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Abstract

Detailed geographic information system (GIS) studies on plant ecology, animal 

behavior and soil hydrologic characteristics across spatially complex landscapes require 

an accurate digital elevation model (DEM). Following interpolation of last return 

LIDAR data and creation of a LIDAR-derived DEM, a series of 260 points, stratified by 

vegetation type, slope gradient and off-nadir distance, were ground-truthed using a total 

laser station, GPS, and 27 interconnected benchmarks. Despite an overall mean accuracy 

of +2 cm across 8 vegetation types, it created a RMSE (square root of the mean square 

error) of 1.21 m. DEM elevations were over-estimated within forested areas by an 

average of 20 cm with a RMSE of 1.05 m, under-estimated (-12 cm, RMSE = 1.36 m) 

within grasslands. Vegetation type had the greatest influence on DEM accuracy, while 

off-nadir distance (P=0.48) and slope gradient (P=0.49) did not influence DEM accuracy; 

however, the latter factors did interact (P<0.10) to effect accuracy.

Vegetation spatial structure (i.e., physiognomy) including plant height, cover, and 

vertical or horizontal heterogeneity, are important factors influencing biodiversity. 

Vegetation over and understory were sampled for height, canopy cover, and tree or shrub 

density within 120 field plots, evenly stratified by vegetation formation (grassland, 

shrubland, and aspen forest). Results indicated that LIDAR data could be used for 

estimating the maximum height, cover, and density, of both closed and semi-open stands 

of aspen (P<0.001). However, LIDAR data could not be used to assess understory (< 1.5 

m) height within aspen stands, nor grass height and cover.

Recognition and mapping of vegetation types are important for rangelands as they 

provide a basis for the development and evaluation of management policies and actions.
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In this study, LIDAR data were found to be superior to digital classification schedules for 

their mapping accuracy in aspen forest and grassland, but not shrubland. No single 

classification schedule created a high classification accuracy map for all types; however, 

the integration of LIDAR data and digital images achieved maps with corresponding 

overall accuracies of 91% and 83.9% with 3 and 8 classes of vegetation.
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1 Introduction

1.1 Research Background

Rangelands comprise 60-70% of the global land surface (Everitt 1992). These 

diverse ecosystems produce a broad array of tangible and intangible products. Physical 

commodities include those such as forage and habitat for livestock and wildlife, water, 

minerals, energy, forest products, recreational opportunities, and plant and animal 

genetics, with many of these being economically important rangeland outputs. 

Rangelands also produce intangible products such as natural beauty and wilderness that 

satisfy important societal values, many of which can also be economically important 

(Cox etal. 1994).

Regardless of the type of land-use taking place, rangeland degradation through 

excessive or improperly timed livestock or wildlife grazing reduces the diversity of 

commodities and values that these areas provide. In many cases, severe degradation may 

be irreversible without intensive rehabilitation efforts, at least within the current time 

frames relevant for contemporary land managers. For this reason, ranchers, land 

administrators, and range and wildlife conservationists, are collectively interested in 

monitoring the current condition of rangelands, including their ability to sustainably 

provide key outputs, which in most areas, include either the provision of high quality 

livestock forage (Waer et al. 1997), wildlife habitat (Weber et al. 2002), or both 

(Arsenault and Norman 2002).

1
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Precision Ranching is a new concept encapsulating the need to limit and/or 

control animal impacts in rangeland landscapes. In essence, it is an analogue to precision 

farming, which strives to more closely match external inputs (e.g., fertilizers, herbicides, 

etc) with basic crop requirements across spatially variable agronomic fields, thereby 

promoting biologic and cost efficiencies (Friend 2002, Long et al. 2002). Given that the 

major causes of rangeland degradation are typically associated with excessive animal 

numbers, improperly timed grazing, or poor animal distribution (Perevolotsky and 

Seligman 1998, Turbak 2001), Precision Ranching is an attempt to understand, and in 

turn regulate, animal behaviour, by ensuring that, “the right animal is in the right place at 

the right time”. Meeting the latter objective will ensure plant communities are not 

overgrazed, averting long-term reductions in herbage production and rangeland 

sustainability. In order to implement the notion of Precision Ranching, however, in either 

a research or practical (e.g., commercial) framework, detailed spatial information of 

vegetation types is needed to interpret animal movement and grazing activities within 

rangeland landscapes.

Historical methods of rangeland inventory (i.e., a process of collecting 

information about rangeland resources to facilitate their proper management (National 

Research Council 1994)) and condition assessment largely emphasized the use of point- 

or plot-based inventories, intended to collect detailed information on the species 

composition and productivity of individual plant communities. With this method, 

primary, representative sampling units were selected from the entire rangeland, with sub­

sampling used to obtain select data from a few, stratified locations within the entire land 

base. While the use of this point-based inventory is highly effective at providing

2
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information on localized plant communities, several problems exist. These problems 

largely stem around the inability of managers to safely extrapolate local sampling points 

to the larger, its all real, and more spatially variable landscape scale at which 

management actually occurs, as well as the very laborious and costly nature of point- 

based data collection. Together, these factors have limited the application of point-based 

sampling for rangeland managers, including the potential for large-scale rangeland 

condition and trend assessment. In reality, reductions to both the budget and labour pool 

in many rangeland management, advisory, and regulatory agencies, along with a 

restricted field season, renders the intensive, prolonged sampling of plant communities 

unrealistic.

Remote sensing is a potential alternative rangeland monitoring method to gather 

site-specific data from vast and inaccessible areas (Tueller 1989). Primary benefits 

include synoptic (e.g., spatially complete) coverage, high cost-effectiveness (i.e., 

reducing the cost per unit area examined), and lower labour requirements relative to 

point-based sampling. In addition, remote sensing can provide data on areas that are 

often inaccessible, as well as highly heterogeneous landscapes where complex mosaics of 

vegetation with frequent transitional areas may preclude the effective use of point 

sampling. Remote sensing data also facilitates, though its complete coverage, additional 

forms of analysis such as landscape metrics (e.g., vegetation distribution). The spatially 

complete nature of remotely-sensed information on rangelands provides a top-down 

strategy for rangeland management, and as a result, provides a potential complementary 

data source to the collection of detailed point-based plant community information.

With the increasing public scrutiny of rangeland uses and their management, it is

3
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likely that emphasis will continue to be placed on the collection of detailed plant 

community information (e.g., vegetation types) capable of evaluating the merits of a 

particular management tactic. Nevertheless, specific information about a plant 

community (and its soils) such as location, topography, vegetation type and biomass are 

also critical for monitoring an area’s ecosystem functioning and/or biological integrity 

(Angermeier and Karr 1994, National Research Council 1994). Moreover, this 

information will be needed across entire landscapes, including range allotments and 

pastures, as these are the scale at which actual management occurs. To gather this 

information, it may be necessary to make increasing use of precisely located, high spatial 

(e.g., greater than 1 meter) and/or spectral resolution remotely-sensed data.

In addition to vegetation attributes, spatial information on topography and soils 

are important to enable implementation of the Precision Ranching concept. Remotely- 

sensed data may also facilitate creation of a digital elevation model (DEM). A DEM is 

described as “an ordered array of numbers that represents the spatial distribution of 

elevation above some arbitrary datum in the landscape” (Moore et al. 1991). These 

models have become widely used in geological, hydrological, and biological modelling, 

and have replaced contour maps as a vital tool for understanding site landform types, 

surface geology, soil class, vegetation community, land-use and population density 

(United States Dept, of the Interior 1990). Traditional elevation data were collected 

using manual or automated digitizing techniques from photographic sources. Raw 

elevations are usually weighted with additional information such as drainage, water, and 

observed elevations at set points during the interpolation process. Interpolation method 

can have a large influence on the final accuracy of the DEM. Unfortunately,

4
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photographic and other passive sensors are unable to penetrate through aboveground 

objects (e.g., trees) through gaps, with the resulting DEM erroneously constructed. In 

addition, the interval spacing (i.e., spatial resolution) of DEMs currently available are 

usually greater than 30m (airborne) and may even exceed 1km (satellite borne). The 

result is that the existing standard DEMs are often insufficient to meet the increasing 

demands for more accurate exploration of terrain, particularly where total landscape relief 

may fall below this resolution.

Recent developments in Light Detection and Ranging (LIDAR) and laser terrain 

mapping systems, however, dramatically reduce the time and effort needed to achieve the 

goal of effective rangeland management. Advances in timing technology have allowed 

laser pulses of a LIDAR system to be measured in fractions of a nanosecond and create 

vertical accuracy up to 10 centimetres (Krabill et al. 1995). Because of its active sensor 

system, a LIDAR system offers unique capabilities and distinct advantages for 

penetrating vegetation through gaps to allow the terrain surface to be remotely mapped 

from the air. LIDAR data can be used to manage effectively detailed rangeland 

characteristics such as plant species composition, the biomass of a single species and 

vegetation structure, which have been less successful when traditional remote sensing 

systems are used (Ritchie et al. 2001).

1.2 LIDAR System Description

A LIDAR collection system basically functions like RADAR, except that it uses 

laser light instead of microwave. It has a powerful laser sensor comprised of a laser 

transmitter and receiver, an Inertial Navigation System (INS) unit and a geodetic-quality

5
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Global Positioning System (GPS) receiver. The laser sensor is precision mounted to the 

underside of an aircraft. Once airborne, the sensor emits rapid pulses of infrared laser 

light, which are used to determine distances to points on the terrain below. The pulse rate 

of LIDAR systems range from 2,000 to 33,000 pulses per second (Serr 2000) depending 

on the manufacturer's design and intended application. Even at these high pulse rates, 

light has enough time to travel from the sensor to the ground and back before the next 

pulse is sent. A scanning mirror is used to direct laser pulses back and forth across a 

wide swath underneath the path of the airplane. The swath width is dependent on the 

altitude of the aircraft and the scan angle. Recorded data include intensity values of light 

reflected from ground objects. Aircraft for land mapping typically fly at an altitude of 

700 meters, which allows elevation recording across a swath about 300 meters wide. A 

series of overlapping, parallel swaths are conducted so the entire study area is mapped.

Inertial systems essentially consist of a minimum of several gyroscopes, each of 

which spins a globular mass within a gimbal or cage. To reduce the spinning friction of 

such devices, today these objects are electro-magnetically held in suspension. One of the 

gyros is oriented in a vertical direction, with a second fixed at right angles to it. Because 

of the effects of gravity, spinning objects in the near vertical will orient themselves to 

true vertical. If the object on which the device is located tilts over (as happens when you 

bank during an aircraft turn) the gimbal cage turns with the aircraft while the spinning 

mass remains vertical. This allows for measurement of the angle of tilt. Coupled with a 

very high-accuracy timing device and the gyroscope, the inertial system can tell how far, 

how fast, and in what direction the airplane is moving relative to the point where it 

started (Fowler 2000). However, with the combined effects of motion, acceleration, turns

6
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and so on, errors will accumulate and the inertial system begins to lose accuracy. This is 

where developments in GPS (Global Positioning Systems) come in.

The GPS component is an extension of a technique typically used for 

photogrammetric mapping, eliminating the amount of ground survey control required for 

a projected area. The GPS antenna is ideally situated directly above the place where the 

laser is located (to reduce the effects of crab), and specific equipment and software are 

used to survey the position accurately. A minimum of 4—optimally 6 or more—satellites 

are required to compute a sensor's exact position. GPS data are typically recorded at a 

rate of 0.5Hz or 1Hz (Sapeta 2000). 2 or more GPS receivers, logging data at the same 

rate, are deployed at known ground locations during each flying mission. After a laser 

sensor head is rigidly fixed inside an aircraft, the distance between antenna and sensor 

unit must be measured. This is accomplished via a "total station" that measures the 

relative offset between sensor and GPS antenna to within centimeter accuracy.

The integration of all these components (laser sensor, IMU and GPS) forms a 

network of points with accurate location (coordinates X and Y), height (Z) and I 

(intensity) values throughout the sampled area.

1.3 Research Objectives

LIDAR has been used for years with a variety of applications, including 

measuring distances between fixed points of known location and other objects (e.g., the 

moon) and calculating the atmosphere's water vapor levels and volumes. More recently, 

LIDAR has become a feasible platform due to the maturation of 2 associated

7
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technologies: GPS products and IMUs. Current LIDAR applications involve mounting 

lasers in moving platforms, for example aircraft. In these conditions, the accurate 

distance, position and orientation of the laser device are measured by integrating these 3 

components and technologies. The new applications mainly include development of high 

resolution DEMs, mapping vegetation structure and land surface change detection. As a 

new technology, LIDAR’s application on vegetation mostly concentrates on structure 

characterization. Utilization of the laser return intensity data has been least explored and 

little research has been done on vegetation mapping (Narayanan and Guenther 1998, Ni- 

Meister et al. 2001). Similarly, few investigations have been made on DEM 

construction, vegetation characterization and other applications on rangelands (Ritchie et 

al. 1992, Rango et al. 2000).

This thesis research focuses on: (1) construction of a DEM by extracting (and 

separating) “bare” ground information from LIDAR data and a vegetation surface 

elevation model (SEM) from the first return of the LIDAR data for a native rangeland 

environment; (2) comparison of the effects of vegetation type (forests, shrublands, 

grasslands and riparian meadows), slope gradient and off-nadir sampling distances on 

DEM accuracy, as well as exploring the spatial (i.e., landscape) variability on the 

accuracy of a DEM derived from LIDAR data; (3) estimation of ecologically important 

vegetation characteristics such as height, cover, density and vertical structure, and (4) 

comparison of LIDAR with multi-spectral digital photography for their ability to map 

complex vegetation in the Aspen Parkland. All these objectives will help fulfil the goal 

of evaluating the overall utility of using LIDAR data for landscape and vegetation 

assessment. A secondary goal is to provide a high resolution DEM and associated
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vegetation maps for use by the Precision Ranching Center at Kinsella.
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2 Literature Review of the Application of LIDAR

Technology

2.1 Introduction

Light detection and ranging (LIDAR) is an active remote sensing system, 

analogous to RADAR, but using laser light. LIDAR instruments measure the roundtrip 

time for a pulse of laser energy to travel between the sensor and a target. This incident 

pulse of energy reflects off the vegetation canopy (branches, leaves) or ground surface 

and back to the instrument where it is collected by a telescope. The travel time of the 

pulse, from initiation until it returns to the sensor, provides a distance or range from the 

instrument to the object (hence the common use of the term "laser altimetry" which is 

synonymous with LIDAR). There are a number of different LIDAR systems made by 

different manufacturers. To obtain best reflections over land, LIDAR data are generated 

with wavelengths in the infrared/near infrared frequencies (Fowler 2000). The elapsed 

time from when a laser is emitted from a sensor and intercepts an object can be measured 

using either (i) scanning LIDAR, where the travel time of a laser pulse from a sensor to a 

target object is recorded; or (ii) profiling LIDAR, where the phase change in a 

transmitted sinusoidal signal produced by a continuously emitting laser is converted into 

travel time (Wehr and Lohr 1999). At present, the majority of systems in use belongs to 

small footprint (<10 m in diameter) scanning LIDAR. Profiling and scanning airborne 

laser altimeters have been typically used for terrain mapping, land cover classification 

and the identification of forest structure, although few applications have been done in
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rangelands.

2.2 Terrain Modelling

Collecting accurate elevation data to describe the terrain can be difficult and is 

often time consuming. Traditionally, elevation data were generated by derivation from 

aerial photogrammetry, scanning pre-existing maps, or by a field survey using standard 

elevation survey techniques (Flood and Gutelius 1997). These methods, though well- 

developed and often highly advanced, require substantial effort and long processing times 

following data acquisition. A laser-based mapping system, however, is synoptic and 

more accurate (up to 10 cm, Krabill et al. 1995) for gathering the required data. Because 

the laser-based sensor relies on active rather than passive illumination, shadow effects 

(e.g., from buildings or trees) are not a concern. Rural and remote areas can be surveyed, 

even when forested. Because each laser point is individually georegistered, aerial 

triangulation or orthorectification of the data are not required. Currently, terrain mapping 

surveys are typically carried out using a small-footprint LIDAR system (Lim et a l 2003) 

except within densely vegetated areas.

White and Wang (2003) studied an approximately 70-km stretch of the southern 

North Carolina coastline using a DEM derived from small footprint LIDAR data. The 

high-resolution DEM data allowed for a comprehensive visual/quantitative investigation 

into the spatial patterns of morphologic change that occurred to the barrier islands' 

oceanfront beaches between 1997 and 2000. This study also demonstrated the utility of 

using laser altimetry to examine coastline response to tropical storm activity, and led to
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the discovery that over-wash was recognized as an integral component of coastline 

landward migration.

Hodgson et al. (2003) assessed 4 different remote sensing based methods for 

deriving digital elevation models (DEMs) in a flood-prone watershed. New airborne 

small footprint LIDAR and IFSAR [interferometric synthetic aperture RADAR (SAR)] 

data were collected and corresponding DEMs created. These new sources were 

compared to 2 traditional methods: Gestalt Photomapper (GPM) and contour-to-grid, 

both used by the U.S. Geological Survey (USGS) for creating DEMs. Survey-grade 

points (1470) for 5 different land cover classes (approximately 60% deciduous and pine 

forest) were used as reference points. One unique aspect of this study was the LIDAR 

and IFSAR data were collected during leaf-on conditions. The LIDAR- and contour-to- 

grid derived DEMs exhibited the greatest overall absolute elevation accuracies.

The difficulty of penetrating dense and complex forest canopies through gaps has 

promoted the use of large footprint (>10 m in diameter) laser altimetry to measure sub- 

canopy topography during leaf-on conditions. Hofton et al. (2002) mapped a -800 km 

area of Costa Rica using 25 m-diameter footprints as part of the pre-launch activities of 

the Vegetation Canopy LIDAR (VCL) Mission. Crossover analysis using laser shots, 

whose recorded waveforms contained more than 50% of the total returned energy within 

their lowest reflections, showed the elevations had an accuracy of better than 1 m. 

Comparison of the VCL elevations with coincident in-situ ground elevation data revealed 

that the measurements were within -1.5 m of each other on slopes less than 3°. All 

measurements were within -5 m of each other (on slopes ranging up to 30°). These were 

very encouraging results given that forests of this region are some of the densest, most
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complex on Earth, and that mapping their sub-canopy topography is near-impossible 

using any other remote sensing technique. Overall these results suggested that the 

topographic measurements made by the VCL would meet stated accuracy goals under the 

majority of measurement conditions.

In modeling digital elevation, discrete LIDAR data points are required to be 

interpolated to a continuous surface. Lloyd and Atkinson (2002) assessed inverse 

distance weighting (IDW), ordinary kriging (OK) and kriging with a trend model (KT) 

for the construction of DEMs from LIDAR data. Their results indicated that the 

advantages of KT and OK became more apparent as the number of data points decreased 

(and the sample spacing increased). However, where the sample space was very small, it 

was recommended that simpler approaches such as IDW be used.

2.3 Land Cover Classification

Recognition of land cover types is important for land use management agencies as 

it provides a basis for the development and evaluation of management policies and 

actions. Land cover classification is the process of identifying and describing areas of 

relatively homogeneous land cover formation (e.g., water in a resource inventory), and 

subsequently mapping the resulting spatial distribution of various land cover types across 

the area of interest.

Lee (2003) studied the effect of airborne LIDAR elevation data on the 

classification of multispectral IKONOS images over a coastal area. The LIDAR 

elevation data was first resampled and stretched to the same spatial resolution and
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radiometric range as the IKONOS images. An unsupervised classification based on the 

ISODATA algorithm was then used to identify 6 classes: road, water, marsh, roof, tree, 

and sand. Training and validation sites were selected over the LIDAR-IKONOS merged 

data set for the subsequent supervised classification and accuracy assessment. He 

claimed that the inclusion of LIDAR elevation data benefited the separation of classes 

that had similar spectral characteristics, such as roof and road, water and marsh. The 

overall classification errors, especially the false positive errors, were reduced by up to 

50%. Moreover, by using the LIDAR elevation data, the classification results showed 

more realistic and homogeneous distribution of geographic features.

Song et al. (2002) assessed the possibility of conducting land-cover classifications 

using LIDAR intensity data. In their study, LIDAR point data were converted to a grid 

and then assessed for the separability of intensity data based on surface features such as 

asphalt road, grass lands, house roofs, and trees. After removing noisy patterns through 

resampling and filtering algorithms, the authors claimed that LIDAR intensity data had 

the potential to classify the above 4 land cover types.

2.4 Application in Forestry

Vertical and horizontal patterns of forest canopy, and the heterogeneous 

distribution of canopy components (i.e., leaves, twigs, branches, trunks, epiphytes, etc.) 

and spaces (i.e., structural openings between components occasionally from broken 

branches or treefall gaps) produce microclimatic (e.g., light, temperature, humidity) 

gradients (Weishampel et al. 2000). These gradients feed back into biological/ecological 

processes (e.g., growth, competition, mortality) thereby further defining organizational
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properties. The complexity of this architecture is classically described as cathedral-like 

and has often been misrepresented as being stratified or layered (Halle et al. 1978, 

Richards 1996). These canopies provide the primary surfaces of energy and matter 

exchange between the atmosphere and the largest reserves of aboveground carbon (Perry 

1994). As a result, the 3- and 4-dimensional characterization and visualization of these 

dynamic systems have been deemed an essential avenue of future forest canopy research 

(Nadkarni and Cushing 1995).

Various remote sensing systems and techniques have been explored for forestry 

applications and are reviewed by Weishampel et al. (1996), Wulder (1998), and Lefsky et 

al. (2001) with a comparison of various remotely-sensed data sources with LIDAR. 

Typically, most optical sensors are only capable of providing detailed information on the 

horizontal distribution and not the vertical distribution of vegetation in forests. LIDAR 

remote sensing is unique in its capability of providing both horizontal and vertical 

information with the horizontal and vertical sampling dependent on the type of LIDAR 

system used and its configuration (i.e., discrete small footprint with diameter < 10 m or 

full waveform LIDAR with diameter > 10 m) (Lim et al. 2003).

Small-footprint (scanning) LIDAR systems may not be optimal for mapping 

forest structure. First, small diameter beams frequently over-sample crown shoulders and 

miss the tops of trees (Nelson 1997), so that unless many LIDAR points are taken (e.g., at 

an increasing density), the true canopy topography must be reconstructed statistically. 

Secondly, because of their small beam size, mapping large areas requires extensive flying 

and large data handling capability. Finally, with systems that only record first and/or last 

returns, it is difficult to determine whether or not a particular point has fully penetrated
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the canopy through gaps all the way to the ground. If this topography cannot be 

reconstructed, accurate height determination is impossible because canopy height is 

measured relative to the ground. In contrast, large-footprint systems (e.g., Blair et al. 

1999) have several advantages that help avoid these problems. First, by increasing the 

footprint size to at least the average crown diameter of a canopy-forming tree (10-25 m), 

laser energy consistently reaches the ground even in dense forests. The larger footprint 

size also avoids the biases of small-footprint sensors that may frequently miss the tops of 

trees altogether. Secondly, large-footprint systems enable a wide image swath, which 

reduces the expense of mapping large forested areas (Blair et al. 1999). Finally, large- 

footprint LIDAR systems not only digitize the first and last return, but the entire return 

signals (e.g., in -30 cm vertical bins) thus providing a more comprehensive vertical 

distribution of intercepted surfaces (or "waveform") from the top of the canopy to the 

ground. However, full waveform large-footprint LEDAR systems are primarily used by 

researchers for scientific applications and have yet to be fully commercialized.

