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Abstract

There is an increasing interest in extreme value analysis for financial and

climate data. Various statistical methods have been developed for estimating

extreme value dependence in time series data sets and the field continues

to grow. In this work we consider four statistical methods for estimating

extreme value dependence: the extremogram and cross extremogram, quantile

regression, the cross-quantilogram and the upper tail dependence coefficient

estimated using Gumbel copulas. We consider within series dependence but

also cross serial dependence which may be of more interest. We compare

the four methods using a data set of spot electricity prices from Australian

states included in the National Electricity Market. In addition we discuss the

advantages and disadvantages of each method. Finally, a freeware R package,

extremogram, is made available that implements the extremogram methods.
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Chapter 1

Introduction

Extreme events are those events that occur far from a centre of a distri-

bution or, in other words, in the tails of a distribution. Data sets with extreme

events have more observations that deviate from the mean compared to the

normal distribution. While the study of extreme events is interesting in its

own right, the study of the dependence between extreme events has recently

received a great deal of attention. For example, in finance, we are interested

in understanding the effect of contagion on the market while in climate science

the objective is to understand the behaviour between extreme events in order

to plan for emergencies.

A vast literature exists on extreme event analysis (see [28] for a sum-

mary of the work). Extreme events in time series have been studied in [31],

[2], [6] and [23]. Most of the work focusses on extreme value distributions and

the analysis of the upper tail dependence coefficients, which is a method for

estimating extreme value dependence. A large number of classical statistical

methods have been applied to the quantiles of a distribution rather than to
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the moments, which allows for the possibility to apply these methods to high

quantiles of the data to study extreme events. For example, the periodogram,

which is a commonly used tool in spectral analysis of time series was extended

to quantiles in [29] and [30]. Value at Risk (VaR), a traditional measure of

financial risk, was extended to time series data sets in [12] to study how quan-

tiles that are estimated by VaR change over time. In addition, modelling

extreme events in climate data was addressed in [9] and [18]. And finally, [1]

and [7] considered the analysis of heavy tailed distributions.

Recently, the focus of the research has shifted to statistical methods for

estimating the dependence between extreme values within and between time

series. The first method, the extremogram was introduced in [4]. The con-

cept was further extended in [5] and [3]. The extremogram is a measure of

dependence between events that exceed a certain threshold. It estimates the

probability that an extreme event will occur in a time series at time (t+h) given

there is an extreme event at time t. In simple terms it measures the effect which

a large value of the time series, or extreme value, has on a future of the same

time series or another time series, h - time - lags ahead. The extremogram

and its derivatives can easily describe graphically and quantitatively - the

size and persistence of extreme value clusters. The cross extremogram allows

for the estimation of the extreme value dependence between two time series.

Using various cutoffs for the definition of extreme events reveals interesting

dependencies that cannot be revealed using other methods.

The second method is quantile regression, which was first introduced in

[25] and then further extended to time series data sets in [26]. It is a robust

alternative to the well-known Least Squares estimation for regression and a
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generalization of the Least Absolute Deviation regression model. The main

benefit of quantile regression is its ability to be used for various quantiles of

the data set in order to understand the association between a response variable

and a set of covariates. Setting the quantiles to the tail of the data set allows

us to use quantile regression as a tool for measuring extreme value dependence.

The third method is the cross-quantilogram. It was first discovered in

[22] and has recently been extended to the bivariate case in [15]. The cross-

quantilogram is a robust alternative to a widely used method in time series

analysis to measure dependencies between two data sets – the cross correla-

tion function. The cross-quantilogram is simply the correlation between two

regression quantiles of two time series. Similar to quantile regression, the

cross-quantilogram can be applied to high quantiles to measure correlations

between extreme events in two time series.

Finally, the last method, which is the most popular method in extreme

value theory, the tail dependence coefficient, was used to compared to three

other methods. Here, estimation is carried out using copulas [19] which is

a joint distribution function with uniform marginals. It is widely used to

estimate the joint distribution of two data sets when they are not normally

distributed. Also, it is commonly used to study the joint tail behavior with a

tail dependence coefficient – a limiting probability of one data set exceeding a

certain threshold given that another data set exceeds it too.

In this work we apply all four methods to spot electricity prices of Aus-

tralia (for states that are included in the National Electricity Market). We

compare and contrast the extreme value dependence estimated between high

electricity prices in different regions. In this work, we focus on the estima-
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tion of general dependence between extreme events in the data set without

emphasizing taking into account each individual extreme event. A detailed

comparison of all methods is made and a discussion of advantages and disad-

vantages of each method is included. Finally, we created a freeware R package,

extremogram, that implements the extremogram methods.

The rest of the work is organized as follows: Chapter 2 describes the data

set and Chapter 3 focusses on the extremogram analysis. In Chapter 3 the

quantile regression method is applied and the results are discussed. Chapters

4 and 5 describe results that are obtained using the cross-quantilogram and

the Gumbel copula, respectively. We conclude with a discussion.
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Chapter 2

Data: The National Electricity

Market of Australia

The National Electricity Market (NEM) of Australia was first estab-

lished in the year 1998 and it covers the following jurisdictions: New South

Wales (NSW, including the Australian Capital Territory), South Australia

(SA), Queensland (QLD), Victoria (VIC), and Tasmania (TAS). NEM is a

wholesale market, and most of the electricity is generated by coal, wind, gas

and hydro power plants.

The Australian Energy Market Operator (AEMO) manages the whole-

sale electricity market by setting a spot price and the amount of electricity

to be produced based on supply and demand on the market. Electricity gen-

erators from all states in NEM submit their offers to AEMO once every five

minutes. A spot price is determined every half an hour for each of the regions

by averaging the submitted prices and setting up quantities according to the

market demand in the trading period. Every two years, AEMO also sets the
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highest and lowest possible spot prices, which are called the Market Price Cap

and the Market Floor Price respectively.

All regions are connected by interconnectors that transport electricity

between them. Australia has the world’s largest system of high-voltage in-

terconnectors that includes five regulated interconnectors (two between New

South Wales and Queensland, two between South Australia and Victoria, and

one between Victoria and New South Wales) and one unregulated intercon-

nector under water between Victoria and Tasmania. Figure 2.1 shows a map

of Australia with marked interconnectors. The whole system runs a distance

of about 5000 kilometers in total. Unregulated interconnectors earn a fixed

revenue each year. For a regulated interconnector, trading on a spot market

is the main source of income. Interconnectors allow for the transport of elec-

tricity from regions with low electricity price to connected regions with higher

price and, therefore, enhance market competition.

The Australian Energy Regulator (AER) is the government organiza-

tion that monitors the work of electricity market to ensure that NEM follows

market laws and regulations. According to AER’s 2009 Annual Report, coal

was the most widely used source of energy in Australia. Three states that im-

ported more electricity than they exported were South Australia, New South

Wales and Tasmania. The report stated that electricity prices in South Aus-

tralia depended on market conditions the most compared to other states. In

1998-1999, the state imported up to 25% of its consumed electricity. As gas

power was the main source of electricity within the region, high fuel costs

resulted in higher costs of electricity generation. During periods when prices

spiked, New South Wales had a higher price compared to competitive alter-
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Figure 2.1: Map of Australia with interconnectors. source: foundingdocs.gov.au

natives in adjacent states. Before joining NEM in 2006, Tasmania had been

able to satisfy all its internal electricity demand by hydroelectric power plants

that had produced electricity at a relatively low price. However, after joining

NEM and building an interconnector under water between itself and Victoria,

a great amount of electricity began to be imported from the region with a

lower price.

Victoria was a major exporting state because it had comparatively low

production costs and was connected to three other states. Victoria used more

hydroelectric power plans to produce energy compared to other mainland

states. Electric power produced by hydroelectric power plants required lower

costs compared to coal energy used as a primary source in New South Wales

and South Australia. Queensland’s production capacity was higher than the
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peak demand observed till the year 2009, which allowed the state to export a

significant amount of electricity produced by its generators.

As discussed in AER’s 2011 and 2014 Annual Reports, the Government

of Australia introduced several climate change policies that included gradual

closure of 2000 coal power plans among the country and achievement of 20%

share of renewable energy by 2020. Regulations changed the main source of

energy in Australia from coal to wind (up to 60% of produced energy) by the

end of 2014. Another source of increase in usage of renewable energy was

the installment of Rooftop Solar Photovoltaic (PV) power stations that was

subsidized by the government. Power generation from sun energy was not

traded through NEM. Instead, consumers that installed Rooftop PVs received

a deduction from their electricity bills which caused the electricity demand on

NEM to go down, and forced prices to decrease.

Climate change policies affected the distribution of importing and ex-

porting states, making Tasmania one of the major exporting states. After

new carbon pricing was introduced in 2012 as a part of the policy, it raised

the competitiveness of electricity produced by hydroelectric power plants in

Tasmania.

Trading between states introduces many dependencies between electric-

ity prices because of the competitiveness of the market. Despite the ease of

electricity transmission, when prices in two connected regions are low, most

of the electricity consumed within each region is produced there, and electric-

ity is not traded on the market. However, if prices are significantly different,

trading between two regions becomes more important, and electricity starts to

be transported more from a region with a lower price to a region with a higher
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price. An increase in electricity demand in the state with lower price makes

the price rise in the other region within a certain amount of time. This intro-

duces a dependence between high prices in two regions. Also, the more trading

that is carried out between two regions the more dependent two regional mar-

kets become. Studying such dependencies gives a better understanding of the

market and is important to create trading policies for market participants:

electricity producers and consumers.

In this work, spot electricity prices data is collected for the time period

starting from the year 2009 to the year 2014 every half hour. Figures 2.2, 2.3,

2.4, 2.5, and 2.6 show the time series plots for New South Wales, Queensland,

South Australia, Tasmania and Victoria. Each series was split into two parts:

from the year 2009 to the year 2011 (top plot) and from the year 2012 to the

year 2014 (bottom plot). One can see that the majority of spot prices for all

of the states of Australia stay at a low price range (e.g., for New South Wales

90% of observation are smaller than AUS $ 50), but several spikes are evident

during both of the periods for all of the states. These spikes and in particular

the dependence between these spikes is of the most interest to us.
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Figure 2.2: A: Spot electricity prices for New South Wales from A: 2009 – 2011; B:
2012 – 2014.

Figure 2.3: A: Spot electricity prices for Queensland from A: 2009 – 2011; B: 2012 –
2014.
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Figure 2.4: A: Spot electricity prices for South Australia from A: 2009 – 2011; B: 2012
– 2014.

Figure 2.5: A: Spot electricity prices for Tasmania from A: 2009 – 2011; B: 2012 –
2014.
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Figure 2.6: A: Spot electricity prices for Victoria from A: 2009 – 2011; B: 2012 – 2014.

12



Chapter 3

Extremogram analysis of spot

electricity prices of Australia

3.1 Methodology

3.1.1 Measures of serial dependence

The autoregression function (ACF) is a well known and one of the most

commonly used tools for time series analysis. It is used to study dependence

within one time series. For a time series {Xt}t=1...T , it is a measure of linear

dependence between the time series at time t and the same series at time t+h.

The ACF is defined as:

ρ(h) =
cov(Xt, Xt−h)√

cov(Xt, Xt)cov(Xt−h, Xt−h)
(3.1)

The ACF is used to find correlated lags within a time series, periodic

trends and to identify white noise. The ACF in 3.1 is estimated by the sample
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ACF as follows:

ρ̂(h) =

∑T
t=h+1(Xt − X̄)(Xt−h − X̄)√∑T

t=1(Xt − X̄)2
√∑T

t=h+1(Xt−h − X̄)2
(3.2)

Another important measure of serial dependence, which is widely used

in time series analysis, is the partial autocorrelation function (PACF). It is a

measure of linear dependence between a time series at time t and the same

series at time t+h when the effect of the time series at times (t+1) ... (t+h−1)

is removed. The PACF is defined as:

φhh = corr(Xh − X̂h, X0 − X̂0) (3.3)

where X̂h and X̂0 are the regressions of Xh and X̂0 on {X1, X2, ..., Xh−1},
respectively. Similar to the ACF, the PACF is estimated with a sample partial

autocorrelation function.

The two previous functions measure the linear dependence within a time

series. However, sometimes we have several time series and we would like

to measure linear dependence between them. The cross-correlation function

(CCF) is a well-known method used in this case. Cross correlation function

is a measure of linear dependence between two time series Xt and Yt+h. It is

defined as:

ρX,Y (h) =
cov(Xt+h, Yt)√

cov(Xt+h, Xt+h)cov(Yt, Yt)
(3.4)
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The CCF in 3.4 is estimated using the sample CCF using:

ρ̂(h) =

∑T
t=h+1(Xt+h − X̄)(Yt − Ȳ )√∑T

t=h+1(Xt+h − X̄)2
√∑T

t=1(Yt − Ȳ )2
(3.5)

3.1.2 Time series modelling

In statistics, several time series models are available to represent the se-

rial dependence within a time series, its periodicity, conditional heteroskedas-

ticity, and other features. Two most commonly used time series models are

Autoregressive Moving Average (ARMA) and Integrated Autoregressive Mov-

ing Average (ARIMA) introduced in [10]. A time series is ARMA(p, q) if it is

stationary and it can be represented in the following way:

Xt = φ0+

p∑
i=1

φiXt−i +

q∑
j=0

θjεj + ωt (3.6)

with φp �= 0 and θq �= 0 and ωt is an uncorrelated white noise term with

variance of σω > 0. We can assume that Xt has mean 0. The parameters

p and q are the autoregressive and the moving average orders respectively.

The parameter q is estimated as a number of significant correlated lags in

the ACF. Similarly, the parameter p is estimated as a number of significant

correlated lags in the PACF. A time series is said to be ARIMA(p, d, q) if

�dXt = (1 − L)dXt is ARMA(p, q), where L is a lag operator (i.e., LXt =

Xt−1).

To choose the order of the ARIMA model or perform model selection, we

can use information criteria. Generally, an information criterion is a measure

of goodness-of-fit relative to the number of parameters used. It aims to select a
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model with relatively a good fit while using a minimum number of parameters.

The Akaike Information Criterion (AIC) is defined as:

AIC = 2k − 2ln(L) (3.7)

where k is a number of estimated parameters in the model and ln(L) is a

log-likelihood function. A model with minimum AIC is considered the best

compared to all other models.

Sometimes it may be interesting to model not only the series itself, but

also its variance. This is widely carried out in economics and in finance. The

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model,

introduced in [11], is used for modeling the variance. Xt follows a GARCH(m, s)

model if its conditional variance can be represented as follows:

εt = σtzt, σ2
t = α0 +

m∑
i=1

αiσ
2
t−i +

s∑
j=1

βjε
2
t−j (3.8)

where εt is a white noise term, zt is a N(0,1) random variable and σt is a

time-dependent standard deviation. Essentially, the GARCH(m, s) model is

the ARMA(p, q) model for squared series and the lag order of the model is

estimated similarly to ARMA(p, q): by the number of correlated lags in the

ACF and PACF for squared series.

3.1.3 The extremogram

The ACF, PACF and CCF described in Section 3.1.1 focus on the centre

of the distribution and do not focus on the dependence in the tails. The
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extremogram overcomes this limitation for a stationary time series and focusses

only on extreme event dependence within one or between two time series.

Nowadays, extreme value analysis is becoming ever more popular. Hence, the

extremogram is a useful addition to existing methods of extreme value analysis.

Consider a stationary time series Xt. As introduced in [4], the univariate

extremogram as a measure of dependence between extreme values is defined

as the limit (provided it exists) of the following conditional probability:

ρA,B(h) = lim
x→∞

P (x−1Xh ∈ B|x−1X0 ∈ A), h = 0, 1, 2... (3.9)

where A,B are sets that contain extreme values (usually taken as (1;∞)).

A natural estimate of the limit above is the sample extremogram:

ρ̂A,B(h) =

∑n−h
t=1 I(a−1

m Xt+h∈B,a−1
m Xt∈A)∑n

t=1 I(a−1
m Xt∈A)

(3.10)

where A,B are sets that contain extreme values and are bounded away from

0 (usually taken as (1;∞)) and am is a high empirical quantile. Observations

above am are considered extreme events.

The meaning of the extremogram is as follows: the extremogram is the

probability that given an extreme event at some time t there will be another

one at time t+ h. Here, sets {x−1X0 ∈ A} and {x−1Xh ∈ B} become extreme

in the limit, which means that probabilities of their occurance are converg-

ing to 0. One can study interesting dependencies between extreme events in

time series with this tool by changing the sets A and B, that is setting them

as upper or lower quantiles, etc. It can be particularly useful in studies of
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time series with heavy-tailed marginal distributions where the occurrence of

extreme events (shocks) is of interest. As was already mentioned above, finan-

cial or climate data oftentimes have this feature.

The univariate extremogram allows to estimate the extreme event de-

pendence within only one time series. However, in many cases, another time

series may affect the the series that is being analyzed. In this case, it is useful

to estimate the extreme event dependence between those two time series. The

cross extremogram is used for this purpose. For two time series {Xt}t=1...T and

{Yt}t=1...T , the cross extremogram is a measure of the conditional dependence

between extreme events in bivariate time series. It is defined as a limit of the

following conditional probability (provided it exists):

ρA,B(h) = lim
x→∞

P (x−1Yh ∈ B|x−1X0 ∈ A), h = 0, 1, 2... (3.11)

Similar to the univariate case, the natural estimate of the limiting condi-

tional probability is the sample cross-extremogram that is calculated as follows:

ρ̂A,B(h) =

∑n−h
t=1 I(a−1

m,Y Yt+h∈B,a−1
m,XXt+h∈A)∑n

t=1 I(a−1
m Xt+h∈A)

(3.12)

where am,X and am,Y are empirical quantiles that indicate extreme events in

time series Xt and Yt, respectively.

In simple terms, the cross extremogram values show the probability of

an extreme event occurring in one time series (Yt) at some time t + h given

the occurrence of an extreme event in another time series (Xt) at time t.

In practice, not all time series data sets are stationary. Using the ex-

18



tremogram on a nonstationary data set may lead to unreliable results. In this

case one of the time series models described in Section 3.1.2 can be fit to the

time series. And the extremogram can be estimated on the weakly stationary

residuals.

3.1.4 Inference on the extremogram

To infer significance of the sample extremogram value at some lag h, a

permutation test is used to estimate the extremogram values under the as-

sumption of independence. To carry out the permutation test, the time series

is permuted multiple times and the extremogram is re-estimated for each of the

permuted samples. In the bivariate case the permutation is carried out on pairs

of data (Xi, Yi). To estimate significance bands for a desired level α, empirical

quantiles α/2 and (1− α/2) are calculated for all of the extremogram values.

Extremogram values calculated on the original data set that lie outside of es-

timated quantiles indicate significant extreme value dependence within one or

between the time series.

As discussed in [5], confidence interval estimation for the extremogram

is another important part of the analysis. This estimation is based on the

stationary bootstrap procedure proposed in [21], which allows for the sam-

pling of blocks of random size of the same time series with replacement and

re-estimating the extremogram for each of the bootstrap samples. The station-

ary bootstrap differs from a fixed block bootstrap procedure in that the blocks

used in the stationary bootstrap have a random size that follows the geomet-

ric distribution. Its distribution mass function is P (X = x) = p(1 − p)x−1,
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where p ∈ (0; 1). A scheme of one stationary bootstrap iteration is presented

in Figure 3.1. This procedure accounts for specific time series features such as

autocorrelation, periodicity, etc. by choosing an appropriate mean block size.

To keep the dependence between the two series, resampling is carried out in

pairwise fashion for the cross extremogram.

After applying the stationary bootstrap to the time series multiple times

Figure 3.1: Stationaty bootstrap procedure for a time series {Xt}t=1...T .

and re-estimating the extremogram for each of the bootstrap samples, we can

calculate the confidence intervals for each of the extremogram values using the

(α/2)th and (1− α/2)th empirical quantiles.

