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Abstract 

This thesis presents low complexity iterative decoding schemes based on the low-

density parity-check (LDPC) codes for both single-user and multiuser environments. 

First, a low complexity method based on the min-sum decoder is proposed which 

leads to design of codes with close-to-capacity rates. We design LDPC codes based 

on the proposed method and show that, compared to the min-sum decoder and 

linear scaling min-sum decoder, higher code rates can be achieved at essentially no 

extra complexity. Second, we propose a method for communicating over a two-user 

Gaussian broadcast channel based on LDPC codes. Unlike the existing work, our 

method does not require joint decoding at the receivers and each user can use his 

own LDPC code. Then, we optimize LDPC codes based on the proposed method 

and show that the complexity of the code design stage is significantly reduced. 
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Chapter 1 

Introduction 

The focus of the current thesis is on the designing and analyzing some low complexity 

coding schemes based on an extremely powerful class of error correcting codes called 

low-density parity-check (LDPC) codes. LDPC codes have been shown to be capable 

of working very close to the Shannon limit with a practical decoding complexity. 

In this chapter, we briefly review the basic communications problem and in­

troduce some challenging problems with LDPC codes which are the focus of this 

thesis. 

1.1 Overview 

Throughout the history, human put a lot of effort to communicate fast and reliably 

over long distances. In the nineteen century, Morse could send telegraph messages 

from Washington to Baltimore. In that time, telegraph operators were more likely 

to make an error when a message was sent quickly or the distance was too far. In 

fact, there was a tradeoff between the rate and reliability of transmission. The same 

analogy is applicable to today's communication systems. 

Shannon in 1948 [1] developed a mathematical framework to quantify the in­

formation contained in a random source. Fig. 1.1 shows a general communication 

system where the ultimate goal is to transmit a data stream from a source (transmit­

ter) to a sink (receiver) quickly and reliably. A source encoder is used to transform 

the source outputs to a stream which usually consists of bits. The source encoder 

is used because there are dependencies among source outputs. In fact, the task of 

the source encoder is to remove this redundant information (redundant rate) and 

represent the source data with the minimum number of bits. 

Then, the channel encoder adds some redundancy to this bit stream and passes 
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Figure 1.1: A communication system. 

it across a noisy environment called channel which distorts the stream in different 

possible ways. The reason for adding redundancy is to combat the noise of the 

channel. The rate of a channel encoder is defined as the ratio of the number of 

input bits to the number of output bits which is always less than one. Depending 

on the application, various type of channel encoders may be used. In this thesis, 

we are interested in the block codes where the input bit stream is partitioned into 

several fc-bit blocks and each block is mapped to an n-bit word (n > k) called a 

codeword. There are n — k redundant bits and the code rate will be R = ^ < 1. 

There are 2k possible input blocks leading to 2k codewords of length n which are 

called the codebook. 

Upon receiving the distorted stream, the channel decoder removes the redun­

dancy and tries to recover data bits with the minimum probability of error. Finally, 

the source decoder maps the estimated stream to a sink data stream. There are 

many channel decoders that can be used to recover the data bits among which we 

are interested in the maximum a posteriori (MAP) decoders and the iterative de­

coders. A MAP decoder minimizes the posteriori probability of the transmitted 

signal based on the observation at the output of the channel. On the other hand, an 

iterative decoder uses a class of algorithms called message passing algorithms which 

are powerful from the complexity point of view. Basically, an iterative decoder has 

two constituent decoders such that a message or belief about the transmitted code­

word is passed between them in order to improve the reliability of the estimation. 

We shall discuss iterative decoders more in Section 1.2. 
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F i g u r e 1.2: Left: The binary symmetric channel with error probability p, BSC(p). 
Right: The binary erasure channel with erasure probability e, BEC(e). 

Given a channel, Shannon showed that there is a limit on the maximum code rate 

by which the reliable transmission is possible and called it the channel capacity. He 

showed that there exists a channel encoder-decoder pair that can be used to transmit 

data with arbitrarily small probability of error provided that the code rate is below 

the capacity. 

For more illustration, consider the transmission over a channel which flips every 

bit with the probability of p as shown in Fig. 1.2. This channel is called the binary 

symmetric channel (BSC). One way to combat the noise of the BSC is to send each 

bit multiple times. Then at the receiver one can count the number of + l ' s and 

- l ' s and decide that the symbol with a larger frequency was transmitted. By, let 

say N, repetitions of a single bit, the code rate will be R = ^ . More reliability 

can be achieved with more repetitions, however, we lose the rate of transmission by 

increasing N. 

Another important channel model, which mostly occurs in the data networks, is 

when a bit is erased with probability of e. This channel model is called the binary 

erasure channel (BEC) and is shown in Fig. 1.2. Also, the output of a channel 

can be continuous. The binary-input additive white Gaussian noise (BIAWGN) 

channel adds a random real number to the binary input. The additive noise is 

drawn according to a zero-mean Gaussian density with variance a2, i.e., Af(Q, a2). 

By channel coding, we mean the channel encoder-decoder pair. Our goal in 

channel coding is that we help the transmission to make it as reliable as possible 

while maintaining the rate as close as possible to the channel capacity. The simplest 

channel coding method that we have already used in our illustrating example is 

called repetition coding. 

Shannon in his fundamental paper [1] used a random codebook to demonstrate 
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the existence of a capacity-achieving channel code. In practice, however, we need 

a description of how we should embed information bits in a codeword, otherwise 

we should store the whole codebook. For example, a codebook of rate 0.8 with 

codewords of length 500 has 2400 codewords which is not possible to be stored in 

a memory. Therefore, random coding cannot be used in practice. Block codes are 

a powerful class of practical codes which are used in conjunction with the iterative 

decoders throughout this thesis. 

Shannon showed that for memoryless channels, i.e., channels where the channel 

output only depends on the channel input at that time, the problem of source coding 

and channel coding can be solved separately. The focus of the current thesis is on 

the channel coding part, hence we assume that the source coding problem has been 

efficiently solved. 

1.2 Codes on Graphs and Iterative Decoding 

In this section, the importance of iterative decoding is highlighted. 

Given a stationary memoryless channel, for any code rate less than the capacity 

and any e > 0, the existence of a coding system which results in an average decoder 

error probability less than s was proved by Shannon. As it was pointed out, he 

used random coding which needs infinite computational capability which is not 

applicable in practice. One important practical issue that we are concerned about 

is the encoding and decoding complexity. 

Let us briefly describe the practical importance of the block codes when they are 

used along with an iterative decoder rather than a MAP decoder. To do so, assume 

that we are willing to achieve at least a fraction of 1 - 5 of the capacity where 5 —> 0. 

Let TE(<5) and TD(<5) denote the encoding and decoding complexity normalized per 

information bit. For block codes under a MAP decoder and any fixed probability of 

error, it has been shown that1 [2] 

TE{8) = 0{l/52) and TD(<7) = 2°{-1'&2\ 

However, for a block code with an iterative decoder (message passing decoder), it is 

conjectured that 

TB(<J) = TD(J) = 0(1/6). 

xWe say a function f(n) is 0(g(n)) if there exists a constant k such that for all sufficiently large 
n £ N , | /(ra)| £ H<?(n)l- Also, we say a function / ( n ) is &(g(n)) if there exist constants k and k' 
such that k'\g{n)\ < | / ( n ) | < &|g(n)| for all sufficiently large n € N. 

4 



According to this conjecture, the complexity per information bit grows linearly with 

1/8 whereas it grows exponentially with 1/52 for the MAP decoder [2]. 

A coding system with rates close to the capacity was not developed until 1993 

when turbo codes were invented [3]. Later, the LDPC codes were rediscovered by 

groups from two different communities [4-6] and [7-10]. Originally, LDPC codes 

were invented by Gallager in his PhD thesis [11] and have been forgotten for almost 

three decades. LDPC codes are block codes which can be represented on a graph 

called Tanner graph and has a sparse structure. The importance of LDPC codes 

is that under the message passing algorithms, they exhibit a linear-time decoding 

complexity with the code length n. 

The constituent decoders for an LDPC code are variable nodes and check nodes. 

We will formally describe them in Section 2.3. The message passing decoder is called 

the sum-product decoder when it is used to obtain the optimal bitwise decoding (see 

Section 2.2.2). It has been shown that LDPC codes under the sum-product decoding, 

if carefully designed, can operate extremely close to the channel capacity [12]. 

In this thesis, we tackle two problems: first, we consider a suboptimal class of 

message passing decoders called the min-sum decoder which has a lower complexity 

than the sum-product decoder, but at the expense of some performance degradation. 

We try to improve the performance of LDPC codes under min-sum decoding and 

make it as close as possible to the sum-product decoder. Second, a broadcasting 

scenario is considered for which it has been shown in the literature that the LDPC 

codes can be used to achieve close-to-capacity rates. However, the previous work 

is quite complex and needs joint decoding at each of the receivers. We seek a low 

complexity method for broadcasting using LDPC codes. 

1.3 Thesis Outline 

This thesis is organized as follows: Chapter 2 reviews preliminary materials about 

iterative decoding, factor graphs, optimal decoding and LDPC codes. 

It has been shown that under min-sum decoding, scaling the messages at the 

output of check nodes can improve the performance of a certain class of LDPC 

codes [13]. However, for highly optimized LDPC codes designed for the sum-product 

decoder, linear scaling can hinder the performance. The problem of code design for 

the min-sum and linear scaling min-sum (LSMS) decoders have been investigated 

in [14]. It is shown that the gap to the capacity for LSMS codes is better than the 
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min-sum codes, but compared to sum-product codes the gap is still considerable. 

In Chapter 3, a modified min-sum decoding is proposed and studied. We use the 

stability analysis of density evolution to show that the proposed method allows for 

a larger code rate. Finally, by designing codes based on the modified method, we 

show that compared to the min-sum and LSMS codes, a smaller gap to the capacity 

can indeed be achieved while the complexity of decoding remains essentially the 

same.2 

In Chapter 4, we will use LDPC codes for communication over a two-user Gaus­

sian broadcast channel. We assume that each user has its own LDPC code. It 

is shown in [16] that the optimal decoding of such system requires both users to 

have the code of each other and a joint decoding of both user messages is needed 

at each user. Also, a joint code design procedure should be performed. We pro­

pose a method which uses a novel labeling strategy and the bit-interleaved coded 

modulation. This method significantly reduces the code design complexity and does 

not require joint decoding. For different rate pairs on the boundary of the capacity 

region, a pair of LDPC codes are designed to demonstrate the results3. 

We conclude the thesis in Chapter 5 by summarizing the contributions of this 

thesis and by suggesting possible future research directions. 

2 The results of this chapter have been published in [15]. 
3 The results of this chapter are being prepared for submission to IEEE Trans, on Commun. 
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Chapter 2 

Iterative Decoding 

The preliminary materials about iterative decoding are presented in this chapter. 

First, we will see some fundamental results on reliable information transmission. In 

Section 2.2, factor graphs and message passing algorithms which are powerful tools 

in the context of iterative decoding are presented. Finally, Section 2.3 introduces 

decoding analysis and design of LDPC codes. 

2.1 Reliable Transmission of Information 

As it was stated in Chapter 1, we are willing to transmit data from a source to 

a destination as reliably and quickly as possible. However, there exists a tradeoff 

between the reliability and the rate of transmission. The transmission takes place on 

a channel which distorts the transmitted signal. Finding a communication scheme 

for reliable information transmission has been a big challenge for decades. In this 

section, we formally define the channel coding system shown in Fig. 1.1. Let us 

start with the definition of a discrete channel. 

Definition 2.1 [Discrete Memoryless Channel (DMC) [17]]: A discrete channel 

(X,p(y\x),y) is defined as a system comprising a finite input alphabet X, a finite 

output alphabet y, and a collection of conditional probability density functions 

(pdf) p(y\x). A channel is said to be memoryless if the probability of observing 

an output symbol depends only on the current input symbol and is conditionally 

independent of previous channel inputs or outputs, i.e., 

n 

P(yn\xn) = l[p(yl\xi) 
i = l 

where xn = x\ • • • xn. 

7 
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F igure 2 .1 : Transmission model. 

Definit ion 2.2 [Channel Code [17]]: A (2nR,n) channel code where R is the code 

rate in bits/channel use consists of: 

1. An equiprobable message set W = {1 ,2 , . . . , M} where M = 2nR 

2. A codebook £n(R) = {xn(w) e Xn\w E W} which has M codewords of length 

n and symbols from the input alphabet X 

3. A decoder which assigns a message index w(yn) £ W to each of the received 

observation yn. 

