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Chapter 1 

Introduction

It is well known that autonomous robotic reactive behaviors can be synthesized. However 

the topics of generalization ability, behavior performance scalability, and behavior 

transparency are less known. The investigation of these three topics constitutes the main 

objective of this thesis. Behavior synthesis, including generalization ability and performance 

scalability, is investigated in Chapter 3. Behavior transparency is investigated in Chapter 4. 

Finally, Chapter 5 provides concluding remarks and recommendations.

This chapter provides an introduction to behavior synthesis and behavior 

transparency; the remainder of this chapter is organized in sections. Section 1.1 provides an 

overview of behavior synthesis with regards to Valentino Braitenberg. In this section, the 

concept of behavior synthesis and behavior transparency is introduced. Section 1.2 discusses 

the prior art of behavior synthesis seen in the literature. Finally, Section 1.3 discusses the 

prior art of rule extraction.

1.1 Inspiration from Braitenberg

Valentino Braitenberg presents fourteen vehicle designs in his famous book “Vehicles: 

Experiments in Synthetic Psychology” [1]. These vehicle designs are shown to synthetically

1
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produce autonomous behaviors with increasing complexity. Braitenberg’s vehicle designs 

are inspiring because he starts with comprehensive vehicle designs and provides notable 

accounts for their resulting autonomous behaviors. The more advance vehicle designs 

become increasingly less comprehensive, yet Braitenberg’s illuminating words are 

convincing enough to provide inspiration that such vehicle designs may be feasible. The 

proposed vehicle designs are quite theoretical and conceptual, and no implementation or 

experimentation is offered by Braitenberg. Exploration of this void continues to be 

challenging research task undertaken by many who have received inspiration from 

Braitenberg’s famous vehicle designs.

An overview of Braitenberg’s first five vehicle designs is presented in this 

introduction. Although the fifth vehicle design will be the focus in this thesis, it is important 

to examine the first four in order to observe the progression in behavior complexity and the 

decrease in behavior transparency. Each vehicle design section contains a brief description, 

which even includes some of Braitenberg’s diagrams for verbatim. Some simple 

experimentation is conducted using the mobile robot, Khepera. (See section 2.1 for an 

overview of Khepera). In some aspects, the vehicle designs are extrapolated and/or 

manipulated for appropriate implementation on Khepera. It is with hope that these 

implementations do not lose the spirit of the vehicle designs presented by Valentino 

Braitenberg.

1.1.1 Vehicle 1 -  Getting Around
Vehicle 1 is very simple—it contains one sensor and one motor. The force exerted by the 

motor is proportional to the absolute temperature measured from the sensor.

Figure 1.1 -  Vehicle 1 contains one motor and one 

temperature sensor with a fixed connection between 

them [1],

Braitenberg asserts that this vehicle would display a preference for cooler temperatures 

since the vehicle would speed up to exit warmer environments while slowing down when 

cooler environments are reached. The rudimentary vehicle design produces a rudimentary 

behavior allowing vehicle 1 to “get around”.

2
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1.1.2 Vehicle 2  -  Fear and Aggression
This vehicle is equipped with two sensors providing a differential input, and two motors 

providing differential drive. The forces exerted by the motors are proportional to the light 

intensity measured from the sensors. Braitenberg asserts that the behaviors of fear and 

aggression can be synthetically produced with the fixed connections between sensors and 

motors seen in Figure 1.2.

I |  Figure 1.2 -  Vehicle 2 displaying fear (left) and aggression

(right) for a light source [1].

The behavior depicted in Figure 1.2 can be reproduced with the mobile robot, 

Khepera. Khepera’s sensor readings from il  and 12 can be averaged to form the left sensor 

while sensors i3 and 14 are averaged to form the right sensor. The left and right virtual 

sensors measure a differential infrared reflection from a nearby object. The motors are set to 

speeds proportional to the perceived infrared reflection from a nearby object. The 

proportionality is biased slightly such that the minimum speed attainable is 0.008cm/s. 

Khepera is then placed in close presence to an infrared reflecting object. The object is 

placed exactly 12 cm north and 5 cm west of Khepera’s initial position. The resulting 

trajectory and motor speeds for the “fear” and “aggression” vehicles are recorded in Figure 

1.3.

3
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Khepera Position

E
co
<0o0.>■

fear

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
time (ms)

re 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
time (ms)

-8 - 6 - 4  - 2 0 2 4 6 8

X-Position(cm)

Figure 1.3 -  Fear and aggression trajectories (left) and differential motor speeds (top right and bottom right). The 

aggressive vehicle accelerates toward the object and crashes into it while the fearsome vehicle veers away.

The trivial connections between sensors and actuators result in synthetic behaviors 

resembling “fear” and “aggression” towards the nearby object.

1.1.3 Vehicle 3 -  Love
This vehicle design consists of two or more sensors, all in differential configurations. The 

sensory capabilities are widely varied and include light intensity, temperature, and oxygen 

concentration. The forces exerted by the motors are a function of the sensory input. 

Valentino Braitenberg asserts that the behavior “love” can be synthetically produced using 

the fixed connections seen in Figure 1.4.

/

i i r

a

Vehicle designs (a)

Figure 1.4 -  The inhibitory sensors of Vehicle 3 attracts the vehicles 

to the light source: design (a) rests in close proximity to the light, and 

design (b) approaches the light but soon veers away [1],

as “love”. Vehicle design (b), however, will soon veer away from the light source. This 

behavior could be termed “promiscuous”. Khepera is used to reproduce the behavior seen in 

Figure 1.4. The implementation is similar to the previous vehicle. Khepera’s sensors i l  and 

i2 can be averaged to form the left sensor while sensors i3 and i4 are averaged to form the 

right sensor. The two virtual sensors measure a differential infrared reflection from a nearby

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



object. The wide range of sensors described by Valentino Braitenberg cannot be easily 

implemented at this time since Khepera is only equipped with one type of sensor. The 

motors speeds are inhibited by IR reflection from a nearby object. Khepera is placed in close 

presence to an infrared reflecting object. The object is placed exactly 20 cm north and 10 cm 

east of Khepera’s initial position. Khepera’s resulting trajectory speed and for the two 

vehicle designs are recorded in Figure 1.5.

Khepera Position

)bject

Eo,
co

ioveromisc uou!CL>

X-Position(cm)

10
c

5

> right

0
2500 3000 35001000 1500 20000 500

time (ms)

3500
time (ms)

Figure 1.5 -  Love and Promiscuous trajectories (left) and differential motor speeds (right). The “love” design 

steers towards the object, slows down, and eventually stops in front of the object. The “promiscuous” design 

drives towards the object but soon veers away from it.

Braitenberg’s third vehicle design, much like the first two, consists of trivial 

connections between sensors and actuators in order to create a synthetic behavior. The 

synthetic behaviors seen from the first three vehicle designs are quite predictable. This 

behavior transparency is lost with the design complications introduced by vehicle 4.

1.1.4 Vehicle 4 -  Values and Special Tastes
The fourth vehicle is similar to the previous vehicle because it also consists of two or more 

sensors in a differential configuration and two motors providing differential drive. The 

distinguishing modification to this vehicle design is that the force exerted by each motor is a 

non-linear function of the sensory stimulation intensity. As a result, the synthetic behavior 

becomes more unpredictable. This is demonstrated by implementing Khepera with the non

linear function seen in Figure 1.6.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 1.6 -  Arbitrary non-linear functions are implemented for the left and right motors using the left and right 

plots, respectively.

Khepera is placed in close presence to an infrared light reflecting object. The object 

is placed 17.5 cm east and 5 cm south of Khepera’s initial position. Khepera’s resulting 

trajectory is recorded in Figure 1.7.

Khepera Position

4

I *
I  0
'COo
° t -2 >

-4

-6

-8

J " " N

/ \f
i 1D 1 4 15 13

ndec isive
V

c rash
'  5

1:

time(ms) x , 0»

Figure 1.7 -  Khepera’s trajectory (left) shows Khepera 

approaching the object, but stops within about 6cm of the 

object. Khepera’s orientation oscillates greatly at this time 

(top) as Khepera is indecisive of the course o f action to take. 

Soon Khepera exits the stage of indecisiveness and crashes 

through the object (left).
X-Position (cm)

Khepera remains indecisive for about 15 seconds before proceeding on a collision course 

with the object. The indecisiveness is caused by the drop from +5 to -5 and +2 to -2 in the 

functions shown in Figure 1.6. Consider the speed of the left motor, which is a function of 

the sensor (il+i2). When (il+i2) is low, the left side of Khepera moves forward with a 

speed of 5. If this movement is towards the object, then (il+i2) will increase. If (il+i2) 

increases past 1023 while remaining less than 1228, then the left motor speed is promptly 

changed to -5. If this causes movement away from the object, then (il+i2) will decrease. A 

similar cyclical pattern is seen with the right motor. The oscillatory cycle is seen to be 

unstable as (i3+i4) eventually reaches levels in excess of 1228, which causes the right motor 

to attain speeds of 10. At this point, Khepera has exited the orientation oscillation stage.

6
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It is extremely difficult to predict Khepera’s behavior when its reactive controller is 

an arbitrary non-linear function. It is surprising that the indecisive behavior reported in 

Figure 1.7 can be produced by utilizing the simple reactive controller functions seen in 

Figure 1.6. Vehicle four distinguishes itself from the previous three vehicle designs in two 

main respects:

1. there are numerous design degrees of freedom, and

2. the resulting behavior for each design can be difficult to predict.

Evidently, these two observations seem to apply to the remaining ten Braitenberg vehicle 

designs.

1.1.5 Vehicle 5 -  Logic
This vehicle design introduces logical networks consisting of units resembling McCulloch 

and Pitts neurons. These logical networks are similar to the generalized modem artificial 

neural networks (ANNs), which are widely used today. The study of the “logic” vehicle 

design is interesting since complex behaviors can be synthesized. However, much like the 

fourth vehicle design, Braitenberg is not able to supplement the vehicle design with a viable 

methodology for synthesizing autonomous behavior. Instead, the vehicle designs remain 

theoretical and without sufficient guidelines for practical implementation. As a result, 

Braitenberg presents only two simple examples despite the numerous possible hierarchies 

and applications. Braitenberg is able to explain these two examples in a theoretical sense, 

but leaves the practical implementation up to the reader’s imagination.

1.1.6 Conclusion
There are two main observations that can be stated about the first five Braitenberg vehicle 

designs. First, each successive vehicle design is increasingly complex. The complexity of 

the fourth and fifth vehicle designs surpasses Braitenberg’s ability to provide specific design 

implementation guidelines. Second, as the vehicle design complexity increases, the behavior 

transparency tends to decrease. It is difficult to predict or understand the behaviors exhibited 

by more complex designs, such as the fourth and fifth vehicle designs. Braitenberg provides 

inspiration to investigate behavior synthesis and behavior transparency.

1.2 Behavior Synthesis

Autonomous robotic behaviors are created by controllers, which on a robot provide a 

mapping between the sensory space and the actuator space. These controllers are classified

7
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as either reactive or deliberative. Reactive controllers contain no state or memory while 

deliberative controllers do. The study of reactive controllers is very important since they not 

only serve as stand-alone controllers, but as building blocks for more complex deliberative 

systems as shown in [2]. Constructing reactive controllers based on artificial neural 

networks (ANNs) or fuzzy logic rules are proven methods for creating low-level behaviors 

such as obstacle avoidance and wall following.

In this thesis, we will examine a reactive ANN-based controller with memory in 

order to synthesis a wall following behavior. While the introduction of memory implies that 

the controller is deliberative, the controller architecture most closely resembles a reactive 

design and is hereby considered reactive. ANNs are a computing paradigm inspired by the 

parallel architecture of biological neurons found in animal brains and have been applied to a 

wide variety of problems in which algorithmic solution cannot easily be derived. These 

applications include, but are not limited to, disease diagnosis, business costs/sales 

predictions, process plant control, and robotics control. ANNs, with related learning 

algorithms, are able to provide the means for practical “logic” vehicle (see Section 1.1.5) 

design implementation. Furthermore, properly trained ANNs have been shown to be 

universal function approximators [3]. Therefore, they are able to approximate arbitrary non

linear functions, such as the one used to map sensors to motors in vehicle design four (see 

Section 1.1.4). Obviously, the first three vehicle designs could also be implemented with a 

properly trained ANN.

The study of ANNs is a significant research interest because of their proven ability 

to synthesize behavior; however, ANNs are by no means the only practical method. 

Numerous alternative approaches are widely used including fuzzy logic and evolutionary 

optimizations. The utility of one method over another method is often application 

dependant. Therefore, an overview of approaches is provided, as much as possible, in the 

context of the wall follow problem.

1.2.1 Fuzzy & Evolutionary Controllers
Implementing fuzzy rule base controller is attractive since understanding and creating fuzzy 

rules to govern a robots behavior is intuitive, whereas understanding an ANN is not [4]. 

However, successful implementations of fuzzy rules can be very difficult. Thorough 

knowledge of the robots sensory and actuator characteristics is often required in order to
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fuzzify the antecedent (sensory values) and consequent (actuator values) variable 

appropriately. Methods for automatic fuzzy rule generation can be applied. For example, a 

training data set can be used such that the consequent of a rule is determined by the degree 

to which the training data satisfies its antecedent [4], In this example, a training sample 

subset T; is built for each antecedent A1 such that each member of Tj satisfies the antecedent 

to some degree. The consequent B1 is chosen as the output fuzzy subset for which the 

weighted average of outputs in set T; has maximal membership. However, fuzzy rules 

learning remains limited in comparison to the ANN learning algorithms widely used—such 

as the backpropagation algorithm.

Genetic Algorithms (GAs) are a very popular evolutionary design method used to 

optimize reactive controllers. GAs have been applied to evolve fuzzy control rules [5,6,13] 

and ANNs [7,8,9] for autonomous robotic operation by favoring fit designs while non-fit 

solutions are disregarded [10]. Artificial evolution can develop controllers that exploit 

relevant features of the environment that were not explicitly defined in advanced [7]. The 

downfall extends from the difficulties involved in designing an appropriate fitness function 

and, therefore, difficulties in synthesizing behaviors for the robot. Constructing an 

appropriate fitness function for wall following is shown to be difficult in [8,11] and 

respectable wall following behaviors are difficult to achieve. Worse yet, the evolutionary 

process devour an extraordinary amount of time since evaluations of individual solutions 

must occupy at least several seconds of real time on the robot—unless the evolutionary 

process is completed with a simulator. Appropriately, controllers are evolved in simulation 

but tested on a real physical system in [8,9,12,13]. This saves time consuming physical wear 

on the robot but enables final results to be reported from a real physical system thereby 

validating the simulator employed.

1.2.2 ANN-Based Controller
An ANN-based controller is proposed to synthesize the wall follow behavior because it 

offers many advantages over the alternatives discussed in this introductory chapter. ANN 

learning algorithms are more powerful than those seen for fuzzy controllers and do not 

require the difficult derivation of fitness functions that evolutionary algorithms require. 

Yamada demonstrates that autonomous wall following can be accomplished with 

unsupervised learning using a self organizing map ANN [14], Alternatively, supervised

9
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learning can be used for ANN controllers to capture implicit knowledge and execute robotic 

behavior by applying the captured knowledge.

