
University of Alberta

THE IMPACT OF USER CHOICE AND SOFTWARE CHANGE ON

ENERGY CONSUMPTION

by

Chenlei Zhang

A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

c©Chenlei Zhang

Fall 2013

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single

copies of this thesis and to lend or sell such copies for private, scholarly or scientific

research purposes only. Where the thesis is converted to, or otherwise made available in

digital form, the University of Alberta will advise potential users of the thesis of these

terms.

The author reserves all other publication and other rights in association with the copyright

in the thesis, and except as herein before provided, neither the thesis nor any substantial

portion thereof may be printed or otherwise reproduced in any material form whatever

without the author’s prior written permission.

Dedicated to my parents Zhixian Zhang and Dilan Chen, my aunt Huixian Zhang,

my sister Beibei Zhang, and my dear one You Fu, for their love and support.

Abstract

Hardware and software engineers are instrumental in developing energy efficient

mobile systems. Unfortunately the last mile of energy efficiency comes from the

choices and requirements of the end-user. Imagine an end-user who has no power-

outlet access and must remain productive on her laptop battery life. How does this

user maximize the laptop’s battery life, yet remain productive? What does the user

have to give up to keep on working? In the first half of this thesis, we highlight the

peril that users face and the ultimate responsibility users have for the battery life and

energy consumption of their mobile devices; using multiple scenarios we show that

executing a task can consume more or less energy depending on the requirements

and software choices of users. We investigate multiple scenarios demonstrating that

applications can consume energy differently for the same task thus illustrating the

tradeoffs that end-users can make for the sake of energy consumption.

Furthermore, as the builders and more frequently the maintainers of applica-

tions, software developers are responsible for updating and shipping energy effi-

cient applications for end-users. Yet, the impact of software changes on energy

consumption is still a mystery. Thus in the second half of this thesis we relate

software changes to energy consumption by tracing the system calls that act as the

interface between user applications and the OS kernel. We show the energy con-

sumption evolution of multiple gedit versions under two test scenarios. We also

present the potential of modeling software energy consumption via system call in-

vocations.

Acknowledgements

I would like to thank my supervisor Dr. Abram Hindle for his great supervision

and helpful advice. This thesis cannot be possible without his patient guidance. I

appreciate that he has led me into the wonderful research area, Mining Software

Repositories, and enriched me with all the skills I need for conducting those inter-

esting projects. My gratitude also goes to Dr. Daniel M. German for his valuable

suggestions in the first part of my thesis. In addition, I would like to thank the

financial support from NSERC Discovery Grant during my master study.

Table of Contents

1 Introduction 1
1.1 User Choice and Software Energy Consumption 2
1.2 Software Change and Energy Consumption 3
1.3 Thesis Overview . 4
1.4 Thesis Contributions . 5
1.5 Thesis Organization . 6

2 Related Work 7
2.1 User-Centric Evaluation . 7
2.2 Power Modeling and Management 9

2.2.1 Power Modeling for Specific Components 9
2.2.2 Power Modeling for the Full System 11

2.2.2.1 Utilization-Based Power Models 11
2.2.2.2 Instruction-Based Power Models 14
2.2.2.3 System-Call-Based Power Model 15

2.3 Mining Software Repositories . 16
2.4 Energy Consumption and Software 17

2.4.1 Watt and Joule . 17
2.4.2 Energy Consumption and Software 17

2.5 Chapter Summary . 18

3 The Impact of User Choice on Energy Consumption 19
3.1 Energy Efficiency of Software . 20

3.1.1 Measuring Energy Consumption 21
3.1.2 Battery Life Estimate . 22

3.2 Use-Case Scenarios . 23
3.2.1 Text Editing . 23
3.2.2 Receiving Email . 23
3.2.3 Playing Music . 24

3.3 Methodology . 24
3.3.1 Choosing Software Products 24
3.3.2 Deciding on the Level of Instrumentation 25
3.3.3 Developing Use-Case Test Cases 25

3.3.3.1 Idling on the Testbed 26
3.3.3.2 Text Editing . 26
3.3.3.3 Receiving Email 26
3.3.3.4 Playing Music 27
3.3.3.5 Idling Applications 27

3.3.4 Configuring the Testbed 28
3.3.5 Running the Tests and Analyzing Results 28

3.4 Results . 29
3.4.1 Idling on the Testbed and Applications 29

3.4.2 Text Editing . 30
3.4.3 Receiving Email . 31
3.4.4 Playing Music . 33
3.4.5 Application Energy Efficiency under Battery Life Models . 35

3.5 Discussion . 39
3.5.1 Functionality Versus Consumption 39
3.5.2 Causes of Energy Consumption 40
3.5.3 Ghost Energy Consumption 40
3.5.4 Application Ratings . 41

3.6 Threats to Validity . 43
3.7 Chapter Summary . 44

4 Mining Multiple Versions of Software on Energy Consumption 45
4.1 System Calls . 46
4.2 Methodology . 46

4.2.1 Choosing and Building Multiple Versions of a Software
Product . 47

4.2.2 Deciding on the Level of Instrumentation 48
4.2.3 Developing the Test Cases 48
4.2.4 Running the Tests and Analyzing Results 48

4.3 Case Study . 49
4.3.1 Text Editing . 49
4.3.2 Syntax Highlighting . 51

4.4 Discussion . 56
4.4.1 System Calls and Power Consumption 56
4.4.2 Software Changes and Power Consumption 61

4.5 Threats to Validity . 62
4.6 Chapter Summary . 62

5 Conclusions and Future Work 64
5.1 Conclusions . 64
5.2 Future Work . 65

Bibliography 66

A 70
A.1 System Calls Traced in Text Editing Tests 70
A.2 System Calls Traced in Syntax Highlighting Tests 71

List of Tables

1.1 The number of available applications in various application stores
by 2013. 1

3.1 Applications tested . 25
3.2 battery life model parameters . 35
3.3 An example of software application energy consumption ratings

ranging from A to C. A means the most energy efficient and C
means the least energy efficient. 42

4.1 Some of the system calls and the associated Spearman’s correlation
ρ with gedit power consumption, R2 values, and coefficients in
linear regression for the text editing test case. For each system call
we build a model of the form: y = b1 · x + b0, where y is gedit
power consumption and x is the number of system call invocations.
All the results are statistically significant (p < 1.00×10−8). 51

4.2 Selected system calls with their descriptions from the text editing
test case. 52

4.3 Some of the system calls and the associated Spearman’s correlation
ρ with gedit power consumption, R2 values, and coefficients in
linear regression for the syntax highlighting test case. For each
system call we build a model of the form: y = b1 · x + b0, where
y is gedit power consumption and x is the number of system
call invocations. All the results are statistically significant (p <
4.50×10−4). 57

4.4 Selected system calls with their descriptions from the syntax high-
lighting test case. 57

List of Figures

3.1 Distributions of the mean watts consumed per test: idling on testbed
and text editing tests. 40 tests each, 280 tests total. 30

3.2 Density of the power measurements from gedit tests, LibreOffice
tests, and Google Docs tests. The density indicates how often a
measurement was taken at a certain watt at a certain second. This
plot is effectively an overlay trace of how 40 tests ran in terms of
watts. 32

3.3 Distributions of the mean watts consumed per test: idling on testbed
and email receiving tests. 40 tests each, 200 tests total. 33

3.4 Density of the power measurements from email tests of Thunder-
bird and Gmail. 34

3.5 Distributions of the mean watts consumed per test: idling on testbed
and playing music tests. 40 tests each, 240 tests total. 35

3.6 Density of the power measurements from music playing scenario
tests using mpg123, Banshee, and Rhythmbox. 36

3.7 Distributions of mean battery life consumed per application using
desktop results based on the Big laptop model. 37

3.8 Distributions of the mean watts consumed per test: idling on testbed,
text editing, email receiving and music playing tests on X31 testbed.
40 tests each, 640 tests total. 38

3.9 Distributions of mean battery life consumed per application using
X31 results based on the X31 laptop model. 38

3.10 Distributions of mean battery life consumed per application using
desktop results based on the X31 laptop model. 39

4.1 This diagram shows how applications, C library functions, system
calls, and kernel interact with each other. 47

4.2 An example of strace partial output for the Linux command date. . 48
4.3 Distributions of the mean watts consumed per version of gedit

running 10 editing text test (390 tests in total). The X axis repre-
sents the version numbers and the Y axis is the power consumption. 52

4.4 Pairwise Student t-test for each gedit version’s mean power con-
sumption in 10 text editing tests. The X axis and the Y axis rep-
resent the version numbers. Each value in the plot is the p-value.
“Grey” means the p-value is close to 0 and “red” means the p-value
is close to 1. 53

4.5 Pairwise cosine distance for each gedit version’s system call vec-
tor in text editing tests (79 system calls). The X axis and the Y
axis represent the version numbers. “Grey” means smaller cosine
similarities and “red” means larger cosine similarities. 54

4.6 Distributions of the mean watts consumed per version of gedit
running 10 syntax highlighting tests (390 tests in total). The X
axis represents the version numbers and the Y axis is the power
consumption. 58

4.7 Pairwise Student t-test for each gedit version’s mean power con-
sumption in 10 syntax highlighting tests. The X axis and the Y axis
represent the version numbers. Each value in the plot is the p-value.
“Grey” means the p-value is close to 0 and “red” means the p-value
is close to 1. 59

4.8 Pairwise cosine distance for each gedit version’s system call vec-
tor in syntax highlighting tests (77 system calls). The X axis and
the Y axis represent the version numbers. “Grey” means smaller
cosine similarities and “red” means larger cosine similarities. 60

Chapter 1

Introduction

Despite of the prominent popularity of various mobile computing platforms, such

as smartphones, tablets, and laptops, the battery life of these devices is always one

of the most important factors that affect the user experience. With a large number of

applications developed for each mobile platform, as shown in Table 1.1, end-users

have a wide range of applications to choose from. However, energy efficiency of

these applications is unknown to end-users. If an application drains out a mobile

device’s battery very quickly, the end-user will not get service from her device until

the next charging, which also gives mobile application developers the pressure of

releasing energy efficient applications.

Table 1.1: The number of available applications in various application stores by

2013.

Application Store The Number of Available Applications

Apple App Store [2] 900,000

Mac App Store [28] 15,300

Windows Phone Store [27] 160,000

Google Play [36] 1,000,000

Ubuntu Software Center [34] 45,000

BlackBerry World [18] 250,000

1

1.1 User Choice and Software Energy Consumption

Energy is a major concern in society. Energy efficiency is the concerned effort to

reduce the amount of energy required to create and use products and services. Clas-

sically the energy consumption and battery life of mobile devices (from laptops to

phones and other types of PDAs) has relied on the computer, electrical and soft-

ware engineers who built and configured the system. The hardware components

dictate how much power can be used and the software determines when and how

the components are used.

In the realm of software, energy efficiency has been primarily the concern of

operating systems (OS), in particular those used in mobile devices (including lap-

tops). There is little research in the area of energy efficient end-user applications,

and it has primarily focused on recommendations on how to increase energy effi-

ciency; for example, Intel recommends the use of compilers and libraries designed

to use power-saving features of their CPUs, and to use algorithms that minimize

data movement and use cached memory efficiently [17].

From the point of view of energy efficiency, software can be seen as a service.

Therefore, we define software efficiency of a software application as the amount of

energy that it requires per “unit of service” it provides. In general, the purpose of

measuring the energy efficiency of a device or service is to use it as a comparison:

if we can normalize two devices to provide the same amount of service (say, two

refrigerators of the same size, or televisions of the same size, two laptops with

comparable displays playing the same movie), their energy efficiency ratings can

be used to identify the device or service that is more energy efficient.

Within the software realm, a “unit of service” is a malleable unit that must be

defined from the point of view of the user. This can be: typing an average page,

listening to 1 hr of music, watching a 2 hrs movie, checking and downloading email

every 5 minutes, running n transactions per minute, etc. A unit of service can be

seen as a metric of quality-of-service, and in many cases, it does not make any

difference if it can be executed any faster: the user will be satisfied as long as she

can run the services she wants with the desired quality of service. For example,

2

when listening to audio it does not make sense to play it faster; the user might not

want to be interrupted more frequently than every five minutes by new emails, and

therefore, there is no need to check for them more frequently than that; or typing a

page of text every 15 minutes because she cannot type any faster.

The user might have different applications to satisfy these needs. In general,

users will be confronted with many software systems to choose from. For example,

there is a very large number of music players, text editors and mail clients on the

market. All of them are likely capable of delivering the quality of service that users

require. The decision on which to use lies on more subjective requirements (both

functional and non-functional) such as usability, features, cost, etc.

One non-functional requirement that is rarely considered is energy efficiency.

Given two software applications that can provide the same service, at the expected

quality, is one more energy efficient than the other? This is particularly important if

the goal is to maximize battery life. For example, assume you are on a transoceanic

flight without access to electricity, and you want to play music in your laptop as

you type a letter. You can choose between multiple applications to do it. How

much does the choice of application impact the battery life? How much battery life

would you lose if you decide to play music with the most efficient player versus not

playing any music at all?

In the first half of this thesis, we demonstrate that because users have a choice

in terms of what software they use their choice plays an important role in the energy

consumption and battery life of their mobile devices (and by extension in the energy

requirements of society).

1.2 Software Change and Energy Consumption

Software developers are making changes to applications throughout the software

development process. With bug fixed and new features added by the changes, pos-

sibly software energy consumption behaviour is changing too. A concrete body

of research has been applied to build power models for applications on mobile de-

vices. Zhang et al. [37] have implemented a power model for Android smartphones,

3

PowerTutor, which is based on the power modeling of each hardware component.

Dong et al. [7] have applied a different approach to modeling application power

consumption for Linux-based mobile systems based on the system statistics of each

hardware component. Pathak et al. [26] have generated power consumption finite

state machines for components on smartphones and developed energy profiler to es-

timate energy consumption of applications. The most recent study was done by Hao

et al. [12]. They have created a power model, eLens, to model Android applications

based on Java instructions. These studies could help both end-users and developers

to do energy accounting for applications. However, none of them has investigated

the impact of software change on application energy consumption. Hindle [15]

has made the first step toward revealing the relationship between software change

and power consumption. He has measured power consumption of multiple soft-

ware versions and found potential correlation between software metrics and power

consumption.

In this thesis we have observed that software power consumption is changing

based on different test cases, and therefore, as a static feature of software changes,

software metrics are not enough for uncovering the impact of software change on

power consumption.

1.3 Thesis Overview

1. The Impact of User Choice on Energy Consumption (Chapter 3)

We highlight the peril that users face and the ultimate responsibility users

have for the battery-life and energy consumption of their mobile devices;

using multiple scenarios we show that executing a task can consume more or

less energy depending on the requirements and software choices of users. We

investigate multiple scenarios demonstrating that applications can consume

energy differently for the same task thus illustrating the tradeoffs that end-

users can make for the sake of energy consumption.

2. Mining Multiple Versions of Software on Energy Consumption (Chapter 4)

We provide a method and a case study to reveal the correlation between soft-

4

ware change and power consumption. To be specific, we first investigate

the software power consumption evolution over multiple versions. Then, we

trace the system calls invoked by a list of software versions. At last, we

leverage system call invocations to model software power consumption over

versions. The results show different power consumption behaviours in terms

of multiple software versions and different test cases. Also, system call invo-

cations have the potential of modeling software power consumption based on

multiple versions.

1.4 Thesis Contributions

In this thesis, we investigate the impact of user choice and software change on

power consumption based on empirical case studies. The contributions are as fol-

lows:

1. We define the concept of energy-efficiency for software applications.

2. We create the benchmarks for energy efficiency of software systems.

3. We perform an experiment to benchmark the energy efficiency of several soft-

ware applications that shows there can be significant variation and differences

in the energy efficiency of applications.

4. We demonstrate that users can have a positive impact in reducing the energy

consumption of the computers they use.

5. We propose a methodology of relating software change to power consumption

by tracing system calls.

6. We perform an experiment to contrast the different power consumption be-

haviours in terms of multiple software versions and different test cases.

7. We present the potential correlation between system call invocations and soft-

ware power consumption.

5

1.5 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 discusses the related re-

search work relevant to this thesis from three categories, user-centric evaluation,

power modeling and mining software repositories, and briefly introduces the rela-

tionship between energy consumption and software. Chapter 3 presents the first

half of our study, the impact of user choice on energy consumption. In Chapter 4

we demonstrate our work about mining multiple versions of software on energy

consumption, which forms the second half of this thesis. We conclude this thesis

and discuss the future work in Chapter 5.

6

Chapter 2

Related Work

In this chapter, we discuss the related work to this thesis and explain the relation-

ship between energy consumption and software. The related work is organized by

three categories. First, we present papers related to user-centric evaluation about

software energy consumption. Second, we review approaches that focus on power

modeling and management for hardware and software systems. Third, we survey

research work about combining software power performance with mining software

repositories techniques. At last we discuss the measures of energy and energy con-

sumption, and the choice of metrics used in this thesis.

2.1 User-Centric Evaluation

In this section, we discuss the studies of software energy consumption in the litera-

ture from the end-user perspective.