Fig. 2.1 shows the communication model over a DMC. To transmit a message, 

each k = nR input information bits is mapped to an index w e W. Then the 

corresponding codeword xn{w) is transmitted over the channel which is equivalent 

to n independent uses of channel. Based on the observation yn, the receiver decodes 

yn to a message index w(yn) e W. An error is occurred when w(yn) =£ w. Also, the 

average probability of error is 

pevg(«) = jf E P r My n ) ^ w)-
wew 

A rate R is said to be achievable, if there exists a sequence of (2nR, n) channel codes 

such that 

limsup Pevg(n) = 0 . 
n—>oo 

The capacity of a channel is the supremum of all the achievable rates. Shannon in 

his landmark paper [1] showed the following theorem: 

T h e o r e m 2.1 [DMC CAPACITY [1]]: For a DMC, the information capacity is 

C = max I(X;Y) 
p(x) 

where I(X; Y) is the mutual information between the input and output of the chan­

nel and the maximum is taken over all the input densities. 
T 
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For constructing a "good" code, a probabilistic approach is usually used. Using 

a random process, an ensemble of codes is generated and one proves that with a 

close-to-one probability, all codes are "good". This code construction processes 

is known as random coding and is used by Shannon in [1], By random coding, 

each symbol in a codeword is drawn according to the input density p(x) and the 

average probability of error is calculated by averaging over all the codewords in a 

codebook and all possible codebooks. Using the random coding and the jointly-

typical decoding [17,18], Shannon proved another fundamental theorem: 

T h e o r e m 2.2 [SHANNON CODING T H E O R E M [1]]: Given a DMC, for any code 

rate R < C and any e > 0, there exits an encoder-decoder pair which permits the 

transmission of information over the channel at rate R and average decoder error 

probability less than e. 

Conversely, for any rate R > C, no matter which encoder-decoder pair is being 

used, the average probability of error will be bounded away from zero, i.e., 

liminf E e n ( f l ) ( P r g ( n ) ) > 0 

where the average is taken over all the codewords in a codebook and all possible 

codebooks. 
T 

More precisely, according to Wolfowitz [19], for any DMC with capacity C and 

any (2nR,n) code where R> C, 

V™*(n) > 1 — e-W~c) 
F e W - i n{R-CY 

where A depends only on the channel but not on n and R. Therefore, as the code 

length gets larger, the average probability of error approaches one! 

In fact, Theorem 2.2 ensures that every randomly generated codebook with 

R < C is likely to exhibit vanishing probability of error as the code length gets 

larger. 

2.1.1 M A P and M L D e c o d i n g 

Consider that we are willing to communicate over a channel (X,p(y\x),y) with a 

code from the ensemble 

€n{R) = {xn{w)eXn\weW}. 
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We choose an index w and transmit the codeword xn(w) over the channel. Upon 

observing the channel output yn, the decoder outputs an estimate w(yn). The 

probability of making an error given an observation yn will be 

Pr{error|y"} = 1 - p{w(yn)\yn). 

In order to minimize the probability of error, we define the MAP detection rule as: 

wMAP(yn) = argmax p(w\yn) 
weW 

— argmax p(yn\xn(w))p(w) 
wew 

which maximizes the posteriori probability of the transmitted codeword based on 

the channel output observation. If the codewords are chosen uniformly, we have 

wMAP(yn) = argmax p(yn\xn{w))p(w) 
wew 

= argmax p(yn\xn(w)) = wML{yn) 
wew 

which is called the maximum-likelihood (ML) detection rule. In fact, under uniform 

priori assumption, the MAP and ML detection rules are the same. 

Hereafter, we consider the uniform selection of codewords which means that 

P(u>) = — , V w 6 W . 

It is noteworthy that it should not be mistaken with the case where the channel 

input symbols are uniformly distributed. 

The seminal work of Shannon is remarkable by finding the maximum reliable 

information rate over a DMC. In practice, however, using random coding is not 

possible because we need to have a description of the codewords to embed informa­

tion bits in them, or we need to store them in the memories of the transmitter and 

receiver. For example, for a code with reasonable length n = 500 and rate R = 0.8 

bits/channel use, we need M = 2400 codewords to be stored which is quite larger 

than the whole number of particles in the world! However, if there exists a descrip­

tion of how one should embed data bits into a codeword then there is no need to 

store all the codewords. 

2.1.2 Linear Block Codes 

It has been a challenging problem for decades to find a practical coding solution 

with reasonable encoding and decoding complexity. Linear block codes are among 
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the richest channel codes which have practical complexity. Let F2 denote the binary 

field. Linear codes are defined as:1 

Definit ion 2.3 [Binary Linear Codes [20]]: A (2fe,n) channel code is a binary linear 

code if and only if the 2k codewords form a fc-dimensional subspace of the vector 

space of all the n-tuples over F2. 

The term linear is used since all the codewords are closed under addition and 

multiplication operations in F2. Since a linear code is a fc-dimensional subspace of 

F2, there are k vectors of length n by which the code is spanned. More precisely, let 

u = [ui,u2,...,uk}
T e F ^ 

be the vector of information bits. We call 

G = [gi ,g 2 , . . . ,g f c ] T eFf" 

the generator matrix whose rows are the basis vectors of the code subspace. Since 

each codeword belongs to the subspace spanned by {gi}f=1, we have 

x = G T u 

= Y,Ui& 
where x G F J and u takes all the 2k values to generate the codebook. Therefore, an 

n-tuple vector is a codeword if and only if it can be written as a linear combination of 

{gi}^=1. Another representation for a linear code stems from the null space concept. 

In fact, Fg can be decomposed into two orthogonal subspaces such that each vector 

in one subspace is orthogonal to all vectors in the other subspace. Thus, an n-tuple 

vector x is a codeword if and only if H x = 0 where 

H = [ h 1 , h 2 , . . . , h „ _ f e f G F ^ - f e ) > < " 

is called the parity-check matrix which consists of n - k vectors spanning the null 

space. In fact, all the rows of G are orthogonal to the rows of H, i.e., G H T = 0. 

We denote a linear code with the parity-check matrix H by 

<£n(R, H) = {x e F ^ H x = 0} = Ker{H} (2.1) 

where the last equation shows that a linear code is the kernel subspace of its parity-

check matrix in F2'. 

xIn this work, we are interested in the binary linear block codes where the encoder splits the 
sequence of information bits into /c-bit partitions and map them into codewords of length n. 
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2.2 Factor Graphs 

A large number of computational problems in signal processing, communications 

and artificial intelligence can be solved efficiently by using factor graphs [2]. In this 

section, we are interested in the problem of optimal decoding of linear codes over a 

DMC2. 

The key point in the factor graphs is the distributive law, i.e., YLi,jai^i — 

YLiaiYLibj where Oj's and 6j's belong to an arbitrary field. Consider a function 

/ ( 2 1 , . . . , XQ) which has a factorization of the form 

f{xi,...,X6) = fl{xi,X2,X3)f2{xi,Xi,X6)Mx4)U{Xi,X5). (2.2) 

Let Yl~x- denote the summation over all the variables except Xj. Computing the 

marginal of the variable x\, i.e., 

f(xi) = ] T / ( z i , - - - , Z 6 ) 

for all values of x\ needs ©(j^]6) operations where X is the support set for variables 

x\,x%,... ,XQ and \X\ denotes the cardinality of the set X. However, according to 

the distributive law, this marginal computation can be done using 

f(xi) = [ Yl h{x\,x2,x^ [ ^ / 3 ( a ! 4 ) ^ / 2 ( x i , a ; 4 , a ; 6 ) ^ / 4 ( a ; 4 , X 5 ) X\ G X, 

requiring 0(jA*|3) operations which is considerably less than 0(|<Y|6). 

Any such factorization can be represented by a bipartite3 graph, called the factor 

graph. We show variables with circles and factors with squares. The degree of a 

particular node is the number of edges connected to that node. Fig. 2.2 shows the 

factor graph of the function f{x\,... ,XQ) defined in (2.2). 

Now, let us look at a more general case where the underlying factor graph is a 

tree. Consider marginalization of a function g with respect to a variable z. The 

function g has a generic factorization as 

K 

g(z,...) = Y[gk{z,...) 
fc=i 

2Some examples and notations of this section are taken from [2j. The reader is referred to [21] 
and [22] for a comprehensive study of factor graphs. 

3A graph is called bipartite if the set of vertices can be partitioned into two disjoint sets and 
every edge connects a vertex from one set to one in the other set. 
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v ^ l 

X2 • X3 . a j 4 

x5 

x6 

Xl 

X2 • " 

£ 4 

X 6 

h 

h 

-•1/3 

F i g u r e 2.2: Left: factor graph associated to the function / ( x i , . . . ,x&) given in (2.2). 
Right: The same graph rearranged as a bipartite graph. 

where the variable z appears in all factors, but all other variables are present in only 

one factor in order to maintain a tree. This factorization is depicted in Fig. 2.3. 

Moreover, each gk must have a factorization as 

J 

gk{z, ...) = sk(z, zi,..., zj) \ \ tj(zj,...) 

kernel j = l 

where z appears only in the kernel sk and each of the Zj appears at most twice, 

possibly in the kernel and in at most one of the factors tj [2]. Therefore, we get 

K 

~z fc=l 

K 

- n !>(*'•••> 
fc=l ~ 2 

=n X^^-^'- ' - '^II^''---) 
operation of the function node blown up in Fig. 2.3 

K J 

= n YI ̂ ^ ^ ' • • • , z ; )nE *J (zJ> • • •) 
fc = l ~ 2 j = l ~Zj 

(2.3) 

product of marginals [similar to (a)] 

which shows that the marginalization over a tree can be done recursively by breaking 

it down into smaller tasks until we reach the leaves of the tree. The marginalization 
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F i g u r e 2.3: Recursive computation over a factor graph. The factor tj has the same 
generic form as the factor g. 

process starts from the leaves of the tree. As soon as a node receives all its marginals, 

which are functions over X, from all its children, it processes and passes it to its 

parents. 

Remark 2.1: It is worth mentioning that the marginalization algorithm does not 

depend on which node is the root of the tree. Thus, marginalization with respect 

to all the variables can be done with a single tree. 
• 

2.2.1 Message Passing Algorithm 

When factor graph is a tree, the marginalization process can be done through an 

efficient algorithm called message passing algorithm. In this case, marginals are 

messages or beliefs. For this reason, sometimes this algorithm is called belief prop­

agation. Message passing algorithm is an iterative decoding algorithm where the 

output message sent along a particular edge of a node depends only on the messages 
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initialization at leaf nodes 

/x(z) = f(x) 

f • I 

s 

li(x) = 1 

x 9 

variable/function node processing 

• / V 
Rf 

Mi / | \ UK M i / XAtj 

1 f IK xl T . Xj 
Jk XJ 

IK+I 

MK+1 

fv niSV*(») marginalization 

F i g u r e 2.4: Message passing rules (reproduced from [2]). 

received along all other edges. The nodes in the tree compute messages, which are 

functions over X and pass them to the next level [2]. 

According to (2.3), a variable node computes the pointwise multiplication of the 

incoming messages and a function node, which is blown up in Fig. 2.3, processes the 

incoming messages according to (2.3). A summary of the message passing algorithm 

is shown in Fig. 2.4 where fi(x), x G X denotes the message that is to be sent out. 

In this work, we are dealing with X = {±1} by which we can simplify the message 

passing algorithm. For binary alphabet, a message is in the form of [/Lt(+l),/z(-l)]. 

Let us define the likelihood ratio as 

M+i) 
M(-I) 
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and its logarithm as the log-likelihood ratio (LLR) given by 

M+l) 
m — log 

fi(-l)-

For a variable node of degree K + 1, since we have 

K 

V(x) = n^ fc(x)' x e X' 
k=\ 

it is straightforward to see that the message that is to be sent out to its parent 

function node is 
K rv^s=nrfc 

or in the LLR domain 
fc=i 

K 

mv^f = ^ m f c . (2.4) 

fc=i 

We will see later that working with LLR values is much easier than the plain likeli­

hood values. 

Let l t e r denote an indicator function which is one when the element t belongs 

to the set T and is zero otherwise. In Section 2.2.2, we will encounter function nodes 

which show parity-check equations. It is shown in [2] that the message emanating 

from a function node of degree J + 1 with the kernel function 

f(x,xu...,xj) = lUj=iXi=x 

to its parent variable node is 

"" J 

mf^v — 2tanh - l n *•*(?) (2.5) 

where v indicates the variable node for x. In (2.5), the fact that 

r - 1 
- — tanh(m/2) 

has been used. 
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p(y2\x2) m 

P(ya\x3) 

p(y4\x4) m 

piyslxs) m 

piveW) 

p{yi\xi) 

F i g u r e 2.5: Factor graph for the code £7(4/7, H ) given in Example 2.1. 

