

1.1 Motivation and objective 
In the modern day, there is a significant demand on competitive operating performance and high 

oil productivity of petroleum reservoirs.  Industries invest millions of dollars in petroleum 

reservoir characterization to study the economic feasibility of reservoirs. Petroleum reservoir 

characterization is required to analyze and perform optimization studies on a reservoir to improve 

its productivity under different operating conditions and make long term predictions of its future 

performance. However, this is not an easy task in practice due to the high heterogeneity of 

petroleum reservoirs, represented by their spatially varying rock properties – porosity and 

permeability, which greatly dictate the quantity of recoverable oil. This uncertainty in reservoir 

characterization poses challenging problems for reservoir engineers in today’s oil industry.   

The problem of reservoir characterization is an inverse problem where a set of dynamic reservoir 

production data is used to compute the reservoir states and parameters that have caused that 

behavior. This inverse reservoir problem is commonly known as history matching. Over the last 

few decades, the field of history matching has grown at a brisk pace and several techniques have 

been proposed. 

In spite of the rapid progress and advancement being made in the field of reservoir process 

monitoring and control, the inability to place multiple online sensors over the entire reservoir 

volume has led to poor observability and identifiability of reservoir states and parameters. 

Moreover, information obtained from the reservoir seismic images, geological surveys, well 

logging, dynamic production data and bottom hole pressure measurement is very limited and is 

available only at certain discrete locations in a reservoir.  

This thesis focuses on the estimation of these rock properties (porosity and permeability) to 

forecast a reservoir’s future performance, and is carried out through two history matching 

techniques: constrained ensemble Kalman filtering (EnKF) and particle filtering (PF).   
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1.2 Why is reservoir characterization difficult?  
The characteristic feature of most reservoirs is that they are extremely heterogeneous. This 

heterogeneity is a measure of extent of variation in the reservoir rock properties as a function of 

location in the reservoir. The scale of variation of these properties may vary from one reservoir to 

another with some reservoirs exhibiting pore scale variation in properties such as porosity. Hence, 

a thorough knowledge about reservoir heterogeneity and properties is necessary to make accurate 

long term performance predictions and optimize its oil productivity, making reservoir 

characterization indispensable.  

To perform reservoir characterization, vital information about the reservoir has to be gleaned from 

3D and 4D-seismic studies, well logging and core measurements (these constitute prior 

information). However, the data obtained from these techniques is very limited. In order to get the 

complete picture of a reservoir, hundreds of wells need to be drilled and completed, which will 

turn into a very expensive venture for industries. Also, the data obtained through above-mentioned 

methods are generally corrupted by noise, making it not very reliable. This adds to uncertainty in 

reservoir characterization. 

The process of integrating the prior information about a reservoir in the form of hard and soft data 

and dynamic production data into the existing reservoir models, also called as history matching, 

leads to many challenges. One of the main challenges associated with history matching applied to 

reservoir characterization is that this is an ill-posed problem. This is due to the fact that several 

possible combinations of model parameters can lead to the same set of observed reservoir 

behavior; hence, there is no unique solution [1].  

1.3 Reservoir simulation and geostatistics 
Reservoir simulation models are a set of complex and coupled non-linear partial differential 

equations describing the fluid flow (water, oil and gas) in a reservoir, represented by their porous 

rock structure. Any reservoir model can be characterized by a set of static and dynamic properties. 

Static properties are time-invariant in nature, e.g., porosity and permeability. On the other hand, 

the dynamic data are time variant and includes measurements from wells such as the bottom hole 

pressure, the oil production rate and water cut.  
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There are a number of commercial reservoir simulators available to optimize and predict reservoir 

performance. The most commonly used ones are CMG and ECLIPSE. Reservoir simulation 

consists of four stages – physical model development, mathematical model development, 

numerical model development and finally the design of computer algorithms [2]. In the first stage, 

the physical model describing the physics behind the reservoir simulation i.e., flow through porous 

media, is constructed. In the second stage, mathematical differential equations describing energy 

conservation and mass conservation are developed. The third stage is associated with the 

derivation of a numerical model by discretizing the differential equations. In the final stage, an 

algorithm is developed to solve the algebraic difference equations obtained through the 

discretization [2].   

These equations are built upon the conservation of mass, fluid dynamics equations and Darcy’s 

law, which explains the flow of fluids through porous media and and is given below:  

𝑣 =
𝑘

µ

𝑑𝑝

𝑑𝑥
      

where 

     𝑣 = fluid flow rate through the medium (m/s), 

     𝑘 = permeability of the medium (mD), 

     µ = dynamic viscosity of the medium (Pa.s), 

     
𝑑𝑝

𝑑𝑥
= applied pressure difference per unit thickness of the medium (Pa/m). 

In processes where thermal methodologies are used to aid in oil recovery such as the steam assisted 

gravity drainage (SAGD) process or the cyclic steam stimulation (CSS), energy conservation is 

also taken into account while developing the reservoir models. These equations are explained in 

appendix A.  

The reservoir data obtained through the well core measurements, well logging and seismic studies 

are commonly classified into hard data and soft data. Hard data refers to the core measurements of 

the reservoirs obtained from well logging at discrete locations, and these include the values of 

porosity, permeability, water saturation and oil saturation.  In other words, hard data gives the 
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absolute true values of the reservoir properties at some locations. Soft data, on the other hand, is 

obtained from seismic surveys and these reveal crucial information regarding the connectivity of 

a reservoir, its anisotropy and the distance based correlation structure of the rock properties such 

as porosity and permeability.   In petroleum geology, this correlation structure is represented by a 

variogram. 

A variogram gives a measure of the spatial dependence of a spatial random field or a stochastic 

process and is inversely related to correlation as shown in equation 1.1: 

ϒ(Δx,Δy) = 
1

2
 ε [{Z( x + Δx, y + Δy) – Z (x , y)} 2]          (1.1) 

where Z(x, y) is the value of variable of interest at the location (x , y).  Mathematically, the 

variogram at a distance h can be defined as the average or the expectations of squared differences 

between pairs of data separated by h units.  

Geostatistics deals with the estimation of rock properties at unknown locations given conditions 

of hard and soft data. Several algorithms have been developed to address this problem of 

interpolation and extrapolation, making geostatistics a highly mature field. Details of these 

geostatistical algorithms are provided in Appendix B. Geologists and reservoir engineers utilize 

these techniques to generate several plausible distributions of porosity and permeability, each 

honouring the hard and the soft data. These distributions serve as inputs to reservoir models for 

commercial reservoir simulators to make predictions of oil productivity. SGeMS and GSLIB are 

the most commonly used software packages for geostatistics.  

1.4 A brief literature review 
State and parameter estimation has grown at a rapid pace ever since the ground-breaking research 

of Kalman [3], leading to his proposal of a minimum variance state estimator for a linear system 

characterized by a Gaussian process and measurement noise, commonly called the Kalman Filter. 

The Kalman filter has been used successfully in the past for estimation in different applications in 

aerospace engineering, radar tracking, object tracking in computer vision, seismology and satellite 

navigation systems [4]. Many variants of the Kalman filter were introduced over the years to 

extend the estimation technique to different applications. For instance, the extended Kalman filter 
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(EKF) is used to estimate states in nonlinear systems. The other common variants of Kalman filter 

are the unscented Kalman filter (UKF) and the ensemble Kalman filter (EnKF).  

In reservoir engineering, many history matching algorithms have been proposed for estimating the 

reservoir states and parameters and implemented successfully in the past few decades. Oliver et al 

[1] present a detailed timeline for the progress of history matching since its inception. Research in 

this field has grown rapidly, especially in the last decade, due to increased computational power 

and the popularity of geostatistical modeling and Monte Carlo methods to quantify uncertainty in 

reservoir performance prediction.    

During the early stages of the history matching implementation, traditional methods were used. 

These include manual history matching procedures, in which model parameters such as porosity 

and permeability were tuned iteratively until the mismatch or error between the estimates and 

historical data is reduced. However, this process is not rigorous and extremely time consuming 

and is computationally expensive [5]. Over the years, history matching has been performed 

successfully using different methods including genetic algorithms [6], the gradual deformation 

method [7], neighborhood algorithms [8], gradient downhill methods [9], Markov chain Monte 

Carlo methods, randomized maximum likelihood and the ensemble Kalman filter (EnKF) [10].  

The ensemble Kalman Filter (EnKF) is a Monte Carlo variant of the Kalman filter, and was 

proposed by Evensen [10] to perform state and parameter estimation for highly nonlinear ocean 

models. Following its success, the methodology was implemented for reservoir characterization 

by Lorentzen et al [11]. The reservoir engineering literature is now filled with hundreds of papers 

detailing different approaches used in history matching for efficient reservoir characterization. The 

main reason behind the widespread adoption of the EnKF in reservoir applications is because of 

its ease in handling nonlinearities and the fact that one does not need to know the explicit structure 

of the nonlinear reservoir model. Moreover, the computational complexity scales approximately 

linearly with the number of variables. 

Despite the enormous success of the EnKF in reservoir applications, it suffers from a few 

limitations. The main drawback is its inability to yield geologically realistic estimates of reservoir 

properties such as porosity and permeability in some instances. Like other recursive estimators, its 

estimates do not honour hard and soft data constraints. As pointed out by Gosselin et al [12], 
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conditioning reservoir models to the seismic soft data is a very challenging task. Skjervheim et al 

[13] incorporated 4D seismic data using the EnKF with reasonable success. Moreover, calibrating 

large scale reservoir models using the EnKF may potentially yield erroneous estimates of the 

reservoir properties. This is because a typical reservoir simulation model is discretized into 

thousands of grid blocks; on the other hand, there are few well measurements available, leading to 

poor identifiability of the reservoir parameters. Now, the EnKF uses these limited measurements 

to update all the grid blocks of a reservoir irrespective of their distance from these wells. This leads 

to spurious updates of reservoir states and parameters. To counter this, studies have focused on 

determining a region of influence within a reservoir which has the greatest impact on the oil and 

gas production. In the update step, only the region of influence is updated sequentially by the 

EnKF, leading to great reduction in the dimension of the estimation problem. This procedure is 

also called as parameterization or covariance localization. Many metrics have been employed to 

perform covariance localization-based estimation; these include sensitivity analysis [9], wavelet 

transformations [14], discrete cosine transform (DCT) [15] and the sub space methods [16].   

The particle filter (PF), has also been used in reservoir history matching. A set of particles and 

their associated weights, representing the reservoir states and parameters, are propagated through 

the simulator to obtain predictions. After the prediction step, these weights are used to sample the 

particles to obtain the posterior representation of these particles. There are several sampling 

techniques such as the sequential importance sampling (SIS) and the sequential importance 

resampling (SIR). These sampling techniques differ in the manner in which particles are selected 

for the importance distribution to obtain a posterior distribution. Generally, the particles with 

higher weights have more chances of being propagated into the simulator for the next prediction 

step and vice versa. Heimhuber et al [17] present history matching results using the polynomial 

chaos expansion-based bootstrap particle filters. Luo et al [18] compare the EnKF and PF for 

reservoir history matching applications.  

1.5 Objective  
The main objective of this work is to address the shortcomings of the conventional EnKF 

implementation for the challenging reservoir history matching problem. In this work, we have 

proposed a novel method by integrating the EnKF with geostatistics by using the hard and the soft 

data constraints in order to obtain geologically consistent estimates of the reservoir parameters. 

Another goal of this work is to couple the covariance localization-based EnKF with geostatistical 
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algorithms such as the sequential Gaussian simulation so that geological continuity information 

obtained from the soft data is honoured. Finally, a completely Bayesian-based stochastic 

estimation method, the particle filter, is also used for yielding estimates of reservoir parameters 

such as permeability.  

1.6 Contributions of this thesis 
 The main contributions of this thesis are listed below: 

A) Implementation of the hard data constrained ensemble Kalman filter (EnKF) 

B) Variogram-constrained reservoir history matching using the EnKF using a novel projection 

method 

C) Unconstrained and the variogram-constrained covariance localization-based history matching 

using the EnKF 

D) Reservoir characterization and history matching using the particle filtering method.  

1.7 Thesis Outline 
This thesis is written in a paper format and the reminder of the thesis is organized as follows: 

Chapter 2 focuses on the hard and soft data-constrained EnKF using a scaling and projection 

method. Here, the correlation matrix obtained after the unconstrained EnKF update is transformed 

to honour the true correlation structure from the variogram. The constraint algorithm results in 

better history matching compared to the unconstrained EnKF update method. The history matching 

is performed for a two-dimensional water flooding case and a three-dimensional SAGD process.  

Chapter 3 presents the soft constrained covariance localization algorithm. The method of selecting 

the region of influence for performing localization is introduced. A novel approach to implement 

soft constraints in a localized EnKF model is described. The results of this constrained localization 

are compared with the unconstrained covariance localization. Again, a two-dimensional water 

flooding and a three dimensional SAGD reservoir processes are considered.  

In chapter 4, the reservoir parameter estimation problem is studied using the particle filtering 

technique. The implementation of constraints using the above-mentioned methods is carried out 

for the particle filtering also and compared with results for unconstrained particle filtering.  
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Chapter 5 presents the conclusions and future work relating to this reservoir parameter estimation 

problem.  

Appendices A and B describe the governing equations behind the reservoir simulator CMG and a 

brief summary of algorithms commonly used in geostatistics, respectively.  
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Chapter 2 

Hard Data and Soft Data Constrained Reservoir 

Parameter Estimation with Ensemble Kalman 

Filter 
 

The challenging problem of reservoir parameter estimation and history matching is studied in this 

chapter by applying a constrained Ensemble Kalman filter (EnKF) methodology. Ensemble 

Kalman filtering is a Monte Carlo-based method for data assimilation widely used in highly non-

linear ocean, weather and reservoir models. It employs the reservoir model along with an ensemble 

of initial states and parameters to make a prediction for a time interval, at the end of which, in the 

update step, the model predictions are reconciled with data to provide updated state and parameter 

estimates. The main advantage of this method is the integration of most recent available 

measurements with the model predictions. However, the main drawback of the EnKF is that the 

states and parameters are updated based on the Kalman update equation, potentially making their 

estimates physically and geologically inconsistent. In this chapter, we present a novel approach to 

counter this limitation by implementing constraints in the algorithm so that estimates are 

geologically consistent and honour the prior reservoir information available in the form of hard 

and soft data. We then show that the constrained estimation leads to better history matching than 

its unconstrained counterpart by demonstrating the proposed methodology on two synthetic 

reservoir models.  

2.1 Introduction 
Hydrocarbon reservoir modeling and characterization are crucial to make forecasts on reservoir 

performance, optimize its productivity, make reservoir management decisions and conduct risk 

analysis. The rapid advancement of sensor technology has led to the development of numerous 

data acquisition techniques [19]. These tools have been applied successfully in reservoir 

management to extract crucial information about the underlying reservoir geometry, stratigraphy, 

anisotropy, faults and fractures. However, economic and practical factors limit the total number of 

such sensors that can be sampled in a real reservoir field. To obtain reliable predictions, it is of 
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paramount importance to integrate the prior geological data (hard and soft data) and dynamic 

reservoir information into the modeling process. Hard data generally refers to direct reservoir 

measurements like formation tops, thickness, obtained through well core sampling, while the soft 

data reveals fine details regarding the spatial variability, reservoir connectivity and distribution of 

rock properties in the reservoir volume obtained through seismic surveys, well logging and 

geologic insight. Dynamic data includes reservoir production measurements such as the 

cumulative oil production, the bottom hole pressure, water cut and the steam-oil ratio, and these 

are obtained during the stage of production. With the rapid development of seismic imaging, the 

petroleum industry is also incorporating 4-D seismic studies as a part of dynamic data to assist in 

the characterization process [20].  

The calibration of reservoir models to match the dynamic production data is known as history 

matching. It is currently the most widely used technique employed by reservoir engineers to 

construct reasonably sound predictive reservoir models. In history matching, the model parameters 

and states such as porosity, permeability, facies indicators and pressure are adjusted and tuned so 

that the simulated results match historical observations from real petroleum reservoirs [21].  

Mathematically, it can be framed as an inverse problem, aimed at arriving at the best possible 

solution space firmly grounded on the dynamics of fluid flow through porous media and 

production data. As is the case with any physical modeling process, history matching contains 

many assumptions and errors, leading to uncertainty in reservoir characterization.  

Fig 2.1 gives a schematic representation of the generic reservoir history matching problem [22]. 

During the nascent stage of its implementation, history matching was performed by means of a 

trial and error approach, in which the model parameters were manually tuned until a good match 

with the production data was obtained [19]. However, this is a very time consuming process and 

is not ideal for large scale reservoir applications [5]. Due to its time consuming nature, 

optimization techniques such as a Gauss-Newton search, simulated annealing and genetic 

algorithms were applied to this inverse problem. In all of these methods, an objective function 

representing a mismatch between simulated data and history data is minimized to arrive at the 

model estimates. Gradient-based optimization algorithms were introduced in the history matching 

literature by Vasco et al [23], where sensitivity coefficients were used to arrive at a locally  
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Fig 2.1 Reservoir history matching workflow [22] 

minimum solution of the objective function for the parameter estimation problem. Details on some 

of these optimization methods for history matching can be found in Schulze-Riegert et al [24]. The 

most popular technique that is widely used for history matching is the ensemble Kalman Filter 

(EnKF). The implementation of the EnKF for history matching has led to promising results in the 

past. Apart from reservoir engineering, it has been extensively used in oceanography, hydrology 

and weather forecasting [25-28]. It is a Monte Carlo-based variant of the commonly used Kalman 

filters and was devised by Evensen [29] for the determination of ocean models using data 

assimilation.  

