
University of Alberta

Autonomous Robotic Reactive Behavior:
Synthesis, Scalability, and Transparency

by

Paul Anthony den Boef

A thesis submitted to the Faculty o f Graduate Studies and Research in partial
fulfillment o f the requirements for the degree o f M aster o f Science

in

Department o f Electrical and Computer Engineering

Edmonton, Alberta
Fall 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-612-95893-0
Our file Notre reference
ISBN: 0-612-95893-0

The author has granted a non
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque et Archives Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dedications and Acknowledgments

I would like to dedicate this thesis to my wife, Jessica Suidan, for all of the support she has

given me throughout my university education. Additional dedication is extended to my

parents and in-laws, who have all been very supportive of my endeavors.

I would like to acknowledge my supervisor, Dr. Witold Pedrycz, for the direction and

insight he has provided me during my graduate studies at the University of Alberta.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

CHAPTER 1 INTRODUCTION... 1
1.1 In spir a tio n from B r a it e n b e r g ..1

1.1.1 Vehicle 1 - Getting Around ... 2
1.1.2 Vehicle 2 - Fear and Aggression ... 3
1.1.3 Vehicle 3 - Love .. 4
1.1.4 Vehicle 4 - Values and Special Tastes.. 5
1.1.5 Vehicle 5 - Logic..7
1.1.6 Conclusion ..7

1.2 B eh a v io r Sy n t h e s is ...7
1.2.1 Fuzzy & Evolutionary Controllers... 8
1.2.2 ANN-Based Controller...9
1.2.3 Behavior Evaluation...10

1.3 Ru le Ex t r a c t io n ... 11
1.3.1 Rule Extraction Taxonomy.. 11
1.3.2 Rule Extraction with Continuous Attributes... 12
1.3.3 Decompositional vs. Black-Box.. 13

1.4 Co n c l u sio n ..14

CHAPTER 2 EXPERIMENTATION PLATFORM...15
2.1 Robotic Pl a t f o r m ...15

2.1.1 Khepera Overview ..16
2.1.2 Khepera Development Logistics.. 17

2.2 K h e p e r a ’s E n v ir o n m e n t ..18
2.2.1 Sensory Space .. 19

2.3 C o n c lu s io n ... 22

CHAPTER 3 BEHAVIOR SYNTHESIS___________________ 23
3.1 Pro po sed M e t h o d ..24

3.1.1 Backpropagation...24
3.2 A cq uir ing D a t a ... 26
3.3 A N N A rch itecture ... 27
3.4 A N N Le a r n in g ... 32
3.5 B eh a v io r Ge n e r a l iz a t io n ..35
3.6 B eh a v io r Perfo rm a nce Sc a l in g .. 41
3.7 Co n c l u sio n ... 45

CHAPTER 4 ANN RULE EXTRACTION... 46
4.1 Pr o po sed M e t h o d ..47

4.1.1 Discretization...48
4.1.2 Rule Set Evolution...50

4.2 Ex pe r im e n t a t io n ... 52
4.2.1 Iris P lan t...53
4.2.2 Complex ANN ... 57
4.2.3 Moderate A N N ...62
4.2.4 Simple A N N .. 64
4.2.5 Re-Extraction... 70

4.3 D isc u ssio n ..73
4 .4 Co n c l u sio n ... 75

CHAPTERS CONCLUSION.. 76
BIBLIOGRAPHY... 78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

Ta ble 3.1 - Sa m ple A N N A rchitectures Ex p l o r e d ... 29

Ta ble 3 .2 - Sam ple A N N A rchitectures Perfo rm a nce In d e x ... 30

T a b l e 3.3 - A N N c o n n e c t io n w e i g h t s ... 34

T a b l e 3.4 - T a b u l a t e d t r a je c t o r y e r r o r .. 41

Table 3.5 - Ta b u l a t e d A N N a n d teleoperation (h u m a n) e r r o r43

T a b l e 4 . 1 - D a t a S o r t e d b y In t e r v a l s ...49

Ta ble 4 .2 - in t e r v a l s , c la ss freq uencies , a n d x 2 v a l u e s ... 54

Ta ble 4 .3 - in t e r v a l s , c la ss fr eq u en c ies , a n d x 2 v a l u e s (2) ... 54

T a b l e 4.4 - E v o l u t io n r e s u l t s f o r 1 t h r o u g h 5 r u l e s ..55

Table 4.5 - D iscretized in terva ls for the w a ll follow ing d a t a 58

T a b le 4 .6 - D is c r e t iz e d i n t e r v a l s f o r t h e m o d e r a t e w a l l f o l l o w i n g d a t a 63

T a b le 4.7 - D is c r e t iz e d i n t e r v a l s f o r t h e s im p l if ie d w a l l f o l l o w i n g d a t a65

T a b l e 4.8 - P e r f o r m a n c e o f t h e d is c r e t e r u l e s e t s ..70

T a b le 4 .9 - D is c r e t iz e d i n t e r v a l s f o r t h e r e -e x t r a c t i o n w a l l f o l l o w i n g d a t a .. 71

T a b le 4 .10 - o r i g i n a l l y e x t r a c t e d r u l e s v s . r e - e x t r a c t e d r u l e s72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

Figure 1 .1 - V ehicle 1: Getting A r o u n d ...2

Figure 1 .2 - V ehicle 2: Fear a n d A g g r e s s io n ..3

Figure 1 .3 - Fe a r a n d A g g r essio n Tr a je c t o r y ..4

Figure 1.4 - V ehicle 3: Lo v e .. 4

fig u r e 1.5 - Lo v e Tr a je c t o r y ...5

Figure 1 .6 - V ehicle 4: V a lu es a n d S pecial Ta s t e s ... 6

Figure 1.7 - V alu es a n d Special Ta stes Tr a je c t o r y ..6

Figure 2.1 - Khepera m in a tu r e r o b o t ... 16

Figure 2 .2 - Khepera d a t a l o g .. 17

Figure 2.3 - Kh e pe r a En v ir o n m e n t .. 18

Figure 2 .4 - Generalized i7 Se n so r y Sp a c e .. 19

fig u r e 2.5 - M ea su r e d i7 Se n so r y Sp a c e ...20

Figure 2 .6 - M o deled i7 Se n so r y Sp a c e ... 21

Figure 3.1 - M eth o do lo g y for beh a v io r sy n t h e sis ..24

fig u r e 3 .2 - Generalized m ultilayer A N N ..25

Figure 3.3 - Tr ainin g a n d testin g d a t a ... 27

Figure 3 .4 - Generalized Tw o -La y e r e d A N N ... 28

F igure 3.5 - Per fo rm an ce In d e x v s . N o . Pa st V e c t o r s ..31

F igure 3 .6 - Perfo rm a nce In d e x v s . N o . H id d e n N e u r o n s ... 31

Figure 3.7 - Testing a n d Tr a in in g Perfo rm an ce In d ic e s ...33

Figure 3.8 - Gr a y sc a l e Represen ta tio n of A N N Co n n e c t io n s .. 34

Figure 3 .9 - Tr a in ed A N N W orld 1 Tr a je c t o r y .. 35

Figure 3 .1 0 - Tr a in ed A N N W o r ld2 a n d W o r ld3 Tr a je c t o r y ..37

Figure 3 .1 1 - Tra in ed A N N W o rld4 a n d w o r ld s Trajec to r y ...38

Figure 3 .1 2 - Tr a in ed A N N W o r ld6 Tr a je c t o r y ..39

Figure 3.13 - Trained A N N W o r ld7 a n d W o r ld s Tr a je c t o r y ..40

Figure 3 .1 4 - Su m m a r y o f Trajectory Er r o r ...41

F igure 3 .15 - tr a in ed A N N w ith u n it y o u tpu t s c a l in g .. 42

Figure 3 .1 6 - t r a in ed A N N w ith o u tpu t sc a lin g o f 2x ... 43

Figure 3 .1 7 - t r a in ed A N N v s . h u m a n o p e r a t o r ...44

Figure 4. l - M eth o do lo g y for discrete rule set ex t r a c t io n ..47

F igure 4 .3 - In d iv id u a l c h r o m o so m e .. 51

Figure 4 .4 - c r o sso v er a n d m u t a t io n ...52

Figure 4.5 - Ev o lu tio n w ith 3 r u l e s ...56

Figure 4 .6 - discrete r ule set w ith th e highest testin g f it n e s s56

Figure 4.7 - Iris 3-rule ex tr a c ted r ule s e t s .. 56

with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4 .8 - Iris 4-rule extr a c ted r ule s e t s .. 56

Figure 4 .9 - W all follow classificatio n s p a c e ... 58

F igure 4 .10 - Ch ro m o so m e b e st fitn ess for com plex w a l l ..60

F igure 4 . 1 1 - Ch ro m o so m e classificatio n error for com plex w a l l 60

fig u r e 4 .1 2 - A verag e ru le co m plexity for co m plex w a l l ...60

Figure 4 .13 - Chro m o so m e b e st fitness for co m plex w a ll (2)..61

Figure 4 . 1 4 - Chro m o so m e classificatio n error fo r com plex w a ll (2)61

Figure 4 .15 - A ver a g e rule co m plexity for co m plex w all (2)...62

Figure 4 .1 6 - Chro m o so m e b e st fitn ess fo r m o d er a te w a l l .. 63

Figure 4 . 1 7 - Chro m o so m e classificatio n error fo r m o derate w a l l64

Figure 4 .18 - A ver a g e r u le co m plexity fo r m o d er a te w a l l .. 64

Figure 4 .19 - Ch ro m o so m e b e st fitness for sim plified w a l l ... 65

Figure 4 .20 - Ch ro m o so m e classificatio n error for sim plified w a l l66

F igure 4.21 - A v erag e r ule co m plexity fo r sim plified w a l l .. 66

Figure 4 .22 - Ch ro m o so m e b e st fitn ess for sim plified w a ll (2) 66

f ig u r e 4 .23 - Ch ro m o so m e classificatio n error fo r sim plified w a ll (2) 67

Figure 4 .24 - A v er a g e r ule co m plexity for sim plified w a ll (2)67

Figure 4 .25 - Ev o lutio n details for sim plified w a l l ..68

Figure 4 .26 - Ev o lutio n details for sim plified w a ll (2) ..68

Figure 4 .27 - extr a c ted discrete 12-ru le k h epera t r a je c t o r y 69

F ig u r e 4.28 - O r ig in a l 12 r u l e s e x t r a c t e d fr o m t h e s im p l e ANN..............................71

Figure 4 .29 - 1 2 rules a r e re-extr a c ted from th e o riginal 12 r u l e s71

Figure 4 .30 - re-ex tr a c ted discrete 12-rule tr a jec to r y ... 73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

It is well known that autonomous robotic reactive behaviors can be synthesized. However

the topics of generalization ability, behavior performance scalability, and behavior

transparency are less known. The investigation of these three topics constitutes the main

objective of this thesis. Behavior synthesis, including generalization ability and performance

scalability, is investigated in Chapter 3. Behavior transparency is investigated in Chapter 4.

Finally, Chapter 5 provides concluding remarks and recommendations.

This chapter provides an introduction to behavior synthesis and behavior

transparency; the remainder of this chapter is organized in sections. Section 1.1 provides an

overview of behavior synthesis with regards to Valentino Braitenberg. In this section, the

concept of behavior synthesis and behavior transparency is introduced. Section 1.2 discusses

the prior art of behavior synthesis seen in the literature. Finally, Section 1.3 discusses the

prior art of rule extraction.

1.1 Inspiration from Braitenberg

Valentino Braitenberg presents fourteen vehicle designs in his famous book “Vehicles:

Experiments in Synthetic Psychology” [1]. These vehicle designs are shown to synthetically

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

produce autonomous behaviors with increasing complexity. Braitenberg’s vehicle designs

are inspiring because he starts with comprehensive vehicle designs and provides notable

accounts for their resulting autonomous behaviors. The more advance vehicle designs

become increasingly less comprehensive, yet Braitenberg’s illuminating words are

convincing enough to provide inspiration that such vehicle designs may be feasible. The

proposed vehicle designs are quite theoretical and conceptual, and no implementation or

experimentation is offered by Braitenberg. Exploration of this void continues to be

challenging research task undertaken by many who have received inspiration from

Braitenberg’s famous vehicle designs.

An overview of Braitenberg’s first five vehicle designs is presented in this

introduction. Although the fifth vehicle design will be the focus in this thesis, it is important

to examine the first four in order to observe the progression in behavior complexity and the

decrease in behavior transparency. Each vehicle design section contains a brief description,

which even includes some of Braitenberg’s diagrams for verbatim. Some simple

experimentation is conducted using the mobile robot, Khepera. (See section 2.1 for an

overview of Khepera). In some aspects, the vehicle designs are extrapolated and/or

manipulated for appropriate implementation on Khepera. It is with hope that these

implementations do not lose the spirit of the vehicle designs presented by Valentino

Braitenberg.

1.1.1 Vehicle 1 - Getting Around
Vehicle 1 is very simple—it contains one sensor and one motor. The force exerted by the

motor is proportional to the absolute temperature measured from the sensor.

Figure 1.1 - Vehicle 1 contains one motor and one

temperature sensor with a fixed connection between

them [1],

Braitenberg asserts that this vehicle would display a preference for cooler temperatures

since the vehicle would speed up to exit warmer environments while slowing down when

cooler environments are reached. The rudimentary vehicle design produces a rudimentary

behavior allowing vehicle 1 to “get around”.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.1.2 Vehicle 2 - Fear and Aggression
This vehicle is equipped with two sensors providing a differential input, and two motors

providing differential drive. The forces exerted by the motors are proportional to the light

intensity measured from the sensors. Braitenberg asserts that the behaviors of fear and

aggression can be synthetically produced with the fixed connections between sensors and

motors seen in Figure 1.2.

I | Figure 1.2 - Vehicle 2 displaying fear (left) and aggression

(right) for a light source [1].

The behavior depicted in Figure 1.2 can be reproduced with the mobile robot,

Khepera. Khepera’s sensor readings from il and 12 can be averaged to form the left sensor

while sensors i3 and 14 are averaged to form the right sensor. The left and right virtual

sensors measure a differential infrared reflection from a nearby object. The motors are set to

speeds proportional to the perceived infrared reflection from a nearby object. The

proportionality is biased slightly such that the minimum speed attainable is 0.008cm/s.

Khepera is then placed in close presence to an infrared reflecting object. The object is

placed exactly 12 cm north and 5 cm west of Khepera’s initial position. The resulting

trajectory and motor speeds for the “fear” and “aggression” vehicles are recorded in Figure

1.3.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Khepera Position

E
co
<0o0.>■

fear

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
time (ms)

re 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
time (ms)

-8 - 6 - 4 - 2 0 2 4 6 8

X-Position(cm)

Figure 1.3 - Fear and aggression trajectories (left) and differential motor speeds (top right and bottom right). The

aggressive vehicle accelerates toward the object and crashes into it while the fearsome vehicle veers away.

The trivial connections between sensors and actuators result in synthetic behaviors

resembling “fear” and “aggression” towards the nearby object.

1.1.3 Vehicle 3 - Love
This vehicle design consists of two or more sensors, all in differential configurations. The

sensory capabilities are widely varied and include light intensity, temperature, and oxygen

concentration. The forces exerted by the motors are a function of the sensory input.

Valentino Braitenberg asserts that the behavior “love” can be synthetically produced using

the fixed connections seen in Figure 1.4.

/

i i r

a

Vehicle designs (a)

Figure 1.4 - The inhibitory sensors of Vehicle 3 attracts the vehicles

to the light source: design (a) rests in close proximity to the light, and

design (b) approaches the light but soon veers away [1],

as “love”. Vehicle design (b), however, will soon veer away from the light source. This

behavior could be termed “promiscuous”. Khepera is used to reproduce the behavior seen in

Figure 1.4. The implementation is similar to the previous vehicle. Khepera’s sensors i l and

i2 can be averaged to form the left sensor while sensors i3 and i4 are averaged to form the

right sensor. The two virtual sensors measure a differential infrared reflection from a nearby

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

object. The wide range of sensors described by Valentino Braitenberg cannot be easily

implemented at this time since Khepera is only equipped with one type of sensor. The

motors speeds are inhibited by IR reflection from a nearby object. Khepera is placed in close

presence to an infrared reflecting object. The object is placed exactly 20 cm north and 10 cm

east of Khepera’s initial position. Khepera’s resulting trajectory speed and for the two

vehicle designs are recorded in Figure 1.5.

Khepera Position

)bject

Eo,
co

ioveromisc uou!CL>

X-Position(cm)

10
c

5

> right

0
2500 3000 35001000 1500 20000 500

time (ms)

3500
time (ms)

Figure 1.5 - Love and Promiscuous trajectories (left) and differential motor speeds (right). The “love” design

steers towards the object, slows down, and eventually stops in front of the object. The “promiscuous” design

drives towards the object but soon veers away from it.

Braitenberg’s third vehicle design, much like the first two, consists of trivial

connections between sensors and actuators in order to create a synthetic behavior. The

synthetic behaviors seen from the first three vehicle designs are quite predictable. This

behavior transparency is lost with the design complications introduced by vehicle 4.

1.1.4 Vehicle 4 - Values and Special Tastes
The fourth vehicle is similar to the previous vehicle because it also consists of two or more

sensors in a differential configuration and two motors providing differential drive. The

distinguishing modification to this vehicle design is that the force exerted by each motor is a

non-linear function of the sensory stimulation intensity. As a result, the synthetic behavior

becomes more unpredictable. This is demonstrated by implementing Khepera with the non

linear function seen in Figure 1.6.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1.6 - Arbitrary non-linear functions are implemented for the left and right motors using the left and right

plots, respectively.

Khepera is placed in close presence to an infrared light reflecting object. The object

is placed 17.5 cm east and 5 cm south of Khepera’s initial position. Khepera’s resulting

trajectory is recorded in Figure 1.7.

Khepera Position

4

I *
I 0
'COo
° t -2 >

-4

-6

-8

J " " N

/ \f
i 1D 1 4 15 13

ndec isive
V

c rash
' 5

1:

time(ms) x , 0»

Figure 1.7 - Khepera’s trajectory (left) shows Khepera

approaching the object, but stops within about 6cm of the

object. Khepera’s orientation oscillates greatly at this time

(top) as Khepera is indecisive of the course o f action to take.