A technology website with Linux orientation run by Michael Larable, Phoronix,

demonstrated interests of power management from the users’ perspective [20]. The

energy consumption of several Linux distributions have been benchmarked for two

test scenarios, idle and under load. Both of the two test scenarios were running off

AC adapter without battery and just battery. The results show the differences of

energy consumption among all the Ubuntu distributions that have been tested.

Chetty et al. [5] investigated how people use power management strategies on

their home computers by their field study of 20 households. They conducted the

research in two phrase. First, all the computer usage patterns, such as which ap-

7

plications were used, duration and times of use and power state of the computer,

were recorded by the logging software. Second, when finishing collecting usage

patterns, each one whose actions were logged during the experiment did a survey

regarding their power management behaviours. The results show that people tend to

leave their computers on in most of the time when the machines are not active and

the energy saving for a household when using current power management strate-

gies matters to few people. The authors argued that researchers should study home

power management strategies that have few changes on people’s home computing

habits.

Amsel et al. [1] implemented a tool, Green Tracker, to help software users un-

derstand the power consumption of software systems running on their computers.

Green Tracker is able to collect CPU usage and makes use of average CPU usage

of software to estimate the energy efficiency. By automating several typical usage

patterns in Green Tracker, such as browsing websites, writing articles and playing

audio, the authors could get the results about CPU usage for each application in

the usage patterns. Thus in each usage pattern, software users would have a basic

understanding about the power consumption of applications. Although the power

model in this study only included CPU performance as the parameter, it made the

first step to draw the users’ attention to power consumption of software.

McLachlan et al. [22] sought to characterize the power consumption of various

interaction techniques for finishing a single task. To be specific, the authors used 8

different interactions, such as auto scroll, mouse wheel and mouse drag to navigate

a PDF document. Power consumption was collected for all the interactions sepa-

rately and the results reveal that the power consumption for fulfilling a single task

using different interactions varies significantly. Furthermore, the authors argued

that the power consumption difference of the interaction technique depends on the

number of screen updates involved. This discovery points to a power consumption

optimizing direction for both users and software developers to use and implement

the power efficient interaction techniques.

Compared to the previous work in terms of user-centric evaluation, we take a

much broader and task oriented approach in this thesis.

8

2.2 Power Modeling and Management

Power modeling is an important part in both hardware and software energy ac-

counting techniques since power regression tests are time-consuming and difficult

to make. With the aid of power consumption models, we can understand and opti-

mize the power characteristics of hardware and software systems without compli-

cated instrumentation using power meters. There are a large body of work focusing

on power modeling and management for hardware components (CPU, disks, net-

works, etc), desktops, servers and recently mobile devices.

2.2.1 Power Modeling for Specific Components

A lot of researchers have been studying power consumption models for one specific

component, such as hard disks [9], CPU [19], networks [21], and displays [6].

Hard Disks. Greenawalt [9] has built a statistical model to optimize the energy

consumption of hard disks. In the paper a disk was modeled as having four modes

of operation. The power consumption of a hard disk was determined based on the

combination of these four modes. The tradeoff among power consumption, system

performance, and system reliability (lifetime of the hard disks) were evaluated by

controlling two parameters, the rate of accessing the hard disk and the length of

timeout in the case studies. The model is simulated and it does not actually test

against real hard disks.

CPU. Joseph et al. [19] introduced the first power consumption model for mi-

croprocessors. The authors have made use of two types of information from proces-

sors to build the linear regression model for power consumption. The first type is

performance-relevant event counters and the second one is signal transition statis-

tics. This model can provide runtime power estimation and most importantly a

glimpse of component power consumption for microprocessors.

Networks. Lattanzi et al. [21] have developed an approach to modeling and esti-

mating the runtime power consumption of wireless network interface cards (WNICs).

The authors measured the current waveform of a WNIC and applied pattern match-

ing algorithms to correlate a pattern of current waveform with the state in the

9

WNIC. Each state in the WNIC would be characterized to a profile regarding the

current level and timing. A tool was implemented to analyze a measured current

waveform of the WNIC using generated power profile of each state and estimate

the runtime power consumption of the WNIC. The model was also adapted for var-

ious working conditions and transmitting workload in this study. This paper shows

that power modeling is not restricted to CPU and slicing the application to different

states would be helpful to model power consumption of applications. Balasubra-

manian et al. [3] measured and compared the power consumption characteristics

for three network protocols (3G, GSM and WiFi) on mobile phones. By applying

Nokia Energy Profiler [24] on Nokia N95 phones, power consumption of different

states for each network protocol was recorded. The results reveal that, compared to

WiFi, 3G and GSM have a significant tail energy overhead (energy spent in high-

power state after the completion of the data transfer). Later on, the authors proposed

the power models for the three network protocols based on the data collected from

the measurement. They also developed a protocol, TailEnder, which applies delay-

tolerance deadlines and prefething to optimize the energy consumption of network

applications.

Displays. Dong et al. [6] have studied the power models for the display com-

ponent, which is usually made of organic light-emitting diode (OLED) in mobile

devices nowadays. Three power models for OLED were proposed in this paper and

they are based on pixel-level, image-level and code-level correspondingly. Pixel-

level power model for OLED was formulated by linear regression based on physi-

cal measurement. The other two power models were sampled from the pixel-level

one. Hence, pixel-level power model for OLED has the best accuracy but lacks

of efficiency. The results show that different color components in an OLED pixel

have different power characteristics. The green component has the least power con-

sumption, then followed by the red component. The blue component has the highest

power consumption among them. Based on the different inputs as well as tradeoffs

between accuracy and efficiency, the authors concluded that the OLED power mod-

els can be utilized by developers working on both hardware and application levels

to estimate the power consumption of GUIs.

10

This thesis differs from these studies because our methodology focuses on soft-

ware systems and takes power consumption of the whole operating system into

account, instead of one specific component.

2.2.2 Power Modeling for the Full System

A more general research focus is based on building the power models for the whole

system, such as an operating system and a Java virtual machine (JVM). We re-

view recent attempts to modeling power consumption for the full system from

three aspects, utilization-based power models, instruction-based power models, and

system-call-based power models [26].

2.2.2.1 Utilization-Based Power Models

In the utilization-based approach, there are often two data loggers and two steps

involved to build the power models for the full system. The two data loggers in-

clude a logger for collecting utilization of each hardware component, and a logger

for measuring power consumption (such as using power meters). The first step is

to collect utilization statistics and the corresponding power consumption when run-

ning a list of applications under a sample of scenarios. The second step is to apply

regression analysis, usually linear regression, to train a model for software power

consumption based on utilization data. Then software power consumption can be

predicted by training the model with utilization statistics.

Flinn et al. [8] modeled the power consumption of each component in a soft-

ware system by designing and implementing a tool called PowerScope. By com-

bining the current measurement and each process in the system, PowerScope would

generate the profile of energy usage of each component in an application. A case

study was conducted to demonstrate the usage of this tool for optimizing the energy

consumption of a video application. The effectiveness of reducing the power con-

sumption of this application was supported by the effects of varying the amount of

lossy compression, reducing the display size, switching the network interface, and

powering down the disk. PowerScope is mostly based on the CPU profile and the

power model is highly sensitive to the physical instrument.

11

Gurumurthi et al. [11] have built a complete system power simulator, which

is called SoftWatt. It was implemented on the SimOS infrastructure and is able

to model the CPU, memory, and disk of the targeted application. Once the CPU

profile, memory profile, and disk statistics are collected by the SimOS, SoftWatt

uses analytical power models to report the power statistics.

Shye et al. [31] studied the power consumption behaviour in an Android smart-

phone, HTC Dream, with data from real user activity. The authors implemented

a logger application which is able to collect system performance metrics and user

activity on an Android phone, and then send all the data back to a sever. The

system performance metrics include statistics about CPU, Screen, Call, EDGE,

WiFi, SD Card, DSP, and System. Based on these data collected from 20 users

and power measurements by replaying user activities, they built a linear regression

model which can predict the power consumption of HTC Dream using system per-

formance metrics.

Carroll et al. [4] have also analyzed the power consumption of an Android

smartphone, the Openmoko Neo Freerunner. In this study the researchers sliced the

smartphone into specific components including CPU, memory, touchscreen, and so

forth. Then power consumption of each component was collected by voltage and

current measurement. Also six typical usage scenarios of a smartphone, which are

audio playback, video playback, text messaging, voice calls, emailing, and web

browsing, were tested on the smartphone to gather the distribution of power con-

sumption in each component. Energy model of each usage scenario was provided

and the authors analyzed the impact of these scenarios in different usage patterns on

the battery life. The analysis in this research was very limited to the Android smart-

phone they chose and the measurement could be hardly applied to other phones due

to limited documentation of hardware components.

Zhang et al. [37] have generated two online power models for Android smart-

phones, PowerTutor and PowerBooter. PowerTutor is based on the combination

of power models for components in Android smartphones. The authors measured

the power consumption of each hardware component (CPU, WiFi, Audio, LCD,

GPS, and Cellular) under extreme usage on Android smartphone and built linear

12

regression models for each of them regarding of their power consumption. Since

the power models generated by PowerTutor varies significantly between different

modules of Android smartphones. Another more general power model, Power-

Booter was created in this paper. PowerBooter is based on the discharge curve

of the lithium-ion battery in a specific Android smartphone. PowerTutor has bet-

ter accuracy compared with PowerBooter. Whereas they both have shortcomings.

PowerTutor is specific to Android smartphone modules and PowerBooter needs the

discharge curve of the battery on each Android smartphone.

Dong et al. [7] have implemented a self-constructive energy model for Linux-

based mobile systems. The energy model, called Sesame, generates energy models

for mobile systems without external power measurement. Sesame collects system

statistics and applies the Advanced Configuration and Power Interface (ACPI) to

gather the predictors for the power model. Energy readings are collected through

the smart battery interface as the responses. The linear regression power models are

generated based on the collected data.

Mittal et al. [23] have proposed and implemented a power model, WattsOn,

for mobile device emulator on Windows Phone platform. It builds upon a set of

power models that focus on individual specific component, including cellular net-

work (3G), WiFi network, display, and CPU. Application developers could be aware

of energy consumption of each component in order to make better implementing

decisions for reducing energy consumption of applications. They also applied re-

source scaling to generalize WattsOn for real phones to overcome the measurement

difference between the emulator and a phone.

As mentioned in [3] and [26], some of the components (NIC, 3G, and SD Card)

have tail energy phenomenon. It means that these components can stay in high

power state after the completion of an operation while the utilization at that moment

is zero. Thus, utilization-based power models are unable to model the tail energy

phenomenon. Compared with the utilization-based power models, our methodology

is based on tracing system calls, which is able to overcome the problem caused by

the tail energy phenomenon [26].

13

2.2.2.2 Instruction-Based Power Models

For applications running in a JVM, a list of research papers have taken a differ-

ent approach to utilizing the Java bytecode instructions to build energy models for

software systems.

Seo et al. [29], [30] have implemented an energy consumption model for Java-

based software systems running on distributed devices. This power model consists

of three components, computational energy cost, communication energy cost, and

infrastructure energy overhead. Computational energy cost refers to the energy

cost related to CPU, memory, and I/O operations. This component was modeled

by physical benchmarking all the instructions in a JVM and native methods for a

specific hardware device. Communication energy cost is simply the energy con-

sumption for data transformation via network. In terms of the infrastructure energy

cost, it means the energy consumption caused by the JVM’s garbage collection and

other OS routines during the executing of a Java application. This energy consump-

tion model could make accurate estimates which fall within 5% of the actual energy

cost for application. However, it is highly dependent on the hardware and JVM.

Hao et al. [13] made a step further and built an energy consumption model,

eCalc, for Android applications’ CPU energy usage at the level of the whole pro-

gram and the method. The approach in eCalc is similar to [30]. They both need

to measure the energy cost of each Java instruction for a specific software environ-

ment in order to build the model. The improvement made by eCalc over [30] is that

eClac also traces additional information about the paths executed during the execu-

tion of the Android application. Thus, it is able to estimate the energy consumption

of methods. An extension of eCalc implemented by Hao et al. [12], which is called

eLens, combined program analysis with instruction-based power modeling. eLens

is able to estimate energy consumption of more hardware components besides CPU

and has fine-grained energy profiling level, ranging from the whole application to

the code level.

Instruction-based power models are designed for software running in a JVM.

While, in this thesis, we focus on investigating the power consumption of software

running in Linux-based system.

14

2.2.2.3 System-Call-Based Power Model

System-call-based power model was proposed by Pathak et al. [26]. They have

applied system call tracing to model the energy consumption of applications run-

ning on smartphones. First they studied the power behavior of some components

in a smartphone which show that, 1) several components have tail power states (a

component stays in high power state for a period of time after active I/O activities);

2) system calls that do not imply utilization can change power states; and 3) sev-

eral components do not have quantitative utilization. These observations come to

the conclusion that energy models based on correlating utilization with power con-

sumption, which use linear regression models, are not accurate. Second, this study

took three steps to build the energy model by tracing system calls. The first step

was to model the power states and generate finite state machines (FSMs) of each

system call for each component in a smartphone. The second step was to integrate

all the FSMs of system calls to model a FSM for each individual component. In

the final step the FSM model of the smartphone was developed based on the FSMs

in second step. At last, based on the FSM of the certain smartphone, when tracing

the system calls on the smartphone, they can identify the state that system is cur-

rently in and estimate the power consumption of an application. The authors have

implemented FSMs for several Windows and Android smartphones. Their results

show improved accuracy compared to an approach [31] based on the linear regres-

sion model. In the following paper [25], the authors have extended their work and

implemented a fine-grained energy profiler for smartphone based on FSMs. This

energy profiler, eprof, can work on both Android and Windows Mobile phones to

estimate the energy consumption of smartphone apps.

Similar to system-call-based power model, we also trace system calls to cor-

relate them with software power consumption. However, we only care about the

number of system call invocations.

15

2.3 Mining Software Repositories

Mining software repositories (MSR) is a research field that applies statistical anal-

ysis, data mining, machine learning, and other automated techniques to rich data

extracted from version control systems, issue tracking systems, mailing list archives

and other software repositories in order to discover interesting and actionable infor-

mation about software systems [14]. With the help of these historical information,

we can acquire the knowledge of software development processes and character-

istics, which can leads to the improvement of software decision process. MSR

techniques have been successfully applied to a lot of questions such as predicting

software defects, locating the locations of bugs in source code, and mining the so-

cial networks in developers. Only few papers have tried to leverage MSR techniques

to understand software energy performance.

Gupta et al. [10] have studied the power consumption of Windows phone. They

combined power traces and execution logs in Windows phone to build power mod-

els. Specifically, a power trace is the measurement of power on a phone over a

test session by a power meter. Execution log is the sequence of active executable

files and shared libraries, which are called modules in the paper, over a certain pe-

riod of time. Based on the combined data set, they used linear regression models

to model and predict the power consumption of application running on Windows

phone. Besides, they applied data mining techniques such as decision trees to de-

tect the energy patterns within the data set.

Hindle [16], [15] provided a detailed methodology, called Green Mining, to

collect power consumption of applications over multiple versions on Linux-based

systems. Based on the power measurement of applications and software metrics,

the author studied the correlation between software change and power consump-

tion over versions. Although the correlation between software metrics and power

consumption is very low, Green Mining points to a promising research direction of

combining power measurement with MSR techniques.

Our work is closely based on the methodology of Green Mining and extends the

work to find the correlation between software change and power consumption via

16

system call tracing.

2.4 Energy Consumption and Software

This section explains the relationship between energy consumption and software.

It includes the measures of energy and energy consumption, and the choice of the

metrics used in this thesis.

2.4.1 Watt and Joule

The watt is a SI unit of power, named after the Scottish engineer James Watt. It

measures the rate of energy conversion, transfer or consumption. Named after the

English physicist James Prescott Joule, the joule is a SI unit of energy, often de-

fined as the work required to produce one watt of power for one second. In the

context of electrical engineering, energy consumption, or often referring to power

consumption, is usually discussed in terms of energy required over time to operate

an electrical appliance. Using a 1 000-watt electric heater for an hour, we need 1

000 watt-hours which equals to 3 600 000 joules. This amount of energy would

also light up a 100-watt bulb for 10 hours. Giving the same task of lighting up

a room for 3 hours, a 15-watt compact fluorescent lamp (CFL) only consumes 45

watt-hours while a 40-watt incandescent light bulb needs 120 watt-hours.

2.4.2 Energy Consumption and Software

For most of the cases, we regard the energy consumption of software systems as the

energy consumed by the software to provide a certain amount of work or service

over time. In terms of comparing energy consumption among software systems, we

only report the mean watts of the software instead of watt-hours. Because the tests

for software systems in the same category take the same amount of time to run.

We believe that it is more user-centric to argue about the energy consumption

in terms of the resource that produces it (such as battery life – the time a full bat-

tery lasts before being exhausted) than in SI energy units. For this reason we use,

throughout this thesis two metrics of energy consumption: battery life consumed

17

and the watt.

2.5 Chapter Summary

To sum up, we have discussed the work related to this thesis from three aspects.

