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Abstract 

Intrinsically disordered regions (IDRs) in proteins lack stable three dimensional 

structure under physiological conditions. IDRs are prevalent in nature, functionally 

important, and difficult to characterize experimentally due to their unstructuredness. As a 

result, many computational methods have been developed to detect IDRs from protein 

sequences in the past forty years. However, the annotations of functions of IDRs lag behind 

the rapidly accumulating number of newly discovered proteins since they remain largely 

determined via time-consuming and costly experiments. Sequence alignment (SA) and 

existing predictors of functions of IDRs provide a way to characterize functions of IDRs. 

However, SA is only applicable when the protein under study shares sufficiently high 

sequence similarity with annotated homologous sequences, and existing predictors cover 

only a small portion of all functions of IDRs. We use SA and existing predictors to 

characterize functions of IDRs in human dengue virus, and we use this project to 

investigate the ability of these approaches to determine functions of IDRs. Results show 

that SA is able to find certain functions that are related to IDRs, but it under predicts the 

number of IDRs that carry out given functions. Moreover, existing predictors of functions 

of IDRs only cover protein-binding functions, and do not cover other types of functions. 

To this end, we address the prediction of the most prevalent function that does not involve 

binding and cannot be predicted by current predictors, i.e., the disordered flexible linkers 

(DFLs). DFLs are IDRs that serve as flexible linkers/spacers in multi-domain proteins or 

between structured constituents in domains. We conceptualized, developed and empirically 

assessed a first-of-its-kind sequence-based predictor of DFLs, DFLpred. DFLpred uses a 

set of empirically selected features that quantify propensities to form certain secondary 

structures, disordered regions and structured regions, which are processed by a fast linear 

model. DFLpred secures area under the ROC curve (AUC) equal 0.715, is significantly 

better than the existing alternatives, and it is fast enough to be used on the whole proteome 

scale. We also address the prediction of IDRs that carry out multiple functions, i.e., 

disordered moonlighting regions (DMRs). We conceptualized, designed and empirically 

evaluated a first-of-its-kind sequence based predictor of DMRs, DMRpred. We developed 
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novel amino acid indices that quantify propensities for functions relevant to DMRs and 

used evolutionary conservation, putative solvent accessibility and intrinsic disorder derived 

from the input sequence to build a rich profile that is suitable to accurately predict DMRs. 

We processed this profile to derive innovative features that are input into a Random Forest 

model to generate the predictions. DMRpred secures AUC = 0.86 and accuracy = 82%. We 

demonstrate that these results are significantly better than the results from alternative 

methods. DMRpred is fast and can finish a prediction for a protein of typical length of 

about 500 residues in less than one minute. We provide convenient webservers to make 

DFLpred and DMRpred available to the research community. To sum up, motivated by the 

drawbacks of the current computational approaches for the functional characterization of 

IDRs, we contribute two novel methods that provide accurate predictions of important 

functional types of IDRs. 
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Chapter 1  

Introduction 

Proteins are essential to the structure and function of all living cells and viruses. 

Traditionally, the cellular functions of proteins are assumed to be depended on their fixed 

(rigid) three-dimensional structures. However, an increasing amount of evidence suggests 

that a large number of proteins contain functional regions that lack stable three-dimensional 

structure and form dynamic conformational ensembles [1]. These regions are called 

intrinsically disordered regions (IDRs), and proteins that include IDRs are called 

intrinsically disordered proteins (IDPs). Intrinsic disorder is abundant in nature. According 

to recent estimates, IDRs can be found in over 30% of proteins in Eukaryote, about 20% 

of proteins in Bacteria and Archaea, and over 20% of proteins in Viruses [2, 3]. In spite of 

the absence of the well-defined three-dimensional structure, IDRs are key players in 

various functions such as binding to partners including proteins and nucleic acids, intra-

protein interactions, and intra and inter-domain linkers [3-6]. 

Although IDRs/IDPs are prevalent in nature, only a small portion of them was so far 

discovered and curated. Given the availability of repositories, such as DisProt [7] and 

Protein Data Bank (PDB) [8], that contain human curated annotations of disorder, 

computational predictors of intrinsic disorder trained on these data are used to bridge the 

gap between the small number of annotated proteins and the vast amount of unannotated 

proteins. To date, approximately 70 predictors of disorder were published in peer-reviewed 

venues [9-15]. Recent comparative reviews reveal that current predictors of disorder 

provide putative annotations of disorder with high accuracy [15-19]. Availability of these 

predictions is crucial to facilitate experimental studies of disorder and to address practical 

problems in other areas, such as target selection for structural genomics [20]. They are also 

used to analyze prevalence and functional characteristics of disorder on large scale across 

functionally related proteins [21-30] and in whole proteomes [2, 3, 31-33]. To ease the 

access to the predictions for large set of proteins, computationally generated disorder 
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annotations are deposited into several large-scale databases, such as MobiDB [34] and D2P2 

[35]. These databases are popular as evidenced by high citation counts (relative to when 

they were published), with 107 citations for ref. [34] that was published in 2015 and 175 

citations for ref. [35] from 2012 (source: Google Scholar as of Nov 29, 2017). Thanks to 

the availability of the predictors and databases researchers can now easily access these 

data. However, while the putative annotations of IDRs are widely accessible they lack 

functional annotations.  

Knowledge of functions of IDRs has practical applications, besides providing 

invaluable advances in basic science. IDRs were found to be implicated in a wide range of 

illnesses [6, 36-39], including genetic [40], degenerative [41] and cardiovascular [42] 

diseases. They are constitute attractive and novel class of targets for rational drug design 

[43-48]. Thus, the development of models that accurately predict these functions is vital. 

Several existing methods, such as ANCHOR [49], MoRFpred [50] and DisoRDPbind [51], 

provide putative annotations for certain types of functions of IDRs. These functions include 

protein-protein interactions (ANCHOR and MoRFpred) and protein-nucleic acids 

interactions (DisoRDPbind). The abovementioned methods have already attracted 

significant levels of interest. For example, the webserver of MoRFpred has been used over 

9000 times by about 2800 unique users coming from 72 countries and 742 cities (source: 

Google Analytics as of November 29, 2017); the corresponding article that was published 

in 2012 [50] was cited 160 times (source: Google Scholar as of Nov 29, 2017). Similarly, 

the webserver of DisoRDPbind has been utilized over 2700 times by about 500 unique 

users from 52 countries and 245 cities (source: Google Analytics as of November 29, 

2017); the DisoRDPbind article from late 2015 [51] was already cited 25 times (source: 

Google Scholar as of Nov 29, 2017). However, while these methods are popular and useful, 

there are no methods to predict many of the other functions of intrinsic disorder. 

1.1 Thesis statements and goals 

The aim of this research is to characterize functions of IDRs and to develop accurate 

computational methods that use protein sequences to determine functions of IDRs. We 

define the following thesis statements: 
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 Sequence alignment (SA) can be used to find functions that are related to IDRs. 

We investigate whether SA is sufficient since it may under predict functions when 

sequences under study lack annotated homologs. 

 Current predictors of functions of IDRs only cover a small portion of all functions 

of IDRs. Methods that accurately predict other functions of IDRs can be 

developed and evaluated. We focus on computational predictors of disordered 

flexible linkers (DFLs) and disordered moonlighting regions (DMRs). This is 

motivated by availability of corresponding experimental annotations in the 

DisProt database, which is main source of human-curated IDRs. 

To address the above thesis statements, we set the following three goals: 

Goal 1: Characterization of functions of IDRs in human dengue virus (DENV). 

DENV is a family of several serotypes that have relatively small proteomes. The DENV 

proteins are well-annotated but the functional regions in the sequences are not yet linked 

with the intrinsic disorder. We find that these viral proteins include a substantial number 

of disordered regions that lack functional annotations. We use alignment and existing 

predictors to annotate disordered regions and functions of these disordered regions. 

Goal 2: Fast and accurate computational prediction of disordered flexible linker 

(DFL) regions. DFLs are the most abundant functions that are carried out by IDRs and 

that do not involve binding to partners. We address the shortage of predictive models for 

this function. We conceptualize, design, implement, test and deploy a novel, runtime 

efficient and accurate predictive model. Our model provides predictions for proteins where 

the currently used alignment-based approach does not work. 

Goal 3: Fast and accurate computational prediction of disordered moonlighting 

regions (DMRs). DMRs are disordered regions that carry multiple functions. While these 

regions are functionally very important, there are no computational model to predict them. 

We address this by proposing, designing, implementing, testing and deploying a novel 

predictive model that is fast and accurate, and which provides predictions for proteins 

where alignment based on sequence similarity does not work. 
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1.2 Outline 

Chapter 2 provides background information on proteins, protein disorder, and functions 

of IDRs. It also provides background information on designing and evaluating 

computational models. 

In Chapter 3 we address the first goal by characterizing the functions of IDRs in the 

human dengue virus. First, we collect the complete proteome of the human dengue virus, 

and annotate IDRs of these proteins by using state-of-the-art predictor of IDRs. We then 

annotate functions of these IDRs by sequence alignment and one predictor for a specific 

type of function, molecular recognition feature (MoRF) that involves protein-protein 

binding. Next, we explore the putative functions of IDRs and analyse the enrichment of 

disordered and MoRF residues in regions with specific functions. Finally, we draw a 

conclusion that although sequence alignment and current predictors for functions of IDRs 

can find some functions of IDRs, they are not sufficient to find all functions and often times 

under predict functions related to the intrinsic disorder. Consequently, we call for the 

development of new predictors of functions of IDRs. 

Using the results from Chapter 3, we find that the most prevalent function that does not 

involve binding and cannot be predicted by current predictors is disordered flexible linker 

(DFL).  Thus, in Chapter 4 we address the second goal by proposing a fast computational 

predictor for DFLs. First, we define DFLs and discuss existing alternative methods that 

could be used to find DFLs. We then explore limitations of these alternatives. Next, we 

describe the design of the new model to predict DFLs and empirically compare results 

produced by this model with the results generated by the alternative methods on a blind 

test dataset. We compare predictive quality and runtime. We use two case studies to show 

how to understand and use outputs of the proposed model. Lastly, we apply the proposed 

model on the complete human proteome and analyse the resulting putative DFLs. 

In chapter 5, we address the prediction of another class of disordered regions that carry 

out multiple functions, the disordered moonlighting regions (DMRs). First, we define 

DMRs and compare them with moonlighting proteins. Next, we describe the design of the 

predictive model for DMRs and then empirically compare it with alternative computational 
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methods that can be currently utilized to find putative DMRs. We use a case study to 

visualize and describe results generated by the new predictive model. Lastly, we analyse 

the putative DMRs that we predict with the new predictive model in complete human 

proteome. 

In the last chapter, we summarize this research and present our conclusion. We list the 

significant contributions and point out possible future research directions. 
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Chapter 2  

Background and related work 

2.1 Background on proteins, intrinsic disorder and its functions 

2.1.1 Proteins and intrinsic disorder in proteins 

Proteins are ubiquitous and crucial elements of cells in all living beings including 

simple bacteria, virus and complex mammals like human. The word “protein” was 

originally derived from a Greek adjective proteos that means “of the first rank or position”, 

which loosely translates as “of primary importance” [52]. Proteins carry out many 

functions, examples include catalysis of chemical reactions (enzymes), signaling and 

transportation (hemoglobin) and immune responses (antibodies), to list just a few. They 

are composed of one or more polypeptide chains, which are linear chains built from amino 

acids (AA). Different AA chains fold into different three-dimensional structures to perform 

their functions. For most proteins, their AA chains fold into specific spatial conformations. 

The spatial conformations, i.e., protein structures, are typically categorized into four levels. 

Primary structure is the linear sequence of amino acids joined by peptide bonds. Secondary 

structure refers to local and regularly occurring patterns, such as α-helices and β-strands. 

Tertiary structure describes how the protein chains are folded into a three dimensional 

shape. Some proteins include multiple polypeptide chains and in these cases the quaternary 

structure is defined as the spatial arrangements of these polypeptide chains. 

The classical “sequence to structure to function” paradigm has defined for decades how 

we learn protein functions. This view is centered on the idea that the function(s) of a given 

protein is(are) determined by its unique and well-defined three-dimensional structure, 

which in turns is uniquely determined by the corresponding sequence of amino acids [1]. 

Typically, the three-dimensional structures of proteins are solved through experiments 

such as X-Ray crystallography and Nuclear Magnetic Resonance (NMR). While many 

proteins maintain a well-defined three-dimensional structure, certain proteins and regions 
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in proteins lack stable three-dimensional structure and take a form of dynamic 

conformation ensembles. These proteins lack structure along their entire AA chain or in 

specific regions of the AA chain. These are intrinsically disordered proteins (IDPs) and 

intrinsically disordered regions (IDRs) [53, 54]. IDPs/IDRs also violate the structure to 

function paradigm since they can take on multiple different structures and carry out 

multiple functions. We typically learn their functions directly from the sequence, without 

the intermediate step of learning their structure. IDPs/IDRs are highly abundant in nature. 

According to a few recent estimates, 19%, 6%, and 4% of amino acids are disordered in 

eukaryotes, bacteria, and archaea [3], respectively, between 30% and 50% of eukaryotic 

proteins (depending on an organism) have at least one long (≥ 30 consecutive amino acids) 

IDR [2, 32, 55], and between  6 and 17% of proteins encoded by various genomes are fully 

disordered [56]. Furthermore, 44% of protein-coding genes in human include long 

disordered regions [57]. Several databases of IDPs/IDRs are available, such as DisProt [7, 

58], the largest database of manually curated and functionally annotated IDRs and IDEAL 

[59], which includes experimentally verified IDPs/IDRs as well as binding partners of 

IDPs/IDRs. Moreover, IDPs/IDRs can also be found in the Protein Data Bank (PDB) [8] 

as residues with missing coordinates in the crystal structures and highly flexible residues 

in the NMR structures [60]. However, these repositories of experimentally annotated 

intrinsic disorder represent only a small fraction of proteins in nature. The total number of 

IDPs in IDEAL and DisProt is only 838 and 803, respectively, while the number of 

currently known proteins that are included in the UniProt [61] resource has already reached 

93 million (as of October 2017). 

2.1.2 Functions of IDRs 

The lack of unique structure of IDRs provides them with a set of advantages when 

compared with the structured proteins and regions. The plasticity of IDRs allows them to 

efficiently interact with a wide range of different targets including proteins, DNA, various 

RNAs, small molecules, membranes, etc. [62-65]. IDRs are involved in signaling, 

regulation, control, storage of small molecules, transcription, translation, assembly of 

multi-protein complexes, and they often host sites of posttranslational modification 

(PTMs), [62, 66-70]. These functions nicely complement the functional repertoire of 
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structured proteins that primarily handle functions associated with small molecule binding, 

transport and catalysis [71]. IDPs are also associated with various human diseases [36] and 

they were recently suggested to be attractive targets for drug discovery [72]. DisProt 

(version 6.0.2) lists 37 cellular functions that are assigned to about 1200 IDRs. Table 2.1 

lists these functions and provides the count of IDRs for each of these functions. About 80% 

(719/899) of the functionally characterized IDRs in DisProt concern binding to a variety 

of partners: proteins, DNAs, RNAs, metals and lipids, etc. The most abundant non-binding 

function is flexible linker (14%, 122/899). We note that many regions are assigned with 

multiple functions (37%, 331/899). These regions carry out between two and five 

functions. Taken together, IDRs carry out a diverse set of molecular functions. So far, we 

just scratched the surface when it comes to annotating these functions for the millions of 

experimentally determined and putative disordered regions. 
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Table 2.1. Functional annotations for IDRs. 

Functions are parsed from DisProt 6.0.2. The first column shows the function name. The last three columns indicate the 

number of proteins, regions and residues with a given function. The functions are sorted by the number of regions in 

the descending order. 

Function name Can be predicted using 

current methods 

# Proteins # Regions # Residues 

Protein-protein binding Yes 265 452 35909 

Substrate/ligand binding  90 156 8260 

Flexible linkers/spacers  82 122 3038 

Protein-DNA binding Yes 70 121 8239 

Intraprotein interaction Yes 34 72 3031 

Phosphorylation  46 67 6488 

Transactivation Yes 33 53 4077 

Metal binding  23 40 3164 

Protein-lipid interaction  14 34 1128 

Autoregulatory  19 29 2363 

Apoptosis Regulation  13 19 1216 

Polymerization  14 18 1042 

Electron transfer  3 15 585 

Nuclear localization  12 15 1474 

Protein-tRNA binding Yes 8 14 670 

Protein inhibitor  9 13 792 

Protein-genomic RNA binding Yes 7 10 558 

Fatty acylation  6 9 574 

Protein-RNA binding Yes 3 9 574 

Structural mortar  4 9 299 

Acetylation  8 8 430 

Glycosylation  8 8 187 

Cofactor/heme binding  4 7 774 

Protein-rRNA binding Yes 4 7 1863 

Regulation of proteolysis in vivo  4 6 318 

Protein-Biocrystal binding  5 5 114 

Entropic clock  3 4 318 

Methylation  3 4 141 

Protein detergent  1 3 114 

Protein-mRNA binding Yes 2 3 319 

Sulfation  1 3 53 

DNA bending Yes 2 2 107 

DNA unwinding Yes 2 2 90 

Entropic bristle  2 2 696 

Entropic spring  2 2 2270 

Self-transport through channel  2 2 346 

Molecular shield  1 1 143 
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2.2 Related work 

Motivated by the high levels of abundance and functional importance of IDPs and 

IDRs, numerous computational methods were developed to predict disorder from protein 

sequences [9-16, 73, 74]. These methods rely on predictive models that were derived from 

limited and challenging to acquire experimental annotations of IDPs and IDRs. They are 

used to efficiently and accurately find disordered proteins and regions for the millions of 

proteins that lack these annotations. 

2.2.1 Predictors of intrinsic disorder 

Computational methods that predict intrinsic disorder provide a viable high throughput 

alternative to investigate disorder, compared to the low throughput of the experimental 

annotation approaches. Computational prediction of intrinsic disorder is a mature research 

area. As mentioned in the introduction, many methods for the prediction of intrinsic 

disorder were already developed and are widely used and cited [9, 15, 16, 73-78]. These 

predictors take the amino acid sequences of a protein of interest as the input, and output 

propensity scores for each residue that represent their likelihood of being disordered. These 

propensities can be turned into binary predictions where a given residue is predicted as 

either ordered (structured) or disordered. The architectures of these predictors vary widely 

and take the form of: 

1) Scoring functions - the propensity of disorder is calculated from scoring functions 

utilizing properties of the input amino acid related to the formation of disordered/ordered 

regions. Examples methods include NORSP [79], GlobPlot [80] and IUPred [81, 82]. 

2) Machine learning models - the propensity of disorder is output from machine 

learning classifiers (such as neural network, support vector machine, and regression) that 

use input features computed from the sequence and sequence-derived characteristics of 

proteins as their inputs. Examples are DisEMBL [83], DISOPRED [84, 85], and a family 

of VLS predictors [86, 87]. 

3) Meta predictors - the propensity of disorder is computed based on a consensus of 

predictions generated by multiple base predictors (scoring functions and/or machine 
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learning models). These methods include MFDp [88-90], MetaDisorder [91] and PONDR-

FIT [92]. 

4) Hybrid predictors - These predictors combine the abovementioned machine learning 

approach with structural modelling, typically using template-based structure predictions. 

Examples are PrDOS [93] and Disoclust3 [94]. 

We illustrate predictions of intrinsic disorder and contrast these predictions with the 

native annotations of disorder using the ICln protein (Figure 2.1). ICln is a chloride channel 

that regulates several cellular processes including membrane ion transport and RNA 

splicing. Structure of ICln, which was solved using NMR, is composed of several 

superimposed conformations. The regions colored in blue converge to the same 

confirmation and constitute structured regions. The disordered regions that are colored in 

red form an ensemble of diverse conformations. The annotation of disordered regions was 

collected from DisProt version 6.02 and is shown below the image in (“Native Dis” line). 

The figure includes eight IDRs which are numbered in the structure as they appear along 

the amino acid sequence. The structure excludes parts of both termini of this protein, 

including residues 1 to 18 and residues 134 to 235, which are disordered. The bottom part 

of Figure 2.1 includes predictions of three methods: DISOPRED version 3 (machine-

learning method) [84, 85], MFDp (meta method) [88-90], and PrDOS (hybrid method) 

[93]. These three methods ranked the top 3 among participants of the CASP10 competition 

[12], a world-wide event where independent assessors evaluate predictions on a blind set 

of proteins. CASP10 was the last event that included assessment of the prediction of the 

intrinsic disorder. Both binary and numeric scores are included where the numeric scores 

that range between 0 and 1 are represented by the first digit after the decimal point. A given 

residue is predicted as disordered if its predicted numeric propensity is high: ≥ 0.5 for 

PrDOS and DISOPRED, and  ≥ 0.37 for MFDp; otherwise it is predicted as structured. 
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Residue number       1        10        20        30        40        50        60        70        80        90        100       110       120      

Sequence             MSFLKSFPPPGSAEGLRQQQPETEAVLNGKGLGTGTLYIAESRLSWLDGSGLGFSLEYPTISLHAVSRDLNAYPREHLYVMVNAKFGEESKESVAEEEDSDDDVEPIAEFRFVPSDKSALEAMFTAM 

Native Dis           1111111111111111111111100001111111000000111000011111000111111100011111111111000000011111111111111111111111000000011111000000000 

PrDOS                1111111111111110000000000000000000000000000000000000000000000000000000000000000000000111111111111111111111100000000000000000000 

PrDOS propensity     9988777777766554333333233333222222111111100111122222221110000111122222222211111112234556777888888888877665544333322222222222222 

DISOPRED3            1111111111111111000000000000000000000000000000000000000000000000000000000000000000000001111111111111111000000000000000000000000 

DISOPRED3 propensity 7655666876777676443322112110000000000000000000000000000000000010011110001000000000001245778899999999876421000000000000000000000 

MFDp                 1111111111111111111111111111110000000000000000000000000000000000000000000000000000111111111111111111111111111000000000000011111 

MFDp propensity      7778988877776666555544444444333332222222111111111111112111111111111222222222222233445578999999999999987755443333222223333375545 

 

Residue number         130       140       150       160       170       180       190       200       210       220       230  235 

Sequence             CECQALHPDPEDEDSDDYDGEEYDVEAHEQGQGDIPTFYTYEEGLSHLTAEGQATLERLEGMLSQSVSSQYNMAGVRTEDSTRDYEDGMEVDTTPTVAGQFEDADVDH 

Native Dis           00000011111111111111111111111111111111111x111111111111111111111111111111111111111111111111111111111111111111 

PrDOS                000000001111111111111111100110000000000000000000000000000000000000011111111111111111111110000000111111111111 

PrDOS propensity     223333445667777877666555544554444444433333333333333333333333333344455555555555666666655554444444555666778899 

DISOPRED3            000000000011111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

DISOPRED3 propensity 000000012356777878888888777787888888887877777777666666555655556677889999999999999999999999999999999999988899 

MFDp                 111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

MFDp propensity      566778889999999999999999999998988988888788767767777776677777788888999999999999999999999999999999999999999999 

Figure 2.1. Native intrinsic disorder and putative disorder for the ICln protein. 