Soon Khepera exits the stage of indecisiveness and crashes

through the object (left).
X-Position (cm)

Khepera remains indecisive for about 15 seconds before proceeding on a collision course

with the object. The indecisiveness is caused by the drop from +5 to -5 and +2 to -2 in the

functions shown in Figure 1.6. Consider the speed of the left motor, which is a function of

the sensor (il+i2). When (il+i2) is low, the left side of Khepera moves forward with a

speed of 5. If this movement is towards the object, then (il+i2) will increase. If (il+i2)

increases past 1023 while remaining less than 1228, then the left motor speed is promptly

changed to -5. If this causes movement away from the object, then (il+i2) will decrease. A

similar cyclical pattern is seen with the right motor. The oscillatory cycle is seen to be

unstable as (i3+i4) eventually reaches levels in excess of 1228, which causes the right motor

to attain speeds of 10. At this point, Khepera has exited the orientation oscillation stage.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It is extremely difficult to predict Khepera’s behavior when its reactive controller is

an arbitrary non-linear function. It is surprising that the indecisive behavior reported in

Figure 1.7 can be produced by utilizing the simple reactive controller functions seen in

Figure 1.6. Vehicle four distinguishes itself from the previous three vehicle designs in two

main respects:

1. there are numerous design degrees of freedom, and

2. the resulting behavior for each design can be difficult to predict.

Evidently, these two observations seem to apply to the remaining ten Braitenberg vehicle

designs.

1.1.5 Vehicle 5 - Logic
This vehicle design introduces logical networks consisting of units resembling McCulloch

and Pitts neurons. These logical networks are similar to the generalized modem artificial

neural networks (ANNs), which are widely used today. The study of the “logic” vehicle

design is interesting since complex behaviors can be synthesized. However, much like the

fourth vehicle design, Braitenberg is not able to supplement the vehicle design with a viable

methodology for synthesizing autonomous behavior. Instead, the vehicle designs remain

theoretical and without sufficient guidelines for practical implementation. As a result,

Braitenberg presents only two simple examples despite the numerous possible hierarchies

and applications. Braitenberg is able to explain these two examples in a theoretical sense,

but leaves the practical implementation up to the reader’s imagination.

1.1.6 Conclusion
There are two main observations that can be stated about the first five Braitenberg vehicle

designs. First, each successive vehicle design is increasingly complex. The complexity of

the fourth and fifth vehicle designs surpasses Braitenberg’s ability to provide specific design

implementation guidelines. Second, as the vehicle design complexity increases, the behavior

transparency tends to decrease. It is difficult to predict or understand the behaviors exhibited

by more complex designs, such as the fourth and fifth vehicle designs. Braitenberg provides

inspiration to investigate behavior synthesis and behavior transparency.

1.2 Behavior Synthesis

Autonomous robotic behaviors are created by controllers, which on a robot provide a

mapping between the sensory space and the actuator space. These controllers are classified

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

as either reactive or deliberative. Reactive controllers contain no state or memory while

deliberative controllers do. The study of reactive controllers is very important since they not

only serve as stand-alone controllers, but as building blocks for more complex deliberative

systems as shown in [2]. Constructing reactive controllers based on artificial neural

networks (ANNs) or fuzzy logic rules are proven methods for creating low-level behaviors

such as obstacle avoidance and wall following.

In this thesis, we will examine a reactive ANN-based controller with memory in

order to synthesis a wall following behavior. While the introduction of memory implies that

the controller is deliberative, the controller architecture most closely resembles a reactive

design and is hereby considered reactive. ANNs are a computing paradigm inspired by the

parallel architecture of biological neurons found in animal brains and have been applied to a

wide variety of problems in which algorithmic solution cannot easily be derived. These

applications include, but are not limited to, disease diagnosis, business costs/sales

predictions, process plant control, and robotics control. ANNs, with related learning

algorithms, are able to provide the means for practical “logic” vehicle (see Section 1.1.5)

design implementation. Furthermore, properly trained ANNs have been shown to be

universal function approximators [3]. Therefore, they are able to approximate arbitrary non

linear functions, such as the one used to map sensors to motors in vehicle design four (see

Section 1.1.4). Obviously, the first three vehicle designs could also be implemented with a

properly trained ANN.

The study of ANNs is a significant research interest because of their proven ability

to synthesize behavior; however, ANNs are by no means the only practical method.

Numerous alternative approaches are widely used including fuzzy logic and evolutionary

optimizations. The utility of one method over another method is often application

dependant. Therefore, an overview of approaches is provided, as much as possible, in the

context of the wall follow problem.

1.2.1 Fuzzy & Evolutionary Controllers
Implementing fuzzy rule base controller is attractive since understanding and creating fuzzy

rules to govern a robots behavior is intuitive, whereas understanding an ANN is not [4].

However, successful implementations of fuzzy rules can be very difficult. Thorough

knowledge of the robots sensory and actuator characteristics is often required in order to

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fuzzify the antecedent (sensory values) and consequent (actuator values) variable

appropriately. Methods for automatic fuzzy rule generation can be applied. For example, a

training data set can be used such that the consequent of a rule is determined by the degree

to which the training data satisfies its antecedent [4], In this example, a training sample

subset T; is built for each antecedent A1 such that each member of Tj satisfies the antecedent

to some degree. The consequent B1 is chosen as the output fuzzy subset for which the

weighted average of outputs in set T; has maximal membership. However, fuzzy rules

learning remains limited in comparison to the ANN learning algorithms widely used—such

as the backpropagation algorithm.

Genetic Algorithms (GAs) are a very popular evolutionary design method used to

optimize reactive controllers. GAs have been applied to evolve fuzzy control rules [5,6,13]

and ANNs [7,8,9] for autonomous robotic operation by favoring fit designs while non-fit

solutions are disregarded [10]. Artificial evolution can develop controllers that exploit

relevant features of the environment that were not explicitly defined in advanced [7]. The

downfall extends from the difficulties involved in designing an appropriate fitness function

and, therefore, difficulties in synthesizing behaviors for the robot. Constructing an

appropriate fitness function for wall following is shown to be difficult in [8,11] and

respectable wall following behaviors are difficult to achieve. Worse yet, the evolutionary

process devour an extraordinary amount of time since evaluations of individual solutions

must occupy at least several seconds of real time on the robot—unless the evolutionary

process is completed with a simulator. Appropriately, controllers are evolved in simulation

but tested on a real physical system in [8,9,12,13]. This saves time consuming physical wear

on the robot but enables final results to be reported from a real physical system thereby

validating the simulator employed.

1.2.2 ANN-Based Controller
An ANN-based controller is proposed to synthesize the wall follow behavior because it

offers many advantages over the alternatives discussed in this introductory chapter. ANN

learning algorithms are more powerful than those seen for fuzzy controllers and do not

require the difficult derivation of fitness functions that evolutionary algorithms require.

Yamada demonstrates that autonomous wall following can be accomplished with

unsupervised learning using a self organizing map ANN [14], Alternatively, supervised

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

learning can be used for ANN controllers to capture implicit knowledge and execute robotic

behavior by applying the captured knowledge.

In this thesis, the backpropagation learning algorithm is explored for an ANN-based

wall following controller since it is widely used and proven to be a very powerful

supervised learning algorithm. Hybrid systems such as neuro-fuzzy networks may exploit

the learning capabilities of ANN learning algorithms while allowing encapsulated

knowledge to be expressed in a comprehensive manner. Nonetheless, it is decided to

investigate the backpropagation learning algorithm for behavior synthesis with the further

goal of exploring a method for enhancing ANN behavior transparency. Backpropagation is a

generalized gradient based delta algorithm, which aims to minimize discrepancy between

the ANN calculated output(s) and the target output(s) dictated by implicit knowledge [15].

Implicit knowledge can be encapsulated in a few different ways. In on-line reinforcement

learning, the supervisor rewards a controller for good behavior and conversely punishes

poor behavior [16,17,18], In an off-line supervised setting, the supervisor collects data

containing sensor values and corresponding actuator values (e.g. target motor speeds).

Encapsulation of wall follow implicit knowledge is feasible by manually driving the robot

for wall following and acquiring data to be used for training.

1.2.3 Behavior Evaluation
The objective of the ANN-based controller is squarely focused on autonomous wall

following, which is hereby defined as driving alongside a wall while maintaining a constant

distance to the wall. Varying design methodologies exist throughout the literature that aim

to accomplish wall following and/or similar objectives. However, the implementation is

usually limited to simplistic purely reactive designs with very little exploration of the wall

following behavior itself. For example, Tunstel [19,20,21] demonstrates how purely reactive

behaviors such as wall follow can be combined in a hierarchy with other reactive behaviors

to create more complex behaviors for autonomous exploration. Tunstel research is valuable

but creates a void in that the low-level reactive behaviors aren’t critically explored. Aguirre

and Gonzalez [2] research the fusion of reactive behaviors including wall following. While

more exploration is given to the reactive wall follow behavior than Tunstel, there remains

much to explore. Recording robotic trajectories is a significant step towards quantitative

evaluation of controllers. This is done in [22] for a simple wall following task. Numerous

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

researchers have implemented or used a wall follow behavior (or other low-level behaviors);

however, there seems to be a lack of critical evaluation of the behavior.

The deficiency of evaluation likely extends from the lack of widely adopted analysis

metrics, which Nehmzow [23] argues is vitally important to the advancement of the mobile

robotics field. Qualitative observations and evaluations seem to be the norm while

quantitative metrics are sparsely utilized. It seems reasonable to expect that task-oriented

controllers can be quantitatively evaluated—especially for simplistic behaviors like wall

following. This thesis ventures to quantitatively evaluate an autonomous robotic controller

implemented for wall following in terms of its ability to generalize over numerous

environments with varying wall geometries, and its performance scalability over varying

trajectory velocities.

1.3 Rule Extraction

ANNs have been successfully applied to a wide variety of applications and have been

widely accepted because of their proven accuracy [24], Their downfall stems from fact that

the knowledge is distributed across the weighted connections, which makes ANNs

incomprehensive [25], ANN rule extraction is a relatively new research area that attempts to

unveil the knowledge embedded into the ANN connection weights. In doing so, the problem

of deprived behavior transparency is addressed.

Numerous methods exist in the literature for extracting rules from ANNs; however,

they often impose problem domain restrictions preventing the method from being

universally adoptable. There exists a tradeoff between ANN complexity and performance,

as seen in [26]. In some instances it is desirable to utilize a complex network to obtain

higher performance on complex applications. The implication being that the rule extraction

process becomes significantly more challenging. A complex ANN contains numerous rules

of varying significance, including erroneous rules. The goal of the rule extraction chapter is

to extract the simplest possible set of comprehensive rules from a trained complex ANN,

regardless of architecture or ANN learning scheme used.

1.3.1 Rule Extraction Taxonomy
In order to evaluate and compare the numerous different rule extraction methods found in

the literature, it seems reasonable that universal terminology, comparative criteria, and

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

benchmarks should be used adopted to evaluate the methods [27]. It seems reasonable to

classify the rule extraction methods into the following three general categories [27]:

1. Decompositional. This approach extracts rules by directly examining the internal

architecture of the ANN.

2. Black-box. This approach examines the input-output relations of the ANN in order

to build rules.

3. Eclectic. This is a hybrid decompositional/black-box approach that uses the ANN

architecture as well as the input-output relations of the ANN to build rules.

Regardless of the category, it seems necessary to evaluate rule extraction algorithms

with a common criteria. Jane Neumann [28] proposes to evaluate rule extraction algorithms

with the following four criteria: complexity of the algorithm, quality of the extracted rules,

consistency of the algorithm, and applicability of the algorithm. Other authors have

proposed similar taxonomy such as in [62]. The quality of the extracted rules is probably the

most significant criterion, which is further broken down by Towell [29] into three

categories: accuracy, fidelity, and comprehensibility. The capability to correctly classify a

testing data set is termed as the accuracy of the extracted rules. The capability to mimic the

behavior of the trained ANN is termed as the, fidelity of the extracted rules. Lastly, the

comprehensibility of the extracted rules considers the extent that rules are readable and

understandable to humans. Neumann provides evaluation on 16 different rule extraction

algorithms, many of which are tested against the benchmark data sets: the Monk’s domain,

Iris Plant, Wisconsin Breast Cancer, and the DNA Promoter domain.

1.3.2 Rule Extraction with Continuous Attributes
Most rule extraction methods do not support ANNs with continuous attributes. For example,

BIO-RE [30], RULENEG [31], Activation space clustering [32], SUBSET [29], M-of-N

[29], and [26,33] all impose a restriction making the method only applicable to ANNs with

binary inputs and/or binary outputs. This can seemingly limit the domain of applications in

which the method can be utilized. To get around this problem, one could partition the

continuous variables into intervals to be binary encoded thereby increasing the number of

network inputs and somewhat changing the architecture. This is done in [34] in part of a

method that utilizes Karnaugh maps to extract rules hierarchally through a combination of

dominant rules and less dominant rules or exceptions. This method exploits logical don’t

cares to extract simplified rules quite successfully. However, methods that partition the

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

attributes in a seemingly arbitrary manner suffer by not critically considering the effects on

the consistency of the rules with the data. Partitioning with linear membership functions is

performed arbitrarily in [35] but with some consideration of the implications: when replaced

by a Gaussian membership function it is noted that the results improve significantly for the

Iris database problem. The authors recognize this phenomenon and declare discretization of

continuous attributes as a future research direction.

Methods such as the Chi-Merge [36] and its successor Chi2 [37,38] are based on the

%2 statistic and have demonstrated great success in discretization of continuous attributes.

Chi2 is a discretization algorithm used to partition continuous attributes into a minimal

number of intervals such that a desired data consistency rate is preserved. In the event that

the Chi2 algorithm completely merges all intervals together for a given attribute, the

attribute is deemed unneeded. This is the process of feature selection. The significance of

the Chi2 algorithm is its ability to perform both feature selection and discretization while

preserving a minimal specified level of consistency with the data. This can be of great

benefit over algorithms such as the information-theoretic algorithm [39], which

accomplishes feature selection but not discretization. It seems clear that discretization is a

required research direction for rule extraction in order to support applications with

continuous attributes. Full-RE [30] and Neurolinear [40] rule extraction methods exploit the

Chi2 algorithm to support continuous attributes and are reported to achieve high quality

results in comparison to numerous other rule extraction methods [28]. Neurolinear is also

reported to achieve relatively high accuracy in [41] in comparison to other methods.

1.3.3 Decompositional vs. Black-Box
Neurolinear and Full-RE, among many other methods, are examples of the decompositional

approach since they extract rules by analyzing the ANN architecture. A significant

implication of this approach is that the complexity of the method is strongly dependant on

the complexity and composition of the ANN architecture. For example, extracted rules are

said to be a one-to-one mapping of the network using the decomposition method of

NeuroRule [42], Some decompositional methods impose restrictions on the ANN

architecture or learning scheme used as seen in [43] and [34], The motivation for proprietary

architecture is most notably to allow simplicity and effectiveness of extracting rules.

However, this usually makes the method insufficient for existing trained ANNs and may

restrict the applications that the ANN architecture can be applied to.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The black-box approach may be advantageous in scenarios where the ANN

architecture is very complicated such as the complex ANN architecture considered in this

thesis. Huan Liu proposes the X2R rule generator in combination with the Chi2 algorithm to

generate concise rules from raw datasets in [44]. Alternative methods utilizing genetic

algorithms have been shown to be very effective in generating accurate and comprehensive

fuzzy rules on a variety of problem domains such as breast cancer diagnosis [45] and iris

plant classification [46]. Genetic algorithms have been applied to decision trees with great

success in [47] and have shown favorable results ahead of inductive approaches in [48] and

[49]. A fuzzy rule set is naturally desirable since their linguistic variables permit ease of

comprehension. However, designing the linguistic variables and their membership functions

is not trivial. In [35], it is shown how different membership functions can cause distinctly

different results.

1.4 Conclusion

Valentino Braitenberg demonstrates that behavior transparency tends to decrease as

behavior complexity increases. His fifth vehicle design can reach a level of complexity

whereby one cannot practically perceive or predict the vehicle behavior based on an

inspection of the design. This phenomenon is the root of the main thesis objective. The main

objective of this thesis is to explore robotic reactive behavior synthesis and methods for

enhancing behavior transparency so that a synthesized behavior can be represented in a

human comprehensive manner.

Several different approaches have been discussed in this section and it is decided to

pursue behavior synthesis using ANNs. The learning capabilities of ANNs are the main

reason for selecting them over alternative approaches. It should be noted that an ANN-based

controller closely resembles the controller used in Braitenberg’s fifth vehicle design. In the

same way that Braitenberg’s fifth vehicle design has poor behavior transparency, it can be

seen that ANNs have poor behavior transparency. Therefore, a further objective of the

research is to be able to represent a trained ANN in a more comprehensive manner. In

particular, a universal method able to extract a comprehensive set of rules from an ANN is

sought after.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Experimentation Platform

This chapter provides details of the platform used for experimentation throughout this

thesis. The goal is to clearly define and manage the experimentation platform such that

controlled experiments can be conducted.

This remainder of this chapter is organized in sections. Section 2.1 provides an

overview of Khepera and outlines the logistics of development required for experimentation.

Section 2.2 presents the experimentation environment and documents the related sensory

capability of Khepera. Finally, Section 2.3 provides concluding remarks.

2.1 Robotic Platform

The utilization of physical robots for experimentation is considered by some researchers to

be dispensable to simulations, which attempts model the physical system as accurately as

required. However, the task of modeling a physical system is challenging with difficulty

increasing very rapidly as greater model accuracy is desired. Accurate models must account

for physical non-linear anomalies, such as frictional forces. Experimentation on a physical

system gives more credibility to results achieved by avoiding any doubts that a simulator

may introduce. Despite the clear benefits associated with experimentation on a physical

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

robot, most researchers do not use physical robots for their research. The mechanical and

electrical design and/or problems involved in using a physical robot provide a deterrent to

many researchers. Commercially available mobile robots, such as Khepera, remove this

deterrent by providing a completely operational mechanical and electrical robotic platform

suitable for research. To some degree, robotic applications require an application specific

mechanical and electrical design. Khepera has a very practical mechanical and electrical

design; therefore, it is chosen as the robotic experimentation platform for this thesis. It

should be noted that similar robotic platforms could be used to obtain similar results in this

2.1.1 Khepera Overview
Khepera is a miniature mobile robot built by K-Team in Switzerland. Its shape is cylindrical

with a diameter of 55mm, height of 30mm, and mass of 30g. Khepera’s miniature size is

significant because it enables experiment environments to be scaled down in size, which is

very convenient for smaller research laboratories.

Figure 2.1 - The mobile robot Khepera beside a ruler (left). Eight proximity sensors, labeled iO through i7,

surround the robot. Khepera is equipped with two wheels with speeds o l and o2.

Khepera possesses two wheels, each driven by its own motor. A position encoder is

embedded on each motor. Khepera is able to reach a maximum speed of 1 m/s with 7-bit

resolution. Turning with zero radius is possible. Khepera has a total of eight infrared

proximity detectors with 10-bit resolution, which serve as its sensoiy input. A

programmable Motorola 68331 microprocessor and rechargeable NiCd batteries are

embedded for autonomous operation.

thesis.