Namely, they are user-centric evaluation, power modeling and management, and

mining software repositories. In the first half of this thesis, we investigate the im-

pact of user choice on software energy consumption. It takes a more broad and task

oriented approach compared to the previous work in terms of user-centric evalua-

tion. In the second half of this thesis, we seek to uncover the correlation between

software change and power consumption. This work is built upon Green Mining

and extends it by the idea of system call tracing.

18

Chapter 3

The Impact of User Choice on

Energy Consumption

A lot of researchers have been focusing on building power models for mobile de-

vices to understand application power behaviours [11], [30], [37], [7], [25], [23],

[12]. Only a limited number of research work has studied the software energy

consumption from the end-users’ perspective [5], [1], [22]. Chetty et al. [5] have

investigated how people use power management strategies on their home comput-

ers. Amsel et al. [1] have implemented a tool, Green Tracker, which made the first

step to draw the end-users’ attention to software energy consumption. McLachlan

et al. [22] characterized the power consumption of various interactions techniques

for finishing a single task. In the context of getting a specific service or finishing a

task, users usually have a large selection of software systems, but how users’ choice

of the application affects their devices’ battery life has not been studied yet. In this

chapter, we present our work about the impact of user choice on energy consump-

tion, which is under review for the IEEE Software.

We propose a methodology to contrast the energy consumption of software sys-

tems that can provide the same quality of service. We first define the energy effi-

ciency of software. Then we develop three use-case scenarios, text editing, email

receiving, and music playing, to simulate real users performing a task using dif-

ferent software systems. By applying physical power meters, we benchmark the

power consumption of software systems under each use-case scenarios. We also

create a model for estimating the loss of a device’s battery life using the power con-

19

sumption measurements. At last, we show that executing a task can consume more

or less energy depending on the requirements and software choices of users, thus

demonstrating the tradeoffs that users can make for the sake of energy consumption.

This chapter is organized as follows. Section 3.1 introduces the definition of en-

ergy efficiency of software. The use-case scenarios applied in this study are listed

in Section 3.2. Our methodology and results are presented in Section 3.3 and Sec-

tion 3.4 respectively. Section 3.5 discusses the causes of energy consumption and

a rating system for application energy consumption. Section 3.6 talks about the

threats to validity in this research and Section 3.7 summarizes this chapter.

3.1 Energy Efficiency of Software

To this day, power benchmarking has been primarily concerned with the energy

consumption of different components of equipment (such as the CPU, wireless net-

work adapter, hard drives, etc) or the entire system. Battery life is an example of the

latter, when the goal is to try to understand how efficient the entire system is with

a “typical load”. The subject of the benchmark is the system not the applications

used to test it.

The common user’s view is that, if they want to save energy (usually to extend

battery life) they should use energy efficient hardware or stop using peripherals such

as USB ports, or wireless network adapters and stop running applications. As we

mentioned in the introduction, Intel recommends that end-user applications should

be concerned with their algorithms, CPU and memory use [17]. Therefore we can

expect that different applications, would have different energy consumption (as they

can have different speed performance).

Energy efficiency benchmarks should be user-centric. The user has certain tasks

that the software is expected to accomplish. In some cases, the software, such as

an email client, is expected to run “24/7”. In others, the user chooses when the

software runs and where it stops. To properly benchmark the energy consumption of

an application is necessary to determine the typical amount of work expected from

the application. This is highly dependent on the domain of the application. In some

20

cases this unit of work might be measured by unit of time (such as running an email

client continuously), in others, simply in terms of units of work completed (such

as compressing a file). Any of the benchmarked applications should be capable of

completing this amount of work. We will call this the expected quality-of-service.

We will refer to the energy required to complete the expected quality of service as

the energy efficiency of an application (and measure it in watts per unit-of-work).

The energy efficiency of an application is the difference between the amount of

energy that a computer consumes while running an application to complete that

unit of work compared to not running the application (all other things being equal).

Any computer consumes energy whether it is idle or not (“idle” here means

running a computer or an application without any workload). In the same manner,

running applications use energy whether they are being used or not. Benchmarks

should also be created to measure the energy consumption of idle applications.

We will name this the ghost energy consumption of an application. As its appli-

ance’s counterpart, the ghost energy consumption is particularly worrisome because

it might be more expensive than stopping and restarting the application.

3.1.1 Measuring Energy Consumption

There are many ways to measure energy consumption. One can rely on monitors in

the power hardware of a computer, such as the power supply or motherboard (often

exposed by interfaces such ACPI), or one can measure the wall-power consumed

by a computer with a physical power meter (the power that will be billed by the

energy utility company).

In this paper we eschew ACPI, because power supply measurement is rare on

desktop machines, instead we opt to measure the wall power with a Watts Up? Pro

power meter plugged between the wall socket and the computer desktop (we did

not measure the display consumption).

One problem with power measurement is that repeated runs of the same test

often have slightly different results. These variations occur because modern com-

puters, whether in your pocket or on your desktop, are complicated devices respon-

sible for multiple tasks and services at the same time. Thus to get a good idea of

21

the actual energy consumption, tests need to be repeated. These repeated tests are

difficult to run and limit end-user’s ability to discern energy efficiency.

3.1.2 Battery Life Estimate

Mobile devices often provide the information about how much battery capacity or

how much battery life is left for users via ACPI. We argue that users are more famil-

iar with the metric of battery life than the watt. Also, users care about availability

and the battery life of their mobile devices, thus we can use our energy consumption

measurements in a desktop to model expected battery life performance on tested and

other devices.

We created a model where we converted energy consumption measurements

to the expected loss of a device’s battery life. Assume that we have a laptop that

has a ghost energy consumption (an idle consumption) of widle watts and a battery

that can output whrtotal watt-hours of energy. The equation to convert the energy

consumption to battery life is shown below:

∆T =
whrtotal

widle

−
whrtotal

widle + λ · (wapp − wtestIdle)
(3.1)

Where ∆T is the reduced battery life when applying an application with the

energy consumption in wapp watts comparing to that of the laptop model being idle;

wtestIdle is the ghost energy consumption in watts when the testbed is idle; λ is used

as the scaling multiplier to tune the difference between platforms (λ equals to 1 if

the laptop model is the testbed itself).

Effectively this model estimates the naive difference in energy consumption for

a given device and outputs the battery life lost in hours by running an application

the entire time. This measurement could be viewed as how much time you get to

use the application on a plane or without wall-power. Table 3.2 describes the model

parameters for 3 devices. Section 3.4.5 describes the energy consumption of our

test scenarios in terms of battery life.

22

3.2 Use-Case Scenarios

Our motivation is that of the stranded user who understands that they will have

to operate on battery power until they run out. As a stranded user we want to be

productive with our dwindling laptop battery life. In this section, we demonstrate

the use-case scenarios chosen for this study and implementation details of these

use-case scenarios are discussed in Section 3.3.3.

3.2.1 Text Editing

First and foremost we want to produce something, such as a report, so we shall

assume at the very least we want to write. Typical scenarios for writing include

using a text editor, such as gedit, or a word processor, such as Write (which

is included in LibreOffice and OpenOffice). Cloud-based word processors such

as Google Docs are growing in popularity due to their ease of access, price, and

availability. Each of these text editing products offer a different range of features

and usability.

Our use-case scenario will be to type in text at the rate of an amateur typist

entering pre-written text and then to save the document.

3.2.2 Receiving Email

Of course we must stay connected to the world, thus we expect while we are

stranded we will still communicate via email. A typical email scenario would be

checking the inbox for new mails. A user might use a local application such as Out-

look or Thunderbird, or they might use a webmail solution such as Google Mail.

Our use-case scenario will be an email client left open and idle, constantly

checking for mail as mail slowly arrives. This scenario represents what mobile

devices often do: idle and wait. If an application uses a lot of energy in order to do

this it would be detrimental to the end-user.

23

3.2.3 Playing Music

Finally, we must stay entertained on our power-socketless desert island of produc-

tivity: we want to play music from our music collection. Applications such as

Amarok or Rhythmbox help users both organize collections of music and play them,

while specialized software such as mpg123 focuses solely on playing music.

Our use-case scenario will include playing a music from the hard-drive using

one of these applications in the foreground.

Thus we are stranded, at a location like a cafe, without power outlets, relying

solely on battery power and attempting to write a document, read email, and

listen to music one task at a time. Given these tasks, how do our choices in

terms of applications affect how long we can work on battery power?

3.3 Methodology

In this section we present the methodology for measuring and comparing the energy

consumption among applications with equivalent functionality. The general process

is derived from the previous work on Green Mining [15] and is as follows:

1. Choose a software product.

2. Decide on the level of instrumentation.

3. Develop a use-case scenario and simulate users completing a task.

4. Build up the test bed to measure the energy consumption.

5. Run the tests and analyze results.

3.3.1 Choosing Software Products

In this study, we chose to develop tests for text editing applications, email clients,

and music players. The text editing applications include the default text editor

gedit on GNOME desktop environment in Ubuntu, the open source word proces-

sor LibreOffice Writer, which we will simply refer to as LibreOffice from now on,

24

Table 3.1: Applications tested

Test Application Version

Text Editing gedit 3.4.1

LibreOffice Writer 3.5.7.2

Google Docs December 2012

Email Receiving Mozilla Thunderbird 16.0.2

Gmail on Mozilla Firefox December 2012 on 16.0.2

Music Playing mpg123 1.12.1

Banshee 2.4.1

Rhythmbox 2.96

and the web-based office suite Google Docs provided by Google. In terms of the

email clients, Mozilla Thunderbird, which is a free and open source email client

developed by the Mozilla Foundation, as well as the free webmail service Gmail

which is provided by Google are chosen to be tested. When testing Google Docs

and Gmail, we made use of the Mozilla Firefox as the web browser. Three music

players have been tested and they are mpg123, Banshee and Rhythmbox. mpg123

is a command-line MPEG audio player. Banshee is a media player under GNOME

desktop and Rhythmbox is also a music player under GNOME desktop. The tested

versions of all the related applications are shown in Table 3.1.

3.3.2 Deciding on the Level of Instrumentation

The device we used to measure the energy consumption of the testbed is an AC

power monitor, Watts Up? Pro [15]. This meter can continuously monitor and

collect power measurement with an accuracy of ±3%. This hardware can monitor

real-time electricity usage and collect a variety of data, including power consump-

tion in watts, and transmit this result over a USB-serial connection.

3.3.3 Developing Use-Case Test Cases

In this study, we sought to imitate real world users using these applications and

developed three scenarios to test the energy consumption for each application in

25

each scenario.

3.3.3.1 Idling on the Testbed

To properly measure the energy consumption of the application on the machine

where the tests were run, we had to measure its idling energy consumption, i.e.

the energy it consumes when no application is explicitly run. We left the Ubuntu

Unity 2D desktop running idle for a period of 5 minutes and measured its energy

consumption.

During these tests and all the subsequent tests described below a GNOME ter-

minal running the GreenLogger was left running. GreenLogger does not produce

any terminal output while measuring power.

3.3.3.2 Text Editing

For text editing applications, the testing scenario is to simulate a user creating a

new document and then typing text into it and finally saving the document. We

built a X11::GUITest UI driver to simulate the mouse actions and typing actions

that we pre-recorded based on me typing in the preamble of the GNU General

Public License (GPL) 1. The test took almost 6 minutes to type about 560 words of

the preamble in the GNU GPL.

To be specific, for gedit and LibrefOffice, the procedure is 1) start the appli-

cation, which opens a new document; 2) type the GNU GPL Preamble; 3) save the

file; and, 4) close the application. For Google Docs, 1) start Firefox; 2) go to to the

Google Docs web page; 3) start a new document, 4) type the document; 5) save it;

and 6) close Firefox.

3.3.3.3 Receiving Email

Our scenario to test email clients was meant to simulate a user idly receiving emails

using either Thunderbird or Gmail in the foreground without user interaction. In or-

der to implement this, a separate test computer sent plain text emails, 1 per minute,

to a single Gmail account. Each email client was instructed to monitor the receiving

1GNU GPL, http://www.gnu.org/copyleft/gpl.html

26

email account. Thunderbird connected to Gmail using the IMAP protocol. Usually

emails would appear approximately 5 seconds after they were sent. Gmail was run

within Firefox and communicated directly to Gmail HTTP servers.

To test Thunderbird, 1) we started Thunderbird; 2) and monitored Thunderbird

for 10 minutes watching the 10 emails appear; and 3) we closed Thunderbird.

To test Gmail, 1) Firefox was started with the Gmail cookie already set; 2) the

client would be instructed to type in the Gmail URL to go to the Gmail web page;

3) monitor Firefox and Gmail for 10 minutes as it received the 10 emails; and 4)

close Firefox.

3.3.3.4 Playing Music

Our third scenario was to listen to music. In order to test this we needed to test

music players playing a three minute long song 2.

The mpg123 player is a command-line based player, that we tested within a

GNOME Terminal. It was started with the song as a command-line parameter and

would play the song as soon as it started; it terminate once the song finished playing.

Banshee and Rhythmbox have GUIs, making their testing more complicated

and requiring a GUI driver. They also maintain a database of the music of the

users. For this reason, before we tested each application, we added the test song to

their databases (it was the only song in them). Both Banshee and Rhythmbox were

started by clicking on their respective icons on the Ubuntu 12.04’s Unity panel.

Once each application was opened we clicked the play icon which played the song,

as it was the only song in the library. Once the song was finished playing, our GUI

driver clicked the close icon and shutdown the music player.

3.3.3.5 Idling Applications

In order to understand the difference between ghost energy consumption of the idle

applications and compare them to the energy consumption of the testing scenar-

ios above, we tested the energy consumption of all the applications without taking

any workload but staying in the background. To be specific, we started each of

2The song, “Flute Solo for the Iron-blooded Loyalists”, was graciously made available for these

experiments by its author, You Fu.

27

the text editing, email, and music applications (except for mpg123 because it is

command-line based and it is not intended to run idle), and immediately iconized

them, without doing any work (except for the mail clients, who continued to check

for new email, but did not receive any).

3.3.4 Configuring the Testbed

Our tests are meant to test the idea that different applications consume different

amounts of energy. We expect that in other computers and operating systems this

difference is still observable. Hence, due to the availability of testbed when this

study was conducted, we implemented our tests on a desktop machine running 32-

bit Ubuntu 12.04. It has an AMD Athlon XP2800+ processor with 1-Gbyte RAM.

To minimize the noise when measuring the energy consumption of tests, we turned

off any services and automatic updates performed by the operating system. We also

disabled the screen saver and left the screen on during the tests. Headphones were

plugged in for the music tests.

We created a test-user to run our scenario tests called greenmining and this user

would run the default Ubuntu 12.04 Desktop, Unity 2D.

The desktop testing machine was plugged into a Watts Up? Pro power meter,

which was instructed to continuously log its energy consumption as RMS, with a

resolution of 1 measurement-per-second. The data is recorded by GreenLogger,

which is our application that records Watts Up? Pro readings.

3.3.5 Running the Tests and Analyzing Results

If we studied this exact scenario, e.g., running applications from each category at

the same time, we would need to consider all combinations of applications and

factors that could affect the energy consumption among the systems. Thus, each

application is run through its associated scenarios individually so that we can avoid

the power consumption overhead caused by interactions among different applica-

tions as well as services provided by the OS to run multiple applications at the same

time, such as scheduling. The energy consumption of its test machine is measured

by GreenLogger.

28

We rebooted the testbed between different application tests. The first test after

reboot was discarded in order to ensure uniformity of the disk-cache for subsequent

tests. Thus our tests are run with a hot disk-cache. We ran each test 40 times. This

number was chosen before hand in order to ensure that even in the presence of skew

we could attempt to determine normality or differences between measurements.

Our tests were divided into three types: text editing, email receiving, and music

playing. For each test we chose at two or three applications to test. Each test

was performed 40 times, while the energy consumption of the computer was

recorded.

3.4 Results

In this section, we present the results and investigate the energy consumption of all

the tested applications. Note that according to the t-test that all of the comparisons

in this section are statistically (p < 10−10) significant even after correction for

multiple hypotheses.

3.4.1 Idling on the Testbed and Applications

These tests could help us benchmark the testbed’s idling energy consumption and

applications’ ghost energy consumption. Idling on the computer used 95.3 watts

on average and we set it to be the system baseline, which is zero in Figure 3.1, 3.3

and 3.5 (the distributions of each test are statistically different from any other, ex-

cept for the idle and busy measurement of Gmail, which is a statistical tie). As

shown in our results, the ghost energy consumption (while idle) of text editing ap-

plications, gedit, LibreOffice, and Google Docs are 0.2, 0.3, and 1.0 watts corre-

spondingly. The ghost energy consumption of music playing applications, Banshee,

and Rhythmbox are 0.8 and 1.1 watts.

29

system gedit LibreOffice GoogleDocs

0

1

2

3

4

5

6

7

idle idle busy idle busy idle busy

w
a
tt
s

Test

system

editing

Figure 3.1: Distributions of the mean watts consumed per test: idling on testbed

and text editing tests. 40 tests each, 280 tests total.

