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Abstract

BACKGROUND: Healthy dietary intake and appropriate weight gain are two key

components of an ideal pregnancy. The objective of this thesis was to investigate

the weight gain pattern of a large cohort of pregnant women and its association with

dietary intakes, which may provide valuable information for the clinical intervention

of inappropriate gestational weight gain. Two instruments were used to capture the

dietary intakes, the level of agreement and possibility of pooling the results need to be

studied.

METHOD: For a validation sample of 58 child-bearing-age women, the total calories

intakes captured by two instruments were compared by the Bland-Altman plot. The

intakes of key nutrient captured by the interviewer-administered instrument version

were predicted by the nutrient intakes from the web-based version with a regression

model. Then we estimated the weight growth trajectories of each subject through

functional principal component analysis techniques. The total weight gain predicted

from the trajectory was then regressed on the prepregnancy body mass index, and

dietary intakes and physical activities which were measured through pregnancy.

RESULTS: We found that the relative bias between the two instruments were small, yet

the variances in individuals could be large. Energy-adjusted intakes of macronutrients

showed reasonable correlations between the two instruments (0.56 for fat, 0.73 for

protein, and 0.67 for carbohydrate). LASSO regularization based multiple regression

greatly improved the cross-validated R2 for folate from 0.0033 to 0.46. Our estimated

weight growth trajectories showed good accuracy when compared to classic mixed-

effect models with significant smaller root mean squared error. The predicted weight

gain from trajectory had a strong correlation with prepregnancy body mass index, but
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adding the dietary intake and physical activity information did not improve the R2 of

the model.

CONCLUSIONS: Direct pooling of the results from the two instruments may not be

feasible. But when pooling is considered, energy-adjustment for macronutrients and

the LASSO-based multiple regression for micronutrients are recommended. Functional

principal component analysis has significant advantages of flexibility and robustness for

the weight growth trajectory modeling. We found that the weight gain during preg-

nancy negatively correlated to prepregnancy BMI, but the dietary intake and physical

activities measured in our study did not provide useful information in predicting the

weight gain.
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Chapter 1

Background and Motivation

1.1 Introduction

Maternal nutritional condition during pregnancy is significant as it plays a critical

role in the health of both the mother and the fetus [6, 115]. In an ideal pregnancy,

the mother maintans good health condition, and gives birth to a full-term, healthy

infant [18]. Kaiser et al. identified the key components leading to a healthy pregnancy

outcome: healthy prepregnancy weight, appropriate weight gain, diverse of dietary

consumption, and appropriate prenatal vitamin supplementation [60]. However, many

pregnant women do not get proper nutrition and they may suffer from undernutrition or

improper weight gain [22]. These conditions are proved to be linked to an increased risk

of various health issues of both the mother and her offspring [15, 17, 75, 96]. Protein-

energy under-nutrition, which is associated with impaired fetal growth, is a major

health issue in developing countries [78]. In developed countries, over-nutrition is more

common [76], and it is associated with an increased risk of preeclampsia, gestational

diabetes, and a higher cesarean section rate. A child born to an obese mother is more

likely to be born large for gestational age, and to develop type II diabetes in later life.

Some micronutrient deficiencies affect both the developing and developed countries.

For example, the World Health Organization estimated that there is a high prevalence

of iron deficiency in pregnant women around the world. Iron deficiency causes anemia

and put women at a higher risk of perinatal mortality and morbidity, and is associated
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with low birth weight and preterm birth [3].

Dietary intake accounts for the majority of nutrient intakes during pregnancy. It

includes the intakes of macronutrients (carbohydrate, fat, and protein) which constitute

the energy consumption, and the intakes of micronutrients which are crucial to the

maternal metabolism and fetal development. Among the literatures on dietary intakes

during pregnancy, most studies were conducted in developing countries [7, 57] or among

low-income groups [110].

Weight gain during pregnancy is an important proxy of maternal nutrition. Health

professionals have agreed on a uniform guideline of weight gain during pregnancy [123].

Pregnant women gaining weight within the recommended range has the best chance

to have an optimal pregnancy outcome [84]. However, in developed countries such as

the United States and Canada, excessive weight gain occurs to a large portion of the

pregnant population [51, 68, 98], which calls for effective clinical interventions. Existing

intervention practices focused on the counseling of dietary intake and physical activities

based on the monitoring of weight gain [90, 86, 92], where the graph of weight growth

of each individual was obtained and continually compared to a set weight gain goal. In

both research and clinical communities, there is little work to statistically model the

individual-specific weight growth curve (trajectory).

To fill in the gaps of the research work in developed countries, the Alberta Preg-

nancy Outcomes and Nutrition (APrON) study recruited a large cohort of pregnant

women in Alberta, Canada. The study aims to investigate the relationship between

maternal nutrient status and obstetric outcome as well as maternal and child health

and development [61], so as to assist making appropriate dietary recommendations or

food policy change.

2



1.2 Motivation

The APrON study used two versions of 24-hour food recall instruments to collect the

nutrient intake data from participants, an interviewer-administered instrument and a

self-administered, web-based instrument[61]. The two instruments are different by the

administration type and the algorithm of extracting nutrient intakes from food items

consumed. The interviewer-administered instrument has been developed and used for

a long time [104], whereas the self-administered, web-based instrument is relatively

new [73, 47]. Therefore, one of the objectives of my thesis is to determine whether or

not the nutrient intakes extracted from the two instruments can be pooled together

for further modeling, especially the “key nutrients” important for the fetal growth.

Calibration by regression is considered where the nutrient intakes measured by the

interviewer-administered instrument are responses and the nutrient intakes measured

by the web-based instrument are predictors. I aim to develop a new calibration method

for the key nutrients, which improves the performance of the simple linear regression

based calibration.

To facilitate the clinical intervention of weight gain during pregnancy, another goal

is to estimate the weight growth trajectory of each individual. The weight records and

nutrient intakes were collected sparsely, up to five times for weight and up to three times

for nutrient intake, and longitudinally through pregnancy. To model the weight growth

trajectory as a smooth function, traditional longitudinal data analysis techniques, such

as mixed-effect models, may not be suitable for such sparse data. I propose to apply

functional principal component analysis by conditional expectation, which has been

shown to work well for sparse data [124]. The estimated trajectories are compared

with the estimation from mixed-effect model. Total weight gain is estimated from the

trajectory, and the association between the estimated weight gain and prepregnancy
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baseline information, nutrient intakes, physical activities are studied through multiple

linear regressions.

1.3 Thesis Structure

In Chapter 2, I investigate the agreement between the two dietary intake assessment

instruments employed in the APrON study, and examine the possibility of pooling the

intake from the two instruments. I propose a new calibration method and report the

improved R2. In Chapter 3, I illustrate a new approach for weight growth trajectory

modeling and compare the new approach and the traditional mixed-effect model. I then

model the estimated total weight gain by the predictors including prepregnancy body

mass index, nutrient intakes and physical activities. A predictive model is obtained for

the total weight gain. A discussion and potential future work follow in Chapter 4.
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Chapter 2

Machine Learning Based

Calibration of a Web-based and

Interviewer-administered 24-hour

Food Recall

2.1 Introduction

2.1.1 Maternal Nutrition

Maternal nutrient intakes during pregnancy can significantly influence the mother’s

health, pregnancy outcomes, as well as the fetus/infant’s well-being. For example,

extra energy intake is necessary for pregnant women to support the development of

the fetus as well as compensate increased maternal basal metabolism rate. Diet low in

fiber and high in glycemic load during pregnancy has been linked to increased risk of

gestational diabetes mellitus [125]. Adequate intake of micronutrients are important

during pregnancy, too. Pregnant women with low folate intake have a greater risk of

preterm delivery and low birth weight infant as reported in [100]. Folate intake is also

confirmed to prevent neural tube defects [41]. Observational studies show that low

dietary vitamin D intake during pregnancy is associated with increased risk of type
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I diabetes and wheezing in offsprings [35, 14]. Therefore, efforts are taken by health

professionals to improve maternal nutrition, including achieving appropriate energy

intake and ensuring adequate intake of specific nutrients to meet maternal and fetal

development requirements [82].

Nutrition intake mainly come from two sources: dietary intake and supplement

usage. The former accounts for the overall energy and all the macronutrients (carbo-

hydrate, protein, fat, and alcohol) intake. In general, a balanced diet provides adequate

micronutrients (vitamins and minerals) for most people. However, some reports sug-

gest that usual dietary intake of certain nutrients is inadequate to meet the needs

of pregnant women; so the supplemental usage has been widely recommended during

pregnancy [82]. However, research work showed that even with supplement usage, it

may not fully compensate for dietary deficiencies [41, 65]. Therefore, studying the

dietary pattern is necessary to help promote healthy dietary habits among pregnant

women.

The majority of existing dietary pattern studies were either from developing coun-

tries [7, 57, 81, 97, 108, 116] or focused on low-income population [55, 109, 110]. Only

a few were conducted in developed countries and targeted higher socioeconomic status

(SES) population [26, 38, 77, 95, 102]. Moreover, the studies on the higher SES popula-

tion did show deficiency in some particular nutrients, such as folate [95], calcium, iron,

and vitamins D and E [38]. These studies suggested that the significance of nutrition

intakes in these well-nourished population may be under-evaluated. In Canada, several

large nutrition studies took place in the beginning of 21st century [26, 80]. Most of

them studied specific nutrients, and similar conclusions were yielded, that certain nu-

trients intakes were lower than recommended among Canadian pregnant women, such

as (n-3) fatty acid [26] and vitamin D [80].
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2.1.2 Nutrient Intake Assessment

The use of an appropriate intake assessment instrument is critical in nutrition epi-

demiology. Commonly used instruments include food frequency questionnaires (FFQ)

, food records, 24-hour food recall, which are designed to fit different situations [104].

FFQ asks participants to report the consumption of food items over a defined period

of time, including consumption frequency as well as the portion sizes [104]. It is suitable

for large-scale survey because its self-administered and machine-readable nature makes

it cost-effective [91]. They are widely used to assess dietary intakes for a certain time

span, such as three months, 12 months, etc. [34]. However, it is not detailed enough,

and only captures the usual dietary intakes over a longer terms. It also relies on the

participant’s ability to form and report a generic tendency of diet, which can be difficult

for many people. In fact, studies using reference recovery biomarkers indicated that

FFQ is subject to substantial measurement errors which lead to biases [16].

The food record instrument asks the participants to record the consumed foods

and beverages throughout of the reporting day. It is detailed, real-time, and captures

current short-term diet. However, converting the reports which are usually hand-

written into quantitative intakes, which is referred as coding of a questionnaire, can be

quite time consuming and expensive. For the participants, the real-time recording can

be a heavy burden and discourages them from responding. These drawbacks make it

difficult to use on large scale studies [112].

In the classic, interviewer-administered 24-hour food recall, participant is inter-

viewed by a trained professional, usually a dietitian, to report all food items consumed

in the most recent 24 hour period. It is also detailed and short-term oriented as food

record, but less expensive [34]. An improved version is the “multiple pass” 24-hour

recall. It contains more than one steps, which are referred as “passes” of revisiting

the dietary information: (i) a quick list of foods consumed; (ii) a detailed record; (iii)
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reminder for food that might be forgotten, and (iv) a review of all the records and

further details, such as portion sizes. This method has better precision than a general

24-hour food recall [19].

The 24-hour food recall has less report burden for the respondents and is more fea-

sible for large-scale studies. However, the need for trained professionals who administer

the interviews make it comparably expensive, especially for large cohort studies. It also

takes a considerable amount of time and effort to code the recorded food and beverages

(done by an algorithm). Due to these limitations, the web-based, self-administered 24-

hour food recall was introduced. Compared to the interviewer-administered 24-hour

food recall, the web-based instrument has lower study cost as trained professionals are

no longer needed for the interview administration. Participants do not need to visit the

clinic in person, giving them more convenience and freedom. Moreover, it has build-in

nutrient “extraction” software that codes the responses. One example of web-based,

self-administered 24-hour food recall is the widely used Automated Self-Administered

24-hour dietary recall (ASA24), the first version of which was launched in 2011 [107].

ASA24 has been validated in an adult group [63], showing good agreement with the

interviewer-administered version. In Canada, a similar, yet much earlier version is the

Food Behavior Questionnaire (FBQ), developed at the University of Waterloo in 2003

[73]. It has been further modified by researchers at the University of Alberta to assess

meal behaviors in 2009 [105]. The collected results from FBQ instrument are compa-

rable to the interviewer-administered one in a group of adolescents for total calories,

and key nutrients (carbohydrates, protein, fat, calcium, iron, vitamin B6, B12, C, D,

folate, zinc, sodium, and potassium) [47].
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2.1.3 Instruments Used in the APrON Study

As a large-scale cohort study, APrON had to balance accuracy and cost for the food

intake assessment. The dietary pattern of pregnant women often changes from time

to time [6, 94]. So the instrument should capture short-term dietary intake with rea-

sonable cost. Therefore, the 24-hour food recall questionnaires, which is more suitable

for short-term studies than the FFQ and less expensive than the food record, was

employed.

The interviewer-administered 24-hour food recall was used initially. Questionnaires

was collected by professionally trained research assistants, using a multiple pass 24-

hour recall questionnaire. Visual food models were shown to help women estimate

portion sizes. Probes were provided to get more accurate information of food, including

details such as cooking methods, location and time of eating, and food brand names.