The EnKF, like other Kalman filters, is a sequential recursive estimation and is characterized by 

the integration of the measurement data (dynamic data) into the reservoir model as and when it is 

available. In reservoir models, this data includes measurement data from the wells. Implementation 

of the EnKF consists of three stages: a prediction/ forecast step, an analysis step and an update 

step. In the prediction step, an ensemble of realizations is propagated through the reservoir model 

to generate the prior ensemble. In the analysis step, the Kalman gain is computed based on the 

ensemble covariance matrix. Finally, in the update step, measurement observations are used to 

arrive at an updated posterior ensemble. Details of each of these steps are provided in section 2.3. 
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The main advantage of the EnKF compared to other Kalman filters is that EnKF can handle 

nonlinearity in the model with great ease. In addition, this technique is non-iterative and requires 

only a limited number of Monte Carlo simulations using an ensemble of realizations [19]. 

Moreover, since the EnKF uses an ensemble of stochastic realizations to describe the model 

parameters, a measure of the uncertainty in the estimation of model parameters is obtained along 

with the model forecast. However, the EnKF suffers from certain drawbacks for use in reservoir 

simulation. The main limitation is that the EnKF may generate spurious correlations in the regions 

distant from the observation wells [30]. Secondly, the EnKF assumes a Gaussian distribution for 

the model parameters, which is not exactly in reality. To counter the problem of spurious 

correlation, covariance localization is performed, where the impact of observations is reduced up 

to a certain finite distance from the observation point as opposed to the entire system. Covariance 

localization [31-33] is a highly researched topic in petroleum engineering history matching 

problem, because the number of observable variables in a reservoir system is not very high and it 

could lead to spurious correlation in regions far from the wells. The topic of covariance localization 

and its implementation will be covered in Chapter 3. As mentioned in the beginning of this chapter, 

we have proposed a novel method to arrive at geologically and physical consistent estimates. 

Before discussing this in detail, it is necessary to have a sound basic knowledge on geostatistics 

and the methodology of the EnKF, which are respectively dealt with in the following two sections.   

2.2 Geostatistics 
This section explains the basic terminology associated with geostatistics. Geostatistics is a highly 

mature field concerned with the modeling of spatially correlated data. It was first introduced into 

the applied statistics literature by Matheron [34], when he tries to quantify the ore properties of a 

mine. Since a petroleum reservoir is also characterized by spatially varying geological layers and 

rock structures, it is currently being widely adapted for reservoir engineering applications [35]. 

Geostatistics aids in accurate forecasting of reservoir performance by quantitatively combining the 

different types of available hard and soft data [36], and many details are available [37-40]. 

The most common measures of the spatial continuity widely used in earth sciences are the 

variogram, the covariogram and the correlogram. A variogram is defined as the variance of the 

difference between the values of the spatial properties at two locations in a spatial study area. Its 

expression is given below:  
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 𝛾(ℎ) =  
1

2 𝑁(ℎ)
 ∑ [𝑧(𝑢∝

𝑁(ℎ)
∝=1 + ℎ) − 𝑧(𝑢∝)]2           (2.1)  

where 𝑧(𝑢) is the value of variable of interest at the location 𝑢, ‘h’ is the separation lag, 

representing the spatial distance between two points under consideration and 𝑁(ℎ) is the number 

of pairs of grid blocks whose separation distance is ‘ℎ’. On a similar note, the covariance and the 

correlogram, which provide the covariance function and average correlation coefficient as a 

function of the spatial separation distance ‘ℎ’, can be written as: 

 𝐶(ℎ) =
1

𝑁(ℎ)
 ∑ [𝑧(𝑢∝

𝑁(ℎ)
∝=1 + ℎ)𝑧(𝑢∝)] −  𝑚0. 𝑚+ℎ          (2.2) 

 𝜌(ℎ) =
𝐶(ℎ)

(𝜎0.𝜎+ℎ)1/2 
              (2.3) 

where 𝐶(ℎ) and 𝜌(ℎ) denote the covariance function and the correlogram respectively, m0 and m+h 

represent the mean head and tail values and 𝜎0 and 𝜎+ℎ are the corresponding standard deviations. 

These are explained below: 

𝑚0 =  
1

𝑁(ℎ)
 ∑ 𝑧(𝑢∝)

𝑁(ℎ)
∝=1              (2.4) 

𝑚+ℎ =  
1

𝑁(ℎ)
 ∑ 𝑧(𝑢∝ + ℎ)

𝑁(ℎ)
∝=1             (2.5) 

𝜎0 =  
1

𝑁(ℎ)
 ∑ [𝑧(𝑢∝) − 𝑚0] 2

𝑁(ℎ)
∝=1             (2.6) 

𝜎+ℎ =  
1

𝑁(ℎ)
 ∑ [𝑧(𝑢∝ + ℎ) − 𝑚+ℎ] 2

𝑁(ℎ)
∝=1            (2.7) 

The variogram of a property is associated with unique parameters, namely the sill, the range and 

the nugget (see Fig 2.2). 
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Fig 2.2 A typical variogram for a reservoir 

Theoretically, the ideal value of variogram at the origin should be zero. However, in real cases, 

small values of the variogram, called the nugget are observed at zero lag, possibly due to 

measurement errors. The nugget in a variogram model represents this error. With increasing lag 

distance, the autocorrelation between properties separated by h units decreases. The lag distance 

at which this autocorrelation value reduces to zero is called the range of the variogram. The 

variogram value at the lag distance corresponding to its range is called the sill. 

Geostatistics involve many assumptions regarding the variogram calculations. The most important 

one is the stationary assumption. All geostatistical estimation is characterized by some sort of 

stationarity – strict stationarity, second order stationarity or intrinsic hypothesis. Usually, either 

second order or intrinsic stationarity is assumed. For a second order stationary process, the 

covariance function is assumed to be independent of spatial location and is constant for a given 

separation distance ‘h’. For such processes, the correlogram and the variogram are related by the 

following equation: 

ρ(h) = 1 – (
𝑐(ℎ)

𝐶(0)
)              (2.8) 

where, 𝐶(0) is the covariance function at zero lag.  

There are many geostatistical estimation and simulation algorithms, details of which can be found 

in Appendix B. 
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2.3 Ensemble Kalman Filter (EnKF) Methodology  
The EnKF uses a Bayesian approach, where an initial ensemble is obtained by generating 

permeability and porosity fields using a priori geostatistical assumptions. The production data is 

incorporated sequentially in time, and the permeability and porosity fields are updated as new 

production data is introduced. Moreover, the dynamic states of a reservoir, i.e., reservoir pressure 

and saturations, are also updated along with the rock properties such as porosity and permeability.  

For the case of history matching of a reservoir, a stochastic model represented by the following set 

of equations is considered [1]. 

𝑋𝑘 = 𝑓(𝑋𝑘−1, 𝜃)                         (2.9) 

 𝑌𝑘 = 𝑔(𝑋𝑘) +  𝑉𝑘                           (2.10) 

𝑉𝑘 ~ 𝑁(0, 𝑅)               (2.11)  

where  

𝑋𝑘 : State variables of the reservoir at a given time instant k. This may include either the dynamic 

variable such as the pressure, oil saturation and the water saturation, which change with time or 

the static variables such as porosity and permeability, which do not change with time.  

𝑓 : Reservoir simulator function which relates the state variables at a given instant to the state 

variables at the previous instant.  

𝑌𝑘 : Represents the dynamic production data obtained at the wells such as the oil production rate, 

the steam oil ratio, the gas production rate, the monthly oil production, the bottom-hole pressure, 

water cuts, oil cuts and the cumulative liquid production rate. 

𝑉𝑘  : Represents the measurement noise associated with the process. It is assumed to follow a normal 

distribution with zero mean and covariance matrix R. 

The main advantage of the EnKF is that we do not need to know the structure of functions 𝑓 and 

𝑔 explicitly, but only need their values, which is consistent for use with commercial reservoir 

simulators. These functions are reservoir simulator functions and are extremely nonlinear and 

implicit.  
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The model parameters such as porosity and permeability are taken as a random walk model [13] 

as given below: 

   𝜃𝑘 =  𝜃𝑘−1 + 𝑤𝑘−1                       (2.12) 

where 𝑤𝑘−1 follows a Gaussian distribution with zero mean and low variance Q [1]. This is a 

typical way to transfer a parameter estimation problem to a state estimation problem. It is important 

to note that while the true value of 𝜃 is a constant, its estimates obtained by using the EnKF varies 

with each assimilation step.  

The EnKF consists of three steps – a prediction step, analysis step and an update step. In the 

prediction step, an ensemble of realizations is propagated through the reservoir model to generate 

the prior ensemble. In the analysis step, Kalman gain is computed based on the ensemble 

covariance matrix. Finally, in the update step, the measurement dynamic data are used to make an 

update to prior ensemble to get the updated posterior ensemble.  

This process is schematically represented in Fig 2.3 and Fig 2.4. 

 

Fig 2.3 Schematic of the ensemble Kalman filter 
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Fig 2.4 Schematic representation of EnKF for history matching a reservoir. STARS is one 

of the toolboxes that comes along with the commercial reservoir simulation package CMG 

2.3.1 PREDICTION STEP: 

The first stage in the prediction step is the generation of N realizations from the prior probability 

distribution to represent an ensemble of model parameters.  

For the generation of the initial ensemble of the permeability field, the geostatistical simulation 

package SGeMS was used in this work and the spatial distribution was generated using sequential 

Gaussian simulation.  

Each of these generated realizations was then propagated in time using the reservoir simulator 

(CMG), resulting in the prior ensembles for xk|k−1
i  and 𝜃k|k−1

i . 

   xk|k−1
i = 𝑓( xk−1|k−1

i , 𝜃k−1|k−1
i )                                (2.13) 

  𝜃k|k−1
i =  𝜃k−1|k−1

i +  𝑤k−1
i            (2.14) 
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Being a joint state and parameter estimation problem, the equations 2.13 and 2.14 can be 

represented by means of an augmented state vector zk|k−1
i  (see equation 2.15). 

zk|k−1
i =  [

xk|k−1
i

ɵk|k−1
i

]  =  zk|k−1
i =  [

f (xk−1|k−1
i  , ɵk−1|k−1

i )

ɵk−1|k−1
i  +  wk−1

i
]         (2.15)  

Now, the mean of the predicted state ensemble with respect to this augmented state vector at time 

instant k given their values until time instant k-1 for any realization i can be written as:  

µk|k−1
z =  

1

𝑁
 ∑ zk|k−1

i𝑁
𝑖=1                       (2.16)  

It is important to calculate the error or the uncertainty in the predicted states and parameters in the 

prediction step with respect to the overall ensemble. This error (say ek|k−1
i ) can be calculated using 

the mean of the predicted ensemble  µk|k−1
i  as shown in equation 2.17.  

 ek|k−1
i = zk|k−1

i −  µk|k−1
z            (2.17) 

Along similar lines, the mean of the predicted measurement ensemble (µk|k−1
i )and the error in the 

predicted measurement with respect to the overall ensemble (εk|k−1
i )  can be calculated by using 

equations 2.18 and 2.19.  

µk|k−1
y

=  
1

𝑁
 ∑ yk|k−1

i𝑁
𝑖=1                       (2.18) 

εk|k−1
i = yk|k−1

i −  µk|k−1
y

           (2.19) 

Now the sample covariance matrixes of the ensemble can be estimated using equations 2.20 and 

2.21. 

  P̂k|k−1
ε,ε =

1

𝑁−1
∑ (N

i=1 εk|k−1
i ) (εk|k−1

i )𝑇                    (2.20) 

  P̂k|k−1
e,ε =

1

𝑁−1
∑ (N

i=1 ek|k−1
i ) (εk|k−1

i )𝑇         (2.21) 

where 
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P̂k|k−1
e,ε

: Cross-covariance matrix between the predicted state ensemble and the predicted 

measurement ensemble.  

P̂k|k−1
ε,ε

 : Sample auto-covariance matrix between the predicted state ensemble. 

2.3.2 ANALYSIS STEP: 

In the analysis step, the Kalman gain is computed based on the covariance matrices of the error 

ensemble as given below: 

𝐾𝑔𝑎𝑖𝑛 = P̂k|k−1
ε,ε ( P̂k|k−1

e,ε +  𝑅)−1          (2.22) 

where 𝑅 is the measurement noise covariance matrix defined in equation 2.11.  

2.3.3 CORRECTION / UPDATE STEP: 

In the correction / update step, the actual measurements from the reservoir are used to update the 

model parameters obtained from forward simulations of the ensemble realizations. Since the actual 

measurements are contaminated with noise in real process, N perturbed measurements are 

generated using samples drawn from the process noise vk (see equation 2.11), which follows a 

normal distribution with zero mean and covariance matrix R. 

 yk
i,obs = yk

obs + vk
i                (2.23) 

After the generation of N perturbed measurements, the reservoir parameters and states are updated 

using the well-known Kalman update equation given by:  

 zk|k
i = zk−1|k−1

i +  𝐾𝑔𝑎𝑖𝑛(yk
i,obs −  yk|k−1

i )         (2.24) 

Jointly estimating both the states and parameters by means of the augmented state vector zk|k
i  using 

equation 2.24 implies that the dynamic states of the reservoir such as the pressure, oil saturation 

and temperature are updated without solving any flow equations. On the other hand, they are 

updated based on the linear Kalman update equation (2.24). As pointed out by Wen et al [24], this 

could potentially lead to physically meaningless estimates of the reservoir states and may not be 

consistent with respect to the updated static parameters such as porosity and permeability. In order 

to overcome this problem, they proposed a confirming option-based EnKF update. In this method, 

only the static parameters are updated during each correction step as shown in equation 2.25 
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θk|k
i = θk−1|k−1

i + 𝐾𝑔𝑎𝑖𝑛(yk
i,obs −  yk|k−1

i )                    (2.25) 

The dynamic states are then updated by running the simulator again using the most recently 

updated static parameters from the previous time instant to the current time instant so that the 

updated static parameters are at all times physically consistent with the updated dynamic reservoir 

states [24]. In this work, we have used this confirming option-based joint reservoir state and 

parameter estimation. Fig 2.5 illustrates the schematics of this method.  

 

Fig 2.5 Schematic representation of the confirming option-based EnKF joint state and 

parameter update. The dashed lines represent the pre-confirming confirming stage and the 

solid block arrow represents the post-confirming stage. 

2.4 Proposed methodology of soft constraint implementation: 

To get reliable forecasts on reservoir productivity, it is important to obtain multi-probable 

realizations of model parameters that not only lead to a good match with historical production data 

but are also geologically realistic. The geological realism, as mentioned earlier corresponds to the 

spatial connectivity, anisotropy and variability of the facies and the rock structure.  

In this work, we have chosen correlograms of permeability to represent the soft data information 

obtained from seismic studies. A correlogram gives a measure of the degree of spatial variation 

through a plot of average correlation coefficients (𝝆�̂�) as a function of lag distance h. h represents 
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the distance between any two grid blocks, i.e., h=n represents all pairs of grid blocks whose 

separation distance is n.  

In the first stage of the constraint implementation, the variograms are first calculated in the vertical 

and horizontal directions to find the major and minor directions of continuity. Correlograms 

corresponding to these directions are also generated. After this stage, a correlation matrix (CR) 

and a correlogram corresponding to the major direction of spatial correlation is obtained.  

Since the EnKF update does not necessarily match the known spatial correlation defined by the 

correlogram, it is very important to apply a transformation or a projection on the updated 

parameters so that the transformed parameters honor this spatial correlation.  In the method 

proposed, we have used a set of matrix transformation operations (see equations 2.26 – 2.36) to 

honour the soft data information. This technique is described below: 

It is well known that the correlation matrix (CR) is related to covariance matrix (CV) through 

equation 2.26. 

𝐶𝑉 =  (𝜎)
1

2(𝐶𝑅)(𝜎)
1

2                         (2.26) 

Extending equation 2.26 to the true spatial correlation matrix of the reservoir ((CR)true), we have: 

(𝐶𝑉)𝑡𝑟𝑢𝑒 =  (𝜎𝑡𝑟𝑢𝑒)1/2(𝐶𝑅)𝑡𝑟𝑢𝑒(𝜎𝑡𝑟𝑢𝑒)1/2         (2.27) 

where σtrue is the diagonal matrix whose elements represent the variance of the parameter 

(permeability and porosity) in every grid block of the true model.  

