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I presume you are getting into a high gear with the upcoming conference. | wish you much success. Please let me know
how it went,

All the very best,
Jack



Abstract

Microtubules (MTs) are cylindrical protein structures which participate in a
variety of cellular activities. Research on the biological aspects of MT behaviour

has been growing especially over the last decade, and it has revealed many interesting

of the MTs in the cell are mostly unknown. The main objective of this work is to
show that such mechanisms may be linked to the dielectric properties of MTs.

The dielectric properties of MTs arise from the dipolar character of the tubulin
molecules that are the building subunits of MTs. Based on this feature, MTs can be
viewed as ferroelectric crystals. Ferroelectric crystals consist of atoms or molecules
which carry permanent dipole moments. They are known to undergo a phase tran-
sition from a low temperature ferroelectric phase in which all dipoles are ordered
in a preferred direction, to a high temperature paraelectric phase characterized by
random orientation of dipoles. If such dielectric phases exist in MTs they may serve
different purposes in the biological MT activities. This feature of MTs is the subject
of investigation in the second chapter of this thesis.

It has been suggested by other researchers that quanta of energy may propagate
along MTs which are in the ferroelectric phase in the form of solitary waves of
tubulin dipole states. The energy may be supplied by the hydrolysis of guanosine
5’ triphosphate (GTP) that follows the addition of one molecule of tubulin to a MT
end. In the third chapter of this thesis, the above concept was used to study the
collision of these solitary waves with a local defect in a MT which can be an attached
protein or a discontinuity in the arrangement of the tubulin molecules.

In the last chapter, the hypothesis is studied whether different configurations of

the dipole states of the tubulin molecules could be a way of storing information in

MTs.
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Introduction

Microtubules (MTs) are hollow tubes that are found in all eucaryotic cells 1,
2]. They are composed of molecules of tubulin which are dimers formed of two
monomers termed a- and f-tubulin. The tubulin dimers in a MT are arranged
into protofilaments. Most MTs have 13 or 14 protofilaments [3]. Their diameter is
approximately 25 X 107 m and the length of an intermediate MT is about 10~%m.
In the axons of neurons they can be as long as several centimeters.

In the cell MTs are typically attached with one end to the centrosome and the
other end is free. They emanate from the centrosome in all directions. The free

from pool of free tubulin in the cytoplasm. This phenomenon is known as dynamic
instability. The dynamic instability of MTs is a major mechanism in cell division
and polarization [1,4, 5].

In cell division processes, MTs radiate from the two spindle poles located at the
opposite extremities of the dividing cell. They probe the cellular space at random by
continuously growing and shrinking in all directions so that eventually a MT attaches
to a place (called a kinetochore) that is located on each of the two chromatids of a
chromosome. After all chromatids are attached to MTs, they are pulled apart by

material is divided into two equal portions, one for each of two daughter cells.

Most animal cells are polarized. Polarization of the cell is achieved when a
majority of MTs attached to the centrosome extend in a preferred direction. At this
time the growth of MTs is rather stabilized which results in fewer and longer MTs
since the total amount of tubulin in the cell is fixed. This means that there is a
their mode of behaviour from rapid growing and shrinking characterized by a large
number of short MTs to stabilized growth in a preferred direction characterized by
longer and fewer MTs.

Dynamic instability is also the basis for the regular oscillations which have been
observed in vitro in assemblies of MTs [6]. During this process the population of
MTs switches in regular time intervals between the phase when almost all tubulin is
bound in MTs and the phase when no MTs exist and all tubulin is free. According
to experiments such regular oscillations don’t seem to exist in the cell [7]. However,



pathways through which the dynamic instability of MTs takes place in the cell.