An R package [20] was created for extremogram method. It includes

functions for the estimation of both univariate and cross extremograms, per-

mutation confidence intervals, and stationary bootstrap confidence intervals.

The package documentation file can be found in the Appendix.
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3.2 Univariate extremogram analysis

The methodology described in the Section 3.1 is applied to the spot

electricity prices data set described in Section 2 above. The first part of the

analysis is the estimation of the univariate extremogram. The 99.5th quantile

was chosen to study the extreme event dependence in the data set as this

quantile both significantly extreme but still has approximately 500 observa-

tions above it. As the number of the observations is sufficiently large, 99.5 can

be used as a threshold for the analysis.

We first consider the first half of the spot electricity prices data set,

from 2009 to 2011. For this period, most of the extremograms show a vivid

periodic trend with a period 48. As the data was collected once every half

hour, this means that there is a high probability given an extreme event at

time t to observe another one in the next 24, (48, 96, etc.) hours. Initial lags

(h = (1, 2, 3)) also show significant probabilities of high prices for electricity.

To perform the permutation test to check for significance of the extremogram

values, 1000 permutations were used. An example of a periodic trend of an

extremogram can be seen in Figure 3.2 – the univariate extremogram for New

South Wales. It has the clearest periodicity compared to other states. The

rest of the univariate extremograms for the data set 2009 – 2011 can be found

in the Appendix (p. 84, 85).

A possible reason for the periodicity in the given time series is that only

25% of the electricity was consumed by residents for individual use. Another

25% is consumed for commercial use (retail, services, etc.), and the remain-

ing is consumed by various industries. Industries usually have high electricity
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Figure 3.2: A: Univariate extremogram plot for NSW (2009 – 2011); Stationary bootstrap
confidence intervals with mean block size B: 24; C: 50; D: 100.

demand at the start of the working day and low demand at nighttime. As

electricity prices depend on the demand, this distribution of consumption may

introduce a periodic trend. This may also explain the absence of periodicity

in Tasmania. This region does not have any major industries located in it and

hence the electricity demand is distributed more evenly throughout the day.

The stationary bootstrap procedure was applied to estimate confidence

intervals for each of the extremograms (with 1000 replications). It is evident

that a mean block size of 100 best captures the periodic dependence compared

to other mean block sizes that were tried - 24 and 50. Smaller block sizes allow

us to only capture high probabilities for extreme event dependence at lag 48

(which corresponds to 1 day ahead) and lag 96 (two days ahead), respectively.

The small number of significant values of the extremogram at lag 144 (three

days after time t) is missed in both cases as the mean block size in too small

to capture the serial dependence at higher lag orders.
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As mentioned above, the univariate extremogram for Tasmania does not

exhibit a periodic trend (Figure 3.3). The plot decays slowly starting from

probability values of about 70% at lag 1 to almost 0 at the lag 140. There is

some evidence of an increase in probability values at lag 48, but it does not

result in a clear periodic trend that the rest of the states exhibit.

Again, block size for the stationary bootstrap appears to work best for

Figure 3.3: A: Univariate extremogram plot for TAS (2009 – 2011); Stationary bootstrap
confidence intervals with mean block size B: 24; C: 50; D: 100.

Tasmania. A block size 24 captures only the main decreasing trend without

putting any emphasis on the lag 48. The reason for this is that when using

a mean block size of 24 the probability of obtaining a block size 48 is very

small. Using a block size of 50 provides a better idea of the specific features

of the extreme dependence in Tasmania, but it decays quicker than the true

extremogram. Hence, to capture all of features of the data a mean block size

of 100 is used in the rest of the extremogram analysis. It is used to estimate

confidence intervals if no other mean block size is.
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As the next step, a time series model was fitted to the time series ex-

plain the dependence between extreme events. The extremogram procedure

was applied to the model’s residuals to estimate the remaining dependence.

The goal of this step was to find a model that eliminates the majority of the

extreme value dependence within each of the time series in order to provide a

better understanding of the underlying process.

We first used as ARIMA model (see Section 3.1.2). Models were es-

timated using the software MATLAB. The best ARIMA model was chosen

by minimizing the AIC for each of the states. ARIMA models with one sea-

sonal difference explained more extreme event dependence compared to other

ARIMA models. Nevertheless, these models still showed some visible signs

of dependence. In addition, although the seasonal difference was applied to

the data set, the seasonal trend was still preserved in the extremogram plots.

The greatest portion of the extreme event dependence within a series model

was explained by ARIMA(2,0,7)(3,1,1)48 model for New South Wales. The

extremogram for the residuals after fitting this ARIMA model is presented

in Figure 3.4. Extremogram plots for the rest of the states are listed in the

Appendix (p. 90, 92).

As all of the series have multiple spikes in electricity prices, a GARCH(1,1)

model was fitted to the data. The model does not give any visible improvement

on explaining extreme event dependence as extremogram values estimated on

its residuals are close to those of the original data set. The periodic trend ob-

served in most of the series is still preserved, as GARCH by definition does not

account for periodicity. For that reason, the state where GARCH(1,1)provides

an improvement is Tasmania (Figure 3.5) as it does not have any clear peri-
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Figure 3.4: A: Univariate extremogram plot after fitting an ARIMA(2,0,7)(3,1,1)48 to
NSW (2009 – 2011); B: Stationary bootstrap confidence intervals with mean block size =
100;

odic trend. Hence, for this state the use of the GARCH(1,1) model to explain

majority of extreme value dependence can be considered satisfactory.

For the period 2009 – 2011, the time series model that explained most of

the extreme event dependence for all of the states was a combination of ARIMA

and GARCH(1,1) models. First, an ARIMA model was fitted to account

for the autocorrelation and seasonality in the data. Then, a GARCH(1,1)

was fitted to the ARIMA residuals to explain the spikes in electricity prices.

The univariate extremogram was estimated on the resulting residuals for each

of the series. For almost all of the states, a seasonal ARIMA was essen-

tial before fitting the GARCH model, excluding Victoria. For Victoria, an

ARIMA(0, 1, 0)(0, 1, 0)48 (first difference and a seasonal difference) was suffi-

cient (the extremogram plot can be found in Figure 3.6).

Next we consider the data from 2012 – 2014. For this period, all of
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Figure 3.5: A: Univariate extremogram plot after fitting a GARCH(1,1) to residuals
for TAS (2009 – 2011); B: Stationary bootstrap confidence intervals with mean block size =
100;

the states show that the extreme event dependence decreased compared to the

earlier period. For those states that had a periodic trend (all of the mainland

states), the period becomes less visible but still can be observed. The state

where the periodicity remains the most noticeable is Victoria (Figure 3.7: a

comparison of the univariate extremograms for period 2009 – 2011 and 2012

– 2014. Among the rest of the states, the one that exhibits the most visible

changes in the dependence of extreme events compared to the earlier period

is Queensland. Having a very clear periodic trend in the earlier period of the

analysis, the state has almost no dependence left for the later period. A com-

parison of univariate extremograms for period 2009 – 2011 and 2012 – 2014 is

in Figure 3.7. The rest of the univariate extremogram figures for the period

2012 – 2014 are presented in the Appendix (p. 86 – 88).

A possible reason for the decreasing dependence within the series could
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Figure 3.6: A: Univariate extremogram plot after fitting an ARIMA and GARCH(1,1)
to residuals for VIC (2009 – 2011); B: Stationary bootstrap confidence intervals with mean
block size = 100;

be due to the climate change policy of Australian Government described in the

Section 2. Some of the electricity was not traded through NEM from the year

2012. Fewer spikes can be observed in time series Figures 2.2 – 2.6. Hence, as

mentioned at the beginning of this section, the series exhibit less dependence

for higher quantiles.

Similar to the period of 2009 – 2011, a mean block size of 100 for the

stationary bootstrap procedure gives the most accurate estimation of the con-

fidence intervals for the extremogram. One can see that the majority of the

features of the extremogram plots for this period are captured with this mean

block size.

Following the same scheme of analysis that was carried out for the 2009

– 2011 period, ARIMA models were fitted to each of the series to partially

explain some of the extreme value dependence. For the later period, ARIMA
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Figure 3.7: A: Univariate extremogram plot for A: VIC (2009 – 2011); B: QLD (2009
– 2011); C:VIC (2012 – 20114); D: QLD (2012 – 2014);

models work marginally better than for the earlier period as more extreme

event dependence was explained by each of the models. Again, the ARIMA

model was able to explain more dependence for New South Wales (Figure 3.8)

compared to all other states (ARIMA model that was fitted to New South

Wales data set is ARIMA(3,0,7)(4,1,2)48). For the rest of the states more de-

pendence still remains in the extremogram of the ARIMA residuals.

The next time series model that was fitted is the GARCH(1,1) model.

For the later period, when the extreme event dependence was less evident for

the majority of the states, and most of the periodicity was gone, GARCH(1,1)

model performs fairly well. The majority of the dependence can be explained

by it and the univariate extremogram estimated on its residuals results in

the plot with the probability values mostly falling inside the 95% confidence

bands produced by the permutation procedure. Notice that the majority of

extremogram values are close to 0. Bootstrap confidence intervals support the
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Figure 3.8: A: Univariate extremogram plot after fitting an ARIMA(3,0,7)(4,1,2)48 to
NSW (2012 – 2014); B: Stationary bootstrap confidence intervals with mean block size =
100;

statement, as for most of the lags, two confidence bands are close to the value

of 0. This means that the vast majority of lags show an insignificant (if any)

dependence between extreme events. As an example, an extremogram for the

residuals after fitting a GARCH(1,1) to Victoria is presented in Figure 3.9.

Extremogram results for the rest of the states can be found in the Appendix

(p. 99, 101).

Univariate extremogram analysis was also performed on the whole data

set (2009 – 2014) for each of the states. We can observe two general tenden-

cies among the univariate extremogram plots: univariate extremograms for

the whole data set look either identical to those for the period 2009 – 2011

(e.g., the extremogram for New South Wales in Figure 3.10, Tasmania and

Victoria in the Appendix (p. 89, 90) or have more significant values at lags

0, 48, 96, and 144 but the peak values for those lags are smaller than those
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Figure 3.9: A: Univariate extremogram plot after fitting a GARCH(1,1) to residuals for
VIC (2012 – 2014); B: Stationary bootstrap confidence intervals with mean block size = 100;

for the period 2009 – 2011. Two examples for this are Queensland and South

Australia, which are presented in the Appendix, (p. 88).

The parts B,C and D (Figure 3.10) of the univariate extremogram plots

for the whole data set suggest that the mean block size in the stationary boot-

strap for the confidence intervals calculation should still be 100.

For the whole data set, the first attempt to explain the extreme event

dependence with ARIMA models was not successful as most of the existing

dependence was left in ARIMA residuals. Univariate extremogram plots can

be seen in Figure 3.11 and in the Appendix (p. 95, 96). We observe unusual

features that do not appear in any of the subsets of the data. Several states

have spikes in their extremogram values every second lag (New South Wales,

Queensland, South Australia). Tasmania also has spikes that occur every sixth

lag. Neither the earlier or later half of the data set have patterns similar to

this in the extremogram plots for the residuals after fitting the ARIMA model.
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Figure 3.10: A: Univariate extremogram plot for NSW (2009 – 2014); Stationary boot-
strap confidence intervals with mean block size B: 24; C: 50; D: 100.

Similar to the first half of the data set, a GARCH(1,1) model was in-

sufficient to explain the majority of the extreme event dependence because

of the seasonality present in the data. The combination of a ARIMA(0,1,0)

model and a GARCH(1,1) model was found to be optimal in eliminating serial

dependence within the series. An example of the univariate extremogram esti-

mated on the residuals after fitting a ARIMA and a GARCH model to South

Australia can be seen in Figure 3.12. The rest of the extremogram plots can

be found in the Appendix (p. 104, 106).

To conclude: the period 2012 – 2014 has less extreme event dependence

than the earlier one, and most of the dependence is concentrated in the im-

mediate lags (1 – 3). Less periodic trend and smaller extremogram values for

the period 2012 – 2014 indicate a smaller probability of another extreme event

occurrence in the future. Models selected for the second half of the data set

are easier and contain less (or even no) periodic dependence in them. Models
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Figure 3.11: A: Univariate extremogram plot after fitting an ARIMA(2,0,1)(1,1,1)48
to QLD (2009 – 2014); B: Stationary bootstrap confidence intervals with mean block size =
100;

for the whole data set exhibit dependence that is a mixture of the extremal

dependence between the first and second periods.

As a last step in the univariate extremogram analysis, a simulation of the

chosen time series models for all data sets (ARIMA and GARCH for the period

2009 – 2011, GARCH for 2012 – 2014, ARIMA(0,1,0) and GARCH for 2009

–2014) was performed to re-create a time series with features similar to those

of the original data set. Unfortunately, this this analysis failed to produce

reasonable results, as the estimated models were non-stationary (the sum of

the coefficients is greater than 1 both for GARCH and ARIMA models). The

reason for such behavior is that the vast majority of observed electricity prices

(roughly 90%) are less that 50 Australians dollars. At the same time, large

occasional spikes can be found in all of the data sets, and at times electricity

prices can reach a value more than 8000 AUS$ which causes non-stationarity

in the time series.
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Figure 3.12: A: Univariate extremogram plot after fitting a GARCH(1,1) to residuals
estimated for first differenced series for South Australia (period: 2009 – 2014); B: Stationary
bootstrap confidence intervals with mean block size = 100;
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3.3 Cross extremogram analysis

The univariate extremogram provides information about the extremal

dependence within one time series. As some of the states in the National

Electricity Market have interconnectors between them, it allows electricity to

be transported from one state to another and be sold there. This kind of

market dependence could possibly influence price dependence between states

(if a price in New South Wales becomes higher than in Queensland, NSW be-

gins to increase the demand by buying its electricity which makes the price in

Queensland higher). For this reason, examining cross extremogram plots will

give additional information about the dependence of extreme events between

two time series and indicate some similarities in two states’ electricity market

trends.

An example of the similarities in two states’ electricity market trends is

the dependence between extreme events in South Australia and New South

Wales for the period 2009 – 2011 in Figure 3.13. The figure shows probabil-

ities of high electricity prices in South Australia given high electricity prices

in New South Wales for lags 0 to 150. We can see a strong periodic trend in

the plot (similar to those seen in univariate extremogram plots) but here the

two states are not connected. However, both states have a strong dependence

on electricity import. Hence, it is plausible for them to have similar market

trends.

The main trend that is observed in all the cross extremogram plots is

the same as for the univariate extremograms: the second half of the data set

has less dependence than the first half. A possible reason of a decrease of the
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Figure 3.13: A: Cross extremogram for NSW conditioning on SA (2009 – 2011); B:
Cross extremogram for SA conditioning on NSW (2009 – 2011)

dependence between the series as due to the climate chage policy. It forces

wind and water power plants, which produce cheaper electricity, to become

more popular. Hence, less trading between regions was required in the sec-

ond half of the period. An example is in Figure 3.14: cross extremograms for

Queensland and New South Wales for two separate parts of the data set. We

can see that the extreme event dependence between two series significantly

decreased, and two states almpst have no dependence in the second half of the

period, even though New South Wales in the only source of electricity export

for Queensland.

Another finding was that for all states the highest dependence may be

found with states that have the greater number of interconnectors between

them compared to states connected by the smaller number of interconnectors

or not connected at all. An example of this statement is electricity prices in

New South Wales conditioning on Queenland and Victoria (Figure 3.15). Only
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Figure 3.14: A: Cross extremogram for QLD conditioning on NSW (2009 – 2011); B:
Cross extremogram for QLD conditioning on NSW (2012 – 2014);

one interconnector connects Victoria and New South Wales and the probabil-

ity of observing a high price in New South Wales if there is a high price in

Victoria is smaller then if there is a high price in Queenland. At the same time,

Queensland and New South Wales are connected by two interconnectors. This

is true for the rest of the states, and another example can be found in the

Appendix (p. 106).

As we already discussed above, for 2012 to 2014, the extreme event

dependence between states becomes significantly lower than for years 2009 –

2011. The only state that still remains dependent with the rest of the states

is Victoria. Although extremogram values themselves are close to 0 and fall

within 95% significance bands, bootstrap confidence intervals still show a prob-

ability of them being significant. Less periodicity can be observed, but we can

still see a spike in the extremogram values at lag 48 in the bootstarp confidence

intervals. All of the cross extremograms are listed in the Appendix (p. 107,
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Figure 3.15: A: Cross extremogram for NSW conditioning on QLD (2009 – 2011); B:
Cross extremogram for NSW conditioning on VIC (2009 – 2011);

108). The rest of the cross extremograms for this period are uncorrelated at

all lags from 0 to 150.

The whole data set includes states whose cross extremogram shapes

mimic those for the first half (years 2009 – 2011). But the cross extremogram

values are affected by the second half of the data set that did not have a much

dependence between the series. Hence, the cross extremogram values are lower

for the whole data set compared to the first half but the relationship is still

preserved. States that follow this described shape of the cross extremogram

plot are New South Wales and Queensland. An example of this is in the Ap-

pendix(p. 109). Tasmania has almost no extreme event dependence for the

whole data set. The only state that in connected to it is Victoria, and a negli-

gible amount of dependence is observed between high electricity prices in these

states. The cross extremogram plot can be found in the Appendix (p. 108).

Generally, all cross extremograms estimated for the whole period of
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Figure 3.16: A: Cross extremogram for QLD conditioning on NSW (2009 – 2014); B:
Stationary bootstrap confidence intervals with mean block size = 100;

analysis also show all expected relationship as well as the first half of the data

set, i.e., states that are connected by a greater number of interconnectors tend

to have stronger extreme value relationship than those that have less inter-

connectors or those that are not connected at all. A good example of this is

South Australia. Figure 3.17 shows the cross extremogram with Victoria. The

two states are connected by two interconnectors and, hence, transportation of

electricity is easiest compared to all other states.

A time series model that explains most of the extreme event dependence

within each of the series was estimated in the previous section. Univariate

extremograms estimated for models’ residuals show almost no remaining de-

pendence. Now, cross extremograms were also estimated for the residuals after

fitting time series models to see whether any dependence remains between any

two series. The results show that the vast majority of the dependence between

the series is also due to the underlying ARIMA and GARCH processes and all
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Figure 3.17: A: Cross extremogram for SA conditioning on VIC (2009 – 2014); B:
Stationary bootstrap confidence intervals with mean block size = 100;

cross extremograms show almost no remaining dependence. Figure 3.18 shows

the cross extremograms of Victoria and each of the states after a model was

estimated for all of them are shown. The same results were obtained for all of

the periods that were analyzed for all of the states.
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Figure 3.18: Cross extremograms of VIC (2009 – 2014) after time series models were
fitted to all of the states A: Conditioning on QLD; B: Conditioning on SA; C: Conditioning
on TAS; D: Conditioning on NSW.
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Chapter 4

Quantile regression analysis of

spot electricity prices of

Australia

4.1 Methodology

Quantile regression (QR) was first introduced in [25]. It was proposed

as an extension of Least Absolute Deviations model, a robust alternative of

the Least Squares Estimate, the most widely used regression method in statis-

tics. Quantile regression is widely used for data sets that do not meet the

assumption of normally distributed error terms. An additional feature of the

Quantile Regression is that it allows to estimate the dependence between two

data sets not only for a median (as Least Absolute Deviations), but also for

various other quantiles. Regression coefficients could change when estimated

for different quantiles giving more information about the dependence between
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a response and predictors. In addition, [26] extends the idea of quantile re-

gression to time series data sets. Together all of these reasons make quantile

regression another useful tool to study extreme event dependence in time se-

ries data sets.

The setup of quantile regression is as follows, let XT×p = (X1, X2, ... Xp)

be a p-dimentional matrix. Also, Xi = (X1i, X2i, ... , XiT ), i = 1, ... p where

p the number of predictors and T is the sample size. This matrix is a matrix of

predictors for regression, and is also known as a design matrix. In time series

analysis lags of the predictors or the response variable can also be included in

the design matrix. Also, let {yt : t = 1, ..., T} be a sample from a time series

random variable.