After the EnKF update, we have  

(𝐶𝑉)𝐸𝑛𝐾𝐹 =  (𝜎𝐸𝑛𝐾𝐹)1/2(𝐶𝑅)𝐸𝑛𝐾𝐹(𝜎𝐸𝑛𝐾𝐹)1/2        (2.28) 

To transform (𝐶𝑅)𝐸𝑛𝐾𝐹 to (𝐶𝑅)𝑡𝑟𝑢𝑒, we have 

(𝐶𝑅)𝐸𝑛𝐾𝐹(𝑇) =  (𝐶𝑅)𝑡𝑟𝑢𝑒           (2.29) 

where T is the transformation/projection matrix and is calculated as: 

𝑇 =  ((𝐶𝑅)𝐸𝑛𝐾𝐹)−1 (𝐶𝑅)𝑡𝑟𝑢𝑒           (2.30) 
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(𝐶𝑅)𝐸𝑛𝐾𝐹 =  (𝐶𝑅)𝑡𝑟𝑢𝑒 (𝑇)−1           (2.31) 

Substituting (𝐶𝑅)𝐸𝑛𝐾𝐹 from equation 2.31 in equation 2.28, we have: 

(𝐶𝑉)𝐸𝑛𝐾𝐹 =  (𝜎𝐸𝑛𝐾𝐹)1/2(𝐶𝑅)𝑡𝑟𝑢𝑒 (𝑇)−1(𝜎𝐸𝑛𝐾𝐹)1/2        (2.32) 

                 = (𝜎𝐸𝑛𝐾𝐹)1/2(𝐶𝑅)𝑡𝑟𝑢𝑒 ((𝜎𝐸𝑛𝐾𝐹)−
1

2(𝑇))−1          (2.33) 

Now, post multiplying both sides of equation 2.33 by (𝜎𝐸𝑛𝐾𝐹)−
1

2(𝑇), we get: 

(𝐶𝑉)𝐸𝑛𝐾𝐹(𝜎𝐸𝑛𝐾𝐹)−
1

2(𝑇) = (𝜎𝐸𝑛𝐾𝐹)1/2(𝐶𝑅)𝑡𝑟𝑢𝑒          (2.34) 

(𝐶𝑉)𝐸𝑛𝐾𝐹(𝜎𝐸𝑛𝐾𝐹)−
1

2(𝑇)(𝜎𝐸𝑛𝐾𝐹)1/2 =  (𝜎𝐸𝑛𝐾𝐹)1/2(𝐶𝑅)𝑡𝑟𝑢𝑒(𝜎𝐸𝑛𝐾𝐹)1/2     (2.35) 

Equation 2.35 is obtained by post multiplying both sides of equation 2.34 by (𝜎𝐸𝑛𝐾𝐹)1/2.  

(𝐶𝑉)𝐸𝑛𝐾𝐹,𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 = (𝜎𝐸𝑛𝐾𝐹)1/2(𝐶𝑅)𝑡𝑟𝑢𝑒(𝜎𝐸𝑛𝐾𝐹)1/2        (2.36) 

where (𝐶𝑉)𝐸𝑛𝐾𝐹,𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 =  (𝐶𝑉)𝐸𝑛𝐾𝐹(𝜎𝐸𝑛𝐾𝐹)−
1

2(𝑇)(𝜎𝐸𝑛𝐾𝐹)1/2   

It can be easily inferred from equation 2.36 that the modified EnKF covariance matrix has the 

same correlation matrix as that of the true model.  Hence, after every update step, the covariance 

matrix is transformed in the above manner. Once the transformed covariance matrix is obtained, 

realizations of the ensemble to be used for the next prediction stage are generated by resampling 

with this covariance matrix and the mean values given by the update step of the EnKF.  

Thus, in this manner, the ensemble statistics derived from the EnKF update operation as well as 

the spatial correlation statistics derived from the soft data are both used in generating the new 

realizations for every prediction step. In this way, the prior ensemble members honour geostatistics 

at all times during the parameter estimation process.  

2.5 Results 

2.5.1 Heterogeneous 2D reservoir model: 

A two-dimensional reservoir model of dimension 100 x 1 x 20 is created using the commercial 

simulator CMG IMEX. Fig 2.6 represents the permeability map of the reservoir. The model 

consists of one injector well placed at the center of the well and two producer wells located at 
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either side of the injector. The data set for this model was taken from 2000 SPE Project [41]. 

Initially, it is assumed that the reservoir is fully saturated with oil, i.e., the oil saturation So = 1.0 

and values of the gas saturation Sg and water saturation Sw being equal to zero. The permeabilities 

at all the grid block locations were taken from the above mentioned model. There are totally 2000 

permeability values and permeabilities in all the directions were set to be equal. Since this is a 

highly heterogeneous model, the value of permeability is different in different grid blocks. The 

values of permeability range from 0 to 1000 mD in this model. It is assumed that certain 

information is available in the form of hard data obtained, for example, from well core 

measurements. The values of permeability is assumed to be known at 100 grid block locations at 

i=1, 25, 50, 75 and 100 and the corresponding grid blocks along the vertical direction. The porosity 

was assumed to be homogeneous in the reservoir was assigned the value of 0.25.  

 

Fig 2.6 Two dimensional reservoir model 

In this case, oil was produced by a waterflooding process. In a waterflooding process, water is 

injected in order to increase the reservoir pressure leading to increased oil production from the 

reservoir. Water displaces oil from the pore spaces. In this exercise, we have used the permeability 

information from the reference data set [41] and simulated the reservoir for 4500 days to obtain 

historical data. After obtaining this data, the permeability values at all grid blocks except those 

corresponding to the hard data locations are frozen and hidden from the model. The objective was 

to estimate these permeability values using prior geological information and the historical data. 

The inputs used in the process were the water injection rate and its mole fraction in the injection 
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phase. The parameter to be estimated is permeability. The parameter vector is comprised of the 

permeability values at 2000 grid blocks. The state vector consisted of three dynamic reservoir 

properties, namely, the oil saturation, pressure and the water saturation. Since there are 2000 grid 

blocks in total with each block having a particular set of values of these states, there are 6000 states 

in total.  The production data vector consisted of four components, namely the gas production at 

well 1, the gas production at well 2, the oil production at well 1 and the oil production at well 2.  

The variance of permeability is set to 10-4 md2 at all grid block locations and the variance in the 

gas and oil productions were set to be 5 cubic feet and 10 cubic feet respectively.  

It is well known that the EnKF performs best when the distributions of the states and parameters 

follow a Gaussian distribution. In petroleum engineering, ln(permeability) is usually assumed to 

honour Gaussian distribution. Taking this into consideration, 50 realizations of ln(permeability) 

fields were generated to construct the initial ensemble for the EnKF. For the generation of this 

initial ensemble, the geostatistical simulation package SGeMS was used, where the spatially 

distributed permeability fields were generated using sequential Gaussian simulation (SGS). The 

initial ensemble was constructed to honour both the hard data and the correlogram.  The history 

matching of the production data was carried out using both the conventional and the projection 

method-based EnKF algorithms. The update step of the EnKF was performed at 14 time instances. 

To be precise, it was carried out after 250, 400, 500, 600, 700, 800, 1000, 1200, 1400, 1500, 1750, 

2500, 3500 and 4500 days.  

Fig 2.7 shows the history matched mean permeability map of the estimated models and the initial 

models. It can be observed that the history matched mean permeability fields are in better 

agreement to the reference field compared to the initial mean permeability field. Moreover, the 

projection method-based history matched mean permeability map more closely resembles the 

reference permeability map compared to the conventional EnKF-based estimated field. This is 

because, in the projection method, the EnKF-based estimates are modified through the algorithm 

described in section 2.4 to honour the prior geostatistical information. This operation makes the 

permeability estimates more consistent with the reservoir geology compared to the estimates 

derived from the traditional EnKF method. Moreover, the projection method-based EnKF was able 

to capture the spatial variation and heterogeneity of permeability better than the traditional method 
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and resulted in estimates with very similar distribution of low, medium and high permeability 

values to that of the reference reservoir model. This is shown in the form of a histogram in Fig 2.8.  

 

Fig 2.7 Comparison of constrained vs. unconstrained estimation. Clockwise from top left: 

Reference permeability field from true model, estimated permeability field using projection 

method-based EnKF and initial permeability field 
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Fig 2.8 Comparison of the histograms of the permeability distribution for true, initial, 

unconstrained and projection method models. 

To validate the history matching performance using unconstrained and soft data-constrained EnKF 

algorithms, we carried out simulations of the reservoir for 20 years - from the first time instant 

(t=0 day) to the last instant (t = 7300 days) using the reference and the estimated models and the 

production data obtained for these cases were compared.  Fig 2.14 and Fig 2.15 compare the 

ensemble predictions for the monthly oil production obtained using the mean permeability fields 

of the initial and the estimated models with the actual historical oil production data for the 

production wells Pro-1 and Pro-2 respectively. Fig 2.16 and Fig 2.17 provide a comparison of the 

ensemble predictions for the monthly gas production obtained using the mean permeability field 

of the initial and the estimated models with the actual historical gas production data for the 

production wells Pro-1 and Pro-2 respectively. It can clearly be observed that a very good match 

between the historical data and the production data corresponding to the estimated models using 

both conventional and the projection method-based EnKF methods is obtained, demonstrating the 

efficacy of the EnKF algorithm. This successful performance can be attributed to the correction 

step of the EnKF algorithm, where the available online measurements from the production wells 

reduce the uncertainty in the reservoir parameters with each data assimilation step. Fig 2.9 and Fig 

2.11 give a comparison of the profiles of average oil and gas saturations at the last time instant 

corresponding to the true model, the initial predicted model and the final estimation models 



34 

 

respectively. The evolution of the mean oil saturation and gas saturation in the entire reservoir 

field is shown in Fig 2.10 and Fig 2.12 respectively for the reference model, means of the initial 

and the estimated models. The reduction in the mean oil saturation in the reservoir is indicative of 

the recovery process, resulting in lesser oil concentration in the reservoir with the progress of time. 

It can be noted from these figures that the projection method-based EnKF performs better than the 

traditional EnKF. Fig 2.13 gives a comparison of the profiles of the pressure distribution in the 

reservoir at the last time instant corresponding to true model, the initial predicted model and the 

final estimation models.  

 

Fig 2.9 Comparison of constrained vs. unconstrained estimation with respect to oil 

saturation at the last time instant (t=7300 days). Clockwise from top left corner: Oil 

saturation field corresponding to the true model, mean oil saturation fields corresponding  

to the initial model, projection method-based EnKF model and the unconstrained EnKF 

model. 
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Fig 2.10 Comparison of the average oil saturation in the entire reservoir with the progress 

of the waterflooding process for true model, initial model, projection method-based EnKF 

and unconstrained EnKF model. 
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Fig 2.11 Comparison of constrained vs. unconstrained estimation with respect to gas 

saturation at the last time instant (t=7300 days). Clockwise from top left corner: Gas 

saturation corresponding to true model, average gas saturation fields obtained from the 

initial model, projection method-based EnKF model and the unconstrained EnKF model. 
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Fig 2.12 Comparison of the average gas saturation in the entire reservoir with the progress 

of the waterflooding process for true model, initial model, projection method-based EnKF 

and unconstrained EnKF model. 
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Fig 2.13 Comparison of constrained vs. unconstrained estimation with respect to pressure 

distribution at the last time instant (t=7300 days). Clockwise from top left corner: Pressure 

corresponding to true model, average  pressure field obtained from mean permeability 

field corresponding to the initial model, projection method-based EnKF model and the 

unconstrained EnKF model. 
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Fig 2.14 Comparison of the mean ensemble predictions for the monthly oil production with 

respect to the historical production data using the true model, mean of the initial and the 

estimated models at the production well Pro-1.  
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Fig 2.15 Comparison of the mean ensemble predictions for monthly oil production with 

respect to the historical data using the true model, mean of the initial and the estimated 

models at the production well Pro-2. 
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Fig 2.16 Comparison of the mean ensemble predictions for the monthly gas production 

with respect to the historical data using the true model, mean of the initial and the 

estimated models at the production well Pro-1. 
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Fig 2.17 Comparison of the mean ensemble predictions for the monthly gas production 

with respect to the historical data using the true model, mean of the initial and the 

estimated models at the production well Pro-2. 

From the above figures, it can clearly be seen that the soft constraint implementation lead to closer 

match of states and parameter maps with respect to the corresponding maps of true model.  

2.5.2 HETEROGENEOUS 3D RESERVOIR MODEL:  

A three-dimensional reservoir model of dimension 50 x 10 x 5 is created using the commercial 

simulator CMG STARS and is shown in Fig 2.18. The reservoir’s dimension is 5000ft x1000ft 

x150ft. The data set for this model was taken from [41]. The permeabilities at all the grid block 

locations were taken from the above mentioned model. There are a total of 2500 permeability 

values and permeabilities in all directions were set to be equal. Since this is a highly heterogeneous 

model, the value of permeability is different in different grid blocks and their values range from 

1000 to 3000 mD in this model. It is assumed that permeability information is available at certain 

spatial locations in the form of hard data. In this case, oil was produced by a steam assisted gravity 

drainage (SAGD) process. SAGD is a relatively modern method of producing oil from reservoirs, 
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where several pairs of horizontal wells are drilled instead of the conventional vertical wells. In this 

method, the steam is passed at high pressure through injection well and as the steam passes through 

the well, a steam chamber is formed around the wells, which heats the oil sands, thereby reducing 

its viscosity. Due to this reduced viscosity, the heated crude drains downwards to the second well, 

called the producer well, from where it is reaches the surface by natural pressure gradient set up 

in the well or by artificial lift techniques. In our model, there are two injector-producer well pairs 

as shown in Fig 2.19. 

 

Fig 2.18 Three dimensional SAGD model 

  

Fig 2.19 Third and fourth layer of the model representing the horizontal well pairs. The 

colors indicate the depth of each layer from the suface 

The inputs used in the process were the steam injection rate and the steam quality. The steam was 

injected at 250 0C. The parameter to be estimated is permeability and the dimension of the 

parameter vector is 2500 x 1. The state vector consisted of three dynamic reservoir properties, 

namely, the oil saturation, temperature and the water saturation. Since there are 2500 grid blocks 

in the model, the total dimension of state vector is 7500 x 1. The production data vector consisted 
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of two components, namely the oil production of the entire field and the cumulative steam-oil ratio 

(SOR) of the entire field.  

For the initial ensemble, realizations of the natural logarithm of the permeability fields were 

generated using the geostatistical simulation package SGeMS and the spatially distributed 

permeability values were obtained by the sequential Gaussian simulation algorithm. 50 realizations 

were used in each ensemble throughout this history matching process. The initial ensemble was 

constructed to honour both the reservoir hard and soft data. As was the case in 2D reservoir case 

study described earlier, history matching of the production data was carried out using both the 

conventional and the projection method-based EnKF algorithms. The update step of the EnKF was 

performed at 6 time instances. To be precise, it was carried out after 6 months for the three year 

time period from January 2001 – December 2003.  

Fig 2.20 compares the permeability field of the third layer (injection well layer) of the estimated 

models with respect to the reference permeability field. It is interesting to note that there is a drastic 

change in the permeability values at the grid blocks defining this layer of the model after the 

implementation of the EnKF algorithm. In order to quantify the results obtained from these maps, 

their corresponding histogram representing the distribution of low, medium and high permeability 

regions in the entire reservoir is shown in Fig 2.21.   
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Fig 2.20 Permeability map comparison: Clockwise from top left corner – Reference 

permeability field of true model, initial permeability field, covariance localization-based 

permeability field and projection method-based estimated permeability field. 

 

 

Fig 2.21 Comparison of the histogram of the permeability distribution for true, initial, 

unconstrained and the projection method models. 
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The histogram shown in Fig 2.21 points to the fact that the integration of hard and soft data 

constraints into the estimation algorithm results in a better capture of the spatial distribution and 

histogram of the reference field. Fig 2.22 and Fig 2.23 compare the temperature profile after 10 

years of SAGD operation in the reference, the initial and the estimated models. This temperature 

profile is commonly referred to as the steam chamber in the SAGD processes. These figures 

indicate that while the evolution of steam chamber in the reservoir is very slow for the initial model 

when compared to the true model, addition of constraints into the EnKF framework results in a 

steam chamber whose characteristics match very closely with respect to the true model. The 

evolution of steam chamber is quantified in Fig 2.24, which further lends support to the fact that 

the projection method-based EnKF method results in a better reproduction of the dynamics 

involved in SAGD process of the reference reservoir. Fig 2.25 compares the mean estimated oil 

saturation fields of the reservoir using traditional and projection method-based EnKF methods with 

that of the reference model after 10 years of the SAGD process. Fig 2.26 and Fig 2.27 represent 

the history match between the estimated oil production and steam oil ratio for the entire reservoir 

field with their corresponding true values before and after history matching. It can clearly be 

observed that a very good match between the historical data and the production data corresponding 

to the estimated models using conventional and the projection method-based EnKF methods is 

obtained, demonstrating the efficacy of this algorithm. Moreover, as was observed in 2D case 

study, the projection method results in a better history match with the production data compared 

to the traditional method.   
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Fig 2.22 Comparison of the temperature distribution profile of SAGD process observed in a 

reservoir section cut out in the vertical plane perpendicular to the plane containing  

horizontal well  pairs for different cases: Clockwise from top left corner: Temperature 

profile of the true reservoir model, mean temperature field obtained from the initial model, 

projection method model and the unconstrained model. 
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Fig 2.23 Comparison of the temperature distribution profile of SAGD process observed in a 

reservoir section cut out in the vertical plane containing  one of the horizontal well  pairs 

for different cases: Clockwise from top left corner: Temperature profile of the true 

reservoir model, mean temperature field obtained from the initial model, projection 

method model and the unconstrained model. 
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Fig 2.24 Comparison of the steam chamber evolution profile with the progress of SAGD 

process for initial, true, unconstrained and the projection method models. 
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Fig 2.25 Comparison of the oil saturation profile of SAGD process observed in a reservoir 

section cut out in the vertical plane containing one of the horizontal well pairs for different 

cases: Clockwise from top left corner: Oil saturation profile of the true reservoir model, 

mean oil saturation fields obtained from the initial model, projection method model and the 

unconstrained model. 
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Fig 2.26 Comparison of the mean ensemble predictions for monthly oil production for the 

entire reservoir field with respect to the historical data using the true model, mean of the 

initial and the estimated models. 