One of the essential processes associated with the dynamic instability of MTs
is the hydrolysis of guanosine 5’ triphosphate (GTP) bound to the § monomer of
each tubulin dimer. GTP bound on the #-tubulin hydrolyses every time a tubulin
dimer attaches to the growing MT end. In the hydrolysis 8.7 kcal/mol of energy is
released [8]. Experiments indicate that most of this energy is consumed in changing
the conformational state of the tubulin molecule and only a fraction is freed [9].
Different conformational states of the tubulins on which the GTP has hydrolysed
can be a source of mechanical strain which may be a factor in MT disassembly.
However, it is not known how the free portion of the energy released in the GTP
hydrolysis is utilized in the MTs.

In some cellular activities MTs are stable. MT's are usually stabilized by binding
microtubule associated proteins (MAPs). MAPs bound to MTs can form bridges
which interconnect MT's into a compact network. Such connections may be channels
through which MTs communicate among themselves.

Stable MTs inside the cell function as tracks along which organelles are trans-
ported to the proper position. In axons, transport of neuronal vesicles towards the
synapse takes place along MTs as well. The transport along MTs is mediated by
proteins called motor proteins which attach to MTs at regular sites [10]. Motor

the cell or the whole cell. Experiments suggest that these motions result from the

cooperative behaviour of the motor proteins attached to MTs.

In this work, physical mechanisms are suggested that could explain some aspects
of the MT behaviour outlined above.

Chapter 1 describes in more detail the structure of MTs, dynamic instability of
a single MT, the role of Mi's in the cell division processes, GTP hydrolysis and
its connection to the conformational states of the tubulin molecule, the cycle of
chemical reactions that lead to the regular oscillations of populations of MTs, the
specific roles of different associated proteins and motor proteins and their isoforms
in the MT activities, and the structure of tubulin.

In Chapter 2, different dielectric phases which may exist in MTs are studied.
Such phases could be linked to different regimes of MT behaviour which are associ-



ated with different biological functions of MTs.

tubulin molecule. At the present time it is accepted that each tubulin molecule car-
ries a permanent dipole moment which can be in at least two distinct orientational
states [11]. Due to this, a MT can be viewed as an assembly of dipoles. Inorganic
crystals which are composed of atoms or molecules that carry permanent dipole mo-
ments are called ferroelectric crystals. They are known to undergo a phase transition
from a low temperature phase in which all dipoles are aligned in one direction to a
high temperature phase that is characterized by random orientation of dipoles. The
ordered phase is termed the ferroelectric phase and the phase in which the dipoles
are oriented at random is termed the paraelectric phase [12].

One of the objectives of this thesis was to find whether MT's can exhibit a phase
transition similar to that observed in ferroelectric crystals. To study the possibility
of a transition from a low temperature ferroelectric phase to a high temperature
paraelectric phase, the average configuration of dipoles in a MT at each temperature

by means of which the states with the highest weight of the assembly of dipoles in
a MT were selected at each temperature [13]. These states were then used to find
the degree of alignment of dipoles (polarization) as a function of temperature.

The configuration of dipoles in a MT depends on the following characteristics:
the magnitude and orientation of the dipole moments; the relative permittivity of
the medium surrounding the MT; and the geometrical arrangment of the tubulin
molecules in the MT. A combination of these parameters determines the dielectric
phase in a MT at body temperature. This implies that if there are mechanisms that
govern the values of the parameters above, they determine the dielectric phase in
a MT at biological temperatures and consequently a specific mode of behaviour of
the MT.

Experiments indicate that the dipole state of tubulin is coupled to its elastic
(conformational) state. In other words, a change of the dipole state of the tubulin
molecule causes its deformation. It has been shown by other authors [14], that these
properties may lead to propagation of quanta of energy along MTs in the form of
solitary waves.

In Chapter 3, three different models are discussed which are represented by
partial differential equations. The equations have been derived under the assumption
that the elastic and dielectric degrees of freedom of the tubulin molecules are coupled



nonlinearly. A special class of solutions of these equations are travelling solitary
waves called kinks which represent a domain wall between two states of a physical
system [15,16].