Given the capability of using LIDAR data to accurately measure topography, it 

may be possible to quantify certain forest attributes from forest canopy profiles derived 

from LIDAR data, such as canopy height, basal area, above-ground biomass, mean stem 

diameter, vertical foliar profiles and canopy volume (Means et al. 1999, Lefsky et al. 

1999a and 1999b, Dubayah and Drake 2000).

2.4.1 Canopy Height

A strong link between vegetation height and other biophysical characteristics
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(e.g., cover, density) (Dubayah and Drake 2000) suggests vegetation height may be used 

to model many of the forest structural characteristics that are not directly recovered from 

optical sensor systems such as LIDAR. In addition, vegetation height is a function of 

species composition, climate and site quality, and can therefore be used for land cover 

classification or in conjunction with vegetation indices from passive optical sensors 

(Dubayah et al. 1997 and 2000).

A requirement for calculating canopy heights using both discrete small footprint 

and full waveform LIDAR data is the ability to identify some ground reference level 

below the canopy. In the case of discrete small-footprint LIDAR data, canopy height 

estimates are calculated by subtracting the elevations of the first and last returns from the 

LIDAR signal. With large-footprint systems, canopy height is calculated by converting 

the elapsed time difference between the highest and lowest peaks of the 2 most prominent 

modes in the amplitude waveform into range (Roberts 1998).

Popescu et al. (2002) discussed processing algorithms for estimating tree heights 

by using a multiple return, high-density, small-footprint LIDAR data set in deciduous, 

coniferous, and mixed stands of varying age classes in the south-eastern US. 2 LIDAR 

processing algorithms are discussed - the first based on single tree crown identification 

using a variable window size for local filtering, and the second based on the height of all 

laser pulses within the area covered by the ground truthed data. The maximum height on 

each plot was predicted with the greatest accuracy (R2 = 85 and 90%, respectively) for 

the first and the second algorithm. Ritchie et al. (1993) claimed that mean LIDAR 

heights from a first return LIDAR were significantly related to mean target heights in 

pine forest and grassland sites in Niger. Nilsson (1996) had also investigated the effects
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of different beam divergences (i.e., 2.5, 5.0, 7.5 andlO.O mrad) on LIDAR tree height 

measurements (Scots pine stands) and concluded that differences in measurements were 

negligible and that all beam divergences were usable for measuring tree height. These 

beam divergences equate to footprint diameters ranging from 0.75 m to 3.0 m.

Nelson et al. (1988b), while studying a southern pine stand using LIDAR data, 

observed that the mean LIDAR height measurements from 2 distinct flight lines 

underestimated ground measurements by approximately 30% or 4 m. During his studies 

of a Scots pine stand using an airborne scanning laser mounted on a helicopter, Nilsson 

(1996) found that mean tree height was underestimated by 2.1-3.7 m. Naesset (1997) 

studied 36 stands covered by Norway spruce, Scots pine, or both using an Optech ALTM 

and also found that mean LIDAR canopy heights within each stand were underestimated 

relative to ground-based estimates by 4.1-5.5 m. Although not explicitly stated, the 

influence of canopy structure on the laser response was considered by incorporating 

Lorey’s height in the calculations for each plot. Lorey’s height is a weighted mean of 

canopy height based on the basal area of individual trees to account for the influence of 

larger trees on mean canopy height. Despite this change, the weighted mean of the 

LIDAR canopy height still underestimated ground-based estimates by 2.1-3.6 m. This 

approach implicitly assumed that the laser response was related to the largest trees during 

LIDAR remote sensing of forest structure and resulted in mean differences between -0.4 

m and 1.9 m. Regression of the LIDAR stand heights against ground reference stand 

heights accounted for 91% of the variation.

The majority of LIDAR studies have focused on coniferous rather than deciduous 

forests. More gaps (needle leaf shape) and stronger LIDAR ability to penetrate through
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over-story layers might promote utilization of LIDAR data more often within coniferous 

species. However, studies have shown that tree heights are underestimated by small 

footprint LIDAR because of the low probability of a small-footprint laser pulse 

intercepting the apex of a conical crown (Nilsson 1996, Naesset 1997, Nelson et al. 

1988b). Underestimates of tree heights given conical crown shapes should not be a 

deterrent for the use of small-footprint LIDAR, because the differences between LIDAR 

canopy height and actual canopy height can be modelled (Magnussen and Boudewyn 

1998).

Of the 36 Douglas-fir plots studied by Magnussen and Boudewyn (1998), mean 

LIDAR canopy heights were found to be 3.1 m lower than mean field heights. In their 

study, they outlined why simple grid approaches, where only the maximum canopy 

heights within cells are retained for analysis (e.g., Naesset 1997) provided the closest 

matches to target heights. Magnussen and Boudewyn (1998: 1017) state that ‘the essence 

of the grid-based system is in the selection of a certain quantile of the LIDAR canopy 

height that best matches a known target height’. On the basis of this concept, they 

supported their hypothesis that ‘the quantile of the LIDAR canopy heights matching in 

probability the fraction of leaf area above a desired height would be an unbiased 

estimator ’ (Magnussen and Boudewyn 1998: 1030). Using these results, Magnussen et 

al. (1999) presented 2 tree height recovery models. The assumption of one of the models 

was that ‘observations are sampled with a probability proportional to displayed crown 

area’, while the second was ‘derived from the probability that a laser beam penetrates to a 

given canopy depth’ (Magnussen et al. 1999: 407). Both models were shown to 

eliminate the underestimation bias of mean LIDAR estimated canopy heights.
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The work by Magnussen and Boudewyn (1998) and Magnussen et al. (1999) is 

significant as it provides an explanation of laser response to forest canopy structure and 

how it can be dealt with to ensure accurate measurements of forest attributes derived 

from LIDAR data. Furthermore, evidence in support for Magnussen and Boudewyn’s 

(1998) concept that a certain quantile of LIDAR canopy heights is a best estimate of 

actual tree height can be found in the work done by Ritchie et al. (1993) where the 

inclusion of the highest 10% of LIDAR measurements did not produce significant 

differences between LIDAR measurements and ground measurements, while significant 

differences were produced when the highest 15% of LIDAR measurements were used.

Beyond measuring mean tree heights for study plots and forest stands, some 

attention has been directed towards delineating individual tree crowns in LIDAR data and 

predicting individual tree heights. St-Onge et al. (2000) used small-footprint LIDAR 

data acquired from an ALTM to study individual trees. The authors used a combined 

spatial filter and edge detection operator - Laplacian of Gaussian (LoG) and applied it to 

a canopy height model to delineate individual tree crowns. The LoG requires the input of 

a spread parameter(s), equivalent to the standard deviation of a distribution. This 

parameter is typically selected in an ad-hoc fashion and the results are visually compared 

with the original images. The heights of 36 delineated trees in a canopy height model 

corresponding to the highest LIDAR hit in the delineated crowns, were compared with 

corresponding ground measurements using a linear model (R2 = 0.90, P<0.01).

Coupled with the recent work by Magnussen and Boudewyn (1998) and 

Magnussen et al. (1999), this evidence clearly suggests that tree height can be recovered 

from LIDAR data just as accurately as from ground measurements, if not more
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accurately. St-Onge et al. (2000) demonstrated that the focus of the application of 

LIDAR may be shifting from the landscape/stand scale (e.g., forest inventories) to a 

local/tree scale (e.g., forest inventories stratified by species). The potential of LIDAR for 

forestry is slowly coming to fruition and as a result, others have begun to explore LIDAR 

as an operational forestry tool (e.g., Tickle et al. 1998 and 2001).

2.4.2 Vertical Distribution of Intercepted Surfaces

In addition to the first and last returns, large-footprint systems digitize the 

complete return signal of the laser pulse between the canopy surface and ground, thus 

recording a waveform that is related to the vertical distribution of canopy structure. 

Specifically, a large-footprint LIDAR waveform records reflections from the nadir- 

projected vertical distribution of the surface area of canopy components such as foliage, 

trunk, twigs, and branches. Like canopy height, the vertical distribution of intercepted 

surfaces provides a new means to classify vegetation, and provides the basis for 

estimating other important canopy descriptors, such as aboveground biomass. It also 

functions as a predictor of the successional state of a forest (Dubayah et al. 1997).

Hardling et al. (2001) studied a successional sequence of 4, closed-canopy, 

deciduous forest stands in eastern Maryland using a waveform-recording laser altimeter. 

The 10-m-diameter footprint laser system revealed vertical variations in vegetation within 

and between stands in their canopy height profiles. Their results demonstrated that the 

laser observations reliably provide a measure of canopy vertical structure that reveals 

ecologically interesting structural variations. Lefsky et al. (1999b) also successfully
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modelled “canopy height profiles” and vertical distribution of intercepted surfaces using 

assumptions from methods developed to estimate vertical foliage profiles from optical 

point quadrats.

As a stand ages and grows, the vertical distribution of canopy components 

changes relative to younger stands (Dubayah et al. 1997, Lefsky et al. 1999b). Older 

stands are characterized by canopy gaps and trees of multiple ages, and sizes exhibit a 

more even vertical distribution of canopy components compared to younger, even-aged 

stands, which have a majority of their biomass in the top portion of the canopy. Lefsky et 

al. (1999b) demonstrated that LIDAR waveforms are sensitive to these structural changes 

and were able to identify forest succession.

2.4.3 Aboveground Biomass

Taller trees contain more wood and typically support more foliage and roots than 

shorter trees of the same species and diameter. Additionally, because of the mechanical 

properties of trees, stem diameter and canopy area typically increase as trees become 

taller, further increasing wood volume and mass. Remotely-sensed measurements from 

LIDAR instruments can exploit these biological constraints to model biomass from 

height and canopy area.

Dubayah et al. (2000) found that LIDAR measured heights were highly correlated 

with aboveground biomass in mixed deciduous-coniferous, pine, Douglas fir/westem 

hemlock, and in dense tropical forests. In recent studies, metrics from large-footprint 

LIDAR systems were able to explain over 90% of the variation in aboveground biomass
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in forests with extremely high (up to 1300Mg/ha, in Means et al. 1999) biomass and 

canopy closure (~99% canopy closure, in Drake et al. in review) levels.

Using 113 sample plots, Nelson et al. (1988a) tested 2 logarithmic equations for 

estimating biomass and volume with 6 LIDAR-derived canopy measurements to 

determine which model could best describe the variation in observed ground 

measurements. The LIDAR height variables examined included average LIDAR canopy 

height of the 3 largest trees, mean plot height, mean canopy height, and modified canopy 

profiles with a 2 m, 5 m and 10 m exclusion level. From the 12 models tested, those 

applying the mean plot height metric derived from all LIDAR pulses as an input 

parameter were identified as the best models.

MacLean and Krabill (1986) demonstrated that a LIDAR-generated canopy 

profile area was a significant variable in estimating gross merchantable timber volume. 

Multiple regression relating the natural log of timber volume to the full profile area and a 

profile area with a 10 m exclusion level produced promising results (R2 = 0.72, P<0.01). 

By considering the profile area with a 10 m exclusion level and the predominant species 

of each plot expressed as a ratio of the volume of the predominant species to total 

volume, an R2 value approaching 0.90 was obtained. Furthermore, they demonstrated 

that an overall R2 value of 0.92 could be achieved if the LIDAR data were stratified by 

species within plots of the study area. However, Nelson et al. (1988a) showed that 

stratification of southern conifers only slightly improved the accuracy of their volume 

and biomass estimation (1.0% and 0.4% improvements, respectively).
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2.4.4 Other Forest Characteristics

LIDAR metrics (e.g., canopy height) have also been used to accurately estimate 

basal area (e.g., Drake et al. in review, Means et al. 1999) and mean stem diameter 

(Drake et al. in review). The distributions of basal area and mean stem diameter may 

then be used to infer the density of large trees. In addition, the vertical distribution of 

intercepted surfaces has been used to examine the volumetric nature of Douglas 

fir/western hemlock (Lefsky et al. 1999b) and tropical (Weishampel et al. 2000) forest 

canopy structure. These kinds of measurements provide extraordinary new data for forest 

wildlife management and habitat mapping.

2.5 Application of LIDAR Data in Rangeland Management

Land surface and vegetation properties are key for understanding range and 

habitat conditions, as well as understanding vegetation susceptibility and response to 

disturbance. Ground-based measurements of these properties are difficult and time- 

consuming. Profiling and scanning airborne laser altimeter systems provide an 

alternative method to synoptically measure land surface and vegetation features over 

large land areas. The agreement between airborne laser altimeter and field measurements 

is favorable for both topographic features and vegetation properties (i.e., height, cover) 

(Ritchie et al. 2001). Laser measurements improve our understanding of the effect of 

canopy and landscape roughness on rangeland conditions.

Ritchie et al. (2001) collected laser profile and ground data from 5 different 

vegetation types in the Reynolds Creek Watershed. Most of the canopy heights (74.2%)
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were less than 0.5 m in their profile. Only 12.5% of the height measurements were 

greater than 1 m. Vegetation sites were Mountain big sagebrush (Artemisia tridentata 

subsp. vaseyana [Rydb.] Beetle), low sagebrush (Artemisia arbuscula Nutt.), Wyoming 

big sagebrush (Artemisia tridentata subsp. wyomingensis Beetle & A. L. Young), 

bitterbush (Purshia tridentata [Pursh] DC.), and greasewood (Sarcobatus vermiculatus 

[Hook.] Torr.). The ground data were averages of 6, 30-m transects along an 

approximate 1 km line, using the line intercept method. The laser data were averages of 

3, 1-km transects over the same area. Their analysis found that differences in the average 

heights between the ground and laser measurement of the transects ranged from 2.0 to 8.7 

cm, with the laser measured heights always being lower. However, there was no 

statistical difference between the ground and laser height measurements at the 5% level 

of probability.

In a comparison of canopy cover measured by laser and ground techniques, 

Ritchie et al. (2001) found the measurements to be significantly different. While there 

was agreement between the 2 techniques in the Bitterbrush (cover differences less than 

4%) and Low sagebrush (cover differences less than 6%) communities, the greatest 

difference was at the Wyoming big sagebrush community where the laser estimate of 

cover was twice that of the ground measurement. This might be the inconsistency of the 

2 datasets — the ground data was an average for 6, 30-m transects while the laser data was 

the average of 3, 1-km transect (Ritchie et al. 2001).

Weltz et al. (1994) used a laser altimeter mounted in a small airplane to measure 

surface patterns of the landscape in the Walnut Gulch Experimental Watershed (N 31° 

44.3', W 110° 1.4') of Arizona. The area was representative of the Chihuahuan desert
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scrub and semi-desert grasslands. The lower two-thirds of the watershed were dominated 

by shrubby vegetation with little herbaceous understory vegetation. The upper third of 

the watershed was dominated by grassland. Their analysis indicated that the laser- 

measured vegetation properties of plant height and canopy cover (>0.3 m) were not 

significantly different than field measurements made using the line-intercept transect 

method at 7 of the 8 sites evaluated. Although the laser measurements of canopy height 

were not significantly different from the ground measurements, the laser consistently 

overestimated canopy cover in those areas where the height of the canopy was less than 

0.3 m and underestimated cover in areas of vegetation taller than 0.5 m. The 

overestimation might be the background noise and underestimation the LIDAR 

interception of the shoulder of vegetation, not the top of the canopy.

Finally, studies in rangeland of a South Texas (N 26° 11.5', W 97° 59.2') mesquite 

stand (Ritchie et al. 1992) and a Mississippi (N 33° 15.6', W 88° 52.8') pine forest 

(Ritchie et al. 1993) indicated that laser altimeter measurements of vegetation height and 

cover were highly correlated with ground measurements. These studies demonstrated the 

potential of using airborne laser to measure vegetation characteristics such as height and 

cover. However, these studies also indicated new techniques were necessary to 

discriminate background noise in the laser return signal within grass and low stature 

shrub communities before the laser technology would be suitable for more widespread 

use in estimating vegetation characteristics on rangelands.
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2.6 Problems and Challenges of LIDAR Data Use

The use of LIDAR and other optical remote sensing systems may be restricted by 

the limited availability of the most current technology. Additionally, clouds and dense 

atmospheric haze can attenuate the signal before it reaches the ground. Moreover, 

commercial airborne small-footprint systems are only now becoming available on a cost- 

effective basis and large-footprint systems are still in the research phase. The lack of 

algorithms and data processing expertise also limits operational use of the data. These 

limitations will likely decline with the continuing maturation of the technology and 

fusion with information from other remote sensing systems such as passive optical, 

thermal and RADAR remote sensing.

2.7 Conclusion

LIDAR remote sensing is a rapidly developing and expanding technology. The 

direct measurement of elevation and subcanopy topography, canopy height, and the 

vertical distribution of intercepted surfaces provide a wealth of data for terrain mapping, 

vegetation characterization, and forest or rangeland management. In addition, the strong 

relationships between these direct measurements and other biophysical parameters, such 

as aboveground biomass, provide critical information about the function and productivity 

of forest and rangeland ecosystems. Such measurements will improve our understanding 

of the effects of these factors on hydrological systems of natural and agricultural 

landscapes, and facilitate forest and rangeland wildlife/livestock management and habitat 

mapping, so that improved management practices and structures can be developed to
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manage our natural resources better.
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3 Influential Factors on LIDAR-derived DEM Accuracy

3.1 Introduction

Detailed geographic information system (GIS) studies on plant ecology, animal 

behavior and soil hydrologic characteristics across spatially complex landscapes require a 

highly accurate digital elevation model (DEM). Although few technologies have been 

available in the past to generate DEMs that meet these criteria, the use of light detection 

and ranging (LIDAR) data may provide a suitable alternative. Few studies, however, 

have evaluated whether LIDAR data can be used to provide a DEM of superior quality 

(e.g., accuracy) across all areas of complex rangeland landscapes, as well as evaluating 

the role of external factors (equipment and environment) in influencing DEM accuracy.

LIDAR inertial systems are supposed to point perpendicularly to the ground 

surface, but can generate attitude (i.e., shifting angle) to 0.1 degree in a fast turning or 

tilting flight, changing the positional/horizontal accuracy depending on flying height. 

Timing electronics (recording precision) of a laser receiver can generate a vertical 

resolution error up to 5 cm. However, vertical accuracy of LIDAR systems are typically 

more accurate compared to other remote sensing systems (videography, RADAR, etc.), 

and are postulated to be in the order of 15 cm given the current data used (Sapeta 2000, 

Serr 2000, Thomas and Hutton 2000, Eagle Scan Inc. 2000, Renslow 2001). Krabill 

(1995) showed the maximum vertical resolution detectable with LIDAR data was 10 cm 

when researching ice sheet thickness in the Arctic.

Most researchers have claimed 15 cm vertical accuracy using LIDAR data
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regardless of where the work was done or what the surface conditions (e.g., vegetation 

type) might be. However, limited research has quantified the influence of specific 

ground characteristics such as the type and density of vegetation (Narayanan and 

Guenther 1998, Ni-Meister et al. 2001) and slope gradient (Bufton et al. 1991), or other 

external factors such as off-nadir distance (Tsutsui et al. 1998), on the accuracy of 

LIDAR data.

Many rangeland landscapes, including the Aspen Parkland of western Canada, 

consist of complex topography with frequent and rapid changes in slope, aspect, and 

elevation (Ayad and Dix 1964, Acton 1965). These factors in turn, interact to alter the 

type of plant communities found across the landscape (Wheeler 1976, Sheffler 1976), as 

well as the magnitude of disturbances such as grazing and fire. As a result, meaningful 

ecological information for the management of land use activities can only be obtained if 

the relative influence of topography and vegetation can be distinguished from one 

another. Furthermore, the use of existing DEM models with a spatial resolution coarser 

than 30m (through manual or automated digitizing techniques from photographic 

sources) are clearly insufficient to accurately represent the local topographic variability 

occurring within these areas, where average relief is much less than this resolution (e.g., 

5-10m).

This research quantified the accuracy of a high resolution DEM generated from 

LIDAR data within the Aspen Parkland of central Alberta. Additionally, this 

investigation evaluated the influence of external factors on the accuracy of the resulting 

DEM, including environmental characteristics such as vegetation type and slope gradient, 

as well as equipment characteristics such as off-nadir distance during LIDAR sampling.
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It was hypothesized that any factors responsible for reducing the density or uniformity of 

sampling points would reduce the overall accuracy of a LIDAR-derived DEM. For 

example, more complex vegetation (shrub or forest) was hypothesized to reduce DEM 

accuracy due to a reduction in the density of LIDAR "last return" data points reaching the 

ground. Similarly, increasing slope gradients along with an increasing distance from 

nadir would reduce sampling densities (points/unit area) and associated DEM accuracy. 

Furthermore, the uneven distribution (distance deviation) of sampling points within 

similar density areas would also reduce the overall accuracy of a LIDAR-derived DEM. 

Finally, it was hypothesized that these factors (slope, off-nadir distance or vegetation 

type) may also interact with each other to affect LIDAR sampling of the soil surface and 

compound errors in DEM generation.

3.2 Materials and Methods

3.2.1 Study Area

This research was conducted at the University of Alberta Ranch (53° O' N; 

111°31' W) located 150 km SE of Edmonton, Alberta, Canada, within the Aspen 

Parkland natural sub-region. The Ranch is 2700 ha in size and has a general topography 

of rolling hills (i.e., knob and kettle terrain) with 5-15 m relief arising from its glacial 

moraine landform origin. The region has a temperate continental climate, with mean 

annual precipitation of 433mm and 100-120 frost-free days (University’s Meteorological 

Station at Kinsella Ranch). North-facing slopes are capable of supporting plant species 

with greater moisture requirements such as aspen forest and shrublands due to snow
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accumulation, while south-facing slopes typically support plant communities tolerant of 

drier conditions such as grasslands (Coupland 1961, Wheeler 1976). The most common 

soil type of the area is a Black Chernozem, although Dark Gray Chernozems and 

Eluviated Chernozems are present as well (Bailey and Wroe 1974, Scheffler 1976). 

Gleysols and Solonetzic soils also occur, the former confined to poorly drained lowlands. 

Herbage production is 2251 ± 747 and 2886 ± 993 (kg-ha1, dry matter) in its first and 

second rotation, respectively (Asamoah et al. 2003), and the major vegetation types at the 

Ranch are as follows:

(1) Riparian meadows

Meadows are mesic to hygric habitats occupied by grass (Poaceae family) and 

grasslike species primarily of the genera Carex and Juncus. The primary environmental 

characteristic affecting meadow vegetation is the high water table during all or part of the 

year (Benedict 1982, Ratliff 1985, Allen-Diaz 1991). 2 major types of wetlands exist at 

Kinsella, which include:

A. Saline riparian meadows (SRM) dominated by salt grass [Distichlis spicata 

(L.) Greene], alkali grass [Puccinellia nuttalliana (Schultes) Hitchc] and numerous forbs. 

They were found bordering salt covered lakebeds of discharge origin.

B. Freshwater riparian meadows (FRM) dominated by aquatic sedges (e.g„ 

Carex atherodes Spreng., etc), tufted hairgrass [Deschampsia caespitose (L.) Beauv.], 

and some marsh reedgrass [Calamagrostis canadensis (Michx.) Beauv.]. These 

meadows occurred at slightly greater elevations as ground water recharge areas.