 



52 

 

 

Fig 2.27 Comparison of the mean ensemble predictions for steam oil ratio for the entire 

reservoir field with respect to the historical data using the true model and the mean of the 

initial and the estimated models. 

 

2.6 Conclusion 

In this chapter, a novel projection method was proposed to integrate the prior geological 

information available in the form of hard and soft data into the traditional EnKF framework. The 

application of this proposed method to reservoir history matching problem was analyzed and 

compared with the performance of the conventional EnKF method using two synthetic 

heterogeneous reservoir models. It was found that the proposed projection method performed 

better in yielding permeability estimated consistent with the prior geological information and also 

led to a better matching with the historical reservoir production data.  
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Chapter 3  

Covariance localization based EnKF for reservoir 

history matching 
 

In the previous chapter, we implemented constraints in the conventional EnKF algorithm to arrive 

at geologically consistent estimates of reservoir parameters. In this chapter, the application of 

covariance localization to reservoir characterization is explored thoroughly. It can be observed 

from equation 2.22 that the reservoir model parameters and states are updated based on the Kalman 

gain K, which is dependent on Pk|k−1
e,ε

, the cross covariance matrix between reservoir model states 

and reservoir production measurements.  

Now, using this matrix Pk|k−1
e,ε

 to compute K leads to two potential technical drawbacks. First, it 

induces spurious correlation between the production measurements at wells and reservoir 

properties at grid blocks that are very distant from these observation wells. This results in 

unrealistic physical updates of the reservoir properties at distant grid blocks. Second, estimating 

reservoir property at each and every grid block leads to a substantial increase in the computational 

time and effort required. 

To lessen the severity of this erroneous long distance correlation in EnKF, reservoir engineers 

generally locate certain regions in a reservoir that have the greatest impact on the observation data 

at different production wells and concentrate on the estimation task only in these regions. In this 

way, physically meaningless updates to the reservoir properties at unimportant regions are 

prevented and the dimension of this parameter estimation problem is greatly reduced. This problem 

of parameter and state estimation in a reduced state-space model is known as parameterization or 

covariance localization.  

However, updating only these regions and leaving the remaining portions without updating leads 

to a geological discontinuity and mismatch with the variogram obtained through the reservoir soft 

data. To address this problem, we implement sensitivity analysis-based covariance localization to 

update only the most important regions in the reservoir. After every time update through the EnKF, 
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we update the remaining portions through the geostatistical algorithm sequential Gaussian 

simulation so that the updated reservoir is at all times consistent geologically with the hard and 

soft data.  

This chapter is organized as follows. Section 3.1 gives a brief literature review on the 

parameterization application to reservoir characterization. Section 3.2 explains our proposed 

methodology for the implementation of covariance localization. This is followed by results and 

detailed discussions presented in Section 3.3 and finally, conclusions in Section 3.4.  

3.1 Literature review 
As was pointed out in the introduction of this chapter, the EnKF-based parameter estimates may 

potentially depart from the prior information and also result in spurious correlation between grid 

block properties and the well data. Moreover, many possible combinations of these grid block 

values may yield the same set of historical production data, leading to ill-posedness [42]. To 

counter this ill-posedness, parameterization or covariance localization has been introduced in the 

history matching literature. In parameterization techniques, the reservoir grid block parameters are 

represented by a reduced set of parameters that capture most of the spatial variability. Research in 

the last decade has focused on coupling the EnKF with several parameterization techniques to 

reduce the dimension of the estimation problem and avoid ill-posedness. Jacquard et al [43] 

introduced the concept of zonation method to the reservoir parameterization literature. In this 

zonation method, the petroleum reservoir was assumed to be divided into several zones, with each 

zone being represented by uniform reservoir properties. This is the simplest but a very crude form 

of reservoir parameterization.  

In the last two decades, more sophisticated parameterization techniques based on a set of 

mathematical transforms have been developed to obtain more accurate reservoir descriptions. One 

such commonly used metric is the discrete cosine transform (DCT), which has its roots in image 

processing and is widely applied to data compression applications [44]. It is a Fourier-based 

transform, which decomposes the spatially distributed reservoir parameters like permeability into 

the coefficients of the retained cosine basis functions [45]. The permeability values at each grid 

block is represented by a corresponding DCT coefficient. When applied along with the EnKF, the 

transform is applied to every realization of the ensemble and the most significant DCT coefficients 

and their basis functions that capture most of the spatial variation of permeability are retained. 
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Usually, the total number of DCT coefficients required to represent this spatial variation is 

considerably smaller than the total number of model parameters, thereby significantly reducing the 

dimension of the parameter estimation problem. It has been widely explored in the history 

matching problem in the recent past. Wang et al [46] applied DCT-based EnKF to estimate the 

permeability of fluvial channels. In another work, Wang et al [47] implemented DCT on an 

iterative EnKF framework to carry out reservoir history matching and inversion. Jafarpour et al 

[42, 48] also successfully coupled DCT-based EnKF for the history matching problem. 

Mathematically, DCT-based parameterization can be expressed through linear equations 3.1 and 

3.2.  

 𝜃𝑡 =  ∅𝜃 𝜃𝑡
′
                  (3.1) 

 𝜃𝑡
′ =  ∅𝜃

𝑇𝜃𝑡                (3.2) 

Eq 3.1 represents the inverse transformation from the set of d retained DCT basis function 

coefficients ∅𝜃 to the set of n grid block parameter values. Eq 3.2, on the other hand, is 

representative of the forward transformation of grid block parameters values to the DCT basis 

function coefficients.  

Wavelet transform-based EnKF is another tool to implement covariance localization or 

parameterization for history matching. The wavelet transform is basically a linear transformation, 

resulting in the decomposition of the signal into completely different frequencies [49]. In wavelet 

transformation, a multiresolution technique is implemented, where different resolutions are used 

to analyze different frequencies. It has been explored widely for signal compression purposes [50]. 

In the past two decades, it has been used with great success for the reservoir history matching 

problem [14]. The multi-resolution wavelet transform was first proposed by Sahni et al [51] for 

the purposes of integrating historical data with the prior geostatistical information for reservoir 

history matching.  Similar to the DCT methodology, the wavelet coefficients are calculated to 

represent the distribution of the spatially varying parameters in a reservoir like porosity or 

permeability. The main set of coefficients that capture most of the spatial variability are retained 

and used for the update step in the EnKF while the grid blocks characterized by very low values 

of these coefficients are not updated, thereby reducing the dimension of the reservoir 

characterization problem.  
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In addition to these transform based methods, singular value decomposition (SVD) and Karhunen-

Loeve(KL)-based parameterization have been explored for reservoir history matching 

applications. KL-based parameterization was first introduced to the reservoir characterization 

literature by Gavalas et al [52] and was developed further by Oliver [53] and Reynolds et al [54]. 

This method is based on the eigen-decomposition of the covariance matrix of the spatially varying 

parameters in a reservoir. Although, it has been successful in arriving estimates with geologic 

spatial consistency with respect to prior soft data, it is difficult to apply it to large scale reservoirs 

due to heavy computations associated with the decomposition calculations [55]. Moreover, it has 

failed in preserving the multi-point statistics of the spatial parameters in many cases. Sarma et al 

[55] developed a kernel-based principal component analysis (KPCA) for parameterization in order 

to overcome the limitations of the KL-based approach.  

Pilot point method is another tool to implement parameterization introduced by de Marsily et al 

[56] and later explored by a few researchers [57, 58, 59]. A certain number of grid blocks, i.e., 

pilot points, are chosen in a reservoir model depending on crucial factors like locations of wells, 

reservoir heterogeneity and prior geological information. The main characteristic feature of this 

method is that the petrophysical realizations of a spatially varying property such as porosity or 

permeability can be perturbed and still retain its spatial variability [60]. There are several ways to 

select these pilot points. In their work, Ramarao et al [57] suggested a sensitivity analysis study to 

determine the high sensitivity regions in the concerned reservoir model and use these regions to 

place the pilot points.   

Some of the parameterization techniques involve distance-based localization, where only a few 

grid blocks that are close to the wells are updated. Houtekemar et al [25] first introduced the 

concept of localization principle by applying a distance-based cutoff to the Kalman gain matrix 

computed in the update step of the EnKF such that only grid blocks within this cutoff distance is 

updated [30]. Arroyo-Negrete et al [61] used a streamline simulation to get an idea about the region 

of influence. In their work, they arrived at the final region of influence by coupling the streamline 

simulation results with the prior geostatistical information regarding the maximum distance of 

correlation in different directions in a reservoir. Furrer et al [62] introduced non-distance based 

localization techniques to carry out parameterization by using a pseudo-optimal localization taper 

function.  
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3.2 Proposed methodology for covariance localization 
It is a well-known fact that in a reservoir model, only the parameters in a fraction of the spatial 

locations will have an impact on the reservoir productivity measured at the production wells, and 

covariance localization seeks to identify these crucial regions of influence for each well in the 

reservoir system. In this work, we employ sensitivity analysis for covariance localization using the 

reservoir sensitivity analysis simulation package CMOST. Since reservoir systems are discretized 

into thousands of grid blocks, sensitivity calculations are not applied to every grid block. Instead, 

we coarsen the discretization only for the purposes of sensitivity calculations based on the range 

(the maximum spatial extent of the correlation in the parameters) of the horizontal and vertical 

variograms. Any hard data available for each of the coarsened regions is used to assign the values 

of the parameters in that region.  

After determining this region of the highest sensitivity, the EnKF update is performed in the grid 

blocks defining this region. However, performing an update only in these regions will lead to 

geological discontinuity and mismatch of the variogram and correlogram with respect to the 

reference (true) variogram/correlogram. In order to overcome this limitation, the parameter 

estimates of the remaining grid blocks (outside the region of influence) are estimated using 

sequential Gaussian simulation (SGS) [63]. SGS is a widely used method for randomly generating 

an ensemble of equiprobable spatial distributions of the reservoir property of interest that are 

consistent with a specified variogram. During this step, the EnKF updated values are used as hard 

data and exported to the geostatistical software SGeMS to perform SGS. This operation makes 

sure that the reservoir is all times consistent with the reference variogram. This method of 

implementing covariance localization is advantageous for two reasons. First, as with any 

conventional method of parameterization, the size of the parameter vector used in the EnKF 

calculation is considerable reduced, thereby reducing the computational load. Second, this method 

also yields geostatistically consistent estimates of reservoir properties such as permeability.  

The SGS algorithm, which is used to generate realizations of the parameter of interest 

(permeability) consistent with the known properties (variogram) of its distribution and conditioned 

by hard data available at a few locations, typically consists of five steps. First, a point is chosen at 

random in the unknown data locations. The mean and variance of this unknown data point is then 

estimated using a kriging procedure. In this work, we employ ordinary kriging, which assumes the 
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mean of the property being estimated to be known and constant only in the local neighborhood of 

the points to be estimated [30]. Kriging is a regression-based interpolation method that estimates 

properties at interpolatory locations by assigning weights to the known property values at a few 

data points. Points closer to the location with the unknown values are assigned higher weights, and 

vice versa. In kriging, the data 𝑍 ≡ (𝑍(𝑠1), … , 𝑍(𝑠𝑛)) can be thought to be the observations of a 

random or stochastic process at known locations 𝑠1, … , 𝑠𝑛. In our case, 𝑍 represents the 

permeability, and is assumed to follow 

𝑍(𝑠) = 𝜇 + 𝛿(𝑠)              (3.3) 

where 𝛿 is a zero-mean stochastic process with known covariance function 𝐶. To predict the data 

at a particular location 𝑠0 based on a set of known values at locations 𝑠𝑖, 𝑖 = 1, … , 𝑛, the kriging 

estimator can be written as 

𝑍∗(𝑠0) = 𝑚(𝑠0) + ∑ 𝑙𝑖[𝑍(𝑠𝑖) − 𝑚(𝑠0)]𝑛
𝑖=1 = [1 − ∑ 𝑙𝑖

𝑛
𝑖=1 ]𝑚(𝑠0) + ∑ 𝑙𝑖𝑍(𝑠𝑖)

𝑛
𝑖=1       (3.4) 

Here, 𝑙𝑖 represent the weights assigned to each of the known locations in determining the value of 

the property at the location 𝑠0. Applying the conditions that the mean is constant in the local 

neighborhood of 𝑠0 and the sum of the kriging weight is 1, we obtain the ordinary kriging estimator 

to be 

𝑍∗(𝑠0) = ∑ 𝑙𝑖𝑍(𝑠𝑖)
𝑛
𝑖=1               (3.5) 

The best linear unbiased predictor is obtained by minimizing 𝐸[𝑍(𝑠0) − ∑ 𝑙𝑖𝑍(𝑠𝑖)
𝑛
𝑖=1 ]2, and the 

weights are be obtained by using the method of Lagrange multipliers, which provides an estimate 

of the variance of the kriging estimator [64]. 

In the third step of SGS, the value of the parameter at this location is chosen by random sampling 

from a normal probability distribution whose mean and variance are obtained from the kriging 

procedure described in the second step. In the fourth step, this data point is now added to the 

conditioning data used to simulate the permeability in the remaining locations with unknown 

values. This process is repeated until all the data points are simulated. 
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SGS is used to generate an ensemble of equiprobable realizations based on the random sampling 

described above. A key assumption is for the data to follow a normal distribution; however, if this 

assumption is not met, a normal score transformation can be used. 

3.3 Results and discussion 

3.3.1 Heterogeneous 2-D reservoir 

The reservoir model considered for this study is the same as the one described in previous chapter. 

However for the sake of completeness, the model is shown below in Fig 3.1. This model is of 

dimension 100 x 1 x 20. The values of permeability are different in each block due to the 

heterogeneity of the reservoir. There are three wells in total – one injector well placed at the center 

of the reservoir and two producer wells, placed symmetrically on either side of the injector well.  

 

Fig 3.1 2-D heterogeneous reservoir (color map represents the permeability) 

In order to perform covariance localization, a sensitivity analysis study was performed and regions 

of influence for the two producing wells were identified. The EnKF operation was centered only 

on these regions and the remaining regions were updated using the geostatistical algorithm 

sequential Gaussian simulation in SGeMS. The regions of influence are shown in Fig 3.2. This 

region of influence in the reservoir was characterized by a total of 1200 grid blocks. Hence the 

dimensions of the state and parameter vectors are 4800 x 1 and 1200 x 1 respectively. We can see 

here that the dimension of the estimation vector has drastically reduced compared to the dimension 

of the estimation vector used in non-localization based EnKF method in Chapter 2 (6000 x 1 and 
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2000 x 1). This results in great reduction in the computational load present in the EnKF 

calculations.  

 

Fig 3.2 Regions of influence in the reservoir for covariance localization 

The operating conditions used for this reservoir simulation are exactly the same as those used in 

the previous chapter. The problem has been posed as a joint state and parameter estimation 

problem, where only the parameters are updated explicitly in the EnKF update step and the states 

are updated using the confirming option explained in the previous chapter in section 2.3. The states 

include the oil saturation, the water saturation and the pressure while parameter of interest is the 

spatially varying permeability. The historical production data was collected at 14 time instances, 

like in the previous 2D case study.  

For the generation of initial ensemble of permeability field, the geostatistical simulation package 

SGeMS was used, where the spatial distribution was generated by the sequential Gaussian 

simulation algorithm. While generating the initial ensemble, the distribution obtained was forced 

to honour the permeability values represented by the hard data at the hard data locations. 

Fig 3.3 represents compares the permeability of the true model, the initial model, the one obtained 

after estimation using the traditional covariance localization-based EnKF and the one obtained 

after estimation using the geostatistics-based localization EnKF method. On observing these maps 

closely, it can be inferred that the constrained localization algorithm has resulted in a very good 

reproduction of the spatial locations of the high and low permeability regions present in the 
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reference reservoir model. On the other hand, the spatial variability characteristics of the 

permeability field of the initial model are very different when compared to that of the reference 

model. The vast improvement in the ability to reproduce the spatial heterogeneity and variability 

characteristics of the reference model indicates a significant correction applied to the initial model 

with each time step to account for the historical measurement data. In the case where the 

localization was performed without any soft constraint implementation, the middle portion of the 

reservoir was not updated and looks exactly the same as the middle portion of the initial model. 

