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Abstract

We study the use of reinforcement-learning based prediction approaches for a
real drinking-water treatment plant. Developing such a prediction system is a
critical step on the path to optimizing and automating water treatment. Be-
fore that, there are many questions to answer about predictability of the data,
suitable neural network architectures, how to overcome partially observability,
and more. We describe this dataset, and highlight challenges with seasonality,
nonstationarity, partial observability and heterogeneity across sensors and op-
eration modes of the plant. We then describe General Value Function (GVF)
predictions—discounted cumulative sums of observations—and highlight why
they might be preferable to classical n-step predictions common in time series
prediction. We discuss how to use offline data to appropriately pre-train our
temporal difference learning (TD) agents that learn these GVF predictions,
including how to select hyperparameters for online fine-tuning in deployment.
We find that the TD prediction agent obtains an overall lower normalized
mean-squared error than the n-step prediction agent. Finally, we show the
importance of learning in deployment, by contrasting to a TD agent trained
purely offline with no online updating. This final result is one of the first to mo-
tivate the importance of adapting predictions in real-time, for non-stationary
high-volume systems in the real-world. Before we can hope to control a com-
plex industrial facility, we must first ensure that learning of any kind is feasible.

This work represents such a feasibility study.
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Preface

The work in this dissertation is under-submission to the Machine Learning
journal. Almost all of the content of this thesis is taken from the journal
submission, and has been edited to fit the dissertation requirements. Some
chapters, such as Chapter 2, and 3, have been added to provide more context

to the work under discussion.
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To burn in the fire of our own veins is youth!
Strive, and in strife make honey of life’s gall;

— Sir Muhammad Igbal
Bal-e-Jibril, 140

This can be considered a non-scholarly attempt at translation of the Urdu
poem. Therefore, this might not convey the true meaning of what the poet
has to say. Reference: Link to Complete Translation


https://www.allamaiqbal.com/poetry.php?bookbup=24&orderno=337&lang_code=en&lang=2&conType=en
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Chapter 1

Introduction

In this thesis, we study the use of reinforcement learning based prediction
approaches for a real drinking-water treatment plant. In this chapter, there is
first an overview of adaptive systems, motivating the importance of deploying
reinforcement systems that learn in deployment. Then, the problem setting

and contributions in this thesis are outlined.

1.1 An Overview of Adaptive Systems

In his seminal work on human understanding, John Locke argued that human
mind resembles a blank slate (tabula rasa) at birth, and that all knowledge
is formed through one’s own experiences acquired through environmental in-
teractions (Locke 1847). The idea of mind being a blank slate at birth was
first introduced in Ibn Tufail’s allegoric novel Hayy Ibn Yagzan (The Improve-
ment of Human Reason: Exhibited in the Life of Hai Ebn Yokdhan) (Ockley
et al. 1708). The novel follows the life of a young boy raised in the wild as
he learns and acquires knowledge solely through environmental interactions
and observations. Contrary to this, Leibniz did work on a rebuttal of Locke’s
work (G. W. Leibniz and G. W. F. v. Leibniz 1996) and criticized his ideas
while arguing in favor of prevalence of innate behaviors at birth. If human
mind at birth is tabula rasa or not is up for debate in philosophical circles,
however it is unanimously agreed upon that learning does not stop as humans
continue to function (and live). This is inline with how living organisms con-

tinue to learn, adapt, and modify their behaviors since the world around them
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Figure 1.1: The online learning setting: An agent, equipped with some learn-
ing procedure, interacts with the environment by acting on it and gets some
information and feedback signal that it can then use to improve.

Environment

favors such a tendency.

Animal, human and non-human, behavior is characterized by a certain re-
sponse to some stimuli. This response is, generally, tailored by some prediction
that the respondent makes pertaining to the stimuli. Voyaging through time
during the span of their lives, all animals develop and perfect the tendency to
make predictions (Gilbert and Wilson 2007). This tendency is deeply rooted
in the survival instinct of humans and animals alike since predictions furnish
the whole gamut of their existence. To this end, consider how in self-defense
the prey predicts the perpetrator (predictions) and acts (control) to avoid fa-
tal consequences before the latter attacks. For example, on comprehension of
some external stimuli (hearing a sound in a nearby bush), the prey can predict
the possible existence of some predator. Such predictions could be used for
the most naive control approaches such as Pavlovian control (Pavlov 2010), or
prey triggering its self-defense mechanism in the example. However, as preda-
tors evolve to develop techniques that aid their foraging behavior, so does the
prey in order to evade the perpetrator. While many factors are at play in
predator-prey dynamics (Abrams 2000), learning to adapt is crucial to both
in order to survive.

In its simplest form, learning to adapt (termed as continual/online learn-
ing) can be defined as the process of constant improvement, towards no single,
final end other than improvement itself (Ring et al. 1994). Given how or-

ganisms continually learn, it is but natural to think of learning in artificial
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agents as continual by design. Before we discuss design of such agents, it is
important to understand what forms continual learning and adaptation. In
his book on adaptive systems (Holland 1992), Holland describes three central
components in the problems of adaptation: an environment that undergoes
change (E), learning procedure undergoing modifications in response to the
environment (7), and some measure of the performance (x). This environ-
ment, E, is ever-changing and supplies the actor (an agent, either artificial or
natural) with complexities and regularities. The agent, equipped with some
learning procedure, adjusts and adapts as it interacts with this environment;

using the performance measure (feedback) as a signal of improvement.

1.1.1 Types of Learning Procedures

Generally in the reinforcement learning community, learning procedures can
be segregated into two types: offline and online (or deployment, used inter-
changeably throughout this dissertation). In an offline learning scenario, also
referred to as batch learning, the dataset is collected and made available to
the agent; the agent does not interact with the environment to gather samples
therefore there is no adaptation or continuous improvement. This is different
from online learning wherein the agent gets to interact with the environment,
collect sample and learn by acting on the environment, as illustrated in the
Figure 1.1. We emphasize the importance of learning online (or learning in de-
ployment, used interchangeably henceforth) and argue that allowing the agent
to learn in deployment can be of much benefit and aligned with real-world
applicability goals.

1.2 Learning Predictions Online for Water Treat-
ment

Learning in deployment is critical for partially observable decision making
tasks (Richard S. Sutton, Koop, and Silver 2007). If the evolution of state
transitions is driven by both the agent’s actions and state variables that the

agent cannot observe, then the process will appear non-stationary to the agent.
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For example, an agent controlling chemical dosing in a water treatment plant
(WTP) may correctly learn the relationship between increasing chemicals to
reduce turbidity in the water. However, inclement weather events can also
impact water turbidity causing the agent’s prediction of future turbidity—and
thus choices of chemical dosing—to be suboptimal. One approach to mitigat-
ing this problem is to allow the agent to continually update its predictions and
decision making policies online in deployment.

Effective multi-step prediction forms the basis for effective decision making
in almost any reinforcement learning system. Classical value-based methods,
such as Q-learning (Watkins and Dayan 1992), construct a prediction of future
discounted reward in order to decide on what actions to take. Policy gradient
methods such as PPO (Schulman et al. 2017) and SAC (Haarnoja et al. 2018)
typically define the agent’s policy through an estimate of the value function.
In applications, often the first step is to build a prediction learning system
that can predict future reward and sensor values far into the future. This
is an important step to assess feasibility of adaptive control, but is also a
useful first step because the tasks of feature engineering, network architecture
design, optimization, and tuning of various hyperparameters will be shared
and beneficial to both a prediction learning system and a full reinforcement
learning system.

There has been growing interest in moving RL techniques out of video
games and into the real-world. In many applications, such as chip design
(Mirhoseini et al. 2021), matrix multiplication (Fawzi et al. 2022), and even
video compression (Mandhane et al. 2022), the problem setting of interest is
simulation. Another approach is to design and train an agent in simulation and
then deploy a fixed controller, sometimes even in the real-world. This approach
has been used for example in navigating stratospheric balloons (Bellemare et
al. 2020), controlling plasma configurations inside a fusion reactor (Degrave
et al. 2022), and robotic curling (Won, Miiller, and Lee 2020).

In this dissertation we study and discuss the application of machine learn-
ing techniques, specifically prediction methods from reinforcement learning,

on a real drinking water treatment plant. In our setting, we do not have ac-

4



Water Source Pretreatment Filtration Storage
f 000 -,
L
=~ S~
S
= 860808000

Figure 1.2: An illustration of the drinking water treatment plant. The entire
plant is divided into two main stages: pretreatment and filtration. The pre-
treatment stage is concerned with adding chemicals to the raw water, followed
by the filtration stage where the water is pumped through filters for further
purification.

cess to a high-fidelity simulator of the plant, nor the resources to commission
one. This work explores the feasibility of adaptive learning systems in the real-
world, without access to a computer simulation for iterating design choices or
pre-training the agent.

Closer to our work, recent work on automating HVAC control used an
approach where the agent is first tuned on off-line data and then a learning
controller is deployed that is updated once a day (Luo et al. 2022). In this
work the authors explicitly avoided offline training on operator data, citing the
well-known issues of insufficient action coverage. Nevertheless, batch or offline
learning methods (Ernst, Geurts, and Wehenkel 2005; Riedmiller 2005; Lange,
Gabel, and Riedmiller 2012; Levine, Kumar, et al. 2020) have been successfully
used in settings where a fixed policy or value function is extracted from a
dataset, with several practical applications (Pietquin et al. 2011; Shortreed
et al. 2011; Swaminathan et al. 2017; Levine, Pastor, et al. 2018).