(2) Upland grasslands

Grasslands were historically maintained by a combination of periodic fire (Wright
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and Bailey 1982) coupled with grazing by ungulates including bison (Bison bison) 

(Campbell et al. 1994). 2 major upland grassland types at Kinsella Ranch were described 

by Coupland (1961), and include:

A. Mixed prairie grassland [Stipa-Elymus (SEG)] dominated by western 

speargrass (Stipa comata Trin. & Rupr.), and northern wheatgrass [Elymus lanceolatus 

(Scribn. & J.G. Sm.) Gould], these xeric grasslands can be found on steep, south-facing 

slopes (>5°) and hilltops.

B. Fescue grassland [Festuca-Stipa (FSG)] dominated by plains rough fescue 

[Festuca hallii (Vasey) Piper] and western porcupine grass [Stipa curtiseta (A.S. Hitchc.) 

Barkworth], fescue grassland once covered much of the Aspen Parkland. Today, most 

fescue grasslands have been broken for cereal production or have been overgrazed 

(Trottier 1986). At Kinsella, remnants of unbroken or moderately grazed fescue 

grasslands remain abundant on mesic uplands with gentle slopes (<5°).

(3) Shrublands

Upland shrublands are ecotonal between grassland and adjacent aspen forest. 2 

major types of shrublands occur at Kinsella and include (after Wheeler 1976):

A. Western snowberry (Symphoricarpos occidentalis Hook.) (SPS).

B. Silverberry (Elaeagnus commutata Bemh. ex Rydb.) (ENS).

Both snowberry and silverberry reproduce extensively by suckering from 

creeping underground roots, resulting in dense, closed canopy patches.

(4) Aspen forest

Generally, forested areas at Kinsella are represented by trembling aspen (Populus 

tremuloides Michx.) communities, with an understory of saskatoon [Amelanchier
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alnifolia (Nutt.) Nutt, ex M. Roemer], chokecherry (Prunus virginiana L.) and wild rose 

(Rosa woodsii Lindl) shrubs along with a well-developed herbaceous component. Aspen 

forest has expanded considerably over the last 60+ years (Bailey and Wroe 1974, 

Scheffler 1976), although periodic outbreaks of tent caterpillars and drought, coupled 

with prescribed burning have resulted in aspen stands of varied condition across the 

Ranch. Young (5-30yr) and mature (30-60yr) aspen communities are characterized by 

closed canopy stands of relatively uniform tree age, height and diameter (Stelfox, 1995). 

In contrast, old and decadent aspen communities (>60yr) have often undergone 

significant canopy break-up and subsequent understory release as well as the emergence 

of secondary young aspen and shrubs. As a result, aspen communities at Kinsella can be 

classified into closed (young or mature) (CAF) and semi-open (decadent) aspen forest 

(OAF) types.

3.2.2 LIDAR Data Acquisition and Processing

Airborne scanning laser data were collected over the study area by Optech, a 

company specializing in the design of laser-based ranging, mapping and detection 

systems. The laser system was flown at 1700m above sea level, with an average above 

ground elevation of 1005m (but ranging from 989m to 1027m) in the afternoon of 3 

October 2000 during leaf-on conditions (Appendix 1). LIDAR sampling used an across- 

track scanning system with a Z-shaped ground target path. The wavelength and 

frequency of the laser pulse were 1.04 pm and 25 KHz, respectively. The mean intensity 

was 42% and maximum off-nadir angle 15°. Flight lines were approximately 500m apart,
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with a total of 19 north-south flight lines covering the entire area (2700ha). Laser 

measurements are sometimes but not usually affected by other reflections such as 

sunlight. Optech's scanning laser instruments scan laser pulses within a preferred range 

of angles. Instruments are designed to operate in daylight (Optech Incorporated 2003).

Initial LIDAR data files consisted of 2 components including the realtime geo­

corrected coordinates (UTM easting and northing, as well as Z-elevation) for each laser 

point on the ground (last return) and the top of the vegetation (first return), as well as the 

associated intensity readings. LIDAR intensity is the ratio of strength of reflected light to 

that of emitted light (unit: %). An elevation was calculated by knowing the speed of light 

(approximately 0.3 metres per nanosecond) and distance to (start pulse) and from (return 

pulse) the object being measured. The average laser footprint diameter was 0.3m 

(0.071m2) directly below the aircraft, which increased to 0.31m (0.075m2) at a distance of 

250 m off-nadir. The average sampling interval was 1.5m between footprints in the 

across-track direction and 1.3m in the along-track (i.e., forward) direction. Final LIDAR 

data sampling densities across the area averaged 0.54 points/m2, but ranged from 0.28 to 

1.35 points/m2.

The discontinuous last return ground LIDAR data points were subsequently 

interpolated into a continuous DEM surface to facilitate comparison of the LIDAR data 

to individual ground-truthed locations. Several interpolation methods, including kriging, 

inverse distance weighting (IDW, with a 0.3 and 3.0 coefficient), and splining (regular 

spline and tension spline), were initially used to determine the most accurate method for 

establishing a continuous LIDAR data surface. Kriging was subsequently dropped due to 

the excessive computational time required to process the data.
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4 areas, each 4 km , were randomly selected from the LIDAR data to assess the 

remaining interpolation methods. Prior to interpolation, 0.1% of the original LIDAR 

points in each file (total of 6959 points for all 4 files) were extracted for comparison with 

the interpolated values to evaluate interpolation error. Analysis of variance (ANOVA) 

indicated that the 4 interpolation techniques did not differ significantly from each other in 

their mean interpolation accuracy (df=3, 27832; F=1.43 and P=0.23). Although mean 

differentiation levels among interpolation methods were similar (Table 3-1), the 

differential minima and maxima, as well as the standard deviation revealed the 2 splining 

methods produced greater distortions relative to the original data. Based on the smallest 

standard deviation, IDW with weight 0.3 was used for development of a final DEM for 

the study area.

3.2.3 DEM Ground Truthing

Ground truthing was conducted in relation to the treatment variables, namely 

vegetation type, slope gradient, and off-nadir distance. Due to limitations in the time and 

logistics (i.e., accessibility) of ground truthing, a preliminary power analysis (Thomas 

and Juanes 1996) was conducted to determine the minimum sample sizes needed to 

detect significant effects due to the external factors. This analysis indicated 

approximately 250 data points were needed to detect treatment affects on DEM accuracy.

Ground truthed data points were distributed across the study area in a stratified 

random pattern across the landscape (Appendix 1). Points were stratified by both 

vegetation type and slope gradient to ensure adequate sample sizes, but were randomly
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located around a series of benchmarks (BMs) distributed throughout the study area. The 

vegetation categories included fescue (Festuca-Stipa) and mixed prairie (Stipa-Elymus) 

grasslands, closed and semi-open aspen forest, silverberry (Elaeagus) and western 

snowberry (Symphoricarpos) shrublands, as well as freshwater and saline riparian 

meadows. Slope gradient was stratified by low (<5 degree), moderate (5-10 degree), and 

steep (>10 degree) slopes. Although data points could not be readily stratified by off- 

nadir distance because of difficulty in identifying these classes within the landscape prior 

to sampling, the widespread spatial distribution of points (i.e., nearly random) ensured 

that all these categories were represented. Categories of off-nadir distance used for 

analysis were from 0 to 200 m in increments of 50 m, with a final category of 200-260m. 

Distances beyond 260m were not present because the total distance between adjacent 

flight lines was limited to about 500m.

The relative elevation of each ground truthed point was recorded using a Leica 

TCR 703 total laser station. Relative elevations were first used for the convenience of 

elevation transfer. Sampled points (n=260) were connected to one another using a series 

of 27 interconnected benchmarks set up across the study area (Figure 3-1). These BMs 

were used for transferring vertical elevations from one point to another using the "block 

station" (BS) (Leica 2000) transfer method (Figure 3-1, a and b). This method does not 

require the actual coordinates of the station. The total station calculates automatically the 

relative elevation of a target (e.g., BM) and is then passed to calculate the relative 

elevation between 2 targets. Adjacent BMs were approximately 500m apart (n=27) to 

avoid exceeding the capability of the laser station. Each BM was set up on top of a hill 

with a flat ground surface for convenient and accurate elevation transfer. Each time a

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



new BM was established, backsighting was used to validate the initial change in elevation 

(Figure 3-1, c—>k). Cumulative backsight errors never exceeded 5cm. Finally, relative 

elevations were transferred to the absolute elevations based on BM #1, which was also a 

ground control point with centimeter elevation accuracy (<10 cm). This technical 

sampling design ensured centimeter accuracy of absolute elevations of both 27 BMs and 

the associated ground truthed points.

Each ground truthed point was located between two-BMs up to 250 m away from 

either adjacent BM. At each of the 27 BMs, between 6 and 12 ground truthed data points 

were sampled using the "free-station technique" (Leica 2000). This method requires a 

minimum of 2 known BMs and a maximum of 5 to determine the elevation of a single 

ground truthed point (Figure 3-1, a, c, e, then to d). The free-station technique averaged 

the orientation and elevation of the laser station, and produced more reliable elevation 

measurements of the ground truthed points.

There were 2 additional situations in which the height transfer method (Figure 3- 

1, f->g—»h) was used to determine the ground elevation of a location. This included 

when the ground truthed points were more than 500m away from the BMs; or when the 

ground truthed points were located inside closed aspen forest. In both situations, a 

transfer point was set up at first with the laser station located between the transfer point 

and the targeted ground truthed point in order to transfer the ground elevation from the 

transfer point to the targeted point. Corresponding positional coordinates of each ground 

truthed point were sampled through the assistance of a differential-GPS (DGPS) system 

(mean horizontal accuracy 0.53 m). The distribution of all ground truthed points, as well 

as those BMs established on the study area, is illustrated in Figure 3-2.
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3.3 Analysis

The IDW0.3 interpolation method was applied to the LIDAR data from the study 

area and created a digital elevation model with a spatial resolution of 1.5 m (Figure 3-3). 

All 254 ground truthed points (originally there were 260 GPS measurements, but 6 were 

excluded because their horizontal accuracy based on the DGPS exceeded 1 m) were 

applied to the DEM in order to determine their estimated elevations. Corresponding data 

points were extracted from the interpolated surface (i.e., DEM) and subsequently 

compared to the ground truthed points for testing the influence of off-nadir distance, 

slope gradient, and vegetation type, as well as their interaction effects, on the resulting 

accuracy of the DEM derived from the LIDAR data.

In order to assess effects of off-nadir distance, LIDAR data points along the flight 

lines were first converted to continuous lines with a swath interval of about 500m. Lines 

were then buffered with off-nadir distance intervals 50 m wide up to 200m. The final 

category was greater than 200m, and included all points beyond that but before the mid­

point between successive flight lines. In order to test for the effect of off-nadir distance 

on DEM and LIDAR data accuracy, the predicted elevations (i.e., elevations from the 

DEM) were compared to the 254-ground truthed points. Sample sizes per class varied 

from 34 to 63 (Table 3-2). Where the mean differentiation of one group differed from 

that of another, it indicated off-nadir distance influenced DEM accuracy from the LIDAR 

data.

The same 254 points were used to test if slope gradient influenced LIDAR- 

derived DEM accuracy. We hypothesized that with the increase of slope gradient, 

LIDAR data accuracy would decrease because of the decrease in density of LIDAR
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points. Slope categories were then classified into 3 classes. The corresponding sample 

sizes among the 0-5°, 5-10° and >10° slope classes varied from 156 to 43 respectively, 

likely in proportion to their abundance in the landscape. The predicted LIDAR data 

elevations of the 254 points were subsequently differentiated among slope classes using 

their corresponding ground measurements.

Vegetation types of the study area were first classified into upland grasslands, 

shrublands, forested areas and lowland meadows, and their corresponding ground truthed 

data points compared and differentiated with the predicted LIDAR data points. The 

comparatively smaller number (27) of ground truthed points of lowland meadows was 

due to the small portion of that vegetation type within the study area (about 5%).

A Paired-Sample T Test was first used to identify whether the LIDAR-derived 

elevations differed significantly from the ground-truthed elevations. Where they did, the 

mean differentiation, standard deviation and ANOVA analysis were applied to individual 

influential factors (e.g., slope gradient, off-nadir distance or vegetation type), interaction 

effects (e.g., slope gradient by vegetation types), as well as sub-vegetation factors (e.g., 

forested areas vs. grasslands) to identify whether those influential factors significantly 

influenced LIDAR-derived DEM accuracy. Tukey HSD comparisons (min. P<0.10) 

were applied to sub-vegetation categories with 4 and 8 classes of vegetation, respectively, 

to identify the quantitative over/under-estimation of elevations of vegetation types on 

LIDAR-derived DEM accuracy. Positive values indicated DEM elevation over­

estimation and negative values under-estimation. Square root of the mean square error 

(RMSE) was also calculated to identify the deviation of LIDAR prediction from field 

measured vegetation heights.
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3.4 Results

A Paired-Sample T Test (t=-33.78, df=253 and Sig<0.01) indicated that the 

LIDAR-derived elevations differed significantly from ground-truthed measurements. 

Either vegetational or non-vegetational influential factors or both created elevation 

differences.

3.4.1 Off-Nadir Distance

The mean of differences, standard deviations of mean as well as the ANOVA 

analysis (df=4, 249; F=0.87, P=0.48) all indicated there were no significant differences in 

DEM accuracy associated with the 5 off-nadir distance categories (Table 3-2). No

significant difference existed even at the most extreme off-nadir distance (200-250 m). 

As an individual factor, off-nadir distance did not influence the accuracy of the LIDAR- 

derived DEM.

3.4.2 Slope Gradient

The mean of differences and standard deviations of mean in the second part of 

Table 3-2 and the ANOVA analysis (df=2, 251; F=0.72 and P=0.49) indicated slope 

gradient also did not significantly influence the LIDAR-derived DEM accuracy. No

significant influence existed even if slope gradient exceeded 10 degrees.
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3.4.3 Vegetation Types

The mean of differences (third part of Table 3-2) and the ANOVA analysis (df=3, 

250; F=7.49 and p<0.001) indicated the vegetation types had a significant influence on 

accuracy of the LIDAR-derived DEM. Although the overall mean estimation was very 

accurate (+2 cm), it created a RMSE of 1.21 m. Table 3-2 also indicates that the 

elevations were over-estimated within forested areas by an average of 20 cm (with a 

RMSE of 1.05 m), under-estimated (-12 cm, RMSE = 1.36) within grasslands (upland 

and lowland), and mostly accurate in shrublands (+7 cm, RMSE = 1.15 m). Forested 

areas differed significantly from both upland grasslands and lowland meadows with 

respect to their influence on accuracy of the LIDAR-derived DEM (Table 3-3).

Further exploration of the 8 detailed vegetation types revealed that the forested 

areas (closed and semi-open) differed from the fescue grasslands and fresh riparian 

meadows with respect to differences in LIDAR-derived DEM accuracy. Closed aspen 

forest resulted in the greatest over-estimation of ground elevations, followed by the semi­

open aspen forest. Fresh riparian meadows had the greatest under-estimation of ground 

elevations, with the fescue grassland second. The mixed prairie grasslands, saline 

riparian meadows and 2 shrublands (silverberry and western snowberry) did not 

significantly influence (P>0.10) accuracy of the LIDAR-derived DEM relative to the 

other vegetation types (Table 3-5).

3.4.4 Interaction Effects

Although the individual factors of off-nadir distance and slope gradient did not
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significantly influence DEM and LIDAR data accuracy, when integrated, these factors 

resulted in a significant effect (P=0.05). Accuracy normally increased at positions with 

shorter off-nadir distances and flatter slope gradient. Other interaction effects including 

vegetation by slope and vegetation by off-nadir distance were not significant (P=0.43 and 

0.96, respectively) (Table 3-4).

3.5 Discussion

Most studies have claimed maximum 15 cm vertical accuracy of LIDAR data 

regardless of where the work was done or what the surface conditions (e.g., vegetation 

type) might be. This research created a DEM with a mean overall accuracy of +2 cm and 

RMSE of 1.21 m. It supported the hypothesis that a laser-based system can provide 

synoptic (i.e., landscape-based complete coverage) and relatively accurate for elevation 

mapping (Krabill et al. 1995). However, accuracy of the LIDAR-derived DEM also 

created an overall RMSE of 1.21m and did vary with a number of external factors.

3.5.1 Non-Vegetation Factors

2 possible explanations may account for the lack of influence of off-nadir distance 

on LIDAR-derived DEM accuracy, including tilt angle of the laser camera, and the 

spatial distribution of LIDAR data sampling. By randomly selecting 1 data file (4 km2) 

and calculating the laser point density with increasing off-nadir distance (<50m, 50- 

100m, 100-150m, 150-200m and >200m, respectively), this research found that contrary 

to our expectations, the intensity of LIDAR sampling increased with off-nadir distance
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(e.g., densities of 0.42, 0.47, 0.59, 0.69 and 0.71 points/m2, respectively). This trend 

might compensate for the sensor tilt angle effects of the laser camera during data 

collection, especially under windy conditions, by increasing the surface sampling 

intensity at greater off-nadir distances.

The insignificant influence of slope gradient on DEM and LIDAR data accuracy 

may lie in the comparatively negligible variation in ground slope gradient and relief 

relative to the sampling distance from plane to ground. The aircraft with LIDAR 

equipment flew at an elevation of about 1700m, and the ground elevation varied from 

680m to 720m. Thus, the distance from the LIDAR equipment to ground was about 1000 

m. Most of the slope gradients on the Ranch do not exceed 10°, and the relief is less than 

15m. This type of moderately rolling landscape may have limited overall variation in 

LIDAR sampling density across different slopes and reliefs.

However, the interaction of slope gradient and off-nadir distance reflected an 

increase in LIDAR sampling density at positions with shorter off-nadir distances and 

smaller slope gradient, which also created higher accuracies than positions with larger 

off-nadir distance and bigger slope gradient. Interpolated DEM accuracy normally 

increases in locations where more LIDAR data sampling points are available. Therefore, 

this may therefore account for the significant influence of these 2 integrated effects on 

LIDAR-derived DEM accuracy.

3.5.2 Vegetation Factors

Ni-Meister et al. (2001) indicated leaf orientation and shape contributed to the
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change of foliage profile and their influences on LIDAR data collection accuracy. 

Grasslands at the study area have largely vertical oriented leaves, due to their domination 

by monocots. The repeated bouncing back and forth of incoming LIDAR signals may 

have made the peak values of the waveforms for grasslands consistently greater than their 

actual peak waves, resulting in under-estimation of grassland elevations. Background 

noise in sparsely populated shrublands and herbaceous grasslands (Weltz et al. 1994) 

might also contribute to the underestimation. In contrast, the leaves of trees and shrubs 

(i.e., dicots) are usually more horizontally oriented, and oval shaped. This kind of 

vegetation can attenuate the laser beam irradiance passing through the canopy more 

readily. As a result, attenuated peak signals of the last return would reflect back more 

rapidly than from grasses. Moreover, the last return is less likely to come from the true 

ground, but rather from somewhere within the understory layers. Combined, these 

effects may have resulted in the over-estimation of ground elevations in forests and 

shrublands, opposite to the former.

Comparisons within each plant functional group (i.e., woodland vs. grassland 

type) and its influential factors, revealed that increasing woody species height and cover 

increased the over-estimation of ground elevations (Figure 3-4 a). In contrast, increasing 

grass height and cover had the opposite tendency of increasing the under-estimation of 

ground elevations (Figure 3-4 b). The integrated values represent volume information or 

vegetational “denseness” of woodlands and grasslands. These values were calculated 

using Equations 3.1 and 3.2, respectively, and were visually displayed on Figure 3-4 (a 

and b):

Woodland (integrated) denseness = (understory cover)*(understory height) +
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(Overstory cover) * (Overstory height)................................................................... (Eq. 3.1)

Grassland (integrated) denseness = (grass cover)*(grass height)............. (Eq. 3.2)

These non-linear regressions indicated that closed forest areas (greatest volume 

and density within the shrub/aspen group) had the greatest over-estimation and the fresh 

riparian meadows (greatest volume and density within the grassland group) had the 

greatest under-estimation of the LIDAR-derived DEM accuracy. LIDAR signals are 

influenced by both the vertical distribution (i.e., physiognomy) and plant morphology of 

vegetation (Ni-Meister et al. 2001), but had opposite effects within grasslands and woody 

vegetation types.

In addition to canopy structure influences on laser responses and DEM accuracy, 

the inherent characteristics of small footprint laser systems limit their application in dense 

and complex forest areas. Hofton et al. (2002) mapped a -800 km area of Costa Rica 

using 25 m-diameter footprints as part of the pre-launch activities of the Vegetation 

Canopy LIDAR (VCL) Mission. Crossover analysis using laser shots, whose recorded 

waveforms contained more than 50% of the total returned energy within their lowest 

reflections, showed elevation accuracy more than 50% greater compared to a 

corresponding small footprint LIDAR system. The difficulty of penetrating dense and 

complex forest canopies through gaps will promote the use of large footprint (>10 m in 

diameter) laser altimetry to measure sub-canopy topography.

3.6 Conclusion

LIDAR data can provide synoptic quantification of landscape topography and
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roughness for large areas by building DEMs within the Aspen Parkland. Measurements 

of micro and macro surface features contribute to the quantification of water retention, 

infiltration, evaporation, and movement from landscape surfaces. Estimation of soil 

condition and development can also benefit from an understanding of study area 

topography. The distribution of some vegetation communities, as well as animal 

movement and grazing is also dependent on specific topographic features.

Accuracy assessment indicated that as an individual factor neither slope gradient 

nor off-nadir distance significantly influenced accuracy of a LIDAR-derived DEM. 

However, the interaction of slope gradient and off-nadir distance did significantly 

influence accuracy. Different vegetation types had the greatest influence on accuracy of 

a LIDAR-derived DEM within this Aspen Parkland environment. Despite an overall 

mean accuracy of +2 cm across the 8 vegetation types, this accuracy included an overall 

RMSE of 1.21 m. Also, elevations were over-estimated within forested areas by an 

average of 20 cm with a RMSE of 1.05 m, under-estimated (-12 cm, RMSE = 1.36 m) 

within grasslands (upland and lowland), and most accurate in shrublands (+7 cm, RMSE 

= 1.15 m), potentially necessitating DEM correction for vegetation type influences. 

Overall, results of this research highlight the potential of using LIDAR data to effectively 

model landscape DEM properties over large areas of the Aspen Parkland. Such 

measurements will improve our understanding of the effects of complex landscape 

characteristics on hydrological systems, vegetation distribution, animal movement and 

grazing, so that improved management practices and structures can be developed to 

sustain our natural resources.
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3.8 Tables and Figures

Table 3-1 Comparison of interpolation accuracy among the 4 interpolation 
methods.

Interpolation
Method

Number of Mean
Points Differentiation 
(0.1%) (m)

Std.
Deviation

95% Confidence Interval 
for Mean

Lower
Bound

Differentiation Differentiation 
Minimum Maximum 

Upper Bound (m) (m)

IDW3.0 6959 -0.002 0.391 -0.012 0.007 -3.24 3.00
IDW0.3 6959 -0.002 0.385 -0.011 0.007 -3.10 3.12
Reg-Spline 6959 -0.070 4.173 -0.169 0.028 -129.79 104.21
Ten-Spline 6959 0.009 2.818 -0.058 0.075 -24.99 221.20
Total 27836 -0.017 2.533 -0.046 0.013 -129.79 221.20

IDW 3.0 and IDW0.3 -  Inverse distance weighted interpolation with weight 3 and 0.3, 
respectively; Reg-Spline and Ten-Spline -  Regular and tension interpolation, respectively.