This is because, in the traditional method of localization, only the sensitive regions in the reservoir 

are updated using the EnKF update equation. However, when the remaining regions are also 

updated by integrating the updated portion with geostatistics, i.e., the constrained localization 

method, then the overall estimated field will be very similar to the true field and more consistent 

with the reservoir soft and hard data.  

 

Fig 3.3 Permeability map comparison: Clockwise from top left corner – Reference 

permeability field of true model, initial permeability field, unconstrained covariance 

localization-based permeability field and geostatistics-based covariance localization 

estimated permeability field. 
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Fig 3.4 Comparison of the histogram of permeability distributions for true, initial, 

unconstrained, projection method, unconstrained localization and constrained localization 

models. 

Fig 3.4 gives the comparison of the distribution of the low, medium and high permeability regions 

of the true model, initial model and the model obtained using the projection and the covariance 

localization-based methods in order to quantify the colour maps shown in Fig 3.3. It can be 

observed from this figure that with the implementation of the EnKF, the distribution of the 

estimated permeability is in good agreement with the true permeability distribution and the 

covariance localization methodology captures the spatial variability of the permeability to a 

slightly better extent when compared to the projection methodology.  

Figures 3.5, 3.7 and 3.9 show the comparison of gas saturation, oil saturation and pressure 

distribution of the reservoir respectively at the last time instant, i.e., 7300 days respectively 

obtained using the true model, the initial model and the estimated models using conventional 

localization and proposed localization methods. These contour plots further brings out the efficacy 

of the proposed localization technique in reproducing the saturation and pressure profiles with the 

progress of the waterflooding process better than the conventional localization technique. The 

results from these contour plots are quantified by Fig 3.6 and Fig 3.8.  These figures compare the 

evolution of the mean reservoir oil saturation and gas saturations for different estimated models 
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with the progress of the oil recovery process. In order to identify the best among all methods 

explored in this work, we have also included the results obtained from the unconstrained EnKF 

and the projection method-based EnKF methods. From these figures, it can be concluded that the 

proposed localization estimation technique performs best in this history matching exercise.  

 

Fig 3.5 Comparison of constrained vs. unconstrained localization estimation with respect to 

gas saturation at the last time instant. Clockwise from top left corner: Gas saturation 

corresponding to true model, mean gas saturation fields of the initial model, constrained 

localization-based EnKF model and unconstrained localization model.  
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Fig 3.6 Comparison of the average gas saturation in the entire reservoir with the progress 

of the waterflooding process for true model, initial model, projection method-based EnKF 

and unconstrained EnKF model. 
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Fig 3.7 Comparison of constrained vs. unconstrained localization estimation with respect to 

oil saturation at the last time instant. Clockwise from top left corner: Oil saturation 

corresponding to true model, mean oil saturation fields of the initial model, constrained 

localization-based EnKF model and unconstrained localization model. 
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Fig 3.8 Comparison of the average oil saturation in the entire reservoir with the progress of 

the waterflooding process for true model, initial model, projection method-based EnKF 

and unconstrained EnKF model. 
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Fig 3.9 Comparison of constrained vs. unconstrained localization estimation with respect to 

oil saturation at the last time instant. Clockwise from top left corner: Oil saturation 

corresponding to true model, mean gas saturation fields of the initial model, constrained 

localization-based EnKF model and unconstrained localization model. 

Fig 3.10, Fig 3.11, Fig 3.12 and Fig 3.13 represent the comparison of the ensemble predictions 

obtained from diferent estimation methodologies and the historical production data obtained from 

the two production wells. To be precise, the history matching of the monthly oil production 

obtained from the wells Pro-1 and Pro-2 are shown in Fig 3.10 and Fig 3.11 respectively. Fig 3.12 

and Fig 3.13, on the other hand, show the history matching results of the monthly gas production 

obtained from the wells Pro-1 and Pro-2 respectively. It can be clearly seen from these figures that 

compared to the initial model, the oil production of the final estimated models is in very good 

agreement with the true reservoir’s oil production. The success of the EnKF in matching the 

historical production data can be observed, demonstrating the efficacy of this algorithm. This 

successful performance can be attributed to the correction step of the EnKF algorithm, where the 

available online measurements from the production wells reduce the uncertainty in the reservoir 

parameters with each data assimilation step. Moreover, these figures indicate that the proposed 
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localization technique performed better than the conventional localization method for this reservoir 

case study followed by the projection method, which in turn performed better than the conventional 

EnKF method.  

 

Fig 3.10 Comparison of the mean ensemble predictions for the monthly oil production with 

respect to the historical production data using the true model, mean of the initial and the 

estimated models at the production well Pro-1. 
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Fig 3.11 Comparison of the mean ensemble predictions for the monthly oil production with 

respect to the historical production data using the true model, mean of the initial and the 

estimated models at the production well Pro-2. 
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Fig 3.12 Comparison of the mean ensemble predictions for the monthly gas production 

with respect to the historical production data using the true model, mean of the initial and 

the estimated models at the production well Pro-1. 
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Fig 3.13 Comparison of the mean ensemble predictions for the monthly oil production with 

respect to the historical production data using the true model, mean of the initial and the 

estimated models at the production well Pro-2. 

3.3.2 3D SAGD reservoir model 

For this study, the reservoir model considered is exactly the same as the one considered in the 

previous chapter. Although the representation of the model was shown in the previous chapter, for 

the sake of completeness, it is also shown below in Fig 3.14. The history matching was posed as 

a joint state and parameter estimation problem through the EnKF. The reservoir’s dimension is 

5000ft x 1000ft x 150ft. The data for this model was taken from [41]. The permeability values at 

all the grid block locations were taken from the above mentioned model. There are totally 2500 

permeability values and the permeability in all directions were set to the same value. Since this is 

a highly heterogeneous model, the value of permeability is different in different grid blocks. The 

values of permeability range from 1000 md to 3000 md in this model. It is assumed that 

permeability information at certain spatial locations is available in the form of hard data. 
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Figure 3.14 3D SAGD reservoir model and two layers representing the horizontal well pair 

placement 

In order to perform covariance localization, sensitivity analysis was conducted to identify regions 

of influence for the two horizontal producing wells. It was found out that except for the top and 

bottom layers, other layers affected the production data at the producing wells significantly. 

Therefore, the EnKF update operation was focused only on the grid blocks comprising these 

regions. After every update step of the EnKF, the top and bottom layers were modified using 

sequential Gaussian simulation so that these two layers are at all times geologically consistent with 

the remaining three regions. In this way, the variogram of the estimated model will be in very good 

agreement with the variogram obtained as a part of the soft data information. This region of 

influence was comprised of 1200 grid blocks. Hence the dimensions of the state and parameter 

vectors are 4800 x 1 and 1200 x 1 respectively. This considerable decrease in the size of the 

estimation vector greatly reduces the computational load that is present in the conventional EnKF 

method calculations.  
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Fig 3.15 shows the comparison of permeability map of the third layer of the reservoir between the 

true model, initial model and the ones obtained using the conventional and the proposed method 

of localization-based EnKF for reservoir history matching. It can be observed that the EnKF 

algorithm has greatly improved the permeability estimates compared to the initial model. Similar 

to the results obtained from the 2D case study described in section 3.3.1, the permeability field 

estimated using the proposed methodology has resulted in better reproduction of the spatial 

heterogeneity characteristics present in the reference model when compared to that reproduced by 

the conventional localization estimates. In order to quantify these colour maps, a comparison of 

the histograms of these estimated models was performed and is shown in Fig 3.16. In this 

histogram comparison, it is easy to conclude that the proposed localization method performs best 

in yielding geologically consistent estimates. Although the unconstrained localization method also 

performs fairly well in reproducing the high and low permeability regions present in the reference 

model, it fails to reproduce the histogram of the reference field. This is because of the presence of 

certain insensitive regions in the reservoir that do not get updated during the entire course of the 

EnKF process.   

 

Figure 3.15 Permeability map comparison: Clockwise from top left corner – Reference 

permeability field of true model, initial permeability field, constrained covariance 

localization-based permeability field and the unconstrained localization-based  estimated 

permeability field. 
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Figure 3.16 Comparison of the histogram of permeability distributions for true, initial, 

unconstrained, projection method, unconstrained localization and constrained localization 

models. 

Fig 3.17 and Fig 3.18 show the temperature distribution of the estimated models in comparison 

with that of the true model for this SAGD process to further illustrate the fact that implementation 

of constraints into the algorithm leads to more accurate reservoir characterization. Fig 3.19 

quantifies these contour maps by comparing the evolution rate of the steam chamber i.e., increase 

in the steam chamber volume, observed in the reference and the estimated models with the progress 

of the SAGD process. On a similar note, Fig 3.20 shows a comparison of the oil saturation profile 

of SAGD process observed after 10 years in a reservoir section cut out in the vertical plane 

containing one of the horizontal well pairs for the different estimated models.  
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Figure 3.17 Comparison of the temperature distribution profile of SAGD process observed 

in a reservoir section cut out in the vertical plane perpendicular to the plane containing 

horizontal well  pairs for different cases: Clockwise from top left corner: Temperature 

profile of the true reservoir model, mean temperature field obtained from the initial model, 

constrained localization model and the unconstrained localization model. 
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Figure 3.18 Comparison of the temperature distribution profile of SAGD process observed 

in the third layer of the reservoir (injection well layer) for different cases: Temperature 

profile of the true reservoir model, mean temperature field obtained from the initial model, 

and the mean temperature field of the estimated models. 
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Figure 3.19 Comparison of the evolution of the steam chamber with the progress of SAGD 

process for different models. 
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Figure 3.20 Comparison of the oil saturation profile of SAGD process observed in a 

reservoir section cut out in the vertical plane containing one of the horizontal well pairs for 

different cases: Clockwise from top left corner: Oil saturation profile of the true reservoir 

model, mean oil saturation fields obtained from the initial model, constrained localization 

method model and the unconstrained localization method model. 

Fig 3.21 and Fig 3.22 represent the history match of the oil production and the cumulative steam 

oil ratio for the entire reservoir field obtained from the estimated reservoir model when compared 

to the true reservoir model. It can be observed that with the addition of constraints into the 

estimation algorithm, better history matching is obtained. Moreover, as was observed in the case 

of 2D case study, the geostatistics-based localization algorithm performed best in matching the 

historical production data followed by the conventional localization method and the projection 

method-based EnKF method.  
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Figure 3.21 Comparison of the mean ensemble predictions for monthly oil production for 

the entire reservoir field with respect to the historical data using the true model, mean of 

the initial and the estimated models. 
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Figure 3.22 Comparison of the mean ensemble predictions for steam oil ratio for the entire 

reservoir field with respect to the historical data using the true model, mean of the initial 

and the estimated models. 

 

3.4 Conclusion 
In this work, the high efficacy achieved in history matching of reservoirs using covariance 

localization-based EnKF has been demonstrated in detail. Two highly heterogeneous and synthetic 

reservoir models were used for this study to apply the EnKF algorithm for reservoir history 

matching problem. The shortcomings of the conventional EnKF implementation were overcome 

by coupling the covariance localization-based EnKF with geostatistics. The advantages of this 

implementation were clearly seen in this chapter as it reduced the computational time by 

approximately 50% and also yielded more realistic and geostatistically consistent estimates of the 

reservoir permeability.  
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Chapter 4 

Reservoir history matching using particle filtering 

Chapter 2 and Chapter 3 addressed the shortcomings of the conventional method of the EnKF 

implementation for reservoir history matching applications so that geologically consistent 

estimates of the spatially varying reservoir parameters such as permeability are obtained. Although 

the EnKF is currently the most explored metric for reservoir characterization, it is important to 

understand that all distributions involved in an EnKF workflow is assumed to be Gaussian. The 

use of non-Gaussian distributions for reservoir parameters in the EnKF framework will not yield 

stable results and it may potentially fail to give any meaningful estimates. It is well known that the 

distributions of parameters such as porosity and permeability in a reservoir do not necessarily 

follow a Gaussian distribution in realistic scenarios. Hence, it is of great importance to carry out 

characterization procedures, taking into account these non-Gaussian distributions.  

To suppress this limitation of the EnKF or any other Kalman filter variants, several sequential 

Monte Carlo-based Bayesian estimation methods have been developed in the last few decades with 

an aim to estimate nonlinear model states and parameters, characterized by their non-Gaussian 

distribution. The particle filter (PF) is one such method based on the Bayesian estimation, and has 

been successfully used in many applications. The particle filter is very similar to the EnKF in that 

they are both based on the Monte-Carlo simulations of states and parameters. However, unlike the 

EnKF, the particle filter differs in the update step where the parameters are evolved from one 

assimilation step to another by a completely Bayesian statistical update. In this chapter, we present 

the application of the particle filtering methodology to reservoir history matching. The efficacy of 

this method is demonstrated using two synthetic heterogeneous reservoir models considered in the 

previous chapters. Both unconstrained and covariance localization-based particle filtering are 

implemented on these reservoir models. The benefit of localization-based filtering in significantly 

reducing the computational burden as well as yielding better estimates are clearly observed.  

Section 4.1 presents a survey of literature on the particle filter and its application to high 

dimensional problems such as reservoir parameter estimation. Section 4.2 provides a detailed 
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description of the particle filtering framework. Application of the particle filter to the two synthetic 

reservoir models is then analyzed in detail in Section 4. 3 and this is followed by a brief summary 

in Section 4.4.  

4.1 Introduction   

As mentioned before, a major assumption of the EnKF is not valid when the prior probability 

density functions (pdf) of the states and parameters are not Gaussian. For a nonlinear system, since 

the pdfs are generally not Gaussian, they should be classified as sub-optimal nonlinear filters [65].  

In order to get around this problem, particle filters are widely used in systems that are characterized 

by the presence of nonlinearities in the state space model.  

Particle filtering is a sequential Monte Carlo technique (SMC), first introduced by Gordon et al 

[66]. Ever since its inception, particle filtering has been used increasingly to obtain the solutions 

of the optimal states and parameters of complicated nonlinear dynamic systems [67].  Unlike the 

popular Kalman filter (KF) or any of its variants such as the extended Kalman filter (EKF), the 

unscented Kalman filter (UKF) and the EnKF, the particle filter methodology can be applied to 

any nonlinear process models, whose states follow a non-Gaussian distribution. The main 

drawback of the particle filter is the high computational effort that is required to arrive at estimates 

of states and parameters. However, due to rapid advancements in high speed computation, the 

particle filter has been now been successfully applied to on-line process monitoring of chemical 

processes such as in polymerization process [68], fermentation process [69], target tracking, 

robotics, computer vision and econometrics [70]. In recent years, particle filters have also been 

applied to geophysical models [71].  

In the particle filter, the posterior pdf is used to store all the information about the states involved 

in the process. The uncertain states are initially generated through a stochastic Monte Carlo 

sampling, similar to the EnKF, giving rise to their corresponding posterior pdfs at the time instant 

before any measurement data has been assimilated. These samples or ‘particles’ are then 

propagated forward through the dynamic process model until the first assimilation time, resulting 

in the evolution of the states in accordance with the state transition function of the process, 

constituting the prediction step of the particle filter. These evolved states give rise to their 

corresponding prior pdfs. When the first measurement is available, then these particles are ranked 
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and weighed based on their likelihood function value with respect to the most recent available 

measurement. After ranking these particles, new particles are generated from this sample based on 

the weights of individual particles using several techniques such as the sequential importance 

sampling (SIS) and the sequential importance resampling (SIR). A detailed mathematical 

description of the SIR and the SIS filters is provided in Section 4.2.  

The classic drawback of the particle filters is the degeneracy of the particles after certain number 

of assimilation steps, leading to impoverishment of the sample. Another drawback is that it is not 

as effective for simultaneous state and parameter estimation as it is for state estimation. This is 

because of the static nature of parameters, which does not allow them to evolve with each time 

step, thereby leading to parameter degeneracy after some time. To get around this problem, 

Kitagawa et al [72] suggested the inclusion of parameters in the extended state vector. However, 

taking into consideration the exponential forgetting of any joint state-parameter filter, this 

approach will lead to sample parameter degeneracy with successive resampling steps [73, 74]. 

Kitagawa et al [72] and Higuchi et al [75] suggest the addition of artificial random noise to the 

parameters in the extended state vector to prevent the degeneracy.   This approach has been coupled 

with the auxiliary SIR by Liu et al [76] and also with the Rao-Blackwellised particle filter by 

Gustaffson et al [77]. Although this approach diminishes the particle degeneracy, it leads to 

variance inflation as pointed by Liu et al [76]. As a correction for this problem, they proposed a 

kernel smoothing-based SIR filter for use in the joint state and parameter estimation.  

Although the particle filtering has been used successfully in large scale problems, it has hardly 

been explored for reservoir history matching applications. Heimhuber et al [17] present history 

matching results using the polynomial chaos expansion-based bootstrap particle filters. Luo et al 

[18] compare the EnKF and PF for reservoir history matching applications.  

4.2 Particle filter methodology  

To understanding the mathematical foundation behind a general SMC technique, let us consider a 

stochastic system comprising of only states represented by the following equations. 

