
The formulation of a problem is often more essential than its solution,
which may be merely a matter of mathematical or experimental skill.

- Albert Einstein

I hear and I forget. I see and I remember. I do and I understand.

- Confucius

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R e p ro d u c e d with p e rm issio n of th e copyrigh t ow ner. F u rth e r rep roduction p rohib ited w ithout p erm ission .

University of Alberta

S o C I n t e r c o n n e c t i o n B u s D e s i g n s U s i n g M i x e d - c l o c k F IF O

by

Edmund Fung ©

A thesis submitted to the Faculty of Graduate Studies and Research in partial ful­
fillment of the requirements for the degree of Master of Science.

Department of Electrical and Computer Engineering

Edmonton, Alberta
Fall 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 * 1 Library and
Archives C a n a d a

Published Heritage
Branch

395 W ellington S tre e t
O ttaw a ON K1A 0N4
C a n a d a

Bibliotheque et
Archives C a n a d a

Direction du
Patrim oine d e I'edition

395, rue W ellington
O ttaw a ON K1A 0N4
C a n a d a

Your file Votre reference
ISBN: 0-494-09167-3
Our file Notre reference
ISBN: 0-494-09167-3

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I would like to dedicate this work to my parents, brother, sister and Lian who have
supported and encouraged me throughout my studies

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

In this thesis, we propose two novel mixed-clock on-chip communication networks

for system-on-a-chip (SoC) that operate using a token passing scheme. An on-chip

interconnection network that provides interfaces among mixed-timing modules is

one of the most important part of future SoC designs. The token passing mecha­

nism of our mixed-clock interconnection networks is embedded in an element called

a Mixed-Clock FIFO. Mixed-clock shared bus structures are then constructed using

these Mixed-Clock FIFOs. The shared buses provide high performance multi-point

interconnection and data broadcasting among mixed-clock modules in an SoC, and

can be constructed using standard library components. One of the shared bus de­

signs, synthesized using 0.18um CMOS technology at 1.6V and 300 K, provides a

throughput of 416MB/s with a maximum latency of 8.33ns. That is comparable to

the performance of other synchronous on-chip buses.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

This research was funded by research grants from the Natural Sciences and En­
gineering Research Council of Canada (NSERC), and equipment loans from the
Canadian Microelectronics Corporation and the University of Alberta. I would like
to thank my supervisor Dr. Stephen Bates for providing opportunities for in-depth
research on this thesis topic and for his guidance and suggestions throughout my
thesis research. I like to thank Dr. Xiaoling Sun for acquiring funding for my re­
search. I would also like to thank Dr. Tiberiu Chelcea from the Carnegie Mellon
University and Dr. Steven M. Nowick from the Columbia University for answering
my questions on their publications. In addition, I wish to thank Dave Nguyen, Yoko
Aoki, Tyler Brandon, Amir Alimohammad, Madhura Pumaprajna, Nitin Parimi,
Kaston Leung, Christian Giasson, John Koob, and Kris Breen for their support and
assistance throughout my thesis research. Without the efforts of these people, the
completion of this thesis would have been immensely difficult. Finally, I must thank
Lian Wen Huang for her patience, understanding and encouragement.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1 Introduction 1
1.1 Thesis Organization.. 3

2 Mixed-clock Interface for SoC 5
2.1 Synchronous Design’s C h a llen g es .. 5

2.1.1 Global C lo c k ... 6
2.1.2 Clock Generation and Distribution.. 7
2.1.3 Synchronous Design Limitations... 8

2.2 Asynchronous Design S c h e m e ... 9
2.2.1 Purely Asynchronous circuits .. 10
2.2.2 Handshaking Protocols... 10

2.2.2.1 M icropipelines.. 12
2.2.3 Data E n c o d in g ... 13

2.2.3.1 Single-rail Encoding.. 13
2.2.3.2 Dual-rail Encoding .. 15
2.2.3.3 Dual-rail P ip e lin e ... 16
2.2.3.4 1-of-n and m-of-n Encoding..................................... 18
2.2.3.5 Color Coding .. 19

2.2.4 Self-timed System s... 20
2.2.5 Disadvantage of Asynchronous System s................................. 21

2.3 Mixed-clock S y s te m .. 22
2.3.1 Mixed-clock In te r fa c e ...25

2.3.1.1 Globally-AsynchronousLocally-Synchronous (GALS)
S y s te m s ..26

2.3.1.2 Synchronization by Frequency M atch ing 28
2.3.1.3 Data Synchronization S y s tem31

2.3.2 Synchronizer and Mixed-Clock F I F O 32
2.3.2.1 Synchronization Issues ... 33
2.3.2.2 Latency ...36

2.4 S u m m a ry ..38

3 Mixed-CIock FIFO 41
3.1 Mixed-clock Interface.. 41
3.2 Design of the Mixed-CIock FIFO (MCFTFO) .. 44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2.1 FIFO A rch itec tu re ...46
3.2.2 FIFO Cell’s Im plem entation...53

3.3 S u m m a ry .. 54

4 Shared Bus Design Using MCFIFO 55
4.1 Broadcasting of Data Items Using the M C F IF O55

4.1.1 Shift R eg ister.. 58
4.1.2 DBF1FO Protocol..60
4.1.3 DBFIFO A p p lica tions..63
4.1.4 Shared B u s ... 63

4.2 Data Broadcasting Shared Bus (DBSB) ...65
4.2.1 Bus C o n tro lle r ...67
4.2.2 Shift R eg iste r.. 68
4.2.3 Bus Traffic C o n tro l.. 68
4.2.4 DBSB P ro toco l...69

4.3 Mixed-CIock Shared Bus (M C S B)..70
4.3.1 MCSB Protocol...70

4.4 S u m m a ry ..72

5 Design and Performance Evaluation 73
5.1 Test Models of Mixed-clock B u se s ..73
5.2 Performance A nalysis.. 75
5.3 Comparison with Synchronous Buses ... 83
5.4 S u m m a ry .. 84

6 Conclusion 87
6.1 Future W ork .. 88

A Verilog Code 95
A. 1 Synthesizable Verilog Model of DBSB (using a 4-place MCFIFO) . 95
A.2 Synthesizable Verilog Model of MCSB (using a 4-place MCFIFO) . 118

B Simulation Waveforms 131
B.l Simulations of D B S B ...131
B.2 Simulations of M C SB ...131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

2.1 Muller C-element’s Truth Table.. 16

3.1 Get Operation O u tco m es..46

4.1 Timing Relationships between The Three Subsystem s............................58

5.1 DBSB Functional Test C a s e s ■... 75
5.2 Performance Results .. 76
5.3 Performance comparisons of Synchronous Buses [3 , 4] 84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1 Two-phase S ig n a lin g ... 11
2.2 Four-phase S ig n a lin g ... 12
2.3 M icrop ipelines ... 14
2.4 Dual-rail Circuit Implemented using DIMS 17
2.5 Asynchronous Latch ... 17
2.6 Dual-rail P ip e lin e .. 18
2.7 Various Types of Multiple Clock D om ains.. 23
2.8 Mesochronous C lo c k in g ...24
2.9 Pausible Clock G enerator...27
2.10 Asynchronous Wrapper and Configuration of a Data Channel in

G A L S ... 27
2.11 Single-Stage Frequency Matching F I F O ... 28
2.12 Timing Diagram of Single-Stage Frequency Matching FIFO 29
2.13 Latch Controller...30
2.14 Implementation of a Frequency Matching FIFO In te rface31
2.15 Two Flip-flip Synchronizer..33
2.16 Metastability in Data Transaction.. 34
2.17 Implementation of a Two Flip-flop Synchronizer Data Channel . . . 37
2.18 FSM P ro to co l.. 37

3.1 Mixed-clock Interconnection with Two Data Registers42
3.2 The Full and The Empty G en era to rs ..43
3.3 Overview of the M CFIFO...44
3.4 MCFIFO Architecture [1] ...45
3.5 Global State Detectors for a 4-place M C F IF O 48
3.6 Global State Detectors Implemented with Dynamic Logic for a 4-

place MCFIFO [1] ...50
3.7 Global State Detectors Implemented with Dynamic Logic for a 8-

place M C F IF O ... 51
3.8 MCFIFO Controllers [2] ... 52
3.9 FIFO Cell’s Implementation [2] .. 53

4.1 Data Broadcasting Architecture... 57
4.2 Synchronous Interfaces of the DBFIFO ... 58
4.3 Type-A4-to-l Shift R e g is te r .. 59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4 Type-B l-to-4 Shift R e g is te r ... 61
4.5 Data Broadcasting Shared B u s .. 66
4.6 Bus Controller... 67
4.7 Mixed-CIock Shared B u s ..71

5.1 Synchronous Interfaces of the Shared B u s e s ...77
5.2 Example of SoC Modules Configuration.. 79
5.3 Total Cell Area U sage.. 80
5.4 Total Dynamic Power C onsum ption .. 81
5.5 Total Cell Leakage P ow er... 82

B.l System Configuration Used in DBSB Sim ulations................................132
B.2 Waveform of Test Case 1 of D S B S ..133
B.3 Waveform of Test Case 2 of D S B S ..134
B.4 Waveform of Test Case 3 of D S B S ..135
B.5 Waverform of Test Case 1 of M C S B ...136
B.6 Waverform of Test Case 2 of M C S B ...137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Acronyms

Acronym Significance

BIST built-in self-test

DFF d-type flip-flop

DBFIFO data Broadcasting FIFO

DBSB data Broadcasting Share-bus

DEC decoder

FIFO first-in, first-out

FPGA field-programmable gate array

FSM finite state machine

IC integrated circuit

IP intellectual property

LSB least Significant Bit

MSB most Significant Bit

MCSB mixed-clock Shared-bus

MCFIFO mixed-clock FIFO

M-MCFIFO multiple mixed-clock FIFO

MSS metastable state

MTBF mean time between failure

MUX multiplexer

MVCML multiple-valued current mode logic

PSSR parallel-in, serial-out shift register

SoC system-on-a-chip

SPSR serial-in, parallel-out shift register

VLSI very large scale integration

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

The electronics industry has seen a phenomenal growth over the last two decades,

mainly due to the rapid advances in integration technologies to create so called very

large scale integrated (VLSI) circuits. Today, very powerful computers can be built

from several VLSI circuits. As a result, the system size and operation speed are

significantly increased. The number of applications of integrated circuits (ICs) in

high-performance computing, telecommunications, and consumer electronics has

been rising quickly. As more complex functions are required in various data pro­

cessing and telecommunications devices, the need to integrate these functions in

a small system/package is also increasing. Recent advances in silicon technology

have led to an era where a complete system can be integrated and implemented on a

single silicon chip, referred to as a system-on-a-Chip (SoC). In an SoC, the feature

size of the circuit’s building block, a transistor, has decreased into the deep sub­

micron range. Memory modules, logic elements, communications peripherals, and

digital & analog modules, formerly attached to the processor at the board-level, are

integrated onto the same silicon chip of the processor. The advantages of SoCs are

that of combining multiple components into one package leading to cheaper manu­

facturing of systems, greater design reliability and greater circuit operating speed.

SoCs allow devices with smaller size and weight to be built with more features.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1: Introduction Fung

They also allow reuse of designs. The complex applications that SoCs can perform

along with a narrow market window on certain technologies, favors the movement

of converting board-level designs into SoCs.

A typical SoC contains microprocessor cores or digital signal processing (DSP)

cores, peripherals modules, external interface modules, multimedia modules, net­

working modules and most importantly, bus and interconnect networks. Some of

the typical characteristics of SoCs are:

• Very large number of transistors

• Constructed using third party Intellectual Property (IP) cores

• Mixed technology on the same chip including digital, analog, memory,

interconnect, etc.

• Multiple clock frequencies being used on the chip

These characteristics result in greater design flexibility and increase of circuit

performance but pose new challenges in SoC design and testing. The buses and in­

terconnect networks are the bridges that connect and enable communications among

cores and among external devices in SoCs. Each embedded core has an inter­

face circuitry to interact with. To correctly interface with the core, mixed timing

inter-core interconnection is becoming more critical. As the complexity of SoCs

grows, the on-chip buses or interconnect architectures start dominating system per­

formance and power consumption. Since the reliability of SoCs has become highly

dependent on the fault-free operation of the bus systems, they must be designed to

be sufficiently flexible and robust in order to fulfill the wide variety of performance

specifications. As a result, design and verification of the mixed-timing bus archi­

tecture, and the internal and external bus interface systems are now an essential part

of SoC design.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung Section 1.1: Thesis Organization

1.1 Thesis Organization

In this thesis, two new mixed-clock shared bus architectures are proposed. These ar­

chitectures address many problems that SoC integrators encounter when designing

a high-speed interconnection network for SoC. In Chapter 2, the author discusses

the challenge of designing a highly complex deep sub-micron SoC. The problems

of designing the interconnection using a globally synchronous approach are stated.

Alternative approaches for interfacing highly compacted VLSI circuits with vari­

ous asynchronous communication methods are then introduced. The advantage and

disadvantage of each approach are presented. Chapter 3 explains the design of a

mixed-timing interface using Mixed-CIock FIFO, which enables high performance,

low latency mixed-timing data transfer between two modules. The design of the

proposed mixed-clock shared bus architectures are detailed in Chapter 4. The sim­

ulation results and performance of the share bus designs are presented in Chapter 5.

Finally, Chapter 6 summarizes and presents the conclusion of the thesis.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

£ tex t ̂

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Mixed-clock Interface for SoC

This chapter contains three sections: Synchronous Designs’ Challenges, Asyn­

chronous Design Scheme and Mixed-clock Interface.

Section 2.1, Synchronous Design’s Challenges, discusses the issues and limita­

tion of designing a globally synchronous system. Section 2.2, Asynchronous De­

sign Scheme, discusses various asynchronous design styles as alternatives to syn­

chronous design, how subsystems communicate via interface structures that employ

asynchronous signaling and data encoding techniques. Section 2.3, Mixed-clock

System, introduces a feasible way to design high performance SoCs, discusses

how subsystems in mixed-clock SoCs communicate, looks at the concept and ar­

chitecture of mixed-clock interface using synchronizers, and investigates various

synchronization issues.

2.1 Synchronous Design’s Challenges

Most VLSI designs are built with synchronous logic, where small blocks of com­

binational logic are separated by synchronously clocked registers. In synchronous

systems, sequence and time are connected by means of a global clock signal. The

clock is a sequence reference and also a time reference. As a sequence reference, its

transitions serve the logical purpose of defining successive instants at which system

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Mixed-clock Interface fo r SoC Fung

state changes may occur. As a time reference, the period between clock transitions

serves the physical purpose of accounting for circuit and wire delays in the paths

from the output of one sequential element to the input of another. The storage de­

pendence of synchronous systems resides entirely within the sequential or clocked

storage elements, and the only dynamic characteristic of combinational logic that

affects the performance of the system is the circuit’s propagation delay. One of the

biggest advantages is that synchronous logic made it easy to determine the maxi­

mum operating frequency of a design by finding and calculating the longest delay

path between registers in a circuit. This often simplifies the design, verification,

maintenance and testing process of a system.

2.1.1 Global Clock

Synchronous systems use a clock to distinguish a current event in a computation

from the previous or the next event. Ideally, this clock should be seen as an identi­

cal signal at any point of the system. In order words, it should arrive simultaneously

at all clocked elements in the system. Clocked elements in a synchronous system

may take any of a variety of forms, including latches and flip-flops, memories and

dynamics gates, but they all share the clock as a common time reference. Unfor­

tunately, since the clock is often loaded with the great number of fanout, travels

through the longest distances, and operates at the highest speed of any signal in the

system, it is extremely difficult to ensure the clock signals to arrive at the same time

to all clocked elements. Also, mismatched clock networks’ path, and processing

and environmental variations introduce differences in the arrival time of the clock

from one point to another. The absolute difference between the nominal and the ac­

tual interarrival times of a pair of physical clock edges is called clock skew [5]. One

consequences of clock skews is the cause of data set-up and/or hold time violation

of clocked elements, resulting in synchronization failure between two subsystems

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung Section 2.1: Synchronous Design’s Challenges

in an SoC. Synchronization issues are further discussed in section 2.3.2.1.

Clock skew sources can be classified as systematic, random, drift and jitter.

Systematic clock skew is the portion that exits even under nominal condition, due

to asymmetric or uneven load to the clock distribution network. Random clock skew

is introduced due to processing variations, affecting the thickness and width of wire,

transistor channel lengths, threshold voltages or oxide thicknesses, etc. Over time,

environmental variations, including temperature and humidity, may develop and

eventually cause clock drift. Finally, jitter is a characteristic of the clock generator

and can be caused by supply voltage variations and mismatches in the PLL or DLL

circuitry. High-frequency environmental variations, like power supply noise and

cross-talk between high-speed wires, can also induce jitter into the clock signal.

2.1.2 Clock Generation and Distribution

Many synchronous SoCs have their own on-chip clock generators. The clock is

normally generated from an electronic oscillator circuit. The period of the clock is

typically controlled by a crystal or some other resonant network. Clock generation

unit often include a phase-locked-loop (PLL) or delay-locked-loop (DLL) to reg­

ulate the period or phase of the global clock. The global clock is then distributed

across the chip through a clock distribution network. The distribution network must

deliver the clock across the chip so that it arrives to all clocked elements, via clock

buffers, at about the same time. Therefore, that network must be carefully designed

to minimize clock skew. Global clock distribution trees can be classified as grids,

H-tree, spines, ad-hoc or hybrid [5].

A clock grid is a mesh of horizontal and vertical wires delivering clock signals

from clock buffers located in the middle or on the edges. An H-tree is built by re­

cursively constructing fractal H-shaped structures on the vertices of other H-shaped

structures. With enough recursion, a large H-tree is eventually constructed that can

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Mixed-clock Interface fo r SoC Fung

distribute a clock from the center of a chip to within short distances from all clocked

elements of the chip, while maintaining exactly the same wire lengths. A spines

structure drives length-matched serpentine wires, from a few rows of clock buffers

across a chip, to each small group of clocked elements. The rows of clock buffers

can be placed in a way such that the load to each serpentine wire is equal, thus,

reducing the systemic skew of the network. An ad-hoc clock distribution network

is designed which attempts to equalize wire lengths via manual routing or equalize

delays via adding buffers throughout the different parts of a chip. Finally, a hybrid

clock tree combines the structure of the H-tree and grid network together in an at­

tempt to compensate clock skews that are introduced when the clock distribution

network is constructed with H-trees or grids alone.

2.1.3 Synchronous Design Limitations

As the integration scale and the clock frequency on SoCs increase, global syn­

chronization is commonly used to keep a system working by avoiding data read

failures. However, global synchronization implemented with delay-matched clock

trees has many drawbacks. It needs more metal layers and results in a higher pro­

cess cost. In many large SoC designs, with millions of transistors, large current

surges are necessary to deliver the global clock signal to all clocked elements [6].

The power dissipation of the global clock networks can be up to 40 % of the total

power [7]. Also, since SoC designs have not only millions of gates, but also mil­

lions of heterogeneous gate structures such as DRAM, SRAM, ROM, flash, digital

logic programmable logic and analog circuitry, the job of maintaining the global

clock across a chip is becoming more difficult. Significant resources are needed

in designing analog devices like PLLs or DLLs to compensate for the propagation

delay of local clock buffers and to deal with delay and clock skew reductions.

At the same time, typical clock skew reduction methods need wide metal wires

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung Section 2.2: Asynchronous Design Scheme

or insertion of delay lines in the clock network [5,8,9]. They usually conflict with

power reduction requirements [7]. In addition, the scale of synchronous systems

is limited because of timing constraints. It is becoming extraordinarily difficult

to find and predict critical path delays in SoCs. Determining the maximum clock

frequency is now a more tedious and time consuming assignment than ever. As pro­

cess technology works further down though the deep sub-micron to the nanometer

level, many issues begin to post tremendous problems. Effects such as flicker and

shot noise, charge sharing, thermal effects, supply voltage noise and process vari­

ations make calculations of delay uncertain and difficult [6]. The physical limits

of system scaling and clock frequency will eventually be reached for the future

high-performance VLSI design unless global synchronization can be avoided.

2.2 Asynchronous Design Scheme

In the early days of digital circuit design, the difference between asynchronous and

synchronous circuits was given little regard. Most designers determined that using

a clock provided a simpler design methodology. They realized that this added to the

power and performance overhead of the chip, but the trade off was worth it. As SoC

designs grow larger, designers must grapple with serious global timing problems.

The effect of wire loading and timing delays, increased power consumption of the

clock distribution network, and the performance penalty associated with supporting

on-chip communications, due to increased of clock skew, has encouraged the use

of asynchronous communication between subsystems. In this approach, the global

clock distribution network in the synchronous scheme is replaced by some variety

of special encoding schemes and handshaking protocols to schedule the sequence

of events. Asynchronous schemes can be divided into two criteria: completely

asynchronous or self-timed system, and system with combinations of locally syn-

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Mixed-clock Interface fo r SoC Fung

chronous modules interfaced with asynchronous and/or other locally synchronous

modules. The latter are often called mixed-clock systems.

2.2.1 Purely Asynchronous circuits

First, we investigate the concept and structure of a completely asynchronous sys­

tem to see if it is a practical and feasible solution for the issues caused by globally

synchronous design. A totally asynchronous system is a circuit in which the se­

quencing of its data computations is determined by the data flow and local control

signals rather than by clock signals or other global control signals. Control signals

for the data transactions are often encoded into the data itself, so that the compu­

tation will start when data inputs to a sub-circuit are ready. As soon as the result

is computed, the next computation can be initiated. In the absent of a clock signal

for time referencing, totally asynchronous circuits employ special handshaking and

data encoding schemes to control the sequence of events in the system.

2.2.2 Handshaking Protocols

Asynchronous circuits are often modelled as delay-insensitive. A delay-insensitive

design assumes that delays in both elements and wires of the circuit are unbounded.

With a delay-insensitive model, no matter how long a circuit waits, there is no

guarantee that the input will be received. The recipient of data is forced to inform

the sender when it has received the data. The sender is required to wait until it gets

the completion signal before sending the next data item. There are two widely used

signaling scheme, 2-phase and 4-phase signaling, to govern delay-insensitive data

transfer. The two forms of signaling conventions are functionally similar in their

role of communicating data but differ in details of encoding.

Both signaling schemes can be used to correctly control the flow of data. How­

ever, since it costs time and energy to drive a transition onto a wire, the cost will be

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung Section 2.2: Asynchronous Design Scheme

reduced if fewer transitions are used in an asynchronous signaling convention [10].

For example, in an asynchronous single-rail circuit, there must be at least two tran­

sitions for each operation performed by a circuit element. That is, a request (Req)

has to be asserted to initiate the operation and an acknowledge (A ck) is used to

indicate the completion of the operation. Suppose that all request and acknowledge

wires in the system are initialized to be in the zero state. As long as the request and

acknowledge wires are in the same state, it indicates an operation has been com­

pleted. If the two wires are in different states, an operation is in progress. Since

this signaling scheme takes two signal transitions to complete an operation, it is

variously called 2-phase, transition or nonretum-to-zero (NRZ) signaling. All four

states of (Req) and (Ack) are used in this scheme, as shown in Figure 2.1.

- 1
2-cycle h

Input data iz= signaling
Request -—► system

M---
Acknowledge

Output data

Acknowledge

7 m xxxxxxx
V / \ / *

4
/

A \ i// V
*

//// xxxxxxxx //
V

J T
curren t cycle j nex t cycle

Figure 2.1: Two-phase Signaling

2-phase signaling is fast and energy efficient; however, some extra logic and

state information in each element is required to detect each transition of Req and

Ack. An alternative to 2-phase signaling is known as 4-phase, Muller or retum-to-

zero (RZ) signaling. In 4-phase signaling, a completion of an operation is marked

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Mixed-clock Interface fo r SoC Fung

by returning the request and acknowledge wires of an element to the zero state.

Therefore two extra signal transition cycles are needed to complete an operation. A

form of 4-phase signaling is illustrated in Figure 2.2.

Input data
Request — ►

4-cycle
signaling
system

£> Output data
Acknowledge

Input data W f

Request

Output data

Acknowledge

y r

ix m x :
f \

\ i

i- i *i i 1 1 T+- I I
Jl

I

A

M C
4\/ \

i — r

1 4i i i i
- r - i—i i

I

V
curren t cycle] nex t cycle

Figure 2.2: Four-phase Signaling

The retum-to-zero character of 4-phase signaling tends to result in very simple

and natural circuit implementations [10]. Therefore, in systems where wire delays

are a substantial fraction of the operation time, for example, in long distance com­

munication network, 2-phase signaling scheme should be used. 4-phase signaling

is commonly use in local communication, particularly with speed independent ele­

ments because of the circuit economy [10].

2.2.2.1 Micropipelines

An example of a circuit structure that employs the two signaling scheme is a mi­

cropipeline [11,12] shown in Figure 2.3a. A transaction starts when a request for

pushing data onto D in is made. Once a request event is generated on control line

R i n , the data is copied into Event Regl, which then signals the event on its R out

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung Section 2.2: Asynchronous Design Scheme

and A jn outputs [11,13]. In this state, Event Regl holds the data stable until it re­

ceives an acknowledge signal on its A o u t input from the event register on the right.

Since the design in Figure 2.3a uses a single-rail encoding scheme, a delay element

may be needed to be added to each stage of the request line to guarantee that a

valid data is made available before the arrival of control signals. The request signal

generates by Event Regl is delayed for enough time to allow the data on the outputs

of the following logic block, Logicl, to be stable. After receiving a request signal

on input R in , the second event register Event Reg2 latches the data, then acknowl­

edges it by signaling an event on its A /jv output and generates a request signal on its

R o u t output for the next event register. The data processing procedure is repeated

for the rest of the micropipeline stages.

2.2.3 Data Encoding
2.2.3.1 Single-rail Encoding

Traditionally, SoC designs use a single-rail encoding scheme to interface between

the data sender and data receiver. In asynchronous single-rail encoding, one wire

per bit is used to present and transmit data, and an associated request line is used

to indicate data validity. The associated channel for the data transfer is called a

bundled-data channel [14]. In this scheme, the sender of the data issues a data-

valid signal, request, when the data on its output is valid, and the receiver responds

by sending a data-release signal, acknowledge, when the data has been processed.

The sender has to keep the data on the channel stable and valid at least from the

issue of the data-valid until the receipt of the data-release. A sender may take an

indefinite amount of time to prepare valid data. After the issue of the data-valid

signal, however, it has to keep the data constant. The receiver can then prolong the

data-valid period as long as it wants before issuing the data-release signal to mark

the end of the period. The micropipeline structure in Figure. 2.3 is an example of a

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Mixed-clock Interface fo r SoC Fung

RIN

DIN •—[>

IN

R ni R duti R n2 R)UT2

Event
Regl

Logicl —N
“ 1/

Event
Reg2

A-INl ^OUTl A A

Logicz

OUT

OUT

OUT

(a) Architecture

Request
Acknowledge

data

Request
Acknowledge

data
Sender Receiver

J I \ V
~XMF

V '
-T t-V W A A m -
-+

Wr-
previous

cycle -*K-
current
cycle

iii>K-

next
cycle

Sender’s
Action

Receiver’s
Action

(b) Signaling

Figure 2.3: Micropipelines

signal-rail, bundled-data communication channel.

Single-rail circuits provide moderate area efficiency because they use only one

wire per bit, plus one additional wire to signal the validity of the data. Single-rail

data-path operators such as adders and exclusive ORs can be found in any generic

standard-cell library so they are easier to design and verify. Most of the synchronous

circuit designs employ a single-rail encoding scheme. Essentially, asynchronous

and synchronous single-rail logics are very similar. Instead of using clock edges

as triggers for data transfer events, request and acknowledge handshake signals

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung Section 2.2: Asynchronous Design Scheme

are used to control the flow of data from one stage to another on asynchronous

communication networks. Utilizing a signal-rail encoding scheme to construct an

asynchronous communication network allows the reuse of synchronous single-rail

logic. However, single-rail circuits assume that the delay in the request line is

longer than the delay in each of the data wires. The single-rail encoding style bases

the handshake upon a matched-delay path (see micropipeline) that suffers from the

same timing validation problems as synchronous design. In reality, it can be difficult

to match the handshaking signals with appropriate delay models. Therefore careful

timing analysis is required to determine the correct amount of delay.

2.2.3.2 Dual-rail Encoding

Many purely asynchronous systems are constructed as delay insensitive circuits. In

a delay insensitive circuit, the detection of new data arrival to the circuit’s input

triggers the start of a computation. To identify the arrival of valid data, protocols

are used so that spacers are inserted between valid values. The data is encoded to

represent a spacer and the two digital logic states. A common encoding scheme for

delay- insensitive computation is dual-rail encoding.

In dual-rail encoding, the data is sent using two wires for each bit of information

[15]. The two wires are used to represent data and the request and acknowledge

signals are encoded into the data.

The empty or invalid state indicates that no valid data bit is available. The empty

state serves as a spacer to separate each valid data bit in a data stream. Suppose

a data value, x, is represented using two wires, x_t and x_f. The empty state is

represented by {x_t,x_f} = 00. A logic 1 is represented by {x_t,x_f} = 10. A logic 0

is represented by {x_tx_f} = 01. A transition between a logic 0 to spacer or a logic

1 to spacer, and between a spacer to a logic 0 or a spacer to a logic 1 is allowed.