In this work it is suggested that along MTs may propagate kink-like waves that
represent domain walls between two subchains of tubulin dimers in each of which the
tubulin molecules are in states with different orientation of dipoles and, consequently,
in different elastic states. The kink arises when all dipoles in the MT are initially
ordered in the same direction, that means when the MT is in the ferroelectric phase,
and a sufficient amount of energy is supplied which can switch the dipole state of
one of the tubulin dimers. Due to the interaction between the dipoles on the tubulin
molecules this will induce switching of the dipole state of one of the neighbouring
dimers and so on. The energy needed to initiate the kink can be, for example, the
free portion of the energy of the GTP hydrolysis. It is speculated here that such
kink-like excitations could be viewed as bits of information that propagate along
MTs and signal other events, for example, the detachment of a tubulin molecule
from the disassembling MT end or attachment of a MAP.,

The concept éx;pla.ined above has been used to study numerically the effect of
a collision of a travelling kink wave with a local impurity in the MT such as an
attached MAP or a structural discontinuity. The sites of attached MAPs may be
places where the signals in the form of travelling kink-like waves can be transferred to
other parts of the cytoskeleton. When the travelling energy collides with a structural
discontinuity in the MT it may contribute to the overall destruction of the MT.

The dielectric properties of MTs outlined above raise the question about the
existence of electric fields in MTs. The presence of electromagnetic fields on the
surface of MTs has been demonstrated in several experiments. For example, it

magnetic fields applied externally [17]. The intrinsic electromagnetic fields of MTs
may be a way through which MTs interact with each other. The interaction between
the electromagnetic fields of MTs and the externa! fields may be a mechanism by
means of which the cells controls the behaviour of MTs. For example, in metaphase

field lines which characterize the electriz field produced by two point charges of
opposite signs located at the opposite poles of the mitotic spindle.

In order to perform the numerous functions in the cell, MTs process and transfer
information in the form of biochemical and biophysical processes. In Chapter 4, it



is suggested that the information in a MT can be encoded and processed by means
10'7 cm~3, which is very close to the theoretical limit of charge separation [18], this
could provide MTs with large information storage capabilities. Through coupling
of the tubulin dipole states to the conformational states, the information could be
coupled to the mechanical and chemical events.

Within the framework of this thesis the information capacity of a MT is esti-
mated on the basis of the average configuration of dipoles in a MT at a temperature
T. This configuration was determined using the Monte Carlo procedure. The MT is
capacity is assumed to depend on the size and on the number of these domains.
Because in the ferroelectric phase all dipoles are oriented in one direction, the in-
formation capacity in this phase is zero. As the temperature approaches the critical
temperature, domains of dipoles with different orientation start to form [12]. Based
on this the information capacity in a MT is expected to increase in the transition

‘The results of the calculations that were performed on the basis of the assump-
tions and suggestions outlined above are summarized in Conclusions. In Appendix
A are derived estimates of the coefficients of the Landau free energy expansion that
describes a dielectric phase transition in a MT. These estimates were obtained by
fitting the polarization curves calculated in Chapter 2 and they may be useful in
solving the coupled systems of partial differential equations in Chapter 3. In Ap-
pendix B is described a Fortran program by means of which the number and size of
domains in a two-dimensional hexagonal lattice with different kinds of constituent
particles can be found. This program is the original work of the author.



References

(1] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson, Molecular
Biology of the Cell, 3-rd edition (Garland Publishing, New York and London,
1994)

[2] P. Dustin, Microtubules (Springer, Berlin, 1984)

[3] 5. R. Martin, M. J. Schilstra, and P. M. Bayley, Dynamic Instability of Mi-
crotubules: Monte Carlo Simulation and Application to Different Types of
Microtubule Lattice, Biophysical Journal 65, p. 578-596 (1993)

[4] T. J. Mitchison and M. W. Kirschner, Microtubule assembly nucleated by iso-

lated centrosomes, Nature 312, p. 232-237 (1984); Dynamic instability of mi-
crotubule growth, Nature 312, P. 237-242 (1984)