As already mentioned, the most commonly used regression model in

statistics is Least Squared Estimation (LSE). Its solution minimizes the sum

of squares of regression error terms. The regression estimate, θ̂, this defined by:

θ̂ = argmin
θ

||Yt −X�
t θ||2 (4.1)

The solution for the least squares problem is θ̂ = (X�X)−1XY. One

downside of LSE is that it requires error terms to be normally distributed for

statistical inference (εt N(0, σ2I)). However, this assumption is often violated

with the distribution of error terms often skewed. As LSE estimates a mean

trend, it is highly affected by outliers. Another model, Least Absolute Devi-

ations, is an L1-norm regression models, and it is able to avoid this problem.

Similar to the Least Squares regression problem, the LAD estimate, θ̂, satisfies

the following:
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θ̂ = argmin
θ

|Yt −X�
t θ| (4.2)

The LAD estimates the median trend which is more robust compared

to LSE. Quantile regression is a generalization of the LAD regression problem

that estimates not only a median, but any other regression quantiles. If θ̂(τ th),

for 0 < τ < 1, is a regression quantile which is defined as a solution to the

following minimization problem:

min
θ∈Rp+1

T∑
t=1

ρτ (Yt −X�
t θ) (4.3)

where ρ(u) = u(τ − I(u < 0)) is a quantile loss function, then θ̂(τ th) is called

the conditional quantile function of Yt. Equation 4.3 can also be rewritten as:

min
θ∈Rp+1

[
∑

t∈{t:Yt≥X�
t θ}

τ |Yt −X�
t θ|+

∑
t∈{t:Yt<X�

t θ}
(1− τ)|Yt −X�

t θ|] (4.4)

The solution to quantile regression, Q̂(τ |xt) = x�t θ̂(τ
th), is called a condi-

tional quantile function. It obtains a line of fit that has 100τ% of observations

above it and 100(1− τ)% of observations below it. Least Absolute Deviations

regression is a special case of the quantile regression problem with τ = 0.5. As

we are focussed on extreme value dependence among high electricity prices,

we consider only very high quantiles of the time series data set. Estimation

of the quantile regression problem is performed using a linear programming

algorithm applied to the minimization problem (4.3) above.

A model with many unimportant predictors complicates its interpreta-
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tion and may decrease its prediction accuracy. [32] summarizes several variable

selection methods that can be used for the quantile regression. Two of the algo-

rithms were used to perform variable selection in this work are Least Absolute

Shrinkage and Selection Operator (LASSO), proposed in [27], and Smoothly

Clipped Absolute Deviation (SCAD), introduced in [16]. Both of these meth-

ods are examples of penalized regression that simultaneously perform variable

selection and coefficient estimation.

The LASSO is an L1 penalty which was originally introduced for the

multiple regression model. It was first applied to quantile regression in [24].

Consider data sets XT×p = (X1, X2, ... Xp) and {Yt : t = 1, ..., T} as in the

previous section. Then LASSO is defined as:

min
θ∈Rp+1

T∑
t=1

ρτ (Yt −X�
t θ) subject to

p∑
j=1

|θj| ≤ λ (4.5)

where λ ≥ 0 is called a tuning parameter that controls the amount of regular-

ization. Increasing λ leads to more shrinkage of the regression coefficients to

0 or shrinks them exactly to 0.

The SCAD penalty is usually defined as using its first derivative:

p′(θ) = λ
{
I(θ ≤ λ) +

(aλ− θ)+
(a− 1)λ

I(θ > λ)
}

(4.6)

for θ > 0, where a > 2 and λ > 0 are two tuning parameters that control

the amount of regularization, and p(θ) is the SCAD penalty function. Here

(u)+ = min(0, u) denotes the positive part of u.

Both of the penalties are symmetric around the origin. LASSO is convex,
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and its penalty increases linearly with a magnitude of the coefficient. This

means that larger coefficients receive more shrinkage. The SCAD penalty

function is also non-convex and it has the same shape as LASSO around the

origin, but it becomes parallel to x-axis as it moves away from the origin. This

allows SCAD to penalize large and small coefficients equally, which results in

unbiased estimates for larger coefficients.

4.2 Quantile regression analysis

The method described in the previous section is now applied to the spot

electricity prices of Australia. The whole data set of spot electricity prices was

used (compared to Sections 3.2 and 3.3 where it was split into two halves).

To estimate the quantile regression relationship, τ = 0.995 was used, and a

α = 0.05 significance level was chosen as a general rule to classify a variable

as a significant predictor.

4.2.1 Quantile Regression analysis of electricity prices

in New South Wales

The first part of the analysis involves fitting a quantile regression model

to each of the variables using only one other variable as a predictor, to find

variables and lags that are significantly associated with the response. This was

performed to compare whether variables that were estimated to have a signifi-

cant extreme event relationship using the cross extremogram (Section 3.3) will

have a significant association using an alternative method. To narrow down

the choice of lags, only lags 1, 48 and 96 were used as they were found to be
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most dependent in the previous chapter.

Overall we found that estimated dependences disagree with what we

would expect from the relationships between states’ electricity markets. For

example, New South Wales, was found to have a strong relationship with states

South Australia at lags 1 and 96, and Victoria at lags 48 and 96. Results from

the quantile regressions are summarized in the Appendix (p. 127). All of these

variables are significant at the α = 0.05 level. As was discussed in the Section

2, New South Wales and Victoria are connected by one interconnector. New

South Wales is connected by two interconnectors with Queensland, but none

of the mentioned lags are significant predictors. Also, New South Wales is

not connected to South Australia, but lags 1 and 48 are significant predictors,

which might come from similar market trends. Tasmania was found to be an

insignificant predictor. Both models that only include a lag of Tasmania as a

predictor would provide a similar fit to a model that only includes an intercept

term.

In the next step, lags of New South Wales were added as predictors in

each of the models in Table A.1. The models fit of these are given in the

Appendix (p. 128). Here, only Victoria at lag 1 is still significant at the

α = 0.05 level. New South Wales at lag 1 is significant in the presence of each

state (Queensland, South Australia, Tasmania, and Victoria) at lag 1. New

South Wales at lag 96 is significant together with Victoria. South Australia

remains significant (at α = 0.1 level) only at lag 96. This might be due to the

possibility for electricity to be resold between two states through Victoria.

Then lags 1, 48, and 96 of each state (including New South Wales itself)

were included as predictors and quantile regression models were estimated for
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each of these. The results of models fit are presented in Tables 4.1 and 4.2.

None of the models have all three significant predictors. Victoria at lag 96 is

significant in the presence of the rest of the Victoria lags and South Australia

at lag 96 is significant in the presence of lags of South Australia. Hence, these

two variables are more useful in predicting the 0.995th quantile of New South

Wales than the electricity price at lag 48 in New South Wales itself. In the

model that includes lags 1, 48 and 96 of New South Wales all predictors are

insignificant.

Finally, lags 1, 48, and 96 of each of the states were included with lags

Intercept QLD (lag 1) QLD (lag 48) QLD (lag 96)
8.43743
(0.89577)

2.03110
(0.09340)

0.36750
(0.81481)

0.08534
(0.26461)

Intercept SA (lag 1) SA (lag 48) SA (lag 96)
78.69076
(0.00007)

0.33151
(0.10141)

0.56527
(0.01240)

0.65166
(0.00000)

Intercept VIC (lag 1) VIC (lag 48) VIC (lag 96)
-7.76183
(0.86678)

0.82192
(0.35083)

1.69678
(0.08523)

1.06722
(0.02199)

Intercept TAS (lag 1) TAS (lag 48) TAS (lag 96)
126.26276
(0.00000)

0.00526
(0.94502)

-0.00824
(0.90980)

0.05014
(0.83152)

Table 4.1: Estimated QR models for NSW using each of the other states at lags 1, 48
and 96 as predictors, τ = 0.995. p-values given in parenthesis.

Intercept NSW (lag 1) NSW (lag 48) NSW (lag 96)
-35.86229
(0.55957)

3.34828
(0.14895)

0.55775
(0.27581)

-0.00404
(0.90427)

Table 4.2: Estimated QR models for NSW using NSW at lags 1, 48 and 96 as predictors,
τ = 0.995. p-values given in parenthesis.

1, 48 and 96 of New South Wales. The results are presented in the Appendix

(p. 129). It is evident that the combination of all variables makes all of the
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predictors included in a model insignificant, except New South Wales. Lag 1

of New South Wales is significant in the presence of Victoria and Tasmania,

and lag 48 is significant in the presence of Queensland and Victoria. When

lags 1, 48 and 96 of New South Wales are combined together with the same

lags of South Australia, New South Wales is significant at lag 96. None of

the predictors are significant in this model, not even South Australia at lag 96

that was significant in the previous models.

We can see that estimated coefficients for lags of New South Wales are

consistent among all of the models. However, the other predictor’s coefficients

are notably different, that is, some change their signs when New South Wales

is added to the model. An example of such predictors are Queensland at lags

1 and 48.

All of the states, excluding Tasmania, strongly depend on the periodic

market trend, which might affect the models estimated above. To eliminate

this general tendency of the electricity market, all of the series were deseason-

alized. Usually, a Least Squares model with indicator variables for each period

is used to deseasonalized a data set, but, as was mentioned in Section 4.1, the

model is highly affected by outliers, and all data sets involved in the analysis

have multiple spikes. Hence, to increase efficiency, a quantile regression model

with τ = 0.5 was used instead (with indicator variables for each 30 minute

interval as predictors) to eliminate the daily periodic trend. Then, all the QR

models were re-estimated on the resulting residuals. Several new results were

found.

When the periodic trend is removed from all of the variables, for models

with one predictor, Queensland at lag 48, South Australia as lags 1 and 48
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and Victoria at lag 96 become important predictors. Lags 1 and 48 of Victoria

are no longer useful predictors for electricity prices in New South Wales when

used alone. The results are summarized in the Appendix (p. 130).

For models with one predictor and a corresponding lag of New South

Wales the latter is significant at lags 1 and 48 when combined with South

Australia at lags 1 and 48, respectively. None of the predictors are significant

in this type of models. The results are summarized in the Appendix (p. 131)

As for models with lags 1, 48 and 96 from each state, the model with

lags of Victoria and Queensland finds that two predictors (lags 1 and 96 of

Queensland and lags 1 and 48 of Victoria) are significant for the deseasonalized

data set in each of the models. It is surprising that Queensland at these lags is

not significant in any other combinations of predictors. The results are shown

in Table 4.3. Also, none of the New South Wales lags become significant when

the periodic trend is removed (see Table 4.4).

For models containing lags 1, 48 and 96 of each state and the same lags

Intercept QLD (lag 1) QLD (lag 48) QLD (lag 96)
47.89946
(0.00000)

2.02937
(0.00001)

0.36881
(0.55244)

0.08624
(0.00000)

Intercept SA (lag 1) SA (lag 48) SA (lag 96)
98.74169
(0.00000)

0.33173
(0.00000)

0.56544
(0.21630)

0.65199
(0.00005)

Intercept VIC (lag 1) VIC (lag 48) VIC (lag 96)
75.05567
(0.00000)

0.82311
(0.00000)

1.69772
(0.00000)

1.06755
( 0.36499)

Intercept TAS (lag 1) TAS (lag 48) TAS (lag 96)
91.77145
(0.00743)

0.00433
(0.95153

-0.00799
(0.97277)

0.04386
(0.91649)

Table 4.3: Estimated QR models for NSW using each of the other states at lags 1, 48
and 96 as predictors for the deseasonalized data, τ = 0.995. p-values given in parenthesis.

49



Intercept NSW (lag 1) NSW (lag 48) NSW (lag 96)
58.88936
(0.00000)

3.34964
(0.22688)

0.55901
(0.20571)

-0.00503
(0.95275)

Table 4.4: Estimated QR models for NSW using NSW at lags 1, 48 and 96 as predictors
for the deseasonalized data, τ = 0.995. p-values given in parenthesis.

of New South Wales the results, which can be found in the Appendix (p. 132),

are similar to those of the original data set. The only difference is that lag 1 of

New South Wales becomes significant for the model containing Victoria, and

New South Wales at lag 48 becomes significant in the presence of Tasmania

lags.

4.2.2 Quantile Regression analysis of electricity prices

in Queensland

We next analyzed Queensland. The 99.5th quantile was used as the τ

parameter for quantile regression. Queensland is connected only to New South

Wales by two interconnectors, and these states’ markets are highly dependent.

Nevertheless, these two states do not have a strong association between them.

Other variables are significant predictors for electricity prices in Queensland:

South Australia at lags 1 and 96, and Victoria at lags 48 and 96. The results

are in teh Appendix (p.133). Some of these dependencies may be as a result

of a general market trend that affects most of the states. This was examined

separately using deseasonalized data set later in this section. Following the

same scheme of analysis as was used for New South Wales, lags of electricity

prices in Queensland were added to the QR models above. The results are

summarized in the Appendix (p. 134). We can see that Queensland at lag

50



1 is significant in every model where it was used. The model that contains

Victoria and Queensland at lag 96 has Queensland significant at lag 96. For

all of the models, none of the predictor variables is significant. Hence, similar

to New South Wales, past electricity prices of Queensland are more important

in estimating a current price compared to prices in other states.

Models in Table 4.5 contain lags 1, 48 and 96 of each of the other states

and Queensland itself in Table 4.6. From the Table 4.6 it is evident that none

of the lags of Queensland are significant when combined together in one model.

Among models containing other states as predictors (Table 4.5) lag 1 of South

Australia is not significant in the presence of other lags of South Australia.

However, lag 48 becomes significant when used together with lags 1 and 96 of

South Australia. In the model with New South Wales none of the variables is

significant at the α = 0.05 level. Only lag 48 of Victoria shows significance at

the α = 0.1, which is surprising as Queensland is not connected to Victoria.

In the presence of all the lags of Victoria, lag 96 was the only significant lag in

the model. None of the Tasmania lags are significant when they are combined

in the same model.

The combination of lags 1, 48 and 96 of Queensland and each of the

other states in NEM does not reveal any new dependencies. With the presence

of all six predictors, lags 1 of Queensland are significant in all of the models

except the one containing South Australia. Lag 48 of Queensland is significant

only in the presence of New South Wales. These results are summarized in

teh Appendix (p. 135).

Several other relationships between Queensland and the rest of the states

were found after the periodic trend was removed from all of the time series.
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Intercept NSW (lag 1) NSW (lag 48) NSW (lag 96)
8.43743
(0.89577)

2.03110
(0.09340)

0.36750
(0.81481)

0.08534
(0.26461)

Intercept SA (lag 1) SA (lag 48) SA (lag 96)
78.69076
(0.00007)

0.33151
(0.10141)

0.56527
(0.01240)

0.65166
(0.00000)

Intercept VIC (lag 1) VIC (lag 48) VIC (lag 96)
-7.76183
(0.86678)

0.82192
(0.35083)

1.69678
(0.08523)

1.06722
(0.02199)

Intercept TAS (lag 1) TAS (lag 48) TAS (lag 96)
126.26276
(0.00000)

0.00526
(0.94502)

-0.00824
(0.90980)

0.05014
(0.83152)

Table 4.5: Estimated QR models for QLD using each of the other states at lags 1, 48
and 96 as predictors, τ = 0.995. p-values given in parenthesis.

Intercept QLD (lag 1) QLD (lag 48) QLD (lag 96)
-35.86229
(0.55957)

3.34828
(0.14895)

0.55775
(0.27581)

-0.00404
(0.90427)

Table 4.6: Estimated QR models for QLD using QLD at lags 1, 48 and 96 as predictors,
τ = 0.995. p-values given in parenthesis.

Three new variables become significant for the deseasonalized data set when

used as a predictor alone: New South Wales and South Australia each at lag

48 and Tasmania at lag 96. These relationships are relatively weak compared

to the general market trend affecting all of the series. Thus, the two predictors

are not significant for the original data set. One other variable (Victoria at lag

96) is no longer a valuable predictor. Hence, the significance of these variables

for the original data set is due to the seasonal market trend. The results for the

quantile regression fit for each on the variables and lags for a deseasonalized

data set are presented in the Appendix (p. 136).

Depersonalizing the data set also shows that when lags 1, 48 and 96 of

each state are combined together, New South Wales and South Australia are
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significant at lags 1 and 96. Victoria is significant at lags 1 and 48. Apart from

South Australia, which is significant at each lag when used alone as a predictor,

lags of New South Wales and Victoria, which are not significant when used

alone, now show significance when combined together. The opposite is also

true, i.e. lags 96 of New South Wales and Victoria are significant when used

alone but become insignificant when combined together with other lags of the

same state.

For the remaining analysis performed on the deseasonalized data set the

Intercept NSW (lag 1) NSW (lag 48) NSW (lag 96)
47.89946
(0.00000)

2.02937
(0.00001)

0.36881
(0.55244)

0.08624
(0.00000)

Intercept SA (lag 1) SA (lag 48) SA (lag 96)
98.74169
(0.00000)

0.33173
(0.00000)

0.56544
(0.21630)

0.65199
(0.00005)

Intercept VIC (lag 1) VIC (lag 48) VIC (lag 96)
75.05567
(0.00000)

0.82311
(0.00000)

1.69772
(0.00000)

1.06755
(0.36499)

Intercept TAS (lag 1) TAS (lag 48) TAS (lag 96)
91.77145
(0.00743)

0.00433
(0.95153)

-0.00799
(0.97277)

0.04386
(0.91649)

Table 4.7: Estimated QR models for QLD using each of the other states at lags 1, 48
and 96 as predictors for the deseasonalized data, τ = 0.995. p-values given in parenthesis.

results are similar to those of the original data set. The quantile regression

models fit are presented in the Appendix (p. 137 – 139).

4.2.3 Quantile Regression analysis of electricity prices

in South Australia

South Australia is the state that is heavily dependent on market con-

ditions as it imports up to 25% of energy consumed within the state. The
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major source of import to the state is electricity produced in Victoria. For the

quantile regression with a single predictor (Table 4.8), Victoria is significant

is lags 1 and 48. These are, as expected, the only two significant predictors

for South Australia.

The addition of corresponding lags of South Australia reveals results to

Intercept QLD (lag 1) Intercept NSW (lag 1)
135.47807
( 0.12345)

2.11332
(0.17252)

-68.05331
(0.94861)

7.74540
(0.80880)

Intercept QLD (lag 48) Intercept NSW (lag 48)
210.32955
(0.00000)

0.43123
(0.43123)

28.45065
(0.89325)

3.97437
(0.49000)

Intercept QLD (lag 96) Intercept NSW (lag 96)
218.47606
(0.03322)

0.32723
(0.80739)

165.36115
(0.64301)

1.28745
(0.86280)

Intercept TAS (lag 1) Intercept VIC (lag 1)
234.79405
(0.00783)

0.02628
(0.98666)

-27.70381
(0.58966)

5.90046
(0.00000)

Intercept TAS (lag 48) Intercept VIC (lag 48)
237.73996
(0.00086)

0.01787
(0.98619)

9.59829
(0.76088)

4.67917
(0.00000)

Intercept TAS (lag 96) Intercept VIC (lag 96)
238.74236
(0.07047)

0.01755
(0.99396)

179.12949
(0.35350)

1.03707
(0.84696)

Table 4.8: Estimated QR models for SA using one predictor at lag h (specified separately
for each model), τ = 0.995. p-values given in parenthesis.

the two previous states. For the models that contain two predictors, only lags

of South Australia itself are significant. South Australia at lag 1 is significant

in the presence of Queensland, New South Wales or Tasmania. Lags 48 and 96

of South Australia are significant when used together with New South Wales

or Tasmania. The results can be found in the Appendix (p. 140).