All information was reviewed back to the women to ensure information was correctly

recorded. Nutrient intake information, including both macro and micronutrients, were

calculated by the Food Processer software (version 10.6.0, 2010, esha Research, Salem,

OR).

However, after interviewing the first cohort of 600 participants, it was observed that

the respondence rate for in-person visits were lower than the self-reported questionnaire

to be completed at home [61]. So a web-based instrument was introduced to increase

the completion rate for the rest of cohort. The web-based instrument was based on a

validated online FBQ as in [73]. All foods and beverages consumed the previous day

were recorded by selecting items from a list of approximately 800 foods and beverages.

Built in cues and response options, such as portion size images and beverage intake

reminders, were provided throughout the online recall process. Additional visual cues

(the virtual meal plate and meal summary) provided participants the opportunity to

revise items in the recall. This online tool was also modified to be used with a cohort of

9



pregnant women by including additional food items that had been frequently reported

in early interviews with pregnant women; as well as some ethnic foods and recipes.

Subjects received brief instruction by a trained research assistant before completion of

the web-based instrument.

2.1.4 Calibration Between Two Instruments

The dietary intakes measured through food questionnaires are well-known prone to

various measurement errors, including errors from the memory and perception of the

subjects, and the coding process of the questionnaires [33]. Though the two instruments

employed in APrON have been validated before in Canadian adolescents [105], they

have not been validated in pregnant women. A common issue in validation of dietary

intake questionnaires is the lack of a gold standard, which measures the true intake [33].

So a related, but different approach, calibration is often considered. In the calibration

between two instruments, the intakes measured by one instrument is estimated from

the intakes measured by the other instrument, such that the effects of measurement

bias can be are corrected. The main objective of this chapter is to study the agreement

between the intakes of several key nutrients obtained from these two survey methods:

the web-based survey and the interviewer-administered questionnaire, and investigate

the possibility of calibrating and pooling the nutrients intake from the two instruments

for further modeling.

More specifically, I aim at calibrating the calorie contribution of the three macronu-

trients, protein, fat, and carbohydrate, as well as the micronutrients vitamin C, vitamin

D, folate, iron and choline. These “key nutrients” play important roles in the fetus

development, especially neurodevelopment [36, 41, 48, 106]. The macronutrients con-

stitutes energy intake, and each of them has its unique metabolic values. Carbohydrate

is the primary source of glucose, a major fuel for fetal growth [99]; protein intake is

10



needed for the placenta development, and is associated with both placenta and birth

weight [39]; fat is the source of essential fatty acids, which are necessary for the fe-

tus brain development [23]. Both vitamin C and folate are shown to be related with

neural tube defects [103]. vitamin D is known to affect fetus brain development by in-

fluencing cell differentiation, neurotrophic factor expression, etc. [28]. Iron deficiency

is a primary cause of anemia, which is believed to expose pregnant women to greater

risk of perinatal mortality and morbidity, and can affect the cognitive development of

offspring [3, 70]. Prenatal plasma choline is shown to be related to the early cognitive

development of infants [121].

Previous studies on the validity and calibration of dietary intake instrument usually

does not involve much complexity other than correlation coefficients or linear regression

[2, 12, 58, 73]. Johansson et al. provided the calibration equation between a 24-

hour food recall and an FFQ. The authors used Spearman’s correlation coefficient to

measure the agreement between these two instruments. The calibration equation was

obtained by simple linear regression (SLR), with the intakes measured from the FFQ

as predictor and the intakes measured from the 24-hour recall as response. The slope

of this regression line is named “calibration factor”. As a nonparametric measure

of rank correlation, Spearman’s correlation may overestimate the agreement between

the two instruments, especially when the calibration equation is a parametric linear

model. Pearson’s correlation was employed in [2], which represents the performance

of the SLR-based calibration. The work of Briggs et al. utilized more indicators of

agreement such as Bland-Altman’s plot [12]. In a Bland-Altman’s plot, the mean

difference between the two methods of measurement (the “bias”) is calculated, and the

95% limits of agreement are defined as 1.96 standard deviations below or above the

mean difference. Good agreement can be concluded if the 95% limits include 95% of

differences between the two measurement results. The calibration was also based on
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SLR.

SLR uses the intake of only one nutrient as predictor, and the correlation between

different nutrients is not considered. Nevertheless, one food item usually contains

more than one nutrients, and a nutrient is rarely consumed alone. So in food intake

assessments, the correlation between the intakes of nutrients can be very complicated.

The commonly existing reporting bias in either instrument, will probably result in that

the intakes of more than one nutrients are affected. In this case, an SLR model may

not capture the relationship well.

In common daily diets, certain nutrients tend to be consumed together. For exam-

ple, dietary vitamin C often comes from dark green leafy vegetables and fruits, which

are often rich in fiber and folate, too. So the intake of vitamin C, folate, and fiber

are highly correlated [49]. Meanwhile, it is reported that people with high-fat or high-

alcohol diet tend to consume less fruit and vegetables, making the intake of fat and

alcohol negatively correlated with vitamin C, folate, and fiber. A food questionnaire

does not evaluate the intake of nutrients independently, rather, it captures the entire

dietary profile of the participant, where various correlation of nutrients are present.

Therefore, it may be useful to include multiple predictors in the calibration. Better

performance of the calibration equation, e.g., higher multiple correlation coefficients,

may be achieved by considering the comprehensive dietary profile information.

Using multiple predictors can brings up new issues. Numerous nutrient intakes

are computed from a food recall. Using the intake information of all nutrients in the

estimation of a certain nutrient can result in overfitting, i.e., the model fits to the

noise rather than the true signal. For example, when estimating the intake of vitamin

C measured in instrument A, the variance of the model can be reduced by utilizing

all nutrients’ intake information measured in instrument B, including carbohydrate,

protein, calcium and so on. However, estimation of the coefficients for these nutrients
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could be driven by some random errors (noise) and result in bias in the model. The

estimated model may fit current data set well, nonetheless when new data come in, the

new predicted vitamin C may be not accurate as it is driven by the unrelated nutrients’

intakes. Therefore, a variable selection procedure is needed in the multi-predictor

modeling, to achieve a balance in the bias-variance tradeoff. This will also provide

the advantage of easier interpretation. A well-studied and popular tool for variable

selection in linear regression models is the Least Absolute Shrinkage and Selection

Operator (LASSO) [114]. It is easy to implement and also provides selection flexibility

through parameter tuning [114]. Details are to be provided in Section 2.2.2.

2.1.5 Our Contribution

We study the agreement between the intakes of nutrients measured from web-based and

the interviewer-administered 24-hour food recall instruments employed in the APrON

study. The nutrient intakes from the web-based instrument are treated as predictor,

and the nutrient intakes from the interviewer-administered instrument are used as

response. Different techniques are applied to improve calibration using the classic SLR

method as a benchmark. Our work can be summarized as follows:

• Bland-Altman plot of the total calories are given, showing acceptable agreement

between the two instruments.

• For macronutrients, I propose the energy-adjustment based calibration. Two

energy adjustment approaches are investigated, and one of them improves the R2

significantly.

• For several micronutrients of interest, namely vitamin C, D, iron, folate, and

choline, the calibration equations with multiple predictors performed significantly
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better than SLR. The R2 for folate is remarkably improved when LASSO was

used.

2.2 Materials and Methods

2.2.1 Materials

To study the agreement between the two instruments, 58 female volunteers were recruit-

ed by a friend-to-friend referring method. The inclusion criteria were: child-bearing age

(16-40 years old), able to comprehend written/spoken English, and computer-literate.

They were all non-pregnant. Each volunteer was asked to finish the web-based instru-

ment and interviewer-administered instrument for the same 24-hour period, and the

entire protocol took less than 90 minutes. The order in which each volunteer finished

the two instruments was randomized.

The intake measurements from the two instruments has 25 nutrients in common.

Alcohol is included in the interviewer-administered instrument but not in the web-

based. To account for this, I subtract the calories attributed to alcohol from the

total calories intake in the interviewer-administered instrument. After coding the food

intakes for the two instruments, I add another inclusion criteria, that the macronutrient

intakes, including carbohydrate, protein and fat, are consistent with the total calories,

i.e., the total calories calculated from all macronutrients are within 90-110% of the

directly calculated total calories. Applying the inclusion criteria, we have 55 valid

records. The nutrients and their units are listed in Table 1.
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Table 1: List of the nutrients and their units in the web-based and interviewer-
administered instruments.

Nutrient Unit Nutrient Unit
Fat kCal Vitamin B3 mg

Saturated fat kCal Vitamin B6 mg
Protein kCal Vitamin B12 mg

Carbohydrate kCal Vitamin C mcg
Fiber g Vitamin D IU
Sugar g Folate mcg

MonoFat g Calcium mg
PolyFat g Iron mg
Transfat g Potassium mg

Cholesterol g Sodium mg
Vitamin A IU Caffeine mg
Vitamin B1 mg Choline mg
Vitamin B2 mg

2.2.2 Method

To assess the agreement between the two versions of questionnaires, I first obtain the

Bland-Altman plot of the total calories captured from the two instruments. Bland-

Altman plot was proposed by Altman and Bland in [4] to compare two methods of

measurement. More specifically, the method is to decide whether one method could re-

place the other without loss of much accuracy. The difference and average is calculated

for each pair of measurements, and plotted on the y and x coordinate respectively. For

a sample S with two measurements S1 and S2, the coordinate is
S1+S2

2
on x, and S1−S2

on y. The mean value of the differences, S1 − S2 is then the “relative bias”, plotted as

a dashed line. The standard deviation of the differences, s = SD(S1 − S2) is the esti-

mate of standard deviation of bias. Then the hypothesis that the relative bias is zero

can be tested using a one-sample t-test. Confidence band is given on the plot (above

and below the “bias”). The 95% reference interval [S1 − S2 − 1.96s, S1 − S2 +1.96s] is

termed “limits of agreement”. If the width of the reference interval is not acceptable
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in the clinical goals, then the two method cannot be interchanged [37].

For the calibration procedure, the regression model is referred as calibration equa-

tion. In this chapter, I use the nutrient intakes measured in the web-based instrument

and in the interviewer-administered instrument as predictors and responses respective-

ly. The R2 of the model is the proportion of variance in the response explained by

the predictors. The square root of R2 is the Pearson’s correlation coefficient. They

are indicators of the model performance: higher R2 or Pearson’s correlation coefficient

suggests better calibration. Specifically, we are interested in the calibration of total

calories intake, and the “key nutrients” as mentioned in Section 2.1.4, carbohydrates,

fat, protein, vitamin C, vitamin D, folate, iron, and choline as response.

The improvement of the calibration is represented by an increase in the R2 or Pear-

son’s correlation coefficient. One possible approach to increase R2 is to apply energy

adjustment. Most nutrient intakes tend to be positively correlated with total energy

intake. Thus part of the variation of nutrient intakes can be explained by the total

energy intake variation instead of the diet composition. That is, the nutrient intake is

confounded by total energy intake [40]. This confounding effect is especially strong for

macronutrients, which contributes to total energy directly [118]. Therefore, I employ

the energy adjustment approach for the macronutrients. There are two popular ways

for energy adjustment [119]. One is the proportional adjustment, or nutrient density

method. For each subject, I consider only the proportion of energy obtained from a

macronutrient, i.e., all subjects has the macronutrients intake proportion summing up

to 1. The other way is residual adjustment [62]. For a simple linear regression model

with a macronutrient intake as response, and the total calories intake as predictor, the

adjusted intake is defined to be the residual intake. Suppose we have subject S, with

two measurements for each macronutrient: fat intakes F1, F2, protein intakes P1, P2,

carbohydrate intakes C1, C2 and total calories T1, T2, where subscript 1 indicates that
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the intake was measured in the interviewer-administered instrument, and subscript 2

indicates the intake was measured in the web-based instrument. The measurements

approximately satisfy

9Fi + 4Pi + 4Ci = Ti, for i = 1, 2.

Then in the proportional adjustment method, the adjusted intakes are now Fadj,i =

Fi/Ti, Padj,i = Pi/Ti, Cadj,i = Ci/Ti respectively. Taking fat as an example, the cali-

bration equation is

F̂adj,1 = β̂0 + β̂1Fadj,2 = β̂0 + β̂1
F2

T2

.

In the residual adjustment method, the adjusted fat intake is according to the regression

model

F̃adj,i = Fi − F̂i = Fi − (Tiγ̂1 + γ̂0),

where γ̂1 and γ̂0 are the estimated coefficients in the regression model

F ∼ γ0 + γ1T.

Estimated adjusted intake of fat are similarly defined:

ˆ̃Fadj,1 =
ˆ̃β0 +

ˆ̃β1F̃adj,2

Using multiple predictors is another possible approach to improve the calibration.

I regress the nutrient intake measured in the interviewer-administered instrument onto

multiple nutrient intakes measured in the web-based instrument. By extending the

range of predictors, I am essentially modeling the whole diet profile measured in the

interviewer-administered instrument by the diet profile measured in the web-based one.
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As discussed in Section 2.1.4, one food item may contain various nutrients, and the

nutrient intakes correlates with each other in a complicated manner. Therefore using

the whole profile as predictor may be more suitable, as some of the correlations may

be useful in the modeling of a certain nutrient.