In this thesis, the backpropagation learning algorithm is explored for an ANN-based 

wall following controller since it is widely used and proven to be a very powerful 

supervised learning algorithm. Hybrid systems such as neuro-fuzzy networks may exploit 

the learning capabilities of ANN learning algorithms while allowing encapsulated 

knowledge to be expressed in a comprehensive manner. Nonetheless, it is decided to 

investigate the backpropagation learning algorithm for behavior synthesis with the further 

goal of exploring a method for enhancing ANN behavior transparency. Backpropagation is a 

generalized gradient based delta algorithm, which aims to minimize discrepancy between 

the ANN calculated output(s) and the target output(s) dictated by implicit knowledge [15]. 

Implicit knowledge can be encapsulated in a few different ways. In on-line reinforcement 

learning, the supervisor rewards a controller for good behavior and conversely punishes 

poor behavior [16,17,18], In an off-line supervised setting, the supervisor collects data 

containing sensor values and corresponding actuator values (e.g. target motor speeds). 

Encapsulation of wall follow implicit knowledge is feasible by manually driving the robot 

for wall following and acquiring data to be used for training.

1.2.3 Behavior Evaluation
The objective of the ANN-based controller is squarely focused on autonomous wall 

following, which is hereby defined as driving alongside a wall while maintaining a constant 

distance to the wall. Varying design methodologies exist throughout the literature that aim 

to accomplish wall following and/or similar objectives. However, the implementation is 

usually limited to simplistic purely reactive designs with very little exploration of the wall 

following behavior itself. For example, Tunstel [19,20,21] demonstrates how purely reactive 

behaviors such as wall follow can be combined in a hierarchy with other reactive behaviors 

to create more complex behaviors for autonomous exploration. Tunstel research is valuable 

but creates a void in that the low-level reactive behaviors aren’t critically explored. Aguirre 

and Gonzalez [2] research the fusion of reactive behaviors including wall following. While 

more exploration is given to the reactive wall follow behavior than Tunstel, there remains 

much to explore. Recording robotic trajectories is a significant step towards quantitative 

evaluation of controllers. This is done in [22] for a simple wall following task. Numerous
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researchers have implemented or used a wall follow behavior (or other low-level behaviors); 

however, there seems to be a lack of critical evaluation of the behavior.

The deficiency of evaluation likely extends from the lack of widely adopted analysis 

metrics, which Nehmzow [23] argues is vitally important to the advancement of the mobile 

robotics field. Qualitative observations and evaluations seem to be the norm while 

quantitative metrics are sparsely utilized. It seems reasonable to expect that task-oriented 

controllers can be quantitatively evaluated—especially for simplistic behaviors like wall 

following. This thesis ventures to quantitatively evaluate an autonomous robotic controller 

implemented for wall following in terms of its ability to generalize over numerous 

environments with varying wall geometries, and its performance scalability over varying 

trajectory velocities.

1.3 Rule Extraction

ANNs have been successfully applied to a wide variety of applications and have been 

widely accepted because of their proven accuracy [24], Their downfall stems from fact that 

the knowledge is distributed across the weighted connections, which makes ANNs 

incomprehensive [25], ANN rule extraction is a relatively new research area that attempts to 

unveil the knowledge embedded into the ANN connection weights. In doing so, the problem 

of deprived behavior transparency is addressed.

Numerous methods exist in the literature for extracting rules from ANNs; however, 

they often impose problem domain restrictions preventing the method from being 

universally adoptable. There exists a tradeoff between ANN complexity and performance, 

as seen in [26]. In some instances it is desirable to utilize a complex network to obtain 

higher performance on complex applications. The implication being that the rule extraction 

process becomes significantly more challenging. A complex ANN contains numerous rules 

of varying significance, including erroneous rules. The goal of the rule extraction chapter is 

to extract the simplest possible set of comprehensive rules from a trained complex ANN, 

regardless of architecture or ANN learning scheme used.

1.3.1 Rule Extraction Taxonomy
In order to evaluate and compare the numerous different rule extraction methods found in 

the literature, it seems reasonable that universal terminology, comparative criteria, and
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benchmarks should be used adopted to evaluate the methods [27]. It seems reasonable to 

classify the rule extraction methods into the following three general categories [27]:

1. Decompositional. This approach extracts rules by directly examining the internal 

architecture of the ANN.

2. Black-box. This approach examines the input-output relations of the ANN in order 

to build rules.

3. Eclectic. This is a hybrid decompositional/black-box approach that uses the ANN 

architecture as well as the input-output relations of the ANN to build rules.

Regardless of the category, it seems necessary to evaluate rule extraction algorithms 

with a common criteria. Jane Neumann [28] proposes to evaluate rule extraction algorithms 

with the following four criteria: complexity of the algorithm, quality of the extracted rules, 

consistency of the algorithm, and applicability of the algorithm. Other authors have 

proposed similar taxonomy such as in [62]. The quality of the extracted rules is probably the 

most significant criterion, which is further broken down by Towell [29] into three 

categories: accuracy, fidelity, and comprehensibility. The capability to correctly classify a 

testing data set is termed as the accuracy of the extracted rules. The capability to mimic the 

behavior of the trained ANN is termed as the, fidelity of the extracted rules. Lastly, the 

comprehensibility of the extracted rules considers the extent that rules are readable and 

understandable to humans. Neumann provides evaluation on 16 different rule extraction 

algorithms, many of which are tested against the benchmark data sets: the Monk’s domain, 

Iris Plant, Wisconsin Breast Cancer, and the DNA Promoter domain.

1.3.2 Rule Extraction with Continuous Attributes
Most rule extraction methods do not support ANNs with continuous attributes. For example, 

BIO-RE [30], RULENEG [31], Activation space clustering [32], SUBSET [29], M-of-N 

[29], and [26,33] all impose a restriction making the method only applicable to ANNs with 

binary inputs and/or binary outputs. This can seemingly limit the domain of applications in 

which the method can be utilized. To get around this problem, one could partition the 

continuous variables into intervals to be binary encoded thereby increasing the number of 

network inputs and somewhat changing the architecture. This is done in [34] in part of a 

method that utilizes Karnaugh maps to extract rules hierarchally through a combination of 

dominant rules and less dominant rules or exceptions. This method exploits logical don’t 

cares to extract simplified rules quite successfully. However, methods that partition the
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attributes in a seemingly arbitrary manner suffer by not critically considering the effects on 

the consistency of the rules with the data. Partitioning with linear membership functions is 

performed arbitrarily in [35] but with some consideration of the implications: when replaced 

by a Gaussian membership function it is noted that the results improve significantly for the 

Iris database problem. The authors recognize this phenomenon and declare discretization of 

continuous attributes as a future research direction.

Methods such as the Chi-Merge [36] and its successor Chi2 [37,38] are based on the 

%2 statistic and have demonstrated great success in discretization of continuous attributes. 

Chi2 is a discretization algorithm used to partition continuous attributes into a minimal 

number of intervals such that a desired data consistency rate is preserved. In the event that 

the Chi2 algorithm completely merges all intervals together for a given attribute, the 

attribute is deemed unneeded. This is the process of feature selection. The significance of 

the Chi2 algorithm is its ability to perform both feature selection and discretization while 

preserving a minimal specified level of consistency with the data. This can be of great 

benefit over algorithms such as the information-theoretic algorithm [39], which 

accomplishes feature selection but not discretization. It seems clear that discretization is a 

required research direction for rule extraction in order to support applications with 

continuous attributes. Full-RE [30] and Neurolinear [40] rule extraction methods exploit the 

Chi2 algorithm to support continuous attributes and are reported to achieve high quality 

results in comparison to numerous other rule extraction methods [28]. Neurolinear is also 

reported to achieve relatively high accuracy in [41] in comparison to other methods.

1.3.3 Decompositional vs. Black-Box
Neurolinear and Full-RE, among many other methods, are examples of the decompositional 

approach since they extract rules by analyzing the ANN architecture. A significant 

implication of this approach is that the complexity of the method is strongly dependant on 

the complexity and composition of the ANN architecture. For example, extracted rules are 

said to be a one-to-one mapping of the network using the decomposition method of 

NeuroRule [42], Some decompositional methods impose restrictions on the ANN 

architecture or learning scheme used as seen in [43] and [34], The motivation for proprietary 

architecture is most notably to allow simplicity and effectiveness of extracting rules. 

However, this usually makes the method insufficient for existing trained ANNs and may 

restrict the applications that the ANN architecture can be applied to.
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The black-box approach may be advantageous in scenarios where the ANN 

architecture is very complicated such as the complex ANN architecture considered in this 

thesis. Huan Liu proposes the X2R rule generator in combination with the Chi2 algorithm to 

generate concise rules from raw datasets in [44]. Alternative methods utilizing genetic 

algorithms have been shown to be very effective in generating accurate and comprehensive 

fuzzy rules on a variety of problem domains such as breast cancer diagnosis [45] and iris 

plant classification [46]. Genetic algorithms have been applied to decision trees with great 

success in [47] and have shown favorable results ahead of inductive approaches in [48] and 

[49]. A fuzzy rule set is naturally desirable since their linguistic variables permit ease of 

comprehension. However, designing the linguistic variables and their membership functions 

is not trivial. In [35], it is shown how different membership functions can cause distinctly 

different results.

1.4 Conclusion

Valentino Braitenberg demonstrates that behavior transparency tends to decrease as 

behavior complexity increases. His fifth vehicle design can reach a level of complexity 

whereby one cannot practically perceive or predict the vehicle behavior based on an 

inspection of the design. This phenomenon is the root of the main thesis objective. The main 

objective of this thesis is to explore robotic reactive behavior synthesis and methods for 

enhancing behavior transparency so that a synthesized behavior can be represented in a 

human comprehensive manner.

Several different approaches have been discussed in this section and it is decided to 

pursue behavior synthesis using ANNs. The learning capabilities of ANNs are the main 

reason for selecting them over alternative approaches. It should be noted that an ANN-based 

controller closely resembles the controller used in Braitenberg’s fifth vehicle design. In the 

same way that Braitenberg’s fifth vehicle design has poor behavior transparency, it can be 

seen that ANNs have poor behavior transparency. Therefore, a further objective of the 

research is to be able to represent a trained ANN in a more comprehensive manner. In 

particular, a universal method able to extract a comprehensive set of rules from an ANN is 

sought after.
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Chapter 2 

Experimentation Platform

This chapter provides details of the platform used for experimentation throughout this 

thesis. The goal is to clearly define and manage the experimentation platform such that 

controlled experiments can be conducted.

This remainder of this chapter is organized in sections. Section 2.1 provides an 

overview of Khepera and outlines the logistics of development required for experimentation. 

Section 2.2 presents the experimentation environment and documents the related sensory 

capability of Khepera. Finally, Section 2.3 provides concluding remarks.

2.1 Robotic Platform

The utilization of physical robots for experimentation is considered by some researchers to 

be dispensable to simulations, which attempts model the physical system as accurately as 

required. However, the task of modeling a physical system is challenging with difficulty 

increasing very rapidly as greater model accuracy is desired. Accurate models must account 

for physical non-linear anomalies, such as frictional forces. Experimentation on a physical 

system gives more credibility to results achieved by avoiding any doubts that a simulator 

may introduce. Despite the clear benefits associated with experimentation on a physical
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robot, most researchers do not use physical robots for their research. The mechanical and 

electrical design and/or problems involved in using a physical robot provide a deterrent to 

many researchers. Commercially available mobile robots, such as Khepera, remove this 

deterrent by providing a completely operational mechanical and electrical robotic platform 

suitable for research. To some degree, robotic applications require an application specific 

mechanical and electrical design. Khepera has a very practical mechanical and electrical 

design; therefore, it is chosen as the robotic experimentation platform for this thesis. It 

should be noted that similar robotic platforms could be used to obtain similar results in this

2.1.1 Khepera Overview
Khepera is a miniature mobile robot built by K-Team in Switzerland. Its shape is cylindrical 

with a diameter of 55mm, height of 30mm, and mass of 30g. Khepera’s miniature size is 

significant because it enables experiment environments to be scaled down in size, which is 

very convenient for smaller research laboratories.

Figure 2.1 -  The mobile robot Khepera beside a ruler (left). Eight proximity sensors, labeled iO through i7, 

surround the robot. Khepera is equipped with two wheels with speeds o l and o2.

Khepera possesses two wheels, each driven by its own motor. A position encoder is 

embedded on each motor. Khepera is able to reach a maximum speed of 1 m/s with 7-bit 

resolution. Turning with zero radius is possible. Khepera has a total of eight infrared 

proximity detectors with 10-bit resolution, which serve as its sensoiy input. A 

programmable Motorola 68331 microprocessor and rechargeable NiCd batteries are 

embedded for autonomous operation.

thesis.

Controller
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2.1.2 Khepera Development Logistics
A host computer is used to control Khepera using the RS232 communications port. 

Development time is accelerated by employing a 3rd party RS232 serial communications 

library (WSC4C) from http://www.marshallsoft.com/. A class is written using C++ in order 

to facilitate all Khepera control and logging operations. This class is written in order to 

provide a simple, yet powerful, software interface to Khepera.

Khepera logging operations include tracking all sensor readings, motor speeds, 

position, and orientation angle throughout the duration of the experiment. The sample time 

for these quantities, which is likely limited by Khepera, is roughly 88ms. The data log is 

updated in real-time during the experiment. An example Khepera log is illustrated in Figure

2.2. Following the experiment, the data log is archived to an m-file so that data analysis can 

be performed offline using MATLAB.

t  (ms)  i O i l  i 2  i 3  i 4  i 5  i 6  i 7  a l  a r  x ( c m )  y ( c m )  t h ( d e g )
1 0 8  1 0 2 3  1 0 0 2  89  1 1 1 3  31  5 5 3  4 7 7  0 0 0 0 - 9 0
1 9 8  1 0 2 3  9 0 7  78  0 0 2 6 0  4 2 4  5 0 1  9 8 - 0 . 0 0 8  3 . 4 1 e - 0 0 6  - 9 0
2 8 8  9 7 6  9 2 0  0 2 1 6  0 5 8 4  2 4 4  5 2 2  0 0 - 0 . 4 4 4  0 . 0 0 0 8 3 5  - 8 9 . 9
3 7 5  1 0 2 3  6 0 8  2 2 9  0 2 0 4  0 4 6 7  3 2 6  9 9 - 0 . 6  0 . 0 0 2 2 9  - 8 9 . 5
4 6 4  9 2 8  1 0 1 6  0 1 2 4  15  2 4 9  0 3 2 0  10  7 - 1 . 0 4  0 . 0 0 5 0 8  - 8 9 . 6

Figure 2.2 -  Sample data log produced during experimentation with Khepera. From left to right the log contains 

a timestamp, eight proximity sensor readings, left and right motor speeds, x  and y  position coordinates, and an 

orientation angle.

The position and orientation of Khepera is computed using the readings obtained from the 

two motor position encoders. By defining sj and s2 to be the respective left and right motor 

positions, and r to be Khepera’s radius, then the orientation angle of Khepera can be defined 

as follows:

The position of Khepera in a two-dimensional Cartesian plane can be described, relative to 

its starting point, as follows:

Therefore, Khepera is able to easily log its motor speeds, position trajectory, and all sensor 

values.