3.4.2 Text Editing

In this part, we discuss the energy consumption of three applications, gedit, Li-

breOffice, and Google Docs executing our text processing scenario.

gedit has limited functionality compared to LibreOffice and Google Docs

which both focus more on word processing than text editing. Thus few layout fea-

tures and formatting attributes are included in gedit. Since gedit is a lightweight

text editor, it is unsurprising that gedit has the lowest energy consumption of the

three. As shown in Figure 3.1, the average watts in the gedit tests is around 2.2

watts higher than the baseline, lower than both LibreOffice and Google Docs.

LibreOffice provides more features than gedit. It includes some layout fea-

tures and formatting attributes like centering and making bold titles. LibreOffice

also has automatic spell checking that can automatically highlight and correct mis-

spelled words based on a dictionary. LibreOffice had 1.4 watts higher energy con-

sumption than gedit did, as shown in Figure 3.1.

Google Docs is similar to LibreOffice in terms of its typesetting and layout fea-

tures. Google Docs includes spell checking too. Unlike gedit and LibreOffice,

30

Google Docs automatically synchronizes and saves text that is typed. This auto-

saving feature causes Google Docs to synchronize with Google’s servers frequently.

Thus, as we can observe from Figure 3.1, the average consumption of Google Docs

is 6.4, 4.2, and 2.8 watts higher than that of the system baseline, gedit, and Li-

breOffice respectively.

Figure 3.2 shows the density plots of the energy consumption in the three text

editing tests. gedit, LibreOffice, and Google Docs all have a start-up peak, which

are heavy in terms of disk I/O, memory, and CPU use, and several centers. the

centers in gedit and LibreOffice are similar except that gedit is more shrunk.

Google Docs differs from the other two applications as its density plot depicts in-

consistent energy consumption.

The text editor gedit consumes, in average, 1.4 watts less than LibreOffice,

and 4.2 less than Google Docs. This is in part due to the extra features that

the latter provide compared to the former, such as automatic spell checking

and WYSIWYG rendering, Google Docs’ use of cloud synchronization has

impacted its energy efficiency as this is functionality not shared with gedit

or LibreOffice.

3.4.3 Receiving Email

During receiving email scenario tests, Gmail used the HTTP protocol and updated

the new emails very quickly. Whereas Thunderbird used IMAP protocol to retrieve

the email and new emails appeared about 5 seconds later. From Figure 3.3, the

energy consumption of Thunderbird and Gmail are 0.3 and 0.6 watts higher than

the baseline on average, respectively, with 0.3 watts difference.

Density of the power measurements for receiving email scenario is shown in

Figure 3.4. They both have relatively stable energy consumption and also the start-

up peaks which are clearly noticeable.

31

100 200 300

9
6

9
8

1
0
0

1
0
2

1
0
4

1
0
6

1
0
8

gedit Text Editing Tests

Seconds

W
a
tt
s

 2e−04

 2e−04

 2e−04

 4e−04

 6e−04

 6e−04

 8e−04

 8e−04

 0.001

 0.001
 0.001

 0.0012

 0.0012 0.0012

 0.0014

 0.0014
 0.0016

 0.0016

 0.0016

 0.0018

 0.002

 0.0024

100 200 300

9
6

9
8

1
0
0

1
0
2

1
0
4

1
0
6

1
0
8

LibreOffice Text Editing Tests

Seconds

W
a
tt
s

 5e−05

 5e−05

 5e−05

 5e−05

 1e−04

 1e−04 1e−04

 1e−04 1e−04

 1e−04

 1e−04

 1e−04

 0.00015

 0.00015

 0.00015

 0.00015

 0.00015

 0.00015

 2e−04

 2e−04

 2e−04

 2e−04

 0.00025

 0.00025

 0.00025

 0.00025

 3e−04

 3e−04

 0.00035

 4e−04

 4e−04

 4e−04

 4e−04
 4e−04

 4e−04

 0.00045

 0.00045

 0.00045

 0.00045

 5e−04

 5e−04

 5e−04

 5e−04

 0.00055

 0.00055 0.00055

 6e−04

 6e−04

 6e−04
 0.00065

 0.00065

 0.00065

 7e−04

 7e−04

 0.00075

100 200 300

9
6

9
8

1
0
0

1
0
2

1
0
4

1
0
6

1
0
8

Google Docs Text Editing Tests

Seconds

W
a
tt
s 5e−05

 5e−05

 5e−05
 1e−04

 1e−04

 1e
−04

 1e−04

 1
e
−
0
4

 0.00015

 0.00015

 0.00015

 2e−04

 2e−04

 0.00025
 0.00025

 3e−04

 3e−04

 3e−04

 3e−04

 3e−04

 3e−04
 0.00035

 0.00035

 0.00035

 0.00035

 0.00035

 0.00035

 4e−04

 4e−04

 4e−04

 4e−04

 4e−04

 0.00045

 0.00045

 0.00045

 0.00045

 0.00045

 5e−04

 5e−04

 5e−04

 5e−0
4

 0.00055

 6e−04

Figure 3.2: Density of the power measurements from gedit tests, LibreOffice

tests, and Google Docs tests. The density indicates how often a measurement was

taken at a certain watt at a certain second. This plot is effectively an overlay trace

of how 40 tests ran in terms of watts.

32

system Thunderbird Gmail

●
●

●

●

0

1

2

idle idle busy idle busy

w
a
tt
s

Test

system

email

Figure 3.3: Distributions of the mean watts consumed per test: idling on testbed

and email receiving tests. 40 tests each, 200 tests total.

Using different protocols to retrieve emails, Gmail and Thunderbird didn’t be-

have the same in terms of energy consumption. Gmail had 0.3 watts higher

energy usage than that of Thunderbird on average.

3.4.4 Playing Music

mpg123 is a command-line music player, whereas Banshee and Rhythmbox both

have graphical user interfaces. We used the default settings such as volume and EQ

in these three application when playing the song. Based on Figure 3.5, on average,

mpg123 has the lowest energy consumption, 0.4 watts above the system baseline,

compared to Banshee, 2.6 watts and Rhythmbox, 2.2 watts higher than the baseline.

As observed from the density plots in Figure 3.6, the energy consumption of

the three music players seem to be flat during the music playing session. At the

beginning of the tests, Banshee and Rhythmbox have start-up peaks while mpg123

does not.

From the playing music tests, it is clear that graphical user interfaces and the

music library management features would affect the energy consumption. Banshee

using Mono, a .NET VM to run, perhaps that overhead caused it to use more than

Rhythmbox.

33

100 200 300 400 500 600

9
6

9
8

1
0
0

1
0
2

1
0
4

1
0
6

Thunderbird Email Receiving Tests

Seconds

W
a
tt
s

 0.001

 0.002
 0.003 0.004 0.004 0.004

100 200 300 400 500 600

9
6

9
8

1
0
0

1
0
2

1
0
4

1
0
6

1
0
8

1
1
0

Gmail Email Receiving Tests

Seconds

W
a
tt
s

 0.001

 0.002
 0.003 0.004

Figure 3.4: Density of the power measurements from email tests of Thunderbird

and Gmail.

34

system mpg123 Banshee Rhythmbox

●

●

0

1

2

3

4

idle busy idle busy idle busy

w
a
tt
s

Test

system

music

Figure 3.5: Distributions of the mean watts consumed per test: idling on testbed

and playing music tests. 40 tests each, 240 tests total.

Table 3.2: battery life model parameters

Name widle (watts) Battery Life (hours) whrtotal (watt-hrs)

Big 95.3 3 285.9

X31 19.5 3.6 71

The non-GUI music player is approximately five to six times more energy ef-

ficient than the ones with a GUI. It is also remarkable that ghost energy con-

sumption of the GUI players is 0.8 and 1.1 watts.

3.4.5 Application Energy Efficiency under Battery Life Models

In order to argue for the cost-effectiveness in choice of applications, we have built

two laptop-based battery models, called Big and X31, to estimate the battery life.

Big is a model of the desktop PC we used if it had a battery supply that could last

3 hours while idle. X31 model is based on our another testbed, the Lenovo X31

laptop. The parameters of the two models are listed in Table 3.2.

Figure 3.7 shows the distributions of the reduced mean battery life estimated by

Big laptop model based on the desktop power measurements for all the applications.

We can clearly observe the different impacts of applications on the battery life.

We can also estimate the battery life for running the applications on other bat-

tery life models using the power measurements from the desktop testbed. We im-

plemented the identical tests on another testbed, the Lenovo ThinkPad X31, so

35

50 100 150

9
6

9
8

1
0
0

1
0
2

1
0
4

1
0
6

1
0
8

mpg123 Music Playing Tests

Seconds

W
a
tt
s

 0.002

 0.002

 0.004

 0.006
 0.008 0.008

 0.01 0.012

50 100 150

9
6

9
8

1
0
0

1
0
2

1
0
4

1
0
6

1
0
8

Banshee Music Playing Tests

Seconds

W
a
tt
s

 0.002

 0.004 0.006
 0.008

 0.008 0.008 0.01

50 100 150

9
6

9
8

1
0
0

1
0
2

1
0
4

1
0
6

1
0
8

Rhythmbox Music Playing Tests

Seconds

W
a
tt
s

 0.005 0.01
 0.015 0.015

Figure 3.6: Density of the power measurements from music playing scenario tests

using mpg123, Banshee, and Rhythmbox.

36

Figure 3.7: Distributions of mean battery life consumed per application using desk-

top results based on the Big laptop model.

as to tune the λ in Equation 3.1 for X31 laptop model based on the power mea-

surements of our previous desktop testbed. The Lenovo ThinkPad X31 was run-

ning 32-bit Ubuntu 12.04 as well. Figure 3.8 plots the distributions of the mean

power consumption for each application running on the X31 testbed. The exact

reduced battery life for running the tested applications on X31 laptop model, as

shown in Figure 3.9, can be computed based on the power measurements from the

X31 testbed and X31 laptop model. Using the power measurements on the desk-

top testbed and a random value for λ, we can estimate the reduced battery life for

running all the applications on X31 laptop model. Based on the evaluation method,

the mean absolute error (MAE) [35], we can determine the best λ for estimating the

reduced battery life using power measurements from the desktop testbed on X31

laptop model. We found that the MAE is the smallest when λ is equal to 0.79.

Figure 3.10 presents the distributions of the reduced mean battery life estimated

by the desktop power measurements for all the applications (λ = 0.79). The impact

of power consumption variations on battery life is more obvious than that in Fig-

ure 3.7. For example, the difference of energy consumption between gedit and

Google Docs was only 4.2 watts in the text editing scenario, but using gedit will

gain about 32 minutes more battery life than using Google Docs to type text in X31

laptop model. Thus we can see the impact of small changes in power on energy

consumption by using battery life models.

37

system gedit LibreOffice GoogleDocs Thunderbird Gmail mpg123 Banshee Rhythmbox

●●●

●●

●

●

●●

●●

●●

●●

●
●

●

●

●

●

0

1

2

3

4

5

6

7

idle idle busy idle busy idle busy idle busy idle busy busy idle busy idle busy

w
a
tt
s

Test

system

editing

email

music

Figure 3.8: Distributions of the mean watts consumed per test: idling on testbed,

text editing, email receiving and music playing tests on X31 testbed. 40 tests each,

640 tests total.

Figure 3.9: Distributions of mean battery life consumed per application using X31

results based on the X31 laptop model.

38

Figure 3.10: Distributions of mean battery life consumed per application using

desktop results based on the X31 laptop model.

3.5 Discussion

3.5.1 Functionality Versus Consumption

It is not surprising that more functionality often leads towards an increase in energy

consumption. Due to their simplicity, both gedit and mpg123 are expected to

perform better than their counterparts. On the other hand, the use of the cloud

makes both Google Docs and Gmail less efficient than LibreOffice and Thunderbird

(keep in mind that we are only measuring the local consumption—Google services

require energy of the networking infrastructure and Google servers to run that we

have not taken into consideration).

A user who is not concerned with energy consumption is likely to choose the

software that provides the most desired features (functional and non-functional).

However, a user that is concerned with energy consumption (such as our stranded

user running on battery power) would consider energy consumption a priority. For

example, start by typing the document in gedit, then spell checking it in Libre-

Office and finally upload it to Google Docs (if the document must be uploaded to

the cloud). Similarly, the interface is probably less important for our user than the

ability to listen to music.

In the future, applications might document the impact on energy consumption

for each of their features, and include different options for different levels of energy

39

consumption similar to the way OSes do it; e.g., a menu option for low power

or normal energy consumption where some less important features, such as GUI

animations, are disabled. Users who must optimize energy consumption will be

capable of making informed decisions in terms of what and when to run.

Uses who are concerned about energy consumption should balance the advan-

tages of a feature versus its energy cost, and plan their use of applications based

upon these factors.

3.5.2 Causes of Energy Consumption

In the tests we conducted, the main causes of energy consumption we observed

from our results were:

• Synchronization with the cloud: Google Docs suffered greatly from con-

stantly synchronizing the document in the cloud.

• Web based applications are less efficient than their stand-alone counterparts.

• Heavy startup: Banshee and Rhythmbox perform many tasks before it is

ready to perform the tasks required.

• Continuous events are expensive: Spellcheckers hurt both Google Docs and

LibreOffice as they increased the number of events per keystroke. Future

work should compare the energy consumption of spell checking done during

vs after typing a document.

• UI updates are expensive: UI interfaces that are continuously updated con-

sume a significant amount of energy. We were surprised by how little energy

was consumed playing music using mpg123 (less than 0.4 watts—it is clear

that the hardware is optimized to play music files). The other players used

more than five times more energy.

3.5.3 Ghost Energy Consumption

Many idle applications continue to consume energy. As we demonstrated in Fig-

ure 3.1, 3.3 and 3.5, a lot of applications use power even if they are not finishing any

40

tasks. Users tend to keep applications open, ready to be used. Since idleness often

makes up a size-able percentage of time for many of the tasks it is quite important.

Application developers should consider balancing the benefits and disadvantages

of using idle-time for any further processing. Also application developers should

consider reducing the number of events that occur during idle time, since for certain

applications idle-time dominates (such as our email tests).

3.5.4 Application Ratings

As the results herein demonstrate, different applications have different energy con-

sumption profiles, even when they are asked to performed the same task. An even

bigger concern is that applications consume energy even when they are idle. We

expect that, as hardware and operating systems become more efficient, the focus

will turn towards the energy consumption of applications.

In general, users are unlikely to have the equipment, the expertise or the time to

measure the energy consumption of applications. This is complicated by the lack

of simple-to-use user-space tools that can help estimate how much energy an appli-

cation consumes, such as those that exist to monitor the overall operating system

(such as Intel’s PowerInformer 3; or the monitoring tools for software developers,

such as Intel’s Power Checker 4 and Microsoft’s Event Tracing 5). As energy con-

tinues to become a growing concern, both users and developers will be expected to

report the energy efficiency of the applications they use/create. This will create a

positive feedback-loop: users will expect energy efficiency, and developers will be

expected to deliver it.

We propose the creation of Software Application Energy Consumption Ratings

(SAECR). A SAECR has three main goals: 1) to define a framework and a method-

ology for consistent measuring of consumption of applications; 2) to create guide-

lines for the creations of benchmarks that represent typical user needs; and 3) to

simplify the reporting of results in a manner that is easy-to-understand by typical

3http://software.intel.com/en-us/articles/intel-powerinformer/
4http://software.intel.com/partner/app/software-assessment
5http://msdn.microsoft.com/en-us/library/bb968803%28v=vs.85%29.

aspx

41

Table 3.3: An example of software application energy consumption ratings ranging

from A to C. A means the most energy efficient and C means the least energy

efficient.

Task Application Rating

Text Editing gedit A

LibreOffice Writer B

Google Docs C

Email Mozilla Thunderbird A

Gmail on Mozilla Firefox B

Music Playing mpg123 A

Banshee C

Rhythmbox B

users. A basic SAECR is shown in Table 3.3 based on our current results.

SAECR would be similar to those in other areas, such as those in networking

(the Network and Telecom Equipment Energy and Performance Assessment, fos-

tered by the Energy Consumption Rating Initiative 6). It is not unfeasible that in

the future Government organizations become involved, and extend their energy rat-

ing programs, such as Energy Star 7 (originally American but now used in Canada,

the European Union and other countries), the Canadian EnerGuide Label 8, and

the European EU Directive 92/75/EC (European Union Energy Label), to include

software.

We believe that a SAECR can start with two benchmarks. The first, measuring

the ghost energy consumption of applications. The second, applicable to applica-

tions that are expected to continuously perform the same task without user interac-

tion (such as playing a movie, playing sound, a desktop widget, etc). In both cases

the benchmark is straightforward (run the application and measure its consump-

tion). These tests will allow users to compare the energy efficiency of similar ap-

plications. As mentioned before, this comparison will force developers to improve

the energy efficiency of applications they develop and will allow users to determine

6http://www.ecrinitiative.org/
7http://www.energystar.gov/
8http://oee.nrcan.gc.ca/equipment/appliance/15538

42

what applications they should use (or stop using) when they are concerned with

energy consumption (e.g. running on battery power).

3.6 Threats to Validity

Construct validity is threatened by the accuracy of our measurements, Watts Up?