Controller

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1.2 Khepera Development Logistics
A host computer is used to control Khepera using the RS232 communications port.

Development time is accelerated by employing a 3rd party RS232 serial communications

library (WSC4C) from http://www.marshallsoft.com/. A class is written using C++ in order

to facilitate all Khepera control and logging operations. This class is written in order to

provide a simple, yet powerful, software interface to Khepera.

Khepera logging operations include tracking all sensor readings, motor speeds,

position, and orientation angle throughout the duration of the experiment. The sample time

for these quantities, which is likely limited by Khepera, is roughly 88ms. The data log is

updated in real-time during the experiment. An example Khepera log is illustrated in Figure

2.2. Following the experiment, the data log is archived to an m-file so that data analysis can

be performed offline using MATLAB.

t (ms) i O i l i 2 i 3 i 4 i 5 i 6 i 7 a l a r x (c m) y (c m) t h (d e g)
1 0 8 1 0 2 3 1 0 0 2 89 1 1 1 3 31 5 5 3 4 7 7 0 0 0 0 - 9 0
1 9 8 1 0 2 3 9 0 7 78 0 0 2 6 0 4 2 4 5 0 1 9 8 - 0 . 0 0 8 3 . 4 1 e - 0 0 6 - 9 0
2 8 8 9 7 6 9 2 0 0 2 1 6 0 5 8 4 2 4 4 5 2 2 0 0 - 0 . 4 4 4 0 . 0 0 0 8 3 5 - 8 9 . 9
3 7 5 1 0 2 3 6 0 8 2 2 9 0 2 0 4 0 4 6 7 3 2 6 9 9 - 0 . 6 0 . 0 0 2 2 9 - 8 9 . 5
4 6 4 9 2 8 1 0 1 6 0 1 2 4 15 2 4 9 0 3 2 0 10 7 - 1 . 0 4 0 . 0 0 5 0 8 - 8 9 . 6

Figure 2.2 - Sample data log produced during experimentation with Khepera. From left to right the log contains

a timestamp, eight proximity sensor readings, left and right motor speeds, x and y position coordinates, and an

orientation angle.

The position and orientation of Khepera is computed using the readings obtained from the

two motor position encoders. By defining sj and s2 to be the respective left and right motor

positions, and r to be Khepera’s radius, then the orientation angle of Khepera can be defined

as follows:

The position of Khepera in a two-dimensional Cartesian plane can be described, relative to

its starting point, as follows:

Therefore, Khepera is able to easily log its motor speeds, position trajectory, and all sensor

values.

[2 .1]

[2.2]

[2.3]

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.marshallsoft.com/

Khepera is operated by one of two controllers: an autonomous controller, or human

control via teleoperation. In order to facilitate human control over Khepera, a standard 4-

button game-pad is interfaced with the PC hosting Khepera. The Microsoft DirectX SDK is

used to accomplish this endeavor. The developed program is flexible by enabling numerous

different control devices to be used including game-pads and analog joysticks. Control of

the robot can be paused, which physically stops Khepera from moving and pauses data

logging. Control is resumed by re-pressing the button. A simple graphic user interface

(GUI) is developed, using the Microsoft® Foundation Classes (MFC), to facilitate the

manual control of Khepera. All real-time sensory readings and motor speeds are displayed

in the GUI. Additionally, the status of the control device (e.g. position of joystick, status of

buttons, etc.) and the status of the experiment (i.e. running, or paused) are displayed.

2.2 Khepera’s Environment

A rectangular environment measuring 74.5cm x 84.5cm is built for Khepera. The walls are

covered with 2.5cm wide white infrared reflective tape to enhance Khepera’s perception. A

smooth Plexiglas floor enables robust mobile operation without slipping. The serial

communications line is suspended well above Khepera in order to prevent cord tangling.

The experimentation environment is shown in Figure 2.3.

Figure 2.3 - Khepera inside its wall follow environment.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The environment is built with modularity in consideration. Additional walls, each

with varying geometry, can be moved and manipulated without any reconstruction. This is

essential in being able to create environments with varying wall geometries. The

environment shown in Figure 2.3, and its variants created by manipulating the wall

geometry, are all modeled in MATLAB. This is done so that trajectory data obtained from

experimentation can be analyzed.

2.2.1 Sensory Space
Depending on the experiment, prior knowledge of the sensory space can be extremely

important. While some sensory information is provided by K-team, it is beneficial to

personally explore the sensory capabilities and limitations of Khepera with the infrared

reflective tape used throughout the experimentation environment. Khepera’s sensory range

and periphery are explored on a two-dimensional plane as illustrated in Figure 2.4.

Figure 2.4 - Sensory space for sensor i'7 is generalized in

the two dimensional plane with range distance and

periphery angle.

.Object \

sen so ry j
\ _ s p ac e /

Data for all eight sensors is acquired using an object comprised of the same infrared

reflective tape used in the construction of the environment of Figure 2.3. It is found that all

eight sensors have varying sensory space, which is probably due to variations in the infrared

sensor manufacturing process. Figure 2.5 illustrates the results from sensor i7.

K hepera

range

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i7 contour

periphery (degrees) range (cm)

i7 peripheral i7 range

periphery (degrees) range (cm)

Figure 2.5 - Sensory space o f infrared sensor i7 with an ambient light level reading of 496 counts. The intensity

of stimulation is plotted versus distance to an infrared reflecting paper and periphery angle to the infra-red

reflecting paper (top). The side views of the contour can be seen (bottom left and bottom right).

Probably the most important observation to be made from Figure 2.5 is the limited

range in which the sensor intensity is neither saturated nor zero-valued. This range roughly

begins at 8cm and ends at 14cm. This operating range varies somewhat from sensors iO

through i7. The significance of operating within this range is that the distance to an

object/wall can be more accurately perceived than when outside the operating range.

The contour shown in Figure 2.5 is by no means smooth and variations of over 100

units of sensory intensity have been observed. This could translate to an object range

sensing error of over 1cm for experiments detecting object distances. Furthermore, the

contour in Figure 2.5 varies with environment ambient light levels, which Khepera is able to

measure. Consideration should be given to the ambient light levels by either keeping

environment ambient light levels consistent or by calibrating the sensors accordingly. The

former consideration is likely the simplest and is, therefore, chosen.

The relationship between sensor intensity and range can be shown to approximately

have the form:

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

intensity = A + -
B

range
[2.4]

This form indicates that the sensory intensity is inversely proportional to the distance to the

infrared reflecting object, which intuitively makes sense. In the case of i7, the parameters

are experimentally solved as A = -\2 1 1 counts and 5=17393 counts/cm with a correlation

coefficient r=0.998.

It is found that the periphery angle is approximately constant when close to the

sensor. This is not the case for longer ranges such as 12cm, as shown in Figure 2.5. The

sensors provide up to approximately 100 degrees of periphery sensory, which is shown in

the bottom left plot of Figure 2.5. The sensory intensity decreases towards the periphery

limits of approximately 130° and 230°. The relationship between sensor intensity and

periphery is not known. Assuming a parabolic relationship, the following 17 contour plot can

be produced:

500-

300
200

100

periphery (degrees) range (cm)

i7 peripheral i7 range
1000

800
c
3 600

2 400

s

£c
200

200
periphery (degrees)

300100

1000

800
42c
§ 600

5
£ 4004Bc

200

0
10

range (cm)

Figure 2.6 - Estimated generalized sensory characteristic function applied for i7. Some discrepancies can be

observed from the measured contour of Figure 2.5.

Laboratory lighting conditions has a profound effect on the amount of noise seen in

the sensor measurements. This phenomenon is illustrated in Figure 2.7 as four different

lighting conditions are explored with varying results. For this reason, all Khepera

experimentation is performed under very dark laboratory lighting conditions.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sensor Readings Under Varying Laboratory Lighting

1200

1000

O) 800c T)<0Q>
DC 600 oWc
CD

to 400

200

0
0 5000 10000 15000 20000

Time (ms)

Figure 2.7 - Khepera is placed close enough to a wall such that the wall is detectable by the infrared proximity

sensors. Sensor readings are taken during four different laboratory lighting conditions. Sensor noise is noticeably

reduced in darker lighting conditions.

The effects of varying sensor noise levels could be explored as is done in [50]. However,

noise sensitivity is marked as outside the scope of this thesis. Instead, by maintaining

consistently dark laboratory lighting, the undesired effects of noise are minimized and can

be assumed negligible.

A lamp is used to
A very bright lamp
is used

provide dim light

Very dark; Natural sun light
little light ___ provides dim light

2.3 Conclusion
The robotic platform and environment are chosen for experimentation. A Khepera class is

written in order to facilitate control with autonomous controllers and teleoperation. The

constructed environment is modular enough to allow easy manipulation. The operating

range of Khepera’s sensors, in the context of the environment, is identified.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Behavior Synthesis

A methodology for autonomous robotic behavior synthesis is presented for the task of wall

following. Implicit knowledge is captured and used to train an artificial neural network

(ANN) with the backpropagation algorithm. Numerous feed forward ANN architectures are

explored in terms of their ability to encapsulate the implicit knowledge and details of

learning are provided. Evaluation of the trained ANN is performed on wide variety of wall

geometries, which explores the generalization ability of the ANN. The ANN performance is

critically evaluated against performance achievable by a human operator via teleoperation.

The remainder of this chapter is organized in sections. Section 3.1 outlines the

proposed method. Section 3.3 discusses the ANN architectures that have been explored.

Section 3.4 illustrates ANN training details. Section 3.5 tests the trained ANN using

numerous environments with varying wall geometries in order to explore the generalization

performance of the trained ANN. Section 3.6 investigates performance scaling as the output

of the ANN is scaled in order to achieve control during challenging speeds. Performance

comparisons between the trained ANN and manual control (via. Teleoperation) are made.

Finally, section 3.7 provides conclusions for the chapter.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1 Proposed Method

The framework of the proposed method is summarized below in Figure 3.1.

YesA cceptable
Quality?

Stage 2:
ANN Training

Stage 1:
Acquire Data

(manual wall follow)

Stage 4:
Evaluate ANN
Perform ance

Scalability

Stage 3:
Evaluate ANN
Generalization

Ability

Figure 3.1 - Methodology for behavior synthesis Methodology for behavior synthesis.

It is proposed to train an ANN, using the backpropagation learning algorithm [15], to

synthesize the behavior of wall following. Therefore, the objective of Stage 1 is to acquire

the data required to train the ANN in off-line learning. Stage 2 explores numerous ANN

architectures and learning degrees of freedom in order to best synthesize the wall follow

behavior. The trained ANN is implemented on Khepera and tested on numerous wall

geometries in Stage 3. Finally, Stage 4 evaluates the performance scalability of the

synthesized behavior.

3.1.1 Backpropagation
The backpropagation learning algorithm is introduced here since it is a significant part of

this thesis chapter. Details are very brief because backpropagation is widely reported and

documented in the literature by researchers in the neurocomputing field. Backpropagation is

applied to multilayer ANNs, which are often built using sigmoid neurons is shown in Figure

3.2. The notation used comes from [15], which should be consulted if further details are

desired. Note that sigmoid neurons are not a must for the BP algorithm.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

first layer j-th layer (k-l)-th layer k-th layer

(k-l)

ni(k.i) sigmoidsmi sigmoids mj sigmoids

Figure 3.2 - A generalized multilayer feedforward ANN built with sigmoid neurons.

The output of each neuron in Figure 3.2 is computed using the inputs to the neuron,

X ^ , along with the connection weights, Wj®, as

X U)= -------------• [3-1]
l + exp(X(H) -M(0))

The backpropagation algorithm aims to reduce the discrepancy (mapping error) between the

calculated output, /, and the desired/target output, d, by updating the connection weights in

accordance to the gradient decent of the error function:

e = (d - f f [3.2J
It can be shown that the output layer connection weights are updated as

W w = w u) + c(d _ f _ f <i-i> f [3.3]

where c is the learning rate. Similarly, the connection weights in the intermediate layers are

updated as

WtU) =WiU) +S{J)X u-l\ [3.4]
where Stu’ is computed recursively by

[3-5]
i=i

This recursive relation implies that the connection weights are updated based on the

computed error propagating backwards from the output of the ANN. This phenomenon is

the reason why the algorithm is termed “backpropagation”.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In off-line learning, numerous input-output pairs (or vectors) are used to train the

network. This set of vectors make up the network training set. The backpropagation

algorithm cycles through each vector in the training set to compute new network connection

weights. In “per-pattem” learning, the connection weights are updated with each vector in

the training set. Alternatively, “per-epoch” learning updates the connection weights after all

vectors are used to accumulate connection weight changes. Regardless of the connection

weight update scheme, the learning cycles are repeated until a desired accuracy is attained.

Network accuracy is typically measured using a testing set.

During on-line learning, the connection weights are typically updated after each

sample of a reinforcement signal. A reinforcement signal is provided to reward correct

output and to punish incorrect output during a period in which the ANN is exposed to input.

An appropriate desired/target ANN output is computed based on the reinforcement signal

and learning commences with each vector sample. Learning continues until a desired level

of accuracy is achieved.

Variants of the feedforward ANN seen in Figure 3.2 exists. For example, feedback

connections can be introduced in order to introduce a form of memory into the ANN. The

choice of ANN architecture is typically application dependant and experimentation is

typically required in order to find a suitable architecture.

3.2 Acquiring Data

In Stage 1, the game-pad is used to manually drive Khepera around the environment, which

is shown in Figure 2.3, for the task of wall following. The challenging aspect is controlling

Khepera’s distance to the walls. The set-point wall distance is chosen to be 11.5cm, which is

measured from the center of Khepera to the nearest wall. This distance is chosen in order to

minimize undesired saturation or under stimulation of Khepera’s proximity sensors (refer to

Figure 2.5 for proximity sensor space plot). A total of eight minutes of data is collected for

Khepera performing wall following in each of the clockwise and counter-clockwise

directions. With a sampling time of about 88ms, a total of 10881 data vectors are acquired.

These vectors are used to formulate training and testing data sets using 67% and 33% of the

total vectors, respectively. It is assumed that this dataset is large enough to adequately train

an ANN. This assumption is validated in Section 3.3 and Section 3.4.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

An important observation is made upon viewing the data set: Khepera’s sensors are

not able to perceive anything when driving around sharp turns such as the 135 degree turn

seen in Figure 2.3 (i.e. all sensors report a reading of 0 or near 0). This leads to difficulties

in wall following around comers, which has also been seen in [51]. As a direct result, if we

desire to train Khepera to follow the desired trajectory, it seems reasonable to assert that

memory must be introduced to the ANN in order to distinguish between left and right turns.

Therefore, all time-discontinuities found in the training and testing sets are appropriately

marked so that they are identified in the ANN training stage.

The training and testing data sets are organized such that they contain an equal

number of data vectors obtained from Khepera moving in a clockwise and counter

clockwise orientation. The organization of the training and testing data sets is shown in

Figure 3.3. A time-discontinuity is seen at the beginning of each new section. For example,

the transition from the first counter-clockwise section to the clockwise section represents a

time-discontinuity. The data in each of the training and testing sets are not normalized.

counter-clockwise

training ^ clockwise

counter-clockwise

clockwise
testing _<

counter-clockwise

Figure 3.3 - Formulation of the training and testing data sets using the clockwise and counter-clockwise data.

3.3 ANN Architecture
A single-hidden layer backpropagation network is built using vanilla sigmoid neurons with

bias. Two analog outputs are used to represent the left and right wheel velocities of the

robot. Alternative controllers may output translational and steering velocity instead, which

is done in part to implement a variable translational velocity controller in [52], These two

alternative approaches, however, are mathematically similar since the steering and

translational velocities are linear functions of the left and right motor speeds.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ANN architecture design is a process involving trial and error. Fewer neurons are

desired since it reduces training time and increases the overall generalization ability of the

network, which prevents memorization. Conversely, an ANN whose architecture is too

small will not be powerful enough to adequately learn the training data. With these tradeoffs

in mind and plenty of trial and error, an architecture can be discovered that learns the

training data and performs well on the testing data. Pruning and growing techniques can

help. Pruning systematically removes weak connections from an arbitrarily large network

until a sufficiently small trained network is obtained [53]. Growing starts with a tiny

network and gradually increases in complexity until sufficient training performance is

achieved [53].

The generalized ANN architecture, with memory, is shown in Figure 3.4. The most

significant architecture degrees of freedom to explore are the number neurons in the hidden

layer and the memory capacity of past inputs. Memory capacity considerations include the

number of past inputs to be fed into the hidden layer and the time delay of each past input.

1

hO.

left

right
o p 1 /sp e e d

i f F V - \ h n y

1
Figure 3.4 - Generalized fully connected two-layered backpropagation ANN with biased sigmoid neurons. Delay

blocks permit one past input vector to be fed into the ANN. Each additional past input vector requires additional

delay blocks.

By inspection of the acquired data, it is evident that Khepera requires up to 2500ms to

complete a 135 degree arc. Therefore, the memory is designed to encapsulate up to 2816ms

of previous sensor data, which encompasses 32 previous input vectors with the cycle time of

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88ms. It is not feasible to allow all 32 past input vectors to serve as inputs to the ANN, yet it

is evident that at least one past input is required. Experimentation with the number of past

inputs to utilize and the number of hidden neurons is performed with careful consideration

of the number of connection weights required.

A commonly used design mle is to allow at least ten times the number of training

vectors as ANN connection weights [54]. Given the size of the acquired training set, the

ANN architecture is limited to about 700 connection weights. For the ANN architecture of

Figure 3.4, the number of connection weights is tallied as

n = h(ip +1) + op(h +1) ? [3-6]
where ip is the total number of inputs including past inputs, h is the number of hidden

neurons, and op is the number of neurons in the output layer. While op is fixed, the other

two parameters can be varied such that n is kept well below one tenth of the number of

training vectors. With this restriction in mind, trail and error is used to obtain a suitable

architecture. This is achieved by exploring numerous permutations of architecture and their

associated ANN learning. The following table provides an example of ANN architectures

explored:
Table 3.1 - Sample ANN Architectures Explored

Architecture No. Layers No. Hidden
Neurons

Fully
Connected?