[5] M. Kirschner and T. Mitchison, Beyond Self- Assembly: From Microtubules to
Morphogenesis, Cell 45, p. 829-342 (1986)

[6] A. Marx, E. Mandelkow, A model of microtubule oscillations, European Bio-
physics Journal 22, p. 405-421 (1994)

[7] E.-M. Mandelkow, E. Mandelkow, and R. A. Milligan, Microtubule dynamics
and microtubule caps: A time-resolved cryo-electron microscopy study, Journal
of Cell Biology 114, p. 977-991 (1991)

[8] B. Mickey and Jonathon Howard, Rigidity of Microtubules Is Increased by
Stabilizing Agents, Journal of Cell Biology 139, p. 909-917 (1995)

[9] M. Caplow, R. L. Ruhlen, and J. Shanks, The Free Energy for Hydrolysis of
a Microtubule-Bound Nucleotide Triphosphate Is Near Zero: All of the Free
Energy for Hydrolysis Is Stored in the Microtubule Lattice, Journal of Cell
Biology 127, p. 779-788 (1994)

[10] Microtubules, editors J. S, Hyams and C. W. Lloyd (Wiley-Liss, 1994)

[11] S. Rasmussen, H. Karampurwala, R. Vaidyanath, K. S. Jensen and S. Hameroff,
Computational Connectionism within Neurons: A Model of Cytoskeletal Au-
tomata Subserving Neural Networks, Physica D 42, p. 428-449 ( 1990)



[12] H. E. Stanley, Phase Transitions and Critical Phenomena (Clarendon Press,
Oxford, 1971)

[13] K. Binder, D. W. Heermann, Monte Carlo Simulation in Statistical Physics
(Springer-Verlag, Beilin, Heidelberg, 1988)

[14] M. V. Satari¢, R. B. Zakula, J. A. Tuszyniski, A model of the energy trans-
fer mechanism in microtubuies involving domain-wall-type solitons, Physical
Review E 48, p. 589-597 (1993)

[15] J. M. Dixon, J. A. Tuszyiiski and M. Otwinowski, Special analytical solutions
of the damped-anharmonic-oscillator equation, Physical Review A 44, p. 3484-
3491 (1991)

[16] A. Gordon, Propagation of solitary stress waves at first-order ferroelectric phase
transitions, Physics Letters A 154, p. 79-80 (1991)

[17] P. M. Vassilev, R. T. Dronzine, M. P. Vassileva, and G. A. Georgiev, Parallel
Arrays of Microtubules Formed in Electric and Magnetic Fields, Bioscience
Reports 2, p. 1025-1029 (1982)

[18] F. Gutmann, Some aspects of charge transfer in biological systems, in Modern
Bioelectrochemistry, p. 177-197, editors F. Gutmann and H. Keyzer (Plenum
Press, New York, 1986)



1 Structure and Properties of Microtubules

1.1 Eucaryotic Cell and Cytoskeleton!

Eucaryotic cells form the tissues of higher animals and plants. Each eucaryotic
cell consists of cell nucleus and cytoplasm that is comprised of organelles and the
cytoskeleton (Figure 1.1). The water solution of molecules and ions that fills the
rest of the space between these structures is called cytosol. The contents of the cell
are enclosed by the cell membrane.

ANIMAL CELL thin section of a genaralized

animal cell

— rnitochondria

plasma membrane

endoplasmic
reticulum

€ytosol

= Golgi apparatus

filamentous
cytoskeletan

nucleus

lysesomes
perixisnmies

Figure 1.1: Animal eucaryotic cell. (From Reference [1].)

The cell nucleus plays a specific role in cell division. It contains most of the
cell’s DNA which is enclosed by the nuclear membrane. Near the cell nucleus is the
centrosome that consists of two cylindrical centrioles positioned at right angles with
respect to each other. At the beginning of cell division each centriole divides in two
resulting in two new centrosomes that become two poles of the mitotic spindle which
is the major tool of cell division.

