
Experiments with Word Embeddings for Sequential Questioning

by

Emma McDonald

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science
University of Alberta

© Emma McDonald, 2022

Abstract

As a student learns to program, there will be gaps in the student’s knowledge that

must be addressed for the student to gain a full understanding of the material. A

student’s answer to a single question may provide some insight into the student’s

level of understanding. However, a well-chosen sequence of questions might more

accurately identify any misunderstandings. For example, the popular 20 Questions

game relies on a sequence of well-chosen questions for one player to guess what another

player is thinking.

Inspired by the 20 Questions game, we suggest a method to select the next question

in a sequence to identify gaps in a student’s understanding. We model introductory

computing science terms with word embeddings trained from a collection of Python

course notes and textbooks. We also introduce a test suite of computing science

concepts. Each of the 17 tests is an algebraic equation and each term in the equation

is represented by one of our word embeddings. Thus, a test can be evaluated to

produce a result that corresponds to another word embedding in the model.

The test suite represents a collection of concepts and skills that an introductory

computing science student must learn. We demonstrate that we can represent a

computing science concept by adding relevant substituent concepts and removing

irrelevant concepts. We then posit that this ability can be used to diagnose the

gap in understanding and recommend a relevant next question based on a student’s

answers so far.

ii

Acknowledgements

There are many people to who I am extremely grateful for having helped me reach

this milestone. In particular, I would like to mention the following.

My love and thanks to my family, always. My immeasurable gratitude to my

supervisor, Dr Paul Lu, whose mentorship and patience have truly meant the world

to me. My heartfelt gratitude to Dr Duane Szafron, whose kindness I will not forget.

Thank you to Dr Lu and Dr Szafron for changing my life and making the dream of

graduate school possible for me.

Thank you to Dr Carrie Demmans Epp for invaluable mentorship and advice.

Thank you to my committee and to Dr Denilson Barbosa. Thank you to the friends,

colleagues, and mentors who have provided feedback, support, and encouragement

over the years. And thank you to Jacqueline Smith for everything from the beginning.

iii

Table of Contents

1 Introduction 1

2 Background and Related Work 6

2.1 Motivating example . 6

2.2 Word embeddings . 11

2.3 Item sequencing . 14

2.4 Concluding remarks . 18

3 Experimental Methodology 19

3.1 Corpus . 20

3.2 Preprocessing . 23

3.2.1 Cleaning . 23

3.2.2 Lowercasing . 23

3.2.3 Tokenization . 23

3.2.4 Lemmatization . 24

3.2.5 Bigrams . 24

3.2.6 Stopword removal . 25

3.3 GloVe word embedding model . 27

3.4 Test suite . 28

3.5 Concluding remarks . 40

4 Empirical Results 41

4.1 Syntactic examples . 41

iv

4.2 Evaluating the test suite . 44

4.3 Concluding remarks . 60

5 Concluding Remarks 61

Bibliography 65

v

List of Tables

2.1 Top 5 actual results for Test 1 (+function +parameter -argument).

Higher cosine similarity is better. 8

3.1 Size of each corpus by number of tokens after preprocessing (detailed

in Section 3.2). The full corpus is composed of the four individual

corpuses. 22

3.2 Complete stopword list. Stopwords are common words that are re-

moved from a corpus during preprocessing (detailed in Section 3.2.6). 26

3.3 Test suite of introductory computing science concepts. Each test has

a set of expected results, defined by expert knowledge. This table also

appears in Chapter 4 as Table 4.5. 29

4.1 Top 5 results for +identifiers -identifier +function evaluated on

the partially processed full corpus with GloVe word embeddings. The

expected result is functions. Higher cosine similarity is better. . . . 42

4.2 Top 5 results for +defined -define +use evaluated on the partially

processed full corpus with GloVe word embeddings. The expected

result is used. Higher cosine similarity is better. 43

4.3 Top 5 results for +reading -read +write evaluated on the partially

processed full corpus with GloVe word embeddings. The expected

result is writing. Higher cosine similarity is better. 43

4.4 Actual results for the test suite, evaluated on the full corpus using

GloVe word embeddings. 45

vi

4.5 Expected results for the test suite, as defined by expert knowledge.

This table also appears in Chapter 3 as Table 3.3. 46

4.6 Total count (T), recall efficiency (RE), and recall coverage (RC) for

the test suite evaluated on the full corpus with GloVe word embeddings. 47

4.7 Expected and actual results for Test 1. These results come from Table

4.5 and Table 4.4 respectively. 49

4.8 Expected and actual results for Test 2. These results come from Table

4.5 and Table 4.4 respectively. 50

4.9 Expected and actual results for Test 3. These results come from Table

4.5 and Table 4.4 respectively. 50

4.10 Expected and actual results for Test 4. These results come from Table

4.5 and Table 4.4 respectively. 51

4.11 Expected and actual results for Test 5. These results come from Table

4.5 and Table 4.4 respectively. 52

4.12 Expected and actual results for Test 6. These results come from Table

4.5 and Table 4.4 respectively. 52

4.13 Expected and actual results for Test 7. These results come from Table

4.5 and Table 4.4 respectively. 53

4.14 Expected and actual results for Test 8. These results come from Table

4.5 and Table 4.4 respectively. 53

4.15 Expected and actual results for Test 9. These results come from Table

4.5 and Table 4.4 respectively. 54

4.16 Expected and actual results for Test 10. These results come from Table

4.5 and Table 4.4 respectively. 54

4.17 Expected and actual results for Test 11. These results come from Table

4.5 and Table 4.4 respectively. 55

4.18 Expected and actual results for Test 12. These results come from Table

4.5 and Table 4.4 respectively. 56

vii

4.19 Expected and actual results for Test 13. These results come from Table

4.5 and Table 4.4 respectively. 56

4.20 Expected and actual results for Test 14. These results come from Table

4.5 and Table 4.4 respectively. 57

4.21 Expected and actual results for Test 15. These results come from Table

4.5 and Table 4.4 respectively. 57

4.22 Expected and actual results for Test 16. These results come from Table

4.5 and Table 4.4 respectively. 58

4.23 Expected and actual results for Test 17. These results come from Table

4.5 and Table 4.4 respectively. 58

4.24 For each corpus that makes up the full corpus, total count (T), recall

efficiency (RE), and recall coverage (RC). OOV indicates that a word

in that test did not appear in the vocabulary for that corpus. Full

corpus results included for comparison. 59

viii

List of Figures

1.1 Example of a sequence of questions in a 20 Questions game. The

answer to the first question, Q1, provides information that can be

used to inform the second question, Q2. If the player answers yes to

Q1, then Q2 should be about something in the animal category. . . . 3

2.1 Example of a sequence of questions in a 20 Questions game. If the

player makes a mistake answering Q1, then Q2 can be used to identify

the mistake if the possible concepts identified by Q2 overlap with Q1. 8

2.2 The insect category is represented by a combination of other categories

that describe it. The category of insect answers lays in the intersection

of animal and moves on its own. 9

2.3 Function definition can be represented as the intersection of vari-

ous relevant concepts. Function definition is in the intersection of

function and parameter that does not overlap with argument. . . 10

3.1 GloVe algorithm. Global word co-occurrence statistics from the full

corpus are passed into the algorithm to produce a word embedding

model consisting of a vocabulary and a corresponding word embedding

for each word in the vocabulary. 27

ix

5.1 Sequence of Python programming questions being used to suggest a

next question based on the student’s answers. A correct answer from

the student is indicated with a checkmark and an incorrect answer

is indicated with an x. The next question is suggested by the term,

definition, that appears in the intersection of the information gained

from the sequence of Q1, Q2, Q3. 63

x

Chapter 1

Introduction

Imagine the scenario of an undergraduate university student enrolled in an intro-

ductory computing science class. For many students, this type of class is their first

exposure to computing science and a corresponding new way of thinking. Students

will make mistakes and ask questions, a time-honoured part of education. Imagine the

student attending the instructor’s office hours and asking questions. Using the stu-

dent’s questions, the instructor can determine what the student is stuck on. If need

be, the instructor can ask more questions, to differentiate areas the student does

and does not understand. For example, the student may ask about functions and

demonstrate an inability to differentiate between function arguments and function

parameters. These terms are carefully defined in the class material. The instructor

has identified a gap in the student’s knowledge.

The natural question is how to diagnose that gap, especially without the involve-

ment of an instructor. For example, if a student is studying at home, the student may

realize that they do not understand a concept. However, the root of the student’s

misunderstanding may not be easy for the student to self-diagnose.

For example, consider a failed loaf of bread. An ideal loaf of bread made with

yeast will have a nice texture consisting of many small air pockets. The baker of the

loaf must activate the yeast, combine the ingredients, knead the dough, let the dough

rise, shape the loaf, rise the dough one more time, and then bake the loaf. If the

1

bread does not turn out as expected, there are many clues that can indicate what

went wrong. However, the answer is not necessarily straightforward, especially for

an inexperienced baker. Even if one key problem is identified — for example, if the

loaf did not rise — the solution still might not be straightforward. There are many

possible culprits for a loaf of bread that did not rise: the yeast was expired; the yeast

was not activated properly; the rising period was too short; the bread was overworked

during the kneading step; etc. There are many further questions that must be asked

to capture the exact issue at the correct layer of the problem.

A parallel with this idea of layered knowledge is the game of 20 Questions. The

simplest version of 20 Questions is played with two players. One player secretly thinks

of a concept. The concept could be a person, place, thing, or abstract idea. The other

player then asks up to 20 questions that can be answered with a yes or a no, and uses

the answers to these questions to guess the concept.

There are various adaptations of 20 Questions, but the overall structure is that

one player thinks of a concept and the other player attempts to guess the concept by

asking a sequence of questions. The key point of the game is that the questions form

a sequence and the person asking questions uses the knowledge they gain from each

answer to inform the next question.

To examine this idea of sequential questioning, consider a possible sequence of

questions in a 20 Questions game, shown in Figure 1.1. The first question is:

Q1: Are you thinking of an animal?

A: No.

Because the answer to the first question is no, the concept lays in the not an

animal category. It does not make sense to next ask “Are you thinking of a

dog?”, because the entire category of animals has already been ruled out. Therefore,

the person asking the questions knows not to ask any more animal-related questions.

An entire block of possible questions has been ruled out and a piece of information

has been acquired. That the concept is not an animal can be used to inform the next

2

Figure 1.1: Example of a sequence of questions in a 20 Questions game. The answer
to the first question, Q1, provides information that can be used to inform the second
question, Q2. If the player answers yes to Q1, then Q2 should be about something
in the animal category.

question. For example, the second question could be:

Q2: Are you thinking of an inanimate object?

A: Yes.

Now there are two pieces of information: the concept is not an animal and the

concept is an inanimate object. These pieces of information can be used to narrow

down the possibilities for the third question. The third question can now be selected

to help identify the inanimate object. In this way, the next question follows from the

previous question.

Returning to the bread example, the baker may ask a sequence of questions to

determine why the loaf of bread did not rise. For example, the baker may ask “Was

the yeast foamy and activated when I added it to the dough mixture?” If

the answer is no, this rules out that the yeast was dead and hence rules out a series of

other questions, such as “What is the expiration date on the yeast package?”

and “When did I buy this yeast?” Ruling out one section of questions narrows

3

down the list of questions the baker should continue asking. Now they can ask “How

long was the first rising period?” If the answer is less than an hour, then the

baker now has a new line of questioning to follow, since it seems the rising period

might not have been sufficient. For example, the baker can ask “Was the dough

doubled in size when the rising period was over?”

This idea of a sequence of questions, where the answer to each question informs

the next question to be asked, is similar to how an instructor attempts to diagnose

a student’s misunderstanding. Each answer the student gives provides insight into

what the student does understand and what the student does not understand. Using

this information, the instructor can select a next question that will garner a new piece

of useful information.