[2 .1]

[2.2]

[2.3]
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Khepera is operated by one of two controllers: an autonomous controller, or human 

control via teleoperation. In order to facilitate human control over Khepera, a standard 4- 

button game-pad is interfaced with the PC hosting Khepera. The Microsoft DirectX SDK is 

used to accomplish this endeavor. The developed program is flexible by enabling numerous 

different control devices to be used including game-pads and analog joysticks. Control of 

the robot can be paused, which physically stops Khepera from moving and pauses data 

logging. Control is resumed by re-pressing the button. A simple graphic user interface 

(GUI) is developed, using the Microsoft® Foundation Classes (MFC), to facilitate the 

manual control of Khepera. All real-time sensory readings and motor speeds are displayed 

in the GUI. Additionally, the status of the control device (e.g. position of joystick, status of 

buttons, etc.) and the status of the experiment (i.e. running, or paused) are displayed.

2.2 Khepera’s Environment

A rectangular environment measuring 74.5cm x 84.5cm is built for Khepera. The walls are 

covered with 2.5cm wide white infrared reflective tape to enhance Khepera’s perception. A 

smooth Plexiglas floor enables robust mobile operation without slipping. The serial 

communications line is suspended well above Khepera in order to prevent cord tangling. 

The experimentation environment is shown in Figure 2.3.

Figure 2.3 -  Khepera inside its wall follow environment.
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The environment is built with modularity in consideration. Additional walls, each 

with varying geometry, can be moved and manipulated without any reconstruction. This is 

essential in being able to create environments with varying wall geometries. The 

environment shown in Figure 2.3, and its variants created by manipulating the wall 

geometry, are all modeled in MATLAB. This is done so that trajectory data obtained from 

experimentation can be analyzed.

2.2.1 Sensory Space
Depending on the experiment, prior knowledge of the sensory space can be extremely 

important. While some sensory information is provided by K-team, it is beneficial to 

personally explore the sensory capabilities and limitations of Khepera with the infrared 

reflective tape used throughout the experimentation environment. Khepera’s sensory range 

and periphery are explored on a two-dimensional plane as illustrated in Figure 2.4.

Figure 2.4 - Sensory space for sensor i'7 is generalized in 

the two dimensional plane with range distance and 

periphery angle.

.Object \

sen so ry  j 
\ _  s p ac e  /

Data for all eight sensors is acquired using an object comprised of the same infrared 

reflective tape used in the construction of the environment of Figure 2.3. It is found that all 

eight sensors have varying sensory space, which is probably due to variations in the infrared 

sensor manufacturing process. Figure 2.5 illustrates the results from sensor i7.

K hepera

range

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



i7 contour

periphery (degrees) range (cm)

i7 peripheral i7 range

periphery (degrees) range (cm)

Figure 2.5 -  Sensory space o f infrared sensor i7  with an ambient light level reading of 496 counts. The intensity 

of stimulation is plotted versus distance to an infrared reflecting paper and periphery angle to the infra-red 

reflecting paper (top). The side views of the contour can be seen (bottom left and bottom right).

Probably the most important observation to be made from Figure 2.5 is the limited 

range in which the sensor intensity is neither saturated nor zero-valued. This range roughly 

begins at 8cm and ends at 14cm. This operating range varies somewhat from sensors iO 

through i7. The significance of operating within this range is that the distance to an 

object/wall can be more accurately perceived than when outside the operating range.

The contour shown in Figure 2.5 is by no means smooth and variations of over 100 

units of sensory intensity have been observed. This could translate to an object range 

sensing error of over 1cm for experiments detecting object distances. Furthermore, the 

contour in Figure 2.5 varies with environment ambient light levels, which Khepera is able to 

measure. Consideration should be given to the ambient light levels by either keeping 

environment ambient light levels consistent or by calibrating the sensors accordingly. The 

former consideration is likely the simplest and is, therefore, chosen.

The relationship between sensor intensity and range can be shown to approximately 

have the form:

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



intensity = A + -
B

range
[2.4]

This form indicates that the sensory intensity is inversely proportional to the distance to the 

infrared reflecting object, which intuitively makes sense. In the case of i7, the parameters 

are experimentally solved as A = -\2 1 1  counts and 5=17393 counts/cm with a correlation 

coefficient r=0.998.

It is found that the periphery angle is approximately constant when close to the 

sensor. This is not the case for longer ranges such as 12cm, as shown in Figure 2.5. The 

sensors provide up to approximately 100 degrees of periphery sensory, which is shown in 

the bottom left plot of Figure 2.5. The sensory intensity decreases towards the periphery 

limits of approximately 130° and 230°. The relationship between sensor intensity and 

periphery is not known. Assuming a parabolic relationship, the following 17 contour plot can 

be produced:
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Figure 2.6 -  Estimated generalized sensory characteristic function applied for i7. Some discrepancies can be 

observed from the measured contour of Figure 2.5.

Laboratory lighting conditions has a profound effect on the amount of noise seen in 

the sensor measurements. This phenomenon is illustrated in Figure 2.7 as four different 

lighting conditions are explored with varying results. For this reason, all Khepera 

experimentation is performed under very dark laboratory lighting conditions.
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Sensor Readings Under Varying Laboratory Lighting
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Figure 2.7 -  Khepera is placed close enough to a wall such that the wall is detectable by the infrared proximity 

sensors. Sensor readings are taken during four different laboratory lighting conditions. Sensor noise is noticeably 

reduced in darker lighting conditions.

The effects of varying sensor noise levels could be explored as is done in [50]. However, 

noise sensitivity is marked as outside the scope of this thesis. Instead, by maintaining 

consistently dark laboratory lighting, the undesired effects of noise are minimized and can 

be assumed negligible.

A lamp is used to
A very bright lamp 
is used

provide dim light

Very dark; Natural sun light
little light ___ provides dim light

2.3 Conclusion
The robotic platform and environment are chosen for experimentation. A Khepera class is 

written in order to facilitate control with autonomous controllers and teleoperation. The 

constructed environment is modular enough to allow easy manipulation. The operating 

range of Khepera’s sensors, in the context of the environment, is identified.
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Chapter 3 

Behavior Synthesis

A methodology for autonomous robotic behavior synthesis is presented for the task of wall 

following. Implicit knowledge is captured and used to train an artificial neural network 

(ANN) with the backpropagation algorithm. Numerous feed forward ANN architectures are 

explored in terms of their ability to encapsulate the implicit knowledge and details of 

learning are provided. Evaluation of the trained ANN is performed on wide variety of wall 

geometries, which explores the generalization ability of the ANN. The ANN performance is 

critically evaluated against performance achievable by a human operator via teleoperation.

The remainder of this chapter is organized in sections. Section 3.1 outlines the 

proposed method. Section 3.3 discusses the ANN architectures that have been explored. 

Section 3.4 illustrates ANN training details. Section 3.5 tests the trained ANN using 

numerous environments with varying wall geometries in order to explore the generalization 

performance of the trained ANN. Section 3.6 investigates performance scaling as the output 

of the ANN is scaled in order to achieve control during challenging speeds. Performance 

comparisons between the trained ANN and manual control (via. Teleoperation) are made. 

Finally, section 3.7 provides conclusions for the chapter.
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3.1 Proposed Method

The framework of the proposed method is summarized below in Figure 3.1.

YesA cceptable
Quality?

Stage 2: 
ANN Training

Stage 1: 
Acquire Data 

(manual wall follow)

Stage 4: 
Evaluate ANN 
Perform ance 

Scalability

Stage 3: 
Evaluate ANN 
Generalization 

Ability

Figure 3.1 -  Methodology for behavior synthesis Methodology for behavior synthesis.

It is proposed to train an ANN, using the backpropagation learning algorithm [15], to 

synthesize the behavior of wall following. Therefore, the objective of Stage 1 is to acquire 

the data required to train the ANN in off-line learning. Stage 2 explores numerous ANN 

architectures and learning degrees of freedom in order to best synthesize the wall follow 

behavior. The trained ANN is implemented on Khepera and tested on numerous wall 

geometries in Stage 3. Finally, Stage 4 evaluates the performance scalability of the 

synthesized behavior.

3.1.1 Backpropagation
The backpropagation learning algorithm is introduced here since it is a significant part of 

this thesis chapter. Details are very brief because backpropagation is widely reported and 

documented in the literature by researchers in the neurocomputing field. Backpropagation is 

applied to multilayer ANNs, which are often built using sigmoid neurons is shown in Figure

3.2. The notation used comes from [15], which should be consulted if further details are 

desired. Note that sigmoid neurons are not a must for the BP algorithm.
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first layer j-th layer (k-l)-th layer k-th layer

(k-l)

ni(k.i) sigmoidsmi sigmoids mj sigmoids

Figure 3.2 -  A generalized multilayer feedforward ANN built with sigmoid neurons.

The output of each neuron in Figure 3.2 is computed using the inputs to the neuron, 

X ^ ,  along with the connection weights, Wj®, as

X U)=   -------------• [3-1]
l + exp(X(H) -M(0))

The backpropagation algorithm aims to reduce the discrepancy (mapping error) between the 

calculated output, /,  and the desired/target output, d, by updating the connection weights in 

accordance to the gradient decent of the error function:

e = ( d - f f  [3.2J
It can be shown that the output layer connection weights are updated as

W w = w u) + c(d _ f  _  f  <i-i> f [3.3]

where c is the learning rate. Similarly, the connection weights in the intermediate layers are 

updated as

WtU) =WiU) +S{J)X u-l\  [3.4]
where Stu’ is computed recursively by

[3-5]
i=i

This recursive relation implies that the connection weights are updated based on the 

computed error propagating backwards from the output of the ANN. This phenomenon is 

the reason why the algorithm is termed “backpropagation”.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In off-line learning, numerous input-output pairs (or vectors) are used to train the 

network. This set of vectors make up the network training set. The backpropagation 

algorithm cycles through each vector in the training set to compute new network connection 

weights. In “per-pattem” learning, the connection weights are updated with each vector in 

the training set. Alternatively, “per-epoch” learning updates the connection weights after all 

vectors are used to accumulate connection weight changes. Regardless of the connection 

weight update scheme, the learning cycles are repeated until a desired accuracy is attained. 

Network accuracy is typically measured using a testing set.

During on-line learning, the connection weights are typically updated after each 

sample of a reinforcement signal. A reinforcement signal is provided to reward correct 

output and to punish incorrect output during a period in which the ANN is exposed to input. 

An appropriate desired/target ANN output is computed based on the reinforcement signal 

and learning commences with each vector sample. Learning continues until a desired level 

of accuracy is achieved.

Variants of the feedforward ANN seen in Figure 3.2 exists. For example, feedback 

connections can be introduced in order to introduce a form of memory into the ANN. The 

choice of ANN architecture is typically application dependant and experimentation is 

typically required in order to find a suitable architecture.

3.2 Acquiring Data

In Stage 1, the game-pad is used to manually drive Khepera around the environment, which 

is shown in Figure 2.3, for the task of wall following. The challenging aspect is controlling 

Khepera’s distance to the walls. The set-point wall distance is chosen to be 11.5cm, which is 

measured from the center of Khepera to the nearest wall. This distance is chosen in order to 

minimize undesired saturation or under stimulation of Khepera’s proximity sensors (refer to 

Figure 2.5 for proximity sensor space plot). A total of eight minutes of data is collected for 

Khepera performing wall following in each of the clockwise and counter-clockwise 

directions. With a sampling time of about 88ms, a total of 10881 data vectors are acquired. 

These vectors are used to formulate training and testing data sets using 67% and 33% of the 

total vectors, respectively. It is assumed that this dataset is large enough to adequately train 

an ANN. This assumption is validated in Section 3.3 and Section 3.4.
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An important observation is made upon viewing the data set: Khepera’s sensors are 

not able to perceive anything when driving around sharp turns such as the 135 degree turn 

seen in Figure 2.3 (i.e. all sensors report a reading of 0 or near 0). This leads to difficulties 

in wall following around comers, which has also been seen in [51]. As a direct result, if we 

desire to train Khepera to follow the desired trajectory, it seems reasonable to assert that 

memory must be introduced to the ANN in order to distinguish between left and right turns. 

Therefore, all time-discontinuities found in the training and testing sets are appropriately 

marked so that they are identified in the ANN training stage.

The training and testing data sets are organized such that they contain an equal 

number of data vectors obtained from Khepera moving in a clockwise and counter

clockwise orientation. The organization of the training and testing data sets is shown in 

Figure 3.3. A time-discontinuity is seen at the beginning of each new section. For example, 

the transition from the first counter-clockwise section to the clockwise section represents a 

time-discontinuity. The data in each of the training and testing sets are not normalized.

counter-clockwise

training ^ clockwise

counter-clockwise

clockwise
testing _<

counter-clockwise

Figure 3.3 - Formulation of the training and testing data sets using the clockwise and counter-clockwise data.

3.3 ANN Architecture
A single-hidden layer backpropagation network is built using vanilla sigmoid neurons with 

bias. Two analog outputs are used to represent the left and right wheel velocities of the 

robot. Alternative controllers may output translational and steering velocity instead, which 

is done in part to implement a variable translational velocity controller in [52], These two 

alternative approaches, however, are mathematically similar since the steering and 

translational velocities are linear functions of the left and right motor speeds.
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ANN architecture design is a process involving trial and error. Fewer neurons are 

desired since it reduces training time and increases the overall generalization ability of the 

network, which prevents memorization. Conversely, an ANN whose architecture is too 

small will not be powerful enough to adequately learn the training data. With these tradeoffs 

in mind and plenty of trial and error, an architecture can be discovered that learns the 

training data and performs well on the testing data. Pruning and growing techniques can 

help. Pruning systematically removes weak connections from an arbitrarily large network 

until a sufficiently small trained network is obtained [53]. Growing starts with a tiny 

network and gradually increases in complexity until sufficient training performance is 

achieved [53].

The generalized ANN architecture, with memory, is shown in Figure 3.4. The most 

significant architecture degrees of freedom to explore are the number neurons in the hidden 

layer and the memory capacity of past inputs. Memory capacity considerations include the 

number of past inputs to be fed into the hidden layer and the time delay of each past input.

1

hO.

left

right
o p  1 /sp e e d

i f F V - \ h n y

1
Figure 3.4 -  Generalized fully connected two-layered backpropagation ANN with biased sigmoid neurons. Delay 

blocks permit one past input vector to be fed into the ANN. Each additional past input vector requires additional 

delay blocks.

By inspection of the acquired data, it is evident that Khepera requires up to 2500ms to 

complete a 135 degree arc. Therefore, the memory is designed to encapsulate up to 2816ms 

of previous sensor data, which encompasses 32 previous input vectors with the cycle time of
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88ms. It is not feasible to allow all 32 past input vectors to serve as inputs to the ANN, yet it 

is evident that at least one past input is required. Experimentation with the number of past 

inputs to utilize and the number of hidden neurons is performed with careful consideration 

of the number of connection weights required.

A commonly used design mle is to allow at least ten times the number of training 

vectors as ANN connection weights [54]. Given the size of the acquired training set, the 

ANN architecture is limited to about 700 connection weights. For the ANN architecture of 

Figure 3.4, the number of connection weights is tallied as

n = h(ip +1) + op(h +1) ? [3-6]
where ip is the total number of inputs including past inputs, h is the number of hidden

neurons, and op is the number of neurons in the output layer. While op is fixed, the other

two parameters can be varied such that n is kept well below one tenth of the number of

training vectors. With this restriction in mind, trail and error is used to obtain a suitable

architecture. This is achieved by exploring numerous permutations of architecture and their

associated ANN learning. The following table provides an example of ANN architectures

explored:
Table 3.1 -  Sample ANN Architectures Explored

Architecture No. Layers No. Hidden 
Neurons

Fully
Connected?