Drinking water treatment is basically a two stage process, as depicted in
Figure 1.2. First, water is pumped into a large mixing tank where chemicals
are added to cause dissolved solids to clump together. The next step is to
pull the pretreated water through a filter membrane where only clean water
molecules can pass through the filter membrane and the solids and other conti-
nents remain. Periodically, the primary filter is cleaned by simply running the
process backwards blasting the filter membrane clean: a process called back-
washing. In Canada, the operation of a water-treatment plant can represent

up to 30% of a town’s municipal budget (Copeland and Carter 2017).



Drinking water treatment is uniquely challenging compared to other ap-
plications due to two key characteristics. The data produced by a water-
treatment plant, like many real-world systems, is high-dimensional, noisy,
partially observable, and often incomplete, making online, continual predic-
tions extremely challenging. In water treatment, the plant can operate in
different modes, such as production and backwashing. The mode has a pro-
found impact on data produced by the system and even changes the range of
valid sensor readings. Second, the different components of the plant operate
at different timescales and decisions have delayed consequences. For example,
the chemical dosing rate is typically not changed more often than once a day,
backwashing happens multiple times a day, and pretreatment tank mixing-rate
can be adjusted continuously. Each one of these choices can result in changes
in sensor readings over minutes—chemical dosing changes the water pressure
on the filter within 30 minutes—to months—too much chemical dosing can
degrade filter efficiency over the long run.

We seek to understand one simple question: Given a nonstationary, and
partially observable real-world environment, can we learn an adaptive system
that makes predictions many steps in future and continues to improve online?.
To answer the question, we investigate multi-variate, multi-step prediction in
deployment on a real system. We provide a detailed case study on water treat-
ment (a real-world plant), first demonstrating the inherent nonstationarity of
the problem and the benefits of learning continuously in deployment. We show
that, using a simple trace-based memory to overcome partially observability,
we can learn accurate multi-step predictions, called general value functions
(GVFs) (Richard S Sutton, Modayil, et al. 2011; Modayil, A. White, and
Richard S Sutton 2014), using temporal difference (TD) learning. Because
GVFs can be learned with standard reinforcement learning algorithms like
TD, they can easily be update online, on every step. We show that updating
online can significantly improve performance over only training from an offline
log of data. The online prediction agent also benefits from this offline data,
to pre-train the predictions and to set the hyperparameters for updating on-

line in deployment. Our approach allows us to have a fully specified online
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prediction agent—with hyperparameters automatically selected using a simple
modification on the standard validation procedure—that continues to adapt
and improve in deployment.

Finally, we also contrast these GVF multi-step predictions to the more
classical predictions considered in time series prediction: n-step predictions.
The primary goal of this comparison is to provide intuition: n-step predictions
are a more common and widely understood multi-step prediction, as compared
to GVFs. Our goal is to introduce GVF predictions to a wider audience, and
hopefully motivate this additional modeling tool. Beyond this, we highlight
that GVF's can have benefits over n-step predictions. The target for a GVF
is typically smoother, because it is an exponential weighting of future obser-
vations, rather than an observation at exactly n steps in the future. Conse-
quently, we also expect this target to be lower variance and potentially simpler
to learn. We do find that GVF predictions have high accuracy than the n-step
predictions on our data, controlling for the same state encoding and network
size, in terms of the normalized mean-squared error. Taken together, our work
provides several practical insights on designing neural-network learning sys-
tems capable of learning in deployment, supported by real data generated by
a real water-treatment plant.

The rest of this dissertation is organized as follows. In Chapter 2, we
discuss the preliminaries going over some of the background, and looking at
some existing literature on the topic. In Chapter 3, we discuss the construc-
tion of the water treatment plant, and go through the data generated by the
plant and understand what makes it interesting. Following this, in Chapter 4
and Chapter 5, we discuss theoretical construction of both solution methods
(GVFs, and n-step) and discuss algorithms that we design for the purpose of
this problem. Finally, in Chapter 6, we look at how to design the experiment
to answer the questions and discuss the results at length. We conclude the

dissertation with a discussion of future perspectives on the topic in Chapter 7.



Chapter 2

Preliminaries

In this chapter, we briefly present overview of the context of this dissertation.
This will help the reader understand what different terminologies mean and
what learning methods and frameworks surround the work presented in this
book. Mainly, we follow the reinforcement learning (RL) problem setting
to develop our continual learning algorithms, therefore we describe the RL
framework. Furthermore, we also look at some of the related work pertaining
to our proposed problem and summarize previously published works in the

literature on the topic.

2.1 Brief History

The idea of designing automated systems capable of learning from streams of
data by working out underlying patterns goes back several decades. Efforts in
the direction of building such learnable systems fall under the umbrella of ma-
chine learning, which became an active research area when the perceptron was
introduced (Rosenblatt 1958). This perceptron algorithm, inspired by neu-
ral networks in human brain, was composed of a single layer and functioned
to classify visual data. However, with its failure to capture non-linearity in
data —specifically the XOR problem (Marvin and Seymour 1969)- a sudden
decline in machine learning community was observed; this decline is referred
to as AI Winter. With the invention of backpropagation algorithm (Rumel-
hart, G. E. Hinton, and Williams 1986), and proposition of utilizing multiple

layers, it became feasible to extend perceptron to multiple layers and train-
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ing large deep neural networks became a possibility. Earlier machine learning
approaches relied on carefully engineered and handcrafted feature extractors
capable of extracting necessary information from the input data. However,
such approaches were limited by manual labor requirement and did not gen-
eralize to unseen data samples well. With increasing availability of compute
power and large datasets (Deng et al. 2009), it became a standard in the com-
munity to stack multiple non-linear layers together to allow the neural network
to learn representations from raw data (Krizhevsky, Sutskever, and G. E. Hin-
ton 2017). This ushered a new era in deep learning, a term that was coined
to signify the usage of deep neural networks, since it paved the way for con-
struction of strong function approximators, neural networks, that could learn
from vast amounts of data without manual feature extraction labor (LeCun,

Bengio, and G. Hinton 2015).

2.2 Reinforcement Learning

Reinforcement learning (RL) is a problem setting concerned with an agent that
learns from some scalar reward signal. We, formally, describe RL problem as
a Markov Decision Process (MDP) defined by 4-tuple (S, A, P,r), where S is
a set of states, A is a set of actions available to the agent, P is the transition
probability function and r is the reward function. At any timestep, t, the agent
receives some observation from the environment, S;, takes some action, A;, and
receives some scalar reward, R;+1, and next state observation, S;;1. The agent
learns a policy m to maximize the sum of future rewards, also referred to as

the return.
(s o]
Gt = Rip1 +7Riy2 + ’)’QRH:; +...= Z’?zRHlH (2-1)
i=0

The term ~ € [0,1) refers to the timescale and determines what part of
the reward should the agent focus on; if v = 0 then agent is only concerned
with the immediate reward. In RL, value functions are used to estimate the

expected value of return in a given state.

v(s) =R [G|S; = s] (2.2)
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Generally, the value function is governed by some policy and discount, but
for brevity we can drop it. We are concerned with online learning, continually
learning as new experience is made available, therefore we want a solution
method that can learn the value estimates online. Temporal-difference (TD)
learning algorithms allow online learning due to bootstrapping, a technique
that allows estimating the value on the basis of other value estimates (Richard
S Sutton and Barto 2018). In the most straight-forward case, one-step TD
update is given by computation of the TD error . We can write the one-step

TD update for value estimates as follows.
Vir1(Sy) < Vi(Sy) + aé, (2.3)

The TD error can be computed as & = Rit1 + vV (Seq1) — V(St), and «
refers to the stepsize. In principle, the value estimates are updated towards the

samples of return. Notice how return refers to sum of future scalar rewards.

2.2.1 General Value Functions (GVFs)

In RL, we distinguish between prediction and control problems. A prediction
task refers to predicting the expected total reward from any given state, given
the policy 7 (known as policy evaluation). In other words, the value functions
estimates are updated to be more accurate. In most cases, the prediction
target (one that is predicted) is the reward. However, general value functions
(GVFs) allow relaxation to the value function formulation by generalizing
the prediction targets to be any feature of the environment available to the
agent (Richard S Sutton, Modayil, et al. 2011). More generally, the prediction

target is referred to as cumulant, represented by C.

Ge=Cri1+7C2+7°Cryz+ ... = Z V' Cer+i (2.4)
i=0

The term ~ refers to discount, or timescale. GVF's are defined with respect to a
timescale and since they form predictive questions, v determines the timescale
of the prediction. For example, consider an agent adding chemical dose to the

raw water on a water treatment plant:
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e If I add 10mg/l of chemical dose to raw water, what will the water tur-
bidity be in 100 timesteps?
Policy: 10mg/1 Dose Raw Water
Cumulant: Water Turbidity
Timescale: 100 timesteps (v = 0.99)

We can also determine the timesteps from the timescale, which allows for

more intuitive understanding. This can also be thought of as the horizon for

a GVF prediction (Richard S Sutton, Modayil, et al. 2011).

1

=1= (2.5)

T

The term 7 has a unit of timesteps (the definition of what each timesteps refers
to can vary depending on the domain). Note that GVFs are a generalization of
value functions, and therefore we can employ standard TD learning algorithms
as usual. We discuss how we leverage the bootstrapping updates of TD to
construct our online learning algorithms for GVF predictions at length in

Chapter 4.