PDB ID: 1ZYI; DisProt ID: DP000717. The top portion of the figure is a cartoon view of multiple superimposed NMR 

structures of this protein taken from PDB. Ordered regions where all structures converge to the same conformation and 

disordered regions that form conformational ensembles are colored in blue and red, respectively. The eight disordered 

regions are numbered from 1 to 8, and they correspond to eight underlined disorder regions in the “Native Dis” line. 

The bottom part shows native disorder annotations collected from DisProt along with putative disorder annotations 

generated with PrDOS, DISOPRED3 and MFDp methods. The first line shows residue number which is followed by 

the amino acid sequence. The third line shows native annotation of disorder where 0 denotes structured residues, 1 

denotes disordered residues, and x denotes a residue that lacks annotation. The following six lines show binary 

predictions and propensity scores. The propensity that ranges between 0 and 1 is represented by the first digit after the 

decimal point. 
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To interpret the results produced by the computational predictors, users should first 

analyze the binary predictions in order to extract the corresponding putative IDRs and 

structured regions. Next, each predicted IDRs should be assessed using the numeric 

propensities. Residues that have high scores are more likely to be disordered and the 

corresponding predictions are more likely to be accurate. Users can also analyze the scores 

of all residues in a given putative IDR, which is annotated based on binary predictions, to 

quantify the likelihood of this entire region to be correctly identified. On the other hand, 

low scores can be used to identify structured residues and regions. The predictions for 

residues with scores close to 5 for PrDOS and DISOPRED, and close to 4 for MFDp (these 

values are used to convert the propensity into the binary prediction) are arguably less 

accurate than the predictions with either high or low scores. We also recommend that, if 

possible, multiple methods should be used and the users should rely on a consensus-based 

prediction. In other words, IDRs and disordered residues predicted by multiple methods 

are more likely to be correct compared with predictions that disagree between different 

methods. The favorable predictive performance of a consensus-based approach was shown 

empirically in a few recent studies [95, 96]. 

The predictors of intrinsic disorder have been periodically empirically assessed. These 

studies were published both as comparative reviews [15, 75, 77] and as a part of the 

biannual world-wide Critical Assessment of protein Structure Prediction (CASP) 

(http://predictioncenter.org/). The latest CASP10 event that included the assessment of 

predictions of intrinsic disorder revealed that the best predictor secure AUC = 0.9 and MCC 

= 0.53 [17]. Given that AUC ranges between 0.5 and 1 (higher value corresponds to 

stronger predictive performance) and MCC is a correlation and so higher positive values 

indicate higher correlation between predictions and the native (true) annotations of 

disorder, these results show that prediction of disorder is accurate. Moreover, most 

predictors are available to the end users as a convenient to use webservers, and some of 

them provide predictions in high-throughput. The latter means that they can be used to 

annotate disorder on a full-proteome scale. In the nutshell, the end users can nowadays use 

high quality, easy-to-access and fast predictors to annotate IDRs. 
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2.2.2 Databases of IDPs/IDRs 

Several databases were developed to store both experimental and putative annotations 

of disorder. These databases are important both for the end users, as a convenient access 

point to both experimental and putative annotations, and for the developers of 

computational predictors, as a source of experimental annotations for the development and 

benchmarking of these methods. The first and largest repository of the experimentally 

verified IDPs and IDRs is DisProt [7, 58]. It contains manually curated IDRs together with 

the annotations of their functions, whenever available. The latest version of DisProt (7.0) 

contains 2167 IDRs from 803 protein chains, compared to 290 IDRs from 179 proteins 

from the first release of that database. Another source of experimentally verified IDPs is 

the IDEAL database [97, 98]. This database originally had 153 annotated proteins and has 

grown to 838 proteins in its latest version. Although these repositories of the experimental 

annotations of disorder provide invaluable information to investigate disorder and build 

computational tools, they represent only a small fraction of the sequences in nature. 

Given that various comparative reviews suggest that predictors of intrinsic disorder are 

relatively accurate [15, 17, 75, 77], these predictions are used to guide experimental studies 

of disorder and to address practical problems in other areas, such as targets selection in 

structural genomics [99]. They were also used to analyze prevalence and functional 

characteristics of disorder on large scale across functionally related proteins [22, 27, 70] 

and in whole proteomes [3, 24, 25, 72, 100]. To this end, several databases of the putative 

annotations of IDPs and IDRs were developed to ease access to this information for the 

end users. Given that these resources provide access to putative disorder for large sets of 

proteins, they include results generated by high-throughput predictors of intrinsic disorder. 

DICHOT [101] is the first such database that provides predictions of intrinsic disorder for 

the human proteome. It includes 20,333 protein chains collected from the Swiss-Prot 

database [102]. DICHOT is superseded by the two more recent and much larger databases: 

MobiDB [34, 103] and D2P2 [35]. MobiDB offers access the putative disorder generated 

by ten predictors, and it also combines these ten predictions into one consensus. Moreover, 

MobiDB includes experimental annotations of disorder collected from DisProt and PDB, 

the latter is based on both X-ray and NMR structures. Version 2.0 of MobiDB covers over 
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80.37 million chains, which were obtained from the UniProtKB [61]. Importantly, these 

putative annotations of disorder are also cross-referenced in UniProt [61]. D2P2 is the 

second large repository of predicted annotations of intrinsic disorder. It contains 

annotations generated with nine predictors. It also links to the experimental annotations of 

disorder from DisProt and IDEAL and includes putative annotations of disordered protein 

binding regions computed with ANCHOR [49, 104]. The current version of D2P2 contains 

annotations for 10.43 million proteins from 1,765 proteomes across all kingdoms of life. 

The main difference between MobiDB and D2P2 is that the former provides annotations for 

arguably largest possible set of currently known proteins, while the latter provides the 

annotations for all complete proteomes. 

2.2.3 Predictors of functions of IDRs 

IDPs and IDRs are involved in a wide repertoire of cellular functions. The most 

common way to annotate functions of proteins is to use sequence alignment. This approach 

is based on the premise that similar sequences tend to have similar structures and thus 

similar functions. A reliable alignment requires a certain sequence similarity, typically 

greater than 50% and preferably greater than 80%, for the corresponding prediction to be 

accurate. By aligning the amino acid sequence of interest against sequences with known 

annotations we can potentially find segments with high similarity and transfer the 

corresponding annotations onto the sequence of interest. The arguably most popular 

sequence alignment tool is BLAST (Basic Local Alignment Search Tool) [105]. BLAST 

allows users to perform pairwise alignment of the query sequence against sequences in 

large databases, such as the non-redundant proteins sequences (NR) [106], NCBI Protein 

Reference Sequences (refseq) [107] and Protein Data Bank (PDB) [8] to find proteins and 

their regions that are similar to the query protein. There are also other types of alignment 

tools. SWalign [108] allows users to conduct pairwise alignment for short segments of 

proteins based on their local sequence similarity. Clustal Omega [109] is a multiple 

sequence alignment tool that allows users to align three or more sequences of similar 

lengths. However, while being largely successful to annotate functions of structured 

proteins, alignment is not a feasible approach to annotate functions of IDRs. In a recent 

work that characterizes intrinsic disorder in ribosomal proteins, only 12% IDRs were 
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functionally annotated through alignment [110]. In another study that analyses proteins 

involved in the cell death cycle this approach only allowed to functionally annotate 2.2% 

of the IDRs [22]. The low coverage is due to a relatively low number of disordered regions 

that are functionally annotated. To this end, data-driven computational predictors of 

functions of intrinsic disorder that work in the absence of sequence similarity are needed. 

Research towards computational prediction of functions of proteins has accelerated 

since the introduction of The Critical Assessment of protein Function Annotation  (CAFA) 

competition in 2010 [111]. CAFA is an ongoing community challenge that aims to provide 

large-scale assessment of computational methods for the prediction of functions of 

proteins. Methods submitted to CAFA provide predictions of functions described in Gene 

Ontology (GO) terms at the whole protein level and they address predictions of all proteins. 

In other words, these methods predict functions carried by both structured and disordered 

proteins, often without knowledge of these structural details. In contrast, we specifically 

target the disordered proteins and we focus on the residue level annotations, which are 

essential to predict functional IDRs. 

In recent years progress has been made to develop methods that predict functions of 

disordered regions from the protein sequences. In contrast to the predictors of intrinsic 

disorder, these methods find a subset of IDRs that carry out a specific function. The current 

predictors of functions of disorder address primarily binding-related functions that include 

interactions of IDRs with proteins, DNAs and RNAs. This is motivated by an observation 

that these binding-related functions are the most prevalent functions carried out by IDRs. 

Based on the experimental data from DisProt, 74% of the over 1000 functionally annotated 

IDRs in DisProt interact with proteins, DNAs, RNAs, metals and lipids. The protein-

protein binding is the most populated function, with over 450 annotated IDRs in DisProt. 

The predictors of the disordered protein binding regions are categorized into three 

classes. They include methods that predict generic disordered protein binding regions and 

methods that focus on two specific types of protein binding regions: molecular recognition 

features (MoRFs) and short linear sequence motifs (SLiMs). The three methods that find 

generic disordered protein binding regions are PepBindPred [112], ANCHOR [49, 104], 

and DisoRDPbind [51]. There are several predictors of MoRFs, defined as short regions 
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that undergo disorder to order transition upon binding to protein partners, which include 

alpha-MoRFpred [113, 114], MoRFpred [50], MFSPSSMpred [115], MoRFChiBi [116, 

117], fMoRFpred [118], retro-MoRF [119] and DISOPRED3 [120]. Finally, SLiMs can be 

predicted with the help of the SLiMpred method [121]. So far only one predictor, 

DisoRDPbind [51], that considers binding to other molecules, in particular DNA and RNA, 

was developed. This method combines three predictive models that provide putative 

annotations of the disordered protein-, DNA- and RNA-binding residues. Table 2.2 lists 

the 11 predictors of the various cellular functions of disorder. 

Table 2.2. Predictors of functions of disorder. 

SVM: support vector machine; LR: logistic regression; NN: neural network; SA: sequence alignment; DISP: disorder 

prediction; SF: scoring function 

Method Year last published Ref. Prediction target Predictive model 
fMoRFpred 2015 [118] protein binding SVM 
DISOPRED3 2015 [120] protein binding SVM 
MoRFCHiBi 2015 [116, 

117] 
protein binding SVM 

disoRDPbind 2015 [51] protein, RNA, DNA binding LR 
PepBindPred 2013 [112] protein binding NN 
MFSPSSMpred 2013 [115] protein binding SVM 
MoRFpred 2012 [50] protein binding SVM 
SLiMPred 2012 [121] protein-binding NN 
retro-MoRFs 2010 [119] protein-binding SA + DISP 
ANCHOR 2009 [49, 104] protein binding SF 
alpha-MoRFpred  2007 [113, 

114] 
protein binding  NN 

 

Compared with the prediction of IDRs and IDPs, computational prediction of functions 

of disorder is in early stages. These predictors primarily focus on the binding-related 

functions, such as disordered protein-protein, protein-RNA and protein-DNA binding. 

Although 11 of these methods were already released, the development of models that 

address prediction of other functions of disorder remains an outstanding and pressing 

challenge. In table 2.1 we list 37 functions of IDR defined by DisProt, only 11 of them can 

be predicted with the currently available methods. 
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2.3 Background on computational models 

2.3.1 Background related to the design of computational predictors 

Computational prediction of functions of IDRs is a classification problem. In other 

words, each residue in the input protein sequence is classified as functional (has a specific 

function) or non-functional (does not have a specific function). This classification is 

performed in two steps. First, a given input amino acids is represented by a set of numerical 

features. These features describe various, relevant physiochemical and putative structural 

properties of the predicted residue and its neighbouring residues. Second, these features 

are input into a classification model that outputs propensity for this residue to carry out a 

given function. The second step could be handled by a machine-learning classifier such as 

Logistic Regression [122], Naive Bayes [123], Decision Trees [124] or Random Forest 

[125]. The formulation and selection of features, and the parametrization of the predictive 

model generated using these classifiers is done by cross validation on a training dataset. 

The final design is validated and compared to alternative solutions on an independent 

(different from the training dataset) test dataset. To this end, the available experimental 

data (proteins) that is used to build the model is divided into two parts, the training dataset 

which is further divided into several folds for the cross validation, and the test dataset. In 

the cross validation, the training dataset is divided into equally sized (in terms of number 

of proteins) x subsets (folds), and in the ith (1≤ i ≤x) fold of the cross validation, x-1 subsets 

are used to train the model, and the remaining ith subset is used as test set to evaluate the 

trained model. The result of the cross validation is reported as the aggregated or averaged 

result of the x folds of tests. The design of computational predictive models usually consists 

of the following steps: 

1) Data preparation. As mentioned above, the proteins are divided into the training and 

test datasets. In many cases proteins may differ from each other by only a few amino acids 

in their sequences, particularly if that is the same protein in different species. Inclusion of 

similar sequences in training and test sets may result in an over-estimated predictive 

quality. Moreover, test proteins that are similar to the training proteins can be typically 

accurately predicted using sequence alignment protocols, such as BLAST [105]. The 
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alignment can be used to transfer annotations from the similar proteins in the training 

dataset. Since we aim to develop predictive models for proteins for which alignment does 

not work (we shows in section 2.2.3 that alignment does not work for annotation of 

functions of IDRs), we train our model on proteins that are dissimilar from the test proteins. 

To this end, the proteins in the test and training datasets as well as proteins in the cross 

validation folds in the training dataset are set to be dissimilar. As a rule of thumb, sequences 

are considered as similar if they share more than 25% similarity (proportion of same amino 

acids on same positions in the aligned sequences); alignment fails at this levels of similarity 

[126]. As a result, we ensure that sequences in the test set share no more than 25% sequence 

similarity with any sequence in the training set, and this rule also applies to each fold subset 

in the cross validation. 

2) Sequence representation and feature generation. Each residue in the input protein 

sequence is represented by a set of numeric features (descriptors). Depending on the target 

of the prediction, these characteristics can be derived from a variety of sources such as 

physicochemical properties of amino acids, evolutionary profiles, and predictions from the 

sequence secondary structure, solvent accessibility and intrinsic disorder. The features are 

calculated from this information for the predicted residue and its neighbors (a window in 

the sequence covering the residue being predicted and residues close to this residue). The 

inclusion of nearby residues is motivated by the fact that neighbouring residues influence 

the function and structure of the predicted residue. The use of window is a popular approach 

in protein disorder predictions [120, 127], structure predictions [128, 129] and in existing 

methods for the prediction of the intrinsic disorder function [50, 51]. 

3) Feature selection and model construction. Typically a large set of features is 

generated. Among them there could be irrelevant features (low correlation with the class 

label), and redundant features (features that are mutually correlated). Feature selection 

removes such irrelevant and redundant features. This simplifies the predictive model 

(fewer features must be computed to run predictions) and reduces runtime needed to 

compute the model from the data. In case of some models, e.g. Logistic Regression that 

should not be used on data with collinear features, this could also improve the predictive 

quality. The predictive model maps features into the outcome. Different sets of features are 
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fed into a classification model, and each set of features and parameters of the classifier can 

result in a different classification result. We optimize the classifier through cross validation 

on the training dataset by varying the feature sets and parameters of the classifier. We 

choose the best combination of feature sets and parameters that results in an optimal cross 

validation result, according to a specific criterion that we use to measure predictive 

performance. We can also compare results from different classifiers. The chosen features 

and classifier together with its parameters are adopted as the predictive model and is 

applied to predict proteins in the test dataset. 

4) Model validation. The predictive quality of the classification model is measured by 

comparing the prediction generated by this model with the native annotations on a given 

test dataset. The validation must be performed out of sample (using data that was not used 

to build the model) to assure that the model does not over-fit (too closely mimic) the 

training dataset. In our research, we further ensure that test and training proteins are highly 

dissimilar (< 25% similarity). Cross validation follows the out-of-sample rule because in 

each fold the ith set is not used for the training. The final validation on the independent test 

dataset also follows this rule because the test dataset is never used to build the model. The 

measurement of the predictive quality can be quantified using different measures. Section 

2.3.2 discusses these measures. 

2.3.2 Evaluation of predictive performance 

The prediction is in the format of a numeric score between 0 and 1 that represents 

propensity for a given residue to have a given function (functional residue). The numeric 

score can be also converted into a binary prediction using a threshold, i.e., a residue is 

predicted as a functional or non-functional residue. More precisely, residue with a putative 

score greater than or equal to a given threshold is predicted as a functional residue, 

otherwise it is predicted as a non-functional residue. We assess the predictive quality of 

the putative propensities with the receiver operating characteristic (ROC) curve and the 

area under ROC (AUC). To plot the ROC curves and quantify AUC values, we calculate 

the true-positive rates (TPRs) and false-positive rates (FPRs) by comparing predictions 

with native annotations at different thresholds imposed on the predicted scores. TPR and 

FPR are defined as: 
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TPR =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

𝑇𝑃

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑛𝑎𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠
 

FPR =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
=

𝐹𝑃

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑛𝑎𝑡𝑖𝑣𝑒 𝑛𝑜𝑛 − 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠
 

where TP is the number of true positives (correctly predicted functional residues), FN is 

the number of false negatives (functional residues that are predicted as non-functional), FP 

is the number of false positive (non-functional residues that are predicted as functional), 

and TN is the number of true negatives (correctly predicted non-functional residues). Given 

TPR and FPR values generated at different thresholds ranging from 0 and 1, we plot the 

ROC curve and calculate the corresponding AUC value. 

Motivated by the fact that a large number of the residues are non-functional, we 

perform assessment of the propensities when the false positive rate (FPR) is low, e.g. at or 

below 5% or 10%. This ensures that the corresponding predictions include functional 

residues which are likely to be correctly predicted, i.e., only a small fraction of these 

predictions are false positives. Correspondingly, we calculate AUClowFPR that covers the 

low range of FPR values. Since AUClowFPR are rather small and difficult to assess directly, 

we compute AUCratio = AUClowFPR/AUCrandom_lowFPR, where AUClowFPR is divided by the 

AUC of a random predictor (for which FPR always equals to TPR) in the same FPR range. 

This ratio quantifies the rate of improvement over a random predictor, i.e., ratio > 1 means 

that a given method is better than random and ratio = 2 means that this method is twice 

better than random. 

To evaluate binary predictions, we use accuracy, precision, sensitivity and Matthews 

Correlation Coefficient (MCC), which are defined as follows: 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
=  

𝑇𝑃 + 𝑇𝑁

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠
 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

𝑇𝑃

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠
 

Sensitivity =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=  

𝑇𝑃

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑛𝑎𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠
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MCC =  
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

The AUC ranges between 0.5 and 1 where 0.5 denotes random prediction and 1 denotes 

perfect prediction (all functional residues and non-functional residues are predicted 

correctly). Accuracy, precision and sensitivity range between 0 and 1 where 0 denotes that 

no residues were predicted correctly and 1 denotes perfect prediction. MCC ranges between 

-1 and 1, where -1 denotes that the prediction is inverted (all functional residues are 

predicted as non-functional residues and vice versa), 0 denotes a random result and 1 

denotes the perfect prediction. 

2.3.3 Statistical tests of significance 

AUC, AUCratio, accuracy, precision, sensitivity and MCC evaluate the performance of 

a predictive model, but they do not assess whether the performance of a given model is 

consistently better when compared with other methods. To this end, we use statistical tests 

to evaluate whether differences between two sets of numeric results are significant. We use 

paired difference tests to compare the predictive performance of two models based on 

bootstrapping results on the test dataset. To do this we randomly select 50% proteins from 

the test dataset (or test dataset of each cross validation fold), and evaluate the prediction 

criterion (e.g. AUC) on these proteins by two predictive models. We repeat this procedure 

for n times, and for each predictive model we have n results. We place the n results from 

two models side by side, and have n pairs of results. We use the Student’s paired t-test if 

the n results from both two models follow normal distributions, otherwise we use Wilcoxon 

signed-rank test. We use Anderson-Darling test to verify if a sample of n results follow 

normal distribution. 