A popular tool to associate one response variable (in our scenario, the intake of

certain nutrient measured in the interviewer-administered instrument) and multiple

predictor variables (the nutrient intakes measured in the web-based instrument) is the

multiple linear regression (MLR) through ordinary least square (OLS). MLR works

properly when there are no redundant predictors, or no multi-collinearity. As shown in

Table 1, 25 nutrient intakes are captured in both instruments. Some of intakes of the

nutrients are mostly likely to be correlated, as discussed in Section 2.1.4. The large

number of correlated nutrients could induce high redundancy. Meanwhile, including

too many predictors may lead to overfitting and affect the prediction performance

of the model. Regression based on regularization (penalization) are widely used to

prevent overfitting. For a sample set (Xi, yi) = (x1,i, ..., xp,i, yi) with i = 1, ..., n, unlike

usual OLS regression which solves the coefficient β = (β0, β1, ..., βp) by minimizing the

quadratic loss:

L(β) = ∥Y −Xβ∥22 =
n∑

i=1

(
yi − β0 −

p∑
j=1

xj,iβj

)2

,

the regression with regularization adds a penalty term in the loss function:

Lreg(β) = ∥Y −Xβ∥22 + λP (β), (2.2.1)

where λ is a tuning parameter to be chosen by user, and P (β) is the penalty term which

is a function of β. By adding the penalty term we are shrinking P , so the minimization
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is called a shrinkage procedure.

When P (β) = ∥β∥22 =
∑p

j=1 β
2
j , the shrinkage is called ridge regression (RR) [53].

RR is easy to implement as a quadratic optimization, and shrinks each coefficient

towards 0 [83]. The developed model is not sparse, where sparse means that some

coefficient βj’s are zero, i.e., some predictors are not included in the developed model.

If variable selection is needed, the LASSO method is more suitable, which uses P (β) =

∥β∥1 =
∑p

j=1 |βp|. Tibshirani explained in [114] that this penalty term results in zero

coefficients for some covariates, namely the solution β̂ = (β̂0, ..., β̂p) has β̂j = 0 for

some j ∈ {0, ..., p}.

The penalty coefficient λ, which is often referred as a “tuning parameter”, decides

the level of shrinkage of the estimates. A large λ value corresponds to more shrinkage

of ∥β∥1 towards zero, and more coefficients βj’s are forced to be zero. Thus a simple

linear model with fewer predictors will be obtained. In the bias-variance tradeoff, it

results in an estimate with less model complexity or bias, but larger variance. Vice

versa when using a small λ, the developed model has smaller square error, and more

predictors (corresponding to larger ∥β∥1) may be selected, corresponding to an estimate

with smaller variance but larger bias. By choosing different λ values, we get different

numbers of variables.

The usual practice for choosing the tuning parameter λ is through a k−fold cross-

validation (CV) method which minimizes the prediction error. The whole data set is

divided into k “folds” of data, and each time we use k − 1 of them to make a training

set to estimate the model, and the k-th fold as validation set to calculate the error

of the estimated model. After k folds of validation, the residual is calculated for each

instance, and the mean the squared residuals across all folds are defined as the CV

error. Naturally we may want to choose the λ with the least mean CV error Emin,

denoted by λmin. However, λmin contains uncertainty resulted from the randomization
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of the folds. There can be different choices of λ with close CV errors. An empirically

widely used choice is the “one standard error” rule.

In this “one standard error” rule, we first average the CV errors in each fold,

denoting them as E1, ..., Ek. Then we compute the standard deviation, sd(E) of these

K averaged CV errors. and the standard error, se(E) is estimated as sd(E)/K. We

choose the largest λ such that the CV error is within (Emin, Emin + se(E)), so that we

have more regularization and a simpler model is achieved. This rule was first proposed

by Breiman et al. to define an optimal tree size for a classification tree [11]. It has

been suggested by Hastie et al. for cross-validation [50] and used by many other model

select ion practices, e.g., Guo et al. used it to improve the performance of classification

of cancers using a reasonably reduced subset of genes [45]. I adopt this parameter

tuning rule, and then compare the CV-R2 of simple linear regression and the CV-R2

of LASSO.

2.3 Results

The Bland-Altman plot of the total calories is shown in Figure.1. There is a slight

trend of under-reporting for the web-based instrument, as the mean of the difference is

above zero, but the under-reporting tendency is not severe. The points are randomly

scattered horizontally, and the difference is not influenced by the mean of total calories.

Most points (52 out of 55, 94.5%) are within the 95% limits of agreement. The rest

three points are outside the limits of agreement, showing weak agreement for these

subjects. The order in which the subject finishing these two instruments do not seem

to play a role in under/over-reporting, since the triangles and diamonds are randomly

scattered around the mean difference line.

Traditional questionnaire calibration employs the Pearson correlation coefficient,
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Figure 1: Bland-Altman plot of the total calories intake from the two instruments,
interviewer-administered minus web-based. Middle dashed line is the mean difference,
showing a light under-reporting trend in the web-based instrument. Upper and lower
dashed line represents the 95% limits of agreement. Points outside the lines represents
weak agreement.
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Table 2: R2 and Pearson’s correlation coefficient r of the calibration based on simple
linear regression (SLR)

Nutrient R2 r

Macronutrient
Fat 0.22 0.47

Protein 0.28 0.52
Carbohydrate 0.39 0.63

Micronutrient

Vitamin C 0.58 0.76
Vitamin D 0.48 0.70
Folate 0.03 0.16
Iron 0.49 0.70

Choline 0.19 0.44

which can be obtained from a simple linear regression. The R2 and Pearson’s correla-

tion coefficient r are listed in Table 2. For the macronutrients fat, carbohydrates and

protein, the Pearson’s correlation coefficients (square roots of the R2’s) are acceptable

ranging from 0.47 to 0.63. However, none of them has r > 0.65, which means a direct

pooling of the two instruments is probably not appropriate. Fat has the least correla-

tion, likely due to well-known selective underreporting of fat intake in self-administered

web-based food intake questionnaires [71]. For the micronutrients, calibration based

on SLR shows correlation coefficient for vitamin C (0.76), vitamin D(0.70), iron (0.70),

folate (0.16), and choline (0.44). The agreement is good for vitamin C, D and iron,

with r > 0.7, suggesting that pooling the results is possible. However the correlation

is not ideal for other nutrients. The correlation for folate is especially low, indicating

a probable issue in the measurement of folate from one of the instruments. I thus seek

for amendments of the regression models.

Calibration of Macronutrients with Energy Adjustment

While the intakes as proportion of total calories describes the dietary composition,

the nutrient residuals provide a measure of nutrient intake uncorrelated with total
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Table 3: Comparison of Pearson’s correlation coefficients r of method 1: SLR with
no energy adjustment, method 2: SLR with proportional adjustment, method 3: SLR
with residual adjustment. Method 2 greatly improves r, but improvement from method
3 is limited.

Nutrient
r

Method 1 Method 2 Method 3
Fat 0.47 0.56 0.52

Protein 0.52 0.73 0.54
Carbohydrate 0.63 0.67 0.57

Table 4: Performance comparison of the simple linear regression (SLR) and LASSO

Nutrient SLR LASSO Variables Selected from the to Estimate

Vitamin C 0.50 0.52 Vitamin C, Potassium

Vitamin D 0.43 0.49 Saturated fat, Vitamin D, Choline

Folate 0.0033 0.46 Fiber, Vitamin B12, Iron, Potassium

Iron 0.40 0.43 Fiber, Iron

Choline 0.083 0.22 Vitamin B6, Choline

energy intake. In our study, the proportional adjustment greatly improved the Pear-

son’s correlation coefficients of macronutrients’ intakes from the two instruments, as

shown in Table 3. The residual adjustment does not improve the correlation except

for fat. The energy distribution of the macronutrients are more consistently reported,

suggesting possible biases in the portion sizes in reporting.

Calibration of Micronutrients with Multiple Predictors

For the micronutrients, I use LASSO for variable selection. The R2’s are shown in

Table 4. Note that the SLR R2’s are also 5-fold cross-validated on the same fold cuts

as the CV-LASSO. So their values are different from the R2’s from direct SLR reported

in Table 2.

For all the micronutrients considered, the CV-R2’s for LASSO are generally better

than those of SLR. Vitamin C and iron have the least improvement, probably because

their already high correlation by SLR, so the room of improvement is limited. There
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are only one more variable selected other than the nutrient itself. Potassium is included

to estimated vitamin C intake, accounting for the leafy greens and some fruits rich in

both. Most non-heme (plant-sourced) iron rich foods are rich in fiber (e.g., spinach,

asparagus), which explained the inclusion of fiber in the model that estimates iron. R2

for folate has improved dramatically from 0.0033 to 0.46, and the selected predictors

do not include folate from the web-based instrument. This suggests that, if there is

a problem in capturing folate is in the web-based instrument, it is possible to discard

the measurement and get a reasonable estimate from other nutrients. The selected

variables (fiber, vitamin B12, iron, and potassium) are also consistent with the well-

known nutrition facts: dietary folate are mainly from dark green leafy vegetables and

enriched flour; the former is typically rich in fiber and potassium, and the latter is

usually also enriched in vitamin B’s. There is some improvement in R2 of vitamin D

and choline. The selected variables also reflects some common sources of the nutrients

involved. Typical examples include fatty fish and eggs, which are rich in fat, vitamin

D, vitamin B6 and choline. It is also noted that choline has a low correlation for

SLR (0.083 vs 0.19). After experiments on different fold cuts, we found that it was

accounted for by the randomization in the fold cuts, considering the SLR without CV

in Table 2. Experiments with different fold cuts for 5-fold CV had variable R2s.

2.4 Discussion

Data from food intake assessment instruments are often subject to report and mea-

surement errors [16, 34]. Studying the magnitude and relative direction of the errors

between two measurement instrument is essential to assess their impact for the fea-

sibility of pooling these measurements. In our targeted study, APrON, two 24-hour

food recall instruments were used - an interviewer-administered one and a web-based
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one. The aim of this chapter is to explore the agreement between these two instru-

ments, and to estimate the calibration equation which has the nutrient intakes from the

interviewer-administered instrument as response, and the web-based one as predictor,

and then assess the possibility to pool the nutrient intakes from different instruments.

The Bland-Altman plot in Figure 1 of these two instruments’ total calories measure-

ments show that there is a slight tendency of under-reporting the total calories intakes

in the web-based instrument. The 95% limits of agreement is about 1000 (Cals) above

and below the mean difference, indicating the difference between two measurements

for the same individual is on the scale of hundreds of calories. Most points (52 out

of 55, 94.5%) are within the limits of agreement. This suggests that under-reporting

in the self-administered web-based questionnaire is not severe among the sample of

participants, but the variances in individuals can be relatively large. There could be

various reasons. Our participants in the study were recruited on campus who were

likely to be more educated, and thus less likely to under-report when self-reporting,

as noted in previous studies [21]. However, the instructions they received before or

during completing the self-administered web-based instrument may not be detailed or

thorough enough. For an individual participant, remembering and reporting the full

dietary profile can be therefore difficult, and the report or measurement error could be

large. These results calls for a further improvement of the web-based instrument and

instructions of the instruments, to help the participants remember and report correctly

and consistently. Of equal importance is the development of validation and calibration

tools to minimize the relative error between two instruments.

For the calibration, I first use SLR to estimate the interviewer-administered intake

by the same nutrient intake from the web-based instrument. It gives reasonable cor-

relations for macronutrients including fat, protein, carbohydrate and micronutrients

vitamin C, D, and iron, with r >0.45, weaker correlation for choline (r = 0.44), and
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poor correlation for folate (r = 0.16). The result of folate indicates that there could

exist a problem of the folate intake coding process in one of the instruments. This

indication helped our collaborators getting further insight into the instruments, and it

was revealed that there existed an algorithm problem in the folate intake calculation

in the web-based instrument.

After using SLR, I seek to improve this traditional calibration approach. One of

the attempt for improvement is the energy-adjustment approach for macronutrients,

as the macronutrients are confounded with total energy intake. By using the propor-

tional adjustment, the Pearson’s correlation coefficients of macronutrients fat, protein,

carbohydrate increased from 0.47, 0.52, 0.63 to 0.56, 0.73, 0.67. This suggests that

the energy components’ distribution reported by participants are more consistent than

the absolute energy intake of each macronutrient. Similar issues were also reported by

other questionnaire validation studies [5]. Possible reason is the errors in evaluation of

the portion sizes of food items.