However, in the absence of an instructor, it can be difficult for a student to ask their

own self this sequence of leading questions. Originally, we thought to diagnose the

gap automatically via hard-coded questions in the style of the popular 20 Questions

game. However, this fell short in an attempt to automatically compute what the gap

may be. The next natural question is how to learn the gap.

By using a corpus of computing science concepts, we can learn a word embedding

for every term that a student must learn. The word embeddings represent the words

in the corpus [21] and hence the relationships between the word embeddings may

be used to represent the relationships between the computing science concepts in

which we are interested. Combining the word embeddings with algebraic operators

can reveal the way terms relate to each other [19]. The results of particular queries

can show how multiple concepts relate. Hence, the word embedding model captures

information about the terms that appear in introductory Python material.

We also define a test suite, where each test represents a concept or skill in com-

puting science and introductory Python programming that a student needs to learn.

The result of a test can be used to select the next question for a student to answer,

based on the answers they have given so far.

4

For example, consider the following sequence of questions.

Q1: Is there a Python programming construct that can be used to

remove non-adjacent duplicate code blocks?

Q2: Is it possible to define the value that a function can accept?

Q3: Is the state argument part of the function definition syntax dia-

gram?

These questions are about, respectively, functions, parameters, and arguments.

Based on the student’s answers, we want to suggest a next question. If the student

answers the first two questions correctly and the third question incorrectly, we can

suggest that the student understands something about functions and parameters and

misunderstands something about arguments. We can potentially use this information

to tailor the next question to the student. For example, the following question is about

function definitions and may be a suitable follow-up question:

Q4: Does the body of a function definition get evaluated no matter what

if the function definition occurs in the program?

Representing computing science concepts by including and excluding particular

substituent concepts is the idea behind the test suite. In the following chapters, we

explore how we can represent computing science concepts in this manner using word

embeddings and how we may then apply the word embeddings to suggest the next

question.

5

Chapter 2

Background and Related Work

We build upon the history of analogy-style questions that word embeddings have

demonstrated good performance in evaluating [21]. This section will explain the

background of word embeddings and question answering.

First, to motivate this work, we will walk through an example of how we can

formulate and apply a test to select the next question in a sequence. This will give

relevant context when we then look at word embeddings and how they will be used.

Then, we will look at word embeddings. We will also look at related work in

sequencing educational items, such as questions on a test.

2.1 Motivating example

Misunderstanding and subsequently correcting the misunderstanding is a common

part of learning. Correcting a mistake is often an excellent learning opportunity in

itself. What is less straightforward is how to identify the misunderstanding. Because

concepts build on each other, there can be a layered effect to a misunderstanding. For

example, recall the example of baking bread. If the bread does not rise, that is the top

level of the problem. However, the root of the problem is further down in the layers

of baking knowledge. It could be that there was a problem with the leavening agent

or with the amount of time devoted to the rising stage of the bread-baking process.

Understanding that the bread did not rise does not equal an understanding of why the

6

bread did not rise. More questions are necessary to investigate the misunderstanding.

In the context of learning computing science, if a student answers a question incor-

rectly, the misunderstanding could lay in any of the concepts related to that question.

For example, if a student does not understand that a local variable within a function

cannot be accessed outside of that function, there are a number of possible misunder-

standings that could cause this. It is possible the student misunderstands scope and

namespaces, or return statements, or the motivation behind function definitions.

We want to identify where the misunderstanding lays by asking a sequence of well-

chosen questions to triangulate the misunderstanding. To illustrate this idea, we will

take a closer look at Test 1 from the test suite (explored in detail in Section 3.4):

+function +parameter -argument

Test 1 represents the idea of a function definition, because it includes the concept

of function and parameter (part of a function definition) and excludes the concept

of argument (part of a function call). Hence, this test addresses the concept of a

function definition and its related concepts: the difference between defining and

calling a function, the difference between parameters and arguments, the scope of a

function, etc. As such, the expected results for this test should reflect those concepts,

with words related to function definition, definition, function body, function

header, or possibly even scope and return statement.

The top results for Test 1 are shown in Table 2.1. The results of Test 1 can now

be used to suggest a next question to the student. Suggesting the next question will

be explored more in Chapter 4 and Chapter 5.

We have seen what happens in the traditional 20 Questions game when a player

answers a question: the answer gives direction to the line of questioning and rules

out an entire series of questions that do not relate to the player’s selected concept.

However, what happens if the player makes a mistake? For example, if a player is

thinking of a bumblebee and is asked “Are you thinking of an animal?”, the

7

Result Cosine similarity

invocation 0.5922705392908736

define 0.550625758821478

definition 0.5391357447617813

inside 0.5223577835126354

value 0.5043148363693711

Table 2.1: Top 5 actual results for Test 1 (+function +parameter -argument).
Higher cosine similarity is better.

player may mistakenly respond no, because they do not think of insects as being

animals. If all the animal questions are ruled out at this point, then the questioner

will never be able to guess the correct concept.

Figure 2.1: Example of a sequence of questions in a 20 Questions game. If the player
makes a mistake answering Q1, then Q2 can be used to identify the mistake if the
possible concepts identified by Q2 overlap with Q1.

In an educational setting, we must account for mistakes. This brings us to the idea

of triangulation, which is illustrated in Figure 2.1. Instead of ruling out the subset

of questions, we can ask additional questions that overlap with other questions, so

8

that if a student makes a mistake, we can correct it. In the insect example, the

questioner could ask: “Does it move on its own?” The player will answer yes,

because bumblebees move on their own. Even though the animal question rules

out bumblebees, the moves on its own question rules bumblebees back in. This

inconsistency indicates that the player has made a mistake. Now the questioner can

ask an additional question to clarify which answer was the incorrect one, thereby

“triangulating” the mistake.

Figure 2.2: The insect category is represented by a combination of other categories
that describe it. The category of insect answers lays in the intersection of animal
and moves on its own.

We can also represent this sequence of questions as a Venn diagram, illustrated

in Figure 2.2. The correct answer, bumblebee, lies in the middle circle, labeled

insect. The insect circle is in the overlap of the animal and moves on its own

circles. Hence, the concept bumblebee is represented by the intersection of relevant

concepts that describe bumblebee.

This ability to correct or account for student mistakes is important in an educa-

tional setting. After all, it is common for a student to make a mistake, especially

9

Figure 2.3: Function definition can be represented as the intersection of various
relevant concepts. Function definition is in the intersection of function and pa-
rameter that does not overlap with argument.

when they are learning the topic. It is often said that mistakes are part of learning!

If the student has made a mistake, we cannot necessarily rule out an entire section

of questions with confidence. We must ask additional questions that triangulate a

student’s misunderstanding, by finding concepts that lie withing the various spheres

of the student’s answers.

We return to the programming example again. Just as an insect can be represented

as the intersection of relevant categories, we can represent Test 1 as a collection of

relevant and irrelevant concepts as well. In Figure 2.3, function definition can be

represented as the intersection of various relevant and irrelevant concepts. Function

and parameter both describe a function definition in Python, whereas argument

is about function calls. Therefore, function definition can be represented as the

intersection of function and parameter that does not overlap with argument. In

other words, function definition can be represented by including function and

parameter and excluding argument, as captured by Test 1.

10

This motivating example demonstrates how we can represent a concept by including

and excluding appropriate concepts. In the next sections, we will look at related work

in word embeddings and item sequencing.

2.2 Word embeddings

A language model allows us to represent and work with language [20]. There are many

ways to model language, varying in detail and scope. Many models have a notion

of a vocabulary that is represented by the model. The vocabulary is a finite list of

words. Each vocabulary word is represented in the language model. Examples of

language are then constructed from these vocabulary words, which can be combined

in infinite ways. How you represent the words in the vocabulary also varies. For

example, you could simply number each word in the vocabulary. This is an easy way

to represent each word in the vocabulary and guarantees a unique identifier for each

word. However, this model does not capture any information about the relationships

between words. It is possible to capture more information with the way we represent

the vocabulary words.

One such possibility is word embeddings [20]. A word embedding is a vector that

represents a word. Each word in the vocabulary is represented by a unique vector

[11]. All the vectors are the same length. The embeddings are learned from input

text [15]. Each place in the vector captures some “quality” of the word, though what

the specific qualities are is not human understandable. As such, words that are more

similar will have more similar word embeddings [21]. Words that are less similar will

have less similar word embeddings.

Word embeddings can be composed with algebraic operations [21]. The answer to

an algebraic expression with word embedding terms is the word embedding that is

closest to the result vector of the algebraic expression. To measure this similarity,

we must consider the two properties of a vector: magnitude and direction. We must

compare both the magnitude or length of the vectors and the direction or position

11

of the vectors. If we imagine that all vectors have the same length (i.e., the same

size), then the similarity between two vectors is determined by how similarly they are

positioned.

In the context of word embeddings, it is common to use cosine similarity [12].

Cosine similarity measures the cosine of the angle between two vectors that are nor-

malized, which accounts for difference in size.

The equation for cosine similarity between vector A and vector B is:

cosine similarity =
A ·B

||A||||B|| (2.1)

Cosine distance is the compliment of cosine similarity.

cosine distance = 1− cosine similarity (2.2)

It should be noted that the terms cosine similarity and cosine distance are often

used to refer to the same metric in the literature. We will use cosine similarity

as defined above. Using this metric, the closer the cosine similarity of two word

embeddings is to 1, the more similar the word embeddings are. A word embedding

will have a cosine similarity of 1 with itself. The closer the cosine similarity is to 0

for two word embeddings, the less similar the embeddings are. Hence, higher cosine

similarity is better when looking for similar words.

Computationally, the main form of information that a corpus offers is the statistical

information about the words within the corpus [7]. Of course, this can be broken down

further into statistics about the letters or morphemes that occur in the corpus, but

we will deal generally with words.

Word embeddings are trained from a corpus of written material by a learning algo-

rithm. The relationships between the words in the training corpus form the basis for

the relationships between the word embeddings. For example, if two words co-occur

often in the training corpus, these words necessarily have some sort of relationship

12

[12], whether it is grammatical (for example, an article precedes a noun, such as in

the phrase “a computer”; the “ly” ending modifies an an adjective into an adverb,

such as the adjective “quick” and the corresponding adverb “quickly”), geographical

(for example, a province succeeds a capital city, such as in the phrase “Edmonton,

Alberta”), social (for example, “sister” and “brother” are parallel roles that are talked

about similarly, such as in the phrase “my sister and brother are both older than I

am”), or otherwise [21]. There are many ways that words relate.

Each word in the training corpus is eligible to be included in the final vocabulary.

A vocabulary is the complete list of words that are included in the language model.

In this case, the vocabulary is the complete list of words for which each word has

a corresponding word embedding. Usually, the vocabulary is truncated from the

complete list of words that occurs in the training corpus. This is because certain

words may be rare in the training corpus and may not be useful to the final product

or the corresponding word embedding may not be good, because there was not enough

available information to refine it usefully. Any word which is not in the vocabulary is

called “out of vocabulary” or OOV for short. The case of OOV words must always be

dealt with, since the entire vocabulary of a language almost never makes it into the

final language model. In the case of English, the language used here, it would be both

impossible and useless to include the entirety of the language in the word embedding

model. There are more English words than are feasible to include in the model and

a good number of them are not relevant to the work. As well, typos, mistakes,

slang, abbreviations, grammatical errors, formatting issues, and other sundry errors

or human choices create inconsistencies in a written text that create OOV words

(even if the intended word, in the case of a spelling error, for instance, is in the

vocabulary). Preprocessing can help or eliminate many of these cases, but unless the

input or training material is rigidly structured, there may still be unfamiliar tokens in

the preprocessed corpus. In some instances, any OOV word is simply replaced with

the token OOV during the preprocessing phase.