Table 3-2 Effects of influential factors on the accuracy of a LIDAR-derived DEM.

Influential
Factor Category Number 

of Points

M ean
D ifferentiation

(m)

Std.
Deviation

95% Confidence 
Interval for Mean 
Lower Upper 
Bound Bound

Differentiation Differentiation 
Minimum Maximum 

(m) (m)

<50 63 0.055 0.572 -0.089 0.199 -0.988 2.415

Off-Nadir
Distance

(m )

50-100
100-150

54
46

-0.061
-0.037

0.514
0.447

-0.201
-0.17

0.079
0.096

-2.125
-1.407

0.61
1.118

150-200 57 0.071 0.484 -0.057 0.199 -1.146 1.28
>200 34 0.098 0.557 -0.097 0.292 -1.691 1.33
Total 254 0.023 0.517 -0.041 0.087 -2.125 2.415

<5 156 -0.055 0.405 -0.069 0.058 -1.18 1.809
Slope

Gradient
(°)

5-10

>10

55

43

0.09

0.041

0.455

0.854

-0.033

-0.222

0.213

0.303

-0.974

-2.125

1.372

2.415

Total 254 0.023 0.517 -0.041 0.087 -2.125 2.415
Upland

Grasslands 74 -0.118 0.526 -0.24 0.035 -2.125 1.118

Vegetation
Type

Shrub Lands 
Forested 

Areas

79

74

0.068

0.203

0.463

0.515

-0.035

0.084

0.172

0.322

-1.146

-1.691

1.809

2.415
Lowland
Meadows 27 -0.215 0.466 -0.399 -0.031 -1.049 0.37

Total 254 0.023 0.517 -0.041 0.087 -2.125 2.415
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Table 3-3 Comparison among the 4 general vegetation types of their influence on
the accuracy of a LIDAR-derived DEM.

. .._Mean Difference
Vegetation Type (I) ^ypeYj) ^

95% Confidence Interval 
Std. Error ' Lower Bound Upper Bound 

1 J (m) (m)
2

Upland Grasslands
( i)  I

-0.187
-.3211
0.097

0.081
0.082
0.112

0.094
0.001
0.824

-0.394
-0.532
-0.191

0.020
-0.111
0.384

Shrub Lands ^

(2) 4

0.187
-0.135
0.283

0.081
0.081
0.111

0.094
0.339
0.052

-0.020
-0.342
-0.002

0.394
0.072
0.569

Forested Areas * 

4

.3211
0.135
.4181

0.082
0.081
0.112

0.001
0.339
0.001

0.111
-0.072
0.130

0.532
0.342
0.706

Lowland Meadows J
(4) I

-0.097
-0.283
-.4181

0.112
0.111
0.112

0.824
0.052
0.001

-0.384
-0.569
-0.706

0.191
0.002
-0.130

1 M ean difference is significant at the .10 level.

Table 3-4 Results of the interaction analysis among factors (vegetation, slope and 
nadir distance) on their influence on the accuracy of the LIDAR-derived DEM.

Interaction Factors Sum of Degree of . „ „„ „  , Mean Square Squares Freedom n F-test Sig. (P)

Vegetation * Slope 
Vegetation*Off-nadir Distance 
Slope * Off-nadir Distance 
Vegetation * Slope * Off-nadir 

Distance

.159
0.001
.938

0.039

1
1
1

1

.159
0.001
.938

0.039

.637

.005
3.752

.155

.426

.942

.054

.694
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Table 3-5 Comparison among the 8 vegetation types with respect to their influence
on accuracy of a LIDAR-derived DEM.

(I) Focal (J) Focal Mean Difference 95% Confidence Interval
Vegetation Vegetation (I-J) Std. Error Sig.

Type1 Type1 (m) Lower Bound Upper Bound

2 0.057 0.117 1.000 -0.296 0.411
3 -0.198 0.126 0.765 -0.580 0.183

SEG
(1)

4 -0.129 0.112 0.947 -0.469 0.212
5 -0.317 0.127 0.196 -0.702 0.068
6 -0.272 0.114 0.253 -0.618 0.075
7 -0.032 0.168 1.000 -0.541 0.478
82 0.256 0.155 0.720 -0.215 0.727
3 -0.256 0.120 0.394 -0.619 0.108

FSG
4 -0.186 0.106 0.647 -0.506 0.134
5 -0.3753 0.121 0.041 -0.742 -0.008

(2) 6 -0.3293 0.108 0.047 -0.656 -0.003
7 -0.089 0.164 0.999 -0.585 0.407
8 0.199 0.151 0.891 -0.257 0.655
4 0.070 0.116 0.999 -0.281 0.420

ENS
(3)

5 -0.119 0.130 0.985 -0.513 0.275
6 -0.073 0.118 0.999 -0.430 0.283
7 0.167 0.170 0.978 -0.350 0.683
8 0.4553 0.158 0.076 -0.024 0.933

SPS
5 -0.189 0.117 0.741 -0.543 0.165
6 -0.143 0.103 0.862 -0.455 0.169

(4) 7 0.097 0.161 0.999 -0.390 0.584
8 0.385 0.147 0.151 -0.061 0.831

CAF
(5)

6 0.046 0.119 1.000 -0.314 0.406
7 0.286 0.171 0.708 -0.233 0.805
8 0.5743 0.159 0.007 0.093 1.055

OAF 7 0.240 0.162 0.818 -0.251 0.731

(6) 8 0.5283 0.149 0.009 0.077 0.979
SRM (7) 8 0.288 0.193 0.813 -0.298 0.874

1 SEG -  mixed prairie, FSG -  fescue grassland, ENS -  silverberry, SPS -  western snowberry, 
CAF -  closed aspen forest, OAF -  semi-open aspen forest, SRM -  saline riparian meadow, 
FRM -  fresh riparian meadow.
28 represents FRM-fresh riparian meadows.
3 Mean difference is significant at the .10 level.
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Laser station

0  ) Transfer point

Laser station

Figure 3-1 Field layout for obtaining elevation measurements on ground truthed 
points using a total laser station.
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Figure 3-2 The distribution of 27 inter-connected benchmarks and 260 ground 
truthed data points around those benchmarks.
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Figure 3-3 Digital elevation model of the study area with a spatial resolution of 1.5 
m obtained using IDW 0.3 interpolation.
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Figure 3-4 The relationship between mean vertical accuracy and integrated vegetation 
characteristics to the over (a) or underestimation (b) of a LIDAR-derived DEM. [ Woodland 
integrated height and cover value = (understory coverHunderstory height) + (overstory cover) • 
(overstory height); "Grassland integrated height and cover value = (grass height) • (grass cover)]. 
The square brackets represent the std. dev. of the integrated values.
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4 Characterization of Aspen Parkland Vegetation Using 

LIDAR Data

4.1 Introduction

Vegetation spatial structure (i.e., physiognomy), including plant height, cover, 

and vertical or horizontal heterogeneity, is an important factor influencing biodiversity 

and the associated exchange of matter and energy between landscape and atmosphere 

(Dubayah et al. 1997). Measurements of land surface (including vegetation) shapes, 

patterns, and heterogeneity provide data necessary to understand landform changes in 

space and time (Ritchie et al. 2001).

Historical methods of rangeland assessment largely emphasized the use of point- 

based inventories, intended to collect detailed information on individual plant 

communities (National Research Council 1994). With this method, primary strata or 

samples from the entire rangeland were selected, with sub-sampling used to derive select 

data from a few, stratified locations within the entire land base. This approach 

represented a type of ‘bottom-up’ management in that strategically placed random sub­

sampling was used to collect detailed information on the species composition, soil type 

and slope, etc., of representative key areas, with these limited sum-sampling points 

extrapolated back to the entire rangeland to alter management (West and Smith 1997). 

Yet other attempts were made to select different sampling points that were thought to 

represent different successional stages associated with a disturbance. Collectively, these 

processes were useful in that detailed plant community information could be related
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quite readily to the determination of ungulate carrying capacity, as well as the existing 

models of rangeland condition based on livestock grazing and associated retrogression of 

vegetation (Clements 1916, Dyksterhuis 1949).

While the use of stratified random sampling (SRS) inventories is highly 

effectively at providing information on localized plant communities, several problems 

exist with the use of this method. These problems largely stem around the inability of 

managers to safely extrapolate local sampling points to the larger, more realistic, and 

more spatially variable landscape scale at which management actually occurs, as well as 

the very laborious and costly nature of data collection. Coupled together, these factors 

have limited the application of SRS for rangeland managers, including the potential for 

large-scale rangeland condition and trend assessment. In fact, reductions to both the 

budget and labour pool in many rangeland management, advisory, and regulatory 

agencies, along with a restricted field season, renders the intensive, prolonged sampling 

of plant communities altogether unrealistic.

Remote sensing is a potential alternative rangeland monitoring method to gather 

site-specific data from vast areas. Primary benefits include synoptic (e.g., spatially 

complete) coverage, high cost-effectiveness (i.e., reducing the cost per unit area 

examined), and lower labour requirements relative to SRS (Tueller 1989). In addition, 

remote sensing can provide data on areas that are often inaccessible, as well as highly 

heterogeneous landscapes, where complex mosaics of vegetation with frequent 

transitional areas may preclude the use of point sampling. Remotely-sensed data also 

facilitates, though its complete coverage or stratification, additional forms of analysis 

such as landscape metrics (e.g., vegetation distribution). The spatially complete nature of
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remotely-sensed information on rangelands provides an efficient strategy for rangeland 

management, and as a result, provides a potential complementary data source to the 

collection of detailed plant community information. Traditional remotely-sensed systems 

include aerial photography, videography, as well as airborne and satellite spectral sensors 

or RADAR.

However, assessing rangeland conditions and their spatial distribution using 

conventional remote sensing technology provides data of limited spatial resolution. For 

example, most remote sensing systems (e.g., airborne photography) provide images of the 

horizontal (2-D) organization of canopies, but do not provide direct information on the 

vertical (3-D) distribution of canopy elements (Dubayah et al. 1997). Current SAR 

(Synthetic Aperture RADAR) technology offers promise for predicting low levels of 

vegetation structure and for mapping general vegetation types in floristicly simple (e.g., 

non-diverse) landscapes (Smith et al. 1994, Rignot et al. 1994), but is insensitive to and 

thus, unsuitable, for mapping densely vegetated sites (Waring et al. 1995).

More recently, laser altimeter systems have been developed to provide high 

resolution, geolocated measurements of vegetation vertical structure (Nelson 1997) and 

ground elevations (Pachepsky and Ritchie 1998). However, little research has fully 

explored the capability of using LIDAR (Light Detection and Ranging) data to 

characterize vegetation within structurally complex landscapes that include many 

different plant communities.

The Aspen Parkland of western Canada forms a broad transition zone between the 

warm, dry prairies to the south and cool, moist boreal forest to the north (Johnson et al. 

1995). The Parkland commonly consists of groves of aspen (Populus tremuloides
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Michx.) alternating with grasslands predominantly of rough fescue [Festuca halli (Vasey) 

Piper] (Wheeler 1976).

The objective of this research was to use LIDAR positional data, and where 

possible, LIDAR intensity information, to quantify field vegetation height, cover and 

density of various vegetation types in a portion of the Aspen Parkland, including open 

grasslands, shrublands, and aspen forests of varied canopy closure.

4.2 Study Area

This research was conducted at the University of Alberta Ranch (53°0' N; 111°31' 

W) located 150 km SE of Edmonton, Alberta, Canada, within the Aspen Parkland natural 

sub-region. The Ranch is 2700 ha in size and has a general topography of rolling hills 

(i.e., knob and kettle terrain) with 5-15 m relief arising from its glacial moraine landform 

origin. The region has a temperate continental climate, with mean annual precipitation of 

433 mm and 100-120 frost-free days (University’s Meteorological Station at Kinsella 

Ranch). North-facing slopes are capable of supporting plant species with greater 

moisture requirements due to snow accumulation, such as aspen forest and shrublands, 

while south-facing slopes typically support plant communities tolerant of drier conditions 

such as grasslands (Wheeler 1976, Coupland 1961). The most common soil type of the 

area is a Black Chernozem, although Dark Gray Chernozems and Eluviated Chernozems 

are present as well (Bailey and Wroe 1974, Scheffler 1976). Gleysols and Solonetzic 

soils also occur, the former confined to poorly drained lowlands. Herbage production is 

2251 ± 747 and 2886 ± 993 (kg-ha1, dry matter) in its first and second rotation,
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respectively (Asamoah et al. 2003), and the major vegetation types at the Ranch are as 

follows:

(1) Riparian meadows

Meadows are mesic to hygric habitats occupied by grass (Poaceae family) and 

grasslike species primarily of the genera Carex and Juncus. The primary environmental 

characteristic affecting meadow vegetation is the high water table during all or part of the 

year (Benedict 1982). 2 major types of wetlands exist at Kinsella, which include:

A. Saline riparian meadows (SRM) dominated by salt grass [Distichlis spicata (L.) 

Greene], alkali grass [Puccinellia nuttalliana (Schultes) Hitchc] and numerous forbs. 

They were found bordering salt covered lakebeds of discharge origin.

B. Freshwater riparian meadows (FRM) dominated by aquatic sedges (e.g., Carex 

atherodes Spreng., etc), tufted hairgrass [Deschampsia caespitose (L.) Beauv.], and some 

marsh reedgrass [Calamagrostis canadensis (Michx.) Beauv.]. These meadows occurred 

at slightly greater elevations as ground water recharge areas.

(2) Upland grasslands

Grasslands were historically maintained by a combination of periodic fire (Wright 

and Bailey 1982) coupled with grazing by ungulates including bison (.Bison bison) 

(Campbell et al. 1994). 2 major upland grassland types at Kinsella Ranch were described 

by Coupland (1961), and include:

A. Mixed Prairie grassland [Stipa-Elymus (SEG)] dominated by western 

speargrass (Stipa comata Trin. & Rupr.), and northern wheatgrass [Elymus lanceolatus 

(Scribn. & J.G. Sm.) Gould], these xeric grasslands can be found on steep, south-facing 

slopes (>5°) and hilltops.
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B. Fescue grassland [Festuca-Stipa (FSG)] dominated by plains rough fescue 

[Festuca hallii (Vasey) Piper] and western porcupine grass [Stipa curtiseta (A.S. Hitchc.) 

Barkworth], fescue grassland once covered most of the Aspen Parkland. Today, most 

fescue grasslands have been broken for cereal production or overgrazed (Trottier 1986). 

At Kinsella, remnants of unbroken or moderately grazed fescue grasslands remain 

abundant on mesic uplands with gentle slopes (<5°).

(3) Shrublands

Upland shrublands are ecotonal between grassland and adjacent aspen forest. 2 

major types of shrublands occur at Kinsella and include (Wheeler 1976):

A. Western snowberry (Symphoricarpos occidentalis Hook.) (SPS).

B. Silverberry (Elaeagnus commutata Bemh. ex Rydb.) (ENS).

Both snowberry and silverberry reproduce extensively by suckering from 

creeping underground roots, resulting in dense, closed canopy patches.

(4) Aspen forest

Generally, forested areas at Kinsella are represented by trembling aspen (Populus 

tremuloides Michx.) communities, with an understory of saskatoon [Amelanchier 

alnifolia (Nutt.) Nutt, ex M. Roemer], chokecherry (Prunus virginiana L.) and wild rose 

(Rosa woodsii Lindl) shrubs along with a well-developed herbaceous component. Aspen 

forest has expanded considerably over the last 60+ years (Bailey and Wroe 1974, 

Scheffler 1976), although periodic outbreaks of tent caterpillars and drought, coupled 

with prescribed burning have resulted in aspen stands of varied condition across the 

Ranch. Young (5-30yr) and mature (30-60yr) aspen communities are characterized by 

closed canopy stands of relatively uniform tree age, height and diameter (Peterson and
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Peterson 1995, Stelfox 1995). In contrast, old and decadent aspen communities (>60yr) 

have often undergone significant canopy break-up and subsequent understory release as 

well as the emergence of secondary young aspen and shrubs. As a result, aspen 

communities at Kinsella can be classified into closed (young or mature) (CAF) and semi­

open (decadent) aspen forest (OAF) types.

4.3 Materials and Methods

A total of 120 ungrazed circular field plots each with a radius of 6 m were 

sampled for vegetation height, cover, and where possible, tree density. Corresponding 

LIDAR data points within each field plot were sampled through the use of a differential- 

GPS system. LIDAR-derived vegetation height and cover data were then compared with 

field measurements, and evaluated our ability to characterize vegetation using LIDAR 

data.

4.3.1 LIDAR Data Acquisition

Airborne scanning laser data were collected over the study area by Optech, a 

company specializing in the design of laser-based ranging, mapping and detection 

systems. The laser system was flown at 1700m above sea level, with an average above 

ground elevation of 1005m (but ranging from 989m to 1027m) in the afternoon of 3 

October 2000 during leaf-on conditions (Appendix 1). LIDAR sampling used an across- 

track scanning system with a Z-shaped ground target path. The wavelength and 

frequency of the laser pulse were 1.04 pm and 25 KHz, respectively. The mean intensity
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was 42% and maximum off-nadir angle 15°. Flight lines were approximately 500m apart, 

with a total of 19 north-south flight lines covering the entire area (2700ha). Laser 

measurements are sometimes but not usually affected by other reflections such as 

sunlight. Optech's scanning laser instruments scan laser pulses within a preferred range 

of angles. Instruments are designed to operate in daylight (Optech Incorporated 2003).

The initial LIDAR data files consisted of 2 components including the realtime 

geo-corrected coordinates (UTM easting and northing, as well as Z-elevation) for each 

laser point on the ground (last return) and the top of the vegetation (first return), as well 

as the associated intensity readings. LIDAR intensity is the ratio of strength of reflected 

light to that of emitted light (unit: %). An elevation was calculated by knowing the speed 

of light (approximately 0.3 metres per nanosecond) and distance to (start pulse) and from 

(return pulse) the object being measured. The average laser footprint diameter was 0.3m 

(0.071m2) directly below the aircraft, which increased to 0.31m (0.075m2) at a maximum 

distance of 250 m off-nadir. The average laser point sampling interval was 1.5m between 

footprints in the across-track direction and 1.3m in the along-track (i.e., forward) 

direction. Final LIDAR data sampling densities across the area averaged 0.54 points/m2, 

but ranged from 0.28 to 1.35 pts/m2. The digital elevation model (DEM) developed in 

Chapter 3 (this volume) was used to calculate vegetation height information for each 

laser point as the difference between the interpolated ground elevation and corresponding 

LIDAR first return elevation.

4.3.2 Experimental Design

A preliminary power analysis (Thomas and Juanes 1996) was conducted to
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determine the minimum number of ground plots needed to characterize each of the 8 

vegetation types described earlier. The vegetation categories included mixed prairie 

(Stipa-Elymus) and fescue (Festuca-Stipa) grasslands, closed (young or mature) and 

semi-open (old-growth or decadent) aspen forests, silverberry and snowberry shrublands, 

as well as freshwater and saline riparian meadows. Additionally, all field plots were 

further stratified directly by slope gradient (<=5°; >5°). Power analysis (Thomas and 

Juanes 1996) indicated approximately 15 plots per vegetation type or a total of 120 field 

sampling plots (alpha=0.05, effect size=0.15 and power=95%) were necessary to satisfy 

the correlation analysis between field and LIDAR data (Appendix 1).

Although field plots could not be initially stratified by off-nadir distance because 

of difficulty identifying these classes within the landscape prior to sampling, the varied 

spatial distribution of plots ensured both categories (on or near-, and off-nadir) were 

sufficiently represented (e.g., n=65, <130 m from nadir; n=55, 130-250 m off-nadir).

4.3.3 Field Vegetation Sampling

Within each plot, vegetation was sampled along 2, 10 m long parallel transects 

(Figure 4-1 a, Appendix 1) in July and August of 2001. Transects were oriented north to 

south in plots of slope gradient less than 2°; otherwise, they ran parallel to the slope 

contour. On each transect, 10 uniformly distributed 0.5 x 1.0 m quadrats were sampled 

for maximum understory vegetation height (herb and shrub separately). In addition, the 

canopy cover of each species was assessed ocularly in each quadrat, using the method of 

Daubenmire (1959). In aspen forest, 6 trees from the dominant overstory were measured
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for height using a clinometer and tape ruler. Trees nearest the start, middle and endpoint 

(0, 5 and 10m) of each transect were measured within each plot. Each aspen forest plot 

was also sampled for the density of over- and middle-story (> 1.5 m) aspen stems, as well 

as other tall trees (height >1.5m) within 2, belted transects, each 2x10m, centred on the 

linear transects. Eco-site data on slope, aspect and landscape position of each plot were 

also recorded. In total, 120 vegetation-sampling plots with 15 of each of the 8 vegetation 

types were designated (Table 4-1).

4.3.4 LIDAR Data Compilation

Assessment of the utility of using LIDAR data for characterizing vegetation was 

achieved by sampling all the LIDAR data within a 12m-diameter (113.1m) 3-D 

theoretical cylinder surrounding the center of each field plot (Figure 4-1 a, b). The centre 

of each 3-D plot was located using a Leica differential GPS unit (average accuracy 

0.53m) and corresponded to the centre point of a field plot. On average, 77 ± 30 LIDAR 

data points were available in each plot (ranging from 32 to a maximum of 153). In total, 

9045 LIDAR data points were used in the analysis of vegetation characterization.

4.4 Analysis

4.4.1 Vegetation Height Characterization Using LIDAR Data

Within each plot, the differential elevation between the first and interpolated last 

return (i.e., from the DEM) of each LIDAR data point was used to estimate vegetation
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height (Fowler 2000). Estimations of vegetation height were initially based on several 

assumptions, including that the first return LIDAR data had an accuracy similar to the 

observed last return. Additionally, this approach assumed that the modelled DEM 

derived from the last return LIDAR data (as described in Chapter 3 - this volume) 

produced a relatively accurate representation of the ground surface. This approach had 

the benefit of duplicating what would typically be employed under commercial 

conditions, where the availability of exact elevation data for individual locations may be 

unavailable.

During DEM modelling in Chapter 3 (this volume and Appendix 3), last return 

LIDAR data were found to have an overall mean accuracy of +2 cm (RMSE = 1.21 m) 

across the 8 vegetation types examined. However, elevations were over-estimated within 

forested areas by an average of 20 cm (RMSE = 1.05 m), under-estimated (-12 cm, 

RMSE = 1.36 m) within grasslands (upland and lowland), and most accurate in 

shrublands (+7 cm, RMSE =1.15 m). These inaccuracies suggest our capability of using 

LIDAR data alone to quantify vegetation height may be limited by the accuracy of the 

last return and its corresponding DEM. While the degree of error may have a negligible 

effect in estimating the height of vegetation that is tall in stature (e.g., +20 cm DEM 

inaccuracy in forest that is 6 m+ tall), these errors will increase in importance as the 

height of a target vegetation type declines (e.g., -12 cm DEM inaccuracy in grassland that 

is 25 cm tall). As a result, an additional analysis was done where the last return (i.e., 

modelled ground surface elevation) was corrected using the known DEM error for each 

plot obtained in the previous study, and the analysis of vegetation height repeated using 

these corrected data.
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For the analysis of aspen forest, division lines between aspen and shrub, and 

between shrub and herb were determined based on field measurements of average shrub 

and herb height in the understory (Table 4-1). Frequency histograms were also used to 

assist in making these decisions (Figure 4-2). 2 values were used representing a

conservative and liberal estimate of the understory distribution, including the 95% 

confidence interval above the mean height for separating understory shrub from the 

herbaceous layer and 1.5 m division line between understory shrub and overstory tree 

layer. Within semi-open (decadent) aspen forest, for example, mean herb height was 

determined to be 26 cm (Table 4-1). The upper 95% confidence interval above this value 

was 31 cm, which was then used as a decision-rule separating the shrub from herbaceous 

layers within semi-open aspen forest.