The other attempt for improvement is the linear regression with LASSO regulariza-

tion for micronutrients. When building the calibration equation for a certain nutrient,

I considered all 25 nutrients from the web-based instrument, so that the modeling of

the entire dietary profile is possible. To avoid overfitting and allow easier interpre-

tation, a variable selection process by LASSO was hereby proposed. I improved the

CV-R2’s of vitamin C by 0.02, vitamin D by 0.06, folate by 0.46, iron by 0.03, and

choline by 0.14. Compared to the R2 of choline without CV (0.19), the weak correla-

tion of choline in SLR was due to the uncertainty in fold cuts. LASSO method shows

an clear advantage for the folate intake calibration, which was poorly captured in the

web-based instrument. For those nutrients whose intakes are more consistent across the

two instruments, such as vitamin C, D and iron, the improvement of LASSO method

is limited.
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We conclude that, for the dietary intake measurement of child bearing age women,

the agreement between the two instruments, web-based and interviewer-administered,

is acceptable for the nutrients vitamin C,D, and iron. Choline intakes need further in-

vestigation. If the interviewer-administered instrument is used as a gold standard, the

web-based instrument can be adopted. Especially in large cohort studies, employing of

the web-based instrument can reduce the time commitment for the participants, cost

of data collection and processing, and may increase the completion rate. However, it

may not be feasible to directly pool the results from the two instruments together for

other analysis, as the differences between the intakes are not negligible. For macronu-

trients, proportionally energy-adjusted intakes have stronger correlation between the

two instruments, and would be recommended if pooling is considered. The web-based

instrument was proved to be problematic in capturing folate intake, so it is suggested

to use the calibration equation obtained by LASSO to estimate the folate intake.

Despite the promising results and significant improvements of our proposed cali-

bration methods, our study materials and methods may have some limitations, which

can be cast into the following two aspects. (i) The difference between the validation

population and the targeted study population. APrON is a study of pregnant wom-

en, but subjects in this validation study were all non-pregnant. The diet of a generic

child bearing aged woman can be different from a pregnant women [6, 94]. Especially

for women with higher SES, who constituted a large part of the APrON cohort, they

were more prone to make a change toward a healthier diet (e.g., higher folate intake)

and avoid some ingredients, such as alcohol or unpasteurized food, which are possibly

harmful to the fetus [67, 20]. If an instrument has a problem capturing related nu-

trients, the deviation between the diets of pregnant and nonpregnant women can be

magnified or neglected. (ii) Converting the food items into nutrient intakes in two in-

struments revealed the issues in the algorithm for extracting nutrient intakes from diet.
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In my inclusion criteria, I require the energy intake calculation to be consistent, and

this criterion excluded three subjects, whose total calories did not agreeing with the

macronutrients intakes by the corresponding instrument. Two of them are due to the

inconsistency from the web-based instrument, and one of them from the interviewer-

administered instrument. The extremely weak correlation of the folate intakes from

these two instruments also suggested a probable coding problem. Our work helped

our collaborators identify the error in the database used to calculate the intakes in the

web-based instrument. Further revision of the calibration models should be performed.

More research is needed in the study of the agreement of the two instruments for the

usage among pregnant women.s
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Chapter 3

Trajectory Modeling of Gestational

Weight by Functional Principal

Component Analysis

3.1 Introduction

3.1.1 Gestational Weight Gain

Gestational weight gain (GWG) refers to the weight a pregnant woman gained during

pregnancy. It is a fundamental indicator of both the health for the mother and fetus [9].

Achieving appropriate GWG is essential during pregnancy. Inadequate and excessive

GWG have both been linked to various negative pregnancy outcomes as well as future

health issues for both the mother and child [17, 75, 96].

What is an appropriate GWG? The recommendations for GWG were evolving

through the last century. In the 1940s, healthcare providers in the United States rec-

ommended a GWG less than 20lbs, because many birth complications were believed

to be associated with high birth weight [15]. In 1967, the National Research Coun-

cil increased the recommended GWG, suggesting a total weight gain of 24lbs during

pregnancy [18]. Since the 1970s, healthcare providers started to be more aware of the
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possible adverse outcomes of low birth weight [66, 74], which resulted in a further in-

crease in the recommended GWG. It was also noted that different weight groups tend

to have different weight gains during pregnancy, e.g., slimmer women usually have more

weight gain during pregnancy than overweight women does [64]. In 1990, the Institute

of Medicine (IOM) in the United States balanced the health risk of too large and too

small GWG and put forward GWG recommendations based on pre-pregnancy body

mass index (BMI) groups (Table 5) [82]. These recommendations of GWG have been

widely adopted by healthcare providers [17, 85]. The 1990 GWG guideline has been

re-examined in 2009 by IOM [123], as the constitution of population BMI groups in

the US changed drastically during two decades- there are more obese women and less

underweight women than in the 1990s. In this new guideline (Table 6), IOM redefined

the pre-pregnancy BMI groups (underweight, normal weight, overweight, and obese)

according to the World Health Organization (WHO) and made additional recommen-

dations for rates of weight gain in the 2nd and 3rd trimester. In Canada, the two

versions of guidelines have been adapted by Health Canada’s 1999 and 2010 GWG

guidelines respectively [52, 68].

Table 5: Recommended total weight gain ranges for pregnant women, by prepregnancy
body mass index (BMI), Institute of Medicine, 1990

Prepregnancy BMI (kg/m2) Recommended Total GWG (kg)
Low (< 19.8) 12.5-18
Normal (19.8-26.0) 11.5-16
High (26.0-29.0) 7-11.5
Obese (> 29.0) >6.8

Research conducted after the publication of the GWG guidelines supported the

recommendations. Pregnant women who gained within the recommended range are

more likely to bear an infant of optimal birth weight (between 3000 and 4000 g) [84].

Whereas suboptimal, including both inadequate and excessive GWG, are shown to
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Table 6: Recommended total weight gain ranges for pregnant women, by prepregnancy
body mass index (BMI), Institute of Medicine, 2009

Prepregnancy BMI (kg/m2) Recommended total GWG (kg)
Rate of weight gain in the

2nd and 3rd trimester (kg/week)

Underweight (< 18.5) 12.5-18 0.44-0.58
Normal weight (18.5-24.9) 11.5-16 0.35-0.50
Overweight (25.0-29.9) 7-11.5 0.23-0.33
Obese (> 30.0) 5-9 0.17-0.27

have negative impacts on the pregnancy outcomes, and the health of both women and

their infants. Inadequate GWG increases the risk of preterm delivery [101], and small

for gestational age (SGA) (≤ 3rd percentile) infants [75] or low birth weight (LBW)

(≤ 2500g) infants [17, 68]. SGA and LBW infants have increased risk of mortality

and morbidity [75], higher first-year-death rate, and in the long run, impaired growth

and development [17]. On the other hand, excessive GWG is a recognized risk factor

for many adverse pregnancy outcomes such as gestational diabetes, pre-eclampsia,

hypertension [56], and increases the risk of Cesarean delivery [113]. Excessive GWG

also contributes to mother’s obesity later in life, and post-partum weight retention

[88, 96]. For the child, excessive GWG may cause the infant to be large for gestational

age (LGA) or having large birth weight (≥ 4000g), which are known to increase the

chance of childhood obesity and type 2 diabetes in later life [25, 117].

However, despite the various unfavorable outcomes, unhealthy GWG is prevalent,

especially in developed countries, with excessive GWG more common than inadequate

GWG [84]. Two GWG surveys in the United States show that less than half of the

pregnant women achieve recommended GWG [51, 98], and a significantly larger pro-

portion exceeded the GWG guideline. In Canada, a 2006 Maternity Experience Survey

by Statistics Canada involving more than 6000 pregnant women showed that only 36%

of them gained weight within the guideline range, while 42% of them gained more than

recommended [68]. As a result, a large portion of pregnant women and their infants are
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at higher risk of pregnancy and delivery complications as well as later adverse health

outcomes. There is an urgent need to promote healthy weight gain during pregnancy.

Although the current situation of GWG in developed countries is not optimistic,

fortunately the literature indicates that GWG can be altered through prenatal inter-

ventions [84, 111]. In the clinical intervention studies on promoting healthy GWG,

researchers found several interventions to be promising. Polley et al. conducted a

randomized clinical trial, where pregnant women received education on weight gain,

healthy eating and exercise, and were provided the graph for charting weight gain.

Those exceeding weight gain goals were given more intensive intervention. The per-

centage of excessive weight gain decreased from 58% to 33% among women with normal

prepregnancy BMI [90]. Olson et al. conducted a prospective cohort study, finding that

education through newsletter and a combination of healthcare provider monitoring and

self-monitoring of weight gain significantly reduced the percentage of excessive GWG

compared to a historical control group [86]. For women with normal BMI the percent-

age reduced from 45% to 29%; and for overweight women, the percentage reduced from

72% to 44%. Rauh et al. performed a cluster-randomized controlled intervention trial,

in which two individual counseling sessions were delivered to each pregnant women,

focusing on diet, physical activity and weight monitoring [92]. The intervention was

shown to be effective, with a lower portion exceeding IOM guidelines (38% vs 60%).

The interventions above [86, 90, 92] focused on the progress of weight gain, i.e., the

individual graph/trajectory of weight throughout pregnancy. In the studies mentioned

above, each pregnant women received a personalized weight gain goal, usually a weight

gain chart, and the counseling and interventions were customized according to the

fulfilment of this goal. However, the individual weight gain chart only depends on the

prepregnancy BMI and weight, and would not be adjusted by the weight measurements

during pregnancy.
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Although the individual weight gain trajectory is extremely important for inter-

vention promoting a healthy weight gain, few studies focused on the modeling of such

trajectories. Research and clinical communities have put considerable efforts on stud-

ies of the numerical aspects of weight gain, e.g., total weight gain (weight just before

delivery minus weight just before conception), or rate per week (weight gained over a

specified period divided by the duration of that period in weeks); all definitions were

adapted from [82]. Yet obviously, these aspects can be derived from the trajectory

once estimated. Most existing trajectory modeling works are for the population ref-

erence rather than individuals. For example, Abrams et al. used a piece-wise linear

model to estimate the weight growth [1], where the weight change in each trimester is

assumed to be a linear function. Linear regression may not be a good approximation,

as the weight gain rate is unlikely a constant, even within a single trimester. Xu et

al. proposed conditional (longitudinal) and unconditional (cross-sectional) standard

references (centiles) for pregnant women in Malawi [122]. In setting up the references,

the maternal weight was modeled as a continuous function with a paramter, where

percentiles are obtained by plugging the appropriate standard normal value into the

parameter. Customized weight growth usually only considers categorical background

information, such as prepregnancy BMI [92].

3.1.2 Weight Trajectory of Pregnant Women: Functional Da-

ta Analysis in Longitudinal Setting

In the APrON study, each subject had weight measured by trained research assistant

for up to three times during pregnancy. Self-reported pre-pregnancy weight (W0) and

highest weight during pregnancy (WH) were also recorded. To our knowledge, no

attempt has been made to model the gestational weight curve as a smooth function
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of gestation age. Longitudinal data analysis (LDA) studies on this topic usually focus

on post-partum outcomes, such as body weight change after pregnancy [42, 59], BMI,

waist circumference, and blood pressure after pregnancy [32]. Functional data analysis

(FDA) in longitudinal setting has drawn lots of attention in the statistics community

[44, 46, 124], but has not been used in the modeling of GWG. In previous research

of LDA, methods of fitting a smooth curve profiling for the mean function are well

developed [27], such as lowess curve, kernel and spline estimation. For individual

trajectory modeling, early works often used mix-effect models. Fitzmaurice presented

a classic parametric non-linear mixed-effect model [30], and a nonparametric model is

proposed by Rice et al. [13]. Guo et al. built a functional mixed-effect model [43].

Yet none of these models is suitable for sparse data, which is the case for the APrON

study.

Yao et al. proposed the functional principal component analysis (FPCA) for irreg-

ularly spaced sparse longitudinal data [124]. In this method, the functional principal

component (FPC) scores are framed as conditional expectations. By selecting the

first K principal components (PCs), dimension reduction is achieved. The dominant

modes of variation of the sample of random trajectories around an overall mean is

characterized by the first several PCs. Through this approach, with a cohort of sparse

longitudinal samples, we are able to estimate the individual continuous trajectory of

each subject by borrowing information from the whole cohort. If one of the weight

record is relatively far from the subjects’ other records, the estimated trajectory will

not be skewed too much by this point. This property makes the method more robust

to measurement errors and thus more suitable in estimating the individual trajectories

in APrON data.
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3.1.3 Our Contributions

In this chapter, I utilize the functional principal component analysis (FPCA) tech-

niques to estimate individual-specific weight growth trajectory during pregnancy for

the participants of the APrON study. The total weight gain can be estimated from

this trajectory. P repregnancy BMI, the dietary intake and physical activity record-

s, are used as adjustment covariates to model this estimated total weight gain. My

contributions are:

• Individual trajectories of weight growth are estimated through FPCA techniques.

The rooted mean squared error (RMSE) is significantly improved compared to

the longitudinal nonlinear mixed effect model (2.1 vs 2.6). For the subjects

whose weight gain patterns are different than the population mean weight growth

function, the FPCA estimated trajectory shows significant advantage in terms of

adaptivity.

• Individual trajectories are estimated for nutrients intakes.

• Total GWG is estimated from the individual-specific trajectory, showing good

agreement with the total GWG calculated from records.

• I studied the association betweetn total GWG estimated from trajectory and the

prepregnancy BMI, nutrient intakes and PA. It is found that the simple linear

regression model with prepregnancy BMI as the only covariate has satisfactory

R2. The self-reported nutrient intake/physical activity may be either not reliable

or not providing useful information that further explains the GWG to improve

the model fit
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3.2 Materials and Methods

3.2.1 Materials

Data Collection

In the APrON study, pregnant women from Edmonton and Calgary were recruited

during their pregnancy. Upon a woman’s recruitment, her prepregnancy weight (W0)

and due date was reported. Women recruited before 13 weeks gestation were assessed

in each trimester, labeled as gestation stage A, B, C. Those recruited in 14-27 weeks

gestation were assessed in gestation B and C, and so on. Each assessment includ-

ed a weight measurement; a 24-hour food recall questionnaire, either web-based or

interviewer-administered; a self-administered Baecke’s physical activity (PA) question-

naire to evaluate their physical activities during the last month.