13

The word embedding training algorithm used in this work is GloVe. Word embed-

dings rely on a training corpus. The corpus provides the meaning for each word and

the relationships between words. Essentially, the only meaning that a corpus provides

to an unsupervised learning algorithm is the frequency and occurrence of the words

[7]. Between words, this means the main statistic is co-occurrence. Co-occurrence is

when a word occurs in the proximity or context of another word [2]. Here, context

refers to a context window. If the word occurs within the context window around the

other word, then it is counted as co-occurring with that word [8].

Word embeddings have a few useful properties. Similar words have similar embed-

dings [5]. As well, word embeddings encode multiple degrees of similarity [12]. We

will use GloVe word embeddings, explored in Section 3.3.

2.3 Item sequencing

We experiment with using word embeddings to select the next question in a sequence.

How to select the next item based on a given sequence is closely related to the problem

of how to order the items in a sequence. The notion of sequencing applies to both

assessment items (such as questions on a test) and instruction items (such as topics

in a lesson). We will focus on the ordering of assessment items, since that is most

relevant to our work.

While we do not explore how to order the questions in the sequence, we introduce

a method to select the next question in a sequence. Selecting the next question is

also a matter of ordering and can be compared and contrasted with other methods of

item sequencing. However, these are not equivalent tasks. For comparison, broadly

speaking, our method to select the next question can be thought of as a 1-step problem

(i.e., going from step n to step n+1; use information about the existing sequence to

compute the next question). Ordering the sequence is an n-step problem (i.e., going

from step 1 to step n; use various factors about the questions, the student answering

the questions, and the goal of the system to compute the optimal order). Though

14

these are related problems, performing the n steps to order the sequence is not the

same as performing the one step to select the next question, even if this one step is

performed multiple times to continue selecting next items. Some methods of ordering

a sequence do work by continuously selecting the next question, which will be explored

further in this section.

There is a large body of work called item response theory (IRT) that analyzes the

properties of individual assessment items [1]. The particular properties of interest are

difficulty and discrimination [1]. Difficulty is how difficult an assessment item is, in

terms of how likely a student is to answer the question correctly. A low difficulty item

will likely have many students answer it correctly. A high difficulty item will likely

have few students answer it correctly. Discrimination is how well the assessment

item delineates between students of lower and higher ability. An item with high

discrimination will likely have lower-ability students answer it incorrectly and higher-

ability students answer it correctly. An item with low discrimination will not clearly

separate students by ability.

The purpose of using IRT is to assess a student’s ability [1]. Ability is calculated

from a student’s answers to assessment items that have known difficulty and dis-

crimination [1]. Calculating ability allows an instructor to classify and understand

students by their level of mastery. In computerized assessment, the assessment can

be adapted to the specific student taking the test. IRT is part of the process of

selecting the next item in the computerized assessment, with calculations based on

the student’s responses and the properties of the possible items. By computing a

student’s ability using IRT, the probability that the student will answer a particular

question correctly can be estimated [17]. As such, IRT is used to select the next item

such that the item will help determine the student’s ability [1], thus completing the

goal of the assessment.

Our goal, rather than computing the student’s ability, is to find a gap in their

understanding. As explored later in Section 4.2 in Chapter 4, we use word embed-

15

dings to represent properties of the questions and use these properties as part of the

process to suggest a next question. In our case, the property of the question we use

is the topic of the question, rather than any properties concerning a question’s diffi-

culty or discrimination. This is demonstrated in the sample dialogue in Chapter 1,

where we consider a sequence of questions. Each question is about a particular topic.

We use a correct answer to signal understanding and an incorrect answer to signal

misunderstanding. We can select a new topic that is related to what the student has

understood and misunderstood. Then, we can select a next question based on that

topic.

Usually, IRT is used in computerized assessment, but it can also be applied to

an intelligent tutoring system (ITS). An ITS is an educational tool that provides a

student with customized content [17]. If we implement a 20 Questions game in future

work, the 20 Questions game could be an ITS. To examine IRT in the context of an

ITS, we will look at a particular ITS called KidArn [17]. KidArn is an application

for learning the Thai language. KidArn uses IRT to suggest the next activity for a

student [17]. A student using KidArn answers a number of questions from a general

pool of questions. The questions belong to a variety of different topic categories. The

student answers questions until KidArn is able to calculate the student’s ability for

each topic via IRT with a certain degree of confidence. Then, the next activity is

selected from a topic that the student has demonstrated low ability in. The activity

can be administered within the same system (such as by asking another question from

one of the low-ability topic categories) or outside the system (such as the instructor

supplying a resource).

KidArn is an existing application that selects the next question through compu-

tation. The proposed word embedding system is not implemented in an ITS of any

variety, but we provide a suggested method to select the next question. Both KidArn

and our work compute the next category of question and then draw from a pool of

questions that correspond to that category. A key difference is that KidArn selects

16

a next question based on topics that the student has not demonstrated mastery of

so far, as calculated by the student’s ability on that topic [17]. Calculating ability

for every topic requires a student to answer many questions to compute ability (and

confidence in the computed ability) for every topic in the system. KidArn assumes

a student does not understand a topic unless demonstrated otherwise by answering

sufficiently many questions correctly. Our work selects the next question based on

a diagnosed “gap” in the student’s understanding. The gap is represented by the

result of an equation created from a student’s answers to a small number of questions

in a sequence, and evaluated using word embeddings. We implicitly assume a stu-

dent understands a topic unless they demonstrate otherwise by answering a question

incorrectly. We then suggest a question related to something we infer they do not

understand.

Since the ITSs discussed here, and the use of IRT, rely on a database of questions,

it is important that the questions themselves are designed well, beyond the design of

the system itself. The process of writing, editing, testing, and finally implementing

test items is described by Spaan [3]. As explored in Chapter 1, our work is inspired by

the 20 Questions game. Implementing a working 20 Questions game and developing

the questions used in the game are beyond the scope of this work. We do not provide

a database of questions. We focus on what could be done with a student’s responses

to a hypothetical set of questions. The sample dialogue at the end of Chapter 1

(and revisited in Chapter 5) illustrates what the questions could look like in a future

iteration. Our word embedding system is intended to be used with a pool of true/false

questions. As long as a potential set of questions is about introductory Python and

computing science concepts — and hence can be classified or tagged with a selection

of relevant topics — the questions could possibly be used in a 20 Questions style

game. However, in future work, we can apply principles of good test item design

when creating the question database to be used in implementation.

Sequencing educational items, whether these items are part of assessment or in-

17

struction, is an ongoing area of research that draws from, among other areas, com-

puting science and psychology [14]. The next question on an assessment is often

selected using IRT in computerized assessment and some intelligent tutoring systems,

based on a student’s demonstrated ability. We experiment with using word embed-

dings to instead suggest the next question based on an inferred gap in a student’s

understanding.

2.4 Concluding remarks

We have seen that word embeddings allow us to represent words with vectors and

to perform algebraic operations on these vectors. These algebraic computations can

give us some insight into the properties of the word embeddings. In particular, these

computations may reveal relationships between related words.

We want to apply this property of word embeddings to computing science educa-

tion. Through a motivating example, we explained our goal: when asking a student a

sequence of questions, we want to determine a good next question to ask the student.

A related problem to suggesting a good next question is how to select a good next

question in an assessment. Item response theory (IRT) is used to analyze a student’s

responses and select the questions in computerized assignments [1]. IRT can also be

used in an intelligent tutoring system [17]. Instead of IRT, we propose a method that

uses word embeddings to select the next question.

In the next chapter, we will explain how we can apply word embeddings to suggest

a good next question in a sequence. We will also explore the test suite we will use to

analyze whether the method of suggesting a next question produces successful results.

18

Chapter 3

Experimental Methodology

Word embeddings often demonstrate good results when answering analogy-style ques-

tions [19]. These analogy questions usually take the form of

A is to B as C is to

which can be translated into

B - A = - C

B - A + C =

and evaluated to produce a result vector. The answer to the equation is the word

embedding that is nearest to the result vector [21]. This answer fills in the blank in

the analogy. For example, Test 1 is:

argument is to function as parameter is to

which can be translated to

function - argument + parameter =

and shows up in our test suite as

+function +parameter -argument

19

Using this analogy question technique, we create algebraic equations with an ar-

bitrary number of positive and negative terms. Then, we can formulate an equation

that represents a computing science concept.

There are two key parts to this work. The first is the word embedding model,

trained from relevant computing science material (Section 3.3). The second is the

test suite, which defines a collection of equations that represent various computing

science concepts and skills (Section 3.4). The word embeddings are used to generate

answers to the tests in the test suite.

In this chapter, we will explore in detail the development of the word embedding

model. The corpus material is selected and preprocessed, before being used as training

data for the GloVe algorithm. Then, we will explain the test suite and the expected

results of the test suite.

3.1 Corpus

Word embeddings appear to represent the underlying semantic and syntactic structure

of the corpus from which the embeddings are trained [5]. Hence, word embeddings

can represent the relationships between words, as learned from the training corpus.

These relationships can be illustrated by constructing algebraic expressions with the

word embeddings as terms in the expressions [21].

The corpus used to train the word embedding model must contain enough training

material to adequately represent these words and relationships [20]. If a word we

are interested in does not appear in the training corpus, then there will not be a

corresponding word embedding for that word. For example, if the word function

does not appear in the corpus, then the word embedding model will not contain a

word embedding for function and Test 1 can not be evaluated. This means the

corpus must contain relevant domain knowledge.

However, just as the corpus must contain the words we are interested in repre-

senting, it is also important to consider how the words appear in the corpus. How

20

the concepts are represented in the corpus and even the choice of what material is

included in the corpus influences the word embedding model [20]. For example, as de-

fined in the technical specifications for the Python programming language, function

parameters and function arguments are two distinct, though related, concepts.

However, these words may be used interchangeably in less formal sources, even such

as textbooks. Depending on which sources are included in the corpus, this distinction

may or may not be represented and hence the word embeddings for parameter and

argument may or may not capture this distinction.

We include four sources in the corpus that is used to train the word embedding

model. From now on, the complete corpus that is created from these four sources will

be referred to as the full corpus. The four individual corpuses are all resources for

Python programming and introductory computing science.

The first source is the complete course notes from Problem Solving, Python Pro-

gramming, and Video Games (PVG) [25], which is based on CMPUT 174 - Introduc-

tion to the Foundations of Computation I, the general first year computing science

course at the University of Alberta. One of the developers of PVG is the author

of this dissertation. PVG is a massive open online course (MOOC) and is offered

through Coursera. The PVG course notes are adapted from the video transcripts for

the course.

PVG focuses on computational thinking and problem solving. The PVG videos are

split into two distinct subsets: the lecture videos and the Python language videos.

The lecture videos focus on problem solving and application. The Python language

videos explain the particulars of Python and include small programming examples.

These two video types do not share examples and it is possible to watch either subset

on its own. In particular, the Python language videos are a stand-alone Python

resource when separated from the rest of the course material.

The second source is the open-source online textbook Foundations of Python Pro-

gramming (FOPP) [22]. The third source is the open-source online textbook Problem

21

Solving with Algorithms and Data Structures using Python (ADS) [23]. Both of these

textbooks are hosted on the Runestone Interactive website and made available to

various computing science courses. Both textbooks contain programming examples

and interactive programming problems.

The fourth source is the documentation for version 3.9 of the Python programming

language (PD) [24]. This documentation is a complete resource about Python, de-

scribing all aspects of the lexics, syntax, and semantics of the programming language.

While a lot of the documentation is written in highly succinct, technical prose, there

are also tutorials that go in-depth on specific topics. We have selected these tutorials

and will from now on refer to this portion of the Python documentation as simply

the Python documentation.

Corpus Number of tokens

PVG 63857

FOPP 102394

ADS 50345

PD 57391

Full corpus 273987

Table 3.1: Size of each corpus by number of tokens after preprocessing (detailed in
Section 3.2). The full corpus is composed of the four individual corpuses.