2.3 Related Work

In real-world RL, several works focus on learning in high-fidelity simulators
before deployment in real-world (which refers to halting of the learning pro-
cedure); some examples of such works include network defense (Wolk et al.
2022), congestion control (Fuhrer et al. 2022), navigation of stratospheric bal-
loons (Bellemare et al. 2020), plasma control (Degrave et al. 2022), etc. The
availability of such dense simulators is a major setback and requires years worth
of effort to produce meaningful simulators that can translate well to the real-
world. It is no surprise that capturing the real-world dynamics, even in such
high-fidelity simulators, is an exceedingly difficult task, hence on real-world
deployment such efforts face degradation in performance (Wolk et al. 2022) or
are solely deployed in the simulator (Agarwal et al. 2022). As an alternative,
learning from offline data is another possibility for real-world RL. However,

it is well-known that the learned policy is highly dependent on the quality of
11



offline data and has no means to improve on encountering out-of-distribution
states during deployment, unable to leverage new data as it is made available.
To further explain the limitations to such approaches, we look at two different
works that tackle the problem of RL in the wild.

The work done in (Tessler et al. 2022) looks at the problem of conges-
tion control in a datacenter. The authors develop a deterministic on-policy
algorithm, ADPG, to learn a policy for congestion control in a simulated net-
work. A follow up work (Fuhrer et al. 2022) simplifies the learned complex
policy by transforming the underlying neural network to a decision tree, and
achieve better latency on deploying it on a real-world network. Although these
works deal with partial observability, they, however, solely focus on learning
in a simulated network (before deployment), and have a simplified state-space
consisting of present and past transmission rate and Round-Trip-Time (RTT)
measurement. In addition to the lack of continuous updates to the learning
agent in real-time, since on deployment the learning procedure is halted due
to distillation of the neural network to a boosting tree, there is also little to
no problem caused by existence of multiple time-scales and high frequency of
data availability during policy iteration (pre-deployment).

In a recent work (Luo et al. 2022), the authors look at the problem of
controlling commercial cooling systems using RL. The work focuses on HVAC
control, leveraging the fact that HVAC is a decision-making problem and de-
sign an RL algorithm to learn an energy-efficient operating strategy by pro-
viding set-point recommendations to the chiller plant (which is an integral
component of the HVAC). The algorithm digests real-world data of different
sensor readings, and equipment status (on/off), however the state-space only
comprises of 50 different real-valued measurements which are recorded at a
five minute interval. The chiller plant has two different modes of operation,
but the work does not explicitly cater to these different modes and resorts to
mode-specific action masking which refers to agent returning superset of all
actions, and the selection procedure masks the actions which are irrelevant
to the mode plant is operating in. A crucial difference between the chiller

plant and our work manifests itself in continuously digesting and learning the
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available data. With respect to the chiller plant, the authors only focus on
re-training at the end of each day. This is in contrast to the tenet of online
learning; we consider true online learning to learn at each time-step as the
data is made available.

More recently, industrial water treatment problem has been posed as a
collection of reinforcement learning tasks (Liu 2022). The authors detail the
construction of a water treatment plant, along with suitable sub-tasks that can
be framed as RL problems. The work also presents a case study on chemical
dose control on the plant, and details how a suitable reward function can be

designed.

2.3.1 Water Treatment Plant Automation

In several limited contexts, the literature has explored automating water treat-
ment plants either through controlling certain components of the plant, or by
learning to predict a few sensors based on some water characteristics. Back-
washing is an important mode of operation in a water treatment plant, where
the filters are cleaned by running the water reverse through them. Gener-
ally, plants follow a fixed backwashing schedule based on certain heuristics as
determined by the plant operators. This might not be a very cost effective
scenario given how backwashing is dependent on filter health which in turn is
dependent on influent water characteristics. Consider how in winter the water
is generally clean, and therefore would require minimum backwashing. More
frequent backwashing can reduce the water produced (or productivity of the
plant), whereas if done less frequently the filters can be significantly damaged.
This specific problem of learning a backwash scheduler is considered (B. Zhang
et al. 2020), where dynamic programming is used to learn a backwashing policy
from offline logs of data which is deployed fixed on the treatment plant.

In addition to backwash schedulers, pre-treatment is a major component of
the water treatment plant, in addition to filtering. Pre-treatment is responsible
for treating the water before it is subjected to filtering. The work (Q. J. Zhang
et al. 2007) proposes to predict turbidity in the effluent water utilizing the

chemical dose and various water characteristics, as part of the pre-treatment
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stage. They employ a naive control mechanism that selects the chemical dose
range that results in lowest turbidity. Note that these techniques are limited
since they do not allow on-the-fly adaptation as the underlying data changes

over time.
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Chapter 3

Water Treatment Plant

In this chapter, we provide an overview of the water treatment plant (WTP)
and the data that the plant generates. We discuss how the plant is constructed,
and how different components combine to perform plant operations. We then
introduce different properties of the data that the plant generates, and visualize
different patterns that arise in the data due to various factors. This chapter, at
length, introduces the water treatment plant as an RL problem and motivates
why learning in deployment is the only choice in such a real-world data rich

application.

3.1 Overview of the Plant

Water treatment plants are large-scale industrial plants that perform the func-
tion of cleaning raw water, taken from the an external source, to make it fit
for human consumption. These plants differ in construction based on their
functions, and locality; sewage water treatment plants are different from river
water treatment plants. Similarly, in localities where rivers run in abundance
the treatment plant would differ from the one that is responsible for cleaning
ground water. The plant in this dissertation refers to a river water treatment
plant which cleans the raw water to make it fit for drinking purposes.

Most of the industrial scale WTPs divide the process of cleaning raw water
into several stages chained together sequentially, since water from one stage
flows into the other as it gets treated. At the very least, each plant consists

of a pretreatment and a filtration stage since they combine to form the most
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essential components of a WTP.

3.1.1 Pretreatment

Pretreatment is often the first stage of treatment. It is combines several sub-
stages, all of which work to remove solids and sludge from the raw water.
Initially in pretreatment, chemicals are added to coagulate the water particles
and dirt as they combine with raw water, a process known as coagulation.
The next step involves mixing the coagulated water to form larger clumps of
solids. This mixing is done in a large flocculation tank and is termed as the
flocculation process. In sedimentation phase, these larger clumps settle to the
bottom due to being heavier than the water and are eventually removed from
the water. This leaves the raw water without dirt and other suspended solids,

see Figure 3.1 for a simplified illlustration of the pretreatment stage.

3.1.2 Filtration

In pretreatment, the added chemicals are positively charged and they neutral-
ize the negative char on dirt and other particles. However, smaller particles or
bacteria could still remain in the water. Therefore, the filtration stage follows
the pretreatment stage. Several filters are combined through which the pre-
treated water is pushed to clean the remaining particles. These filters can get
dirty over time since the particles stick to these filters as the water is made
to pass through them, and they require frequent cleaning. A process known
as backwash (BW) is employed to perform the task of cleaning filters. During
backwash, some of the water is pushed in reverse through the filters to remove
the particles that are stuck to the filters. Once the water is filtered, it is sent to

a storage reservoir which can then either provide the water for consumption.

3.1.3 Operational Cycle of Plant

During its cycle, the plant goes through several different modes of operation.
The plant mode is also a type of setpoint, which can be set at specified times

as the plant enters and exits these modes, forming an operational cycle; we
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Figure 3.1: An illustration of the first stage of drinking water treatment plant:
pretreatment. The river serves as the water source, and the raw water passes
through the coagulation, flocculation and sedimentation processes. All of these
combine to form the pretreatment stage.

list the important modes here.

1.

2.

Production (PROD) - The plant produces clean water in this mode.

Standby (STBY) - This is a standby mode the plant cycles through

during operation.

Backwash (BW) - The backwash mode refers to pumping water back-

wards to clean the filters.

Drain (DRAIN) - As the name suggests, this mode is responsible for

drainage of the waste water.

Membrane Integration Test (MIT) - The plant in this mode tracks the
changes in the membrane damage, as a part of preventive maintenance

strategy.

This operational cycle of the plant is a loop through these modes: STBY —
PROD — BW — DRAIN — PROD — STBY, we refer to this loop as the

normal cycle of the plant. Additionally as part of the preventive maintenance,

MIT mode is scheduled at a specified time every day interrupting the normal

cycle, which then continues after the MIT mode has ended. The production

mode is the longest mode, taking up-to 20 minutes in a single pass of the

normal cycle, and therefore is a dominant mode.

17



3.2 Water Treatment Data

Like any industrial control process, a water treatment plant has the potential
to generate an immense amount of data. Our system is instrumented with a
large number of sensors reporting both (1) water chemistry throughout the
treatment pipeline, and (2) properties of the mechanical components of the
plant. Taken together these sensor readings form a long and wide time series
with several interesting properties. In this section we highlight these proper-
ties with examples from a real plant, explaining how each makes long-term

prediction challenging.

3.2.1 Wide, Long, and Fast Data

Our system reports 480 distinct sensor values at a rate of one reading per
second producing a large time series. One year of data consists of over 31
million observations of the plant and over 15 million individual sensor readings.
In contrast, the recent M5 time-series forecasting competition used a dataset
with 42,840 dimensional observations and 1969 time-steps; over 84 million
samples (Makridakis, Spiliotis, and Assimakopoulos 2022). Using multiple
years of water treatment data puts us in the same scale as state-of-the-art
forecasting grande challenge problems. We summarize some of the sensors in

Table 3.1, and provide more detail in 3.2.