No. Past
Input Vectors

Time Between
Input Vectors

(a) 2 12 y e s 1 2 2 8 8 m s
(b) y e s 1 4 0 8 m s
(c) 3 1 2 , 12 y e s i 2 8 1 6 m s
(d) 2 30 n o 1 4 70 4ms

Architectures with the lowest reporting performance index are deemed most

accurate and appropriate for the wall follow objective. The performance index is quantified

over N vectors as

N 1g =]T-(/e/f_ target, - le ft_ y i)2 + (right_targeti -righ t_y,)2, [3.7]
1=1 ^

where leftjarget and rightJarget are the respective left and right target motor speeds, left_y

and right_y are the respective left and right ANN motor speed outputs. Note that the value

for N is different for the training and testing sets. Learning is performed for the four

architectures in Table 3.1 with 25 trials and the results are tabulated in Table 3.2.

1 15 hidden layer neurons do not have connections with the current input vector while the other 15
hidden neurons do not have connections to the past input vectors. Otherwise, the network is fully
connected.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3.2 - Sample ANN Architectures Performance Index

Architecture
Performance Index

Training Testing
Qmin Qmean On Qmln Qmean Q.

(a) 5 3 . 6 5 5 . 9 1 . 4 3 0 . 7 3 9 . 0 7 . 6
(b) 5 1 . 1 54 .7 1 . 7 2 9 . 6 3 7 . 0 7 . 1
(c) 5 0 . 7 5 3 . 8 1 . 5 33 .4 44 . 5 6 . 0
(d) 5 3 . 8 5 5 . 6 1 . 1 3 9 . 5 44 . 6 4 . 4

Architectures (a) and (b) have similar outcomes as reported by Table 3.2. However, after

experimentation with the physical robot, it is clear that the additional past input vector is

required. Without the second past input vector the robot is observed to improperly make the

challenging 135 degree turns, which causes the entire trajectory to fail. The complex

architecture (c) with two hidden layers does not seem to be a winner and it requires more

time to train. Architecture (d) is even more complex and does not fair well. After numerous

experimentation, architecture (b) is chosen since it achieves a low performance index,

contains 488 connection weights, which is reasonable as per the size of the training set, and

fairs well on the physical robot.

Another example of architecture experimentation is shown in Figure 3.5 and Figure

3.6. Here the number of past input vectors and the number of hidden neurons degrees of

freedom are explored. Each architecture undergoes a total of ten learning trials and varying

results are reported due to the randomly initialized connection weights (details of ANN

learning and connection weight initialization follows in Section 3.4). It is convenient to

summarize the trials by reporting the minimum and mean performance indices for each

architecture.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Min. Perform ance Index vs.
No. P as t Vectors

Mean Perform ance Index vs.
No. P ast Vectors

40 - -

O Q test OQtrain

1 2 3 4
No. P ast Vectors

£ 80

□ Q test OQtrain

1 2 3 4
No. P ast Vectors

Figure 3.5 - An ANN architecture with 18 hidden neurons and 2816ms of past input duration is explored with

varying number of past input vectors. The minimum testing and training set performance index is reported for 0

to 5 past input vectors with 2 past input vectors achieving the best results (left). Similarly, the mean testing and

training set performance index is reported with error bars representing plus/minus one standard deviation (right).

3 50
■o

on 30 a)
a.

5 20

1 0 - -

Min. Perform ance Index vs.
No. Hidden Neurons

□ Qtest □Q train

9 12 15 18 21 24 27 30 33

No. Hidden Neurons

Mean Perform ance Index vs. No.
Hidden Neurons

100

0) 80

O Q test OQtrain

“ft
4 0 - -

1 i

9 12 15 18 21 24 27 30 33

No. Hidden Neurons

Figure 3.6 - ANN architecture with 2816ms of past input duration and 2 past input vectors is explored with

varying number of hidden layer neurons in a single hidden layer network. The minimum testing and training set

performance index is reported for 6 to 33 hidden neurons (left). Similarly, the mean testing and training set

performance index is reported with error bars representing plus/minus one standard deviation (right). Choosing

an appropriate number of hidden neurons is not so clear here since 12 to 30 hidden neurons achieve similar

results.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The choice of architecture is not always clear because it is possible for different

architectures to perform equally well. It is well known that a compromise exists between

network performance and network complexity [55]. Architecture (b) in Table 3.1 is chosen

as the compromise. Details of ANN learning follows in the next section.

3.4 ANN Learning

The backpropagation learning algorithm aims to adjust connection weights with a gradient

descent of error. This generalized delta learning method is very powerful in discovering

local minimums of error. However, the algorithm offers no guarantee of discovering the

global error minimum and worse yet cannot give any indication on whether or not the global

error minimum has been found. Therefore, numerous experimentation trials with random

initial connection weights are often required in order to achieve better training and testing

data modeling with little error. The backpropagation algorithm aims to minimize error

calculated by the least squares error function. Alternative approaches include using the

cross-entropy error, which has been shown to improve network convergence in some cases

[56]. Improving the convergence is a worthwhile endeavor—especially since numerous

architecture and training degrees of freedoms are to be explored. However, the simplicity

and proven utility of the least squares method makes it the chosen error function for ANN

learning.

In the situation where the training set is time continuous, each progressive vector

may be similar to the previous vector. This could present a problem when per-pattem

learning is implemented. The risk is that the ANN may learn similar vectors while poorly

learning the entire training set [15]. Randomizing the order of the training data can help;

however, this could be haphazard since memory is present in the system. Experimentation is

performed with both “per-pattem” and per-epoch learning modes. It is decided that per-

pattem learning is the better choice since it seems to achieve lower converging testing data

error for the specific application at hand. Furthermore, the choice of learning rate is difficult

with the per-epoch learning. Since numerous data vectors are used, the learning rate must be

kept small in order to avoid diverging network error. The range of appropriate values that

can be used for the small learning rate is limited and is a function of the number of training

vectors. The restrictions imposed on the learning rate make per-epoch learning impractical.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The learning rate and momentum term are assigned by experimentation using the

ranges O.Ol to 5.0 and 0.05 to 0.95, respectively. A high learning rate is desired for faster

convergence; however, the network performance index may oscillate and diverge with the

learning rate set too high. The momentum term is utilized to help the learning process skip

over local minimums in hopes of discovering the global minimum of network error.

Numerous values are attempted and it is discovered that a learning rate of c=l and a

momentum term of n=0.8 suffice for the application at hand.

The minimum and maximum number of algorithm iterations is set to 40 and 150,

respectively. These parameters are assigned so that erroneous increases in the testing

performance index are ignored during the early algorithm iterations while unnecessary late

algorithm iterations are avoided. The algorithm will exit to prevent overtraining if the

testing error increases by more than 1% of the lowest recorded value in the trial. Learning

does not occur where time discontinuities are marked in the training data since past inputs

are nonexistent. The results are widely varied between different architectures and even

between different trials of the same architecture. Architecture (b) in Table 3.1 is investigated

further: while rather weak, a certain correlation seems to exist between the testing error and

training error as shown in Figure 3.7.

Training & Testing Perform ance Index ANN Learning
85

75

a>oc(0
E

55

€
O. 45

35

25
300 10 20 40 50 60

CL 35

y *= 2.2225X - 84.525
R2 « 0.2709

Trial 18

60 6545 50 55

Training Perform ance Index Iterations

Figure 3.7 - Backpropagation algorithm is applied with 25 trails for the ANN architecture with 18 hidden layer

neurons and a total o f 24 inputs (current input vector plus two past input vectors). Trial 18 seems to model the

data most successfully since it has achieves the lowest testing performance index (left). Testing and training

performance index spanning 60 iterations (although a total of 150 iterations are completed) is plotted for trial

number 18 (right).

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Grayscale representation of the ANN connection weights are produced for the

network before and after the training in trial number 18. This is done by arbitrarily scaling

the weight connections by 32 and centering around 127, which is 50% grey. Any pixel

values less than 0 or greater than 255 are cropped to 0 (black) and 255 (white), respectively.

A total of 488 pixels are produced, which can roughly populate a 22x22 image as shown in

Figure 3.8. Four pixels are omitted from this comparison.

W => 4
w =3.2
w= 2.4
w =1.6
w =0 .8
w =0
w = -0 .8
w =-1.6
w =-2.4
w =-3.2
iv <=-4

Figure 3.8 - Grayscale representation of 484 connection weights before (left) and after (right) training for trial

number 18. The images indicate that the connection weights are more declared after training.

The connection weights for the two delayed input vectors have very similar distributions, as

shown in Table 3.3. The connection weights associated with the input vector with zero delay

has a greater distribution, which implies that the ANN output is most greatly affected by the

current (i.e. zero delay) input vector.
Table 3.3 - ANN connection weights

Connections connection weights
number mean min max std_dev

I n p u t , No De l ay - 162 - - 1 5 . 3 4 3 . 8 1
I n p u t , One D e l a y 144 - - 8 . 8 2 7 . 7 1 2 . 7 3
I n p u t , Two D e l a y 144 - - 8 . 6 4 7 . 2 9 2 . 7 4

O u t p u t L a y e r 38 - - 3 . 2 5 1 . 2 9 0 . 9 6

While there is no guarantee that the global error minimum is discovered for a given

architecture, it assumed that 25 trials results in a sufficiently well trained network. This

assumption it validated in the proceeding sections when performance testing and evaluation

on the physical robot is presented. It is certainly a possibility that a trained ANN can

produce poor results on the physical robot. In this case, it may be necessary to make

revisions to previous steps completed—such as learning, architecture, or even data

collection. Iterating through these stages, however, is very time consuming—especially if

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the iterations include revisiting the data collection stage. This process is analogues to the

waterfall model of software engineering whereby optimism is seen in the belief that

previous stages are complete and (ideally) do not require any re-work.

3.5 Behavior Generalization

The trained ANN is implemented on Khepera. Implementation of the ANN requires one

small consideration: initialization. In particular, the memory must be initialized

appropriately depending on the initial placement of Khepera in its environment. Khepra is

placed in its environment exactly 11.5cm from a wall and with parallel orientation to the

wall. Resulting wall follow trajectories in both the clockwise and counter-clockwise

directions are shown in Figure 3.9.

Khepera T rajectory K hepera T rajectory

60

E 40E 40

3030

-10-10
10-60 -50 -40 -30 -20 -10 0-60 -50 - 40 -30 -20 -10 0 10

x-position (cm) x-position (cm)

Distance to Wall Distance to Wall

set pointset point X 12

distancedistance

2.51 1.5
time (ms)

3 0 0.5 1 1.5
time (ms)

20 0.5 2 2.5

Figure 3.9 - Khepera is implemented with the trained ANN and produces trajectories in the clockwise (top left)

and counter-clockwise (top right) directions for the training environment used (define as worldl). Each data

point is drawn as a line representing an imaginary axis connecting the two wheels. Measured minimum

Euclidean distance to the wall is plotted over the duration of one complete lap in the clockwise (bottom left) and

counter-clockwise (bottom right) directions along with the set point o f 11.5cm. The calculated error per sample

average, or mean error, is 1.8cm and 1.7cm for the respective clockwise and counterclockwise directions.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It should be noted that measurement error is prevalent in the method used to acquire

trajectory data. Error is cumulative such that each successive trajectory point contains all

error from previous trajectory points plus any new measurement error. Nonetheless, the

acquired data can be used to quantify short trajectory performance with some degree of

precision. Longer trajectories, such as multiple laps around an environment, would result in

vast discrepancies between the measured trajectory and the actual Khepera trajectory. This

is mostly attributed to wheel slipping, which is predominant when the Khepera serial

communication line becomes tangled.

While all training data acquired is limited to the single environment of Figure 3.9, it

is worthwhile to experiment with varying environments in order to explore the ability of the

synthesized behavior to generalize. A selection of the numerous possible wall geometries

are presented in this section that demonstrate the ANNs ability to generalize in different

environments. For each wall geometry, experimentation is performed in both the clockwise

and counter-clockwise direction, which yields similar results. Therefore, only the trajectory

results from the clockwise direction are plotted.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Khepera Trajectory Khepera Trajectory

70

Eo
c
o
CO
oQ.
A.

-10
10•60 -5 0 -4 0 -3 0 •20 ■10 0

x-position (cm)

Distance to Wall

70

-10
-50 -4 0 -3 0 -2 0 -1 0 0 10•60

x-position (cm)

Distance to Wall

set point;et point Q> 1 2

T> distancedistance

1 2 2.5 32.5 3 3.5 0 0.5 1.50.5 1 1.5 20
time (ms) time (ms)

Figure 3.10 - The trained ANN is tested on world2 (left) and world3 (right) and clockwise trajectories are

plotted. Mean trajectory error is 1.0cm and 1.2cm the respective world2 and world3 clockwise trajectories.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Khepera Trajectory Khepera Trajectory

E 40

-10
-6 0 -5 0 -4 0 -3 0 -2 0 -1 0 0 10

70

"E 40

-10
-6 0 -5 0 -4 0 -3 0 -2 0 -1 0 0 10

x-position (cm) x-position (cm)

Distance to Wall Distance to Wall

16

E I4o
8 12

set pointset point » 12

I 10T3
8 'distancedistance

2
time (ms)

2.5 3 3.50 0.5 1 1.52.5 3 3.50 0.5 1 1.5 2
time (ms) x104

Figure 3.11 - The trained ANN is tested on world4 (left) and world5 (right) and clockwise trajectories are

plotted. Mean trajectory error is 2.1cm and 1.6cm the respective world4 and world5 clockwise trajectories.

It is worth noting that Khepera would not enter the bottom right quadrant of world3,

which is partially blocked by a wall and has only a 12.5cm opening. If the opening is

increased enough, then Khepera enters the quadrant. Problems arise when an opening is

approximately twice the wall follow distance (i.e. ~23cm) but does not widen as in the case

of a corridor. In world6 shown below, Khepera is unsuccessful in completing a full rotation

in either direction due to the corridor-like environment. In both cases, Khepera is initially

placed near the bottom right comer. Experimentation with varying initial positions yield

similar results. The corridor of world6 is significantly different than the wall geometries of

world 1. This difference is great enough so that the ANN generalization ability does not

suffice. A cardinal rule of ANNs is that the training data must be representative of the

desired behavior. World6 provides an example of this rule being broken.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

di
st

an
ce

(c

m
)

y-
po

si
tio

n
(c

m
)

Khepera Trajectory Khepera Trajectory

~ 30

-6 0 -5 0 -4 0 - 3 0 - 2 0 -1 0
x-position (cm)

Distance to Wall

-6 0 - 5 0 -4 0 -3 0 -2 0 -1 0
x-position (cm)

14
set point

distance,

4000 6000 10000 120000 2000 8000

Distance to Wall

16

14

set point12

10

8
0.5

time (ms)
1.5 2

time (ms)
2.5

Figure 3.12 - Khepera fails to perform wall follow in world6. In the clockwise direction (left) Khepera becomes

trapped while in the counterclockwise direction (right) Khepera turns around and follows the wrong side of the

corridor.

The trained ANN performs very well in the simplistic circular world7. An arc wall

is added to world7 such that the arc roughly coincides with the observed trajectories in

world7. The new world (world8) proves to be very difficult for the trained ANN because the

robot is not able to perceive the additional arc very well until it is almost touching it. The

robot soon recovers and maintains a greater distance to the wall. The trained ANN is

considered to fail the fall follow objective in world8 because, in some trials, the robot

touches the arc wall prior to recovering to a reasonable wall distance. It is questionable

whether or not a better trained A N N could adequately perform w all fo llow ing on world8

because the infra-red proximity sensors limit the robots perception.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

di
sta

nc
e

(c
m

)
y-

po
si

tio
n

(c
m

)

Khepera Trajectory

70

Eo40
co

-10-10
- 6 0 ' - 5 0 - 4 0 - 3 0 - 2 0 - 1 0

^ x -position (cm)

\
 , V

-6 0 -5 0 - 4 0 - 3 0 - 2 0 -1 0 0 10

Distance to WallDistance to Wall

distance

set point

set point

distance

1.40.5
time (ms)time (ms) X 104x104

Figure 3.13 - The trained ANN is tested on world7 (left) and world8 (right) and clockwise trajectories are

plotted. Mean trajectory error is 1.0cm and 2.4cm the respective world2 and world3 clockwise trajectories. An

exceptionally large error is observed upon Khepera approaching the arc, which is marked in the figure.

Trajectory error between the minimum Euclidean wall distance and the set point of

11.5cm is quantized by the absolute difference between the two. The mean trajectory error,

which is reported in the previous figure captions (with exception to world 6), is computed as

well as error maximum, and error standard deviation for each trajectory in both clockwise

and counterclockwise directions. Overall error metrics are computed for each world as an

average of the metrics computed for the clockwise and counterclockwise directions. The

following table and plot summarize the results:

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3.4 - Tabulated trajectory error

ANN Error (cm)
World Clockwise Counterclockwise Overall ANN Error (cm)

e CT emax e a emax e a
1 6 . 8 1 . 8 1 . 5 5 . 1 1 . 7 1 . 1 5 . 9 1 . 8 1 . 3
2 3 . 6 1 . 0 0 . 8 4 . 2 1 . 3 1 . 0 3 . 9 1 . 2 0 . 9
3 4 . 4 1 . 2 0 . 9 2 . 7 1 . 0 0 . 7 3 . 5 1 . 1 0 . 8
4 7 . 5 2 . 1 1 . 5 5 . 6 1 . 3 1 . 2 6 . 5 1 . 7 1 . 4
5 4 . 9 1 . 6 1 . 3 3 . 2 1 . 0 0 . 8 4 . 1 1 . 3 1 . 1
6 f a i l f a i l f a i l f a i l f a i l f a i l f a i l f a i l f a i l
7 2 . 8 1 . 0 0 . 9 3 . 5 1 . 3 1 . 0 3 . 2 1 . 2 0 . 9
8 f a i l f a i l f a i l f a i l f a i l f a i l f a i l f a i l f a i l

T rajec to ry Error

8.0
□ ANN_max
□ ANN_mean
□ ANN_std_dev

7.0

6.0

© 4.0 - —

> 3.0 -

2.0 - -

1.0 - - ira
2

0.0
3 71 5

W orld

Figure 3.14 - Plotted overall trajectory error data for worlds 1 through 5 and world7 (results from world6 and

world8 are not included here). Trajectory errors o f worlds 2 through 5 are in the vicinity to those recorded in

world 1. This suggests that the ANN is capable generalizing and has not simply memorized world 1 in the

training phase.

Despite the observed shortcomings in world6 and world8, the trained ANN

architecture is a feasible controller for synthesizing the wall follow objective on a wide

variety of wall geometries. Utilizing a greater variety of training data (i.e. not limited to just

world 1) may result in improvements on a wide variety of wall geometries—especially on

world6 and perhaps on world8.

3.6 Behavior Performance Scaling

When manually controlling Khepera (i.e. via gamepad) there exists limits as to how fast

Khepera can be driven without loosing the desired trajectory. Any human operator is limited

in terms of his/her reflexes and eye to hand coordination. An interesting comparison exists

with the Khepera speed scalability between the human operator and the trained ANN. One

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

must be careful when scaling the output of the ANN-based controller since there is a time

dependant memory element. For example, if the output of the ANN is doubled (i.e. Khepera

is to have twice the speed), then the memory samples used must be only half as old as

normal. With this consideration in mind, experimentation can be performed.