The size of the full corpus in tokens is shown in Table 3.1. For now, token count can

be thought of as word count, but tokens will be explained in more depth in Section

3.2.3. The full corpus has 273987 tokens. Each individual corpus that makes up the

full corpus is also shown by token count. The full corpus is relatively small [10, 13], as

corpuses for training word embeddings often reach billions of tokens [20]. Expanding

the full corpus is a possible direction for future work. However, there is evidence that

small corpuses can still produce interesting results [13, 18].

22

3.2 Preprocessing

Once the corpus has been selected, it is preprocessed. The full corpus is preprocessed

with a pipeline of common preprocessing steps. Preprocessing standardizes the text

of the full corpus, which allows common patterns to be detected across similar items

in the text [9]. As well, preprocessing removes inconsistent or unknown tokens and

formatting from the full corpus. Each step in the preprocessing pipeline is described

below in detail.

3.2.1 Cleaning

The first step in the preprocessing pipeline is cleaning. Cleaning is a general term

that refers to standardizing text, in both formatting and writing style [4]. However,

we use it to refer to cleaning up formatting in the full corpus. This step removes a

set of text artifacts, such as horizontal section break lines, from the text. This set of

artifacts is defined based on familiarity with the full corpus text.

3.2.2 Lowercasing

The next step in the preprocessing pipeline is lowercasing, which converts all the

letters in the full corpus to lowercase letters. This is done to standardize the text and

to ensure all instances of the same word are counted towards the same vocabulary

total. For example, without the lowercasing step, the word Function and the word

function would be counted as different words. We use the Python built-in lower

function to lowercase the full corpus.

3.2.3 Tokenization

The next step in the preprocessing pipeline is tokenization, which splits the full corpus

into standard tokens. A token is a basic unit of meaning. Each token is one standard

unit, and may be a word or a punctuation mark. Tokens are distinct from each other

23

and do not have relationships between each other, except for ordering. We use the

spacy English tokenizer to tokenize the full corpus.

From now on, we will often refer to tokens as words, because it is natural to think

of word embeddings as representing words from the full corpus, and the details of

tokenization are not important for most of the discussion about the test suite.

3.2.4 Lemmatization

The next step in the preprocessing pipeline is lemmatization. Lemmatization is the

practice of replacing each word with its root. For example, programmed and pro-

gramming would both be replaced with program. The word program is already a

root, so it is not modified. After lemmatization, all forms of the word program will

be counted toward the vocabulary total for program. After extraneous words are

removed from the full corpus during stopword removal (Section 3.2.6), the remaining

words in the full corpus may offer valuable information. However, the natural variance

of form and style in English writing prevents the meaning from being concentrated

across all these forms. Lemmatization addresses this by standardizing the form of the

words in the full corpus. We use the spacy English lemmatizer to lemmatize the full

corpus.

3.2.5 Bigrams

Bigrams are two-word phrases that have meaning as a single semantic token. For

example, binary expression has specific meaning, beyond just the meaning of its two

constituent one word tokens binary and expression. Determining which bigrams

are important in a corpus is an active area of research. In general, bigrams can

be determined by the frequency with which they appear in a corpus. For example,

binary and expression frequently co-occur. However, since the full corpus for this

work is small, frequency may not be enough to determine the appropriate bigrams.

As such, we define a custom bigram preprocessing step. We use the course glossary

24

for the PVG MOOC to select the relevant bigrams. Any two-word term that occurs

in the PVG glossary will be a bigram. We pass through the full corpus and turn

each instance of these two words when they appear directly adjacent to one another

into a bigram. In practice, this means turning, for example, binary expression into

binary expression, so that it is considered a single token.

3.2.6 Stopword removal

The next step in the preprocessing pipeline is stopword removal. A stopword is a

predefined common word that adds little value to the meaning of a corpus. For

example, the word the occurs so frequently in English text as to be useless in analysis,

since the likelihood of co-occurrence is so high for so many words in the full corpus

[6]. The complete stopword list that we remove from the full corpus is shown in Table

3.2.

However, a subtlety for a computing science corpus is that some stopwords are

overloaded terms in the context of computing science. For example, the word and

is included on many stopword lists, but and is also a Python keyword and one of

the most common logical operators in introductory courses. Removing and from the

full corpus is likely to remove important tokens from Python examples. Leaving and

in the full corpus can muddy analysis, since the different semantic contexts of words

are not considered when creating our word embeddings. We try to account for this

problem with the bigram step (Section 3.2.5), by turning important stopwords into

bigrams (such as if statement and and operator). Other overloaded stopwords

are removed.

It is important that stopword removal is performed after the bigram preprocessing

step. Otherwise, false bigrams may be created. For example, consider the sentence:

“if the statement is false ignore it”. If stopword removal is performed first,

the sentence becomes: “if statement is false ignore”. Then, the bigram step

will detect if statement and turn it into if statement. But this sentence does not

25

Stopword list

a by hasn just other their when

about can hasn’t ll our theirs where

above couldn have m ours them which

after couldn’t haven ma ourselves themselves while

again d haven’t me out then who

against did having mightn over there whom

ain didn he mightn’t own these why

all didn’t her more re they will

am do here most s this with

an does hers mustn same those won

and doesn herself mustn’t shan through won’t

any doesn’t him my shan’t to wouldn

are doing himself myself she too wouldn’t

aren don his needn she’s under y

aren’t don’t how needn’t should until you

as down i no should’ve up you’d

at during if nor shouldn ve you’ll

be each in not shouldn’t very you’re

because few into now so was you’ve

been for is o some wasn your

before from isn of such wasn’t yours

being further isn’t off t we yourself

below had it on than were yourselves

between hadn it’s once that weren

both hadn’t its only that’ll weren’t

but has itself or the what

Table 3.2: Complete stopword list. Stopwords are common words that are removed
from a corpus during preprocessing (detailed in Section 3.2.6).

26

refer to an if statement to start with, so this bigram is incorrect. Hence, we perform

stopword removal after the bigrams are already found and formatted.

3.3 GloVe word embedding model

We train word embeddings from the preprocessed full corpus using the GloVe script

available from Stanford [7]. GloVe, which stands for Global Vectors for Word Repre-

sentations, uses the statistics for the words across the entire corpus [7]. This key idea

of using the global co-occurrence statistics, instead of limiting co-occurrence statistics

to whatever falls within a particular window, is to better capture relationships across

an entire document. For example, if function calls are explained in one chapter

and function definitions are explained in another chapter, the relation between

these three words — function and call; and function and definition; as well as

the implied relationship between call and definition due to their dual proximity to

function — will be captured.

Figure 3.1: GloVe algorithm. Global word co-occurrence statistics from the full
corpus are passed into the algorithm to produce a word embedding model consisting
of a vocabulary and a corresponding word embedding for each word in the vocabulary.

27

The GloVe algorithm works by first creating a vocabulary by counting every oc-

currence of every word in the full corpus. The vocabulary is truncated according to

a predefined threshold. We used 20 for the vocabulary threshold. Any word that

has a count lower than 20 is removed from the vocabulary. This helps to discount

the influence of uncommon words [9]. Then the word co-occurrence statistics are

computed. These statistics are stored in a matrix that is the same dimension as the

size of the vocabulary. Each entry xij in the matrix is the count for the number

of times wordi occurs in the context of wordj. For example, if the sentence “the

Python program was evaluated” occurs in the full corpus and Python is wordi

and program is wordj, this sentence adds one to the xij count, since Python occurs

in the context of program. Then the GloVe word embeddings are trained from the

word co-occurrence statistics [7].

Our word embedding model has vectors of size 50. The word embeddings are

learned from the full corpus via the GloVe script [7] using a context window of 15. The

word embeddings represent the meanings of the terms via a common set of qualities

that may or may not be shared by all the terms in the full corpus vocabulary. As

such, the similarity between two terms can be thought of as how much of each quality

they share. Words that are more similar have greater overlap in qualities and hence

greater overlap in meaning.

3.4 Test suite

The test suite is a collection of tests that are intended to represent concepts from

introductory computing science. Each test is an algebraic equation composed of terms

relating to computing science and the Python programming language, connected by

addition or subtraction operators. The terms are common terms that can be found

in various introductory programming educational resources, as well as in the Python

programming language documentation, which is a complete resource that explains all

aspects of the Python programming language.

28

Test Expected results

1 +function +parameter -argument function definition definition

2 +function -parameter +argument function call call

3 +binary +expression +operator -boolean arithmetic addition

4 +binary +expression +operator -order short circuit logic or

5 +if statement +boolean +elif -else order condition clause

6 +str -concatenate type

7 +str -concatenate +int type convert

8 +global +function +call +local scope namespace identifier

9 +global +function +call -local scope namespace main main function

10 -global +function +call +local scope namespace function call identifier

11 +local +identifier +function +call +return scope namespace bind

12 +global +function +variable +identifier scope namespace main main function

13 +local +function +variable +identifier -global scope namespace main main function

14 +for statement +list sequence header

15 +while statement +repetition -boolean definite repetition suite body

16 +while statement +repetition -condition suite body

17 +list +subscription element index slice

Table 3.3: Test suite of introductory computing science concepts. Each test has a set
of expected results, defined by expert knowledge. This table also appears in Chapter
4 as Table 4.5.

Each test in the test suite consists of these introductory computing science terms.

Each test represents a particular high-level concept a student must learn. For exam-

ple, students must understand the difference between function arguments and function

parameters. These tests can then be represented as algebraic expressions using the

word embeddings.

The test suite is detailed in Table 3.3. Each row of the table contains one test

and the corresponding expected results for that test. Each test contains at least two

terms, and each term is preceded by either a plus sign or a minus sign. The plus

sign represents inclusion of that idea. The minus sign represents exclusion of that

idea. Overall, each test represents a particular concept or skill that is important in

introductory Python programming or computing science in general.

For example, Test 1 in Table 3.3 is +function +parameter -argument. The

terms function and parameter both have plus signs, while the term argument

has a minus sign. This means that function and parameter are both included and

argument is excluded. Overall, Test 1 represents the concept of function definition,

29

because parameters are part of function definitions and arguments are part of function

calls, so this test is about the aspect of Python functions that is related to parameters

and is not related to arguments.

The answer to each test can also be thought of as the concept that is both most

similar to the plus terms and least similar to the minus terms [12]. To this end, a

test may have more than one answer that is relevant or useful to suggest a follow-

up question. Selecting only the top answer for each test may exclude useful results.

Allowing more than one good result for each test also helps account for a range of

difficulty across the test suite [12].

We consider a set of possible answers for each test. As such, each test has a set

of expected results that contains at least two terms that are considered a good result

for that test. This means, for example, that for Test 1 in Table 3.3, it would be

reasonable to get back definition or function definition as a result.

We use algebraic addition and subtraction because these are the operations used

in word embedding composition [21] and because there is a natural parallel with a

model of student understanding. Addition can be used to include concepts towards

which a student has demonstrated understanding and subtraction can be used to

exclude concepts towards which a student has demonstrated misunderstanding. Note

that we use correct answers as evidence of understanding and incorrect answers as

evidence of misunderstanding. This is not an entirely accurate model of a student’s

understanding. For example, a student might get a question wrong due to misreading

the question. Alternately, a student might guess on a question they do not understand

and get a correct answer. Nonetheless, this model is an acceptable abstraction in the

context of this work. The results of these tests indicate missing or related concepts,

which can then be used to suggest next questions for a student.

The tests and expected results were chosen according to expert knowledge. This

project is an offshoot of a years-long redesign and assessment of the introductory

Python programming course at the University of Alberta. The 20 Questions style

30

pedagogical tool that inspired this work was initially conceived as an additional re-

source for remote students, such as those enrolled in a massive open online course

(MOOC). As such, this work builds upon years of teaching and designing assessment

for introductory computing science courses, particularly in the context of remote

learning. The tests were chosen through iterative discussion between those experi-

enced with the material and the Python programming language.