However, a transition between a logic 0 to logic 1 or vice versa is prohibited, and

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Mixed-clock Interface fo r SoC Fung

the two wires are never in the process of switching at the same time.

To synthesize a dual-rail delay insensitive circuit for a functional block, a tech­

nique called delay insensitive min-term synthesis (DIMS) is used [16]. In this tech­

nique, the minimal term are formed using Muller C-elements, instead of AND gates.

A Muller C-element is a logic circuit with two inputs and one output. When both

inputs of a Muller C-element are 1, its output becomes 1. When both inputs are

0, its output becomes 0. Otherwise the output remains unchanged. Table 2.1 il­

lustrates the truth table of the Muller C-element. This synthesis style resembles

Table 2.1: Muller C-element’s Truth Table

Input Output
a = 0, b = 0 0
a = 0, b = 1 unchanged
a = 1, b = 0 unchanged
a = 1, b = 1 1

the traditional sum of product approach but the reduction of the Boolean equations

by combining minimal terms is not allowed. This is to assure the combinational

circuits do not produce any valid output signals until all input signals are valid,

and none of the output signals are empty values until all inputs are spacers. Fig­

ure 2.4 and Figure 2.5 illustrate three circuits built using C-elements, NOT and OR

gates. Although DIMS does not allow reduction of Boolean equations, multiple

logic functions that depend on the same input may share C-elements.

2.2.3.3 Dual-rail Pipeline

An example of a pipeline structure that utilizes dual-rail encoding is shown in Fig­

ure 2.6 [16]. In this pipeline, delay insensitive latches are placed between functional

blocks. The latch holds the value of the input data and sends it to the successive

circuits when they are ready to receive. Each latch is controlled by acknowledge

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung Section 2.2: Asynchronous Design Scheme

out t
in2 t

out f

in2 f

(a) Dual-rail AND

b ^ © - o u t b

b_t-

b_f-

a_t-

a f -

c_t -

c f-

3 © -

© © ■

; z 9 © -

! 9 © -

; z 3 © “ '

;3 © — '

3 © — ;;

3© -

c)—out

-sum t

sum f

carry_t

carry_f

(b) Dual-rail Adder

Figure 2.4: Dual-rail Circuit Implemented using DIMS

ack in

din

■ © 0 -
din f —

r ° < H - ack_out

-► dout t

-► dout f

Figure 2.5: Asynchronous Latch

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Mixed-clock Interface fo r SoC Fung

signals from its succeeding latches. If a latch receives A in as low, it is allowed to

load and hold a valid data value and outputs A in as high to its previous latch. If

the A o u t is high, the latch can load and hold a spacer and outputs A i n as low to

its previous latch. A delay insensitive ring can also be formed with at least three

latches, by connecting the output of the last stage to the input of the first. Such ring

is often used to perform iterative computations.

x _ t—>
X f — >

Figure 2.6: Dual-rail Pipeline

2.2.3.4 1-of-n and m-of-n Encoding

The concept of dual-rail encoding can be extended to create a more power efficient,

delay-insensitive encoding scheme known as 1-of-n encoding. In 1-of-n encoding,

a symbol, which is a 2-bit code (01 = logic 1, 10 = logic 0 , 00 = spacer, etc), is

transmitted on one of the group of n wires [17]. The most common form is a 1-

of-4 or one-hot encoding [18], where a symbol is transmitted on one of four wires.

Two bits of information are thus carried over four wires, giving the same resource

requirements as a dual-rail encoding scheme. However, since a l-of-4 can convey

2 bits of information in one data transfer cycle, it is more power efficient than dual­

rail encoding. A superset of 1-of-n encoding is called m-of-n encoding [19], where

more than one, or m symbols, can be transmitted on a group of n wires.

18

Latch2 Latch3Latch 1

LOtJT3lOUT2

Succeeding
Stage

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung Section 2.2: Asynchronous Design Scheme

2.2.3.5 Color Coding

Dual-rail encoding is also known as 1-color 4-phase coding. The term ”1-color”

refers to the number of valid data representation and ”4-phase” refers to the number

of communication actions between a data sender and receiver. In dual-rail encoding

a spacer must be transmitted in between valid data. To eliminate the timing over­

head due to the insertion of spacers, other color coding convention can be utilized.

Two additional color coding schemes, 2-color 2-phase encoding and 2-color

1 phase dual-rail encoding, are introduced in [20]. In 2-color 2-phase encoding,

valid data are encoded into two colors, EVEN or ODD. Each successive data bits

in a data stream must have the opposite color. Color of the data item is indicated

by the request and the acknowledge signals. If the sender receives the color of

the acknowledge signal as ODD, it sends data with an EVEN color. The receiver

detects EVEN data and responds to the sender by changing the color of the ac­

knowledge signal to EVEN. 2-color 2-phase encoding requires an additional wire

for the acknowledge signal. However, by using multiple-valued current mode logic

(MVCML), the color and data information can be encoded onto two wires. This

encoding method is called 2-color 1-phase dual-rail encoding. The use of MVCML

is beyond the scope of this work and, therefore, will not be discussed further in this

thesis.

Both single-rail and dual-rail encoding schemes are commonly used in asyn­

chronous circuit design, and there are tradeoffs between each. The benefit of the

dual-rail approach is that it allows for data validity to be indicated by the data itself.

The handshaking signals are generated upon the arrival of data so it is not necessary

to perform delay matching on the request line. Unfortunately, the realizations of

dual-rail or m-of-n implementations for asynchronous handshake circuits are rather

area inefficient. For each bit two or more wires are used in the encoding compared

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Mixed-clock Interface fo r SoC Fung

to one wire for synchronous circuits. Since each wire has to be driven by some cells

and hence requires additional transistors and circuit area (twice or more the area

that of an equivalent synchronous are need to implement a m-of-n circuit) [14]. An

increased circuit area implies longer wires which consume more power and poten­

tially lowers speed performance. Furthermore, double-rail combinational logics are

generally implemented using dedicated dual-rail cells, not normally available in a

standard cell library. Finally, dual-rail designs often prohibit the reuse of existing

IP cores, which mainly consist of synchronous single-rail logics. Therefore, it is

difficult to design complex systems with such data encoding schemes.

2.2.4 Self-timed Systems

In a self-timed system, sequence and time are connected in the interior of circuit

parts called self-timed elements [10]. Self-timed elements are required to be con­

tained over equipotential regions, where the propagation delay on any wire within

the region is assumed to be small compared to the switching or signal transition

delay. The signal transitions at the terminal of a self-timed element may occur in a

certain order, such that, the sequential operation of a self-timed system is insensitive

to element and wiring delays. To ensure correct operation of data transfer within the

self-timed system, a handshaking protocol must be used to provide control on the

asynchronous interconnection. Two self-timed signaling conventions, equipotential

and delay insensitive signaling, are used as handshaking schemes.

Over the small equipotential regions, the related signals that are carried on wires

may be treated as identical at all points on the wires. Equipotential signaling con­

ventions imply the assumption that within a region, wires sustain negligible delay

so that any relations produced in the region holds everywhere [10]. In this case,

open-loop orderings at an element’s output can assure that those orderings are pre­

served at the inputs of other elements. Therefore, a bundled data convention can

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung Section 2.2: Asynchronous Design Scheme

be used as the signaling scheme, in which data-validity information costs only one

single wire. However, wires between equipotential regions are assumed to have a

sustained arbitrary delay. Delay insensitive signaling is used for communication

between elements that are not in the same equipotential region, i.e. dual-rail or

m-of-n encoding scheme is used.

2.2.5 Disadvantage of Asynchronous Systems

In general, asynchronous systems are most suitable for simple functions with few

inputs and outputs because the design complexity of these circuits increase dras­

tically with the number of inputs and outputs [21]. On the other hand, self-timed

systems are required to be constructed with elements that are contained over equipo­

tential regions, in an attempt to simplify the complexity of the handshaking scheme.

However, as CMOS feature size shrinks, the rate at which the size of the equipoten­

tial region shrinks is faster than that of the circuit sizes. Consequently, less devices

can be accommodated within each equipotential region and imposing a serious per­

formance limitation for self-timed systems [22]. Eventually, it is difficult to dis­

tinguish self-timed systems from purely asynchronous circuits as they both share

the same disadvantages. The entire platform needs to be designed asynchronously

to achieve a completely asynchronous SoC design. In other words, interface hard­

ware, memory, and supporting glue logic will all have to be asynchronous. The

large circuit overhead induces more difficulties to design highly complex SoCs as

purely asynchronous or self-timed system.

Meanwhile, design support comes in as another major issue. Existing design

tools are barely adequate for synchronous designs, let alone asynchronous design,

where tools are virtually nonexistent. Using current asynchronous design tools, like

Petrify, Balsa and proprietary tool likes Tangram, require a significant re-education

of designers, and their features are far behind synchronous commercial tools [23].

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Mixed-clock Interface fo r SoC Fung

Many asynchronous designs are achieved using modified synchronous tools. Com­

puter Aided Design (CAD) tools are deceived into thinking that the designs are

synchronous. The shortcomings of this are that logic design verification, timing

checks, and race condition checks become very difficult.

Debugging complex asynchronous logic is also extremely difficult. In a syn­

chronous design, a lower clock frequency can be used to detect and diagnose cer­

tain faults and determine fixes. However, in an asynchronous design, there is no

such clock and the logic must be debugged at full speed to identify a failing logic

path. A false transition on an output from one core can cause the next one to operate

on meaningless results. Designers often need to base their judgements on circum­

stantial evidence to find and correct design faults, which increases time-to-market

and development costs. The lack of testing architectures for asynchronous SoCs

also posts a tremendous hurdle for designers. Once again, designers may need to

find ways to fool the testers into thinking that the logic is synchronous, in order to

make conventional automated test equipment (ATE) to perform asynchronous de­

sign testing. Consequently, it is not desirable and often not feasible to design purely

asynchronous SoCs.

2.3 Mixed-clock System

The issues of synchronous SoC design appear in terms of serious global timing

problems, effects of wire loading and timing delays, and performance reduction

associated with supporting on-chip communications between different clock do­

mains. On the other hand, the overwhelming complexity of designing and testing a

purely asynchronous SoC platform also prohibits most designers from adapting to

such a design approach. The answer to the design dilemmas lies in combining the

understood and predictable synchronous methodologies with asynchronous design

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung Section 2.3: Mixed-clock System

O
*

(a) Single Clock Frequency

CLK_1: fO x (m1/n1)

CLK_2: fO x (m2/n2)

CLK_3: fO x (m3/n3)

(b) Rational Clock Frequencies

CLK 1: f1

CLK 2: f2

CLK 3: f3

I CLK 0: fO

(c) Multiple Clock Frequencies

Figure 2.1: Various Types of Multiple Clock Domains

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Mixed-clock Interface fo r SoC Fung

techniques. For example, an asynchronous circuit can be constructed with locally

synchronous subsystems with independent clocks but communicate asynchronously

on the system level. External asynchronous signals to these subsystems are made

internal via synchronizers or other asynchronous interface structures. The local

clocks can have the same frequency with arbitrary phases or, all together, different

frequencies (Figure 2.7).

In particular, mesochronous is used to describe the clocks with the same fre­

quency but have different phases [7]. In a mesochronous system, clock distribu­

tion is integrated in the buses, called strobe signals [24], going into each mod­

ules, as shown in Figure 2.8. Each block can use the strobe signal as its own local

clock. In addition, a plesiochronous interface is characterized as a design that has

multiple clock domains with independent clocks which are closely matched in fre­

quency [25].

StrobeData

Clock

Module 6

Module 1

Module 4Module 3
Module 2

Module 5

Figure 2.8: Mesochronous Clocking

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung Section 2.3: Mixed-clock System

Since there is no global time reference in mixed-clock systems, the local clocks

can be operated at a rate determined locally by the elements and wiring delays of

the subsystems. Therefore, the local clock rate tends to be determined by the max­

imum delay of the local module, instead of the worst-case delay of the overall sys­

tem. The mixed-clock approach for building large SoCs is gaining more attention

as a promising alternative to global clocking schemes. By adding the asynchronous

interfaces to locally synchronous modules, the interior of a specific module is iso­

lated from the interfaces. Each synchronous module can employ its own clock

and power supply without affecting other modules. Consequently, the problem of

clock distribution, clock slew and clock power consumption due to large chips can

be mitigated. The individual subsystem can be designed, verified and tested using

traditional methodologies associated with synchronous design. This approach also

simplifies SoC designs by promoting the reuse of modules.

Since local modules have independent clocks, there is no guarantee that data

transfer will be error free. Information communicated from one module to another

must be re-synchronized to the receiver’s clock. In the following sections of this

chapter, different methodologies for interfacing the locally synchronous subsystems

are discussed.

2.3.1 Mixed-clock Interface

There are two categories of mixed-clock interfaces which can be used to enable

communication among submodules: clock synchronization systems and data syn­

chronization systems.

In a clock synchronization system, the submodules communicate through the

synchronization of the sender’s and receiver’s clocks. They can either have pausible

clocks or rely on exact or nearly exact frequency matching of the clocks to achieve

that synchronization.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Mixed-clock Interface fo r SoC Fung

2.3.1.1 Globally-Asynchronous Locally-Synchronous (GALS) Systems

The term, GALS, was originally proposed by Chapiro [26] in 1984. GALS design

use pausible clocks to allow synchronous modules to communicate using asyn­

chronous protocols. Pausible clocks are ring oscillators that can be halted. In a

GALS system, each synchronous module has its own clock generator which con­

sists of a ring oscillator and a handshaking stage. When a valid data is ready, it can

be transferred from the sender to the receiver during the clock-paused period [27].

First, the sender forwards a request to the receiver and stalls its clock until it receives

an acknowledgement. The receiver detects the request and prepares to receive the

data by also stopping its local clock. Once the receiving module obtains the data,

it sends an acknowledgement to the sender to trigger the restarting of its clock.

Finally, the acknowledge signal is set back to low again, and the receiver’s clocks

restarts and normal operations of the two modules resume. Several approaches have

been proposed to stop and restart the clock [27-30]. These approaches all include

a synchronous element in their ring oscillators, called a mutual-exclusion element,

that can suspend the clock at one time and generate the handshaking signal at an­

other. Figure 2.9 illustrates the structure of a pausible clock generator with the

mutual-exclusion element. In GALS systems, an asynchronous wrapper similar to

the one shown in Figure 2.10, are implemented as the interface between different

clock domains.

The ring oscillators pause when the asynchronous environment wants to com­

municate with the module. In each cycle, the mutual-exclusion element acts as the

arbiter to decide whether the local clock signal or the environment’s handshaking

signal may proceed. The fact that either the clock or the handshake may proceed

implies that the input and output operations are mutually exclusive. A communi­

cation between two clock domains starts from one clock domain to the handshake

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung Section 2.3: Mixed-clock System

I- Mutual-exclusion I
element

pause_Req

0<1---- 0<|—0<1

►pause_Ack

► lclk

Figure 2.9: Pausible Clock Generator

r

Ack

Req

asynchronous wrapper

a
Inpul
port

Locally-
synchronous

module

pause_Reql

pause_Ackl

IclkY
pausible

clock

Locally-
synchronous

module

pause_Req2 pause_Req3
pausible

clock
pause_Ack3pause_Ack2

Figure 2.10: Asynchronous Wrapper and Configuration of a Data Channel in GALS

interface and then from the handshake interface to the other clock domain. There­

fore, one clock is paused first and then the other. However, the fact that pausible

clock designs must resolve metastability in the arbiter makes their worst-case cycle

time unpredictable. Also, GALS design makes minimal assumptions about clock

stability. For example, the performance of synchronous systems can be degraded

significantly by the clock’s stability and low-jitter [25]. Clock pausing inevitably

exacerbates jitters, since after suspending a clock, the first edge through the ring

oscillator and clock buffer will propagate slower than subsequent edges [31]. In

general, designs using this approach suffer higher throughput penalties due to the

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Mixed-clock Interface fo r SoC Fung

constant local clock adjustment. The absence of long term predictability and the

increase of jitter are major problems encountered when converting a synchronous

system into a GALS design. These problems prevent GALS the approach from

being used in many large deep sub-micron SoC designs.

2.3.1.2 Synchronization by Frequency Matching

In [25], Chakraborty and Greenstreet proposed a family of interface circuits that

mediate between mixed-lock domains by exact or nearly exact frequency match­

ing of the clocks. The basic design consists of a single-stage first-in first-out FIFO

and a latch controller, as shown in Figure 2.11. This basic design can handle inter­

faces between two clock domains which operate at exactly the same frequency but

have arbitrarily clock phase, i.e. a mesochronous system. The latch controller takes

and as inputs and generates that satisfies the set-up and hold require­

ments of latch-X and latch-R. Clock timing for the FIFO is shown in Figure 2.12,

where, t3, th and tprop denote the set-up time, hold time and propagation delay of

latch-T latch-X latch-R

O,

transmitter single-stage FIFO receiver

latch controller

Figure 2.11: Single-Stage Frequency Matching FIFO

the latches, respectively. Assuming the latches are all positive edge triggered, the

set-up and hold time requirements for latch-X are satisfied if the rising edge of

occurs at least ts + tprop after the previous and at least th - tprop before the next

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung Section 2.3: Mixed-clock System

Figure 2.12: Timing Diagram of Single-Stage Frequency Matching FIFO

<3>x- On the other hand, the timing requirements for latch-R are satisfied if the rising

edges of <3>x occur at least th - tprop after the previous and at least ts + tprop

before the next rising edge of Therefore, there are two windows of opportunity

for a valid to be generated. They are denoted by the two valid regions shown

in Figure 2.12. Also, 5 tr and SRT in the figure denotes respectively the time from

the rising edge of to the next rising edge of and from the rising edge of

to the next rising edge of If the width of the two windows are indicated by

7 t r and 7 r t , respectively, and P represents the clock period. Then the following

equations can be obtained.

7T R = 5tR — 2(ts + tprop) (2.1)

1RT = 5rT — 2 (th — tprop) (2.2)

7TR + 7RT — $TR + $R T ~ 2(ts + th) (2.3)

7t r + 7 RT — P — 2(fs + th) (2.4)

m a x (7T fl, yRT) > P/2 - (ts + th) (2.5)

Therefore, if the clock period is greater than 2(t s + t h) , the latch controller can gen­

erate a 4>x event, either after the rising edge of <E>T (for 7t r > 0) or after the rising

edge of (for 7r t > 0), ensuring proper operation of the interface. Since the

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Mixed-clock Interface fo r SoC Fung

timing of the design is determined by the rising edges of the clocks, proper de­

lay added into the latch controller to ensure the set-up and hold time requirements

for the latch-X and latch-R are met. The implementation of the latch controller is

shown in Figure 2.13. The single-stage FIFO is shown to handle clock jitter while

introducing no additional latency penalties. Based on this basic design, two ex­

tensions of the single-stage FIFO, which handle rational clock frequency multiples

and plesiochronous system, were proposed in [25]. The two designs demonstrate

an average latency of only half a clock cycle and a worst-case latency of two clock

cycles. In addition, a FIFO interface that can handle continuous data transfers be­

tween a data sender and receiver were briefly discussed. Figure 2.14 shows the

FIFO interface implementation presented in [25].

•--------- 1 [m2

-£><>£ > o-£ >0H [rnl

Figure 2.13: Latch Controller

There are several tradeoffs between this approach when comparing with oth­

ers. First, this FIFO design is more restrictive since the basic design is limited to

mesochronous clock domains and to the two special cases of mixed-clock domains

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung Section 2.3: Mixed-clock System

Put

° I N

Full

'OUT

Get

-► Empty S7------
synchronizer

rate
multipier

rate
multipler

Single
D -stage Q

FIFO
IN OUT

put FIFO get

nfull empty

^ern
Get-i

Figure 2.14: Implementation of a Frequency Matching FIFO Interface

(rational clock domains and plesiochronous clock domains). In contrast, most

mixed-clock FIFO designs can handle arbitrary mixed-clock interfaces [1,32,33].

Furthermore, the frequency matching approach requires thorough timing analysis

of the subsystems in order to calculate set-up and hold times, and the propagation

delay of the clock signals. This makes the approach technology dependent and dif­

ficult to design. Finally, for proper operation, the interface must be initialized with a

special procedure [25], where the latch controller may need to operate with a slight

slow-down during this initialization and brought to full speed under normal opera­

tion. These procedures require extra control sequences to be executed and further

reduce the robustness of the interface.

2.3.1.3 Data Synchronization System

An alternative approach attempts to synchronize data items and/or control signals

with the receiver without interfering with its clock. In a data synchronization sys­

tem, the subsystems have free running, stable clocks in each domain, and make

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Mixed-clock Interface for SoC Fung

minimal assumptions about the timing relationships between the clocks. The data

being transferred is synchronized from one clock domain to the other. The bene­

fit of such approach is that synchronizers can be designed using a conversational

synchronous design method. The designer can therefore look at the design from a

system-level perspective. Unlike micropipeline and the frequency matching inter­

face in [25], delay elements are not required for proper operation of the interface.

Thus, simulation and synthesis of the design utilizing synchronizers are much eas­

ier to realize. In fact, a few asynchronous communication schemes which employ

synchronizers [1,34] make minimal assumptions about the transistor technology be

used to implement the design. As a result, the design efficiency of SoCs can be

increased.

2.3.2 Synchronizer and Mixed-Clock FIFO

According to Dally [32], a synchronizer is a circuit that samples an asynchronous

signal and outputs a version of the signal which is synchronized with the sample

clock. If an input signal and a time reference or a voltage reference were given

to a system, a decision must be made by the synchronizer to select whether the

transition of the input signal happens before or after the time reference, or whether

the input voltage is higher or lower than the voltage references. In other words,

a synchronizer is used to provide the system time to resolve a metastable state

(MSS). The most common and simplest method for transferring data between two

mutually-asynchronous clock domains is to use a two flip-flop synchronizer.

Figure 2.15 illustrates a basic two flip-flop synchronizer design. In this example,

the request and acknowledge lines are synchronized by the receiver and the sender,

respectively, and bundled-data convention is employed.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung Section 2.3: Mixed-clock System

Sender

clk_s GD-synchronizer clk_r

Figure 2.15: Two Flip-flip Synchronizer

2.3.2.1 Synchronization Issues

The major concern about mixed-clock systems employing the synchronizer is that

there is no complete certainty on how reliable the synchronization is. The reason

is that synchronizing elements are bistable, i.e. the output stages of the elements

are constantly changing from 1 to 0, or 0 to 1, and may occasionally enter a MSS.

Metastability is the ability of a non-equilibrium state to persist for a long period of

time in a sequential element. In digital circuit, an input signal to an element that nei­

ther satisfies the condition of being a logic 1 nor 0 is said to be in a non-equilibrium

state. When sampling a changing input signal with the clock, the order of events

determines what will be sampled [32]. The smaller the time difference between

events, the longer it takes to determine which event happens first. The inputs can

force the element to enter a MSS when two input events come very close together,

requiring a longer time than allotted to decide the outcome of the sampling, and re­

sults in synchronization failure. Figure 2.16 illustrates a MSS of a data transaction

from one subsystem to another. If the incoming data rate is slow enough so that

the chosen flip-flop has enough time to resolve the metastable condition before the

next clock edge arrives, then one synchronizer stage implemented using a flip-flop

is sufficient for the synchronization.

33

Reg
Data

Receiver

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Mixed-clock Interface fo r SoC Fung

The period of time in which the output of the flip-flop may go metastable is

called the metastability window, W, and is defined as the sum of the set-up and hold

times of the clock signal driving the flip-flop. A data read from the synchronizing

flip-flop may fail if input data arrives during W. In that case, a metastable output

will stay undefined for a longer amount of time, increasing the propagation delay.

It can also cause the output to oscillate or move to the wrong state. Adding more

synchronizers may allow a longer time, Tr to resolve the metastable condition and

may reduce the chances of the output being metastable.

Inputs Outputs

k- Normal Propagation
!________Delay

k- Hold Time
Setup Time -►

CLK
M

Setup Violation

■B o rC

Hold Violation
+- Metastable Delay

Figure 2.16: Metastability in Data Transaction

The synchronizer reliability is given by its mean time between failure (MTBF),

which is the failure rate of a synchronizer due to the metastable condition [34]. For

a two flip-flop synchronizer, assuming the two flip-flops are identical, its MTBF is

given by:
Tr

M T B F = 6 T
f c x I d x W

where f c is the frequency of the receiver’s clock, f o is the rate of the data pushing

across the clock domain boundary. Assuming that the sender may not send data

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung Section 2.3: Mixed-clock System

every clock cycle, f o is usually not equal to the sender’s clock frequency. Tr is the

time available to resolve the metastable condition, namely the time separation be­

tween two clocked inputs to the synchronizer. W is the metastability window, r is

the resolve time constant or the characteristic time for the transient of the flip-flop.

For an SoC design implemented in 0.18wm CMOS technology, a typical value for

W is about 50ps and r is about lOps [34], To decrease the probability of synchro­

nization failure, the factor Tt/ t has to be maximized. Therefore, careful consider­

ations have to be made in synchronizer design to reduce the chance of it entering a

MSS.

A bistable element in a properly designed self-contained synchronous system

never has the opportunity to reach a metastable condition since satisfaction of the

timing constraints assures such condition would not happen. However, in a mixed-

clock system, it is possible for a synchronizer to hover between two well-defined

stable states (0 and 1) because it is not properly triggered by its clock. MSS oc­

curs under the conditions in which synchronizers must operate in a mixed-clock

system. There is no upper bound for the time the bistable element may remain in

this metastable condition. If a metastable state is not resolved soon enough, it may

cause a data read failure of the receiver.

In addition, two other issues can arise to cause synchronization failure. If the

incoming data rate exceeds that which can be accommodated by the synchronizer,

the synchronizing buffer overflows, resulting in a loss of information. On the other

hand, a synchronizer underflow is a condition in which the data rate is too low

and an attempt is made to access the synchronizer before a data item arrives and

an empty buffer is read. Appropriate measures have to be employed to reduce the

probability of such faults occurring. Fortunately, if a mixed-clock FIFO is designed

carefully, these issues can be minimized.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Mixed-clock Interface fo r SoC Fung

2.3.2.2 Latency

Since synchronizers have to deal with metastability and overflow/underflow states,

the designer has to trade off between reliability and low latency. It is understood

that attempts to resolve metastability increases the latency of the overall system, i.e.

a longer Tr improves reliability but also increases latency. Therefore, a low-latency

interface design for mixed-timing systems is particularly desirable.

In the example shown in Figure 2.17, the two sets of synchronizers are con­

nected to two finite state machines (FSM). The protocol that the two FSMs imple­

ment is shown in Figure 2.18. A valid data send request signal, valid, enables the

latching of data into R E G s and triggers the SFSM to generate Req = 1. R2 en­

ables R E G r to latch the data and starts the RFSM to send Ack back to the sender.

Assuming that Tr equals one clock cycle of the receiver’s clock, if a request is sent

to the first flip-flop, three possible outcomes may happen. In the first scenario, the

rising edge of the request is sampled to high by the first flip-flop. The R2 goes high

on cycle 2, and since Tr is set to be one clock cycle, the receiver waits a full cycle

before latching the data into R E G r at the beginning of cycle 3.

In the second scenario, the rising edge of request is initially sampled as low by

the first synchronizer and is sampled as high in cycle 2 if Ack stays low. The output

of second flip-flop goes high in cycle 3, and data is latched by the receiver in cycle 4.

In the last scenario, the first flip-flop goes into an MSS. If the MTBF is considerably

high, then 1 — is approximately equal 1. The first synchronizer has exited

metastability and arbitrarily settles to either high or low before the beginning of

cycle 2. If R1 is high, R2 goes high in cycle 2, and data is read by the receiver

in cycle 3. If R1 is low, R2 goes high in cycle 3, and data is latched by R E G r

in cycle 4. Therefore the worse case latency, calculated from the moment a data

item is ready to be sent to the time the receiver latches that data item, is four clock

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung

cycles.

Section 2.3: Mixed-clock System

Sender
valid'

— SFSM

A 3 ' REGC

R1 R2s

HbrHH
9 \

Ack

\4 2 'AJ

Receiver
D.

R3
(i— ►

RFSM

elk s

Data

[^sy n ch ro n izer

En
REG,R

- A -
elk r

Figure 2.17: Implementation of a Two Flip-flop Synchronizer Data Channel

SFSM
Protocol

RFSM
Protocol

Figure 2.18: FSM Protocol

There has been a large body of related work on using synchronizers. Some have

focused their efforts to reduce the latency penalties imposed by the synchronizers.

Seizovic [33] proposed an interface through a synchronization pipeline. Commu­

nication between each stages of the pipeline follows a two-phase protocol. How­

ever, the latency of his design is proportional to the number of FIFO stages in the

pipeline. His synchronizer design is based on the mutual-exclusion element which

is expensive to implement.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2: Mixed-clock Interface fo r SoC Fung

Dally [32] and Pham [35] also proposed mixed-clock FIFO designs. In [32],

Dally suggested to use 2n synchronizer to synchronize the addresses for the head

and tail of the FIFO, where n is the number of data items enqueued in the FIFO. This

gives his design a greater area overhead. Also, his design attempts to synchronize

the head and tail on every clock, which significantly reduces the overall throughput

of the FIFO.