Subjects’ GA’s were calculated based on due dates. Each women was asked for

a last visit at three months after delivery, during which her highest weight during

pregnancy (WH) and GA at birth were reported. The procedure is shown in Figure 2.
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The weight measured in gestation stage A, B, C are denoted as WA, WB, and

WC respectively. In both the interviewer-administered and web-based food intake

instruments, macro and micronutrients intake were calculated, and total calories intake

were derived. Calibration study in Chapter 2 shows that direct pooling the results from

the two instruments may not be feasible. In the Baecke’s questionnaire, three types

of activities were considered i) physical activity at work; ii) sport during leisure time;

and iii) physical activity during leisure time excluding sport [8]. Activity levels of

the three types were calculated as subindices-work index (WI), sport index (SI), and

leisure index (LI) accordingly. The sum of the three subindices was defined as the total

PA index (TI). The Baecke’s questionnaire has been validated in various populations,

including adult men [31, 89], adult women with hip disorders [87], and showed good

validity and reliability. In summary, each subject has a maximum of 5 body weight

data points for her trajectory, with GA varying from 0 to 42 in weeks: the self reported

W0, the measured weight WA, WB, WC ; and the self-reported WH . One or more of

these data points could be missing due to missing visit(s). We correspond W0 to t = 0,

and WH is associated with the GA at birth.

Inclusion Criteria

Subjects who have a full-term(GA at birth ≥ 37 weeks), singleton live birth are con-

sidered in the analysis. For statistical modeling, we require at least one valid record

during pregnancy, i.e., she has at least one record of physical activities or food intake

and at least one weight record with corresponding GA . Due to the large amount of

data collected, various issues were detected and data cleaning were performed. For

example, the subjects who have apparently wrong GA at birth information, namely,

the GA at birth is less than the GA of time point C, are excluded. For the food intake

data, instances with total calorie intakes greater than 3500 kcals or less than 600 kcals
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were excluded, as recommended by Csizmadi et al. [24]. In addition, women who have

completed more than one versions of 24-hour food recall questionnaires are excluded, in

order to model nutrient intake trajectories from data collected by the two instruments

separately.

3.2.2 Method

Model set up and estimation

We consider Xi(t), i = 1, ..., n, which are n realizations of a smooth random function

X(t), with unknown mean EX(t) = µ(t) and smooth covariance function cov(X(s), X(t)) =

G(s, t). The j-th observation of Xi(t) made at a random time Tij, denoted as Yij, is

subject to uncorrelated measurement errors with mean 0 and constant variance σ2.

Then the model is

Yij = Xi(Tij) + ϵij (3.2.1)

where j = 1, ..., Ni. Ni is the number of observations of Xi, and ϵij is the measurement

error. In our case, X can be the trajectory of body weight, intake of certain nutrient,

or any PA index, and Xi(t) is then the weight/nutrient intake/PA index of the i-th

subject at time t. The time t is in a closed time interval T = [0, 42] (weeks).

In FPCA, the i-th realization can be expressed as

Xi(Tij) = µ(Tij) +
∞∑
k=1

ξikϕk(Tij) + ϵij, (3.2.2)

where ϕk’s are the PC functions, assumed to be smooth.

The estimation of the trajectory is implemented in five steps: (1) Estimation of

the mean function µ(t); (2) Smooth estimation of the covariance surface G(s, t) and

measurement error σ2; (3) Estimation of the eigenfunctions (PCs) and eigenvalues; (4)
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Estimation of the FPC scores, ξik, through conditional expectation; (5) Choice of the

number of PCs to be selected. The details are given as following:

(1) The mean function µ is estimated based on all the data points from all individ-

uals, where local linear smoothers proposed by Fan et al. [29] are employed. Let κ1(u)

be a univariate compact supported kernel function of order (ν, ω) with 0 6 ν < ω.

That is, κ1(u) satisfies

∫
ulκ1(u)du =


0 if 0 6 l < ω, l ̸= ν,

(−1)|ν||ν|! if l = ν,

any nonzero value if l = ω.

Then we define the local linear scatterplot smoother for µ(t) by minimizing

n∑
i=1

Ni∑
j=1

κ1

(
Tij − t

hµ

)
[Yij − β0(t− Tij)− β1(t− Tij)]

2 (3.2.3)

with respect to β0 and β1. The parameter hµ (kernel radius) determines the level of

localization. The estimate of µ(t) is then µ̂(t) = β̂0(t).

(2) Let Gi(Tij, Til) = (Yij − µ̂(Tij))(Yil − µ̂(Til)) be the “raw” covariances. Then

we have E[Gi(Tij, Til)|Tij, Til] ≈ cov(X(Tij), X(Til))+ σ2δjl, where δjl is the Kronecker

notation, i.e., δjl = 0 for j ̸= l and δjl = 1 for j = l. So the diagonal of the raw

covariance matrix should be removed, and only those Gi(Tij, Til) with j ̸= l should be

included as input data for the covariance surface smoothing step.

Then the surface smoothing also follows the local linear smoother in [29]. Let

κ2(u, v) be a bivariate compact supported kernel function of order (ν, ω), where ν is a
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multi-index (ν1, ν2) satisfying 0 6 ν1 + ν2 6 ω. The order index means

∫
ul1vl2κ2(u, v)dudv =


0 if 0 6 l1 + l2 < ω, l1 ̸= ν1, l2 ̸= ν2,

(−1)|ν||ν|! if l1 = ν1, l2 = ν2,

any nonzero value if l1 + l2 = ω,

where |ν| = ν1 + ν2. The local linear surface smoother for G(s, t) is obtained by

minimizing

n∑
i=1

∑
16j ̸=l6Ni

κ2

(
Tij − s

hG

Tij − t

hG

)
×[Gi(Tij, Til)−(β0+β1(s−Tij)+β2(t−Til))]

2 (3.2.4)

with respect to β0, β1 and β2. The estimate of G(s, t) is then Ĝ(s, t) = β̂0(s, t).

Next we estimate σ2. Let Ĝ(s, t) be a smooth surface estimate of G(s, t). As the

covariance is maximal along diagonal, we fit a local linear component along the diago-

nal, and a quadratic component along the direction perpendicular to the diagonal. We

denote the diagonal of the resulting surface estimate by G̃(t). A local linear smoother

V̂ (t) focusing on diagonal values {G(t, t) + σ2} is obtained as in step (1), by using

G(Tij, Tij) as input. To minimize boundary effects, take only T1 = [10.5, 31.5], the

middle half of T , we estimate σ2 as

σ̂2 =
2

|T |

∫
T1
[V̂ (t)− G̃(t)]dt. (3.2.5)

(3) Estimating the eigenfunctions (PCs) and eigenvalues is essentially solving for

the eigenequations ∫
T
Ĝ(s, t)ϕ̂k(s)ds = λ̂kϕ̂k(t)

with respect to ϕ̂k’s and λ̂k’s, where the estimated eigenfunction ϕ̂k’s are subject to a

unit L2 norm and are perpendicular to each other. These eigenfunctions are estimated
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by discretizing the smoothed covariance as in [93]. The estimate of the eigenfunc-

tion corresponding to the largest eigenvalue, û = ϕ̂1(t) (t is a grid of t thus û is a

discretization of ϕ̂1) is obtained by

argmaxuT Ĝu

subject to ∥u∥ = 1 and uTDu 6 β,

where Ĝ is the discretization of Ĝ(s, t), β is a smoothing parameter and D is a rough-

ening matrix, e.g., D = F TF where F is a second-difference operator.

(4) Due to the sparse nature of our data, the traditional estimation of the FPC

scores ξi,k =
∫
(Xi(t)− µ(t))ϕk(t)dt through numerical integration does not work well,

as the integration of a smooth function can not be estimated well by Riemann sums

when there are only a few data points. Yao et al. proposed the FPCA through

conditional expectation [124], which is more suitable for sparse data. Denote the i-

th subject with observations Ỹ = (Yi1, ..., YiNi
) = (Xi(Ti1) + ϵi1, ..., Xi(TiNi

) + ϵiNi
),

where Tij are the corresponding observation times and ϵij are the measurement errors,

the best prediction of the FPC scores for the subject, is the conditional expectation

E(ξik|Ỹi). If we further assume that ξik and ϵij are jointly normal, then Mardia et al.

claimed that the conditional expectation is given as

ξ̃ik = E(ξik|Ỹi) = λkϕ
T
ikΣ

−1
Yi
(Ỹi − µi), (3.2.6)

where ϕik = (ϕk(Ti1), ..., ϕk(TiNi
)), µi = (µ(Ti1), ..., µ(TiNi

)), and ΣYi
= cov(Ỹi, Ỹi) =

cov(X̃i, X̃i) + σ2INi
, is a Ni ×Ni matrix, the (j, l) entry of which is G(Tij, Til) + σ2δjl,

with δjl the Kronecker [72].

Plugging in the quantities on the right hand side in (3.2.6) by their estimates, we
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get the “plugging in” estimator of the FPC score

ξ̂ik = Ê(ξik|Ỹi) = λ̂kϕ̂
T
ikΣ̂

−1
Yi
(Ỹi − µ̂i), (3.2.7)

where µ̂i is obtained in step (1), (Σ̂Yi
)j,l = Ĝ(Tij, Til)+ σ̂2δjl estimated in step (2), and

ϕ̂ik = (ϕk(Ti1), ..., ϕk(TiNi
)), λk obtained from step (3). A MATLAB-based package,

Principal Analysis by Conditional Expectation (PACE), was developed by Yao et al.

for the implementation of various Functional Data Analysis (FDA) [124]. We adapted

this package for our data analysis .

Prediction of Individual Trajectories

Upon obtaining the PCs and FPC scores, the first several PCs explained the largest

fraction of total variations in all the trajectories, and thus representing the dominant

modes of variation. For each individual, the trajectory can be well approximated by a

linear combination of these K smooth functions and is thus smooth. Dimensionality

is then reduced from ∞ to K, or equivalently, we project any function on to the space

spanned by the first K PCs. There are several different criteria to determine the choice

of K. Popular choices include the Akaike Information Criterion (AIC) and Fraction of

Variance Explained (FVE). For a model with the first K PCs selected, the AIC value

is defined as AIC = K− l, where l = ln(L) is the maximum of the log-likelihood of the

model. l can be estimated by summing the contributions from all subjects, conditional

on the estimated FPC scores (3.2.6), assuming that ξik and ϵij are jointly normal:

l̂ =
n∑

i=1

−N1

2
lg(2π)− N1

2
lg σ̂2 − 1

2σ̂2

(
Ỹi − µ̂i −

K∑
k=1

ξ̂ikϕ̂ik

)T (
Ỹi − µ̂i −

K∑
k=1

ξ̂ikϕ̂ik

) .
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Then the best model is of the smallest AIC value. The AIC method balances large

likelihood (larger l̂) and less model complexity (smaller K), however, is usually com-

putationally expensive. The FVE method chooses the first K PCs that explain a

pre-defined fraction (threshold) of total variance. So by choosing a considerably large

threshold, the model chosen explains most of the variability. As the covariance is es-

timated in the FPCA process, the FVE method is more efficient. We usually employ

the FVE method, with a threshold of 0.99 of the variance explained. Namely, K is

the least positive number that the first K eigenfunctions explain more than 99% of the

total variance. Once K is chosen we approximate the trajectory of the i-th subject by

X̂K
i (t) = µ̂(t) +

K∑
k=1

ξ̂ikϕ̂k(t), (3.2.8)

where ξ̂ik’s are the individual-specific FPC scores. In (3.2.8), the terms µ̂(t) and ϕ̂k(t)

borrows information from the entire data set, while ξ̂ik = Ê(ξik|Ỹi) = λ̂kϕ̂
T
ikΣ̂

−1
Yi
(Ỹi− µ̂i)

is driven by Ỹi, the observations of the specific subject. We will show that this approach

handles the longitudinal sparse data set extremely well when the subjects have a general

common trend. As discussed in Section 3.2, for each subject in our study, we have up

to 5 records of their weight and up to 3 points of nutrient intake and PA measurements,

which are all longitudinal sparse data. Take weight as an example, n > 1000 subjects

are included in the modeling, each has weights measured from t = 0 (W0) to t ≥ 37

(WH at GA at birth). The mean function and covariance surface can first be estimated

from the pooled data. The PCs are thus estimated. For each subject, the FPC scores

can then be estimated, conditional on the up to 5 observations of her weight.
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Confidence Bands of Individual Trajectories

Let K be the number chosen by FVE approach, and the vector of FPC scores ξK,i =

(ξi1, ..., ξiK)
T , ξ̃K,i = (ξ̃i1, ..., ξ̃iK)

T . Recall that ξ̃ik = E(ξik|Ỹi) = λkϕ
T
ikΣ

−1
Yi
(Ỹi−µi), then

the covariance matrix of ξ̃K,i can be written as HΣ−1
Yi
HT , where H is the covariance

matrix between ξK,i and Ỹi. Note that for a fixed sample, λk, ϕik and (Σ̂Yi
)j,l =

Ĝ(Tij, Til) + σ̂2δjl are independent with Ỹi, so ξ̃K,i is a linear function of Ỹi. H can be

rewritten as

H = (λ1ϕi1, · · · , λKϕiK)
T .