2.2.2 Optimal Bitwise Decoding 

Under the uniformly chosen codeword assumption, the bitwise MAP detection rule 

for a linear code €n{R, H) will be4 

£fA P(y) = arg max p(xj|y) i = l ,2, . . . , n 
Xi£{±l] 

— arg max Vp(x |y ) 

= arg max YVy|x)p(x) 
S,G{±I} f-' 

= arg max J [ 1 ^ ^ ^ ( i W 

(
n \ /n—k 

iip^i^jfnv^0 
(2.6) 

which can be read as a marginalization task of a function with factors in (2.6) with 

respect to Xj. Let us take a look at an example: 

Example 2.1: Consider a rate 4/7 linear code with the following parity-check 

matrix: 

H 
1 1 0 0 1 0 0 
1 0 1 1 0 1 0 
0 1 0 1 0 0 1 

The factor graph associated to (2.6) is a tree and is shown in Fig. 2.5. Each function 

node corresponding to one row of H is called a check node. Messages are in the 

We assume that the binary phase shift keying (BPSK) signaling is used, i.e., 0 i—> + 1 and 
1 i-* - 1 . 
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form of probabilities, e.g., n — \p{y\X = +l),p(y\X — -1)] which can be shown by 

an LLR value. In fact, the sing of LLR shows the hard estimate while its magnitude 

reveals the reliability of decision. 

All incoming LLR messages are processed by check nodes and then the resulting 

messages are sent back to variable nodes. These messages are processed by variable 

nodes and are sent back to check nodes. This is one iteration of message passing. 

The message passing paradigm is shown in Fig. 2.6. Since there is no message 

from check nodes at iteration £ — 0, the message that is sent from variable node 

v, corresponding to the ith bit of the codeword, to check node c, i.e., m\,-Lc is the 

message from the channel (m^). At iteration (. > 0, m\,-Lc is the summation of 

messages from channel and all the check nodes except c, i.e., rrii, m\, mfj, and m'3. 

Also, check node c outputs mc2+v according to (2.5). 

In this procedure, there are two sources of information: 

• Intrinsic message: the message from the channel to the variable node v which only 

depends on y ,̂ i.e., 
p(yi\Xi = +1) 

• Extrinsic messages: the message from previous iteration, i.e., m{,i,c and mc-Lv. 

In other words, at each iteration, message passing decoder combines these two 

pieces of information to get information about the transmitted codeword. After, say 

L iterations, a decision at variable node v is made using 

Xi = sign{m0 + ] P m ^ „ } 
c 

where the summation is over all the check nodes connected to v. 

Remark 2.2: In Example 2.1, since the factor graph is a tree, the message passing 

algorithm will give the exact MAP estimation of the variables given the observed 

vector y = [y\,..., yr]T. However, when the underlying factor graph is not a tree, 

the message passing algorithm becomes suboptimal. It is shown that for the sparse 

graphs with cycles, message passing still performs very well [23,24]. 

2.2.3 General Semirings and Optimum Block Decoding 

All factor graph computations are valid for an arbitrarily field F. However, all 

that was needed was actually working on a commutative semiring K. Similar to a 
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p{Vi\xi) 
m . 

Trio 

m\ 

F i g u r e 2.6: Message passing over the factor graph of the code in Example 2.1. 

field, there are two operations, "+" and "x" , in a semiring. The difference between a 

commutative semiring and a field is that we do not require the existence of an inverse 

with respect to either operation [2], In the context of iterative decoding, we are 

interested in three important semirings listed in Table 2.1, where (+,0) and (x , 1) 

are two commutative semigroups with identity elements 0 and 1, respectively. The 

sum-product semiring that we have used until now for the bitwise MAP decoding 

given in (2.6) is the most important semiring. We shall see that the min-sum 

semiring is useful when we are dealing with optimum block decoding. Also, the 

Boolean algebra is used in binary message passing algorithms such as GallagerA 

and GallagerB [11] which are not the focus of the current thesis. 

The optimum block decoding can be formulated as a marginalization problem. 

To this end, it is important to note that by marginalization of a function f{x\,X2) 

over the min-sum semiring, we mean 

f{xx) = min/(x1 , :r2) = min/(xi,a;2). 

Back to the optimum block decoding problem, assuming an equiprobable selection 

of codeword, we have 

xMAP(y) = argmax p(x|y) 
X 

= argmax p(y|x)p(x) 

= argmax ( J J p ^ l i j ) J l x 6 £ n ( f l > H ) . 

One can compare detection of one bit in optimal block decoding with the bitwise 
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Tab le 2 . 1 : Commutative semirings used in the iterative decoding context. 

Name 

Sum-Product 
Min-Sum 
Boolean 

IK 

R+ 
EU{+oo} 

{0,1} 

(+,o) 
(+,o) 

(min, +oo) 
(OR, 0) 

(x , l ) 

(x, l ) 
(+,0) 

(AND, 1) 

MAP decoding given in (2.6) as 

cMAP (y) = arg min min -
U S,;6{±1} ~X^ 

iip^i^ji n v * 
n—k 

i = l ,2 , . 

n n—k 

= arg mm min - ^\ogp{yj\xj) - ^ l o g l h T x = 0 . (2.7) 
X,;6{±1} ~*i ^ ~[ 3 

The only difference between (2.7) and (2.6) is that addition and multiplication oper­

ations are replaced with minimization and addition, respectively. Therefore, optimal 

block decoding can be performed using the min-sum algebra. Note that the term 

l o g l h T x = 0 acts as the identity element of the ( x , l ) semigroup in the min-sum 

semiring providing that the j t h parity-check equation is not satisfied. 

Similar to the message passing rules in (2.4) and (2.5) over the sum-product 

semiring, Wiberg [25] proved that the update rules using the min-sum algebra for a 

degree-(K + 1) variable node and degree-( J + 1) function node are 

m-•v-*f 

K 

fe=i 

and 

rrif^v 
min {|m,-|} TTsignfm,}, 

je{i,...,J}u J 1 J r l JJ 

respectively. We will use computations over the min-sum semiring in Chapter 3. 

(2.8) 

2.3 Low-Density Parity-Check Codes 

In this section, some basic background materials about LDPC codes needed for 

Chapter 3 and Chapter 4 are presented. 

Motivated by the null space representation given in (2.1), a convenient way to 

describe a linear code is by showing it on a graph. To this end, consider a linear code 

£n(k/n, H) used for transmission over a binary-input memoryless channel p(y\x). In 

Example 2.1, we have seen the factor graph associated with the bitwise (or blockwise) 
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MAP decoding of a code (see (2.6) and (2.7)). Let Q be a bipartite graph with n left 

variable nodes and n — k right function nodes called check nodes. The graph Q which 

is exemplified by Fig. 2.5, is called Tanner graph. The codewords are those vectors 

associated with the variable nodes such that the parity-check equations at the check 

nodes are satisfied. In fact, each check node represents one row of the parity-check 

matrix H. The binary entries of H indicates whether there is an edge between a 

pair of check node and variable node. The degree of a variable (check) node is the 

number of check (variable) nodes connected to it. Since for each code, there are 

many parity-check representations, there are many Tanner graphs for a given code. 

Although, they all represent the same code, they exhibit different performances. 

LDPC codes are linear block codes with at least one sparse parity-check ma­

trix. The sparsity property causes LDPC codes to have "good" performance under 

message passing decoding and exhibit linear-time decoding complexity [26]. 

LDPC codes can be either regular or irregular. A (dv,dc) regular LDPC code is 

a code such that each variable node has degree dv and each check node has degree 

dc. We call an LDPC code irregular when the node degrees are chosen according to 

some distribution. 

Consider an LDPC code of length n and design rate R = | . Let A, and pi show 

the fraction of edges connected to degree-i variable nodes and degree-i check nodes, 

respectively. It is customary to put all these coefficients into two polynomials as 
j m a x 

\(x) = J2 A,̂ "1 

and 
dmax 

where d™ax and d™ax are the maximum variable node and check node degrees. We 

call these two polynomials the left and the right degree distributions from the edge 

perspective, respectively5. Clearly, for a (dv, dc) regular LDPC code, we have \(x) = 

xdv~x and p{x) = xdc~l. It is obvious that we should have 

A(1) = £ > = 1 
i 

and 

,>(i) = 5 > = i. 
i 

5 Similarly, we can define degree distributions from the node perspective. However, through this 
work, we use the edge perspective representation. 
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Also, we can show that 

jf' X(x)dx = E 7 = I (2-9) 

and 

where E is the total number of edges. Thus, the design rate is given by 

/ p(x)dx 

R(X,p) = l - h • (2.10) 
/ \{x)dx 

Jo 

Note that if the rows of the parity-check matrix are not linearly independent then 

the code rate R will be at least R(X,p). However, we assume that the parity-check 

matrix is of full rank hereafter, i.e., R — R(X,p). 

Let <tn(X, p) denote an ensemble of LDPC codes of length n and degree distri­

bution pair (A, p)6. To construct an ensemble €n(X, p), we place n variable nodes at 

left and n(l — R) check nodes at right where R is given by (2.10). The number of 

edges needed for making a bipartite graph with degree distributions (A, p) is given 

by (2.9). Let index all edges by the set 

£ = {1,...,E}. 

Then, we randomly form a bipartite graph according to (A, p) using all the edges in 

S. By running all the permutations equally likely over £, we will get the ensemble 

Cn(A, p). Therefore, each graph is picked uniformly random from the ensemble. The 

parity-check matrix (code) associated to each graph is formed in the way that each 

entry is one if the corresponding variable and check nodes are connected to each 

other an odd number of times [2]. This ensemble is usually called the standard 

LDPC ensemble. 

2.3.1 D e c o d i n g Analys i s 

As it was pointed out in Section 2.2.1, message passing algorithms form an efficient 

way to compute the MAP decoding of a binary linear code over a memoryless chan­

nel. In order to analyze the performance of an ensemble of LDPC codes, we need 

to statistically analyze the message passing decoder. To illustrate, consider that 

6We drop the argument x to simplify the notation. 
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we are willing to communicate over a channel using an ensemble of LDPC codes, 

C„(A, p), whose rate is less than the capacity of the channel. We have two sources 

of randomness; one is the random messages (in the LLR domain) that are observed 

from the channel (due to different realization of the noise) and the other one is the 

LDPC code instance that we pick at random from the ensemble. In what follows, 

we discuss both of these sources. 

Random Channel Messages 

Consider that a binary codeword X is transmitted over a binary-input memory-

less channel and Y is the resulting observation at the receiver. Let M ( Y ) = 

[Mi, M2,..., Mn] be the LLR vector corresponding to Y where 

. . . pjYjlXj = +1) 
Mz = log - . 

p{Yi\Xi = - 1 ) 

It is straightforward to see that X, Y, and M form a Markov chain X —> Y —> M 

and M is a sufficient statistic for estimating X given Y, i.e., 7(X;M|Y) = 0. 

Throughout this work, we consider binary-input symmetric-output (BISO) memo 

ryless channels which are defined as: 

Definition 2.4 [BISO Channel [27]]: A binary-input memoryless channel where 

X = {±1} and y C R, is said to be symmetric if 

p{y\x = - 1 ) = p(-y\x = +1). 

We will denote the pdf of 

gp(Y\X = -l) 

by ach(m). Under the all-one codeword assumption, it is shown that for a BISO 

channel and for every m [27] 

ach(-rn) = e- m a c h (m) (2.11) 

which means that one side of the pdf can be obtained from the other side. Every 

such pdf satisfying (2.11) is called symmetric. Let us take a look at an example: 

Example 2.2: Assume that the all-one codeword is transmitted. The LLR pdf of 

a BEC(e), BSC(p) and BIAWGN(a) are listed in Table 2.2 where At(a;) is the Dirac 

delta function at x = t and for an e G [0,1], e stands for 1 — e. It is easy to verify 
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Tab le 2.2: The LLR pdf for a BEC(e), a BSC(p), and a BIAWGN(<r) channels under 

the all-one codeword transmission assumption where r = ^ . 

Possible LLR Values 

m = {0, +00} 

m = {-log|, + logf} 

m = ^jy, m e (-00, +00] 

ach(x) 

aBEC(e)(m) = e&o(m) + eAoo(m) 

aBsc(P) (m) = pA_ log £ (m) + p A + log g (m) 

i' \ 1 / ( ro - r ) 2 \ aBlAWGN((r) l^J — y j ^ ; CXP | 4r J 

that all pdfs are symmetric, i.e., they satisfy (2.II)7 . For a BIAWGN(a) channel, 

we have 
1 ( a - i ) 2 

, e 2"2 o 
1 v / 2^2 2 

, o e 2<r2 

which leads to the pdf in Table 2.2. 
0 

Over a BISO channel, if the message passing decoder being used satisfies the 

following conditions then the performance of such decoder is independent of the 

transmitted codeword [28]. 