Sensor Type Measures

Pressure Pressure on the membrane.
Flowmeter Flow rate of the fluid.

pH Acidity and alkalinity of the solution.
Temperature Temperature of the water.

Turbidity Turbidity of the water.

Total Organic Carbon (TOC) | Organic carbon in the water.
Conductivity Ability to pass an electric current.

Table 3.1: A brief summary of different measurements each of the sensor type
is responsible for working out.

Our data exhibits coherent structure over the year, month, day and minute.

In Figure 3.2 we plot incoming water temperature at three temporal resolu-
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Variation in Influent Temperature Sensor
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Figure 3.2: The many timescales of water treatment. Each subplot shows the
incoming water temperature from the river at different temporal resolutions.
Viewing right to left, if we look at temperature over the entire day (subsam-
pled) we see a single outlier and an otherwise fluctuating baseline. In the
middle subplot, looking at a singe hour of data we see the spike has more
structure. Finally, the left most subplot shows one minute of data sampled
at the fastest possible timescale of the system (no subsampling), which shows
how in a short timescale measurements can even appear constant.

tions. Mechanical systems like ours often support sampling at rates of 1 Hz or
greater, whereas data sets commonly used in time-series forecasting are wide
and short; typically sampled once a day. In water treatment, high-temporal
resolutions are relevant because the data can be noisy (as highlighted in Fig-
ure 3.3) and averaging is lossy. In addition, if one were to change process
set-points (the ultimate end-goal of prediction), this may require rapid adjust-
ment (for example, adjusting PID control parameters during a backwashing

operation).

3.2.2 Sudden, Unpredictable Events

Our data exhibit substantial distribution shifts, largely due to unpredictable
events. For example, Figure 3.3 shows the impact of cleaning different sensors.
Most of these sensors get physically dirty over time due to a variety of fac-
tors. Sometimes water gets accumulated in the sensor enclosure, or moisture
develops on the physical sensors, causing the readings to become noisy and
unreliable. The plant operators manually clean the sensors to make sure they
are as noise-free as possible and are reliably operating. Often times the sensor
patterns indicate that they have recently undergone cleaning. This change in
pattern manifests itself as sensor signal stabilizes over time post cleaning.

A water treatment plant operates in different modes which dramatically
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Figure 3.3: Raw values of some of the sensors before and after the cleaning.
The black dotted line indicates when the sensors were manually cleaned by
the plant operators. Note that the data is sub-sampled to avoid congestion in
the plot.

impacts the data generated. The main modes of operation are production
and backwash. In production the water is drawn through the filter to remove
contaminants and it is moved to storage. In backwashing—the process of
cleaning the filters—water moves backward through the system from storage,
through the filters and eventually into the waste (reject) drain. In Figure 3.4
we can see the impact of these two modes across several sensors.

In our plant, mode change is driven either by a fixed schedule or human
intervention. Maintenance, for example, occurs every day at 4:30am, trigger-
ing the Membrane Integration Test (MIT) mode, whereas backwashing occurs
on a strict schedule. Sensor changes due to these mode changes should be
predictable from the time series itself, however, more ad hoc operator inter-
ventions are better represented as unpredictable external events; for example,
when the plant is shut down. In addition, unscheduled maintenance occurs
periodically—it is conceivable that such maintenance could be predicted based
on the state of the plant, but there are other constraints like staffing constraints

that can drive mode change.

3.2.3 Sensor Drift and Seasonal Change

Water treatment is predominately driven by the conditions of incoming river
water which changes throughout the year. These changes are driven by sea-
sonal weather patterns. In the dead of Winter the river is frozen and cool,

clean, low turbidity water flows under the ice into the intake valves. During
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Figure 3.4: Variation across modes of different sensors. For brevity, we only
produce two important modes, namely production (PROD), and backwashing
(BW). The top row corresponds to the production mode, while the bottom
row corresponds to the backwashing mode.

the Spring thaw—called the freshet—snow and ice all along the watershed
of the river melt, increasing volume, flow, turbidity, and organic compounds
in the river. Early Summer is dominated by a mixture of melted snow and
ice higher up in the mountains and heavy rains that cause second and third
freshets. Over the Summer, precipitation reduces, causing the late Summer
and Fall to exhibit similar patters as the Winter. All of these patterns are
clearly visible in Figure 3.5.

Change also happens within a single day. In Figure 3.6 we see how two
different sensors evolve over a single day, on different days. As we can see in
the plot of Feed Turbidity, some days are similar, but others, such as May 31,
2022, exhibit dramatically different dynamics. In some applications like HVAC
control (Luo et al. 2022), it is sufficient to perform learning on a batch of data
once a day. In water treatment, the sensor dynamics provide opportunity to

observe sensor changes throughout the day.

3.2.4 The State of a Water-treatment Plant?

What information would we need to predict water treatment data many steps
into the future, with high accuracy? The plots above paint a clear picture
of a partially observable complex dynamical system. Consider the Spring
freshet. The volume and flow of the river will be driven by weather patterns
and by the snow accumulation all along the watershed throughout the Winter.

Digging deeper, the turbidity and other metrics are also driven by erosion
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Figure 3.5: A year’s worth of data for three different sensors, namely Mem-
brane Pressure, Influent Turbidity, and Influent Temperature. These three
sensors are representative of the impacts that seasonal variations, or change in
physical state of plant’s component have on the underlying telemetric stream
of data. Note that the data is sub-sampled to avoid congestion in the plot.

and composition of the riverbed, which changes all the time. The chemical
makeup of the water could spike if there is a change in farming practices in
the area—water runoff from fields along the river. Even everyday things like
a fire in the town can add huge pressure demands on the plant—many plants
have dedicated pumps just for fires.

In all the examples above, it would be impractical to sensorize these events
so they could be detected in the plant. In fact, we would need to predict
these events in advance of their occurrence (including the weather) in order
to accurately predict our data in advance. Perhaps, we could simply make
predictions based on the entire history of the time-series—approximately two
years of data. The history would still only approximate the state, because
we do not know the starting conditions: data from five and ten years ago. In

addition, such an approach is not scalable if the end goal is to build a continual

22



Feed Turbidity Drain Reject pH

30| Wbl s, [ e

.g‘“;lqtlmv " wwan| 6.8 “h(ﬁh

o TTE N R P WY
WMW R e Vil i
) ; 12 18

o

N
0 6 12 18 24 0 6

Hour Hour

24

Figure 3.6: Feed Turbidity and Drain Reject pH sensors, respectively. An
example of data drift in sensor values over hours, both within a day, and over
multiple consecutive days.

learning system that runs for years generating tens of millions of samples a
year.

In the end, capturing the true underlying state is likely impossible and we
must be content using learning methods that continue to learn in deployment
in order to achieve accurate prediction. Such methods track the changing un-
derlying state of the plant. The idea is to use computation and extra processing
of the recent data to overcome the limitations of the agent’s state representa-
tion (Richard S. Sutton, Koop, and Silver 2007; Tao, A. White, and Machado
2022), similar to how an approximate model of the world can be used to deal

with non-stationary tasks in reinforcement learning.

3.2.5 Details on Construction of State

As discussed at length before, learning directly on the raw data from a water
treatment plant is very challenging due to the noisy, stochastic and partially-
observable nature of the data. In addition to this, different sensors operate
at different timescales and frequencies; we summarize some of the sensors in
Table 3.2. In order to minimize the effect of these issues on the predictions,
we take a series of preprocessing steps on the raw data.

Note that we do not have significant missing data issues. Our system rarely
misses sensor readings. However, in the rare case where we do have a missing

value, we simply use zero-imputation and fill in the missing values with zeros.
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Categorical Observations

Some of the observations are recorded in the form of discrete categorical vari-
ables as opposed to continuous real numbers. For such observations, we encode
them in a one-hot vector format. Consider an observation which can only take
on values from one of k categories: we convert it into a binary vector of size k

in which only the corresponding index of the category is set to 1.

Data Normalization

Since different sensors have different ranges, we normalize their values into the
[0,1] range. For each sensor X = [zg,z1, Ty, ...]|, we compute the minimum
and maximum values from the logs over the duration of a year. Afterwards,
we compute the normalized sensor value z; as:

:E’ — (xt B mm(X))
(max(X) — min(X))

(3.1)

Encoding Time of Day

The observations contain the information regarding the current time of the day
in seconds. This is important since there are certain events that happen at a
particular time of the day. Additionally, there are some events are repeated
at regular intervals. Let S = [sg, 81, 8o, ...] denote the time-stamp in seconds

for that day, then we encode it using sine and cosine transforms as:

sin ) 27s
s — sin (864[;0) (3.2)

cos 27s
5\ = cos (864[;0) (3.3)

where 86,400 is the total number of seconds present within a day. It is the

maximum value that s; can take.