In the presence of other lags of the same variable (lags 1, 48 and 96 of
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each state) only Victoria at lag 1 is significant. Even past values of South

Australia itself are not useful predictors when they all are used in the same

model. Results of models fit are can be found in the Appendix (p. 141). Nev-

ertheless, when lags of each state are combined with lags in South Australia,

lag 1 of South Australia is significant in each on the models except the model

with Tasmania. Estimated coefficients are summarized in the Appendix (p.

142).

As was already discussed, South Australia is heavily dependent on mar-

ket conditions. For this reason, when the daily periodic trend is removed, the

only two significant predictors are still Victoria at lags 1 and 48, which is the

same result as the original data set. This result can be found the the Appendix

(p. 143). Among models that contain lags 1, 48 and 96 of each state, none of

the predictors are significant for the deseasonalized data set (Table 4.9). Only

the combination of past prices of South Australia at lags 1, 48 and 96 shows

a significant association with lag 1 (Table 4.10). The rest of the models are

shown in the Appendix.

4.2.4 Quantile Regression analysis of electricity prices

in Victoria

The last state that is located on Australian mainland and that has not yet

been discussed is Victoria. It fulfills the majority of its electricity demand with

generators within the state, but is depend on electricity proves in other states

due the exportation. This can be shown using quantile regression models that
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Intercept QLD (lag 1) QLD (lag 48) QLD (lag 96)
171.61551
(0.01312)

1.54439
(0.40672)

0.22975
(0.81737)

0.16860
( 0.51621)

Intercept NSW (lag 1) NSW (lag 48) NSW (lag 96)
137.83825
(0.88119)

6.99014
(0.85805)

-0.00951
(0.96888)

-0.00974
(0.97038)

Intercept VIC (lag 1) VIC (lag 48) VIC (lag 96)
124.64341
(0.01305)

5.46550
(0.05088)

0.22955
(0.93432)

0.17430
(0.23944)

Intercept TAS (lag 1) TAS (lag 48) TAS (lag 96)
197.78284
(0.00000)

0.02502
(0.86025)

0.00861
(0.98126)

0.02059
(0.96594)

Table 4.9: Estimated QR models for SA using each of the other states at lags 1, 48 and
96 as predictors for the deseasonalized data, τ = 0.995. p-values given in parenthesis.

Intercept SA (lag 1) SA (lag 48) SA (lag 96)
61.44341
(0.04554)

1.71259
(0.00073)

0.28232
(0.60840)

0.06824
(0.81864)

Table 4.10: Estimated QR models for SA using SA at lags 1, 48 and 96 as predictors
for the deseasonalized data, τ = 0.995. p-values given in parenthesis.

were estimated using a single predictor (Table 4.11). Victoria is connected to

New South Wales and South Australia, and lag 48 of New South Wales and

lags 1 and 48 of South Australia are significant. Even though Queensland is

not connected to Victoria, lags 1 and 48 are also significant. But for mod-

els that include also corresponding lags of Victoria, only Victoria at lag 96 is

significant in the presence of New South Wales or South Australia, and for

models with lags 1, 48 and 96 of each state only South Australia at lag 1 is a

significant predictor. The results of the models are in the Appendix (p. 146).

For the next step, lags 1, 48 and 96 of each state were combined with

Victoria, and models with six predictors were fitted to the data set containing

electricity prices of Victoria. No novel dependencies are revealed in these mod-
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Intercept QLD (lag 1) Intercept SA (lag 1)
81.25383
(0.00000)

0.70449
(0.01628)

38.07286
(0.03223)

1.20510
(0.00000)

Intercept QLD (lag 48) Intercept SA (lag 48)
103.89164
(0.00000)

0.34708
(0.00000)

69.77077
(0.00000)

0.83138
(0.00000)

Intercept QLD (lag 96) Intercept SA (lag 96)
112.62040
(0.00000)

0.18149
(0.12408)

112.55899
(0.00000)

0.14706
(0.66760)

Intercept TAS (lag 1) Intercept NSW (lag 1)
112.57349
(0.00000)

0.08745
(0.63701)

-17.63467
(0.97010)

2.98033
(0.81735)

Intercept TAS (lag 48) Intercept NSW (lag 48)
117.73516
(0.00002)

0.04697
(0.89053)

8.18424
(0.83829)

2.42424
(0.01176)

Intercept TAS (lag 96) Intercept NSW (lag 96)
118.51601
(0.82620)

0.03591
(0.98298)

58.12300
(0.13663)

1.38170
(0.11161)

Table 4.11: Estimated QR models for VIC using one predictor at lag h (specified sepa-
rately for each model), τ = 0.995. p-values given in parenthesis.

els. The only significant predictor is Victoria at lag 1 in the model containing

Queensland. The results can be found in the Appendix.

After the periodic trend is removed from the data set, the electricity price

in New South Wales is no longer a significant predictor for the deseasonalized

data set when used as the only predictor. Overall, the dependence structure

between Victoria and the rest of the states for the deseasonalized data set

stays similar to the original data set. This can bee seen in Tables 4.12 and

4.13 below and in the Appendix (p. 149).
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Intercept QLD (lag 1) QLD (lag 48) QLD (lag 96)
66.35211
(0.00000)

0.70468
(0.00000)

0.14516
(0.45688)

0.07424
(0.45567)

Intercept SA (lag 1) SA (lag 48) SA (lag 96)
46.75473
(0.00236)

1.20408
(0.00000)

0.20897
(0.15906)

0.01167
(0.90369)

Intercept NSW (lag 1) NSW (lag 48) NSW (lag 96)
45.64943
(0.12160)

2.80656
(0.73085)

-0.00184
(0.99035)

-0.00316
(0.96917)

Intercept TAS (lag 1) TAS (lag 48) TAS (lag 96)
80.48913
(0.00000)

0.08289
(0.69790)

0.01988
(0.43768)

0.01280
(0.87134)

Table 4.12: Estimated QR models for VIC using each of the other states at lags 1, 48
and 96 as predictors for a deseasonalized data set, τ = 0.995. p-values given in parenthesis.

Intercept VIC (lag 1) VIC (lag 48) VIC (lag 96)
39.93229
(0.00000)

2.38398
(0.12993)

0.20175
(0.83911)

0.03972
(0.83593)

Table 4.13: Estimated QR models for VIC using VIC at lags 1, 48 and 96 as predictors
for a deseasonalized data set, τ = 0.995. p-values given in parenthesis.

4.2.5 Quantile Regression analysis of electricity prices

in Tasmania

The last state in Australia that is a part of NEM is Tasmania. As it is

located on an island and has only one interconnector with Victoria, the state

is not expected to have strong dependence with the rest of the states. This is

supported by quantile regression results with only one predictor. None of the

variables were found to be significant. These results are presented in the Ap-

pendix (p. 152). Nevertheless, Victoria at lag 1 is significant in the presence

of lags 48 and 96 of the same state (Table 4.14). Lag 1 of Tasmania itself is

significant in the combination of lags 48 and 96 of the same state (Table 4.15)

and when these three lags are combined with the same lags of each other state.
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These results are summarized in the Appendix (p. 154). None of the states

are significant in any other models. This confirms the assumption that the

state’s electricity market is not highly dependent with other states’ markets.

The vast majority of combinations of variables that were created by

Intercept QLD (lag 1) QLD (lag 48) QLD (lag 96)
143.19302
(0.00000)

0.12374
(0.70899)

-0.00833
(0.94939)

-0.00684
( 0.97168)

Intercept SA (lag 1) SA (lag 48) SA (lag 96)
138.65708
(0.97571)

0.13377
(0.95074)

0.16817
(0.94549)

-0.00122
( 0.99967)

Intercept VIC (lag 1) VIC (lag 48) VIC (lag 96)
96.47898
(0.00027)

0.62663
(0.34224)

0.81331
(0.00000)

-0.01065
(0.90975)

Intercept NSW (lag 1) NSW (lag 48) NSW(lag 96)
122.64117
(0.10209)

0.52743
(0.79350)

-0.01252
(0.96092)

0.04312
( 0.38582)

Table 4.14: Estimated QR models for TAS using each of the other states at lags 1, 48
and 96 as predictors, τ = 0.995. p-values given in parenthesis.

Intercept TAS (lag 1) TAS (lag 48) TAS (lag 96)
41.70902
(0.00092)

0.91080
( 0.00000)

0.32790
(0.00485)

0.05093
( 0.75137)

Table 4.15: Estimated QR models for TAS using TAS at lags 1, 48 and 96 as predictors,
τ = 0.995. p-values given in parenthesis.

grouping variables do not give significantly good results. It is possible that

depending on the market conditions a state can be dependent on prices in

several different states at several different lags. To carry out variable selection

on the predictors, SCAD and LASSO penalties were introduced to shrink the

least important variables’ coefficients down to 0. Both of the regularization

methods did not perform well on any of the data sets leaving all of the coef-

ficients non-zero and shrinking all of them equally for higher λ. Hence, we do
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not include their results.

60



Chapter 5

Cross-quantilogram analysis of

spot electricity prices of

Australia

5.1 Methodology

The cross-correlation function (in Section 3.1.1) is an important tool in

time series analysis. It estimates the dependence between two time series. It

can be used to find predictors in a regression model. However, similar to the

autocorrelation function, cross-correlation estimates the dependence for the

center of distributions of both of the series. It is useful when the distributions

of both of the series are normal. When distributions are not normal and (or)

when the correlation between conditional quantiles is of the most interest, the

cross-quantilogram is a useful tool to estimate dependence between the series

and for selecting predictors for quantile regression.
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The quantilogram introduced in [22] is a quantile analogue of the au-

tocorrelation function described in Section 3.1.1. The cross-quantilogram fo-

cusses on measuring dependencies between two time series {Y1,t}t=1...T and

{Y2,t}t=1...T , at two conditional quantiles τ1 and τ2. It was introduced in [15]

where it is defined as a measure of the dependence between different parts of

the distributions of two strictly stationary time series (cross-correlation be-

tween different conditional quantiles). It is defined as:

ρτ1,τ2(h) =
E
[
ψτ1(Y1t − q1,t(τ1))ψτ2(Y2,t−h − q2,t−h(τ2))

]
√
E
[
ψ2
τ1
(Y1t − q1,t(τ1))

]
E
[
ψ2
τ2
(Y2,t−h − q2,t−h(τ2))

] (5.1)

for τ1, τ2 ∈ (0, 1); h ∈ {...,−1, 0, 1, ...}. Here q1,t(τ1) and q2,t−h(τ2) are condi-

tional quantile functions as in the Chapter 4 for {Y1,t}t=1...T and {Y2,t}t=1...T ,

respectively, and ψτ (u) = I[u < 0]− τ . As τ1 and τ2 are not necessarily equal,

hence, ρ̂τ1,τ2(h) �= ρ̂τ2,τ1(h).

An inferential procedure for the cross-quantilogram values is described in

[15]. The paper gives an overview of the stationary bootstrap procedure used

to estimate confidence intervals to infer significance of the cross-quantilogram

values (unlike the cross extremogram where stationary bootstrap was used to

construct confidence intervals for the cross extremogram values). In this case

two time series are re-sampled separately from each other. This procedure

allows to keep the serial dependence within each series but breaks the depen-

dence between the two series. A cross-quantilogram value that falls outside

of the stationary bootstrap confidence bands is considered to be statistically

significant.

The interpretation of the cross-quantilogram is similar to the interpreta-
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tion of the cross extremogram for upper quantiles. For a positive quantilogram

value, which falls outside of the stationary bootstrap confidence bands, if at

time t a time series Y2,t is larger than its τ th2 conditional quantile, the chance

of a time series Y1,t to be above its τ th1 conditional quantile in h time periods

is significantly high. Similarly, for a negative cross-quantilogram value, two

time series are likely to be in different parts of their distributions (i.e., one

time series above its conditional quantile, and another one below).

5.2 Cross-quantilogram analysis

5.2.1 Cross-quantilogram of New South Wales

The cross-quantilogram was estimated for New South Wales and each of

the other states for the whole data set: from 2009 – 2014. The 99.5th quantile

was used again in the analysis.

Cross-quantilograms for lags 0 to 150 are shown in Figures 5.1 condi-

tioning on Queensland for New South Wales and in the Appendix (p. 159,

160) conditioning on the rest of the states. It is evident that the plots have

similar shapes to the corresponding cross extremograms. However, the cross-

quantilogram represents the correlation between conditional quantiles of each

of the series at lag h. Hence, it allows negative values unlike the cross ex-

tremogram that represents the probability given an extreme electricity price

in New South Wales at time t to observe an extreme electricity price in each

of the states at time (t+ h). Consequently, the cross extremogram values are

all non-negative.
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In general, most of the cross-quantilograms for New South Wales (ex-

Figure 5.1: A: Cross-quantilograms for NSW conditioning on QLD (2009 – 2014).

cept conditioning on Tasmania) have a periodic trend with period 48, which

means that lags 48, 96, 144 of these states are more dependent with a price in

New South Wales at time t. Confidence intervals for the cross-quantilograms

were estimated using the stationary bootstrap algorithm with 100 iterations

for each lag and have the same periodic trend. This means lags 24, 72, 120

have significant negative correlation with New South Wales.

Similar to the cross extremograms, New South Wales and Queensland

have the highest dependence between states. This is most visible for lags 0

to 5. At the same time, Victoria has the strongest dependence with New

South Wales at lag 48 with the cross-quantilogram value above 0.2. Remem-

ber that two of these variables (Queensland at lag 1 and Victoria at lag 48)

are the most significant predictors for New South Wales in quantile regression

analysis. The same result was obtained in Chapter 4. South Australia has

a similar relationship with New South Wales as Queensland for most of the
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lags, except the first few. As was already discussed in previous sections, most

of the dependence between New South Wales and South Australia is caused

by similar market conditions and the need to import electricity from Victoria

when electricity prices are high within each of the states. Tasmania is mostly

unrelated with New South Wales. The two lags that have highest significant

cross-quantilogram values are lag 8 and lag 40.

5.2.2 Cross-quantilogram of Queensland

We analyzed Queensland with the cross-quantilogram. It also shows the

same result that was obtained with the cross extremogram. The state that

it has the strongest relationship with New South Wales at a 99.5 quantile

(Figure 5.2). Queensland only has an interconnector to New South Wales.

Thus, trading is available only with this state, which results in the extreme

value dependence. The remaining cross-quantilograms are presented in the

Appendix (p. 161, 162). It is evident that Queensland is also dependent

on South Australia. The highest value in the cross-quantilogram between

Queensland and South Australia is obtained at lag 48. As we saw in the

previous chapters most of the mainland states are dependent, even when they

not connected by an interconnector. The potential for electricity to be re-

sold through several states might also introduce dependencies between regions

that are not connected. It is clear that the dependence is not strong between

Queensland and Victoria. The cross-quantilogram between these two states

is roughly 0.06 for lags 0 and 48, and less for the rest of the lags. Similar to

the results of New South Wales, Queensland at lag t is negatively dependent
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with other mainland states at lag 24, 72, and 120, and has also almost no

dependence with Tasmania.

Figure 5.2: A: Cross-quantilograms for QLD conditioning on NSW (2009 – 2014).

5.2.3 Cross-quantilogram of South Australia

South Australia imports electricity form Victoria. Thus, it can be as-

sumed that Victoria should have the strongest dependence with South Aus-

tralia compared to other states. This fact is proved in Figure 5.3. Compared to

the rest of the cross-quantilogram figures of South Australia in the Appendix

(p. 162, 163), the cross-quantilogram of South Australia and Victoria has a

clear periodic trend and the highest dependence for lags 1 to 150 compared

to the rest for the states. Lags that have the highest correlation with South

Australia at time t are the few initial lags (0 to 7) and lag 48. Also, South

Australia at time t is not negatively dependent on any of the lags up to 117.

Most of the lags included in the plot show significance. However, Victoria at
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lag 1 is not significant when used as a single predictor in a Quantile Regression

model, and lag 48 is significant despite the lower correlation compared to lag

1.

Unlike Queensland and New South Wales, South Australia has some

Figure 5.3: A: Cross-quantilograms for SA conditioning on VIC (2009 – 2014).

significant cross-quantilogram values with Tasmania. We can see that lags

0-3 and lag 48 have the highest cross-quantilogram values (roughly 0.06) that

correspond to the highest extreme value between South Australia at time t

and Tasmania. The cross-quantilograms of South Australia with Queensland

and New South Wales do not have a great number of significant lags in cross-

quantilogram the plots. The results are presented in the Appendix (p. 163).

5.2.4 Cross-quantilogram of Victoria

We look at Victoria next. Victoria is a major exporting state and is

assumed to have the strongest dependence with those states that import elec-
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tricity, i.e., New South Wales and South Australia.

We can see in Figure 5.4 that Victoria has a strong dependence with

Figure 5.4: A: Cross-quantilograms for VIC conditioning on SA (2009 – 2014).

South Australia. SA is connected only with Victoria, hence, it heavily de-

pends on the import of cheaper electricity generated by water power plants

from Victoria. Unlike South Australia, New South Wales is also connected to

Queensland and, hence, has a competitive option for importing. It is evident

that the dependence between New South Wales and Victoria, which is pre-

sented in the Appendix (p. 164), is smaller compared to the the dependence

between South Australia and Victoria (Figure 5.4).

Tasmania and Queensland have a weak extreme value dependence with

Victoria compared to two other states. For these, only lags 1 and 48 show

significant dependence. Queensland is not connected to Victoria and is not

adjacent to it. Hence, the weak dependence is understandable. The plot can

be found in the Appendix (p. 164). Despite being connected only with Vic-

toria, Tasmania is able to satisfy most it’s electricity demand with generators
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within the state. For this reason, Victoria is not significantly dependent on it.

However, the extremogram analysis in Chapter 3 shows that electricity prices

in Tasmania are more dependent with the other states than the rest of the

states are dependent on electricity prices of Tasmania. We check this in the

next section.

5.2.5 Cross-quantilogram of Tasmania

Finally, we consider the cross-quantilograms of Tasmania. The analysis

shows more symmetric relationship between the states. Tasmania is more de-

pendent with South Australia and Victoria compared to New South Wales and

Queensland. The shapes of the plots and the significant lags are also similar

to the cross-quantilograms conditioning on Tasmania discussed earlier in this

section. All of the cross-quantilogram plots can be found in the Appendix.

In general, not all the states that are significant and highly dependent

with one another are useful predictors for quantile regression. For example,

Victoria at lag 48 is a has a smaller p-value for a quantile regression when

New South Wales is the response variable then Victoria at lag 1 but it has a

higher cross-quantilogram value. However, all the results obtained with the

cross-quantilogram confirm the quantile regression results when only one pre-

dictor was used. Lags with the highest cross-quantilogram values have smaller

p-values in the quantile regression. The same results were obtained with the

cross extremogram analysis, as plots obtained using both methods have similar

shapes. Hence, the selection of predictors made with the cross-extremogram

is confirmed by the cross-quantilogram estimated for the same quantile.
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The cross-quantilogram measures predictability. Hence, it is a more use-

ful tool for selecting the most important predictors for a given time series than

the extremogram. For the given data set, the cross extremogram and cross-

quantilogram results with respect to finding the best predictors for quantile

regression are equivalent because lags with the highest correlation between

time t and (t + h) are positive. Negative cross-quantilogram values result in

a cross extremogram value that is close to 0. If the best predictors were neg-

atively correlated with the response, the cross extremogram as it was used

in Chapter 3 would miss them. However, another option is available for the

extremogram in order to capture negative associations. We can find a proba-

bility of an extreme event occurring in a lower (upper) tail of one time series

given another extreme event in an upper (lower) tail of another time series.

This, however, is a more complicated way of selecting predictors.

70



Chapter 6

The copula method for

estimating extreme value

dependence

6.1 Methodology

This chapter introduces a non-parametric approach for the estimation

of extreme value dependence based on bivariate copulas. Copula models are

used to estimate dependence between distributions whose marginals are not

normal. They are a commonly used tool in statistics for the estimation of joint

and conditional distribution functions. Also, they are widely used to calculate

the upper tail dependence coefficient, which is another method for estimating

extreme value dependene. For this reason, copulas have become a popular

method to estimate extreme value dependence.