𝑋𝑘 = 𝑓(𝑋𝑘−1) +  𝑊𝑘              (4.1) 

𝑌𝑘 = 𝑔(𝑋𝑘) +  𝑉𝑘               (4.2) 
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𝑉𝑘 ~ 𝑁(0, 𝑅)               (4.3) 

where  

𝑋𝑘: State variables of interest at a given time instant k. They are generally dynamic in nature such 

as the pressure, the oil saturation and the water saturation in a reservoir system. 

𝑓 : State transition function which relates the state variables at a given instant to the state variables 

at the previous instant.  

𝑌𝑘 : The dynamic measurement data obtained at the time instant k. In a reservoir, these may include 

the oil production rate, the steam oil ratio, the gas production rate, the monthly oil production, the 

bottom-hole pressure, water cuts, oil cuts and the cumulative liquid production. 

𝑊𝑘: The process noise for the system.  

𝑉𝑘: The measurement noise associated with the process.  

To get a basic grasp of the SMC method, the sequential importance sampling algorithm (SIS) is 

explained below, since SIS represents one of the most fundamental SMC methods. This sampling 

method has been in use since the last five decades [78]; however, it is not widely used now due to 

its computationally intensive nature.  

As with any Monte Carlo-based technique, the states involved in the process are represented by a 

set of particles at any time instant k. Let the particles at time instant k be represented by 𝑋𝑘
𝑖  , 𝑖 =

1, 2, 3, 4, … . , 𝑁, posterior density of a state at time instant k be represented by 𝑝(𝑥𝑘|𝑌𝑘) and the 

joint posterior density of the state be 𝑝(𝑥𝑘|𝑌𝑘). Let the weights corresponding to the individual 

particle be represented as 𝑤𝑘
𝑖 , 𝑖 = 1, 2, 3, 4, … . , 𝑁. The joint pdf of the states can be approximated 

by equation 4.4.  

𝑝(𝑥𝑘|𝑌𝑘) ≈ ∑ 𝑤𝑘
𝑖 𝛿(𝑁

𝑖=1 𝑋𝑘 − 𝑋𝑘
𝑖 )              (4.4) 

In importance sampling, the samples are drawn from the importance density 𝑞(𝑋𝑘|𝑌𝑘) to 

approximate the exact distribution 𝑝(𝑋𝑘|𝑌𝑘), since it is unknown. Now, the weights of the particles 

are given by the probabilistic equation 4.5.  
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𝑤𝑘
𝑖 𝛼 𝑝(𝑋𝑘

𝑖  |𝑌𝑘) | 𝑞(𝑋𝑘
𝑖  |𝑌𝑘),    𝑖 = 1, 2, 3, 4, … . , 𝑁          (4.5) 

Since the importance density is a known distribution, drawing samples from it is very similar to 

drawing samples from the actual posterior distribution. Assuming that the posterior density at time 

instant k-1 is known, then when the measurement 𝑌𝑘 is available, the importance density is 

determined by equation 4.6.  

𝑞(𝑋𝑘
𝑖  |𝑌𝑘) =  𝑞(𝑥𝑘 | 𝑋𝑘−1, 𝑌𝑘) 𝑞(𝑋𝑘−1 |𝑌𝑘−1)          (4.6) 

The posterior density is then given by the following equation: 

𝑝(𝑋𝑘 |𝑌𝑘) =  𝑝(𝑦𝑘 | 𝑋𝑘, 𝑌𝑘−1) 𝑝(𝑋𝑘 | 𝑌𝑘−1) / 𝑝(𝑦𝑘 | 𝑌𝑘−1)         (4.7) 

Hence, the weight equation can be derived as: 

𝑤𝑘
𝑖 𝛼 𝑝(𝑋𝑘

𝑖  |𝑌𝑘) | 𝑞(𝑋𝑘
𝑖  |𝑌𝑘) =  𝑤𝑘−1

𝑖  𝑝(𝑦𝑘|𝑥𝑘
𝑖  ) 𝑝(𝑥𝑘

𝑖 |𝑥𝑘−1
𝑖  )| 𝑞(𝑥𝑘

𝑖  |𝑋𝑘−1
𝑖 , 𝑌𝑘)          (4.8) 

Now, the approximation of the posterior density can be given by equation 4.9.  

𝑝(𝑥𝑘 |𝑌𝑘) ≈  ∑ 𝑤𝑘
𝑖 𝛿(𝑁

𝑖=1 𝑥𝑘 − 𝑥𝑘
𝑖 )             (4.9) 

The main drawback of the SIS particle filter is the requirement of an extremely large number of 

particles in order to avoid the occurrence of particles with zero weights. As the number of particles 

N increases, the true posterior density will be obtained. The sequential importance resampling 

(SIR) filter was proposed by Gordon et al [64] to get rid of the degeneracy problem of SIS filters 

and is currently the most popular sampling method used in the update step of the particle filter. In 

the SIR method, a set of N particles are sampled from the posterior distribution such that each of 

the particles in the resulting sample have an equal weight of 1/N. These are represented as { 𝑥𝑘
𝑖 ,

1

𝑁
 

}. Hence, the SIR can be represented by the equations 4.10 and 4.11. 

𝑞(𝑥𝑘| 𝑋𝑘−1
𝑖 , 𝑌𝑘) =  𝑝(𝑥𝑘

𝑖  |𝑥𝑘−1
𝑖  )          (4.10) 

𝑤𝑘
𝑖  𝛼  𝑤𝑘−1

𝑖   𝑝(𝑦𝑘|𝑥𝑘
𝑖 )                        (4.11) 

Fig 4.1 shows the schematic representation of the SIR-based particle filter.  
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Fig 4.1 Schematic representation of SIR filters 

As can be seen from the figure, the initial particles of the states generated through a stochastic 

Monte Carlo sampling is propagated through the system dynamics to obtain transitions particles, 

constituting the importance particles with a characteristic importance distribution. The importance 

weights are then calculated using the likelihood function and incoming measurements. This is 

followed by a resampling step, where a new set of particles are generated such that all of them 

have equal weight and these particles generally correspond to those in the region of high 

probability. These particles will then serve as the prior particles for the next time update step and 

the same process is repeated again until the last assimilation step.      

Although the particle filtering methods explained above seems to be simple, it fails dramatically 

when a few unknown static parameters are involved in the process. When static parameters are 

involved in the state space model and are updated based on the above-mentioned algorithms, the 

static parameters will not move to new positions in the parameter space with each assimilation 

step.  In other words, they do not get updated. Moreover, within a few assimilation steps, 

degeneracy of the particles associated with these parameters may occur, thereby leading to the 

failure of the filter. Gordon et al [64] suggested adding some random artificial perturbations to the 

particles of the states in order to avoid the problem of degeneracy. Several other authors followed 

suit by extending this idea to add artificial random noise to the static parameters as well. However, 



87 

 

this process led to the artificial loss of information as pointed out by Liu et al [76]. To address this 

limitation, they suggested a novel algorithm that combines the SIR filter with a kernel smoothing 

method so that this artificial loss of information is averted.  For this work, we have used the method 

proposed by Liu et al [76] to overcome the limitation of the particle filter for parameter estimation 

and the detailed description of its algorithm is explained below.  

When both the states and parameters have to be estimated such as in reservoir characterization, 

Bayes’ rule will imply the following relation: 

𝑝(𝑥𝑘 , 𝜃𝑘|𝑌1:𝑘) 𝛼 𝑝(𝑌𝑘 |𝑥𝑘 , 𝜃𝑘 , 𝑌1:𝑘) 𝑝(𝑥𝑘|𝜃𝑘, 𝑌1:𝑘) 𝑝(𝜃𝑘|𝑌1:𝑘−1)      (4.12) 

where θk is the vector of reservoir model parameters such as the porosity and permeability. In order 

to facilitate the joint state and parameter estimation of reservoir properties, an augmented vector 

consisting of both the dynamic states and the static parameters is used and a Gaussian random 

walk model (see equation 4.13) is employed to evolve the parameter estimates during the 

prediction stage of the particle filter.  

𝜃𝑘 =  𝜃𝑘−1 + 𝑠𝑘            (4.13) 

where 𝑠𝑘 is the random noise for the random walk model following a Gaussian distribution defined 

by equation 4.14. 

𝑠𝑘 ~ 𝑁(0, 𝐶𝑉𝑘)            (4.14) 

where 𝐶𝑉𝑘 is the covariance matrix. The last term in equation 4.12 𝑝(𝜃𝑘|𝑌1:𝑘−1) is usually 

approximated by a mixture of particles as shown in equation 4.15 [79].  

𝑝(𝜃𝑘|𝑌1:𝑘−1) ~ ∑ w𝑘−1
i  𝑁( θ𝑘 | θ𝑘−1

i , 𝐶𝑉𝑘)  𝑁
𝑖=1         (4.15) 

Assuming that the sample mean and the covariance matrices of the parameters with weights 

{θ𝑘−1
i , w𝑘−1

i  , 𝑖 = 1, 2, 3, … … 𝑁} computed from the ensemble at time instant k-1 are represented 

as µ𝑘−1
θ  and 𝑉𝑘−1, Liu et al [76] concluded that covariance inflation occurs, since they found that 

the distribution in equation 4.15 is characterized by a covariance of 𝑉𝑘−1 + 𝐶𝑉𝑘. In order to avoid 

this variance inflation, kernel smoothing was proposed by Liu et al [76]. Here, a kernel smoother 

is used with the smoothing parameter 0 < ℎ < 1.  
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𝑝(𝜃𝑘|𝑌1:𝑘−1) ~ ∑ w𝑘−1
i  𝑁( θ𝑘 | m𝑘−1

i , ℎ2𝑉𝑘−1)  𝑁
𝑖=1         (4.16)  

In the above equation, m𝑘−1
i  represent the kernel locations and are determined by using a shrinkage 

rule [76] provided in mathematical form in equation 4.17. This shrinkage rule makes sure that the 

particles are distributed very close to their mean values.  

m𝑘−1
i = (√1 − ℎ2  )θ𝑘−1

i + (1 − (√1 − ℎ2  )) µ𝑘−1
θ         (4.17) 

In general, the smoothing parameter ℎ is obtained from a tuning exercise. It is usually chosen to 

be around 0 – 0.2 if the parameters are known to static or slightly time-varying and around 0.8 – 

1.0 if they are known to be strongly time-varying. For this work, we have used the algorithm used 

by Thomas [80] to combine the SIR resampling with the kernel smoothing, which is explained 

below in 6 steps.  

1. At t= 0, Monte Carlo samples for the states {x𝑡=0
i } ∶ 𝑝(𝑥0) and parameters {θ𝑡=0

i } ∶ 𝑝(𝜃0) 

are drawn for all 𝑖 = 1, 2, 3, … … 𝑁.  

2. Parameter samples are drawn for the time k+1 represented as {θ𝑘+1
i } ∶

 𝑁( θ𝑘+1 | m𝑘
i , ℎ2𝑉𝑘)  and m𝑘

i  is calculated using equation 4.17 for all 𝑖 = 1, 2, 3, … … 𝑁. 

3. State samples at time instant k+1, {x𝑘+1
i } ∶  𝑁( x𝑘+1 | µ𝑘

i , θ𝑘+1
i ) are then drawn using the 

state transition function in the state space model (equation 4.1). 

4.  Weights are computed using equation 4.18. 

w𝑘+1
i =  

𝑝(𝑦𝑘+1|x𝑘+1
i ,θ𝑘+1

i ) 

∑ 𝑝(𝑦𝑘+1|x𝑘+1
i ,θ𝑘+1

i ) 𝑁
𝑖=1

          (4.18) 

5. The samples θ𝑘+1
i  and x𝑘+1

i are then resamples with resampling using SIR technique to get 

N samples of the states and parameters representing the posterior distribution.  

6. Steps 2 to 5 are repeated until the end of the particle filtering process for this application.  

4.3 Results and discussions 

A two-dimensional reservoir model of dimension 100 x 1 x 20 is created using the commercial 

simulator CMG IMEX as shown in Fig 4.2. The model consists of one injector well placed at the 

center of the well and two producer wells located at either side of the injector. The data set for this 

model was taken from 2000 SPE Project [41]. Initially, it is assumed that the reservoir is fully 

saturated with oil, i.e., the oil saturation So = 1.0 and values of the gas saturation Sg and water 
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saturation Sw being equal to zero. The value of permeability ranges from 0 to 1000 mD in this 

model. It is assumed that certain information is available in the form of hard data. The values of 

permeability is assumed to be known in a total of 100 grid block locations at i=1, 25, 50, 75, 100 

and the corresponding vertical direction.  

 

Fig 4.2 Two dimensional reservoir model 

Here, the oil was produced by a waterflooding process. In a waterflooding process, water is 

injected in order to increase the reservoir pressure leading to increased oil production from the 

reservoir. The input used in the process was water injection rate and its mole fraction in the 

injection phase. The parameter to be estimated is permeability. The state vector consisted of three 

components, namely, oil saturation, water saturation and pressure. The production data vector 

consisted of two components, namely the oil production at well 1 and the oil production at well 2.   

For the generation of the initial ensemble of the natural logarithm of the permeability field, the 

geostatistical simulation package SGeMS was used, where the spatial distribution was generated 

by a sequential Gaussian simulation algorithm. While generating the initial ensemble, the 

distribution obtained was made to honour the permeability value represented by the hard data at 

the hard data locations. For this method, an ensemble was made of 150 such realizations/particles.  

To implement covariance localization, a sensitivity analysis was conducted to determine the region 

of influence in the reservoir. This study was done using the simulation package CMOST. Fig 4.3 

represents the regions of influence in the two-dimensional reservoir under consideration for this 

case study. The state vector consisted of two dynamic reservoir properties, namely the gas 

saturation and the oil saturation while the parameter vector consisted of the permeability values at 
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the grid blocks. Hence, in the conventional implementation of the particle filter, the dimensions of 

the state and parameter vectors are 4000 x 1 and 2000 x 1 respectively. On the other hand, the 

corresponding dimensions for localization-based particle filter are 2400 x 1 and 1200 x 1. This 

reduction in the dimension of the estimation vector greatly reduces the computational load 

involved in the estimation framework and also lessens the severity of the particle degeneracy 

problem described in the previous section.  

 

Fig 4.3 Region of influence in the reservoir 

Fig 4.4 compares the permeability maps of the estimated model with respect to the true model. We 

can infer from this figure that although, the particle filtering has not resulted in a very good 

estimate of the permeability field compared to the reference permeability field, the use of the 

covariance localization has given rise to a field with a reasonable resemblance to the reference 

field.  However, compared to the EnKF, the accuracy of estimation of the particle filter is not so 

good; this can be attributed to the presence of a large number of states and parameters in the 

reservoir, leading to degeneracy of the particles after assimilation of a certain number of 
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measurements. Moreover, since the number of particles constituting an ensemble is three times 

more than that used for the EnKF ensemble, particle filter is more computationally expensive when 

compared to the EnKF. Fig 4.4 also implies that the localization based particle filtering technique 

yields estimates more consistent with the reference field compared to the estimated field obtained 

using the conventional unconstrained particle filtering method.  

 

Fig 4.4 Permeability map comparison: Clockwise from top left corner – Reference 

permeability field of true model, initial permeability field, covariance localization-based 

permeability field unconstrained estimated permeability field. 

The simulations were done for a period of 7300 days and there were 14 data assimilation steps in 

total for this study. Fig 4.5 and Fig 4.7 compare the oil saturation profile and the gas saturation 

profile respectively in the reservoir at the last time instant (t=7300 days) obtained by using the true 

reference model, the initial model and the two estimated models. To order to quantify the results 

revealed by these contour plots, we have shown the comparison of the evolution of the average oil 

and gas saturation (see Fig 4.6 and Fig 4.8) in the entire reservoir field with the progress of the 

waterflodding process for the reference and the estimated models. Fig 4.9 and Fig 4.10 compare 

the ensemble predictions of the oil production with respect to the historical production data at wells 

Pro-1 and Pro-2 respectively. These figures imply that the localization-based particle filtering 

performs better than the conventional particle filtering algorithm.  
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Fig 4.5 Comparison of constrained vs. unconstrained localization estimation with respect to 

oil saturation at the last time instant. Clockwise from top left corner: Oil saturation 

corresponding to true model, mean oil saturation fields of the initial model, constrained 

localization-based EnKF model and unconstrained model. 
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Fig 4.6 Comparison of the average oil saturation in the entire reservoir with the progress of 

the waterflooding process for true model, initial model, localization based  EnKF and 

unconstrained EnKF model. 
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Fig 4.7 Comparison of constrained vs. unconstrained localization estimation with respect to 

gas saturation at the last time instant. Clockwise from top left corner: Gas saturation 

corresponding to true model, mean gas saturation fields of the initial model, constrained 

localization-based EnKF model and unconstrained model. 
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Fig 4.8 Comparison of the average gas saturation in the entire reservoir with the progress 

of the waterflooding process for true model, initial model, localization based EnKF and 

unconstrained EnKF model. 
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Fig 4.9 Comparison of the mean ensemble predictions for the monthly oil production with 

respect to the historical production data using the true model, mean of the initial and the 

estimated models at the production well Pro-1. 
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Fig 4.10 Comparison of the mean ensemble predictions for the monthly oil production with 

respect to the historical production data using the true model, mean of the initial and the 

estimated models at the production well Pro-2. 