• Check node symmetry: Consider a check node c of degree dc, with input LLR 

messages m j , . . . , m d c_i . The LLR message from c to a variable node v at any 

iteration £ > 0 should obey 

dc-i 

m ^ „ ( 6 i m i , . . . , 6 d c _ i m d c _ i ) = m^iv(mi,..., md c_i) J J 6* 
t = i 

for b i € { ± l } , i = l , 2 , . . . , d c - l . 

• Variable node symmetry: Consider a degree-d^ variable node v with an in­

put LLR mo from the channel and input LLR messages m i , . . . , m ^ _ i . The LLR 

message from v to a check node c at any iteration i? > 0 should satisfy 

m £ l c ( - m o , - m i , . . . , -m d „_ i ) = - m ^ c ( m 0 , m i , . . . , md„_i) 

and for ^ = 0 

ml°-lc(-"«o) = -m<£lc(mo). 

In this work, since we are interested only in the sum-product and min-sum 

decoders and they both fulfill the above conditions, we always assume that the all-

7In this work, for the sake of simplicity, we will drop the arguments of LLR pdfs and Dirac delta 
functions when there is no confusion. 
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one codeword was transmitted. Therefore, the range of LLR values that we use is 

( -co , +00] since from (2.11), we have ach(-oo) = 0. 

R a n d o m C o d e 

Another source of randomness is the code instance that is picked from the ensemble. 

The question is that how different LDPC codes in an ensemble behave. In the 

following theorem, we see that with a high probability which grows exponentially 

fast with the block length, every randomly chosen LDPC code from the ensemble 

^n(^)/3) behaves close to the ensemble average. 

Theorem 2.3 [CONCENTRATION AROUND ENSEMBLE AVERAGE [2,28]]: Let £, 

a randomly chosen code from the ensemble C„(A, p), be used for transmission over 

a BISO channel with LLR pdf ach- Define P^ p (€ , ach, I) as the bit error probability 

after I rounds of message passing decoder. Then, for any given <5 > 0, there exists 

an a > 0, a — a(X, p, 6) such that 

P r f l P H C a c h , * ) - E c ^ P H C a c h , * ) ) ! > <*} < e~m. 

Therefore, we will try to design an ensemble whose average performance is close 

to the Shannon limit, i.e., the code rate is close to the capacity of the underlying 

channel. 

2.3.2 F u n c t i o n a l s ove r S y m m e t r i c D e n s i t i e s 

There are three important functionals over symmetric densities. For a BISO channel 

ach, since the channel is symmetric, the optimal input density is uniform over X = 

{±1} [17]. Also, since M is a sufficient statistic for estimating X given Y, the 
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capacity functional will be 

C(ach) = max I{X\Y) = I(X;Y) = I{X;M) 
p(x) 

= H{X) - H{X\M) 

= 1 - E (p(x)p(m\x)log2 

= 1 - 2 E ( P(m\x) loS2 

= 1 / ach(m) log2 

p(x|m) 

E x 6 * P ( a ) P H s 

p(x)p(m|x) 

ach(m) + a c h ( - m 

ach(mj 
dm 

= E ( l - l o g 2 [ l + e-m]) 

where we used the fact that ach(m) = p(m\x = +1). The error probability of 

MAP detection over a BISO channel when x — +1 is transmitted is given by V(-) 

functional as 

7?(ach) = Pr{p(x = +l\y) < p{x = -l\y)} + -Pr{p(a; = +l\y) = p{x = -l\y)} 

= Pv{m(y) < 0} + ^Pr{m(y) = 0} 

/•O -̂  /•0+ 

= / ach(m)rfm + - / &Ch(m)dm. 
J-oo 2 Jo-

For a symmetric channel, 'P(ach) can be written as 

P(a c h) = i | a c h ( m ) e ~ ( f + l T | ) d m = ^ ( e ^ T + l f D). 

In Chapter 3, we will frequently use another functional which gives us an upper 

bound on the error probability. Again, suppose that x = +1 is transmitted. For a 

positive s, according to the ChernofF bound, we have 

P r { m ( y ) < 0 } < E(e-sm). 

The Bhattacharyya functional is defined as the minimum Chernoff upper bound by 

S(ach) = inf E(e - s m ) 
$>o 

= inf / ack(m)e~amdm. 
s>0 J ChV ' 
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For a symmetric channel, we get 

^(ach) = inf / &c\i(m)e~smdm 

= inf - / [a c h(m)e" s m + a c h ( -m)e s m l ( im 
s>o 2 J 

= taj/.*(,»)«-*c-M-i/ii).** 

= / aCh(m)e~"2"drn 

= E(e"T) . 

The Bhattacharyya functional arises in many other two-class decision problems to 

bound the probability of error [29]. The following lemma shows the extremes of the 

Bhattacharyya functional. 

Lemma 2.1 [EXTREMES OF THE BHATTACHARYYA FUNCTIONAL [2]]: For a fixed 

symmetric density a(x), we have 

27>(a) < S ( a ) <2[7>(a)P(a)]3 

where the left (right) side is tight for a BEC (BSC). 

The three functional C(-), V{-) and B(-) can be used for any symmetric density, 

not necessarily LLR pdfs. 

2.3.3 Density Evolution 

Density evolution is presented by Richardson and Urbanke in [27,28] for asymptotic 

analysis of message passing decoders over BISO channels. It is also used for other 

codes defined on graphs under iterative decoding [30-33]. 

It is shown that a randomly chosen edge in a given Tanner graph spans a tree 

up to any fixed depth, with probability which approaches one as the code length 

gets large (local-tree property) [28]. This means that as the code length gets large, 

the random messages at the input of variable nodes and check nodes become inde­

pendent. In density evolution, we assume that the code length is large enough such 

that the random messages are independent at each iteration. Therefore, the pdf 

of messages at each iteration is numerically (in some cases analytically) tractable 

which means that the performance of a given instance of LDPC code over a channel 

can be determined asymptotically. 

27 



At the £th iteration, let us define â  and b( as the pdf of random messages 

which are passed from variable (check) nodes to check (variable) nodes. We assume 

that the block length is large enough to have the local-tree property. Under sum-

product decoding, since the input messages to a variable node are independent, 

according to (2.4), the output pdf is the convolution of the input pdfs. Define 

<g> as the convolution operator over E with special consideration when input pdfs 

contain Aoo [27]. For check nodes, let IE! be a particular convolution defined in [27] 

which gives the updated pdf by check nodes. Then, the density evolution under 

sum-product decoding is given by 

a ^ a c h S ^ A i b f * " 1 * (2.12) 
i 

where 

i 

and <S)(i — 1) and E3(i — 1) mean i — 1 times corresponding convolution of a density 

with itself. In (2.12), ao can be any symmetric density, however, most of the times 

it is the channel LLR pdf. We will use 

&e = ach <g) X(p(ae-i)) 

as a shorthand for (2.12). For a BISO channel, it is shown in [27] that under sum-

product decoding, all â  and hi densities are symmetric and V(&e) is a non-increasing 

function of £. Successful decoding means that the pdf of random messages evolves 

to the zero-error pdf, i.e., 

lim a? = Aoo. 

There are barely cases that one can use (2.12) to obtain the pdf of messages 

at each iteration. Moreover, (2.12) is computationally complex. Chung in his PhD 

thesis [34] and also [12] proposed a quantized version of (2.12) called discrete density 

evolution which quantizes LLR values and replaces pdfs with probability mass func­

tions. For the purpose of code design and performance analysis in the current work, 

we will use discrete density evolution as a powerful and quite accurate method. 

Since computing the exact density evolution is a complex task, there has been 

some approximations in the literature. Chung et al. in [35] assume that all extrin­

sic messages are Gaussian. In [36], Ardakani and Kschischang consider that only 

messages from variable nodes to check nodes are Gaussian. These methods have 
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considerably lower complexity than the exact density evolution. In the literature, 

density evolution is extended for asymmetric channels [37] and non-binary LDPC 

codes [38]. 

2.3.4 EXIT Chart and Code Optimization 

A fast and efficient method for asymptotic analysis of iterative decoders is using 

extrinsic information transfer (EXIT) chart. This method which was first introduced 

by ten Brink [39,40] is similar to the density evolution method; however, it tracks 

the evolution of one parameter associated to the pdf of random messages. This 

parameter can be entropy, error probability, or any other meaningful parameter. 

However, entropy is usually used as the most faithful parameter [2]. The evolution of 

the selected parameter is visualized on a chart called EXIT chart. We will show that 

an LDPC code optimization problem using EXIT chart method can be formulated 

as a linear program which can be efficiently solved. 

In the EXIT chart method, at each iteration of density evolution, we replace the 

output pdf by a pdf from a family of pdfs which has the same entropy. This family 

can be a symmetric Gaussian pdf which obeys the constraints in Example 2.2 [35]. 

Let us define cj)i(Ho,h), the elementary EXIT curve for degree-i variable nodes, 

as the output entropy of a degree-i variable node which has two arguments: the 

channel entropy HQ = 1 — C(ach) and the output entropy of the previous iteration, 

i.e., h = 1 — C(a^_i). The condition for successful decoding is that 

Y/^UH0,h)<h, Vhe[0,H0] 
i 

which is a linear constraint on the design parameters {Xi)i>2- Now, assume that the 

right degree distribution p(x) is fixed. Given a maximum left degree d™ax, according 

to (2.10), it suffices to maximize ]T\ -4 to obtain the maximum code rate which is 

a linear cost function. Therefore, given a BISO channel, one can write a linear 

optimization problem in {Ai}i>2 variables to design a code with the highest rate as 

E A» 
— 

subject to Aj > 0 

i 

Y,^iMHo,h)<h, V/ie[0,tf0]. 
i 
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Further optimizations on p(x) will get better results, however, the performance of 

LDPC codes is not too sensitive to p(x). Suggestions and guidelines for choosing 

p(x) are given in [27,41]. During this thesis, we will use this procedure to optimize 

LDPC ensembles in order to have close-to-capacity code rates. 
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Chapter 3 

Modified Linear Scaling 
Min-Sum Decoder 

3.1 Introduction 

Min-sum (MS) decoder is the second most attractive decoder for LDPC codes, be­

cause compared to a sum-product (SP) decoder, it has substantially lower complex­

ity at the expense of some performance degradation. Moreover, for an LDPC code 

with large length for which the local-tree assumption holds, SP decoder gives the 

optimal bitwise decoding (see Section 2.2.2), while MS decoder results in the optimal 

block decoding (see Section 2.2.3). Both SP and MS decoders exhibit the threshold 

phenomenon where the probability of error vanishes when the channel parameter, 

e.g., noise power in the Gaussian channel, falls below a value called threshold. 

Therefore, improving the performance of MS decoder attracted much attention. 

As a case in point, it has been shown that for regular LDPC codes under MS 

decoding, if the messages are scaled down properly, the performance in terms of the 

gap to the capacity is improved [13,42]. However, we will see that for irregular LDPC 

codes designed for SP decoder, which have very small gap to the capacity, scaling 

the messages may deteriorate the performance even worse than the MS decoder. 

Authors in [14] design LDPC codes based on MS and linear scaling min-sum 

(LSMS) decoders. They show that LSMS codes exhibit smaller gaps to the capacity 

than MS codes, however, the gap is still large compared to SP codes. 

In this chapter, we propose a low complexity modified MS decoder which allows 

for higher code rates and hence smaller gaps to the capacity. The motivation behind 

the proposed decoder comes from the stability condition theorems which will be 

discussed in Section 3.2. 
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In [43], it has been shown that over a BIAWGN channel, LSMS decoder puts 

a tight limit on the fraction of edges connected to degree-two variable nodes, i.e., 

A2. This stability condition is equivalent to the stability condition for a SP code 

over a zero-capacity channel. Since A2 significantly affects the code rate, LSMS 

codes cannot achieve close-to-capacity rates. In Section 3.3, we show that the tight 

limit on A2 imposed by the LSMS decoder holds for all BISO channels. Then, in 

Section 3.4, we show that the proposed modified method relaxes this severe stability 

condition and hence can achieve higher rates. Irregular LDPC codes based on the 

modified method are designed in Section 3.5 which shows that higher code rates can 

indeed be obtained. 

3.2 Stability Condition for Density Evolution 

Convergence analysis of LDPC codes is often performed by characterizing the fixed 

points of density evolution. For SP decoding, we have the following theorem: 

T h e o r e m 3.1 [FIXED P O I N T CHARACTERIZATION FOR SP [2]]: Consider a given 

degree distribution pair (A, p) and assume that transmission takes place over a BISO 

channel with LLR pdf ach. 

• [Convergence] The sequence of densities â  converges to a symmetric density a ^ 

which is a fixed point solution to a = ach ® A(/o(a)). 