K hepera Trajectory
K hepera Trajectory

50

-10
10-6 0 -5 0 -4 0 -3 0 -2 0 -1 0 0

x-position (cm)

Distance to Wall

70

30

-10
-6 0 -5 0 -4 0 -3 0 - 2 0 -1 0 0 10

x-position (cm)

14

set point* 12

distance

3o 0.5 1 2 2.51.5
time (ms) x10‘

16
distance

14E
,0,

8 :---
set point

8

1.5
time (ms)

Figure 3.15 - The trained ANN with unity output scaling performs with a mean error of 1.6cm (left). Khepera is

manually driven at the same speed and achieves a mean error of 1.0cm (right).

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B31D

6999999999999999^

di
st

an
ce

(c

m
)

y-
po

si
tio

n
(c

m
)

Khepera Trajectory
Khepera Trajectory

S 30

I W I I I W W I I I / #

-10

ss*

% / #

-60 - 50 - 40 - 30 -20 -10
x-position (cm)

Distance to Wall

10 - 6 0 - 5 0 - 4 0 - 3 0 - 2 0 -10
x -p o sitio n (cm)

Distance to Wall

10

I6
14

set pointI2 • 12

.set pointio
8 tnce

2000 4000 6000 8000 10000 12000 14000 160002000 4000 6000 8000 10000 12000 14000 16000 00
time (ms) time (ms)

Figure 3.16 - The output o f the ANN is scaled by a factor of two and still performs well with a measured mean

error of 1.7cm (left). The human operator results at the higher speed are poorer with a mean error of 3.0cm

(right).

Performance metrics are tabulated for the ANN and human operator over numerous

speeds using worldl as a benchmark. For this benchmark, the term fail applies to trajectories

with distance errors in excess of 13cm at any time, or fails by other means to accomplish the

task (e.g. stopping, turning around, touching a wall, etc.).

Table 3.5 - Tabulated ANN and teleoperation (human) error

Speed
(7.81 cm/s)

Clockwise Counter Clockwise
ANN Error (cm) Teleoperation Error (cm) ANN Error (cm) Teleoperation Error (cm)

6 max e <x emax e <T emax e o ©max e o
0 . 5 5 . 8 1 . 6 1 . 2 2 . 7 1 . 0 0 . 7 3 . 9 1 . 4 1 . 0 4 . 9 1 . 4 1 . 1
1 . 0 5 . 4 1 . 6 1 . 2 2 . 9 1 . 0 0 . 8 2 . 5 0 . 8 0 . 6 7 . 3 2 . 2 1 . 9
1 . 5 5 . 5 1 . 4 1 . 1 3 . 9 1 . 2 0 . 9 6 . 4 2 . 0 1 . 5 8 . 7 2 . 6 2 . 0
2 . 0 5 . 9 1 . 7 1 . 5 8 . 7 3 . 0 2 . 4 8 . 3 2 . 1 1 . 6 1 0 . 1 2 . 5 2 . 3
2 . 5 1 2 . 3 2 . 5 2 . 5 f a i l f a i l f a i l f a i l f a i l f a i l 1 0 . 0 2 . 5 2 . 5
3 . 0 f a i l f a i l f a i l f a i l f a i l f a i l f a i l f a i l f a i l f a i l f a i l f a i l

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M
ax

im
um

Er

ro
r

(c
m

)

Table 3.5 con’t

S peed
(7.81 cm/s)

Overall (clkwise+cntclk)
ANN Error (cm) Teleoperation Error (cm)

6m ax e a 6m ax e a
0.5 4.9 1.5 1.1 3.8 1.2 0.9
1.0 4.0 1.2 0.9 5.1 1.6 1.3
1.5 5.9 1.7 1.3 6.3 1.9 1.5
2.0 7.1 1.9 1.6 9.4 2.7 2.3

Woridl Maximum Error World 1 Mean Error Woridl Error Std. Dev.

3.03.012.0

2.5 2.510.0
Human

62.0 HumanHuman

ANN

ANN
1.01.0

0.5 0.52.0

0.0 0.00.0
1.0 1.5 2.0 1.5 2.00.5 0.5 1.00.5 1.0 1.5 2.0

Speed (7.8m/s) Speed (7.8m/s) Speed (7.8m/s)

Figure 3.17 - Plotted trajectory error data contrasting the ANN performance and the human performance over a

range of speeds. The ANN is able to perform equally well as the human operator— especially at higher speeds

(i.e. 2x 7.8m/s).

It is imperative to emphasize that measurement error, which is largely due to slippage of

Khepera’s wheels, become significant at higher speeds. However, since the trajectories

resulting from the ANN and human operator are acquired and evaluated by the same means,

it is assumed that errors in measurements affect them equally. Therefore, it is assumed that

Table 3.5 can serve as a valid benchmark in comparing the ANN and human operator. With

this in mind, it is evident that the ANN can outperform the human operator at higher

speeds—especially at 2.0x7.81cm/s. This may be attributed to the relatively quick cycle

time of the ANN, which is 88ms. By comparison, the human operator is subjected to

personal reaction time when using the game pad in addition to the 88ms cycle time of

Khepera. Therefore, it seems reasonable to infer that the ANN performance is more scalable

than the human operator.

More complex architectures with more layers, neurons, and past inputs can be

attempted and may achieve better results than seen in this paper. However, trial and error

methodology utilized for training ANNs would be extremely time consuming when

exploring numerous permutations of architectures. It would be interesting to apply a genetic

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithm (GA) to explore architectures in order to discover better fit architectures

quantified by the testing set error. Naturally one must question whether or not the overhead

surpasses the benefits of utilizing a GA—especially when acceptable results are quickly

obtainable with the trial and error methodology used.

3.7 Conclusion

A methodology is presented that exploits encapsulated implicit knowledge into an ANN-

based controller for autonomous robotic wall following. The ANN-based controller is

trained using the backpropagation algorithm. Numerous quantitative measures are reported

to critically evaluate the ANN-based controller. Results of this analysis indicate that the

trained ANN is able to successfully generalize across a variety of different wall follow

environments. Performance evaluation demonstrates that the ANN-based controller can

achieve better wall follow control at higher speeds than a human operator. The proven

ability to generalize and perform well makes the ANN-based controller a suitable design for

the wall follow task.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

ANN Rule Extraction

Artificial neural networks (ANNs) are powerful computational models with proven learning

and generalization ability. Their downfall resides in its black-box architecture in which

encapsulated knowledge is embedded into the connection weights and is extremely difficult

to perceive. It is desirable to enhance the readability of the embedded knowledge so that the

knowledge can be verified by a human expert [24], This chapter investigates the problem of

extracting a comprehensive set of discrete rules from a trained complex ANN with

continuous attributes (inputs) and continuous classification (outputs). Discretization and

feature selection of ANN attributes is explored using the Chi2 algorithm. Additional

discretization is explored on the ANN output classification space using a simple clustering

algorithm. Discrete rule sets are encoded in a chromosome population and artificial

evolution is simulated using a real-coded genetic algorithm (RCGA).

The remainder of this chapter is organized in sections. Section 4.1 introduces the

proposed method. Section 4.2.1 reports results obtained from the iris plant problem. Section

4.2.2, 4.2.3, and 4.2.4, report results obtained when extracting mle sets from three different

ANN architectures, which have all been trained for the problem of wall following with

Khepera. Section 4.2.5 investigates the effects when the rule extraction method is re-applied

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to a set of extracted rules. Section 4.3 provides a discussion of the approach taken and

further research to be completed. Finally, Section 4.4 provides concluding remarks and

summarizes the findings.

4.1 Proposed Method

The framework of the proposed method is summarized in Figure 4.1. This method is

proposed for the problem of rule extraction from the ANN trained to perform wall

following.
initialize N

Acceptable
Fitness? YesNo

Stage 2:
Feature Selection
and Discretization

Stage 1:
Acquire behavoir

representative data

Stage 3:
Evolve N discrete
rules with RCGA

Stage 4:
T est discrete rule
se ts on Khepera

Figure 4.1 - Methodology for discrete rule set extraction Methodology for discrete rule set extraction. The

number of rules in the rule set is incremented until acceptable chromosome fitness is achieved. Evolved discrete

fuzzy rule sets are implemented and tested on the physical robot.

Since the methodology is to extract rules from an ANN without consideration of the

architectural internals, behavioral-representative data is collected from the ANN in Stage 1.

It is a hypothesis that data can be acquired to sufficiently represent the behavior of the

ANN. In Stage 2, discretization and feature selection is applied to the dataset in order to

reduce the search space for the RCGA.

A similar approach to the fuzzy-genetic rule extraction is taken in which a set of N

discrete rules are evolved. The rule antecedents are comprised of attribute intervals with

bounds generated from the Chi2 discretization algorithm. According to interval analysis

theory (see [57] for a detailed overview of interval analysis), an interval can be thought of a

fuzzy set with a rectangular membership function [58]. Therefore, the rule antecedents could

be considered fuzzy antecedents with designed rectangular membership functions, as shown

in Figure 4.2.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.2 - Attribute membership function is rectangular with bounds a and b computed from the discretization

process. A small modification is made from the reported rectangular membership function in [58] to set the

membership at b to zero.

It is hoped that designing rectangular membership functions using discretization methods

will help to extract accurate and comprehensive rule sets by using an evolutionary

algorithm. This differs from previous methods in which fuzzy membership functions are

typically not designed but rather assigned in a seemingly arbitrary manner. Although the

proposed method is similar to previous fuzzy-genetic approaches, the discrete rule set is not

termed fuzzy throughout the remainder of this paper since the interface between intervals

and fuzzy sets remains controversial and could lead to confusion.

The rule set must be specified in such a way as to allow for expressive power while

preserving simplicity in the rule set. The discrete fuzzy rule set is comprised of N rules, each

with antecedents that check to see if attribute values reside inside discrete intervals derived

from the Chi2 algorithm. The rule consequent represents the classification. Therefore, the

discrete fuzzy rule set is based on the following rule format:
I f attribute0 in [dOa dOb) and attribute 1 in [d1a d2b) a n d attributeK in [dKa dKb) then class=Oi

Details of the attribute discretization and the RCGA used to evolve the discrete fuzzy rule

set proceed in the following two sections.

4.1.1 Discretization
Extracting comprehensive rules with accuracy and fidelity in mind is clearly very

challenging when confronted with numerous continuous attributes and continuous

classification. The difficulty lies in the fact that the number of mles increases exponentially

with the dimensionality of the input space [46] and classification space. This provides clear

motivation to reduce the dimensionality of the input and output space wherever possible.

Clustering methods can be used to identify multi-dimensional antecedents, which could

simplify the extracted rule set in terms of number of antecedents. However, these extracted

rules with multi-dimensional antecedents would likely be incomprehensive. Instead, feature

selection and discretization is explored with the Chi2 algorithm in order to reduce the input

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

space. A brief overview of the Chi2 discretization algorithm is presented here since it is a

significant component of this thesis chapter. Further details can be found in [37].

4.1.1.1 Attributes: Chi2 Algorithm

The Chi2 algorithm is a statistically justified heuristic discretization and feature selection

algorithm based on the %2 statistic. The algorithm starts by organizing the data into tables:

one table per attribute. Within each table, the data is organized by the attribute intervals, and

class frequencies are tallied. A sample table is shown in Table 4.1.
Table 4.1 - Data Sorted by Intervals

Int Class Freq. x 2
4 . 3 1 0 0 0 . 2
4 . 4 3 0 0 0 . 2
4 . 5 1 0 0 0 . 2
4 . 6 4 0 0 0 . 2
4 . 7 2 0 0 0 . 2
4 . 8 5 0 0 2 . 0 4
4 . 9 4 1 1 1 . 7 8

5 8 2 0 0 . 3 8 1
5 . 1 8 1 0 0 . 5 1

7 . 3 0 0 1 0 . 2
7 . 4 0 0 1 0 . 2
7 . 6 0 0 1 0 . 2
7 . 7 0 0 4 0 . 2
7 . 9 0 0 1

The algorithm calculates a value between neighboring attribute intervals as

M i
;=1 j =1

where k is the number of classes, Ay is the number of patterns in the i-th interval and y-th

class, and Ey is the expected frequency of Ay given by

Z - d i= \ 1

The neighboring attribute intervals with the lowest % values are merged together.

Attribute interval merging continues until further merging would increase the inconsistency

rate past a preset threshold. Huan Liu and Rudy Setiono [37] demonstrate how the iris

classification problem, with four continuous attributes, can be reduced to simply two

attributes with four discrete values each. However, this does introduce a discretization error

rate. The discretization error rate increases with the amount of attribute interval merging.

This is clearly demonstrated with the Ms plant discretization example in Section 4.2.1.1.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1.1.2 Classification: K-Means

There is considerable motivation to discretize the classification space, in addition to

attribute discretization, in order to reduce the search space for the RCGA. Therefore, a

clustering algorithm is considered for classification space discretization where continuous

classification exists. The K-means clustering algorithm is proposed since it is a simple

method for unsupervised clustering.

The K-means clustering algorithm randomly assigns a data set into K disjoint

subsets S,. The objective is to minimize the sum of squares criterion,

C ' l Z k - * / ’ t4-3i
j - \ neSj

where xn is a vector representing the n-th data point and pj is the j -th cluster geometric

centroid. In each algorithmic iteration, the data points are re-assigned to the cluster with the

nearest geometric centroid. Iterations stop when no more re-assignments occur.

4.1.2 Rule Set Evolution
A real-coded genetic algorithm (RCGA) is proposed to explore the reduced search space in

effort to evolve a discrete fuzzy rule set. RCGA is chosen since it posses advantages over

binary-coded genetic algorithms (BCGA) for continuous variable domains, such as the wall

follow problem under consideration in this paper. Refer to [59] for a detailed overview of

RCGA and discussion of their benefits over BCGA.

Genetic algorithms are popular heuristic search methods for obtaining solutions to

problems. They operate by encoding numerous random problem solutions into a population

of chromosome. Genetic operators, such as crossover and mutation, are applied to the

chromosomes population. Each chromosome is assigned a fitness, which is indicative of the

utility of the solution, whereby better fit chromosomes are given better chances of survival

in the selection stage. After numerous successive iterations, the chromosome population

evolves to better fit solutions to the problem. Genetic algorithm details, in the context of the

discrete rule extraction problem, are provided in the following sub-sections.

4.1.2.1 Chromosome Encoding

The encoding of the chromosome is a significant design stage since the chromosome models

the form of the solution. Therefore, limitations introduced at this stage will have the effect

of limiting the evolved solution. In the Michigan approach, each individual represents a

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

single rule and the set of rules is represented by the entire population. Alternatively, the

Pittsburgh approach models each chromosome individual as a complete set of rules. The

latter method, although computationally more expensive, allows additional optimization

criteria in the fitness function for multi-objective optimization [45]. Therefore, the more

flexible Pittsburgh approach is taken.

The individual chromosome encoding is shown in Figure 4.3 below.

1st rule 2nd rule 3rd rule N,h rule

attribute 0 attribute 1 attribute 2 attribute K class

Figure 4.3 - Individual chromosome encoded with N discrete fuzzy rules. Each rule contains a lower and upper

interval bound for each of the K attributes as well as a class.

The attribute interval and class gene values in Figure 4.3 are encoded from the set of

attribute intervals and classes (clustered or non-clustered) generated from the discretization

stage. Unique classes are marked by an integer value and used in the encoding process. A

look-up table is implemented in order to decode the class back into the associated

classification vector. The process of randomizing the genes (i.e. when initializing the

population and when applying the mutation operator) involves randomly selecting a possible

gene value, based on the gene restrictions. For sake of simplicity, each possible gene value

is given equal probability of being encoded. A logical don’t care is generated for attributes

in which the lower interval bound is greater than or equal to the upper interval bound. When

a rule does not care about one or many attributes, the rule comprehension is considered to

increase since the number of antecedents is reduced.

The number of chromosome permutations for the RCGA is generalized as

P = {dl -d2- d k)2N-lN, [4.4]
where d is the number of attribute intervals, k is the number of attributes, 1 is the number of

classes, and N is the number of mles. Note that it is possible for permutations to be

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

functionally the same (i.e. create the same rule set). It can be seen that the number of

chromosome permutations decreases with fewer attribute intervals, classes, and rules.

4.1.2.2 Recombination, Selection

The double-crossover and mutation operators used in the recombination stage are illustrated

below in Figure 4.4.

i Maaaa&fl i n
^ K a a mmi ■ ■

Figure 4.4 - Modified simple crossover (left) and random mutation (right) operators are used in the

recombination stage.

Roulette wheel selection (proportional selection) is used for the selection stage. The

individual fitness values are primarily assigned by considering the computed output of the

rule set and the expected output obtained from the data. Computing the output of a fuzzy

rule set involves defuzzification, which is typically performed by computing the centroid of

the aggregated output fuzzy set. The output of the discrete rule set parallels this by

computing the consequent arithmetic mean for all rules with true antecedents.

4.2 Experimentation

Although the primary experimentation is focused on the wall follow problem domain, it is

useful to start with a much simpler pilot experiment with a well known dataset. Therefore,

the iris plant dataset is used for initial experimentation. This dataset is used to test and verify

correct operation of stages two and three of the methodology since the dataset is widely

known and very simple. Stage one of Figure 4.1 is not used here since the iris dataset is used

in place of data acquired from a trained ANN.

Subsequent discrete rale set extraction experimentation is applied to the complex trained

ANN from Chapter 3 (Complex ANN), a scaled down trained ANN with fewer neurons and

less memory (Moderate ANN), a simplistic trained ANN with few neurons and no memory

(Simple ANN), and the extracted discrete rales obtained from the Simple ANN. The

proposed method is to extract rale sets from each of these three trained ANNs with

consideration of rale set fidelity, accuracy, and comprehension.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.1 Iris Plant
The iris plant dataset is probably the most popular dataset found in the literature of pattern

recognition. This dataset is available from [60], The dataset contains four continuous

attributes and three discrete classes.