The expected results were chosen similarly. For each test, we selected terms that

summarized the idea behind that test. Since the results for the tests depend so heav-

ily on the full corpus, we sometimes had to modify the expected results depending on

the available vocabulary. For example, all names in Python are called identifiers.

However, it is common to refer to an identifier as a variable, as is done in other pro-

gramming languages. As such, we may expect variable to come up in the full corpus,

instead of or as well as identifier, and may have to adjust the results accordingly.

Each term in the test also corresponds to a word embedding. Since a word embed-

ding is a vector, algebraic operations can be performed on the vectors. In the con-

text of word embedding analogy questions, only addition and subtraction are used.

Addition adds the meaning of the words together. For example, we expect adding

for statement and list to result in header. A list is often used in the header of

a for statement. The combined meaning of these words represents an object that

shares qualities of both terms. Subtraction removes the meaning of one word from

another. For example, we expect subtracting concatenation from str to result in

type. Concatenation is an operation for the specific type str in Python. Removing

it represents removing qualities that are specifically related to str and leaves behind

a generic type.

The following section is a detailed breakdown of the meaning of each test in the

test suite, the expected results, and any related tests.

1. +function +parameter -argument

31

Main idea: Function definitions, compared to function calls. The difference

between function parameters and function arguments.

Explanation: In Python, the terms passed into a function when the function

is called are referred to as arguments. In the function definition that defines

that function, the placeholders for the arguments are called parameters. When

the function is called, the argument values (if any) are bound to the parame-

ter names in the namespace of the function. This is an important concept for

students to grasp, because misunderstandings in the difference between parame-

ters and arguments can lead to misunderstandings about the scope of a function

and unintended changes to values. Therefore, this test is about understanding

which concepts are part of a function definition and how a function definition

and function call differ.

Expected results: The expected results for this test are definition and func-

tion definition, since this test is about function definitions.

Related tests: 2

2. +function -parameter +argument

Main idea: Function calls, compared to function definitions. The difference

between function arguments and function parameters.

Explanation: As discussed for Test 1, the terms passed into a function call are

called arguments and the corresponding placeholders in the function definition

are called parameters. When we talk about a function and its arguments in

Python, we are talking about a function call. Note that Test 1 and Test 2 can

be thought of as the dual of each other. Together, they describe the difference

between a function definition and a function call through the difference between

parameters and arguments in Python. Opposite to Test 1, this test is about

understanding which concepts are part of a function call, and how a function

32

call differs from a function definition.

Expected results: The expected results are call and function call, since this

test is about function calls.

Related tests: 1

3. +binary +expression +operator -boolean

Main idea: Arithmetic binary operators, compared to boolean binary opera-

tors.

Explanation: A key type of statement in Python is a binary expression. This

allows for the use and evaluation of binary operators. There are multiple cat-

egories of binary operators that can be used in a binary expression. The two

categories that students are usually explicitly introduced to first are arithmetic

binary operators (such as addition +, subtraction -, multiplication *, etc) and

boolean operators (such as and, or, etc). Students must learn different rules

and applicability for these two categories. Differentiating between arithmetic

and logical operators helps understand logic more generally.

Expected results: Because introductory Python material focuses on arith-

metic and boolean binary operators, we can expect that discussion of binary

operators that excludes boolean should result in terms about arithmetic binary

operators. The expected results for this test are arithmetic and addition.

Related tests: 4

4. +binary +expression +operator -order

Main idea: Commutativity of binary operators.

Explanation: Whether or not the order of arguments in a binary expression

matters depends on the binary operator used. It matters if the operator is

commutative. For example, addition is commutative (the arguments can go in

33

either order and will produce the same result), but subtraction is not. It also

matters if the operator can be evaluated with short-circuit evaluation. When

we get to boolean operators, the common and and or operators may seem

commutative, but short-circuit evaluation means the order of the arguments

matters.

Expected results: The expected results are short circuit and logic, since

this test is about short-circuit evaluation for logical operators.

Related tests: 3

5. +if statement +boolean +elif -else

Main idea: If statements with elif clauses but without else clauses.

Explanation: An if statement must have an if clause. It may also have one or

more elif clauses. It may also have an else clause. This test is about the if and

elif clauses, excluding the else clause. Boolean is included because the if and

elif clauses require a condition that necessarily evaluates to a boolean object.

Understanding the interaction between the various clauses of an if statement is

an important skill. Students often get confused about whether an if statement

must have an else statement, and how the elif statements are evaluated.

Expected results: The expected results for this test are order, condition,

and clause, because this test is about the order of if statement clauses and

about which clauses have conditions.

Related tests: None

6. +str -concatenate

Main idea: Types.

Explanation: String concatenation is a basic Python programming concept,

used to manipulate and format string objects. The type of a string object is

34

str. (The term str is often used instead of the phrase “string object”, so str is

an appropriate term to use in the test.) Learning string concatenation is useful

practically, but is also useful on a deeper conceptual level: this is the beginning

of understanding how context determines the meaning of symbols and terms.

As well, string concatenation can be an introduction to mismatched types and

type conversion.

Expected results: The expected result is type, because we are subtracting

specifics about the str type, which we expect to result in the generic type

concept.

Related tests: 7

7. +str -concatenate +int

Main idea: Types and type errors.

Explanation: Operators are an important part of computation. Students

must learn about the various operators, including both the different types of

operators (arithmetic, boolean, etc) as well as how different operator symbols

may mean different things depending on the type of the operands. Related is

attempting to combine disparate types with an incorrect operator and receiving

a type error. This test is about string concatenation and the common type

error that is returned when a student attempt to combine a str object and an

int object.

Expected results: The expected results are type and convert.

Related tests: 6

8. +global +function +call +local

Main idea: Scope and namespace of a function call.

Explanation: This test is a dual of Test 9 and Test 10. During the evaluation

of a function call, the global namespace and the function’s local namespace

35

are both available. This test is about how a function call has access to both

namespaces. Learning to make the distinction between the various namespaces

is key to understanding scope and hence what is accessible in memory at any

given time in the program.

Expected results: The expected results for this test are scope, namespace,

main, main function, and identifier.

Related tests: 9, 10, 11, 12, 13

9. +global +function +call -local

Main idea: Global namespace during a function call. Difference between local

and global namespace.

Explanation: This test is a dual of Test 8 and Test 10. During the evaluation

of a function call, the global namespace and the function’s local namespace are

both available. This test is about the global namespace. A function call may

modify objects that are accessible through the global namespace, such as when

a list is passed as an argument.

Expected results: The expected results for this test are scope, namespace,

main, and main function.

Related tests: 8, 10, 11, 12, 13

10. -global +function +call +local

Main idea: Local namespace during a function call. Difference between local

and global namespace.

Explanation: The test is a dual of Test 8 and Test 9. Test 9 is about the global

namespace during a function call. This test is about the local namespace of a

function call. It is important that students learn to differentiate between the

local and global namespace, so that they understand what data they have access

36

to at any given time. This helps avoid semantic errors, as well as unintentionally

modifying objects in memory.

Expected results: The expected results are scope, namespace, function -

call, and identifier. We include identifier for this test but not for Test 9,

because identifiers are the names that are in the namespace, which are often

talked about when discussing what is accessible in a function’s local namespace.

Related tests: 8, 9, 11, 12, 13

11. +local +identifier +function +call +return

Main idea: Local namespace of a function call and return statements.

Explanation: Students often struggle with the local nature of a function’s

namespace; that is, identifiers that are defined in a function’s namespace can-

not be accessed outside the scope of that function. As well, students struggle

with how to gain access to the objects defined in the function’s namespace and

often attempt to use global identifiers to do this, when they should use return

statements. Understanding this concept is important because it allows students

to safely use functions to modify and create information.

Expected results: The expected results for this test are scope, namespace,

main, and main function.

Related tests: 8, 9, 10, 12, 13

12. +global +function +variable +identifier

Main idea: Global identifiers.

Explanation: Learning to differentiate between local and global identifiers

is an important skill. Understanding the scope of identifiers helps to avoid

modifying information by accident. As well, good Python style often dictates

avoiding the use of global identifiers, especially in introductory courses. This

37

is in part because it forces students to understand scope and reference, and to

learn how to use return statements. While students should avoid accidentally

modifying objects in memory, they do need to modify memory on purpose.

Return statements are part of this.

Expected results: The expected results for this test are scope, namespace,

main, and main function.

Related tests: 8, 9, 10, 11, 13

13. +local +function +variable +identifier -global

Main idea: Local identifiers.

Explanation: This test is the dual of Test 12, focused on local identifiers.

Students must learn to differentiate between the local and global namespace.

This test is about the identifiers that are bound in the local namespace and

accessible in a function call.

Expected results: The expected results for this test are scope, namespace,

main, and main function.

Related tests: 8, 9, 10, 11, 12

14. +for statement +list

Main idea: For statement headers that use lists.

Explanation: The header of a for statement has both a target and a sequence.

The sequence can be any iterable data structure. At each iteration, the target

is bound to the next item in the sequence. A list is a common data structure to

use for the sequence, particularly in introductory Python programming courses.

Learning to traverse and operate on lists using a for statement is a foundational

skill of introductory Python programming.

Expected results: The expected results are sequence and header, because

38

this test is about evaluating the header of a for statement, using a list as the

sequence.

Related tests: None

15. +while statement +repetition -boolean

Main idea: Relationship between while statement conditions and repetition.

Explanation: Understanding repetition is an important skill. Loops are a

fundamental programming construct. Learning to differentiate which situations

are best suited by definite or indefinite repetition helps chose the appropriate

loop. Understanding that the condition in a while statement works the same as

the condition in an if statement can help clarify how a while statement works.

This test represents misunderstanding the condition of a while statement, which

evaluates to a boolean just like an if statement condition, but understanding

that a while statement is a form of repetition.

Expected results: The expected results for this test are definite repetition,

suite, and body.

Related tests: 16

16. +while statement +repetition -condition

Main idea: Relationship between while statement conditions and repetition.

Explanation: Understanding repetition — both when to use it and how to

implement it — is an important basic programming skill. This test is about how

while statements and if statements both have conditions, but a while statement

is used for repetition and an if statement is not.

Expected results: The expected results for this test are suite and body,

because this test is about a while statement without a condition.

Related tests: 15

39

17. +list +subscription

Main idea: The subscription operator on lists.

Explanation: The subscription operator is a common and useful operator in

introductory Python programming. Learning how to use subscription goes with

understanding the structure of a list. As well, understanding subscription lets

students iterate through a list and access one element at a time.

Expected results: The expected results for this test are element, index, and

slice, which are all terms related to using the subscription operator on a list.

Related tests: None

3.5 Concluding remarks

In this chapter we examined the test suite and the word embedding model that will be

used to evaluate the test suite. The word embedding model captures the relationships

between the terms in the full corpus that was used to train the word embeddings,

and hence captures the relationships between various introductory computing science

concepts that are represented in the full corpus.

The test suite defines a collection of important introductory concepts and skills

for a student learning Python programming and computing science. Each test is an

equation that can be evaluated with the word embeddings. As well, each test has

a set of expected results. In the next chapter, we will evaluate the test suite and

compare the results to the expected results.

40

Chapter 4

Empirical Results

We have trained a domain-specific word embedding model and defined a test suite

that can be evaluated with the word embedding model. The results of the tests in

the test suite give us insight into how well the word embedding model represents

relevant introductory computing science concepts. However, we can also look deeper

into where the model succeeds and fails, to suggest improvements and additions to

the training corpus. We will evaluate each test and score the results with various

metrics. As well, we will evaluate the strength of the results that are not in the set

of expected results for each test, which can be used to suggest improvements to the

test suite.