A similar method was used to establish the division line between the overstory 

shrub and understory herb layer within shrubland plots. Within the silverberry and 

western snowberry vegetation types, mean understory herb heights were 18 and 19 cm 

(Table 4-1), and upper 95% confidence intervals were 23 and 22 cm, respectively.

LIDAR estimated height for each vegetation layer within a plot was then 

determined by calculating the average height of all LIDAR points falling between the 

minimum and maximum for that interval, as outlined above. For the herbaceous layer of 

all the 8 vegetation types examined, the minimum height was set to 0 cm. For tree 

height, the average height of the 6 highest LIDAR points was used to estimate maximum 

aspen height in that plot.

LIDAR estimated heights for each vegetation layer (herb, shrub, or tree) within 

each vegetation type, were then regressed against their corresponding field
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measurements, with each field plot representing 1 point in the correlation analysis (min. 

P<0.10). All herb and shrub field measurements per plot represented the average of 20 

quadrat readings (per growth form), while tree height was obtained from the mean of 6 

measurements.

4.4.2 Vegetation Cover Characterization Using LIDAR Data

Vegetation cover (leaf cover) was estimated from LIDAR measurements using 

canopy height by calculating the proportion of laser measurements in each height class 

category. This was achieved by dividing the number of laser measurements per height 

class by the total number of laser measurements for that plot (Figure 4-1 b). For 

example, closed aspen forest typically consists of stands with relatively similar tree ages, 

heights and diameters (Stelfox, 1995). Given that the dividing line between the tree 

overstory and shrub layer was established to be no more than 78cm, the proportion of 

first return LIDAR data points situated above 78cm was used to estimate the cover of 

aspen over- and middle-story. Semi-open aspen forest, however, has often undergone 

significant canopy break-up and subsequent understory release as well as the emergence 

of secondary young aspen and shrubs, resulting in a more continuous distribution of 

vegetation with increasing height (e.g., see Figure 4-2). As a result, K-means clustering 

(Lillesand and Kiefer 2000) was applied to these plots to separate this continuous 

vegetation into over- and middle story, as well as understory shrub and herbaceous 

layers. The K-means algorithm starts with an initial partition of the cases into K clusters. 

Subsequent steps modify the partition to reduce the sum of the distances for each case
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from the mean of the cluster to which the case belongs. The modification consists of 

allocating each case to the nearest of the K means of the previous partition. This leads to 

a new partition for which the sum of distances is strictly smaller than before. The 

improvement step is repeated until no more significant improvements occur.

Within the aspen forest vegetation types, cover determination of the understory 

layers was impeded by the initial interception of LIDAR data points by the overstory tree 

canopy. As a result, cover determination of the shrub layer could only be estimated by 

removing those points intercepted by the overstory from the analysis, and calculating 

cover as the proportion of incoming LIDAR data points reaching the shrub layer. This 

procedure was then repeated for the herb layer within the understory of aspen stands.

Within shrublands and grasslands, the cover of shrub and herb layers was 

estimated using a procedure similar to that outlined above for aspen forest.

4.4.3 Vegetation Density Characterization Using LIDAR Data

In this study, the requirement of complete spatial coverage to analyse the whole 

Ranch made swath overlapping inevitable. By randomly selecting 4 km2 of data and 

calculating the laser point density with increasing off-nadir distance (<50m, 50-100m, 

100-150m, 150-200m and >200m, respectively), we found that contrary to our 

expectations, the intensity of LIDAR sampling increased with off-nadir distance (e.g., 

densities of 0.42, 0.47, 0.59, 0.69 and 0.71 points/m2, respectively). The linear feature of 

the number of LIDAR hits (based on off-nadir distance) did not confirm to the circular 

patch characteristics of the actual vegetation. Also, the relatively sparse LIDAR

sampling density ( X = 0.54 points/m2) limited the utility of using LIDAR density to
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directly examine tree density.

Instead, an alternative approach was used to assess tree density. Natural thinning 

in aspen development generally decreases tree density (Peterson and Peterson 1995) and 

changes the cover of over- and middle-story within aspen forest. Because LIDAR 

estimated cover was a good predictor of actual field tree cover, the changes in tree 

density were assumed to reflect corresponding changes in LIDAR estimated cover. 

LIDAR-derived cover was therefore hypothesized to be sufficiently accurate (P<0.10) to 

facilitate its use in further characterizing tree density. Specific analysis included 

estimating the density of (1) live aspen over-story trees, (2) live aspen over- and middle- 

story trees, and (3) the total tree over- and middle-story density, including live and dead 

stems using LIDAR estimated cover.

4.4.4 Assessment of LIDAR Intensity Data

Intensity is defined as the ratio of strength of reflected light to that of emitted 

light, and is influenced mainly by the reflectance of the target object. Reflectance varies 

with material characteristics as well as the light used. Influential ground factors (e.g., 

soil, litter, vegetation and moisture) are known to vary among different vegetation 

communities, as well as among different vegetation growth forms (Song et al. 2002). As 

a result, we hypothesized different vegetation communities or growth forms would result 

in detectable variation in LIDAR sample intensity. This hypothesis was tested by (1) 

comparing LIDAR intensity among the 8 vegetation types described above, (2) 

correlating LIDAR-derived height with its intensity to evaluate whether sample intensity
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may vary among different layers of growth forms within each of the 8 plant communities 

(e.g., trees vs shrubs vs herbs in aspen forests), and (3) correlating mean LIDAR data 

intensity of a growth form with its actual field cover.

Finally, at the landscape level, vegetation patchiness reflects the inherent variation 

of vegetation height and physiognomy (Rietkerk et al. 2000). This was also tested by 

correlating the standard deviation of measured field vegetation height with the variation 

in LIDAR intensity at the individual plot level.

4.5 Results

4.5.1 Vegetation Height Assessment Using LIDAR Data

Within aspen forest, LIDAR data were found to be effective for characterizing 

aspen height within both closed (i.e., young or mature) (R2=0.93, P<0.01) and semi-open 

(i.e., decadent) (R2=0.90, PcO.Ol) aspen forest (Table 4-2, Figure 4-3). However, 

LIDAR data were not accurate for quantifying the height of their understory shrub 

(R2=0.00, P=0.97) or herb (R2=0.10, P=0.28) strata, even within semi-open aspen forest.

When applied to the 2 shrublands (ENS and SPS), LIDAR data had limited utility 

for quantifying shrub height within the silverberry community (R2=0.21, P=0.09, Table 

4-2). In contrast, neither western snowberry nor herb height could be estimated (P>0.10) 

within any shrubland (Table 4-2).

Within the 4 herbaceous vegetation types (2 upland grasslands and 2 lowland 

meadows), no significant (P>0.10) associations were found between the field measured 

and LIDAR estimated vegetation height (Table 4-2). Estimations of vegetation height
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from LIDAR data were typically overestimated (X  = +6 ± 5 cm) within mixed prairie

type, but underestimated within the fresh (X  = -35 ± 17 cm) and saline (X  = -16 ± 14

cm) riparian meadows.

In the DEM accuracy analysis in Chapter 3 (this volume), LIDAR data were 

found to under-estimate the actual elevations of the 4 herbaceous vegetation types. When 

the corrected DEM was applied to the height estimations of these 4 herbaceous 

vegetation types, their vegetation heights were found to be further under-estimated (e.g.,

X = -6 ± 5 cm and X = -28 ± 14 cm for the mixed prairie and saline riparian meadow,

respectively), rather than improved.

4.5.2 Vegetation Cover Characterization Using LIDAR Data

As with height, the LIDAR data estimate of canopy cover (0<X<100, %) within 

closed (Eq. 4.1) and semi-open (Eq. 4.2) aspen forest was significantly correlated to the 

actual cover measurement (0<Y<100, %):

Y=126-0.0297X2+0.0003X3; R2=0.61, F=9.32, PcO.Ol.......................... (Eq. 4.1)

Y=EXP (4-12.264/X); R2=0.84, F=63.35, P <0.01..................................(Eq. 4.2)

Within the 2 shrublands, however, no significant relationships were identified 

between the LIDAR estimated and field measured cover (P>0.10). LIDAR data were 

typically found to overestimate the cover of the herb layer, but underestimate the cover of 

overlying shrubs (Figure 4-5).

Among the 4 upland grassland and lowland meadow community types, LIDAR
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data generally underestimated the herb cover present, by as much as 14% in the fescue 

grassland type (Figure 4-6).

4.5.3 Density Analysis Using LIDAR Data

In closed aspen forest, LIDAR estimated cover (0<X, %) was found to have a 

significant relationship with field measured tree density (trees above 1.5m in height) 

(0<Y, # stems/40m2), including live and dead trees in both the mid- and overstory (Eq.

4.3 to 4.5).

a) Live aspen over-story density estimation:

Y=1011*(X)4 '908; R2=0.66, P<0.01  (Eq. 4.3)

b) Live aspen middle and over-story density estimation:

Y=303*(X)'U20; R2=0.54, P=0.01......................................................... (Eq. 4.4)

c) Total middle and over-story vegetation density (live and dead) estimation:

Y=754*(X)'1'443; R2=0.76, P=0.01  (Eq. 4.5)

Within semi-open aspen forest, LIDAR estimated cover was only found to be

significantly (P=0.02) correlated to the total density of live and dead trees (Eq. 4.6). 

Y=10.156*EXP (0.147X); R2=0.40, P=0.02........................................ (Eq. 4.6)

4.5.4 Assessment of LIDAR Intensity Data

In comparing the 8 vegetation types, it was found that LIDAR sampling intensity 

(unit: %) could be used to separate both closed (X  = 15 ± 15%) and semi-open (X  =
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27 ± 23%) aspen forest from other vegetation types (e.g., fescue grassland X = 52 ±

19%) using the mean and std. dev. information. In contrast, shrublands could not be 

separated from herbaceous communities using intensity data, and neither of the 2 

shrublands nor the 4 herbaceous communities could be separated within their own 

formations (e.g., western snowberry from silverberry). Additionally, closed aspen forest 

could not be separated from semi-open aspen forest (Table 4-3).

Neither the LIDAR-derived height nor cover information could be associated with 

LIDAR intensity to separate different growth forms (i.e., physiographic strata) within any 

of the 8 plant communities (P>0.10). In other words, it was impossible to detect patterns 

in the proportion of lower and higher intensity LIDAR data reflected from different 

vegetation layers (e.g., shrub or herb) (Figure 4-7). However, the variance of predicted 

vegetation height was significantly correlated (PcO.lO) with the variance of LIDAR 

intensity data in several vegetation types, including fresh riparian meadows (R2=0.44, 

P=0.01) (Table 4-4 and Figure 4-8) and western snowberry shrublands (R2=0.32, P=0.03) 

(Table 4-4).

Unique LIDAR intensity patterns in relation to sampling height were also 

identified among the 8 vegetation types based on observed histograms. Closed and semi­

open aspen forests displayed a downward exponential pattern (i.e., greater intensities at 

lower heights) with some distortion in the semi-open aspen forest (Figure 4-7 a, b). Most 

of the LIDAR data had intensity values less than 20 or 30% within the closed and semi­

open aspen forest, respectively. The 2 upland grasslands (Figure 4-7 e, f) and shrublands 

(Figure 4-7 c, d) were all observed to have bimodal patterns. Though the 2 riparian 

meadows (Figure 4-7 g, h) also had bimodal patterns, these were distorted and showed
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trends of a downward exponential pattern. With the exception of aspen forests, other 

vegetation types consistently had intensity values greater than 30%.

4.6 Discussion

In our analysis to quantify vegetation characteristics, LIDAR data were found to 

be effective predictors of vegetation height of aspen forest overstory within both closed 

and semi-open communities. This was consistent with findings made by Magnussen and 

Boudewyn (1998) as well as Naesset (1997), who concluded the average maximum height 

of LIDAR data was a good predictor of field tree height in conifer stands in British 

Columbia and Norway, respectively. However, unlike Magnussen et al. (1999), whose 

observations were sampled with a probability proportional to displayed crown area and 

derived from the probability that a laser beam penetrates to a given canopy depth through 

gaps, no height recovery models were applied in our study. Because determining 

vegetation height requires differencing the estimated canopy elevation from the estimated 

surface elevation (Means et al. 2000), data collected in leaf-on conditions as we did may 

be ideal for determining canopy elevation but not ground elevation. Conversely, leaf-off 

conditions may not provide good estimates of canopy height. The definitive 

determination of whether a returned pulse is actually the “bald earth” or above-ground 

cover is still an area of intense research (Hodgsona et al. 2003). The recovery models of 

Magnussen et al. (1999) are ideal for analysis of individual trees, which require intensive 

correction for each measurement, and are therefore less suitable for the study of large 

areas.

The incapability of using LIDAR data to accurately quantify understory
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vegetation height in aspen forest exemplified the limitations of the small-footprint 

LIDAR we used in leaf-on conditions, because only a small proportion of LIDAR data 

points penetrated through gaps to the understory. The low number of LIDAR data points 

penetrating the understory of shrub and herb strata of aspen forests through gaps made 

the cover estimation of these layers impractical. For example, the mean number of 

LIDAR data points originating from the shrub and herb layers were only 10 and 8 per 

plot, respectively, within closed aspen forest. On more open forest plots, these increased 

to only 26 and 17, respectively. Additionally, the complex interaction of an often angular 

laser pulse inside vertically distributed vegetation is a concern when trying to determine 

the exact point of reference for a time-of-flight (small footprint) laser sensor (Flood 

2001).

The marked progressive decrease in accuracy of LIDAR data for quantifying 

vegetation height from aspen forests, upland shrublands, to upland grasslands and 

lowland meadows was in part, likely due to the increase in DEM error relative to the 

actual vegetation height being assessed. A constant level of DEM error among 

vegetation types would introduce greater error in the final prediction accuracy of low 

structured vegetation compared to taller aspen stands. This might explain why there was 

no statistical difference between the ground and laser height measurements at the 5% 

level of probability in sagebrush communities (mean > 30 cm) by Ritchie et al. (2001), 

but significant differences existed in our mixed prairie and fescue grasslands, whose 

average vegetation height was about 10cm. Notably, these problems could not be 

overcome by correcting for the inherent DEM error among vegetation types. Vertical 

resolution of LIDAR within 20 cm might also be the reason for the over- or under-
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estimation of the low structured vegetation. LIDAR estimated height is random 

regardless of true vegetation height with this 20 cm error range (Figure 4-4,4-5, and 4-6). 

Flood (2001) also encountered difficulty in using algorithms to accurately extract the 

ground surface in areas of low, dense ground cover. For example, a small error of 30cm 

in the DEM would be negligible in aspen forest, whose average vegetation height was 

about 9m. In contrast, this degree of error would greatly magnify inaccuracies of herb 

height within Aspen Parkland upland grasslands. The overestimation of vegetation 

height in the mixed prairie community was probably also due to the error of DEM 

interpolation. Most of the mixed prairie communities occupied steep slopes, landscape 

positions that usually produced the greatest distortion of the DEM (Chapter 3 -  this 

volume).

LIDAR measurements in our analysis significantly underestimated the height of 

both shrublands, as well as that of 3 of the 4 herbaceous communities (fescue grasslands 

as well as the fresh and saline riparian meadows). This was consistent with the findings 

of Ritchie et al. (2001), Aldred and Bonner (1985) as well as Weltz et al. (1994). Those 

studies found that laser systems consistently underestimated the height of shrubs and 

herbs (mainly sagebrush, desert zinnia and gramma grass, respectively). The 

underestimation was attributed to field measurements being made on total plant height 

whereas LIDAR measurements typically intersect the sides or “shoulders” of plant 

canopies (Weltz et al. 1994). Indeed, in retrospect this was likely a problem in our 

investigation as well, because all height measurements assessed maximum rather than 

median plant height.

The difference in time of data collection could be another contributing factor
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limiting our analysis. LIDAR data were collected in early October of 2000 when 

vegetation, especially herbs, had become predominantly dormant. Field vegetation 

sampling however, was conducted in July or August of 2001 when vegetation was still in 

a vigorous growth stage. Perhaps most important, herbaceous communities are prone to 

rapid changes in biomass and height with other disturbances, including livestock grazing. 

The fresh riparian meadows, for example, had a mean height of 48 cm at the time of field 

measurement, but were estimated to be only 10 cm based on the October collected 

LIDAR data. This difference may well be due to changes in plant growth and/or 

disturbances such as grazing between years rather than accuracy limitations, although this

problem is less likely for shrublands.
o

Similar to vegetation height characterization, LIDAR data’s ability to quantify 

vegetation cover was also influenced by the collective error of DEM interpolation, 

equipment operation, and time of data collection. Weltz et al. (1994) cautioned against 

canopy cover estimation from laser data for vegetation with a height less than 30cm 

(Appendix 4). Many of the herbaceous and shrub communities had a height less than 

30cm at the time of LIDAR data collection in early October, and given the low accuracies 

of cover estimation, this supported the assertion of Weltz et al. (1994). Within shrubland, 

assessing cover in October near the time of leaf fall would also complicate comparison to 

July or August field data. These differences undoubtedly further impaired our 

assessment of the utility of using LIDAR data for quantifying vegetation cover in 

shrublands. Background noise (i.e., signals returning back to a sensor that are emitted 

from other sources such as those from natural light) to the LIDAR measurement in these 

plant communities may have been another significant contributing factor. Weltz et al.
Q
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(1994) concluded that, “the over- or under-estimation of canopy cover in sparsely 

populated shrub and low height herbaceous communities will not be resolved unless new 

techniques are available to discriminate the background noise in the laser return signal”.

Also, the field sampling distribution might be a contributing factor. In Ritchie et 

al.’s (2001) experiment, the ground data was an average for 6, 30-m transects while the 

laser data was the average of 3, 1-km transects. In our analysis, measures by laser and 

ground techniques were compared plot by plot using a high precision differential -  GPS 

system. Ritchie et al. (2001) also found canopy cover measured by laser and ground 

techniques in the Wyoming big sagebrush vegetation differed significantly, but unlike the 

underestimation of shrub and herb cover in our analysis, they found the laser measure of 

cover (38.1 ±21.1 cm) was twice that of the ground measurement.

The negative correlation between field measured vegetation density and LIDAR 

predicted cover in aspen forest (Eq. 4.3, 4.4 and 4.5) reflected the common phenomenon 

of vegetation thinning in aspen stands. With increasing stand age, intense competition 

leads to self-thinning over time (Peterson and Peterson 1995). The greater R2 in Eq. 4.5 

demonstrated that when all live and dead trees were counted together for the over- and 

mid- stories, they accounted for more of the variance in LIDAR cover data. In other 

words, LIDAR cover data were more closely associated with the density of all tree stems, 

regardless of whether they were live or dead. Unlike closed aspen forest, the less 

consistent positive association between LIDAR cover and measured tree density in semi­

open aspen forest (Eq. 4.6) probably reflected understory tree regeneration in those stands 

following canopy opening. Although the derivation of density information from cover 

data may be less meaningful ecologically, the link is nevertheless important for the
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potential use of LIDAR data on assessing tree density, both live and dead. For example, 

this finding has implications for inventorying insect- or fire-killed stands of forest 

vegetation.

The identification of unique LIDAR intensity distribution patterns, including the 

downward exponential frequency distribution patterns of aspen forests and the bimodal 

patterns of herbaceous and shrub communities, were inconsistent with Fowler (2000), 

who claimed that if a vegetation type (e.g., shrubland) were uniformly present, the 

intensity would be uniform as well. This inconsistency might simply reflect that all our 

plant communities were not homogeneous despite their appearance to the contrary.

Variation in LIDAR intensity with vertical height, however, was consistent with 

the findings made by Brock et al. (2001), who concluded LIDAR intensity generally 

decreased as points moved from the ground to the canopy of vegetation in a forest site. 

The comparatively lower LIDAR intensity values of the 2 aspen forests relative to the 

other vegetation types were probably due to (1) aspen forest having lower reflectance 

compared to the other vegetation types, or (2) the other vegetation types having far more 

reflectance from the ground, which was dry and would have had greater reflectance in 

early October. The incapability of using LIDAR intensity data to separate different 

growth forms within any shmbland or herbaceous community indicated both high and 

low reflectance materials existed in each herbaceous and ground layer within grasslands, 

or in each shmb and herbaceous layer within shrublands. This might represent the co­

existence of dark litter and brighter leaves in each vegetation growth form within a plant

community, or it could be the effect of more complicated reflectance, scattering or
©

refraction. Background noise might once again be another limiting factor.
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4.7 Conclusion

Land surface and vegetation properties are key for understanding range condition. 

Ground-based measurements of these properties are difficult and time-consuming. 

Scanning airborne laser altimeter systems mightbe an alternative method to synoptically 

quantify vegetation features and properties over large land areas. The agreement between 

airborne laser altimeter and observed field measurements in vegetation height, cover and 

density within both closed and semi-open aspen forest indicated this technology is useful 

for characterizing some forest vegetation properties. The capability of using LIDAR data 

to quantify understory vegetation characteristics, as well as those of individual shrublands 

and grasslands, however, was far more limited. Precision accuracies from using LIDAR 

data could likely be improved if the collective error from LIDAR-derived DEM 

development, equipment operation or time of data collection could be reduced.

LIDAR intensity data appeared to reflect the material characteristics of objects. 

While LIDAR intensity does not conform to theoretical reflectance of materials, it does 

follow relative magnitudes of reflectance. For example, dry land usually has greater 

reflectance compared to vegetation with more moisture content. Aspen forest has lower 

reflectance compared to shrubland and grassland. However, more testing will be needed 

to design and understand LIDAR signals before intensity data are useful for 

characterizing vegetation more reliably.

Overall, these results support the utility of using LIDAR data for forest 

characterization in the Aspen Parkland, with limited applications for assessing other
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vegetation types that constitute 50-80% of the area. With technology advancement, 

LIDAR measurements may further improve our ability to quantify vegetation 

characteristics of shrublands and herblands so that improved management practices and 

structures can be developed to manage spatially diverse and complex rangelands more 

effectively. Laser-distancing technology from airborne platforms provides useful data 

not only for modelling land surface topography (Krabill et a l 1984, Ritchie et al. 1993b, 

Chapter 3 -  this volume), but also for understanding vegetation properties (Schreier et al. 

1985, Nelson 1997, Ritchie et al. 1992 and 1993a, Chapter 4 -  this volume) for large 

areas. For some vegetation types, profiling and scanning airborne laser systems therefore 

appear to be an effective alternative to the use of traditional ground-based point 

measurements, which are difficult and time-consuming to undertake.
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4.9 Tables and Figures

Table 4-1 Height and cover characteristics of the 8 vegetation types based on field 
sampling in July 2001.