The estimation error of ξ̃K,i can be assessed by var(ξ̃K,i− ξK,i). The conditional expec-

tation E(ξK,i|Ỹi) is the projection of ξK,i on the space span
{
Ỹi

}
, thus E(ξ̃K,iξ

T
K,i) =

E(ξ̃K,iξ̃
T
K,i), and

var(ξ̃K,i − ξK,i) = var(ξK,i)− var(ξ̃K,i) = ΩK ,

where ΩK = Λ−HΣ−1
Yi
HT = diag(λ1, ..., λK)−HΣ−1

Yi
HT . Under Gaussian assumptions,

we have (ξ̃K,i − ξK,i) ∼ N (0,ΩK). From (3.2.8), the individual trajectory is estimated

as X̂K
i (t) = µ̂(t) +

∑K
k=1 ξ̂ikϕ̂k(t) = µ̂(t) + ϕ̂T

K,tξK,i = (ξi1, ..., ξiK)
T where ϕ̂K,t =

(ϕ̂1(t), ..., ϕ̂K(t))
T . It was showed that X̂K

i (t) − X(t) approximately follows normal

distribution N (0, ϕ̂T
K,tΩ̂K ϕ̂K,t).

Therefore, the (1 − α) asymptotic point-wise confidence intervals for individual

trajectories are given as

X̂K
i (t)± Φ−1(1− α/2)

√
ϕ̂T
K,tΩ̂K ϕ̂K,t,

where X̂K
i (t) = µ̂(t) + ϕ̂T

K,tξ̂K,i, Ω̂K = Λ̂ − ĤΣ̂−1
Yi
ĤT , with Λ̂ = diag(λ̂1, ..., λ̂K) and

Ĥ = (λ̂1ϕ̂i1, · · · , λ̂K ϕ̂iK)
T .

The (1−α) asymptotic simultaneous confidence intervals for individual trajectories
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are given as

X̂K
i (t)±

√
χ2
K,1−αϕ̂

T
K,tΩ̂K ϕ̂K,t.

Total GWG Prediction

The total GWG can be estimated from the estimated weight growth trajectory. Then

its association with the background information (prepregnancy BMI), nutrient intakes,

and PA can be studied by multivariate linear regression models, where the total GWG

is the response to be predicted, and the other information are covariates.

For a multivariate linear regression model, both the response and predictors should

be scalars. In APrON study, the nutrient intakes and PA indices were collected lon-

gitudinally. To fit a multivariate regression model, we can transform the longitudinal

data into scalar ones. A natural idea is to use the average of all the measurements for

a covariate. For example,

G = β0 + β1BMI + β2T + β3TI + ϵ, (3.2.9)

where G is the total GWG, BMI is the prepregnancy BMI, T is the average of all the

total calories measurements obtained from the prenatal 24-hour food recalls, and TI is

the average of all the total PA index obtained from the prenatal Baecke’s questionnaires.

The covariates can also be the macronutrients (fat, protein, carbohydrate) intake and

the subindices of PA, where the average is similarly obtained. The only issue is to

avoid taking total calories and all the three macronutrients together, or the total PA

index and all the three subindices as covariates, which will cause colinearity.

However, note that the trajectories of these longitudinal covariates can be esti-

mated. The estimated trajectories can also be utilized in the modeling. Müller et al.
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proposed a functional additive model (FAM) for such scenarios. Let X(t) be the tra-

jectory of certain covariates with sparse longitudinal observations. Then the trajectory

of a subject Xi(t) is estimated by FPCA

X̂i(t) = µ̂(t) +
K∑
k=1

ξ̂ikϕ̂k(t),

where µ̂(t) is the estimated mean function of the entire sample; ξ̂ik’s are the estimated

FPC scores; ϕ̂k(t)’s are the PC functions, and K is the number of PCs been selected.

In the functional regression model Yi =
∫
Xi(t)β(t)dt+ϵ, if the estimated trajectory

of X(t) is used, it can be re-written as

Yi ≈
∫
(µ̂(t) +

K∑
k=1

ξ̂ikϕ̂k(t)β(t)) + ϵ

=

∫
µ̂(t) +

K∑
k=1

ξ̂ik

∫
β(t)ϕ̂k(t) + ϵ

=

∫
µ̂(t) +

K∑
k=1

ξ̂ikβk + ϵ (3.2.10)

where βk is the coefficient when projecting the functional coefficient β(t) onto the

functional space spanned by ϕ̂k(t). Now (3.2.10) converts the functional regression

to a multivariate linear regression, where ξ̂ik’s are the covariates, and βk’s are the

coefficient to be estimated. Once we get the estimated β̂k, the functional coefficient

β(t) can be (partially) recovered by

β(t) ≈
K∑
i=1

β̂kϕ̂k(t).

This additive model can be easily extended to multiple functional covariates and

a mixture of scalar and functional covariates, by adding additional terms on the right
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hand side of (3.2.10). For example, if the model includes the following predictors:

prepregnancy BMI’s x = [x1, x2, ..., xn], the estimated trajectories of total calories

T̃ = [T̂1(t), T̂2(t), ..., T̂n(t)] and the SI’s S̃ = [Ŝ1(t), Ŝ2(t), ..., Ŝn(t)], the model can be

written as

Y = β0 + xβ1 +

∫
T (t)β2(t)dt+

∫ ∫
S(t)β3(t)dt+ ϵ

≈ β0 + xβ1 +

∫
µ̂T (t)dt+

KT∑
k=1

β2,kξ̂2,k +

∫
µ̂S(t)dt

KS∑
k=1

β3kξ̂3,k), (3.2.11)

where KT and KS are the number of PCs selected by the FPCA of T (t) and S(t);

β2,1, ..., β2, KT , β3,1, ..., β3,KS
are the coefficients to be estimated. The functional coef-

ficients β2(t) and β3(t) can be then approximated as:

β2(t) ≈
KT∑
i=1

β̂2,kϕ̂T,k(t), β3(t) ≈
KS∑
i=1

β̂3,kϕ̂S,k(t),

where ϕ̂T,k(t), k = 1, ..., KT and ϕ̂S,k(t), k = 1, ..., KS are the PCs selected by the FPCA

of T (t) and S(t).

3.3 Results

3.3.1 Data Summary

The APrON study recruited 2191 pregnant women. Each subject completed up to three

prenatal 24-hour food recall questionnaires, corresponding to the three trimesters (de-

noted as time point A, B, and C) respectively, as shown in Table 7. In total, 4453

prenatal 24-hour food recall records, including both interviewer-administered and the

web-based version, have been collected. Among the 2191 subjects, 21 subjects did
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Table 7: Completion Pattern of the 24-hour Food Recall

Interview(s) Per Subject 0 1 2 3
Number of Subjects (n) 21 309 1437 423

A: 59 AB: 39
ABCInterview Pattern B: 227 AC: 21

C: 23 BC: 1377

not complete any questionnaires. There were 309 subjects who completed one ques-

tionnaire, including 59 subjects completing the questionnaire at A (1st trimester), 227

subjects completing at B (2nd trimester), 23 subjects completing at C (3rd trimester).

The majority participants, 1437, completed two questionnaires, mostly at B and C

(1377 subjects); some missed C (39 subjects) and some missed B (21 subjects). There

are 423 subjects completed all three prenatal questionnaires.

We have 1540 subjects with consistent weight and food intake/PA records satisfying

the given inclusion criteria in Section 3, i.e., at least one valid prenatal record, valid

W0 and prepregnancy BMI, GA at birth greater than 37 weeks and greater than GA at

time point C. Among these 1540 subjects, 725 completed the interviewer-administered

24-hour food recall questionnaires, 797 completed the web-based 24-hour food recall

questionnaires, 6 completed both versions of questionnaires, and 12 had no 24-hour

food recall, but only Baecke’s PA questionnaire completed.

The inclusion procedure is shown in Figure 3.
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Figure 3: Flow chart of data inclusion

3.3.2 Modeling the Trajectories of Weight and Nutrient In-

takes

Modeling of Weight Trajectories

A discrepancy between the nutrient intakes measured in the two 24-hour food recall

instruments was observed; see Chapter 2. Therefore, we model the web-based and

interviewer-administered nutrient intakes separately. On the contrary, women’s weights

were measured consistently using a standard equipment, thus weight trajectories were

modeled using the entire analysis cohort of 1540 subjects, as seen in Figure 3.

For a sparse longitudinal data set, the distribution of the time points when the

observations were made can be revealed from the assembled pairs (Tij, Tik). An as-

sembled pair represents two time points Tij and Tik for the i-th subject. The pair is

ordered, thus each pair is counted twice, (Tij, Tik) and (Tik, Tij) respectively, which are
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symmetric about the 45◦ slanted line Tij = Tik. For example, the assembled pairs of all

the 24-hour food recall records of the 2169 subjects are shown in Figure 4. Considering

the part below the slanted line only, two clusters of data are present: the smaller one on

the lower left corner corresponds to those subjects who have records in the 1st and 2nd

trimester. According to Table 7, this cluster includes the 423 subjects who completed

the questionnaire in all three trimesters (ABC) and the 39 subjects who completed the

questionnaire only in the first two trimesters (AB). The larger one on the right corre-

sponds to those subjects with records in the 3rd trimester and either the 1st (lower half

with 0 < Tik < 13) or 2nd trimester (upper half with 13 < Tik < 27). The densest part

is the upper half, which represents the subjects who have completed the questionnaires

in both the 2nd and 3rd trimester. This part includes the 423 subjects who completed

the questionnaires at ABC and the 1377 subjects who completed the questionnaires

at BC. Subjects will not complete two questionnaires in a single trimester, so there

are three empty areas along the 45◦ line Tij = Tik: (0, 13)× (0, 13), (16, 29)× (16, 29)

and (30, 37) × (30, 37). After gestation of 37 weeks, women have much higher chance

to be in labor than before, so the subjects will probably not schedule to complete the

questionnaire after 37 weeks. Thus points with Tij > 37 or Tjk > 37 are relatively rare.

The assembled pairs of all the weight records of the 1540 subjects are shown in

Figure 5. Note that by addingWH to GA at birth, a larger cluster occurs with Tij ≥ 37.

The points in this cluster represent the subjects who have valid GA at birth, and at

least one weight record during pregnancy. The self-reported prepregnancy weight is

added to t = 0, resulting in the horizontal line Tik = 0. The coverage of this line is

approximately 5 to 42 weeks, indicating that at almost any time point after 5 weeks,

we have a weight record for certain subject.

Using the method described in Section 3.2.2, we estimated a smoothed mean weight
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Figure 4: Assembled pairs (Tij, Tik) of all the 24-hour food recall records of the 2169
subjects

trajectory all subjects as in Figure 6. The smooth estimate of the variance function for

weight data is shown in Figure 7. It is decreasing before 25 weeks, suggesting that the

weights of subjects vary the most at the beginning of pregnancy. A fluctuation occurs

around 27-35 weeks. It is easy to see from Figure 6 that there are only a few data

points around t = 29. So the estimate of variance around t = 29 is not as reliable as

elsewhere with more data points. The fluctuation is probably due to the lack of data.

After 35 weeks, the variance decreases more rapidly, which indicates a smaller variance

among the WH records of all subjects.

The smooth estimate of the correlation surface of weight data is shown in Figure

8. The entire surface is above 0.7, indicating that weight records of the same subject

are highly correlated at all times. However, the correlation between the very early
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Figure 5: Assembled pairs (Tij, Tik) of all the weight records of the 1540 subjects
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Figure 6: (a) Observed individual weight trajectories of randomly selected 100 subjects,
overlaid with the smooth estimate of the mean function and (b) All the weight records
overlaid with the smooth estimate of the mean function
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Figure 7: Smooth estimate of the variance function of weight data. Variance is non-
stationary, following a general decreasing trend except for the fluctuation around 30
weeks.

weight and weight measured at later times decreases drastically in the first 20 weeks.

Correlation between the pre-pregnancy weight and the weight after 20 weeks is weaker

than weight before 20 weeks. It suggests that a subject’s weight begins to develop some

new pattern after gestation 20 weeks. This lowered correlation does not increase much

in later pregnancy, except around 30 weeks. Similarly as the variance in Figure 7, the

fluctuation may be due to a random error in the estimation of covariance. However,

the dependence within later times in pregnancy is strong after 10 weeks, which can be

interpreted as the weight of a pregnant woman at any two time points in the 2nd and

3rd trimester are highly correlated with each other.

The scree plot is shown in Figure 9(a). The first three PCs account for 95.7%,
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Figure 8: Smooth estimate of the correlation surface. Correlation surface is always
above 0.7, indicating high correlation at all times. However, the correlation between
the weight at very early times and later times decreases rapidly in the first 20 weeks.