As will be shown below, the initial results for the test suite are promising, but

leave much room for improvement. 12 out of the 17 tests in the test suite return

at least one of the expected results. Future work is needed to further develop the

word embedding model and test suite to improve these results. However, we will also

explore the results that are outside the expected results and see that some of these

are also reasonable and may also be used to suggest the next question in a sequence.

4.1 Syntactic examples

Word embeddings are capable of capturing various linguistic regularities in a corpus

[19]. This includes both syntactic regularities (about the grammar and structure of

41

text) as well as semantic regularities (the way words relate to each other to create

meaning). These regularities can be captured through algebraic equations [12]. To

illustrate this, we will look at the type of syntactic information captured by our word

embedding model. We do this to provide evidence that the word embedding model

has captured various regularities from the full corpus. Note that for the following

examples, we train and use a version of the word embedding model without the

lemmatization preprocessing step applied to the full corpus (Section 3.2.4) so that

syntactic variety remains in the final vocabulary.

Let us consider an example of pluralizing a noun. In English, a noun is a part of

speech that describes a person, place, or thing. For example, identifier is a common

noun in Python programming. An identifier is a name that is used to refer to an

object of any type [24]. To pluralize a basic noun in English, the general rule is that

you add an “s” to the end of the word. (This rule does not hold for every noun

or in every case, but we will put aside the nuances of the English language for this

example.) This pluralizing rule is true for identifier: the plural is identifiers.

Result Cosine similarity

functions 0.7237300619081888

defined 0.6096466029647298

named 0.5531785797730547

calls 0.5358811194312112

methods 0.5237045536224422

Table 4.1: Top 5 results for +identifiers -identifier +function evaluated on the
partially processed full corpus with GloVe word embeddings. The expected result is
functions. Higher cosine similarity is better.

By subtracting the word embedding for identifier from the word embedding for

identifiers, we expect to produce a vector that captures the “pluralizing s”. To test

this, we can add the “pluralizing s” result vector to the word embedding for a different

noun and check if the result is closest to the pluralized version of that second noun.

42

For the expression +identifiers -identifier +function, we expect the result to be

functions. After evaluating the expression, the top five results are shown in Table

4.1. The most similar result is functions, as expected.

Result Cosine similarity

used 0.642538277899379

for 0.5917442810573474

example 0.5673556364570889

as 0.5661089248796551

this 0.5388184290800645

Table 4.2: Top 5 results for +defined -define +use evaluated on the partially
processed full corpus with GloVe word embeddings. The expected result is used.
Higher cosine similarity is better.

Another example is included in Table 4.2. This example captures the “ed” modifier

for past tense verbs by subtracting the verb define from the past-tense version de-

fined, and then adding another present tense verb use. We would expect the answer

to be used and the top result in Table 4.2 is used.

Result Cosine similarity

writing 0.5998810322828367

prompts 0.5675435808703901

functions 0.49740012134479533

named 0.4817549964810044

program 0.4678598190384271

Table 4.3: Top 5 results for +reading -read +write evaluated on the partially
processed full corpus with GloVe word embeddings. The expected result is writing.
Higher cosine similarity is better.

A final example is shown in Table 4.3. We subtract read from reading to get a

vector that represents “ing” and add the word embedding for write. The expected

answer is writing. The top result in Table 4.3 is writing.

43

These successful syntactic examples demonstrate that the word embedding model

has captured syntactic information from the full corpus. In the next section, the test

suite will be evaluated, which relies on semantic information from the full corpus.

4.2 Evaluating the test suite

We evaluate the test suite with the word embedding model trained from the full

corpus. The results are shown in Table 4.4. Each test in the test suite (Table 4.4

column “Test”) is evaluated according to this process:

1. The corresponding word embedding for each term in the test is added or sub-

tracted from the total result to calculate a result vector.

2. The cosine similarity between the result vector and each word embedding in the

model is calculated.

3. The similarity between the result vector and all terms from the test is updated

to minus infinity.

4. The list of similarities is sorted from highest similarity to lowest similarity.

5. The top five results from the similarity list are returned.

The top five results are the five word embeddings that are most similar to the result

vector. Note that step 3 removes the possibility of any term from the test appearing

in the results [16]. This is because a word is most similar to itself [5] and the test

words would otherwise often appear in the top results.

The top five results for each test are shown in Table 4.4 in column “Results”. The

results for each test are listed in descending cosine similarity (the first test is most

similar and the fifth test is least similar). We call these the actual results for the test

suite. Instead of only returning the top result for each test, we return the top five

results for each test, because there may be multiple good results for a test [12].

44

Test Results

1 +function +parameter -argument invocation define definition inside return

2 +function -parameter +argument build object instead function call int

3 +binary +expression +operator -boolean unary arithmetic tree right operation

4 +binary +expression +operator -order unary arithmetic mathematical yield infix

5 +if statement +boolean +elif -else optional revise expression statement suite condition

6 +str -concatenate getitem dict int via repr

7 +str -concatenate +int callable float type getitem annotation

8 +global +function +call +local namespace main function banner bind identifier

9 +global +function +call -local use define return build write

10 -global +function +call +local return define parameter definition method

11 +local +identifier +function +call +return namespace bind main function function call name

12 +global +function +variable +identifier local name namespace bind main function

13 +local +function +variable +identifier -global bind name main function call namespace

14 +for statement +list element header contain word suite

15 +while statement +repetition -boolean control structure definite repetition debugger trace variation

16 +while statement +repetition -condition explanation compound statement operator token abstraction introduce

17 +list +subscription element index sequence slice item

Table 4.4: Actual results for the test suite, evaluated on the full corpus using GloVe
word embeddings.

For each test in the test suite, there is also an associated set of expected results,

shown in Table 4.5 and explored in detail in Section 3.4. The expected results contain

a set of terms that represent the idea of the test. For example, Test 1 in Table 4.5 is

+function +parameter -argument

and its corresponding expected results are function definition and definition, be-

cause this test is about function definitions.

Every test does not have the same number of expected results, because there may

not be the same number of reasonable results for each test. However, a single sufficient

response for a test is enough to recommend a new question for a student. The

difference in number of expected results per test will be accounted for in the various

metrics used to evaluate the results of the test suite.

We define three metrics to assess the results for each test. The first metric is total

count and it is the total number of expected results that occur in the actual results

for each test. Total count is defined as:

Si (4.1)

45

Test Expected results

1 +function +parameter -argument function definition definition

2 +function -parameter +argument function call call

3 +binary +expression +operator -boolean arithmetic addition

4 +binary +expression +operator -order short circuit logic or

5 +if statement +boolean +elif -else order condition clause

6 +str -concatenate type

7 +str -concatenate +int type convert

8 +global +function +call +local scope namespace identifier

9 +global +function +call -local scope namespace main main function

10 -global +function +call +local scope namespace function call identifier

11 +local +identifier +function +call +return scope namespace bind

12 +global +function +variable +identifier scope namespace main main function

13 +local +function +variable +identifier -global scope namespace main main function

14 +for statement +list sequence header

15 +while statement +repetition -boolean definite repetition suite body

16 +while statement +repetition -condition suite body

17 +list +subscription element index slice

Table 4.5: Expected results for the test suite, as defined by expert knowledge. This
table also appears in Chapter 3 as Table 3.3.

where Si is the size of the intersection of the expected results and the actual results

for a test. For example, the expected results for Test 1 are function definition

and definition. The actual results for Test 1 are invocation, define, definition,

inside, and return. The intersection of these two sets is definition, which has size

1. Therefore, the total count for Test 1 is 1.

The second metric is recall efficiency. This is defined as:

Si/Sa (4.2)

where Si is the size of the intersection of the expected results and the actual results

for a test (Equation 4.1) and Sa is the number of actual results. This metric can be

thought of as the efficiency with which the actual results recall the expected results

or the percentage of actual results that are “good” results.

Returning again to Test 1, Si is 1, as calculated above. Sa is 5, because there are

5 actual results. Thus:

Si/Sa = 1/5 = 0.2 (4.3)

46

The recall efficiency for Test 1 is 0.2

The third metric is recall coverage. This is defined as:

Si/Se (4.4)

where Si is the size of the intersection of the expected results and the actual results

(Equation 4.1) and Se is the number of expected results. This metric can be thought

of as the percentage of expected results that are returned by the test. In other words,

this is the coverage of the expected results by the actual results.

Returning again to Test 1, Si is 1, as calculated above. Se is 2, because there are

2 expected results for Test 1. Thus:

Si/Se = 1/2 = 0.5 (4.5)

The recall coverage for Test 1 is 0.5.

Test T RE RC Best results

1 +function +parameter -argument 1 0.2 0.5 definition

2 +function -parameter +argument 1 0.2 0.5 function call

3 +binary +expression +operator -boolean 2 0.4 1.0 arithmetic addition

4 +binary +expression +operator -order 0 0 0

5 +if statement +boolean +elif -else 1 0.2 0.333 condition

6 +str -concatenate 0 0 0

7 +str -concatenate +int 1 0.2 0.5 type

8 +global +function +call +local 1 0.2 0.333 namespace

9 +global +function +call -local 0 0 0

10 -global +function +call +local 0 0 0

11 +local +identifier +function +call +return 2 0.4 0.667 bind namespace

12 +global +function +variable +identifier 2 0.4 0.5 namespace main function

13 +local +function +variable +identifier -global 2 0.4 0.5 namespace main function

14 +for statement +list 1 0.2 0.5 header

15 +while statement +repetition -boolean 1 0.2 0.333 definite repetition

16 +while statement +repetition -condition 0 0 0

17 +list +subscription 3 0.6 1.0 element index slice

Table 4.6: Total count (T), recall efficiency (RE), and recall coverage (RC) for the
test suite evaluated on the full corpus with GloVe word embeddings.

The results of these calculations for all the tests in the test suite are shown in

Table 4.6. The terms from the expected results that are found in the actual results

(the results that inform the total count) are shown in column “Best results”.

47

The best result for total count is Test 17, which has a total count of 3. This means

three of the expected results — element, index, and slice — are in the actual

results.

The best result for recall efficiency is Test 17, which achieves 0.6 recall efficiency.

This means that 60% of the actual results are expected results or 60% of the actual

results are good results.

The best results for recall coverage are Test 3 and Test 17, which both achieve 1.0

on recall coverage. This means all of the expected results appear in the actual results

or 100% of the expected results were found by the test.

In contrast to Test 3, Test 4 has 0 for all metrics. This is interesting because Test 3

and Test 4 are similar, differing only on the single minus term. Test 3 has -boolean

and Test 4 has -order. This suggest that order is not necessarily a good term to

use in the tests about binary operators.

Some dual tests (explored in Section 3.4) achieve similar results and some do not.

Test 1 and Test 2 are dual tests and both have the same results on all three metrics.

This suggests that there is a parallelism between the tests, which in turn suggests a

balance between the concepts in the full corpus.

In contrast, Tests 8, 9, and 10 do not have similar results. Test 8 achieves good

results, but the related Test 9 and Test 10 have 0 for all metrics. This suggests a

relationship between the three concepts of global, local, and function call that

does not hold up when one term is removed.

There are a number of tests that achieve 2 for the total count metric. This suggests

at least two avenues upon which to suggest the next question for the student, which

is promising.

Now we will examine the results in detail for each test.

1. +function +parameter -argument

The best result for this test that occurs in the actual results is definition.

48

Expected results Actual results

function definition invocation

definition define

definition

inside

return

Table 4.7: Expected and actual results for Test 1. These results come from Table 4.5
and Table 4.4 respectively.

Though function definition would have been more specific, we can use the

result of definition to ask about definitions within the context of functions or

about definitions in general. The result define is also reasonable, since it is

another form of the word definition.

The result invocation is related to function calls. Since we have already stated

that Test 1 (which is about function definitions) and Test 2 (which is about

function calls) are duals, it may be reasonable to ask a follow-up question about

this related topic.