Vegetation Plots 
Type1 (#)

Herb Shrub Tree

Height (cm) Cover (%) Height (cm) Cover (%) Height (m) Density (#) Cover (%)

FRM 15 48 (24-88) 83.5 (63-100)

SRM 15 24 (8-49) 68.2(41-87)

FSG 15 12 (1-44) 63.3 (33-81)

SEG 15 5(1-12) 51.8(6-91)

SPS 15 19(8-81) 25.9 (6-52) 45 (25-73) 40.6 (23-69)

ENS 15 18(8-41) 40.5 (13-77) 79 (44-122) 35.0 (5-96)

CAF 15 29 (5-86) 15.4(1-45) 67 (29-94) 26.2 (8-55) 8.48(5.01-19.25) 41.1 (14-84) 81.7(61-96)

OAF 15 26 (16-44) 19.2 (2-27) 62 (40-106) 27.0 (10-43) 9.52 (5.24-15.72) 28.3(11-83) 37.0 (20-48)

Mean 23 46 63 32.2 9 34.7 59.4

'FRM -  fresh riparian meadow, SRM -  saline riparian meadow, FSG -  fescue grassland, SEG -  
mixed prairie grassland, SPS -  western snowberry, ENS -  silverberry, CAF -  closed aspen forest, 
OAF -  semi-open aspen forest.

Table 4-2 Association between LIDAR measured and field sampled mean 
vegetation height (m).

Closed aspen forest over- and middle-story Y=1.2029X-1.7816' R2=0.93 P<0.01
Closed aspen forest understory shrub layer (<1.5 m) Y=0.0652X+0.7184 R2=0.00 P=0.97
Closed aspen forest understory herbaceous layer (<0.3m) Y=-0.5950 X+0.3359 R2=0.10P=0.28
Semi-open aspen forest over- and middle-story Y= 1.0048X-0.0837 R2=0.90 P<0.01
Semi-open understory shrub layer (<1.5 m) Y=0.7141X+0.3380 R2=0.23 P=0.13
Semi-open understory herbaceous layer (<0.3lm) Y=-0.0957X+0.2758 R2=0.00 P=0.86
Western snowberry shrub layer Y=0.0083X+0.4485 R2=0.00 P=0.98
Western snowberry herbaceous layer Y=0.0076X+0.1646 R2=0.00 P=0.99
Silverberry shrub layer Y=0.5187X+0.5786 R2=0.21 P=0.09
Silverberry herbaceous layer Y=0.3813X+0.1343 R2=0.02 P=0.64
Fescue grassland Y=0.7348X+0.0517 R2=0.02 P=0.58
Mixed prairie grassland Y=0.1407X+0.0385 R2=0.02 P=0.64
Fresh riparian meadow Y=0.4231X+0.4105 R2=0.00 P=0.83
Saline riparian meadow Y=1.4922X+0.1128 R2=0.06 P=0.38
X-field measured vegetation height (m), Y-LIDAR estimated vegetation height (m).
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Table 4-3 Mean LIDAR sampling intensity among different vegetation types.

Vegetation Type_____________ Mean (95% Cl) (%)______ Deviation (%)
Mixed prairie grassland 45.7 (43.6-47.9) 16.5
Fescue grassland 52.6 (50.0-55.2) 18.1
Closed aspen forest 23.5 (13.7-27.6) 53.5
Semi-open aspen forest 29.4 (21.7-35.9) 33.4
Western snowberry 49.9(46.5-53.1) 17.4
Silverberry 47.6 (45.3-49.9) 17.3
Saline riparian meadow 51.3 (42.4-59.5) 18.2
Fresh riparian meadow 47.1 (42.0-53.0) 18.4

Table 4-4 Association of LIDAR sampling intensity with Held measured vegetation 
patchiness.

V egetation Type A ssessm ent Formula Significance

Silverberry Y=26.645X2-20.121X+20.610' R2=0.40 P=0.06
Western snowberry Y=EXP(3.071 -.035/X) R2=0.32 P=0.03
Mixed prairie grassland Y=-184.448X2+27.050X+15.761 R2=0.27 P=0.15
Fescue grassland Y=16.303X+17.392 R2=0.25 P=0.058
Fresh riparian meadow Y=51.0317X+14.2134 R2=0.44 P=0.01
Saline riparian meadow Y=0.095/X R2=0.15 P=0.17
X: standard deviation of 40 height measurements in a plot; Y: standard deviation of all LIDAR 

data intensities positioned in that plot.
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Figure 4-1 Field vegetation and LIDAR data sampling diagram in 2-dimension (a) 
and 3- dimension (b).
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Figure 4-3 Association of LIDAR estimated height with field measured vegetation 
height within closed (a) and semi-open (b) aspen forest. The field measured 
vegetation height on the Y-axis was the mean of 6 field height measurements; the 
LIDAR estimated vegetation height on the X-axis was the mean of 6 tallest LIDAR 
data points within the same plot.
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Figure 4-4 Plot by plot comparison between LIDAR estimated and Held measured 
vegetation height within the 4 herbaceous communities, including fescue (a) and 
mixed prairie (b) grasslands, as well as fresh (c) and saline (d) riparian meadows.
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5 Vegetation Mapping

5.1 Introduction

Recognition of vegetation types is important for rangeland management agencies 

as it provides a basis for the development and evaluation of management policies and 

actions. Vegetation classification is the process of identifying and describing areas of 

relatively homogeneous plant species composition (e.g., communities in a resource 

inventory), and subsequently mapping the resulting spatial distribution of various 

vegetation types across the area of interest. Similar plant communities are thought to be 

both equally susceptible to disturbance, as well as respond to various disturbances in a 

uniform or consistent manner. Improved vegetation classification accuracy from 

remotely-sensed data will enhance the ability of managers to develop initial management 

plans as well as track vegetation responses in a timely manner following specific 

management activities such as livestock grazing or the use of prescribed fire.

The spatial organization of vegetation canopies is a fundamental boundary 

condition that influences many ecosystem processes. In particular, information on 

vertical canopy structure advances studies of the global C cycle (Post 1993), vegetation 

productivity and biomass estimation (Ryan and Yoder 1997, VCL 2000), habitat use by 

wildlife and livestock (MacArthur 1958, Schowalter 1995, Carey 1996), and interactions 

between vegetation, soil moisture and streams (Gregory et al. 1991). Canopy structure 

information is also important for wildfire behaviour prediction (Rothermel 1991).
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Despite the value of this information, data on the 3-dimensional (e.g., 

physiognomic) organization of vegetation canopies is difficult to obtain. Most remote 

sensing systems, although readily providing information on the horizontal organization of
O

canopies, do not provide direct data on the vertical distribution of canopy elements. 

Ground observer or in-situ measurements of canopy vertical structure are inherently 

laborious and time consuming, and thus, are often limited in scope.

Traditional remote-sensing techniques have inferred the vertical structure of 

vegetation by the varying proportions of tree and shadow with changing tree density 

(Woodcock et al. 1994, Cohen et al. 1992), or by the increased presence of spectrally 

unique new scene components (such as lichen) in the vegetation canopy (Cohen et al. 

1990). Current synthetic aperture RADAR (SAR) technology offers promise for 

predicting low levels of vegetation cover and for mapping general vegetation types in 

floristicly simple landscapes (Rignot et al. 1994, Smith et al. 1994), but is insensitive 

and thus, unsuitable, for mapping densely vegetated sites (Waring et al. 1995).

A new and innovative method of vegetation classification is in using LIDAR 

(Light Detection And Ranging) data. Unlike microwave and traditional optical sensors, 

LIDAR sensors do not suffer from this limitation because they directly measure both the 

vertical location and horizontal distribution of aboveground plant biomass. Recording 

the distance to the first and last reflective surface for each laser point gives a direct height 

measurement for each observation. Such techniques have proven useful for predicting 

canopy height, vegetation structure and biomass (Nassset 1997).

In terms of vegetation classification, airborne photography and videography are 

well-developed technologies. Within a single image (photo or digital), 2 kinds of image
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characteristics can be used for vegetation type identification, the size and shape of the 

object, or its color and brightness. For an object (e.g., a plant species) to be recognized 

on an image, the object’s size ideally would be similar to or larger than the pixel size 

(spatial resolution) (Clegg et al. 1975). When the spatial resolution exceeds the target 

size, it may be possible to identify certain plant species through the color and shape of the 

organism. However, if the brightness of certain objects can be readily distinguished from 

others, the former object may be identified even if their actual size is considerably 

smaller than an individual pixel. For example, with color-infrared (CIR) 1:700 aerial 

photographs, McCormick (1999) successfully mapped the distribution of high-density 

Melaleuca quinquenervia, an aggressive exotic species at a site in the East Everglades. 

However, the low-density Melaleuca seedlings and/or small saplings (secondary and/or 

tertiary class vegetation) were occasionally difficult to identify.

When multi-spectral images are available, spectral mixing models [usually 

spectral vegetation indices-(VI)] are used to identify certain objects. The most frequently 

used VI is the normalized difference vegetation index (NDVI) for contrasting optimum 

reflection and absorption characteristics of vegetation. Other indices assisting vegetation 

(and soil) identification include RVI, GVI, DVI, PVI, SAVI, TSAVI, and SAVI2 

(Richardson and Everitt 1992). Pickup et al. (2000) found that although no single index 

separated all cover classes from each other, a step-by-step procedure using a limited 

number of spectral indices could provide a high level of discrimination among classes. 

However, more sophisticated approaches are available to develop rules for the 

classification of vegetation types based on training pixels/points, such as the 

classification of color composite images from band ratioing.
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Unlike traditional sensors, LIDAR data have high spatial resolution, accurate 

vertical properties, and laser return intensity values that provide a unique additional 

source of information (though the practicality of intensity information is vague) (Fowler 

2000). These advantages hold potential for future vegetation classification and 

characterization using LIDAR data. The intensity value of LIDAR data provides 

quantitative spectral information that may indicate what the reflection is from, including 

the type of vegetation, rock, or parent materials. However, most LIDAR data have only 1 

wavelength, making the analysis of complex indices for vegetation mapping impossible. 

For terrestrial mapping, a single band is commonly used from the near-infrared spectrum.

Given the capability of using LIDAR data (though single band) to provide 

information on vegetation vertical structure, and multi-band images to identify vegetation 

through its color, shape or indices, our research tested and compared the suitability of 

using LIDAR and 3-band digital data for classifying spatially complex Aspen Parkland 

vegetation at the University of Alberta Ranch near Kinsella, Alberta, Canada. 2 

vegetation classification systems were tested: (a) one using 3 vegetation classes limited to 

the major formations of deciduous forest, shrubland and grassland, and (b) a second using 

8 detailed vegetation classes including mixed prairie and fescue (upland) grasslands, 

closed and semi-open (aspen) forests, western snowberry and silverberry shrublands, and 

fresh and saline riparian (lowland) meadows. In mapping with LIDAR data, the 3-class 

system used only a vegetation surface elevation model (SEM) that included LIDAR data 

derived height information, while the second eight-class system integrated height 

information with a DEM constructed with LIDAR data to incorporate topographic biases 

in community positioning across the landscape. In mapping using multi-spectral digital
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images, the 2 vegetation classification systems were applied to: (a) the original digital 

image mosaic, (b) a hybrid color composite image from band ratioing and (c) an image 

from intensity-hue-saturation (IHS) using respective supervised training techniques. In 

the final step, a classification was developed that integrated information from both digital 

images and LIDAR data to determine whether the 2 could be combined to improve the 

final overall accuracy of Aspen Parkland vegetation classification.

5.2 Materials and Methods

5.2.1 Study Area

This research was conducted at the University of Alberta Ranch (53° O' N, 

111°31' W) located 150 km SE of Edmonton, Alberta, Canada, within the Aspen 

Parkland natural sub-region. The Ranch is 2700 ha in size and has a general topography 

of rolling hills (i.e., knob and kettle terrain) with 5-25 m relief associated with its glacial 

moraine landform origin. The region has a temperate continental climate, with mean 

annual precipitation of 433mm and 100-120 frost-free days (University’s Meteorological 

Station at Kinsella Ranch). North-facing slopes are capable of supporting plant species 

with greater moisture requirements due to snow accumulation, such as aspen forest and 

shrublands, while south-facing slopes typically support plant communities tolerant of 

drier conditions such as grassland (Wheeler 1976, Coupland 1961). The most common 

soil type of the area is a Black Chernozem, although Dark Gray Chernozems and 

Eluviated Chernozems are present as well (Bailey and Wroe 1974, Scheffler 1976). 

Gleysols and Solonetzic soils also occur, the former confined to poorly drained lowlands.
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Herbage production is 2251 ± 747 and 2886 ± 993 (kg-ha-1, dry matter) in its first and 

second rotation, respectively (Asamoah et al. 2003), and the major vegetation types 

found throughout the Ranch are as follows:

(1) Riparian meadows

Meadows are mesic to hygric habitats occupied by grass (Poaceae family) and 

grasslike species primarily of the genera Carex and Juncus. The primary environmental 

characteristic affecting meadow vegetation is the high water table during all or part of the 

year (Benedict 1982). 2 major types of wetlands exist at Kinsella, which include:

A. Saline riparian meadows (SRM) dominated by salt grass [Distichlis spicata (L.) 

Greene], alkali grass [Puccinellia nuttalliana (Schultes) Hitchc] and numerous forbs. 

They border salt covered lakebeds of discharge origin.

B. Freshwater riparian meadows (FRM) dominated by aquatic sedges (e.g., Carex 

atherodes Spreng., etc), tufted hairgrass [Deschampsia caespitose (L.) Beauv.], and some 

marsh reedgrass [Calamagrostis canadensis (Michx.) Beauv.]. These meadows occurred 

at slightly greater elevations as ground water recharge areas.

(2) Upland grasslands

Grasslands in the area were historically maintained by a combination of periodic 

fire (Wright and Bailey 1982) coupled with grazing by ungulates including bison (Bison 

bison) (Campbell et al. 1994). 2 major upland grassland types at Kinsella Ranch were 

described by Coupland (1961), and include:

A. Mixed prairie grassland [Stipa-Elymus (SEG)] dominated by needle and thread 

grass (Stipa comata Trin. & Rupr.), and northern wheatgrass [Elymus lanceolatus
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(Scribn. & J.G. Sm.) Gould], these xeric grasslands can be found on steep, south-facing 

slopes (>5°) and hilltops.

B. Fescue grassland [Festuca-Stipa (FSG)] dominated by plains rough fescue 

[Festuca hallii (Vasey) Piper] and western porcupine grass [Stipa curtiseta (A.S. Hitchc.) 

Barkworth], fescue grassland once covered most of the Aspen Parkland. Today, most 

fescue grasslands have been broken for cereal production or where remaining, been 

overgrazed (Trottier 1986). At Kinsella, remnants of unbroken or moderately grazed 

fescue grasslands remain abundant on mesic uplands with gentle slopes (<5°).

(3) Shrublands

Upland shrublands are ecotonal between grassland and adjacent aspen forest. 2 

major types of shrublands occur at Kinsella and include (after Wheeler 1976):

A. Western snowberry (Symphoricarpos occidentalis Hook.) (SPS).

B. Silverberry (Elaeagnus commutata Bernh. ex Rydb.) (ENS).

Both snowberry and silverberry reproduce extensively by suckering from 

creeping underground roots, resulting in dense, closed canopy patches.

(4) Aspen forest

Generally, forested areas at Kinsella are represented by trembling aspen (Populus 

tremuloides Michx.) communities, with an understory of saskatoon [Amelanchier 

alnifolia (Nutt.) Nutt, ex M. Roemer], chokecherry (Prunus virginiana L.) and wild rose 

(Rosa woodsii Lindl) shrubs along with a well-developed herbaceous component. Aspen 

forest has expanded considerably over the last 60+ years (Bailey and Wroe 1974, 

Scheffler 1976), although periodic outbreaks of tent caterpillars and drought, coupled 

with prescribed burning have resulted in aspen stands of varied condition across the
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Ranch. Young (5-30yr) and mature (30-60yr) aspen communities are characterized by 

closed canopy stands of relatively uniform tree age, height and diameter (Stelfox, 1995). 

In contrast, old and decadent aspen communities (>60yr) have often undergone 

significant canopy break-up and subsequent understory release as well as the emergence 

of secondary young aspen re-generation and shrubs. As a result, aspen communities at 

Kinsella can be classified into closed (young or mature) (CAF) and semi-open (decadent) 

aspen forest (OAF) types.

5.2.2 LIDAR Data Acquisition

Airborne scanning laser data were collected for the study area by Optech, a 

company specializing in the design of laser-based ranging, mapping and detection 

systems. The laser system was flown at 1700m above sea level (average above ground 

elevation of 1005m, ranging from 989m to 1027m) in the afternoon of 3 October 2000 

during leaf-on conditions (Appendix 1), and used an across-track scanning system with a 

Z-shaped ground target path. The wavelength and frequency of the laser pulse were 1.04 

Jim and 25 KHz, respectively. The mean intensity was 42% and maximum off-nadir 

scanning angle 15°. Flight lines were approximately 500m apart, with a total of 19 north- 

south flight lines covering the entire area (2700ha). Final LIDAR data sampling densities 

across the area averaged 0.54 points/m2, but ranged from 0.25 to 1.35 points/m2. Laser 

measurements are sometimes but not usually affected by other reflections such as 

sunlight. Optech's scanning laser instruments scan laser pulses within a preferred range 

of angles. Instruments are designed to operate in daylight (Optech Incorporated 2003).
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Initial LIDAR data files consisted of 2 components including the realtime geo­

corrected coordinates (UTM easting and northing, as well as Z-elevation) for each laser 

point on the ground (last return) and the top of the vegetation (first return), as well as the 

associated intensity readings. LIDAR intensity is the ratio of strength of reflected light to 

that of emitted light (unit: %). An elevation was calculated by knowing the speed of light 

(approximately 0.3 metres per nanosecond) and distance to (start pulse) and from (return 

pulse) the object being measured. The average sampling interval was 1.5m between 

footprints in the across-track direction and 1.3m in the along-track (i.e., forward) 

direction. The average laser footprint diameter was 0.3m (0.071m2) directly below the 

aircraft, which increased to 0.31m (0.075m2) at a distance of 250 m off-nadir. The digital 

elevation model (DEM) developed in Chapter 3 (this volume) was used to calculate 

vegetation height for each laser point as the difference between the interpolated ground 

elevation and corresponding LIDAR first return elevation.

5.2.3 Digital Image Acquisition

Digital images were collected for the study area at the same time as the LIDAR 

data (3 October 2000, Appendix 1). Because a real-time GPS system was used for data 

collection, digital images were orthorectified and projected to the UTM coordinate 

system (datum NAD 83, zone number 12) at the time of data collection. Resultant 

images had 3 spectral bands: red (0.63-0.69 |im), green (0.52-0.60 (im) and blue (0.45- 

0.52 fxm) with a spatial resolution of 0.5 m. The flight elevation, off-nadir angle and scan 

path had the same configuration as for LIDAR data sampling.
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5.2.4 Experimental Design

A preliminary power analysis (Thomas and Juanes 1996) was conducted to 

determine the minimum number of ground plots (each 6 meter in radius) necessary to 

create signatures for each of the 8 vegetation types described earlier when mapping using 

digital images. Power analysis indicated that given the heterogeneity of the study area, 

approximately 120 signatures (alpha=0.05, effect size=0.15 and power=95%, for a total 

of 15 signatures per vegetation type) were required. The corresponding 120 field plots 

were further stratified directly by slope gradient (<=5°, >5°) (Appendix 1). Although 

field plots could not be initially stratified by off-nadir distance because of difficulty in 

identifying these classes within the landscape prior to sampling, the varied (i.e., 

approximate random) spatial distribution of plots across the landscape ensured both 

categories (on/near- and off-nadir) were sufficiently represented (e.g., n=65, <130m from 

nadir; n=55, 130-260m off-nadir). Using ground-truthed plots facilitated not only the 

creation of spectral signatures within the area of interest (AOI) necessary for subsequent 

supervised classification of digital images, but also our measurement of field vegetation 

height characteristics from LIDAR data.

Another 128 ground-truthed plots with similar vegetation characteristics, slope 

gradient and nadir distance were sampled for identifying the accuracy of the vegetation 

maps generated using both LIDAR data and digital images. The comparatively simple 

spectral class of bare-ground was also identified for mapping of land cover (10 plots for 

signature and 10 for accuracy assessment). Both fresh and saline water were also 

sampled (6 for each of them), but only used for final accuracy assessment, not for 

calibration. The coordinates of the central position of all 280 field-plots (130 for
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calibration, 150 for validation) were located using a Leica differential GPS unit (average 

accuracy = ± 0.53 m).

5.3 Analysis

5.3.1 Digital Image Classification Schedules

The original digital image of the study area was clipped from a mosaic of 16, 2 by 

2 km images with a spatial resolution of 0.5 m. Differences in brightness between 

images were corrected using empirical-derived correction equations based on linear 

regressions as described by Hall et al. (1991). Widespread shadows existed on the 

mosaic image because of the tilt angle of the camera and scene illumination condition of 

the Sun (image taken 2pm MST on 3 October 2000). Shadowing was removed using a 

spectral ratioing algorithm, which conveyed the spectral or color characteristics of image 

features regardless of variations in scene illumination condition (Holben and Justice 

1981). However, surfaces that have different absolute radiances but similar slopes in 

their spectral curves may have the same ratio results. To avoid this “intensity blind” 

effect (Justice et al. 1981) from spectral band ratioing, a hybrid color composite image 

was created by displaying 2 ratio images of the primary colors, but using the third 

primary color to display an individual band of data (Lillesand and Kiefer, 2000). This 

hybrid color composite image was then used to classify the study area into land cover 

with 3 and 8 classes of vegetation, respectively (Figure 5-1).

Unlike green healthy vegetation that has greatest reflectance in the green band on 

RGB digital images, the images in our analysis had on average, lowest reflectance within
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the blue band (mean = 40.83), which increased to 41.92 and 45.79 in the green and red 

bands, respectively. This trend probably reflected the partial senescence of vegetation in 

early October (Carter and Miller 1994). Given the condition of the vegetation, the 

red/blue spectral ratio was chosen as the red band for the hybrid composite image. In 

contrast, the green/blue ratio was comparatively small and chosen as the blue band of the 

composite. The green band remained unchanged. The creation of a transformed color 

composite image not only reduced the shadowing effects on images, but also simulated 

true color images in which the green band had greatest reflectance (Figure 5-2).

Another effective image processing technique to describe colors by their RGB 

components is the use of the intensity-hue-saturation system. “Intensity” relates to the 

total brightness of a color. “Hue” refers to the dominant or average wavelength of light 

contributing to a color. “Saturation” specifies the purity of color relative to gray 

(Lillesand and Kiefer, 2000). Beauchemin and Fung (1999) used IHS color space as an 

alternative technique to the transformation of RGB into a color composite. Similar to 

results from Schowengerdt (1983), they demonstrated that transforming RGB 

components into IHS components before processing and classification provided more 

control over color enhancements and shadowing removal. As a result, an IHS image 

(Figure 5-3) was created in our analysis for comparative use in vegetation and land cover 

mapping. Both the hybrid color composite and IHS images enhanced the subtle 

differences within the shadow areas, but also resulted in information loss on the images. 

Consequently, the original mosaic image was used to classify the study area vegetation 

and land cover, and compared for accuracy with the vegetation and land cover maps 

classified from the hybrid colour composite and IHS images.
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In supervised classifications, pixel categorization is supervised by specifying 

numerical descriptions of the various land cover types present in a scene (Lillesand and 

Kiefer 2000). Supervised classification requires that all spectral classes constituting each 

information class be adequately represented in the training set statistics used to classify 

an image. However, the variable landscape of the study area created an environment of 

complex heterogeneity among the spectral response patterns even within individual land 

cover types. Unlike the training sets used in traditional supervised methods, these areas 

were heterogeneous. As a result, 15 supervised subclass signatures were established for 

each of the 8 cover types (except for bare ground, which had 10 training signatures). 