4.2.1.1 Discretization

Since the dataset does not have continuous classification, class clustering is not considered

and the classification look-up table is not needed. Attribute discretization, however, is

performed with the Chi2 algorithm. Results of the discretization are shown in Table 4.2 and

Table 4.3.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Attribute 0
Int Class Freq. xs

4 . 3 16 0 0 5 . 8 7

4 . 9 4 1 1 5 . 1 7

5 25 5 0 2 1 . 3

5 . 5 4 15 2 6 . 6 8

5 . 8 1 15 10 5 . 0 7

6 . 3 0 14 25 6 . 0 4

7 . 1 0 0 12

Attribute 1
(a)

Int Class Freq. x2
2 0 3 1 2 . 3 6

2 . 3 1 6 0 9 . 9 8

2 . 5 0 18 18 5 . 8

2 . 9 1 7 2 4 . 5 7

3 6 8 12 1 . 6 4

3 . 1 12 7 12 4 . 5 7

3 . 4 9 1 2 1 . 8

3 . 5 6 0 0 1 . 9

3 . 6 9 0 3 1 . 9
3 . 9 6 0 0

Attribute 2
(b)

Int Class Freq. x2
1 50 0 0 95

3 0 44 1 2 1 . 7

4 . 8 0 4 5 2 . 0 4

5 0 2 10 . 6 . 0 2

5 . 2 0 0 34

Attribute 3
(c)

Int Class Freq. x2
0 . 1 50 0 0 104

1 0 49 5 78

1 . 8 0 1 45
(d)

Table 4.2 - [left] The intervals, class frequencies,

and x2 values for all four attributes in order (from

top to bottom: (a) sepal length, (b) sepal width, (c)

petal length, and (d) petal width) with the Chi2

algorithm error rate set to 0.

Attribute 0
Int Class Freq. x2

4 . 3 50 50 50

Attribute 1
(a)

Int Class Freq. x2
2 50 50 50

Attribute 2
(b)

Int Class Freq. x2
1 50 0 0 95

3 0 44 1 3 7 . 4

4 . 8 0 6 15 11

5 . 2 0 0 34

Attribute 3
(c)

Int Class Freq. x2
0 . 1 50 0 0 104

1 0 49 5 78

1 . 8 0 1 45

(d)

Table 4.3 - [above] The intervals, class

frequencies, and x2 values for all four attributes in

order (from top to bottom: (a) sepal length, (b)

sepal width, (c) petal length, and (d) petal width)

with the Chi2 algorithm error rate set to 0.03.

Significantly more merging is seen— especially in

the first two attributes.

By allowing even a small discretization error, the feature selection and discretization

process can significantly reduce the attribute domain. This is desirable for heuristic search

algorithms such as Genetic Algorithms because the search space is dramatically reduced.

However, the introduction of discretization error at this stage may disallow optimal rules to

be discovered. Therefore, the optimization process is left to the RCGA by choosing an error

rate of 0.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.1.2 Evolution

In this section, we present the results obtained when extracting discretized rules from the iris

plant problem. It is imperative to mention that these extracted rules have non-continuous

consequences and the output of the mle set is equal to the output of the rule(s) that classify

the input without class confliction. When more than one rule classifies the input but conflict

with one another, the rule set output is void. The first step is to design an appropriate fitness

function.

Designing the fitness function is not trivial and may take some trial and error in

order to achieve acceptable results. The chosen fitness function is

fitness = ramp(classification - 0.001 X (a vg _ num. _ antecedants)) [4.5]

This fitness function gives reward to correct classification percentage and gives a small

penalty to containing higher average number of antecedents per rule. The penalty is

introduced in effort to increase rule comprehension. The width of the attribute intervals are

not considered to be an aspect of rule comprehension. The ramp function ensures that all

fitness values are non-negative.

Evolution is performed with 1000 individuals with a probability of crossover and

mutation of 80% and 1%, respectively, for 50 generations. A total of 150 vectors are utilized

with 67% delegated as training vectors while the remaining 33% are testing vectors. The

implication of dividing the dataset into training and testing sets is that when the evolved rule

set is chosen, which is based on the testing set fitness, the training set performance may be

quite poor. This could produce misleading results when reporting classification performance

against other literature sources that do not split the dataset into training and testing sets. A

summary of the results attained for one through five rules is presented in Table 4.4 below.
rules train fit test_fit train_class test_class complexity

1 0 . 3 2 0 . 3 5 0 . 3 2 0 . 3 5 0 . 0 0
2 0 . 6 6 0 . 6 9 0 . 6 6 0 . 6 9 1 . 0 0
3 0 . 9 2 1 . 0 0 0 . 92 1 . 0 0 1 . 0 0
4 0 . 9 2 1 . 0 0 0 . 9 2 1 . 0 0 1 . 0 0
5 0 . 9 2 1 . 0 0 0 . 9 2 1 . 0 0 1 . 0 0

Table 4.4 - Evolution results for 1 through 5 rules are summarized. Testing classification reaches 100% for rule

sets with 3 rules or more. However, training classification remains lower at 92%.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Evolution with 3 Rules te s t b e s t

train_best

§3 0 .6-1

I 0 .4 -

0.2 i

tes t_ m ean

train_m ea

6 8 9 102 4 5 70 1 3
Generation

Figure 4.5 - Evolution with 3 rules. Very few generations are required to achieve the highest testing fitness when

1000 individuals are used. Most evolutions require only 10 generations.

The 3-rule set achieves a 100% classification performance with the testing set.

Unfortunately, the training set performance is weaker at 92%. The 3 discrete rules are listed

below in Figure 4.6.

If x2 in [1, 3) then y=1
If x2 in [3, 5.2) and x3 in [1 ,1 .8) then y=2
If x2 in [5 ,1 1)th en y = 3

Figure 4.6 - Discrete rule set extracted with the highest testing fitness. The attributes are labeled xO through x3

while the iris class is labeled y.

Higher performing rule sets are extracted when the dataset isn’t split into training and

testing sets. Examples of rule sets that achieve 96% and 97.3% classification are shown in

Figure 4.7 and Figure 4.8, respectively.

If x3 in [0 .1 ,1) then y=1
If x3 in [1 ,1 .8) then y=2
If x3 in [1 .8 ,11) then y=3

If x2 in [1, 3) then y=1
If x3 in [1, 1.8) then y=2
If x3 in [1 .8 ,11) then y=3

If x3 in [0 .1 ,1) then y=1
If x2 in [3 ,11) and x3 in [0 .1 ,1 .8) then y=2
If x3 in [1.8, 11)th en y = 3

Figure 4.7 - Three examples of rule sets extracted without splitting the dataset into testing and training sets.

Each rule set achieves 96% classification.

Ifx 3 in [0 .1 ,1)theny= 1
If x2 in [3, 5) and x3 in [1 ,1 .8) then y=2
If x2 in [5 ,11) then y=3
If x3 in [1 .8 ,1 1)th en y = 3

If x3 in [0 .1 ,1) then y=1
If x2 in [3, 5.2) and x3 in [1 ,1 .8) then y=2
If x2 in [5 .2 ,11) then y=3
If x3 in [1 .8 ,11)th en y = 3

Figure 4.8 - Two examples o f rule sets extracted without splitting the dataset into testing and training sets. Each

rule set achieves 97.3% classification.

Interestingly, the classification performance does not seem to increase past 97.3% with the

addition of more rules. Ishikawa is able to achieve 99.3% classification of the iris set with

only three mles in [34]. It should be noted that the form of the rules differ from the form

implemented here. More specifically, his antecedents are multivariate. Therefore, the

proposed method for discrete rale extraction would not be able to achieve the rales that

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ishikawa was able to extract without modifying the rale form. Clearly, the design of the rale

form encoded in the chromosome play a large role in setting out limitations in the rale

extraction process.

4.2.2 Complex ANN
In this section, experimentation is applied to the Complex ANN architecture developed in

Chapter 3. This ANN is termed complex since it contains more neurons and connections

than the other two ANNs considered in Section 4.2.3 and Section 4.2.4.

4.2.2.1 Data Collection

Data collection is achieved by allowing Khepera with the Complex ANN to drive

autonomously throughout the environment in Figure 2.3, in both clockwise and

counterclockwise orientations. All data, namely the proximity sensor values and the motor

speed values, are logged. This data is organized in a set of vectors containing all 24 required

continuous attributes and 2 continuous classification outputs. A total of 717 vectors are

acquired with 67% delegated as training vectors while the remaining 33% are testing

vectors. It is imperative to mention that this dataset does not capture any erroneous rales,

which likely exist in the ANN architecture. For example, the situation in which all proximity

sensor values are saturated (i.e. Khepera is completely surrounded by walls in close

proximity) is not represented in the data. Avoiding meaningless combination of input

reduces the search space for the RCGA, which is done in [61]. In some applications is may

be desired to extract rales for every possible permutation of current and past input. Such a

challenging endeavor may be necessary for safety critical applications in which human lives

depend on proper system operation [62]. This thesis, however, limits the rale extraction to

typical operating conditions of Khepera performing wall following in the environment of

Figure 2.3.

4.2.2.2 Discretization

The Chi2 algorithm is applied to the complex wall follow dataset. A rather surprising and

unfortunate outcome is that when the error rate is set to 0, only three attributes are discarded

by the feature selection process. Fortunately, the number of intervals for each attribute is

significantly reduced with ten being the greatest number of intervals in a single attribute.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Attribute Intervals
0 0 2 4 9 927
1 0 8 695 70 0 896
2 0 9
3 0 2 2 558 798
4 0 1 158 4 2 5
5 0 1 7 2 1 3 4 3 2 7 7 9 953 1 0 0 3
6 0 1
7 0 1 1 0 2 3

' 8 0
9 0 1 3 2 1 703

1 0 0 1
1 1 0 2 2 84 174 2 2 8 503
12 0 1 9 139 2 7 2 3 6 4 3 6 8 4 2 0 5 1 7 6 0 0
13 0 1 8 923
1 4 0 S B H H
1 5 0 1
1 6 0 1 6 0 1 0 2 3
17 0 1
1 8 0
1 9 0 1 4 2 63 2 6 4 7 0 1 707
2 0 0 1 3 9 338 4 4 1 6 2 9
2 1 0 1 1 0 2 3
2 2 0 1
2 3 0 1 3 1 1

Table 4.5 - Discretized intervals for the wall following data. Three attributes are not needed (attributes 8 ,14 , and

18 highlighted in grey). The number o f intervals is significantly reduced from the -1024 possible intervals.

The discretization intervals of Table 4.5 reduce the attribute space to be used in the RCGA

search algorithm.

The classification space appears to have clustered regions. Therefore, by

implementing a clustering algorithm, cluster centroids are identified in Figure 4.9. In this

example, the K-means clustering algorithm is used to identify 5 clusters. The position of

these five centroids are interesting because the represent distinct symmetrical operating

states of Khepera: sharp turn left, subtle turn left, drive straight, subtle turn right, and sharp

turn right.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Wail Follow Classes

■o
<t><D
a.

-- t s -
4 4
4 4 4

4 4 A iMk A A 44 1 a n
4 A 4

A t 4 i A
km A A
A A A A A A , .

A A
A A
A A

5 -10 -5 I 5 A 10 A 15
A A A

-W> A A AAA A 1 *
A A A

---~Hj~

le ftsp eed right_speed
8 . 8 - 6 . 4
- 5 . 4 8 . 7
1 1 . 6 6 . 7
8 . 3 1 0 . 5

1 0 . 1 9 . 0

Ieft_speed

Figure 4.9 - Wall follow classification space plotted with 5 centroids (left). Centroids are computed using the K-

Means clustering algorithm and are tabulated (right).

Experimentation with and without classification clustering is performed. Results are

reported in the following section.

4.2.2.3 Evolving Rule Set

Designing the individual fitness function for the wall follow problem is even more

challenging than for the iris plant classification problem. Two important considerations are

factored into the equation:

1. m eansquarederror: the mean squared Euclidean distance between the computed

classification and the expected dassification. Refer to [63] for other similarity

measures.

2. avg_num_antecedants: the average number o f antecedents per rule.

These quantities are used to build the fitness function shown in Equation 2.

fitness = ram i — O.OOlx avg_num antecedent [4.6]
(data_clasSjj - rule_ classu)2

0 =1«
The fitness function attempts to minimize the discrepancy measurement between the

expected output (from the dataset) and the actual output (from the rule set output). A small

penalty term is added in effort to minimize the number of antecedents in the rule set. A ramp

function ensures that the minimum chromosome fitness is non-negative.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Selecting an appropriate population size, mutation rate, and crossover rate is not

trivial. It is clear from [64] that population sizes for genetic algorithms must be tailored

towards the specific problem in order to achieve convergence towards the optimal solution.

Alander proposes that the optimal population size is closely related to the length of the

bitstring chromosome [65]. Haupt experimentally investigates optimal population sizes and

mutation rates for a simple RCGA in [66] and determines that smaller populations with

large mutation rates can be optimal. Nonetheless, it seems clear that experimentation with

trial and error is required in order to attain acceptable results. As a starting point, the

population is set to 1000 while crossover and mutation rates are set to 80% and 1%,

respectively. Additional implementation details include an exit criterion is implemented

such that evolution will stop when:

1. mean training fitness has not increased by more than 1% in 120 generations, or

2. mean training fitness has not increased by more than 1% in 30 generations and is

within 5% of the maximum training fitness, or

3. 1000 generations have completed.

Experimentation is performed with rule sets of varying size—the number of rules is

varied between one and forty. Experimentation is started without using classification space

clustering. The rule sets attaining the highest testing fitness for each rule set size are

recorded and summarized in Figure 4.10.

0.12

0.1

« 0.08

j i 0.06

£ 0.04

0.02

0

Figure 4.10 - Chromosome best fitness (both training aid testing) is plotted for 1 through 40 rules without

classification clustering. Experimentation with several rule sizes are omitted in order to reduce the computational

cost.

60

Chromosome Best Fitness

□ test fit

. . . . —

1 2 3 4 5 7 9 12 15 20 25 30 40
Number of Rules

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8w
c_o
tsO
Ifl
'mGOcd
O

Chromosome Classification Error
30

25

20
15

□trainerror
□ test error

10
5

0
1 2 3 4 5 7 9 12 15 20 25

Number of Rules
30 40

Figure 4.11 - Chromosome classification error (both training and testing) o f the best fit chromosomes are plotted

for 1 through 40 rules. Error tends to be reduced with additional rules. However, this relation is reportedly weak.

■3 7
£ 6
S 5
8 4

3
2

Chromosome Complexity

1so
I I I I I

1 2 3 4 5 7 9 12 15 20 25
Number of Rules

I i—i—r
30 40

Figure 4.12 - Average rule complexity o f the best fit chromosomes are plotted for 1 through 40 rules. The rule

complexity is seen to increase with the number o f rules.

The results are poor and the fitness values attained are quite low. Increasing the population

size has the effect of increasing chromosome fitness values to higher levels. However,

fitness values remain poor and detailed results are, therefore, omitted.

Attempts to discretize the classification space with the K-means clustering

algorithm do not noticeably improve the fitness results, which are reported in Figure 4.13

below. This is an unfortunate result, which may be attributed to the fact that the RCGA

search space is not significantly reduced by discretization of the classification space since

the size of the attribute space is orders of magnitude greater than the size of the

classification space. Therefore, it seems reasonable to believe that the effectiveness of

classification space clustering is limited to certain problem domains where the size of the

attribute space is not many orders of magnitude greater than the size of the classification

space.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chromosome Best Fitness
0.12
o.i

8 0.08
0.06

£ 0.04

0.02
0

Figure 4.13 - Chromosome best fitness (both training and testing) is plotted for 1 through 40 rules.

Discretization o f the classification space is performed with 11 clusters. Results are not noticeably improved.

4020 25 301 2 3 4 5 7 9 12 15
Number of Rules

Chromosome Classification Error
25o

E m 20
a
.2 15
3
s 1011Tfl

5 -Hcti
U i i i—i—i*"i—i —i—i—r

Qtrain_error
Dtest error

I l— I— I— i " V I ' l l l l i— i— I—

1 2 3 4 5 7 9 12 15 20 25 30 40
Number of Rules

Figure 4.14 - Chromosome classification error (both training and testing) o f the best fit chromosomes are plotted

for 1 through 40 rules.

’I 7
6

Chromosome Complexity

i i i i i i i r n 1 i i i i i i i i 'i i i i i i t i i i i i i i i i i i i i r
^ 1 2 3 4 5 7 9 12 15 20 25 30 40

Number of Rules

Figure 4 .1 5 - Average rule complexity o f the best fit chromosomes are plotted for 1 through 40 rules.

4.2.2A Testing

Thus far, the extracted rules have been tested in terms of their ability to model the data

captured from the trained ANN performing wall following. The purpose of the training set is

to test the fidelity of the rules while the testing set tests the accuracy of the rules. It is chosen

to further test the rule accuracy by implementing the rule sets on Khepera and quantitatively

measure the resulting wall follow trajectory. When Khepera is implemented with the each of

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the evolved rule sets, some elements of the wall follow behavior are observed. However, no

rule set is able to guide Khepera successfully around the environment of Figure 2.3 in both

clockwise and counterclockwise orientations and most rule sets yield exceptionally poor

results in both orientations and are not worth reporting. The goal in Chapter 3 was not to

obtain a simple ANN architecture, but to obtain a high performing ANN architecture that

could rival a human operator at the wall follow task. The fact that accurate rule sets cannot

be extracted is disappointing and clearly indicates limitations to the proposed method.

Experimentation could be significantly different if a simpler ANN architecture is used for

the wall follow problem. This hypothesis is tested by experimenting with simpler ANN

architectures in Sections 4.2.3 and 4.2.4.

4.2.3 Moderate ANN
The Complex ANN is modified such that only one past input vector is used instead, which

reduces the number of attributes to 16. Additionally, the number of hidden layer neurons is

reduced from 18 down to 10. The ANN is trained to perform wall following in a similar

manner described in Chapter 3. For sake of comparison, the Moderate ANN achieves a

testing quality index of 34 with the dataset from Chapter 3 while the Complex ANN

achieves a testing quality index o f 30. The experimentation commences in a similar manner

as with the Complex ANN problem.

4.2.3.1 Data Collection

Behavior representative data is collected in a similar manner described in 4.2.2.1. Therefore,

details are omitted.

4.2.3.2 D iscretization

Attribute selection and discretization with the Chi2 algorithm is performed on the acquired

data with results summarized in Table 4.5.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Attribute Intervals
0 0 6 6 6 9 1 0 1 0
1 0 7 5 1 1 7 7 1
2 0 6
3 •o
4 0 _ 1 0 2 32 4 6 9 5 9 9

5 0 4 4 3
6 0 1 6 3 7 4 4 5
7 0 1 6 2 3 7 5 7 3
8 0
9 0 5 9 4 5 4 7 9 9

1 0 0 1 6

1 1 0 1 4 2 3 3 1 9 9 4 6
1 2 0 1 6 1 5 5 4 3 3

1 3 0 6
1 4 0 2 1 0
1 5 0 2 5 1 1 2 1 1

Table 4.6 - Discretized intervals for the moderate wall following data. This interval table is significantly simpler

than the complex wall interval table seen in Table 4.5.