Student’s paired t-test [130] evaluates two groups of data (e.g., two groups of AUC 

values), and determines whether their mean values are significantly different. Suppose we 

have two groups of data, X1 and X2: 

𝑋1 = [

𝑥1,1

𝑥1,2

⋮
𝑥1,𝑛

] ,        𝑋2 = [

𝑥2,1

𝑥2,2

⋮
𝑥2,𝑛

] 



23 

 

where x1,i and x2,i are matched pairs. Student’s t-test calculates the t-value as follows: 

𝑡 =
�̅�𝐷

𝑆𝐷 √𝑛⁄
=

∑ (𝑥1,𝑖 − 𝑥2,𝑖
𝑛
𝑖=1 )/𝑛

𝑆𝐷 √𝑛⁄
 

where �̅�𝐷 is the average difference of all pairs of X1 and X2, SD is the standard deviation of 

these differences. This t-value is calculated following Student’s t distribution with n 

samples of n-1 degree of freedom. The p-value is determined by looking up the t-table 

using the t-value and the corresponding freedom degree. The p-value is the probability of 

getting our observation (for example, the mean AUC values from two models), or getting 

values with even greater evidence against the null hypothesis, given the null hypothesis is 

true. In our case, the null hypothesis is the mean values of X1 and X2 are equal. A low p-

value (typically < 0.05) suggests that the data provides enough evidence to reject the null 

hypothesis, and thus suggests that the difference between X1 and X2 is statistically 

significant. 

Wilcoxon signed-rank test [131] is an alternative to student’s paired t-test when X1 or 

X2 does not follow normal distribution. It determines the difference between the medians 

of X1 and X2. This test calculates the absolute value of the sum of the signed ranks, where 

the ranks are the ranks of absolute differences of pairs x1,i and x2,i: 

𝑊 =  |∑[𝑠𝑔𝑛(𝑥2,𝑖 − 𝑥1,𝑖) ∙ 𝑅𝑖]

𝑁𝑟

𝑖=1

| 

where sgn is the sign function so sign(x) = 1, 0, -1 when x > 0, = 0 and < 0, respectively. 

Ri is the rank of pair x1,i and x2,i, which is ranked by the absolute difference between x1,i and 

x2,i. Nr is the number of pairs with non-zero differences. A p-value can be looked up from 

the Wilcoxon reference table with the W value. If the p-value is smaller than a threshold 

(typically 0.05), we reject the null hypothesis. In our case the null hypothesis is the median 

values of X1 and X2 are equal. By rejecting null hypothesis, we can declare that the 

difference between X1 and X2 is statistically significant. 
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Anderson-Darling test [132] is a statistical test that checks whether a set of data follows 

a certain probability distribution. Here we use it to determine if X1 and X2 follows normal 

distribution. We calculate A2 by the following equation: 

𝐴2 = −𝑛 −
1

𝑛
∑(2𝑖 − 1)(ln F(𝑌𝑖) + ln(1 −  F(𝑌𝑛+1−1𝑖)))

𝑛

𝑖=1

, 𝑌𝑖 =
𝑋𝑖 − �̅�

𝜎
 

where �̅� and σ is the mean and standard deviation of variable X, respectively, F(Yi) is a 

cumulative distribution function of Yi for normal distribution, and n is the number of 

samples of variable X. A is compared against critical values from the table for normal 

distribution. If the p-value found in the table is bigger than a threshold (typically 0.05), 

then we accept the null hypothesis that the data are draw from a normal distribution, 

otherwise we reject the null hypothesis. 
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Chapter 3  

Characterization of functions of IDRs 

in human dengue virus 

Viral proteomes are typically polyproteins which are proteolytically processed into a 

relatively small (compared to eukaryotic or bacterial proteomes) number of proteins. We 

focus on the dengue viruses (DENV). A single DENV proteome is a polyprotein that 

consists of approximately 3390 residues that after proteolytic processing codes 12 proteins. 

Overall, research shows that IDRs/IDPs are very common in viral proteomes [2, 133]. We 

study whether this is also true for DENV. The high levels of intrinsic disorder allow many 

viral proteins to fulfill their biological roles, as each of these proteins has to carry out 

multiple functions given the small overall size of the viral proteomes (number of proteins 

in the viral proteomes is very small). The functions of these IDRs are typically unknown 

and our goal was to characterize them. We use predictors of disorder and disorder functions 

and also alignment to annotate these putative IDRs and their functions. We focus on the 

methods that were used to annotate functions of IDRs in DENV and their ability to provide 

functional annotations. 

3.1 Materials and methods 

3.1.1 Data collection 

We collect the complete proteome of the human dengue virus from UniProt [134] with 

“dengue virus” as the query word for the organism. We only include reviewed entries to 

ensure that the corresponding sequences were curated by a human and have high quality 

functional annotations. We obtain 28 polyproteins including eight fragments that are 

excluded. The remaining 20 polyproteins cover all four serotypes (variations that have 

different surface antigens) of the dengue virus. They include three polyproteins from type 
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1 (UniProt ID: P33478, P27909, P17763), seven from type 2 (UniProt ID: P29990, P29991, 

P14337, P07564, P14340, Q9WDA6, P12823), five from type 3 (UniProt ID: Q99D35, 

Q5UB51, Q6YMS3, P27915, Q6YMS4) and five from type 4 (UniProt ID: P09866, 

Q2YHF2, Q58HT7, Q5UCB8, Q2YHF0). The lengths of the 20 polyproteins ranges from 

3387 to 3396 residues. Each polyprotein consists of 12 protein chains that are extracted 

based on the annotated cleavage sites. We obtain in total 240 protein chains from the 20 

polyproteins across the four dengue serotypes. The length of these protein chains ranges 

from 14 to 904 residues. 

3.1.2 Annotations of disorder and functions of disorder 

The putative intrinsically disordered residues are generated with the MFDp webserver. 

MFDp is a sophisticated consensus predictor that combines disorder predictions generated 

by IUPred [81], DISOclust [135] and DISOPRED2 [136] methods, sequence profiles and 

predictions of secondary structure by PSIPRED [137], relative solvent accessibility and 

backbone dihedral torsion angles by Real-SPINE3 [138], B-factors by PROFbval [139], 

and globular domains by IUPred. The MFDp predictor is characterized by high predictive 

performance with AUC > 0.81 based on multiple benchmark tests [15, 127]. We utilize 

binary annotations from MFDp to annotate residues in DENV proteins as structured or 

intrinsically disordered. 

We use local pairwise alignment SWalign [108] to annotate functions of IDRs. We 

choose SWalign because it is suitable for short segment and IDRs are such short regions. 

We align each IDR predicted by MFDp (query segment) with a set of 775 disordered 

segments collected from DisProt 6.0.2 that have functional annotations (reference 

segments). We copy the functional annotation from a reference segment onto the query 

segment if their similarity is greater than 80%. We use 80% because we align short 

segments rather than full sequences, which requires higher similarity to provide reliable 

alignment. The similarity is defined as the number of identical residues in the local 

alignment divided by the length of the local alignment or the length of the shorter of the 

two segments being aligned, whichever is longer. Some of the IDRs could be annotated 

with more than one function. The same protocol was also previously used in ref. [22] and 
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ref. [21] to analyze roles of IDRs in the programmed cell death and ribosomal proteins, 

respectively. 

We use the available predictor MoRFpred [50] to predict putative annotations of the 

protein-protein binding, i.e., regions that carry molecular recognition features (MoRFs). 

MoRFs are short (5 to 25 consecutive amino acids) protein binding regions located within 

longer IDRs that undergo coupled folding and binding, i.e., disorder-to-order transition, 

upon binding [140, 141]. MoRFpred is characterized by state-of-the-art design that 

combines information from pairwise alignments, sequence profiles, and predictions of 

disorder from IUPred [81], DISOPRED2 [136], DISOclust [135] and MFDp [127], solvent 

accessibility by Real-SPINE3 [138], and B-factors by PROFbval [139]. We utilize binary 

predictions from MoRFpred and only consider MoRF region only if it is at least 5 residues 

long; shorter putative regions which have higher propensity to be spurious were removed. 

Both MFDp and MoRFpred predict from sequences of individual proteins and thus we first 

fragment the polyproteins into proteins, predict for each protein, and finally combine these 

predictions together to annotate the full polyproteins. 

3.1.3 Other functional and structural annotations for DENV 

Annotations for cleavage sites (CLV), transmembrane region (Trans), intramembrane 

region (Intra), topological cytoplasmic-, extracellular- and luminal- domain (Topo-cy, 

Topo-ex, Topo-lu) and functional sites (Func) are parsed from XML format files 

downloaded from the UniProt database [134]. They were collected for the 20 polyproteins 

in the dengue viruses. The annotation for functional sites is a union set of regions of 

interest, active sites, binding sites, other sites (except cleavage sites) and nucleotide binding 

regions. If any of these annotations for a given residue is true, the annotation for functional 

sites is set to be true. 

Eukaryotic linear motif ( ELMs) are short, usually between 3 and 11 residues in length, 

conserved functional sequence motifs [142] which are often found in the IDRs [143]. We 

use these motifs to functionally annotate the disordered regions. Annotations for six types 

of ELMs are parsed from the HTML files generated by the ELM motif search algorithm 

[143], after filtering the results by globular domain, structure and context. They include 
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motifs that serve as proteolytic cleavage sites (ELM_CLV); post translational modification 

sites (ELM_MOD); motifs for recognition and targeting to subcellular compartments 

(ELM_TRG); generic ligand binding motifs (ELM_LIG); degron motifs that are involved 

in polyubiquitylation and targeting the protein to the proteasome for degradation 

(ELM_DEG); and docking motifs that correspond to site of interactions with modifying 

enzyme that are distinct from active sites (ELM_DOC). 

3.2 Results 

3.2.1 Functional analysis of IDRs 

 

Figure 3.1. Functional annotations of putative IDRs among 20 DENV polyproteins. 

The annotations are obtained by pairwise alignment with SWalign. Values above the bars indicate number of IDRs that 

carry out a given function. 

 

By using the local pairwise alignment with SWalign, we annotate 18 functions for 44 

putative IDRs from the set of 240 DENV proteins. After eliminating functions that are 

predicted for less than 3 IDRs, which have a higher propensity of being spurious, we find 

12 distinct functions carried out by the 44 IDRs. Figure 3.1 summarizes these functions. It 

shows fractions of the 44 putative IDRs having a given function (bars). Our analysis 

38

15
13 12

10 9 9
7 6 6

3 3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
ra

ct
io

n
 o

f 
ID

R
s 

w
it

h
 a

 g
iv

en
 f

a
ct

io
n %IDRs with a given function



29 

 

revealed that the predominant function of the DENV IDRs is protein-protein binding. 

DENV IDRs are also involved in various protein-ligand binding events such as interactions 

of viral proteins with nucleic acids, metals, and other small molecules. Also, some IDRs 

serve as the flexible linkers. The distribution of functions of DENV IDRs follows a similar 

trend compared to the functions of IDRs from DisProt that are summarized in table 2.1. 

3.2.2 Relation of IDRs and MoRFs with other functional and structural 

annotations 

Function 
Enrichment in IDRs  Enrichment in MoRFs 

all 1 2 3 4 all 1 2 3 4 

CLV 6.2 6.9 7.0 5.1 6.2 1.7 0.0 3.1 2.6 0.0 

Trans 1.1 1.2 1.4 0.9 0.8 2.0 1.7 2.1 2.5 1.6 

Intra 0.0 0.0 0.0 0.0 0.0 0.8 0.9 0.8 0.0 1.7 

Topo-cy 1.4 1.5 1.3 1.5 1.5 1.2 1.3 1.3 1.1 1.3 

Topo-ex 0.3 0.1 0.5 0.1 0.2 0.3 0.4 0.1 0.4 0.3 

Topo-lu 0.7 0.5 0.8 0.9 0.4 0.5 0.0 0.0 1.8 0.0 

Func 0.5 1.0 0.0 0.7 0.7 0.6 1.2 0.1 0.8 0.7 

ELM_CLV 1.5 1.3 1.5 1.6 1.5 1.0 1.1 1.7 1.1 0.2 

ELM_DEG 2.1 5.0 0.7 4.2 2.3 0.3 0.0 0.0 1.2 0.0 

ELM_DOC 0.9 0.7 1.0 0.8 1.1 0.4 0.7 0.8 0.4 0.0 

ELM_LIG 1.0 0.6 1.0 0.9 1.2 1.0 0.8 1.0 1.0 1.2 

ELM_MOD 1.3 1.5 1.1 1.2 1.5 0.7 0.8 0.5 0.7 1.0 

ELM_TRG 1.6 2.4 1.6 2.1 0.8 2.2 2.7 2.4 2.9 0.7 

IDRs      4.7 5.5 4.5 6.4 2.7 

MoRFs 4.7 5.5 4.5 6.4 2.7           

Figure 3.2. Enrichment of IDRs and MoRFs in various functional and structural regions of DENV 

proteins. 

The regions include cleavage sites (CLV), transmembrane regions (‘Trans’), the intra-membrane region (‘Intra’), 

topological cytoplasmic, extracellular and luminal domains (Topo-cy, Topo-ex and Topo-lu), functional sites (Func), 

six types of ELMs (ELM_CLV, _DEG, _DOC, _LIG, _MOD and _TRG), IDRs and MoRFs. Ratios above 1 and below 

1 correspond to the enrichment and depletion, respectively. A dark red background indicates enrichment (ratio ≥ 1.2), 

light red background indicates neutral (slight enrichment) (1 ≤ ratio < 1.2), light blue indicates neutral (slight depletion) 

(0.8 < ratio < 1), and dark blue indicates depletion (ratio ≤ 0.8). The column designated as “all” shows results across 

all DENV proteins, while columns 1, 2, 3 and 4 show results for specific serotypes. 

 

Considering the 240 DENV proteins, we found 404 putative IDRs by using MFDp, and 

247 putative MoRF regions by using MoRFpred. We have also done additional analysis of 

the structural and functional annotations that are available for this virus. Our aim is to 

investigate whether these annotations are associated (depleted or enriched) with the 

disordered and MoRF regions. Specifically, we collect 14 structural and functional 

annotations that include cleavage sites (CLV), transmembrane region (Trans), 
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intramembrane region (Intra), three types of topological domains (Topo), functional sites 

(Func) and six types of eukaryotic linear motifs (ELM). 

We analyze the amount of disordered residues and MoRF residues in the various 

functional regions in DENV. Results of this analysis are shown in Figure 3.2. We 

categorize the occurrence of IDR or MoRF residues as enriched, depleted or neural based 

on the ratio of the rates of occurrence of disordered or MoRF residues in a given type of 

functional region and in the entire polyprotein. The ratio ≥ 1.2 and ≤ 0.8 denotes enrichment 

and depletion, respectively. For example, in Figure 3.2, IDRs in cleavage sites (CLV) are 

enriched with ratio of 6.2, which means that disordered residues occur 6.2 times more often 

in the cleavage sites compared with the overall proteome. This analysis reveals that 

cleavage sites are substantially enriched in the disorder regions and that transmembrane 

regions (Trans) are enriched in MoRFs. Figure 3.2 also shows that cytoplasmic topological 

(Topo-cy) domains are enriched in disorder and MoRF regions. On the other hand, the 

functional sites are depleted in the disordered and MoRF regions. Targeting ELM sites 

(TRG) are enriched in MoRFs, and several types of ELMs (CLV, DEG, MOD and TRG) 

are enriched in IDRs. MoRF residues are enriched in disorder and disordered residues are 

enriched in MoRFs, which is expected since MoRFs are localized within the disordered 

regions. 

3.3 Discussion 

We observe that alignment finds functions for only about 10% of IDRs (44 out of 404). 

This low number of alignment-derived annotations is due to the fact that the segments 

being predicted by alignment share low sequence similarity with the functionally annotated 

reference segments from DisProt. We note that although alignment is not sufficient to 

annotate functions, DisProt is a source of a relatively large and rich set of functionally 

annotated disordered regions for many functions. These regions could be used to develop 

and empirically tests computational predictive models. Data-driven predictors of functions 

of disorder, such as MoRFpred and DisoRDPbind, rely on sequence- and structure-based 

features rather than alignment, and they were empirically shown to accurately predict their 

target functions for regions that lack similarity with the annotated regions. 
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Figure 3.2 reveals that known functional sites (Func) in DENV proteins are depleted in 

IDRs and MoRFs. IDRs are known to carry out various functions and MoRFs are involved 

in protein-protein interactions that are necessary for the viral proteomes. The lack of 

enrichment in disorder in these known functional sites can be explained by a bias to 

annotate functions of structured regions in these viral proteins. In other words, we speculate 

that the current list of functional sites is incomplete since it lacks many of the functional 

disordered regions. We note that the number of MoRF regions predicted by MoRFpred is 

247, while the number of protein-protein binding regions found by alignment is 

substantially smaller and equals 38 (Figure 3.1). Furthermore, MoRFs are a sub-type of 

protein-protein binding regions. These observations suggest that alignment under-predicts 

the functional regions, particularly those related to the protein-protein binding. 

Based on our analysis of the dengue virus, we find that alignment is not sufficient to 

functionally annotate disordered regions. Although methods that predict the disordered 

protein-binding regions help to comprehensively annotate some of the functions of intrinsic 

disorder, predictors that do not rely on the alignment and that cover many other functions 

of the intrinsic disorder are urgently needed. 
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Chapter 4  

Fast and accurate computational 

prediction of disordered flexible 

linker regions 

4.1 Introduction 

4.1.1 Disordered flexible linkers (DFLs) 

Section 2.2.3 in the background chapter explains that several methods have been 

developed for the prediction of disordered regions that carry out various protein-, DNA- 

and RNA-binding functions. However, methods for the prediction of the other functions of 

the IDRs are lacking. As shown in Table 2.1, the most annotated non-binding function of 

disorder are flexible linkers (14%, 122 out of 899 functionally annotated IDRs in DisProt 

6.0.2). Disordered flexible linkers (DFLs) are disordered regions that serve as linkers or 

spacers between protein domains in multi-domain proteins and between structured intra-

domain constituents [4]. Experimental annotation of DFLs relies primarily on the X-ray 

crystallography, NMR spectroscopy and circular dichroism. We consider building 

predictive models for these regions for several reasons. First, this is the most annotated and 

not related to binding function of IDRs. Second, DFLs are important for a variety of cellular 

processes. A few recent examples include formation of amyloid fibrils [144], linking 

multiple disordered protein binding regions [145], and movement of structured domains 

between catalytic sites [146]. Third, there is no computational method that predicts this 

class of IDRs. DFLs are cousins of linkers, which are regions that connect domains and 

maintain inter-domain interactions [147, 148]. A sub-class of linkers are flexible linkers, 

defined as flexible inter-domain regions that allow two domains to move relatively to each 

other [147]. DFLs differ from linker regions in two aspects: 1) DFLs are characterized by 
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extreme level of flexibility and lack of defined structure (they form conformational 

ensembles) as compared to linkers and flexible linkers that have more defined structures; 

and 2) linkers are shorter (average length of 10 residues) and localized between domains 

[148] while DFLs tend to be longer (average length of 25 residues in our dataset) and could 

be localized inside domains, for instance, to link structured elements in a domain. 

4.1.2 Alternative ways to predict DFLs 

Although there are no computational methods that directly predict DFLs in protein 

sequences, UMA method [149] can be used to predict flexible linker regions. It works 

based on assumptions that flexible linkers are less likely to be conserved in the sequence 

and secondary structure and that they are depleted in hydrophilic residues. Thus, UMA 

quantifies every residue as a weighted sum of hydrophobicity score and conservation 

scores for sequence and secondary structure. A low UMA score indicates that a residue is 

more likely to be a flexible linker. Since flexible linkers are a subset of flexible residues, 

they could be also potentially identified with sequence-based predictors of flexible 

residues. These predictors include PROFbval [139, 150], FlexPred [151, 152], PredBF 

[153], PredyFlexy [154] and DynaMine [155, 156]. PROFbval predicts B-factors using a 

Neural Network model, where a low/high real B-factor value indicates a low/high 

propensity of a residue being flexible. PredBF predicts B-factors by using a two-layer 

Support Vector Regression (SVR) model. FlexPred predicts conformationally variable 

positions in the input protein chain using a Support Vector Machine (SVM). PredyFlexy 

classifies every input residue as rigid, intermediate or flexible and also outputs putative 

normalized B-factors and RMSFs (root mean square fluctuations), from molecular 

dynamic simulations. DynaMine quantifies backbone flexibility in terms of N-H S2 order 

parameter values using regression where smaller S2 means that a given residue is more 

likely to be flexible. 

The UMA method and protein flexibility predictors predict flexible linkers/residues but 

they do not accommodate for the disordered state of these residues. Moreover, UMA 

requires that the input sequence has homologous sequences to generate multiple sequence 

alignment profiles, which means that it may not generate predictions for some proteins that 

lack homologues (similar proteins), and is tedious to execute since its implementation 
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requires manual processing. To this end, we propose to develop a predictor of DFL regions 

which does not need alignment profiles and is fast and accurate. For future reference, we 

name this method DFLpred (Disordered Flexible Linker predictor). 

4.2 Materials and methods 

4.2.1 Datasets 

We collect the functionally annotated data from DisProt version 6.0.2 that includes 694 

sequences. We excluded DP00688 sequence that was too long (>18,000 residues) to predict 

with the PSIPRED [157] to generate putative secondary structure. We select 204 sequences 

which include 82 proteins that have annotations of DFLs and 122 proteins that do not have 

DFL annotations but for which all residues are annotated. This way we include all 

annotated DFLs and reduce the number of ambiguous (unannotated) residues. 