No. Past 
Input Vectors

Time Between 
Input Vectors

(a) 2 12 y e s 1 2 2 8 8 m s
(b) y e s 1 4 0 8 m s
(c) 3 1 2 ,  12 y e s i 2 8 1 6 m s
(d) 2 30 n o 1 4 70 4ms

Architectures with the lowest reporting performance index are deemed most 

accurate and appropriate for the wall follow objective. The performance index is quantified 

over N vectors as

N 1g  = ]T-(/e/f_ target, - le ft_ y i)2 + (right_targeti -righ t_y,)2, [3.7]
1=1 ^

where leftjarget and rightJarget are the respective left and right target motor speeds, left_y 

and right_y are the respective left and right ANN motor speed outputs. Note that the value 

for N is different for the training and testing sets. Learning is performed for the four 

architectures in Table 3.1 with 25 trials and the results are tabulated in Table 3.2.

1 15 hidden layer neurons do not have connections with the current input vector while the other 15 
hidden neurons do not have connections to the past input vectors. Otherwise, the network is fully 
connected.
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Table 3.2 -  Sample ANN Architectures Performance Index

Architecture
Performance Index

Training Testing
Qmin Qmean On Qmln Qmean Q.

(a) 5 3 . 6 5 5 . 9 1 . 4 3 0 . 7 3 9 . 0 7 . 6
(b) 5 1 . 1 54 .7 1 . 7 2 9 . 6 3 7 . 0 7 . 1
(c) 5 0 . 7 5 3 . 8 1 . 5 33 .4 44  . 5 6 . 0
(d) 5 3 . 8 5 5 . 6 1 . 1 3 9 . 5 44  . 6 4 . 4

Architectures (a) and (b) have similar outcomes as reported by Table 3.2. However, after 

experimentation with the physical robot, it is clear that the additional past input vector is 

required. Without the second past input vector the robot is observed to improperly make the 

challenging 135 degree turns, which causes the entire trajectory to fail. The complex 

architecture (c) with two hidden layers does not seem to be a winner and it requires more 

time to train. Architecture (d) is even more complex and does not fair well. After numerous 

experimentation, architecture (b) is chosen since it achieves a low performance index, 

contains 488 connection weights, which is reasonable as per the size of the training set, and 

fairs well on the physical robot.

Another example of architecture experimentation is shown in Figure 3.5 and Figure 

3.6. Here the number of past input vectors and the number of hidden neurons degrees of 

freedom are explored. Each architecture undergoes a total of ten learning trials and varying 

results are reported due to the randomly initialized connection weights (details of ANN 

learning and connection weight initialization follows in Section 3.4). It is convenient to 

summarize the trials by reporting the minimum and mean performance indices for each 

architecture.
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Min. Perform ance Index vs. 
No. P as t Vectors

Mean Perform ance Index vs. 
No. P ast Vectors
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1 2  3 4
No. P ast Vectors

£  80

□  Q test OQtrain

1 2  3 4
No. P ast Vectors

Figure 3.5 -  An ANN architecture with 18 hidden neurons and 2816ms of past input duration is explored with 

varying number of past input vectors. The minimum testing and training set performance index is reported for 0 

to 5 past input vectors with 2 past input vectors achieving the best results (left). Similarly, the mean testing and 

training set performance index is reported with error bars representing plus/minus one standard deviation (right).

3  50 
■o

on  30 a) 
a.

5  20

1 0 - -

Min. Perform ance Index vs. 
No. Hidden Neurons

□  Qtest □Q train

9 12 15 18 21 24 27 30 33

No. Hidden Neurons

Mean Perform ance Index vs. No. 
Hidden Neurons

100

0) 80

O Q test OQtrain

“ft
4 0 -  -

1  i

9 12 15 18 21 24 27 30 33

No. Hidden Neurons

Figure 3.6 -  ANN architecture with 2816ms of past input duration and 2 past input vectors is explored with 

varying number of hidden layer neurons in a single hidden layer network. The minimum testing and training set 

performance index is reported for 6 to 33 hidden neurons (left). Similarly, the mean testing and training set 

performance index is reported with error bars representing plus/minus one standard deviation (right). Choosing 

an appropriate number of hidden neurons is not so clear here since 12 to 30 hidden neurons achieve similar 

results.
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The choice of architecture is not always clear because it is possible for different 

architectures to perform equally well. It is well known that a compromise exists between 

network performance and network complexity [55]. Architecture (b) in Table 3.1 is chosen 

as the compromise. Details of ANN learning follows in the next section.

3.4 ANN Learning

The backpropagation learning algorithm aims to adjust connection weights with a gradient 

descent of error. This generalized delta learning method is very powerful in discovering 

local minimums of error. However, the algorithm offers no guarantee of discovering the 

global error minimum and worse yet cannot give any indication on whether or not the global 

error minimum has been found. Therefore, numerous experimentation trials with random 

initial connection weights are often required in order to achieve better training and testing 

data modeling with little error. The backpropagation algorithm aims to minimize error 

calculated by the least squares error function. Alternative approaches include using the 

cross-entropy error, which has been shown to improve network convergence in some cases 

[56]. Improving the convergence is a worthwhile endeavor—especially since numerous 

architecture and training degrees of freedoms are to be explored. However, the simplicity 

and proven utility of the least squares method makes it the chosen error function for ANN 

learning.

In the situation where the training set is time continuous, each progressive vector 

may be similar to the previous vector. This could present a problem when per-pattem 

learning is implemented. The risk is that the ANN may learn similar vectors while poorly 

learning the entire training set [15]. Randomizing the order of the training data can help; 

however, this could be haphazard since memory is present in the system. Experimentation is 

performed with both “per-pattem” and per-epoch learning modes. It is decided that per- 

pattem learning is the better choice since it seems to achieve lower converging testing data 

error for the specific application at hand. Furthermore, the choice of learning rate is difficult 

with the per-epoch learning. Since numerous data vectors are used, the learning rate must be 

kept small in order to avoid diverging network error. The range of appropriate values that 

can be used for the small learning rate is limited and is a function of the number of training 

vectors. The restrictions imposed on the learning rate make per-epoch learning impractical.
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The learning rate and momentum term are assigned by experimentation using the 

ranges O.Ol to 5.0 and 0.05 to 0.95, respectively. A high learning rate is desired for faster 

convergence; however, the network performance index may oscillate and diverge with the 

learning rate set too high. The momentum term is utilized to help the learning process skip 

over local minimums in hopes of discovering the global minimum of network error. 

Numerous values are attempted and it is discovered that a learning rate of c=l and a 

momentum term of n=0.8 suffice for the application at hand.

The minimum and maximum number of algorithm iterations is set to 40 and 150, 

respectively. These parameters are assigned so that erroneous increases in the testing 

performance index are ignored during the early algorithm iterations while unnecessary late 

algorithm iterations are avoided. The algorithm will exit to prevent overtraining if the 

testing error increases by more than 1% of the lowest recorded value in the trial. Learning 

does not occur where time discontinuities are marked in the training data since past inputs 

are nonexistent. The results are widely varied between different architectures and even 

between different trials of the same architecture. Architecture (b) in Table 3.1 is investigated 

further: while rather weak, a certain correlation seems to exist between the testing error and 

training error as shown in Figure 3.7.

Training & Testing Perform ance Index ANN Learning
85

75

a>oc(0
E

55

€
O. 45

35

25
300 10 20 40 50 60

CL 35

y *= 2.2225X - 84.525 
R2 « 0.2709

Trial 18

60 6545 50 55

Training Perform ance Index Iterations

Figure 3.7 -  Backpropagation algorithm is applied with 25 trails for the ANN architecture with 18 hidden layer 

neurons and a total o f 24 inputs (current input vector plus two past input vectors). Trial 18 seems to model the 

data most successfully since it has achieves the lowest testing performance index (left). Testing and training 

performance index spanning 60 iterations (although a total of 150 iterations are completed) is plotted for trial 

number 18 (right).
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Grayscale representation of the ANN connection weights are produced for the 

network before and after the training in trial number 18. This is done by arbitrarily scaling 

the weight connections by 32 and centering around 127, which is 50% grey. Any pixel 

values less than 0 or greater than 255 are cropped to 0 (black) and 255 (white), respectively. 

A total of 488 pixels are produced, which can roughly populate a 22x22 image as shown in 

Figure 3.8. Four pixels are omitted from this comparison.

W =>  4 
w =3.2 
w=  2.4 
w =1.6 
w =0 .8  
w =0 
w = -0 .8  
w =-1.6 
w =-2.4 
w =-3.2 
iv <=-4

Figure 3.8 -  Grayscale representation of 484 connection weights before (left) and after (right) training for trial 

number 18. The images indicate that the connection weights are more declared after training.

The connection weights for the two delayed input vectors have very similar distributions, as 

shown in Table 3.3. The connection weights associated with the input vector with zero delay 

has a greater distribution, which implies that the ANN output is most greatly affected by the 

current (i.e. zero delay) input vector.
Table 3.3 -  ANN connection weights

Connections connection weights
number mean min max std_dev

I n p u t , No De l ay - 162 - - 1 5 . 3 4 3 . 8 1
I n p u t  , One  D e l a y 144 - - 8 . 8 2 7 . 7 1 2 . 7 3
I n p u t ,  Two D e l a y 144 - - 8 . 6 4 7 . 2 9 2 . 7 4

O u t p u t  L a y e r 38 - - 3 . 2 5 1 . 2 9 0 . 9 6

While there is no guarantee that the global error minimum is discovered for a given 

architecture, it assumed that 25 trials results in a sufficiently well trained network. This 

assumption it validated in the proceeding sections when performance testing and evaluation 

on the physical robot is presented. It is certainly a possibility that a trained ANN can 

produce poor results on the physical robot. In this case, it may be necessary to make 

revisions to previous steps completed—such as learning, architecture, or even data 

collection. Iterating through these stages, however, is very time consuming—especially if
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the iterations include revisiting the data collection stage. This process is analogues to the 

waterfall model of software engineering whereby optimism is seen in the belief that 

previous stages are complete and (ideally) do not require any re-work.

3.5 Behavior Generalization

The trained ANN is implemented on Khepera. Implementation of the ANN requires one 

small consideration: initialization. In particular, the memory must be initialized 

appropriately depending on the initial placement of Khepera in its environment. Khepra is 

placed in its environment exactly 11.5cm from a wall and with parallel orientation to the 

wall. Resulting wall follow trajectories in both the clockwise and counter-clockwise 

directions are shown in Figure 3.9.

Khepera T rajectory K hepera T rajectory

60

E 40E 40

3030

-10-10
10-60 -50  -40 -30  -20  -10 0-60 -50  - 40  -30 -20  -10 0 10

x-position (cm) x-position (cm)

Distance to Wall Distance to Wall

set pointset point X 12

distancedistance

2.51 1.5
time (ms)

3 0 0.5 1 1.5 
time (ms)

20 0.5 2 2.5

Figure 3.9 -  Khepera is implemented with the trained ANN and produces trajectories in the clockwise (top left) 

and counter-clockwise (top right) directions for the training environment used (define as worldl). Each data 

point is drawn as a line representing an imaginary axis connecting the two wheels. Measured minimum 

Euclidean distance to the wall is plotted over the duration of one complete lap in the clockwise (bottom left) and 

counter-clockwise (bottom right) directions along with the set point o f 11.5cm. The calculated error per sample 

average, or mean error, is 1.8cm and 1.7cm for the respective clockwise and counterclockwise directions.
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It should be noted that measurement error is prevalent in the method used to acquire 

trajectory data. Error is cumulative such that each successive trajectory point contains all 

error from previous trajectory points plus any new measurement error. Nonetheless, the 

acquired data can be used to quantify short trajectory performance with some degree of 

precision. Longer trajectories, such as multiple laps around an environment, would result in 

vast discrepancies between the measured trajectory and the actual Khepera trajectory. This 

is mostly attributed to wheel slipping, which is predominant when the Khepera serial 

communication line becomes tangled.

While all training data acquired is limited to the single environment of Figure 3.9, it 

is worthwhile to experiment with varying environments in order to explore the ability of the 

synthesized behavior to generalize. A selection of the numerous possible wall geometries 

are presented in this section that demonstrate the ANNs ability to generalize in different 

environments. For each wall geometry, experimentation is performed in both the clockwise 

and counter-clockwise direction, which yields similar results. Therefore, only the trajectory 

results from the clockwise direction are plotted.
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Figure 3.10 -  The trained ANN is tested on world2 (left) and world3 (right) and clockwise trajectories are 

plotted. Mean trajectory error is 1.0cm and 1.2cm the respective world2 and world3 clockwise trajectories.
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Figure 3.11 -  The trained ANN is tested on world4 (left) and world5 (right) and clockwise trajectories are 

plotted. Mean trajectory error is 2.1cm and 1.6cm the respective world4 and world5 clockwise trajectories.

It is worth noting that Khepera would not enter the bottom right quadrant of world3, 

which is partially blocked by a wall and has only a 12.5cm opening. If the opening is 

increased enough, then Khepera enters the quadrant. Problems arise when an opening is 

approximately twice the wall follow distance (i.e. ~23cm) but does not widen as in the case 

of a corridor. In world6 shown below, Khepera is unsuccessful in completing a full rotation 

in either direction due to the corridor-like environment. In both cases, Khepera is initially 

placed near the bottom right comer. Experimentation with varying initial positions yield 

similar results. The corridor of world6 is significantly different than the wall geometries of 

world 1. This difference is great enough so that the ANN generalization ability does not 

suffice. A cardinal rule of ANNs is that the training data must be representative of the 

desired behavior. World6 provides an example of this rule being broken.
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Figure 3.12 -  Khepera fails to perform wall follow in world6. In the clockwise direction (left) Khepera becomes 

trapped while in the counterclockwise direction (right) Khepera turns around and follows the wrong side of the 

corridor.

The trained ANN performs very well in the simplistic circular world7. An arc wall 

is added to world7 such that the arc roughly coincides with the observed trajectories in 

world7. The new world (world8) proves to be very difficult for the trained ANN because the 

robot is not able to perceive the additional arc very well until it is almost touching it. The 

robot soon recovers and maintains a greater distance to the wall. The trained ANN is 

considered to fail the fall follow objective in world8 because, in some trials, the robot 

touches the arc wall prior to recovering to a reasonable wall distance. It is questionable 

whether or not a better trained A N N  could adequately perform w all fo llow ing on world8 

because the infra-red proximity sensors limit the robots perception.
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Figure 3.13 - The trained ANN is tested on world7 (left) and world8 (right) and clockwise trajectories are 

plotted. Mean trajectory error is 1.0cm and 2.4cm the respective world2 and world3 clockwise trajectories. An 

exceptionally large error is observed upon Khepera approaching the arc, which is marked in the figure.