• [Sufficiency] If there does not exist a symmetric density a ^ A ^ such that a = 
ach ® M/9(a)) then V(&e) converges to zero as £ tends to infinity, or, equivalently, 

a o o = ^ 0 0 • 

• [Necessity] If there exists a symmetric density a ^ A^o such that a = ach <8> A(p(a)) 

then V(&i) does not converge to zero as I tends to infinity, or, equivalently, aoo 7̂  

Aoo-
T 

Successful decoding for a given degree distribution pair on a given channel means 

that density evolution should only have a zero-error fixed point, i.e., Aoo. 

3.2.1 Stability Condition for SP Decoder 

It is desirable that the perfect decoding fixed point be stable, i.e., if the decoder 

gets close to the perfect decoding, it converges to the zero-error fixed point. The 

stability condition is basically a joint condition on the degree distribution of the code 
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ensemble and the channel on which the transmission takes place. For a fixed channel, 

stability condition puts a constraint on the code degree distributions. It ensures that 

once the probability of error gets small enough, decoding will be successful. 

From the EXIT chart's point of view, stability condition can be interpreted as a 

condition on the slope of elementary EXIT curve for degree-two variable nodes near 

perfect decoding. More precisely, consider a density at the output of check nodes at 

iteration I as 

be = eA0 + eAoo 

where e £ [0,1] and e —> 0. Then, the slope of the output entropy at degree-d„ 

variable nodes, where dv > 3, will be 

lim ±H(*t) = lim | - J f ( e * - - 1 ^ + (1 - e ^ " 1 ) ^ ) 
e—>0 ae c—>0 ae 

= lim-^-ff(e*'-1ach) 
t^o de v ' 

= 0 

which shows that the elementary EXIT curves for all variable nodes with dv > 3 

approach perfect decoding fixed point with a zero slope and hence will not cross the 

y = x line. On the other hand, the EXIT curve of degree-two variable nodes might 

cross the bisector of the first quadrant, hence no convergence. 

In the context of stability condition, all BISO channels are mapped to real num­

bers through the Bhattacharyya functional defined in Section 2.3.2. For SP decod­

ing, we have the following stability condition theorem: 

T h e o r e m 3.2 [STABILITY CONDITION FOR SP [2,27]]: Given a degree distribu­

tion pair (A, p) and a symmetric channel ach, for an arbitrary ao, we have: 

• [Necessity] If A'(0)//(l)S(ach) > 1, then there exits a strictly positive constant 

£ = £(A, p, ach) such that 

liminf V(&e) > £, 
t—>oo 

for all ao i=- A ^ . 

• [Sufficiency] If A'(0)p'(l)B(ach) < 1 then there exists a strictly positive constant 

£ — £(A, p, ach) such that if, for some I £ N, V(&i) < £ then 

lim V(ae) = 0. 
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E x a m p l e 3 .1 : For a BSC(p) with the LLR pdf given in Example 2.2, we have 

#(aB S c ( p )) = E(e~i ) = 2^/pp 

which results in 

A W ( 1 ) < * 

Therefore, an upper bound for the threshold of the code is obtained as 

P*SP(^P) < g ( 1 _ 1 ' 
X'(0)p'(l) 

0 

It should be emphasized that stability condition does not guarantee the conver­

gence of the code except in few occasions. As a case in point, for circuit codes where 

X(x) = x, stability condition determines the threshold of the code. Also, for LDPC 

codes where A'(0) = 0, the zero-error fixed point is always stable. 

3.2.2 Stability Condition for MS Decoder 

MS decoder differs from SP decoder in certain areas. First of all, the pdf of random 

messages at each iteration of MS decoding will not be symmetric anymore. Also, 

the probability of error as a function of iteration number is not monotone [2]. For 

the MS decoder, we can derive density evolution formula. For an x > 0, define 

/•+oo r—x 

f+{x) = / &e-i{t)dt, <p-{x) = / &e_i{t)dt. 

Then, density evolution is defined as [34,44] 

&e - ach <g> A(b^) 

where b((x) is 

M%) = Y2Pk~9~ ( N - 1 ^ ) + a«~i(-x)] [v+(M) + v-(kl)]fe"2 

k ^ 

+ [^e-i(x) - &e-i(-x)] [<p+{\x\) - ¥>-(W)] fc-2 

Bhattad et al. in [14] extend the stability condition theorem to the MS decoder 

when ao = ach- They show that for MS decoder, the sufficiency part of Theorem 3.2 

remains the same. 
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3.3 Linear Scaling and Stability Condition 

Let mMS and mSP be the LLR messages at the output of MS and SP check nodes of 

the same degree with the same set of inputs. It has been shown [42] that 

• sign(mMS) = sign(mSP), 

• |mMS| > |mSP |. 

For the regular codes, the performance under the MS decoding can be improved 

if the messages at the output of MS check nodes, i.e., mMS are scaled down by 

a factor a where a > 1. The optimum value of a is obtained through density 

evolution. It depends on the signal-to-noise ratio (SNR) and should be adjusted for 

each iteration [13,42]. However, for practical reasons, it is usually assumed that a is 

a fixed constant. In the following example, we see that for irregular codes that are 

specifically designed for SP decoder, scaling down the messages may significantly 

degrade the performance in terms of the decoding threshold of the code. 

E x a m p l e 3.2: Consider the following rate one-half LDPC code designed for SP 

decoding over a BIAWGN channel taken from [27]: 

X(x) = 0.23802a; + 0.20997a;2 + 0.03492x3 + 0.12015a;4 

+ 0.01587a;6 + 0.00480a;13 + 0.37627a;14 

p(x) = 0.98013a;7 + 0.01987x8 

Using density evolution, we see that the best LSMS decoder for this code is MS 

decoder (a = 1). For example, a = 1.1 gives the threshold of 2.69 dB which is far 

from the threshold of MS decoder (1.49 dB) and SP decoder (0.34 dB). 

Example 3.2 illustrates that when the LSMS decoder is used, one must design 

specific codes for LSMS codes. In [14], the problem of code design for the MS and 

LSMS decoders is considered and it is shown that codes specifically designed for 

the LSMS decoder achieve smaller gaps from the capacity compared to MS codes. 

Nevertheless, the gap is still large compared to the gap of SP codes. 

In this section, we discuss why codes designed based on the LSMS decoding still 

perform far from the SP codes. Moreover, is there any strategy better than linear 

scaling? The later will be answered in Section 3.4. 
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In the following theorem, the sufficiency part of the stability condition for the 

LSMS algorithm is stated. The same result is shown in [43], but only for the 

BIAWGN channel. 

For a random variable X, we use the cumulant generating function which is 

0 0 f)3 

i=i 3' 

where {KJ}J(=N
 a r e the cumulants of the random variable X. Also, for a set of 

independent (not necessarily identically distributed) random variables {-Xfc}£=1, we 

can write 
n 

^EJU^W = £***(*)• 
fc=i 

T h e o r e m 3.3 [STABILITY CONDITION FOR THE LINEAR SCALING M I N - S U M D E ­

CODER]: Consider a degree distribution pair (X,p) with linear scaling min-sum 

decoder and a symmetric channel with LLR pdf ach. For ao = ach, if 

then the fixed point Aoo is stable. 

Proof: Following the same lines in [27,43], we start with a density 

b0 = 2eA0 + 2e £ « , 

close to perfect decoding where 'P(bo) = e. After a complete iteration, we get 

bi(a;) = 2e\'(Q)p'(l)aach(ax) + 2eA'(0)p'(l)Aoo + 0{e2). 

Finally, after n whole iterations, we arrive at 
n 

bn(x) = 2 e ( A W ( l ) ) n ®<*kadl(a
kx) + 2e(\'(0)p'(l))nAoo + 0(e2). 

fc=i 

For the probability of error to get arbitrary small, we need 

1 n 

log[A'(0)//(l)] < - lim - l o g ^ ( ( g ) a f c a c h ( a f c x ) ) (3.1) 
fc=l 

^ • " — ' "V , — • •• 

Pr{EJ=iMfc/a*<0} 

where {Mfc}^=1 are n independent and identically distributed (i.i.d.) samples with 

the common density ach- For a > 1, let 

^ ak 

fc=i 

36 



According to the Gartner-Ellis theorem [45], we have 

1 
log[A'(0)/9'(l)] < - i n f lim - logE(e e i M ) . 

6 n—too n 
(3.2) 

Let us derive the cumulants of M in terms of the cumulants of {Mfc}^=1. To this 

end, since {Mfc}£=1 are i.i.d., let {/ym}men be the cumulants of the random variable 

Mk (independent of k) and Xfc = —£. Since we have 

n oo 

= E£7' 
fc=l m = l 

0 0 « " i 

m! v Q1 

mi i—' a 
m = l fc=l 

fcm' 

for a fixed j G N, we get 

^ 1 7,- l - a " J n 

Kj — 7,- > — j ^ = - 4 x - . 

Therefore, the right hand side of (3.2) becomes 

1 1 °° 0J 1 — n~in 

- inf lim - logE(ef lM) = - inf lim - V l j - x 
0 n—too n 0 n - t o o u ' - ' ?! 

i = i J 

oo 

a-? - 1 

= - inf lim - V .,. 7 i ^ 0J' = 0. 
9 n-too n z—' IMC*? — 1) 

' = 1 - ^ > 

Thus, log[A'(0)p'(l)] < 0 which completes the proof. 

Note that if for each Mk, $Mk{9) exits then the summation ]T)jli ai& exits too, 

because using the Laurent series' ratio test, it can be seen that 

lim 
ai+l = lim 7?+i 

7j0' + l) 

which is equal to the ratio test for $^ffc(0). 

• 
R e m a r k 3 .1: For a = 1, one can use the large deviations theory to conclude that 

(3.1) results in [2] 

A W ( l » c h ) < 1. 
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R e m a r k 3.2: The stability condition in Theorem 3.3 corresponds to the stability 

condition of a useless (zero-capacity) channel when SP decoder is used. As a result 

of this severe limit on A'(0) = A2, the code rate is adversely affected. In other 

words, LSMS decoder imposes a very harsh stability condition on the code. This 

also explains why applying linear scaling to codes optimized for SP can result in a 

very poor performance (see Example 3.2.) 

3.4 Modified Min-Sum Decoder 

In this section, we propose a simple modified MS decoder which allows for larger 

values of A2 at essentially no extra complexity. The new scheme shown in Fig. 3.1, 

scales down LLRs less than XQ and leaves LLRs larger than XQ intact, i.e., 

Min \Min\ > XQ 

Mini < %o M„t = 2 !»" . Z 1° " (3-3) 

where Min is the LLR message at the output of an ordinary MS check node and Mout 

is the LLR message at the output of the modified MS check node. Also, a > 1 and xo 

are two constants which are to be optimized. Our motivation for this modification 

stems from the fact that for large LLR values, the MS and SP check update rules 

are almost equivalent (see (2.5) and (2.8)). Thus, scaling down the messages in not 

necessary (and possibly harmful). The LSMS decoder, however, scales down even 

large LLRs which results in a low convergence rate and imposes a strict stability 

condition. In the following theorem, we show that the stability condition is improved 

using the proposed method. 

To this end, if the pdf of Min be a(x), then it can be shown that the pdf of Mout 

will be 

( a(x) \x\ > xo 
aa(ax) \x\ < xo/a 
0 otherwise 

which is shown in Fig. 3.1. The mapping T£°{-) has the following useful property: 

L e m m a 3.1 [LOWER AND U P P E R BOUNDS ON B(T£° (•))]: For an a > 1, there 

exists a constant /i > 1, /U = //(ach,a,xo), such that 

£(a c h) < B(T*°(ach)) < nB(a*). 
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M r 

a(x) 

Mout 

« a ) ( * ) 

- X 0 

i Mmt 

x ° Mir 

F i g u r e 3 . 1 : Modified scaling with a > 1. 

Proof: Since ach is a symmetric density, we see that for an a > 1, the difference 

£ ( T ^ ( a c h ) ) - £ ( a c h ) w i l l b e 

/ aach(a.x)e 2dx— / ach(x)e 2<ix 

= 8 / * 
Jo 

ach(x)e 2 cosh (¥)- dx > 0 (3.4) 

where (3 = 1 — 1/a and /? £ (0,1). Therefore, there exists a constant fj, > 1 such 

that 

£ ( T ^ ( a c h ) ) < ^ ( a c h ) 

and it depends only on the channel LLR pdf, a and XQ. r-. 

Theorem 3.4 [STABILITY CONDITION FOR THE MODIFIED LINEAR SCALING M I N -

SUM D E C O D E R ] : For a (A, p) LDPC code over a symmetric channel with LLR pdf 

ach under modified scaling min-sum decoding given in (3.3) and for every 

M > 
#(a ch) 
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if 

A'(Oy(l)MS(a c h) < 1 

then the fixed point AQO will be stable. 

Proof: We follow the same lines in [27,43]. Consider a perturbation of A,*, as 

b0 = 2eA0 + 2iAoo 

where ^(bo) = e. After a complete iteration, we have 

bi = 2eA'(0)//(l)Ta*°(ach) + 2eA'(0)p'(l)Aoo + 0(e2). 