We assumed that residues that are not annotated as DFLs but which have other 

functional annotations are non-disordered flexible linker (NDFL) residues. The residues 

without functional annotations were excluded from the design and assessment. We divide 

the set of 204 proteins into five subsets and reduced sequence similarity between these 

subsets with BLASTClust [105]. First, we cluster the 204 sequence with sequence identity 

threshold at 25%. Second, the resulting 160 clusters that include similar sequences (≥ 25% 

similarity) were divided at random between the five sub sets to ensure that each subset has 

similar number of sequences and similar ratio of DFL to NDFL residues. Four of these 

subsets were used in four-fold cross validation protocol to empirically design our predictor, 

i.e., to conceptualize and select features for the predictive model, and to select and 

parameterize this model. These data constitute the training dataset. The remaining fifth 

subset was used as an independent (never used in the design) test dataset. This way, 

sequences in the test dataset share low similarity with sequences in the training dataset, and 

also sequence in individual folds of the training dataset share low similarity with sequences 

in the other folds. The training and test datasets have 144 sequences and 60 sequences, 

respectively. 
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4.2.2 Overall design of DFLpred 

The architecture of DFLpred includes three layers: 1) Layer 1 represents every residue 

of the input sequence with its amino acid (AA) type and information predicted directly 

from the sequence including propensity to form structured regions, intrinsically disordered 

regions, and helical and coil conformations. 2) Layer 2 converts this representation into 

empirically selected set of numeric features that are computed using sliding windows. 3) 

Layer 3 inputs the selected features into empirically selected and parameterized predictive 

model to generate propensity scores. 

Sequence profile 

In the first layer, we represent every residue in the input protein sequence by its AA 

type, its physicochemical properties estimated based on the AA indices from the AAindex 

database [158], secondary structure predicted with PSIPRED [157], intrinsically 

disordered and structured regions predicted with IUPred [81, 82] and sequence complexity 

computed with SEG [159].  We retrieve 531 AA indices from the AAindex database, and 

run PSIPRED, IUPred and SEG webserver or standalone packages provided by the 

corresponding authors with default parameters. IUPred produces predictions for long and 

short IDRs and structured regions, and we use all of them. 

Feature representation 

In the second layer, we generate numerical features that quantify the considered 

structural and sequence-based properties for each residue of the input AA sequence. We 

represent every residue by a feature vector calculated from a window centered over that 

residue. The window aggregates structural and sequence-based information by considering 

characteristics of AAs adjacent in the sequence. The concept of the window has been 

adopted in other relevant predictors such as PROFbval, FlexPred, PredBF, PredyFlexy and 

DynaMine. We set the length of the window to 17, which is the median value of the length 

of longest per protein DFLs in our dataset. This way the select window size covers the full 

length of at least half of DFLs without recruiting much of potential noise (NDFL residues) 

when used to predict shorter regions. We did not pad the window for the residues located 

at either terminus of the sequence and correspondingly the length of the window is reduced 
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on one of its sides, i.e., window size is 8 for the first and last residue in the sequence. 

Consequently, we normalize values of features computed over the residues in the window 

by the size of the window. In total, we considered 2236 features including 40 features that 

we derived directly from the sequence, 2124 features derived from physicochemical 

properties of AAs quantified based on the AAindex database [158], 22 features generated 

from the putative secondary structures, 40 features from putative intrinsic disorder and 

structured regions and 10 features from the sequence complexity. These features quantify 

composition of AAs; composition, counts, and length of putative secondary structures, 

intrinsically disordered regions, structured regions and high sequence complexity regions 

in the window; average physicochemical properties of residues in the windows; and AA 

types, secondary structure, disorder status, sequence complexity status and 

physicochemical properties of the residue in the center of the window. Detailed list of these 

features are shown in the Appendix A. 

Feature selection and design of predictive model 

The vector of 2236 features likely includes features that are irrelevant to the prediction 

of DFLs and features that have high mutual correlations. We utilized a two-step empirical 

feature selection to select a subset of features characterized by high predictive value and 

low mutual correlations. 

In the first step of feature selection we remove low quality features that have low 

correlation with the annotation of the DFLs. We have two types of features: real-valued 

(e.g., features computed as an average over the window) and binary (e.g., disordered vs. 

ordered status of the residue in the center of the window). Inspired by [160, 161], we use 

point-biserial correlation coefficient (rpb) and φ coefficient (φ) respectively, for these two 

feature types: 

𝑟𝑝𝑏 =
𝑀𝐷𝐹𝐿 − 𝑀𝑁𝐷𝐹𝐿

𝑆𝑛
× √

𝑛𝐷𝐿𝐹 × 𝑛𝑁𝐷𝐿𝐹

𝑛2
 

𝜑 =
𝑐𝑜𝑢𝑛𝑡𝐹1𝐴𝐷𝐹𝐿

× 𝑐𝑜𝑢𝑛𝑡𝐹0𝐴𝑁𝐷𝐹𝐿
− 𝑐𝑜𝑢𝑛𝑡𝐹1𝐴𝑁𝐷𝐹𝐿

× 𝑐𝑜𝑢𝑛𝑡𝐹0𝐴𝐷𝐹𝐿

𝑐𝑜𝑢𝑛𝑡𝐹1 × 𝑐𝑜𝑢𝑛𝑡𝐹0 × 𝑐𝑜𝑢𝑛𝑡 𝐴𝐷𝐹𝐿
× 𝑐𝑜𝑢𝑛𝑡𝐴𝑁𝐷𝐹𝐿
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where MDFL and MNDFL (nDFL and nNDFL) are the means (numbers) of values a given real-

valued feature for the residues annotated as DFLs and NDFLs, respectively; n = nDFL + 

nNDFL and Sn is the standard deviation of all values of that feature. countFiAk is the number 

of values i = {0, 1} of binary feature F corresponding to residues with values k = {NDFL, 

DFL} of the annotation A; countFi and countAk are the number of values i = {0, 1} of binary 

feature F and the number of residues with values k = {NDFL, DFL} of the annotation A, 

respectively. We calculate average rpb (for the real-valued features) and φ (for the binary 

features) for all considered features from four correlations computed on the training folds 

from the four-fold cross validation on the training dataset. We normalize the values of the 

average rpb and φ correlations to the -1 to 1 range, and remove the features for which the 

absolute normalized rpb or φ value < threshold Tstep1. Next, we rank the remaining features 

by their absolute normalized rpb or φ values. 

In the second step of feature selection, we eliminate mutually correlated features using 

the Pearson correlation coefficient (rpc). First, a set of selected features is initialized with 

the top-ranked in the first step feature. Next, we calculate rpc between the next-ranked 

feature and all selected features. If the absolute value of this rpc < threshold Tstep2 then we 

add this next-ranked features into the set of selected features, otherwise we do not add it. 

We apply this procedure through the entire list of ranked features passed from the first step. 

We vary values of each of the two thresholds, Tstep1 and Tstep2 between 0.1 and 0.9 with 

step of 0.05, to obtain 17×17= 289 different feature sets. The corresponding feature sets 

vary in size between 1 and 884 features. Each feature set is used with three types of 

classifiers: Logistic Regression, Naive Bayes and k-Nearest Neighbor, in the four-folds 

cross validation on the training dataset to select the design that offers the highest AUC 

value. We use the implementations of these classifiers in the Weka platform [162]. We also 

parameterized Logistic Regression and k-Nearest Neighbor classifiers for each of these 

experiments by selecting their parameters that corresponds to the highest AUC in the four-

folds cross validation on the training dataset. Naive Bayes has no parameters. For the 

Logistic Regression we considered ridge = 10x, where x ranges from -4 to 4 with step of 1. 

For the k-Nearest Neighbor, we consider the number of neighbors k ranging from 50 to 800 

with the step of 50. Table 4.1 summarizes results with the highest AUC value for each of 
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the three classifiers, which are selected from across the experiments that correspond to 

7514 combinations of the two thresholds and different parameters of classifiers (289 

combinations for Naive Bayes + 9×298 for Logistic Regression + 16×289 for k-Nearest 

Neighbor). AUCLowFPR and AUCratio are calculated by considering false positive rate ≤ 0.1. 

The p-values in table 4.1 are calculated by bootstrapping 50% proteins from the cross 

validation results and repeating for 10 times. Given the 10 pairs of measurements are draw 

from normal distribution, which are assessed with the Anderson-Darling test, we use the 

Student’s paired t-test, otherwise we use the Wilcoxon signed-rank test. 

Table 4.1. Cross validation results for the three types of classifiers on the training dataset. 

Tstep1: threshold for normalized rpb or φ; Tstep2: threshold for rpc; Parameters: parameters selected for individual 

classifiers where r is the ridge for Logistic Regression and k is the number of neighbors for k-Nearest Neighbors; AUC: 

area under the ROC; AUClowFPR: area of a part of the ROC for FPR between 0 and 0.1; AUCratio = 

AUClowFPR/AUClowFPR_random where AUClowFPR_random is the AUC of random predictor assessed for FPR between 0 and 

0.1. The AUC, AUClowFPR and AUCratio values were calculated over the 4 combined test folds in the cross validation, 

and thus they represent results on the entire training dataset. + indicates that difference in predictive quality between 

LR and another classifier is statistically significant at p-value < 0.01. 

Classifier Tstep1 Tstep2 
Number of the 

selected features 
Parameters AUC AUClowFPR AUCratio 

Logistic Regression 0.50 0.35 4 r = 100 0.702 0.016 3.27 

Naive Bayes  0.50 0.35 4 N/A 0.680 + 0.014 + 2.81 + 

K-Nearest Neighbor 0.45 0.35 5 k = 500 0.677 + 0.015 + 2.93 + 

 

We select the Logistic Regression classifier with 4 features that gives the highest values 

of AUC, AUClowFPR and AUCratio. The differences in these three measures of predictive 

quality between the Logistic Regression and the other two classifiers are statistically 

significant. The ratio reveals that the selected design is about 3.3 times better than a random 

predictor when predicting with low FPR, i.e., when a high fraction of predictions of DFL 

residues (predicted positive residues) is correct. The architecture of this model is shown in 

Figure 4.1. Given an input AA sequence, it utilizes putative annotations of structured and 

long disordered regions generated with IUPred and two physicochemical properties of 

residues that quantify propensity for formation of helices and turns. 
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Figure 4.1. Architecture of DFLpred. 

 

The selected four features, their point-biserial correlation coefficient (rpb) with the class 

label, and their coefficient in the logistic regression model are shown in Table 4.2. These 

features are computed from the sequence using windows on putative annotations generated 

with IUPred and two AA indices. For each residue, the output score representing the 

propensity of being DFL ranges between 0 and 1 and is calculated by the Logistic function 

f(t) = 1/(1 + e-t), where t is the linear combination of the four features, i.e., t = α0x0+ α1x1 + 

α2x2 + α3x3 + α4x4, x{0, 1, 2, 3, 4} are the constant and the four features, and α{0, 1, 2, 3, 4} are the 

five coefficients. 

Table 4.2. Summary of features used in the DFLpred model. 

Feature name Description rpb Coeff 

WIN_IUP_fractionD0 Number of residues predicted with IUPred_struct not to 

be in structured regions in a sliding window divided by 

the window length. 

-1.00 -1.10 

WIN_IUP_stdL Standard deviation of propensity scores from IUPred 

_long for residues in the sliding window. 
0.70 6.60 

WIN_AAind_avgAURR980118 Average value of AURR980118 AA index for all residues 

in the sliding window. 
-0.66 -4.58 

WIN_AAind_avgPALJ810114 Average value of AURR980118 AA index for all residues 

in the sliding window. 
0.57 3.32 

constant N/A -0.92 
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4.3 Results 

4.3.1 Analysis of the predictive model 

Figure 4.2 compares values of the four features utilized by DFLpred between the native 

DFL and NDFL residues in the test dataset (these results were not used to design the model, 

which is based on the training dataset). The WIN_IUP_fractionD0 feature quantifies 

fraction of residues predicted with IUPred_struct not to be in structured regions in a 

window centered on the predicted residue. Its average for DFL residues is 0.29, for the 

NDFL residues is 0.60, and for the NFDL residues annotated as structured is 0.11 (not 

shown in the figure). The structured residues have the lowest value since they should be 

primarily predicted to be in structured regions; the value > 0 since some of the residues in 

the surrounding window could lack structure. The high value of mean for NFDL residues 

is driven by the fact that these residues include disordered residues that are not DFLs which 

have a large number of nearby (in the sequence) unstructured residues. The average for 

DFLs is in between the other two average. This reveals that propensity of these residues to 

be nearby putative structured regions is lower than for other disordered regions but higher 

than for structured regions. This makes sense since residues in DFLs link primarily 

structured domains and thus their neighbors in the sequence should include a sizable 

fraction of structured residues, but not as large as for the structured residues. 

The plot of the WIN_IUP_stdL feature in Figure 4.2 suggests that putative propensities 

for disorder of residues in DFLs have higher standard deviation in the window compared 

to the other residues. This means that these propensities fluctuate more in residues adjacent 

to DFL residues. This is reasonable given that DFLs link structured domains where 

propensity for disorder should be substantially lower compared to DFLs. In contrast, 

residues located in structured or in disordered regions would experience less variability in 

the propensities for disorder in these regions. 

The last two features are computed by averaging values of the selected two AA indices 

in the window. Higher values of the AURR980118 index [163] indicate higher likelihood 

of a given residue to be included in a helical conformation. Thus, the corresponding feature 

can be used as a proxy to quantify likelihood of helical conformations in the window. 



41 

 

Figure 4.2 shows that residues in DFLs have lower values of this feature which suggests 

that they are less likely to include helices nearby in the sequence compared to NDFLs. This 

again is expected since DFLs are unstructured (less likely to form helical conformations). 

The second, PALJ810114 index [164] quantifies likelihood of forming turns. Here, DFLs 

have higher values compared to the other residues, which is sensible given that turns are 

relatively flexible which is also characteristic for DFLs. 

Overall, we demonstrate that the four features are different from each other and that 

they are meaningful markers of DFLs. This agrees with our empirical approach to design 

DFLpred in which we explicitly select highly predictive features (first step of feature 

selection) that are characterized by low mutual correlation (second step of feature 

selection). 

 

Figure 4.2. Comparison of values of features used in DFLpred. 

The comparisons are between the native DFL residues (black lines) and native NDFL residues (gray lines) in the test 

dataset. The features are ranked by their absolute rpb values from the highest on the left to the lowest on the right (see 

Table 4.2). Values of the WIN_IUP_stdL are multiplied by 10 to better fit the range of values of the other features. Dots 

are the averages and the error bars show the first and third quantiles. 

4.3.2 Comparison of predictive performance with closest alternative methods 

We compare the predictive performance of DFLpred with the closest alternative 

methods that could be used to find DFLs. These approaches include the UMA method that 

finds flexible linkers, predictors of flexible residues and disordered residues, and a domain 
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predictor given the fact that classical linkers are localized between domains. We also 

combined the results of UMA with the results of the disorder predictors and the results of 

the flexibility predictors with the disorder predictors. This was motivated by the fact that 

these combinations could potentially find flexible linkers or flexible residues localized in 

disordered regions, which is the hallmark of the DFLs. We utilize two ways to combine 

their predictions, by multiplying the scores predicted with UMA and flexibility predictors 

by the binary disorder predictions and by the predicted real-valued propensity for the 

disorder. In the first case, the UMA and flexibility scores remain the same for the predicted 

disordered residues and are set to zero for the residues that are not predicted to be 

disordered. In the second scenario, the UMA and flexibility scores are scaled by the 

predicted propensity for disorder. We use a comprehensive set of predictors of flexible 

residues including PROFbval, FlexPred, PredBF, PredyFlexy and Dynamine. We also 

consider several predictors of disorder including two versions of IUPred (short and long), 

MFDp [127] and three versions of Espritz (NMR, X-Ray and DisProt) [165]. We apply 

ThreaDom [166] to predict domains given its strong predictive performance and 

availability of a webserver. 

Table 4.3. Comparison of predictive quality for DLFs on the test dataset. 

The methods were ranked by AUC value in each category. + denotes that difference in predictive quality is statistically 

significant at p-value < 0.01 when compared with DFLpred. 

Prediction 

target 
Method AUC AUClowFPR AUCratio 

DFLs DFLpred 0.715 0.016 3.265 

Espritz_NMR & Predyflexy (the best based on 

binary disorder) 
0.459 + 0.006 + 1.154 + 

Espritz_NMR & Predyflexy (the best based on 

disorder propensity) 
0.429 + 0.003 + 0.653 + 

Flexible  

linkers 
UMA 0.384 + 0.003 + 0.531 + 

Flexible  

residues 

PredyFlexy 0.531 + 0.007 + 1.307 + 

FlexPred 0.486 + 0.004 + 0.768 + 

PROFbval 0.453 + 0.007 + 0.337 + 

PredBF 0.445 + 0.005 + 0.988 + 

Dynamine 0.396 + 0.003 + 0.573 + 

Disordered  

residues 

Espritz_NMR 0.399 + 0.001 + 0.218 + 

IUPred_short 0.359 + 0.000 + 0.092 + 

MFDp 0.325 + 0.004 + 0.201 + 

Domains ThreaDom 0.521 + 0.003 + 0.569 + 
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Table 4.3 summarizes results of DFLpred and the other methods on the test dataset. 

AUCLowFPR and AUCratio are calculated by considering false positive rate ≤ 0.1. The p-

values are calculated by bootstrapping 50% proteins from the results of test dataset and 

repeating for 10 times. If the 10 pairs of measurements are drawn from normal distribution, 

we use the Student’s paired t-test, otherwise we use the Wilcoxon signed-rank test. We 

show results for DFLpred, UMA, the five methods for prediction of flexible residues, the 

three methods for the prediction of disordered residues (we show results for one version of 

IUPred and Espritz that secures the highest AUC) and ThreaDom for the prediction of 

domains. We also include result for each of the two ways to combine these methods, as 

described above, whichever secured the highest AUC value. Figure 4.3 shows the ROC 

curve for DFLpred and other alternatives that secured AUC > 0.5 on the independent test 

dataset. 

  

Figure 4.3. ROC curves on the test dataset. 

This figure shows ROC curves for DFLpred and methods that achieved AUC > 0.5 in Table 4.3. Insert in the bottom 

right corner focuses on the ROCs for FPR between 0 and 0.1. AUC values are shown inside brackets next to the names 

of methods in the figure legend. 
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DFLpred secures the highest AUC, AUClowFPR and AUCratio values. The improvements 

offered by DFLpred are significant at p-value < 0.01 when compared with all considered 

methods. The AUCratio indicates that the DFLpred is about 3.3 times better than a random 

predictor in AUC for the low values of FPR ≤ 0.1. The UMA method secures low AUC 

and this could be explained by the fact that UMA predicts flexible linkers that likely 

exclude linkers located in disordered regions; the latter stems from the low value of 

AUClowFPR. The low AUC of UMA is due to a concave upwards shape of ROC curve that 

in turn results from high levels of false positives on the left side of the curve. These false 

positives are the residues predicted as DFLs for the purpose of our evaluation but which in 

fact correspond to the putative flexible linkers predicted by UMA with the highest values 

of propensity. The predictors of disordered residues have similar weakness. They predict 

all disordered residues, irrespective of their function, while most of them are not DFLs. 

Their low values of AUClowFPR suggest that propensities generated for DFLs are lower than 

the propensities for other disordered regions. This results in high false positive rates, 

concave upwards shapes of ROC curves and consequently low AUC values. Predictors of 

flexible residues also secure relatively low AUC values. These methods were built utilizing 

crystallographic data that exclude disordered residues and thus they cannot accurately find 

disordered residues, which was shown in [15]. ThreaDom finds the inter-domain regions 

but only some of them are DFLs and it in general fails to find the intra-domain DFLs. 

Consequently, its AUC value is relatively low. Interestingly, combining UMA/flexibility 

predictors with the disorder predictors also does not produce high quality predictions. This 

is likely because neither UMA nor predictors of flexibility provide accurate estimates for 

the disordered regions. We also include the results when using sequence alignment. The 

alignment-based predictor transfers DFL annotations of aligned residues from the most 

similar sequence in the training dataset based on its alignment to a query sequence from 

the test dataset. The alignment is done with PSI-BLAST [167] using default parameters. 

Since alignment transfers binary annotations of DFLs from the training proteins, we can 

show only one point for the ROC curve for this simple predictor. The FPR and TPR values 

of alignment-based predictor equal 0.039 and 0.014, respectively. In other words, it 

predicts only 1.4% of DFL residues with the cost of predicting 3.9 % of NDFL residues as 

DFL residues. This is because our test dataset is designed to share low (25% or lower) 
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sequence similarity with the training dataset. In contrast, DFLpred can produce accurate 

results even in the absence of sequence similarity. Overall, we conclude that while 

currently there are no approaches that can accurately predict DFLs, DFLpred offers high-

quality predictions. 

4.3.3 Comparison of runtime 

DFLpred is implemented as a linear function of features computed directly from 

sequence and from sequence-derived predictions generated with IUPred. IUPred’s 

predictions are calculated from pairwise energy profile without a time-consuming 

alignment and predictive model. Consequently, DFLpred is very fast. We quantify and 

compare the runtime of DFLpred with the runtime of UMA and PredyFlexy, the latter is 

the only flexibility predictor that obtained AUC >0.5. The predictions were run on the same 

64-bit computer with 3.5GHZ CPU and 4 GB of RAM running the Ubuntu operating 

system. UMA was run manually and requires computation of hydrophobicity, finding 

homologous sequences and prediction of secondary structure. We estimate a lower bound 

on the UMA’s runtime by computing time to complete the most runtime-consuming task 

of finding the homologs. This is based on executing BLAST against the NR database using 

the suggested by the author e-value = 1e-20. We use standalone version of PredyFlexy that 

was provided by the authors. The domain predictor ThreaDom also secured AUC > 0.5 but 

is not included in the runtime comparison because it requires running LOMETS (Local 

Meta Threading Server) framework [168] which takes substantially longer time than the 

other methods. We collect the runtime of the considered methods for 204 proteins from the 

training and test datasets. We sort the proteins by their size quantified with the sequence 

length, divide them into 10 equally sized groups based on the size, and compute average 

runtime for each group. 
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Figure 4.4. Comparison of runtime for DFLpred, UMA and PredyFlexy. 