Before introducing copulas, we first recall a non-parametric measure
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of association between two data sets – Kendall’s rank correlation coefficient

(Kendall’s τ) [14], is defined as:

τ =
Nc −Nd

n(n− 1)/2
(6.1)

where Nc is the number of concordant pairs (i.e., when xi > xj and yi > yj or

xi < xj and yi < yj), Nd is the number of discordant pairs (i.e., when xi > xj

and yi < yj or xi < xj and yi > yj). Similar to the correlation coefficient, two

data sets have positive association if τ > 0 and negative association if τ < 0.

If τ = 0 it is assumed that two data sets have no association.

Now, a bivariate copula is a bivariate distribution function with uniform

margins. Copulas are widely used to the estimate joint distribution function

using Sklar’s theorem [19]:

Theorem 1. Let F be a bivariate distribution function with two marginals -

F1 and F2. Then there exists a bivariate copula such that for every x ∈ R:

F (x1, x2) = C(F1(x1), F2(x2)) (6.2)

If both margins are continuous, then the copula function is unique.

According to Theorem 1, every joint distribution function can be de-

composed into two marginals and a copula function. A class of copulas called

extreme-value copulas [17] models extreme event dependence. Following the

definition in [17], a bivariate copula is an extreme-value copula if it satisfies

the following:

C∗(u1, u2) = lim
n→∞

C(u
1/n
1 , u1/nc )n (6.3)
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for [u1, u2] ∈ [0, 1]2. Another important concept in copula theory is max-stable

copulas. A bivariate copula is max-stable if the following holds:

C(u
1/m
1 , u1/mc )m = C(u1, u2) (6.4)

for m ≥ 1 and for [u1, u2] ∈ [0, 1]2.

A copula is an extreme-value copula if and only if it is max-stable.

Many types of copulas exist in statistical theory. We focus on the Gumbel

copula [8]. A Gumbel copula is an extreme-event copula, and it requires the

estimation of only one parameter. It is also widely used to study the upper

tail dependence. In a bivariate case, the Gumbel copula for the bivariate

distribution function F (x1, x2) = exp(−(exp(−θx1) + exp(−θx2))1/θ) is given
by:

C(u1, u2) = exp(((−log u1)θ + (−log u2)θ)1/θ) (6.5)

for [u1, u2] ∈ [0, 1]2 and where θ ∈ [1,∞) is a parameter indicating the strength

on the dependence (larger θ indicates stronger dependence). θ in usually esti-

mated by the method of maximum likelihood.

Copulas play an important role in estimating the tail dependence in bi-

variate data sets using the tail dependence coefficient. The upper tail depen-

dence coefficient [13] is a limiting conditional probability that one time series

exceeds a certain cutoff given that another time series exceeds this cutoff and

is defined as:

λupper = lim
u→1−

P (X1 > F
(−1)
1 (u)|X2 > F

(−1)
2 (u)) (6.6)
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λupper can also be expressed in terms of a bivariate copula function as:

λupper = lim
u→→1−

1− 2u+ C(u, u)

1− u
. (6.7)

if λupper ∈ (0, 1], then the joint bivarite distribution of X1 and X2 has upper

tail dependence. For the Gumbel copula, the limit in equation 6.7 is equal to

(2− 21/θ).

6.2 Analysis of spot electricity prices of Aus-

tralia using copula method

The methodology described in Section 6.1 is now applied to the spot

electricity prices of Australia. Given the nature of the method, we focus on

the estimation of overall dependence between time series assuming it does not

change over time. First, to get a general idea about the dependence struc-

ture between any two series Kendall’s τ coefficient was estimated. The results

are summarized in Table 6.1. We can see that the two series that have the

strongest dependence among all the pairs are Victoria and South Australia

(τ = 0.8260). The two states are connected by two interconnectors, and South

Australia is strongly dependent on the import of electricity from Victoria as it

has no other sources to import into the state. Hence, the strong dependence

between the two states is reasonable given the market conditions. Victoria

and New South Wales are another pair of states that has a strong dependence

(τ = 0.8019). New South Wales also depends on electricity imported from

Victoria, but it has a competitive option to import electricity from Queens-
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land if prices are lower there. Queensland itself is connected only with New

South Wales. This explains the strong dependence with New South Wales for

Queensland (τ = 0.7907) compared to three other states. South Australia is

strongly related with New South Wales (τ = 0.7428). As discussed in previous

chapters, the two states are both dependent on the import from other states.

Hence, similar market trends make them strongly correlated without having

any actual connection between them.

Tasmania is the state that has the lowest dependence with the other

NSW QLD SA TAS VIC
NSW 1.0000 0.7907 0.7428 0.5086 0.8019
QLD 0.7907 1.0000 0.6571 0.4502 0.7047
SA 0.7428 0.6571 1.0000 0.5272 0.8260
TAS 0.5086 0.4502 0.5272 1.0000 0.5714
VIC 0.8019 0.7047 0.8260 0.5714 1.0000

Table 6.1: Kendall’s τ for spot electricity prices of Australia for each of the two series.

states. It is not located on Australian mainland and is able to satisfy most of

its electricity demand with water power plants that produce cheaper electric-

ity within the state. This explains the low dependence with other states.

Queensland and Tasmania have the lowest dependence compared to other

states (τ = 0.4502) as they are the furthest away from each other in dis-

tance.

Next, the parameters of the Gumbel copula were estimated by maximum

likelihood for each of the two series in the data set. Then, these parameters

were used to estimate the upper tail dependence coefficients. The results are

summarized in Tables 6.2 and 6.3.

It is evident that the dependence structure estimated by the Gumbel
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NSW QLD SA TAS VIC

NSW -
3.73083
(0.00000)

3.109764
(0.00000)

1.809224
(0.00000)

4.21157
(0.00000)

QLD
3.73083
(0.00000)

-
2.42848
(0.00000)

1.611878
(0.00000)

2.752440
(0.00000)

SA
3.109764
(0.00000)

2.42848
(0.00000)

-
1.860927
(0.00000)

4.42610
(0.00000)

TAS
.809224
(0.00000)

1.611878
(0.00000)

1.860927
(0.00000)

-
2.072000
(0.00000)

VIC
4.21157
(0.00000)

2.752440
(0.00000)

4.42610
(0.00000)

2.072000
(0.00000)

-

Table 6.2: Dependence parameter for bivariate Gumbel copula. p-values are given in
parenthesis)

NSW QLD SA TAS VIC
NSW 1.00 0.7958318 0.7503121 0.5331482 0.8211002
QLD 0.7958318 1.00 0.6696736 0.4627047 0.7136226
SA 0.7503121 0.6696736 1.00 0.5486791 0.839467
TAS 0.5331482 0.4627047 0.5486791 1.00 0.6027158
VIC 0.8211002 0.7136226 0.839467 0.6027158 1.00

Table 6.3: Tail dependence coefficients for bivariate Gumbel copula

copulas is exactly the same that was obtained by Kendall’s τ correlation co-

efficient even though, extreme value dependence should not necessarily mimic

the dependence in the centers of the distributions. Again, Victoria has the

strongest dependence with South Australia and New South Wales compared

to any of the other two states. These have the highest estimated bivariate

Gumbel copula coefficient and the largest tail dependence coefficient. Tasma-

nia is the state that has the lowest dependence with other states.

Overall, for the analysis of spot electricity prices of Australia, estimating

bivariate copulas does not give any additional information on the strength of

the dependence between series compared to Kendall’s τ correlation coefficient.
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Also, the upper tail dependence coefficients show the asymptotic association

of two data sets and are not connected to any particular cutoffs or quantiles.

In addition, both methods estimate a general dependence between the data

sets and do not take into account possible lag dependence which is present

in all of the data sets. All three methods used in previous chapters allows to

account both for lag dependence and include a particular cutoff.

For reasons described above, estimating the extreme value dependence in

time series data sets with copulas and tail dependence coefficients is considered

unsatisfactory for the analysis of spot electricity prices of Australia. However,

the two methods used in this section might be more useful for different data

sets.
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Chapter 7

Discussion

In this work, extreme value dependence for the spot electricity prices

of Australia was estimated using four different methods: univariate and cross

extremograms, quantile regression, cross-quantilogram and bivariate copula.

It was found that the extremogram and quantilogram are useful tools

for exploratory data analysis. Both of the methods can be used to test for

the presence of any dependence in the upper or lower quantiles between two

series. In addition, the univariate extremogram allows us to study the depen-

dence between extreme events within one the series. Nevertheless, the two

methods provide marginally different information about the two series. The

cross-quantilogram is a useful tool to measure extreme value dependence be-

tween conditional quantiles of two series at different lags. On the other hand,

the cross extremogram gives information about the probability of extreme

events occurring at a certain point in the future given an extreme event at

time t. Also, the two methods treat negative associations differently. With

the cross-quantilogram two events are considered negatively correlated if one
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event happens above a conditional quantile and another event happens below

it. The cross extremogram focusses more on the tails of the distributions, and it

does not take into account events happening in centres. For the extremogram,

a negative association can be estimated as a probability of extreme events

happening in different tails of the distributions. The differences in the two

methods make the cross-quantilogram a useful tool to help select predictors in

quantile regression. The cross extremogram is a valuable statistical method

to explore extreme event dependence between two time series that gives ad-

ditional information about the dependence, which cannot be found by any

other method. Unlike the cross-quantilogram, it also can be extended to a

multivariate case with 3 time series. However, this extension complicates the

computation procedure. The cross extremogram can also be used as a way of

selecting predictors for quantile regression but the necessity to estimate nega-

tive associations separately from positive ones makes it less effective compared

to the cross-quantilogram. Finally, both the cross-quantilogram and the cross

extremogram have a common limitation: the two methods are proven to work

well for strictly stationary time series, which are rare in many applications.

Quantile regression is a method used to predict conditional quantiles of

a data set using a set of predictors. The method does not require any strict

assumptions about the data, and recent extensions of the method to the time

series setting makes it a useful tool for estimating how extreme events in one

time series data set depend on other time series data sets. Similar to the

cross-quantilogram, quantile regression focusses on events occurring above a

chosen conditional quantile and events below it without making any emphasis

on actual numerical values of each observation. Nevertheless, the method gives
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additional information about the nature of extreme event occurrence compared

to the cross extremogram. Another benefit of the quantile regression is that

it allows us to estimate the dependence between one time series and multiple

predictors, including lags of the same variable, in the same model giving more

information as to which variables influence the occurrence of extreme events

more than others. A disadvantage of the quantile regression is that it has a

limited number of model selection procedures. Existing approaches work well

for the median but show weak performance for higher quantiles. Also, a solu-

tion for a quantile regression problem may not be unique.

The copula method for estimating extreme value dependence, which was

also used in the analysis, is a convenient method to estimate joint distribu-

tions whose marginal distributions not normal. Some copulas are also helpful

in analysis of joint asymptotic tail behavior, but for our purposes of the cop-

ula method gives a limited amount of information. In general, the dependence

estimated using copulas can only be compared to the other results as no strict

rule for classifying the dependence as strong or weak exists. For this reason,

estimating a five-dimensional copula for all of the series together does not give

any additional information as there is no base of comparison for the results.

Also, compared to thee other methods, copulas only estimate general depen-

dence between data sets and treat the dependence as stable over time as lags

cannot be included. The method does not take into account time series fea-

tures (such as autocorrelation, seasonality, etc.) of data sets it is applied to.

In conclusion, all of the extreme value dependence methods have a com-

mon limitation: they require a significantly large time series data set to give

reliable results. Nevertheless, when this condition is satisfied all the methods
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can be considered useful and, if used together, they provide a rich source of

information about dependence between extreme events compared to a single

method. Finally, all methods have dedicated R packages. This makes imple-

mentation of all methods very easy.
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Chapter 8

Conclusion

The aim of this thesis was to apply various methods for estimating ex-

treme value dependence in time series data sets for spot electricity prices of

Australia and to compare their performance. The emphasis was made on the

upper tail of each time series as understanding the dependence in high elec-

tricity price is generally of more interest compared to low electricity prices.

We first concentrated on the extremogram and the cross extremogram

analysis. It was applied to study probabilities of extreme event occurrence at

time t + h given an extreme event at time t in the same or in another time

series, respectively. The method focusses on the tails of distributions and gave

additional information about the nature of extreme event dependence, which

can be concluded by other methods used further in the thesis. We created an R

package for application of the extremogram procedure that includes functions

for estimating univariate and cross extremograms, permutation confidence in-

tervals and stationary bootstrap confidence intervals for extremogram values.

The cross-quantilogram was used to estimate extreme value dependence
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between high upper conditional quantiles, and it was found to be a useful tool

for selecting predictors for quantile regression. Quantile regression itself was

found to be a convenient method for predicting future extreme conditional

quantiles based on a single or several predictors. Finally, the copula method

was used as a non-parametric method for estimating dependence in upper tails

of distributions.
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Appendix A

Appendix

A.0.1 Appendix 1

Figure A.0.1: A: Univariate extremogram plot for QLD (2009 – 2011); Stationary
bootstrap confidence intervals with mean block size B: 24; C: 50; D: 100.
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Figure A.0.2: A: Univariate extremogram plot for SA (2009 – 2011); Stationary boot-
strap confidence intervals with mean block size B: 24; C: 50; D: 100.

Figure A.0.3: A: Univariate extremogram plot for VIC (2009 – 2011); Stationary
bootstrap confidence intervals with mean block size B: 24; C: 50; D: 100.
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Figure A.0.4: A: Univariate extremogram plot for NSW (2012 – 2014); Stationary
bootstrap confidence intervals with mean block size B: 24; C: 50; D: 100.

Figure A.0.5: A: Univariate extremogram plot for QLD (2012 – 2014); B: Stationary
bootstrap confidence intervals with mean block size B: 24; C: 50; D: 100.
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Figure A.0.6: A: Univariate extremogram plot for SA (2012 – 2014); Stationary boot-
strap confidence intervals with mean block size B: 24; C: 50; D: 100.

Figure A.0.7: A: Univariate extremogram plot for VIC (2012 – 2014); Stationary
bootstrap confidence intervals with mean block size B: 24; C: 50; D: 100.
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Figure A.0.8: A: Univariate extremogram plot for TAS (2012 – 2014);Stationary boot-
strap confidence intervals with mean block size B: 24; C: 50; D: 100.

Figure A.0.9: A: Univariate extremogram plot for QLD (2009 – 2014), Stationary
bootstrap confidence intervals with mean block size B: 24; C: 50; D: 100.
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Figure A.0.10: A: Univariate extremogram plot for SA (2009 – 2014), Stationary
bootstrap confidence intervals with mean block size B: 24; C: 50; D: 100.

Figure A.0.11: A: Univariate extremogram plot for TAS (2009 – 2014), Stationary
bootstrap confidence intervals with mean block size B: 24; C: 50; D: 100.
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Figure A.0.12: A: Univariate extremogram plot for VIC (2009 – 2014), Stationary
bootstrap confidence intervals with mean block size B: 24; C: 50; D: 100.

Figure A.0.13: A: Univariate extremogram plot after fitting an ARIMA(3,0,5)(3,1,2)48
to QLD (2009 – 2011); B: Stationary bootstrap confidence intervals with mean block size =
100;
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Figure A.0.14: A: Univariate extremogram plot after fitting an ARIMA(5,0,8)(3,1,3)48
to SA (2009 – 2011); B: Stationary bootstrap confidence intervals with mean block size =
100;

Figure A.0.15: A: Univariate extremogram plot after fitting an ARIMA(4,0,4)(1,1,1)48
to TAS (2009 – 2011); B: Stationary bootstrap confidence intervals with mean block size =
100;
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Figure A.0.16: A: Univariate extremogram plot after fitting an ARIMA(3,0,4)(2,1,1)48
to VIC (2009 – 2011); B: Stationary bootstrap confidence intervals with mean block size =
100;

Figure A.0.17: A: Univariate extremogram plot after fitting an ARIMA(3,0,5)(5,1,1)48
to QLD (2012 – 2014); B: Stationary bootstrap confidence intervals with mean block size =
100;
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Figure A.0.18: A: Univariate extremogram plot after fitting an ARIMA(5,0,8)(1,1,2)48
to SA (2012 – 2014); B: Stationary bootstrap confidence intervals with mean block size =
100;
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Figure A.0.19: A: Univariate extremogram plot after fitting an ARIMA(3,0,4)(1,1,1)48
to TAS (2012 – 2014); B: Stationary bootstrap confidence intervals with mean block size =
100;

Figure A.0.20: A: Univariate extremogram plot after fitting an ARIMA(4,0,4)(1,1,1)48
to VIC (2012 – 2014); B: Stationary bootstrap confidence intervals with mean block size =
100;
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Figure A.0.21: A: Univariate extremogram plot after fitting an ARIMA(5,0,6)(1,1,1)48
to NSW (2011 - 2014); B: Stationary bootstrap confidence intervals with mean block size =
100;

Figure A.0.22: A: Univariate extremogram plot after ARIMA(4,0,1)(1,1,1)48 to SA
(2009 – 2014); B: Stationary bootstrap confidence intervals with mean block size = 100;
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Figure A.0.23: A: Univariate extremogram plot after fitting an ARIMA(3,0,2)(1,1,1)48
to TAS (2009 – 2014); B: Stationary bootstrap confidence intervals with mean block size =
100;

Figure A.0.24: A: Univariate extremogram plot after fitting an ARIMA(3,0,2)(1,1,1)48
to VIC (2012 – 2014); B: Stationary bootstrap confidence intervals with mean block size =
100;
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Figure A.0.25: A: Univariate extremogram plot after fitting a GARCH(1,1) to NSW
(2009 – 2011); B: Stationary bootstrap confidence intervals with mean block size = 100;

Figure A.0.26: A: Univariate extremogram plot after fitting a GARCH(1,1) to QLD
(2009 – 2011); B: Stationary bootstrap confidence intervals with mean block size = 100;
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Figure A.0.27: A: Univariate extremogram plot after fitting a GARCH(1,1) to SA (2009
– 2011); B: Stationary bootstrap confidence intervals with mean block size = 100;

Figure A.0.28: A: Univariate extremogram plot after fitting a GARCH(1,1) to VIC
(2009 – 2011); B: Stationary bootstrap confidence intervals with mean block size = 100;
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Figure A.0.29: A: Univariate extremogram plot after fitting a GARCH(1,1) to NSW
(2012 – 2014); B: Stationary bootstrap confidence intervals with mean block size = 100;

99



Figure A.0.30: A: Univariate extremogram plot after fitting a GARCH(1,1) to QLD
(2012 – 2014); B: Stationary bootstrap confidence intervals with mean block size = 100;
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Figure A.0.31: A: Univariate extremogram plot after fitting a GARCH(1,1) to SA (2012
– 2014); B: Stationary bootstrap confidence intervals with mean block size = 100;

Figure A.0.32: A: Univariate extremogram plot after fitting a GARCH(1,1) to VIC
(2012 – 2014); B: Stationary bootstrap confidence intervals with mean block size = 100;
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Figure A.0.33: A: Univariate extremogram plot after fitting an ARIMA and
GARCH(1,1) to NSW (2009 – 2011); B: Stationary bootstrap confidence intervals with
mean block size = 100;

Figure A.0.34: A: Univariate extremogram plot after fitting an ARIMA and
GARCH(1,1) to QLD (2009 – 2011); B: Stationary bootstrap confidence intervals with mean
block size = 100;
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Figure A.0.35: A: Univariate extremogram plot after fitting an ARIMA and
GARCH(1,1) to SA (2009 – 2011); B: Stationary bootstrap confidence intervals with mean
block size = 100;

Figure A.0.36: A: Univariate extremogram plot after fitting an ARIMA and
GARCH(1,1) to TAS (2009 – 2011); B: Stationary bootstrap confidence intervals with mean
block size = 100;
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Figure A.0.37: A: Univariate extremogram plot after fitting a GARCH(1,1) to resid-
uals estimated for first differenced series for NSW (2009 – 2014); B: Stationary bootstrap
confidence intervals with mean block size = 100;

104



Figure A.0.38: A: Univariate extremogram plot after fitting a GARCH(1,1) to resid-
uals estimated for first differenced series for QLD (2009 – 2014); B: Stationary bootstrap
confidence intervals with mean block size = 100;

Figure A.0.39: A: Univariate extremogram plot after fitting a GARCH(1,1) to resid-
uals estimated for first differenced series for TAS (2009 – 2014); B: Stationary bootstrap
confidence intervals with mean block size = 100;
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Figure A.0.40: A: Univariate extremogram plot after fitting an GARCH(1,1) to resid-
uals estimated for first differenced series for VIC (2009 – 2014); B: Stationary bootstrap
confidence intervals with mean block size = 100;

Figure A.0.41: A: Cross extremogram for SA conditioning on VIC (2009 – 2011); B:
Cross extremogram for SA conditioning on QLD (2009 – 2011);
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Figure A.0.42: A: Cross extremogram for NSW conditioning on VIC (2009 – 2011); B:
Stationary bootstrap confidence intervals with mean block size = 100;

Figure A.0.43: A: Cross extremogram for QLD conditioning on VIC (2009 – 2011); B:
Stationary bootstrap confidence intervals with mean block size = 100;
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Figure A.0.44: A: Cross extremogram for SA conditioning on VIC (2009 – 2011); B:
Stationary bootstrap confidence intervals with mean block size = 100;

Figure A.0.45: A: Cross extremogram for TAS conditioning on VIC (2009 – 2011); B:
Stationary bootstrap confidence intervals with mean block size = 100;
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Figure A.0.46: A: Cross extremogram for NSW conditioning on QLD (2009 – 2014);
B: Stationary bootstrap confidence intervals with mean block size = 100;
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Author Nadezda Frolova, Ivor Cribben
Maintainer Nadezda Frolova <nfrolova@ualberta.ca>
Description Estimation of the sample univariate, cross and return time extremograms. The pack-

age can also add empirical confidence bands to each of the extremogram plots via a permuta-

tion procedure under the assumption that the data are independent. Finally, the stationary boot-

strap allows us to construct credible confidence bands for the extremograms.