If we consider n iterations of density evolution, we get 

b n = 2£(A'(0)p'(l))" x T? (a c h ® 7?° (ach ® • • • 7?° (ach ® T ^ ( a c h ) ) ) ) + 

v ' 
n times 

2e(A'(0V(l)) nA o o + O(£
2). 

Using Lemma 3.1 and the multiplicative property of the Bhattacharyya functional 

in a variable node [2], we arrive at 

B(bn) < 2 e ( A W ( l ) / i B ( a c h ) ) n +0(e2). 

If X'(0)p'(l)fiB(ac\l) < 1 then there exits a positive constant 77 G (0,1) such that 

A W ( l ) / i £ ( a c h ) + r ) < l . 

For a sufficiently large n, once the modified MS decoder gets close enough to the 

zero-error fixed point, then 

B(bn)<2£(A'(0)p '( l) / iB(a c h)+r7)n . 

Thus, as n —> 00, both B(bn) and ^(bn) will vanish since according to Lemma 2.1, 

for a small probability of error, we have 

2P(a) < S(a) < 2 / P ( ^ ) . 

This shows that A ^ is a stable fixed point. 

L e m m a 3.2 [RANGE OF B{T^° (•))]: For a fixed channel and every pair of (a, xo), 

we have 

0 < e ( T ^ ( a c h ) ) < l . 
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Proof: The positiveness of B(T*°(ach)) is trivial. For the right side, first, we prove 

that S(7^°(ach)) is an increasing function of both XQ and (3. This is true since from 

(3.4), we have 

£-B(T?>M) = A [H(T^(ach)) - 6(ach)] 

2ach(x0)e~ 2 c o s h ( ^ £ ) _ 1 

> 0 

and 

^ S ( T ^ ( a c h ) ) = JL[B(T*°(ach))-B(ach)} 

= / xac\l(x)e 2sinhf — )dx 

>0 . 

Second, we know that (3 g (0,1) which results in 

supS(T^(a c h))=i3(T~(a c h)) 
t*r'''0 

f>00 

= / ach(cc)(l + e~x)dx 
Jo 

= 1. 

Remark 3.3: Since we have 

M> 
# ( « a c h ) ) 

D 

#(ach) 

modified MS codes allow for A2 values in the range of 

A2e[0,A^) 

where 

X*2 = P'(1)B(T^M)- ( 3 '5 ) 

According to Lemma 3.1 and Lemma 3.2, it is clear that for a fixed right degree 

distribution, 
ALSMS < A * < A S P 

where A2SMS and Xf are the maximum A2 values given by the stability condition of 

LSMS and SP decoders, respectively. 
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Tab le 3 . 1 : LDPC code design results for the BIAWGN channel 

SNR [dB] 

C 

Rate 

a* 
* 

x'o 
A2 

K 
P'(l) 

- 5 

0.3495 

0.3227 

1.4 

2.50 

0.2807 

0.3004 

4.5 

- 3 

0.4867 

0.4606 

1.4 

3.00 

0.2311 

0.2486 

6.5 

- 1 

0.6430 

0.6196 

1.4 

3.25 

0.2165 

0.2271 

9.5 

+1 

0.7951 

0.7802 

1.4 

3.75 

0.1668 

0.1747 

19.5 

+3 

0.9124 

0.9044 

1.4 

4.25 

0.1594 

0.1604 
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3.5 Code Design 

In this section, we design codes for the proposed modified MS decoder introduced 

in Section 3.4. 

Over a BIAWGN channel, we consider a fixed energy per symbol jf- and different 

pairs of (a,xo). For each pair, according to Section 2.3.4, we design a code with 

the highest rate and maximum allowed variable degree of 30 (and 40 for the highest 

jf-). We allow a maximum of 800 iterations of density evolution. Then, (O.*,XQ) 

which has the highest rate is selected as the best code. Then, the above procedure 

is repeated for other values of |p-. 

Table 3.1 shows the optimization results where for each value of jjf-, the achieved 

code rate and the best (a, XQ) are reported. Interestingly, a* — 1.4 is optimal for all 

cases and XQ is increasing with the channel condition. Also, for each value of ^-, the 

value of A2 of the best code is compared with the maximum A2 from the stability 

condition, i.e., A2 given in (3.5). As it can be seen, for the best code we found, A2 

is tightly upper bounded by AJj. Optimal degree distributions for each value of jjf-

are reported in Table 3.2. 

Table 3.2: Optimized degree distributions for the BIAWGN channel. 

SNR [dB] 

A2 

A3 

A4 

A5 

A6 

A7 

- 5 

0.2807 
0.2568 

0.0017 

0.0032 

0.0111 

0.1644 

- 3 

0.2311 
0.2523 

0.0019 

0.0035 

0.0117 

0.1609 

- 1 

0.2165 
0.2594 

0.0018 

0.0049 

0.0928 

0.1625 

+ 1 

0.1668 
0.2489 

0.0026 

0.0058 

0.0232 

0.1933 

+ 3 

0.1594 

0.2611 

0.0015 

0.0046 

0.2116 

0.0719 

Continued on the next page 
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Table3.2 (continued) 

SNR [dB] 

A8 

A9 

Aio 
An 
A12 

Al3 

Aw 
Al5 

Al6 

Al7 

Al8 

A19 

A20 

A21 

A22 

A23 

A24 

A25 

A26 

A27 

A28 

A29 

A30 

A31 

A32 

A33 

A34 

A35 

A36 

A37 

A38 

A39 

A40 

Ph 

P6 

P7 

P8 

Pw 

- 5 

0.0613 

0.0139 

0.0071 

0.0049 

0.0039 

0.0034 

0.0031 

0.0030 

0.0031 

0.0032 

0.0034 

0.0036 

0.0040 

0.0046 

0.0052 

0.0062 

0.0075 

0.0092 

0.0118 

0.0157 

0.0218 

0.0321 

0.0500 

0.5 

0.5 

- 3 

0.0911 

0.0160 

0.0074 

0.0047 

0.0034 

0.0028 

0.0024 

0.0022 

0.0021 

0.0020 

0.0020 

0.0020 

0.0021 

0.0022 

0.0024 

0.0026 

0.0029 

0.0034 

0.0042 

0.0055 

0.0081 

0.0153 

0.1519 

0.5 

0.5 

- 1 

0.0121 

0.0061 

0.0045 

0.0042 

0.0044 

0.0051 

0.0066 

0.0096 

0.0161 

0.0312 

0.0576 

0.0480 

0.0228 

0.0115 

0.0067 

0.0043 

0.0030 

0.0022 

0.0017 
0.0014 

0.0011 

0.0009 

0.0008 

0.5 

+1 
0.0653 

0.0217 

0.0118 

0.0080 

0.0061 

0.0049 

0.0042 

0.0038 

0.0035 

0.0034 

0.0033 

0.0033 

0.0033 

0.0035 

0.0037 

0.0041 

0.0046 

0.0053 

0.0065 
0.0084 

0.0122 

0.0225 

0.1458 

+3 
0.0097 

0.0054 

0.0045 

0.0045 

0.0054 

0.0076 

0.0131 

0.0301 

0.0951 

0.0678 

0.0201 

0.0085 

0.0046 

0.0029 

0.0020 

0.0014 

0.0011 

0.0009 

0.0007 

0.0006 

0.0005 

0.0004 

0.0004 

0.0003 

0.0003 

0.0003 

0.0003 

0.0002 

0.0002 

0.0002 

0.0002 

0.0002 

0.0002 

Continued on the next page 
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Table3.2 (continued) 

SNR [dB] 

Pn 
P20 

P21 

P45 

C 
Rate 

- 5 

0.3495 
0.3227 

^3 

0.4867 
0.4606 

- 1 

0.5 

0.6430 
0.6196 

+1 

0.5 
0.5 

0.7951 
0.7802 

+3 

1 

0.9124 
0.9044 

Fig. 3.2 compares the achieved rates and corresponding gaps to the capacity of 

the codes based on the proposed modified method with the LSMS codes reported 

in [14], MS codes taken from [46] and SP codes reported in [47], Fig. 3.2 shows that 

the codes based on the proposed method have lower gaps to the capacity compared 

to MS and LSMS codes while the complexity of decoding remains essentially the 

same. 

3.6 Conclusion 

In this chapter, LDPC code design for a low-complexity decoder was considered. 

We observed that the performance of the irregular codes designed for SP decoder 

with the LSMS decoder can be very poor. Also, it was shown that the LDPC codes 

specifically designed for LSMS decoder cannot achieve close-to-capacity code rates 

since the stability condition is severe and forces A2 to be small. The proposed scheme 

was shown to exhibit a stability condition similar to the SP decoder and to allow 

for higher values of A2. The LDPC codes that are designed based on our proposed 

scheme have lower gaps to capacity compared to both MS and LSMS codes while 

the decoding complexity remains essentially the same. 
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F i g u r e 3.2: Comparison of the achieved gap to the capacity for different decoders. 
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Chapter 4 

Low Complexity LDPC Coding 
for Gaussian Broadcast 
Channels 

4.1 Introduction 

The problem of simultaneous communication of a single source to multiple receivers, 

which is known as the broadcast channel, was first introduced by Cover in [48]. So 

far, the capacity region of certain classes of broadcast channels are known, however, 

the capacity region of a broadcast channel in general is still unknown. 

Searching for a practical coding scheme, Berlin et al. [16], based on the achievable 

rate region given in [49], studied the code design problem for a two-user fading 

Gaussian broadcast channel. They used LDPC codes as the coding framework. 

From Chapter 2, we know that LDPC codes, if properly designed, are highly capable 

of operating at an SNR close to the Shannon limit with a vanishing probability of 

error [27]. It is shown in [16] that the performance loss due to using a binary 

code instead of a Gaussian code at low SNRs is negligible. Having the channel 

state information (CSI) only at the receivers, the authors in [16] show that at low 

SNRs, using superposition encoding and joint decoding, close-to-capacity LDPC 

codes can be found. In their scheme, since the user messages are superimposed, 

the message updating rule based on the factor graph associated with the MAP 

estimation, imposes a mapper node which connects the users' Tanner graphs. This 

mapper node not only increases the decoding complexity, also it requires both users 

to have the codebook of each other. Moreover, the codes should be jointly designed 

which is a complex task. 

On the other hand, as it is pointed out in [16], the performance loss at high 
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F i g u r e 4 . 1 : Broadcast channel. 

SNRs incurred by the binary input can be significant. One solution to get around 

this problem is to use higher order constellations instead of BPSK signaling. This 

solution will make the mapper node even more complicated. 

In this chapter, we propose a suboptimal scheme whose complexity is consider­

ably less than the scheme proposed in [16]. Motivated by the bit-interleaved coded 

modulation (BICM) scheme [50], a novel labeling method is proposed which removes 

the mapper node. Therefore, each user can use its own LDPC code and there is no 

need to have the code of the other user. 

In Section 4.2, we briefly review the main results known for broadcast channels. 

We discuss using LDPC codes for a two-user Gaussian broadcast channel in Sec­

tion 4.3. Our method is proposed in Section 4.4 and LDPC codes based on our 

method are designed in Section 4.5. Finally, we conclude this chapter in Section 4.6. 

4.2 Broadcast Channels 

Definition 4.1 [Broadcast Channel [17]]: A two-user broadcast channel, depicted 

in Fig. 4.1, consists of an input alphabet X, two output alphabets y and Z, and a 

set of channel transition probabilities p(y, z\x) where (x,y, z) € X x y x Z. 

A broadcast channel is said to be memoryless if different uses of channel given 

the input sequence are independent from each other, i.e., 

p(yn,zn\xn) = ~[[p(yi,zi\xi). 

Definition 4.2 [Broadcast Code [17]]: A (2nR», 2nRz, n) broadcast code consists 

of: 

1. Two equiprobable message sets Wy = { 1 , 2 , . . . , My} and W2 = { 1 , 2 , . . . , Mz} 

where My = 2nR» and Mz = 2nR* 
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2. A codebook €n(Ry,Rz) - {xn(wy,wz) e Xn\(wy,wz) eWyx Wz} which has 

My x Mz codewords of length n and symbols from the input alphabet X 

3. Two decoders which assign two message indices wy(y
n) G Wy and wz(z

n) G Wz 

to each received observation pair (yn, zn). 