We could perhaps construct some meaning for the result inside, since a pa-

rameter is used inside the suite of a function definition. The result return is

similarly related, in that return statements can be part of a function definition.

2. +function -parameter +argument

The best result for this test that occurs in the actual results is function call.

This is also the ideal result for this test according to the expected results.

The result build is interesting. In this context, build refers to built, as in built-

in functions. (The word “built” is changed to “build” during the lemmatization

preprocessing step discussed in Section 3.2.4.) Built-in Python functions are

a particular category of function call that introductory computing science stu-

dents will use and be familiar with. As such, a built-in function may be a good

49

Expected results Actual results

function call build

call object

instead

function call

int

Table 4.8: Expected and actual results for Test 2. These results come from Table 4.5
and Table 4.4 respectively.

example with which to explore function calls and function arguments.

The results object and int are both too broad to offer immediate good follow-

up questions. A function call is certainly an object in Python and a function

may have int arguments, but neither are good results with which to explore the

difference between function arguments and function parameters.

3. +binary +expression +operator -boolean

Expected results Actual results

arithmetic unary

addition arithmetic

tree

right

operation

Table 4.9: Expected and actual results for Test 3. These results come from Table 4.5
and Table 4.4 respectively.

The best result for this test that occurs in the actual results is arithmetic,

since this test concerns non-boolean operators and arithmetic operators are the

most discussed non-boolean operators in introductory programming.

The results tree, right, and operation are all related, but not specific enough

to offer good follow-up questions.

50

The result unary is not what we were attempting to capture with this test, but

is not a bad result. It is possible to have a unary operator as part of a binary

expression. As such, we could ask a follow-up question about the arguments in

a binary expression.

4. +binary +expression +operator -order

Expected results Actual results

short circuit unary

logic arithmetic

or mathematical

yield

infix

Table 4.10: Expected and actual results for Test 4. These results come from Table
4.5 and Table 4.4 respectively.

Arithmetic and mathematical are both relevant results. Asking another

question about arithmetic operators would be an appropriate choice. The other

results may be related terms but do not offer specific follow-up questions. For

example, both yield and infix are related to operators, but neither are related

to the idea behind this test.

Because the actual results of this test do not overlap with the expected re-

sults, this suggests that the test does not capture the concept of short-circuit

evaluation and should be reformulated in future work.

5. +if statement +boolean +elif -else

The best expected result for this test is condition, since both if and elif clauses

have conditions, but else clauses (the excluded term in the test) do not. As well,

a condition evaluates to a boolean object.

The result suite is good, since the evaluation of a suite is an important part

51

Expected results Actual results

order optional

condition revise

clause expression statement

suite

condition

Table 4.11: Expected and actual results for Test 5. These results come from Table
4.5 and Table 4.4 respectively.

of understanding if statements. However, the other results for this test do not

offer related follow-up questions.

6. +str -concatenate

Expected results Actual results

type getitem

dict

int

via

repr

Table 4.12: Expected and actual results for Test 6. These results come from Table
4.5 and Table 4.4 respectively.

This test takes a particular type and subtracts away defining characteristics of

that type. As such, the results dict and int are both good results, because they

are both other Python types. Asking a student to differentiate various Python

types is a good follow-up question.

The other results, such as getitem, suggest particular examples from the full

corpus that may be useful to refer to students as a resource.

7. +str -concatenate +int

52

Expected results Actual results

type callable

convert float

type

getitem

annotation

Table 4.13: Expected and actual results for Test 7. These results come from Table
4.5 and Table 4.4 respectively.

Similar to the previous test, both float and type make sense as results for this

test, since they are other Python types. However, they also suggest this test

should be reworded, since it is only capturing information about types and not

information about type errors.

The results callable and annotation are not related to the idea of this test

and hence do not offer good options for a follow-up question. Neither str nor

int are callable in Python and annotation is too general of a verb.

8. +global +function +call +local

Expected results Actual results

scope namespace

namespace main function

identifier banner

bind

identifier

Table 4.14: Expected and actual results for Test 8. These results come from Table
4.5 and Table 4.4 respectively.

Most of the actual results of this test are related to the concept of scope that the

test captures. Though banner is not a good result on the surface, it actually

refers to a specific function name from an example in the PVG corpus. The

53

example is useful for students to refer to when trying to understand the scope

of a function call. Hence, referring students to this example could be useful,

which suggest another possible use for the test results.

9. +global +function +call -local

Expected results Actual results

scope use

namespace define

main return

main function build

write

Table 4.15: Expected and actual results for Test 9. These results come from Table
4.5 and Table 4.4 respectively.

Return is a great result for this test. It could even be added to the expected

results in a future iteration of the test suite, since the return statement is an

important part of accessing a value outside a function call.

10. -global +function +call +local

Expected results Actual results

scope return

namespace define

function call parameter

identifier definition

method

Table 4.16: Expected and actual results for Test 10. These results come from Table
4.5 and Table 4.4 respectively.

This test has no expected results appear in the actual results, which suggests

the test needs to be reworded or the expected results reconsidered. The result

54

parameter is related to the test, since in the local namespace of a function

call, the parameter names are bound to the arguments that are passed.

The majority of the results for this test – define, definition, and method –

are not helpful for differentiating between global and local scope for a function

call.

11. +local +identifier +function +call +return

Expected results Actual results

scope namespace

namespace bind

bind main function

function call

name

Table 4.17: Expected and actual results for Test 11. These results come from Table
4.5 and Table 4.4 respectively.

The results namespace, bind, and name are good results for this test, since

it is about returning values that are in the local namespace of a function call.

Asking follow-up questions about the namespace is a good choice. The result

main function is also a good result, because many function calls happen in

the main function in an introductory Python programming course.

12. +global +function +variable +identifier

Both this test and Test 13 have the same set of expected results, which suggests

the need to differentiate these tests.

The result main function is a good result, because a call to the main function

is one of the only lines of code that is permitted outside of a function call in

strict introductory programming style.

13. +local +function +variable +identifier -global

55

Expected results Actual results

scope local

namespace name

main namespace

main function bind

main function

Table 4.18: Expected and actual results for Test 12. These results come from Table
4.5 and Table 4.4 respectively.

Expected results Actual results

scope bind

namespace name

main main function

main function call

namespace

Table 4.19: Expected and actual results for Test 13. These results come from Table
4.5 and Table 4.4 respectively.

Both this test and Test 12 have the same set of expected results, which suggests

the need to differentiate these tests.

The results main function and namespace are good results for this test be-

cause it is about the local scope of a function call. The other results bind,

name, and call are also good results, since these have to do with binding

names in the namespace, which is part of the semantics of a function call.

14. +for statement +list

Similar to Test 8, the result word is a common variable name when using a

list as the sequence in a for statement header, and could be used to suggest a

specific example from the full corpus to a student. The rest of the results for

this test are highly related to for statements.

56

Expected results Actual results

sequence element

header header

contain

word

suite

Table 4.20: Expected and actual results for Test 14. These results come from Table
4.5 and Table 4.4 respectively.

15. +while statement +repetition -boolean

Expected results Actual results

definite repetition control structure

suite definite repetition

body debugger

trace

variation

Table 4.21: Expected and actual results for Test 15. These results come from Table
4.5 and Table 4.4 respectively.

The result definite repetition is a great result for this test, since it suggests

that a while statement is a for statement plus a boolean condition. While the

result control structure is related, it is not specific. The other results are also

too general to offer good specific follow-up questions.

16. +while statement +repetition -condition

None of the results of this test are good. This suggests that the test must be

reformulated and possibly that the word condition is not well represented in

the full corpus. This may be addressed further in future work.

17. +list +subscription

57

Expected results Actual results

suite explanation

body compound statement

operator token

abstraction

introduce

Table 4.22: Expected and actual results for Test 16. These results come from Table
4.5 and Table 4.4 respectively.

Expected results Actual results

element element

index index

slice sequence

slice

item

Table 4.23: Expected and actual results for Test 17. These results come from Table
4.5 and Table 4.4 respectively.

All the results for this test are relevant. Since all five actual results are good,

but there are only three terms in the expected results, this suggests that the

expected results for this test should be modified.

In Table 4.24, each corpus that contributes to the full corpus is evaluated individ-

ually according to the three metrics. This allows us to examine the contribution each

corpus makes to the overall results. Recall from Section 3.1 that the four individual

sources that make up the full corpus are:

1. The course notes from the online course Problem Solving, Python Programming,

and Video Games (PVG).

2. The textbook Foundations of Python Programming (FOPP).

58

3. The textbook Problem Solving with Algorithms and Data Structures using Python

(ADS).

4. A selection of tutorials from the official Python documentation (PD).

Total count Recall efficiency Recall coverage

Test PVG FOPP ADS PD Full PVG FOPP ADS PD Full PVG FOPP ADS PD Full

1 +function

+parameter

-argument

1 1 0 1 1 0.2 0.2 OOV 0.2 0.2 0.5 0.5 0 0.5 0.5

2 +function

-parameter

+argument

1 0 0 1 1 0.2 0 OOV 0.2 0.2 0.5 0 0 0.5 0.5

3 +binary

+expression

+operator

-boolean

0 0 1 0 2 OOV OOV 0.2 OOV 0.4 0 0 0.5 0 1.0

4 +binary

+expression

+operator -order

0 0 0 0 0 OOV OOV 0 0 0 0 0 0 0 0

5 +if statement

+boolean +elif

-else

2 0 0 0 1 0.4 OOV OOV OOV 0.2 0.667 0 0 0 0.333

6 +str -concatenate 1 0 0 0 0 0.2 0 OOV OOV 0 1.0 0 0 0 0

7 +str -concatenate

+int

1 0 0 0 1 0.2 0 OOV OOV 0.2 0.5 0 0 0 0.5

8 +global +function

+call +local

1 0 0 1 1 0.2 0 OOV 0.2 0.2 0.333 0 0 0.333 0.333

9 +global +function

+call -local

0 0 0 0 0 0 0 OOV 0 0 0 0 0 0 0

10 -global +function

+call +local

0 0 0 0 0 0 0 OOV 0 0 0 0 0 0 0

11 +local

+identifier

+function +call

+return

2 0 0 0 2 0.4 OOV OOV 0 0.4 0.667 0 0 0 0.667

12 +global +function

+variable

+identifier

0 0 0 0 2 OOV OOV OOV 0 0.4 0 0 0 0 0.5

13 +local +function

+variable

+identifier

-global

0 0 0 0 2 OOV OOV OOV 0 0.4 0 0 0 0 0.5

14 +for statement

+list

1 0 0 0 1 0.2 OOV OOV OOV 0.2 0.5 0 0 0 0.5

15 +while statement

+repetition

-boolean

0 0 0 0 1 0 OOV OOV OOV 0.2 0 0 0 0 0.333

16 +while statement

+repetition

-condition

0 0 0 0 0 0 OOV OOV OOV 0 0 0 0 0 0

17 +list

+subscription

2 0 0 0 3 0.4 OOV OOV OOV 0.6 0.667 0 0 0 1.0

Table 4.24: For each corpus that makes up the full corpus, total count (T), recall
efficiency (RE), and recall coverage (RC). OOV indicates that a word in that test
did not appear in the vocabulary for that corpus. Full corpus results included for
comparison.

For each individual source, a word embedding model is trained, using the same

preprocessing steps and parameters as the full model. Then the test suite is evaluated

59

with the corpus-specific word embeddings. The result of each test for the full corpus

is also included for comparison. If the result is listed as OOV, which stands for “out

of vocabulary” as explained in Section 2.2, this means that the size of the actual

results was 0 for that test. This occurs when one of the test terms does not appear

in the vocabulary for that corpus and hence the test cannot be evaluated.

It is interesting to note that results across the individual corpuses are not additive.