In [35], Pham used a FIFO to provide communication between two mixed-clock

subsystems at low frequencies. However, it fails to provide synchronization of the

control signals, namely request and acknowledge. The lack of synchronization of

the global control signal for the asynchronous communication makes the design

unsuitable for use at higher clock frequencies, where the failure rate may increase

significantly to an unacceptable level.

Chelcea and Nowick [1,2] further optimized the FIFO approach by noting that

synchronizations of the global control signals are only needed when the FIFO ap­

proaches full or empty. Therefore, if successive data items are sent on a continuous

basis, the synchronization overhead is minimal and the asynchronous communica­

tion enjoys a very low-latency. Their design creates a highly robust, high perfor­

mance and low-latency interface for mixed-clock systems.

All of the research works discussed above accommodates asynchronous point-

to-point communication for synchronous modules. The proposed mixed-clock shared

bus design utilizes Chelcea’s Mixed-Clock FIFO and optimizes it further so that it

can provide multi-point, mixed-clock interconnection for SoC modules.

2.4 Summary

In summary, this chapter reviews challenges of designing a highly complex deep

sub-micron SoC. In particular, the problems of designing such system using glob-

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung Section 2.4: Summary

ally synchronous approach are discussed. Alternative approaches for designing

highly compacted VLSI circuits which involve abandoning the use of global clock

and control signals are investigated. We look at different ways for the subsystems

to communicate asynchronously in an SoC. The advantages and disadvantages of

each asynchronous communication schemes are presented. It is determined that us­

ing data synchronization approach to interface between two clock domains yield the

most robust, design efficient and high performance synchronization interface which

can be applied to large scale, complex SoCs. We then discuss several synchroniza­

tion issues and ways to improve data transfer reliability while maintaining low data

transmission latency. In the next chapter, we discuss the details of a mixed-clock

shared bus design which provides a highly reliable and low-latency communication

interface for subsystems in SoCs.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Mixed-Clock FIFO

This chapter contains two sections: Mixed-clock Interface, and Design of the Mixed-

Clock FIFO (MCFEFO).

Section 3.1, Mixed-clock Interface describes the method of interfacing two

mixed-timing modules using synchronized handshaking signals. Section 3.2, De­

sign of the Mixed-Clock FIFO, discusses the structure and operation of a MCFIFO.

Many mixed-clock on-chip interconnection schemes have been previously pro­

posed by other research groups. They are designed to provide point-to-point inter­

faces between mixed-clock modules. In this chapter, we are going to present the

design of the MCFIFO, which provides high performance, low latency data transfer

between two mixed-timing modules.

3.1 Mixed-clock Interface

In the previous chapter, we described a data synchronization system that synchro­

nizes data communication using control signals (request and acknowledge) that are

synchronized to the data transmitter and receiver, respectively. To guarantee that the

receiver has time to retrieve, valid data items can be temperately stored in an array

of registers. They are held in the registers until the receiver has a chance to validate

their existence and reliably read them from the registers. They are removed from

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3: Mixed-Clock FIFO Fung

the registers only after they have been read by the receiver. In Figure 3.1, a two

flip-flop synchronization stage is modified into a FIFO structure with two registers,

dregO and dregl. The registers are connected in parallel and each one can read data

from the same bus. Control signals govern which register can store the data items

from the bus. The empty signal informs the receiver if data is available to be read

from any of the registers. The circuit controller generates the control signals, and

the registers constantly provide feedback of their status to the controller. Based on

the feedback, the controller monitors if the registers are full or empty to prevent

register overflow or underflow, and adjusts the control signals accordingly.

^feedback
r— -Js
r v

J control
signals

CLK l

dregl

empty
full

Figure 3.1: Mixed-clock Interconnection with Two Data Registers

In this FIFO structure, the sender does not have to wait for the receiver to ac­

knowledge a data retrieval event. Instead, the data items are clocked into the regis­

ters based on the sender’s clock, while the controller attempts to identify the status

of the registers and to synchronize the control signals. The circuit controller con­

tains a full generator and an empty generator, shown in Figure 3.2. They generate

fu ll and empty signals to inform the sender and receiver of the register status. If

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung Section 3.1: Mixed-clock Interface

the registers are full,yw// is asserted and the sender stops sending data to prevent

register overflow. When the registers are empty, the controller sends empty = 1 to

the receiver to avoid register underflow. This potentially reduces the overall latency

of the data transfer. The registers can be viewed as the output buffers of the sender.

If the control signals are correctly synchronized, the occurrence of MSS can be

reduced.

Chelcea and Nowick [1] noted that the control signals that govern the data trans­

fer need not be synchronized for every data transfer. Synchronization of the control

signals is only needed for the receiver when the registers are empty and for the

sender when the buffer is full. Consequently, this allows the mixed-clock FIFO to

continuously store data and export it almost immediately, while further reducing

the transfer latency. The FIFO can be constructed by combining a few predesigned

components. It is easy to design since it is technology independent. Its behavior

can be modelled using typical HDL languages.

^feedback

Full Generator
j— \ full

y Empty Generator
L _i— \ fs. empty

Figure 3.2: The Full and The Empty Generators

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3: Mixed-Clock FIFO Fung

3.2 Design of the Mixed-Clock FIFO (MCFIFO)

Each MCFIFO can be viewed as a channel, which interfaces a sender and a receiver.

The MCFIFO consists of a series of cells that contains data registers and other con­

trol logic. The MCFIFO interacts with the sender and receiver through two external

interfaces: a put and a get interface. Figure 3.3 explains the overall relationship

between the sender, the MCFIFO and the receiver.

data_get
 »
CLK_get

data_put
 1
CLK_put

rea set
req_put

valid_get
fuU empty

put get

Mixed-
clock
FIFO

Data
Sender

Data
Receivers

interface I interface

Figure 3.3: Overview of the MCFIFO

Assuming that a data sender operates at the frequency CLK-put, the put interface

interacts with the sender and is controlled by CLK-put. The put interface’s inputs

consist of a data bus dataqjut and a reqqut signal for requesting to enqueue a data

item, i.e. to put a data item onto the queue formed by the FIFO cells’ registers.

An output signal fu ll is asserted when all of the FIFO cells in the system occupy a

data item. Likewise, the get interface is controlled by CLK.get that is the operating

frequency of the receiver. In addition, the signal req-get is used for requesting to

dequeue a data item, i.e. to read and remove data from the FIFO cells. To retrieve a

data item, it is placed on the data-get bus. An output signal empty is asserted when

all the FIFO cells in the system is empty. Another output signal valid-get is always

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung Section 3.2: Design o f the Mixed-Clock FIFO (MCFIFO)

asserted whenever there is a valid data placed onto the data-get bus.

Each FIFO is constructed as a circular array of identical cells. An example of a

FIFO with four cells is illustrated in Figure 3.4. The same control logic for the data

put and get operations is distributed among these cells. This allows concurrency

between the two external interfaces. For example, all FIFO cells can detect the

arrival of valid data items at the same time by reading req^put. Data enqueued onto

the circular FIFO architecture is held and is not moved until it is dequeued. Two

tokens control the input and output operation of the FIFO. A put token circulating

among the FIFO cells enables them to enqueue data items whenever the put token

arrives. Similarly, a get token is used to dequeue data items from each FIFO cells.

Once a cell has used a token for a data operation, the data item will be removed

from the cell and the token is passed to the next cell. Data items are ready to be

dequeued as soon as they are enqueued, reducing the latency of the FIFO. These

architectures are also highly scalable, as the capacity of the FIFO and the width of

the data items can be modified without significant changes to the design.

full*

req_put-

data_put*
CLK_put-

Full Detector

Put
Controller

en_put

Token
Controller

J:oken_tails

e 3

token heads
CLK_get-----
data_get

rea get-*
valid_get <

empty <

Get
Controller

en_get

validi

ne
oe

\7 ~

e 2

 Cell 3_. f r - :____Cell 2 ___^ ____ Cell 1 _t

' 'f_3

e 1

f 2

e 0
a 8o<= t 2 8 & M c
<si s.

_ _ Cell 0 _ k r 4 _

"f_l wf.O

co CJB u
B ‘e
I I
eA G

Empty Detector

Figure 3.4: MCFIFO Architecture [1]

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3: Mixed-Clock FIFO Fung

3.2.1 FIFO Architecture

In a data put operation, the synchronous put operation starts when a request on

req-put is received by the put controller on the positive phase of CLK-put. A data

item is enqueued at the start of the next clock cycle given the FIFO is not full. If

the FIFO becomes full, the fu ll signal is asserted and any new pending put requests

from the sender will be suspended. The FIFO stalls the put token and the enqueuing

operation is frozen. Any new data items from the sender must be maintained until

fu ll becomes 0 or the data items will be lost. A synchronous get operation begins

when a request on req-get is asserted on the positive edge of CLK-get [1]. By the

end of that clock cycle, a data item is placed on data-get along with valid-get. If

the FIFO becomes empty, empty is asserted and any new pending get requests from

the receiver will be suspended until empty becomes 0. After a get request, valid-get

and empty can indicate three outcomes, illustrated in Table 3.1.

Table 3.1: Get Operation Outcomes

Signal Name Value Description
valid-get 1 data item dequeued

empty 0 more items are pending
valid-get 1 data item dequeued

empty 1 FIFO is now empty
valid-get 0 no data item dequeued

empty 1 no data item is available

Two global control signals,/w/Z and empty, are used to control the data flow of

the FIFO and are generated by the full detector and empty detector circuit. Each

FIFO cell generates feedback to inform the detectors of their current status. The

detector computes the global FIFO status based on the feedback. There are two

feedback signals from each cell, one to indicate if the cell is currently filled with a

data (f) and one to indicate if it is empty (et). The two are updated according to

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung Section 3.2: Design o f the Mixed- Clock FIFO (MCFIFO)

their own time reference. This directly affects how the global control signals are

computed. Even though fu ll and empty are synchronized to their respective inter­

faces’ clocks, they are concurrently read and changed by the put and get interfaces

under two different clocks. This condition is similar to that in the two flip-flop

synchronizing interface, where request and acknowledge are controlled by two dif­

ferent clocks. Thus, synchronizers are added to the two detectors.

However, the added delay of generating these signals may cause the FIFO to

overflow or underflow. We have demonstrated in the last chapter that it is necessary

to use at least two synchronizers to minimize metastability of signals. Assuming

two synchronizers are added to the detectors, two more clock cycles are then needed

to propagate the global control signals to the detector’s output ports. This means

if the FIFO is full or empty, the external interfaces cannot realize it until two extra

clock cycles (of their respective clock) have elapsed. Therefore, a carefully charac­

terized definition of the two control signals has to be determined to avoid overflow,

underflow, and deadlock of the MCFIFO.

Let c represent the number of synchronizers added to the detectors. For a 4-

place MCFIFO, if two synchronizers are added to the full and empty detectors

(c=2), the definition of full and empty must be changed. The FIFO must now con­

sider its state as full when, of the four FIFO cells, either 0 or 1 empty cell is left. It

may be considered empty when less than two of the four cells are filled. With the

new empty signal, ne, the get interface can be controlled to remove data items from

queue, issue a new get request, and then wait for response after c, or in this case,

two CLK.get. The new detectors are shown in Figure 3.5a and Figure 3.5b.

However, with this new empty definition, when there is only one data item left in

the queue, the early detection of empty may cause the FIFO to enter a deadlock state.

Thus, an additional detector calls true empty detector, which generates the signal te,

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3: Mixed-Clock FIFO Fung

is introduced to identify this special case. The two empty signals are synchronized

with CLK.get and are combined through an AND gate to form the global empty

signal. An implementation of a true empty detector for a 4-place FIFO is shown in

Figure 3.5c. The two empty detectors produce two identical signals in all but one

CLK_put

iPl
V V
s - S •full

e 0-
0 - synchronizer

(a) Full Detector

CLK_get

nes -

(b) Normal Empty Detector

CLK_get

en_get

(c) True Empty Detector

Figure 3.5: Global State Detectors for a 4-place MCFIFO

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung Section 3.2: Design o f the Mixed-Clock FIFO (MCFIFO)

case, when there is exactly one data item in the FIFO. In that case, if another get

request is issued by the get interface right after the second-to-last data item has been

read, the normal empty detector makes ne go low. This allows the get request for

the last data item to pass onto the get interface. Subsequently, ne goes high which

stalls the get interface indefinitely in the next clock cycle, until other data items

are enqueued. However, if there is no immediate request for the final data item, te

forces empty to stay 0, preventing the FIFO from stalling until the last data item is

dequeued. After the last data has been removed, ne can then go high and forces the

global empty to return back to 1.

According to Equation 2a., two synchronizers are sufficient to provide synchro­

nization for low clock frequencies. However, for higher clock frequencies, more

synchronizers and FIFO cells should be added to the FIFO to improve its overall

performance. We can use a new technique to include more synchronizers in the

three detectors if needed. Suppose that synchronizing the new global control sig­

nals (“new full”, “new ne”and “new te”) requires c latches. To prevent overflow,

the FIFO will have to be considered full when there are fewer than c empty cells

in the FIFO. Likewise, to prevent underflow, the FIFO is considered empty when

there are fewer than c full cells in the FIFO.

Although synchronizing the two global control signals to their respective clock

signals provides a good MTBF rate, it does not eliminate the synchronization failure

completely. However, by further optimizing the detectors’ circuits, we can guaran­

tee that even if the global control signals are incorrectly read due to metastability,

the MCFIFO does not perform an illegal operation. To achieve that, the static logic

gates used to implement the detectors are replaced by dynamic logic [1], as shown

in Figure 3.6. Figure 3.7 illustrates the global state detectors for an eight-place

FIFO. With the new implementation, the global states are pre-charged to be high

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3: Mixed-Clock FIFO Fung

CLK_put

e_0-| | -j | ~e 2-| r~e_3 -| |

6_1 -| | ~6_2 -| l 6_3 -| | 0 —11

- r 11

- s •full

0 = synchronizer

(a) Full Detector

CLK_get f-Q o-

f_° -) r m -| r f_2 -| r f_3 -| |

u -| r f_2 -) r f_3 -| r r_o -| |

- d L d U ^ '

ne

0 = synchronizer

(b) Normal Empty Detector

CLK

{>>—0 °-|_ s

en_get

s|= synchronizer

te

(c) True Empty Detector

Figure 3.6: Global State Detectors Implemented with Dynamic Logic for a 4-place
MCFIFO [1]

during the positive phase of every clock cycle. Then, during the negative phase of

the same clock cycle, the detectors’ logic computes and updates the global state of

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung Section 3.2: Design o f the Mixed-Clock FIFO (MCFIFO)

CLK_put ♦-

full
e_cH re_1 -| re_2-| re_3-| re_4-| re_5-) re_6-| re_7-| [
eJ ̂ L e-2H L e-3H L e-H L e-H L e-6H L e-7H L 6- ^ \s\- synchronizer

r*s A ^ h1

(a) Full Detector

CLK

ne
f_o -| r t j -jff_2-| ff_3 -| rf_4 -| rf_5 -] n_6 -| n_7 -| [
L H r f J H L t 3 H | ^ g j. synchronizer

(b) Normal Empty Detector

CLK_get

f_oH rf_i -\ n_2-\ n_3H Lf_4-o_5-| LL6H D_7H

^ ^ s s d
en_get

synchronizer

(c) True Empty Detector

Figure 3.7: Global State Detectors Implemented with Dynamic Logic for a 8-place
MCFIFO

the FIFO based on the feedback from each cell. This guarantees that the global

full and empty signals can only enter MSS on a transition from full/empty to not-

fulllnot-empty. Therefore, an incorrect read of the control signals results only in

stalling the interface for one extra clock cycle, but prevents FIFO overflow/under­

flow or loss of data. This increases the latency of the data transfer but significantly

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3: Mixed-Clock FIFO Fung

reduces synchronization failure to occur.

In addition to the external interfaces and global state detectors in each FIFO,

three external controllers are also designed as parts of the synchronous interface’s

components. The put and get controllers process data operation requests based on

the global state of the FIFO and pass those requests onto their respective interfaces.

For example, the put controller, in Figure 3.8a, passes requests to the FIFO but

withholds those requests when the FIFO is full. Similarly, the get controller, in

Figure 3.8c, forwards all the get requests unless the FIFO is empty. The put and

get controllers enable and disable the put and get operation and the movement of

the put and get tokens, respectively, in the FIFO. The token controller is used to

initialize and generate the put and get tokens upon system reset.

en_put
req_put

ptok_tail
ptok_control

gtokjail'
gtok_controi-

) -► ptok_head

X 3 * ^ t ° k _ head

(a) put controller (b) token controller

req_get -f 1 W e n net

 ►empty

)-► valid _get

valid

(c) get controller

Figure 3.8: MCFIFO Controllers [2]

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung Section 3.2: Design o f the Mixed-Clock FIFO (MCFIFO)

3.2.2 FIFO Cell’s Implementation

A detailed implementation of a cell is shown in Figure 3.9. The cell begins in an

empty state initially and without any tokens. Upon system reset, the token con­

troller generates two token heads: a put token head and a get token head. The right

most cell (Cell 0 of Figure 3.4) waits to receive the put token head from the to­

ken controller on the positive edge of CLK-put and waits for the sender to place a

valid data item on the data^ ut bus. A valid data item is indicated to all cells by

en.put= 1. The cell enables the data register to latch the data item and en_put as the

data validity bit. At the same time, it indicates that the cell is full with f = 1 and

enables the EnTokDjfpo to latch the put token. Then on the next positive edge of

CLK-put, the data item and the validity bit are finally stored in the data register and

the put token is passed to the cell on the left (Cell 1). The data item and valid bit are

now available to be read by the receiver. The behavior for dequeuing data is similar.

ptok_in

reg_en

ibuf eni ▼

gtok_in

CLK_get>—
en_get

d a ta_ g e t^
v a l id j^ -

SR
Flip-flop

Data
register

Figure 3.9: FIFO Cell’s Implementation [2]

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3: Mixed-Clock FIFO Fung

The cell waits to receive the get token and waits for the receiver to request a data

item. When both signals are presented, the cell enables placing of the data item and

valid bit on the data.get and validJ tri-state bus, respectively. At the same time,

the cell forces e* to go high and enables ETDFFg0 to latch in the get token. On the

next positive edge of CLK-get, the get token is passed to the left cell (Cell 1). This

process carries the tokens from the first cell to the last cell (for example, Cell 3 of

Figure 3.4) of the FIFO and then back to the first one. It repeats continually until

the data transfer is completed.

3.3 Summary

In this chapter, we introduce the structure and function of the MCFIFO. The MC­

FIFO design is briefly described in the early sections. We describe the design of

several controllers that governs the operation of the MCFIFO. We then discuss how

to modify the definitions of the empty and the fu ll signals so that the MCFIFO has

the ability to prevent FIFO overflow and underflow. An additional empty detector

is introduced to the MCFIFO design for resolving deadlock situation of the FIFO,

which occurs when only one data item is queued among all FIFO cells. Finally, a

throughout description is provided to explain the implementation and the operation

of the MCFIFO cell.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Shared Bus Design Using MCFIFO

This chapter contains three sections: Broadcasting of Data Items Using the MC­

FIFO, Data Broadcasting Shared Bus (DBSB), and Mixed-Clock Shared Bus (MCSB)

Section 4.1, Broadcasting of Data Items Using the MCFIFO, describes the ar­

chitecture of the data broadcasting FIFO (DBFTFO), how it functions, and its ap­

plications. Section 4.2, Data Broadcasting Shared Bus (DBSB), discusses how the

DBFIFO concept can be applied to a data broadcasting shared bus design. Sec­

tion 4.3, Mixed-Clock Shared Bus (MCSB), introduces a shared bus design that

utilizes a MCFIFO to provide a multi-point interconnection in an SoC environment.

4.1 Broadcasting of Data Items Using the MCFIFO

The MCFIFO described in the previous chapter accommodates point-to-point inter­

connection between two mixed-timing modules. However, to use such a design in

an SoC environment, multiple MCFIFOs must be employed to provide interconnec­

tion between multiple modules, which adds large area overhead to the system. We

will discuss how the MCFIFO can be modified to support multiple point intercon­

nections, with reduced area overhead, while maintaining the design’s low latency

or high robustness characteristics. First, we focus on using the MCFIFO to provide

the data broadcasting function. The FIFO can be enhanced to handle broadcasting

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Shared Bus Design Using MCFIFO Fung

of data items from a single source to multiple targets operating in different rational

clock domains. Figure 4.1b shows an example of the improved FIFO system that

allows data items to be broadcasted to three targets running at different clock do­

mains. If a point-to-point topology were employed to connect the three receivers to

the sender using only MCFTFOs, one would need a system as shown in Figure 4.1a,

where three FIFOs are implemented and form a mesh network. If more modules

are combined into the system, even more MCFIFOs are needed. That could add an

unnecessarily large amount of area overhead to the overall system.

Assuming each local clock, shreg-CLK-Out-i, runs at pre-determined rational

multiples of CLK-get, shift registers can be used to interface between the receivers

and the MCFIFO. Since the shift registers are generally much smaller designs than

the MCFIFO, logic and area overhead can be reduced. We called this new FIFO

architecture a data broadcasting FIFO (DBFIFO).

The DBFIFO contains two stages: a FIFO stage consists of an MCFIFO, and a

data broadcasting stage consists of two or more shift registers of different lengths,

each interfacing with a broadcasting target. Each of the FIFO stage and the data

broadcasting stage contains a put and get interface, as illustrated in Figure 4.2.

The put interface of the data broadcasting stage is actually the extension of the get

interface of the FIFO stage. It is controlled by CLK-get. The broadcasting targets

request data items from the MCFIFO with req-getJ. The shift registers then receive

data-get and valid-get from the MCFIFO.

Since the broadcasting targets operate at different clock rates, data is bundled

together before it is delivered to the targets. For example, target 1 in Figure 4.1b, is

operating at shreg-CLK-outJ2, or half the clock rate of CLK-get. At that rate, in one

shreg-CLK-outJ2 clock cycle, two data items could have been read from data-get.

Therefore, a serial-in, parallel-out shift register with a 2-to-l ratio is used to clock in

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung Section 4.1: Broadcasting o f Data Items Using the MCFIFO

shreg_data_out_0
control

rea get 0
shreg_CLK_out_0
— 31.25 MHz

shreg_data_out_ldata_put
controlCLKput

rea set 1
control

shreg_CLK_out_l
— 125 MHzCLK_put

100 MHz shreg_data_out_2
control

reo get 2

shreg_CLK_out_2
— 62.5 MHz

Target3

Targetl

Target2
Data
Item

Sender

Mixed-
clock

FIFO 1

Mixed-
clock

FIFO 1

Mixed-
clock

FIFO 1

(a) Multiple Mixed-Clock FIFO (M-MCFEFO)

shreg_CLK_out_0
31.25 MHz

shreg_data_out^)
Target3

Register rea get 0

shreg_data_out_ldata_getdata_put
Mixed-
clock
FIFO

I

Target2
CLK_put

req_get_l
Sender req_ge

valid getcontrol

CLK put
shreg_data_out 2

Targetl
rea g et 2Register

shreg_CLK_out_l
125 MHzKOI T

100 MHz

shreg_CLK_out_2
62.5 MHz

(b) Data Broadcasting FIFO

Figure 4.1: Data Broadcasting Architecture

two data items at CLK-get, bundle the two data items into one, and then output it to

target 1 at the rising edge of shreg-CLK-outJ2. Table 4.1 illustrates the relationships

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Shared Bus Design Using MCFIFO Fung

data_get
 »
CLK_get

shreg_CLK
_out_i

data_put
 P
CLK_put rea getrea get
req_put shreg_data_

out_i ^valid_get
fuH empty

put get
interface I interface

put get
interface I interface

FIFO Stage Data Broadcasting Stage

Mixed-
clock
FIFO

Shift
RegistersData

Sender
Data

Receivers

Figure 4.2: Synchronous Interfaces of the DBFIFO

between the three clock domains with respect to CLK-get for the example shown in

Figure 4. lb.

Table 4.1: Timing Relationships between The Three Subsystems

Clock Signal Clock Speed Clock Ratio
CLK-get 125MHz 1

shreg-CLK-out-0 31.25MHz 4/1
shreg-CLK-Out-1 62.5MHz 2/1
shreg-CLK-OUtJ. 125MHz 1

4.1.1 Shift Register

We first consider shreg-CLK-out d to have the same or slower clock rate than CLK-get.

This is the case illustrated in Figure 4. lb. If the clock edges of shreg-CLK-OutJ and

CLK-get are in phase with each other, a serial-in, parallel-out shift register (SPSR)

that can interface a 4-to-l clock ratio is shown in Figure 4.3. This clock ratio im­

plies CLK-get is four times faster than shreg-CLK-out d. The shift register consists

of (4/1 clock ratio) four shift register cells.

A SPSR is denoted as a type-A shift register. The 4-to-l type-A shift register

takes in four inputs: data-get, valid-get, CLK-get and shreg-CLK-Out. An M-bit

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung Section 4.1: Broadcasting o f Data Items Using the MCFIFO

data item enters the shift register through the data-get bus. A shift register that can

interface an N-to-1 clock ratio will contain N shift register cells. Consequently,

an NxM-bit data item will exit the shift register through the shregjdata-out bus

every shreg.CLK.outi. For cases where shreg-CLK-out-i are rational multiples

data_get-
valid_get-
CLK_get-

n
Data <

Counter

count

latch ens

t >

Eny
EnShDff 3

Q,p3 n
D.p2 En.

f>
EnShDff 2

+>

D.pi En.
EnShDff 1

4>

D.po En.
EnShDff.O

<?-CpO

Shift Register Cell 3

EnLatch_3 OutDff_3

d 3 q3 -► Dg3 Qg3
En

Shift Register Cell 2

n
EnLatch_2 OutDff_2

^2 @2 -► ®g2 Qg2
En
j .

Shift Register Cell 1

n
EnLatch_l OutDff_l

D, Q, -► Dgi Qgi
En
j

Shift Register Cell 0

n EnLatch_0 OutDff.O

Do Qo -► Dgo Qg0
En ...
j .

shreg_CLK_out

MSB A
TmpOut_3

-►

TmpOut_2
-►

TmpOut_l
 ►

TmpOut_0
 ►

LSB

Figure 4.3: Type-A 4-to-l Shift Register

of, but faster than, CLK-get, a shift register may not be needed, since from the

target’s perspective, it implies a broadcasted data item is made available for more

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Shared Bus Design Using MCFIFO Fung

than one receiver’s clock cycle. However, to prevent the receiver from reading a

data item more than once, a parallel-in, serial-out shift register (PSSR) can be used

to interface between the MCFIFO and the broadcasting targets. A PSSR is denoted

as a type-B shift register.

A type-B shift register that interfaces a 1/4-to-l clock ratio, or l-to-4 clock ratio

is shown in Figure 4.4. The clock ratio implies shreg.CLK.outJ is running four

times faster than CLK-get. Therefore, instead of grouping data together as in a type-

A shift register, the type-B shift register breaks down an input data items into 4 equal

segments. It then shifts out each segment at the rising edge of shreg.CLK.outJ.

4.1.2 DBFIFO Protocol

The FIFO stage functions in the exact same fashion as described in Section 3.2. In

this section, we describe the operation of the data broadcasting stage in details.

In the beginning of a data broadcast, the sender issues a broadcast request to all

targets. The targets respond by asserting their req.get.i high. The three req.get-i

signals are ANDed together and form req.get, which is sent to the MCFIFO. The

sender passes the data onto the FIFO stage through dataq/ut. The MCFIFO trans­

fers the data to its output, and informs the shift registers in the data broadcasting

stage of the availability of data with valid-get. Refereing to Figure 4.3, a N-to-1

shift register contains N shift register cells. Each cell consists of three components:

an EnShDff, an EnLatch and one OutDff. An EnShDff is a d flip-flop with an extra

enable control signal, Env. Env is connected to valid-get from the MCFIFO. When­

ever a valid data item is placed on data.get, the validity bit enables EnShDff to latch

the data at the positive edge of CLK.get. Then on the negative phase of CLK-get,

the data is stored mEnShDff. That data item is shifted to the next EnShDff every

time a new valid data item arrives.

The arrival of the validity bit triggers the data counter to increment its count by

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung Section 4.1: Broadcasting o f Data Items Using the MCFIFO

count
counter reset

shreg_data_out
2 P X

5 P X

Z D X

Shift
Register

Cell 3

 s /~
Load

Controller

load_sel
Segment_3

<D

>

Shift
Register

Cell 2

Segment_2

Shift
Register

Cell 1

u

3IT3

Segment_l

Segment_0

Figure 4.4: Type-B l-to-4 Shift Register

1. When count equals clock.ratio, latch.ens is asserted. For a N-to-1 type-A shift

register, N data items would have been collected in N EnShDjfs when latch.ens is

asserted. The assertion of latchjens causes all of the N data items to be loaded into

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Shared Bus Design Using MCFIFO Fung

the respective EnLatch J of the shift register cells. After that, they wait for the pos­

itive edge of shreg.CLK.outJ to arrive and exit the shift register through OutDjfs

and onto a NxM-bits data bus, shreg-.data-out, on the next cycle. The EnLatchs

are used to store data until the arrival of the positive edge of shreg.CLK.outJ. Al­

though the input and output clocks are rational multiple of each other, their clock

edges may not arrive at the same moment. The EnLatchs allows the two edges to

be separated by no larger than N CLK_get cycles. However, the positive edge of

shreg.CLK.out J is assumed to be in phase with CLK-get.