Once all sub-spectral classes had been signatured to reflect the variability in landform 

and vegetation across the study area (except fresh and saline water), the subclass 

signatures were aggregated back to the original 9 major class signatures (Figure 5-1 and 

Appendix 2). In a final step, a Mahalanobis classification was performed with the full set 

of spectral signatures and the 9-class schedule applied to the original mosaic image, the 

hybrid color composite and the IHS image. The Mahalanobis distance decision rule uses 

the covariance matrix in the equation. Variance and covariance are calculated so that 

clusters that are highly varied will lead to similarly varied classes, and vice versa.

The above procedure was also carried out to classify the study area into land 

cover with only 3 classes of vegetation -  forest, shrubland, and grassland, as well as bare 

ground. Moreover, this system was applied to the classification schedules of the original 

mosaic image, the IHS image, and the hybrid color composite from band ratioing.

Accuracy assessment (Figure 5-1) was performed by determining the overall 

classification accuracy for each class, as well as the commission and omission errors
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associated with each individual class within the classification schedule. These accuracies 

were then compared among the 3 classification schedules. Land cover classification 

results were also compared between the classification system with 3 classes of vegetation 

and a second with 8 classes of vegetation. A 95% confidence interval was used in their 

comparison to identify whether significant differences existed among the three 

classification schedules and between the 2 classification systems.

5.3.2 LIDAR Data Classification Schedule

Mapping with LIDAR data was dependent on the utility of these data to detect 

meaningful differences in vegetation height, which in turn, depended on adequate height 

separation among community types. In the study area, rank dominance of vegetation 

height begins with aspen trees, and progresses through shrublands, to grasslands. Vertical 

height division lines between tree and shrub, and between shrub and herb were 

determined based on field measurements of average shrub and herb height (Table 5-1) as 

well as 95% confidence intervals above the mean height. Mean herb height in grasslands 

and overstory shrub height in shrublands were determined to be 22 and 62 cm, 

respectively (Table 5-1). The upper 95% confidence intervals above these values were 

30 and 150 cm, respectively. As a result, vegetation with an estimated height between 30 

and 150 cm was considered to be of shrubland origin, while vegetation shorter than 30 

cm was classified as grassland and that taller than 150 cm classified as aspen forest.

The first step of LIDAR data mapping was to classify vegetation into deciduous 

forest, shrubland and grassland (Figure 5-4). A surface elevation model (SEM) (Figure 

5-5) for classifying the above three general vegetation formations was constructed for the
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study area by differentiating between LIDAR data’s first and last return elevation, and 

then interpolated (see Chapter 3, this volume for details). Unlike a DEM that has a 

smooth ground surface, the SEM was expected to be much more variable because of the 

intermittent influence of the overstory vegetation. Although splining was initially used, it 

produced a smooth (and non-representative) surface for the vegetation, and was therefore 

discarded. Kriging was also dropped due to the excessive computational time required to 

process the 3 GB of LIDAR data for the study area. Inverse distance interpolation with a 

weight of 3, which favoured the use of nearer data points rather than those further away, 

produced a sharper SEM and was therefore chosen for application to the study area. The 

output pixel size of the final SEM was set to 1.5 m because the discrete LIDAR data 

points had an average sampling interval of 1.5 m between footprints in the across-track 

direction and 1.3 m in the along-track (i.e., forward) direction.

Closed aspen forest was further separated from semi-open aspen forest using 

LIDAR data point density information. Discreet LIDAR data samples corresponding to 

the 30 aspen forest field plots indicated that in plots of closed aspen forest, LIDAR data 

points with a height greater than 1.5 m averaged 82% (95% confidence interval 75-88%) 

of all LIDAR sample points. In contrast, the proportion of LIDAR points above 1.5 m 

was only 57% (95% confidence interval 43-70%) in semi-open forest. As a result, the 

value of 73% [=(75+70)/2] was used as a division rule to separate closed from semi-open 

aspen forests (Figure 5-4). Using the SEM, the total number of neighbouring pixels of a 

cell within aspen forest was calculated through a 3 by 3 moving-window. If the 

calculated value was between 1 and 6 (11-67%), the forest type was determined to be
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semi-open aspen forest. Alternatively, values from 7-9 (or 78-100%) were classified as 

closed aspen forest.

Initially, we planned to separate western snowberry from silverberry plant 

communities using LIDAR-derived densities of the shmb overstory (0.3 -  1.5 m). 

However, each shrubland vegetation community had only 2% of their LIDAR data points 

on average with a height greater than 0.3 m. As a result, LIDAR-derived height 

information alone could not be used to successfully separate western snowberry from 

silverberry shrublands. Ultimately, this limitation could only be removed by integrating 

LIDAR data with digital image classification results.

Upland mixed prairie grasslands on the study area were distributed among hilltops 

and steep, south-facing slopes (>5°). This distribution was determined (Figure 5-4) using 

LIDAR-derived DEM information developed in Chapter 3 (this volume). Using the 

DEM, a slope gradient (Figure 5-6) was calculated through surface analysis (Brabyn 

1998) with a pixel size of 1.5 m. Each cell was then classified as being flat (< 2°), or 

having a gentle (2°-5°) or steep (> 5°) slope. Aspect was classified into a 9-class system 

(Figure 5-7): including a flat class (F) with no aspect due to a slope less than 2°, as well 

as aspects centred on N, clockwise to NE, E, SE, S, SW, W and NW, in 45° increments. 

The collective aspects of SE, S and SW (totalling 125°) were then reclassified as south- 

facing slopes. All land areas with a slope gradient greater than 5° and having a south- 

facing aspect were classified as upland mixed prairie grasslands.

Relative relief (Figure 5-8) was calculated from the DEM using a neighbourhood 

range function through a 30-pixel-radius (typical topographic unit size at the study area -
fy

6500 m ) moving window (Brabyn 1998). Finally, profile typing was used to determine
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whether the flat (F) areas (slope<=2°) were above or below the surrounding terrain (i.e., 

in upland or lowland topographic positions). Upland and lowland profiles were identified 

by first calculating the maximum elevation surrounding each pixel on a 30-pixel-radius 

moving window within the DEM (Brabyn 1998). The elevation of the central cell was 

then subtracted from this maximum elevation, and where this difference was less than 

half of relative relief for the same cell, the central cell was identified as upland, otherwise 

the central cell was considered to be lowland (Figure 5-9). If a resulting upland had a 

vegetation height less than or equal to 0.3 m (from SEM) and a slope gradient less than or 

equal to 2°, this area was also classified as upland mixed prairie. As there are only 2 

major grassland communities within the study area, the remaining grasslands (vegetation 

height < 0.3 m) within upland positions were classified as fescue grasslands.

Similar to the accuracy assessment of classified digital images, the overall 

classification accuracy, as well as the commission and omission error of each individual 

class was also examined. Comparisons were also carried out between the classification 

system with 3 classes of vegetation and a second with 6 classes of vegetation (i.e., 2 

aspen forest and upland grassland types, respectively, as well as 1 shrubland and lowland 

meadow type, respectively). A 95% confidence interval was used in their comparison to 

identify significant differences between classification systems.

5.3.3 Classification Schedules Integrating LIDAR Data and Digital Images

Due to the inherent error in interpolation of the SEM and equipment error during 

LIDAR data acquisition, the LIDAR-derived SEM could not be applied successfully to 

separate bare ground from grasslands. In contrast, bare ground and grassland were
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sampled on digital images, and their classification accuracy found to be effective. As a 

result, we examined whether these digital classes could assist LIDAR data’s 

classification. Additionally, the height of shrubland was found to be consistently under­

estimated with LIDAR data in Chapter 4 (this volume), and probably resulted in 

assigning some shrubland communities into the grassland types. This problem was 

addressed using digital image classification schedules.

For those classes that could be separated using both LIDAR data (including 

classification results incorporating topographic characteristics from the DEM) and digital 

images, their classification results were compared and those producing the best 

classification result were used to create the final integrated maps through GIS spatial 

extraction and integration techniques.

5.4 Results

5.4.1 Digital Image Classification Schedules

Among the land cover classification schedules with 3 classes of vegetation and 

land, classification from the hybrid color composite image displayed the greatest overall 

accuracy (mean = 74.6%, range 65.7-80.0% among types) and smallest commission error 

among validation plots (mean = 25.4%, range 20.0-32.3% among types)(Table 5-2). In 

contrast, classification from the intensity-hue-saturation image produced a lower 

classification accuracy (mean = 59.4%, range 43.9-75.0% among types) and greater 

commission error (mean = 40.6%, range 22.2-43.8% among types). Among individual 

classes, bare ground had the greatest classification accuracy (100%) when using the
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original mosaic image. Bare ground, shrubland and grassland could all be effectively 

separated using the hybrid color composite image as shown by their high classification 

accuracies (80%, 78% and 76.9%, respectively) and low commission errors (20%, 27.3% 

and 25%, respectively).

When the digital land cover classification schedules were applied to the 8 classes 

of vegetation, their overall classification accuracy decreased substantially (by an average 

of about 24%, Table 5-3). Nevertheless, classification from the hybrid color composite 

image continued to display the greatest classification accuracy (mean = 59.4%, range 

26.3-87.5% among types) and smallest commission error (mean = 39.8%, range 13.3- 

70.6% among types), while intensity-hue-saturation created the lowest classification 

accuracy (mean = 42.8%, range 26.7-72.2% among types) and greatest commission error 

(mean = 52.8%, range 0.0-75.0% among types). Among detailed vegetation types, the 

silverberry, mixed prairie and fresh riparian meadows could all be effectively 

differentiated using the hybrid color composite image (classification accuracies of 80%, 

72.2% and 87.5%, respectively). However, the silverberry class also had a commission 

error of 52%. Further examination revealed that 16% of the commission error came from 

western snowberry, 12% from closed aspen forest and another 12% from fescue 

grasslands. Fresh riparian meadows could also be classified with an accuracy of 87.5% 

when using the original mosaic image. Fescue grassland could be largely distinguished 

using the intensity-hue-saturation image (72.2%), but with a commission error of 58.1%, 

limiting its practical utility. The commission error was a result of improper inclusion of 

16.1% of mixed prairie grasslands, 12.9% of closed aspen forest, 12.9% of silverberry, 

6.5% of semi-open aspen forest and 6.5% of western snowberry into the fescue grassland
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type. Western snowberry was poorly classified using all images, with the hybrid color 

composite image providing the best result (57.7%). Finally, low classification accuracies 

prevented closed and semi-open aspen forest, as well as saline riparian meadows from 

being correctly mapped using any of the 3 digital classification schedules tested.

5.4.2 LIDAR Data Classification Schedule

The LIDAR data classification schedule with 3 classes of vegetation displayed a 

mean classification accuracy of 64.8%, but was highly variable among classes (Table 5-2, 

varied from 0.0% to 100.0%). Aspen forest achieved a classification accuracy of 88.6% 

and no commission error. Similarly, grassland could also be identified using LIDAR data 

with an accuracy of 100%; however, grassland included up to 46.4% of other vegetation 

types, with 42.3% of those commission errors being shrubland. Moreover, this schedule 

clearly showed that shrublands in this region of the Aspen Parkland could not be mapped 

using LIDAR data (0% classification accuracy). Overall, it was evident that LIDAR data 

were superior to the digital classification schedules for their accuracy in mapping aspen 

forest and grassland, but not shrubland.

The LIDAR data classification schedule with 6 classes of vegetation had an 

overall classification accuracy of 52.3% (range 0.0-93.8% among types), intermediate to 

the 3 digital data sets (Table 5-3). Among these 6 classes, however, lowland meadow, 

closed and semi-open aspen forest, as well as mixed prairie grassland could all be 

effectively separated from each other with accuracies of 93.8%, 81.3%, 73.7% and 

83.3%, respectively. These accuracies were superior to any of those classifications 

obtained with the digital data by a minimum of 15.4%. Examination of the contingency
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table (Table 5-3) indicated that the 40% commission error to the mixed prairie class was 

not the result of the more accurate classes listed above, but rather an inclusion of 

shrubland (24%) and upland fescue grassland (16%). Shrubland and fescue grassland, in 

turn, could not be mapped because of their low classification accuracy and the high 

commission errors between these classes (Table 5-3).

5.4.3 Classification Schedules Integrating LIDAR Data and Digital Images

Among the classification schedules with 3 classes of vegetation, because LIDAR 

data classification of aspen forest had a high accuracy (88.6%) and very low commission 

error (0%), the first step of integrated mapping was the extraction of aspen forest types 

using LIDAR data. Although classification with LIDAR data had a very high 

classification accuracy on grassland (100%), it included up to 42.3% of shrubland (Table 

5-2). As a result, the second step of mapping was not the extraction of grassland, but 

rather the identification of shrubland from the remaining part of the study area through 

the hybrid color composite image (accuracy 78%). In the third step, grassland was 

isolated using LIDAR data (accuracy -100%). Bare ground was isolated last because all 

the commission error associated with this type came from inclusion of grassland. The 

final map of the study area with 3 classes of vegetation was created through overlaying 

and integrating the above extracted portions of classification results and assigning 

unclassified pixels to a majority type in a 3 by 3 moving window. The overall accuracy 

of the final map was 91% (range 78.0-100.0% among types) based on the independent 

field validation plots (Figure 5-10).
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Among the classification schedules with 8 classes (6 of LIDAR data) of 

vegetation, closed and semi-open aspen forest were first extracted from the LIDAR data 

because of their high classification accuracy and low commission errors (Table 5-3). 

Given that none of the 3 digital image classification schedules nor LIDAR data were able 

to separate saline riparian meadows from other vegetation and land cover types, fresh and 

saline riparian meadows were kept as 1 lowland meadow type, and these areas extracted 

using the LIDAR data classification with an accuracy of 93.8%. Bare ground was then 

extracted from the image using the original image mosaic. Extracting lowland meadows 

prior to bare ground (which had 100% classification accuracy) helped prevent improper 

inclusion of riparian meadows into bare ground.

In order to separate the remaining vegetation types of silverberry, western 

snowberry, mixed prairie and fescue grassland, mixed prairie was first extracted using the 

LIDAR data classification schedule. Undertaking this before the extraction of fescue 

grassland from the intensity-hue-saturation image, avoided the possibility for commission 

errors of mixed prairie into fescue grassland. The last step of the process was the 

extraction of silverberry and western snowberry from the hybrid color composite image. 

Silverberry was extracted last because this minimized the improper inclusion of other 

types, including fescue grasslands, closed- and semi-open aspen forest, as well as mixed 

prairie. Through overlaying and integrating the above extracted portions of classification 

results and assigning unclassified pixels to a majority type in a 3 by 3 moving window, 

the final product for the study area was an 8-class (7 classes of vegetation and bare 

ground) map with an overall accuracy of 80.3% (range 57.7-100% among classes) 

(Figure 5-11).
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5.5 Discussion

The greatest overall classification accuracy reported previously in the analysis of 

multispectral, high spatial resolution, airborne videographic and spectrographic images in 

the Aspen Parkland was 65% (Franklin et al. 2000). These results were derived from 

classifying both spectral and textural features, and were compared to validated field plots. 

The digital classification accuracies obtained in our study with 3 classes of vegetation 

before integration with LIDAR data were similar to those studies. Additional customized 

multiband processing (e.g., texture or filter algorithm) of image data yielded 

classification accuracies up to 75% (Franklin and McDermid 1993). These customized 

processing techniques produced greater classification accuracies compared to our 

individual classification schedules, but were not superior to our integrated maps with 3 

and 8 classes of vegetation. Map integration and the use of biological information 

derived from LIDAR data were the 2 key factors contributing to the successful 

classification of the land cover in our study area.

Pickup et al. (2000) found that although no single vegetation index separated all 

cover classes from each other, a step-by-step procedure using a limited number of 

spectral indices could provide a high level of discrimination among classes. This was 

also true in our study as no single classification schedule created a highly accurate map 

for all cover types. Instead, a step-by-step extraction and integration procedure created a 

map with the greatest classification accuracy. LIDAR data can provide effective 

quantification of landscape topography, gully and stream-cross sections and roughness, as 

well as biological properties specific to certain landform features (Ritchie et al. 2001,
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Dymond et al. 1995), which by comparison are difficult to interpret using digital images. 

For example, mixed prairie grassland in the present study area preferentially occurs on 

hilltops or steep, south facing slopes (Wheeler 1976). Using this topographic feature, 

mixed prairie was classified successfully using LIDAR-derived slope, aspect and 

upland/lowland data with an accuracy of 83.3%; while the greatest classification accuracy 

for mixed prairie using only digital images in our analysis was 72.2% (from the hybrid 

color composite image).

Although aspen forest did not appear to be as topographic dependent as mixed 

prairie grasslands, the SEM derived from LIDAR data had the inherent ability to separate 

aspen forest from other land cover types based on vegetation height. Moreover, closed 

and semi-open aspen forest could be successfully separated from each other because of 

differences in the number of LIDAR data points available within various overstory 

layers. In contrast, digital images can not provide accurate vegetation height information, 

nor density or brightness differences large enough to differentiate closed from semi-open 

aspen forest. Rather than using digital images, LIDAR data were applied to isolate 

aspen forest for the final land cover mapping. The use of LIDAR data led to increased 

accuracies by the mean of 34.9% and 59.7%, respectively, for the 3 and 8 classes of 

vegetation when compared to the greatest classification accuracy obtained solely from 

digital images.

The underestimation of vegetation height and misclassification of shrublands into 

grasslands limited the utility of using LIDAR data to classify shrublands. These 

limitations were partially removed when using digital images such as the hybrid color 

composite image, as digital images displayed significant spectral differences both within
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shrublands and between the shrubland and other vegetation types. Using a hybrid color 

composite image increased shrubland classification accuracy, for example, from 0% to 

78% within the 3 class vegetation schedule.

The individual 3-class vegetation schedules produced classification accuracies of 

65.9% (57.1-100.0%), 74.6% (65.7-80.0%), 59.4% (43.9-75.0%) and 64.8% (0.0- 

100.0%), respectively, from the original mosaic image, hybrid color composite image, 

intensity-hue-saturation image and the LIDAR data. No single classification could be 

definitively considered superior to another in the overall classification accuracy, largely 

due to variation in accuracy among land cover types. However, the extraction and 

integration of data types achieved a map with an overall accuracy of 91% (78.0-100.0%), 

and created a classification superior to any of the 4 individual techniques used. Similarly, 

the overall accuracy of 80.3% (57.7-100.0%) with the 8-class (7 classes of vegetation and 

bare ground) map was superior to each of the individual classification schedules (47.8%, 

59.4%, 42.8%, and 52.3% on the original mosaic image, hybrid color composite image, 

intensity-hue-saturation image, and the LIDAR data, respectively). This research has 

achieved comparable results that confirm the effectiveness of integrating LIDAR data 

and digital images for vegetation and land cover classification.

Despite the high classification accuracy obtained in the study with the 8-class 

schedule (mean = 80.3%, varied from 57.7% to 100.0%), the above classification could 

not separate fresh from saline riparian meadows. Perhaps more problematic is that water 

bodies were classified together with lowland meadows, which resulted in the over­

estimation of lowland meadows by up to 54.2%. Detailed examination of the hydrologic 

characteristics of the study area revealed that fresh water had an elevation below 683 m

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and was distributed on the east side of the study area, while saline water had an elevation 

below 675 m and was distributed on the west side of the study area. Correspondingly, 

fresh and saline riparian meadows were located on the east recharge and west discharge 

areas, respectively. Integrating this information into the classification with 7 classes of 

vegetation, lowland meadows were further classified into fresh and saline water, as well 

as fresh and saline riparian meadows, with classification accuracies of 100%, 100%, 

100% and 75% for the 4 land cover types. Investigation into LIDAR intensity data 

revealed that intensity could also be used effectively to separate water bodies (25.45 ± 

26.96 %) from other land surface features (53.25 ±22.18 %), though the classification 

was not as consistent as using elevation information.

A final map with 11 classes of land cover including 8 classes of vegetation, fresh 

and saline water, as well as bare ground was created for the study area with an overall 

accuracy of 83.9% (57.7-100.0% among classes) (Figure 5-12). This high classification 

accuracy further reinforced the utility of using LIDAR data for improving vegetation 

mapping in the Aspen Parkland.

5.6 Conclusion

Vegetation properties and features are integral parts of the landscape and have to 

be evaluated at large scales to understand the biological, environmental and hydrologic 

processes associated with natural and agricultural systems. Measurements of micro and 

macro surface features contribute not only to the quantification of watershed information 

(Band 1986) such as slope gradient, aspect, upland and lowland, and discharge and 

recharge areas, but also to mapping land cover components (Dymond et al. 1995). Core
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components include canopy properties, canopy distribution across the landscape, as well 

as a better understanding of micro-climate, animal movement, livestock grazing, and 

management interests. The high classification accuracies with 3 and 8 classes of 

vegetation in our analysis were attributed, in large part, to the capability of using LIDAR 

data to isolate those vegetation types that were topographic dependent. LIDAR data not 

only offer the potential to measure landscape and vegetation properties over large areas 

more effectively, but also contribute to mapping accuracy. Such measurements will 

improve our inventory of natural and agricultural landscapes so that improved 

management practices and structures can be developed.

However, because LIDAR data mainly depend on elevation and height 

information for mapping vegetation and land cover, its utility is limited when vegetation 

does not vary much or is short in height. The use of LIDAR data is also limited by the 

difficulty in separating different land cover types through spectral brightness information, 

which is, in contrast, well developed on digital images. The intensity signal of LIDAR 

provides the sort of “surface texture” information typical of RADAR imagery; however, 

at the moment, the practicality of intensity information is vague (Fowler 2000) and was 

incapable of separating different vegetation types in our study. The lack of advanced 

algorithms and data processing expertise further limits the operational use of LIDAR 

data. Finally, some vegetation characteristics (e.g., LAI) cannot be determined either 

directly, or with modelling from LIDAR data alone. In these cases, LIDAR data should 

be fused with information from passive optical, thermal and RADAR remote sensing 

techniques to achieve effective vegetation and land cover mapping (Dubayah and Drake 

2000). Though LIDAR data and digital imagery use quite different measurements (range
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vs. reflection image) and data processing technologies (based on different sampling 

patterns and information content), the application potential of LIDAR and image fusion is 

being disclosed (e.g., this Chapter, Popescu and Wynne 2003).
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5.8 Tables and Figures

Table 5-1 Height characteristics [mean (range)] of the 8 detailed vegetation types 
based on field sampling in July 2001.

v  • T Number of  Overstory Vegetation Height___________
Vegetation type____________ Plots Herb (cm) Shrub (cm)________ Tree (m)

Fresh Riparian Meadow 15 48 (24-88)
Saline Riparian Meadow 15 24 (8-49)
Fescue Grassland 15 12 (1-44)
Mixed Prairie Grassland 15 5(1-12)
Western Snowberry 15 45 (25-73)
Silverberry 15 79 (44-122)
Close Aspen Forest 15 8.48 (5.01-19.25)
Semi-open Aspen Forest 15 9.52 (5.24-15.72)
Mean 15 22 62 9.00

Table 5-2 Contingency table validating accuracy of the 3-class (vegetation) 
classification schedule using digital images and L1DAR data.