License GPL-3
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2 bootconf1

extremogram-package extremogram

Description

The package estimates the sample univariate, cross and return time extremograms. It can also add

empirical confidence bands to each of the extremogram plots via a permutation procedure under the

assumption that the data are independent. Finally, the stationary bootstrap allows us to construct

credible confidence bands for the extremograms.

Functions:

1. extremogram1

2. extremogram2

3. extremogramr

4. bootconf1

5. bootconf2

6. bootconfr

7. permfn1

8. permfn2

9. permfnr

Author(s)

Nadezda Frolova <nfrolova@ualberta.ca>, Ivor Cribben <cribben@ualberta.ca>

References

1. Davis, R. A., Mikosch, T., & Cribben, I. (2012). Towards estimating extremal serial depen-

dence via the bootstrapped extremogram. Journal of Econometrics,170(1), 142-152.

2. Davis, R. A., Mikosch, T., & Cribben, I. (2011). Estimating extremal dependence in univariate

and multivariate time series via the extremogram.arXiv preprint arXiv:1107.5592.

bootconf1 Confidence bands for the sample univariate extremogram

Description

The function estimates confidence bands for the sample univariate extremogram using the stationary

bootstrap.

Usage

bootconf1(x, R, l, maxlag, quant, type, par, start = 1, cutoff = 1,
alpha = 0.05, ...)
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Arguments

x Univariate time series (a vector).

R Number of bootstrap replications (an integer).

l Mean block size for stationary bootstrap or mean of the geometric distribution

used to generate resampling blocks (an integer that is not longer than the length

of the time series).

maxlag Number of lags to include in the extremogram (an integer).

quant Quantile of the time series to indicate an extreme event (a number between 0

and 1).

type Extremogram type (see function extremogram1).

par If par = 1, the bootstrap replication procedure will be parallelized. If par = 0, no

parallelization will be used.

start The lag that the extremogram plots starts at (an integer not greater than maxlag,
default is 1).

cutoff The cutoff of the y-axis on the plot (a number between 0 and 1, default is 1).

alpha Significance level for the confidence bands (a number between 0 and 1, default

is 0.05).

... further arguments: plot and axis names.

Value

Returns a plot of the confidence bands for the sample univariate extremogram.

References

1. Davis, R. A., Mikosch, T., & Cribben, I. (2012). Towards estimating extremal serial depen-

dence via the bootstrapped extremogram. Journal of Econometrics,170(1), 142-152.

2. Davis, R. A., Mikosch, T., & Cribben, I. (2011). Estimating extremal dependence in univariate

and multivariate time series via the extremogram.arXiv preprint arXiv:1107.5592.

Examples

# generate a GARCH(1,1) process
omega = 1
alpha = 0.1
beta = 0.6
n = 1000
quant = 0.95
type = 1
maxlag = 70
df = 3
R = 10
l = 30
par = 0
G = extremogram:::garchsim(omega,alpha,beta,n,df)

extremogram1(G, quant, maxlag, type, 1, 1, 0)
bootconf1(G, R, l, maxlag, quant, type, par, 1, 1, 0.05)
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bootconf2 Confidence bands for the sample cross extremogram

Description

The function estimates confidence bands for the sample cross extremogram using the stationary

bootstrap.

Usage

bootconf2(x, R, l, maxlag, quant1, quant2, type, par, start = 1, cutoff = 1,
alpha = 0.05, ...)

Arguments

x Bivariate time series (n by 2 matrix).

R Number of bootstrap replications (an integer).

l Mean block size for stationary bootstrap or mean of the geometric distribution

used to generate resampling blocks (an integer that is not longer than the length

of the time series).

maxlag Number of lags to include in the extremogram (an integer).

quant1 Quantile of the first time series to indicate an extreme event (a number between

0 and 1).

quant2 Quantile of the second series to indicate an extreme event (a number between 0

and 1).

type Extremogram type (see function extremogram2).

par If par = 1, the bootstrap replication procedure will be parallelized. If par = 0, no

parallelization will be used.

start The lag that the extremogram plots starts at (an integer not greater than maxlag,
default is 1).

cutoff The cutoff of the y-axis on the plot (a number between 0 and 1, default is 1).

alpha Significance level for the confidence bands (a number between 0 and 1, default

is 0.05).

... further arguments: plot and axis names.

Value

Returns a plot of the confidence bands for the sample cross extremogram.

References

1. Davis, R. A., Mikosch, T., & Cribben, I. (2012). Towards estimating extremal serial depen-

dence via the bootstrapped extremogram. Journal of Econometrics,170(1), 142-152.

2. Davis, R. A., Mikosch, T., & Cribben, I. (2011). Estimating extremal dependence in univariate

and multivariate time series via the extremogram.arXiv preprint arXiv:1107.5592.
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Examples

# generate a GARCH(1,1) process
omega = 1
alpha1 = 0.1
beta1 = 0.6
alpha2 = 0.11
beta2 = 0.78
n = 1000
quant = 0.95
type = 1
maxlag = 70
df = 3
R = 10
l = 30
par = 0
G1 = extremogram:::garchsim(omega,alpha1,beta1,n,df)
G2 = extremogram:::garchsim(omega,alpha2,beta2,n,df)
data = cbind(G1, G2)

extremogram2(data, quant, quant, maxlag, type, 1, 1, 0)
bootconf2(data, R, l, maxlag, quant, quant, type, par, 1, 1, 0.05)

bootconfr Confidence bands for the sample return time extremogram

Description

The function estimates confidence bands for the sample return time extremogram using the station-

ary bootstrap.

Usage

bootconfr(x, R, l, maxlag, uplevel = 1, lowlevel = 0, type, par,
start = 1, cutoff = 1, alpha = 0.05, ...)

Arguments

x Univariate time series (a vector).

R Number of bootstrap replications (an integer).

l Mean block size for stationary bootstrap or mean of the geometric distribution

used to generate resampling blocks (an integer that is not longer than the length

of the time series).

maxlag Number of lags to include in the extremogram (an integer)

uplevel Quantile of the time series to indicate a upper tail extreme event (a number

between 0 and 1, default is 1).

lowlevel Quantile of the time series to indicate a lower tail extreme event (a number

between 0 and 1, default is 0).
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type Extremogram type (see function extremogramr).

par If par = 1, the bootstrap replication procedure will be parallelized. If par = 0, no

parallelization will be used.

start The lag that the extremogram plots starts at (an integer not greater than maxlag,
default is 1).

cutoff The cutoff of the y-axis on the plot (a number between 0 and 1, default is 1).

alpha Significance level for the confidence bands (a number between 0 and 1, default

is 0.05).

... further arguments: plot and axis names.

Value

Returns a plot of the confidence bands for the sample return time extremogram.

References

1. Davis, R. A., Mikosch, T., & Cribben, I. (2012). Towards estimating extremal serial depen-

dence via the bootstrapped extremogram. Journal of Econometrics,170(1), 142-152.

2. Davis, R. A., Mikosch, T., & Cribben, I. (2011). Estimating extremal dependence in univariate

and multivariate time series via the extremogram.arXiv preprint arXiv:1107.5592.

Examples

# generate a GARCH(1,1) process
omega = 1
alpha = 0.1
beta = 0.6
n = 1000
uplevel = 0.95
lowlevel = 0.05
type = 3
maxlag = 70
df = 3
R = 10
l = 30
par = 0
G = extremogram:::garchsim(omega,alpha,beta,n,df)

extremogramr(G, type, maxlag, uplevel, lowlevel, 1, 1)
bootconfr(G, R, l, maxlag, uplevel, lowlevel, type, par, 1, 1, 0.05)

extremogram1 Sample univariate extremogram

Description

The function estimates the sample univariate extremogram and creates an extremogram plot.
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Usage

extremogram1(x, quant, maxlag, type, ploting = 1, cutoff = 1, start = 0,
...)

Arguments

x Univariate time series (a vector).

quant Quantile of the time series to indicate an extreme event (a number between 0

and 1).

maxlag Number of lags to include in the extremogram (an integer).

type Extremogram type. If type = 1, the upper tail extremogram is estimated. If type

= 2, the lower tail extremogram is estimated.

ploting An extremogram plot. If ploting = 1, a plot is created (default). If ploting = 0,

no plot is created.

cutoff The cutoff of the y-axis on the plot (a number between 0 and 1, default is 1).

start The lag that the extremogram plots starts at (an integer not greater than maxlag,
default is 0).

... further arguments: plot and axis names.

Value

Extremogram values and a plot (if requested).

References

1. Davis, R. A., Mikosch, T., & Cribben, I. (2012). Towards estimating extremal serial depen-

dence via the bootstrapped extremogram. Journal of Econometrics,170(1), 142-152.

2. Davis, R. A., Mikosch, T., & Cribben, I. (2011). Estimating extremal dependence in univariate

and multivariate time series via the extremogram.arXiv preprint arXiv:1107.5592.

Examples

# generate a GARCH(1,1) process
omega = 1
alpha = 0.1
beta = 0.6
n = 1000
quant = 0.95
type = 1
maxlag = 70
df = 3
G = extremogram:::garchsim(omega,alpha,beta,n,df)

extremogram1(G, quant, maxlag, type, 1, 1, 0)
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extremogram2 Sample cross extremogram

Description

The function estimates the sample cross extremogram and creates an extremogram plot.

Usage

extremogram2(a, quant1, quant2, maxlag, type, ploting = 1, cutoff = 1,
start = 0, ...)

Arguments

a Bivariate time series (n by 2 matrix).

quant1 Quantile of the first time series to indicate an extreme event (a number between

0 and 1).

quant2 Quantile of the second time series to indicate an extreme event (a number be-

tween 0 and 1).

maxlag Number of lags to include in the extremogram (an integer).

type If type=1, the upper tail extremogram is estimated - P(Y>y,X>x). If type=2, the

lower tail extremogram is estimated - P(Y<y,X<x). If type=3, the extremogram

is estimated for a lower tail extreme value in the first time series and an upper

tail extreme value in the second time series - P(Y>y,X<x). If type=4, the ex-

tremogram is estimated for a lower tail extreme value in the second time series

and an upper tail extreme value in the first time series - P(Y<y,X>x).

ploting An extremogram plot. If ploting = 1, a plot is created (default). If ploting = 0,

no plot is created.

cutoff The cutoff of the y-axis on the plot (a number between 0 and 1, default is 1).

start The lag that the extremogram plots starts at (an integer not greater than maxlag,
default is 0).

... further arguments: plot and axis names.

Value

Cross extremogram values and a plot (if requested).

References

1. Davis, R. A., Mikosch, T., & Cribben, I. (2012). Towards estimating extremal serial depen-

dence via the bootstrapped extremogram. Journal of Econometrics,170(1), 142-152.

2. Davis, R. A., Mikosch, T., & Cribben, I. (2011). Estimating extremal dependence in univariate

and multivariate time series via the extremogram.arXiv preprint arXiv:1107.5592.
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Examples

# generate a GARCH(1,1) process
omega = 1
alpha1 = 0.1
beta1 = 0.6
alpha2 = 0.11
beta2 = 0.78
n = 1000
quant = 0.95
type = 1
maxlag = 70
df = 3
G1 = extremogram:::garchsim(omega,alpha1,beta1,n,df)
G2 = extremogram:::garchsim(omega,alpha2,beta2,n,df)
data = cbind(G1, G2)

extremogram2(data, quant, quant, maxlag, type, 1, 1, 0)

extremogramr Sample return time extremogram

Description

The function estimates the sample return time extremogram and creates an extremogram plot.

Usage

extremogramr(x, type, maxlag, uplevel = 1, lowlevel = 0, histogram = 1,
cutoff = 1, ...)

Arguments

x Univariate time series (a vector).

type Extremogram type. If type = 1, the upper tail extremogram is estimated. If type

= 2, the lower tail extremogram is estimated. If type = 3, both upper and lower

tail extremogram is estimated.

maxlag Number of lags to include in the extremogram (an integer).

uplevel Quantile of the time series to indicate a upper tail extreme event (a number

between 0 and 1, default is 1).

lowlevel Quantile of the time series to indicate a lower tail extreme event (a number

between 0 and 1, default is 0).

histogram An extremogram plot. If histogram = 1, a plot is created (default). If histogram

= 0, no plot is created.

cutoff The cutoff of the y-axis on the plot (a number between 0 and 1, default is 1).

... further arguments: plot and axis names.
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Value

Extremogram values, return time for extreme events, mean return time and a plot (if requested).

References

1. Davis, R. A., Mikosch, T., & Cribben, I. (2012). Towards estimating extremal serial depen-

dence via the bootstrapped extremogram. Journal of Econometrics,170(1), 142-152.

2. Davis, R. A., Mikosch, T., & Cribben, I. (2011). Estimating extremal dependence in univariate

and multivariate time series via the extremogram.arXiv preprint arXiv:1107.5592.

Examples

# generate a GARCH(1,1) process
omega = 1
alpha = 0.1
beta = 0.6
n = 1000
uplevel = 0.95
lowlevel = 0.05
type = 3
maxlag = 70
df = 3
G = extremogram:::garchsim(omega,alpha,beta,n,df)

extremogramr(G, type, maxlag, uplevel, lowlevel, 1, 1)

permfn1 Confidence bands for the sample univariate extremogram

Description

The function estimates empirical confidence bands for the sample univariate extremogram via a

permutation procedure under the assumption that the data are independent.

Usage

permfn1(x, p, m, type, exttype, maxlag, start = 1, alpha = 0.05)

Arguments

x Univariate time series (a vector).

p Quantile of the time series to indicate an extreme event (a number between 0

and 1).

m Number of permutations (an integer).

type Type of confidence bands. If type=1, it adds all permutations to the sample

extremogram plot. If type=2, it adds the alpha/2 and (1-alpha)/2 empirical
confidence bands for each lag. If type=3, it calculates the lag 1 alpha/2 and
(1-alpha)/2 empirical confidence bands lag and uses them for all of the lags.
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exttype Extremogram type (see extremogram1).

maxlag Number of lags to include in the extremogram (an integer).

start The lag that the extremogram plots starts at (an integer not greater than maxlag,
default is 1).

alpha Significance level for the confidence bands (a number between 0 and 1, default

is 0.05).

Value

The empirical confidence bands are added to the sample univariate extremogram plot.

References

1. Davis, R. A., Mikosch, T., & Cribben, I. (2012). Towards estimating extremal serial depen-

dence via the bootstrapped extremogram. Journal of Econometrics,170(1), 142-152.

2. Davis, R. A., Mikosch, T., & Cribben, I. (2011). Estimating extremal dependence in univariate

and multivariate time series via the extremogram.arXiv preprint arXiv:1107.5592.

Examples

# generate a GARCH(1,1) process
omega = 1
alpha = 0.1
beta = 0.6
n = 1000
quant = 0.95
exttype = 1
maxlag = 70
df = 3
type = 3
m = 10
G = extremogram:::garchsim(omega,alpha,beta,n,df)

extremogram1(G, quant, maxlag, exttype, 1, 1, 0)
permfn1(G, quant, m, type, exttype, maxlag, 1, 0.05)

permfn2 Confidence bands for the sample cross extremogram

Description

The function estimates empirical confidence bands for the sample cross extremogram via a permu-

tation procedure under the assumption that the data are independent.

Usage

permfn2(x, p1, p2, m, type, exttype, maxlag, start = 1, alpha = 0.05)
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Arguments

x Bivariate time series (n by 2 matrix).

p1 Quantile of the first time series to indicate an extreme event (a number between

0 and 1).

p2 Quantile of the second time series to indicate an extreme event (a number be-

tween 0 and 1).

m Number of permutations (an integer).

type Type of confidence bands. If type=1, it adds all permutations to the sample

extremogram plot. If type=2, it adds the alpha/2 and (1-alpha)/2 empirical
confidence bands for each lag. If type=3, it calculates the lag 1 alpha/2 and
(1-alpha)/2 empirical confidence bands lag and uses them for all of the lags.

exttype Extremogram type (see extremogram2).

maxlag Number of lags to include in the extremogram (an integer).

start The lag that the extremogram plots starts at (an integer not greater than maxlag,
default is 1).

alpha Significance level for the confidence bands (a number between 0 and 1, default

is 0.05).

Value

The empirical confidence bands are added to the sample cross extremogram plot.

References

1. Davis, R. A., Mikosch, T., & Cribben, I. (2012). Towards estimating extremal serial depen-

dence via the bootstrapped extremogram. Journal of Econometrics,170(1), 142-152.

2. Davis, R. A., Mikosch, T., & Cribben, I. (2011). Estimating extremal dependence in univariate

and multivariate time series via the extremogram.arXiv preprint arXiv:1107.5592.

Examples

# generate a GARCH(1,1) process
omega = 1
alpha1 = 0.1
beta1 = 0.6
alpha2 = 0.11
beta2 = 0.78
n = 1000
quant = 0.95
exttype = 1
maxlag = 70
df = 3
type = 3
m = 10
G1 = extremogram:::garchsim(omega,alpha1,beta1,n,df)
G2 = extremogram:::garchsim(omega,alpha2,beta2,n,df)
data = cbind(G1, G2)
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extremogram2(data, quant, quant, maxlag, type, 1, 1, 0)
permfn2(data, quant, quant, m, type, exttype, maxlag, 1, 0.05)

permfnr Confidence bands for the sample return time extremogram

Description

The function estimates empirical confidence bands for the sample returt time extremogram via a

permutation procedure under the assumption that the data are independent.