It is important to noted that since the rising edges of CLK.get are assumed to be

in phase with the rising edges of shreg.CLK.out.i, the type-A shift register design

can be further simplified by removing the EnLatchs and/or OutDjfs. If the clock

edges are not in phase, the shift register may enter the MSS resulting in synchro­

nization failure.

For a 1-to-N type-B shift register (see Figure 4.4), a data item is broken down

into N segments. The arrival of valid-get indicates a valid data item is avail­

able on data-get and triggers the load controller to assert loadjsel to high for one

shreg-CLK-out-i cycle. In a 1-to-N type-B shift register, an input data is divided

into N segments. For example, a l-to-4 shift register divides a data into 4 segments

as shown in Figure 4.4. During the one clock period when load^el is high, Segment

3 is placed directly onto shreg.data.out. The remaining segments are latched into

the ShDjfs. On the next shreg.CLK.out, loadjsel returns to low. The multiplexers

in each shift register cell select the inputs from the ShDjfs as their outputs. For

the next three clock cycles, the shift register shifts out the remaining segments. The

counter increments its count on each shreg.CLK.out. Every four cycles, the counter

produces a signal to reset the controller. After the reset, the controller is ready to

assert loadjsel high again. If a new valid data item arrives, the same operation is

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung Section 4.1: Broadcasting o f Data Items Using the MCFIFO

repeated. If no new valid data appears, valid-get stays low and the target stops

reading from shreg.data.out until the next valid data arrives.

4.1.3 DBFIFO Applications

In [36,37], a core-based test generation approach for random logic core circuits

that utilizes the concept of test pattern broadcasting is proposed. In this approach, a

traditional scan chain design is modified into a new test architecture so test vectors

can be broadcasted to all modules to be independently tested. The overall scan

depth and test time are, therefore, significantly reduced in this new architecture.

The DBFIFO allows broadcasting of normal data items or core-based test patterns

to the cores of an SoC design for parallel computation or parallel scan test. We also

use the DBFIFO as a first step for other work presented in this chapter, such as the

design of shared bus architectures for multi-point, mixed-timing interface in SoCs.

4.1.4 Shared Bus

Inter-module interconnection within SoCs is becoming more and more critical as

the complexity of SoCs grows and their feature size decreases. A shared system

bus is a key feature of modem SoC design methodologies. The on-chip buses must

be designed to be sufficiently flexible and robust in order to fulfill the wide vari­

ety of performance specification of SoCs. Later in this chapter, we introduce two

shared bus architectures that allow efficient and flexible multi-point interconnection

between mixed-timing modules in SoCs, using MCFTFOs.

Traditionally, the interfaces to a shared bus may be centralized or distributed.

The centralized approach groups all the bus interfaces and control components in

a central hub forming a star network. Each device has dedicated point-to-point

connection to the hub. The distributed approach represents the more conventional

view of a shared bus. This approach places the bus interface near the devices so as

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Shared Bus Design Using MCFIFO Fung

to minimize the size of the point-to-point links between the device and its interface.

It leads to a higher loading on the bus and slower operation, but typically gives a

much smaller implementation due to the reduction in wiring.

The distributed arbitration techniques found in off-chip buses or networks such

as SCSI [38] and Ethernet are not suitable for low-power SoCs because they per­

mit drive-clashes or polling of the arbitration signals [3]. Synchronous on-chip

buses, like the Advanced Microprocessor Bus Architecture (AMBA) [4], use a cen­

tralized arbitration system with request and grant handshaking signals, connecting

modules to the central arbiter (arbitrator). This approach is more expensive in area

but minimizes the length of the shared lines, and hence their load, allowing faster

edges and weaker drivers. Our shared bus utilizes a centralized approach since the

mixed-clock interface is performed by a central MCFIFO(s), and the connections to

the MCFIFO are realized using a multiplexed control and data-path drive network,

which is governed by a centralized bus controller.

Multiple point data communications on a shared bus involve bi-directional data

transfers. There are modules that initiate communication and targets that obtain

the communication request and react accordingly. When a channel has more than

one initiator drive clashes, data corruption and signaling failure may occur. It is

imperative that only one initiator acts upon the channel at any one time. On the other

hand, when a channel is connected to more than one target, extra functionality is

required to determine which target should receive and respond to each cycle, and to

ensure that drive and signaling clashes between targets do not occur. Extra control

circuitry is therefore required to determine which module should use the channel

and to ensure correct operation of the shared bus. This task is accomplished using

a bus controller which acts between modules to determine which owns the channel.

In the following two sections, details of shared bus architectures constructed using

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung Section 4.2: Data Broadcasting Shared Bus (DBSB)

MCFIFOs are presented.

4.2 Data Broadcasting Shared Bus (DBSB)

The DBFIFO can be further enhanced to form a data broadcasting shared bus

(DBSB) using a series of SPSR and PSSR. Figure 4.5 presents an example of a

simple SoC design with a DBSB connecting four modules. Here, we have two

groups of modules operating at different rational clock frequencies. Module 0 and

1 operate at clock frequencies that are pre-determined rational multiples of regional

clock 1 (4x). Module 2 and 3 operate at rational clock frequencies of regional clock

2 (3x). The frequency relationship between different clocks is indicated in Fig­

ure 4.5a. If lx represents a clock frequency of 100MHz, then 2X implies two times

the speed of lx, or 200MHz. Similarly, 1.5x in Figure 4.5a implies Module 2 has a

clock rate 1.5 times the speed of lx, which is 150MHz.

The shared bus is structured such that Module 0 and Module 1 are intercon­

nected with Module 2 and Module 3 bidirectionally through MCFIFO-O, and MC-

FIFO.l. Module 0 and 1 can either send or receive data from Module 2 and 3 or

broadcast data to Module 2 and 3 simultaneously. Similarly, Module 2 and 3 can

either send or receive data from Module 0 and 1 or broadcast data to Module 0 and 1

at the same time. The data .put and data.get of MCFIFO are assumed to have fixed

width. Because the modules are operating at rational clock frequencies, the same

shift register approach used in DBFIFO can be applied to DBSB. Interconnection

between Module 0 and Module 1, and Module 2 and Module 3 are provided using

type-A and type-B shift registers only. As in the case of DBFIFO, the correct

operation of the DBSB requires the multiple rational clock signals to have clock

edges that align with the edges of their clock source. For example, if clock sig­

nals of Module 0 and Module 1 were derived from the same clock source, they are

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Shared Bus Design Using MCFIFO Fung

fnisel

dataj i n j)

Module
0

l-to-4

+ 4-to-l
dataj3ut_0

IX domain i

datajin 1

Module
1

l-to-2

MU
X

u

Bus
Controller

MCFIFO
0

2-to-l
data_put_l

2X domain i

J ^ - rdSe
rdse

rdsel_Q„
ici 1

l'dscl

data_put_2

2-to-l

r l-to-2

Module
2

MCFIFO
1

rm sc

<■
^1 -

MU
X

dataiin_2
j 1.5X domain

data but 3
— i “

 ►

4X domain 3X domain

Module
3

data_Jin_3
i 3X domain

(a) Data Path o f DBSB

req_put_i, req_get_i, target_addr req_put_i, req_get_i, target_addr

req_put_0,
req _ g e t_ 0 ,\ fn-fid

Module

i valid_get_l ;

i

Module

Bus
Controller

" jfulLO empty_0;

MCFIFO
0
rm se

-4-
MCFIFO 4—

1
. 1

req_put_l, valid_get_ 1
rea set 1.

id get_0

Module

req_put_2,
r e a g e t 2,

Module

valid_get_0 req_put_3,
req_get_3,

(b) Control Path o f DBSB

Figure 4.5: Data Broadcasting Shared Bus

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung Section 4.2: Data Broadcasting Shared Bus (DBSB)

assumed to have clock edges that are in phase with each other.

4.2.1 Bus Controller

To govern which module has access priority to the bus, a controller is constructed.

Instead of building a complicated arbiter circuit to determine which modules first

requests bus access, a simpler control circuit is used to grant bus access permission

to modules. Each module is assumed to have a fixed priority to use the bus. The

assignment of their priority is arbitrary. Module 0 in Figure 4.5 is assigned to have

the highest access priority and Module 3 has the lowest. By doing so, the controller

design is greatly simplified, and we can focus our research effort on integrating

the MCFIFO into the mixed-clock shared bus architectures. The bus controller in

Figure 4.6 takes in several inputs from each module, reqqyutJ and targetjaddr. If

a module wants to deliver data to a target via the MCSB, it asserts reqqput and it

sends the bus controller the address of the target, targetMddr. A central decoder in

req_put_i
target_addr

req get i
empty

Controller

trig g erj
fmsel
fdsel
rmsel
rdsel

Figure 4.6: Bus Controller

the bus controller constantly waits for a valid address and then signals the addressed

target to respond, using a separate target-select signal, triggerj. Referring to Fig­

ure 4.5b, two sets of control signals to the bus traffic control multiplexer (MUX)

and decoder (DEC) (fsel, fdsel, and rsel, rdsel) are generated by the bus controller

to properly direct the data transfer from the initiator to the target(s). fsel, fdsel are

used to control the MUX and DEC that are associated with MCFIFO_0, and rsel,

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Shared Bus Design Using MCFIFO Fung

rdsel are used to control the MUX and DEC associated with MCFIFO-1. In this

example, each traffic control signal is one-bit in width. However, if more modules

are presented in the system, the width of control signals must be increased.

4.2.2 Shift Register

The type-A and type-B shift registers are used to provide serial-in, parallel-out

or parallel-in, serial-out data conversion in the fashion described in Section 4.1.1.

When they are used to provide interface between the module and the put interface

of the MCFIFO, they are called input shift registers, as opposed to the output shift

registers which are connected to the get interface of the MCFIFO. Like the output

shift register, an input shift register can be either type-A or type-B shift register, de­

pending on the clock ratio of the data sender and the put interface of the MCFIFO.

However, unlike the output shift register, it takes req^put instead of valid-get as one

of the input signals.

4.2.3 Bus Traffic Control

To avoid drive clashes during the handover of the bus between initiators, the data

path drive is governed by traffic control MUXs on each transfer direction. It is un­

derstood that some bus architectures use a tri-state data-path to allow for a smaller

implementation. However, a multiplexed data-path control is more suitable for SoC

synthesis [3] and is therefore employed in the DBSB design. Similarly, traffic con­

trol DECs are used to govern which targets have the right to read from the MCFI-

FOs. To allow data broadcasting, a DEC may permit data to be placed on all of

its outputs. The control signals of the MUXs and DECs are generated by the bus

controller.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung Section 4.2: Data Broadcasting Shared Bus (DBSB)

4.2.4 DBSB Protocol

The DBSB begins in an empty state initially. The bus controller waits for an initiator

to make a request for the bus. It checks any module requests for the bus in the order

of their priority, such as, from Module 0 to Module 3 in our example. A module

prepares a data transfer by producing valid data before arresting req-putJ. The

initiator then requests to put data on the bus with a valid address. The bus controller

receives the reqqiutJ and the address of the intended receiver from the initiator.

It also computes and asserts the corresponding trigger J and traffic control signals.

The type-A or type-B shift register processes the data according to the clock ratio

between the MCFIFO put interface’s and transmitter’s clock. The put interface of

the MCFIFOJ then receives req-putJ and the data from dataqjut via the traffic

control MUXs.

When the target module receives the trigger, it responds by asserting its req-getJ.

The MCFIFOs operate with their own CLKqput and CLK.get clocks. They enqueue

and dequeue the data as described in Section 3.2.1. After that, the data item along

with the validity bit are sent to the target via the traffic control DECs. The output

shift register manipulates the output data rate and data width according to the clock

ratio of the target and the get interface of MCFIFOJ. Finally, the targeted receiver

obtains the data and responds accordingly. The initiator indicates the end of bus

access by setting reqqjut to low.

Once the MCFIFO is empty and the target set its req.get signal to low, the bus

controller assigns bus access to the next initiator. If the target is required to reply

to the initiator with data, it requests for bus access. After that, it follows the same

procedures described above to transfer the data across. The MCFIFOs broadcast

full-i and empty J signals to all the modules simultaneously. The MCFIFOs stall any

put or get operation if their respective fu llJ or empty J are asserted. The initiator

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Shared Bus Design Using MCFIFO Fung

has to maintain the data items to be sent if MCFIFOJ is full or the data is lost.

4.3 Mixed-Clock Shared Bus (MCSB)

One limitation of the DBFIFO and the DBSB is that it works for modules that are

operating at rational multiples of some clock frequencies. It also requires shift reg­

isters for proper operation. If we omit the broadcasting capability, we can remove

the shift registers and design a Mixed-Clock Shared Bus (MCSB). A MCSB per­

mits multi-point interconnection of modules running at multiple clock rates, thus it

is more flexible than the DBSB.

Figure 4.7 presents an architecture of a MCSB. It maintains the use of the cen­

tralized interface and continues to employ a multiplexed data-path drive approach,

but abandons the use of the shift registers. Instead, the initiators put the request

signals and the data directly to the MCFIFO via the traffic control MUX. The trans­

mitters and receivers are responsible for providing the CLKjput and CLK.get of the

MCFIFOJ, respectively. An extra pair of MUXs is used to select clock signals from

the transmitters and the receivers. A bus controller similar to the one of the DBSB

can also be used for the MCSB.

4.3.1 MCSB Protocol

An initiator begins a data transfer by sending reqqjut and target jaddr to the bus con­

troller. The controller detects the request and generates the corresponding control

signals: fsel, fdsel, and rdsel. It is noted that rsel is not used in MCSB. The con­

trol signals trigger the traffic control MUXs to connect the corresponding reqqput,

dataqput and CLKjput of the initiator to the MCFIFO. Similarly, the control signals

force the traffic control DECs to connect the corresponding req-get, data-get and

data.get of the target to the MCFIFO. The end of each bus access is indicated by

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung Section 4.3: Mixed-Clock Shared Bus (MCSB)

req_put_i, req get 1

Target_addr empty

trigger fmscl
rdseldata_in_0 rinse 1

data_put10 u

req_put,
CLK_put

req_put_l,
CLK_lv, 10 U

req_get_0,
CLK_0 w

10 ^ req_get,
O ljM CLK_get

full, empty

req_put_2,
CLK_2 v

data_out 0
data_out_l data_get

10 Edata_out_2

valid_get_Q
valid_get_l valid _get

10 Evalid_get_2

Module

Module

Bus
Controller

Module

MCFIFO

Figure 4.7: Mixed-Clock Shared Bus

req-put=0, empty= 1 and req-get=0. The MCFIFO informs all the modules of its

global state and assert fu ll or empty according to the condition of the MCFIFO. The

MCFIFO stalls any put or get operation, if its full or empty is asserted, respectively.

The initiator has to maintain the data items to be sent if the MCFIFO is full or the

data is lost.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Shared Bus Design Using MCFIFO Fung

4.4 Summary

In this chapter, we describe the use of MCFIFO in providing multi-point intercon­

nection in SOCs. The goal is to provide interconnection between SoC modules with

a smaller area overhead than using MCFIFOs and configure them in a mesh inter­

connection network. We first explore data broadcasting using the combination of

MCFIFOs and shift registers. We then expand the concept into a data broadcasting

shared bus, in which we employ the same shift registers to manipulate the data size

and data rate according to the clock ratio between the modules and the MCFIFO.

The modules in the DBFIFO and DBSB are required to operate at pre-determined

rational clock rates for correct operation. We further enhance the design by present­

ing a highly robust and flexible mixed-clock shared bus architecture. The MCSB

allows the modules to operate at true multiple clock frequencies. The MCFIFOs

in the MCSB run at the clock rates provided by clock signals from the initiators

and targets. As a result, we can fully utilize the mixed-clock interface capability of

the MCFIFO. In the next chapter, we will evaluate the performance of the different

interconnection designs presented in this chapter.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Design and Performance Evaluation

The chapter is divided into three sections: Test Models of mixed-clock buses, Per­

formance Analysis, and Performance comparison with common synchronous SoC

Buses.

Section 5.1, Test Models of the mixed-clock buses discusses the method that

is used to verify the two bus designs. Section 5.2, performance analysis, presents

experimental results of the two shared buses. Section 5.3 provides a summary of

the performance of other commonly used SoC bus architectures.

5.1 Test Models of Mixed-clock Buses

Verilog test models of the MCFIFO, DBSB and MCSB are generated for verifying

the design and analyzing their performance. The test model of the DBSB contains

two initiators and two targets, as configured in Figure B .l. The MCSB test model

contains three modules. Each of them can be an initiator or a target, as shown in

Figure 4.7. When one module acts as a initiator, any of the other two can become

target.

The two test models are built such that initiators request, as soon as possible,

another data transfer upon the completion of a previous one. This is achieved by

allowing one initiator to continuously put data onto the bus for many CLK-put cycle

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Design and Performance Evaluation Fung

or until the bus is full. This allows the model to exercise the timing of the interfaces

more rigorously than should occur in practice.

Each Verilog model is verified in simulations using Cadence VerilogXL. The

models provide a realization of the FIFO behaviors under various operating condi­

tions and help to verify their functionalities. Three test cases are designed to sim­

ulate bus usage of the DBSB in an SoC. The first case exercises a scenario where

a single initiator reads data from a single target. In practice, it can be a situation

where a processor fetches instructions from on-chip memory in an SoC. This test

involves activity in Module 0 and Module 2 of Figure B .l. In this case, Module

0, which has the highest bus access priority, acts as the initiator and Module 2 as

the target. Module 0 requests access to the DBSB and asks Module 2 to receive

data from the bus. Module 2 responds by asserting req-get-1 and then retrieves data

from the bus.

In the second case, we simulate a scenario in which one initiator sends data to

two targets. In this case, the initiator broadcasts data to two targets operating at

different speeds. This test involves activity in Module 0, Module 2 and Module 3

of Figure B .l. In this case, Module 0 requests to push data onto the DBSB and asks

both Module 2 and Module 3 to receive it.

The final case involves two initiators accessing two different targets. This case

attempts to saturate the DBSB bus and simulates mutually exclusive bus use. It

involves activities between Module 0 and Module 2, and Module 1 and Module 3

of Figure B .l. First, Module 0 acts as the initiator and attempts to push data to

Module 2. After that, Module 0 hands over access to Module 1. Module 1 requests

the access of the DBSB bus and pushes data to Module 3.

For MCSB, the second test case does not exist since the MCSB does not support

broadcasting of data. Two test cases are therefore established for verifying the

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung Section 5.2: Performance Analysis

MCSB design. In the first test case, one initiator sends data to a target. This case

involves activity in Module 0 and Module 2 of Figure 4.7. Module 0 acts as the

initiator in this case and tries to send data to Module 2. In the second test, all three

modules in Figure 4.7 take turns to act as initiators and targets to test mutually

exclusive bus uses. First, Module 0 is assigned to be the initiator and Module

1 to be the target. After several data transfers from Module 0 to Module 1, the

bus controller grants bus access to Module 1 for sending data to Module 2. Then,

Module 2 becomes the initiator and sends data to Module 0. These test procedures

are repeated to verify the proper functionality of the MCSB. For both DBSB and

Table 5.1: DBSB Functional Test Cases

Test Case Description
Case 1 Module 0 sends data to Module 2
Case 2 Module 0 broadcasts data to Module 2 and 3

Case 3 Module 0 sends data to Module 2
then Module 1 sends data to Module 3

MCSB test models, two versions of the models are made using a four-place (four

FIFO cells) and an eight-place MCFIFOs as the building blocks. By using these

models, the functionalities of the two shared buses are verified. Waveforms of

parts of the simulations involving four-place DBSB and MCSB are presented in

Appendix B.

5.2 Performance Analysis

To improve simulation accuracy, the models are synthesized using Synopsys library

components and simulated using Synopsys Design Analyzer in 0.18um CMOS

technology, at 1.6V and 300K. All simulations are pre-layout. The results of the

maximum throughput and latency, and comparisons between the MCFIFO, DB­

FIFO, DBSB and MCSB are summarized in Table 5.2. The shared-bus designs

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Design and Performance Evaluation Fung

Table 5.2: Performance Results

Bus Type Stage
Thi
4-p

put

*ough]
ace

get

rat (M
8-p

put

Hz)
ace

get
4-p

Min

Laten
ace
Max

cy (ns)
8-p

Min
ace
Max

MCFIFO FIFO 685 625 658 602 3.29 4.38 4.09 4.78

DBFIFO FIFO 685 625 658 602 5.84 7.21 5.96 7.49
Data Broadcasting 730 714 730 714

DBSB
Type-B 667 667 667 667

7.14 8.13 7.29 8.33FIFO 454 450 437 416
Type-A 730 714 730 714

MCSB FIFO 493 485 476 454 4.06 5.41 4.31 5.71

are capable of interface between two or more different clock domains. To obtain

the throughput of the buses, timing analysis is performed at the put and the get in­

terfaces of various stages of the buses. Each interface corresponds to a single clock

domain. For example, since data transfer through MCFIFO crosses two clock do­

mains, the throughput of a MCFIFO contains two parts: the inverse of the cycle

time for a put operation and the inverse of the cycle time for a get operation. As a

result, when we perform timing analysis using Design Analyzer, the MCFIFO cir­

cuit is first divided into two sections, synthesized and then analyzed. This is similar

to dividing the DBFIFO into the FIFO stage and the data broadcasting stage with

each stage having its own put and get interface in Figure 4.1.

For DBSB, with the addition of two shift registers to each ends of the embedded

MCFIFO, we have to divide the design into three separate stages, as shown in Fig­

ure 5.1, to obtain more accurate experimental results. The throughput of the buses

is analyzed at each interface. The results for maximum throughput are expressed

as the maximum clock frequency with which that interface can be clocked. From

Table 5.2, it is obvious that some stages provide much greater throughput than oth­

ers. However, the overall throughput of a bus is limited by the stage with the lowest

throughput. Latency is the delay for a data to travel from the input of one reference

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung Section 5.2: Performance Analysis

put j get put
interface; interface interface

get put j get
interface interface; interface

TypeA StageTypeB Stage FIFO Stage

Mixed-
clock
FIFO

TypeA
Shift

Registers

TypeB
Shift

Registers
Data
Sender

Date
Receiver

Data Broadcasting Shared-bus

(a) Data Broadcasting Shared-Bus

put
interface

get
interface

FIFO Stage

Mixed-
clock
FIFO

Data
Sender

Date
Receiver

Mixed-Clock Shared-bus

►

(b) Mixed-clock Shared-bus

Figure 5.1: Synchronous Interfaces of the Shared Buses

point to the output of another one. Therefore, to obtain the latency of the three

designs, we synthesize and analyze the designs without dividing them into stages.

To calculate the latency of a standalone MCFIFO, a data item is pushed through an

empty FIFO. The latency is thus defined as the elapsed time between the moment

the data is placed onto data-put to the moment when that data appears on data-get.

For DBSB and MCSB, the experimental setup for latency is as follows: with the bus

being empty to begin with, a initiator that has access to the bus requests to send a

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Design and Performance Evaluation Fung

data item. It places a data item onto the bus. The latency is calculated as the elapsed

time between the moment the dataJnJ bus has valid data to the moment when the

data item appears on data-out J of the shared bus. The latency of the MCSB is

less than that of the DBSB since the data item does not go through additional shift

register stages.

Latency also varies according to when the data items are enqueued by the put

interface of the MCFIFO of each bus. If the data item is enqueued by the put

interface when empty is asserted, the latency is maximized, otherwise, the latency

is at minimal. This is because it requires extra time for the two empty detectors

to calculate the new state of the MCFIFO before issuing the correct output signals

to the get controller. Also, the bus controller contributes to the latency by adding

delays through the traffic control signals.

Since both MCSB and DBSB interface with mixed-clock modules through their

embedded MCFIFOs, the performance of the MCFIFO directly affects the two

shared buses. In normal operations, the MCFIFO has a low chance of experiencing

synchronization failure and data loss. It is important to note that once a valid data

is enqueued onto a FIFO cell, it can be immediately outputted onto the data-get

bus on the next CLK-get, if the MCFIFO is neither near full nor empty. Therefore,

the two bus design can provide low latency data transfer. In this thesis, we define

a data transfer delay of less than three transmitter’s clock cycles as low latency.

The worst-case operation of the MCFIFO occurs when there is a large mismatch

in the communication rate (2x or more) between sender and receiver, and the FIFO

constantly hits the full or empty state, resulting in a stall in the put or get opera­

tion. When CLK-put and CLK-get are not highly mismatched, using two latches

for synchronizing the global control signals are sufficient for good performance.

The synchronization of global control signals can be made arbitrarily robust even at

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung Section 5.2: Performance Analysis

Module

Module Module

Figure 5.2: Example of SoC Modules Configuration

high clock frequencies. At higher clock frequencies, more flip-flops can be added

to global control signals if synchronization of these signals does not contribute to

a reduction of performance. As the number of synchronizers in the full and the

empty detectors get changed, the definitions of full, ne, and te also need to be up­

dated as mentioned in Chapter 3. Otherwise, the detectors may introduce underflow

or overflow to the FIFO.

One of the main goals of this thesis is to interconnect multiple modules in an

SoC using the MCFIFO but without employing a point-to-point topology. We ar­

gued that if the modules are interconnected in a point-to-point fashion for a system

configured as shown in Figure 5.2, large amount of resources would have to be al­

located to the interconnection network. In the case of Figure 5.2, six MCFIFOs

are needed for bidirectional data transfer among the three modules. The MCSB

and DBSB, on the other hand, are able to provide mixed-clock interface to multiple

modules with just two or less MCFIFOs. To justify this argument, the area and

power consumption of the two shared buses with the capability to interconnect to

three modules are compared to that of using three separate MCFIFO pairs.

Figure 5.3a and Figure 5.3b illustrate the total cell area occupied by the three

design when they are synthesized to meet three different timing constraints, namely,

three different maximum clock frequencies. Figure 5.4a and Figure 5.4b show the

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Design and Performance Evaluation Fung

30000 ■

25000 -

MCSB
DBSB
M-MCFIFO

= 150001- o

10000 •

5000

333 250
Frequency (MHz)

(a) Implemented using a 4-place MCFIFO

60000r

50000

40000 ■

< 30000 •
© o

MCSB

M-MCFIFO

20000 -

'"“i l l I i i L m250
Frequency (MHz)

(b) Implemented using a 8-place MCFIFO

Figure 5.3: Total Cell Area Usage

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung Section 5.2: Performance Analysis

MCSB
DBSB
M-MCFIFO

333 250
Frequency (MHz)

(a) Implemented using a 4-place MCFIFO

MCSB
DBSB
M-MCFIFO

250
Frequency (MHz)

(b) Implemented using a 8-place MCFIFO

Figure 5.4: Total Dynamic Power Consumption

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Design and Performance Evaluation Fung

1600r

1200 ■

1000 ■

MCSB
DBSB
M-MCFIFO

800 ■

600O

400 ■

200 ■

250
Frequency (MHz)

(a) Implemented using a 4-place MCFIFO

3000 •

2500 ■

MCSB
DBSB
M-MCFIFO

1000 -

■I l l m333 250
Frequency (MHZ)

167

(b) Implemented using a 8-place MCFIFO

Figure 5.5: Total Cell Leakage Power

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung Section 5.3: Comparison with Synchronous Buses

dynamic power consumption of the three designs while Figure 5.5a and Figure 5.5b

present the cell leakage power of the designs operating at different frequencies. To

implement the on-chip interconnection using multiple MCFIFOs in a point-to-point

scheme has shown to be more expensive then using the shared buses, but offers

higher data transfer bandwidth. The result indicates overwhelmingly the benefit

of utilizing MCSB and DBSB to interconnect modules. Using MCSB and DBSB

as the communication network can significantly reduce the cell area and power

consumption of the SoC design.

One disadvantage associated with the DBSB is that it may require the data

sender to send a group of data items for every data transfer. This happens when

a type-A shift register is used to interact with the put or get interface of the MC­

FIFO. Since a type-A N-to-1 shift register only places data onto its output when it

has received N data items, the same amount of data items are needed to be sent on

each data transfer, or the bus will stall. However, a type-B shift register require no

such limitation.

5.3 Comparison with Synchronous Buses

Synchronous SoC buses use the global on-chip clock to regulate the transfer of data

between devices. Making a direct performance comparison between on-chip buses

is very difficult since each implementation of the buses is different and chips may be

fabricated on different processes technologies. In addition, the bus clock specified

may not be the maximum possible frequency that the bus is design for, but instead

a clock frequency that is derived from the main processor clock. The DBSB and

MCSB have only been simulated using conventional CAD tools. Nevertheless, we

have provided a list of throughput and latency of other popular SoC buses as a ref­

erence in Table 5.3. Here, throughput is expressed as the maximum amount of data

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5: Design and Performance Evaluation Fung

Table 5.3: Performance comparisons of Synchronous Buses [3,4]

B us
B us

W idth
(bits)

C lock
Rate

(M H z)

Throughput
(M B /s)

Latency
M in (ns)

Product
Im plem ented

On

CM OS
feature

S ize (um)

M C SB 32 83 332 24 N A 0.18
D B S B 32 83 332 24 N A 0.18

A M B A
A SB

32 50 200 40
Cirrus
L ogic

C L 7110
0 .6

A M B A
A H B

32 150 600 14 A R M 10 0.18

CoreConnect
OPB

32 50 200 40
PowerPC

405G P
0.25

CoreConnect
O PB

32 66 264 30
PowerPC
4 4 0 Core

0 .18

CoreConnect
PLB

64 100 800 20
PowerPC

405G P
0.25

C oreConnect
PLB

128 133 2128 15
PowerPC
440 Core

0.18

that can be transferred through the bus per second. The result for MCSB and DBSB

are obtained by applying two clock signals with the same frequency and phase to

the put interfaces and get interfaces of the shared-buses. This effectively transforms

the designs into synchronous buses. The latency of the MCSB and DBSB equals

two clock periods if they are operated as synchronous buses, which is in par with

that of the synchronous buses presented in Table 5.3.