Pro have limited resolution (0.1 watt), and the test-cases we posed. Were our test

cases representative of real users? We tried to make the test cases realistic, and we

recognize they might not cover all users. We used UI recording tools in order to en-

sure the input was realistic, but the UI driver could provide excessive overhead and

use different kinds of interrupts when compared with keyboards and mice. Other

construct validity threats relate to our idea of idle behaviour where we measure

the entire system and then attribute energy usage during our tests as the usage on

top of the idle usage. Our networked tests do not measure the energy used in the

server-side (such as Google’s servers).

Internal validity is threatened by our battery life estimation models, which are

simplifications of battery life on laptops. Our assumption that 1 Watt above idle on

the desktop is similar in scale to 1 Watt above idle on a laptop can be challenged, but

we allowed for tuning the scale of the effect. We argue that the direction and relative

magnitude are close but the numbers are not necessarily as accurate as running on

the actual device. To address the effect of a web browser on a scenario we measured

an idle Firefox to help explain if Firefox itself was the primary perpetrator of energy

consumption.

External validity was bolstered by the breadth of the scenarios we tested. But

external validity was harmed by not using multiple software and hardware platforms

while measuring the energy consumption of the scenarios. However, our tests are

meant to illustrate that different applications consume different amounts of energy.

We expect that in other computers and operating systems this difference is still

observable (even if the measured values are different).

43

3.7 Chapter Summary

Very frequently users have a choice of what application to use to complete a task.

In this chapter we have proposed a user-centric method to measure the energy con-

sumption of applications based upon the scenarios that correspond to tasks that

uses are expected to complete. We demonstrate its effectiveness by defining three

such scenarios, and an implementation of benchmarks to measure the consumption

during each of them.

The results indicated that different applications can have dramatically different

energy consumption when performing the same task (e.g. a command-line music

player uses more than five times less energy than a GUI one). We also found that

web-based applications tend to consume more energy than non-web based, and that

idle applications can incur a significant amount of ghost energy consumption.

Unfortunately it is not trivial for users to know which applications are more en-

ergy efficient. We expect future work to be directed towards the creation of bench-

marks and reporting mechanisms (similar to Energy Star) that inform developers

and users of the energy efficiency of their applications. This will likely generate

pressure on the developers to improve the energy efficiency of the applications they

develop.

Users, by making a conscious decision to use applications that are optimized

towards energy consumption, can improve the battery life of their mobile devices,

and perhaps more importantly, contribute towards helping the environment.

44

Chapter 4

Mining Multiple Versions of

Software on Energy Consumption

In the previous chapter, we studied the impact of user choice on energy consumption

of software systems. As the builders of software, software developers are respon-

sible for the energy behavior of the software shipped to users. Most importantly,

when making a change in the software, developers do not want to jeopardize the en-

ergy efficiency of software. Although a lot of power models have been studied from

different levels of granularity [11], [37], [7], [25], [23], [30], [12], when it comes to

make power-efficient changes in software, informed decisions can be answered by

few of the existing studies.

In order to help developers understand the software power behavior when mak-

ing changes, we provide a method and a case study to reveal the correlation between

software change and power consumption. To be specific, we first investigated the

software power consumption evolution over multiple versions. Then, we traced the

system calls invoked by a list of software versions. At last, we leveraged system

call invocations to model software power consumption over versions. The results

show different power consumption behaviours in terms of multiple software ver-

sions and different test cases. Also, system calls act as the entry points into the

OS kernel. System call invocations have the potential of modeling software power

consumption based on multiple versions.

This chapter is organized as follows. Section 4.1 introduces system calls and

their interactions with both the user applications and the OS kernel. Our method-

45

ology is presented in Section 4.2 and our case study and results are explained in

Section 4.3. Section 4.4 discusses about the relationship between software changes

and power consumption based on our results. The threats to validity in this study

are mentioned in Section 4.5 and we conclude this chapter in Section 4.6.

4.1 System Calls

System calls are standard functions implemented between the OS kernel and user

processes. They are entry points to the OS kernel and provide services for user pro-

cesses when the processes need to access services in kernel mode. Usually such ser-

vices include communicating with the hardware (such as accessing the hard disk),

creating and executing new processes, and communicating with integral kernel ser-

vices [32]. Figure 4.1 presents the relationships among user applications, C library

functions, system calls and the OS kernel [32]. A library function and a system call

can both be invoked by the application code. While only system calls can interact

with the OS kernel. If a library function wants services from the OS kernel, it needs

to call system calls, too.

We can expect different revisions of software invoke different system calls dur-

ing their execution if they differ from each other in which services to get and how

to get the services from the OS kernel. As an essential interface sitting between

the application and the OS kernel that triggers hardware utilization and other ker-

nel services, can system calls provide a set of features for making predictions of

software power consumption?

4.2 Methodology

In this section, we explain the methodology for collecting and analyzing the soft-

ware power consumption among multiple versions of software. The general pro-

cess is derived from the previous work on Green Mining and also modified from

the methodology in Section 3.3.

1. Choose and build multiple versions of a software product.

46

����������	

� ����� ��	����	

��
��� ����

��	��

Figure 4.1: This diagram shows how applications, C library functions, system calls,

and kernel interact with each other.

2. Decide on the level of instrumentation.

3. Develop the test cases to run on the software.

4. Run the tests and analyze results.

4.2.1 Choosing and Building Multiple Versions of a Software

Product

We chose gedit, one of the text editors studied in Chapter 3, as the software to be

tested. This general purpose text editor has been developing for more than 10 years.

It is written in C and Python, and is the default text editor for GNOME desktop.

In order to build multiple versions of gedit, we relied on the Git repository

of gedit 1. When choosing commits to compile gedit, we only considered

releases. From release 0.7.9 to release 3.7.3 (commits starting from June 2000 to

February 2013), we were able to build 39 revisions of gedit, covering most of the

gedit 2 (18 builds) and gedit 3 versions (21 builds).

1Git repository of gedit, https://git.gnome.org/browse/gedit/

47

the rest of the tests were to measure the power consumption of gedit. System

calls for each version tend to be stable and we just traced them once for each re-

vision of gedit. For power measurement, in order to determine normality and

differences between measurements, we chose the number of tests to be 10. So in

total we have 390 tests in terms of power measurement.

Hence, for each gedit revision under each test case, there is one record of

system calls and ten records of power measurement. We also grouped the system

calls by names and counted the number of invocations of each system call for each

gedit revision to form the counted system calls matrix.

4.3 Case Study

In this section we present the results of our two gedit case studies. Each case

study intends to focus on one specific functionality in gedit so as to discover the

correlation between gedit power consumption with software changes in gedit.

The first case study focuses on the text editing functionality and the second case

study focuses on the syntax highlighting feature.

4.3.1 Text Editing

The test scenario for text editing is the same as we implemented in Section 3.3.3.

Figure 4.3 displays the results of each gedit version’s power consumption. Each

boxplot in the figure consists of the mean power consumption of every gedit

version in 10 tests and there are 390 tests in total. The red line draws the fluctuation

of all the mean power consumption in 39 gedit versions. The plot clearly shows

the different power consumption between version 2 and version 3 of gedit. Within

each major version, different revisions of gedit’s power consumption vary in a

limited interval.

Applying Student’s t-test to the tests for each pair of gedit versions, we

can determine if the comparisons of the mean power consumption among versions

are statistically significant. Figure 4.4 shows the pairwise Student’s t-test results.

There are two obvious clusters in terms of the p-values. The power consumption

49

of gedit 2 versions and 3 versions are totally different since the p-values between

each version’s mean power consumption are 0. However, in each major release,

most of the gedit versions’ power consumption are not significantly different,

except three versions, 3.0.1, 3.0.2, and 3.0.3.

By comparing the system call counts for each gedit version in text editing

test, we can investigate how the system calls invoked by each gedit version vary

under the test case. There are 79 different system calls in the counted system call

matrix and for each gedit version there is one system call vector which has 79

dimensions. All the system calls are listed in Appendix A.1. We applied cosine

similarity to each pair of the system call vectors. Figure 4.5 reports the pairwise

cosine similarities for each gedit version. It shows the similar pattern compared

to the pairwise Student’s t-test of power consumption in Figure 4.4. Although the

cosine similarities are all close to 1, they show two clusters in gedit 2 versions

and 3 versions, which implies the system calls invoked by the two major versions

vary from each other. For example, the number of invocations of the system call,

mmap2 (map files or devices into memory), increases from around 300 in gedit

2 versions to 500 in gedit 3 versions. While the system call fsync (synchronize

a file’s in-core state with storage device) shows a decreasing trend. The number of

fsync invocations drops from 6 in gedit 2 versions to 1 in gedit 3 versions.

Furthermore, we applied linear regression to the gedit power consumption

and system call invocations in each gedit version in order to have a closer inves-

tigation of their relationship. A large number of the system call counts are highly

correlated with each other (most of the Spearman’s correlations |ρ| > 0.8). So we

only modeled gedit power consumption over versions based on individual sys-

tem call. Table 4.1 presents 10 system calls, their Spearman’s correlations ρ with

gedit power consumption, their associated R2 values, and coefficients in linear

regression with relatively high R2 values. The descriptions of these system calls are

listed in Table 4.2. In addition, the total number of system call invocations for each

gedit version has a small negative coefficient, -3.93×10−5 and a R2 of 0.549 in

the linear regression model for gedit power consumption. It is not surprising that

system calls related to memory and I/O operations have higher R2 values since the

50

Table 4.1: Some of the system calls and the associated Spearman’s correlation ρ

with gedit power consumption, R2 values, and coefficients in linear regression

for the text editing test case. For each system call we build a model of the form:

y = b1 ·x+b0, where y is gedit power consumption and x is the number of system

call invocations. All the results are statistically significant (p < 1.00×10−8).

System Call ρ R2 Coefficient

shmget 0.864 0.987 0.157

getrlimit -0.864 0.987 -0.0784

mmap2 -0.728 0.986 -1.64×10−3

ftruncate -0.871 0.986 -0.0534

mprotect -0.706 0.984 -5.46×10−3

fsync 0.856 0.978 0.327

close -0.659 0.968 -6.66×10−3

read -0.720 0.654 -4.15×10−5

writev -0.719 0.632 -4.08×10−5

poll -0.710 0.632 -2.06×10−5

test scenario is to edit text in a file.

In the text editing test case, gedit power consumption stays in the same level

in terms of 2 major versions and 3 major versions respectively. There have not

been any important changes in terms of the basic feature, text editing, among

versions in each major release. However, there is a large gap (about 1.5 watts)

between the two major versions’ power consumption. The linear regression

modeling results show a list of system calls that can be better fitted with gedit

power consumption are related to memory management and file operations.

4.3.2 Syntax Highlighting

This case study is to investigate the relationship between gedit power consump-

tion under another feature, syntax highlighting, and the system calls invoked by var-

ious gedit versions. The test case intends to simulate a real user reading through

a variety of programming and text markup language code. There are six files to

read and each file is a source code (C, Java, Perl, and Python) or text from a markup

51

Table 4.2: Selected system calls with their descriptions from the text editing test

case.

System Call Description [33]

shmget allocates a shared memory segment

getrlimit get resource limits

mmap2 map files or devices into memory

ftruncate truncate a file to a specified length

mprotect set protection on a region of memory

fsync synchronize a file’s in-core state with storage device

close close a file descriptor

read read from a file descriptor

writev write data into multiple buffers

poll wait for some event on a file descriptor

20.1

20.2

20.3

20.4

20.5

20.6

20.7

20.8

20.9

21.0

21.1

21.2

21.3

21.4

21.5

21.6

21.7

21.8

21.9

22.0

22.1

22.2

22.3

22.4

22.5

22.6

22.7

22.8

22.9

23.0

23.1

2
.2
6
.2

2
.2
7
.1

2
.2
7
.2

2
.2
7
.3

2
.2
7
.4

2
.2
7
.5

2
.2
7
.6

2
.2
8
.0

2
.2
9
.1

2
.2
9
.2

2
.2
9
.3

2
.2
9
.4

2
.2
9
.8

2
.2
9
.9

2
.3
0
.0

2
.3
0
.1

2
.3
0
.2

2
.3
1
.1

3
.0
.0

3
.0
.1

3
.0
.2

3
.0
.3

3
.1
.1

3
.1
.2

3
.1
.3

3
.1
.4

3
.1
.5

3
.1
.6

3
.2
.0

3
.2
.1

3
.2
.2

3
.3
.1

3
.3
.2

3
.3
.3

3
.3
.4

3
.3
.5

3
.3
.7

3
.3
.8

3
.4
.0

gedit Versions

P
o
w
e
r
(w
a
tt
)

Figure 4.3: Distributions of the mean watts consumed per version of gedit run-

ning 10 editing text test (390 tests in total). The X axis represents the version

numbers and the Y axis is the power consumption.

52

1
0
.2
7
0
.3
2
0
.6
1
0
.5
2
0
.6
1
0
.8
9
0
.6

0
.5
6
0
.5
7
0
.0
7
0
.9
8
0
.8
5
0
.0
8
0
.4
9
0
.8
6
0
.1
2
0
.7
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
.2
7

1
0
.8
5
0
.1
5
0
.1
5
0
.6
5
0
.3
8
0
.6
3
0
.1
5
0
.1
8
0
.6

0
.3
9
0
.6
2
0
.0
2
0
.1
4
0
.6
1
0
.0
3
0
.4
6

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
.3
2
0
.8
5

1
0
.2
1
0
.1
9
0
.5
9
0
.3
7
0
.5
8
0
.2

0
.2
1
0
.8
5
0
.3
8
0
.5
6
0
.0
4
0
.1
8
0
.5
5
0
.0
7
0
.4
6

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
.6
1
0
.1
5
0
.2
1

1
0
.8
2
0
.3
8
0
.8
5
0
.3
6
0
.9
3
0
.8
6
0
.0
4
0
.7
4
0
.6
4
0
.2

0
.8
1
0
.6
5
0
.3
5
0
.4
3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
.5
2
0
.1
5
0
.1
9
0
.8
2

1
0
.3
4
0
.7
3
0
.3
3
0
.8
8
0
.9
7
0
.0
5
0
.6
3
0
.5
6
0
.3
5

1
0
.5
7
0
.6
1
0
.3
8

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
.6
1
0
.6
5
0
.5
9
0
.3
8
0
.3
4

1
0
.6
3
0
.9
9
0
.3
6
0
.3
8
0
.3
4
0
.6
7
0
.8
8
0
.0
7
0
.3
2
0
.8
6
0
.1
1
0
.8
3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
.8
9
0
.3
8
0
.3
7
0
.8
5
0
.7
3
0
.6
3

1
0
.6
2
0
.8

0
.7
6
0
.2

0
.9
3
0
.8

0
.2
5
0
.7
3
0
.8
1
0
.4
2
0
.7
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
.6

0
.6
3
0
.5
8
0
.3
6
0
.3
3
0
.9
9
0
.6
2

1
0
.3
4
0
.3
7
0
.3
1
0
.6
7
0
.8
8
0
.0
6
0
.3
1
0
.8
7
0
.0
9
0
.8
4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
.5
6
0
.1
5
0
.2

0
.9
3
0
.8
8
0
.3
6
0
.8

0
.3
4

1
0
.9
2
0
.0
4
0
.6
9
0
.6

0
.2
4
0
.8
8
0
.6
2
0
.4
3
0
.4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
.5
7
0
.1
8
0
.2
1
0
.8
6
0
.9
7
0
.3
8
0
.7
6
0
.3
7
0
.9
2

1
0
.0
7
0
.6
7
0
.5
8
0
.3
5
0
.9
7
0
.5
9
0
.6

0
.4
3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
.0
7
0
.6

0
.8
5
0
.0
4
0
.0
5
0
.3
4
0
.2

0
.3
1
0
.0
4
0
.0
7

1
0
.1
8
0
.3
9
0
.0
1
0
.0
4
0
.3
8

0
0
.1
7

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
.9
8
0
.3
9
0
.3
8
0
.7
4
0
.6
3
0
.6
7
0
.9
3
0
.6
7
0
.6
9
0
.6
7
0
.1
8

1
0
.8
5
0
.1
8
0
.6
2
0
.8
6
0
.3
1
0
.7
8

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
.8
5
0
.6
2
0
.5
6
0
.6
4
0
.5
6
0
.8
8
0
.8

0
.8
8
0
.6

0
.5
8
0
.3
9
0
.8
5

1
0
.2

0
.5
5
0
.9
9
0
.3
2
0
.9
9

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
.0
8
0
.0
2
0
.0
4
0
.2

0
.3
5
0
.0
7
0
.2
5
0
.0
6
0
.2
4
0
.3
5
0
.0
1
0
.1
8
0
.2

1
0
.3
3
0
.2

0
.5
4
0
.0
6

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
.4
9
0
.1
4
0
.1
8
0
.8
1

1
0
.3
2
0
.7
3
0
.3
1
0
.8
8
0
.9
7
0
.0
4
0
.6
2
0
.5
5
0
.3
3

1
0
.5
6
0
.5
9
0
.3
6

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
.8
6
0
.6
1
0
.5
5
0
.6
5
0
.5
7
0
.8
6
0
.8
1
0
.8
7
0
.6
2
0
.5
9
0
.3
8
0
.8
6
0
.9
9
0
.2