Validation Data Set (Known Land Cover Types) (# of plots)1
Land Cover Type Row Com2 .„  CT „ T _ Row Com AF SL GL BGD „   ̂ „  AF SL GL BGD „  . „

Total Error Total Error
Classified Type On Original Mosaic Image On Hybrid Color Composite
Aspen Forest (AF) 20 7 2 0 29 31.0 23 3 6 2 34 32.3
Shrubland (SL) 7 27 12 0 46 41.3 8 32 4 0 44 27.3
Grassland (GL) 8 7 34 0 49 30.6 4 6 40 0 50 25.0
Bare Ground (BGD) 0 0 4 10 14 28.6 0 0 2 8 10 20.0
Actual Class No. 35 41 52 10 138 35 41 52 10 138
Classification Accuracy (%) 57.1 65.9 65.4 100.0 34.1 65.778.0 76.9 80.0 25.4
Ommission Error (%) 42.9 34.1 34.6 0.00 34.3 22.0 23.1 20.0
Overall Accuracy and 95% Cl (%) 65.9 (53.5-90.7) 74.6 (68.8-81.5)
Classified Type_______________________ On I-H-S Image_________________ On LIDAR Data
Aspen Forest (AF) 18 11 2 0 31 41.9 31 0 0 31 0.0
Shrubland (SL) 5 18 9 0 32 43.8 0 0 0 0 0.0
Grassland (GL) 12 12 39 3 66 40.9 4 41 52 97 46.4
Bare Ground (BGD) 0 0 2 7 9 22.2
Actual Class No. 35 41 52 10 138 35 41 52 128
Classification Accuracy (%) 51.4 43.9 75.0 70.0 40.6 88.6 0.0 100.0 35.2
Ommission Error (%) 48.6 56.1 25.0 30.0 11.4 100 0.00
Overall Accuracy and 95% Cl (%) 59.4 (45.6-74.6) 64.8
All the validation data were actual field samples different from those used for signatures. 

2Com Error = Commission error (%) of total within a land cover class.
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Table 5-3 Contingency table assessing classification accuracy of the 3 digital images and a LIDAR data classification schedule for 
8 classes of vegetation.

Land Cover Type
Validation Data Set (Known Land Cover Types) (# of plots)1

CAF OAF ENS SPS SEG FSG FRM SRM BGD _?°W, ^0m CAF OAF ENS SPS SEG FSG FRM SRM BGD * ° w. 5r°mTotal Error Total Error
Classification Data Classification Schedule of Original Mosaic Image Classification Schedule of Hybrid Color Composite

Closed Aspen Forest (CAF) 4 3 0 1 0 1 0 0 0 9 55.6 9 6 0 2 0 0 0 0 0 17 47.1
Semi-Open Aspen Forest (OAF) 5 8 2 4 0 0 1 0 0 20 60.0 3 5 0 1 1 1 1 3 2 17 70.6
Silverberry (ENS) 3 1 9 5 5 4 0 1 0 28 67.9 3 2 12 4 1 3 0 0 0 25 52.0
Western Snowberry (SPS) 2 1 3 10 0 2 0 0 0 18 44.4 1 2 1 15 0 0 0 0 0 19 21.1
Mixed Prairie (SEG) 0 0 1 0 7 0 0 1 0 9 22.2 0 0 1 0 13 1 0 0 0 15 13.3
Fescue Grassland (FSG) 2 1 0 3 3 9 0 1 0 19 52.6 0 0 1 2 2 10 0 1 0 16 37.5
Fresh Riparian Meadow (FRM) 0 2 0 2 0 1 7 0 0 12 25.0 0 2 0 1 0 0 7 0 0 10 30.0
Saline Riparian Meadow (SRM) 0 3 0 1 2 1 0 2 0 9 77.8 0 2 0 1 0 3 0 3 0 9 66.7
Bare Ground (BGD) 0 0 0 0 1 0 0 3 10 14 28.6 0 0 0 0 1 0 0 1 8 10 20.0
Column Total 16 19 15 26 18 18 8 8 10 138 16 19 15 26 18 18 8 8 10 138
Classification Accuracy (%) 25.0 42.1 60.0 38.5 38.9 50.0 87.5 25.0 100.0 56.3 26.3 80.0 57.7 72.2 55.6 87.5 37.5 80.0
Overal accuracy and 95% Cl (%) 47 8(31.7-72.1) 59.4 (45.7-77.2)
Classification Data Classification Schedule of I•H-S Image Classification Schedule of LIDAR Data
Closed Aspen Forest (CAF) 5 3 1 3 0 0 1 0 0 13 61.5 13 2 0 0 0 0 15 13.3
Semi-Open Aspen Forest (OAF) 3 7 0 7 0 0 1 0 0 18 61.1 2 14 0 0 0 0 16 12.5
Silverberry (ENS) 1 1 4 3 0 2 0 0 0 11 63.6 0 0 0 0 0 0 0 0 0
Western Snowberry (SPS) 2 1 4 7 3 2 1 1 0 21 66.7
Mixed Prairie (SEG) 0 0 0 0 8 0 0 0 0 8 0.0 0 0 6 15 4 0 25 40.0
Fescue Grassland (FSG) 4 2 4 2 5 13 0 1 0 31 58.1 1 3 33 3 10 1 51 80.4
Fresh Riparian Meadow (FRM) 0 2 2 3 1 0 5 2 0 15 66.7 0 0 2 0 15 21 28 6
Saline Riparian Meadow (SRM) 1 3 0 1 0 1 0 3 3 12 75.0
Bare Ground (BGD) 0 0 0 0 1 0 0 1 7 9 22.2

-j

Column Total
Classification Accuracy (%) 
Overal accuracy and 95% Cl (%)

16 19 15 26 18 18 8 8 10
31.3 36.8 26.7 26.9 44.4 72.2 62.5 37.5 70.0 

  42.8 (31.4-59.3)____________

138 16 19
81.3 73.7

41
0.0

12818 18 16
83.3 55.6 93.8

__________________ 52.3 (37.3-91.9)________________
All the validation data were actual field samples different from those used for signatures. "‘Com Error = Commission error (%)of total within a land cover class



c D igital im age c lassifica tion  schedu les 3

End of image classification schedules

R ed/blue
ratio

G reen b and

M ahalanobis
distance

classification

M ahalanobis
distance

classification

M ahalanobis
distance

classification

M ahalanob is
distance

classification

C olor space 
transform ation

A ccuracy  
C om m ission error 

O m ission error

A ccuracy  
Com m ission error 

O m ission error

A ccuracy  
Com m ission error 

O m ission error

A ccuracy  
Com m ission error 

O m ission  error

A ccuracy  
C om m ission error 

O m ission error

A ccuracy  
C om m ission error 

O m ission  error

A ggregate 
signatu res back 

to  land  cover 
w ith  8 classes 
o f  v ege ta tion

A ggregate 
signatures back 

to  land  cover 
w ith  8 classes 
o f  vege ta tion

A ggregate 
signatures back  

to  land  cover 
w ith  3 classes 
o f  vege ta tion

A ggregate 
signatures back  
to  land  cover 
w ith  3 classes 
o f  vege ta tion

A ggregate 
s ignatu res back  

to  la n d  cover 
w ith 3 classes 
of v eg e ta tio n

A ggregate  
signatu res back  

to  la n d  cover 
w ith  8 classes 
o f  v eg e ta tio n

Color com posite image from 
b a n d  ratioing In tensity -hue-sa tu ra tion  image

C reate signatu res fo r each  land  
cover ty p e  (15 fo r each  o f  the 

e ight v eg e ta tio n  types)

C reate signatures fo r each  land  
co v e rty p e  (15 fo r each  o f  the 

eight v ege ta tion  types)

Create signatures for each  land  
c o v e rty p e  (15 fo r each  o f  the 

eight v eg e ta tio n  ty p es)

O riginal m osaic image

C om parison  o f  accuracy  betw een  a land  cover classification w ith 3 classes o f 
v eg e ta tio n  and  a seco n d  w ith  eight classes o f  vegetation .
C om parison  o f  accuracy  am ong classification schedu les o f  original m osaic image, 
h y b rid  color com posite image from b a n d  ratio ing  and  in tensity -hue-satu ration  image)

Figure 5-1 Flowchart of digital image classification schedules on original mosaic 
image, color composite image from band ratioing and intensity-hue-saturation 
image with 3 and 8 classes of vegetation.
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Figure 5-2 Hybrid color composite image of the study area from red/blue ratio, 
green and green/blue ratio.
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Figure 5-3 Intensity-hue-saturation image of the study area.
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Figure 5-4 Flowchart of LIDAR data classification schedule.
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Surface Elevation Model of Kinsella Ranch
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Figure 5-5 Surface elevation model of the study area.
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Slope Gradient Map of Kinsella Ranch
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Figure 5-6 Slope gradient map of the study area.
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Aspect Map of Kinsella Ranch
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Figure 5-7 Aspect map of the study area.
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Relief Map of Kinsella Ranch
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Figure 5-8 Relative relief map of the study area.
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Upland and Lowland Map of Kinsella Ranch
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Figure 5-9 Upland and lowland map of the study area.
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Land Cover Map of Kinsella Ranch
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Figure 5-10 Land cover map of the study area produced by integrating LIDAR data 
and digital image classification schedules with 3 classes of vegetation.
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Land Cover Map of Kinsella Ranch
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Figure 5-11 Land cover map of the study area produced by integrating LIDAR data 
and digital image classification schedules with 7 classes of vegetation.
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Land Cover Map of Kinsella Ranch
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Figure 5-12 Final land cover map of the study area produced by integrating LIDAR 
data and digital image classification schedules with 11 classes of land cover 
(including 8 classes of vegetation).
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6 Synthesis/Conclusion

Rangelands comprise 60-70% of the global land surface (Everitt 1992). These 

diverse ecosystems produce a broad array of tangible and intangible products. Physical 

commodities include those such as forage and habitat for livestock or wildlife, water, 

minerals, energy, forest products, recreational opportunities, and plant and animal genes, 

with many of these being economically important rangeland outputs. Rangelands also 

produce intangible products such as natural beauty and wilderness that satisfy important 

societal values, many of which can be economically important (Cox et al. 1994). 

Ranchers, land administrators, and range and wildlife conservationists, are collectively 

interested in monitoring the current condition of rangelands, including their ability to 

sustainably provide key outputs, which in most areas, include either the provision of high 

quality livestock forage (Waer et al. 1997), wildlife habitat (Weber et al. 2002), or both 

(Arsenault and Norman 2002).

Remote sensing is a potential alternative to traditional rangeland monitoring to 

gather site-specific data from vast areas (Tueller 1989). Primary benefits include 

synoptic (e.g., spatially complete) coverage, high cost-effectiveness (i.e., reducing the 

cost per unit area examined), and lower labour requirements relative to point-based 

sampling. In addition, remote sensing can provide data on areas that are often 

inaccessible, as well as highly heterogeneous landscapes where complex mosaics of 

vegetation with frequent transitional areas may preclude the efficient use of point 

sampling. Remote sensing data also facilitates, though its complete coverage, additional 

forms of analysis such as landscape metrics (e.g., vegetation distribution). The spatially
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complete nature of remotely-sensed information on rangelands provides a top-down 

strategy for rangeland management, and as a result, provides a potential complementary 

data source to the collection of detailed point-based plant community information.

Light detection and ranging (LIDAR) is an active remote sensing system, 

analogous to RADAR, but using laser light. Unlike most traditional sensors, the laser- 

based sensor relies on active rather than passive illumination, making shadow effects 

(e.g., from buildings or trees) not a concern. Since each laser point is individually 

georegistered, aerial triangulation or orthorectification of data is not required.

LIDAR instruments measure the roundtrip time for a pulse of laser energy to 

travel between the sensor and target. This incident pulse of energy reflects off the 

vegetation canopy (branches, leaves) or ground surfaces and back to the instrument 

where it is collected by a telescope. The travel time of the pulse, from initiation until it 

returns to the sensor, provides a distance or range from the instrument to the object 

(hence the common use of the term "laser altimetry" which is synonymous with LIDAR). 

There are a number of different LIDAR systems made by different manufacturers, but 

basically they can be classified into 2 categories: scanning and profiling LIDAR. At 

present, the majority of systems in use are based on the pulse ranging principle and 

belong to small footprint (<10 m in diameter) scanning LIDAR. Profiling and scanning 

airborne laser altimeters have been typically used for terrain mapping, land cover 

classification and the identification of forest structure, although few applications have 

been done in rangelands.

Detailed geographic information system (GIS) studies on plant ecology, animal 

behavior and soil hydrologic characteristics across spatially complex landscapes require
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digital elevation models (DEM) with high accuracy. This research demonstrated that, 

compared to traditional point sampling and remote sensing techniques, LIDAR data could 

be used to create a DEM of relatively superior quality (overall accuracy +2 cm and 

RMSE of 1.21 m). This accuracy of DEM is valuable for precision ranching, precision 

farming and other scientific research that require such a DEM. However, accuracy of the 

LIDAR-derived DEM did vary with a number of external factors and special 

consideration should be taken in actual application. Non-vegetational individual factors 

such as off-nadir distance and slope gradient did not significantly influence LIDAR- 

derived DEM accuracy; however, when integrated, these factors did have an impact 

(P=0.05) and should be considered. DEM accuracy normally increased at positions with 

shorter off-nadir distances and smaller (i.e., flatter) slope gradient.

Vegetational factors had the greatest influence on the LIDAR-derived DEM 

accuracy. In our analysis, elevations had the tendency of being over-estimated within 

forested areas, but under-estimated within grasslands (upland and lowland). Forest areas 

differed significantly from both upland grasslands and lowland meadows with respect to 

their influence on accuracy of the LIDAR derived-DEM. If a DEM is to be built to its 

optimal accuracy, LIDAR sampling should be taken in leaf-off condition to reduce 

vegetation influence. Though the effect of slope gradient could be ignored in our 

analysis, if the majority of the slope gradient is greater than 10°, this effect might be 

reconsidered.

Information on land surface and vegetation spatial structure (i.e., physiognomy) is 

key for interpreting range condition. Ground-based measurements of these properties are 

difficult and time-consuming. Scanning airborne laser altimeter systems provide an
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effective alternative to quantify vegetation characteristics over large land areas. The 

agreement between airborne laser altimeter and observed field measurements in 

vegetation height, cover and density within both closed and semi-open aspen forest 

indicated this technology is useful for characterizing forest vegetation. The capability of 

using LIDAR data to quantify understory vegetation characteristics, as well as those of 

individual shrublands and grasslands, however, was far more limited and should be used 

with caution. When characterizing vegetation within the understory of aspen forest, the 

available number of LIDAR sampling points reaching the understory should be first 

examined (best to have >50pts/100m2). To achieve optimal vegetation characterization 

accuracies, it is best to use growing season sampling data (e.g., July/August). It is also 

important to coincide LIDAR data collection with field vegetation sampling to reduce the 

influenced of animal grazing, phenological changes and other factors on accuracy. Extra 

caution should be taken when sampling vegetation using LIDAR in areas with vegetation 

less than 0.3 m in height. The over- or under-estimation of canopy height and cover in 

sparsely populated shrub and low height herbaceous communities will not be resolved 

unless new techniques are available to discriminate the background noise in the laser 

return signal (Weltz etal. 1994).

Vegetation types are integral parts of the landscape and have to be evaluated at 

large scales to understand the biological, ecological and hydrologic processes associated 

with natural and agricultural systems. LIDAR mapping facilitates the inventory of 

rangeland resources and range site (topography) identification, benefits on understanding 

of forage production, animal and wildlife habitats, and assists in setting stocking rates 

(sustainability) and enhancing overall rangeland management. LIDAR data can be used
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effectively to map closed- and semi-open aspen forest as well as upland (e.g., mixed 

prairie and fescue) grasslands and lowland (fresh and saline riparian) meadows based on 

the topographic information derived. This requires that the image interpreter has a clear 

picture of the actual distribution of the above 6 vegetation types and understands their 

spatial dependence on topography. However, LIDAR data were found to be limited 

when used to map low stature shrublands (both western snowberry and silverberry).

In this research, neither the individual 3- nor the 8-class vegetation schedules can 

produce overall classification accuracies definitively considered to be superior. 

However, the extraction and integration of data types can create accuracies superior to 

any of the 4 individual techniques used in isolation. Though LIDAR data and digital 

imagery use quite different measurements (range vs. reflectance image data), integration 

of these mapping techniques can significantly increase the accuracy of vegetation and 

land cover mapping. LIDAR data not only offer the potential to measure landscapes 

over large areas more effectively, but also contribute to mapping accuracy.

The utility of using LIDAR data mainly depends on its unique elevation and 

height information for DEM modelling, vegetation characterization and mapping. This 

uniqueness, however, is restricted by the availability of the current technology, such as 

the lack of algorithms and data processing expertise. The use of LIDAR data is also 

limited by the practicality of LIDAR intensity information (Fowler 2000) and the 

difficulty in separating different land cover types through spectral brightness information, 

which is, in contrast, well developed on digital images. Additionally, there are few 

LIDAR data sets available. Commercial airborne small-footprint systems are only now 

becoming available on a cost-effective basis and large-footprint systems are still in the
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research phase. These limitations will likely decline with the continuing maturation of 

technology and fusion with information from other remote sensing systems. The fusion 

of LIDAR with digital imagery further extends our ability to identify vegetation and 

landscape characteristics, understand our related resources and improve management 

practices.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

155



6.1 Literature Cited

Arsenault, R. and O. S. Norman. 2002. Facilitation versus competition in grazing 
herbivore assemblages. Oikos 97:313-18.

Cox, W.J., J.H. Chemey, D.J.R. Chemey., and W.D. Pardee 1994. Forage quality and 
harvest index of com hybrids under different growing conditions. Agronomy Journal 
86:277-282.

Everitt, J.1992. Overview of remote sensing for rangeland management. Geocarto 
International 7:1-15.

Fowler, R. A. 2000. The low down on LIDAR. Earth Observation Magazine 9:1-7.

Tueller, P. T. 1989. Remote Sensing technology for rangeland management. Journal o f 
Range Management. 42:442-453.

Waer, N. A, H. L. Stribling, and M. K. Causey. 1997. Cost efficiency of forage plantings 
for white-tailed deer. Wildlife Society Bulletin 25:803-8.

Weber, W. L., J. L. Roseberry, and A. Woolf. 2002. Influence of the conservation reserve 
program on landscape structure and potential upland wildlife habitat. Wildlife Society 
Bulletin 30:888-98.

Weltz, M.A., J.C. Ritchie, and H.D. Fox. 1994. Comparison of laser and field 
measurements of vegetation heights and canopy cover. Water Resources Res. 
30:1311-20.

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix 1 Target calendar of data collection at Kinsella UA Ranch

Date Event Activities
Oct. 3, 2000 LIDAR data 

acquisition
Collected LIDAR first and last return 
coordinates (x, y coordinates and z 
elevations) as well as intensity information.

Oct. 3, 2000 Air photo acquisition Collected digital images of 3 bands (red, 
green and blue).

July 15 -  Aug. 
15,2001

Benchmarks and 
ground truthed points 
setup using total laser 
station and 
differential GPS.

a) Set up 27 interconnected benchmarks and 
measured x, y coordinates along with z 
elevations.
b) Established 260 ground truthed points 
with x, y coordinates and elevations 
measured. The slope gradient, aspect, 
vegetation type and height information of 
each point were also examined.

July 15 -  Aug 
15,2001

Vegetation sampling a) Created 120 vegetation sampling plots 
with each sampling plot in a 6 m radius.
b) Within each plot, vegetation was sampled 
along 2, 10m long parallel transects.
c) On each transect, 10 uniformly 
distributed 0.5 x 1.0m quadrats were 
sampled for maximum understory 
vegetation height (herb and shrub 
separately) and cover.
d) In aspen forest, 6 trees from the dominant 
overstory were measured for height using a 
clinometer and tape ruler.
e) Each aspen forest plot was also assessed 
for the cover and density of over- and 
middle-story aspen stems, as well as other 
tall trees (height >1.5m) within 2, belted 
transects, each 2x10m, centred on the linear 
transects.
f) Eco-site data on slope, aspect and 
landscape position of each plot were also 
recorded.

Sept., 2001 - 
Dec., 2003

Research on the 
capability of using 
LIDAR data to model 
DEM, characterize 
and map vegetation

Corresponding findings were presented in 
Chapter 3 ,4  and 5, respectively.
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Appendix 2 The mean brightness and std. dev. of the 120 signatures within the 8 
vegetation types and bare ground.

Land cover type
I-H-S image* Original mosaic 

image
Color composite 

image
Blue Green Red Blue Green Red Blue Green Red

M ixed prairie Mean 0.23 321.62 0.09 51.92 53.93 59.96 1.04 44.79 1.13
grassland Std. dev. 0.01 86.22 0.02 3.82 5.12 5.61 0.05 3.76 0.08

Fescue Mean 0.19 316.79 0.11 43.57 47.58 52.74 1.07 44.42 1.12
grassland Std. dev. 0.02 83.42 0.04 5.67 5.28 11.42 0.05 2.59 0.09

Silverberry
Mean 0.14 274.37 0.08 37.87 39.72 43.23 1.04 36.17 1.13

Std. dev. 0.02 105.93 0.04 5.11 5.45 7.01 0.04 1.81 0.10
W estern Mean 0.15 235.33 0.07 35.11 37.82 39.30 1.04 35.87 1.10

snowberry Std. dev. 0.02 119.63 0.04 3.15 6.31 6.31 0.10 4.83 0.11
Fresh riparian Mean 0.15 98.26 0.08 40.81 38.72 40.23 0.93 36.80 0.96

m eadow Std. dev. 0.03 76.62 0.06 6.16 8.15 9.25 0.07 6.81 0.13
Saline riparian Mean 0.21 226.67 0.07 45.24 45.64 48.35 1.01 45.04 1.06

m eadow Std. dev. 0.04 112.37 0.04 5.39 5.44 4.76 0.06 4.12 0.09
C lose aspen Mean 0.12 72.80 0.13 37.73 38.92 39.65 0.92 29.32 1.01

forest Std. dev. 0.03 70.67 0.08 8.98 10.96 7.91 0.14 12.67 0.26
Sem i-open Mean 0.13 61.54 0.12 26.63 22.71 26.40 0.87 27.56 0.96

aspen forest Std. dev. 0.03 67.16 0.06 3.02 4.64 6.70 0.13 13.64 0.25

Bare ground
Mean 0.35 186.63 0.10 79.79 81.50 91.04 1.04 96.23 1.18

Std. dev. 0.03 158.24 0.07 12.21 10.92 11.86 0.11 8.94 0.18
* For the I-H-S image, the blue, green and red band correspond to the intensity, hue and saturation of an image.

Appendix 3 The effect of vegetation on LIDAR-derived DEM accuracy (RMSE in 
parentheses).

(Unit: mean: cm, RMSE: m)

Upland Shrub Lands Foresi 
Grasslands Ares
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Appendix 4 Comparison between LIDAR-derived and field measured veg. cover.

Fresh Riparian Meadow Community

Field measurement (mean=8b%) 

LIDAR measurement (mean=50%)

cd 60

5 7 9
Vegetation Plot Number

100
W estern Snowberry Commnuity

Field measurement (mean=41%) 

LIDAR measurement (mean=15%)

5 7 9 11
Vegetation Plot Number
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