 

Figure 4.4 compares the average runtime against the average length of sequences for 

the three methods. The runtime of DFLpred, PredyFlexy and UMA is in the range of 102, 

104 to 105 and 105 to 106, respectively, measured in milliseconds. DFLpred is up to 4 orders 

of magnitude faster than the alternatives, which is a significant advantage. To put this into 

perspective, if these methods would be used to predict the complete reviewed human 

proteome from UniProt (20,193 sequences with an average length of 561), the DFLpred, 

PredyFlexy and UMA would take about 40 minutes, 11.5 days and 185 days respectively. 

This estimate is based on a linear fit into the measured data that is shown in Figure 4.4 and 

assuming use of the same computer that we used to measure the runtime. To summarize, 

DFLpred is faster than the less accurate alternatives and is capable of providing predictions 

for the complete human proteome (and any other proteome which by definition would be 

smaller) using a modern personal computer in under an hour. 

4.3.4 Case studies 

We use two proteins from the test dataset to visualize prediction of DFLs localized 

between domains (chemotaxis cheA protein; Figure 4.5 A) and inside of a domain 

(troponin I protein; Figure 4.5 B). CheA includes five domains and we focus on the C-
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terminus that includes Hpt, CheY binding, and signal transducing H kinase domains that 

are connected by two inter-domain DFLs. Troponin I includes two domains: troponin I N-

terminus domain which is disordered, and troponin I domain that is composed of two sub-

domains: IT arm and regulatory head. The IT arm sub-domain has DFL that links two of 

its helices that interact with troponins T and C that compose the troponin complex. The 

second DFL links the two sub-domains. Both of these intra-domain DFLs enable 

movement of several structural elements of the troponin I domain allowing it to interact 

with the other members of the troponin complex [169]. The figures show predictions from 

DFLpred, UMA, domain predictor ThreaDom and the best performing (based on Table 

4.3) disorder predictor Espritz and flexibility predictor PredyFlexy. DFLpred generates 

higher propensities in a vicinity of the two inter-domain DFLs in CheA, with the second 

one predicted less accurately. It also finds the first intra-domain DFL and to some extent, 

given the lower values of propensity, the second intra-domain DFL in troponin I. 

ThreaDom accurately finds the inter-domain residues that overlap with the two DFLs in 

CheA, but its prediction also includes residues at the N-terminus that are not DFLs. This 

method finds the inter-domain region in troponin I, which is not a DFL, and has difficulty 

with the troponin I domain given it’s fragmented into sub-domains composition. Espritz 

accurately predicts the disordered residues which coincide with the inter-domain DFLs in 

CheA, but it also finds disorder at the N-terminus. It correctly finds the first two disordered 

regions in troponin I but it misses the second intra-domain DFL and predicts the disordered 

region at the N-terminus the highest propensity while this region is not a linker. UMA finds 

three flexible linkers (residues with high scores) in CheA and only the last one coincides 

to some extend with the second DFL. For the second protein this method annotates only 

the N-terminus as a flexible linker and fails to identify the intra-domain DFLs. Finally, 

PredyFlexy does not find inter-domain residues, DFLs or disordered regions, but rather it 

estimates local flexibility which fluctuates widely along the sequence of both proteins. 

These observations provide context to interpret results of the other methods in Table 4.3. 



48 

 

A

 

B

 

Figure 4.5. Predictions and native annotations for two proteins in case study. 

The two proteins are the C-terminus of the chemotaxis cheA protein (panel A) and the N-terminus of the troponin I 

protein (panel B) from the test dataset. We include annotations and names of domains (green horizontal line at the 

bottom with names above the line), disordered regions (blue horizon-tal line at the bottom), DFLs (red horizontal line at 

the bottom), and predictions from DFLpred (thick red plot), UMA (thick violet plot), best performing disorder predictor 

Espritz (black line with diamond markers), best performing flexibility predictor PredyFlexy (dotted gray line with 

square markers), and the domain predictor ThreaDom (dotted green line with square markers). UMA cannot predict the 

first 20 residues in panel B due to the use of sliding window. 
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4.3.5 Analysis of putative disordered flexible linkers in human proteome 

We analyze putative annotations of DFLs generated with DFLpred in the complete 

reviewed human proteome collected from UniProt. We consider a given residue to form 

DFL if its propensity score generated by DFLpred is above 0.18. This cut-off corresponds 

to low false positive rate = 0.05 based on the results from the cross validation on the training 

dataset. The actual runtime for the complete reviewed human proteome is 38 minutes, 

which is close to the estimated 40 minutes (Section 4.3.3). This suggests that our estimates 

of runtime are accurate. 

Figure 4.6 A shows a histogram of the content of putative DFLs residues per sequence 

(fraction of these residues in a sequence). About 24% of proteins have no DFLs, i.e., the 

content is below 5% while our estimated FPR is at the same level, and another 52% have 

small amount of DFL residues. About 10% and 2% of proteins have the content > 30% and 

> 50%, respectively. We found 341 and 152 proteins that have the content of DFL residues 

at over 50% and 60%, respectively. Figure 4.6 B is a histogram of the length of putative 

DFLs. Most of these regions are relatively short, with about 80% of them being shorter 

than 10 residues; some of them could be spurious predictions given the assumed 5% FPR. 

However, about 7% and 3% of these regions span at least 20 and 30 consecutive residues, 

respectively. We found 6029 DFL regions that that are at least 30 residues long. 
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Figure 4.6. Histograms with content of putative DFL residues per sequence and length of putative 

DFLs in the complete reviewed human proteome. 

The putative DFL annotations are predicted using DFLpred. Black bars show the number of proteins (panel A) and 

number of DFLs (panel B) and lines show the cumulative fraction for a given range of the content (panel A) and length 

of DFLs (panel B). 

4.3.6 DFLpred webserver 

DFLpred is available as a webserver at http://biomine.cs.vcu.edu/servers/DFLpred/. It 

requires the end user only to provide the input protein sequence(s) in FASTA format and 

email address. The email is used to deliver a notification of the finished prediction and 

URL of results that are available for download. The same information is available in the 

browser window given that this window will not be closed until the prediction is finished. 

The server automatically generates the corresponding propensities and binary predictions 
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(DFL vs NDFL residue). The binary predictions are computed from the propensities using 

the cut-off = 0.18 (residues with propensity ≥ 0.18 are assumed to form DFLs) which 

corresponds to the 5% FPR. The webserver allows for batch predictions of datasets with 

up to 5000 proteins. 

4.4 Summary 

We conceptualized, designed, implemented, tested and deployed a novel computational 

method, DFLpred, for the prediction of the disordered flexible linkers (DFLs) from protein 

sequences. We developed four strong and complementary sequence-derived markers of 

DFLs and combined them using a linear function to build this method. Empirical tests on 

independent (blind) test dataset demonstrate that DFLpred provides relatively accurate 

predictions, even for proteins that share low sequence identity with the proteins used to 

develop the predictor. DFLpred outperformes the closest related methods including UMA 

which predicts flexible linkers, several protein flexibility predictors and their combinations 

with the disorder predictors. The new method is also characterized by a very low runtime, 

with prediction of the entire proteome taking less than 1 hour on a modern desktop 

computer. Finally, our analysis of putative DFLs in human proteome generated with 

DFLpred shows that DFLs can be likely found in many human proteins. About 10% of 

human proteins have a significant content of over 30% of DFL residues and a few thousand 

of these regions are longer than 30 consecutive residues. 
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Chapter 5  

Fast and accurate computational 

prediction of disordered 

moonlighting regions 

5.1 Introduction 

The term “moonlighting protein” was introduced by Jeffery to denote proteins that 

perform multiple independent cellular functions within one polypeptide chain [170, 171]. 

More precisely, a moonlighting protein has multiple autonomous and unrelated functions 

[171], and these functions are carried out by a single polypeptide chain that cannot be 

assigned into separate domains [172]. However, the multi-functional phenomenon is 

possible not only in the whole protein chains, but also in individual disordered regions. 

According to our estimates, about 37% IDRs annotated in DisProt carry out more than one 

functions [10]. We use the term “disordered moonlighting regions (DMRs)” to denote IDRs 

that carry out multiple distinct functions. DMRs differ from the moonlighting proteins. The 

moonlighting proteins are able to carry out multiple functions since they can be  expressed 

in different cell types, cellular locations, oligomerization states and can identify different 

binding ligands [170, 171]. Whereas the multi-functionality of DMRs stems from their 

high degree of plasticity, which allows a single IDR to bind multiple ligands, serve as a 

linker and/or perform several entropic functions [173-175]. The moonlighting proteins can 

be predicted computationally from protein sequences [171, 172, 176, 177]. However, these 

methods make predictions only at the protein level, not at the residue or sequence region 

level that is necessary to identify the multi-functional IDRs, and they do not specifically 

focus on the disordered proteins or regions. In section 2.2.3 we introduced eleven 

predictors that predict functions of IDRs. However, these predictors focus on IDRs with 

individual functions, instead of IDRs that carry out multiple functions. 
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Current predictors of functions of IDRs do not address the prediction of DMRs, and 

current methods that predict moonlighting proteins cannot be applied at the region level. 

To this end, we propose the first-of-its-kind method that predicts DMRs from protein 

sequence. We name this method DMRpred (Disordered Moonlighting Region predictor). 

5.2 Materials and methods 

5.2.1 Datasets 

The data to design and comparatively assess DMRpred comes from two sources: 

DisProt [58] and Protein Data Bank (PDB) [8]. We use DisProt 7.0.3 to collect disordered 

proteins and to extract annotations of DMRs. We use PDB to collect structured proteins 

that are necessary to ensure that our model does not predict DMRs for them. After 

removing 10 proteins from DisProt that have incorrect annotations (e.g., some annotations 

are out of bounds of the protein chains) we parsed the remaining 693 proteins. They include 

2,108 disordered regions with length ranging between 5 and 2,400 residues. We define 

DMR as a region that is disordered and that has at least two distinct functions and/or 

binding partners. Section 5.2.2 explains how DMRs are defined. Structured regions are 

considered as non-disordered moonlighting regions (NDMRs). We define DMR residues 

and NDMR residues as residues that are in DMRs and NDMRs, respectively. The residues 

without annotations in DisProt and disordered regions without functional annotations are 

considered as unknown and are not used to either develop or test our model. We include 

all proteins that have annotated DMRs and proteins with residues annotated as either DMR 

or NDMR; we exclude proteins that contain only unknown annotations. Finally, we select 

139 proteins from DisProt that have 12,910 DMR residues. We also collect high-resolution 

structured monomer proteins from PDB using the following criteria: chain length ≥ 30 

residues; resolution ≤ 2.0 Å; number of chains (asymmetric unit) = 1; number of chains 

(biological assembly) = 1, and number of entities = 1. We collected 2,927 such monomers 

in February 2017. We filter out proteins that have non-standard amino acids (AAs) or 

disordered residues (missing residue or marked as REMARK 465). This ensures that the 

selected proteins contain only standard AAs and are structured. Next, we select a 

representative subset of these proteins that share low sequence similarity. We run 
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BlastClust [105] with the identity threshold = 25%. We choose one representative sequence 

from each of the 298 clusters to ensure that remaining proteins share low similarity. To 

balance the number of disordered and structured proteins, we randomly select 139 proteins 

from the set of 298 structured proteins. We combine the two sets of 139 proteins to form 

the dataset of 278 proteins. We divide these 278 proteins at random into two subsets of 

equal size, a training dataset that we use to design and parameterize the predictive model, 

and a test dataset to perform blind validation. We further subdivide the training dataset into 

four equally sized subsets (12.5% of the original dataset) to perform four-fold cross 

validation. We ensure that the training and test datasets as well as the four cross-validation 

folds share sequence identity below 25%. To do that, we run BlastClust on the 278 proteins 

with the identity threshold = 25%, and we place each of the resulting 263 clusters that 

include similar sequences (≥ 25% identity) into one of the five protein sets that is chosen 

at random. The first four subsets (12.5% of the original dataset) constitute the four folds of 

the training set and the remaining fifth subset (50% of the original dataset) is used as the 

test dataset. We ensure that each of the five subsets has similar ratio of DMR to NDMR 

residues by randomly resampling clusters, if needed. Finally, the training dataset includes 

140 proteins with 6,261 DMR residues and 16,466 NDMR residues, and the test dataset 

includes 138 proteins with 6,449 DMR residues and 17,449 NDMR residues. 

5.2.2 Definition of DMRs 

We define DMR as a region that is disordered and that has at least two distinct functions 

and/or binding partners. Specifically, we define DMRs based on the annotations of IDRs 

for functions and binding partners in DisProt. The latest DisProt version 7.0.3 has two 

levels of annotations for functions, and one level of annotations for binding partners. The 

annotations for functions are shown in Table 5.1, and the annotations for binding partners 

include protein-protein, protein-DNA, protein-RNA, protein-lipid, protein-metal, protein-

inorganic salt and protein-small molecule binding. For a given disordered region in 

DisProt, we consider this region as one of the three classes: 1) A disordered moonlighting 

regions (DMR); 2) A non-disordered moonlighting region (NDMR) that includes 

disordered regions that are not moonlighting and structured regions; and 3) A region of 

unknown type (UNK). UNK regions include disordered regions without functional 
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annotation and regions in DisProt without any annotations. Residues in the UNK regions 

are excluded from our analysis. We do not use them to neither build nor assess the model. 

We include structured proteins collected from PDB [178] and residues from these proteins 

are annotated as the NDMR residues. Figure 5.1 details how DMR residues, NDMR 

residues and UNK residues are annotated. For example, the protein region annotated using 

the path at the bottom of the Figure 5.1 has at least two different functional annotations 

from different categories, and thus it is annotated as a DMR. 

Table 5.1. Annotations of functions for IDRs in DisProt 7.0.3. 

We exclude posttranslational modifications since these are not intrinsic functions of IDRs. They are located in IDRs 

and DisProt does not provide their exact position. 

Level 1 Level 2 

Entropic chain Flexible linker/spacer 

Entropic bristle 

Entropic clock 

Entropic spring 

Structural mortar 

Self-transport through channel 

Molecular recognition – assembler Assembler 

Localization (targeting) 

Localization (tethering) 

Prions (self-assembly, polymerization) 

Liquid-liquid phase separation/demixing (self-assembly) 

Molecular recognition – scavenger Neutralization of toxic molecules 

Metal binding/metal sponge 

Water storage 

Molecular recognition – effectors Inhibitor 

Disassembler 

Activator 

cis-regulatory elements (inhibitory modules) 

DNA bending 

DNA unwinding 

Molecular recognition – display site Limited proteolysis 

Molecular recognition – chaperone Protein detergent/solvate layer 

Space filling 

Entropic exclusion 

Entropy transfer 
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Figure 5.1. Flow chart to define disordered moonlighting regions (DMRs). 

 

5.2.3 Overall design of DMRpred 

The architecture of DMRpred (Figure 5.2) includes three layers: 1) Sequence profile: 

we represent the input sequence by a set of numeric values that quantify biophysical and 

structural properties of residues in this sequence; 2) Feature representation: for each 

residue in the input protein we convert the profile into a set of features that quantify the 

considered properties for this residue and its neighbors in the sequence and 3) Prediction: 

The features are input into a predictive model that generates the propensities for residues 

to be DMR residues. 

Region from 

Disprot

Annotated as 

disorder

A protein 

region

Region from PDB: 

NDMR

No level 1 

annotation

At least two different level 2 annotations or partners: DMR

Only one level 2 annotation and/or partner: NDMR

No level 2 annotation or partner: UNK

One level 1 

annotation

At least one level 2 annotation under different level 1 category : DMR

No level 2 annotation under 

different level 1 category

At least two different level 2 

annotations in the given level 1 

category or two partners: DMR

Otherwise: NDMR

At least two different level 1 

annotations: DMR

No annotation: 

UNK
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Figure 5.2. Architecture of DMRpred. 

 

Sequence Profile 

We consider several relevant biophysical and structural properties to define the 

sequence profile. They include sequence conservation, relative solvent accessibility, 

intrinsic disorder and a set of novel AA indexes. The indices quantify propensity of 

individual AA types to carry out functions that are relevant to DMRs. 

We compute conservation from the multiple sequence alignment produced with 

HHblits [179]. HHblits is a profile based sequence alignments which was shown in [179] 

to be faster and more sensitive than the sequence-based alignment with PSI-BLAST [167]. 

To further reduce the runtime, we run HHblits against the Pfam database (as of February 

2017), instead of the default UniProt20 database, and we iterate twice. Running HHblits 

against Pfam database is 12 times faster when compared to using UniProt20; average per 

protein runtime is 8 seconds vs. 102 seconds. Using the outputs of HHblits, we quantify 

Sequence … M S E … K A I … P K L …

HHblits

Entropy: … 1.12 1.03 0.98 … 0.94 0.96 1.02 … 1.08 1.01 1.10 …
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NEFF: … 3.93 3.73 3.83 … 4.18 4.82 5.24 … 3.67 4.24 4.25 …

ASAquick RSA: … 0.05 -0.27 -0.23 … -0.25 -0.46 -0.60 … -0.45 -0.19 -0.77 …

IUPred scores  2 (short and long): … 0.31 0.64 0.71 … 0.84 0.80 0.77 … 0.37 0.27 0.21 …
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indices

FUN_MC  2 BG: … 0.82 0.93 0.80 … 0.84 0.89 0.77 … 0.81 0.84 0.74 …

FUN_ME  2 BG: … 0.93 0.77 0.91 … 0.94 0.77 0.85 … 0.77 0.94 0.68 …

FUN_MA  2 BG: … 0.86 0.78 0.91 … 0.86 0.83 0.88 … 0.81 0.86 0.78 …

FUN_EC  2 BG: … 0.91 0.80 0.73 … 0.89 0.87 0.77 … 0.77 0.89 0.80 …

BIND_DNA  2 BG: … 0.86 0.79 0.90 … 0.76 0.82 0.82 … 0.81 0.76 0.83 …

BIND_PROT  2 BG: … 0.91 0.80 0.83 … 0.87 0.84 0.84 … 0.75 0.87 0.80 …

BIND_LIP  2 BG: … 0.90 0.85 0.86 … 0.87 0.91 0.80 … 0.79 0.87 0.80 …
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Window based on predicted 
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Individual residues

Predictive model (Random Forest)

448 features
446 features  2 window sizes

248 features

…,0.164,0.254,0.271,…Propensity score of being a DMR residue:

L
ay

er
 1

L
ay

er
 2

L
ay

er
 3



58 

 

the conservation in three ways: entropy, relative entropy (REntropy) and the local diversity 

(NEFF). The entropy is calculated using the 20 AA emission frequencies and relative 

entropy is calculated by considering the HHblits null model frequencies as the background 

frequency [180]. The NEFF(i) output from HHblits measures the diversity of sub-

alignment for residue i that contains all sequences that have a residue at position i of the 

full alignment. A smaller entropy, larger relative entropy and smaller NEFF indicate a more 

conserved residue. We invert the values of entropy and NEFF by subtracting their values 

from the corresponding maximal value. This makes these values consistent with the other 

properties, where a larger number indicates a more conserved residue that has a higher 

chance to carry out function(s) relevant to DMRs. 

We calculate the relative solvent accessibility (RSA) with ASAquick [181]. ASAquick 

predicts the relative accessible surface area from a single sequence (without alignment). 

ASAquick is orders of magnitude faster than most of the other predictors of RSA that 

require multiple sequence alignment. It produces prediction in less than a second for a 

protein that is 500 residues long. We normalize the output of ASAquick to the 0 to 1 range 

where a larger number means that the corresponding residue is more solvent exposed. 

Intrinsic disorder is predicted with IUPred [81, 82]. This fast predictor of IDRs was 

ranked as one of the top methods in several benchmarks [15, 77, 182]. We use both the 

short and long versions of IUPred. The output of IUPred ranges from 0 to 1 and a larger 

number suggests a higher likelihood for the intrinsic disorder. 

A unique to DMRpred part of the profile is the propensity of AAs to carry out functions 

that are relevant to DMRs. We quantify these AA indices with Composition Profiler [183]. 

The indices measure enrichment or depletion of specific AA types in the corresponding 

functional IDRs. First, we extract all functional IDRs from the training dataset. We 

consider the functions that we use to define DMRs and that have at least 1000 residues; the 

latter ensures that we have enough data for statistical analysis. We cover seven functions:  

molecular recognition–chaperone (FUN_MC), molecular recognition–effectors 

(FUN_ME), molecular recognition–assembler (FUN_MA), entropic chain (FUN_EC), 

protein-DNA binding (BIND_DNA), protein-protein binding (BIND_PROT) and protein-

lipid binding (BIND_LIP). For each of the seven functions we use the corresponding 



59 

 

regions as a query to run the Composition Profiler. The Profiler compares a given query to 

a background. We consider two types of background (BG): all residues and disordered 

residues from the training dataset. The former type of background results in the 

computation of differences between a specific set of functional residues and a generic set 

of all AAs. The latter type focuses on the differences between a specific set of functional 

residues, which are disordered, and a set of all disordered AAs. For each of the 20 AAs, 

the Composition Profiler outputs a fractional difference of the composition between the 

query and the background. Positive (negative) fractional differences indicate enriched 

(depleted) AAs. The Profiler also outputs p-values that measure statistical significance of 

the fractional differences. We consider p-value < 0.01 as statistically significant. Tables 

5.2 and 5.3 provide the fractional differences for the 20 AA types, the seven functions and 

two backgrounds. 
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Table 5.2. Fractional differences for the AA types for seven functions with all residues in the training dataset as background. 