5.4 Summary

In this chapter, we discuss how the design of the DBSB and MCSB are verified.

The performance of the two shared buses is then presented in terms of maximum

throughput and latency of data transfer. We also investigate and compare the ben­

efits of using DBSB or MCSB to provide multiple-point communication for SoC

modules over using a point-to-point, multiple MCFIFOs methodology. Finally, we

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung Section 5.4: Summary

provide a comparison of the performance of the DBSB and MCSB with conven­

tional synchronous SoC on-chip buses.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[w„ t b f t \

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Conclusion

As the complexity of SoCs grow, the on-chip buses or interconnect architectures

start to dominate system performance. Future SoC devices will require high perfor­

mance on-chip buses that are sufficiently flexible and robust in order to fulfill the

wide variety of tasks. In addition, the physical limits of system scaling and clock

frequency of integrated circuit have prompted many engineers to design SoCs in

which global synchronization are avoided. This means SoC integrators must em­

ploy high performance on-chip buses that can provide efficient interconnection be­

tween modules operating with different clock frequencies.

Many mixed-timing on-chip communication schemes have been previously pro­

posed by other research groups. However, most of these are designed to provide

separate point-to-point interfaces between mixed-clock modules only. In this the­

sis, we proposed two new mixed-clock shared-bus architectures that allow efficient

communication between modules. The design of the proposed mixed-clock shared-

bus architectures are detailed in Chapter 4. The designs rely on the idea of to­

ken passing and are based on the design of the low latency MCFIFO presented

in [1]. MCFIFO is designed to be suitable for high-bandwidth communication and

is highly robust in addressing synchronization issues as discussed in Chapter 2.

However, it is initially designed to be use as a point-to-point communication chan-

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: Conclusion Fung

nel. In this thesis, we have expanded the work and converted it into two shared bus

designs that enable multi-point interconnection which can be implemented in SoCs.

The MCFIFO has been carefully designed in order to avoid and resolve synchro­

nization failure caused by metastability, FIFO overflow and FIFO underflow. The

design complexity of the two shared buses is far less than other completely asyn­

chronous approaches, for example, the MARBLE bus [3]. The two shared buses

can be designed and simulated using HDL code and can be partitioned into reusable

components. The realization of the design does not require any custom built circuit

component or the knowledge of path delay and timing information in advance (un­

like many micropipeline designs where delay components must be added to the

control path of the design). The advantage of using the two shared buses is that

it provides a low-latency, high performance interconnection for multiple modules

without the need of implementing multiple MCFTFOs. We have demonstrated in

the MCSB that to provide interconnections between three modules operating at dif­

ferent speed, only one MCFIFO is required as opposed to six if a point-to-point

topology is employed. This can significantly reduce the area and the power con­

sumption of a design. DBSB provides a unique means to broadcast data to multiple

receivers that are operating at rational clock frequencies. On the other hand, MCSB

can efficiently interface modules operating at truly multiple clock frequencies.

6.1 Future Work

Although the functionality and performance of the two shared buses are verified in

this thesis, it has not been physically implemented in a real SoC. We are confident

about the two shared bus designs but there are still uncertainties about its behavior

and performance in a real SoC environment. It is beneficial to test the design by

building an SoC using either of the two shared buses as the communication plat-

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung Section 6.1: Future Work

form.

As part of future work, the metastability of the shared bus designs can be sim­

ulated by forcing the shared buses to enter the MSS. One can also calculate how

often the shared buses may encounter an MSS as part of the performance analysis.

Another interesting concept for future work can be the study of the commu­

nication between the FIFO cells and the global state detectors. In this work, the

communication are established without the use of a synchronizer, e.g. double flip-

flops. However, by adding synchronizers between the FIFO cells and the detectors,

the chance of synchronization failure of the MCFIFO can be reduced, consequently

increases the robustness of the MCFIFO. As a tradeoff, additional synchronizers

increase the latency of each transfer to slightly increase the robustness of the MC-

FIFO operation.

In addition, the use of shift register limits the application of the DBSB since

it requires the module to operate at pre-determined rational multiple frequencies.

A study of how to improve the shift register is going to assist on enhancing the

robustness of the DBSB. Essentially, a new method may have to be researched to

enable data broadcasting in multiple clock domains.

The two shared buses are only equipped with a very simple bus controller de­

sign. The bus controller is designed to test the most basic functions of the shared

buses. It is certain that in a real SoC, a more sophisticated bus arbitrator design is

needed to govern the operation of the bus. Also, potential synchronization issues of

the bus controller can be investigated. For example, the bus control signals can be

synchronized to allow safe bus access transfers between on-chip modules. There­

fore, a method for synchronizing the bus control signals to the modules, e.g. two

flip-flop synchronizer method, can be studied.

However, the introduction of new components may adversely affect the overall

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: Conclusion Fung

performance of the bus. Design tradeoffs must be made to maximize the perfor­

mance of the bus.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] T. Chelcea, S.M. Nowick, “Robust interfaces for mixed-timing systems,”
IEEE Transactions on Very Large Scale Integration, vol. 12, no. 8, pp. 857-

873, 2004.

[2] T. Chelcea, S.M. Nowick, “A low-latency asynchronous FIFO’s using token
rings,” in Proceedings o f the 6th IEEE International Symposium on Asyn­
chronous Circuits and Systems, 2000, pp. 210-220.

[3] J. Bainbridge, Asynchronous System-on-Chip Interconnect, Springer, 2001.

[4] Advanced RISC Machines Limited (ARM), AMBA Specification, ARM Lim­
ited, rev 2.0 edition, 1999.

[5] N.H.E.Weste, D.Harris, CMOS VLSI Design - A Circuits and Systems Per­
spective, Addison Wesley, 3rd edition, 2005.

[6] Cadence Digital IC Design White Paper, “Closing the nanometer yield
chasm,” http://www.cadence.com/whitepapers, 2001.

[7] F. Mu, C. Svensson, “Self-tested self-synchronous circuit for mesochronous
clocking,” IEEE Transactions on Circuits and Systems-II, vol. 48, no. 2, pp.

129-140, 2001.

[8] J. Cong, L. He, C.K. Koh, P.H. Madden, “Performance optimization of VLSI
interconnect layout,” Integration, the VLSI Journal (Invited), vol. 21, no. 1,2,
pp. 1-94, 1996.

[9] P. Ramanathan, A.J. Dupont, K.G. Shin, “Clock distribution in general VLSI
circuits,” IEEE Transactions on Circuits and Systems-I, vol. 41, no. 5, pp.
395-404,1994.

[10] C.L. Seitz, “System timing,” in Introduction to VLSI Systems, chapter 7.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cadence.com/whitepapers

BIBLIOGRAPHY Fung

Addison-Wesley Publishing Company, 1980.

[11] E. Sutherland, “Micropipelines,” Communication o f the ACM, vol. 32, no. 6,
pp. 720-738, 1989.

[12] J.T. Yantchev, C.G. Huang, M.B. Josephs, I.M. Nedelchev, “Low-latency
asynchronous FIFO buffers,” in Proceedings o f the 2nd Working Conference

on Asynchronous Design Methodologies, 1995, pp. 24-31.

[13] Y.S. Kang, K.H. Huh, S. Kang, “New Scan Design of Asynchronous Se­
quential Circuits,” in Proceedings o f the 1st IEEE Asia Pacific Conference on
ASICs, 1999, pp. 355-358.

[14] A. Peeters, K. van Berkel, “Single-rail handshake circuits,” in Proceedings o f
the 2nd Working Conference on Asynchronous Design Methodologies, 1995,
pp. 53-62.

[15] T.A. Garcoa, A J. Acosta, J.M. Mora, J. Ramos, J.L. Huertas, “Self-timed
boundary-scan cells for multi-chip module test,” in Proceedings o f the 16th
IEEE VLSI Test Symposium, 1998, pp. 92-97.

[16] J. Sparso, J. Staunstrup, M.D. Sorensen, “Design of delay insensitive circuits
using multi-ring structures,” in Proceedings o f the 1992European Design Au­
tomation Conference, 1992, pp. 15-20.

[17] M. Ferretti, P.A. Beerel, “Single-track asynchronous pipeline templates using

1-of-N encoding,” in Proceedings o f the 2002 Design, Automation and Test in
Europe Conference and Exhibition, 2002, pp. 1008-1015.

[18] W.J. Bainbridge, S.B. Furber, “Delay-insensitive, point-to-point interconnect
using l-of-4 codes,” in Proceedings o f the 7th International Symposium on
Asynchronous Circuits and Systems, 2001, pp. 118-126.

[19] W.J. Bainbridge, W.B. Toms, D.A. Edwards, S.B. Furber, “Delay-insensitive,
point-to-point interconnect using m-of-n codes,” in Proceedings o f the 9th
International Symposium on Asynchronous Circuits and Systems, 2003, pp.
132-140.

[20] T. Hanyu, T. Takahashi, M. Kameyama, “Bidirectional data transfer based
asynchronous VLSI system using multiple-valued current mode logic,” in

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung BIBLIOGRAPHY

Proceedings o f the 33 rd International Symposium on Multiple-Valued Logic,
2003, pp. 99-104.

[21] S. Furber, D.A Edwards, J.D. Garside, “AMULET3; a 100 MIPS asyn­
chronous embedded processor,” in Proceedings o f the 2000 International
Conference on Computer Design, 2000, pp. 329-334.

[22] M. Afghahi, C. Svensson, “Performance of synchronous and asynchronous

schemes for VLSI systems,” IEEE Transactions on Computers, vol. 41, no. 7,
pp. 858-872, 1992.

[23] A. Kondratyev, K. Lwin, “Design of asynchronous circuits by synchronous

CAD tools,” IEEE Design and Test o f Computers, vol. 19, no. 4, pp. 107-117,
2002.

[24] B. Mesgarzadeh, C. Svensson, A. Alvandpour, “A new mesochronous clock­
ing scheme for synchronization in SoC,” in Proceedings o f the 2004 Interna­
tional Symposium on Circuits and Systems, 2004, vol. 2, pp. II605—II608.

[25] A. Chakraborty, M.R. Greenstreet, “Efficient self-timed interfaces for crossing
clock domains,” in Proceedings o f the 9th IEEE International Symposium on

Asynchronous Circuits and Systems, 2003, pp. 78-88.

[26] D.M. Chapiro, Globally-Asynchronous, Locally Synchronous Systems,
Ph.D. thesis, Department of Computer Science, Standford University, 1984,
STANCS-84-1026.

[27] J. Mutterbach, T. Villiger, W. Fichtner, “Practical design of globally-
asynchronous, locally-synchronous systems,” in Proceedings o f the 6th In­
ternational Symposium on Advanced Research in Asynchronous Circuits and

Systems, 2000, pp. 52-59.

[28] K. Y. Yun, R.P. Donohue, “Pausible clocking: a first step toward heterogeneous
systems,” in Proceedings o f the 1996 International Conference on Computer
Design, 1996, pp. 118-123.

[29] D.S Bormann, P.Y.K. Cheung, “Asynchronous wrapper for heterogeneous
systems,” in Proceedings o f the 1997 International Conference on Computer
Design, 1997, pp. 307-314.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY Fung

[30] S. Moore, G. Taylor, “Point to point GALS interconnect,” in Proceedings
o f the 8th International Symposium on Advanced Research in Asynchronous

Circuits and Systems, 2002, pp. 62-68.

[31] A.J. Winstanley, A. Garivier, M.R. Greenstreet, “An event spacing experi­
ment,” in Proceedings o f the 8th International Symposium on Advanced Re­
search in Asynchronous Circuits and Systems, 2002, pp. 42-51.

[32] W.J. Dally, J.W. Poulton, “Digital systems engineering,” in Synchronization,
chapter 10. Cambridge University Press, 1998.

[33] J.N. Seizovic, “Pipeline synchronization,” in Proceedings o f the 1st Interna­
tional Symposium on Advanced Research in Asynchronous Circuits and Sys­
tems, 1994, pp. 87-96.

[34] R. Ginosar, “Fourteen ways to fool your synchronizer,” in Proceedings o f the

9th IEEE International Symposium on Asynchronous Circuits and Systems,
2003, pp. 89-97.

[35] G.N. Pham, K.C. Schmitt, “A high throughput, asynchronous, dual port FIFO
memory implemented in ASIC technology,” in Proceedings o f the 2nd Annual
International IEEE ASIC Seminar and Exhibition, 1989, pp. P3 - 1/1-4.

[36] J.H. Jiang, W.B. Jone, S.C. Chang, S. Ghosh, “Embedded core test generation
using broadcast test architecture and netlist scrambling,” IEEE Transactions

on Reliability, vol. 52, no. 4, pp. 435-443,2003.

[37] K.J. Lee, J.J. Chen, C.H. Hung, “Using a single input to support multiple scan
chains,” in Proceedings o f the IEEE International Conference on Computer-
Aided Design 1998, 1998, pp. 74—78.

[38] American National Standards Institute (ANSI), Small Computer System In­
terface (SCSI), ANSI, 1986.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

Verilog Code

A.l Synthesizable Verilog Model of DBSB (using a 4-
place MCFIFO)

T h i s c o n f i d e n t i a l and p r o p r i e t a r y s o f t w a r e may be u s e d o n l y
as a u t h o r i z e d by t h e U n i v e r s i t y o f A l b e r t a
In t h e e v e n t o f p u b l i c a t i o n , t h e f o l l o w i n g n o t i c e i s a p p l i c a b l e :

(C) COPYRIGHT 2 0 0 5 U n i v e r s i t y o f A l b e r t a
ALL RIGHTS RESERVED

The e n t i r e n o t i c e a b o v e m us t be r e p r o d u c e d on a l l a u t h o r i z e d
c o p i e s .

AUTHOR: Edmund Fung LAST REVISION: May 2 6 , 2 0 0 5

VERSION: S i m u l a t i o n A r c h i t e c t u r e

T o p l e v e l Mo d u l e o f SoC w i t h DBSB

/ /
m od u le t o p l e v e l . D B S B . S o C (r s t , CLK. O, CLK. l , CLK.2 ,CLK.3 , f . C L K . p u t , f - C L K . g e t ,

r . C L K . p u t , r . C L K . g e t , f . p t o k . c o n t r o l , r . p t o k . c o n t r o l ,
f - g t o k . c o n t r o l . r . g t o k . c o n t r o l , g o . 0 , g o . 1 , g o . 2 , g o . 3 ,
f . e n . g e t , r . e n . g e t , r e q . p u t . O , r e q . p u t . l , r e q . p u t . 2 ,
r e q . p u t . 3 , i n t . a d d r) ;

p a r a m e t e r i n t - b u s . w i d t h = 4;
p a r a m e t e r s e l . w i d t h = 2;
p a r a m e t e r t a r g e t , a d d r . w i d t h = 4 ;
p a r a m e t e r r e q . p u t . w i d t h = 4;
p a r a m e t e r t r i g g e r . w i d t h = 4;

p a r a m e t e r t o p . w i d t h . 0 = (4 * i n t . b u s . w i d t h);
p a r a m e t e r t o p . w i d t h - 1 = (2 * i n t . b u s . w i d t h) ;
p a r a m e t e r t o p . w i d t h . 2 = (2 * i n t - b u s . w i d t h) ;
p a r a m e t e r t o p . w i d t h . 3 = (1 * i n t . b u s . w i d t h);

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A: Verilog Code Fung

i n p u t r s t .CLK.O . C L K . l , CLK.2 , CLK.3 ;
i n p u t go .O , g o . l , g o . 2 , g o . 3 ;
i n p u t f . C L K . p u t , f . C L K . g e t , r . C L K . p u t , r . C L K . g e t ;
i n p u t f . p t o k . c o n t r o l , r . p t o k . c o n t r o l , f . g t o k . c o n t r o l , r . g t o k . c o n t r o l ;

i n p u t [(t r i g g e r . w i d t h — 1) : 0] i n t . a d d r ;

o u t p u t f . e n . g e t , r . e n . g e t , r e q . p u t . O , r e q . p u t . 1 , r e q . p u t . 2 , r e q . p u t . 3 ;

w i r e r e q . p u t . O , r e q . p u t . 1 , r e q . p u t . 2 , r e q . p u t . 3 ;
w i r e r e q . g e t . 0 , r e q . g e t . l , r e q . g e t . 2 , r e q . g e t . 3 ;
w i r e f . v a l i d . g e t . 0 , f . v a l i d . g e t . 1 , r . v a l i d . g e t . O , r . v a l i d . g e t . 1 ;
w i r e [(t o p . w i d t h . O - 1) : 0] d a t a . i n . O ;
w i r e [(t o p . w i d t h - 1 - 1) : 0] d a t a . i n . l ;
w i r e [(t o p . w i d t h . 2 - 1) • 0] d a t a . i n . 2 ;
w i r e [(t o p . w i d t h . 3 - 1) : 0] d a t a . i n . 3 ;
w i r e [(t o p . w i d t h . O - 1) : 0] d a t a . o u t . O
wi r e [(t o p . w i d t h . l - 1) : 0] d a t a . o u t . l
w i r e [(t o p . w i d t h . 2 - 1) : 0] d a t a . o u t . 2
wi r e [(t o p . w i d t h . 3 - 1) ■ 0] d a t a . o u t . 3
w i r e [(t a r g e t . a d d r . w i d t h — 1) : 0] t a r g e t . a d d r , go ;
w i r e [(t a r g e t . a d d r . w i d t h - 1) : 0] t a r g e t . a d d r . O , t a r g e t . a d d r . 1 ;
w i r e [(t a r g e t . a d d r . w i d t h — 1) : 0] t a r g e t . a d d r . 2 , t a r g e t . a d d r . 3 ;
w i r e [(t r i g g e r . w i d t h — 1) : 0] t r i g g e r ;
w i r e f u l l . O , e m p t y . O , f u l l . l , e m p t y . l ;

S o C . m o d u l e #(top.width.O , t a r ge t .addr .w id th)
mod.O (r s t , CLK.O, r e q . p u t . O , r e q . g e t . O , d a t a . o u t . O , d a t a . i n . O ,

r . v a l i d . g e t . O . t r i g g e r [3] , f u l l . O , e m p t y . l , g o . O , i n t . a d d r ,
t a r g e t . a d d r . O);

S o C . m o d u l e #(top .wid th . l , t a r ge t .addr .w id th)
m o d . l (r s t , C L K . l , r e q . p u t . l . r e q . g e t . l , d a t a . o u t . 1 . d a t a . i n . l ,

r . v a l i d . g e t . l . t r i g g e r [2] , f u l l . O . e m p t y . l . g o . l . i n t . a d d r ,
t a r g e t . a d d r . 1);

S o C . m o d u l e #(top .width.2 , t a rg e t .a dd r .w id th)
m o d. 2 (r s t , C L K . 2 , r e q . p u t . 2 , r e q . g e t . 2 . d a t a . o u t . 2 . d a t a . i n . 2 ,

f . v a l i d . g e t . O , t r i g g e r [1] , f u l l . l , e mp ty .O , g o . 2 , i n t . a d d r ,
t a r g e t . a d d r . 2);

S o C . m o d u l e # (top .width .3 , target . addr .width)
mod .3 (r s t , CLK.3 , r e q . p u t . 3 , r e q . g e t . 3 , d a t a . o u t . 3 . d a t a . i n . 3 ,

f . v a l i d . g e t . 1 , t r i g g e r [0] , f u l l . 1 , e m p t y . O , g o . 3 , i n t . a d d r ,
t a r g e t . a d d r . 3);

t o p l e v e l . D B S B #(in t -bus .wid th , sel .width , target . addr.width ,
r e q . p u t . w i d t h , t r i g g e r . w i d t h)

DBSB.O (r s t . r e q . p u t . O . r e q . p u t . l . r e q . g e t . O . r e q . g e t . l , r e q . p u t . 2 ,
r e q . p u t . 3 . r e q . g e t . 2 , r e q . g e t . 3 , CLK.O . C L K. l , CLK.2 .CLK.3 ,
f . p t o k . c o n t r o l , f . g t o k . c o n t r o l , r . p t o k . c o n t r o l ,
r . g t o k . c o n t r o l , f . C L K . p u t , f . C L K . g e t , r . C L K . p u t , r . C L K . g e t ,
t a r g e t . a d d r . d a t a . i n . O . d a t a . i n . l , d a t a . i n . 2 , d a t a . i n . 3 ,
d a t a . o u t . O . d a t a . o u t . l , d a t a . o u t . 2 , d a t a . o u t . 3 . f u l l . O ,
e m p t y . O , f u l l . 1 , e m p t y . l . f . v a l i d . g e t . O . f . v a l i d . g e t . l ,
r . v a l i d . g e t . O . r . v a l i d . g e t . l . f . e n . g e t . r . e n . g e t . t r i g g e r , g o) ;

a s s i g n t a r g e t . a d d r = (t a r g e t . a d d r . O | t a r g e t . a d d r . 1 | t a r g e t . a d d r . 2
| t a r g e t . a d d r . 3);

a s s i g n go = { g o . 3 , g o . 2 , g o . l , go . O };

e n d m o d u l e

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung A .l: Synthesizable Verilog Model o f DBSB (using a 4-place MCFIFO)

if--
/ /

/ / T o p l e v e l Mo du l e o f DBSB
II

If--
If
mo d ul e t o p l e v e l - D B S B (r s t , f . r e q . p u t . O , f . r e q . p u t . l , r . r e q . g e t . O , r . r e q . g e t . l ,

r . r e q . p u t . O , r . r e q . p u t . l , f . r e q . g e t . O , f . r e q . g e t . l , CLK.O,
C LK. l ,CLK. 2 , CLK.3 , f . p t o k . c o n t r o l , f . g t o k . c o n t r o l ,
r . p t o k . c o n t r o l , r . g t o k . c o n t r o l , f . C L K . p u t , f . C L K . g e t ,
r . C L K . p u t , r . C L K . g e t . t a r g e t . a d d r . d a t a . i n . O , d a t a . i n . l ,
d a t a . i n . 2 , d a t a . i n . 3 . d a t a . o u t . O . d a t a . o u t . l . d a t a . o u t . 2 ,
d a t a . o u t . 3 . f . f u l l , f . e m p t y , r . f u l l , r . e m p t y . f . v a l i d . g e t . O ,
f . v a l i d . g e t . 1 , r . v a l i d . g e t . O , r . v a l i d . g e t . l , f . e n . g e t ,
r . e n . g e t , t r i g g e r , g o) ;

p a r a m e t e r i n t . b u s . w i d t h = 6;
p a r a m e t e r s e l . w i d t h = 2;
p a r a m e t e r t a r g e t . a d d r . w i d t h = 4;
p a r a m e t e r r e q . p u t . w i d t h = 4;
p a r a m e t e r t r i g g e r . w i d t h = 4;

p a r a m e t e r v a l i d . s t a t e 1 ’ b O;

p a r a m e t e r
p a r a m e t e r
p a r a m e t e r
p a r a m e t e r
p a r a m e t e r

a d d r . w i d t h
t o p . w i d t h . O
t o p . w i d t h . l
t o p . w i d t h . 2
t o p . w i d t h . 3

= t a r g e t . a d d r . w i d t h
= (4 * i n t - b u s . w i d t h)
= (2 * i n t . b u s . w i d t h)
= (2 * i n t . b u s . w i d t h)
= (1 * i n t . b u s . w i d t h)

+ r e q . p u t . w i d t h ;

i n p u t r s t , f . C L K . p u t , r . C L K . p u t ;
i n p u t f . C L K . g e t , r . C L K . g e t ;
i n p u t f . r e q . p u t - 0 , f . r e q . p u t . l , f . r e q . g e t . O , f . r e q . g e t . l ;
i n p u t r . r e q . p u t . O , r . r e q . p u t . l , r . r e q . g e t . O . r . r e q . g e t . l ;
i n p u t C L K .O , C L K. l , C L K . 2 , C L K . 3 ;
i n p u t f . p t o k . c o n t r o l , f . g t o k . c o n t r o l . r . p t o k . c o n t r o l , r . g t o k . c o n t r o l ;

i n p u t [(t a r g e t . a d d r . w i d t h — 1) : 0] g o ;
i n p u t [(r e q . p u t . w i d t h — 1) : 0] t a r g e t . a d d r ;
i n p u t [(t o p . w i d t h . O — 1): 0] d a t a . i n . O ;
i n p u t [(t o p . w i d t h . l — 1) : 0] d a t a . i n . l ;
i n p u t [(t o p . w i d t h . 2 — 1) : 0] d a t a . i n . 2 ;
i n p u t [(t o p . w i d t h . 3 — 1) : 0] d a t a . i n . 3 ;

o u t p u t f . v a l i d . g e t . O , f . v a l i d . g e t . l . r . v a l i d . g e t . O . r . v a l i d . g e t . l ;
o u t p u t f . f u l l , f . e m p t y , r . f u l l , r . e m p t y ;
o u t p u t f . e n . g e t , r . e n . g e t ;

o u t p u t (t r i g g e r . w i d t h - 1) : 0] t r i g g e r ;
o u t p u t (t o p . w i d t h . O — 1) : 0] d a t a . o u t . O ;
o u t p u t (t o p . w i d t h . l — 1) : 0) d a t a . o u t . l ;
o u t p u t (t o p . w i d t h . 2 — 1) : 0] d a t a . o u t . 2 ;
o u t p u t (t o p . w i d t h . 3 — 1) :0] d a t a . o u t . 3 ;

wi r e (i n t . b u s . w i d t h _ 1) : 0] f . d a t a . p u t ;
w i r e (i n t . b u s . w i d t h - 1) : 0] f . d a t a . g e t ;
w i r e (i n t - b u s . w i d t h - 1) : 0] f . d a t a . i n . O ;
w i r e (i n t . b u s . w i d t h - 1) : 0] f . d a t a . i n . 1 ;
w i r e (i n t - b u s . w i d t h - 1) : 0] f . d a t a . o u t . O
wi r e (i n t . b u s . w i d t h - 1) : 0] f . d a t a . o u t . 1
wi r e (i n t . b u s . w i d t h - 1) : 0] r . d a t a . p u t ;
w i r e (i n t . b u s . w i d t h - 1) : 0] r . d a t a . g e t ;
w i r e (i n t . b u s . w i d t h - 1) : 0] r . d a t a . i n . O ;
w i r e (i n t . b u s . w i d t h - 1) : 0] r . d a t a . i n . 1 ;
wi r e (i n t . b u s . w i d t h - 1) : 0] r . d a t a . o u t . O

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A: Verilog Code Fung

w i r e [(i n t . b u s . w i d t h — 1) : 0] r . d a t a . o u t . 1 ;

w i r e f m s e l , r m s e l ;
w i r e [(s e l . w i d t h - 1) : 0] f d s e l , r d s e l ;
w i r e f . r e q . p u t . f . r e q . g e t . r . r e q . p u t . r . r e q . g e t
wi r e f . v a l i d . g e t . r . v a l i d . g e t ;
wi r e [(a d d r . w i d t h - 1) : 0] a d d r e s s ;
wi r e [(t r i g g e r . w i d t h — 1) : 0 3 t r i g g e r ;

a s s i g n d a t a _ o u t _ 3 = f . d a t a . o u t . l ;
a s s i g n r . d a t a . i n . l = d a t a . i n . 3 ;

/ / f o r w a r d c o n t r o l s
m ux 2 to l # (i n t - b u s . w i d t h)

fmO (r s t , f . d a t a . i n . O , f . d a t a . i n . l , f m s e l , f . d a t a . p u t) ;
m u x 2 t o l fmcO (r s t , f . r e q . p u t . O , f . r e q . p u t . l , f m s e l , f . r e q . p u t);
o r o r . O (f . r e q . g e t , f . r e q . g e t . O , f . r e q - g e t . 1);
d e m u x l t o 2 #(i n t . b u s . w i d t h)

fdmO (r s t , f . d a t a , g e t , f d s e l , f . d a t a . o u t . O , f . d a t a . o u t . 1);
d e m u x l t o 2 # (1 , s e l . w i d t h , v a l i d - s t a t e)

fdcO (r s t , f . v a l i d . g e t , f d s e l , f . v a l i d . g e t . O , f . v a l i d . g e t . 1);