Encoding Plant Mode Length

Understanding which mode the plant is in, and when the mode change will
happen is crucial for the agent. This information is only available as a binary

indicator, as mode value 1 against a certain mode indicates that the plant is
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currently in this mode, while it is 0 otherwise. This limitation to binary indica-
tion adds to the partial observability inherent in the state-space. We find that
cyclically encoding the mode furnishes extra information that alleviates this
associated partial observability. Since the agent has access to when the mode
starts, and ends (albeit only as binary indicators), we utilize it to construct a
cyclical thermometer encoding of the mode. Let o! an ith observation at time
t, and m! be the mode indicator as part of this observation. For the sake of
simplicity, assume that m! is a production mode indicator, though the process
is similar for all the modes. We define two thermometers w,, and w, as vectors
of length 7 initialized to all zeros at the start, and the total mode length as
m}, which is a scalar value, and let s be the timestamp in seconds. Since the
mode is characterized with respect to an observation that is furnished at a
certain timestep, we avoid explicitly denoting mode length with timestep for
clarity. The thermometers then get filled up at each timestep (which is in
seconds), each index j of both thermometers gets filled by computing sine (for

thermometer w,) and cosine (for thermometer w,.) transforms by increasing

ws, =sin | 2’7 (i%) , we, = cos | 27 (i%) (3.4)
my my

These thermometers, when plotted, have sine and cosine waves between

periodicity.

the start and end of each mode, and their rotations about the period increase
by a factor of 27. This equips the agent with the ability to understand when
the mode is going to end, or when a mode shift is expected. Unlike binary
indicators, this allows gradual increase towards the end of the mode with each

new observation.

State Approximation and Summarizing History

In order to make use of the historical information during predictions, we com-
pute memory traces of the observations. The state is constructed by appending
the original observations and these memory traces, in addition to the mode

length and time of day described in the above two sections. Given a normalized
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observation z; at time-step ¢, we compute its memory trace z; using:

2z = Bz + (1 — B)z; (3.5)

where 3 is the trace decay rate hyper-parameter. All the memory traces are
initialized with zeros and are updated in an incremental manner when iterating

over the dataset.
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Sensor Name Measures

Feed Flow PID PID control for feed flow

Pump Flow PID PID control for feed/drain pump flow

Permeate Pump Flow PID | PID control for permeate pump flow

Condition of feed water sampling valve,

Feed Water Sampl e e
eed Water Sample indicating if it is open or not

Condition of post flocculation sample isolation valve,

Post Flocculation Sampl
oSt Hlocctiablon Sampie 1 i dicating if it is open or not

Process/Permeate Pump

Control Speed Output Speed control for process/permeate pump

Sulphuric Acid Pump Speed of sulphuric acid pump dosing

Dose Speed

Hypochlorite Pump Hypochlorite pump dosing
Sodium Hydroxide Pump Sodium hydroxide pump dosing
Dose Speed

Citric Acid Pump Citric acid pump dosing

Condition of feed inlet valve,
indicating if it is open or not

Feed Inlet Valve

Condition of feed /waste pump inlet valve,
indicating if it is open or not

Feed/Waste Pump Inlet

Condition of feed /waste pump outlet valve,
indicating if it is open or not

Feed/Waste Pump Outlet

Membrane Tank Condition of membrane tank outlet valve,
Outlet Valve indicating if it is open or not

Membrane Tank Condition of membrane tank recirculation valve,
Recirculation Valve indicating if it is open or not

Permeate Pump Condition of permeate pump recirculation valve,
Recirculation Valve indicating if it is open or not

Condition of permeate outlet valve,

Permeate Outlet Value e e ol -
indicating if it is open or not

Condition of cleaning tank inlet valve,

BP/CIP Tank Inlet Valve indicating if it is open or not

BP/CIP Tank Condition of cleaning tank recirculation valve,
Recirculation Valve indicating if it is open or not

Condition of inlet blower’s valve (A/B/C),

Bl Inlet Val e 1 e ipe s
OWer 1nlet valve indicating if it is open or not

Membrane Aeration Blower

Control Speed Output Control speed output of membrane aeration blower

Aeration Controller Mode of the aeration (cyclic, constant, etc.)

Plant Mode Mode of the plant (production, backwashing, etc.)

Table 3.2: Summary of a few sensors measuring pump speeds, setpoints valves,
blowers, and PID control. All of these combine to form the agent-state space.
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Chapter 4

Multi-step Predictions

We are interested in scalar predictions of multi-dimensional time-series, many
steps into the future. On each discrete time-step, ¢ = 1,2, ..., the learning
algorithm observes a new observation vector, o, € R?, which form a sequence

of vectors from the beginning of time.
Oqg:t — 0p,01,09,...,0¢

We do not assume knowledge of the underlying process that generates the
series. That is, the next generation of observation vector may depend not
just on oqy, but other quantities not observable to the learning system. For
example, the future turbidity the river water is impacted by future weather
which is not observable and generally not predictable.

The goal is to estimate some scalar function of the future values of the
time-series on time-step ¢, given 0g;;. In this paper we focus on classical n-step
predictions from time-series forecasting and exponentially weighted infinite
horizon predictions commonly used in reinforcement learning, which we discuss

in the following sections.

4.1 Classical Time-Series Forecasting

The first prediction problem we consider is simply predicting a component of

[4]

11~ Lhis scalar one-step prediction can

the time-series on the next time-step, o

be approximated as a function of a finite history of the time-series:

b = frs(ol ., 0,) ~ ol1, (4.1)
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where 6, € RF is the learned weights. For a classical autoregressive model,
frs is a linear function of this history ot +¢- More generally, frs can be any
nonlinear function, such as one learned by a neural network.

In order to predict more than one step into the future we can iterate a
one-step prediction model. The naive approach is to simply feed the model’s
prediction of the next observation into itself as input to predict the next step,

now 2 steps into the future, and so on. For example a three step prediction:
- - [i] - .16, [i] 4.2
Vi+2 = fTS([Ot—'r:t—la Ut+1;’Ut] :) ~ Opy3 ( : )

Notice how two components of the history of the time series have been replaced
by estimates. As we iterate the model beyond 7 steps into the future all the
inputs to frs will become model estimates.

Another approach is to directly learn a k-step prediction and avoid iterating
altogether. One-step models are convenient because they can be updated on
every timestep. Unfortunately, if the one-step model is inaccurate the model
produces worse and worse predictions as you iterate it further. A direct method

estimates a k prediction as a function of the history of the series:

i = for(od,,0:) ~ o, ., (4.3)

In many applications we are interested in multi-dimensional data and in
predicting many steps in the future. We can go beyond auto-regressive ap-
proaches by simply consider these time series prediction problems as super-
vised learning problems. For example, we can learn a neural network fpg that

inputs the last & multi-dimensional observation vectors o;_j; and predicts

olil

0¢1 145 trained by constructing a dataset of pairs (0y_p., 0 t+1+k) We can also

go beyond finite k-length histories, and use recurrent neural networks, which is
becoming a more common practice in time series prediction. When we move to
using this supervised learning framing, we lose some of the classical strategies
for dealing with correlation in the data, but in general, evidence is mounting
that we can obtain improved performance (Crone, Hibon, and Nikolopoulos

2011; Hewamalage, Bergmeir, and Bandara 2021).
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Figure 4.1: A sample time-series of tank level from a real water-treatment
plant and an idealized prediction (labeled return). The prediction is ideal
in the sense that we can simply compute the exponentially weighted sum in
Equation 4.4 given a dataset—the idealized prediction is not the output of
some estimation procedure. Later we will show learned predictions and how
the match the ideal. Notice how the idealized prediction increases well before
the time-series reaches its maximum value, and falls well before the time-series
does. In this way, the idealized prediction at any point in time provides an
anticipatory measure of the rise or fall of the data in the future.

4.2 GVFs and Temporal Difference Learning

In reinforcement learning, multi-step predictions are formalized as value func-
tions. Here the objective is to estimate the discounted sum of all the future

values of some observable signal, with discount v € [0, 1)
G = Z’Tjoﬂlﬂ (4.4)
j=0

Technically G; summarizes the infinite future of the time-series, but val-
ues of ol¥ closer to time ¢ contribute most to the sum. These exponentially
weighted summaries of the future automatically smooth the underlying data
ol! —potentially making estimation easier—and provide a continuous notion of
anticipation of the future as discussed in Figure 4.1. For this reason they have
been called “Nexting” predictions (Modayil and Richard S Sutton 2014), but
more generally were introduced as general value functions (GVFs) (Richard S
Sutton, Modayil, et al. 2011), where they generalize the notion of a value by
allowing any cumulant to be predicted beyond a reward.

GVF predictions can be learned using temporal difference learning. As be-
fore, the prediction is approximated with a parameterized function, frp(s;, ) ~
G, where s; is a summary of the entire series, 0g., up to time ¢. The prediction

on time-step t is updated using the temporal-difference error:

0; < 0, + a(c, + v fro(se, 0) — fro(si—1,0))V fro(si—1,0) (4.5)
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where a € (0,1] and ¢; = o,".

(1]
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Chapter 5

Algorithms

We investigate methods that can be pre-trained from offline logged data and
perform fine-tuning in deployment. The algorithms we investigate can be used
offline, online, or a combination of the two. Offline algorithms can randomly
subsample and update from the offline data as much as needed (i.e., until the
training loss converges). Online data, generated in the deployment phase can
only be resampled from a replay buffer once it has been observed. Using the
online data is restricted: the algorithms cannot look ahead into the future of
the time-series, they must wait for each data point to become available step-
by-step. After a sample is observed it can be resampled over and over via a
replay buffer. In this chapter, we outline the algorithms, and how they can
combine offline and online learning. We present the algorithmic details, includ-
ing discussion of methods for both GVF and n-step predictions. Furthermore,

we also describe our hyperparameter selection procedure.