Columns correspond to functions/binding partners where FUN_MC: molecular recognition – chaperone; FUN_ME: molecular recognition – effectors; FUN_MA: molecular 

recognition – assembler; FUN_EC: entropic chain; BIND_DNA: protein-DNA binding; BIND_PROT: protein-protein binding; and BIND_LIP: protein-lipid binding. For each 

amino acid, we list its fractional difference (FD) value defined based on the difference in composition between the query sample (residues in a given functional region) and the 

background sample. Positive FD values indicate enrichment and negative value indicates depletion. Statistical significance of the fractional difference is quantified with the p-

values; p-value < 0.01 is considered statistically significant. Bold font shows amino acids for which the FD values are significantly different. 

Amino  

Acid 

FUN_MC FUN_ME FUN_MA FUN_EC BIND_DNA BIND_PROT BIND_LIP 

FD p-value FD p-value FD p-value FD p-value FD p-value FD p-value FD p-value 

A -0.119 0.205 0.420 0.000 0.126 0.115 -0.032 0.531 0.211 0.003 0.111 0.030 -0.208 0.040 

C 0.119 0.561 -0.391 0.068 -0.054 0.786 -0.669 0.000 -0.395 0.003 -0.447 0.000 -0.489 0.031 

D -0.081 0.603 0.164 0.225 0.066 0.509 -0.192 0.098 0.247 0.002 0.119 0.037 0.400 0.000 

E 0.723 0.000 0.017 0.920 0.048 0.647 1.109 0.000 0.073 0.284 0.536 0.000 0.334 0.001 

F -0.228 0.198 -0.514 0.001 -0.164 0.191 -0.579 0.000 -0.409 0.000 -0.419 0.000 -0.073 0.716 

G -0.202 0.048 0.376 0.000 0.233 0.003 0.042 0.610 -0.143 0.029 0.129 0.007 0.473 0.000 

H 0.411 0.028 0.138 0.517 0.089 0.597 -0.304 0.072 0.007 0.941 0.164 0.061 0.584 0.011 

I -0.175 0.222 -0.388 0.002 -0.449 0.000 -0.178 0.148 -0.307 0.001 -0.359 0.000 -0.244 0.106 

K 0.605 0.000 -0.076 0.386 0.445 0.000 0.292 0.005 1.123 0.000 0.388 0.000 0.370 0.001 

L -0.089 0.385 0.075 0.415 -0.195 0.026 -0.236 0.004 -0.326 0.000 -0.238 0.000 -0.250 0.021 

M 0.004 0.912 -0.426 0.017 -0.168 0.225 -0.355 0.022 -0.160 0.176 -0.372 0.000 -0.324 0.066 

N -0.242 0.087 -0.352 0.004 -0.203 0.052 -0.183 0.144 -0.269 0.003 -0.318 0.000 -0.385 0.012 

P 0.128 0.296 0.293 0.006 0.136 0.128 0.305 0.016 0.144 0.074 0.372 0.000 0.207 0.064 

Q -0.170 0.201 0.155 0.296 -0.184 0.095 0.358 0.002 -0.148 0.091 0.059 0.306 0.003 0.897 

R 0.252 0.157 0.142 0.360 0.237 0.039 0.011 0.987 0.316 0.000 0.025 0.752 -0.283 0.008 

S -0.338 0.002 0.334 0.001 0.284 0.001 0.210 0.015 0.246 0.000 0.218 0.000 -0.013 0.816 

T 0.006 0.942 -0.310 0.007 -0.123 0.188 -0.033 0.658 -0.216 0.005 -0.095 0.075 -0.133 0.212 

V -0.002 0.930 -0.433 0.000 -0.317 0.001 -0.290 0.005 -0.218 0.004 -0.310 0.000 -0.323 0.013 

W -0.318 0.189 -0.493 0.036 -0.623 0.002 -0.469 0.022 -0.724 0.000 -0.538 0.000 0.021 0.751 

Y -0.552 0.002 -0.324 0.061 -0.143 0.364 -0.609 0.000 -0.458 0.000 -0.458 0.000 -0.064 0.733 
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Table 5.3. Fractional differences for the AA types for seven functions with disordered residues in the training dataset as background. 

Columns correspond to functions/binding partners where FUN_MC: molecular recognition – chaperone; FUN_ME: molecular recognition – effectors; FUN_MA: molecular 

recognition – assembler; FUN_EC: entropic chain; BIND_DNA: protein-DNA binding; BIND_PROT: protein-protein binding; and BIND_LIP: protein-lipid binding. For each 

amino acid, we list its fractional difference (FD) value defined based on the difference in composition between the query sample (residues in a given functional region) and the 

background sample. Positive FD values indicate enrichment and negative value indicates depletion. Statistical significance of the fractional difference is quantified with the p-

values; p-value < 0.01 is considered statistically significant. Bold font shows amino acids for which the FD values are significantly different. 

Amino  

Acid 

FUN_MC FUN_ME FUN_MA FUN_EC BIND_DNA BIND_PROT BIND_LIP 

FD p-value FD p-value FD p-value FD p-value FD p-value FD p-value FD p-value 

A -0.221 0.035 0.257 0.010 -0.001 0.872 -0.147 0.096 0.068 0.361 -0.018 0.834 -0.299 0.005 

C 3.385 0.000 1.368 0.004 2.626 0.000 0.279 0.523 1.352 0.001 1.136 0.001 1.013 0.031 

D -0.220 0.085 -0.012 0.744 -0.097 0.333 -0.314 0.004 0.058 0.580 -0.051 0.413 0.179 0.076 

E 0.154 0.076 -0.317 0.001 -0.292 0.000 0.417 0.000 -0.275 0.000 0.036 0.585 -0.099 0.533 

F -0.067 0.783 -0.418 0.017 0.007 0.963 -0.496 0.002 -0.287 0.029 -0.300 0.004 0.105 0.514 

G -0.405 0.000 0.022 0.548 -0.081 0.477 -0.220 0.010 -0.362 0.000 -0.161 0.004 0.096 0.789 

H -0.016 0.990 -0.208 0.172 -0.243 0.089 -0.512 0.000 -0.300 0.012 -0.190 0.051 0.097 0.834 

I 0.257 0.188 -0.067 0.611 -0.165 0.246 0.254 0.130 0.051 0.645 -0.026 0.817 0.152 0.347 

K -0.023 0.848 -0.432 0.000 -0.116 0.107 -0.213 0.012 0.301 0.000 -0.148 0.007 -0.163 0.116 

L 0.379 0.011 0.623 0.000 0.214 0.060 0.148 0.282 0.014 0.885 0.148 0.079 0.133 0.272 

M 0.078 0.782 -0.385 0.058 -0.106 0.515 -0.307 0.086 -0.092 0.544 -0.325 0.005 -0.269 0.168 

N 0.466 0.045 0.243 0.342 0.526 0.011 0.576 0.004 0.403 0.011 0.308 0.023 0.188 0.260 

P 0.093 0.505 0.254 0.037 0.099 0.328 0.256 0.082 0.106 0.300 0.330 0.000 0.171 0.171 

Q -0.153 0.274 0.172 0.301 -0.169 0.167 0.386 0.006 -0.133 0.202 0.075 0.382 0.022 0.982 

R 0.225 0.254 0.113 0.499 0.208 0.108 -0.011 0.895 0.288 0.008 -0.001 0.999 -0.310 0.010 

S -0.380 0.001 0.255 0.014 0.209 0.029 0.141 0.132 0.171 0.036 0.146 0.031 -0.069 0.479 

T 0.172 0.227 -0.197 0.164 0.019 0.886 0.127 0.369 -0.090 0.414 0.054 0.510 0.014 0.964 

V 0.478 0.004 -0.153 0.241 0.010 0.980 0.052 0.673 0.161 0.191 0.025 0.797 0.008 0.786 

W 0.528 0.306 0.103 0.793 -0.170 0.619 0.183 0.768 -0.388 0.144 0.020 0.997 1.255 0.003 

Y -0.283 0.244 0.071 0.647 0.356 0.075 -0.378 0.048 -0.144 0.383 -0.140 0.292 0.481 0.051 
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Feature representation 

Using the sequence profile, we empirically generate a rich set of features to represent 

every residue in the input sequence. The features quantify information about individual 

biophysical and structural properties and their combinations, e.g., we combine 

conservation and solvent accessibility. We generate features for each residue by 

considering the information about the residue itself and its neighbors in the sequence. The 

use of the neighboring residues is inspired by the fact that the DMR residues form regions 

composed of consecutive AAs that share certain functional and structural properties. We 

define neighbors using two types of sequence windows: a sliding window of a fixed length 

(defined based on size of native DMRs in the training dataset) centered on the residue that 

we currently predict; and the putative disordered regions (disordered window) that includes 

this residue. To the best of our knowledge, we are the first to use the latter window type. 

We do not pad windows for residues at the termini of the sequence and accordingly the 

features are normalized by the length of the window. The length of the second type of the 

windows varies and is determined by the length of the putative disordered regions 

generated with IUPred_short and IUPred_long. The use of the fixed size sliding windows 

is motivated by the design of related methods, such as MoRFpred [50], fMoRFpred [118], 

DisoRDPbind [51] and DFLpred [184]. Using the individual and combined biophysical 

and structural properties that are quantified for individual residues and based on the two 

types of windows, we compute 1588 features for each residue in the input protein chain. A 

detailed description of these features can be found in Appendix B. 

Design of the predictive model 

We use the feature vector for each of the 22,727 residues in the training dataset to 

generate a predictive model using a machine learning algorithm. This model outputs a 

propensity score that a given residue is a DMR residue. We consider three classifiers: 

Logistic Regression, Naive Bayes and Random Forest using their implementations in 

Weka. 

We conduct feature selection for Logistic Regression and Naive Bayes. Random Forest 

automatically selects features when building the trees. We use the best-first search to 
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implement the selection. First, we calculate the AUC values when using individual features 

to make predictions on each of the four training folds, and we rank the features by their 

averaged (over the four training folds) AUC values. We run the 4-folds cross validation on 

the training dataset using Logistic Regression and Naive Bayes with the top-ranked feature 

to initialize the set of selected features. Next, we add the next-ranked feature to the current 

feature set if this results in a higher average AUC than the AUC obtained before the feature 

was added. We scan the sorted feature set once. We perform a grid search to find optimal 

parameters for the Random Forest. We select parameters that result in the highest AUC 

measured with the 4-fold cross validation on the training dataset. Based on suggestions 

from [185], we consider the number of trees = {27, 28, 29, 210}, the number of features 

randomly selected for each tree node = {log2(N),  sqrt(N)} where N is the total number of 

features = 1588, and % of samples for each tree node (bag percent) = {20%, 30%, 40%, 

50%}. There are total of 32 combinations of parameter values. 

Table 5.4 summarizes the results that correspond to the highest AUC based on the cross 

validation on the training dataset for the three classifiers. We report the average accuracy, 

precision, sensitivity, MCC, AUC and AUCratio over the 4 cross validation folds. Accuracy, 

precision, sensitivity, MCC, and AUCratio are calculated at the 5% false positive rate. We 

implement DMRpred using Random Forest that secures the best value for all measures. 

The parameters that were used to generate this model are: number of trees = 512, number 

of features per tree node = 39, and bag percent = 30%. 

Table 5.4. Results based on 4-fold cross validation on the training dataset. 

Classifier Accuracy Precision Sensitivity MCC AUC AUCratio 

Random Forest 0.837 0.803 0.536 0.560 0.868 15.314 

Logistic Regression 0.813 0.772 0.452 0.488 0.867 11.275 

Naive Bayes 0.769 0.603 0.414 0.358 0.795 4.140 

5.2.4 Analysis of the DMRpred’s predictive model 

DMRpred combines sequence conservation, predicted RSA, putative IDRs and AA 

indices that quantify propensity for functions that are relevant to DMRs to define the 

sequence profile. It also uses two types of windows to generate features: sliding windows 

and windows based on predicted IDRs. We assess contributions of different parts of the 
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profile and different window types to the predictive performance of our model. To do that 

we run the 4-fold cross validation on the training dataset with Random Forest that excludes 

features that utilize a given part of the profile or a given type of window. For each subset 

of features we run a grid search defined in Section 5.2.3 to parametrize the Random Forest 

model. Table 5.5 summarizes results for each of these configurations. We report the 

average AUC, accuracy, precision, sensitivity, MCC, AUC and AUCratio computed over 

the 4 folds. We also evaluate statistical significance of the differences between DMRpred 

and each of the other configurations. We bootstrap the cross-validation results by randomly 

selecting 50% proteins 100 times. If the 100 pairs of measurements are draw from normal 

distribution then we use the Student’s paired t-test, otherwise we use the Wilcoxon signed-

rank test. 

DMRpred outperforms all other configurations. Accuracy, precision, sensitivity, MCC, 

AUC and AUCratio drop significantly for all other configurations when compared to 

DMRpred, except when the sliding windows are not used when the decrease in the 

predictive performance in not significant. This means that all elements of the sequence 

profile as well as the use of the disorder region-based windows significantly contribute to 

the DMRpred’s predictive performance. Based on the magnitudes of the decrease in AUCs, 

the most relevant information for the prediction of DMRs includes the putative intrinsic 

disorder, the use of both types of windows to compute features, and sequence conservation. 

These factors are well-grounded in the characteristics of DMRs that are by definition 

disordered and include functional residues that are typically highly conserved. The 

windows are needed to capture differences in the intrinsic characteristics of DMRs, which 

form segments in the sequence, and the residues that surround these regions. 
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Table 5.5. Comparison of designs using subsets of features. 

The first row shows the design using full feature set. Following rows show designs that do not use: predicted RSA (No 

RSA), sliding windows (No SWIN), AA indices (No AAI), windows based on predicted IDRs (No IDWIN), sequence 

conservation (No CON), any windows (No WIN) and putative intrinsic disorder (No ID). The results are based on 

bootstrapping cross validation on the training dataset and are ranked by the AUC value in descending order. + means 

that DMRpred is significantly better than a given configuration (p-value < 0.01). 

Feature set Accuracy Precision Sensitivity MCC AUC AUCratio 

DMRpred 0.837 0.803 0.536 0.560 0.868 15.314 

No RSA 0.810+ 0.770+ 0.436+ 0.476+ 0.861+ 13.387+ 

No SWIN 0.823 0.784 0.493 0.521 0.856+ 14.941 

No AAI 0.816+ 0.770+ 0.461+ 0.493+ 0.854+ 13.457+ 

No IDWIN 0.793+ 0.731+ 0.383+ 0.420+ 0.854+ 10.092+ 

No CON 0.787+ 0.707+ 0.356+ 0.391+ 0.823+ 10.375+ 

No WIN 0.782+ 0.711+ 0.340+ 0.381+ 0.818+   7.450+ 

No ID 0.773+ 0.686+ 0.307+ 0.346+ 0.781+   8.679+ 

5.3 Results 

5.3.1 Comparison with alternative approaches to predict DMRs 

We compare the predictive performance of DMRpred with several alternative 

approaches that could be used to identify DMRs. Since DMRs are a subset of IDRs we 

include a popular predictor of disordered regions, Espritz [186]. We use the three version 

of Espritz that were designed based on the three main sources of disorder annotations: 

NMR structures (Espritz_NMR), X-ray structures (Espritz_X-ray) and from DisProt 

database (Espritz_DisProt). We also include four representative methods that predict 

specific types of functional IDRs. They include DisoRDPbind [51] that predicts disordered 

protein-DNA, protein-RNA and protein-protein binding regions, Anchor [104] that 

generates putative disordered protein-binding regions, and two methods that predict 

molecular recognition features (MoRFs): MoRFpred [50] and fMoRFpred [118]. MoRFs 

are protein-binding IDRs that undergo disordered-to-order transition upon interaction. 

Inclusion of these four methods is motivated by the fact that DMRs carry out multiple 

functions that include binding to proteins and nucleic acids. Moreover, DMRs should 

include evolutionarily conserved residues. Thus, we include sequence conservation 

computed from alignments produced with HHblits [179]. We also include a default 

approach of transferring DMR annotations via sequence alignment. We align a given test 

protein to all proteins from the training dataset using PSI-BLAST with default parameters 
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[167], and we transfer the annotations from the matched residues in the most similar 

training chain. Finally, we use residues levels annotations of protein functions generated 

with Eukaryotic Linear Motif (ELM) resource. We assume that residues that have ≥ 2 types 

of ELM motifs and have high putative disorder scores constitute putative DMRs. 

We use the corresponding author-provided webservers or implementations to run these 

tools. We use the MoRFpred and fMoRFpred webservers to collect their predictions that 

we utilize as the propensities for DMR residues. We utilize standalone software for Anchor 

and Espritz and the DisoRDPbind’s webserver to obtain its three propensity scores for 

protein-protein, protein-DNA and protein-RNA binding. Because DMRs carry out multiple 

functions, we combine two or three DisoRDPbind’s scores to represent the propensity that 

a given residue binds multiple partners. We combine the scores in two ways: as average of 

the two highest scores among the three scores DisoRDPbind produces; and as average the 

three scores. We run HHblits for each sequence in the test set against the default UniProt20 

database to compute the conservation scores. We calculate entropy and relative entropy 

from the 20 AA emission frequencies and use the NEFF(i) scores for each residue i that 

are directly output by HHblits to produce three estimates of conservation. We run PSI-

BLAST with default parameters for proteins in the test dataset against proteins in the 

training dataset and copy annotations for positions with identical residues or conservative 

substitutions in the alignment. We run the ELM resource server [143] and parse the HTML 

files to obtain the six types of ELM annotations: CLV, DEG, DOC, LIG, MOD and TRG. 

If a residues is annotated to have ≥ 2 types of ELM terms, we use the Espritz_NMR score 

(this method is the best performing disorder predictor in our assessment) to represent its 

propensity of being a DMR residue, otherwise we assign a score of zero. 
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Figure 5.3. ROC curves for DMRpred and other methods with high AUCs. 

 

Table 5.6 compares the predictive performance of these methods with DMRpred on the 

test dataset. We sort the methods by AUC within each group defined by their prediction 

target: DMRs, functional IDRs, all IDRs, sequence conservation and MoRF regions. We 

rank across these groups based on their highest AUCs. We assess statistical significance of 

the differences between the predictive performance of DMRpred and each of the other 13 

methods. We bootstrap the results by randomly selecting 50% of test proteins 100 times. 

If the 100 pairs of measurements are draw from normal distribution, we use the Student’s 

paired t-test, otherwise we use the Wilcoxon signed-rank test. We show the ROC curves 

for DMRpred and the methods with the highest AUC from each category (except for 

MoRFs that have AUC < 0.5) in Figure 5.3. The result for PSI-BLAST is shown as a dot 

as it only provides a binary prediction. 
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Table 5.6. Comparison of DMRpred with alternative methods on the test dataset. 

+ means that DMRpred is significantly better than a given other method (p-value < 0.01). Accuracy, precision, sensitivity and MCC are calculated at 5% false positive rate. 

AUCratio is calculated at false positive rate ≤ 5%. Best results are shown in bold font. NA (not available) is due to the fact that PSI-BLAST provides only the binary predictions. 

Prediction target Methods Accuracy Precision Sensitivity MCC AUC AUCratio 

DMRs DMRpred 0.820 0.788 0.474 0.511 0.858 14.555 

ELMs and ESpritz_NMR 0.721+ 0.481+ 0.121+ 0.125+ 0.502+ 2.607+ 

PSI-BLAST 0.692+ 0.269+ 0.068+ -0.004+ NA NA 

Functional IDRs DisoRDPbind_AvgTwoHigh 0.739+ 0.584+ 0.184+ 0.213+ 0.790+ 4.270+ 

DisoRDPbind_AvgThree 0.726+ 0.512+ 0.137+ 0.149+ 0.775+ 2.757+ 

Anchor 0.734+ 0.562+ 0.169+ 0.193+ 0.746+ 3.681+ 

All IDRs Espritz_NMR 0.746+ 0.616+ 0.210+ 0.245+ 0.781+ 4.369+ 

Espritz_X-ray 0.741+ 0.595+ 0.193+ 0.224+ 0.739+ 3.573+ 

Espritz_DisProt 0.694+ 0.154+ 0.024+ -0.058+ 0.663+ 0.411+ 

Sequence conservation NEFF 0.719+ 0.461+ 0.107+ 0.108+ 0.754+ 1.552+ 

Entropy 0.706+ 0.333+ 0.065+ 0.030+ 0.699+ 2.817+ 

Relative entropy 0.705+ 0.318+ 0.061+ 0.022+ 0.698+ 1.042+ 

MoRF regions fMoRFpred 0.707+ 0.284+ 0.041+ 0.004+ 0.474+ 0.955+ 

MoRFpred 0.703+ 0.298+ 0.055+ 0.012+ 0.470+ 1.382+ 
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DMRpred offers the best predictive performance. Table 5.6 shows that it significantly 

outperforms all other methods for all considered measures (p-value < 0.01). DMRpred’s 

AUCratio = 14.6 which means that its AUC for predictions at low FPR (≤ 5%) is about 14.6 

times better than random. This represents 3.3 fold improvement over the second best 

Espritz_NMR that secures AUCratio = 4.4. DMRpred’s AUC = 0.86; this high value is 

reflected in the ROC curve shown in Figure 2. We note a large gap between ROC for 

DMRpred and the other methods for FPRs ≤ 0.2. High FPRs are not practical since they 

result in the number of false positives that is higher than the numbers of true positive; this 

is because only about 27% of residues in the test dataset are DMR residues. Interestingly, 

DMRpred has a steep ROC curve for very low FPRs. It finds 15.1% of native DMR 

residues without producing any false positives. DMRpred’s accuracy = 82% and precision 

= 78.8%, which means it correctly predicts 82% of residues and 78.8% of the putative 

DMR residues. These results and the accuracy, precision, sensitivity, and MCC values of 

all methods are calibrated to the false positive rate (FPR) = 5%. In contrast, the other 

approaches make correct predictions for between 70% and 75% of residues, and between 

15% and 62% of the predicted DMR residues. DMRpred also secures much higher 

sensitivity, MCC, and AUCratio when compared to the other methods.  Sensitivity = 47.4% 

means it correctly finds 47.4% of native DMR residues when its FPR = 5%, i.e., the fraction 

of NDMR residues incorrectly predicted as DMR is only 5%. DMRpred’s MCC is slightly 

above 0.5, which indicates strong correlation between the predicted DMR annotations and 

the native DMR annotations. 