/ / r e v e r s e c o n t r o l s
m ux 2 t o l #(i n t - b u s . w i d t h)

rmO (r s t . r . d a t a . i n . O , r . d a t a . i n . l , r m s e l , r . d a t a . p u t) ;
m ux 2 t o l rmcO (r s t , r . r e q . p u t . O . r . r e q . p u t . l , r m s e l . r . r e q . p u t) ;
o r o r . l (r . r e q . g e t . r . r e q . g e t . O . r . r e q . g e t . l);
d e c l t o 2 #(i n t . b u s . w i d t h)

rdmO (r s t , r . d a t a . g e t , r d s e l , r . d a t a . o u t . O , r . d a t a . o u t . l) ;
d e c l t o 2 # (1 . s e l . w i d t h . v a l i d - s t a t e)

rdcO (r s t . r . v a l i d . g e t , r d s e l . r . v a l i d . g e t . O . r . v a l i d . g e t . l) ;

t o p l e v e l . M C F I F O #(i n t - b u s . w i d t h)
MCFIFO.O (r s t . f . f u l l , f . e m p t y . f . r e q . p u t , f . d a t a . p u t ,

f . C L K . p u t , f . p t o k . c o n t r o l . f . C L K . g e t ,
f . d a t a . g e t , f . r e q . g e t , f . v a l i d . g e t ,
f . g t o k . c o n t r o l . f . e n . g e t) ;

t o p l e v e l . M C F I F O #(i n t . b u s . w i d t h)
MCFIFO. l (r s t . r . f u l l , r . e m p t y . r . r e q . p u t . r . d a t a . p u t ,

r . C L K . p u t , r . p t o k . c o n t r o l . r . C L K . g e t ,
r . d a t a . g e t . r . r e q . g e t . r . v a l i d . g e t ,
r . g t o k . c o n t r o l . r . e n . g e t) ;

D B S B . b u s . c o n t r o l l e r #(t a r g e t . a d d r . w i d t h , t r i g g e r . w i d t h . s e l . w i d t h)
b c t r l O (r s t , g o , t a r g e t . a d d r , t r i g g e r , f m s e l , f d s e l , r ms e l , r d s e l);

/ / c o r e 0
T y p e B . s h r e g l t o 4 # (t o p . w i d t h . O , i n t . b u s . w i d t h , 3 , 3 ’ blOO)

s h r e g . O f (r s t , f . C L K . p u t . d a t a . i n . O . f . r e q . p u t . O , f . d a t a . i n . O) ;

T y p e A . s h r e g 4 t o l # (int-bus .width , top .width .0)
s h r e g . O r (r s t . r . d a t a . o u t . O . d a t a . o u t . O . r . C L K . g e t ,

CLK.O, r . v a l i d - g e t . O);

/ / c o r e 1
T y p e B . s h r e g l t o 2 # (top .w id th . l , i n t -bus .w id th)

s h r e g . l f (r s t . CLK.O, d a t a . i n . l . f . r e q . p u t . l , f . d a t a . i n . 1) ;

T y p e A . s h r e g 2 t o l #(in t .bus .width , top .width .1)
s h r e g . l r (r s t , r . d a t a . o u t . 1 . d a t a . o u t . l . r . C L K . g e t ,

C L K . l , r . v a l i d . g e t . l);

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung A .l: Synthesizable Verilog Model o f DBSB (using a 4-place MCFIFO)

/ / c o r e 2
T y p e B . s h r e g l t o 2 #{ top-width-2 , i n t -bus .w id th)

s h r e g - 2 r (r s t , C L K . 2 , d a t a . i n _ 2 . r . r e q . p u t . O , r . d a t a . i n . O) ;

T y p e A . s h r e g 2 t o l #(int -bus-width , top-width -2)
s h r e g . 2 f (r s t , f . d a t a . o u t . O , d a t a . o u t . 2 , f . C L K . g e t ,

CL K. 2 , f . v a l i d . g e t . O) ;

e n d m o d u l e

If---
//--
I f
111 — t o — 1 M u l t i p l e x e r
/ /
//--
I I
mo d ul e m u x 2 t o l (r s t , A , B , se l , Z) ;

p a r a m e t e r w i d t h = 1;
p a r a m e t e r s e l . w i d t h = 1;

i n p u t r s t ;
i n p u t [(w i d t h - 1) : 0] A , B;
i n p u t [(s e l . w i d t h — 1) : 0) s e l ;
o u t p u t [(w i d t h — 1) : 0] Z ;

r e g [(w i d t h — 1) : 0] Z;

a l w a y s @(s e l or A o r B)
b e g i n
i f (s e l = = 0)

b e g i n
Z = A;

end
e l s e

b e g i n
Z = B;

end
end

e n d m o d u l e

/
/ 1 — to —2 D e c o d e r
/

mo du l e d e c l t o 2 (r s t ,A, s e l , O u t l , Out2);

p a r a m e t e r w i d t h = 1;
p a r a m e t e r s e l . w i d t h = 2;

/ / p a r a m e t e r t r i . s t a t e = ’ b z ;
p a r a m e t e r t r i . s t a t e = { (w i d t h){1 ’ bz }} ;

i n p u t r s t ;
i n p u t [(w i d t h — 1) : 0] A;
i n p u t [(s e l . w i d t h — 1) : 0] s e l ;
o u t p u t [(w i d t h — 1) : 0] O u t l , O u t 2 ;

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A: Verilog Code Fung

r e g [(w i d t h — 1) : 0] Ou t l , Ou t 2 ;

a l w a y s @(A o r s e l)
b e g i n

i f (s e l = = 2 ’ b l O)
b e g i n

O u t l = A;
Ou t 2 = t r i . s t a t e ;

end
e l s e

b e g i n
i f (s e l = = 2 ’ b O l)

b e g i n
O u t l = t r i . s t a t e ;
Out 2 = A;

end
e l s e

b e g i n
i f (s e l = = 2 ’ b l l)

b e g i n
O u t l = A;
Ou t 2 = A;

end
end

end
end

e n d m o d u l e

//-------------------------------
//-------------------------------
11
/ / DBSB Bus C o n t r o l l e r
II

II
m od u le D B S B . b u s . c o n t r o l l e r (r s t , g o , t a r g e t . a d d r . t r i g g e r , f m s e l , f d s e l , r m s e l , r d s e l);

p a r a m e t e r a d d r . w i d t h
p a r a m e t e r t r i g g e r . w i d t h
p a r a m e t e r s e l . w i d t h
p a r a m e t e r o u t . w i d t h

4
4
2
(3 * s e l . w i d t h) ;

i n p u t r s t ;
i n p u t [(a d d r . w i d t h — 1) : 0] go ;
i n p u t [(a d d r . w i d t h — 1) : 0] t a r g e t . a d d r

o u t p u t f m s e l , r m s e l ;
o u t p u t [(t r i g g e r . w i d t h - 1) : 0] t r i g g e r ;
o u t p u t [(s e l . w i d t h — 1) : 0] f d s e l , r d s e l

w i r e
wi r e
w i r e
w i r e
reg

f m s e l , r m s e l ;
[(s e l . w i d t h — 1) : 0] f d s e l , r d s e l ;
[(t r i g g e r . w i d t h - 1) : 0] t r i g g e r ;
[(2 * t r i g g e r . w i d t h — 1) : 0] a d d r e s s ;
[(o u t . w i d t h — 1) : 0] c o n t r o 11 e r _o u t ;

a s s i g n f m s e l = c o n t r o l 1 e r . o u t [5];
a s s i g n f d s e l = { c o n t r o l l e r . o u t [4] , c o n t r o l l e r . o u t [3] } ;
a s s i g n r m s e l = c o n t r o l l e r . o u t [2] ;
a s s i g n r d s e l = { c o n t r o l l e r . o u t [1] , c o n t r o l l e r . o u t [0] } ;

a s s i g n a d d r e s s = { g o , t a r g e t . a d d r } ;
a s s i g n t r i g g e r = t a r g e t . a d d r ;

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung A. 1: Synthesizable Verilog Model o f DBSB (using a 4-place MCFIFO)

a l w a y s @(a d d r e s s)
b e g i n
c a s e (a d d r e s s)

8 ’ bOOOlOOlO c o n t r o l l e r . o u t = 6 ’ bOlOOOO / / Modu l e 0
8 ’ bOOOlOOOl c o n t r o l l e r . o u t = 6 ’ bOOlOOO
8 ’ bOOOlOOl1 c o n t r o l l e r . o u t = 6 ’ b O l 1000
8 ’ bOOlOOOlO c o n t r o l l e r . o u t = 6 ’ b l 10000 / / Modul e 1
8 ’ b 0 0 100001 c o n t r o l l e r . o u t = 6 ’ blOlOOO
8 ’ b 0 0 100011 c o n t r o l l e r . o u t = 6 ’ b l 11000
8 ’ bOlOOlOOO c o n t r o l l e r . o u t = 6 ’ bOOOOlO / / Modul e 2
8 ’ bO10 00 1 00 c o n t r o l l e r . o u t = 6 ’ bOOOOOl
8 ’ b O l O O l 100 c o n t r o l l e r . o u t = 6 ’ bOOOOl1
8 ’ blOOOlOOO c o n t r o l l e r . o u t = 6 ’ bOOOl 10 / / Modul e 3
8 ’ blOOOOlOO c o n t r o l l e r . o u t = 6 ’ bOOOl01
8 ’ b l O O O l 100 c o n t r o l l e r . o u t = 6 ’ bOOOl11
d e f a u l t : c o n t r o l l e r . o u t = 6 ’ b 0 0 0 0 0 0 ;

e n d c a s e
end

e n d m o d u l e

//--
//

/ /
/ / Type A S h i f t R e g i s t e r (r a t i o : 4 i n p u t s e g e m e n t s i n t o]1 o u t p u t)
/ /

//--

mo d u l e T y p e A . s h r e g 4 t o l (r s t , d a t a - i n , d a t a - o u t , C L K. i n , C L K . o u t . e n a b l e) ;

p a r a m e t e r i n . v a l . w i d t h = 1;
p a r a m e t e r o u t . v a l - w i d t h = 4 ;
p a r a m e t e r c l k . r a t i o = (o u t . v a l - w i d t h / i n . v a l . w i d t h) ;

i n p u t [(i n . v a l . w i d t h — 1) : 0] d a t a - i n ;
i n p u t r s t , C L K. i n , C L K . o u t , e n a b l e ;
o u t p u t [(o u t . v a l . w i d t h — 1) : 0] d a t a . o u t ;

w i r e [(i n . v a l . w i d t h - 1) 0] t e m p . o u t . O
wi r e [(i n . v a l . w i d t h - 1) 0] t e m p . o u t . l
w i r e [(i n . v a l . w i d t h - 1) 0] t e m p . o u t . 2
wi r e [(i n . v a l . w i d t h - 1) 0] t e m p . o u t . 3

wi r e [(i n . v a l . w i d t h - 1) 0] s h i f t . o u t . O
wi r e [(i n . v a l . w i d t h - 1) 0] s h i f t . o u t . 1
wi r e [(i n . v a l . w i d t h - 1) 0] s h i f t . o u t . 2
w i r e [(i n . v a l . w i d t h - 1) 0] s h i f t . o u t . 3

w i r e o u t . e n , e n a b l e ;

a s s i g n d a t a - o u t = { t e m p . o u t . 3 , t e m p . o u t . 2 , t e m p . o u t . I , t e m p . o u t . 0 };

T y p e A . s h r e g . c e l l #(in . va l . w i d th)
s h r e g O (r s t , d a t a . i n , t e m p . o u t . O , s h i f t . o u t . 0 ,

C LK . i n , C L K .o u t , e na bl e , o u t . e n) ;

T y p e A . s h r e g . c e l l #(in . va l . w id th)
s h r e g l (r s t , s h i f t . o u t . O , t e m p . o u t . l , s h i f t . o u t . 1 ,

C L K . i n , C L K . o u t , e n a b l e , o u t . e n) ;

T y p e A . s h r e g . c e l l # (i n . va l . w i d th)
s h r e g 2 (r s t , s h i f t . o u t . l , t e m p . o u t . 2 , s h i f t . o u t . 2 ,

C L K . i n , C L K . o u t , e n a b l e , o u t . e n) ;

T y p e A . s h r e g . c e l l #(in . va l . w i d th)

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A: Verilog Code Fung

s h r e g 3 (r s t , s h i f t - o u t . 2 , t e m p . o u t . 3 , s h i f t . o u t . 3
C L K . i n , C L K . o u t , e n a b l e , o u t . e n) ;

d a t a . c o u n t e r . 4 d 4 . 0 (r s t , o u t . e n , C L K. i n , e n a b l e);

e n d m o d u l e

li­
l t
II Type A S h i f t R e g i s t e r (r a t i o : 2 i n p u t s e g m e n t s i n t o 1 o u t p u t)
//

//--
/ /
mo d ul e T y p e A . s h r e g 2 t o l (r s t , d a t a . i n , d a t a . o u t , CL K. i n , C L K . o u t , v a l i d . g e t);

p a r a m e t e r i n . v a l . w i d t h = 1;
p a r a m e t e r o u t . v a l . w i d t h = 2;
p a r a m e t e r e l k . r a t i o = (o u t . v a l . w i d t h / i n . v a l . w i d t h) ;

i n p u t [(i n . v a l . w i d t h - 1) : 0] d a t a - i n ;
i n p u t r s t . C L K . i n . C L K . o u t , v a l i d . g e t ;
o u t p u t [(o u t . v a l . w i d t h — 1) : 0] d a t a - o u t ;

w i r e [(i n . v a l . w i d t h — 1) : 0] t e m p . o u t . O ;
w i r e [(i n . v a l . w i d t h — 1) : 0] t e m p . o u t . l ;
w i r e [(i n . v a l . w i d t h - 1) : 0] s h i f t . o u t . O ;
w i r e [(i n . v a l . w i d t h — 1) : 0] s h i f t . o u t . l ;

w i r e o u t . e n , v a l i d . g e t ;

a s s i g n d a t a . o u t = { t e m p . o u t . O , t e m p . o u t . l };

T y p e A . s h r e g . c e l l #{ in . val .w idth)
s h r e g O (r s t , d a t a , i n , t e m p . o u t . O . s h i f t . o u t . O ,

C L K. i n , C L K. o u t . v a l i d . g e t . o u t . e n) ;

T y p e A . s h r e g . c e l l #(in . v a l . w i d th)
s h r e g l (r s t . s h i f t . o u t . O . t e m p . o u t . l . s h i f t . o u t . l

C L K. i n , C L K . o u t . v a l i d . g e t . o u t . e n) ;

d a t a . c o u n t e r . 2 d 2 . 0 (r s t , o u t . e n , CL K. i n , v a l i d . g e t) ;

e n d m o d u l e

II---
11
/ / Type A S h i f t R e g i s t e r C e l l
/ /

m od u l e T y p e A . s h r e g . c e l l (r s t , i n . v a l u e , o u t . v a l u e , s h i f t . o u t
C L K . i n , C L K . o u t , e n a b l e . o u t . e n) ;

p a r a m e t e r i n . v a l . w i d t h = 1;

i n p u t [(i n . v a l . w i d t h — 1) : 0] i n . v a l u e ;

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung A.1: Synthesizable Verilog Model o f DBSB (using a 4-place MCFIFO)

i n p u t rs t , CLK. in , CLK.out , e nab l e , o u t . e n ;
o u t p u t [(i n . v a l . w i d t h — 1) : 0] o u t . v a l u e , s h i f t . o u t ;

w i r e [(i n . v a l . w i d t h — 1) : 0] s h i f t . i n ;
w i r e [(i n . v a l . w i d t h — 1) : 0] l a t c h . o u t ;

a s s i g n s h i f t . o u t = s h i f t . i n ;

e n a b l e . r e g # (i n . v a l . w i d th)
uO (r s t , CL K. i n , e n a b l e , s h i f t . i n , i n . v a l u e);

e l k . l a t c h #(in . v a l . w i d th)
u l (r s t , o u t . e n , l a t c h . o u t , s h i f t . i n) ;

r e g i s t e r # (i n . va l . w i d th)
u2 (r s t , C L K . o u t , o u t . v a l u e , l a t c h . o u t) ;

e n d m o d u l e

//--
If---
II
II Da t a C o u n t e r (c o u n t s 4)
II
II--

m od u le d a t a . c o u n t e r . 4 (r s t , o u t . l a t c h . e n ,CLK, c o u n t e r . e n);

p a r a m e t e r c o u n t . w i d t h = 3;
p a r a m e t e r m a t c h = 3 ’ b l 0 0 ;

i n p u t r s t ,CLK, c o u n t e r _ e n ;
o u t p u t o u t . l a t c h . e n ;

d a t a . c o u n t e r # (c o u n t . w i d t h , m a t c h) dO (r s t ,CLK, o u t . l a t c h . e n , c o u n t e r , e n);

e n d m o d u l e

II--------------------------------
//— ---
/ /
/ / D a t a C o u n t e r (c o u n t s 2)
II

m o d u l e d a t a . c o u n t e r . 2 (r s t , o u t . l a t c h . e n ,CLK, c o u n t e r . e n);

p a r a m e t e r c o u n t . w i d t h = 2;
p a r a m e t e r m a t c h = 2 ’ b l O ;

i n p u t r s t ,CLK, c o u n t e r . e n ;
o u t p u t o u t . l a t c h . e n ;

c o u n t e r # (c o u n t . w i d t h , m a t c h) dO (r s t ,CLK, o u t . l a t c h . e n , c o u n t e r . e n) ;

e n d m o d u l e

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A: Verilog Code Fung

//--------------------
//--------------
/ /
/ / C o u n t e r
II

mo d ul e c o u n t e r (r s t ,CLK, o u t . c o u n t , d a t a . e n);

p a r a m e t e r c l k . r a t i o = 1;
p a r a m e t e r c o u n t . w i d t h = (c l k . r a t i o / 2) ;

i n p u t r s t . d a t a . e n ,CLK;
o u t p u t o u t . c o u n t ;

r e g o u t . c o u n t ;
r eg [(c o u n t . w i d t h — 1) : 0] c o u n t ;
r eg i n t . r s t ;

a l w a y s @(d a t a . e n or c o u n t or r s t)
b e g i n
i f (r s t = = 1)

b e g i n
c o u n t < = 2 ’ bOO ;

end
e l s e

b e g i n
i f (d a t a . e n = = 1)

b e g i n
c o u n t < = c o u n t + 2 ’ b 0 1 ;

end
end

end

a l w a y s @(c o u n t o r r s t)
b e g i n
i f (r s t = = 1)

b e g i n
o u t . c o u n t = 0 ;

end
e l s e

b e g i n
i f (c o u n t = = 2 ’ b l 1)

b e g i n
o u t . c o u n t = 1;
c o u n t = 2 ’ bOO;

end
e l s e

b e g i n
o u t . c o u n t = 0 ;

end
end

end

endmodule

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung A .l: Synthesizable Verilog Model o f DBSB (using a 4-place MCFIFO)

n---
n---
/ /
/ / Type B S h i f t R e g i s t e r (r a t i o : 1 i n p u t i n t o 4 o u t p u t s e g m e n t s)
11

H---
/ /
mo d ul e T y p e B . s h r e g l t o 4 (r s t . C L K . i n , d a t a - i n . e n a b l e , s h r e g . d a t a . o u t) ;

p a r a m e t e r i n . w i d t h = 28 ;
p a r a m e t e r o u t . w i d t h = 7;

p a r a m e t e r c o u n t . w i d t h = 2;
p a r a m e t e r c o u n t - m a x = 3 ’ b lOO;
p a r a m e t e r c l k . r a t i o = i n . w i d t h / o u t . w i d t h ;
p a r a m e t e r s e g En d 3 = i n . w i d t h — o u t . w i d t h ; / / 28 - 7 = 21
p a r a m e t e r s e g E n d 2 = se g En d 3 — o u t . w i d t h ; / / 21 - 7 = 1 4
p a r a m e t e r s e g E n d l = s e g En d 2 — o u t . w i d t h ; / / 14 - 7 = 7
p a r a m e t e r se gEndO = s e g E n d l — o u t . w i d t h ; / / 7 - 7 = 0

i n p u t r s t , CL K. i n , e n a b l e ;
i n p u t [(i n . w i d t h — 1) : 0] d a t a - i n ;
o u t p u t [(o u t . w i d t h — 1) : 0] s h r e g . d a t a . o u t ;

w i r e [(o u t . w i d t h - 1) : 0] s h i f t . i n . 1 , s h i f t . i n . 2 ;
w i r e [(o u t . w i d t h — 1) : 0] s egmentO , s e g m e n t l , s e g m en t 2 , s e g m e n t 3 ;
w i r e [(c o u n t . w i d t h — 1): 0] c o u n t ;
w i r e l o a d . s e l ;

a s s i g n s e g m en tO = d a t a - i n [(s e g E n d l — l) : s e g E n d O] ;
a s s i g n s e g m e n t l = d a t a . i n [(s e g E n d 2 — l) : s e g E n d l] ;
a s s i g n s e g m e n t 2 = d a t a . i n [(s e g En d 3 — l) : s e g E n d 2] ;
a s s i g n s e g m e n t 3 = d a t a - i n [(i n . w i d t h — l) : s e g E n d 3] ;

T y p e B . s h r e g . c e l l # (o u t . w i d t h)
TB1 (r s t , CL K. i n . l o a d . s e l , segmentO , s e g m e n t l , s h i f t . i n . 1) ;

T y p e B . s h r e g . c e l l # (o u t . w i d t h)
TB2 (r s t . C L K . i n , l o a d . s e l , s h i f t . i n . 1 , s e g m en t 2 , s h i f t . i n . 2) ;

T y p e B . s h r e g . c e l l # (o u t . w i d t h)
TB3 (r s t , C L K. i n . l o a d . s e l . s h i f t . i n . 2 , s e g m en t 3 , s h r e g . d a t a . o u t);

l o a d - c o u n t e r #(c o u n t . w i d t h , c o u n t - m a x)
l c . O (r s t , C L K. i n , e n a b l e , c o u n t);

l o a d . c o n t r o l l e r #(c o u n t . w i d t h)
l c t r l . O (r s t , e n a b l e , c o u n t , l o a d . s e l);

e n d m o d u l e

/ /
/ / Type B S h i f t R e g i s t e r (r a t i o : 1 i n p u t i n t o 2 o u t p u t s e g m e n t s)
/ /
//---
11
m o du l e T y p e B . s h r e g l t o 2 (r s t , C L K. i n . d a t a . i n . v a l i d . g e t . s h r e g . d a t a . o u t) ;

p a r a m e t e r i n . w i d t h = 14;
p a r a m e t e r o u t . w i d t h = 7;

p a r a m e t e r c o u n t . w i d t h = 2;
p a r a m e t e r c o u n t . m a x = 2 ’ b l 0 ;
p a r a m e t e r c l k . r a t i o = i n . w i d t h / o u t . w i d t h ;
p a r a m e t e r s e g E n d l = i n . w i d t h — o u t . w i d t h ; / / 14 — 7 = 7
p a r a m e t e r se gEndO = s e g E n d l — o u t . w i d t h ; / / 7 — 7 = 0

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A: Verilog Code Fung

i n p u t r s t , C L K . i n , v a l i d . g e t ;
i n p u t [(i n . w i d t h - 1) : 0] d a t a . i n ;
o u t p u t [(o u t . w i d t h - 1) : 0] s h r e g . d a t a . o u t ;

w i r e [(o u t . w i d t h — 1) : 0] s e g m e n t O , s e g m e n t l ;
w i r e [(c o u n t . w i d t h — 1): 0] c o u n t ;
w i r e l o a d . s e l ;

a s s i g n s e g m en t O = d a t a - i n [(s e g E n d l - 1): s e g E n d O] ;
a s s i g n s e g m e n t l = d a t a - i n [(i n . w i d t h — 1); s e g E n d l] ;

T y p e B . s h r e g . c e l l # (o u t . w i d t h)
TB1 (r s t , C L K. i n . l o a d . s e l , s egmentO . s e g m e n t l , s h r e g . d a t a . o u t) ;

l o a d . c o u n t e r # (c o u n t . w i d t h , c o u n t . m a x)
l c . O (r s t , C L K. i n , v a l i d . g e t . c o u n t) ;

l o a d . c o n t r o l l e r # (c o u n t . w i d t h)
l c t r l . O (r s t . v a l i d . g e t . c o u n t . l o a d . s e l) ;

e n d m o d u l e

/f--
//--
/ /
/ / Type B S h i f t R e g i s t e r C e l l
/ /

//--
/ /
mo d ul e T y p e B . s h r e g . c e l l (r s t ,CLK, l o a d . s e l . i n p u t l , i n p u t 2 , o u t . d a t a) ;

p a r a m e t e r s e g m e n t . w i d t h = 7;

i n p u t [(s e g m e n t . w i d t h — 1) : 0] i n p u t l , i n p u t 2 ;
i n p u t r s t , CLK, l o a d . s e l ;
o u t p u t [(s e g m e n t . w i d t h - 1) : 0] o u t . d a t a ;

w i r e [(s e g m e n t . w i d t h — 1) : 0] t o .MUX;

r e g i s t e r #(segment .width)
rO (r s t , CLK, to . MUX , i n p u t l);

m u x 2 t o l #(segment .width)
mO (r s t , to-MUX , i n p u t 2 . l o a d . s e l . o u t . d a t a) ;

e n d m o d u l e

//---
/ /
/ / Load C o n t r o l l e r
/ /
//---
/ / C o n t r o l when t o a s s e r t t h e s i n g l e l o a d . s e l
/ /
module l o a d . c o n t r o l l e r (rs t , e na b le , count . l o a d . s e 1);

p a r a m e t e r c o u n t . w i d t h = 2;

i n p u t r s t , e n a b l e ;
i n p u t [(c o u n t . w i d t h — 1) : 0] c o u n t ;
o u t p u t l o a d . s e l ;

r e g l o a d . s e l , o n e C L K f l a g ;
w i r e C t r l ;

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung A .l: Synthesizable Verilog Model o f DBSB (using a 4-place MCFIFO)

a s s i g n C t r l = (e n a b l e & o n e C L K f l a g) ;

a l w a y s @(C t r l or r s t)
b e g i n
i f (r s t = = 1)

b e g i n
l o a d . s e l = 0;

end
e l s e

b e g i n
i f (c t r l = = 1)

b e g i n
l o a d . s e l = 1;

end
e l s e

b e g i n
l o a d . s e l = 0 ;

end
end

end

a l w a y s @ (c o u n t or r s t)
b e g i n
i f (r s t = = 1)

b e g i n
o n e C L K f l a g = 0;

end
e l s e

b e g i n
i f (c o u n t = = 2 ’ b O l)

b e g i n
o n e C L K f l a g = 1;

end
e l s e

b e g i n
o n e C L K f l a g = 0 ;

end
end

end

e n d m o d u l e

//--
£--
/ /
/ / Load C o u n t e r
//

£--
/ / c o u n t e r c o u n t s an d s i g n a l s l o a d c o n t r o l l e r when to a s s e r t l o a d . s e l
11
m o du l e l o a d . c o u n t e r (r s t , CLK, e n a b l e , c o u n t) ;

p a r a m e t e r c o u n t . w i d t h = 2 ;
p a r a m e t e r c o u n t . m a x = 2 ’ b l l ;

i n p u t r s t ,CLK, e n a b l e ;
o u t p u t [(c o u n t . w i d t h — 1) : 0] c o u n t ;

r e g [(c o u n t . w i d t h — 1) : 0] c o u n t ;
r e g c R s t ;

a l w a y s @ (p o s e d g e CLK o r p o s e d g e r s t)
b e g i n
i f (r s t = = 1)

b e g i n

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A: Verilog Code Fung

c o u n t < = 1 ’ b O;
end

e l s e
b e g i n

i f (c R s t = = 0)
b e g i n

i f (e n a b l e = = 1)
b e g i n

c o u n t < = c o u n t + 2 ’ bOl ;
end
end

e l s e
b e g i n

c o u n t < = 2 ’ bOO ;
end

end
end

a l w a y s @ (c o u n t)
b e g i n
i f (c o u n t = = c o u n t . m a x)

b e g i n
c R s t = 1;

en d
e l s e

b e g i n
c R s t = 0;

end
end

e n d m o d u l e

//
II
II

//—

T o p l e v e l Mo du l e o f t h e Mi xe d—C l o c k FIFO

/ /
m o du l e t o p l e v e l - M C F I F O (r s t , f u 11 , empt y , r e q . p u t , d a t a , p u t , C L K. p u t , p t o k . c o n t r o l ,

C L K . g e t , d a t a . g e t , r e q . g e t . v a l i d . g e t , g t o k . c o n t r o l , e n . g e t);

p a r a m e t e r w i d t h = 7 ;

i n p u t r s t , r e q . p u t , C L K . p u t , C L K .
i n p u t p t o k . c o n t r o l , g t o k . c o n t r o l ;
i n p u t [(w i d t h — 1) : 0] d a t a . p u t ;
o u t p u t [(w i d t h — 1) : 0] d a t a . g e t ;
o u t p u t f u l l , empt y , v a l i d . g e t , e n . ;
w i r e e n . p u t , e n . g e t ;
w i r e v a l i d ;
w i r e v a l i d . i ;

w i r e [3 : 0] c e l l - f u l l , c e l l . e m p t y ;
w i r e ne , o e ;
w i r e [3 : 0] p t o k . i n , g t o k . i n , p t o k . o u t

a s s i g n p t o k . i n [1] = p t o k . o u t [0] ;
a s s i g n p t o k . i n [2] = p t o k . o u t [1] ;
a s s i g n p t o k . i n [3] = p t o k . o u t [2] ;

a s s i g n g t o k . i n [1] = g t o k . o u t [0] ;
a s s i g n g t o k . i n [2] = g t o k . o u t [1];
a s s i g n g t o k . i n [3] = g t o k . o u t [2] ;

r e q . g e t ;

g t o k . o u t ;