4.3.2 3D SAGD reservoir model 

For this study, the reservoir model considered is exactly same as the one considered in the previous 

chapter. Although the representation of the model was shown in the previous chapter, for the sake 

of completeness, it is also shown below in Fig 4.11. The history matching was posed as a joint 

state and parameter estimation problem through the particle filtering method. The reservoir’s 

dimension is 5000ft x 1000ft x 150ft. The data set for this model was taken from [41]. The 

permeabilities at all the grid block locations were taken from the above mentioned model. There 

are totally 2500 permeability values and permeabilities in all directions were set to be equal. Since 

this is a highly heterogeneous model, the value of permeability is different in different grid blocks. 

The value of permeability ranges from 0 to 1000 md in this model. It is assumed that permeability 

information at certain spatial locations is available in the form of hard data. 
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Fig 4.11 3D SAGD reservoir model and two layers representing the horizontal well pair 

placement 

In order to perform covariance localization, a sensitivity analysis study was conducted to identify 

regions of influence for the two horizontal producing wells. It was found out that expect the top 

and bottom layers, other layers affected the production data at the producing wells significantly. 

Therefore, the particle filtering update operation was focused only on the grid blocks comprising 

these regions. After every update step of the particle filtering, the top and bottom layers were 

modified using the sequential Gaussian simulation so that these two layers are at all times 

geologically consistent with the remaining three regions. In this way, the variogram of the 

estimated model will be a very good match with respect the variogram obtained as a part of soft 

data information. The state vector was comprised of two dynamic reservoir properties, namely the 

oil saturation and temperature at the reservoir grid blocks, while the parameter vector comprised 

of the permeability values at the grid blocks. For the conventional particle filtering framework, the 

dimensions of the state and parameter vectors were 5000 x 1 and 2500 x 1 respectively. On the 

other hand, the corresponding dimensions for the localization-based particle filtering method were 
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2400 x 1 and 1200 x 1 respectively. This considerable reduction in the dimension of the estimation 

vector greatly reduces the computational load and also lessens the particle denegeracy problem 

generally prevalent in the particle filtering application to large scale systems.  

Fig 4.12 shows the comparison of permeability map of the third layer of the reservoir between the 

true model, the initial model and the ones obtained using the unconstrained model and the 

covariance localization-based model. It can clearly be observed that the particle filtering algorithm 

has greatly improved the permeability estimates compared to the initial model, although not to the 

same extent observed in the EnKF implementation.  

 

Fig 4.12 Permeability map comparison: Clockwise from top left corner – Reference 

permeability field of true model, initial permeability field, covariance localization-based 

permeability field and unconstrained estimated permeability field. 

It can clearly be seen from the above figure that with the assimilation of production data, the 

particle filter yields an estimate of permeability closer to the true model. Moreover, when the 

covariance localization is applied to the estimation problem, the permeability match is very good. 

However, it is important to note that the estimate obtained from this method is not as good as the 

estimates obtained by using the EnKF. This is because of the fact that particle filter algorithm 
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works on a resampling technique, where the samples for successive prediction step are drawn from 

the importance distributions. This may lead to degeneracy of the sample. 

Fig 4.13 compares the steam chamber profile for the SAGD process in the injection well layer 

(layer 3) after 10 years of SAGD operation for the true, the initial, unconstrained and localization-

based models. Fig 4.14 also gives a similar comparison of the steam chamber but in a perpendicular 

direction to that shown in Fig 4.13. Fig 4.15 gives a quantitative comparison of the steam chamber 

evolution for the reference and the estimated models. It can be observed from these three figures 

that the localization-based particle filtering method results in a better reproduction of the reservoir 

characteristics as that of the reference model. Fig 4.16 compares the mean oil saturation profile 

for the SAGD process in the injection well layer (layer 3) after 10 years of SAGD operation for 

the true, the initial, the unconstrained and the localization-based models. In order to quantify the 

results obtained from this figure, the evolution of the average oil saturation in the entire field was 

also observed and is shown in Fig 4.17. The prediction of the particles in the ensemble for the two 

estimated models are compared with the actual historical production data and are shown in Fig 

4.18 and Fig 4.19. These figures further indicate that the localization-based particle filtering results 

in better estimates of the reservoir permeability.  

 

Fig 4.13 Steam chamber in the third layer of the SAGD model for true, initial, 

unconstrained and the constrained localization models.  



101 

 

 

Fig 4.14 Steam chamber at the last time instant (t=10 years) for true, initial, unconstrained 

and covariance localization models. 

 

Fig 4.15 Evolution of the steam chamber volume with the progress of SAGD process for 

true, initial, unconstrained and constrained localization models. 
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Fig 4.16 Oil saturation profile at the last time instant (t=10 years) for true, initial, 

unconstrained and localization models. 
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Figure 4.17 Comparison of the average gas saturation in the entire reservoir with the 

progress of the waterflooding process for true model, initial model, localization-based 

EnKF and unconstrained EnKF model. 
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Fig 4.18 Comparison of the mean ensemble predictions for the monthly oil production for 

the entire reservoir field with respect to the historical production data using the true 

model, mean of the initial and the estimated models. 
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Fig 4.19 Comparison of the mean ensemble predictions for the monthly oil production for 

the entire reservoir field with respect to the historical production data using the true 

model, mean of the initial and the estimated models. 

 

4.4 Conclusions 
This chapter focused on the application of the particle filter to reservoir history matching. A 

reservoir model is highly nonlinear and characterized by a set of complicated partial differential 

equations explaining the flow of fluids in a porous bed of rocks defining a reservoir. As with any 

nonlinear model, the distribution of the model parameters is generally non-Gaussian in nature. 

Since the EnKF fails to obtain reasonable estimates when the distributions involved in the model 

are non-Gaussian, we attempted to use a completely Bayesian-based filter – the particle filter to 

estimate reservoir parameters. In this method also, the covariance localization was coupled with 

the particle filter and was found to perform better than the filter without any localization.  
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Chapter 5  

Conclusions and future work 
In this work, the challenging problem of reservoir characterization and history matching was 

analyzed using two sequential recursive estimation techniques – the ensemble Kalman filter 

(EnKF) and the particle filter (PF).  

The first part of the thesis addressed some of the main shortcomings of the conventional method 

of the EnKF implementation. It is a well-known fact that some prior information about any 

petroleum reservoir is always available in the form of hard and soft data, which gives some details 

regarding the spatial connectivity and variability of reservoir parameters such as porosity and 

permeability. The EnKF, formulated on the grounds of the Monte Carlo Bayesian statistics and the 

Kalman filter (KF), arrives at estimates of parameters based on statistical error analysis and hence 

could potentially yield reservoir parameter estimates that are not geologically realistic and 

consistent. The main motivation of this thesis was to modify this conventional EnKF by 

incorporating geostatistics into the EnKF estimation framework using constraints so that we get 

estimates that are consistent with prior information – hard and soft data.  

This was achieved in Chapter 2 using a novel projection method. In this method, the correlogram 

was used as the prior soft data information about the reservoir and the estimates obtained from the 

EnKF were projected onto the correlation structure indicated by this correlogram after each data 

assimilation step. By the application of this method to two synthetic heterogeneous reservoir 

models, it was observed that it is possible to preserve some of the EnKF statistics and at the same 

time, introduce geostatistical constraints to also preserve the spatial variability details.  

The other half of the first part dealt with the spurious correlation induced by the Kalman gain 

computations in the EnKF update step, potentially leading to the erroneous update of parameters. 

As a result of this spurious update, there are high chances that values of the petrophysical 

parameters may depart from the geological realism and be physically meaningless. To solve this 

issue, a covariance localization-based EnKF was implemented on two synthetic reservoir models 

to understand its advantages in reservoir history matching. In this method, certain regions in the 

reservoir that were highly sensitive to production data were identified through a sensitivity analysis 

study. In this way, the EnKF was used to update only these regions to avoid spurious correlation. 
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Moreover, the remaining regions were updated based on a geostatistical algorithm (sequential 

Gaussian simulation) to make sure that geological spatial continuity and connectivity is retained. 

Due to the reduced number of parameters that are of interest for the EnKF, it was noted that the 

computational time involved in this study was considerably reduced. Also, it was observed that 

this coupling of geostatistics with the localization-based EnKF captures the spatial variability of 

permeability better than the projection method.  

The second and the final part of the thesis focused on the application of the particle filter to 

reservoir history matching. A reservoir model is highly nonlinear characterized by a set of 

complicated partial differential equations explaining the flow of fluids in a porous bed of rocks 

defining a reservoir. As with any nonlinear model, the distribution of the noise is generally non-

Gaussian in nature. Since the EnKF fails to obtain reasonable estimates when the distributions 

involved in the model are non-Gaussian, we attempted to use a completely Bayesian-based filter 

– the particle filter to estimate reservoir parameters. In this method also, covariance localization 

was coupled with the particle filter and was found to perform better than the filter without any 

localization.  

5.1 Future work  
There is plenty of scope to improve the current history matching algorithms to achieve accurate 

reservoir characterization.  

 The current literature is extensive with several attempts made on the application of the 

EnKF to the history matching problem. However, methods such as the Gaussian sum 

filters, the particle filters and the expectation maximization (E-M) algorithms have been 

explored very little. 

  It is also highly recommended to improve the results obtained by implementing the particle 

filters by means of bootstrapping them with the EnKF, i.e, use the proposal distributions 

obtained from the EnKF for resampling steps in the particle filter.   

 Another challenge that can be addressed is the integration of 4D seismic data into the 

projection method proposed in this work.  

 Thanks to the rapid advancement in sensor technology, it is now possible to place online 

sensors in the wells used in the oil recovery process. This could prove to be absolutely 

helpful for SAGD reservoir characterization. Using the temperature data from these sensors 
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placed at different intervals along the horizontal wells, it is possible to extrapolate values 

of temperature at unsampled locations using SAGD steam chamber dynamics. These 

values can, in turn, be used as a constraint while solving the joint reservoir state and 

parameter estimation problem.  

 The well placement optimization problem can be coupled with the reservoir 

characterization procedure in order to optimize the reservoir performance.  
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APPENDIX A: Reservoir simulator equations 

A.1 Introduction 

Reservoir simulators simulate the oil productivity of a reservoir given relevant input parameters 

by solving a set of governing equations dictating the flow of fluids in a reservoir. Reservoir 

characterization being a large scale porous media problem, several differential equations such as 

mass conservation, energy conservation, phase equilibrium equations and well equations are 

needed for its definition. Today, a number of commercial reservoir simulators like CMG and 

ECLIPSE have been developed and successfully implemented to model real reservoir fields. In 

this thesis, CMG has been used as the primary reservoir simulator. This appendix provides a brief 

summary of the mass and energy conservation equations used in CMG STARS module. 

A.2 Conservation Equations 

Conservation equations are developed for each component and fluids of interest in the reservoir. 

Generally, reservoir fluids are comprised of oil, water and gas. While constructing conservation 

equations, it is important to note that they are based on a particular region of volume V, where the 

basic laws of conservation of mass and energy are obeyed.  

A.2.1 Mass conservation equations 

The volume of the region of interest is denoted by V. This region of interest is generally a 

discretized grid block. This total volume V is composed of five individual volumes: 

1. Volume of solid rock matrix (𝑉𝑟) 

2. Volume of solid and adsorbed component (𝑉𝑠) 

3. Volume of water or aqueous phase (𝑉𝑤) 

4. Volume of oil or oleic phase (𝑉𝑜) 

5. Volume of gaseous phase (𝑉𝑔) 

𝑉 = 𝑉𝑟 +  𝑉𝑆 + 𝑉𝑤 +  𝑉𝑜 +  𝑉𝑔                        (A.1) 

The subscripts w, o and g is used to refer to water, oil and the gas components respectively.  

The total fluid volume 𝑉𝑓 and void volume 𝑉𝑣 are defined as: 
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 𝑉𝑓 =  𝑉𝑤 + 𝑉𝑜 +  𝑉𝑔             (A.2) 

 𝑉𝑣 =  𝑉 −  𝑉𝑟 = 𝑉𝑓  +  𝑉𝑠            (A.3) 

Porosity of a reservoir is defined as the ratio of void volume to total volume in a reservoir. Void 

porosity 𝜑𝑣 and fluid porosity 𝜑𝑓 are defined as:  

𝜑𝑣 =
Vv

V
               (A.4) 

𝜑𝑓 =
𝑉𝑓

𝑉
=  

𝑉𝑣

𝑉
 (1 −

𝑉𝑠

𝑉𝑣
 )                       (A.5) 

Since 
𝑉𝑠

𝑉𝑣
 gives the ratio of volume occupied by solid and adsorbed components to that of the void 

volume, which is equal to ∑
𝑐𝑠𝑖

𝜌𝑠𝑖
, equation (A.5) can be modified as: 

𝜑𝑓 = 𝜑𝑣 ∗ (1 − ∑
𝑐𝑠𝑖

𝜌𝑠𝑖
 )             (A.6) 

The fluid saturations in a reservoir must sum to 1. Hence, 

𝑆𝑤 + 𝑆𝑜 +  𝑆𝑔 = 1                  (A.7) 

where 

𝑆𝑤 =
𝑉𝑤

𝑉𝑓
=  

Vw

φfV
  , 𝑆𝑜 =

𝑉𝑜

𝜑𝑓𝑉
 and 𝑆𝑔 =

𝑉𝑔

𝜑𝑓𝑉
          (A.8) 

Thus, the accumulation term for flowing, solid and adsorbed component can be written as: 

 𝑉
𝜕

𝜕𝑡
 [ 𝜑𝑓(𝜌𝑜𝑆𝑤𝑤𝑖 +  𝜌𝑜𝑆𝑜𝑥𝑖 + 𝜌𝑔𝑆𝑔𝑦𝑖) + 𝜑𝑣𝐴𝑑𝑖 +  𝜑𝑣𝑐𝑖]           (A.9) 

Between any two regions, flowing components constitute to the flow term as given below: 

𝜌𝑤𝑣𝑤𝑤𝑖 +  𝜌𝑜𝑣𝑜𝑥𝑖 +  𝜌𝑔𝑣𝑔𝑦𝑖 + ∅ 𝜌𝑤𝐷𝑤𝑖∆𝑤𝑖 + ∅ 𝜌𝑔𝐷𝑔𝑖∆𝑔𝑖 + ∅ 𝜌𝑜𝐷𝑜𝑖∆𝑜𝑖    (A.10) 

Flow taking place due to transmissibility between two regions must also be taken into account 

while developing conservation equations. The volumetric flow rate due to transmissibility for 

water, oil or gas components is given by: 
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𝑣𝑗 = 𝑇 (
krj

µirj
) ∆∅𝑗, 𝑗 = 𝑤, 𝑜, 𝑔          (A.11) 

𝑇 is the transmissibility between two regions, which takes into account factors such as cross 

sectional area, interface permeability and geometric orientation. ∆∅ refers to the potential 

difference between the node of the adjacent region and the current region. Inflow and outflow are 

indicated by the positive and negative values of ∆∅ respectively. ∆𝑤𝑖, ∆𝑔𝑖 and ∆𝑜𝑖 are the phase 

concentration differences between the nodes.  

One of the important contributors to the flow term in the mass conservation equation is the source 

or sink terms of the well. The flow term for flowing components corresponding to well source/ 

sink is written as: 

𝜌𝑤𝑞𝑤𝑘𝑤𝑖 + 𝜌𝑜𝑞𝑜𝑘𝑥𝑖 + 𝜌𝑔𝑞𝑔𝑘𝑦𝑖          (A.12) 

Solid components are not considered in the above equations since they do not flow.  

Another mass conservation term comes from chemical reaction and interfacial mass transfer 

source/sink terms. This can be written as: 

𝑉 ∑ (𝑠𝑘𝑖
′𝑛𝑟

𝑘=1 −  𝑠𝑘𝑖) ∗ 𝑟𝑘          (A.13) 

𝑠𝑘𝑖
′  and 𝑠𝑘𝑖 are the stoichiometric coefficients of component i in reaction k, with 𝑠𝑘𝑖

′  representing 

product and 𝑠𝑘𝑖
′  representing reactants. 𝑟𝑘 refers to the volumetric rate of reaction.  

The final source term for mass flow is thermal aquifer source/sink, whose contribution to the flow 

term is given below: 

∑ 𝜌𝑤
𝑛𝑓

𝑘=1  𝑞𝑎𝑞𝑤𝑘,            (A.14) 

𝑞𝑎𝑞𝑤𝑘 indicates the volumetric water flow rate through a block face k to or from the adjacent 

aquifer. 

Conservation of mass is satisfied if the rate of change of accumulation is equal to the sum of the 

net rate of inflow from adjacent regions and the net rate of addition from sources and sinks. 