Trajectory error between the minimum Euclidean wall distance and the set point of 

11.5cm is quantized by the absolute difference between the two. The mean trajectory error, 

which is reported in the previous figure captions (with exception to world 6), is computed as 

well as error maximum, and error standard deviation for each trajectory in both clockwise 

and counterclockwise directions. Overall error metrics are computed for each world as an 

average of the metrics computed for the clockwise and counterclockwise directions. The 

following table and plot summarize the results:
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Table 3.4 -  Tabulated trajectory error

ANN Error (cm)
World Clockwise Counterclockwise Overall ANN Error (cm)

e CT emax e a emax e a
1 6 . 8 1 . 8 1 . 5 5 . 1 1 . 7 1 . 1 5 . 9 1 . 8 1 . 3
2 3 . 6 1 . 0 0 . 8 4 . 2 1 . 3 1 . 0 3 . 9 1 . 2 0 . 9
3 4 . 4 1 . 2 0 . 9 2 . 7 1 . 0 0 . 7 3 . 5 1 . 1 0 . 8
4 7 . 5 2 . 1 1 . 5 5 . 6 1 . 3 1 . 2 6 . 5 1 . 7 1 . 4
5 4 . 9 1 . 6 1 . 3 3 . 2 1 . 0 0 . 8 4 . 1 1 . 3 1 . 1
6 f a i l f a i l f a i l f a i l f a i l f a i l f a i l f a i l f a i l
7 2 . 8 1 . 0 0 . 9 3 . 5 1 . 3 1 . 0 3 . 2 1 . 2 0 . 9
8 f a i l f a i l f a i l f a i l f a i l f a i l f a i l f a i l f a i l

T rajec to ry  Error

8.0
□  ANN_max
□  ANN_mean
□  ANN_std_dev
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6.0
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Figure 3.14 -  Plotted overall trajectory error data for worlds 1 through 5 and world7 (results from world6 and 

world8 are not included here). Trajectory errors o f worlds 2 through 5 are in the vicinity to those recorded in 

world 1. This suggests that the ANN is capable generalizing and has not simply memorized world 1 in the 

training phase.

Despite the observed shortcomings in world6 and world8, the trained ANN 

architecture is a feasible controller for synthesizing the wall follow objective on a wide 

variety of wall geometries. Utilizing a greater variety of training data (i.e. not limited to just 

world 1) may result in improvements on a wide variety of wall geometries—especially on 

world6 and perhaps on world8.

3.6 Behavior Performance Scaling

When manually controlling Khepera (i.e. via gamepad) there exists limits as to how fast 

Khepera can be driven without loosing the desired trajectory. Any human operator is limited 

in terms of his/her reflexes and eye to hand coordination. An interesting comparison exists 

with the Khepera speed scalability between the human operator and the trained ANN. One
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must be careful when scaling the output of the ANN-based controller since there is a time 

dependant memory element. For example, if the output of the ANN is doubled (i.e. Khepera 

is to have twice the speed), then the memory samples used must be only half as old as 

normal. With this consideration in mind, experimentation can be performed.

K hepera Trajectory
K hepera Trajectory

50

-10
10-6 0  -5 0  -4 0  -3 0  -2 0  -1 0 0

x-position (cm) 

Distance to Wall

70

30

-10
-6 0  -5 0  -4 0  -3 0  - 2 0  -1 0 0 10

x-position  (cm)

14

set point* 12

distance

3o 0.5 1 2 2.51.5
time (ms) x10‘

16
distance

14E
,0,

8  :---
set point

8

1.5
time (ms)

Figure 3.15 - The trained ANN with unity output scaling performs with a mean error of 1.6cm (left). Khepera is 

manually driven at the same speed and achieves a mean error of 1.0cm (right).
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Figure 3.16 -  The output o f the ANN is scaled by a factor of two and still performs well with a measured mean 

error of 1.7cm (left). The human operator results at the higher speed are poorer with a mean error of 3.0cm  

(right).

Performance metrics are tabulated for the ANN and human operator over numerous 

speeds using worldl as a benchmark. For this benchmark, the term fail applies to trajectories 

with distance errors in excess of 13cm at any time, or fails by other means to accomplish the 

task (e.g. stopping, turning around, touching a wall, etc.).

Table 3.5 -  Tabulated ANN and teleoperation (human) error

Speed 
(7.81 cm/s)

Clockwise Counter Clockwise
ANN Error (cm) Teleoperation Error (cm) ANN Error (cm) Teleoperation Error (cm)

6 max e <x emax e <T emax e o ©max e o
0 . 5 5 . 8 1 . 6 1 . 2 2 . 7 1 . 0 0 . 7 3 . 9 1 . 4 1 . 0 4 . 9 1 . 4 1 . 1
1 . 0 5 . 4 1 . 6 1 . 2 2 . 9 1 . 0 0 . 8 2 . 5 0 . 8 0 . 6 7 . 3 2 . 2 1 . 9
1 . 5 5 . 5 1 . 4 1 . 1 3 . 9 1 . 2 0 . 9 6 . 4 2 . 0 1 . 5 8 . 7 2 . 6 2 . 0
2 . 0 5 . 9 1 . 7 1 . 5 8 . 7 3 . 0 2 . 4 8 . 3 2 . 1 1 . 6 1 0 . 1 2 . 5 2 . 3
2 . 5 1 2 . 3 2 . 5 2 . 5 f a i l f a i l f a i l f a i l f a i l f a i l 1 0 . 0 2 . 5 2 . 5
3 . 0 f a i l f a i l f a i l f a i l f a i l f a i l f a i l f a i l f a i l f a i l f a i l f a i l

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



M
ax

im
um

 
Er

ro
r 

(c
m

)

Table 3.5 con’t

S peed  
(7.81 cm/s)

Overall (clkwise+cntclk)
ANN Error (cm) Teleoperation Error (cm)

6m ax e a 6m ax e a
0.5 4.9 1.5 1.1 3.8 1.2 0.9
1.0 4.0 1.2 0.9 5.1 1.6 1.3
1.5 5.9 1.7 1.3 6.3 1.9 1.5
2.0 7.1 1.9 1.6 9.4 2.7 2.3

Woridl Maximum Error World 1 Mean Error Woridl Error Std. Dev.

3.03.012.0

2.5 2.510.0
Human

62.0 HumanHuman

ANN

ANN
1.01.0

0.5 0.52.0

0.0 0.00.0
1.0 1.5 2.0 1.5 2.00.5 0.5 1.00.5 1.0 1.5 2.0

Speed (7.8m/s) Speed (7.8m/s) Speed (7.8m/s)

Figure 3.17 - Plotted trajectory error data contrasting the ANN performance and the human performance over a 

range of speeds. The ANN is able to perform equally well as the human operator— especially at higher speeds 

(i.e. 2x 7.8m/s).

It is imperative to emphasize that measurement error, which is largely due to slippage of 

Khepera’s wheels, become significant at higher speeds. However, since the trajectories 

resulting from the ANN and human operator are acquired and evaluated by the same means, 

it is assumed that errors in measurements affect them equally. Therefore, it is assumed that 

Table 3.5 can serve as a valid benchmark in comparing the ANN and human operator. With 

this in mind, it is evident that the ANN can outperform the human operator at higher 

speeds—especially at 2.0x7.81cm/s. This may be attributed to the relatively quick cycle 

time of the ANN, which is 88ms. By comparison, the human operator is subjected to 

personal reaction time when using the game pad in addition to the 88ms cycle time of 

Khepera. Therefore, it seems reasonable to infer that the ANN performance is more scalable 

than the human operator.

More complex architectures with more layers, neurons, and past inputs can be 

attempted and may achieve better results than seen in this paper. However, trial and error 

methodology utilized for training ANNs would be extremely time consuming when 

exploring numerous permutations of architectures. It would be interesting to apply a genetic
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algorithm (GA) to explore architectures in order to discover better fit architectures 

quantified by the testing set error. Naturally one must question whether or not the overhead 

surpasses the benefits of utilizing a GA—especially when acceptable results are quickly 

obtainable with the trial and error methodology used.

3.7 Conclusion

A methodology is presented that exploits encapsulated implicit knowledge into an ANN- 

based controller for autonomous robotic wall following. The ANN-based controller is 

trained using the backpropagation algorithm. Numerous quantitative measures are reported 

to critically evaluate the ANN-based controller. Results of this analysis indicate that the 

trained ANN is able to successfully generalize across a variety of different wall follow 

environments. Performance evaluation demonstrates that the ANN-based controller can 

achieve better wall follow control at higher speeds than a human operator. The proven 

ability to generalize and perform well makes the ANN-based controller a suitable design for 

the wall follow task.
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Chapter 4 

ANN Rule Extraction

Artificial neural networks (ANNs) are powerful computational models with proven learning 

and generalization ability. Their downfall resides in its black-box architecture in which 

encapsulated knowledge is embedded into the connection weights and is extremely difficult 

to perceive. It is desirable to enhance the readability of the embedded knowledge so that the 

knowledge can be verified by a human expert [24], This chapter investigates the problem of 

extracting a comprehensive set of discrete rules from a trained complex ANN with 

continuous attributes (inputs) and continuous classification (outputs). Discretization and 

feature selection of ANN attributes is explored using the Chi2 algorithm. Additional 

discretization is explored on the ANN output classification space using a simple clustering 

algorithm. Discrete rule sets are encoded in a chromosome population and artificial 

evolution is simulated using a real-coded genetic algorithm (RCGA).

The remainder of this chapter is organized in sections. Section 4.1 introduces the 

proposed method. Section 4.2.1 reports results obtained from the iris plant problem. Section

4.2.2, 4.2.3, and 4.2.4, report results obtained when extracting mle sets from three different 

ANN architectures, which have all been trained for the problem of wall following with 

Khepera. Section 4.2.5 investigates the effects when the rule extraction method is re-applied
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to a set of extracted rules. Section 4.3 provides a discussion of the approach taken and 

further research to be completed. Finally, Section 4.4 provides concluding remarks and 

summarizes the findings.

4.1 Proposed Method

The framework of the proposed method is summarized in Figure 4.1. This method is 

proposed for the problem of rule extraction from the ANN trained to perform wall 

following.
initialize N

Acceptable
Fitness? YesNo

Stage 2: 
Feature Selection 
and Discretization

Stage 1: 
Acquire behavoir 

representative data

Stage 3: 
Evolve N discrete 
rules with RCGA

Stage 4: 
T est discrete rule 
se ts  on Khepera

Figure 4.1 -  Methodology for discrete rule set extraction Methodology for discrete rule set extraction. The 

number of rules in the rule set is incremented until acceptable chromosome fitness is achieved. Evolved discrete 

fuzzy rule sets are implemented and tested on the physical robot.

Since the methodology is to extract rules from an ANN without consideration of the 

architectural internals, behavioral-representative data is collected from the ANN in Stage 1. 

It is a hypothesis that data can be acquired to sufficiently represent the behavior of the 

ANN. In Stage 2, discretization and feature selection is applied to the dataset in order to 

reduce the search space for the RCGA.

A similar approach to the fuzzy-genetic rule extraction is taken in which a set of N 

discrete rules are evolved. The rule antecedents are comprised of attribute intervals with 

bounds generated from the Chi2 discretization algorithm. According to interval analysis 

theory (see [57] for a detailed overview of interval analysis), an interval can be thought of a 

fuzzy set with a rectangular membership function [58]. Therefore, the rule antecedents could 

be considered fuzzy antecedents with designed rectangular membership functions, as shown 

in Figure 4.2.
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Figure 4.2 -  Attribute membership function is rectangular with bounds a and b computed from the discretization 

process. A small modification is made from the reported rectangular membership function in [58] to set the 

membership at b to zero.

It is hoped that designing rectangular membership functions using discretization methods 

will help to extract accurate and comprehensive rule sets by using an evolutionary 

algorithm. This differs from previous methods in which fuzzy membership functions are 

typically not designed but rather assigned in a seemingly arbitrary manner. Although the 

proposed method is similar to previous fuzzy-genetic approaches, the discrete rule set is not 

termed fuzzy throughout the remainder of this paper since the interface between intervals 

and fuzzy sets remains controversial and could lead to confusion.

The rule set must be specified in such a way as to allow for expressive power while

preserving simplicity in the rule set. The discrete fuzzy rule set is comprised of N rules, each

with antecedents that check to see if attribute values reside inside discrete intervals derived

from the Chi2 algorithm. The rule consequent represents the classification. Therefore, the

discrete fuzzy rule set is based on the following rule format:
I f  attribute0  in [dOa dOb)  and attribute 1 in [d1a d2b)  a n d . . . .  attributeK in [dKa dKb)  then class=Oi

Details of the attribute discretization and the RCGA used to evolve the discrete fuzzy rule 

set proceed in the following two sections.

4.1.1 Discretization
Extracting comprehensive rules with accuracy and fidelity in mind is clearly very 

challenging when confronted with numerous continuous attributes and continuous 

classification. The difficulty lies in the fact that the number of mles increases exponentially 

with the dimensionality of the input space [46] and classification space. This provides clear 

motivation to reduce the dimensionality of the input and output space wherever possible. 

Clustering methods can be used to identify multi-dimensional antecedents, which could 

simplify the extracted rule set in terms of number of antecedents. However, these extracted 

rules with multi-dimensional antecedents would likely be incomprehensive. Instead, feature 

selection and discretization is explored with the Chi2 algorithm in order to reduce the input
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space. A brief overview of the Chi2 discretization algorithm is presented here since it is a 

significant component of this thesis chapter. Further details can be found in [37].

4.1.1.1 Attributes: Chi2 Algorithm

The Chi2 algorithm is a statistically justified heuristic discretization and feature selection 

algorithm based on the %2 statistic. The algorithm starts by organizing the data into tables: 

one table per attribute. Within each table, the data is organized by the attribute intervals, and 

class frequencies are tallied. A sample table is shown in Table 4.1.
Table 4.1 -  Data Sorted by Intervals

Int Class Freq. x 2
4 . 3 1 0 0 0 . 2
4 . 4 3 0 0 0 . 2
4 . 5 1 0 0 0 . 2
4 . 6 4 0 0 0 . 2
4 . 7 2 0 0 0 . 2
4 . 8 5 0 0 2 . 0 4
4 . 9 4 1 1 1 . 7 8

5 8 2 0 0 . 3 8 1
5 . 1 8 1 0 0 . 5 1

7 . 3 0 0 1 0 . 2
7 . 4 0 0 1 0 . 2
7 . 6 0 0 1 0 . 2
7 . 7 0 0 4 0 . 2
7 . 9 0 0 1

The algorithm calculates a value between neighboring attribute intervals as

M i
;=1 j =1

where k is the number of classes, Ay is the number of patterns in the i-th interval and y-th 

class, and Ey is the expected frequency of Ay given by

Z - d i= \  1

The neighboring attribute intervals with the lowest % values are merged together. 

Attribute interval merging continues until further merging would increase the inconsistency 

rate past a preset threshold. Huan Liu and Rudy Setiono [37] demonstrate how the iris 

classification problem, with four continuous attributes, can be reduced to simply two 

attributes with four discrete values each. However, this does introduce a discretization error 

rate. The discretization error rate increases with the amount of attribute interval merging. 

This is clearly demonstrated with the Ms plant discretization example in Section 4.2.1.1.
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4.1.1.2 Classification: K-Means

There is considerable motivation to discretize the classification space, in addition to 

attribute discretization, in order to reduce the search space for the RCGA. Therefore, a 

clustering algorithm is considered for classification space discretization where continuous 

classification exists. The K-means clustering algorithm is proposed since it is a simple 

method for unsupervised clustering.

The K-means clustering algorithm randomly assigns a data set into K  disjoint 

subsets S,. The objective is to minimize the sum of squares criterion,

C ' l Z k - * / ’ t4-3i
j - \  neSj

where xn is a vector representing the n-th data point and pj is the j -th cluster geometric 

centroid. In each algorithmic iteration, the data points are re-assigned to the cluster with the 

nearest geometric centroid. Iterations stop when no more re-assignments occur.