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung A. 1: Synthesizable Verilog Model o f DBSB (using a 4-place MCFIFO)

f u l l . d e t e c t o r f d _0 (r s t , c e l l . e m p t y [0] , c e l l . e m p t y [l] , c e l l _ e m p t y [2] ,
c e l l . e m p t y [3] . C L K . p u t , f u l l);

e m p t y . d e t e c t o r e d . O (r s t , c e l l . f u l l [0] , c e l l . f u l l [1] , c e l l . f u l l [2] ,
c e l l . f u l l [3] , C L K . g e t , e n . g e t , oe , ne);

p u t . c o n t r o l l e r p c . O (f u l 1 , r e q . p u t , e n . p u t);

g e t . c o n t r o l l e r g c . O (r e q . g e t , ne , oe , v a l i d . i , e n . g e t , v a l i d , e mp t y);

e n . l a t c h v a l i d . l a t c h . O (r s t , v a l i d . i , v a l i d . g e t , v a l i d);

f i f o _ c e 11 #(width)
f f . 0 (r s t , r e q . p u t , d a t a . p u t , e n . p u t , C L K . p u t , C L K . g e t , d a t a . g e t ,

e n . g e t , v a l i d . i , p to k . o u t [0] , p t o k . i n [0] , c e l l - f u l l [0] ,
c e l l - e m p t y [0] , g t o k . o u t f O] , g t o k . i n [0]) ;

f i f o . c e l l #(width)
f f . l (r s t , r e q . p u t , d a t a . p u t , e n . p u t , C L K . p u t , C L K . g e t , d a t a . g e t ,

e n . g e t , v a l i d . i , p t o k . o u t [1] , p t o k . i n [1] , c e l l . f u l l [1] ,
c e l l . e m p t y [1] , g t o k . o u t [l] , g t o k . i n [l] > ;

f i f o _ c e 11 # (width)
f f _ 2 (r s t , r e q . p u t . d a t a . p u t , e n . p u t , C L K . p u t , C L K . g e t , d a t a . g e t ,

e n . g e t , v a l i d . i , p t o k . o u t [2] , p t o k . i n [2] , c e l l - f u l l [2] ,
c e l l . e m p t y [2] , g t o k . o u t [2] . g t o k . i n [2]) ;

f i f o . c e l l # (width)
f f . 3 (r s t . r e q . p u t . d a t a . p u t . e n . p u t , C L K . p u t , C L K . g e t , d a t a . g e t ,

e n . g e t , v a l i d . i , p t o k . o u t [3] , p t o k . i n [3] . c e l l . f u l l [3] ,
c e l l . e m p t y [3] , g t o k . o u t [3] , g t o k . i n [3]) ;

t o k . c o n t r o l l e r p t c . O (p t o k . o u t [3] , p t o k . c o n t r o l , p t o k . i n [0]) ;
t o k . c o n t r o l l e r g t c . O (g t o k . o u t [3] , g t o k . c o n t r o l , g t o k . i n [0]) ;

e n d m o d u l e

//---
#--
/ /
/ / F u l l D e t e c t o r
//

m od u le f u l l . d e t e c t o r (r s t , e .O , e . l , e . 2 , e . 3 , C L K . p u t , f u l l) ;
i n p u t r s t , e .O , e . l , e . 2 , e . 3 , C L K . p u t ;
o u t p u t f u l l ;

w i r e r e g . b u f , n o t . 1 . o u t , n o t . 0 . o u t ;
w i r e n o t . e . O , n o t . e . l , n o t . e . 2 , n o t . e . 3 ;
w i r e A, B , C , D, E , F , p r e . o u t ;

n o t n o t . O (n o t . e . O , e .O);
n o t n o t . l (n o t . e . l , e . l);
n o t n o t . 2 (n o t . e . 2 , e . 2);
n o t n o t . 3 (n o t . e . 3 , e . 3);

or o r 2 _ 0 (A, n o t . e . O , n o t _ e . 1) ;
or o r 2 _ l (B, n o t . e . l , n o t . e . 2) ;
or o r 2 . 2 (C , n o t . e . 2 . n o t . e . 3) ;
or o r 2 . 3 (D, n o t . e . 3 . n o t . e . 0) ;

and a n d 2 . 0 (E . A . B) ;
and a n d 2 . 1 (F . C . D) ;
and a n d 2 . 2 (p r e . o u t , E , F) ;

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A: Verilog Code Fung

n o t n o t . 4 (n o t . O . o u t , p r e . o u t) ;
n o t n o t . 5 (n o t . 1 . o u t , n o t . O . o u t) ;
r e g i s t e r r e g . O (r s t , C L K . p u t , r e g . b u f , n o t . 1 . o u t);
r e g i s t e r r e g . l (r s t , C L K . p u t , f u l l , r e g . b u f);

e n d m o d u l e

//--
/ /
/ / T o p l e v e l Mo du l e o f Empty D e t e c t o r
/ /

mo d ul e e m p t y . d e t e c t o r (r s t , f .O , f . l , f . 2 , f . 3 , C L K . g e t , e n . g e t , oe , n e);
i n p u t r s t , f .O , f . l , f . 2 , f . 3 , C L K . g e t , e n . g e t ;
o u t p u t oe , n e ;

n o r m a l . e m p t y . d e t e c t o r NED.O (r s t , f .O , f . l , f . 2 , f . 3 , C L K . g e t , n e) ;
t r u e . e m p t y . d e t e c t o r TED.O (r s t , f .O , f . l , f . 2 , f . 3 , C L K . g e t , e n . g e t , o e) ;

e n d m o d u l e

If---
/ /
/ / Nor ma l Empty D e t e c t o r
//

m o du l e n o r m a l . e m p t y . d e t e c t o r (r s t , f .O , f . l , f . 2 , f . 3 , C L K . g e t , n e) ;
i n p u t r s t , f .O , f . l , f . 2 , f . 3 , C L K . g e t ;
o u t p u t n e ;

p a r a m e t e r i n . w i d t h = 1;
p a r a m e t e r d e f a u l t . o u t = { (i n . w i d t h){1 ’ b l } } ;

wi r e r e g . b u f , n o t . O . o u t , n o t . l . o u t , p r e . o u t ;
w i r e A, B , C , D, E , F , G, H;

and a n d 2 . 0 (A, f .O , f . l) ;
and a n d 2 . 1 (B , f . l , f . 2);
and a n d 2 . 2 (C , f . 2 , f . 3);
and a n d 2 . 3 (D , f . 3 , f .O) ;

or o r 2 . 0 (E , A , B);
or o r 2 . 1 (F , C , D) ;
or o r 2 . 2 (G , E , F) ;

n o t n o t . O (p r e . o u t , G) ;
n o t n o t . l (n o t . O . o u t , p r e . o u t) ;
n o t n o t . 2 (n o t . l . o u t , n o t . O . o u t) ;
r e g i s t e r #(i n . w i d t h , d e f a u l t . o u t)

r e g . O (r s t , C L K . g e t , r e g . b u f . n o t . l . o u t) ;
r e g i s t e r #(i n . w i d t h , d e f a u l t . o u t)

r e g . l (r s t , C L K . g e t , ne , r e g . b u f);

e n d m o d u l e

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung A.1: Synthesizable Verilog Model o f DBSB (using a 4-place MCFIFO)

n--
n--
/ /
/ / T r u e Empt y D e t e c t o r
/ /

//--

m od u le t r u e - e m p t y . d e t e c t o r (r s t , f .O , f . l , f . 2 , f . 3 , C L K . g e t , e n . g e t , o e) ;
i n p u t r s t , f .O , f . l , f . 2 , f_3 , C L K . g e t , e n . g e t ;
o u t p u t o e ;

p a r a m e t e r i n . w i d t h = 1;
p a r a m e t e r d e f a u l t . o u t = { (i n . w i d t h) { 1 ’ b l } } ;

w i r e p r e . o u t , A, B , C;
w i r e r e g . b u f , p r e v . o e ;

o r OR2.A (A , f .O , f . l);
o r OR2.B (B , f . 2 , f . 3) ;
o r OR2.C (C , A , B) ;

n o t n o t . l (p r e . o u t , C) ;

r e g i s t e r # (i n . w i d t h , d e f a u l t . o u t)
r e g . O (r s t , C L K . g e t . r e g . b u f , p r e . o u t) ;

or O R2 .0 (p r e v . o e , r e g . b u f , e n . g e t);
r e g i s t e r # (i n . w i d t h . d e f a u l t . o u t)

r e g . l (r s t , C L K . g e t , oe , p r e v . o e);

e n d m o d u l e

H--
//---
//
/ / P ut C o n t r o l l e r
//

//--

m od u l e p u t . c o n t r o l l e r (f u l l , r e q . p u t , e n . p u t) ;
i n p u t f u l l , r e q . p u t ;
o u t p u t e n . p u t ;

r e g n f u l l , e n . p u t ;

a l w a y s @(r e q . p u t o r f u l l)
b e g i n
n f u l l = ! (f u l l) ;
e n . p u t = r e q . p u t & n f u l l ;
end

e n d m o d u l e

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A: Verilog Code Fung

ff---
//
/ / Ge t C o n t r o l l e r
//
//---

mo d ul e g e t . c o n t r o l l e r (r e q . g e t , ne , oe , v a l i d . i , e n . g e t , v a l i d . g e t , e m p t y) ;
i n p u t r e q . g e t , ne , oe , v a l i d . i ;
o u t p u t e n . g e t , v a l i d . g e t , e m p t y ;

w i r e i n t i , i n t 2 , i n t 3 ;
a s s i g n i n t i = v a l i d . i ;

and A N D 2 . 0 (em p ty , ne , o e) ;
n o t N O T . O (i n t 2 , e m p t y) ;
and AND2.2(e n . g e t , i n t 2 , r e q . g e t) ;
and AND2 _3 (in t3 , r e q . g e t , i n t i) ;
and AND2.4(v a l i d . g e t , i n t 2 , i n t 3) ;

e n d m o d u l e

#--
//--
//
/ / To ke n C o n t r o l l e r
II

mo du le t o k . c o n t r o l l e r (t o k . i n , t o k . c o n t r o l , t o k . o u t) ;
i n p u t t o k . i n , t o k . c o n t r o l ;
o u t p u t t o k . o u t ;

o r OR2 (t o k . o u t , t o k . c o n t r o l , t o k . i n) ;

e n d m o d u l e

//---
£---
II
II Mi xe d—C l o c k FIFO C e l l
II
//---
II
mo d ul e f i f o . c e l l (r s t , r e q . p u t . d a t a . p u t . e n . p u t , C L K . p u t , C L K . g e t , d a t a . g e t . e n . g e t ,

v a l i d . i . p t o k . o u t . p t o k . p r e v , f . i , e . i . g t o k . o u t . g t o k . p r e v) ;

p a r a m e t e r w i d t h = 2;

i n p u t [(w i d t h — 1) : 0] d a t a . p u t ;
i n p u t r s t . r e q . p u t . e n . p u t . C L K . p u t , C L K . g e t . e n . g e t , p t o k . p r e v . g t o k . p r e v ;
o u t p u t [(w i d t h — 1) : 0] d a t a . g e t ;
o u t p u t v a l i d . i , p t o k . o u t , g t o k . o u t , f . i , e . i ;

w i r e [(w i d t h — 1) : 0] d a t a . o u t ;
wi re v a l i d . b i t . r e g . e n . g e t . e n . g t o k . c t r l . a c t u a l . g t o k ;

e n a b l e . r e g t o k r e g . i n O (r s t , C L K . p u t , e n . p u t , p t o k . o u t , p t o k . p r e v) ;
e n a b l e . r e g t o k r e g . i n i (r s t , C L K . g e t , e n . g e t , g t o k . o u t , g t o k . p r e v) ;

d a t a . r e g i s t e r #(width) dreg.O (rst , CLK.put , data.put , req.put , reg.en ,
g e t . e n . d a t a . o u t . v a l i d . b i t) ;

and AND2.0 (r e g . e n , e n . p u t , p t o k . p r e v) ;
and AND2.1 (g e t . e n , e n . g e t , g t o k . p r e v) ;

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung A .l: Synthesizable Verilog Model o f DBSB (using a 4-place MCFIFO)

b u f i f l t b u f . O (v a l i d - i , v a l i d . b i t , g e t . e n) ;
t r i . s t a t e - b u f n #(width) tbufn.O (da ta-out , data.get , ge t . en) ;

s r . f f s r f f O (r s t , r e g . e n , g e t . e n , f . i , e . i) ;

e n d m o d u l e

/1--
//--
II
II G e n e r i c N - b i t s T r i —s t a t e B u f f e r
II
//--

mo d ul e t r i _ s t a t e _ b u f n (i n . v a l , o u t . v a l , b u f . e n) ;

p a r a m e t e r w i d t h = 2 ;

i n p u t [(w i d t h — 1) : 0] i n . v a l ;
i n p u t b u f . e n ;
o u t p u t [(w i d t h - 1) : 0] o u t . v a l ;

r e g [(w i d t h — 1); 0] o u t . v a l ;

a l w a y s @ (b u f . e n o r i n . v a l)
b e g i n
i f (b u f . e n)

o u t . v a l = i n . v a l ;
e l s e

o u t . v a l = { (w i d t h){ 1 ’ b z } } ;
end

e n d m o d u l e

II--
If--
II
II SR f l i p - f l o p
II

I)--

m od u le s r . f f (r s t , s e t , r e s e t , o u t . f , o u t . e) ;
i n p u t r s t , s e t , r e s e t ;
o u t p u t o u t . f , o u t . e ;

r e g o u t . f , o u t . e ;

a l w a y s @ (s e t o r r e s e t o r r s t or o u t . f o r o u t . e)
b e g i n
i f (r s t = = 1)

b e g i n
o u t . f = 0 ;

o u t . e = 1;
e nd

e l s e
b e g i n

o u t . e = ! (s e t | o u t . f);
o u t . f = ! (r e s e t | o u t . e) ;

end
end

e n d m o d u l e

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A: Verilog Code Fung

//--
//
/ / G e n e r i c L a t c h
//
//--

mo du l e e n . l a t c h (n r s t , en , o u t . v a l , i n . v a l) ;

p a r a m e t e r w i d t h = 1;
p a r a m e t e r d e f a u l t . o u t = { (w i d t h){1 ’ b O}} ;

i n p u t n r s t , en ;
i n p u t [(w i d t h — 1) : 0] i n . v a l ;
o u t p u t [(w i d t h — 1) : 0] o u t . v a l ;

r e g [(w i d t h — 1) : 0] o u t . v a l ;

a l w a y s @(i n . v a l o r en o r n r s t)
b e g i n
i f (n r s t = = 1)

b e g i n
o u t . v a l = d e f a u l t . o u t ;

end
e l s e

b e g i n
i f (en = = 1)

b e g i n
o u t . v a l = i n . v a l ;

end
e l s e

b e g i n
o u t . v a l = d e f a u l t . o u t ;

end
end

end

e n d m o d u l e

//---
//---
//
/ / L a t c h (r e t a i n s p e r v i o u s v a l u e when en = 0)
//

m od u le e l k . l a t c h (r s t , en , o u t . v a l , i n . v a l) ;

p a r a m e t e r w i d t h = 1;
p a r a m e t e r d e f a u l t . o u t = { (w i d t h){1 ’ bO} };

i n p u t r s t , en ;
i n p u t [(w i d t h - 1) : 0] i n . v a l ;
o u t p u t [(w i d t h - 1) : 0] o u t . v a l ;

r e g [(w i d t h — 1) : 0] o u t . v a l ;
r e g [(w i d t h — 1) : 0] t e m p . v a l ;

a l w a y s @(i n . v a l or en o r r s t or t e m p . v a l)
b e g i n
i f (r s t = = 1)

b e g i n
o u t . v a l = d e f a u l t . o u t ;

t e m p . v a l = d e f a u l t . o u t ;
end

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung A .l: Synthesizable Verilog Model o f DBSB (using a 4 -place MCFIFO)

e l s e
b e g i n

i f (en = = 1)
b e g i n

t e m p . v a l = i n . v a l ;
o u t . v a l = t e m p . v a l ;
end

e l s e
b e g i n

o u t . v a l = t e m p . v a l ;
end

end
end

e n d m o d u l e

//--
//--
//
/ / Edge T r i g g e r R e g i s t e r
//
//---

m od u le r e g i s t e r (r s t , e l k , o u t . v a l , i n . v a l) ;

p a r a m e t e r i n . v a l . w i d t h = 1;
p a r a m e t e r d e f a u l t . o u t = { (i n . v a l . w i d t h){1 ’ bO} };

i n p u t e l k , r s t ;
i n p u t [(i n . v a l . w i d t h — 1) : 0] i n . v a l ;
o u t p u t [(i n . v a l . w i d t h — 1) : 0] o u t . v a l ;

r e g [(i n . v a l . w i d t h — 1) : 0] o u t . v a l ;

a l w a y s @ (p o s e d g e e l k or p o s e d g e r s t)
b e g i n
i f (r s t = = 1)

b e g i n
o u t . v a l = d e f a u l t . o u t ;

end
e l s e

b e g i n
o u t . v a l = i n . v a l ;

end
end

e n d m o d u l e

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A: Verilog Code Fung

//---
//
/ / C l o c k E dg e T r i g g e r R e g i s t e r w i t h E n a b l e
//
//---
//
m o du l e e n a b l e . r e g (r s t , e l k , en , o u t . v a l , i n . v a l) ;

p a r a m e t e r w i d t h = 1;

i n p u t r s t , e l k , en ;
i n p u t [(w i d t h — 1) : 0] i n . v a l ;
o u t p u t [(w i d t h — 1) : 0] o u t . v a l ;

r e g [(w i d t h — 1) : 0] t e m p . v a l ;
r e g [(w i d t h — 1) : 0] o u t . v a l ;

a l w a y s @ (p o s e d g e e l k o r p o s e d g e r s t)
b e g i n
i f (r s t = = 1)

b e g i n
t e m p . v a l = { (w i d t h){ 1 ’ bO}};

o u t . v a l = { (w i d t h){1 ’ b O} } ;
end

e l s e
b e g i n

i f (en = = 1)
b e g i n

t e m p . v a l = i n . v a l ;
o u t . v a l = i n . v a l ;

end
e l s e

b e g i n
o u t . v a l = t e m p . v a l ;

end
end

end

e n d m o d u l e

//---
//
/ / Da t a R e g i s t e r o f FIFO C e l l
//
//---
//
mo d ul e d a t a . r e g i s t e r (r s t , c l k , d a t a , r e q . p u t , r e g . e n , r s t . f l a g , o u t l , o u t 2);

p a r a m e t e r w i d t h = 2;

i n p u t [(w i d t h — 1) : 0] d a t a ;
i n p u t r s t , e l k , r e q . p u t , r e g . e n , r s t . f l a g ;
o u t p u t [(w i d t h — 1) : 0] o u t l ;
o u t p u t o u t 2 ;

r e g [(w i d t h — 1) : 0] t e m p . d a t a ;
r e g t e m p . r e q . p u t ;
r e g [(w i d t h — 1) : 0] o u t l ;
r e g o u t 2 , r R s t ;

a l w a y s @ (p o s e d g e e l k o r p o s e d g e r s t)
b e g i n

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung A.1: Synthesizable Verilog Model ofDBSB (using a 4-place MCF1F0)

i f (r s t = = 1)
b e g i n

o u t l = 0 ;
o u t 2 = 0 ;
t e m p . r e q . p u t = 0 ;

t e m p . d a t a = 0 ;
r R s t = 0;

end

e l s e
b e g i n

i f (r e g . e n = = 1)
b e g i n

t e m p . d a t a = d a t a ;
o u t l = t e m p . d a t a ;

t e m p . r e q . p u t = r e q . p u t ;
o u t 2 = t e m p . r e q . p u t ;

end
end

end

e n d m o d u l e

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A: Verilog Code Fui

A.2 Synthesizable Verilog Model of MCSB (using
4-place MCFIFO)

T h i s c o n f i d e n t i a l a nd p r o p r i e t a r y s o f t w a r e may be u s e d o n l y
as a u t h o r i z e d by t h e U n i v e r s i t y o f A l b e r t a
In t h e e v e n t o f p u b l i c a t i o n , t h e f o l l o w i n g n o t i c e i s a p p l i c a b l e

(C) COPYRIGHT 2 0 0 5 U n i v e r s i t y o f A l b e r t a
ALL RIGHTS RESERVED

The e n t i r e n o t i c e a b o v e m us t be r e p r o d u c e d on a l l a u t h o r i z e d
c o p i e s .

AUTHOR: Edmund Fung

VERSION: S i m u l a t i o n A r c h i t e c t u r e

LAST REVISION: May 2 6 , 2 0 0 5

T o p l e v e l Mo d ul e o f SoC w i t h MCSB

//
m od u le t o p l e v e l - M C S B . S o C (r s t . C L K . O . C L K . l , C L K . 2 , p t o k . c o n t r o l , g t o k . c o n t r o l

i n t . a d d r , g o . O , g o . l , g o . 2 , e n . g e t , r e q . p u t . 0 , r e q . p u t . 1 ,
r e q . p u t . 2 , e n . p u t);

p a r a m e t e r b u s . w i d t h = 7;
p a r a m e t e r s e l . w i d t h = 2;
p a r a m e t e r t a r g e t . a d d r . w i d t h = 3;
p a r a m e t e r r e q . p u t . w i d t h = 3;
p a r a m e t e r t r i g g e r . w i d t h = 3;

p a r a m e t e r a d d r . w i d t h = t a r g e t . a d d r . w i d t h + r e q . p u t . w i d t h ;

i n p u t r s t , C L K . O , C L K . l , C L K . 2 ;
i n p u t go .O , g o . l , g o . 2 ;
i n p u t p t o k . c o n t r o l , g t o k . c o n t r o l ;

i n p u t [(t a r g e t . a d d r . w i d t h - 1) : 0] i n t . a d d r ;

o u t p u t e n . g e t , r e q . p u t . 0 , r e q . p u t . l . r e q . p u t . 2 , e n . p u t ;

w i r e
w i r e
wi r e
w i r e
wi re
w i r e
w i r e
w i r e
w i r e
w i r e
w i r e
w i r e
wi r e
wi r e

a s s i g n
a s s i g n

r e q . p u t . O , r e q . p u t . 1 , r e q . p u t . 2 ;
r e q . g e t . 0 , r e q . g e t . l , r e q . g e t . 2 ;
v a l i d . g e t . O . v a l i d . g e t . 1 . v a l i d . g e t .
f u l l , e m p t y ;
[(b u s . w i d t h - 1) : 0]
[(b u s . w i d t h — 1) : 0]
[(b u s . w i d t h - 1) : 0]
[(b u s . w i d t h — 1) : 0]
[(b u s . w i d t h — 1) : 0]
[(b u s . w i d t h — 1) : 0]
[(t a r g e t . a d d r . w i d t h
[(t a r g e t . a d d r . w i d t h
[(t r i g g e r . w i d t h — 1) : 0]
[(a d d r . w i d t h — 1) : 0]

2 ;

d a t a . i n . 0 ;
d a t a . i n . 1 ;
d a t a . i n . 2 ;
d a t a . o u t . O
d a t a . o u t . l
d a t a . o u t . 2 ;

— 1) : 0] t a r g e t . a d d r . 1 , t a r g e t . a d d r . 2 ;
— 1) : 0] t a r g e t . a d d r , t a r g e t . a d d r . 0 ;

t r i g g e r ;
a d d r e s s ;

a d d r e s s = { g o . 2 , g o . l , go .O . t a r g e t . a d d r } ;
t a r g e t . a d d r = (t a r g e t . a d d r . 0 | t a r g e t . a d d r . 1 t a r g e t . a d d r . 2);

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung A.2: Synthesizable Verilog Model o f MCSB (using a 4-place MCFIFO)

S o C . m o d u l e # (bus-width , target . addr-width)
mod.O (r s t , CLK.O, r e q . p u t . O , r e q . g e t . 0 , d a t a - o u t . 0 , d a t a . i n . 0 ,

v a l i d . g e t . 0 , t r i g g e r [0] , f u l l , e mpt y , g o . O , i n t . a d d r ,
t a r g e t . a d d r . 0);

S o C . m o d u l e #(bus-width , target . addr -wid th)
m o d . l (r s t , CLK. l , r e q . p u t . l . r e q . g e t . l , d a t a - o u t . 1 , d a t a - i n . 1 ,

v a l i d . g e t . l , t r i g g e r [1] , f u l l , e mp t y , g o . l . i n t . a d d r ,
t a r g e t . a d d r . 1) ;

S o C . m o d u l e #(bus.width , t a r ge t .addr .w id th)
m o d . 2 (r s t , C L K . 2 , r e q . p u t . 2 , r e q . g e t . 2 , d a t a . o u t . 2 , d a t a - i n . 2 ,

v a l i d . g e t . 2 . t r i g g e r [2] , f u l l , e mpt y , g o . 2 , i n t . a d d r ,
t a r g e t . a d d r . 2);

t o p l e v e l . M C S B #(bus.width , sel .width , target .addr .width ,
r e q . p u t . w i d t h , t r i g g e r . w i d t h)

MCSB.O (r s t , r e q . p u t . 0 . r e q . p u t . l , r e q . p u t . 2 . r e q . g e t . O . r e q . g e t . l ,
r e q . g e t . 2 . C L K . O . C L K . l , C L K . 2 , p t o k . c o n t r o l , g t o k . c o n t r o l ,
t a r g e t . a d d r . d a t a . i n . 0 . d a t a . i n . l . d a t a . i n . 2 . d a t a . o u t . 0 ,
d a t a . o u t . l . d a t a . o u t . 2 . f u l l , e mp t y , v a l i d . g e t . O . v a l i d . g e t . l ,
v a l i d . g e t . 2 . e n . g e t . t r i g g e r . a d d r e s s . e n . p u t) ;

e n d m o d u l e

//
/ / T o p l e v e l Mo du l e o f MCSB
//

//
mo du l e t o p l e v e l . M C S B (r s t , r e q . p u t . 0 , r e q . p u t . l , r e q . p u t . 2 , r e q . g e t . O , r e q . g e t . 1

r e q . g e t . 2 , CLK. O, C L K . l , C L K . 2 , p t o k . c o n t r o l , g t o k . c o n t r o l ,
t a r g e t . a d d r , d a t a . i n . O . d a t a . i n . l , d a t a . i n . 2 . d a t a . o u t . 0 ,
d a t a . o u t . l , d a t a . o u t . 2 . f u l l , empt y , v a l i d . g e t . 0 . v a l i d . g e t . l ,
v a l i d . g e t . 2 . e n . g e t . t r i g g e r . a d d r e s s . e n . p u t) ;

p a r a m e t e r
p a r a m e t e r
p a r a m e t e r
p a r a m e t e r
p a r a m e t e r

b u s . w i d t h = 6;
s e l . w i d t h = 2;
t a r g e t . a d d r . w i d t h
r e q . p u t . w i d t h = 3;
t r i g g e r . w i d t h = 3;

3;

p a r a m e t e r a d d r . w i d t h = t a r g e t . a d d r . w i d t h + r e q . p u t . w i d t h ;

i n p u t r s t , r e q . p u t . 0 . r e q . p u t . l . r e q . p u t . 2 . r e q . g e t . O . r e q . g e t . l , r e q . g e t . 2 ;
i n p u t C LK . O, CLK. l , CLK.2 . p t o k . c o n t r o l . g t o k . c o n t r o l ;

i n p u t [(a d d r . w i d t h - 1) ; 0] a d d r e s s ;
i n p u t [(r e q . p u t . w i d t h -- 1) 0] t a r g e t . a d d r
i n p u t [(b u s . w i d t h — 1) 0] d a t a . i n . O ;
i n p u t [(b u s . w i d t h — 1) 0] d a t a . i n . l ;
i n p u t [(b u s . w i d t h — 1) 0] d a t a . i n . 2 ;

o u t p u t v a l i d . g e t . O . v a l i d . g e t . l , v a l i d . g e t . 2 . f u l l . e m p t y , e n . g e t . e n . p u t ;

o u t p u t [(t r i g g e r . w i d t h — 1) : 0] t r i g g e r ;
o u t p u t [(b u s . w i d t h — 1) : 0] d a t a . o u t . O ;
o u t p u t [(b u s . w i d t h — 1) : 0] d a t a . o u t . l ;
o u t p u t [(b u s . w i d t h — 1) : 0] d a t a . o u t . 2 ;

w i r e r e q . p u t , r e q . g e t , v a l i d . g e t ;
w i r e C L K . p u t , C L K . g e t ;

w i r e [(s e l . w i d t h — 1) : 0] f m s e l , r m s e l , r d s e l ;
w i r e [(a d d r . w i d t h — 1) ; 0] a d d r e s s ;
w i r e [(t r i g g e r . w i d t h — 1) : 0] t r i g g e r ;