In some cases, there may not even be a result for any individual corpus, but the full

corpus has a result. For example, Test 12 and Test 13 do not have a result for any

individual corpus, but perform well on the full corpus with a total count of 2 for both

tests.

4.3 Concluding remarks

In this chapter, we evaluated the test suite with the word embedding model and

analyzed the results. On average, the test suite achieves 21% recall efficiency and

39% recall coverage. As well, 12 out of the 17 tests in the test suite have at least

one good result, as determined by the expected results. That is, at least one of the

expected results occurs in the actual results for 12 of the tests.

These results suggest there is a possibility to recommend an appropriate follow-up

question using the word embedding method for 12 of our tests. We have also seen

that some of the actual results that are not included in the expected results still have

value, which suggests possible improvements to the test suite and expected results in

the future.

60

Chapter 5

Concluding Remarks

Asking a well-chosen sequence of questions is the key to successfully playing the

game 20 Questions, but it is also useful in education. When an instructor speaks

to a student, the instructor can deduce the student’s misunderstandings by asking a

sequence of questions. This process allows the instructor to identify any gaps in the

student’s understanding.

We attempt to compute the gap in a student’s understanding and suggest an

appropriate next question in a sequence. To this end, we create a word embedding

model trained using the GloVe algorithm from a corpus of introductory computing

science and Python material. Word embeddings have long been used to attempt to

capture the similarities and hence the relationships between words from a corpus [12].

By training word embeddings from a relevant computing science corpus, we attempt

to capture the structure of introductory computing science, including how various

concepts are related and build on each other.

A common approach to revealing the relationships between word embeddings is to

use an analogy question, which can then be adapted into an algebraic equation [21].

These equations are evaluated with word embeddings as the terms. We adapt the

idea of the analogy question into an algebraic equation with arbitrarily many positive

and negative terms. We define a test suite, where each test represents a concept or

skill that an introductory computing science student should understand. Each test

61

is an algebraic equation that is evaluated using our word embedding model. As well,

we define a set of expected results for each test.

Then, the tests are evaluated by computing a result vector and finding the word

embeddings in the model that are closest to the result vector. Instead of only taking

the top result for each test, we consider the top five results, which we call the actual

results. We then compare the actual results with the expected results for each test.

The results for the test suite show promise, but also much room for improvement

and future work. 12 out of 17 tests have at least one expected result occur in the set

of actual results, which demonstrates that this method does produce at least some

appropriate results. The test suite provides evidence that a sequence of questions

may be translated into an algebraic equation and evaluated with the word embedding

model.

We will look at Test 1 again in the context of a 20 Questions style game. Test 1 is:

+function +parameter -argument

A possible sequence of questions, as first introduced in Chapter 1, might look like

the following sequence, which is also illustrated in Figure 5.1.

Q1: Is there a Python programming construct that can be used to

remove non-adjacent duplicate code blocks?

The answer is yes, because removing non-adjacent duplicate code blocks is a use

for functions. This question is about functions and hence this test can be catalogued

or tagged with the term function.

Q2: Is it possible to define the value that a function can accept?

The answer is yes, because a parameter is how the input to a Python function is

defined. This question is about parameters and can be tagged with parameter.

Q3: Is the state argument part of the function definition syntax dia-

gram?

62

Figure 5.1: Sequence of Python programming questions being used to suggest a next
question based on the student’s answers. A correct answer from the student is indi-
cated with a checkmark and an incorrect answer is indicated with an x. The next
question is suggested by the term, definition, that appears in the intersection of the
information gained from the sequence of Q1, Q2, Q3.

The answer is no, because there is no argument state in the function definition

syntax diagram. There is a parameter list state. This question can be tagged with

argument.

If the student gets Q1 and Q2 correct, but Q3 incorrect, as represented by two

checkmarks and an x in Figure 5.1, we can build the following representation of the

student’s answers so far: +function +parameter -argument. This is exactly

Test 1. As detailed in Chapter 4, the results for Test 1 are: invocation, define,

definition, inside, and return. These results can be used to select a next question,

by selecting a question tagged with one of these terms from the bank of questions

used by the game. For example, a question tagged with definition might be:

Q4: Does the body of a function definition get evaluated no matter what

if the function definition occurs in the program?

The answer to this question is no, because the body of a Python function defi-

63

nition is not evaluated until the function is called. This question is about function

definitions, and could be a good follow-up question for a student who misunderstands

something about the difference between Python function definitions and function

calls, as demonstrated by a misunderstanding in the difference between parameters

and arguments.

As illustrated by this example, the sequence of added and subtracted terms built by

the student’s answers results in an equation that can be used to suggest a reasonable

follow-up question to a sequence of questions.

64

Bibliography

[1] F. B. Baker, The basics of item response theory, en, 2nd ed. College Park, Md.:
ERIC Clearinghouse on Assessment and Evaluation, 2001, isbn: 978-1-886047-
03-7.

[2] D. L. T. Rohde, L. M. Gonnerman, and D. C. Plaut, “An improved model
of semantic similarity based on lexical co-occurence,” Communications of the
Acm, vol. 8, pp. 627–633, 2006.

[3] M. Spaan, “Evolution of a Test Item,” Language Assessment Quarterly, vol. 4,
no. 3, pp. 279–293, Aug. 2007, Publisher: Routledge, issn: 1543-4303. doi:
10.1080/15434300701462937. [Online]. Available: https ://doi .org/10.1080/
15434300701462937 (visited on 12/24/2021).

[4] J. Lin and D. Ryaboy, “Scaling big data mining infrastructure: The twitter
experience,” ACM SIGKDD Explorations Newsletter, vol. 14, no. 2, pp. 6–19,
Apr. 2013, issn: 1931-0145. doi: 10.1145/2481244.2481247. [Online]. Available:
http://doi.org/10.1145/2481244.2481247 (visited on 03/13/2020).

[5] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word
Representations in Vector Space,” en, arXiv:1301.3781 [cs], Sep. 2013, arXiv:
1301.3781. [Online]. Available: http ://arxiv .org/abs/1301 .3781 (visited on
01/14/2021).

[6] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed
Representations of Words and Phrases and their Compositionality,” en, p. 9,
2013.

[7] J. Pennington, R. Socher, and C. Manning, “Glove: Global Vectors for Word
Representation,” en, in Proceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), Doha, Qatar: Association for
Computational Linguistics, 2014, pp. 1532–1543. doi: 10.3115/v1/D14-1162.
[Online]. Available: http://aclweb.org/anthology/D14-1162 (visited on 01/28/2021).

[8] O. Levy, Y. Goldberg, and I. Dagan, “Improving Distributional Similarity with
Lessons Learned from Word Embeddings,” Transactions of the Association for
Computational Linguistics, vol. 3, pp. 211–225, 2015. doi: 10 . 1162 / tacl a
00134. [Online]. Available: https : / / aclanthology. org /Q15 - 1016 (visited on
11/19/2021).

[9] V. Mohan, “Preprocessing Techniques for Text Mining - An Overview,” Feb.
2015.

65

[10] M. Sahlgren and A. Lenci, “The Effects of Data Size and Frequency Range on
Distributional Semantic Models,” en, in Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, Austin, Texas: Association
for Computational Linguistics, 2016, pp. 975–980. doi: 10 . 18653/v1/D16 -
1099. [Online]. Available: http://aclweb.org/anthology/D16-1099 (visited on
12/06/2021).

[11] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching Word Vectors
with Subword Information,” arXiv:1607.04606 [cs], Jun. 2017, arXiv: 1607.04606.
[Online]. Available: http://arxiv.org/abs/1607.04606 (visited on 05/26/2021).

[12] G. Finley, S. Farmer, and S. Pakhomov, “What Analogies Reveal about Word
Vectors and their Compositionality,” in Proceedings of the 6th Joint Conference
on Lexical and Computational Semantics (*SEM 2017), Vancouver, Canada:
Association for Computational Linguistics, Aug. 2017, pp. 1–11. doi: 10.18653/
v1/S17-1001. [Online]. Available: https://www.aclweb.org/anthology/S17-1001
(visited on 01/19/2021).

[13] A. Herbelot and M. Baroni, “High-risk learning: Acquiring new word vectors
from tiny data,” en, in Proceedings of the 2017 Conference on Empirical Methods
in Natural Language Processing, Copenhagen, Denmark: Association for Com-
putational Linguistics, 2017, pp. 304–309. doi: 10.18653/v1/D17-1030. [Online].
Available: http://aclweb.org/anthology/D17-1030 (visited on 12/06/2021).

[14] S. Doroudi, V. Aleven, and E. Brunskill, “Where’s the Reward?” en, Interna-
tional Journal of Artificial Intelligence in Education, vol. 29, no. 4, pp. 568–620,
Dec. 2019, issn: 1560-4306. doi: 10.1007/s40593-019-00187-x. [Online]. Avail-
able: https://doi.org/10.1007/s40593-019-00187-x (visited on 12/24/2021).

[15] P. Molino, Y. Wang, and J. Zhang, “Parallax: Visualizing and Understanding
the Semantics of Embedding Spaces via Algebraic Formulae,” in Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics:
System Demonstrations, Florence, Italy: Association for Computational Lin-
guistics, Jul. 2019, pp. 165–180. doi: 10.18653/v1/P19-3028. [Online]. Avail-
able: https://www.aclweb.org/anthology/P19-3028 (visited on 03/22/2021).

[16] M. Nissim, R. van Noord, and R. van der Goot, “Fair is Better than Sensa-
tional:Man is to Doctor as Woman is to Doctor,” arXiv:1905.09866 [cs], Nov.
2019, arXiv: 1905.09866. [Online]. Available: http://arxiv.org/abs/1905.09866
(visited on 11/19/2021).

[17] S. Rungrat, A. Harfield, and S. Charoensiriwath, “Applying Item Response The-
ory in Adaptive Tutoring Systems for Thai Language Learners,” in 2019 11th
International Conference on Knowledge and Smart Technology (KST), ISSN:
2374-314X, Jan. 2019, pp. 67–71. doi: 10.1109/KST.2019.8687462.

[18] G. Wohlgenannt, A. Barinova, D. Ilvovsky, and E. Chernyak, “Creation and
Evaluation of Datasets for Distributional Semantics Tasks in the Digital Hu-
manities Domain,” ArXiv, 2019.

66

[19] L. Fournier, E. Dupoux, and E. Dunbar, “Analogies minus analogy test: Mea-
suring regularities in word embeddings,” in CONLL, 2020. doi: 10.18653/v1/
2020.conll-1.29.

[20] E. M. Bender, T. Gebru, A. McMillan-Major, and S. Shmitchell, “On the Dan-
gers of Stochastic Parrots: Can Language Models Be Too Big?” en, p. 14, 2021.

[21] T. Mikolov, W.-t. Yih, and G. Zweig, “Linguistic Regularities in Continuous
Space Word Representations,” en, p. 6,

[22] B. Miller, P. Resnick, L. Murphy, J. Elkner, P. Wentworth, A. B. Downey,
C. Meyers, and D. Mitchell, Foundations of Python Programming. [Online].
Available: https : / / runestone . academy/ runestone / books / published / fopp /
index.html (visited on 12/06/2021).

[23] B. N. Miller and D. L. Ranum, Problem Solving with Algorithms and Data Struc-
tures using Python — Problem Solving with Algorithms and Data Structures.
[Online]. Available: https://runestone.academy/runestone/books/published/
pythonds/index.html (visited on 12/06/2021).

[24] Python 3.9 Documentation. [Online]. Available: https://docs.python.org/3.9/
(visited on 11/25/2021).

[25] D. Szafron, P. Lu, E. McDonald, and E. Hill, Problem Solving, Python Pro-
gramming, and Video Games, en. [Online]. Available: https://www.coursera.
org/learn/problem-solving-programming-video-games (visited on 12/06/2021).

67