The three versions of Espritz offer relatively low predictive performance because they 

predict all IDRs irrespective of their function(s), while majority of IDRs are not DMRs. 

Correspondingly, these methods over-predict DMRs. For instance, for the same predicted 

positive rate = 25% (number of predicted DMR residues divided by number of native DMR 

residues), the three Espritz versions generate between 613 and 1,254 false positives while 

DMRpred generates only 29 false positives. DisoRDPbind, Anchor, MoRFpred and 

fMoRFpred generate IDRs that interact with DNA, RNA or proteins, instead of multi-

functional DMRs that may also implement functions that do not involve binding to nucleic 

acids and proteins (e.g., entropic regions and metal-binding regions). The relatively low 

sensitivity of these four methods compared to DMRpred suggest that they find only a small 
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subset of DMRs. The low predictive performance of the conservation scores (MCC < 0.11 

and sensitivity < 0.11) suggests that using the evolutionary conservation alone is not 

sufficient to separate DMRs and NDMRs. This is because many of the NDMR residues 

could be conserved, including residues that interact with one ligand and residues that are 

crucial for structural integrity of the protein fold. Given that by definition DMR are multi-

functional disordered regions, we combined functional annotations generated with the 

ELMs and the disorder prediction to generate putative DMRs. However, this prediction is 

characterized by relatively low predictive performance because ELMs cover only a small 

portion of native functional residues, which is evident based on the corresponding shape of 

the ROC curve (Figure 5.3) and low sensitivity (Table 5.6). PSI-BLAST does not provide 

reliable prediction because the test proteins share low sequence similarity with the training 

proteins. This confirms the fact that the performance by default alignment-based 

predictions are not going to be successful unless enough of functionally annotated 

disordered proteins that are sufficiently (highly) similarity to the test/query protein are 

available. 
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5.3.2 Case study 

 

Figure 5.4. Predictions for human PP2BS protein by DMRpred and alternative methods. 

The horizontal lines at the bottom show native disordered regions (IDRs; light green), native DMRs (dark green), 

NDMRs (blue) and unknown regions (violet). We include outputs from DMRpred (thick red line), DisoRDPbind 

(gray), Espritz (dotted black) and conservation scores (NEFF) from HHblits (solid black). 

 

We use the serine/threonine-protein phosphatase 2B (PP2BS protein, DisProt ID: 

DP00092) from the test dataset to illustrate predictions by DMRpred. This protein has two 

IDRs, one at the N-terminus (positions 1 to 13 [187]), and the other at the C-terminus 

(positions 373 to 521 [187]). The first IDR has no functional annotations or binding 

partners in DisProt and by our definition it is annotated as unknown (neither DMR nor 

NDMR). The second IDR includes a protein-binding region where calmodulin binds 

(positions 373 to 468) [187-189] and an auto-inhibitory domain (positions 371 and 511) 

[188, 189], which define it as DMR. Figure 5.4 plots the outputs of DMRpred, and other 

methods with the highest AUC for a given prediction target (Table 5.6), except MoRF 

predictors that have AUC < 0.5. DMRpred’s scores (red line) at the C-terminus are high, 

which correctly suggests a DMR there. The scores for the structured catalytic domain 

(positions 14 to 373; blue horizontal line) and the N-terminus are low, suggesting that there 

are no DMRs there. We argue that DMRpred’s prediction for the IDR at the N-terminus is 
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possibly correct, given that this extensively studied protein does not yet have a functional 

annotation for this short region. 

Espritz (black dotted line) correctly identifies the IDR at the N-terminus and also 

partially predicts the IDR at the C-terminus, highlighting our observation that these 

predictors are likely to over-predict DMRs. Moreover, Espritz’s prediction at the N-

terminus is not as accurate as the corresponding output from DMRpred. Interestingly, the 

average of the two highest scores from DisoRDPbind (gray line) fails to identify the native 

DMR, although we observe a slight increase in the scores at the N-terminus due to higher 

values for its protein-binding predictions. Finally, conservation scores (black solid line) are 

not suitable to identify DMRs since they point to several highly conserved regions that do 

not line up with DMRs. Overall, we conclude that DMRpred offers reasonably accurate 

predictions for this protein that cannot be substituted with outputs of the other predictors. 

5.3.3 Prediction and analysis of DMRs in the human proteome 

We characterize putative DMRs and IDRs in the complete reviewed human proteome 

that we collected from UniProt [61]. We use the consensus-based disorder predictions from 

MobiDB [34] to analyze IDRs. We use 19,917 human proteins after removing about 200 

proteins that could not be mapped to MobiDB. We make predictions with DMRpred and 

annotate DMR residues based on the binary predictions that are calibrated to produce 5% 

false positive rate on the test dataset, i.e., residues with propensities ≥ 0.761 as assumed as 

DMR residues. We annotate putative DMRs as segments of at least four consecutive DMR 

residues. This is in line with the definition of all IDRs that are expected to include at least 

four consecutive amino acids [12, 15]. We found about 32 thousand putative DMRs in the 

human proteome, which corresponds to around 30% of the 107 thousand putative IDRs. 

This is similar to the 37% rate of DMRs among the IDRs included in DisProt, which was 

reported in [182]. We analyze long (≥ 30 consecutive residues) putative DMRs and IDRs 

since they are recognized as a distinct class of biologically functional domains [100, 190, 

191]. Figure 5.5 suggests that about 53% of human proteins have at least one long IDR. 

This agrees with recent estimates that ranged between about 45% [100] and 50% [5]. 

Interestingly, we show that about 25% of human proteins may have at least one long DMR, 

and 8% may have three or more long DMRs. 



73 

 

We also count the number of DMR and disordered residues in each protein and the 

number and length of each DMR and disordered region. We plot the distribution of the 

content of DMR and disordered residues and distribution of lengths of DMRs and 

disordered regions (IDRs) in Figures 5.6 and 5.7, respectively. Figure 5.6 shows that about 

29% human proteins have DMRs. The content of DMR residues among the remaining 71% 

proteins is below 5%. These are considered spurious predictions since that the false positive 

rate of DMRpred is estimated to be 5%. To compare, about 81% of human proteins have 

disordered residues, i.e., their disorder content > 5%. Such substantial difference in the rate 

of disorder vs. DMR content is reasonable given that only a small fraction of intrinsically 

disordered regions (IDRs) are DMRs. About 11% of human proteins are predicted to have 

at least modest content of DMRs (> 30% of their residues are in DMRs) and 4.6% to have 

large content (> 50%). To compare, Figure 5.6 reveals that three times as many proteins 

(approximately 31%) have > 30% disorder content. The latter result is in good agreement 

with a recent analysis in  [100] where about 31.5% of proteins were predicted to have at 

least 30% of disordered residues. The histograms of lengths of DMRs and IDRs given in 

Figure 5.7 follow the same trend, where there are gradually fewer regions that are longer. 

The main differences are the overall number of regions that, as expected, is much lower in 

the case of DMR, and the rate of decline that is again lower for DMRs; see black bars (for 

IDRs) and gray bars (for DMRs) in the Figure 5.7. Interestingly, our analysis reveals that 

most of the very long disordered regions are possibly DMRs, given that the number of 

regions longer than 150 residues is similar when comparing IDRs and DMRs. 
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Figure 5.5. Number of long putative DMRs and IDRs for the complete reviewed human proteome. 

Bars show number of proteins that have the number of long regions given on the x-axis. Lines show the corresponding 

cumulative fractions. 

 

Figure 5.6. Content of residues in putative DMRs and putative intrinsically disordered regions 

(IDRs) for the complete reviewed human proteome. 

Bars show the number of proteins with content ranges given on the x-axis. Lines show the corresponding cumulative 

fractions of proteins. 
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Figure 5.7. Length of putative DMRs and putative intrinsically disordered regions (IDRs) for the 

complete reviewed human proteome. 

Bars show the number of regions with length ranges given on the x-axis. Lines show the corresponding cumulative 

fractions of regions. 

5.3.4 DMRpred’s webserver 

DMRpred is provided as a webserver at http://biomine.cs.vcu.edu/servers/DMRpred. 

Users only need to provide FASTA-formatted protein sequence(s) to obtain predictions 

that are computed on the server side. The server outputs a propensity score for each residue 

in the input sequence(s) for being a DMR residue. The server also produces binary 

predictions that are generated from the propensities using the cutoff = 0.761; residues with 

propensity ≥ 0.761 are predicted as DMR residues. This cutoff was calibrated to provide 

5% FPR on the test dataset. The webserver allows batch submissions of up to 50 sequences 

at one time. The sequences should be at least 21 residues long since ASAquick that is 

embedded into DMRpred requires this. Users are encouraged to provide email address 

which is used to provide notification when the prediction is finished and a private URL 

where the results can be downloaded from. Whether or not the email is provided, the results 

are also made available in the browser window, given that the user will not close it when 

the results are being processed. DMRpred is relatively fast. The webserver produces 

prediction for a protein with length of about 500 residues in less than one minute. 
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5.4 Conclusion 

We conceptualized, designed, tested and deployed DMRpred, the first-of-its-kind 

computational method for the prediction of DMRs directly from protein sequences. 

DMRpred uses the input sequence to derive a comprehensive profile that includes sequence 

conservation, putative relative solvent accessibility and intrinsic disorder, and a novel set 

of residue-level propensities for functions that are relevant to DMRs. The information in 

this profile is aggregated using sliding windows and an innovative type of windows defined 

based on putative IDRs. Features extracted from this profile are input to the Random Forest 

model to make the predictions. 

We empirically demonstrate that the various parts of the profile and the two types of 

windows are useful for the prediction. Results on a blind test dataset reveal that DMRpred 

provides accurate predictions of DMRs. The predictive quality of DMRpred is statistically 

significantly higher than the predictive performance of a comprehensive set of alternative 

approaches to make these predictions. Predictions on the complete human proteome reveal 

that as many as 25% of human proteins may have at least one long DMR. 
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Chapter 6  

Summary and conclusions 

This research focuses on the characterization and prediction of functions of intrinsically 

disordered regions (IDRs) in proteins. IDRs are prevalent in nature and carry out a wide 

range of important cellular functions. IDRs can be nowadays predicted with high accuracy 

using computational methods. Some of these methods are even sufficiently fast to perform 

these predictions on the whole proteome scale. However, functions of IDRs are largely 

undetermined. We start this research with a project that aims to characterize functions of 

IDRs in the human dengue virus using existing methods. We found that although existing 

methods can find some of the functions relevant to IDRs, e.g., protein-protein binding, 

many other functions could not be predicted or were under-predicted. This inspired us to 

develop computational methods that address the prediction of functions of IDRs that cannot 

be predicted with the existing methods. 

We focus our research on two types of IDRs: disordered flexible linkers (DFLs) and 

disordered moonlighting regions (DMRs). DFL is the most prevalent non-binding function 

of IDRs that cannot be predicted by existing methods. DMRs are regions that carry out 

multiple functions. 

To design the methods that predicts DFLs, DFLpred, we first collect proteins from 

DisProt to prepare the training dataset and the blind test dataset. We ensure that the training 

and test datasets share low sequence similarity. Next, for each residue in a protein sequence 

we incorporate its physicochemical properties estimated from AA indices, structural 

properties including secondary structure predicted with PSIPRED, intrinsically disorder 

predicted with IUPred and sequence complexity predicted with SEG. We design a rich set 

of features from these physicochemical and structural properties. We select features that 

are most relevant to DFLs using three classifiers on the cross–validated training dataset, 

and parameterize the classifier, if needed. We use Logistic Regression as the predictive 
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model. This model uses four features computed from AA indices and IUPred as its inputs. 

We analyze the predictive model by investigating the values of the selected features and 

we find that these features can be used as independent markers of DLFs. Finally, we 

empirically compare DFLpred with other alternative methods on the blind test dataset. 

Results show that DFLpred outperforms the other methods in terms of AUC and AUCratio 

(measures the predictive quality at low range of the false positive rate), and these 

differences are statistically significant. We assess the runtime of DFLpred and demonstrate 

that it is fast enough to handle prediction at the whole proteome scale. We also run 

DFLpred on the complete reviewed human proteome. The corresponding putative results 

show that about 10% of human proteins may have a large content of over 30% DFL 

residues, and there are about 6000 long DFL regions. 

Our analysis of data in DisProt shows that about 37% IDRs carry out multiple 

functions. This class of IDRs cannot be predicted by the existing predictors of functions of 

IDRs that focus on individual functions, and it also cannot be predicted by predictors of 

moonlighting proteins. To design predictor of DMRs, DMRpred, we first define DMRs 

and collect proteins from DisProt and PDB to prepare the training dataset and the blind test 

dataset. Next, we represent each residue in a protein sequence by a set of biophysical and 

structural properties including sequence conservation computed with HHblits, relative 

solvent accessibility computed with ASAquick, intrinsic disorder computed with IUPred, 

and novel AA indices that quantify propensity of individual AA types to carry out functions 

that are relevant to DMRs. We empirically generate a rich set of features from these 

biophysical and structural properties, using a fixed-length sliding window centered on the 

residue we are currently predict and a novel type of window based predicted IDRs. We 

empirically investigate three machine learning algorithms and select the Random Forest as 

the predictive model; this model secures the most accurate results on the training dataset. 

We analyze this predictive model by using subsets of features. We show that the sequence 

conservation, relative solvent accessibility, putative intrinsic disorder, the novel AA 

indices and both types of windows contribute to the predictive performance of this model. 

We compare the resulting DMRpred method with other alternative methods on the blind 

test dataset. The empirical results demonstrate that DMRpred is statistically significantly 

better than the other alternatives in all terms of accuracy, precision, sensitivity, MCC, AUC 
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and AUCratio. We run DMRpred on the complete reviewed human proteome and show that 

as many as 25% of human proteins may have long DMRs. 

6.1 Major contributions 

The major contribution under the first goal is the first-of-its-kind characterization of 

putative functions of IDRs in the human dengue virus. We also observed that existing 

methods that predict these functions are not sufficient to provide comprehensive 

annotations since they are lacking in scope and coverage. This has inspired us to develop 

new methods to address this problem under goals 2 and goal 3. The major contributions 

under these two goals are the conceptualization, development, implementation, 

comprehensive empirical testing, and deployment (as a webserver) of the corresponding 

two novel predictors. A more detailed list of contributions for each goal follows. 

Goal 1: Characterization of functions of IDRs in human dengue virus (DENV) 

 The extent of intrinsic disorder in the complete proteomes of DENV was 

evaluated. 

 The peculiarities of putative functions of IDRs within DENV proteins were 

analysed. 

 The (in)ability of current methods to annotate putative functions of IDRs in 

DENV was evaluated. 

Goal 2: Fast and accurate computational prediction of DFL regions 

 A fast linear first-of-its-kind model, DFLpred, which accurately predicts DFLs 

from protein sequences was conceptualized, developed, implemented, and 

empirically tested and compared with alternative methods that can be used to 

perform these predictions. 

 DFLpred was deployed as a publicly available webserver. This webserver has 

been in operation for about 1.5 years and is actively used by the research 

community. Based on a report generated with Google Analytics on Nov 29, 
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2017, the webserver was used close to 3000 times by over 350 unique users 

from 193 cities and 43 countries. 

 Certain characteristics of DFLs in the complete reviewed human proteome 

based on DFLs predicted with DFLpred were analysed. 

Goal 3: Fast and accurate computational prediction of DMRs 

 A first-of-its-kind random forest model, DMRpred, which accurately predicts 

DMRs from protein sequences was developed, conceptualized, developed, 

implemented, and empirically tested and compared with alternative methods 

that can be used to perform these predictions. 

 DMRpred was deployed as a webserver. This sever was not yet made 

available publically since at this point it is still under peer-review. 

 Novel scales that quantify propensities of amino acids for functions that are 

relevant to DMRs was designed. 

 An original approach to build predictive inputs that aggregate structural and 

functional characteristics based on putative IDRs was proposed, implemented 

and assessed. 

 Certain characteristics of DMRs in the complete reviewed human proteome 

based on putative DMRs generated with DMRpred were quantified. 

6.2 Conclusions 

IDRs are abundant in nature and functionally important. We show that prediction of 

IDRs is a mature research area and a rich selection of accurate and runtime-efficient 

predictors for IDRs is available. We have focused on the prediction of functions of IDRs 

to address the two thesis statements: 

1. Our analysis reveals that sequence alignment is not sufficient to annotate functions of 

IDRs. It misses some of these functions and under-predicts the other functions.  

2. We also show that the current predictors of functions of IDRs do not consider some 

of the functions. Only 11 out of 37 functions listed by DisProt can be predicted by 
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the current computational methods. To this end, we empirically demonstrate that two 

specific functions, disordered flexible linkers and disordered moonlighting regions, 

can be accurately predicted from the protein sequences.  

6.3 Future work 

Our research addressed two important functions of IDRs, i.e., disordered flexible 

linkers and disordered moonlighting regions. However, there are other functions that 

cannot be predicted by the current and the proposed here methods. These functions include 

entropic regions (e.g., entropic bristle and clock) and protein-lipid binding regions. At this 

point the amount of human-curated annotations for these functions that were deposited into 

databases like DisProt is not yet sufficient to build and test predictors. However, this issue 

should be revisited in a near future and the corresponding methods should be developed 

once the sufficient quantity of data becomes available. 

As we discuss in Section 2.2.2 in the Background Chapter, databases such as MobiDB 

and D2P2 provide access to a large number of putative disorder annotations that cover all 

proteins in UniProt. These putative annotations are predicted by current predictors of IDRs. 

These two databases enjoy a significant amount of research interest. For instance, the 

articles that describe MobiDB [103] and D2P2 [57] were cited already 92 and 173 times 

(source: Google Scholar on Nov 10, 2017), respectively, in spite of the fact that these 

articles were published in 2012 and 2013.  We believe that the putative annotations of 

functions of IDRs should be made available via databases, perhaps by expanding these two 

existing resources to include the predicted functional annotations.  

The availability of the webservers and databases of functional annotations of IDRs will 

accelerate the rate of scientific discovery in this area. Given the fact that IDRs are 

implicated in a number of diseases [6, 38-42] and since they constitute attractive targets 

for rational drug design [45-48, 72], this availability will also contribute to understanding 

the causes of certain diseases and to the drug discovery efforts. 
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Appendix A 

Features considered to design 

DFLpred 

Features from the amino acid (AA) sequence (40 features): 

 CENT_AA{AA type}: binary coding for the type of AA of the residue in the center 

(CENT) of the window (20 features). 

 WIN_AA_content{AA type}: number of residues of a given type of AA in the sliding 

window (WIN), divided by the length of the window (20 features). 

Features based physicochemical properties of AAs quantified based on the 531 amino 

acid indices from the AAindex database (AAind, 2124 features): 

 CENT_AAind_val{index name}: value of a given AAindex for the type of AA of the 

residue in the center of the window (531 features). 

 WIN_AAind_avg{index name}: average value of a given AAindex for all residues in the 

sliding window (531 features). 

 WIN_AAind_std{index name}: standard deviation of values of a given AAindex for all 

residues in the sliding window (531 features). 

 WIN_AAind_dif{index name}: difference between average value of a given AAindex for 

all residues in the sliding window and average value for residues on segments that flank 

the window on both sides; the number of these flanking residues equals to the half of 

the window size (i.e., eight residues that extend the original window on side are 

used).(531 features). 
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Features from the putative secondary structure (SS) derived from the input sequence 

using PSIPRED (SS, 22 features): 

 CENT_SS_is{H, E, C}: binary coding for the type of SS of the residue in the center 

(CENT) of the window (3 features). 

 WIN_SS_content{H, E, C}: number of helix, strand and coil residues in the sliding 

window divided by the length of the window (3 features). 

 WIN_SS_sum{HE, HC, EC}: sum of number of helix and strand residues, helix and coil 

residues, and strand and coil residues in the sliding window, normalized by the length 

of the window (3 features). 

 WIN_SS_num_region{H, E, C}: number of helix, strand and coil regions in the sliding 

window, normalized by the length of the window. Each region consists of a segment 

of consecutive helix/strand/coil residues; the minimal length is 3/1/2, which is the size 

of the shortest helix/strand (Beta Bridge)/coil. (3 features). 

 WIN_SS_sum_regionHEC: sum of the number of helix, strand and coil regions in the 

sliding window, normalized by the length of the window (1 feature). 

 WIN_SS_{longest, shortest, avg}_region{H, E, C}: longest, shortest and average length 

of helix, strand and coil regions in the sliding window, normalized by the length of the 

window (3 × 3 = 9 features). 