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A: Verilog Code Fung

w i r e [(b u s . w i d t h — 1) : 0] d a t a . p u t ;
w i r e [(b u s . w i d t h — 1) : 0] d a t a . g e t ;

m u x 3 t o l #(bus.width)
mO(d a t a . i n . O . d a t a . i n . l , d a t a - i n . 2 , f m s e l . d a t a . p u t) ;

m u x 3 t o l m l (r e q . p u t . O . r e q . p u t . l . r e q . p u t . 2 , f ms e l . r e q . p u t) ;
m u x 3 t o l m 2 (C L K . O , C L K . l , CL K. 2 , f ms e l . C L K . p u t) ;

m u x 3 t o l m3(r e q . g e t . O , r e q . g e t . l , r e q . g e t . 2 , r m s e l . r e q . g e t);
m u x 3 t o l m 4 (C L K . O , C L K . l , CL K. 2 , r m s e l . C L K . g e t) ;

d e m u x l t o 3 #(bus .width)
deO(r s t . d a t a . g e t . r d s e l . d a t a . o u t . 0 . d a t a . o u t . l , d a t a . o u t . 2) ;

d e mu x 1 to3 d e l (r s t . v a l i d . g e t , r d s e l . v a l i d . g e t . O . v a l i d . g e t . l . v a l i d . g e t . 2) ;

t o p l e v e l . M C F I F O #(bus.width)
MCFIFO.O (r s t , f u l l , empt y , r e q . p u t , d a t a . p u t , C L K . p u t ,

p t o k . c o n t r o l , C L K . g e t , d a t a . g e t . r e q . g e t ,
v a l i d . g e t . g t o k . c o n t r o l . e n . g e t . e n . p u t) ;

M C S B . b u s . c o n t r o l l e r b c t r l O (r s t . a d d r e s s , t r i g g e r , f m s e l , r m s e l , r d s e l) ;

e n d m o d u l e

/1--
11--
//
/ / 3 —t o —1 M u l t i p l e x e r
//
II.--
//
mo d ul e m u x 3 t o l (A . B . C , se l , Z) ;

p a r a m e t e r w i d t h = 1 ;
p a r a m e t e r s e l . w i d t h = 2;

i n p u t [(w i d t h — 1) : 0] A . B . C ;
i n p u t [(s e l . w i d t h — 1) : 0] s e l ;
o u t p u t [(w i d t h — 1) : 0] Z;

r e g [(w i d t h — 1): 0] Z;

a l w a y s @ (s e l o r A o r B o r C)
b e g i n
i f (s e l = = 2 ’ bOO)

b e g i n
Z = A;

end
e l s e

b e g i n
i f (s e l = = 2 ’ b l O)

b e g i n
Z = B;

end
e l s e

b e g i n
i f (s e l = = 2 ’ b O l)

b e g i n
Z = C;

end
end

end
end

e n d m o d u l e

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung A.2: Synthesizable Verilog Model o f MCSB (using a 4-place MCFIFO)

i
/ 1 — to —3 D e c o d e r
/

m o du l e d e c l t o 3 (r s t ,A, se l , Ou t l , Out2 , Out3);

p a r a m e t e r w i d t h = 1;
p a r a m e t e r s e l . w i d t h = 2 ;

i n p u t r s t ;
i n p u t [(w i d t h - 1) : 0] A;
i n p u t [(s e l . w i d t h — 1) : 0] s e l ;
o u t p u t [(w i d t h — 1) : 0] O u t l , Out2 , Out3 ;

r e g [(w i d t h — 1) : 0] O u t l , Out2 , Out3 ;

a l w a y s @(r s t)
b e g i n

i f (r s t = = 1)
b e g i n

O u t l = ' b z ;
Out 2 = ’ b z ;
Out3 = ’ b z ;

end
end

a l w a y s @(A o r s e l)
b e g i n

i f (s e l = = 2 ’ bOO)
b e g i n

O u t l = A;
Out 2 = ' b z ;
Ou t 2 = ’ bz ;

end
e l s e

b e g i n
i f (s e l = = 2 ’ b l O)

b e g i n
O u t l = ’ bz ;
Ou t 2 = A;
Out3 = ’ b z ;

end
e l s e

b e g i n
i f (s e l = = 2 ’ b O l)

b e g i n
O u t l = ’ bz ;
Out 2 = ’ b z ;
Out3 = A;

end
end

end
end

e n d m o d u l e

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A: Verilog Code Fung

//
/ / Bus C o n t r o l l e r o f MCSB
//

/ /
m od u le b u s . c o n t r o l l e r (r s t , a d d r e s s , t r i g g e r , f ms e l , r m s e l , r d s e l) ;

p a r a m e t e r a d d r . w i d t h = 6;
p a r a m e t e r t r i g g e r . w i d t h = 3;
p a r a m e t e r s e l . w i d t h = 2;
p a r a m e t e r o u t . w i d t h = (3 * s e l . w i d t h) ;

i n p u t r s t ;
i n p u t [(a d d r . w i d t h — 1) : 0] a d d r e s s ;

o u t p u t [(t r i g g e r . w i d t h - 1) : 0] t r i g g e r ;
o u t p u t [(s e l . w i d t h — 1) : 0] f m s e l , r m s e l , r d s e l ;

w i r e [(s e l . w i d t h — 1): 0] f m s e l , r m s e l , r d s e l ;
w i r e [(t r i g g e r . w i d t h — 1) : 0] t r i g g e r ;
r e g [(o u t . w i d t h — 1) : 0] c o n t r o l l e r . o u t ;

a s s i g n t r i g g e r = { a d d r e s s [2] , a d d r e s s [1] , a d d r e s s [0] } ;
a s s i g n f m s e l = { c o n t r o l l e r . o u t [5] , c o n t r o l l e r . o u t [4] }
a s s i g n r m s e l = { c o n t r o l l e r . o u t [3] , c o n t r o l l e r . o u t [2] }
a s s i g n r d s e l = { c o n t r o l l e r . o u t [1] , c o n t r o l l e r . o u t [0] }

a l w a y s @ (p o s e d g e r s t)
b e g i n
c o n t r o l l e r . o u t = ’ bO;
end

a l w a y s @(a d d r e s s)
b e g i n
c a s e (a d d r e s s)

6 ’ b l 0 0 0 1 0 c o n t r o l l e r . o u t = 6 ’ b O l l O l O ; / / Modul e 0
6 ’ blOOOOl c o n t r o l l e r . o u t = 6 ’ bOlOOOO;
6 ’ bOlOlOO c o n t r o l l e r . o u t = 6 ’ b l 00101 ; / / Modu l e 1
6 ’ bOlOOOl c o n t r o l l e r . o u t = 6 ’ b 1 0 0 0 00 ;
6 ’ b OO l 100 c o n t r o l l e r . o u t = 6 ’ bOOOlOl ; / / Modu l e 2
6 ’ bOOlOlO c o n t r o l l e r . o u t = 6 ’ b OO l Ol O;

d e f a u l t c o n t r o l l e r . o u t = 6 ’ bOOOOOO ;
e n d c a s e
end

e n d m o d u l e

//---
//---
//
/ / T o p l e v e l Mo d u le o f t h e M i x e d - C l o c k FIFO
//
//--
//
m o du l e t o p l e v e l . M C F I F O (r s t , f u 11 , e mpt y . r e q . p u t . d a t a . p u t , C L K. p u t . p t o k . c o n t r o l ,

C L K . g e t . d a t a . g e t . r e q . g e t . v a l i d . g e t . g t o k . c o n t r o l . e n . g e t) ;

p a r a m e t e r w i d t h = 7;

i n p u t
i n p u t
i n p u t [(w i d t h
o u t p u t [(w i d t h
o u t p u t

r s t , r e q . p u t
p t o k . c o n t r o l

1) : 0] d a t a . p u t ;
1) : 0] d a t a . g e t ;

f u l l , empt y ,

C L K . p u t , C L K . g e t , r e q . g e t ;
g t o k . c o n t r o l ;

v a l i d . g e t , e n . g e t

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung A.2: Synthesizable Verilog Model o f MCSB (using a 4-place MCFIFO)

w i r e e n . p u t , e n . g e t ;
w i r e v a l i d ;
w i r e v a l i d _ i ;

w i r e [3 : 0] c e l l . f u l l , c e l l - e m p t y ;
w i r e ne , oe ;
w i r e [3 : 0] p t o k . i n , g t o k . i n , p t o k . o u t , g t o k . o u t ;

a s s i g n p t o k . i n [1] = p t o k . o u t [0] ;
a s s i g n p t o k . i n [2] = p t o k _ o u t [l] ;
a s s i g n p t o k . i n [3] = p t o k . o u t [2] ;

a s s i g n g t o k . i n [l] = g t o k . o u t [0] ;
a s s i g n g t o k . i n [2] = g t o k . o u t [l] ;
a s s i g n g t o k . i n [3] = g t o k . o u t [2] ;

f u l l . d e t e c t o r f d . O (r s t , c e l l . e m p t y [0] . c e l l . e m p t y [1] . c e l l . e m p t y [2] ,
c e l l . e m p t y [3] , C L K . p u t , f u 11);

e m p t y . d e t e c t o r e d . O (r s t , c e l l . f u l l [0] , c e l l . f u l l [1] , c e l l . f u l l [2] ,
c e l l - f u l l [3] . C L K . g e t . e n . g e t , oe , ne);

p u t . c o n t r o l l e r p c . O (f u l l , r e q . p u t , e n . p u t) ;

g e t . c o n t r o l l e r g c . O (r e q . g e t , ne , oe , v a l i d . i , e n . g e t , v a l i d , e mp t y) ;

e n . l a t c h v a l i d . l a t c h . O (r s t , v a l i d . i , v a l i d . g e t , v a l i d);

f i f o _c e 11 #(width)
f f . 0 (r s t . r e q . p u t . d a t a . p u t . e n . p u t , C L K . p u t , C L K . g e t . d a t a . g e t ,

e n . g e t , v a l i d . i , p t o k . o u t [0] , p t o k . i n [0] , c e l l - f u l l [0] ,
c e l l . e m p t y [0] , g t o k . o u t [0] , g t o k . i n [0]) ;

f i f o . c e l l # (wid th)
f f . l (r s t . r e q . p u t . d a t a . p u t . e n . p u t , C L K . p u t , C L K . g e t , d a t a . g e t ,

e n . g e t , v a l i d . i , p t o k . o u t [1] . p t o k . i n [1] . c e l l - f u l l [1] ,
c e l l . e m p t y [1] , g t o k . o u t [l] , g t o k . i n [1]) ;

f i f o . c e l l #(w idth)
f f _ 2 (r s t . r e q . p u t . d a t a . p u t . e n . p u t , C L K . p u t , C L K . g e t , d a t a . g e t ,

e n . g e t , v a l i d . i , p t o k . o u t [2] , p t o k . i n [2] , c e l l - f u l l [2] ,
c e l l . e m p t y [2] , g t o k . o u t [2] , g t o k . i n [2]) ;

f i f o . c e l l # (width)
f f . 3 (r s t . r e q . p u t . d a t a . p u t . e n . p u t , C L K . p u t , C L K . g e t , d a t a . g e t ,

e n . g e t . v a l i d . i , p t o k . o u t [3] , p t o k . i n [3] . c e l l . f u l l [3] ,
c e l l . e m p t y [3] , g t o k . o u t [3] , g t o k . i n [3]) ;

t o k . c o n t r o l l e r p t c . O (p t o k . o u t [3] , p t o k . c o n t r o l , p t o k . i n [0]) ;
t o k . c o n t r o l l e r g t c . O (g t o k . o u t [3] , g t o k . c o n t r o l , g t o k . i n [0]) ;

e n d m o d u l e

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A: Verilog Code Fung

//-------------------
//
/ / F u l l D e t e c t o r
//

m od u l e f u l l . d e t e c t o r (r s t , e .O , e . l , e . 2 , e . 3 , C L K . p u t , f u l l) ;
i n p u t r s t , e .O , e . l , e . 2 , e . 3 , C L K . p u t ;
o u t p u t f u l l ;

w i r e r e g . b u f , n o t . 1 . o u t , n o t . O . o u t ;
w i r e n o t . e . O , n o t . e . l , n o t . e . 2 , n o t . e . 3 ;
w i r e A, B , C , D, E , F , p r e . o u t ;

n o t n o t . O (n o t . e . O , e .O);
n o t n o t . l (n o t . e . l , e . l) ;
n o t n o t . 2 (n o t . e . 2 , e . 2) ;
n o t n o t . 3 (n o t . e . 3 , e . 3);

or o r 2 . 0 (A, n o t . e . O , n o t . e . l)
or o r 2 . 1 (B, n o t . e . l , n o t . e . 2)
or o r 2 . 2 (C, n o t . e . 2 , n o t . e . 3)
or o r 2 . 3 (D, n o t . e . 3 , n o t . e . O)

and a n d 2 . 0 (E , A , B);
and a n d 2 . 1 (F , C , D) ;
and and 2 _ 2 (p r e . o u t , E , F) ;

n o t n o t . 4 (n o t . O . o u t , p r e . o u t) ;
n o t n o t . 5 (n o t . 1 . o u t , n o t . O . o u t) ;
r e g i s t e r r e g . O (r s t , C L K . p u t , r e g . b u f , n o t . 1 . o u t);
r e g i s t e r r e g . l (r s t , C L K . p u t , f u l l , r e g . b u f);

e n d m o d u l e

//---
//
/ / T o p l e v e l Mo du l e o f Empty D e t e c t o r
/ /

mo d ul e e m p t y . d e t e c t o r (r s t , f .O , f . l , f . 2 , f . 3 , C L K . g e t , e n . g e t , oe , n e) ;
i n p u t r s t , f . O , f . l , f . 2 , f . 3 , C L K . g e t , e n . g e t ;
o u t p u t oe , ne ;

n o r m a l . e m p t y . d e t e c t o r NED.O (r s t , f .O , f . l , f . 2 , f . 3 , C L K . g e t , n e) ;
t r u e . e m p t y . d e t e c t o r TED.O (r s t , f . O , f . l , f . 2 , f . 3 , C L K . g e t , e n . g e t , o e) ;

e n d m o d u l e

//------------------------------
//
/ / Normal Empty D e t e c t o r
//

m od u le n o r m a l . e m p t y . d e t e c t o r (r s t , f .O , f . l , f . 2 , f . 3 , C L K . g e t , n e) ;
i n p u t r s t , f .O , f . l , f . 2 , f . 3 , C L K . g e t ;
o u t p u t ne ;

p a r a m e t e r i n . w i d t h = 1;
p a r a m e t e r d e f a u l t . o u t = { (i n . w i d t h){ 1 ’ b l } };

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung A.2: Synthesizable Verilog Model o f MCSB (using a 4-place MCFIFO)

w i r e r e g . b u f , n o t . O . o u t , n o t . l . o u t , p r e . o u t ;
w i r e A , B , C , D, E , F , G , H;

and a n d 2 . 0 (A , f .O , f . l);
and a n d 2 . 1 (B , f . l , f . 2);
and a n d 2 . 2 (C , f . 2 , f . 3) ;
and a n d 2 . 3 (D , f . 3 , f .O);

or o r 2 . 0 (E , A , B) ;
or o r 2 . 1 (F , C , D) ;
or o r 2 . 2 (G , E , F);

n o t n o t . O (p r e . o u t , G) ;
n o t n o t . l (n o t . O . o u t , p r e . o u t) ;
n o t n o t . 2 (n o t . l . o u t , n o t . O . o u t) ;
r e g i s t e r #(i n . w i d t h , d e f a u l t . o u t)

r e g . O (r s t , C L K . g e t , r e g . b u f , n o t . 1 . o u t) ;
r e g i s t e r # (i n . w i d t h , d e f a u l t . o u t)

r e g . l (r s t , C L K . g e t , ne , r e g . b u f);

e n d m o d u l e

//---
/ /
/ / T r u e Empty D e t e c t o r
II

m o d u l e t r u e . e m p t y . d e t e c t o r (r s t , f .O , f . l , f . 2 , f . 3 , C L K . g e t , e n . g e t , o e) ;
i n p u t r s t , f .O , f . l , f . 2 , f . 3 , C L K . g e t , e n . g e t ;
o u t p u t o e ;

p a r a m e t e r i n . w i d t h = 1;
p a r a m e t e r d e f a u l t . o u t = { (i n . w i d t h){1 ’ b l }} ;

w i r e p r e . o u t , A , B , C;
w i r e r e g . b u f , p r e v . o e ;

o r OR2.A (A, f .O , f . l) ;
or OR2.B (B , f . 2 , f . 3);
or OR2.C (C , A , B) ;

n o t n o t . l (p r e - o u t , C) ;

r e g i s t e r # (i n . w i d t h , d e f a u l t . o u t)
r e g . O (r s t , C L K . g e t . r e g . b u f . p r e . o u t) ;

o r OR2 .0 (p r e v . o e , r e g . b u f , e n . g e t) ;
r e g i s t e r # (i n . w i d t h , d e f a u l t . o u t)

r e g . l (r s t , C L K . g e t , oe , p r e v . o e) ;

e n d m o d u l e

If---------------------------------
/ /
II Put C o n t r o l l e r
/ /

mo d ul e p u t . c o n t r o l l e r (f u l l , r e q . p u t , e n . p u t) ;
i n p u t f u l l , r e q . p u t ;
o u t p u t e n . p u t ;

r e g n f u l l , e n . p u t ;

a l w a y s @(r e q . p u t o r f u l l)

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A: Verilog Code Fung

b e g i n
n f u l l = !(f u l l) ;
e n . p u t = r e q . p u t & n f u l l ;
end

e n d m o d u l e

II--
II— --------------------------------- ---
//
/ / Ge t C o n t r o l l e r
/ /
/I--

mo d ul e g e t . c o n t r o l l e r (r e q . g e t , ne , oe , v a l i d . i , e n . g e t , v a l i d . g e t , e m p t y) ;
i n p u t r e q . g e t , ne , oe , v a l i d . i ;
o u t p u t e n . g e t , v a l i d . g e t , e m p t y ;

w i r e i n t i , i n t 2 , i n 1 3 ;
a s s i g n i n t i = v a l i d . i ;

and A N D 2 . 0 (em p ty , ne , o e) ;
n o t N O T . O (i n t 2 , e m p t y) ;
and A N D 2 _ 2 (e n . g e t , i n t 2 , r e q . g e t) ;
and A N D 2 . 3 (i n t 3 , r e q . g e t , i n t i) ;
and AND2.4(v a l i d . g e t , i n t 2 , i n 1 3);

e n d m o d u l e

//--
/ /
/ / Token C o n t r o l l e r
/ /

/I--

mo d ul e t o k . c o n t r o l l e r (t o k . i n , t o k . c o n t r o l , t o k . o u t) ;
i n p u t t o k . i n , t o k . c o n t r o l ;
o u t p u t t o k . o u t ;

o r OR2 (t o k . o u t , t o k . c o n t r o l , t o k . i n) ;

e n d m o d u l e

//--
11
/ / Mi xe d—C l o c k FIFO C e l l
11

II—--
//
m o du l e f i f o . c e l l (r s t , r e q . p u t . d a t a . p u t . e n . p u t , C L K . p u t , C L K . g e t , d a t a . g e t . e n . g e t ,

v a l i d . i . p t o k . o u t . p t o k . p r e v , f . i , e . i . g t o k . o u t . g t o k . p r e v) ;

p a r a m e t e r w i d t h = 2;

i n p u t [(w i d t h — 1) : 0] d a t a . p u t ;
i n p u t r s t . r e q . p u t . e n . p u t , C L K . p u t , C L K . g e t . e n . g e t . p t o k . p r e v . g t o k . p r e v ;
o u t p u t [(w i d t h — 1) : 0] d a t a . g e t ;
o u t p u t v a l i d . i . p t o k . o u t . g t o k . o u t , f . i , e . i ;

w i r e [(w i d t h — 1) : 0] d a t a . o u t ;
w i r e v a l i d . b i t , r e g . e n . g e t . e n . g t o k . c t r l , a c t u a l . g t o k ;

e n a b l e . r e g t o k r e g . i n O (r s t , C L K . p u t , e n . p u t , p t o k . o u t , p t o k . p r e v) ;
e n a b l e . r e g t o k r e g . i n i (r s t , C L K . g e t , e n . g e t , g t o k . o u t , g t o k . p r e v) ;

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung A. 2: Synthesizable Verilog Model o f MCSB (using a 4-place MCFIFO)

d a t a . r e g i s t e r #(width) dreg.O(rst , CLK.put, data.put , req.put , reg.en
g e t . e n , d a t a . o u t . v a l i d . b i t) ;

and AND2.0 (r e g . e n , e n . p u t , p t o k . p r e v) ;
and AND2.1 (g e t . e n , e n . g e t , g t o k . p r e v) ;

b u f i f l t b u f . O (v a l i d . i , v a l i d . b i t , g e t . e n) ;
t r i _s t a t e . b u f n tt(width) tbufn.O (data-out , data.get , ge t . en) ;

s r . f f s r f f O (r s t , r e g . e n , g e t . e n , f . i , e . i) ;

e n d m o d u l e

/ /
/ / G e n e r i c N - b i t s T r i —s t a t e B u f f e r
/ /

It---

m od u le t r i . s t a t e . b u f n (i n . v a l , o u t . v a l , b u f . e n) ;

p a r a m e t e r w i d t h = 2 ;

i n p u t [(w i d t h — 1) : 0] i n . v a l ;
i n p u t b u f . e n ;
o u t p u t [(w i d t h - 1) : 0] o u t . v a l ;

r e g [(w i d t h — 1) : 0] o u t . v a l ;

a l w a y s @ (b u f . e n o r i n . v a l)
b e g i n
i f (b u f . e n)

o u t . v a l = i n . v a l ;
e l s e

o u t . v a l = { (w i d t h) { l ’ b z } } ;
end

e n d m o d u l e

It--
It--
It
t t SR f l i p - f l o p
/ /

m od u le s r . f f (r s t , s e t , r e s e t , o u t . f , o u t . e) ;
i n p u t r s t , s e t , r e s e t ;
o u t p u t o u t . f , o u t . e ;

r e g o u t . f , o u t . e ;

a l w a y s @ (s e t or r e s e t or r s t o r o u t . f or o u t . e)
b e g i n
i f (r s t = = 1)

b e g i n
o u t . f = 0 ;

o u t . e = 1 ;
end

e l s e
b e g i n

o u t . e = !(s e t | o u t . f);
o u t . f = !(r e s e t | o u t . e) ;

end

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A: Verilog Code Fung

end
e n d m o d u l e

//---
/ /
/ / G e n e r i c L a t c h
/ /
//---

m o d u l e e n . l a t c h (n r s t , en , o u t . v a l , i n . v a l) ;

p a r a m e t e r w i d t h = 1;
p a r a m e t e r d e f a u l t . o u t = { (w i d t h){1 ’ b O}} ;

i n p u t n r s t , en ;
i n p u t [(w i d t h — 1) : 0] i n . v a l ;
o u t p u t [(w i d t h — 1) : 0] o u t . v a l ;

r e g [(w i d t h — 1) : 0] o u t . v a l ;

a l w a y s @ (i n . v a l o r en o r n r s t)
b e g i n
i f (n r s t = = 1)

b e g i n
o u t . v a l = d e f a u l t . o u t ;

end
e l s e

b e g i n
i f (en = = 1)

b e g i n
o u t . v a l = i n . v a l ;

end
e l s e

b e g i n
o u t . v a l = d e f a u l t . o u t ;

end
end

end

e n d m o d u l e

//--
//---
//
/ / Edge T r i g g e r R e g i s t e r
/ /

m o du l e r e g i s t e r (r s t , e l k , o u t . v a l , i n . v a l) ;

p a r a m e t e r i n . v a l . w i d t h = 1;
p a r a m e t e r d e f a u l t . o u t = { (i n . v a l . w i d t h){1 ’ bO }} ;

i n p u t e l k , r s t ;
i nput [(i n . v a l . w i d t h — 1): 0] i n . v a l ;
o u t p u t [(i n . v a l . w i d t h — 1) : 0] o u t . v a l ;

r e g [(i n . v a l . w i d t h — 1) : 0] o u t . v a l ;

a l w a y s @ (p o s e d g e e l k o r p o s e d g e r s t)
b e g i n
i f (r s t = = 1)

b e g i n
o u t . v a l = d e f a u l t . o u t ;

en d

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung A.2: Synthesizable Verilog Model o f MCSB (using a 4-place MCFIFO)

e l s e
b e g i n

o u t . v a l = i n . v a l ;
end

end

e n d m o d u l e

#--
/ /
/ / C l o c k E dg e T r i g g e r R e g i s t e r w i t h E n a b l e
/ /

// ---
/ /
m od ul e e n a b l e . r e g (r s t , e l k , en , o u t . v a l , i n . v a l) ;

p a r a m e t e r w i d t h = 1;

i n p u t r s t , e l k , en ;
i n p u t [(w i d t h — 1) : 0] i n . v a l ;
o u t p u t [(w i d t h — 1) : 0] o u t . v a l ;

r eg [(w i d t h — 1) : 0] t e m p . v a l ;
r eg [(w i d t h — 1) : 0] o u t . v a l ;

a l w a y s @ (p o s e d g e e l k or p o s e d g e r s t)
b e g i n
i f (r s t = = 1)

b e g i n
t e m p . v a l = { (w i d t h){1 ’ b O}} ;

o u t . v a l = { (w i d t h) { l ’ bO}} ;
end

e l s e
b e g i n

i f (en = = 1)
b e g i n

t e m p . v a l = i n . v a l ;
o u t . v a l = i n . v a l ;

end
e l s e

b e g i n
o u t . v a l = t e m p . v a l ;

end
end

end

e n d m o d u l e

//--
/ /
/ / Da t a R e g i s t e r o f FIFO C e l l
//

//--
/ /
m od u l e d a t a . r e g i s t e r (r s t , c l k , d a t a . r e q . p u t . r e g . e n , r s t . f l a g , o u t l , o u t 2) ;

p a r a m e t e r w i d t h = 2 ;

i n p u t [(w i d t h — 1) : 0] d a t a ;
i n p u t r s t , e l k , r e q . p u t , r e g . e n , r s t . f l a g ;
o u t p u t [(w i d t h — 1) : 0] o u t l ;
o u t p u t o u t 2 ;

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A: Verilog Code Fung

r e g [(w i d t h - 1) : 0] t e m p . d a t a ;
r e g t e m p . r e q . p u t ;
r e g [(w i d t h — 1) : 0] o u t l ;
r e g o u t 2 , r R s t ;

a l w a y s @ (p o s e d g e e l k o r p o s e d g e r s t)
b e g i n
i f (r s t = = 1)

b e g i n
o u t l = 0;
o u t 2 = 0 ;
t e m p . r e q . p u t = 0;

t e m p . d a t a = 0;
r R s t = 0;

e l s e
b e g i n

i f (r e g . e n = = 1)
b e g i n

t e m p . d a t a = d a t a ;
o u t l = t e m p . d a t a ;

t e m p . r e q . p u t = r e q . p u t ;
o u t 2 = t e m p . r e q . p u t ;

end
end

end

e n d m o d u l e

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B

Simulation Waveforms

B.l Simulations of DBSB

Figure B .l illustrates the SoC model and its configuration used to verify the func­

tionality of the DBSB bus. The clock ratios are selected such that a data item sends

by Module 0 is broken down into four segments by a type-B l-to-4 shift register

but reunites into a single data item through a type-A 4-to-l shift register. Thus

the data item identical to the one being sent should appear at data-out_2 of Mod­

ule 2. The same concept applies to the timing relationship between Module 1 and

Module 3. The function of each test case for the DBSB is described in Chapter 4.

Module 0 operates at 20.83MHz and Module operates at 41.67MHz. Module 2 op­

erates at 25.00MHz while Module operates at 50.00MHz.CLKj)ut of MCFIFO.O

is 83.33MHz and CLK-get of MCF1FO_0 is 100MHz. On the other hand, CLK-put

of MCFTFO.l is 100.00MHz and CLK.get of MCFIFO_l is at 83.33MHz.

B.2 Simulations of MCSB

Figure 4.7 illustrates the SoC model and its configuration used to verify the func­

tionality of the MCSB bus. The function of each test case for the MCSB is described

in Chapter 4. Module 0 operates at 83.33MHz. Module 1 operates at 41.67MHz.

Module 2 operates at 20.83MHz.

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fmse]

data jin J)

Module
0

l-to-4

+ 4-to-l
datajjut_0

IX domain j

d a t a i in j

Module
1

l-to-2 J

o.

Bus
Controller

MCFIFO
0

2-to-l
data_,but_l

2X domain i

,rr^ rd sd _0 ,; ------ '
rdsel 1 i rmsel71

I'dsd

X \
data_put_2

4-to-l

r- l-to-4 4

MCFIFO
1

rmsel

<-

4X domain

Module
2

dataj.in_2
I 0.75X domain

data but 3_ _ _ _ _ _
2-to-l +

| l-to-2 h r

Module
3

3X domain
datajin_3

i 1.5X domain

Figure B .l: System Configuration Used in DBSB Simulations

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung B.2: Simulations o f MCSB

Figure B.2: Waveform of Test Case 1 of DSBS

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B: Simulation Waveforms Fung

Figure B.3: Waveform of Test Case 2 of DSBS

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Baseline

Fung B.2: Simulations o f MCSB

Figure B.4: Waveform of Test Case 3 of DSBS

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B: Simulation Waveforms Fung

Figure B.5: Waverform of Test Case 1 of MCSB

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fung B.2: Simulations o f MCSB

Figure B.6: Waverform of Test Case 2 of MCSB

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