5.1 Constructing State

Although many of these algorithms can be used in real-time, making and up-
dating predictions live as the plant is operating, we only simulate that setting
here using a static dataset. Online data, the one we simulate, is processed
as a stream, one sample at a time, as if it were generated live. The offline
batch of data is Dygine = {(0s, €1, 0041) };, Where N is the total number of
transitions, o, € RY is the observation vector, c;4; € R is the signal to predict

or cumulant, oy, is the next observation vector.
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The data, however, is partially observable and the agent should construct
an approximate state. A typical approach using in machine learning is to use
recurrent neural networks, to summarize history (Hochreiter and Schmidhu-
ber 1997; Cho et al. 2014; Hausknecht and Stone 2015; Vinyals et al. 2019).
However, we found for our sensor-rich problem setting, that a simpler memory-
based approach was just as effective and much easier to train. The general
idea an exponentially weighted moving average of the observations; such an
exponential memory trace has previously been shown to be effective (c.f. Tao,
A. White, and Machado 2022; Mozer 1989; Rafiee et al. 2023). We include
more explicit details on how we created our approximate state observation
vector in Chapter 3.

Once we have constructed this approximate state vector, which we denote
5, € R¥* we then apply the algorithms directly on this 5, without further
considering history or state estimation. These augmentations are sometimes
referred to as auxiliary inputs and, in toy problems, it has been shown they
alleviate the problem of partial observability in reinforcement learning (Tao,
A. White, and Machado 2022). In other words, we construct an augmented
dataset Daygmented = { (51, Cro1, 5c+1)~_, } and apply our algorithms as if we have
access to the environment state—namely as if we are in the fully observable
setting. All the algorithms we consider use a neural network f to compute the
prediction f, (5;).

Once we have constructed this approximate state vector, which we denote
5, € R¥* we then apply the algorithms directly on this 5, without further
considering history or state estimation. These augmentations are sometimes
referred to as auxiliary inputs and, in toy problems, it has been shown they
alleviate the problem of partial observability in reinforcement learning (Tao,
A. White, and Machado 2022). In other words, we construct an augmented
dataset Daygmented = { (8¢, Cro1, 5c+1)~, } and apply our algorithms as if we have
access to the environment state—namely as if we are in the fully observable
setting. All the algorithms we consider use a neural network f to compute the
prediction f,,(5;), where w are the parameters of the neural network. The

predictions may either be GVF' predictions or n-step time series predictions,
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with the algorithms described in the next two sections.

5.2 Algorithms for GVF's

The goal for GVF predictions it to estimate the expected discounted sum
of future cumulants, as described in Section 4.2. The simplest approach is
to simply use textbook 1-step temporal difference (TD) learning Richard S
Sutton and Barto 2018. Data is processed as a stream, one sample at a time.

The approach is summarized in Algorithm 1.

Algorithm 1 OnlineTD

1: Hyperparameters: stepsize 1 > 0

2: Initialize wq: the weights of the network (e.g., uniform)

3: Obtain initialize observation o; for t = 0, set 55 = 09

4: while in deployment do

5: Observe next observation o;,; and cumulant ¢,

6: 8141 < U(04+1, 8t) > compute augmented observation vector
7: Ve+1 ¢ fuwe(St41) > compute prediction
8: Ot < 41 + Y1 — fuw, (8¢) > compute the TD error
9: Wity — wp + 10,V fu,(5:) > or Adam using —6,V f,,,, as a gradient
10: t+—t+1

11: end while

We can also adapt this update to an offline dataset. We can use TD offline
making multiple passes over the data set, updating the network weights via
mini-batches. Here we follow the standard approach used in offline RL, for the
fully observable setting. In other words, we can treat each tuple (8;, ¢;y1, 5141)
separately, without having to keep the data in order—In contrast, if we were
using a recurrent neural network, we would need to more carefully maintain
dataset order. In each epoch, we shuffle the dataset Dyygmented and update the
neural network using a mini-batch TD update. Algorithm 2 summarizes the
approach.

We use the Adam optimizer (Kingma and Ba 2015) to update with the
mini-batch TD updates. We set all but the stepsize n to the typical default
values: momentum parameter to 0.9, exponential average parameter to 0.99,

and the small constant in the normalization to 104, The algorithm returns
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Algorithm 2 OfflineTD
Hyperparameters: stepsize > 0, batchsize k, number of epochs 7epochs,
IIlpU_t Daug'mented — {(gt: Cit+1, '§t+l)}
Initialize w: the weights of the network (e.g., uniform)
Initialize sop: the state of the optimizer (e.g., zero momentum, zero ex-
ponential average)
for epoch in nepochs do
for batch in D gipe do
A+ —% E@Ghatch (Cﬁ-l + 7 fw(i1) = fw (gi)) V fuw(5:)
w: Sopt — OPt(’w: A: 7?, Sopt)
end for
10: end for
11: Return w, sqp;

Algorithm 3 OnlineTD using Offline Pretraining

1: Hyperparameters: offline stepsize n > 0, batchsize k, number of epochs
Tlepochs, Online stepsize a > 0, number of replay steps 7ieplay

2: IIlpU_t Daug'mented = {(gt: Cit+1, '§t+l)}

3: wo, Sopt = OfﬂiHETD(Daug'mented; m, k 5 nepochs)

4: Initialize the replay buffer B with last neplay samples in Daygmented

5: Obtain initial observation o, for ¢ = 0, set 59 = 0p

6: while in deployment do

T: Observe next observation o;,; and cumulant ¢,

8: 5¢01 < Ulopa1, 8¢) > compute augmented observation vector
9: Ver1 ¢ foop (5641) > compute prediction
10: 0 < i1 + VU1 — froy (81) > compute the TD error
11: W1, Sopt < opt(wy, —0,V fu, (5¢), @, Sopt)

12: t+t+1

13: end while

the state of the optimizer—such as the exponential averages of squared gradi-
ents and momentum—because our online variants continue optimizing online
starting with this optimizer state.

We expect purely offline methods to perform poorly in our nonstationary
(partially observable) setting compared with those that update in deployment.
The offline data may not perfectly reflect what the agent will see in deployment,
and, in general, tracking—mnamely updating with the most recent data—can
also help under partially observability.

We can combine offline and online, by pre-training offline and then allowing
the agent to continue learning online. The primary nuance here is that we can
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either continue to use a replay update online, or switch to the simplest online
variant of TD that simply updates once per sample. We found that the simpler
update was typically just as good as the variant using replay, and so we use
this simpler variant in this work. We summarize this procedure in Algorithm
3, and for completeness include the replay variant and results comparing to it
(this is presented later in Chapter 6).

It is worth mentioning that we could further improve these algorithms with
the variety of advances combining TD and neural networks. TD can diverge
when used with neural networks (Tsitsiklis and Van Roy 1997), and several
new algorithms have proposed gradient-based versions of TD that resolve the
issue (Dai, He, et al. 2017; Dai, Shaw, et al. 2018; Patterson, A. White, and
M. White 2022). In control, a common addition is the use of target networks;
which fix the bootstrap targets for several steps (Mnih et al. 2015). We found
for our setting that the simple TD algorithm was effective, so we used this

simpler approach.

5.3 Algorithms for N-Step Predictions

We can similarly consider the offline and online variants of n-step predictions.
The offline dataset! consists instead of Dy sep = {(é;,cprn)}i\:]" where we
predict the cumulant n steps into the future from ¢, given the approximate
state 5;. The targets for GVF predictions were returns G;—discounted sums
of cumulants into the future—whereas the targets for n-step predictions is the
cumulant exactly n steps in the future. Learning f,, offline corresponds to a
regression problem on this dataset, which can be solved using any standard
techniques. Similarly to OfflineTD, we use stochastic mini-batch gradient
descent and the Adam optimizer.

As a supervised learning problem, it is straightforward to update in deploy-
ment, online. However, there is one interesting nuance here, that the targets

are not observed until n steps into the future. The online algorithm, therefore,

1The underlying data is the same as in the TD setting, but the targets are different, and
so we explicitly construct a supervised learning dataset from this underlying data.
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Algorithm 4 OnlineNStep using Offline Pretraining

1: Hyperparameters: offline stepsize n > 0, batchsize k, number of epochs
Tlepochs, Online stepsize a > 0
IIlpU_t Dn—step - {(gt; ct+n)}
wo, Sopt = OfflineNStep(Dhn step, 7, £, Mepochs)
Create size n circular array PastStates set index ind < 0
Obtain initial observation o; for t = 0, set 3¢9 < 0p
PastStates|ind] < $p, and ind < 1
for n — 1 steps do > store first n inputs
Observe next observation o;,; and cumulant ¢,
541 < U(0p41, 5¢)
PastStates|ind] < 8;,4
t<t+1andind < ind +1
: end for
:ind <« 0
: while in deployment do
Observe next observation 0,41 and cumulant ¢4,
(s,¢) « (PastStates[ind], ¢;41)
A+ (fwt(s) - C) vf‘wt(s)
W1, Sopt < opt(wy, A, o, Sopt)
541 < U(0p41, 5¢)
PastStates|ind] < 8;,4
t < t+ 1 and ind < mod(ind, n)
: end while

| R e e i e e e i i
M H QP 0o e WD

has to wait to update the prediction fy,(5;) until it sees the outcome c;4r, at
time step ¢ + n. This involves maintaining a short buffer of size n, until we
can obtain the pair (5;, ¢;1,,). This procedure is summarized in Algorithm 4.
Though seemingly a minor issue, it is less ideal that the OnlineNStep al-
gorithm has to wait n steps to update the prediction for input s;. The TD
algorithm for GVF predictions, on the other hand, does not have to wait
to update, because it bootstraps off of its own estimates. Instead of using
bootstrapping, we could have used a Monte Carlo algorithm, that regresses
3; towards computed returns, turning this into a supervised learning problem
like for the n-step time series problem. However, it has been shown that being
able to update immediately can result in faster tracking (Richard S. Sutton,
Koop, and Silver 2007; Richard S Sutton and Barto 2018), and typically TD

algorithms are preferred to Monte Carlo algorithms. The issue is worse for
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Monte Carlo than for n-step targets, because the returns extend further than
n steps into the future, but nonetheless there is some suggestive evidence that

algorithms that need to wait could be disadvantageous.