The goal is to send private messages to both receivers with a vanishing proba­

bility of error. The users can have a common message, however, in this work, we 

are only interested in the private messages. Two private messages are drawn inde­

pendently from two message sets Wy and W2, and then the corresponding codeword 

is transmitted over the broadcast channel. A pair of rates (Ry,Rz) is said to be 

achievable if there exists a (2nR*, 2nRz, n) broadcast code with vanishing average 

probabilities of error at both of the receivers, as n —> oo [48]. The capacity region of 

a broadcast channel is the convex closure of all the achievable rates. The following 

lemma will prove useful in our analysis [17]: 

Lemma 4.1 [DEPENDENCY OF THE BROADCAST CHANNEL CAPACITY ON ITS 

MARGINALS [17]]: The capacity region of a broadcast channel depends only on the 

conditional marginal densities of p(y, z\x), i.e., p{y\x) and p(z\x). 

Proof: Define Pe<y = Pr{Wy ^ Wy} and P e ^ = Pr{Wz ^ Wz} as the single user 

error probabilities depending only on p(y\x) and p(z\x), respectively. We have the 

union bound as 

Pe = Pv{(Wy,Wz)^(Wy,Wy)} 

= Pv{Wy^WyUWz^Wz} 

Also, it can be seen that 

max.{Pe,y,Pe,z} < P e . 

Therefore, 

Pe,y -> 0 and Pe,z -> 0 «=> P e -> 0 

which completes the proof. 

The single letter characterization of the capacity region of a general broadcast 

channel is unknown yet; in special cases, however, the capacity region is known. 
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Here, we confine our attention to two cases: degraded broadcast channels and more 

capable broadcast channels. 

Definit ion 4.3 [Degraded Broadcast Channel-More Capable Broadcast Channel [48, 

51]]: If the channel transition probability can be factorized as 

p(y,z\x) = p{z\y)p(y\x) 

then the broadcast channel is physically degraded which implies that X, Y, and Z 

forms a Markov chain, i.e., X —> Y —> Z [17]. A broadcast channel is more capable 

if [51] 

I{X;Y)>I(X;Z), for all p (x). 

According to the data processing inequality, the set of degraded broadcast channels 

are a subset of more capable broadcast channels. 

Let >: denote the generalized inequality with respect to the nonnegative orthant. 

Also, we show the convex hull by CH. Bergmans [52] proved the following theorem: 

Theorem 4.1 [CAPACITY OF A DEGRADED BROADCAST CHANNEL [52]]: The 

capacity region of a degraded broadcast channel X —> Y —> Z is the set of rates 

(Ry,Rz) such that 

CH {{Ry,Rz)hO 
p(v,x)etidez ' 

RZ<I(V;Z) 

Ry<I(X;Y\V) 

where 

2>dos = | p K * ) : (V,X) ~ P(v)p(x\v), |V| < min{ |* | , \y\, | Z | } J . 

The idea, which is depicted in Fig. 4.2, is that the auxiliary random variable 

V serves as a cloud center distinguishable by both receivers. There are totally Mz 

clouds available and each cloud contains My codewords. The "weaker" user, i.e., 

Z, can only see the clouds while the user Y can also see codewords within a cloud. 

In fact, user Y first stripes off the message of user Z (decodes the cloud) and then 

it can see the individual codewords within a cloud [52,53]. This method is called 

superposition coding. 
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the ith cloud 

F i g u r e 4.2: Bergmans coding. 

Also, for a more capable broadcast channel, i.e., V —+ X —> (Y, Z), El Gamal [51] 

proved that the capacity region is 

CH {(Ry,Rz)hO 
RZ<I(V;Z) 

Ry + Rz< min {l(X; Y), I(V; Z) + I(X; Y\V)} 

(4.1) 

where 

S n = \p(v, x) : {V, X) ~ p(w)p(a;|i;)) |V| < \X\ + 2 \. 

Since a degraded broadcast channel is a special case of a more capable channel, one 

can verify that for a degraded broadcast channel, the region in (4.1) coincides with 

the Bergmans region given in Theorem 4.1 [54]. 

4.2.1 Gauss ian Broadcas t Channe l s 

The focus of this chapter is on the Gaussian broadcast channels which are defined 

as [16] 

Y = AX + Nv 

Z = BX + NZ (4.2) 
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where the additive white Gaussian noises are zero mean and have variance No, 

independent from the input X which is power constrained by E( |X|2) < P. Also, A 

and B are two ergodic memoryless processes, known at the receivers. In general, the 

broadcast channel given in (4.2) is neither degraded nor more capable. However, if 

the fading processes are constant (unfaded Gaussian) and |A| > \B\ then (4.2) will 

be degraded and the capacity region according to Theorem 4.1 is given by 

U 
a€[0,l] 

(Ry,RZ)>lO 

where 

and 7 = 

Ry < C(« |A| 2
7 ) 

Rz < C ( | £ | 2
7 ) - C (a |B | 2

7 ) 

1 

(4.3) 

No 

C{x) = -\og2[l + x] 

The boundary of this region is achieved by 

X = \faPU + VtiPV (4.4) 

where E( |X|2) = P, a G [0,1] represents the fraction of power allocated for user Y, 

and ([/, V) ~7V(0,l2) is a pair of independent normal random variables [48,55,56]. 

For \A\ = |JS|, since two channels are statistically the same, we can use time-sharing 

between the users. It is not difficult to see that the capacity region in this case 

coincides with the time-sharing region [49] 

Ry Rz 
(Ry,Rz)hO + < 1 

C( |A|2
7) C{\B\2l) 

Berlin and Tuninetti in [16], consider the performance achievable by a binary 

linear code instead of the Gaussian input given in (4.4). This means that (U, V) in 

(4.4) are drawn uniformly from {+1, — 1} x {+1, —1}- In this case, it is not difficult 

to show that the capacity region is given by [16] 

u 
<*e[o,i] 

(Ry,Rz)>:0 
Ry < J(a\A\2j) 

Rz < J(\B\2l) - JHB\2j) 

where J{t) is the capacity of a BIAWGN(-2^) channel, i.e., 

/

I (x-t/2)2 

^ = e ir-log2[l + e-*]dx 
V 27ft 

(4.5) 

which is achieved by choosing X uniformly from { + v P , - \ / P } 

51 

file:///faPU


4.3 LDPC Codes for Gaussian Broadcast Channels 

In this section, we review the method adapted by [16] to communicate over a two-

user Gaussian broadcast channel using LDPC codes. 

Let 

x = VaPxy + V&Pxz (4.6) 

be the superimposed transmitted vector where Xj, and x2 are the binary codewords 

of the users Y and Z, respectively. We assume that these codewords are selected 

from two LDPC ensembles, €n(\v,py) and <Cn(XZ)pz). Also, by transmission of x, 

we observe two vectors y and z. 

We pick two LDPC codes from the ensembles and denote the corresponding 

parity-check matrices by Hy and Hz • The MAP estimate of the ith bit of the vector 

Xy, denoted by 

xi<y - arg max p(x^y\y) i = l,2,...,n 
Zi,„€{±l} 

= arg max V p(x y ,x 2 | y ) 

= arg max V p(y|xy ,x z)p(xy ,x2)l{ H yxy=o,H,x2=o} 
Xi,yE{±l} *— 

arg max J ] p(y|x) x l x = v ^ p X y + v ^ p X z x l{HBxy=o,H,x,= 
x i , y ^ \ ± i ! „ . 

0} 

a r g ^ , ™ ^ l } ^ ( TiP{y^Xi) X 1xi=V^P,i,a+V^Pxi,; 

(4.7) 

where h j and h j z are the j th row of H y and H z , respectively. A similar rule can 

be obtained for x^z, the ith bit of xz. Similar to (2.6), the MAP estimate of XitV is 

shown by the factor graph depicted in Fig. 4.3. 

In Fig. 4.3, the function node connecting the two Tanner graphs, which is called 

the mapper node by [16], increases the complexity in the following senses: 

• The mapper node needs both users to have the code of each other in order to 

jointly decode the codewords. 

• The decoding complexity increases considerably. This is because at each iter­

ation of message passing decoder, according to Fig. 4.3, the messages from one 
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user Z code user Y code 

V{Vi\x%) 

Xi—w OCiXity-r\ (XrXj^z 

p{yi+i\xi+i) 

Xi+l 

xi+i 

•Xi+i=VaPxi+iiy+VaPx-i+i< 

F i g u r e 4.3: The factor graph associated to (4.7). The left (right) most function nodes 
are the check nodes of the LDPC code of the user Z (Y). 

Tanner graph should be passed to the other graph to enhance the reliability 

of decision [16]. 

• The code design stage becomes more cumbersome than the single user case. 

In [16], authors use the differential evolution method [57] for the code design. 

4.4 A Low Complexity LDPC Coding Scheme 

In this section, we propose a method to use LDPC codes over a two-user Gaussian 

broadcast channel based on the BICM scheme. 

4.4.1 Bit-Interleaved Coded Modulation 

The BICM is a bandwidth-efficient coding method [50] which motivated us to pro­

pose a new scheme for communicating over a Gaussian broadcast channel. 

First, let us explain coded modulation (CM) which is similar to BICM. In CM, 

the information bits are encoded using a binary code and the resulting sequence is 
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Enc n Mod 

Dec 7 T " 1 Dem 

• 

p(y\x) 

F i g u r e 4.4: The system model for CM and BICM. In CM, IT interleaves symbols while 
in the BICM, it is used to interleave bits. 

split into groups of d = log2 D bits. Then, these groups are interleaved and mapped 

to a D-ary constellation to transmit over a channel with pdf of p(y\x). In fact, the 

interleaver removes the dependency between the groups. At the receiver, a branch 

metric is computed for each received point. Then, branch metrics are de-interleaved 

and passed through the decoder. 

The basic diagram of CM and BICM is shown in Fig. 4.4. Similar to the CM, 

BICM is based on the concatenation of a binary code, an interleaver and a high-

order D-avy modulation [58]. The difference is that in CM, the interleaver is a 

symbol interleaver while in the BICM, it is used to interleave bits. The coded bits 

in BICM are fully interleaved and then every d bits is grouped together and sent over 

the channel using a D-ary constellation. At the receiver, after computing the LLR 

values of the coded bits and de-interleaving, a binary decoder is used as if the LLR 

values were the observations at a BPSK channel output [58]. It has been shown [50] 

that if we use Gray labeling for the D-ary constellation, then the capacity of BICM 

is extremely close to the capacity of the CM method, even for low SNRs. It means 

that using a bit interleaver and Gray labeling, a binary decoder can be used to get 

a performance which is almost the same as the CM. 

Let K. denote the set of points in the D-ary constellation used for the CM and 

BICM methods. The capacity under the CM and BICM are [50] 

Efc6/cP(ylfc)" COM = log2 D - EX,Y log2 p{y\x) 
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Table 4 .1 : Binary labeling when X — y/aPXy + \/aPXz. For simplicity, the symbol 
P is removed. 

11 

-yfa - yfa 

11 

— yfa — y/Bt 

01 

yfa — yfa 

10 

y/a — y/a 

10 

y/a - y/a 

01 

yfa. — yfa 

Xz Xy 

\ / 
00 

y/a + yfa 

Xz Xy 

\ / 
00 

y/a + y/a~ 

a>\ 

a<\ 

and 

d 

CBICM = log2 D - ^ E6,y 

respectively, where K\ denotes the subset of constellation points whose ith bit is 

equal to b. It has been shown that CmCM < CCM which means that BICM is a 

suboptimal method [50]. 

4.4.2 The Proposed Method 

The superimposed codeword given in (4.6) can be viewed as a mapping which maps 

two independent bits to a point in a 4-PAM-like constellation shown in Table 4.1. 

This mapping uses a binary labeling method. 

Now, consider two sequences of LDPC coded bits, each of which is intended 

for one user. We interleave both of these coded sequences separately and try to 

use Gray labeling for the 4-PAM-like constellation. Table 4.2 shows this scheme. 

The difference here is that in order to maintain Gray labeling, we have to swap the 

position of bits when a falls below one half. It can be shown that the equations in 

Table 4.2 satisfy the power constraint E( |X|2) = P. Also, note that the two part 

of these equations are not independent anymore. In fact, by using Gray labeling 

we have reduced dependency. Interleaving removes the dependency altogether to 

validate our decoding approach. We could use the dependency to improve our 

performance, but it is so minor that it does not worth it. In binary labeling, the 

log2 
Hk€KbP{y\k) 
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Tab le 4.2: Gray labeling where the symbol P is removed for simplicity. 

X = V^PXy + V&PXZXy 

01 11 

— y/a — V " \/ot ~ \f& 

x = V^Fxyxz + <JaPxz 

01 11 

— \f0L — \J(X yfoi — y/a 

10 

\fa — \[a 

10 

yfot — y/a 

XZ Xy 
\ / 

00 

y/a. + \fa 

Xy Xz 

00 

y/a + \[CL 

a>\ 

a<\ 

dependency must be used (that is what the mapper node does) because it is too 

strong. 