1Based on Reference [1].



Organelles are “organs” of the cell and they occupy nearly half of the cell volume.
Each organelle is a membrane bound structure and has a specific function in the
cell. The organelles of the animal eucaryotic cell are listed in Figure 1.1.

The cytoskeleton is a compact network of proteins. The major components
of this network are actin filaments, intermediate filaments and tubular polymers
called microtubules. Filaments and microtubules are interconnected by means
of a special class of proteins called associated proteins. The cytoskeleton provides
mechanical support to the cell. It is a highly dynamic structure that can quickly
reorganize itself according to the changing requirements of the cell.

1.2 Cytoskeletal Components?

1.2.1 Actin Filaments

Actin filaments are fibres with diameter 5-9 nm that are formed by two stranded
helical protein polymers (Figure 1.2). The main building block of the actin filaments
are actin monomers. Unlike microtubules, actin filaments rarely occu. i.olated but
they are cross-linked into networks or bundles. This suggests that a bundle of actin
filaments could be viewed as a structure functionally equivalent to one microtubule.

IRy

|
25 nm

Figure 1.2: An actin filament.

Actin filaments are located mostly beneath the plasma membrane where they
form a gel-like network called the cell cortex. The cell cortex functions with various
forms of the associated motor protein myosin to control the movements of the
cell surface. It can push the cytoplasm outwards to form thin projections called
microspikes or sheet-like projections called lamellipodia. In the last phase of cell

ZMost of this section is based on Reference [1].



division the network of actin filaments forms a contractile ring that draws the plasma
membraue inside to divide the cell in two. In some cases the actin filaments in the
cell cortex move the whole cell. The cell cortex and microtubules often act together
to polarize the cell.

Actin filaments are dynamic structures. In vitro they exhibit a special kind of
behaviour called treadmilling when at one end of the filament actin monomers are
added and at the other exd they are released. Since the rates of addition and disso-
ciation are the same, the net length of the actin filament is constant. Treadmilling
can play a role in the dynamic chauges of the actin filament network.

1.2.2 Intermediate Filaments.

of highly elongated protein molecules (Figure 1.3). They are found in most animal
cells. Usually they are interconnected into a network that surrounds the nucleus and
extends out to the plasma membrane. These cytoskeletal fibres are also found on
the inner side of the nuclear membrane where they form a structure called nuclear
lamina. Nuclear lamina rapidly disassembles at the beginning of cell division and

assembles again after the division.

Figure 1.3: An intermediate filament.

Since intermediate filaments are quite rigid, they are mainly present in cells
that have to sustain mechanical stresses. These are epithelial cells and muscle cells.
Intermediate filaments have been also detected in neurons along axons and many
other types of cells.

In different types of cells intermediate filaments are formed of different proteins.
For example, in epithelial cells the intermediate filaments are composed of keratins,
in nerve cells they consist of neurofilament proteins. Nuclear lamina is composed of
special class of intermediate filament proteins called nuclear lamins,

10



1.2.3 Microtubules

Microtubules (MTs) are the largest tube-like cytoskeletal components. They
assemble from the molecules of tubulin which is a globular protein present in cytosol.
MTs participate in many important cytoskeletal activities. They are the major tools
of chromosome separation during anaphase of cell division. MTs are tracks along
which organelles and other structures are transported to a proper position in the
cell. In neurons, neuronal vesicles are transported along MTs towards the synapse.
MTs also form the cores of the protrusions from the cell surface called cilia and
flagella whose beat-like motions enable the cell to move.

Some aspects of MT behaviour and MT functions in the cell are the subject of
this thesis. The most important facts known about these cytoskeletal structures are

diameter of about 15 nm. The MT subunit tubulin is a dimer that consists of two
monomers, a- and A-tubulin, each of which has a molecular weight 50-55 kilodaltons
[2]. The lengtk of a tubulin dimer is 8 nm and the width is about % nm.