Usage

permfnr(x, m, type, exttype, maxlag, uplevel = 1, lowlevel = 0, start = 1,
alpha = 0.05)

Arguments

x Univariate time series (a vector).

m Number of permutations (an integer).

type Type of confidence bands. If type=1, it adds all permutations to the sample

extremogram plot. If type=2, it adds the alpha/2 and (1-alpha)/2 empirical
confidence bands for each lag. If type=3, it calculates the lag 1 alpha/2 and
(1-alpha)/2 empirical confidence bands lag and uses them for all of the lags.

exttype Extremogram type (see extremogramr).

maxlag Number of lags to include in the extremogram (an integer).

uplevel Quantile of the time series to indicate a upper tail extreme event (a number

between 0 and 1, default is 1).

lowlevel Quantile of the time series to indicate a lower tail extreme event (a number

between 0 and 1, default is 0).

start The lag that the extremogram plots starts at (an integer not greater than maxlag,
default is 1).

alpha Significance level for the confidence bands (a number between 0 and 1, default

is 0.05).

References

1. Davis, R. A., Mikosch, T., & Cribben, I. (2012). Towards estimating extremal serial depen-

dence via the bootstrapped extremogram. Journal of Econometrics,170(1), 142-152.

2. Davis, R. A., Mikosch, T., & Cribben, I. (2011). Estimating extremal dependence in univariate

and multivariate time series via the extremogram.arXiv preprint arXiv:1107.5592.
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14 permfnr

Examples

# generate a GARCH(1,1) process
omega = 1
alpha = 0.1
beta = 0.6
n = 1000
uplevel = 0.95
lowlevel = 0.05
exttype = 3
maxlag = 70
type = 3
m = 10
df = 3
G = extremogram:::garchsim(omega,alpha,beta,n,df)

extremogramr(G, type, maxlag, uplevel, lowlevel, 1, 1)
permfnr(G, m, type, exttype, maxlag, uplevel, lowlevel, 1, 0.05)
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bootconf1, 2, 2
bootconf2, 2, 4
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Intercept QLD (lag 1)
14.22441
(0.78674)

2.17666
(0.12236)

Intercept QLD (lag 48)
44.69375
(0.43872)

1.69766
(0.21072)

Intercept QLD (lag 96)
102.70195
(0.00000)

0.48040
(0.13817)

Intercept SA (lag 1)
107.56082
(0.00000)

0.33981
(0.00035)

Intercept SA (lag 48)
94.62020
(0.01145)

0.58163
(0.51101)

Intercept SA (lag 96)
99.57194
(0.00000)

0.71198
(0.00000)

Intercept TAS (lag 1)
127.73722
(0.00015)

0.00248
(0.99760)

Intercept TAS (lag 96)
126.20501
(0.00000)

0.04896
(0.49312)

Intercept VIC (lag 1)
59.59740
(0.58001)

1.12128
(0.69178)

Intercept VIC (lag 48)
28.23487
(0.00000)

2.11012
(0.00000)

Intercept VIC (lag 96)
46.54683
(0.00004)

1.93507
(0.00000)

Table A.1: Estimated QR models for NSW using one predictor at lag h (specified sepa-
rately for each model), τ = 0.995. p-values given in parenthesis.
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Intercept QLD (lag 1) NSW (lag 1)
-33.23774
(0.01539)

-0.00326
(0.84831)

3.86442
(0.00000)

Intercept QLD (lag 48) NSW (lag 48)
-18.39471
(0.77475)

-0.00347
(0.99623)

3.39593
(0.06892)

Intercept QLD (lag 96) NSW (lag 96)
11.99812
(0.95016)

0.06405
(0.67025)

2.58221
(0.63888)

Intercept SA (lag 1) NSW (lag 1)
-44.39694
(0.57333)

0.03511
(0.76377)

5.04100
(0.03947)

Intercept SA (lag 48) NSW (lag 48)
-11.70523
(0.92936)

0.23251
(0.10778)

2.86402
(0.44793)

Intercept SA (lag 96) NSW (lag 96)
31.31101
(0.70521)

0.41566
(0.08280)

1.78317
(0.43506)

Intercept TAS (lag 1) NSW (lag 1)
-33.19013
(0.57861)

-0.00285
(0.98688)

3.86395
(0.04397)

Intercept TAS (lag 48) NSW (lag 48)
-18.23732
(0.92416)

-0.00341
(0.95987)

3.38603
( 0.53757)

Intercept TAS (lag 96) NSW (lag 96)
10.72805
(0.95015)

0.04622
(0.89584)

2.64998
(0.61950)

Intercept VIC (lag 1) NSW (lag 1)
-34.17078
(0.27170)

0.08780
(0.01343)

3.85938
(0.00184)

Intercept VIC (lag 48) NSW (lag 48)
-11.83119
(0.88422)

0.72732
(0.33559)

2.31899
(0.53866)

Intercept VIC (lag 96) NSW (lag 96)
22.41415
(0.53116)

0.97991
(0.43300)

1.41082
( 0.00023)

Table A.2: Estimated QR models for NSW using one predictor and NSW at lag h
(specified separately for each model), τ = 0.995. p-values given in parenthesis.
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Intercept QLD (lag 1)
45.03242
(0.98878)

2.17806
(0.85190)

Intercept QLD (lag 48)
66.06208
(0.00000)

1.69767
(0.00000)

Intercept QLD (lag 96)
83.44513
(0.00001)

0.40552
(0.44050)

Intercept SA (lag 1)
85.41773
(0.00000)

0.33991
(0.00023)

Intercept SA (lag 48)
80.59169
(0.00928)

0.57269
(0.00000)

Intercept SA (lag 96)
91.82294
(0.00000)

0.71203
(0.00000)

Intercept TAS (lag 1)
92.44967
(0.00000)

0.00018
(0.99938)

Intercept TAS (lag 48)
92.52577
(0.00000)

-0.00203
(0.95839)

Intercept TAS (lag 96)
92.10384
(0.00000)

0.03088
(0.02790)

Intercept VIC (lag 1)
65.69960
(0.00002)

0.91225
(0.47043)

Intercept VIC (lag 48)
66.69631
(0.20784)

1.88722
(0.40737)

Intercept VIC (lag 96)
79.16123
(0.00185)

1.93508
(0.00114)

Table A.4: Estimated QR models for NSW using one predictor at lag h (specified sepa-
rately for each model) for the deseasonalized data, τ = 0.995. p-values given in parenthesis.
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Intercept QLD (lag 1) NSW (lag 1)
60.50722
(0.00002)

-0.00317
(0.96427)

3.86793
(0.33863)

Intercept QLD (lag 48) NSW (lag 48)
60.14399
(0.03233)

-0.00331
(0.99760)

3.54469
(0.67302)

Intercept QLD (lag 96) NSW (lag 96)
67.43810
(0.00004)

0.05054
(0.39554)

2.11864
(0.64734)

Intercept SA (lag 1) NSW (lag 1)
61.32061
( 0.00000)

0.04089
(0.38712)

3.86594
(0.00002)

Intercept SA (lag 48) NSW (lag 48)
58.72528
(0.04170)

0.23170
(0.32865)

3.14760
(0.00020)

textbfIntercept SA (lag 96) NSW (lag 96)
74.38864
(0.00000)

0.44144
(0.13482)

1.44112
(0.28424)

Intercept TAS (lag 1) NSW (lag 1)
60.50752
(0.00000)

-0.00271
(0.99168)

3.86756
(0.08518)

Intercept TAS (lag 48) NSW (lag 48)
59.92127
(0.00229)

-0.00328
(0.98854)

3.53389
(0.33753)

Intercept TAS (lag 96) NSW (lag 96)
67.98428
(0.00000)

0.05544
(0.94992)

2.17468
(0.41463)

Intercept VIC (lag 1) NSW (lag 1)
62.22476
(0.00000)

0.08840
(0.28269)

3.86358
(0.08188)

Intercept VIC (lag 48) NSW (lag 48)
55.76794
(0.00000)

0.68074
(0.66941)

2.52439
(0.55492)

Intercept VIC (lag 96) NSW (lag 96)
69.69614
(0.00167)

0.79283
(0.59634)

1.46478
(0.00021)

Table A.5: Estimated QR models for NSW using one predictor and NSW at lag h
(specified separately for each model) for the deseasonalized data, τ = 0.995. p-values given
in parenthesis.
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Intercept NSW (lag 1)
14.22441
(0.78674)

2.17666
(0.12236)

Intercept NSW (lag 48)
44.69375
(0.43872)

1.69766
(0.21072)

Intercept NSW (lag 96)
102.70195
(0.00000)

0.48040
(0.13817)

Intercept SA (lag 1)
107.56082
(0.00000)

0.33981
(0.00035)

Intercept SA (lag 48)
94.62020
(0.01145)

0.58163
(0.51101)

Intercept SA (lag 96)
99.57194
(0.00000)

0.71198
(0.00000)

Intercept VIC (lag 1)
59.59740
(0.58001)

1.12128
(0.69178)

Intercept VIC (lag 48)
28.23487
(0.00000)

2.11012
(0.00000)

Intercept VIC (lag 96)
46.54683
(0.00004)

1.93507
(0.00000)

Intercept TAS (lag 1)
127.73722
(0.00015)

0.00248
(0.99760)

Intercept TAS (lag 96)
126.20501
(0.00000)

0.04896
(0.49312)

Table A.7: Estimated QR models for QLD using one predictor at lag h (specified sepa-
rately for each model), τ = 0.995. p-values given in parenthesis.
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Intercept NSW (lag 1) QLD (lag 1)
-33.23774
(0.01539)

-0.00326
(0.84831)

3.86442
(0.00000)

Intercept NSW (lag 48) QLD (lag 48)
-18.39471
(0.77475)

-0.00347
(0.99623)

3.39593
(0.06892)

Intercept NSW (lag 96) QLD (lag 96)
11.99812
(0.95016)

0.06405
(0.67025)

2.58221
(0.63888)

Intercept SA (lag 1) QLD (lag 1)
-33.34964
(0.42755)

0.00966
(0.31272)

3.86355
(0.00755)

Intercept SA (lag 48) QLD (lag 48)
-11.70523
(0.92936)

0.23251
(0.10778)

2.86402
(0.44793)

textbfIntercept SA (lag 96) QLD (lag 96)
31.31101
(0.70521)

0.41566
(0.08280)

1.78317
(0.43506)

Intercept TAS (lag 1) QLD (lag 1)
-33.19013
(0.57861)

-0.00285
(0.98688)

3.86395
(0.04397)

Intercept TAS (lag 48) QLD (lag 48)
-18.23732
(0.92416)

-0.00341
(0.95987)

3.38603
(0.53757)

Intercept TAS (lag 96) QLD (lag 96)
10.72805
(0.95015)

0.04622
(0.89584)

2.64998
(0.61950)

Intercept VIC (lag 1) QLD (lag 1)
-34.17078
(0.72360)

0.08780
(0.01343)

3.85938
(0.00184)

Intercept VIC (lag 48) QLD (lag 48)
-11.83119
(0.88422)

0.72732
(0.33559)

2.31899
(0.53866)

Intercept VIC (lag 96) QLD (lag 96)
22.41415
(0.53116)

0.97991
(0.43300)

1.41082
(0.00023)

Table A.8: Estimated QR models for QLD using one predictor and QLD at lag h (specified
separately for each model), τ = 0.995. p-values given in parenthesis.
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Intercept NSW (lag 1)
45.03242
(0.98878)

2.17806
(0.85190)

Intercept NSW (lag 48)
66.06208
(0.00000)

1.69767
(0.00000)

Intercept NSW (lag 96)
83.44513
(0.00001)

0.40552
(0.44050)

Intercept SA (lag 1)
85.41773
(0.00000)

0.33991
(0.00023)

Intercept SA (lag 48)
80.59169
(0.00928)

0.57269
(0.00000)

Intercept SA (lag 96)
91.82294
(0.00000)

0.71203
(0.00000)

Intercept TAS (lag 1)
92.44967
(0.00000)

0.00018
(0.99938)

Intercept TAS (lag 48)
92.52577
(0.00000)

-0.00203
(0.95839)

Intercept TAS (lag 96)
92.10384
(0.00000)

0.03088
(0.02790)

Intercept VIC (lag 1)
65.69960
(0.00002)

0.91225
(0.47043)

Intercept VIC (lag 48)
66.69631
(0.20784)

1.88722
(0.40737)

Intercept VIC (lag 96)
79.16123
(0.00185)

1.93508
( 0.00114)

Table A.10: Estimated QR models for QLD using one predictor at lag h (specified sepa-
rately for each model) for the deseasonalized data, τ = 0.995. p-values given in parenthesis.
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Intercept NSW (lag 1) QLD (lag 1)
60.50722
(0.00002)

-0.00317
(0.96427)

3.86793
(0.33863)

Intercept NSW (lag 48) QLD (lag 48)
60.14399
(0.03233)

-0.00331
(0.99760)

3.54469
(0.67302)

Intercept NSW (lag 96) QLD (lag 96)
67.43810
(0.00004)

0.05054
(0.39554)

2.11864
(0.64734)

Intercept SA (lag 1) QLD (lag 1)
61.32061
(0.00000)

0.04089
(0.38712)

3.86594
(0.00002)

Intercept SA (lag 48) QLD (lag 48)
58.72528
(0.04170)

0.23170
(0.32865)

3.14760
(0.00020)

textbfIntercept SA (lag 96) QLD (lag 96)
74.38864
(0.00000)

0.44144
(0.13482)

1.44112
(0.28424)

Intercept TAS (lag 1) QLD (lag 1)
60.50752
(0.00000)

-0.00271
(0.99168)

3.86756
(0.08518)

Intercept TAS (lag 48) QLD (lag 48)
59.92127
(0.00229)

-0.00328
(0.98854)

3.53389
(0.33753)

Intercept TAS (lag 96) QLD (lag 96)
67.98428
(0.00000)

0.05544
(0.94992)

2.17468
(0.41463)

Intercept VIC (lag 1) QLD (lag 1)
62.22476
(0.00000)

0.08840
(0.28269)

3.86358
(0.08188)

Intercept VIC (lag 48) QLD (lag 48)
55.76794
(0.00000)

0.68074
(0.66941)

2.52439
(0.55492)

Intercept VIC (lag 96) QLD (lag 96)
69.69614
(0.00167)

0.79283
(0.59634)

1.46478
(0.00021)

Table A.11: Estimated QR models for QLD using one predictor and QLD at lag h
(specified separately for each model) for the deseasonalized data, τ = 0.995. p-values given
in parenthesis.
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Intercept QLD (lag 1) QLD (lag 48) QLD (lag 96)
58.88936
(0.00000)

3.34964
(0.22688)

0.55901
(0.20571)

-0.00503
(0.95275)

Table A.12: Estimated QR models for QLD using QLD at lags 1, 48 and 96 as predictors
for deseasonalized data set, τ = 0.995. p-values given in parenthesis.
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Intercept QLD (lag 1) SA (lag 1)
29.32469
(0.49258)

0.03699
(0.91709)

1.85125
( 0.04710)

Intercept QLD (lag 48) SA (lag 48)
136.66261
(0.00000)

0.13683
(0.78947)

1.16941
(0.00812)

Intercept QLD (lag 96) SA (lag 96)
179.42646
(0.00120)

0.03106
(0.97026)

0.98191
(0.05096)

Intercept NSW (lag 1) SA (lag 1)
10.43728
(0.90929)

0.58450
(0.80491)

1.83216
(0.00055)

Intercept NSW (lag 48) SA (lag 48)
121.69576
(0.65646)

0.40151
(0.95294)

1.17024
(0.60475)

textbfIntercept NSW (lag 96) SA (lag 96)
178.93671
(0.00243)

0.02980
(0.46814)

0.98194
(0.00000)

Intercept TAS (lag 1) SA (lag 1)
31.72468
(0.39933)

-0.00183
(0.99209)

1.85103
(0.00000)

Intercept TAS (lag 48) SA (lag 48)
143.11380
(0.00000)

-0.01202
(0.97951)

1.16917
(0.00000)

Intercept TAS (lag 96) SA (lag 96)
181.89585
(0.03143)

-0.01557
(0.99306)

0.98193
(0.02494)

Intercept VIC (lag 1) SA (lag 1)
7.35713
(0.92373)

0.96106
(0.69076)

1.48560
(0.15185)

Intercept VIC (lag 48) SA (lag 48)
66.70433
(0.20885)

2.01422
(0.10599)

0.98234
(0.41063)

Intercept VIC (lag 96) SA (lag 96)
172.64115
(0.55116)

0.18137
(0.97910)

0.97910
(0.70386)

Table A.14: Estimated QR models for SA using one predictor and SA at lag h (specified
separately for each model), τ = 0.995. p-values given in parenthesis.
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Intercept QLD (lag 1) QLD (lag 48) QLD (lag 96)
112.50573
(0.49371)

2.11538
(0.58853)

0.34425
(0.83837)

0.18118
(0.95287)

Intercept NSW (lag 1) NSW (lag 48) NSW (lag 96)
-69.20180
(0.92183)

7.87351
(0.68164)

-0.01121
(0.99465)

-0.01054
(0.99084)

Intercept VIC (lag 1) VIC (lag 48) VIC (lag 96)
-29.81378
(0.66386)

5.46102
(0.00015)

0.25245
(0.88306)

0.16662
(0.89890)

Intercept TAS (lag 1) TAS (lag 48) TAS (lag 96)
232.28807
(0.10169)

0.02508
(0.99128)

0.01046
(0.97148)

0.02093
(0.99265)

Table A.15: Estimated QR models for NSW using each of the other states at lags 1, 48
and 96 as predictors, τ = 0.995. p-values given in parenthesis.

Intercept SA (lag 1) SA (lag 48) SA (lag 96)
27.50610
(0.70914)

1.71328
(0.29586)

0.27106
(0.44503)

0.05614
(0.46410)

Table A.16: Estimated QR models for SA using SA at lags 1, 48 and 96 as predictors,
τ = 0.995. p-values given in parenthesis.
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Intercept QLD (lag 1)
175.74926
(0.00000)

1.44204
(0.50489)

Intercept QLD (lag 48)
188.17660
(0.39531)

0.36998
(0.82365)

Intercept QLD (lag 96)
194.18325
(0.00187)

0.28699
(0.49270)

Intercept NSW (lag 1)
135.73749
(0.13132)

6.88502
(0.81242)

Intercept NSW (lag 48)
155.28897
(0.93915)

1.89346
(0.87502)

Intercept NSW (lag 96)
179.07792
(0.00040)

0.90499
(0.80542)

Intercept TAS (lag 1)
198.06969
(0.00000)

0.02611
(0.96291)

Intercept TAS (lag 96)
202.24650
(0.00000)

0.01775
(0.95443)

Intercept VIC (lag 1)
124.65933
(0.00000)

5.71064
(0.00081)

Intercept VIC (lag 48)
126.33515
(0.03910)

4.41997
(0.01020)

Intercept VIC (lag 96)
177.34340
(0.26108)

0.93796
(0.93895)

Table A.18: Estimated QR models for SA using one predictor at lag h (specified separately
for each model) for the deseasonalized data, τ = 0.995. p-values given in parenthesis.
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Intercept QLD (lag 1) SA (lag 1)
57.97522
(0.00032)

0.03846
(0.94311)

1.87103
(0.04654)

Intercept QLD (lag 48) SA (lag 48)
146.75021
(0.00872)

0.06825
(0.94661)

1.16944
(0.35269)

Intercept QLD (lag 96) SA (lag 96)
181.05104
(0.000003)

-0.01445
(0.89401)

0.98183
(0.00000)

Intercept NSW (lag 1) SA (lag 1)
55.44352
(0.31774)

0.60557
(0.87193)

1.84629
(0.03202)

Intercept NSW (lag 48) SA (lag 48)
146.07407
(0.00000)

0.06536
(0.62382)

1.16952
(0.12661)

Intercept NSW (lag 96) SA (lag 96)
179.98325
(0.02000)

0.01008
(0.73829)

0.98191
(0.12892)

Intercept TAS (lag 1) SA (lag 1)
58.43932
(0.55097)

-0.00123
(0.99769)

1.87495
(0.20029)

Intercept TAS (lag 48) SA (lag 48)
148.61395
( 0.06419)

-0.01189
(0.98483)

1.16919
(0.37475)

Intercept TAS (lag 96) SA (lag 96)
180.62578
(0.01276)

-0.01556
(0.99429)

0.98191
(0.42337)

Intercept VIC (lag 1) SA (lag 1)
54.16271
(0.30880)

0.97766
(0.70788)

1.52345
(0.06804)

Intercept VIC (lag 48) SA (lag 48)
136.79213
(0.05174)

1.51295
(0.69972)

0.98315
(0.57832)

Intercept VIC (lag 96) SA (lag 96)
181.14250
(0.00000)

-0.00502
(0.99702)

0.98188
(0.00000)

Table A.19: Estimated QR models for SA using one predictor and SA at lag h (spec-
ified separately for each model) for the deseasonalized data, τ = 0.995. p-values given in
parenthesis.