4.2.3.3 Evolution

Evolution is performed with results summarized in Figure 4.16, Figure 4.17, and Figure

4.18.

0.12

0.1

« 0.08

0.06

£ 0.04

0.02

0

Figure 4.16 - Chromosome best fitness (both training and testing) is plotted for 1 through 40 rules.

Chromosome Best Fitness

□ test fit

1 2 3 4 5 7 9 12 15 20 25 30 40
Number of Rules

Chromosome Classification Error
‘-1 25

pa 20

J 15
'S
tS 10

o

□train_error
□test error

O' I I I I I I I I I I I I I i i I ' "T I I I I I I I i i ■ i I I I I I I T I I i i
1 2 3 4 5 7 9 12 15 20 25 30 40

Number of Rules

Figure 4.17 - Chromosome classification error (both training and testing) o f the best fit chromosomes are plotted

for 1 through 40 rules. Error tends to be reduced with additional rules.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

07127189

Chromosome Complexity

4020 301 2 3 4 5 7 9 12 15 25
Number of Rules

Figure 4.18 - Average rule complexity o f the best fit chromosomes are plotted for 1 through 40 rules.

4.2.3A Testing

The evolved rule sets are implemented on Khepera and the results are poor as in the complex

wall problem. Once again there are no set of rules which can successfully navigate Khepera

through the wall follow environment in both clockwise and counterclockwise orientations.

The results obtained are not worth reporting and are therefore omitted.

4.2.4 Simple ANN
The ANN is further simplified to the Simple ANN, which contains only 8 attributes since the

memory of past inputs is completely segregated. The most significant implication of this

modification is that wall following can only be implemented in one of two orientations:

clockwise or counterclockwise. The complexity of the ANN is quite low: the number of

hidden neurons is reduced down to 5. The Simple ANN is trained for wall following in the

clockwise orientation of Figure 2.3.

4.2.4.1 Data Collection

Behavior representative data is collected in a similar manner described in 4.2.2.1 with one

important exception. Khepera is implemented with the Simple ANN and data is collected

with Khepera driving in only the clockwise orientation of Figure 2.3.

4.2.4.2 Discretization

Attribute selection and discretization with the Chi2 algorithm is performed on the acquired

data and results are summarized in Table 4.7. It is observed that the average number of

intervals per attribute is greater than in the previously se n attribute interval tables. This

may be accredited to the fact that the ANN could be more discerning to the attributes since

there are fewer of them.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Attribute Intervals
0 3 7 2 7 1 0 2 3
1 0 153 17 5 3 3 4 3 7 8 5 4 7 622 6 2 3 6 8 9 7 37 7 7 9 7 9 9 8 7 7 9 3 1 9 8 7 1 0 2 3
2 0 6
3 0 2 5 12 6 9 4 7 1 638 1 0 2 3
4 0 4 6 506
5 0 1 6 13
6 0 1 3 6 93
7 0 1 2 4 5 6 1 7 9 1 7 9 329 4 5 5 820

Table 4.7 - Discretized intervals for the simplified wall following data. This interval table is significantly simpler

than the complex wall interval table seen in Table 4.5. However, the number o f intervals per attribute is

noticeably greater.

4.2.4.3 Evolution

Evolution is performed with 1000 individuals and results are summarized in Figure 4.19,

Figure 4.20, and Figure 4.21.

Chromosome Best Fitness
0.5

0.4
(ft
S 0.3

I 0-2
0.1

0

Qtrainfit
□test fit

i i i i r ■I i i i i i
1 2 3 4 5 7 9 12 15 20 25

Number of Rules
30 40

Figure 4 .1 9 - Chromosome best fitness (both training and testing) is plotted for 1 through 40 rules.

Chromosome Classification Error

m 20

401 2 3 4 5 7 9 15 25 3012 20
Number of Rules

Figure 4.20 - Chromosome classification error (both training and testing) o f the best fit chromosomes are plotted

f o r 1 th ro u g h 4 0 ru les. E r ro r ten d s to b e re d u c e d w i th add i t iona l ru les . T h is t e n d e n c y is s ign i f ican t ly s t ro n g e r

than the evolution results obtained with the complex and moderate wall.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

•t *jd 3.5
"3- 3

I 2.5
O 2
• I 1.5
f* 1
bb 0*5
$ 0

Chromosome Complexity

i i i i i i i i i i i i l l i i i i i " i i i i i i i i ~ n i i i i i i i i i i

1 2 3 4 5 7 9 1 2 1 5 20 2 5 3 0 40
Number of Rules

Figure 4.21 - Average rule complexity o f the best fit chromosomes are plotted for 1 through 40 rules.

The chromosome fitness values attained are significantly greater in the simple wall problem

compared to the complex and moderate wall follow problem. These improvements are

significantly built upon when as the chromosome population is increased. The experiment is

repeated with 5000 individuals and results are summarized in Figure 4.22, Figure 4.23, and

Figure 4.24.

Chromosome Best Fitness
1.6
1.4
1.2

CO 14>B 0.8
E 0.6

0.4
0.2

- El train fit
□test fit

i
ij, f| | |

■ m.mJilJBiL-.Bt .III, . i— —r I i— l— —i—r**-i—i— —r r t— i—i—i—i—i—i—i—i—r"i

1 2 3 4 5 7 9 12 15 20 25
Number of Rules

30 40

Figure 4.22 - Chromosome best fitness (both training and testing) is plotted for 1 through 40 rules.

Chromosome Classification Error
S 25

W 20

401 2 3 4 5 7 9 12 15 25 3020
Number o f Rules

Figure 4.23 - Chromosome classification error (both training and testing) o f the best fit chromosomes are plotted

for 1 through 40 rules. Classification error tends to be reduced with the addition o f rules.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chromosome Complexity
€ 4 i

3.5 *

f t * .o 2.5
Q o -w 2

3 1-5CS 1 ■
W> 0.5 ■ ^ A . i< OH i

1 2 3 4 5 7 9 12 15 20 25 30 40
Number of Rules

Figure 4.24 - Average rule complexity o f the best fit chromosomes are plotted for 1 through 40 rules.

Over-evolution is observed in all evolution trials with 15 rules or more. In Figure

4.26, the testing fitness is seen to decrease after about 400 generations while the training

fitness continues to increase. The same phenomenon is not seen in Figure 4.25 or any of the

evolutions with fewer than 12 rules. Interestingly, over-evolution was not observed in the

previous complex and moderate ANN problems. It is believed that memorization was not

previously seen since the search space was too large to achieve any significant degree of

chromosome fitness and fitness values converged towards non-optimal solutions. This is a

significant shortcoming, which is believed to be caused by limiting the population size due

to computational cost. Previous testing clearly indicates that the rule sets extracted from the

complex and moderate ANNs are poor and are likely non-optimal.

Evolution with 12 Rules
0.7
0.6

<« 0.5tn
c O-4
£ °-3

0.2
0.1

0

. -fc- —

X

teswnear

0

1
100

1 1
200 300

Generation

1
400

i
500

Figure 4.25 - Evolution details for 12 rules and 5000 individuals. Significantly higher fitness values are attained

in comparison to the rule extraction fitness with the complex ANN and moderate ANN. Fitness values converge

to levels th a t a re b e l ie v e d to b e n e a r optimal.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1
0.8

8 0.6

I 0 -4

0.2

0
0 100 200 300 400 500 600 700 800

Generation

Figure 4.26 - Evolution details for 15 rules and 5000 individuals. Over-evolution is seen as the testing fitness

decreases past 400 generations while the training fitness continues to increase. Fitness values do not converge.

4 .2 .4.4 Testing
The trajectory results obtained from the rule sets extracted from the simple ANN are

significantly better than those extracted from the complex and moderate ANNs. Many of the

extracted rule sets are able to guide Khepera successfully through the wall follow

environment. In particular, all rule sets evolved with 5000 individuals and at least 9 rules are

able to adequately perform wall following while 9 rules or less are inadequate. Adequate

performance is defined as completing a full lap in the wall follow environment o f Figure 2.3

with a maximum trajectory error o f less than 10 cm. An example trajectory result is plotted

below in Figure 4.27 for the case of 12 rules.

Evolution with 15 Rules

mean

w —
test mssrn

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

KtapmTl^Mfciy KtapnTtyaafciy

distancedistance

Figure 4.27 - Khepera is implemented with the 12 rules and produces a clockwise wall follow trajectory (top

left) with a mean error o f 1,27cm. When the sim ple ANN is implemented on Khepera a mean error o f 1.25cm is

achieved. The two trajectories are strikingly similar.

The 12 discrete rules yields a trajectory mean error of 1.27cm. In comparison to the trained

ANN, which has a trajectory mean error of 1.25cm, the extracted rules are very similar in

performance. The two trajectories performed in Figure 4.27 are highly similar, which

indicates that the rule-set accuracy is very good. A summary of the performance obtained

from each o f the discrete rule sets are summarized in Table 4.8.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

controller
trajectory error

minimum maximum mean std_dev
sim ple ANN 0 5 . 6 9 1 . 2 7 1 . 1 9

1 r u l e f a i l f a i l f a i l f a i l
2 r u l e s f a i l f a i l f a i l f a i l
3 r u l e s f a i l f a i l f a i l f a i l
4 r u l e s f a i l f a i l f a i l f a i l
5 r u l e s f a i l f a i l f a i l f a i l
7 r u l e s f a i l f a i l f a i l f a i l
9 r u l e s 0 9 . 0 9 3 . 0 1 2 . 5 2

12 r u l e s 0 4 . 6 3 1 . 2 5 1 . 1
15 r u l e s 0 5 . 9 1 . 7 1 . 3 5
2 0 r u l e s 0 5 . 2 3 1 . 5 5 1 . 2 7
2 5 r u l e s 0 4 . 94 1 . 5 1 1 . 2 2
30 r u l e s 0 5 . 8 3 1 . 8 5 1 . 4 5
4 0 r u l e s 0 4 . 3 8 1 . 1 4 0 . 9 9

Table 4.8 - Performance o f the discrete rule sets obtained from the simple ANN are summarized.

It is clear from Table 4.8 that a minimum number of rules must be used in order to achieve

acceptable rule accuracy. Unfortunately, the rule set comprehension decreases with the

addition of more rules. There exists a trade-off between rule set comprehension and rule

accuracy.

4.2.5 Re-Extraction
In Section 4.2.4, discrete rule sets have been extracted from the simple ANN and rule

accuracy was generally deemed acceptable. Section 4.2.5 examines the effectiveness of the

proposed rule extraction method by re-applying the method to extract rules to a set of

discrete rules obtained in Section 4.2.4. The motivation behind this endeavor is to compare

the extracted rule set with the re-extracted rule set in terms of similarities in rule

comprehension and accuracy. It is chosen arbitrarily to use the rule set with 12 rules for this

study since it possesses a good compromise between rule accuracy while not employing an

excessive number of rules.

4.2.5.1 D ata Collection

Behavior representative data is collected in a similar manner described in 4.2.2.1 with two

important exceptions: Khepera is implemented with the 12 rules instead of an ANN, and

data is collected for only the clockwise orientation of Figure 2.3.

4.2.5.2 Discretization

Attribute selection and discretization with the Chi2 algorithm is performed on the acquired

data with results summarized in Table 4.9.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Attribute Intervals
0 0 1 0 2 2
1 0 3 6 0 384 4 7 5 4 7 6 532 5 4 5 5 8 1 5 8 4 6 2 4 6 9 0 7 2 0 7 3 6 792 8 6 8 873 9 3 1 9 3 6 9 6 0 1 0 2 :
2 0 8
3 0 1 1 119 4 3 8 6 2 5 648 1 0 2 3
4 0 7
5 0
6 0 4
7 0 3 1

Table 4.9 - Discretized intervals for the re-extraction wall following data.

4.2.5.3 Evolution

Evolution is performed with 5000 individuals. The individual chromosome with the highest

testing fitness possesses the following properties:
t r a i n i n g f i t n e s s : 0 . 5 6 3 6 5 8
t e s t i n g f i t n e s s : 0 . 9 3 4 4 5 4
t r a i n i n g e r r o r : 1 . 7 7 0 7 2
t e s t i n g e r r o r : 1 . 0 6 8 9
r u l e c o m p l e x i t y : 2 . 1 6 6 6 7

It is rather disappointing to see that the re-extracted rule set contains training and testing

error o f such magnitude. Ideally the error would be zero and the re-extracted rules would

exactly resemble the originally extracted rules. Unfortunately this is not the case. The

original and re-extracted rule sets are listed in Figure 4.29 and Figure 4.29, respectively.

Upon initial inspection the rule sets appear significantly different.

If x0 in [3, 727) and x1 in [622 ,1024) and x2 in [6 ,1024) and x6 in [6 ,1024) then y=(10,-10)
If x1 in [779,1024) and x2 in [6 ,1024) and x5 in [0 ,13) and x7 in [2 ,1024) then y=(10,-9)
If x3 in [638,1024) then y=(7,-8)
If x3 in [638,1024) then y=(9,-5)
If x1 in [547,931) and x3 in [0 ,638) then y=(1 0 ,7)
If xO in [727,1024) and x1 in [689, 779) and x3 in [0 ,638) then y=(10,9)
If xO in [1023,1024) and x1 in [737, 987) and x3 in [0 ,1023) and x7 in [0, 61) then y=(10,9)
If x1 in [378, 931) and x3 in [0 ,1023) then y=(9,8)
If xO in [1023,1024) and x4 in [0 ,6) then y =(9,10)
If x3 in [0 ,4 7 1) and x4 in [0, 6) and x7 in [0 ,179) then y=(8,10)
If x3 in [12 ,1023) and x7 in [0 ,61) then y=(8,11)
If x1 in [0 ,6 2 3) and x3 in [0 ,12) then y=(6,13)

Figure 4.28 - Original 12 rules extracted from the simple ANN.

If x1 in [868,1024) and x2 in [8 ,1024) and x6 in [4 ,1024) then y=(10,-9)
If x3 in [625,1024) then y=(9,-8)
If x2 in [8 ,1024) and x3 in [625 ,1024) and x7 in [31 ,1024) then y=(9,-8)
If x2 in [8 ,1024) and x3 in [119, 648) and x7 in [31 ,1024) theny=(8,-7)
If x3 in [648,1024) then y=(8,-7)
If x1 in [476 ,960) and x3 in [119 ,648) then y=(9,8)
If xO in [1022, 1024) and x4 in [0, 7) then y=(9,8)
If xO in [1022,1024) and x3 in [0 ,1023) then y=(9,8)
If x1 in [624, 868) and x3 in [0, 438) then y=(9,8)
If x1 in [736 ,931) and x4 in [0 ,7) then y=(9,9)
If x3 in [0 ,1023) and x7 in [0, 31) then y=(7,10)
If x1 in [0, 624) and x2 in [0, 8) and x3 in [0 ,11) then y=(7,11)__________

Figure 4.29 - 12 rules are re-extracted from the original 12 rules. These rules are marked with a ‘# ’.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Upon closer inspection some similarities can be seen. These similarities are outlined in

Table 4.10 below.

Rules Comments

If x3 in [638,1024) then y=(7,-8)
If x3 in [638,1024) then y=(9,-5)
If x3 in [648,1024) then y=(8,-7)
If x3 in [625,1024) then y=(9,-8)

R o t a t e
r i g h t

If x1 in [0 ,6 2 3) an d x3 in [0 ,12) then y=(6,13)
If x1 in [0 ,624) and x2 in [0 ,8) and x3 in [0 ,11) then y=(7,11)

B e n d
l e f t

If x3 in [12 ,1023) and x7 in [0, 61) theny=(8,11)
#lf x3 in [0 ,1023) and x7 in [0 ,31) then y=(7,10)

B e n d
l e f t

If x1 in [378, 931) and x3 in [0 ,1023) then y=(9,8)
If x1 in [624,868) and x3 in [0 ,438) then y=(9,8)

D r i v e
s t r a i g h t

If xO in [1023,1024) and x4 in [0 ,6) then y=(9,10)
If xO in [1022,1024) and x4 in [0, 7) then y=(9,8)

D r i v e
s t r a i g h t

If x1 in [547, 931) and x3 in [0, 638) then y=(10,7)
If x1 in [476,960) and x3 in [119,648) then y=(9,8)

B e n d
r i g h t

If xO in [3, 727) and x1 in [622 ,1024) and x2 in [6 ,1024) and x6 in [6 ,1024) then y=(10,-10)
If x1 in [779,1024) and x2 in [6 ,1024) and x5 in [0 ,13) and x7 in [2 ,1024) then y=(10,-9)
If x1 in [868,1024) and x2 in [8 ,1024) and x6 in [4 ,1024) then y=(10,-9)
If x2 in [8 ,1024) and x3 in [625,1024) and x7 in [31 ,1024) then y=(9,-8)
If x2 in [8 ,1024) and x3 in [119 ,648) and x7 in [31 ,1024) then y=(8,-7)

M i s c .
R o t a t e
r i g h t

If xO in [727,1024) and x1 in [689, 779) and x3 in [0 ,638) then y=(10,9)
If xO in [1023 ,1024) and x1 in [737, 987) and x3 in [0 ,1023) and x7 in £0, 61) then y=(10,9)
If x3 in [0 ,471) and x4 in [0 ,6) and x7 in [0 ,179) then y=(8,10)
If xO in [1022,1024) and x3 in [0 ,1023) then y=(9,8)
If x1 in [736, 931) and x4 in [0, 7) then y=(9,9)

M i s c .
D r i v e

S t r a i g h t

Table 4.10 - The originally extracted rules and re-extracted rules are entered into a table in order to outline

similarities between the two rule sets. For example, the first row contains rules that check to see if x3 is fairly

high in order to sharply rotate Khepera to the right. The re-extracted rules are marked with a ‘# ’.

The similarities between the two rule sets can be difficult to perceive as is the case in the

last two rows of Table 4.10. One possible explanation could be that the rule set

comprehension is poor. Alternatively, the rule set extraction method could be poor in

extracting accurate rule sets. Accuracy limitations have already been observed with the

complex and moderate ANN rule extraction problems. The accuracy degrading introduced

by the rule extraction method is probably best investigated by quantifying and comparing

trajectory error for each of the three wall follow controllers: simple ANN, 12 extracted rules,

and 12 re-extracted rules.

4.2.5.4 Testing

Khepera is implemented with the 12 re-extracted rules and a trajectory is plotted in Figure

4.30 below. Significant performance degrading is seen as the mean trajectory error increases

from 1.25cm to 1.98cm. This is mostly attributed to the poor performance seen on the right

most wall.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

KtapmTtyM Dry KtapHiTtyMtofy

xftikn(im| i »pMNon(Mi)

/
f

f

1

1

set point ^ e tp o m t^

distancedisi

U

Figure 4.30 — Khepera is implemented with the 12 re-extracted rules and produces a clockwise wall follow

trajectory (top left) with a mean error o f 1.98cm. When the original 12 rules are implemented on Khepera a mean

error of 1,25cm is achieved. Significant performance degrading is seen on the right-most wall.