4.1.2 Rule Set Evolution
A real-coded genetic algorithm (RCGA) is proposed to explore the reduced search space in 

effort to evolve a discrete fuzzy rule set. RCGA is chosen since it posses advantages over 

binary-coded genetic algorithms (BCGA) for continuous variable domains, such as the wall 

follow problem under consideration in this paper. Refer to [59] for a detailed overview of 

RCGA and discussion of their benefits over BCGA.

Genetic algorithms are popular heuristic search methods for obtaining solutions to 

problems. They operate by encoding numerous random problem solutions into a population 

of chromosome. Genetic operators, such as crossover and mutation, are applied to the 

chromosomes population. Each chromosome is assigned a fitness, which is indicative of the 

utility of the solution, whereby better fit chromosomes are given better chances of survival 

in the selection stage. After numerous successive iterations, the chromosome population 

evolves to better fit solutions to the problem. Genetic algorithm details, in the context of the 

discrete rule extraction problem, are provided in the following sub-sections.

4.1.2.1 Chromosome Encoding

The encoding of the chromosome is a significant design stage since the chromosome models 

the form of the solution. Therefore, limitations introduced at this stage will have the effect 

of limiting the evolved solution. In the Michigan approach, each individual represents a
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single rule and the set of rules is represented by the entire population. Alternatively, the 

Pittsburgh approach models each chromosome individual as a complete set of rules. The 

latter method, although computationally more expensive, allows additional optimization 

criteria in the fitness function for multi-objective optimization [45]. Therefore, the more 

flexible Pittsburgh approach is taken.

The individual chromosome encoding is shown in Figure 4.3 below. 

1st rule 2nd rule 3rd rule N,h rule

attribute 0 attribute 1 attribute 2 attribute K class

Figure 4.3 -  Individual chromosome encoded with N discrete fuzzy rules. Each rule contains a lower and upper 

interval bound for each of the K attributes as well as a class.

The attribute interval and class gene values in Figure 4.3 are encoded from the set of 

attribute intervals and classes (clustered or non-clustered) generated from the discretization 

stage. Unique classes are marked by an integer value and used in the encoding process. A 

look-up table is implemented in order to decode the class back into the associated 

classification vector. The process of randomizing the genes (i.e. when initializing the 

population and when applying the mutation operator) involves randomly selecting a possible 

gene value, based on the gene restrictions. For sake of simplicity, each possible gene value 

is given equal probability of being encoded. A logical don’t care is generated for attributes 

in which the lower interval bound is greater than or equal to the upper interval bound. When 

a rule does not care about one or many attributes, the rule comprehension is considered to 

increase since the number of antecedents is reduced.

The number of chromosome permutations for the RCGA is generalized as

P = {dl -d2- d k)2N-lN, [4.4]
where d is the number of attribute intervals, k is the number of attributes, 1 is the number of 

classes, and N is the number of mles. Note that it is possible for permutations to be

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



functionally the same (i.e. create the same rule set). It can be seen that the number of 

chromosome permutations decreases with fewer attribute intervals, classes, and rules.

4.1.2.2 Recombination, Selection

The double-crossover and mutation operators used in the recombination stage are illustrated 

below in Figure 4.4.

i Maaaa&fl i n
^  K a a  mmi      ■ ■

Figure 4.4 -  Modified simple crossover (left) and random mutation (right) operators are used in the 

recombination stage.

Roulette wheel selection (proportional selection) is used for the selection stage. The 

individual fitness values are primarily assigned by considering the computed output of the 

rule set and the expected output obtained from the data. Computing the output of a fuzzy 

rule set involves defuzzification, which is typically performed by computing the centroid of 

the aggregated output fuzzy set. The output of the discrete rule set parallels this by 

computing the consequent arithmetic mean for all rules with true antecedents.

4.2 Experimentation

Although the primary experimentation is focused on the wall follow problem domain, it is 

useful to start with a much simpler pilot experiment with a well known dataset. Therefore, 

the iris plant dataset is used for initial experimentation. This dataset is used to test and verify 

correct operation of stages two and three of the methodology since the dataset is widely 

known and very simple. Stage one of Figure 4.1 is not used here since the iris dataset is used 

in place of data acquired from a trained ANN.

Subsequent discrete rale set extraction experimentation is applied to the complex trained 

ANN from Chapter 3 (Complex ANN), a scaled down trained ANN with fewer neurons and 

less memory (Moderate ANN), a simplistic trained ANN with few neurons and no memory 

(Simple ANN), and the extracted discrete rales obtained from the Simple ANN. The 

proposed method is to extract rale sets from each of these three trained ANNs with 

consideration of rale set fidelity, accuracy, and comprehension.
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4.2.1 Iris Plant
The iris plant dataset is probably the most popular dataset found in the literature of pattern 

recognition. This dataset is available from [60], The dataset contains four continuous 

attributes and three discrete classes.

4.2.1.1 Discretization

Since the dataset does not have continuous classification, class clustering is not considered 

and the classification look-up table is not needed. Attribute discretization, however, is 

performed with the Chi2 algorithm. Results of the discretization are shown in Table 4.2 and 

Table 4.3.
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Attribute 0
Int Class Freq. xs

4 . 3 16 0 0 5 . 8 7

4 . 9 4 1 1 5 . 1 7

5 25 5 0 2 1 . 3

5 . 5 4 15 2 6 . 6 8

5 . 8 1 15 10 5 . 0 7

6 . 3 0 14 25 6 . 0 4

7 . 1 0 0 12

Attribute 1
(a)

Int Class Freq. x2
2 0 3 1 2 . 3 6

2 . 3 1 6 0 9 . 9 8

2 . 5 0 18 18 5 . 8

2 . 9 1 7 2 4 . 5 7

3 6 8 12 1 . 6 4

3 . 1 12 7 12 4 . 5 7

3 . 4 9 1 2 1 . 8

3 . 5 6 0 0 1 . 9

3 . 6 9 0 3 1 . 9
3 . 9 6 0 0

Attribute 2
(b)

Int Class Freq. x2
1 50 0 0 95

3 0 44 1 2 1 . 7

4 . 8 0 4 5 2 . 0 4

5 0 2 10 . 6 . 0 2

5 . 2 0 0 34

Attribute 3
(c)

Int Class Freq. x2
0 . 1 50 0 0 104

1 0 49 5 78

1 . 8 0 1 45
(d)

Table 4.2 -  [left] The intervals, class frequencies, 

and x2 values for all four attributes in order (from 

top to bottom: (a) sepal length, (b) sepal width, (c) 

petal length, and (d) petal width) with the Chi2 

algorithm error rate set to 0.

Attribute 0
Int Class Freq. x2

4 . 3 50 50 50

Attribute 1
(a)

Int Class Freq. x2
2 50 50 50

Attribute 2
(b)

Int Class Freq. x2
1 50 0 0 95

3 0 44 1 3 7 . 4

4 . 8 0 6 15 11

5 . 2 0 0 34

Attribute 3
(c)

Int Class Freq. x2
0 . 1 50 0 0 104

1 0 49 5 78

1 . 8 0 1 45

(d)

Table 4.3 -  [above] The intervals, class

frequencies, and x2 values for all four attributes in 

order (from top to bottom: (a) sepal length, (b) 

sepal width, (c) petal length, and (d) petal width) 

with the Chi2 algorithm error rate set to 0.03. 

Significantly more merging is seen— especially in 

the first two attributes.

By allowing even a small discretization error, the feature selection and discretization 

process can significantly reduce the attribute domain. This is desirable for heuristic search 

algorithms such as Genetic Algorithms because the search space is dramatically reduced. 

However, the introduction of discretization error at this stage may disallow optimal rules to 

be discovered. Therefore, the optimization process is left to the RCGA by choosing an error 

rate of 0.
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4.2.1.2 Evolution

In this section, we present the results obtained when extracting discretized rules from the iris 

plant problem. It is imperative to mention that these extracted rules have non-continuous 

consequences and the output of the mle set is equal to the output of the rule(s) that classify 

the input without class confliction. When more than one rule classifies the input but conflict 

with one another, the rule set output is void. The first step is to design an appropriate fitness 

function.

Designing the fitness function is not trivial and may take some trial and error in 

order to achieve acceptable results. The chosen fitness function is

fitness = ramp(classification -  0.001 X (a vg _ num. _ antecedants)) [4.5]

This fitness function gives reward to correct classification percentage and gives a small 

penalty to containing higher average number of antecedents per rule. The penalty is 

introduced in effort to increase rule comprehension. The width of the attribute intervals are 

not considered to be an aspect of rule comprehension. The ramp function ensures that all 

fitness values are non-negative.

Evolution is performed with 1000 individuals with a probability of crossover and 

mutation of 80% and 1%, respectively, for 50 generations. A total of 150 vectors are utilized 

with 67% delegated as training vectors while the remaining 33% are testing vectors. The 

implication of dividing the dataset into training and testing sets is that when the evolved rule 

set is chosen, which is based on the testing set fitness, the training set performance may be 

quite poor. This could produce misleading results when reporting classification performance 

against other literature sources that do not split the dataset into training and testing sets. A 

summary of the results attained for one through five rules is presented in Table 4.4 below.
rules train fit test_fit train_class test_class complexity

1 0 . 3 2 0 . 3 5 0 . 3 2 0 . 3 5 0 . 0 0
2 0 . 6 6 0 . 6 9 0 . 6 6 0 . 6 9 1 . 0 0
3 0 . 9 2 1 . 0 0 0 . 92 1 . 0 0 1 . 0 0
4 0 . 9 2 1 . 0 0 0 . 9 2 1 . 0 0 1 . 0 0
5 0 . 9 2 1 . 0 0 0 . 9 2 1 . 0 0 1 . 0 0

Table 4.4 -  Evolution results for 1 through 5 rules are summarized. Testing classification reaches 100% for rule 

sets with 3 rules or more. However, training classification remains lower at 92%.
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Evolution with 3 Rules te s t b e s t

train_best
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train_m ea

6 8 9 102 4 5 70 1 3
Generation

Figure 4.5 -  Evolution with 3 rules. Very few generations are required to achieve the highest testing fitness when 

1000 individuals are used. Most evolutions require only 10 generations.

The 3-rule set achieves a 100% classification performance with the testing set. 

Unfortunately, the training set performance is weaker at 92%. The 3 discrete rules are listed 

below in Figure 4.6.

If x2 in [1, 3) then y=1
If x2 in [3, 5.2) and x3 in [1 ,1 .8) then  y=2
If x2 in [ 5 ,1 1 )th en y = 3

Figure 4.6 -  Discrete rule set extracted with the highest testing fitness. The attributes are labeled xO through x3 

while the iris class is labeled y.

Higher performing rule sets are extracted when the dataset isn’t split into training and 

testing sets. Examples of rule sets that achieve 96% and 97.3% classification are shown in 

Figure 4.7 and Figure 4.8, respectively.

If x3 in [0 .1 ,1 ) then  y=1 
If x3 in [1 ,1 .8 ) then y=2 
If x3 in [1 .8 ,11) then y=3

If x2 in [1, 3) then y=1 
If x3 in [1, 1.8) then y=2 
If x3 in [1 .8 ,11) then y=3

If x3 in [0 .1 ,1 ) then  y=1
If x2 in [3 ,11 ) and x3 in [0 .1 ,1 .8) then y=2
If x3 in [1.8, 11 )th en y = 3

Figure 4.7 -  Three examples of rule sets extracted without splitting the dataset into testing and training sets. 

Each rule set achieves 96% classification.

Ifx 3 in  [0 .1 ,1 )theny= 1  
If x2 in [3, 5) and x3 in [1 ,1 .8 ) then y=2 
If x2 in [5 ,11) then  y=3 
If x3 in [1 .8 ,1 1 )th en y = 3

If x3 in [0 .1 ,1 ) then y=1 
If x2 in [3, 5.2) and x3 in [1 ,1 .8) then y=2 
If x2 in [5 .2 ,11) then y=3 
If x3 in [1 .8 ,11 )th en y = 3

Figure 4.8 -  Two examples o f rule sets extracted without splitting the dataset into testing and training sets. Each 

rule set achieves 97.3% classification.

Interestingly, the classification performance does not seem to increase past 97.3% with the 

addition of more rules. Ishikawa is able to achieve 99.3% classification of the iris set with 

only three mles in [34]. It should be noted that the form of the rules differ from the form 

implemented here. More specifically, his antecedents are multivariate. Therefore, the 

proposed method for discrete rale extraction would not be able to achieve the rales that
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Ishikawa was able to extract without modifying the rale form. Clearly, the design of the rale 

form encoded in the chromosome play a large role in setting out limitations in the rale 

extraction process.

4.2.2 Complex ANN
In this section, experimentation is applied to the Complex ANN architecture developed in 

Chapter 3. This ANN is termed complex since it contains more neurons and connections 

than the other two ANNs considered in Section 4.2.3 and Section 4.2.4.

4.2.2.1 Data Collection

Data collection is achieved by allowing Khepera with the Complex ANN to drive 

autonomously throughout the environment in Figure 2.3, in both clockwise and 

counterclockwise orientations. All data, namely the proximity sensor values and the motor 

speed values, are logged. This data is organized in a set of vectors containing all 24 required 

continuous attributes and 2 continuous classification outputs. A total of 717 vectors are 

acquired with 67% delegated as training vectors while the remaining 33% are testing 

vectors. It is imperative to mention that this dataset does not capture any erroneous rales, 

which likely exist in the ANN architecture. For example, the situation in which all proximity 

sensor values are saturated (i.e. Khepera is completely surrounded by walls in close 

proximity) is not represented in the data. Avoiding meaningless combination of input 

reduces the search space for the RCGA, which is done in [61]. In some applications is may 

be desired to extract rales for every possible permutation of current and past input. Such a 

challenging endeavor may be necessary for safety critical applications in which human lives 

depend on proper system operation [62]. This thesis, however, limits the rale extraction to 

typical operating conditions of Khepera performing wall following in the environment of 

Figure 2.3.

4.2.2.2 Discretization

The Chi2 algorithm is applied to the complex wall follow dataset. A rather surprising and 

unfortunate outcome is that when the error rate is set to 0, only three attributes are discarded 

by the feature selection process. Fortunately, the number of intervals for each attribute is 

significantly reduced with ten being the greatest number of intervals in a single attribute.
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Attribute Intervals
0 0 2 4 9 927
1 0 8 695 70 0 896
2 0 9
3 0 2 2 558 798
4 0 1 158 4 2 5
5 0 1 7 2 1 3 4 3 2  7 7 9 953 1 0 0 3
6 0 1
7 0 1 1 0 2 3

' 8 0
9 0 1 3 2 1 703

1 0 0 1
1 1 0 2 2 84 174 2 2 8  503
12 0 1 9 139 2 7 2  3 6 4 3 6 8 4 2 0  5 1 7  6 0 0
13 0 1 8 923
1 4 0 S B H H
1 5 0 1
1 6 0 1 6 0 1 0 2 3
17 0 1
1 8 0
1 9 0 1 4 2 63 2 6 4  7 0 1 707
2 0 0 1 3 9 338 4 4 1  6 2 9
2 1 0 1 1 0 2 3
2 2 0 1
2 3 0 1 3 1 1

Table 4.5 -  Discretized intervals for the wall following data. Three attributes are not needed (attributes 8 ,14 , and 

18 highlighted in grey). The number o f  intervals is significantly reduced from the -1024  possible intervals.

The discretization intervals of Table 4.5 reduce the attribute space to be used in the RCGA 

search algorithm.