0
.5
6

1
0
.3
3
0
.9
8

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
.1
2
0
.0
3
0
.0
7
0
.3
5
0
.6
1
0
.1
1
0
.4
2
0
.0
9
0
.4
3
0
.6

0
0
.3
1
0
.3
2
0
.5
4
0
.5
9
0
.3
3

1
0
.0
9

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
.7
2
0
.4
6
0
.4
6
0
.4
3
0
.3
8
0
.8
3
0
.7
2
0
.8
4
0
.4

0
.4
3
0
.1
7
0
.7
8
0
.9
9
0
.0
6
0
.3
6
0
.9
8
0
.0
9

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
.0
6
0
.0
8
0
.1
4
0
.0
6
0
.0
3
0
.0
6
0
.1
1
0
.0
3
0
.0
6
0
.0
1
0
.2
1
0
.0
7
0
.1
1
0
.2
9
0
.1

0
.9
9
0
.6
4
0
.4
6
0
.8

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.0
6

0
1

0
.7
4

0
0

0
0

0
0

0
0

0
0

0
0

0
0
.0
3
0
.0
1

0
0
.0
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.0
8

0
0
.7
4

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.0
4
0
.0
2

0
0
.0
4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.1
4

0
0

0
1

0
.3
6
0
.2
5
0
.3
7
0
.7
5
0
.2
5
0
.3
7
0
.0
2
0
.9
8
0
.6

0
.8
6
0
.5
1
0
.6
6
0
.0
9
0
.3
2
0
.2
1
0
.2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.0
6

0
0

0
0
.3
6

1
0
.9
5
0
.9

0
.5
2
0
.7

0
.9
3
0
.6
4
0
.4
4
0
.5
7
0
.4
2
0
.1
9
0
.6

0
.0
5
0
.1
3
0
.1

0
.0
9

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.0
3

0
0

0
0
.2
5
0
.9
5

1
0
.9
3
0
.4
5
0
.6
4
0
.9
6
0
.4
6
0
.3
9
0
.5
1
0
.3
2
0
.0
9
0
.5
6
0
.0
2
0
.0
8
0
.0
3
0
.0
4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.0
6

0
0

0
0
.3
7
0
.9

0
.9
3

1
0
.5
6
0
.7
8
0
.9
7
0
.4
8
0
.4
8
0
.6
3
0
.4
5
0
.1
8
0
.6
6
0
.0
4
0
.1
3
0
.0
9
0
.0
8

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.1
1

0
0

0
0
.7
5
0
.5
2
0
.4
5
0
.5
6

1
0
.5
8
0
.5
5
0
.1
1
0
.8
3
0
.8
8
0
.8
7
0
.3
8
0
.8
9
0
.0
7
0
.2
5
0
.1
7
0
.1
6

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.0
3

0
0

0
0
.2
5
0
.7

0
.6
4
0
.7
8
0
.5
8

1
0
.7
6
0
.0
6
0
.4
9
0
.6
7
0
.3
6
0
.0
5
0
.7
5
0
.0
1
0
.0
8

0
0
.0
4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.0
6

0
0

0
0
.3
7
0
.9
3
0
.9
6
0
.9
7
0
.5
5
0
.7
6

1
0
.5
2
0
.4
7
0
.6
2
0
.4
4
0
.1
9
0
.6
5
0
.0
4
0
.1
3
0
.0
9
0
.0
8

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.0
1

0
0

0
0
.0
2
0
.6
4
0
.4
6
0
.4
8
0
.1
1
0
.0
6
0
.5
2

1
0
.1
2
0
.1

0
.0
4

0
0
.1
8

0
0
.0
1

0
0
.0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.2
1

0
0

0
0
.9
8
0
.4
4
0
.3
9
0
.4
8
0
.8
3
0
.4
9
0
.4
7
0
.1
2

1
0
.7
2
0
.9
2
0
.6
2
0
.7
4
0
.1
7
0
.4
1
0
.3
8
0
.2
9

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.0
7

0
0

0
0
.6

0
.5
7
0
.5
1
0
.6
3
0
.8
8
0
.6
7
0
.6
2
0
.1

0
.7
2

1
0
.7
2
0
.2
5

1
0
.0
4
0
.1
8
0
.0
9
0
.1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.1
1

0
0

0
0
.8
6
0
.4
2
0
.3
2
0
.4
5
0
.8
7
0
.3
6
0
.4
4
0
.0
4
0
.9
2
0
.7
2

1
0
.4
1
0
.7
7
0
.0
7
0
.2
7
0
.1
6
0
.1
7

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.2
9

0
0

0
0
.5
1
0
.1
9
0
.0
9
0
.1
8
0
.3
8
0
.0
5
0
.1
9

0
0
.6
2
0
.2
5
0
.4
1

1
0
.3
4
0
.2
1
0
.6

0
.5
7
0
.4
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.1

0
0

0
0
.6
6
0
.6

0
.5
6
0
.6
6
0
.8
9
0
.7
5
0
.6
5
0
.1
8
0
.7
4

1
0
.7
7
0
.3
4

1
0
.0
7
0
.2
2
0
.1
6
0
.1
5

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.9
9

0
0
.0
3
0
.0
4
0
.0
9
0
.0
5
0
.0
2
0
.0
4
0
.0
7
0
.0
1
0
.0
4

0
0
.1
7
0
.0
4
0
.0
7
0
.2
1
0
.0
7

1
0
.5
9
0
.3
8
0
.7
7

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.6
4

0
0
.0
1
0
.0
2
0
.3
2
0
.1
3
0
.0
8
0
.1
3
0
.2
5
0
.0
8
0
.1
3
0
.0
1
0
.4
1
0
.1
8
0
.2
7
0
.6

0
.2
2
0
.5
9

1
0
.8
8
0
.8
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.4
6

0
0

0
0
.2
1
0
.1

0
.0
3
0
.0
9
0
.1
7

0
0
.0
9

0
0
.3
8
0
.0
9
0
.1
6
0
.5
7
0
.1
6
0
.3
8
0
.8
8

1
0
.6
5

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.8

0
0
.0
2
0
.0
4
0
.2

0
.0
9
0
.0
4
0
.0
8
0
.1
6
0
.0
4
0
.0
8
0
.0
1
0
.2
9
0
.1
1
0
.1
7
0
.4
2
0
.1
5
0
.7
7
0
.8
2
0
.6
5

1

2
.2
6
.2

2
.2
7
.1

2
.2
7
.2

2
.2
7
.3

2
.2
7
.4

2
.2
7
.5

2
.2
7
.6

2
.2
8
.0

2
.2
9
.1

2
.2
9
.2

2
.2
9
.3

2
.2
9
.4

2
.2
9
.8

2
.2
9
.9

2
.3
0
.0

2
.3
0
.1

2
.3
0
.2

2
.3
1
.1

3
.0
.0

3
.0
.1

3
.0
.2

3
.0
.3

3
.1
.1

3
.1
.2

3
.1
.3

3
.1
.4

3
.1
.5

3
.1
.6

3
.2
.0

3
.2
.1

3
.2
.2

3
.3
.1

3
.3
.2

3
.3
.3

3
.3
.4

3
.3
.5

3
.3
.7

3
.3
.8

3
.4
.0

2.26.2

2.27.1

2.27.2

2.27.3

2.27.4

2.27.5

2.27.6

2.28.0

2.29.1

2.29.2

2.29.3

2.29.4

2.29.8

2.29.9

2.30.0

2.30.1

2.30.2

2.31.1

3.0.0

3.0.1

3.0.2

3.0.3

3.1.1

3.1.2

3.1.3

3.1.4

3.1.5

3.1.6

3.2.0

3.2.1

3.2.2

3.3.1

3.3.2

3.3.3

3.3.4

3.3.5

3.3.7

3.3.8

3.4.0

g
e
d
it
 V
e
rs
io
n
s

gedit Versions

0
.2
5

0
.5
0

0
.7
5

1
.0
0

v
a
lu
e

F
ig

u
re

4
.4

:
P
ai

rw
is

e
S

tu
d
en

t
t-

te
st

fo
r

ea
ch

g
e
d
i
t

v
er

si
o
n
’s

m
ea

n
p
o
w

er
co

n
su

m
p
ti

o
n

in
1
0

te
x
t

ed
it

in
g

te
st

s.
T

h
e

X
ax

is
an

d
th

e
Y

ax
is

re
p
re

se
n
t

th
e

v
er

si
o
n

n
u
m

b
er

s.
E

ac
h

v
al

u
e

in
th

e
p
lo

t
is

th
e
p
-v

al
u
e.

“G
re

y
”

m
ea

n
s

th
e
p
-v

al
u
e

is
cl

o
se

to
0

an
d

“r
ed

”
m

ea
n
s

th
e

p
-v

al
u
e

is
cl

o
se

to
1
.

53

2
.2
6
.2

2
.2
7
.1

2
.2
7
.2

2
.2
7
.3

2
.2
7
.4

2
.2
7
.5

2
.2
7
.6

2
.2
8
.0

2
.2
9
.1

2
.2
9
.2

2
.2
9
.3

2
.2
9
.4

2
.2
9
.8

2
.2
9
.9

2
.3
0
.0

2
.3
0
.1

2
.3
0
.2

2
.3
1
.1

3
.0
.0

3
.0
.1

3
.0
.2

3
.0
.3

3
.1
.1

3
.1
.2

3
.1
.3

3
.1
.4

3
.1
.5

3
.1
.6

3
.2
.0

3
.2
.1

3
.2
.2

3
.3
.1

3
.3
.2

3
.3
.3

3
.3
.4

3
.3
.5

3
.3
.7

3
.3
.8

3
.4
.0

2.26.2

2.27.1

2.27.2

2.27.3

2.27.4

2.27.5

2.27.6

2.28.0

2.29.1

2.29.2

2.29.3

2.29.4

2.29.8

2.29.9

2.30.0

2.30.1

2.30.2

2.31.1

3.0.0

3.0.1

3.0.2

3.0.3

3.1.1

3.1.2

3.1.3

3.1.4

3.1.5

3.1.6

3.2.0

3.2.1

3.2.2

3.3.1

3.3.2

3.3.3

3.3.4

3.3.5

3.3.7

3.3.8

3.4.0

g
e
d
it
 V
e
rs
io
n
s

gedit Versions

0
.9
9
2

0
.9
9
4

0
.9
9
6

0
.9
9
8

v
a
lu
e

F
ig

u
re

4
.5

:
P
ai

rw
is

e
co

si
n
e

d
is

ta
n
ce

fo
r

ea
ch

g
e
d
i
t

v
er

si
o
n
’s

sy
st

em
ca

ll
v
ec

to
r

in
te

x
t
ed

it
in

g
te

st
s

(7
9

sy
st

em
ca

ll
s)

.
T

h
e

X
ax

is
an

d

th
e

Y
ax

is
re

p
re

se
n
t
th

e
v
er

si
o
n

n
u
m

b
er

s.
“G

re
y
”

m
ea

n
s

sm
al

le
r

co
si

n
e

si
m

il
ar

it
ie

s
an

d
“r

ed
”

m
ea

n
s

la
rg

er
co

si
n
e

si
m

il
ar

it
ie

s.

54

language document (HTML and LaTex) that has more than 300 lines. The test took

more than 7 minutes to go through all the six files.

To be specific, the test procedure is 1) open the six files in gedit; 2) scroll

down to go through the first file in every few seconds until reach the last line; 3)

move to the next file and repeat step 2; and 4) close gedit when finish going

through the last file.

The distribution of the mean power consumption in each version of gedit

running syntax highlighting test is shown in Figure 4.6. Each boxplot represents the

mean power consumption distribution of the 10 tests for each gedit version and

therefore we have 390 tests in total. The variations of the mean power consumption

among 39 version is pictured by the red line. There are two levels within gedit

version 2 and also version 3 respectively. In version 2, it is increasing trend, while

in version 3 the trend is the opposite. This is different from the pattern in Figure 4.3.

The pairwise Student’s t-test results of each gedit version’s mean power con-

sumption for 10 tests in Figure 4.7 confirm our observation from Figure 4.6. Within

gedit 2 versions there are two clear clusters in terms of p-values from t-test,

which tells us the power consumption has two levels that are statistically signifi-

cant in gedit 2 versions. The pattern of p-values in gedit 3 version is more

complex than that of gedit 2 versions. The p-values form three clusters, which

suggests there are three levels of power consumption that are statistically significant

in gedit 3 versions. Moreover, some of the gedit 3 versions have similar power

consumption compared to several early gedit 2 versions.

We also counted the number of each system call’s invocations for each gedit

version under the test case so as to determine how the system calls change among

different versions. In total, there are 77 system calls invoked by each gedit ver-

sion and all the system calls are listed in Appendix A.2. The cosine similarities

between each pair of system call vectors for each gedit version are shown in

Figure 4.8. Although it shows two levels of power consumption in Figure 4.6 for

gedit 2 versions, the number of system call invocations in these versions tend to

be similar. While in gedit 3 versions, the variations of system call counts corre-

spond with the fluctuation of power consumption and the pairwise cosine similar-

55

ities group three clusters. A typical instance that confirms the variation of system

call invocations is the system call, brk (change data segment size). The number

of brk invocations in gedit 2 versions is above 200 and in gedit 3 versions it

stays below 150. It is still changing within 3 versions. It is around 120 in the early

gedit 3 versions and then it increases to about 150. In the latest four gedit

versions, it drops below 100.

We also applied linear regression to the gedit power consumption and the

number of system call invocations so as to discover the important system calls.

Only one independent variable was taken into consideration when the model was

built since the system call counts suffer high correlation with each other (most of

the Spearman’s correlations |ρ| > 0.8). Table 4.3 shows the selected 10 system

calls, their Spearman’s correlations with gedit power consumption, R2 values,

and their corresponding coefficients in linear regression. The descriptions of these

system calls are listed in Table 4.4. Under this test case, the total number of system

call invocations for each gedit version is not legitimate for modeling the power

consumption because the p-value is quite large.

To summarize, gedit power consumption fluctuates among versions in the

syntax highlighting test case. In gedit 2 versions, the power consumption

increases from version 2.28.0 and drops down from version 2.31.1. In gedit

3 versions the power consumption varies from each other at early versions and

then remains flat. At last the latest four versions stay in the lowest power con-

sumption level in this test. The system calls that have better linear regression

modeling results are also related to memory management and file operations

but different from the specific ones in text editing test case.

4.4 Discussion

4.4.1 System Calls and Power Consumption

The two test cases discussed above are basically about writing/reading files in

gedit. It is not surprising that those system calls related to memory management

56

Table 4.3: Some of the system calls and the associated Spearman’s correlation ρ

with gedit power consumption, R2 values, and coefficients in linear regression

for the syntax highlighting test case. For each system call we build a model of the

form: y = b1 ·x+ b0, where y is gedit power consumption and x is the number of

system call invocations. All the results are statistically significant (p < 4.50×10−4).

System Call ρ R2 Coefficient

llseek -0.922 0.561 -0.0373

brk 0.770 0.539 2.77×10−3

mmap2 -0.747 0.466 -1.65×10−3

dup2 -0.827 0.459 -0.0196

ftruncate -0.827 0.459 -0.0522

open -0.655 0.381 -8.80×10−4

fsync 0.686 0.371 0.0486

close -0.654 0.346 -9.59×10−4

fstat64 -0.692 0.289 -1.75×10−3

eventfd2 -0.624 0.287 -4.40×10−3

Table 4.4: Selected system calls with their descriptions from the syntax highlighting

test case.

System Call Description [33]

llseek reposition read/write file offset

brk change data segment size

mmap2 map files or devices into memory

dup2 duplicate a file descriptor

ftruncate truncate a file to a specified length

open open and possibly create a file or device

fsync synchronize a file’s in-core state with storage device

close close a file descriptor

fstat64 get file status

eventfd2 create a file descriptor for event notification

57

19.8

19.9

20.0

20.1

20.2

20.3

20.4

20.5

20.6

20.7

20.8

20.9

21.0

2
.2
6
.2

2
.2
7
.1

2
.2
7
.2

2
.2
7
.3

2
.2
7
.4

2
.2
7
.5

2
.2
7
.6

2
.2
8
.0

2
.2
9
.1

2
.2
9
.2

2
.2
9
.3

2
.2
9
.4

2
.2
9
.8

2
.2
9
.9

2
.3
0
.0

2
.3
0
.1

2
.3
0
.2

2
.3
1
.1

3
.0
.0

3
.0
.1

3
.0
.2

3
.0
.3

3
.1
.1

3
.1
.2

3
.1
.3

3
.1
.4

3
.1
.5

3
.1
.6

3
.2
.0

3
.2
.1

3
.2
.2

3
.3
.1

3
.3
.2

3
.3
.3

3
.3
.4

3
.3
.5

3
.3
.7

3
.3
.8

3
.4
.0

gedit Versions

P
o
w
e
r
(w
a
tt
)

Figure 4.6: Distributions of the mean watts consumed per version of gedit run-

ning 10 syntax highlighting tests (390 tests in total). The X axis represents the

version numbers and the Y axis is the power consumption.