144



In
te
rc
e
p
t

Q
L
D

(l
a
g
1
)

Q
L
D

(l
a
g
4
8
)

Q
L
D

(l
a
g
9
6
)

S
A

(l
a
g
1
)

S
A

(l
a
g
4
8
)

S
A

(l
a
g
9
6
)

61
.4
87
16

(0
.0
36

53
)

0.
00
67
11

(0
.9
90

38
)

-0
.0
01
46

(0
.9
87

68
)

-0
.0
03
79

(0
.9
37

39
)

1.
71
25
7

(0
.0
01

46
)

0.
28
22
7

(0
.0
30

25
)

0.
06
82
9

(0
.8
21

11
)

In
te
rc
e
p
t

N
S
W

(l
a
g
1
)

N
S
W

(l
a
g
4
8
)

N
S
W

(l
a
g
9
6
)

S
A

(l
a
g
1
)

S
A

(l
a
g
4
8
)

S
A

(l
a
g
9
6
)

61
.1
19
64

(0
.4
00

73
)

0.
45
70
2

(0
.7
76

75
)

0.
00
21
3

(0
.9
95

80
)

-0
.0
04
87

(0
.9
88

33
)

1.
70
80
5

(0
.1
35

59
)

0.
27
97
0

(0
.7
62

36
)

0.
06
59
6

(0
.8
96

03
)

In
te
rc
e
p
t

V
IC

(l
a
g
1
)

V
IC

(l
a
g
4
8
)

V
IC

(l
a
g
9
6
)

S
A

(l
a
g
1
)

S
A

(l
a
g
4
8
)

S
A

(l
a
g
9
6
)

58
.7
29
38

(0
.0
00

00
)

0.
98
02
8

(0
.0
14

39
)

-0
.0
03
43

(0
.9
89

28
)

0.
07
13
6

(0
.9
57

56
)

1.
44
05
7

(0
.0
00

00
)

0.
25
83
4

(0
.6
24

04
)

0.
04
73
0

(0
.6
92

71
)

In
te
rc
e
p
t

T
A
S

(l
a
g
1
)

T
A
S

(l
a
g
4
8
)

T
A
S

(l
a
g
9
6
)

S
A

(l
a
g
1
)

S
A

(l
a
g
4
8
)

S
A

(l
a
g
9
6
)

61
.6
70
90

(0
.0
37

00
)

-0
.0
04
76

(0
.9
78

23
)

0.
00
19
9

(0
.9
87

80
)

-0
.0
03
77

(0
.9
89

65
)

1.
71
24
0

(0
.0
00

00
)

0.
28
20
4

(0
.5
54

88
)

0.
06
86
0

(0
.7
82

97
)

T
a
b
le

A
.2
0
:

E
st
im

a
te
d
Q
R

m
od
el
s
fo
r
S
A

u
si
n
g
ea
ch

o
f
th
e
o
th
er

st
a
te
s
a
n
d
S
A

a
t
la
gs

1
,
4
8
a
n
d
9
6
a
s
p
re
d
ic
to
rs

fo
r
th
e
d
es
ea
so
n
a
li
ze
d

d
a
ta
,
τ
=

0.
99
5.

p
-v
a
lu
es

gi
ve
n
in

pa
re
n
th
es
is
.

145



Intercept QLD (lag 1) VIC (lag 1)
-9.11693
(0.87049)

0.06061
(0.81077)

2.39732
(0.22462)

Intercept QLD (lag 48) VIC (lag 48)
0.48485
(0.99615)

0.02799
(0.98577)

2.92131
(0.22161)

Intercept QLD (lag 96) VIC (lag 96)
80.50883
(0.07521)

0.11592
(0.84455)

0.65246
(0.67126)

Intercept SA (lag 1) VIC (lag 1)
-5.68868
( 0.89006)

0.17085
(0.18250)

2.10899
(0.11026)

Intercept SA (lag 48) VIC (lag 48)
7.36157
(0.95648)

0.26328
(0.80701)

2.35919
(0.53247)

textbfIntercept SA (lag 96) VIC (lag 96)
84.26517
(0.00000)

0.06748
(0.76681)

0.60986
(0.04511)

Intercept TAS (lag 1) VIC (lag 1)
-8.67323
(0.86849)

-0.00142
(0.88665)

2.47251
(0.16176)

Intercept TAS (lag 48) VIC (lag 48)
0.47018
(0.99445)

-0.00485
(0.88826)

2.97173
(0.11131)

Intercept TAS (lag 96) VIC (lag 96)
84.82352
(0.00728)

-0.00525
(0.99061)

0.67031
(0.34275)

Intercept NSW (lag 1) VIC (lag 1)
-14.57636
(0.68528)

0.34328
(0.64580)

2.36533
(0.09230)

Intercept NSW (lag 48) VIC (lag 48)
-3.77388
(0.97742)

0.21111
(0.95971)

2.88536
(0.21339)

Intercept NSW (lag 96) VIC (lag 96)
62.67706
(0.23138)

0.56928
(0.66284)

0.65512
(0.00000)

Table A.21: Estimated QR models for VIC using one predictor and VIC at lag h (specified
separately for each model), τ = 0.995. p-values given in parenthesis.
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Intercept QLD (lag 1) QLD (lag 48) QLD (lag 96)
70.82095
(0.00672)

0.70415
(0.14959)

0.17278
(0.65005)

0.07372
(0.37540)

Intercept SA (lag 1) SA (lag 48) SA (lag 96)
32.07926
(0.42936)

1.20378
(0.00000)

0.20867
(0.71982)

0.01150
(0.93465)

Intercept NSW (lag 1) NSW (lag 48) NSW (lag 96)
-17.76033
(0.86488)

2.98851
(0.31246)

-0.00170
(0.99438)

-0.00311
(0.93353)

Intercept TAS (lag 1) TAS (lag 48) TAS (lag 96)
110.98827
(0.00000)

0.08416
(0.35430)

0.02276
(0.65321)

0.01876
( 0.85342)

Table A.22: Estimated QR models for VIC using each of the other states at lags 1, 48
and 96 as predictors, τ = 0.995. p-values given in parenthesis.

Intercept VIC (lag 1) VIC (lag 48) VIC (lag 96)
-12.00219
(0.85091)

2.38342
(0.26092)

0.20091
(0.60683)

0.10641
(0.94039)

Table A.23: Estimated QR models for VIC using VIC at lags 1, 48 and 96 as predictors,
τ = 0.995. p-values given in parenthesis.
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Intercept QLD (lag 1)
68.35838
(0.00017)

0.70508
(0.00000)

Intercept QLD (lag 48)
79.86536
(0.00002)

0.30022
(0.02264)

Intercept QLD (lag 96)
83.13649
(0.00166)

0.14720
(0.91728)

Intercept SA (lag 1)
45.86676
(0.00002)

1.20525
(0.00000)

Intercept SA (lag 48)
65.90306
(0.05298)

0.83139
(0.08063)

Intercept SA (lag 96)
82.69939
(0.00000)

0.12174
(0.76106)

Intercept TAS (lag 1)
80.78948
( 0.26050)

0.08454
(0.96436)

Intercept TAS (lag 48)
84.53524
(0.00000)

0.04705
(0.77194)

Intercept TAS (lag 96)
84.81606
(0.61937)

0.03484
(0.98907)

Intercept NSW (lag 1)
45.39299
( 0.00580)

2.79510
(0.53905)

Intercept NSW (lag 48)
57.18625
(0.00194)

1.96785
(0.29802)

Intercept NSW (lag 96)
71.69860
(0.00063)

0.86859
(0.66893)

Table A.25: Estimated QR models for VIC using one predictor at lag h (specified sepa-
rately for each model) for the deseasonalized data, τ = 0.995. p-values given in parenthesis.
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Intercept QLD (lag 1) VIC (lag 1)
36.99030
(0.00000)

0.05721
(0.88002)

2.38522
(0.17782)

Intercept QLD (lag 48) VIC (lag 48)
63.63323
(0.34640)

0.02854
(0.97954)

2.93858
(0.55149)

Intercept QLD (lag 96) VIC (lag 96)
72.44630
(0.00000)

0.07453
(0.81130)

0.65144
(0.16487)

Intercept SA (lag 1) VIC (lag 1)
35.16823
(0.00000)

0.19632
(0.10345)

2.08556
(0.17330)

Intercept SA (lag 48) VIC (lag 48)
60.85325
(0.00000)

0.30247
(0.50652)

2.35583
(0.03299)

Intercept SA (lag 96) VIC (lag 96)
73.75071
(0.00000)

0.06955
( 0.77099)

0.56980
(0.02931)

Intercept TAS (lag 1) VIC (lag 1)
37.23265
(0.00000)

-0.00027
(0.96530)

2.42078
(0.00000)

Intercept TAS (lag 48) VIC (lag 48)
63.86682
(0.02974)

-0.00448
(0.97207)

2.96021
(0.25272)

Intercept TAS (lag 96) VIC (lag 96)
73.51360
(0.00077)

-0.00534
(0.98814)

0.65113
(0.00000)

Intercept NSW (lag 1) VIC (lag 1)
39.36958
(0.00000)

0.25804
( 0.14678)

2.371078
(0.30639)

Intercept NSW (lag 48) VIC (lag 48)
64.06369
(0.12303)

0.20994
(0.52222)

2.91413
(0.09900)

Intercept NSW (lag 96) VIC (lag 96)
70.49986
(0.00000)

0.34733
(0.47412)

0.65378
(0.00172)

Table A.26: Estimated QR models for VIC using one predictor and VIC at lag h (spec-
ified separately for each model) for the deseasonalized data, τ = 0.995. p-values given in
parenthesis.
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Intercept QLD (lag 1)
141.79012
(0.00000)

0.12295
(0.75994)

Intercept QLD (lag 48)
145.60111
(0.00000)

-0.00760
(0.91696)

Intercept QLD (lag 96)
145.64924
(0.00000)

-0.00700
(0.85261)

Intercept SA (lag 1)
140.16916
(0.00000)

0.15882
(0.56107)

Intercept SA (lag 48)
143.50788
(0.00000)

0.17511
(0.62206)

Intercept SA (lag 96)
144.45895
(0.00000)

0.00235
(0.98420)

Intercept NSW (lag 1)
123.61402
(0.17762)

0.52304
(0.82982)

Intercept NSW (lag 48)
145.75637
(0.00000)

-0.00843
(0.98256)

Intercept NSW (lag 96)
143.55338
( 0.03376)

0.04108
(0.94440)

Intercept VIC (lag 1)
115.02462
(0.00000)

0.66216
(0.17143)

Intercept VIC (lag 48)
100.73934
(0.43759)

1.35897
(0.38993)

Table A.28: Estimated QR models for TAS using one predictor at lag h (specified
separately for each model), τ = 0.995. p-values given in parenthesis.
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Intercept QLD (lag 1) TAS (lag 1)
42.72702
(0.08806)

0.06167
(0.89762)

1.04424
(0.05206)

Intercept QLD (lag 48) TAS (lag 48)
117.59814
(0.00000)

0.03361
(0.90391)

0.99030
(0.00000)

Intercept QLD (lag 96) TAS (lag 96)
141.26272
(0.00000)

0.05624
(0.45944)

0.10139
(0.78468)

Intercept SA (lag 1) TAS (lag 1)
42.12136
(0.24322)

0.10327
(0.77850)

1.06793
(0.20956)

Intercept SA (lag 48) TAS (lag 48)
110.32343
(0.00016)

0.28351
(0.42675)

0.98895
(0.06832)

textbfIntercept SA (lag 96) TAS (lag 96)
137.93269
(0.00106)

0.08755
(0.87569)

0.13548
(0.86129)

Intercept NSW (lag 1) TAS (lag 1)
28.25307
(0.91907)

0.44707
(0.83998)

1.07480
(0.01428)

Intercept NSW (lag 48) TAS (lag 48)
86.65837
(0.23955)

0.75085
(0.71608)

0.98750
(0.05365)

Intercept NSW (lag 96) TAS (lag 96)
136.28200
(0.08337)

0.17224
(0.89386)

0.11079
(0.20208)

Intercept VIC (lag 1) TAS (lag 1)
20.65300
(0.12860)

0.64199
(0.00000)

1.13999
(0.00000)

Intercept VIC (lag 48) TAS (lag 48)
66.50537
(0.02701)

1.07930
(0.20702)

1.00766
(0.00000)

Intercept VIC (lag 96) TAS (lag 96)
136.65752
(0.00000)

0.14175
(0.78075)

0.13284
(0.75649)

Table A.29: Estimated QR models for TAS using one predictor and TAS at lag h
(specified separately for each model), τ = 0.995. p-values given in parenthesis.
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Intercept QLD (lag 1)
111.96437
(0.00001)

0.12400
(0.90863)

Intercept QLD (lag 48)
111.77356
(0.00000)

-0.00766
(0.48098)

Intercept QLD (lag 96)
111.67372
(0.98662)

-0.00704
(0.99695)

Intercept SA (lag 1)
112.21183
(0.00048)

0.15871
( 0.83016)

Intercept SA (lag 48)
114.90650
(0.99882)

0.17527
(0.99879)

Intercept SA (lag 96)
110.64865
(0.00584)

0.00242
(0.99500)

Intercept NSW (lag 1)
105.94638
(0.09037)

0.53326
(0.81572)

Intercept NSW (lag 48)
111.88531
(0.00704)

-0.00850
(0.98311)

Intercept NSW (lag 96)
110.81834
(0.00000)

0.04127
(0.83766)

Intercept VIC (lag 1)
100.10672
( 0.00000)

0.66294
(0.00022)

Intercept VIC (lag 48)
109.15782
(0.00000)

1.35982
(0.40662)

Intercept VIC (lag 96)
110.75859
(0.00000)

0.00701
(0.93876)

Table A.31: Estimated QR models for TAS using one predictor at lag h (specified sepa-
rately for each model) for the deseasonalized data, τ = 0.995. p-values given in parenthesis.
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Intercept QLD (lag 1) TAS (lag 1)
45.46341
(0.96291)

0.05877
(0.95640)

1.04350
(0.11400)

Intercept QLD (lag 48) TAS (lag 48)
118.05009
(0.01299)

0.03379
(0.96714)

0.99034
(0.26421)

Intercept QLD (lag 96) TAS (lag 96)
111.97793
(0.00000)

0.05665
(0.01433)

0.09848
(0.65790)

Intercept SA (lag 1) TAS (lag 1)
47.35543
(0.00000)

0.10863
(0.02728)

1.06836
(0.00000)

Intercept SA (lag 48) TAS (lag 48)
120.30070
(0.00000)

0.28340
( 0.41124)

0.98913
(0.00703)

textbfIntercept SA (lag 96) TAS (lag 96)
111.57473
(0.00000)

0.07404
(0.77831)

0.13327
(0.72308)

Intercept NSW (lag 1) TAS (lag 1)
43.50121
(0.23006)

0.44927
(0.90066)

1.07714
(0.05271)

Intercept NSW (lag 48) TAS (lag 48)
110.49102
(0.00000)

0.70391
(0.67012)

0.98844
(0.03181)

Intercept NSW (lag 96) TAS (lag 96)
111.23786
(0.00000)

0.06974
(0.00523)

0.10899
(0.71716)

Intercept VIC (lag 1) TAS (lag 1)
44.70080
(0.00000)

0.64248
(0.00000)

1.14101
(0.00000)

Intercept VIC (lag 48) TAS (lag 48)
101.34039
(0.00002)

1.0861
(0.41183)

1.00891
(0.21664)

Intercept VIC (lag 96) TAS (lag 96)
111.67924
(0.00000)

0.11721
(0.64750)

0.13339
(0.41993)

Table A.32: Estimated QR models for TAS using one predictor and TAS at lag h
(specified separately for each model) for the deseasonalized data, τ = 0.995. p-values given
in parenthesis.
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Intercept QLD (lag 1) QLD (lag 48) QLD (lag 96)
112.14326
(0.93179)

0.12384
(0.93937)

-0.00821
(0.99434)

-0.00682
(0.99854)

Intercept SA (lag 1) SA (lag 48) SA (lag 96)
114.59806
(0.00000)

0.13511
(0.13684)

0.16826
(0.00000)

-0.00109
(0.52991)

Intercept VIC (lag 1) VIC (lag 48) VIC (lag 96)
105.93968
(0.00001)

0.62773
(0.64460)

0.81540
(0.12082)

-0.01017
(0.83922)

Intercept NSW (lag 1) NSW (lag 48) NSW (lag 96)
105.92345
(0.00255)

0.62773
(0.78375)

-0.01246
(0.93750)

0.04365
(0.44075)

Table A.33: Estimated QR models for TAS using each of the other states at lags 1, 48
and 96 as predictors for the deseasonalized data, τ = 0.995. p-values given in parenthesis.

Intercept TAS (lag 1) TAS (lag 48) TAS (lag 96)
51.64350
(0.98208)

0.91201
(0.00000)

0.32547
(0.87153)

0.05097
(0.98126)

Table A.34: Estimated QR models for TAS using TAS at lags 1, 48 and 96 as predictors
for the deseasonalized data, τ = 0.995. p-values given in parenthesis.
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A.0.4 Appendix 4

Figure A.0.47: A: Cross-quantilograms for NSW conditioning on SA (2009 – 2014).
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Figure A.0.48: A: Cross-quantilograms for NSW conditioning on VIC (2009 – 2014).

Figure A.0.49: A: Cross-quantilograms for NSW conditioning on TAS (2009 – 2014).
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Figure A.0.50: A: Cross-quantilograms for QLD conditioning on SA (2009 – 2014).

Figure A.0.51: A: Cross-quantilograms for QLD conditioning on VIC (2009 – 2014).
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Figure A.0.52: A: Cross-quantilograms for QLD conditioning on TAS (2009 – 2014).

Figure A.0.53: A: Cross-quantilograms for SA conditioning on QLD (2009 – 2014).
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Figure A.0.54: A: Cross-quantilograms for SA conditioning on NSW (2009 – 2014).

Figure A.0.55: A: Cross-quantilograms for SA conditioning on TAS (2009 – 2014).
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Figure A.0.56: A: Cross-quantilograms for VIC conditioning on QLD (2009 – 2014).

Figure A.0.57: A: Cross-quantilograms for VIC conditioning on NSW (2009 – 2014).
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Figure A.0.58: A: Cross-quantilograms for VIC conditioning on TAS (2009 – 2014).

Figure A.0.59: A: Cross-quantilograms for TAS conditioning on QLD (2009 – 2014).
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Figure A.0.60: A: Cross-quantilograms for TAS conditioning on NSW (period: 2009 –
2014).

Figure A.0.61: A: Cross-quantilograms for TAS conditioning on SA (2009 – 2014).
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Figure A.0.62: A: Cross-quantilograms for TAS conditioning on VIC (2009 – 2014).
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