The classification space appears to have clustered regions. Therefore, by 

implementing a clustering algorithm, cluster centroids are identified in Figure 4.9. In this 

example, the K-means clustering algorithm is used to identify 5 clusters. The position of 

these five centroids are interesting because the represent distinct symmetrical operating 

states of Khepera: sharp turn left, subtle turn left, drive straight, subtle turn right, and sharp 

turn right.
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Figure 4.9 -  Wall follow classification space plotted with 5 centroids (left). Centroids are computed using the K- 

Means clustering algorithm and are tabulated (right).

Experimentation with and without classification clustering is performed. Results are 

reported in the following section.

4.2.2.3 Evolving Rule Set

Designing the individual fitness function for the wall follow problem is even more 

challenging than for the iris plant classification problem. Two important considerations are 

factored into the equation:

1. m eansquarederror: the mean squared Euclidean distance between the computed 

classification and the expected dassification. Refer to [63] for other similarity 

measures.

2. avg_num_antecedants: the average number o f antecedents per rule.

These quantities are used to build the fitness function shown in Equation 2.

fitness = ram i —  O.OOlx avg_num  antecedent [4.6]
(data_clasSjj - rule_ classu )2

0 =1«
The fitness function attempts to minimize the discrepancy measurement between the 

expected output (from the dataset) and the actual output (from the rule set output). A small 

penalty term is added in effort to minimize the number of antecedents in the rule set. A ramp 

function ensures that the minimum chromosome fitness is non-negative.
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Selecting an appropriate population size, mutation rate, and crossover rate is not 

trivial. It is clear from [64] that population sizes for genetic algorithms must be tailored 

towards the specific problem in order to achieve convergence towards the optimal solution. 

Alander proposes that the optimal population size is closely related to the length of the 

bitstring chromosome [65]. Haupt experimentally investigates optimal population sizes and 

mutation rates for a simple RCGA in [66] and determines that smaller populations with 

large mutation rates can be optimal. Nonetheless, it seems clear that experimentation with 

trial and error is required in order to attain acceptable results. As a starting point, the 

population is set to 1000 while crossover and mutation rates are set to 80% and 1%, 

respectively. Additional implementation details include an exit criterion is implemented 

such that evolution will stop when:

1. mean training fitness has not increased by more than 1% in 120 generations, or

2. mean training fitness has not increased by more than 1% in 30 generations and is 

within 5% of the maximum training fitness, or

3. 1000 generations have completed.

Experimentation is performed with rule sets of varying size—the number of rules is 

varied between one and forty. Experimentation is started without using classification space 

clustering. The rule sets attaining the highest testing fitness for each rule set size are 

recorded and summarized in Figure 4.10.

0.12 

0.1 

«  0.08 

j i  0.06

£  0.04 

0.02

0

Figure 4.10 -  Chromosome best fitness (both training aid testing) is plotted for 1 through 40 rules without 

classification clustering. Experimentation with several rule sizes are omitted in order to reduce the computational 

cost.
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Figure 4.11 - Chromosome classification error (both training and testing) o f the best fit chromosomes are plotted 

for 1 through 40 rules. Error tends to be reduced with additional rules. However, this relation is reportedly weak.
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Figure 4.12 - Average rule complexity o f the best fit chromosomes are plotted for 1 through 40 rules. The rule 

complexity is seen to increase with the number o f  rules.

The results are poor and the fitness values attained are quite low. Increasing the population 

size has the effect of increasing chromosome fitness values to higher levels. However, 

fitness values remain poor and detailed results are, therefore, omitted.

Attempts to discretize the classification space with the K-means clustering 

algorithm do not noticeably improve the fitness results, which are reported in Figure 4.13 

below. This is an unfortunate result, which may be attributed to the fact that the RCGA 

search space is not significantly reduced by discretization of the classification space since 

the size of the attribute space is orders of magnitude greater than the size of the 

classification space. Therefore, it seems reasonable to believe that the effectiveness of 

classification space clustering is limited to certain problem domains where the size of the 

attribute space is not many orders of magnitude greater than the size of the classification 

space.
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Figure 4.13 -  Chromosome best fitness (both training and testing) is plotted for 1 through 40 rules. 

Discretization o f the classification space is performed with 11 clusters. Results are not noticeably improved.

4020 25 301 2 3 4 5 7 9 12 15
Number of Rules

Chromosome Classification Error
25o  

E m 20 
a
.2 15 
3
s  1011Tfl

5 -Hcti
U i i i—i—i*"i—i —i—i—r

Qtrain_error 
Dtest error

I l— I— I— i "  V  I ' l l l l i— i— I—

1 2 3 4 5 7 9 12 15 20 25 30 40
Number of Rules

Figure 4.14 -  Chromosome classification error (both training and testing) o f  the best fit chromosomes are plotted 

for 1 through 40 rules.
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Figure 4 .1 5 -  Average rule complexity o f the best fit chromosomes are plotted for 1 through 40 rules.

4.2.2A  Testing

Thus far, the extracted rules have been tested in terms of their ability to model the data 

captured from the trained ANN performing wall following. The purpose of the training set is 

to test the fidelity of the rules while the testing set tests the accuracy of the rules. It is chosen 

to further test the rule accuracy by implementing the rule sets on Khepera and quantitatively 

measure the resulting wall follow trajectory. When Khepera is implemented with the each of
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the evolved rule sets, some elements of the wall follow behavior are observed. However, no 

rule set is able to guide Khepera successfully around the environment of Figure 2.3 in both 

clockwise and counterclockwise orientations and most rule sets yield exceptionally poor 

results in both orientations and are not worth reporting. The goal in Chapter 3 was not to 

obtain a simple ANN architecture, but to obtain a high performing ANN architecture that 

could rival a human operator at the wall follow task. The fact that accurate rule sets cannot 

be extracted is disappointing and clearly indicates limitations to the proposed method. 

Experimentation could be significantly different if  a simpler ANN architecture is used for 

the wall follow problem. This hypothesis is tested by experimenting with simpler ANN 

architectures in Sections 4.2.3 and 4.2.4.

4.2.3 Moderate ANN
The Complex ANN is modified such that only one past input vector is used instead, which 

reduces the number of attributes to 16. Additionally, the number of hidden layer neurons is 

reduced from 18 down to 10. The ANN is trained to perform wall following in a similar 

manner described in Chapter 3. For sake of comparison, the Moderate ANN achieves a 

testing quality index of 34 with the dataset from Chapter 3 while the Complex ANN 

achieves a testing quality index o f 30. The experimentation commences in a similar manner 

as with the Complex ANN problem.

4.2.3.1 Data Collection

Behavior representative data is collected in a similar manner described in 4.2.2.1. Therefore, 

details are omitted.

4.2.3.2 D iscretization

Attribute selection and discretization with the Chi2 algorithm is performed on the acquired 

data with results summarized in Table 4.5.
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Attribute Intervals
0 0 6 6 6 9 1 0 1 0
1 0 7 5 1 1 7 7 1
2 0 6
3 •o
4 0 _ 1 0 2 32 4 6 9 5 9 9

5 0 4 4 3
6 0 1 6 3 7 4 4 5
7 0 1 6 2 3 7 5 7 3
8 0
9 0 5 9 4 5 4 7 9 9

1 0 0 1 6

1 1 0 1 4 2 3 3 1 9 9 4 6
1 2 0 1 6 1 5 5 4 3 3

1 3 0 6
1 4 0 2 1 0
1 5 0 2 5 1 1 2 1 1

Table 4.6 -  Discretized intervals for the moderate wall following data. This interval table is significantly simpler 

than the complex wall interval table seen in Table 4.5.

4.2.3.3 Evolution

Evolution is performed with results summarized in Figure 4.16, Figure 4.17, and Figure 

4.18.
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Figure 4.16 -  Chromosome best fitness (both training and testing) is plotted for 1 through 40 rules.
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Figure 4.17 - Chromosome classification error (both training and testing) o f  the best fit chromosomes are plotted 

for 1 through 40 rules. Error tends to be reduced with additional rules.
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Chromosome Complexity

4020 301 2 3 4 5 7 9 12 15 25
Number of Rules

Figure 4.18 - Average rule complexity o f  the best fit chromosomes are plotted for 1 through 40 rules.

4.2.3A  Testing

The evolved rule sets are implemented on Khepera and the results are poor as in the complex 

wall problem. Once again there are no set of rules which can successfully navigate Khepera 

through the wall follow environment in both clockwise and counterclockwise orientations. 

The results obtained are not worth reporting and are therefore omitted.

4.2.4 Simple ANN
The ANN is further simplified to the Simple ANN, which contains only 8 attributes since the 

memory of past inputs is completely segregated. The most significant implication of this 

modification is that wall following can only be implemented in one of two orientations: 

clockwise or counterclockwise. The complexity of the ANN is quite low: the number of 

hidden neurons is reduced down to 5. The Simple ANN is trained for wall following in the 

clockwise orientation of Figure 2.3.

4.2.4.1 Data Collection

Behavior representative data is collected in a similar manner described in 4.2.2.1 with one 

important exception. Khepera is implemented with the Simple ANN and data is collected 

with Khepera driving in only the clockwise orientation of Figure 2.3.

4.2.4.2 Discretization

Attribute selection and discretization with the Chi2 algorithm is performed on the acquired 

data and results are summarized in Table 4.7. It is observed that the average number of 

intervals per attribute is greater than in the previously se n  attribute interval tables. This 

may be accredited to the fact that the ANN could be more discerning to the attributes since 

there are fewer of them.
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Attribute Intervals
0 3 7 2 7 1 0 2 3
1 0 153 17 5 3 3 4 3 7 8 5 4 7 622 6 2 3  6 8 9 7 37 7 7 9  7 9 9  8 7 7  9 3 1  9 8 7  1 0 2 3
2 0 6
3 0 2 5 12 6 9 4 7 1 638 1 0 2 3
4 0 4 6 506
5 0 1 6 13
6 0 1 3 6 93
7 0 1 2 4 5 6 1 7 9 1 7 9  329 4 5 5 820

Table 4.7 -  Discretized intervals for the simplified wall following data. This interval table is significantly simpler 

than the complex wall interval table seen in Table 4.5. However, the number o f intervals per attribute is 

noticeably greater.

4.2.4.3 Evolution

Evolution is performed with 1000 individuals and results are summarized in Figure 4.19, 

Figure 4.20, and Figure 4.21.

Chromosome Best Fitness
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Figure 4 .1 9 -  Chromosome best fitness (both training and testing) is plotted for 1 through 40 rules.
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Figure 4.20 - Chromosome classification error (both training and testing) o f  the best fit chromosomes are plotted

f o r  1 th ro u g h  4 0  ru les.  E r ro r  ten d s  to  b e  re d u c e d  w i th  add i t iona l  ru les .  T h is  t e n d e n c y  is  s ign i f ican t ly  s t ro n g e r  

than the evolution results obtained with the complex and moderate wall.
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Figure 4.21 - Average rule complexity o f the best fit chromosomes are plotted for 1 through 40 rules.

The chromosome fitness values attained are significantly greater in the simple wall problem 

compared to the complex and moderate wall follow problem. These improvements are 

significantly built upon when as the chromosome population is increased. The experiment is 

repeated with 5000 individuals and results are summarized in Figure 4.22, Figure 4.23, and 

Figure 4.24.
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Figure 4.22 -  Chromosome best fitness (both training and testing) is plotted for 1 through 40 rules.
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Figure 4.23 - Chromosome classification error (both training and testing) o f the best fit chromosomes are plotted 

for 1 through 40 rules. Classification error tends to be reduced with the addition o f rules.
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Figure 4.24 - Average rule complexity o f  the best fit chromosomes are plotted for 1 through 40 rules.

Over-evolution is observed in all evolution trials with 15 rules or more. In Figure 

4.26, the testing fitness is seen to decrease after about 400 generations while the training 

fitness continues to increase. The same phenomenon is not seen in Figure 4.25 or any of the 

evolutions with fewer than 12 rules. Interestingly, over-evolution was not observed in the 

previous complex and moderate ANN problems. It is believed that memorization was not 

previously seen since the search space was too large to achieve any significant degree of 

chromosome fitness and fitness values converged towards non-optimal solutions. This is a 

significant shortcoming, which is believed to be caused by limiting the population size due 

to computational cost. Previous testing clearly indicates that the rule sets extracted from the 

complex and moderate ANNs are poor and are likely non-optimal.

Evolution with 12 Rules
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Figure 4.25 -  Evolution details for 12 rules and 5000 individuals. Significantly higher fitness values are attained 

in comparison to the rule extraction fitness with the complex ANN and moderate ANN. Fitness values converge 

to  levels  th a t  a re  b e l ie v e d  to  b e  n e a r  optimal.
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Figure 4.26 -  Evolution details for 15 rules and 5000 individuals. Over-evolution is seen as the testing fitness 

decreases past 400 generations while the training fitness continues to increase. Fitness values do not converge.

4 .2 .4.4 Testing
The trajectory results obtained from the rule sets extracted from the simple ANN are 

significantly better than those extracted from the complex and moderate ANNs. Many of the 

extracted rule sets are able to guide Khepera successfully through the wall follow 

environment. In particular, all rule sets evolved with 5000 individuals and at least 9 rules are 

able to adequately perform wall following while 9 rules or less are inadequate. Adequate 

performance is defined as completing a full lap in the wall follow environment o f Figure 2.3 

with a maximum trajectory error o f less than 10 cm. An example trajectory result is plotted 

below in Figure 4.27 for the case of 12 rules.

Evolution with 15 Rules
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w  —
test mssrn
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Figure 4.27 -  Khepera is implemented with the 12 rules and produces a clockwise wall follow trajectory (top 

left) with a mean error o f 1,27cm. When the sim ple ANN is implemented on Khepera a mean error o f  1.25cm is 

achieved. The two trajectories are strikingly similar.

The 12 discrete rules yields a trajectory mean error of 1.27cm. In comparison to the trained 

ANN, which has a trajectory mean error of 1.25cm, the extracted rules are very similar in 

performance. The two trajectories performed in Figure 4.27 are highly similar, which 

indicates that the rule-set accuracy is very good. A summary of the performance obtained 

from each o f the discrete rule sets are summarized in Table 4.8.
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controller
trajectory error

minimum maximum mean std_dev
sim ple  ANN 0 5 . 6 9 1 . 2 7 1 . 1 9

1 r u l e f a i l f a i l f a i l f a i l
2 r u l e s f a i l f a i l f a i l f a i l
3 r u l e s f a i l f a i l f a i l f a i l
4 r u l e s f a i l f a i l f a i l f a i l
5 r u l e s f a i l f a i l f a i l f a i l
7 r u l e s f a i l f a i l f a i l f a i l
9 r u l e s 0 9 . 0 9 3 . 0 1 2 . 5 2

12 r u l e s 0 4 . 6 3 1 . 2 5 1 . 1
15 r u l e s 0 5 . 9 1 . 7 1 . 3 5
2 0  r u l e s 0 5 . 2 3 1 . 5 5 1 . 2 7
2 5  r u l e s 0 4 . 94 1 . 5 1 1 . 2 2
30  r u l e s 0 5 . 8 3 1 . 8 5 1 . 4 5
4 0  r u l e s 0 4 . 3 8 1 . 1 4 0 . 9 9

Table 4.8 -  Performance o f the discrete rule sets obtained from the simple ANN are summarized.

It is clear from Table 4.8 that a minimum number of rules must be used in order to achieve 

acceptable rule accuracy. Unfortunately, the rule set comprehension decreases with the 

addition of more rules. There exists a trade-off between rule set comprehension and rule 

accuracy.