2.8%, and 1.1% of the total variation respectively, totally more than 99%. Thus they

are selected in the estimation. Their graphs are shown in Figure 9(b-d). The first PC is

flat during the first trimester, and decreases rapidly in the second and third trimester,

similar to the smooth estimate of the variance. The second PC increases most rapidly

in the first trimester, corresponding to a contrast between prepregnancy weight or

very early times and the second/third trimester. The third corresponds to a contrast

between the second trimester and the third trimester. So these PCs correspond to

weight gain during different times. The first explains most of the variation, suggesting

that the majority of weight is gained during the last two trimesters.

The performance of the FPCA-based individual trajectory is compared with the

traditional parametric mixed effect model. As seen from Figure 6, the weight growth

curve is nonlinear, and convex in the first half of pregnancy. After 30 weeks, the growth
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rate begins to slow down. So part of a logistic curve is reasonable to model the weight

trajectory, which is in the form of

W (t) =
L

1 + exp(−k(t− t0))

While a logistic curve always starts from zero, we put a baseline parameter c to this

model, and it becomes

W (t) =
L

1 + exp(−k(t− t0))
+ c. (3.3.1)

In (3.3.1), L is the maximum of of the curve, but we use only part of the curve, so it

acts more as a magnifying factor, which is correlated with the total weight gain. k is

the steepness of the curve, which can be interpreted as the weight growth rate. t0 is

an inflection point where the curve changes from convex to concave. c is the starting

value of the response W and can be interpreted as the prepregnancy weight.

It is observed that on average, the growth rate begins to slow down at 30 weeks.

So theinflection point is set to t0 = 30. L,k, and c are to be estimated. Since the total

weight gain and prepregnancy weight are the main sources of variation of individual

trajectories, we set these two as random effects.

By estimating the weight trajectory of each subject, we have a fitted value for each

observation, and the mean squared error (MSE) and root mean squared error (RMSE)

can be thus calculated:

MSE =
1∑n

i=1Ni

n∑
i=1

Ni∑
j=1

(Ŵ (Tij)−W (Tij))
2,RMSE =

√
MSE

We use the root mean squared error (RMSE) to compare the two methods. The nonlin-

ear mixed effect (NLME) model has an RMSE of 2.6 (kg) and the FPCA approach has
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an RMSE of 2.1(kg), which can be seen as a significant improvement. We randomly

select one subject in each pre-pregnancy BMI category as defined in Table 6, and their

weight trajectories estimated from these two approaches are shown in Figure 10. For

subject A, her weight steadily increases during pregnancy, which is of similar pattern

to the mean function of all samples; see Figure 6. Both FPCA and NLME yield an

estimated trajectory of good agreement with the weight records. However, for subject

B, from her weight records, she lost weight at the beginning of her pregnancy and did

not regain to her prepregnancy weight even in the 3rd trimester. So her weight gain

pattern has large deviation from the common trend as the mean function of all samples.

The NLME approach still uses a curve shape similar to subject A (and in fact, similar

to the mean function of the whole sample), so the prediction errors are large for three

weight records. The trajectory estimated by FPCA is much more adapted to the weight

records, and has much smaller residuals. The reason of this discrepancy boil down to

two aspects. (i) For NLME, the function has been specified, so the flexibility is very

limited. The differences between subjects are all accounted by the random effects, L

and c. So for different subjects, the estimated trajectories only differ by a dilation and

shift, yet the shape is maintained. When the trajectory of a certain subject is not fol-

lowing the general trend, it is difficult to accurately estimate the trajectory by NLME.

(ii) For each subject we have only up to five weight records. When only three or four

data points are present, the estimate of NLME by either restricted maximum likelihood

or maximum likelihood is prone to be biased. In the FPCA approach, the estimated

trajectory is in the form of X̂K
i (t) = µ̂(t)+

∑K
k=1 ξ̂ikϕ̂k(t), which borrows strength from

the entire sample (estimation of ϕk(t)), yet also adapt to the individual observations

(estimation of ξik). As long as the total covariance structure is consistently estimated,

the estimate of trajectory works reasonably well.
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Figure 9: (a) Scree plot of the weight data and (b-d) The first, second, and third PC
functions for weight data. The three PCs account for 95.7%, 2.8%, and 1.1% of the
total variation respectively.
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Modeling of Nutrient Intakes-Example of Fat Intake

For the nutrient intakes collected from 24-hour food recalls, the variance is much larger

than that of the weight. In addition, we have less data (up to 3 instead of up to 5 time

points) for each subject. Taking fat as an example, for the interviewer-administered

data, Figure 11 (a) shows the observed individual trajectories of 100 randomly selected

subjects and the smooth estimate of the mean function. All the fat intake measure-

ments and the estimated mean are shown in Figure 11(b). From the previous Figure 4

we can see that there was no questionnaire completed before 5 weeks or after 38 weeks.

Therefore, unlike the weight data, we are only able to estimate the mean function, and

all the other functions thereafter, within T = [5, 38]. Only one PC is selected, explain-

ing 99.9% of the total variance; see Figure 11(c-d). The PC function is monotonically

decreasing since 5 weeks, corresponding to a contrast between very early and very late

times. This can be due to the prevalent change of dietary pattern during pregnancy

which influences the fat intake [6]. Because only one PC ϕ̂(t) is selected, the estimated

trajectories of all subjects are in the form

X̂(t) = µ̂(t) + ξi1ϕ̂(t),

and differ by the FPC score ξi1 only. Correlation estimation is thus trivial as cor(X̂(s),

X̂(t)) = E(ξ1ϕ(s)ξ1ϕ(t)) = ξ21 = constant always hold. We show only the fitted

covariance surface; see Figure 12. From the diagonal we can see that the variance of

fat intake is rapidly decreasing.

Four subjects who completed the interviewer-administered 24-hour food recall are

randomly selected. The predicted trajectory and point-wise confidence bands of their

fat intakes are displayed in Figure 13. The trajectories are all of similar shape as the

mean function shown in Figure 11 (a-b), which is almost stationary for the first 30
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Figure 11: (a) Observed individual trajectories of the fat intake of 100 randomly select-
ed subjects completing the interviewer-administered 24 hour food recall, overlaid with
the smooth estimate of the mean function of the all the fat intake data measured from
the interviewer-administered 24-hour food recall; (b) All the records of fat intakes mea-
sured from the interviewer-administered 24-hour food recall, overlaid with the smooth
estimate of the mean function; (c) Scree plot of the fat intake data measured from
the interviewer-administered 24-hour food recall; (d) First PC function, indicating the
dominant mode of variation.
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Figure 12: Smooth estimate of the covariance surface of the fat intakes data measured
from the interviewer-administered 24-hour food recall. The diagonal shows a variance
decreasing with respect to gestation age.
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Figure 13: Predicted trajectories and confidence bands of the fat intakes of 4 random
subjects who completed the interviewer-administered 24-hour food recall. Some points
have considerable distances to the predicted trajectories, or even outside the confidence
bands.

weeks, and then decreases. However, from Figure 11 (b), only a few observations of

fat intakes were made after 34 weeks, so this decreasing trend may not be reliable.

Compared to the weight data, the predicted trajectories are not as close to the ob-

served values. Even though the confidence bands are much wider (compared to the

weight data), there are observations outside the confidence bands. The accuracy of the

predicted trajectory is not as optimal as the weight data. The corresponding plots of

the fat intake data collected using the web-based instrument are shown in Figure 14.

We find that the patterns of the mean function and dominant modes of variation (first

PC function) are different in two versions of questionnaires. Unlike the smooth mean
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function estimated from interviewer-administered instrument, the fat intakes measured

from the web-based instrument show that on average, the subjects first increased their

fat intake from the beginning of pregnancy, and at around 25 weeks, the fat intakes

became more stable. From the assembled pairs of time points in Figure 4, the data

points from 21-30 weeks and beyond 36 weeks are quite sparse on the whole data set.

So the estimated mean function can be driven by a few data points and may not be as

reliable as the estimates from 15-21 weeks and 30-35 weeks. The differences between

the estimated trajectories could also be due to of the discrepancy between the two

instruments.

There are two PC functions selected for the web-based fat intake data. The first

is similar to the mean function to some extends, and the second is a contrast be-

tween the early time and late times. The smooth estimate of the correlation surface

is shown in Figure 15. The entire surface is above 0.75, indicating that the corre-

lation within one subject is very strong. The dependence between the fat intake at

early time and later times dies off relatively rapidly, consistent with the second PC,

where a contrast between different times is present. Four subjects who completed the

interviewer-administered 24-hour food recall are randomly selected. The predicted tra-

jectory and point-wise confidence bands of their fat intakes are displayed in Figure

13. As the interviewer-administered fat intake data, the predicted trajectories are in

the similar shape as the estimated mean function. The width of confidence band gets

reduced when more observations are provided. Some points are outside the confidence

band, indicating the reliability of the prediction may not be good enough.

3.3.3 Modeling the Weight Gain

In the previous parts of this section, we successfully estimated the trajectories of weight

from sparse measurements. During pregnancy, the trajectory can be used to predict
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Figure 14: (a) Observed individual trajectories of the fat intake of 100 randomly se-
lected subjects completing the web-based 24 hour food recall, overlaid with the smooth
estimate of the mean function of the all the fat intake data measured from the web-
based 24-hour food recall; (b) All the records of fat intakes measured from the web-
based 24-hour food recall, overlaid with the smooth estimate of the mean function; (c)
Scree plot of the fat intake data measured from the web-based 24-hour food recall; (d)
First two PC functions, indicating the dominant mode of variation.
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Figure 16: Predicted trajectories and confidence bands of the fat intakes of 4 random
subjects who completed the web-based 24-hour food recall. Some points have consid-
erable distances to the predicted trajectories, or even outside the confidence bands.
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the total GWG, and provide informative references for interventions such as counseling

on dietary intakes and physical activities. In this part, we are interested in how GWG

is affected by the possible factors, such as pre-pregnancy BMI, nutrient intakes and

physical activities.

In the collected data of APrON study, the weight gain can be directly calculated

from the weight records, by defining the total GWG as

G = max {WH ,WC} −W0. (3.3.2)

That is, the greater one between the self-reported highest weight during pregnancy

(WH) and the measured weight in the 3rd trimester (WC) are selected and treated

as the weight right before birth. This value minus the pre-pregnancy weight (W0) is

the total GWG. This GWG is naturally derived from the weight records, yet has some

potential drawbacks. (i) When the self-reported WH is less than the measured WC , the

latter is used as the highest weight. However, we note from previous part that subjects

are unlikely to schedule a visit after 37 weeks. The WC measured before 37 weeks may

be different from her weight right before birth. (ii) It is possible that the weight of a

pregnant woman drops during the last few weeks. The highest weight may be greater

than the weight right before delivery. The definition in (3.3.2) may be overestimating

the true GWG.

Due to the discrepancy between the measurements from the two different food intake

assessing instruments, we model the data collected by the two instrument separately.

Taking the web-based data as example, G defined in (3.3.2) is the response, and the

average nutrient intake of macronutrients (fat, protein, and carbohydrate), average

of the PA indices are predictors. Neither the multivariate linear regression or the

functional regression model explained the variance of the weight gain well. Adding the
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Table 8: Comparison of the weight gain regression models with directly calculated
weight gain

Response Predictor(s) RMSE Adjusted R2

G BMIp 1.57 0.08

G BMIp, T , TI 1.57 0.08

G BMIp, T̂ (t), T̂ I(t) 1.57 0.08

G BMIp, F , P , C, TI 1.56 0.09

RMSE: Root Mean Square Error; BMIp: prepregnancy BMI; T : average total calories
intake;F : average fat intake; P : average protein intake; C: average Carbohydrate
intake; TI: average total PA index; T̂ (t): estimated total calories intake trajectory;
T̂ I(t): estimated total PA index trajectory.

nutrient intake/PA data as additional predictors to the SLR model with prepregnancy

BMI as the predictor did not improve the RMSE or R2; see Table 8.

Natural log transform is a widely used technique in data analysis [120]. We trans-

form the weight, and the difference is now the log of a fraction, representing the relative

gain of a subject.

LG := log(max {WH ,WC})− log(W0) = log

(
max {WH ,WC}

W0

)
.

However, even after the log-transformation, the SLR model with LG as the response

and prepregnancy BMI as predictor still does not explain the variance of the weight

gain well, with R2 < 0.1.

Exploring the data we found that, for subjects with extremely large or small weight

gains, the regression models above could not predict the weight gain well. As mentioned

above, this method of weight gain calculation has possibility to overestimate the total

GWG. An alternative approach is to estimate the weight gain from the estimated
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trajectory:

G′ = (weight estimated at GA at birth)− (weight estimated at t = 0).

The log transformed value can be accordingly defined:

LG′ = log
weight estimated at GA at birth

weight estimated at t = 0
.

The weight gain estimated from trajectory could account for the weight gain in the

last few weeks even if the subject does not have any weight record. Moreover, FPCA

method has a smoothing effect. For subjects with large/small weight gain, the estimat-

ed trajectory tends to have a lowered/increased weight gain, and thus the estimated

weight gain is closer to the mean weight gain. This effect can be seen from Figure 17.

The weight gain estimated from the trajectory, G′, is highly correlated with the weight

gain directly calculated, G, but tends to be smaller than G when G is large, or larger

than G when G is small. This approach of estimating GWG may reduce the bias of

under-reporting the prepregnancy BMI or over-reporting the WH , as noted in [10, 79].