5.4 Selecting Hyperparameters for Deployment

The above algorithms have many hyperparameters. Fortunately, we can use a
simple validation strategy to select them, including the online stepsize param-
eters. The key idea is to treat the validation just like a deployment scenario,
where the agent updates in temporal order on the dataset. For example, con-
sider selecting the offline stepsize 7 and online stepsize «a, assuming all other
hyperparameters are specified (number of offline epochs is fixed, etc.). Then

we can evaluate each hyperparameter pair (77, @) by following simple steps.
1. Splitting the dataset into a training and validation set,
2. Pre-training with offline stepsize 1 on the training set,

3. Updating online with the stepsize a on the validation set (in one pass) as

if it is streaming, recording the prediction accuracy as the agent updates.

The online prediction accuracy is computed as follows. For the current
weights w,, the agent gets 5, and makes a prediction v; = f, (5;). Because we
(the experimenter) can peek ahead in the validation set, we can compute the
error err; = (U;—c;4n)?. The agent, of course, cannot peek ahead, since it would
not be able to do so in deployment. After going through the validation set once,
we have our set of errors. Note that we only evaluate w; on the pair (¢, ct+r).
Right after this step, we update the weights to get w;;; and then evaluate the
prediction under these new weights for the next step: 0341 = fu,,; (5¢41)-

This validation procedure helps us pick a suitable pair of (7, ) precisely
because validation mimics deployment. We want 1 to be chosen to produce
a good initialization and we want « to be chosen to facilitate tracking when
updating online. For example, if « is too big for tracking (or fine-tuning), then

the validation error will be poor because the weights will move away from a
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good solution while updating on the validation set and the errors will start
to get larger, resulting in a poor final average validation error. As another
example, if 7 is too small and does not converge on the training set within the
given number of epochs, then the initialization will not be as good and the
validation errors will start higher than they otherwise could, until the online
updating starts to reduce them.

Though this hyperparameter selection approach is described specifically
for n-step predictions with the offline and online stepsizes, it can be used for
TD as well as for other hyperparameters. The key point is that, even though
the offline hyperparameters are only used on the training set and the online
hyperparameters only when updating on the validation, they are both jointly
evaluated based on validation error. The primary difference for TD is simply
that the target is different. Again, because we the experimenter can look
ahead in the data, we can simply compute the return on the future data, and

compute the errors err, = (f.,(5;) — G¢)2.
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Chapter 6

Experiments & Design

In this chapter, we discuss the experimental details and results. We first detail
our dataset splits, and the function approximator, neural network, we design
for the experiments, including the learning procedure and hyperparameters.
We then detail the posed questions and discuss the results backed by empirical

evidence.

6.1 Experimental Details

We consider five consecutive days of data from the middle of November, 2022
for first set of experiments. The first four days are used as the offline training
logs while the fifth day is used for the deployment phase. We use the final 2%
of the offline training logs as the validation data, which is used for selecting
hyper-parameters. For the final experiment, to better test the impacts of
nonstationarity, we use data from the duration of an entire month: the data
from first 24 days of November are used as the offline training logs and the
last day of the month (30th November) is used as the deployment data.

All the methods share similar settings. We train a 2-layer feed-forward
neural network with 512 units in each layer with ReLLU activation functions.
This network is optimized for 2000 epochs using the Adam optimizer with
an L2 weight decay rate of A = 0.3 and a batch size of 512, in the offline
phase. After the offline training phase ends, we save the optimizer state vari-
ables and use them to initialize the optimizer during the deployment phase.

In deployment, the algorithms update on one sample at a time, and use a
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Figure 6.1: Predictions of the filter membrane pressure roughly 100 seconds
into the future. The plot shows the pressure sensor in green labelled cumulant
(whose magnitude corresponds to the right y-axis). We show three snippets
of the deployment data. The first in subplot a thousand seconds at the be-
ginning of deployment. The middle subplot shows data during a maintenance
clean, and the last subplot features data near the end of the deployment phase
(24 hours later). Each subplot highlights a different characteristic pattern in
pressure change. The blue curve shows the TD prediction, first trained offline,
then updated in deployment. The return represents the ideal prediction and
is plotted in black. Note both the TD prediction and the return use the left
blue axis. The TD predictions tightly match the target’s pattern in all three
scenarios.

different online stepsize. For all the methods we use the validation proce-
dure described in Chapter 5 to select the learning rates. We swept over offline
learning rates n € {1x1072, 1x10™#, 1x107°, 1x107%, 1x10~"} and online learning
rates a € {1x107% 1x107°, 1x107¢,1x10~7, 1x10~®}. The validation procedure

is done separately for each algorithm and sensor.

6.2 Posed Questions & Answers

A natural first question is can we predict the time series well in deployment,
given the size, complexity, and partially observable characteristics of our data.
From there we contrast the GVF predictions to n-step predictions, to better
understand the GVF results relative to a well-understood multistep prediction.
Finally, we investigate one of the key claims in this work: does learning in

deployment help or is offline learning all we need?

6.2.1 GVF Predictions are Accurate in Deployment

The object of our first set of results is to gain some intuition about GVF
predictions. Although widely used in RL to model the utility or value of a

policy, exponentially weighted predictions are uncommon. In Figure 6.1 we
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visualize predictions from the OnlineTD approach! on one sensor at three
different periods of time in deployment. Here we plot the cumulant (sensor
value to be predicted into the future), the prediction, and the return—our
stand in for an idealized prediction. The time series of the return changes
before the cumulant, because the return summarizes the future values of the
cumulant. A good prediction should closely match the return as we see in the
figure.

In the middle subplot of Figure 6.1 we see a large perturbation in the cu-
mulant corresponding to a difficult to predict event. This event, a maintenance
clean, happens in the early morning. This causes a large increase in pressure
on the filter, and unlike the vast majority of the training data, this increase is
sustained for a long period of time. We can see the prediction correctly antic-

ipates this event but does not get the precise shape of the prediction correct.
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Figure 6.2: Comparing GVF Predictions (blue) and n-step predictions (purple)
of filter membrane pressure. The top row shows the n-step predictions on the
same three segments of deployment data used in Figure 6.1. Here we only plot
the prediction (labelled TD and NStep100), and the ideal prediction (labelled
return and NStep target). Generally both types of predictions are well aligned
with their respective targets, however, sometimes the n-step prediction is off.
Figure 6.3 includes the results for several other sensors.

L All of our results are with pre-training, as this performed significantly better than with-
out using the offline data at all. This result is to be expected. Further our OnlineTD
algorithm with pre-training also leverages the offline data to automatically set all hyper-
parameters, providing a fully specified algorithm. The conclusion for our setting is that it
simply makes the most sense to leverage offline data, rather than learning from scratch.
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6.2.2 Comparing GVF and N-Step Predictions

To help calibrate our performance expectations, and provide a point of com-
parison we also learned and plotted the more conventional 100-step predictions
of future membrane pressure in deployment in Figure 6.2. We chose a horizon
of 100 steps to provide rough alignment with the horizon of a v = 0.99 GVF
prediction. The figure shows the n-step prediction and the GVF prediction on
the same segments of data in deployment.

The plot of the n-step prediction and the shifted cumulant (labelled NStep
Target) should align if the predictions are accurate. At least for membrane
pressure, the GVF predictions better match their prediction target (the return)
compared with n-step predictions.

Generally, across sensors the learned GVF predictions are smoother than
their n-step counterparts as shown in Figure 6.3. This is perhaps to be ex-
pected because the v weighting in the GVF prediction targets smooths the
raw sensor data. If there are sharp, one time-step spikes, as we see in the
Inlet Pressure date, the n-step target itself will be spikey—that is, the ideal
prediction is not smooth. Otherwise the main objective of Figure 6.3 is to
allow you the reader to better understand GVF predictions by simply visually
comparing them with n-step predictions—something that is easy to interpret

and you might have more natural intuitions for.

Membrane | Influent Inlet Inlet Flow | Drain Reject
Pressure Temperature | Pressure | Transmitter | Pressure
TD 0.129 0.313 0.047 0.030 0.060
NStep100 | 0.212 0.768 0.182 0.190 0.306

Table 6.1: Normalized MSE averaged over deployment for GVF and n-step
predictions on five different sensors.