The tubulin subunits within a MT arrange themselves into protofilaments. An
overwhelming majority of MTs have 13 or 14 protofilaments, but generally the num-
ber of protofilaments can range from 10 to 17 [3]. Changes in the number of protofil-
aments along MT's have been observed, but they are not, very frequent.

Each protofilament in a MT is shifted with respect to the neighbouring one which
results in a helical arrangement of the tubulin dimers within the MT. Until recently
it was assumed that the MT lattice of tubulin dimers was belically symmetric.
Such MTs have an odd number of protofilaments which are shifted with respect to
each other by 3.1 nm. The MT lattice in which the longitudinal shift between two
neighbouring protofilaments, or stagger, is 3.1 nm, is termed the A lattice (Figure
1.4a). However, experimental evidence strongly suggests that the cytoplasmic MTs
have a lattice with stagger 0.9 nm. This type of MT lattice is termed the B lattice
(Figure 1.4b) [4-6]. In the B lattice the emd of the previous row doesn’t match with
the beginning of the next row which results in a structural discontinuity called a
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“seam”. MTs with the A lattice and an even number of protofilaments have a seam

as well.

8 A-lattice b B-lattice

I’[!”lilllll‘ll\)l’]l l’]_l?’li.'l.""l?l’l!

Figure 1.4: A and B lattices in a MT with 13 protofilaments and their planar
projections. & monomers are shaded black, # monomers are light. The arrow
indicates a seam. The tubules are from Reference [7]. The planar projections are

from Reference [3).

It was demonstrated in [7] that the A and B tubules of the outer doublet in
flagella also have a B lattice. However, the rows of both tubules match in such a
way that the whole doublet exhibits a symmetric A type structure3.

An object of intense investigations has been the composition of MT ends. It
is known from many experiments that one MT end is more active than the other
which suggests that the knowledge about the structure of the MT ends may explain
other aspects of the MT behaviour. The more active MT end is termed the plus end
and the less active MT end is termed the minus end. The tubulin monomers at the
two ends of the MT protofilaments can be arranged in two possible ways which are

3The notation A and B tubules in flagella is not related to the A and B lattices in MTs.
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shown in Figure 1.5. Either a-tubulin is exposed at the minus end and B-tubulin at
the plus end or vice versa. Experiments reported in (7] strongly support the second
alternative: a-tubulin was detected at the plus end and fB-tubulin at the minus end.

Figure 1.5: Two possible arrangements of the ends of 4 MT protofilament. On the
left, the protofilament ends at the plus end with the B-tubulin. On the right, the
exposed monomer at the plus end is the a-tubulin. The exchangeable guanosine
5’ triphosphate (GTP) binds to the S-tubulin at the plus end of the protofilament.
On the §-tubulin inside the protofilament GTP hydrolyses and the product of the
hydrolysis is guanosine 5’ diphosphate (GDP). y-tubulin is located near the minus
end. (From Reference |7].)

bling MT end (plus End) is f@llnwed by the hydroly51s af the exchangeable GTP
which binds to S-tubulin (see section 1.4.3). Since the S-tubulin is partially buried
in the MT lattice at the plus end, the observed structure of the MT ends may seem
to contradict the observation that the plus end is more active. On the other hand,
current opinion is that A-tubulin is genetically linked with the third variant of tubu-
lin, -tubulin, which has been found recently [8]. - tubulin is not present in MTs;
however, it has been detected in MT nucleating (organizing) centers (centrioles and
basal bodies, see sections 1.4 and 1.5. 3) at, or near, the minus ends [4]. This supports
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the finding that the terminal monomer at the minus end js the S-tubulin.

1.4 Microtubule Assembly and Disassembly

1.4.1 Dynamic Instability

MTs in animal cells continuously grow and shrink. This phenomenon was discov-

ered by M. Kirschner and T. Mitchison and it is known as dynamic instability [9].