To analyze the proposed method, let us determine the capacity region using our 

method. For a > 5, we have 

and 

Rz<I(V;Z) 

xze{±i}J 
dz 

xze{±i}' 

P(z) 

2p(z\xz) 

= l~^Jp(z\Xz = +l)log2 

T,ae{±i}P(z\xz = a) 

p{z\Xz = - 1 ) 

dz 

1 + 

1 
p(z\Xz = -l)log2 1 

p{z\Xz = +1) 

p(z\Xz = +1) 

dz-

p(z\Xz = - 1 ) 
dz 

Ry<I(X;Y\V) 

= H(Y\XZ)~H(Y\X,XZ) 

= H(Y\XZ) - H(AX + Ny\X,Xz) 

= \ [H(Y\XZ = +1) + H(Y\XZ = -1) ] - \ log2(27reiVo) 

where p(z\xz = +1) is a mixture of two Gaussian pdfs. In a similar manner, we can 

derive formulations for a < \. Finally, the capacity region using the BICM scheme 

and Gray labeling is given according to Theorem 4.1. 
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4.4.3 Stability Analysis 

In order to analyze the stability condition on the code ensembles (see Section 3.2), 

we first describe how to obtain the LLR pdf for each of the users. For user Y and 

a > 5, according to Table 4.2, the LLR message received from the channel p(y\xy) 

is 

m , = * b ' w c - - + 1 ) 

!og2 

p(y\xy = -1) 

l>2Xzp{xz)p{y\Xy = -i,xz) 

p(y\Xy = +1,XZ = +l)+p(y\Xy = +l,X2 = -1) 

p(y\Xy = -1,XZ = +l)+p(y\Xy = -1,XZ = -1) 

= , gyt(+l,+l)+gA( + l , - l ) 
0 g 2 ^ ( - l , - l ) + ^ ( - l , + l ) 

= log2 

where 

9A{p,q) = ^=^v[^{y-AVP{p^ + q^)f] 

and p,q £ {±1}- For a < \, we obtain 

p(y\Xy = +1) 

^-^p{y\Xy = 'D 
gA{+\,+l)+gA{-l,~l) 

m„ = lo 

= log2 sTFM-Tf+^+i,-!) 

Similarly, for user Z, we get 

mz = l o g 2 ^ ( + 1 ' + 1 ) + 5 ^ - 1 ' - 1 ^ 
5 B ( + 1 , - 1 ) + S B ( - 1 , + 1 ) 

and 

m - w g B ( + i , + i ) + g B ( - i , + i ) 

for and a > ^ and a < ^, respectively. 

L e m m a 4.2 [ASYMMETRY OF p(y(xy) AND p(^|x2)]: The pdfs p(y|xy) and p(z\xz) 

are not symmetric. 

Proof: We have 

Xz 

= ^[p{y\xy^Xz = +l)+p(y\xy,Xz = - ! ) ] . 
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For a > i , we get 

p(y\Xy = ~l) = \ [ ^ ( - 1 , - 1 ) + 9A(-1, +1)] = p(-y\Xy = +1), 

but this does not hold for a < ^ since, 

p(y\Xy = - 1 ) = i ^ - l . + l ) + ^ ( + 1 , - 1 ) ] ?p(-y\Xy = +1). 

This result can be extended to p(z\xz). 

Let us show the pdf of my by aCh,y(m). Since the channel p(y\xy) is not symmetric, 

the LLR pdf cannot be obtained by the all-one codeword assumption. However, 

according to [59], the LLR pdf can be obtained using 

ach,j/(m) = 9 [&<&,y{m\Xy = +1) + &ch,y{-m\Xy = - 1 ) ] . (4.8) 

Note that if the channel was symmetric, (4.8) would lead to ach,y(m) = ach<y{m\Xy = 

+1). Similarly, we denote the LLR pdf of user Z by aCh,2(m). 

Then, according to Theorem 3.2, we have the following theorem: 

T h e o r e m 4.2 [STABILITY CONDITION FOR U S E R Y AND Z): Under sum-product 

decoding and for fixed right degree distributions py(x) and pz(x), if 

A2,tPt(l)#(ach, t) < 1, te{y,z}, 

then the zero-error fixed point is stable for both users. 

We denote the maximum A2 values allowable by stability condition by A2,y and 

\2,z which are 

x"y=
 P'y(i)B(^y)

 ( 4 9 ) 

and 

*--zmZ7r (410) 

respectively. 
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4.5 Simulation Results and Code Design 

In this section, we compare the capacity regions resulted from a Gaussian input, 

binary labeling method from [16] and our proposed method based on the BICM 

scheme and.Gray labeling. Then, we design codes based on our method. 

Consider a two-user Gaussian broadcast channel given in (4.2) where 

|^l|27 = 5.059 dB, and | B | 2
7 = 3.871 dB. 

We chose these values to have a fair comparison with the region given in [16]. In 

Fig. 4.5, we compare the capacity region when the Gaussian input is used (see (4.3)) 

with the region given in [16] and (4.5), and with the region based on our method in 

Section 4.4. It can be seen that the most of the region is covered by our proposed 

method, but with considerably lower complexity. In fact, our method does not need 

joint decoding for each user. In other words, both users can use a single decoder. 

Therefore, both code design and decoding steps substantially become easier. We 

use the code optimization procedure discussed in Section 2.3.4 for each of the users, 

separately. It is noteworthy that the LLR pdf for each user is obtainable using the 

discussion in Section 4.4. 

In Fig. 4.5, the achievable rates are shown by the cross points. Also, the opti­

mized degree distributions for user Y and Z are reported in Table 4.3 and Table 4.4, 

respectively. In these tables, we compare the A2 values of the optimized codes with 

the maximum allowable values forced by the stability condition given in (4.9) and 

(4.10). Note that we did not put any stability constraint on A2 during the code 

optimization. 

In Fig. 4.6, A2 values are compared. We can see that according to Theorem 4.2, 

in all cases, \2,y and \2,z are upper bounded by \?f and Aj^, respectively, which 

shows that the optimized codes are stable near the zero-error fixed point. For more 

discussions about the stability analysis, refer to Section 3.2. 
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-*— Gaussian 
-B— Binary (Binary Labeling) 
-o—Binary (Gray Labeling) 

0.6 0.8 
R [bits/channel use] 

F i g u r e 4.5: Comparison of the capacity region of a two-user Gaussian broadcast 
channel with different inputs. The cross points show the achieved rates by the proposed 
method given in Table 4.3 and Table 4.4. 
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Tab le 4.3: Optimized degree distributions for user Y with \A\2j = 5.059 dB. 

a 

^2,y 
A3,y 

V y 
A5l3/ 

A6,y 

^7,7 / 

A8,y 

All, , , 

Al2,y 

Al3,y 

Al4,y 

Al5,y 

A32,i/ 

A33,y 

A49,y 

A50,j/ 

P5,y 

Ps,y 

P8,y 

P9,y 

Pl0,y 

Pu,y 
Pl5,y 

P22,</ 

S ( a ch , j / ) 
\ S P 

A2,y 

Rate 

0.1 

0.2738 
0.1612 
0.0487 

0.0974 
0.0971 

0.3217 

1 

0.8574 
0.2916 

0.1500 

0.2 

0.2594 
0.1974 

0.0181 
0.1655 

0.0483 
0.0458 

0.0206 
0.2449 

0.1724 
0.8276 

0.7501 
0.2762 

0.2904 

0.3 

0.1911 
0.1670 

0.1725 

0.0769 
0.0569 

0.3355 

0.4706 
0.5294 

0.6610 
0.2013 

0.4017 

0.4 

0.1720 
0.1677 

0.0456 
0.0993 

0.0327 
0.1263 

0.3565 

1 

0.6022 
0.1845 

0.4686 

0.8 

0.1597 
0.1597 

0.0971 
0.0971 

0.1222 

0.0515 
0.3082 

0.4828 
0.5172 

0.4422 
0.1673 

0.6218 

0.9 

0.1391 
0.1707 

0.1291 
0.0500 

0.1241 
0.0260 

0.3609 

1 

0.3290 
0.1447 

0.7372 

4.6 Conclusion 

In this chapter, a low complexity method for communicating over a two-user Gaus­

sian broadcast channel based on LDPC codes was presented. It was shown that 

comparing with the existing work in [16], our method is considerably less complex. 

We showed that in our method, each user can use a single LDPC code and the 

need for joint decoding at the receivers is eliminated. Also, we demonstrate that 

the code optimization problem can be broken down into two single-user code de­

sign problems, hence LDPC codes for a broadcast channel can be designed with a 

significantly lower complexity. 
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Tab le 4.4: Optimized degree distributions for user Z with |.B|27 = 3.871 dB. 

a 

^2,z 

•^3,2 

^5 ,2 

^ 6 , 2 

A7,z 

•^10,2 

A i i , z 

^12 ,2 

^13,z 

^14,2 

Al5,z 

^29,2 

^30 ,2 

^33 ,2 

^34 ,2 

A37.2 

^38 ,2 

A49,2 

^50 ,2 

P4,z 

P5,z 

Pe,z 

Pl,z 

PS,z 

Pl2,z 

Pl6,z 

Pl7,z 

-S(aCh,2) 
\SP A2,z 

Rate 

0.1 

0.1494 
0.1700 

0.1238 
0.0618 

0.0470 
0.0953 

0.3527 

0.4848 
0.5152 

0.4138 
0.1558 

0.6588 

0.2 

0.1697 
0.1703 

0.1491 
0.0205 

0.1305 
0.0066 

0.3534 

1 

0.5096 
0.1784 

0.5542 

0.3 

0.2378 
0.2017 
0.0196 
0.1606 

0.0114 
0.1061 

0.0236 
0.2392 

0.2727 
0.7273 

0.5977 
0.2487 

0.4506 

0.4 

0.2522 
0.2002 
0.0219 
0.1484 

0.0929 
0.0117 

0.2674 
0.0052 

0.4615 
0.5385 

0.8125 
0.2679 

0.3605 

0.8 

0.2850 
0.1980 
0.0176 
0.1592 

0.0860 

0.2309 
0.0233 

1 

0.4422 
0.3077 

0.2102 

0.9 

0.2977 
0.1666 
0.0651 
0.0903 

0.0674 
0.0274 

0.2854 

0.4444 
0.5556 

0.8946 
0.3144 

0.0989 
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Figure 4.6: Comparison of A2 values of the designed codes and A2 constraints by the 
stability condition of the SP decoder given in (4.9) and (4.10). 
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Chapter 5 

Conclusion 

In this chapter, we summarize the contributions of this thesis and outline possible 

future research directions for an interested reader. 

5.1 Contributions 

The contribution of this thesis is twofold: first, a low complexity LDPC decoder 

is devised and second, a low complexity LDPC coding method for the Gaussian 

broadcast channels is proposed. 

In Chapter 3, a low complexity decoder for LDPC codes has been proposed. 

Using the stability analysis, we have showed that the performance of irregular LDPC 

codes designed for SP decoder with the linear scaling method can be very poor. It 

was shown that the LSMS decoder forces A2 values to be small which prevents LSMS 

codes to achieve high rates. The proposed method was proved to exhibit a more 

relaxed stability condition. By code optimization, we showed that our codes have 

superior performance with respect to both MS and LSMS codes. 

In Chapter 4, a method for communicating over a two-user Gaussian broadcast 

channel which has considerably lower complexity than the method used in [16] was 

proposed. The previously studied method [16] needs both receivers to have the 

code of each other. Also, both LDPC codes should be jointly optimized which is a 

cumbersome task. We showed that using a novel labeling method and the BICM 

scheme, the complexity can be significantly reduced in a way that each user only 

requires his own LDPC code and the code design can be done separately for each 

of the users. 
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5.2 Future Research 

In this section, we present some suggestions for future research. 

A Low Complexity L D P C Decoder 

• It is quite interesting if one can find the optimal function such that if it is 

concatenated with a MS check node, it gives the best performance in terms of 

the gap to the capacity. 

• We optimized our codes for a fixed scaling factor (a) and cutoff LLR (#0). 

However, one can use different values for each iteration. 

• Given a fixed BISO channel, it is interesting if one can propose an approxi­

mation to the scaling factor for LSMS decoder. Recent works consider only 

optimization through density evolution. 

• Finding the necessary part of the stability condition theorems for the LSMS 

decoder and the proposed decoder is a possible direction. 

L D P C Codes for Gaussian Broadcast Channels 

• Since using binary codes at a high SNR. is not efficient, the extension of our 

proposed method and also [16] to higher level modulation is of great interest. 

• We assumed that the CSI is known perfectly at the receivers. Designing codes 

for fading Gaussian broadcast channel where the fading coefficients are not 

known to the receivers is a challenging problem. One problem which causes 

difficulty to this extension is that the capacity region of a general broadcast 

channel is not known. For general fading processes that are even perfectly 

known at the receiver, the channel is neither degraded nor more capable. 

• Extension of our proposed Gray labeling method to more than two users is 

possible. 
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