One perhaps surprising conclusion from Figure 6.3 is that the GVF and
n-step predictions look surprisingly similar, and thus it is reasonable to ask if
there are reasons to prefer one to the other. From a performance perspective

we compare the two in Table 6.1 reporting the Normalized Mean Squared Error

43



05 7 05
08 i|oe "‘5‘3,;“ i oef | i
R ] b o4 NStepl00 [ 04 I
% 02 : E_u 02 02
g & i
g 7 R R T R T T T
@
é 40 40 T 40
= m x
it
\ J L, J
B I R T I N T T T S T T T T T ]
0.1 0
018 o
014 o e
L |
g""! \.\j‘" ---1 ¢ ] wis
£ ! anaban/
- ol — 2 -7 " |
£ 0 0 aw oo a0 1m0 snn 160 [T S T T T T n 1000 200 300 00 oo
o
=
£ - - A
g 14 - Iy 18 ’/"l
T F ! 3 il
= AV, s ! '|I' 4
13 4 e AR " I "
Ly JV“/\', i 12 M
U@ W @0 &0 1w T 10 w0 a0 0 B0 6 1000 200 300 400 B
i LE
i H b '
LD i | i Lo . o .
[ # P 0k \
S
En.n 0o g
L L T TR T LT T T T T A T T T T T T
a
B =1 &0
aE 20
» L
oM

— = ]
o 0 400 S0 B0 1000 L] 1000 2000 3000 4000 E000 O 100 M0 2000 4000 Booo um 000 3000 4000 EOOO

CAVANESUL UYL

0 200 400 600 B0 1000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 EODO

Figure 6.3: Comparing n-step predictions (Row 1) and GVF Predictions (Row
2) across several sensors. The structure of this plot mirrors Figure 6.2.

averaged over the deployment data:
MSE,
o*(Gy)

and T denotes the exponentially weighted moving average of the squared GVF

NMSE, = where MSE,; = (v, — G;)?

prediction error over the deployment data. Similarly, 2(G,) denotes the vari-

ance of the returns up to time ¢ computed using an exponentially weighted

variant of Welford’s online algorithm. The NMSE is equivalent to the vari-

ance unexplained and is a simple ratio measure of the MSE of the predictor

to the MSE of the mean prediction. NMSE less than one indicates that the
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prediction explains more variance in the data than a mean prediction. We use
the exponential moving average variants of these measures because our data
is non-stationary. Finally, NMSE for n-step prediction can be computed by
replacing G, with Oﬂloo in the above equations. Across five sensors, the NMSE
is lower for GVF predictions compared with n-step predictions, as shown in
Table 6.1.

Algorithmically, GVF predictions are interesting for several reasons. GVF
predictions can be updated, via TD, online and incrementally from a stream
of data, whereas n-step predictions involve storing the data and waiting 100
steps until the prediction targets are observed. The longer the prediction
horizon, the longer the system must wait without updating the predictions in
between. In contrast, TD methods by their recursive construction have mem-
ory and computational requirements independent of the prediction horizon—
independent of 7. These points highlight the potential of GVF predictions
for time-series prediction, as an additional choice for multistep predictions.
For any given applications the ultimate choice of prediction type and learning

method will be driven my many factors.

6.2.3 Mitigating Partial Observability via Online Adap-
tion

As shown extensively in Chapter 3 the data from our plant is highly partially
observable, appearing non-stationary when plotted. For the smaller dataset
we used in the experiments so far, however, we find that the agent trained
only on offline data predicts the deployment data well. This outcome is not
surprising because the training data was collected from only four days and the
deployment was the following 24 hour period. It is reasonable to expect that
the data is mostly stationary during this period since there would be no major
seasonal weather changes, unexpected events like fires are rare, and sensor
fouling takes weeks to show up in the data stream.

To highlight the need for online learning and demonstrate how changes in
the data can significantly impact non-adaptive approaches, we used a dataset

of 24 days for training and a deployment day six days later. Figure 6.4 com-
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Figure 6.4: Comparing GVF with OfflineTD and Online TD on deployment
data six days after training data had ended. Both agents trained offline of
data from November 1st to November 24th. The deployment data was taken
from a 24 hour period on November 30th. In this case we expect a significant
distribution shift between training and deployment data. The result clearly
shows this, both predictors start of far from the ideal target. Only methods
that learn in deployment can close the gap.

pares GVF predictions of a frozen pre-trained agent with the online TD agent
that was pre-trained on the sample data but continues to learn in deployment.
Due to the differences in the training data and the deployment data both pre-
dictors start far from the ideal prediction (the return), but only online TD
can adjust as shown in the first subplot. Throughout the remainder of the
deployment data online TD predictions continued to match their targets.

This result not only highlights when online methods can be beneficial but
also mimics a fairly realistic deployment scenario. Oftentimes, when working
with real systems, we cannot always access the most recent data. An industrial
partner might have limited data logs; or sometimes technical problems cause
logs to be lost. In our specific application, water treatment, the training data
might be out of date because the plant could have been out of commission.
Regardless of the reason, its useful that simple online methods like TD can
adapt to such situations.

Additionally, for the result in Figure 6.4, we pre-trained the predictions on
24 days of data instead of four. We made this choice to give the pre-trained
agent the best chance to extract as much as possible from a wide range of

operating conditions represented by nearly a month of data.

6.2.4 Does Replay Help When Learning Online?

Replay has been an important addition to RL algorithms (Mnih et al. 2015).

Replay buffers help the agent 'replay’ previously seen experience. In general
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Figure 6.5: Comparing online TD and online TD with replay for GVF Predic-
tions across several sensors. The structure of this plot mirrors Figure 6.2.

they prove to be helpful essentially because they break correlation between
consecutive transition samples. Without replay buffers, it could be the be
case that learning is inefficient. However, the addition of replay buffers is not
universal and is highly dependent on the data, and the learning algorithm.
In this auxiliary experiment, we want to understand if online learning can
benefit with replay buffers. Therefore, we considered both the simpler online
TD update in deployment, as well as using TD with replay. The TD with
replay algorithm is summarized in Algorithm 5. We found, though, that they
performed very similarly (see Figure 6.5), so we used the simpler online TD

update in the main body.
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Algorithm 5 TDwithReplay using Offline Pretraining

1:

e i e i i e

19:
20:

Hyperparameters: offline stepsize 7 > 0, batchsize k, number of epochs
Tlepochs, Online stepsize a > 0, number of replay steps 7ieplay
IIlpU_t 'Daug'mented — {(gt: Cit+1, '§t+l)}
Wo, Sopt = OfﬂiHETD(Daug'mented; m, k; nepochs)
Initialize the replay buffer B with last kn eplay samples in Daygmented
Obtain initial observation o, for t = 0, set 535 = 0g
while in deployment do
Observe next observation o;,; and cumulant ¢,
St41 U(Ot+1;-§t)
Ve+1 4 fu,(5e41)
0t i1 + YVi+1 — fu, (33)
w < wy + a6V fu,(5;)
Add tuple (5, €41, 8:41) to B
for nyeplay steps do
Sample a random mini-batch batch of size k from B
A _% Ee‘ebatch (Ci+1 + 7w (§i+1) - fw(gz)) Vfw('gi)
W, Sopy 4~ Opt(w, A, @, Sopt)
end for
Wiy = W
t=t+1
end while
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Chapter 7

Conclusion

In this dissertation we took the first steps toward optimizing and automat-
ing water treatment on a real plant. Before we can hope to control such a
complex industrial facility, we must first ensure that learning of any kind is
feasible. This work represents such a feasibility study. We provided extensive
visualization and analysis of our plant’s data, highlighting how it generates
a large, high-dimensional data stream that exhibits interesting structure at
the second, minute, day and month timescales. Unlike the data commonly
used in RL benchmarks, ours is subject to seasonal trends, mechanical wear
and tear, making it highly non-stationary. Through a combination of feature
engineering and extensive offline pre-training from operator data we were able
to learn accurate multi-step predictions encoded as GVFs. Compared with
classical n-step methods used in time-series predictions, the GVF predictions

were more accurate and could be learned incrementally in deployment.

7.1 Future Directions

The next steps for this project involve control: automating subproblems within
water treatment. There are numerous such subproblems, for example, control-
ling the rate at which chemicals are added in pre-treatment. Backwashing is
also promising because it is, by far, the most energy intensive part of the
operation. We could control the duration of backwashing or how often to
backwash. At the lowest level, we can adapt the parameters of the PID con-
trollers that control the pumps during backwashing. Classical PID controls
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are not sensitive to the state of the plant; they are tuned when the plant is
first commissioned and can become uncalibrated over time.

Algorithmically, we plan to investigate using our learned predictions for
control, directly. Traditionally, one would define a reward function and use a
reinforcement learning method such as Actor Critic to directly control aspects
of the plant operation. These methods are notoriously brittle and difficult to
tune. A more practical approach is to use the predictions to directly build
a controller. Prior work has explored using learned predictions inside basic
if-then-else control rules to control mobile robots (Modayil and Richard S
Sutton 2014). The advantage of this approach is that the control-rules are easy
to explain to human operators, but since control is triggered by predictions
that are continually updated in deployment the resultant controller adapts to
changing conditions. An extension of this idea is to use GVF predictions—
like the ones we learned in this work—as input to a neural-network based RL
agent, similarly to how it was done for autonomous driving (Graves et al. 2020;
Jin et al. 2022). This work provides the foundations for these next steps in
industrial control with RL.
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