Features from the putative intrinsically disordered and structured regions derived 

from the input sequence using IUPred (IUP, 40 features): 

 CENT_IUP_is{L, S, D}: binary encoding of the prediction of long disordered regions with 

IUPred_long, short disordered regions with IUPred_short and structured regions with 

IUPred_struct for the residue in the center of the window (3 features). 

 CENT_IUP_val{L, S}: propensity score for disorder predicted with IUPred_long and 

IUPred_short for the residue in the center of the window (2 features). 
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 WIN_IUP_content{L, S}_{0, 1}: number of ordered and disorder residues predicted with 

IUPred_long and IUPred_short in the sliding window, divided by the length of the 

window (2 × 2 = 4 features). 

 WIN_IUP_num_region{L, S}_{0, 1}: number of ordered and disordered regions predicted 

with IUPred_long and IUPred_short in the sliding window, normalized by the length 

of the window. Each region consists of a segment of consecutive disordered or ordered 

residues; the minimal length of disordered regions is 4 [12, 192] (2 × 2 = 4 features). 

 WIN_IUP_sum_region_{L, S}_01: sum of the number of ordered and disorder regions 

predicted with IUPred_long and IUPred_short in the sliding window, normalized by 

the length of the window (2 features). 

 WIN_IUP_{longest, shortest, avg}_region{L, S}_{0, 1}: longest, shortest and average 

length of ordered and disorder regions predicted with IUPred_long and IUPred_short 

in the sliding window, normalized by the length of the window (3 × 2 × 2 = 12 features). 

 WIN_IUP_{avg, std}{L, S}: average and standard deviation of propensity scores 

predicted with IUPred_long and IUPred_short for residues in the sliding window. (2 × 

2 = 4 features). 

 WIN_IUP_fractionD{0, 1}: number of residues in structured regions and other regions 

(not located in structured regions) predicted with IUPred_struct in the sliding window, 

divided by the length of the window (2 features). 

 WIN_IUP_{longest, shortest, avg}_regionD{0, 1}: longest, shortest and average length 

of structured regions and other regions (not located in structured regions) predicted 

with IUPred_struct in the sliding window, normalized by the length of the window. 

Each region consists of a segment of consecutive structured or non-structured residues 

(3 × 2 = 6 features). 

 WIN_IUP_sum_regionD01: sum of the number of structured regions and other regions 

(not located in structured regions) predicted with IUPred_struct in the sliding window, 

normalized by the length of the window (1 feature). 
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Features based on the sequence complexity derived from the input sequence using 

SEG (SEG, 10 features): 

 CENT_SEG_isH: binary encoding of the high vs. low complexity computed with SEG 

of residue in the center of the window (1 feature). 

 WIN_SEG_content{L, H}: number of residues in the sliding window in low and high 

complexity regions, divided by the length of the window (2 features). 

 WIN_SEG_{longest, shortest, avg}_region{L, H}: longest, shortest and average length 

of low and high complexity regions in the sliding window, normalized by the length of 

the window (3 × 2 = 6 features). 

 WIN_SEG_sum_regionLH: sum of the number of low and high complexity regions in 

the sliding window, normalized by the length of the window (1 feature). 
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Appendix B 

Features used to design DMRpred 

The features quantify information about individual biophysical and structural 

properties as well as their combinations. For instance, we combine information about 

conservation and solvent accessibility. They are grouped into three main types based on 

how they are computed: 1) features that are computed for individual residues; 2) features 

computed using a sliding window; and 3) features computed using a window defined based 

on putative disordered regions. 

1 Features computed for individual residues (248 features) 

1.1 Features computed based on sequence conservation (6 features) 

These features are based on entropy, relative entropy, and NEFF values derived with 

HHblits. We invert the entropy and NEFF values such that they are compatible with the 

relative entropy, i.e., their higher values correspond to more conserved residues. We use 

both all their values and filtered values where a given value is set to zero if it is below a 

predefined threshold. The latter allows us to select a subset of conserved residues. The 

threshold is set to a conservation value that best separates DMR residues and NDMR 

residues. The threshold value is determined by plotting the two distributions of 

conservation values using residues in the training dataset. As expected, the DMR residues 

have higher values of conservation compared to the NDMR residues, and we used the point 

where the two distributions cross as the threshold. We name these thresholds 

THRES_ENTROPY, THRES_RENTROPY and THRES_NEFF. Similar thresholds that 

are computed using the same approach are used to filter values of other biophysical and 

structural properties. 

When a segment in an input protein sequence has no matches in the alignment, the 20 

emission frequencies and NEFF for the residues inside this segment are missing. We 
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impute the entropies, relative entropies and NEFF values for the residues. We find the left 

and right neighboring residues of a given segment that have emission frequencies, and use 

their values (entropies / relative entropies / NEFF values) to impute residues inside this 

segment. We start from both the left most residue and the right most residue of this 

segment. We use the following formula: 0.25 × vleft + 0.5 × vdefault + 0.25 × vright to compute 

the imputed value, where vleft and vright is the conservation value of the left and right 

neighbor of a given residue, and vdefault is the default conservation value for the specific 

amino acid type (e.g., Alanine) of the given residue. If vleft or vright is also unknown, we use 

the default value for the amino acid type for these residues. We propagate the computation 

from the left most residue to the right and from the right most residue to the left until they 

meet in the middle of the segment. The default values of the entropy, relative entropy and 

NEFF are computed for each amino acid type by using the corresponding median values 

over all residues for that amino acid type that have matches in the alignment in the training 

dataset. 

1.2 Features computed from predicted relative solvent accessibility (2 features) 

These features include predicted relative entropy (normalized from 0 to 1) generated 

with ASAquick and its filtered version based on the THRES_RSOLVENT. 

1.3 Features computed from predicted intrinsic disorder (4 features) 

These features include predicted IUPred_short score and IUPred_long score and their 

filtered versions based on the THRES_SHORT and THRES_LONG, respectively. 

1.4 Features computed from functional AA indices (72 features) 

We consider seven functions that are based on the four function annotations and three 

binding partner annotations in DisProt that have over 1000 residues in the training dataset; 

this ensures that we have sufficient amount of data to perform statistical analysis. The four 

function annotations are molecular recognition–chaperone (FUN_MC), molecular 

recognition–effectors (FUN_ME), molecular recognition–assembler (FUN_MA) and 

entropic chain (FUN_EC). The 3 binding annotations are protein-protein binding 

(BIND_PROT), protein-DNA binding (BIND_DNA) and protein-lipid (BIND_LIP). The 
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propensity of specific amino acids types for each of these seven functions is assessed with 

the Composition Profile. Composition Profiler quantifies fractional differences of amino 

acid composition between samples from a given type of functional regions and samples 

from a set of background residues. Positive values indicate enriched amino acids and 

negative values indicate depleted amino acids. We consider two types of backgrounds: all 

residues in the training dataset (BG_ALL) and native disordered residues in the training 

dataset (BG_DIS). The fractional differences for each of the 7 functions based on two types 

of backgrounds are listed in Supplementary Table S2 and S3. For the BG_DIS we 

normalize the fractional differences to define AA indices that quantify propensities of these 

residues for the specific function. For the BG_ALL indices we multiply the normalized 

values of the fractional differences by the propensity for disorder predicted with 

IUPred_short (SHORT) and IUPred_long (LONG). This is because we want to use these 

functional AA indices to predict DMRs. Using these indices, we compute the following 21 

features: 

FUN_{MC, ME, MA, EC}_BG_ALL_{SHORT, LONG}, 

FUN_{MC, ME, MA, EC}_BG_DIS, 

BIND_{PROT, DNA, LIP}_BG_ALL_{SHORT, LONG}, 

BIND_{PROT, DNA, LIP}_BG_DIS. 

This produces 4×2 + 4×1 + 3×2 + 3×1 = 21 features. 

We also consider another set of 21 features where the values of the indices for the 

amino acids for which the fractional difference from the background is not statistically 

significant (p-value > 0.01) are set to 0. 

The features computed from the individual indices reflect the propensities to carry out 

specific functions that are relevant to the moonlighting regions. However, by definition 

DMRs carry out multiple functions. Therefore, we combine these indices to measure the 

propensity for each residue to carry more than one function and/or have more than one 

binding partner type. We combine the indices in the following five ways: 
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 AVG_TWO_HI_FUN, the average index value computed from the two highest 

values of indices among the four function indices i.e., FUN_{MC, ME, MA, EC}. 

 AVG_TWO_HI_BIND, the average index value computed from the two highest 

value of indices among the three binding partner indices i.e., BIND_{PROT, DNA, 

LIP}. 

 AVG_TWO_HI_FUN_HI_BIND, the average score computed from the two highest 

values of indices among the four function indices, and the highest value of an index 

among the three binding partner indices. 

 AVG_TWO_HI_BIND_HI_FUN, the average score computed from the two highest 

values of indices among the three binding partner indices and the highest value of an 

index among the four function indices. 

 AVG_TWO_HI_FUN_TWO_HI_BIND, the average score computed from the two 

highest values of indices among the four function annotations and average score from 

the two highest values of indices among the three binding partner indices. 

The above five indices are computed based on the two types of background residue sets 

where for the BG_ALL background we multiply the index values by the disorder 

propensities generated with IUPred_short and IUPred_long. Consequently, there are 5×2 

+ 5 = 15 features that we developed by combining these indices. Moreover, by setting 

indices for the amino acids for which the fractional difference from the background is not 

statistically significant (p-value ≥ 0.01) to 0, we obtain another set of 15 features. 

Altogether, we have 21×2 + 15×2 = 72 features that are based on the functional AA indices. 

1.5 Features computed by combining conservation information with predicted 

relative solvent accessibility (12 features) 

To combine these two types of properties, we multiply the values of the six 

conservation-based features by the values of the two features computed from the predicted 

relative solvent accessibility. This results in 12 features. 

1.6 Features computed by combining conservation information with predicted 

intrinsic disorder (24 features) 
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We multiply values of the six conservation-based features by the values of the four 

features computed from the predicted intrinsic disorder. This gives 24 features. 

1.7 Features computed by combining conservation information with functional 

indices (90 features) 

We multiply values of the six conservation-based features by the values of the 15 

features derived based on combining the functional AA indices. This produces 90 features. 

1.8 Features computed by combining predicted relative solvent accessibility with 

predicted intrinsic disorder (8 features) 

We multiply the two features from predicted relative solvent accessibility and four 

features from predicted intrinsic disorder, and this produces eight features. 

1.9 Features computed by combining predicted relative solvent accessibility with 

functional indices (30 features) 

We multiply the two features from predicted relative solvent accessibility with the 15 

features derived based on combining the functional AA indices, and this results in 30 

features. 

2 Features computed using sliding windows (892 features) 

The sliding window sizes are determined by the 25 centile and median of the sizes of 

the DMRs from the training dataset, which are 19 and 61, respectively. For each residue, 

we use two windows with size 19 and 61 that are centered on this residue to compute the 

following features: 

2.1 Features computed from conservation information (12 features) 

We calculate the average value of entropy, relative entropy and NEFF for residues in a 

given window. This produces three features for each window size. 

2.2 Features computed from predicted relative solvent accessibility (4 features) 
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We calculate the average value of predicted relative solvent accessibility for each 

residue in a given window. This produces one feature for each window size. 

We also count the number of residues for which the predicted solvent accessibility > 

THRES_RSOLVENT, and divide this number by the length of window. This produces one 

feature for each window size. 

2.3 Features computed from predicted intrinsic disorder (8 features) 

We calculate the average value of disorder scores predicted with IUPred_short and 

IUPred_long for each residue in a given window. This produces two features for each 

window size. 

We also count the number of residues for which the IUPred_short produced score > 

THRES_SHORT and number of residues that for which the IUPred_long generated score 

> THRES_LONG. We divide these numbers by the length of the window. This produces 

two features for each window size. 

2.4 Features computed from functional AA indices (34 features) 

We calculate the average index values of the four function indices FUN_{MC, ME, 

MA, EC} and three binding partner indices BIND_{DNA, PROT, LIP} over all residues 

in the window. We combine these averages in the same way as in section 3.1.4, i.e., we 

have the following five combined indices: 

 AVG_TWO_HI_FUN 

 AVG_TWO_HI_BIND 

 AVG_TWO_HI_FUN_HI_BIND 

 AVG_TWO_HI_BIND_HI_FUN 

 AVG_TWO_HI_FUN_TWO_HI_BIND 

Similar to section 3.1.4, the above five index values are based on two types of 

background residue sets where for BG_ALL background we multiply the index values by 
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the disorder propensities generated with IUPred_short and IUPred_long. Consequently, so 

we have 5×2 + 5 = 15 features. 

We also count the number of individual functions and the number of individual binding 

partners carried out by residues in a given window. This is performed based on FUN_{MC, 

ME, MA, EC} and BIND_{DNA, PROT, LIP} indices. For a given specific function or 

binding partner (for example, FUN_MC or BIND_DNA), we count the number of residues 

in a given window for which the fractional differences is enriched and significant 

(fractional differences > 0 and p-value < 0.01). If the content of these residues (i.e., their 

divided by the size of the window) is above a threshold then we assume that this DMR 

carries out a given function or binding partner. The threshold is determined by taking all 

DMRs that are annotated to have a given function or binding partner from the training 

dataset, and calculating the average content of enriched and significant residues from all 

these DMRs. We sum up the number of individual functions and number of partners of a 

given window, and divide the sums by the length of the window. Since we have two sets 

of backgrounds, this produces two features for each window size. 

2.5 Features computed by combining conservation with predicted relative solvent 

accessibility (24 features) 

There are three ways to define features using the windows. The first is to calculate 

average value of a given biophysical or structural property over all residues in the window. 

The second is to compute this average over the residues in the window that are filtered 

using thresholds. The third approach is to calculate the content of the filtered residues.  

Way 1: for each residue in a given window we multiply the three conservation features 

(see section 3.1.1) by the predicted relative solvent accessibility. We average resulting 

values for residues in a window and this produces three features for each window size. 

Way 2: we calculate the average values of the three conservation features for the 

residues for which the predicted relative solvent accessibility score > 

THRES_RSOLVENT, and the average values of the predicted solvent accessibility for the 

residues for which the entropy > THRES_ENTROPY, the relative entropy > 
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THRES_RENTROPY or NEFF > THRES_NEFF. This produces 3 + 1 + 1 + 1 = 6 features 

for each window size. 

Way 3: we count the number of residues in a given window for which the predicted 

relative solvent accessibility > THRES_RSOLVENT, and the entropy > 

THRES_ENTROPY, relative entropy > THRES_RENTROPY or NEFF > THRES_NEFF. 

We divide these counts by the length of the window. This produces three content-based 

features for each window size. 

2.6 Features computed by combining conservation with predicted intrinsic 

disorder (48 features) 

Way 1: for each residue in a given window we multiply the three conservation values 

with disorder prediction scores IUPred_short and IUPred_long. We average resulting 

values for residues in a window and this produces 6 features for each window size. 

Way 2: we calculate the average values of the three conservation values for residues 

for which the IUPred_short > THRES_SHORT or the IUPred_long > THRES_LONG, and 

the average values of IUPred_short and IUPred_long for residues for which the entropy > 

THRES_ENTROPY, relative entropy > THRES_RENTROPY or NEFF > THRES_NEFF. 

This produces 3 × 2 + 2 × 3 = 12 features for each window size. 

Way 3: we count the number of residues for which the entropy > THRES_ENTROPY, 

the relative entropy > THRES_RENTROPY or the NEFF > THRES_NEFF and the 

IUPred_short > THRES_SHORT or IUPred_long > THRES_LONG. We divide these 

counts by the length of the window. This produces 3 × 2 = 6 features for each window size. 

2.7 Features computed by combining conservation with functional AA indices 

(180 features) 

Way 1: similar to section 3.2.4, we calculate five index values by combining individual 

index values. But for each individual function or binding partner we have three sets of 

index values which are multiplied with the three conservation scores: entropy, relative 

entropy and NEFF. The above five index values are based on two types of backgrounds 

where for BG_ALL we multiply the index values by the disorder propensities generated 
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with IUPred_short and IUPred_long. This produces (5× 2 + 5) × 3 = 45 features for each 

window size. 

Way 2: For the index values of the four function annotations FUN_{MC, ME, MA, 

EC} and three binding partner annotations BIND_{DNA, PROT, LIP}, we calculate their 

average values by considering residues in a given window for which the entropy > 

THRES_ENTROPY, relative entropy > THRES_RENTROPY or NEFF > THRES_NEFF. 

In this way for each of the seven index values, we have three sets of average values (by 

filtering with different conservation scores). Again for each set of these average values, we 

combine the seven averaged index values like we did in section 3.2.4 to get five combined 

index values. The above five index values are based on two types of background residue 

sets where for the BG_ALL background we multiply the index values by the disorder 

propensities generated with IUPred_short and IUPred_long, this produces (5× 2 + 5) × 3 = 

45 features for each window size. 

2.8 Features computed by combining predicted relative solvent ac-cessibility with 

predicted intrinsic disorder (16 features) 

Way 1: for each residue in a given window we multiply the predicted relative solvent 

accessibility score with predicted disorder scores IUPred_short or IUPred_long. We 

average the resulting values for residues in a window and this produces two features for 

each window size. 

Way 2: we calculate the average values of the predicted relative solvent accessibility 

for residues for which the IUPred_short > THRES_SHORT or IUPred_long > 

THRES_LONG, and the average values of IUPred_short and IUPred_long for residues for 

which the predicted relative solvent accessibility > THRES_RSOLVENT. This produces 

2 + 2 = 4 features for each window size. 

Way 3: we count the number of residues for which the predicted relative solvent 

accessibility > THRES_RSOLVENT and its IUPred_short > THRES_SHORT or 

IUPred_long > THRES_LONG. We divide these counts by the size of the window. This 

produces two features for each window size. 
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2.9 Features computed by combining predicted relative solvent ac-cessibility with 

functional AA indices (60 features) 

Way 1: similar to section 3.2.4, we calculate five index values by combining individual 

indices. But here the individual index values are multiplied by the predicted solvent 

accessibility. The above five index values are based on two types of background residue 

sets where for BG_ALL we multiply the index values by the disorder propensities 

generated with IUPred_short and IUPred_long. This produces 5× 2 + 5 = 15 features for 

each window size. 

Way 2: For the index values of the four function annotations FUN_{MC, ME, MA, 

EC} and three binding partner annotations BIND_{DNA, PROT, LIP}, we calculate their 

average values by considering residues in a given window for which the predicted solvent 

accessibility > THRES_RSOLVENT. We combine the seven averaged index values as we 

did in section 3.2.4 to get five combined index values. The above five index values are 

based on two types of background residue sets where for the BG_ALL background we 

multiply the index values by the disorder propensities generated with IUPred_short and 

IUPred_long. This produces 5× 2 + 5 = 15 features for each window size. 

2.10 Features computed by combining predicted intrinsic disorder with 

functional AA indices (60 features) 

For the index values of the four functions FUN_{MC, ME, MA, EC} and three binding 

partner annotations BIND_{DNA, PROT, LIP}, we calculate their average values by 

considering residues in a given window for which disorder score generated by 

IUPred_short > THRES_SHORT or by IUPred_long > THRES_LONG. Consequently, for 

each of the seven indices, we have two sets of average values (by filtering with 

IUPred_short and IUPred_long). For each set of these averages, we combine the seven 

averaged individual index values like in section 3.2.4 to obtain the five combined index 

values. The above five index values are based on the two types of background residue sets 

where for the BG_ALL background we multiply the index values by the disorder 

propensities generated with IUPred_short and IUPred_long. This produces (5× 2 + 5) × 2 

= 30 features for each window size. 
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Sections 2.1 to 2.10 produce 446 features in total (223 × 2 window sizes). We further 

divide each window into three sub-windows, the left, the middle and the right part. This 

follows the design of features from. We use these sub-windows to contrast the values of 

the biophysical and structural properties between the residues near the predicted amino 

acid and the residues farther from the predicted amino acids. The middle sub-window is 

centered on the residue that is being predicted and it includes half of the residues from the 

sliding window size. The left and right sub-windows consist of a quarter of residues at each 

of the corresponding ends of the sliding window. For each of the 446 features, we calculate 

their values for middle, left and right sub-windows, and we subtract the averaged feature 

values of left and right sub-windows from the feature value of the middle sub-window. 

This produces another 446 feature. As a result, we have 446 × 2 = 892 features. 

3 Features computed based on a window defined by putative disordered regions 

(448 features) 

Instead of using the sliding window that is centered on the residue that is being 

predicted, here we use the entire putative disordered region that includes the predicted 

residues as the window. For the residues that are not part of a putative disordered region 

(i.e., putative structured residues), we use a fixed size-window composed of putative 

structured residues. We consider two sizes of these windows. Their length equals to the 

average length of putative disordered regions in the training dataset generated with 

IUPred_short (14 residues) and with IUPred_long (19 residues). This is the first time such 

type of window is used to build features. 

We calculate the same set of 223 features defined from sections 3.2.1 to 3.2.10 for these 

windows. Since we utilize two versions of disorder predictions (IUPred_short and 

IUPred_long), we obtain 223 × 2 = 446 features. We also add two additional features (using 

IUPred_short and IUPred_long) for each residue that quantify the length of the putative 

disordered region that contains the given residue. If a residue is inside a putative structured 

region then we set the length to 0. The window size is divided by the length of the sequence. 
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Altogether, we generated 248 features based on the individual residues, 892 features 

using the sliding windows and 448 features based on the windows defined with the putative 

disordered regions. This totals to 1588 features. 

 

 

 

 

 