58

1
0
.4
8
0
.1
8
0
.0
2
0
.0
4
0
.1
3
0
.7
3
0
.5
9

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.2

0
.2

0
.0
3
0
.3
6
0
.7
1
0
.2
3
0
.0
2
0
.0
1
0
.2
1
0
.0
4
0
.0
3
0
.1

0
.0
5

0
0

0
0

0
.4
8

1
0
.4
8
0
.0
6
0
.1
2
0
.3
3
0
.7
2

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0
.0
9
0
.0
7

0
0
.1
3
0
.4
2
0
.0
5

0
0

0
.0
6
0
.0
1

0
0
.0
3
0
.0
1

0
0

0
0

0
.1
8
0
.4
8

1
0
.2
7
0
.3
5
0
.7
2
0
.3
1
0
.5
9

0
0

0
0

0
0

0
0

0
0

0
0
.0
1

0
0

0
.0
4
0
.0
2

0
0
.0
4
0
.2
3
0
.0
1

0
0

0
.0
2

0
0

0
.0
1

0
0

0
0

0

0
.0
2
0
.0
6
0
.2
7

1
0
.9
9
0
.5
7
0
.0
3
0
.1
7

0
0

0
0

0
0

0
0

0
0

0
0
.0
3

0
0

0
.0
1

0
0

0
0
.0
7

0
0

0
0

0
0

0
0

0
0

0
0

0
.0
4
0
.1
2
0
.3
5
0
.9
9

1
0
.6
1
0
.0
7
0
.2
1

0
0

0
0

0
0

0
0

0
0

0
0
.0
4

0
0

0
.0
1

0
0

0
.0
1
0
.0
8

0
0

0
0

0
0

0
0

0
0

0
0

0
.1
3
0
.3
3
0
.7
2
0
.5
7
0
.6
1

1
0
.2
1
0
.4
3

0
0

0
0

0
0

0
0

0
0

0
0
.0
2

0
0

0
.0
3
0
.0
2

0
0
.0
3
0
.1
7
0
.0
1

0
0

0
.0
1

0
0

0
.0
1

0
0

0
0

0

0
.7
3
0
.7
2
0
.3
1
0
.0
3
0
.0
7
0
.2
1

1
0
.7
8

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.1
4
0
.1
2
0
.0
1
0
.2
3
0
.5
6
0
.1
2
0
.0
1

0
0
.1
2
0
.0
2
0
.0
1
0
.0
6
0
.0
2

0
0

0
0

0
.5
9

1
0
.5
9
0
.1
7
0
.2
1
0
.4
3
0
.7
8

1
0

0
0

0
0

0
0

0
0

0
0

0
.0
1

0
0

0
.1
3
0
.1
2
0
.0
3
0
.2
2
0
.4
7
0
.1
5
0
.0
2
0
.0
1
0
.1
4
0
.0
3
0
.0
3
0
.0
7
0
.0
4

0
0

0
0

0
0

0
0

0
0

0
0

1
0
.0
5
0
.2

0
.5
3
0
.1
2
0
.8

0
.1
8
0
.2
1
0
.0
3
0
.2
4

0
0
.1
7

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
.0
5

1
0
.4
3
0
.0
9
0
.4

0
.0
2
0
.2
3
0
.1
8
0
.9
1
0
.2
4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
.2

0
.4
3

1
0
.3
8
0
.9
5
0
.1
1
0
.8

0
.6
9
0
.4
4
0
.7
5

0
0
.0
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
.5
3
0
.0
9
0
.3
8

1
0
.2
4
0
.3
1
0
.3
7
0
.4
5
0
.0
6
0
.4
9

0
0
.0
4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
.1
2
0
.4

0
.9
5
0
.2
4

1
0
.0
4
0
.6
7
0
.5
4
0
.4

0
.6
4

0
0
.0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
.8

0
.0
2
0
.1
1
0
.3
1
0
.0
4

1
0
.0
7
0
.0
8
0
.0
1
0
.1
1

0
0
.2
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
.1
8
0
.2
3
0
.8

0
.3
7
0
.6
7
0
.0
7

1
0
.8
4
0
.2
1
0
.9
2

0
0
.0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
.2
1
0
.1
8
0
.6
9
0
.4
5
0
.5
4
0
.0
8
0
.8
4

1
0
.1
5
0
.9
4

0
0
.0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
.0
3
0
.9
1
0
.4
4
0
.0
6
0
.4

0
.0
1
0
.2
1
0
.1
5

1
0
.2
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
.2
4
0
.2
4
0
.7
5
0
.4
9
0
.6
4
0
.1
1
0
.9
2
0
.9
4
0
.2
2

1
0

0
.0
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
.7
1
0
.0
6
0
.0
8
0
.0
1
0
.0
1

0
0
.0
2

0
0
.0
5
0
.2
7

0
0
.0
3
0
.0
2
0
.0
6
0
.0
1

0
0

0
0

0
0

0
.0
1
0
.0
3
0
.0
4
0
.0
2

0
0
.0
1
0
.1
7

0
0
.0
2
0
.0
4
0
.0
1
0
.2
1
0
.0
1
0
.0
1

0
0
.0
2

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.7
1

0
1

0
.2

0
.0
6
0
.0
2
0
.0
2
0
.0
1
0
.0
2

0
0
.0
5
0
.2

0
.0
1
0
.0
3
0
.0
2
0
.0
5
0
.0
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.0
6

0
0
.2

1
0

0
0

0
0

0
0

0
.0
1

0
0

0
0

0
0

0
0

0

0
.2

0
.0
9
0
.0
4
0
.0
1
0
.0
1
0
.0
3
0
.1
4
0
.1
3

0
0

0
0

0
0

0
0

0
0

0
.0
8

0
0
.0
6

0
1

0
.7
9
0
.9
5
0
.5
5
0
.4
8
0
.5
3
0
.7
2
0
.3
8
0
.6
7
0
.8
6
0
.9

0
.9

1
0

0
0

0

0
.2

0
.0
7
0
.0
2

0
0

0
.0
2
0
.1
2
0
.1
2

0
0

0
0

0
0

0
0

0
0

0
.0
1

0
0
.0
2

0
0
.7
9

1
0
.6
3
0
.7

0
.5
8
0
.6
7
0
.4
1
0
.1
7
0
.8
6
0
.5
5
0
.5
8
0
.6
4
0
.7

0
0

0
0

0
.0
3

0
0

0
0

0
0
.0
1
0
.0
3

0
0

0
0

0
0

0
0

0
0

0
.0
1

0
0
.0
2

0
0
.9
5
0
.6
3

1
0
.3
3
0
.3
4
0
.2

0
.6
1
0
.2
2
0
.4
3
0
.8
4
0
.9

0
.9
1
0
.9
2

0
0

0
0

0
.3
6
0
.1
3
0
.0
4

0
0
.0
1
0
.0
3
0
.2
3
0
.2
2

0
0

0
0

0
0

0
0

0
0

0
0

0
.0
1

0
0
.5
5
0
.7

0
.3
3

1
0
.7
9
0
.9
7
0
.2

0
.0
8
0
.8
1
0
.3

0
.3

0
.4

0
.3
9

0
0

0
0

0
.7
1
0
.4
2
0
.2
3
0
.0
7
0
.0
8
0
.1
7
0
.5
6
0
.4
7

0
0

0
0

0
0

0
0

0
0

0
.0
2

0
0
.0
2

0
0
.4
8
0
.5
8
0
.3
4
0
.7
9

1
0
.7
5
0
.2
4
0
.1
1
0
.6
5
0
.3
1
0
.3
2
0
.3
7
0
.3
8

0
0

0
0

0
.2
3
0
.0
5
0
.0
1

0
0

0
.0
1
0
.1
2
0
.1
5

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.5
3
0
.6
7
0
.2

0
.9
7
0
.7
5

1
0
.1
2
0
.0
4
0
.7
9
0
.2
1
0
.1
8
0
.3
5
0
.2
8

0
0

0
0

0
.0
2

0
0

0
0

0
0
.0
1
0
.0
2

0
0

0
0

0
0

0
0

0
0

0
.0
5

0
0
.0
5

0
0
.7
2
0
.4
1
0
.6
1
0
.2

0
.2
4
0
.1
2

1
0
.4
6
0
.2
6
0
.7
8
0
.7

0
.8

0
.5
8

0
0

0
0

0
.0
1

0
0

0
0

0
0

0
.0
1

0
0

0
0

0
0

0
0

0
0

0
.2
7

0
0
.2

0
.0
1
0
.3
8
0
.1
7
0
.2
2
0
.0
8
0
.1
1
0
.0
4
0
.4
6

1
0
.1

0
.3
3
0
.2
7
0
.4

0
.2
2

0
0

0
0

0
.2
1
0
.0
6
0
.0
2

0
0

0
.0
1
0
.1
2
0
.1
4

0
0

0
0

0
0

0
0

0
0

0
0

0
.0
1

0
0
.6
7
0
.8
6
0
.4
3
0
.8
1
0
.6
5
0
.7
9
0
.2
6
0
.1

1
0
.3
9
0
.3
9
0
.5
1
0
.5
1

0
0

0
0

0
.0
4
0
.0
1

0
0

0
0

0
.0
2
0
.0
3

0
0

0
0

0
0

0
0

0
0

0
.0
3

0
0
.0
3

0
0
.8
6
0
.5
5
0
.8
4
0
.3

0
.3
1
0
.2
1
0
.7
8
0
.3
3
0
.3
9

1
0
.9
3
0
.9
7
0
.7
9

0
0

0
0

0
.0
3

0
0

0
0

0
0
.0
1
0
.0
3

0
0

0
0

0
0

0
0

0
0

0
.0
2

0
0
.0
2

0
0
.9

0
.5
8
0
.9

0
.3

0
.3
2
0
.1
8
0
.7

0
.2
7
0
.3
9
0
.9
3

1
0
.9
8
0
.8
4

0
0

0
0

0
.1

0
.0
3
0
.0
1

0
0

0
.0
1
0
.0
6
0
.0
7

0
0

0
0

0
0

0
0

0
0

0
.0
6

0
0
.0
5

0
0
.9

0
.6
4
0
.9
1
0
.4

0
.3
7
0
.3
5
0
.8

0
.4

0
.5
1
0
.9
7
0
.9
8

1
0
.8
6

0
0

0
0

0
.0
5
0
.0
1

0
0

0
0

0
.0
2
0
.0
4

0
0

0
0

0
0

0
0

0
0

0
.0
1

0
0
.0
2

0
1

0
.7

0
.9
2
0
.3
9
0
.3
8
0
.2
8
0
.5
8
0
.2
2
0
.5
1
0
.7
9
0
.8
4
0
.8
6

1
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
.9

0
.7
7
0
.9
7

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0
.9

1
0
.8
4
0
.9
6

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0
.7
7
0
.8
4

1
0
.8
4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0
.9
7
0
.9
6
0
.8
4

1

2
.2
6
.2

2
.2
7
.1

2
.2
7
.2

2
.2
7
.3

2
.2
7
.4

2
.2
7
.5

2
.2
7
.6

2
.2
8
.0

2
.2
9
.1

2
.2
9
.2

2
.2
9
.3

2
.2
9
.4

2
.2
9
.8

2
.2
9
.9

2
.3
0
.0

2
.3
0
.1

2
.3
0
.2

2
.3
1
.1

3
.0
.0

3
.0
.1

3
.0
.2

3
.0
.3

3
.1
.1

3
.1
.2

3
.1
.3

3
.1
.4

3
.1
.5

3
.1
.6

3
.2
.0

3
.2
.1

3
.2
.2

3
.3
.1

3
.3
.2

3
.3
.3

3
.3
.4

3
.3
.5

3
.3
.7

3
.3
.8

3
.4
.0

2.26.2

2.27.1

2.27.2

2.27.3

2.27.4

2.27.5

2.27.6

2.28.0

2.29.1

2.29.2

2.29.3

2.29.4

2.29.8

2.29.9

2.30.0

2.30.1

2.30.2

2.31.1

3.0.0

3.0.1

3.0.2

3.0.3

3.1.1

3.1.2

3.1.3

3.1.4

3.1.5

3.1.6

3.2.0

3.2.1

3.2.2

3.3.1

3.3.2

3.3.3

3.3.4

3.3.5

3.3.7

3.3.8

3.4.0

g
e
d
it
 V
e
rs
io
n
s

gedit Versions

0
.2
5

0
.5
0

0
.7
5

1
.0
0

v
a
lu
e

F
ig

u
re

4
.7

:
P
ai

rw
is

e
S

tu
d
en

t
t-

te
st

fo
r

ea
ch

g
e
d
i
t

v
er

si
o
n
’s

m
ea

n
p
o
w

er
co

n
su

m
p
ti

o
n

in
1
0

sy
n
ta

x
h
ig

h
li

g
h
ti

n
g

te
st

s.
T

h
e

X
ax

is
an

d

th
e

Y
ax

is
re

p
re

se
n
t
th

e
v
er

si
o
n

n
u
m

b
er

s.
E

ac
h

v
al

u
e

in
th

e
p
lo

t
is

th
e
p
-v

al
u
e.

“G
re

y
”

m
ea

n
s

th
e
p
-v

al
u
e

is
cl

o
se

to
0

an
d

“r
ed

”
m

ea
n
s

th
e
p
-v

al
u
e

is
cl

o
se

to
1
.

59

2
.2
6
.2

2
.2
7
.1

2
.2
7
.2

2
.2
7
.3

2
.2
7
.4

2
.2
7
.5

2
.2
7
.6

2
.2
8
.0

2
.2
9
.1

2
.2
9
.2

2
.2
9
.3

2
.2
9
.4

2
.2
9
.8

2
.2
9
.9

2
.3
0
.0

2
.3
0
.1

2
.3
0
.2

2
.3
1
.1

3
.0
.0

3
.0
.1

3
.0
.2

3
.0
.3

3
.1
.1

3
.1
.2

3
.1
.3

3
.1
.4

3
.1
.5

3
.1
.6

3
.2
.0

3
.2
.1

3
.2
.2

3
.3
.1

3
.3
.2

3
.3
.3

3
.3
.4

3
.3
.5

3
.3
.7

3
.3
.8

3
.4
.0

2.26.2

2.27.1

2.27.2

2.27.3

2.27.4

2.27.5

2.27.6

2.28.0

2.29.1

2.29.2

2.29.3

2.29.4

2.29.8

2.29.9

2.30.0

2.30.1

2.30.2

2.31.1

3.0.0

3.0.1

3.0.2

3.0.3

3.1.1

3.1.2

3.1.3

3.1.4

3.1.5

3.1.6

3.2.0

3.2.1

3.2.2

3.3.1

3.3.2

3.3.3

3.3.4

3.3.5

3.3.7

3.3.8

3.4.0

g
e
d
it
 V
e
rs
io
n
s

gedit Versions

0
.9
8
0

0
.9
8
5

0
.9
9
0

0
.9
9
5

v
a
lu
e

F
ig

u
re

4
.8

:
P
ai

rw
is

e
co

si
n
e

d
is

ta
n
ce

fo
r

ea
ch

g
e
d
i
t

v
er

si
o
n
’s

sy
st

em
ca

ll
v
ec

to
r

in
sy

n
ta

x
h
ig

h
li

g
h
ti

n
g

te
st

s
(7

7
sy

st
em

ca
ll

s)
.

T
h
e

X

ax
is

an
d

th
e

Y
ax

is
re

p
re

se
n
t
th

e
v
er

si
o
n

n
u
m

b
er

s.
“G

re
y
”

m
ea

n
s

sm
al

le
r

co
si

n
e

si
m

il
ar

it
ie

s
an

d
“r

ed
”

m
ea

n
s

la
rg

er
co

si
n
e

si
m

il
ar

it
ie

s.

60

give us better performance in power modeling, since they are correlated with inten-

sive I/O operations. The system calls that have relatively better modeling results

in the two test cases do not overlap with each other that much and hence different

test cases tend to get different services from OS kernel. Furthermore, we can make

use of the variations in system call invocations to locate the software changes that

would be responsible for power exhaustion. On the other hand, most of the system

calls have high correlation with each other in each test case, which suggests that

the code coverage of each test case might be limited. More test cases and more

test cases for various applications over versions are definitely needed for obtain-

ing the hidden relationship between all kinds of system calls and software power

consumption.

4.4.2 Software Changes and Power Consumption

From the case study section, we’ve learnt the different power behaviors among mul-

tiple gedit versions for finishing the same functionality. A deeper investigation

about software changes in gedit was conducted by checking the diff in source

files between each two continuous versions. From gedit 2.31.1 to 3.0.0, which

are the the last gedit 2 version and the first gedit 3 version in our gedit com-

piled binaries correspondingly, there has been a lot of UI updates and bug fixes.

Moreover, a list of dependencies have been improved, such as glib, gtk and

gtksourceview. In both test cases, the power consumption has a large drop be-

tween these two gedit versions. Possibly, the improved dependencies are closely

related to the power consumption decrease. From Figure 4.3 and Figure 4.6, we can

observe that the power consumption of gedit 3.0.1 is not consistent with its neigh-

bors. gedit 3.0.1 has been applied style improvements using an external CSS file.