As it is shown in Table 8 that the nutrient intake/PA information do not improve R2

of the model, we consider using only prepregnancy BMI as predictor, and employ all

the weight data instead of dividing them by the type of instruments. The new model

works very well in terms of the R2. For a simple linear regression model, where we

use pre-pregnancy BMI as the only predictor, the R2 is 0.48, which means near half of

the variance of the G′ can be accounted by the variance of pre-pregnancy BMI. The

performances of the candidate models are listed in Table 9. As seen from the table,

the model where LG′ is the response has the highest adjusted R2 and smallest RMSE.
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Figure 17: Weight gain predicted from the trajectory vs. weight gain directly calculated

Table 9: Comparison of the weight gain regression models with log transformed/un-
transformed, estimated weight gain from trajectory

Estimated Model RMSE Adjusted R2

G = 20.62− 0.23BMIp 5.80 0.03
LG = 0.42− 0.01BMIp 0.07 0.25
G′ = 23.80− 0.39BMIp 3.88 0.18
LG′ = 0.45− 0.01BMIp 0.05 0.47
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Table 10: Comparison of the weight gain regression models with and without nutrient
intake/PA information

Response Predictor(s) RMSE Adjusted R2

LG′ BMIp 0.03 0.59

LG′ BMIp, T , TI 0.03 0.60

LG′ BMIp, T̂ (t), T̂ I(t) 0.03 0.60

The estimated prediction equation is

L̂G′ = 0.45− 0.01BMIp. (3.3.3)

We found that adding the food intake or physical activities data to the predictor has

no significant improvement for the R2 of the regression model. Taking the web-based

data as example, the comparison of the models with/without the estimated trajectories

of total calories and total PA index is shown in Table 10.

We conclude that the majority of variance has already been explained by pre-

pregnancy BMI. The scatter plot of the model (3.3.3) is shown in Figure 18, which

clearly shows that the weight gain predicted from trajectory is negatively associated

with pre-pregnancy BMI. For an underweight woman, she is likely to gain more weight

during pregnancy than a pregnant woman who is overweight before pregnancy.

3.4 Discussion

GWG is an important indicator of maternal and fetus health. Inadequate and excessive

GWGs are associated with various negative pregnancy outcomes [17, 42] and have

negative impact for maternal and infant health in the long run [117]. However, in

developed countries such as the United States and Canada, meeting the recommended
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Figure 18: Scatter plot of the log transformed weight gain vs pre-pregnancy BMI

GWG guideline is difficult for the majority of pregnant women [51, 98]. This situation

makes it important to monitor GWG during pregnancy to promote healthy weight

gain. Previous studies focused on the numerical aspect of GWG, such as total GWG

and weight gain rate. Yet in clinical practice, the weight trajectory may be more

informative for health care providers. Literatures show that interventions such as

customized counseling and education combined with individual weight monitoring were

effective to help pregnant women establish healthy weight gain. These interventions

call for a personalized weight growth trajectory as reference, especially a predicted

weight trajectory with partial existing weight records. If a weight trajectory could

be predicted with several existing weight records, the trajectory will help monitor the

maternal health, and the proper interventions can be used. APrON is a large cohort

study of maternal nutrition and GWG. In the study, the gestational weights and food

intakes as well as PA of a large cohort of pregnant women were measured. Our study
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has two aims, (i) estimation of the trajectories of weight and nutrient intakes; (ii)

modeling of the relationship between weight and prepregnancy BMI together with

food intake/PA to predict GWG.

We used FPCA for longitudinal sparse data to estimate the weight trajectory of

each pregnant women during pregnancy. The modeling performance is satisfactory for

weight, with RMSE=2.1 (kg). Compared to the NLME approach with RMSE=2.6

(kg), this is a significant improvement. It is demonstrated in Figure 10 that the FPCA

approach adapts to the observations better, especially when the trajectory is not in the

same pattern with the overall mean. The PFCA approach shows much better flexibility

and robustness in the modeling.

For the nutrient intakes, the agreement between observations and estimated tra-

jectories are not as satisfactory as weight; see Figure.13 and 16. The performance

difference may due to, but not restricted to the following reasons:

1. Variability of nutrients intakes are much larger than body weight, not only for

different subjects, but also for a single subject from different time points. A

subject might have a large intake of fat while taking little carbohydrates in a

certain day, but may have different intake or even doing the opposite on another

day. The 24-hour food recall only captures food intake in a single day and could

result in quite different intake patterns from one day to another. On the contrary,

body weight is a cumulative variable which does not change too much in a certain

period of time. The trajectory pattern follow the same overall trend with less

variability.

2. Large measurement errors of food intake make the trajectory prediction difficult.

Measurement of body weight has much smaller measurement errors on the scale

of kilograms. On the other hand, the nutrients intakes computed by 24h food
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recall questionnaires are subject to considerable measurement errors [16]. They

come from various sources, including inaccurate estimation of food serving sizes,

omitted food items, etc

3. More information are available for the weight trajectory modeling than nutrient

intakes. We require each subject in the modeling to have a valid self-reported

pre-pregnancy weight. So for weight measurements, we have at least one extra

record of weight than that of food intake/PA. Most subjects also have the number

of WH . We have more data pointnmms for the weight trajectory estimation than

for the nutrient intakes estimation.

For the second aim, the association between the covariates and the directly calcu-

lated GWG obtained by (3.3.2). In terms of R2, the association is not strong. However,

the estimated GWG from the trajectory is strongly correlated with pre-pregnancy B-

MI.This result is consistent with the GWG guidelines proposed by IOM and Health

Canada as per [123, 69]. That is, on average, women with lower pre-pregnancy BMI

should gain more weight than those with higher pre-pregnancy BMI.

Although it is reasonable and also promising to include the food intake/PA as

explanatory variables for the estimation of GWG, it does not improve the model fit

significantly. The R2 does not change (0.51-0.52 vs 0.51) much. Both numeric and

functional form of the food intake/PA were tried, and different combinations of the

food intake/PA function forms did not make a meaningful contribution to R2, which

are not reported here.

Several aspects of this study should be explored further. One is that the FPCA

method employed here is suitable for population with individuals “measured at a dense

grid of regularly spaced time points“. This assumption is violated as shown in Figure

4. More points are in (i) the cluster with (30, 35) × (5, 27), corresponding to the
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subjects who had records in the both the 2nd and 3rd trimester, or both the 1st and

3rd trimester; and (ii) the cluster (37, 42)× (5, 37), corresponding to the subjects who

had WH records and at least one record in the three trimesters. There are empty areas

along the 45◦ line Tij = Tik: (0, 13)× (0, 13), (16, 27)× (16, 27), (29, 37)× (29, 37) and

(37, 42) × (37, 42) as subjects who completed the questionnaire in a single trimester

or visited the research center at any time after 37 weeks, are relatively rare. In the

areas with few data points, the estimated mean function and covariance surface could

be skewed by the few points, rather than reflecting the real population pattern. The

results may be not as reliable as in the areas with more observations. It can also

be seen from Figure 10 that the confidence bands are wider on these intervals. The

data collection could be modified accordingly, for example, ask the participants to visit

the research center in a random manner, or encourage them to visit on the boundary

times of trimesters, such as 13-14 weeks, 26-28 weeks. Weight after 37 weeks can be

self-reported as most women have the measurement during prenatal visit to medical

clinics. New methods can also be developed to tackle such unevenly spaced time points,

possibly yielding more accurate estimates.

The second aspect is the bias of the estimated total GWG from the trajectory.

From Figure 18 we see that the estimated total GWG from trajectory underestimates

the weight gain for women with larger weight gain, while overestimates the weight gain

with smaller weight gain. That is because the FPCA method borrows information

from the entire cohort, and the estimation of individual trajectories used only the first

K PCs. Trajectories that have a different pattern than the sample mean are likely to

have larger FPC scores on the other PCs, which are discarded during the estimation.

The estimated trajectory is then closer to the mean function than it should be. Women

who were underweight before pregnancy tend to have higher weight gain, which means

that their weight trajectory may be steeper than the mean function, so their estimated
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total GWGs are lower than actual values. Similarly for women who were overweight or

obese before pregnancy, their estimated total GWGs are higher. Different estimation

methods of the weight trajectories could be employed in these different prepregnancy

BMI groups for more reliable estimation, or an index predictor of the prepregnancy

BMI categories can be added to the estimation of trajectories.

Last but not least, in our estimation of total GWG, adding the self-reported 24 hour

food intake and PA data in the regression model did not increase the percentage of

total variance explained. This indicates that those self-reported data are not providing

sufficiently useful information for estimating the weight gain. In Chapter 2 we also

showed that for the same subject, the two different instruments can have considerable

discrepancy for the measurement of nutrient intakes. There can be much noise infor-

mation in the nutrient intake data, bringing difficulties for accurate modeling. The

design of the data collection can be correspondingly improved. For example, repeated

administrations of 24 hour food recall are more representative for the usual food in-

take pattern of an individual. Holmes et al. recommended four repeated 24-hour food

recalls in a national study of diet and nutrition[54].
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Chapter 4

Discussion

Dietary intake and weight gain during pregnancy are two important topics in maternal

nutrition. In this thesis, I utilized the data collected in the APrON study and investi-

gated the dietary profile and its association with the GWG pattern of pregnant women

in Alberta, Canada.

The two different 24-hour food recall instruments employed in the APrON study

were subject to report and measurement errors. The validation study recruited 58

nonpregnant volunteers to complete both instruments for the same period of 24 hours

and the nutrient intakes were computed accordingly. The Bland-Altman plot suggested

that the recruited subjects tended to slightly under-report the total calories consump-

tion in the self-administered, web-based instrument. The variances of the reporting

error among individuals were relatively large. Therefore, it may not be appropriate to

directly pool the results from two different instruments for further analysis.

The calibration between the two instruments by SLR showed reasonable correlation

for most of the key nutrients, including fat, protein, carbohydrate and vitamins C, D,

and iron. But the intakes of choline and folate had weaker correlations between the

two instruments. Further investigation revealed that the web-based instrument had an

issue extracting the folate intake in its algorithm. For the macronutrients, the incre-

ment of Pearson’s correlation coefficient by proportional energy adjustment indicated

that the nutrient densities were more consistently reported using the two instruments.

We recommend to apply the proportional energy adjustment when pooling the intakes
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of the macronutrients from the two instruments. The LASSO based calibration signif-

icantly improved the R2 of the calibration equation of folate, with the intakes of fiber,

iron, and potassium as predictors. Choline intakes needed further investigation. For

the other micronutrients, the improvement of calibration equations by LASSO regu-

larization was present but limited. If the interviewer-administered instrument is used

as the gold standard, the LASSO based calibration is suggested.

I obtained satisfactory estimates of the individual weight trajectories during preg-

nancy for the participants of the APrON study, using the FPCA by conditional expec-

tation. The approach provided a useful tool to predict the weight gain trajectory from

weight data of a few time points during pregnancy, and can be used for the clinical

counseling. The estimated trajectories of nutrition intakes, however, had larger errors

compared to the weight. The larger errors were probably due to the variation of the

daily food intake, the measurement errors in the food intake assessment instruments,

and fewer measurements (up to three for food intake vs. up to five for weight) ob-

tained during the study. The GWG estimated from trajectory agreed well with the

self-reported weight gain, except for those with high or low prepregnancy BMI. The

increment of weight on the log scale from the trajectory showed strong negative cor-

relation with prepregnancy BMI. Therefore, my study confirmed the feasibility of the

GWG guidelines published by IOM and Health Canada, i.e., underweight women are

gaining more weight during pregnancy than overweight or obese women. However,

adding the dietary intake and PA information did not result in a significantly higher

R2 in the regression model, which might be due to the large noise in the nutrient intake

data.

Aside from the achievements, several limitations of my study deserve further in-

vestigation, and corresponding future work would likely improve the results. In the

calibration of the two instruments, the sample of non-pregnant volunteers may have
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discrepancies in diet patterns with pregnant women, as pregnancy is often accompanied

with diet changes [67, 20]. An algorithm issue was revealed when extracting nutrient

intakes from the instruments. Researchers may desire further investigation in the two

instruments to be used for pregnant women.

In the modeling of weight/food intake trajectories, the FPCA by conditional expec-

tation approach requires the measurements of all individuals to be dense on a regularly

spaced time grid, which is violated for the weight or food intake records between

trimesters. Estimated trajectory may be not reliable if few measurements were made

in a certain time period. These unevenly spaced records may require to modify the pro-

posed method for the modeling of trajectories. The data collection can adjust for food

intake assessments (e.g. repeated 24-hour food recalls) to capture the dietary pattern

better and obtain stronger correlation with weight gain. An index predictor may be

desired for different prepregnancy BMI groups, in order to cope with the discrepancy

between the GWG estimated from trajectory and directly calculated for women with

very large or small pregnancy BMI.

In summary, to study dietary intakes and weight gain during pregnancy, I used

the data collected in the APrON study. Most key nutrients of interest had acceptable

correlations between the two instruments by proportional energy adjustment or LASSO

based calibration. However, directly pooling of the results from the two instruments

might not be appropriate. Estimation of the weight growth trajectory was successful

compared to the traditional mixed-effect models. The GWG estimated from trajectory

was strongly correlated with the prepregnancy BMI. However, improvement of data

collection may be desired to get better association between GWG estimates and dietary

intakes.
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