In summary, the mean trajectory errors reported for the simple ANN, 12 extracted discrete

rules, and 12 re-extracted discrete rules are 1.27cm, 1.25cm, and 1.98cm, respectively. It is

likely that the proposed rule extraction method loses some accuracy diuing each translation.

4.3 Discussion

The proposed methodology for discrete rule set extraction is computationally expensive.

This is mostly attributed to the compounding computational costs of undertaking the

Pittsburgh chromosome approach with very challenging high-dimensionality problem

domains. Consider the case of extracting 12 rules. Equation 4.4 indicates that the number of

chromosome permutations is 7.40xl0159, 7.17xl0217, and 3.11xl0320 for the complex,

moderate, and simple ANNs, respectively. Evidently, the dimensionality of the complex and

moderate ANN rule extraction problem are too great for the proposed method. The

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

discretization stage could not adequately reduce the search space for these two ANN

problems.

There are many degrees of freedom (e.g. recombination, fitness evaluation, and

chromosome encoding, etc.) of the RCGA which call for more experimentation. However,

the computational cost of such an endeavor marks this infeasible. Unfortunately,

computational cost restricts experimentation. The following explorations may have been

considered if computational costs had not been so restricting:

1. Greater populations. Convergence towards non-optimal solutions is a great

shortcoming of the RCGA when confronted with an exceptionally large search

space. This is seen in the case of rule extraction from the complex and moderate

ANNs. Increasing the population size helps to avoid this problem.

2. Chromosome Encoding. Only the Pittsburgh encoding method is investigated.

Exploration and comparison of the Michigan and Pittsburgh approaches could be

beneficial Also, different rule forms could be explored. It has been shown n

Section 4.2.1 that the chosen rule form restricts the classification of irises. In such

instances, a different rule form is necessary in order to achieve higher performing

rule sets while preserving rule comprehension.

3. Varying membership functions. Alternative membership functions to the

rectangular one seen in Figure 4.2 could be explored.

4. M ore d a ta Acquiring and utilizing additional data vectors to capture the ANN

behavior may be beneficial.

The feature selection and discretization performed with the Chi2 algorithm could be

modified such that the error rate associated with interval merging is computed in a manner

that gives consideration to class similarity. The rationale is that the error associated with

merging attribute intervals should be deemed less when the associated classes are similar as

opposed to being markedly different. A measure of class similarity can be assigned based on

one of the many similarity measurements outlined in [63]. This modification would make

the Chi2 algorithm mores suitable for problems with continuous classification. This

modification, however, is difficult to implement because it is not clear how x2 values should

be computed.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4 Conclusion

A methodology for extracting discrete rule sets from high dimensionality data captured from

a trained ANN with both continuous attributes and classification is explored. The rule

extraction methodology uses a real-coded genetic algorithm (RCGA) to evolve a discrete

rule set. Some experimentation is performed with the Iris plant classification problem and

the extracted rule sets are comprehensive and able to correctly classify 146 of 150 data

points. Experimental results indicate that the rale sets extracted from the simple ANN

successfully perform wall following when implemented on the mobile robot, Khepera.

However, in comparison to the trained simple ANN, the extracted rales suffer with poorer

performance. Furthermore, rules extracted from the simple ANN are not as comprehensive

as the iris plant extracted rales. This is attributed to the fact that the wall follow problem is

considerably more complicated than the iris plant classification problem in terms of attribute

and classification space dimensionality. Rules cannot be practically extracted from the

complex and moderate ANNs with adequate rale set accuracy due to the enormous

computational cost. The proposed methodology is likely applicable to numerous problem

domains independent o f ANN architecture and attribute/class domain (i.e. binary, discrete,

continuous, etc). However, the computational cost of the proposed method makes it

inappropriate for highly complex problems. A decomposition rule extraction approach may

be more appropriate in such cases.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Conclusion

Braitenberg argued that behaviors could be synthetically produced in mobile robotics. Since

his book publishing in 1984, numerous works can be found in the literature which validates

many o f his assertions. In this thesis, i is demonstrated that autonomous robotic reactive

behavior can be synthesized with artificial neural networks (ANNs). Implicit knowledge is

captured using a learning algorithm for an ANN-based controller for the problem of

autonomous robotic wall following. Numerous quantitative measurements indicate that the

trained ANN is able to successfully generalize across a variety of environments with

varying wall geometry.

Performance evaluation reports that the trained ANN can achieve better wall follow

trajectory control at higher speeds than a human operator. The research of behavior

performance scalability is significant since real-world applications could potentially benefit

from very fast reactive controllers obtained from extrapolation of controllers trained under

slower operating conditfans. The quantification of behavior performance scalability is a

notable contribution to research and is a recommended research direction. Particular

attention should be given to the controller’s sampling frequency on the input. Fast and

accurate reactive control requires frequent input sampling.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Braitenberg also illustrates how more complex autonomous robotic designs tend to

be less transparent. This phenomenon creates a new research area of knowledge

representation. It is important to represent knowledge in a comprehensive form so that the

knowledge can be read and/or verified by a human expert. It is demonstrated that the

implicit knowledge embedded into the trained ANN can be extracted and represented in

human-comprehensive terms. A methodology for extracting discrete rule sets from a trained

ANN with both continuous attributes and classification is explored. The methodology is

based on attribute discretization, feature selection, and evolutionaiy rule-set search using a

real-coded genetic algorithm. Experimentation is conducted on three different ANN

architectures with varying size and complexity. Experimental results indicate that the

methodology is only successful with the simplest ANN architecture. This is believed to be a

result of the method’s exponentially increasing heuristic search space associated with the

addition of attributes in the more complex ANN architectures. Furthermore, these additional

attributes tend to decrease the comprehension of the extracted rules.

The rule extraction methodology is likely applicable to numerous problem domains

independent of ANN architecture and attribute/class domain (i.e. binary, discrete,

continuous, etc). In this sense, the rule extraction methodology is a significant contribution

to research. However, the computational cost of heuristic search makes the method

inappropriate for highly complex problems. A decomposition rule extraction approach may

be more appropriate in such cases. Therefore, decompositional rule extraction of ANNs with

continuous attributes and continuous classification is a recommended research direction.

There is a need for a universal ANN rule extraction method that would ideally be applicable

to any ANN architecture and have a low order of computational cost.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography
[1] V. Braitenberg. (1984) Vehicles: Experiments in Synthetic Psychology. MIT Press,

Cambridge, MA.

[2] E. Aguirre, A. Gonzalez, Fuzzy behaviors for mobile robot navigation: design
coordination and fusion, International Journal of Approximate Reasoning 25 (2000)
255-289.

[3] T. Poggio, F.Girosi, Networks for approximation and learning, Proc. IEEE 78 (1996)
1481-1497.

[4] G. Castellano, G. Attolico, & A. Distante. Automatic generation of fuzzy rules for
reactive robot controllers. Robotics and Autonomous Systems 22 (1997) 133-149.

[5] V. Matellan, C. Fernandez & J. Molina, Genetic learning of fuzzy reactive controllers,
Robotics and Autonomous Systems 25 (1998) 33-41.

[6] S. Lee and S. Cho (2001), Emergent Behaviors of a Fuzzy Sensory Controller Evolved
by Genetic Algorithm, IEEE Transactions on Systems, Man, and Cybernetics—PartB:
Cybernetics 31 (2001) 919-929.

[7] D. Floreano & F. Mondada, Evolutionary neurocontrollers for autonomous mobile
robots. Neural Networks 11 (1998) 1461-1478.

[8] J. Santos, R J. Duro, J.A. Becerra, J.L Crespo, F. Bellas, Considerations in the
application of evolution to the generation of robotic controllers, Information Sciences
113 (2001) 127-148.

[9] S. Nolfi, Evolving non-trivial behaviors on real robots: A garbage collecting robot,
Robotics and Autonomous Systems 22 (1997) 187-198.

[10] F. Herrera, M. Lozano, J.L. Verdegay, Tackling real-coded genetic algorithms:
operators and tools for behavior analysis, Artificial Intelligence Review 12 (1998)
265-319.

[11] K. Takita, Y. Kakazu, Automatic Agent Design Based on Gate Growth - Application
to Wall Following Problem - , Proceedings of the 37th SICE Annual Conference (1998)
863-868.

[12] I. Harvey, P. Husbands, D. Cliff, A. Thompson, N. Jakobi, Evolutionary robotics: the
Sussex approach. Robotics and Autonomous Systems 20 (1997) 205-224

[13] R. Braunstingl, J. Mujika, J. Uribe, A Wall Following Robot With A Fuzzy Logic
Controller Optimised By A Genetic Algorithm, Proceedings of the 1995 International
Conference of Fuzzy Systems 5 (1995) 77-82.

[14] S. Yamada, M. Murota, Uhsupervised Learning to Recognizing Environments from
Behavior Sequences in a Mobile Robot, Proceedings of the 1998 IEEE International
C onference on R obotics & A utonm ation Leuven (1998) 1871-1876.

[15] N. Nilsson, Artificial Intelligence: A New Synthesis, Morgan Kaufinann Publishers,
Inc., San Francisco, CA, 1998.

[16] C. Touzet, Neural reinforcement learning for behavior synthesis, Robotics and
Autonomous Systems 22 (1997) 251-281.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[17] B. Jerbic, K. Grolinger, B. Vranjes, Autonomous agent based on reinforcement
learning and adaptive shadowed network, Artificial Intelligence in Engineering 13
(1999) 141-157.

[18] E.Zalama, J. Gomez, M. Paul, J. Peran, Adaptive Behavior Navigation of a Mobile
Robot, EEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and
Humans, vol.32 no. 1 (2002) 160-169.

[19] E. Tunstel, Coordination of Distributed Fuzzy Behaviors in Mobile Robot Control,
IEEE Intl. Conf. on Systems, Man, & Cybernetics, vol. 31 no. 6 (2001) 919-929.

[20] E. Tunstel, Mobile robot autonomy via hierarchical fiizzy behavior control, Proc. 6th
Intl. Symp. on Robotics & Manuf. (1996) 837-842.

[21] E. Tunstel, T. Lippincott, M. Jamshidi, Behavior hierarchy for autonomous mobile
robots: fuzzy-behavior modulation and evolution, Intl. Journal of Intelligent
Automation & Soft Computing Vol 3 No 1 (1997) 37-50.

[22] K. Ng, M. Trivedi, A Neuro-Fuzzy Controller for Mobile Robotic Navigation and
Multirobot Conveying, IEEE Transactions on Systems, Man, and Cybernetics—Part
B: Cybernetics, vol.28 no. 6 (1998) 829-840.

[23] U. Nehmzow, Quantitative analysis or robot—environment interaction—towards
“scientific mobile robotics”, Robotics and Autonomous Systems 44 (2003) 55-68.

[24] R. Setiono, J. Thong, C.S. Yap, Symbolic rule extraction from neural networks An
application to identifying organizations adopting IT, Information & Management 34
(1998)91-101.

[25] F. Maire, Rule-extraction by backpropagation of polyhedra, Neural Networks 12
(1999) 717-725.

[26] J. Alexander, M. Mozer, Template-based procedures for neural network interpretation,
Neural Networks 12 (1999) 479-498.

[27] R. Andrews, J. Diederich, A. Tickle, A Survey and Critique of Techniques For
Extracting Rules From Trained Artificial Neural Networks, Knowledge Based
Systems 8 (1995) 373-389.

[28] J Neumann, Classification and Evaluation of Algorithms for Rule Extraction From
Artificial Neural Networks, PhD Summer Project, Division of Informatics, University
of Edinburgh (1998).

[29] G. Towell, Symbolic Knowledge and Neural Networks: Insertion, Refinement and
Extraction. PhD thesis, Computer Science Department, University of Wisconsin,
Madison (1991).

[30] I. Taha, J. Ghosh, Symbolic interpretation of artificial neural networks, IEEE
transactions on Knowledge and Data Engineering 11 (1998) 448-462.

[31] E. Pop, J. Diederich, RULENEG: Rule-extraction from neural networks by step-wise
negation, Technical report, Neurocomputing Research Center, Queensland University
of Technology, 1994.

[32] R. Setiono, H. Liu, Understanding neural networks via mle extraction, Proceedings of
the 14th International Joint Conference on Artificial Intelligence, 480-485, Montreal,
Canada.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[33] R. Krishnan, G. Sivakumar, P. Bhattacharya, A search technique for rule extraction
from trained neural networks, Pattern Recognition Letters 20 (1998) 273-280.

[34] M. Ishikawa, Rule extraction by successive regularization, Neural Networks 13 (2000)
1171-1183.

[35] S. Huang, H. Xing, Extract intelligible and concise fuzzy rules from neural networks,
Fuzzy Sets and Systems 132 (2002) 233-243.

[36] R. Kerber, Chimerge: Discretization for numeric attributes. Proc. National Conference
on Artificial Intelligence (1992), AAAI Press, pp. 123-128.

[37] H. Liu, R. Setiono, Chi2: Feature selection and discretization of numeric attributes,
Proceedings of 7th IEEE International Conference on Tools with Artificial Intelbgence
(1995).

[38] F. Tay, L. Shen, A Modified Chi2 Algorithm for Discretization, IEEE Transactions on
Knowledge and Data Engineering 14 (2002) 666-670.

[39] M. Last, A. Kandal, O. Maimon, Information-theoretic algorithm for feature selection,
Pattern Recognition Letters 22 (2001) 799-811.

[40] R. Setiono, H. Liu, NeuroLinear: From neural networks to oblique decision rules,
Neurocomputing 17 (1997) 1-24

[41] Y. Hayashi, R. Setiono, K. Yoshida, A comparison between two network rule
extraction techniques for the diagnosis of hepatobiliary disorders, Artificial
Intelbgence in Medicine 20 (2000) 205-216.

[42] R. Setiono, H. Liu, Symbolic Representation of Neural Networks, IEEE Computer 29
(1996) 71-77.

[43] R. Andrews, S. Geva, RULEX & CEBP networks as the basis for a rule refinement
system. In J. Hallam, editor, Hybrid Problems Hubrid Solutions, pp. 1-12. IOS Press.

[44] H. Liu and S. Tan, X2R: A Fast Rule Generator, Proceedings of IEEE International
Conference on Systems, Man and Cybernetics 2 (1995) 1631-1635

[45] C. Pena-Reyes, M. Sipper, A fuzzy-genetic approach to breast cancer diagnosis,
Artificial Intelbgence in Medicine 17 (1999) 131-155.

[46] H. Ishibuchi, T. Nakashima, T. Murata, Three-objective genetics-based machine
learning for linguistic rule extraction, Information Sciences 136 (2001) 109-133.

[47] R. Krishnan, G. Sivakumar, P. Bhattacharya, Extracting decision trees from trained
neural networks, Pattern Recognition 32 (1999) 1999-2009.

[48] M. Kim, I. Han, The discovery of experts’ decision rules from qualitative bankruptcy
data using genetic algorithms, Expert Systems with Applications 25 (2003) 637-646.

[49] I. Jagielska, C. Matthews, T. Whitfort, An investigation into the apphcation of neural
networks, fuzzy logic, genetic algorithms, and rough sets to automated knowledge
acquisition for classification problems, Neurocomputing 24 (1999) 37-54.

[50] M. Lee, T. Wilhams, Robotic Navigation using Fuzzy Spatial Inference, IEEE
Proceedings of the International Conference on Systems, Man and Cybernetics (1998)
2154-2159.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[51] K. Ward, A. Zelinsky, An Exploratory Robot Controller which Adapts to Unknown
Environments and Damaged Sensors, International Conference on Field and Service
Robots (1997) 477-484

[52] M. Mucientes, R. Iglesias, C.V. Regueiro, A. Bugarin, S. Barro, A fuzzy temporal
rule-based velocity controller for mobile robotics, Fuzzy Sets and Systems 134 (2003)
83-99.

[53] S. Huang, H. Xing, Extract intelligible and concise fuzzy rules from neural networks,
Fuzzy Sets and Systems 132 (2002) 233-243.

[54] K. Mehrota, C. Mohan, S. Ranka, Elements of artificial neural networks, The MIT
Press, Cambridge MA, 1997.

[55] J. Alexander, M. Mozer, Template-based procedures for neural network inteipretation,
Neural Networks 12 (1999) 479-498.

[56] Y. Hayashi, R. Setiono, K. Yoshida, A comparison between two neural network rule
extraction techniques for the diagnosis of hepatobiliary disorders, Artificial
Intelligence in Medicine 20 (2000) 205-216.

[57] G. Alefeld, G. Mayer, Interval analysis: theory and applications, Journal of
Computational and Applied Mathematics 121 (2000) 421-464.

[58] W. Lodwick, K. Jamison, Special issue: interfaces between fuzzy set theory and
interval analysis, Fuzzy Sets and Systems 135 (2003) 1-3.

[59] F. Herrera, M. Lozano, J.L. Verdegay, Tackling real-coded genetic algorithms:
operators and tools for behavior analysis, Artificial Intelligence Review 12 (1998)
265-319.

[60] Blake, C.L. & Merz, C.J. (1998). UCI Repository o f machine learning databases
[http://www.ics.uci.edu/~mleam/MLRepository.html]. Irvine, CA: University of
California, Department of Information and Computer Science.

[61] K. Saito, R. Nakano, Medical diagnostic expert system based on PDP model,
Proceedings of the IEEE International Conference on Neural Networks 1 (1998) 255-
262.

[62] R. Andrews, J. Diederich, & A. Tickle, Survey and critique of techniques for
extracting mles from trained artificial neural networks, Knowledge Based Systems 8
(1995) 373-389.

[63] F. Berzal, J.C. Cubero, N. Marin, D. Sanchez, Building multiway decision trees with
numerical attributes, Information Sciences XXX (2003) XXX-XXX.

[64] M. Odetayo, Optimal Population Size for Genetic Algorithms: An Investigation, EEE
Colloquium on Genetic Algorithms for Control Systems Engineering (1993) 2/1-2/4

[65] J. Alander, On Optimal Population size of genetic algorithms, Proceedings of
CompEuro ‘92 (1992) 65-70.

[66] R. Haupt, Optimum Population Size and Mutation Rate for a Simple Real Genetic
Algorithm that Optimizes Array Factors, IEEE Antennas and Propagation Society
International Symposium 2 (2000) 1034-1037.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.ics.uci.edu/~mleam/MLRepository.html