The following versions deleted this CSS file and changed the way to do styling.

This unique change might be responsible for the inconsistent power characteristics

of gedit 3.0.1 compared to other versions.

61

4.5 Threats to Validity

Since we utilized the same power measurement setup and UI recording tools as we

did in the previous chapter, construct validity is threatened by the accuracy of our

power meter and the overhead from UI driver. Other construct validity threats come

from the assumption that system call invocations tend to be stable in each run of test

case for the same software version. Base upon this assumption, system call tracing

and power measurement for each software version are separated under each test

case in order to avoid power overhead in the system call tracing test run. Therefore,

the power consumption to correlated with system calls is estimated by other 10 test

run of power measurement, instead of the actual software power consumption when

running system call tracing under the test cases.

Internal validity is weakened by the high correlation between each pair of sys-

tem call invocation counts under each test case. We were only able to model gedit

power consumption based on one system call each time. Also, gedit did not have

much variation, except on major releases. Thus, the relationship between system

calls and software power consumption is inconclusive.

External validity is harmed by both the limited test cases for gedit and the

lack of divers software to be tested. We implemented two test cases for gedit

but they are not inevitably covering the changed code. External validity would be

improved by implementing more detailed test cases to cover wider breath of code

as well as adding various software to run test on.

4.6 Chapter Summary

In this chapter, we have proposed a method to investigate the impact of software

changes on software power consumption as well as the relationship between system

call invocations and software power consumption over versions. We implemented

our method on multiple versions of the text editor, gedit. Two test cases about

text editing and syntax highlighting have been studied in our case study. The power

consumption of gedit versions in both test cases has been changing over versions

with decreasing trend. We also applied linear regression modeling on the system

62

call invocations to predict gedit power consumption. The results show a high

correlation between the invocation counts of some system calls related to mem-

ory management and file operations, and gedit power consumption over multiple

versions.

The high correlations between each pair of system call invocation suggest the

limited breadth of invoked system calls under the test cases. A broader range of test

cases for gedit and other software systems are needed to produce a larger dataset.

This is the first study that tries to correlate power consumption of multiple soft-

ware versions with system call invocations. Since system calls sit in the middle of

user applications and the OS kernel. It is possible for us to model software power

consumption over versions and also trace back to software in order to locate soft-

ware changes that are responsible for power consumption variations using system

calls. Therefore, our results lead to a promising direction for discovering the spe-

cific relationship between software change and software power consumption.

63

Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, we have studied software energy consumption from two perspectives,

user choice and software change. Very frequently users have a choice of what

application to use to complete a task, and therefore we have investigated the impact

of user choice on software energy consumption in the first half of the thesis. As the

builders and maintainers of software, software developers are continuously making

changes to software. Thus in the second half of this thesis, we have also uncovered

the impact of software change on energy consumption.

For the impact of user choice on software energy consumption, we have pro-

posed a user-centric method to measure the energy consumption of applications

based upon the scenarios that correspond to tasks that users are expected to com-

plete. We demonstrate its effectiveness by defining three such scenarios, and an

implementation of benchmarks to measure the consumption during each of them.

The results indicated that different applications can have dramatically different en-

ergy consumption when performing the same task (e.g. a command-line music

player uses more than five times less energy than a GUI one). We also found that

web-based applications tend to consume more energy than non-web based, and that

idle applications can incur a significant amount of ghost energy consumption.

In terms of the impact of software change on energy consumption, we have

proposed a method to investigate the relationship between system call invocations

and software power consumption over versions. We implemented our method on

64

multiple versions of the text editor, geidt. Two test cases about text editing and

syntax highlighting have been studied in our case study. The power consumption of

gedit versions in both test cases has been changing over versions with decreasing

trend. We also applied linear regression modeling on the system call invocations to

predict gedit power consumption. The results show a high correlation between

the invocation counts of some system calls related to memory management and file

operations, and gedit power consumption over multiple versions.

In summary, we have investigated multiple use-case scenarios demonstrating

that applications can consume energy differently for the same task thus illustrating

the tradeoffs that end-users can make for the sake of energy consumption. We also

studied the impact of software change on power consumption, which shows that

system call invocations have a high correlation with the gedit power consumption

over multiple versions.

5.2 Future Work

Unfortunately it is not trivial for users to know which applications are more energy

efficient. We expect future work to be directed towards the creation of benchmarks

and reporting mechanisms (similar to Energy Star) that inform developers and users

of the energy efficiency of their applications. This will likely generate pressure on

the developers to improve the energy efficiency of the applications they develop.

In addition, this is the first study that tries to correlate power consumption of

multiple software versions with system call invocations. Since system calls sit in

the middle of user applications and the OS kernel. It is possible for us to model

software power consumption over versions and also trace back to software in order

to locate software changes that are responsible for power consumption variations

using system calls. Limited by the tested application and test cases in the thesis,

more test cases and more test cases for various applications over versions are defi-

nitely needed for obtaining the hidden relationship between all kinds of system calls

and software power consumption.

65

Bibliography

[1] Nadine Amsel and Bill Tomlinson. Green Tracker: A Tool for Estimating
the Energy Consumption of Software. In Proceedings, CHI EA, pages 3337–
3342, New York, NY, USA, 2010. ACM.

[2] Apple Inc. Apple Press Info. http://www.apple.com/pr/library/
2013/06/10Apple-Unveils-iOS-7.html, 2013.

[3] Niranjan Balasubramanian, Aruna Balasubramanian, and Arun Venkatara-
mani. Energy Consumption in Mobile Phones: A Measurement Study and
Implications for Network Applications. In Proceedings of the 9th ACM SIG-
COMM conference on Internet measurement conference, IMC ’09, pages 280–
293, New York, NY, USA, 2009. ACM.

[4] Aaron Carroll and Gernot Heiser. An Analysis of Power Consumption in a
Smartphone. In Proceedings of the 2010 USENIX conference on USENIX
annual technical conference, USENIXATC’10, pages 21–21, Berkeley, CA,
USA, 2010. USENIX Association.

[5] Marshini Chetty, A.J. Bernheim Brush, Brian R. Meyers, and Paul Johns. It’s
Not Easy Being Green: Understanding Home Computer Power Management.
In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’09, pages 1033–1042, New York, NY, USA, 2009. ACM.

[6] Mian Dong, Yung-Seok Kevin Choi, and Lin Zhong. Power Modeling of
Graphical User Interfaces on OLED Displays. In Proceedings of the 46th
Annual Design Automation Conference, DAC ’09, pages 652–657, New York,
NY, USA, 2009. ACM.

[7] Mian Dong and Lin Zhong. Self-Constructive, High-Rate Energy Modeling
for Battery-Powered Mobile Systems. In Proceedings of the 9th international
conference on Mobile systems, applications, and services, MobiSys ’11, pages
335–348, New York, NY, USA, 2011. ACM.

[8] Jason Flinn and M. Satyanarayanan. PowerScope: A Tool for Profiling the En-
ergy Usage of Mobile Applications. In Proceedings of the Second IEEEWork-
shop on Mobile Computer Systems and Applications, WMCSA ’99, pages 2–,
Washington, DC, USA, 1999. IEEE Computer Society.

[9] Paul M. Greenawalt. Modeling Power Management for Hard Disks. In MAS-
COTS ’94., Proceedings of the Second International Workshop on, pages 62
–66, Jan 1994.

[10] Ashish Gupta, Thomas Zimmermann, Christian Bird, Nachippan Naggapan,
Thirumalesh Bhat, and Syed Emran. Detecting Energy Patterns in Software

66

Development . Technical Report MSR-TR-2011-106, Microsoft Research,
2011.

[11] Sudhanva Gurumurthi, Anand Sivasubramaniam, Mary Jane Irwin, N. Vi-
jaykrishnan, Mahmut Kandemir, Tao Li, and Lizy Kurian John. Using Com-
plete Machine Simulation for Software Power Estimation: The SoftWatt
Approach. In Proceedings of the 8th International Symposium on High-
Performance Computer Architecture, HPCA ’02, pages 141–, Washington,
DC, USA, 2002. IEEE Computer Society.

[12] Shuai Hao, Ding Li, William G. J. Halfond, and Ramesh Govindan. Esti-
mating Mobile Application Energy Consumption using Program Analysis. In
Proceedings of the 2013 International Conference on Software Engineering,
ICSE ’13, pages 92–101, Piscataway, NJ, USA, 2013. IEEE Press.

[13] Shuai Hao, Ding Li, William G.J. Halfond, and Ramesh Govindan. Estimating
Android Applications’ CPU Energy Usage via Bytecode Profiling. In First
International Workshop on Green and Sustainable Software (GREENS), in
conjunction with ICSE 2012, June 2012.

[14] Ahmed E. Hassan. The Road Ahead for Mining Software Repositories. In
Proceedings of the Future of Software Maintenance (FoSM) at the 24th IEEE
International Conference on Software Maintenance, pages 48–57, 2008.

[15] Abram Hindle. Green Mining: A Methodology of Relating Software Change
to Power Consumption. In MSR, pages 78–87, 2012.

[16] Abram Hindle. Green Mining: Investigating Power Consumption across Ver-
sions. In Proceedings of the 2012 International Conference on Software En-
gineering, ICSE 2012, pages 1301–1304, Piscataway, NJ, USA, 2012. IEEE
Press.

[17] Intel Corporation. Developing Green Software. http://software.
intel.com/en-us/articles/developing-green-software,
June 2011.

[18] Jon Destouche. BlackBerry is Jammin Hope You Like Jam-
min To. http://www.pocketberry.com/2013/05/14/
blackberry-is-jammin-hope-you-like-jammin-to/, 2013.

[19] Russ Joseph and Margaret Martonosi. Run-Time Power Estimation in High
Performance Microprocessors. In Proceedings of the 2001 international sym-
posium on Low power electronics and design, ISLPED ’01, pages 135–140,
New York, NY, USA, 2001. ACM.

[20] Michael Larabel. Ubuntu’s Power Consumption Tested. http://www.
phoronix.com/scan.php?page=article&item=878, Oct 2007.

[21] Emanuele Lattanzi, Andrea Acquaviva, and Alessandro Bogliolo. Run-Time
Software Monitor of the Power Consumption of Wireless Network Interface
Cards. In Integrated Circuit and System Design. Power and Timing Model-
ing, Optimization and Simulation, volume 3254 of Lecture Notes in Computer
Science, pages 352–361. Springer Berlin / Heidelberg, 2004.

67

[22] Ross McLachlan and Stephen Brewster. Towards New Widgets to Reduce
PC Power Consumption. In Proceedings of the 2012 ACM annual confer-
ence extended abstracts on Human Factors in Computing Systems Extended
Abstracts, CHI EA ’12, pages 2153–2158, New York, NY, USA, 2012. ACM.

[23] Radhika Mittal, Aman Kansal, and Ranveer Chandra. Empowering Eevelop-
ers to Estimate App Energy Consumption. In Proceedings of the 18th annual
international conference on Mobile computing and networking, Mobicom ’12,
pages 317–328, New York, NY, USA, 2012. ACM.

[24] Nokia Corporation. Nokia Energy Profiler. http://www.developer.
nokia.com/Resources/Tools_and_downloads/Other/
Nokia_Energy_Profiler, 2009.

[25] Abhinav Pathak, Y. Charlie Hu, and Ming Zhang. Where is the Energy Spent
inside My App?: Fine Grained Energy Accounting on Smartphones with
Eprof. In Proceedings of the 7th ACM european conference on Computer
Systems, EuroSys ’12, pages 29–42, New York, NY, USA, 2012. ACM.

[26] Abhinav Pathak, Y. Charlie Hu, Ming Zhang, Paramvir Bahl, and Yi-Min
Wang. Fine-Grained Power Modeling for Smartphones using System Call
Tracing. In Proceedings of the sixth conference on Computer systems, Eu-
roSys ’11, pages 153–168, New York, NY, USA, 2011. ACM.

[27] Paul Thurrott. Microsoft by (Some of) the Numbers. http:
//winsupersite.com/windows/microsoft-some-numbers,
2013.

[28] Ronald Lye. 6 Alternatives to the Mac App
Store. http://www.usingmac.com/2013/7/24/
6-alternatives-to-the-mac-app-store, 2013.

[29] Chiyoung Seo, Sam Malek, and Nenad Medvidovic. An Energy Consumption
Framework for Distributed Java-Based Systems. In Proceedings of the twenty-
second IEEE/ACM international conference on Automated software engineer-
ing, ASE ’07, pages 421–424, New York, NY, USA, 2007. ACM.

[30] Chiyoung Seo, Sam Malek, and Nenad Medvidovic. Component-Level En-
ergy Consumption Estimation for Distributed Java-Based Software Systems.
In Proceedings of the 11th International Symposium on Component-Based
Software Engineering, CBSE ’08, pages 97–113, Berlin, Heidelberg, 2008.
Springer-Verlag.

[31] Alex Shye, Benjamin Scholbrock, and Gokhan Memik. Into the Wild: Study-
ing Real User Activity Patterns to Guide Power Optimizations for Mobile
Architectures. In Proceedings of the 42nd Annual IEEE/ACM International
Symposium onMicroarchitecture, MICRO 42, pages 168–178, New York, NY,
USA, 2009. ACM.

[32] Richard W. Stevens and Stephen A. Rago. Advanced Programming in the
UNIX(R) Environment (2nd Edition). Addison-Wesley Professional, 2005.

[33] The Linux man-pages project. Linux Man Pages Online. http://man7.
org/linux/man-pages/, 2013.

68

[34] Ubuntu Press Pack. Canonical & Ubuntu Fast Facts. http:
//assets.ubuntu.com/sites/ubuntu/latest/u/files/
section/devices/Ubuntu-fast_facts.pdf, 2013.

[35] Graham Upton, Ian Cook, and Ian T. Cook. A Dictionary of Statistics. OUP
Oxford, 2008.

[36] Victor H. Android’s Google Play beats App Store with over 1 million apps,
now officially largest. http://goo.gl/lvw2tT, 2013.

[37] Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang Wang, Robert P. Dick,
Zhuoqing Morley Mao, and Lei Yang. Accurate Online Power Estimation
and Automatic Battery Behavior Based Power Model Generation for Smart-
phones. In Proceedings of the eighth IEEE/ACM/IFIP international confer-
ence on Hardware/software codesign and system synthesis, CODES/ISSS ’10,
pages 105–114, New York, NY, USA, 2010. ACM.

69

Appendix A

A.1 System Calls Traced in Text Editing Tests

1. access

2. bind

3. brk

4. chdir

5. chmod

6. clock getres

7. clock gettime

8. clone

9. close

10. connect

11. dup2

12. eventfd2

13. execve

14. fcntl64

15. fstat64

16. fstatfs64

17. fsync

18. ftruncate

19. ftruncate64

20. futex

21. getcwd

22. getdents

23. getdents64

24. getegid32

25. geteuid32

26. getgid32

27. getpeername

28. getpgrp

29. getpid

30. getppid

31. getresgid32

32. getresuid32

33. getrlimit

34. getsockname

35. gettimeofday

36. getuid32

37. inotify add watch

38. inotify init1

39. inotify rm watch

40. ioctl

41. lgetxattr

42. listen

43. lstat64

44. madvise

45. mmap2

70

46. mprotect

47. munmap

48. open

49. openat

50. pipe

51. poll

52. prctl

53. read

54. readlink

55. recv

56. recvmsg

57. rename

58. rt sigaction

59. rt sigprocmask

60. send

61. sendmsg

62. set robust list

63. set thread area

64. set tid address

65. shmat

66. shmctl

67. shmget

68. sigreturn

69. socket

70. stat64

71. statfs64

72. tgkill

73. time

74. uname

75. unlink

76. waitpid

77. write

78. writev

79. llseek

A.2 SystemCalls Traced in Syntax Highlighting Tests

1. access

2. bind

3. brk

4. chdir

5. chmod

6. clock getres

7. clock gettime

8. clone

9. close

10. connect

11. dup2

12. eventfd2

13. execve

14. fcntl64

15. fstat64

16. fstatfs64

17. fsync

18. ftruncate

19. futex

20. getcwd

21. getdents

22. getdents64

23. getegid32

24. geteuid32

71

25. getgid32

26. getpeername

27. getpgrp

28. getpid

29. getppid

30. getresgid32

31. getresuid32

32. getrlimit

33. getsockname

34. gettimeofday

35. getuid32

36. inotify add watch

37. inotify init1

38. inotify rm watch

39. ioctl

40. lgetxattr

41. listen

42. lstat64

43. madvise

44. mmap2

45. mprotect

46. munmap

47. open

48. openat

49. pipe

50. poll

51. prctl

52. read

53. readlink

54. recv

55. recvmsg

56. rename

57. rt sigaction

58. rt sigprocmask

59. send

60. sendmsg

61. set robust list

62. set thread area

63. set tid address

64. shmat

65. shmctl

66. shmget

67. sigreturn

68. socket

69. stat64

70. statfs64

71. time

72. uname

73. unlink

74. waitpid

75. write

76. writev

77. llseek

72