Considering equations (A.8) to (A.14), the mass conservation equation for the flowing component 

i can be mathematically written as: 
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𝑉
𝜕

𝜕𝑡
 [ 𝜑𝑓(𝜌𝑤𝑆𝑤𝑤𝑖 +  𝜌𝑜𝑆𝑜𝑥𝑖 + 𝜌𝑔𝑆𝑔𝑦𝑖) + 𝜑𝑣𝐴𝑑𝑖] =  ∑ [ 𝑇𝑤

𝑛𝑓

𝑘=1 𝜌𝑤𝑤𝑖∆∅𝑤 +   𝑇𝑜𝜌𝑜𝑥𝑖∆∅𝑜 +

 𝑇𝑔𝜌𝑔𝑦𝑖∆∅𝑔] +  𝑉 ∑ (𝑠𝑘𝑖
′𝑛𝑟

𝑘=1 −  𝑠𝑘𝑖) ∗ 𝑟𝑘 +  ∑ [ ϕ Dwi
nf
k=i  ρw Δwi +  ϕ Doi  ρo Δxi +

 ϕ Dgi  ρg Δyi] +  𝛿𝑖𝑤 ∑ ρw
𝑛𝑓

𝑘=1  qaqwk +  𝜌𝑤𝑞𝑤𝑘𝑤𝑖 + 𝜌𝑜𝑞𝑜𝑘𝑥𝑖 + 𝜌𝑔𝑞𝑔𝑘𝑦𝑖      (A.15) 

For the solid component, the conservation equation is written as: 

𝑉
𝜕

𝜕𝑡
[𝜑𝑣𝑐𝑖 = 𝑉 ∑ (𝑠𝑘𝑖

′𝑛𝑟
𝑘=1 −  𝑠𝑘𝑖) ∗ 𝑟𝑘           (A.16) 

B.2.2 Energy conservation equations 

Energy conservation equations can also be derived along similar lines to the mass conservation 

equations. 

𝑉
𝜕

𝜕𝑡
 [ 𝜑𝑓(𝜌𝑤𝑆𝑤𝑈𝑤 +  𝜌𝑜𝑆𝑜𝑈𝑜 + 𝜌𝑔𝑆𝑔𝑈𝑔) + 𝜑𝑣𝑐𝑠𝑈𝑠 + (1 − 𝜑𝑣)𝑈𝑟 = ∑ [ 𝑇𝑤

𝑛𝑓

𝑘=1 𝜌𝑤𝐻𝑤∆∅𝑤 +

  𝑇𝑜𝜌𝑜𝐻𝑜∆∅𝑜 +  𝑇𝑔𝜌𝑔𝐻𝑔∆∅𝑔] +  ∑ 𝐾 𝛥𝑇
𝑛𝑓

𝑘=1 + 𝑉 ∑ 𝐻𝑟𝑘
𝑛𝑟
𝑘=1  𝑟𝑘 +  𝐻𝐿𝑜 + 𝐻𝐿𝑣 + 𝐻𝐿𝑐 +

 ∑ (𝐻𝐴𝐶𝑉 + 𝐻𝐴𝐶𝐷) 𝑘
𝑛𝑓

𝑘=1 +  𝜌𝑤𝑞𝑤𝑘𝐻𝑤 + 𝜌𝑜𝑞𝑜𝑘𝐻𝑜 + 𝜌𝑔𝑞𝑔𝑘𝐻𝑔      (A.17) 

 

 

 

 

 

 

 



120 

 

APPENDIX B: Geostatistical algorithms used in 

SGeMS 

B.1 Introduction 

Geostatistics is a branch of applied statistics dealing with the determination of spatially related 

properties. It was developed by George Matheron to estimate the changes in ore grade within a 

mine. Since its inception, this field has witnessed ever increasing application towards the 

challenging problem of reservoir characterization. The widespread adoption of this field in 

reservoir applications is due to its ability to exploit the spatial characteristics of reservoir properties 

such as porosity, permeability and formation thickness. Many geostatitical simulation packages 

like SGeMS, GSLIB and VISIM have successfully emerged over the past few decades to assist in 

reservoir modeling. For the work described in this thesis, SGeMS was chosen as the modeling 

software for performing geostatistical computations. SGeMS (Stanford Geostatistical Modeling 

Software) is a 3D visualization and modelling platform used for generating geostatistical models 

honoring conditioning data and estimating the values of spatially correlated variables. This 

appendix gives a brief summary of the fundamentals of geostatistics and the algorithms used in 

SGeMS.  

B.2 Variogram analysis 

A variogram is a measure of the average correlation of spatially related properties and is described 

by equation B.1.  

𝛾(ℎ) =
1

2
 𝜀[{𝑍(𝑢 + ℎ) − 𝑍(𝑢)}2]           (B.1) 

where h is the lag distance and Z(u) is the value of the spatial property. The variogram is inversely 

related to the correlation index. The variograms are characterized by unique parameters, the sill, 

range and nugget, which are shown in figure B.1.  
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Theoretically, the ideal value of variogram at the origin should be zero. However, in real cases, 

small values of variogram, called the nugget are observed at zero lag, possibly due of measurement 

errors. The nugget in a variogram model represents this error. With increasing lag distance, the 

average autocorrelation between properties separated by h units decrease. The lag distance at 

which this autocorrelation value reduces to zero is called the range of the variogram. The 

variogram value at the lag distance corresponding to its range is called the sill.  

Since a variogram represents the reservoir soft data information obtained through seismic surveys, 

it has to be fitted against sound theortical variogram models to facilitate the estimation of reservoir 

properties. Table B.1 represents the four basic isotropic models used by SGeMS for computing 

variograms.  

Table B.1 Mathematical formulation of isotropic models used in geostatistics 

Isotropic  Model Mathematical formulation 

 

Nugget effect model 

𝛾(ℎ) = {
0      if ∣∣ h ∣∣= 0
1       otherwise    

 

 

 

Spherical model with actual range  a 

𝛾(ℎ)

= {
3

2
 
∣∣ h ∣∣

𝑎
− 

1

2
 ( 

∣∣ h ∣∣

𝑎
 )   if ∣∣ h ∣∣< 𝑎

1                                                otherwise
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Exponential model with practical range a 

𝛾(ℎ) = 1 − exp( 
−3 ∣∣ h ∣∣ 

𝑎
 ) 

 

Gaussian model with practical range a 

𝛾(ℎ) = 1 − exp( 
−3 ∣∣ h ∣∣2 

𝑎2
 ) 

 

B.3 Algorithms 

Geostatistical simulation packages like SGeMS and GSLIB, use a set of algorithms to generate 

spatial properties conditioned on the hard and soft data. These algorithms fall into two categories, 

geostatistical estimation algorithms and geostatistical simulation algorithms.  Geostatistical 

estimation is used for obtaining unbiased estimates of reservoir properties like porosity and 

permeability with minimum variance by means of interpolation techniques. Geostatistical 

simulation methods, on the other hand, give multiple equally probable realizations of the property 

to be estimated. Estimation methods do not yield accurate results compared to the simulation 

methods because the estimation is based on interpolation, which does not lead to realistic values 

of the properties due to smoothing. But, simulation techniques honors spatial variability of the 

property defined by the variogram and allows an assessment of property uncertainty by using 

several realizations. The algorithms used in SGeMS are given in Table B.2. 

Table B.2 Classification of estimation and simulation methods used in geostatistics 

Geostatistical estimation methods Geostatistical simulation methods 

Simple Kriging   (SK) Sequential gaussian simulation (SCG) 

Ordinary Kriging (OK) Sequential indicator simulation (SIS) 

Kriging with a trend  Direct sequential simulation 

Universal kriging (UK) Sequential gaussian co-simulation 

Cokriging  Sequential indicator co-simulation 
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The most common algorithms used in geostatistical estimation are ordinary kriging and simple 

kriging and sequential Gaussian simulation is the most common simulation method. These 

algorithms are explained in detail in the following section. 

B.3.1 Kriging: 

Kriging is an optimal regression-based interpolation method of estimating spatial property values 

at unknown locations given a few true values at certain locations by means of assigning weights 

to the known data points. The data points close to the unknown location are given higher weights 

and vice-versa. If the data points form a cluster, then the individual data points in the cluster are 

given lower weights compared to the isolated data points, thereby nullifying the effect of data 

clustering. In addition to the estimates of the spatial property, kriging also gives an estimate of its 

variance. The main goal of kriging is to find the best unbiased minimum variance estimate of the 

properties and its basic form is given by equations B.2 and B.3: 

𝑍∗(𝒖) − 𝑚(𝒖) = 𝜆𝛼[𝑍(𝒖𝛼) − 𝑚(𝒖𝛼)]           (B.2) 

𝜎𝐸
2(𝒖) = 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒[𝑍∗(𝒖) − 𝑍(𝒖)]           (B.3) 

where 𝜆𝛼 represent the weights given to data points, 𝑚(𝒖) is the mean of the property at location 

𝒖 and 𝜎𝐸
2(𝒖) corresponds to the estimated variance. 

The weights 𝜆𝛼 are determined such that the estimate variance 𝜎𝐸
2(𝒖) is minimized and the 

constraint 𝐸[𝑍∗(𝒖)] = 𝐸[𝑍(𝒖)] is obeyed to satisfy the unbiased estimate requirements.  

The specific kriging methods to be used depends on the property exhibited by the mean 𝑚(𝒖). The 

two most common kriging variants are explained below.  

B.3.1.1 Simple kriging (SK) 

Simple kriging is performed in certain situations, where the mean component of the property to be 

estimated (𝑚(𝒖)) is known and assumed to be constant in the entire estimation region. In this case, 

the equation (B.2) can be modified for simple kriging estimation as follows: 

𝑍𝑆𝐾 
∗ (𝒖) = 𝑚 +  𝜆𝛼

𝑆𝐾(𝒖)[ 𝑍( 𝒖𝜶) − 𝑚]          (B.4) 
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Since the mean is constant, i.e., 𝐸[Z ( 𝒖𝜶) − 𝑚] = 0, the above estimate is unbiased. The 

estimation error can be written as: 

ZSK 
∗ (𝐮) −  Z ( 𝒖) = [ZSK 

∗ (𝐮) −  m] − [Z(𝐮) − 𝑚] = ∑ λα
SK(𝐮)

𝒏(𝒖)

𝜶=𝟏
 𝑅(𝐮𝜶) − 𝑅(𝐮) =

RSK 
∗ (𝐮) −  𝑅(𝐮)                                           (B.5) 

The error variance can then be written as: 

𝜎𝐸
2(𝒖) = 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒{𝑅𝑆𝐾

∗ (𝒖)} + 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒{𝑅𝑆𝐾(𝒖)} − 2 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒{𝑅𝑆𝐾
∗ (𝒖), 𝑅𝑆𝐾(𝒖)} =

 ∑  ∑  λα
SK(𝐮)𝑛(𝑢)

𝛽=1 λβ
SK𝑛(𝑢)

𝛼=1  𝐶𝑅(𝒖𝜶 − 𝒖𝜷) + 𝐶𝑅(0) − 2 ∑ λα
SK(𝐮)𝑛(𝑢)

𝛼=1  𝐶𝑅(𝒖𝜶 − 𝒖)      (B.6) 

Since the kriging estimate is a minimum variance estimator, it is necessary to take the derivative 

of the above equation with respect to each kriging weight and set it to zero. On doing so, we get 

the following set of equations: 

∑  λβ
SK(𝐮)𝐶𝑅(𝒖𝜶 − 𝒖𝜷) = 𝐶𝑅(𝒖𝜶 − 𝒖)  𝛼 = 1, 2, 3, 4, … … . . 𝑛(𝑢)𝑛(𝑢)

𝛽=1        (B.7) 

The covariance functions for Z(u) and R(u) are equal since the mean is constant for the entire 

domain. Hence, C(h) = CR(h). Using this in equation (B.7), we have: 

∑  λβ
SK(𝐮)𝐶(𝒖𝜶 − 𝒖𝜷) = 𝐶(𝒖𝜶 − 𝒖)  𝛼 = 1, 2, 3, 4, … … . . 𝑛(𝑢)𝑛(𝑢)

𝛽=1       (B.8) 

In matrix form, this can be represented as: 

𝑲𝜆𝑆𝐾(𝒖) = 𝒌                         (B.9) 

where K is the covariance matrix between data points and its elements are represented as: 

𝑲𝒊,𝒋 = 𝐶(𝒖𝒊 − 𝒖𝒋)           (B.10) 

k is the vector of covariance matrix of the estimation points and the data points and its elements 

are represented as: 

𝒌𝒊 = 𝐶(𝒖𝒊 − 𝒖)            (B.11) 

From equation (B.9), the kriging weights can be determined by the following equation:  
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𝜆𝑆𝐾(𝒖) =  𝑲−𝟏𝒌           (B.12) 

After obtaining the weights, the simple kriging variance can be estimated by the relation: 

𝜎𝑆𝐾
2 (𝒖) = 𝐶(0) − ∑ λα

SK(𝐮) 𝐶(𝒖𝜶 − 𝒖) 
𝒏(𝒖)

𝜶=𝟏
        (B.13) 

B.3.1.2 Ordinary Kriging (OK) 

Ordinary kriging is very similar to simple kriging except that the mean is not assumed constant 

over the entire estimation region but is assumed instead to be constant in the local neighborhood 

of the estimation points. In other words, 𝑚(𝒖𝛼)= 𝑚(𝒖), where u refers to a location very near to 

the estimation location 𝒖𝜶.  

The kriging estimate for ordinary kriging is given by: 

𝑍∗(𝒖) = 𝑚(𝒖) + ∑ λα(𝐮)𝒏(𝒖)
𝜶=𝟏 [𝑍( 𝒖𝜶) − 𝑚( 𝒖𝜶)] = ∑ λα(𝐮) 𝑍( 𝒖𝜶) +

𝒏(𝒖)
𝜶=𝟏 [1 −

∑ λα(𝐮)𝒏(𝒖)
𝜶=𝟏 ]𝑚(𝒖)            (B.14) 

The local mean can be computed by making use of the constraint that the sum of the kriging 

weights is equal to 1, i.e., ∑ λα
OK(𝐮)𝒏(𝒖)

𝜶=𝟏 = 𝟏, leading to the following equation, 

𝑍𝑂𝐾
∗ (𝒖) = ∑ λα

OK(𝐮)
𝒏(𝒖)

𝜶=𝟏
𝑍(𝒖𝜶)         (B.15) 

Lagrange’s method of optimization is used to find the minimum error variance estimator as shown 

below: 

𝐿 = 𝜎𝐸
2(𝒖) + 2𝜇𝑂𝐾(𝒖)[1 − ∑ λα(𝐮)𝒏(𝒖)

𝜶=𝟏 ]        (B.16) 

where L is the Lagrange parameter and the minimization constraint with respect to L is given by 

1

2

𝜕𝐿

𝜕𝜇
= 1 − ∑ λα(𝐮)𝒏(𝒖)

𝜶=𝟏 = 0                     (B.17)  

The kriging weights can be solved using equation B.18.  

{

∑ λα(𝐮)𝒏(𝒖)
𝜶=𝟏  𝐶𝑅 (𝐮𝜶  −  𝐮𝜷 ) +  𝜇𝑂𝐾(𝐮)   

∑ λβ
OK(𝐮)

𝒏(𝒖)

𝜷=𝟏

   𝛼 = 1,2,3, … … . , n(u)   (B.18)  
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After obtaining the kriging weights, the ordinary kriging variance can be written as: 

𝜎𝑂𝐾
2 (𝒖) = 𝐶(0) − ∑ λα

OK(𝐮)
𝒏(𝒖)

𝜶=𝟏
 𝐶(𝒖𝜶 − 𝒖) − 𝜇𝑂𝐾(𝐮)      (B.19) 

B.3.2 Stochastic simulation: 

Stochastic simulation is concerned with the generation of several equiprobable realizations of the 

reservoir property to be estimated, instead of just estimating the mean and variance of the estimate, 

as was the case in the estimation algorithms described in the previous section. The generation of 

 these realizations gives reservoir engineers an invaluable source to realistically quantify the 

uncertainty involved in the property estimation. Sequential Gaussian simulation, direct sequential 

simulation and sequential indicator simulation are the most widely used stochastic simulation 

methods.  

The sequential Gaussian simulation (SGS) algorithm is built around the simple kriging estimation 

technique explained in section B.3.1.1. It differs from simple kriging in the manner in which the 

variable at each grid node is represented. While simple kriging yields an estimate of the mean and 

variance of the property value at each grid node and hence can be described as following a 

Gaussian distribution, SGS selects a uniform random number from the probability distribution and 

then considers a random deviate from this Gaussian distribution. A sequential Gaussian simulation 

is comprised of five steps. Firstly, a point is chosen at random in the unknown data location. The 

mean and the variance of this unknown data point is then estimated by using one of the standard 

kriging procedures. In this work, we have used the ordinary kriging method. In the next step, an 

unknown data point value is randomly chosen from a normal probability distribution having the 

mean and variance computed from the previous step. This data point is now considered to be a 

simulated point and used as conditioning data for estimating the remaining unknown data points. 

This process is repeated until all the data points are simulated.  

In SGS, it is necessary for the data set to strictly follow a normal distribution. If it does not follow 

a normal distribution, the data set has to be transformed into normal form by using a normal score 

transformation.   

 