4.2.5 Re-Extraction
In Section 4.2.4, discrete rule sets have been extracted from the simple ANN and rule 

accuracy was generally deemed acceptable. Section 4.2.5 examines the effectiveness of the 

proposed rule extraction method by re-applying the method to extract rules to a set of 

discrete rules obtained in Section 4.2.4. The motivation behind this endeavor is to compare 

the extracted rule set with the re-extracted rule set in terms of similarities in rule 

comprehension and accuracy. It is chosen arbitrarily to use the rule set with 12 rules for this 

study since it possesses a good compromise between rule accuracy while not employing an 

excessive number of rules.

4.2.5.1 D ata Collection

Behavior representative data is collected in a similar manner described in 4.2.2.1 with two 

important exceptions: Khepera is implemented with the 12 rules instead of an ANN, and 

data is collected for only the clockwise orientation of Figure 2.3.

4.2.5.2 Discretization

Attribute selection and discretization with the Chi2 algorithm is performed on the acquired 

data with results summarized in Table 4.9.
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Attribute Intervals
0 0 1 0 2 2
1 0 3 6 0  384 4 7 5 4 7 6 532 5 4 5  5 8 1 5 8 4  6 2 4  6 9 0  7 2 0  7 3 6  792  8 6 8  873  9 3 1  9 3 6  9 6 0  1 0 2 :
2 0 8
3 0 1 1  119 4 3 8 6 2 5 648 1 0 2 3
4 0 7
5 0
6 0 4
7 0 3 1

Table 4.9 - Discretized intervals for the re-extraction wall following data.

4.2.5.3 Evolution

Evolution is performed with 5000 individuals. The individual chromosome with the highest 

testing fitness possesses the following properties:
t r a i n i n g  f i t n e s s :  0 . 5 6 3 6 5 8  
t e s t i n g  f i t n e s s :  0 . 9 3 4 4 5 4  
t r a i n i n g  e r r o r :  1 . 7 7 0 7 2
t e s t i n g  e r r o r :  1 . 0 6 8 9
r u l e  c o m p l e x i t y :  2 . 1 6 6 6 7

It is rather disappointing to see that the re-extracted rule set contains training and testing 

error o f such magnitude. Ideally the error would be zero and the re-extracted rules would 

exactly resemble the originally extracted rules. Unfortunately this is not the case. The 

original and re-extracted rule sets are listed in Figure 4.29 and Figure 4.29, respectively. 

Upon initial inspection the rule sets appear significantly different.

If x0 in [3, 727) and x1 in [622 ,1024) and x2 in [6 ,1024) and x6 in [6 ,1024) then  y=(10,-10) 
If x1 in [779,1024) and x2 in [6 ,1024) and  x5 in [0 ,13 ) and x7 in [2 ,1024) then  y=(10,-9)
If x3 in [638,1024) then y=(7,-8)
If x3 in [638,1024) then y=(9,-5)
If x1 in [547,931) and x3 in [0 ,638) then y=(1 0 ,7 )
If xO in [727,1024) and x1 in [689, 779) and x3 in [0 ,638) then y=(10,9)
If xO in [1023,1024) and x1 in [737, 987) and x3 in [0 ,1023) and x7 in [0, 61) then y=(10,9) 
If x1 in [378, 931) and x3 in [0 ,1023) then  y=(9,8)
If xO in [1023,1024) and x4 in [0 ,6) then y =(9,10)
If x3 in [0 ,4 7 1 ) and x4 in [0, 6) and x7 in [0 ,179) then y=(8,10)
If x3 in [12 ,1023) and x7 in [0 ,61) then y=(8,11)
If x1 in [0 ,6 2 3 ) and x3 in [0 ,12) then y=(6,13)

Figure 4.28 -  Original 12 rules extracted from the simple ANN.

#  If x1 in [868,1024) and x2 in [8 ,1024) and x6 in [4 ,1024) then y=(10,-9)
#  If x3 in [625,1024) then  y=(9,-8)
#  If x2 in [8 ,1024) and x3 in [625 ,1024) and x7 in [31 ,1024) then  y=(9,-8)
#  If x2 in [8 ,1024) and x3 in [119, 648) and x7 in [31 ,1024) theny=(8,-7)
#  If x3 in [648,1024) then  y=(8,-7)
#  If x1 in [476 ,960) and x3 in [119 ,648) then  y=(9,8)
#  If xO in [1022, 1024) and x4 in [0, 7) then  y=(9,8)
#  If xO in [1022,1024) and x3 in [0 ,1023) then  y=(9,8)
#  If x1 in [624, 868) and x3 in [0, 438) then  y=(9,8)
#  If x1 in [736 ,931) and x4 in [0 ,7 ) then  y=(9,9)
#  If x3 in [0 ,1023) and x7 in [0, 31) then  y=(7,10)
#  If x1 in [0, 624) and x2 in [0, 8) and  x3 in [0 ,11 ) then  y=(7,11)__________

Figure 4.29 -  12 rules are re-extracted from the original 12 rules. These rules are marked with a ‘# ’.
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Upon closer inspection some similarities can be seen. These similarities are outlined in 

Table 4.10 below.

Rules Comments

If x3 in [638,1024) then  y=(7,-8)
If x3 in [638,1024) then y=(9,-5)
#  If x3 in [648,1024) then  y=(8,-7)
#  If x3 in [625,1024) then  y=(9,-8)

R o t a t e
r i g h t

If x1 in [0 ,6 2 3 ) an d  x3 in [0 ,12) then y=(6,13)
#  If x1 in [0 ,624) and x2 in [0 ,8 )  and x3 in [0 ,11 ) then y=(7,11)

B e n d
l e f t

If x3 in [12 ,1023) and x7 in [0, 61) theny=(8,11) 
#lf x3 in [0 ,1023) and x7 in [0 ,31) then y=(7,10)

B e n d
l e f t

If x1 in [378, 931) and x3 in [0 ,1023) then  y=(9,8) 
#  If x1 in [624,868) and x3 in [0 ,438) then y=(9,8)

D r i v e
s t r a i g h t

If xO in [1023,1024) and x4 in [0 ,6 ) then  y=(9,10) 
#  If xO in [1022,1024) and x4 in [0, 7) then  y=(9,8)

D r i v e
s t r a i g h t

If x1 in [547, 931) and x3 in [0, 638) then  y=(10,7)
#  If x1 in [476,960) and x3 in [119,648) then y=(9,8)

B e n d
r i g h t

If xO in [3, 727) and x1 in [622 ,1024) and x2 in [6 ,1024) and x6 in [6 ,1024) then y=(10,-10) 
If x1 in [779,1024) and x2 in [6 ,1024) and  x5 in [0 ,13) and x7 in [2 ,1024) then y=(10,-9)
#  If x1 in [868,1024) and x2 in [8 ,1024) and x6 in [4 ,1024) then  y=(10,-9)
#  If x2 in [8 ,1024) and x3 in [625,1024) and x7 in [31 ,1024) then  y=(9,-8)
#  If x2 in [8 ,1024) and x3 in [119 ,648) and x7 in [31 ,1024) then  y=(8,-7)

M i s c . 
R o t a t e  
r i g h t

If xO in [727,1024) and x1 in [689, 779) and x3 in [0 ,638) then y=(10,9)
If xO in [1023 ,1024) and x1 in [737, 987) and  x3 in [0 ,1023) and  x7 in £0, 61) then y=( 10,9) 
If x3 in [0 ,471) and x4 in [0 ,6 ) and x7 in [0 ,179) then y=(8,10)
#  If xO in [1022,1024) and x3 in [0 ,1023) then y=(9,8)
#  If x1 in [736, 931) and x4 in [0, 7) then y=(9,9)

M i s c .
D r i v e

S t r a i g h t

Table 4.10 -  The originally extracted rules and re-extracted rules are entered into a table in order to outline 

similarities between the two rule sets. For example, the first row contains rules that check to see if  x3 is fairly 

high in order to sharply rotate Khepera to the right. The re-extracted rules are marked with a ‘# ’.

The similarities between the two rule sets can be difficult to perceive as is the case in the 

last two rows of Table 4.10. One possible explanation could be that the rule set 

comprehension is poor. Alternatively, the rule set extraction method could be poor in 

extracting accurate rule sets. Accuracy limitations have already been observed with the 

complex and moderate ANN rule extraction problems. The accuracy degrading introduced 

by the rule extraction method is probably best investigated by quantifying and comparing 

trajectory error for each of the three wall follow controllers: simple ANN, 12 extracted rules, 

and 12 re-extracted rules.

4.2.5.4 Testing

Khepera is implemented with the 12 re-extracted rules and a trajectory is plotted in Figure 

4.30 below. Significant performance degrading is seen as the mean trajectory error increases 

from 1.25cm to 1.98cm. This is mostly attributed to the poor performance seen on the right

most wall.
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Figure 4.30 — Khepera is implemented with the 12 re-extracted rules and produces a clockwise wall follow  

trajectory (top left) with a mean error o f  1.98cm. When the original 12 rules are implemented on Khepera a mean 

error of 1,25cm is achieved. Significant performance degrading is seen on the right-most wall.

In summary, the mean trajectory errors reported for the simple ANN, 12 extracted discrete 

rules, and 12 re-extracted discrete rules are 1.27cm, 1.25cm, and 1.98cm, respectively. It is 

likely that the proposed rule extraction method loses some accuracy diuing each translation.

4.3 Discussion

The proposed methodology for discrete rule set extraction is computationally expensive. 

This is mostly attributed to the compounding computational costs of undertaking the 

Pittsburgh chromosome approach with very challenging high-dimensionality problem 

domains. Consider the case of extracting 12 rules. Equation 4.4 indicates that the number of 

chromosome permutations is 7.40xl0159, 7.17xl0217, and 3.11xl0320 for the complex, 

moderate, and simple ANNs, respectively. Evidently, the dimensionality of the complex and 

moderate ANN rule extraction problem are too great for the proposed method. The
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discretization stage could not adequately reduce the search space for these two ANN 

problems.

There are many degrees of freedom (e.g. recombination, fitness evaluation, and 

chromosome encoding, etc.) of the RCGA which call for more experimentation. However, 

the computational cost of such an endeavor marks this infeasible. Unfortunately, 

computational cost restricts experimentation. The following explorations may have been 

considered if computational costs had not been so restricting:

1. Greater populations. Convergence towards non-optimal solutions is a great 

shortcoming of the RCGA when confronted with an exceptionally large search 

space. This is seen in the case of rule extraction from the complex and moderate 

ANNs. Increasing the population size helps to avoid this problem.

2. Chromosome Encoding. Only the Pittsburgh encoding method is investigated. 

Exploration and comparison of the Michigan and Pittsburgh approaches could be 

beneficial Also, different rule forms could be explored. It has been shown n 

Section 4.2.1 that the chosen rule form restricts the classification of irises. In such 

instances, a different rule form is necessary in order to achieve higher performing 

rule sets while preserving rule comprehension.

3. Varying membership functions. Alternative membership functions to the 

rectangular one seen in Figure 4.2 could be explored.

4. M ore d a ta  Acquiring and utilizing additional data vectors to capture the ANN 

behavior may be beneficial.

The feature selection and discretization performed with the Chi2 algorithm could be 

modified such that the error rate associated with interval merging is computed in a manner 

that gives consideration to class similarity. The rationale is that the error associated with 

merging attribute intervals should be deemed less when the associated classes are similar as 

opposed to being markedly different. A measure of class similarity can be assigned based on 

one of the many similarity measurements outlined in [63]. This modification would make 

the Chi2 algorithm mores suitable for problems with continuous classification. This 

modification, however, is difficult to implement because it is not clear how x2 values should 

be computed.
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4.4 Conclusion

A methodology for extracting discrete rule sets from high dimensionality data captured from 

a trained ANN with both continuous attributes and classification is explored. The rule 

extraction methodology uses a real-coded genetic algorithm (RCGA) to evolve a discrete 

rule set. Some experimentation is performed with the Iris plant classification problem and 

the extracted rule sets are comprehensive and able to correctly classify 146 of 150 data 

points. Experimental results indicate that the rale sets extracted from the simple ANN 

successfully perform wall following when implemented on the mobile robot, Khepera. 

However, in comparison to the trained simple ANN, the extracted rales suffer with poorer 

performance. Furthermore, rules extracted from the simple ANN are not as comprehensive 

as the iris plant extracted rales. This is attributed to the fact that the wall follow problem is 

considerably more complicated than the iris plant classification problem in terms of attribute 

and classification space dimensionality. Rules cannot be practically extracted from the 

complex and moderate ANNs with adequate rale set accuracy due to the enormous 

computational cost. The proposed methodology is likely applicable to numerous problem 

domains independent o f ANN architecture and attribute/class domain (i.e. binary, discrete, 

continuous, etc). However, the computational cost of the proposed method makes it 

inappropriate for highly complex problems. A decomposition rule extraction approach may 

be more appropriate in such cases.
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Chapter 5 

Conclusion

Braitenberg argued that behaviors could be synthetically produced in mobile robotics. Since 

his book publishing in 1984, numerous works can be found in the literature which validates 

many o f his assertions. In this thesis, i is demonstrated that autonomous robotic reactive 

behavior can be synthesized with artificial neural networks (ANNs). Implicit knowledge is 

captured using a learning algorithm for an ANN-based controller for the problem of 

autonomous robotic wall following. Numerous quantitative measurements indicate that the 

trained ANN is able to successfully generalize across a variety of environments with 

varying wall geometry.

Performance evaluation reports that the trained ANN can achieve better wall follow 

trajectory control at higher speeds than a human operator. The research of behavior 

performance scalability is significant since real-world applications could potentially benefit 

from very fast reactive controllers obtained from extrapolation of controllers trained under 

slower operating conditfans. The quantification of behavior performance scalability is a 

notable contribution to research and is a recommended research direction. Particular 

attention should be given to the controller’s sampling frequency on the input. Fast and 

accurate reactive control requires frequent input sampling.
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Braitenberg also illustrates how more complex autonomous robotic designs tend to 

be less transparent. This phenomenon creates a new research area of knowledge 

representation. It is important to represent knowledge in a comprehensive form so that the 

knowledge can be read and/or verified by a human expert. It is demonstrated that the 

implicit knowledge embedded into the trained ANN can be extracted and represented in 

human-comprehensive terms. A methodology for extracting discrete rule sets from a trained 

ANN with both continuous attributes and classification is explored. The methodology is 

based on attribute discretization, feature selection, and evolutionaiy rule-set search using a 

real-coded genetic algorithm. Experimentation is conducted on three different ANN 

architectures with varying size and complexity. Experimental results indicate that the 

methodology is only successful with the simplest ANN architecture. This is believed to be a 

result of the method’s exponentially increasing heuristic search space associated with the 

addition of attributes in the more complex ANN architectures. Furthermore, these additional 

attributes tend to decrease the comprehension of the extracted rules.

The rule extraction methodology is likely applicable to numerous problem domains 

independent of ANN architecture and attribute/class domain (i.e. binary, discrete, 

continuous, etc). In this sense, the rule extraction methodology is a significant contribution 

to research. However, the computational cost of heuristic search makes the method 

inappropriate for highly complex problems. A decomposition rule extraction approach may 

be more appropriate in such cases. Therefore, decompositional rule extraction of ANNs with 

continuous attributes and continuous classification is a recommended research direction. 

There is a need for a universal ANN rule extraction method that would ideally be applicable 

to any ANN architecture and have a low order of computational cost.
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