Most of the knowledge about dynamic instability came from experiments with
purified tubulin molecules in vitro [1]. In these experiments it was found that MTs
start to polymerize from the pool of free tubulin when the concentration of Mg2+
and GTP exceeds a critical value. A MT can start growing either spontaneously
or from a nucleation site [10]. After some time, the growth is stopped and the
MT begins to shrink until it depolymerizes completely or it starts to grow again.
While growth seems to be a linear function of time, shrinkages happen randomly
and at a much higher rate. The transitions from shrinking to growing are termed
“rescues”, while the transitions from growing to shrinking are called “catastrophes”.
An experimental measurement of the dynamics of a single MT is shown in Figure
1.6.

The net growth or net shrinkage of a single MT is a result of the growth or
shrinkage at both MT ends. According to observations the transitions between the
growing and shrinking phases at a MT end are stochastic, The two ends behave
independently of each other, that means, the frequencies of transitions between
growing and shrinking and the rates of these processes at both ends are uncorrelated
[11].

The dynamic behaviour of MTs in the cell is similar to that observed in vitro.
The polymerization/depolymerization at both ends result in shrinkage or growth of
the whole MT. Shrinkage happens suddenly and much faster than growth. Once
a MT starts shrinking, it either partially shortens and then starts growing or it
completely disassembles. The average half-life time of an individual cellular MT is
about 10 minutes [1].

Most cellular MTs originate at the centrosome [1]. They extend from the centro-
some in all directions towards the cell periphery (Figure 1.7). The MT end attached

14



This figure has been removed due to copyrights. The figure

can be found in Reference 10 at page 1579.

Figure 1.6: The observed time change of the net length of a single MT. (From
Reference [10].)

MTs grow and replace the MTs that have depolymerized.

Dynamic instability is a mechanism by means of which the cel] organizes such
important activities as polarization and divisjon. Polarization can be observed in
most animal cells. The cel] js polarized when the cel] elements order themselves in
a preferred direction. MTs play an important role in this process when they grow
preferably in one direction due to mechanisms that are largely not understood. For
example, crawling of the cel] is achieved when a leading edge is created by MTs that

point mainly in the direction towards ' ne edge.
1.4.2 Cell Division*

MTs play a significant role in cell division, which is the most important event
during the life time of the cell. Cell division consists of two phases: mitosis, when
the cell nucleus is divided into two daughter nuclei, and cytokinesis, when the cel]
membrane and cytoplasm divide to form two daughter cells around the new nuclei.
The time between two divisions is called interphase. During this stage the cell

Based on Reference [1].



out of the centrosome is the more active plus end. (From Reference [1].)

grows and prepares for the next division which includes the replication of DNA in
the cell nucleus.

MTs are mainly involved in mitosis. Mitosis is initiated by a cascade of protein
phosphorylations triggered by the activation of the mitosis inducing protein kinase
called M-phase promoting factor (MPF), and terminates by dephosphorylations that
follow inactivation of MPF. Mitosis consists of 5 stages: prophase, prometaphase,
metaphase, anaphase and telophase (Figure 1.8 and Figure 1.9).

In prophase, chromatin that is dispersed during interphase in the cell nucleus
condenses into chromosomes. Each chromosome consists of two sister chromatids,
one for each of the two new cells. The cytoplasmic MTs that have been part of the
of the two new centrosomes moves towards the opposite poles of the cell and starts
to nucleate MTs. The resulting structure is called mitotic spindle and it is the main
apparatus of cell division. While in interphase MTs are relatively few and quite
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long with the average half-life time of about 5 minutes, prophase is characterized
by large numbers of short MTs that surround each centrosome and exist for only
about 15 seconds.

In prometaphase, the nuclear envelope breaks down and the chromosomes be-
come accessible to the mitotic spindle. The plus ends of the continuously changing
MTs probe the space in the cell at random until some of them attach to the chromo-
somes. The places at which MTs attach to the chromosomes are called kinetochores.
One kinetochore is placed at each of the two chromatids. Both chromatids of each
chromosome eventually connect to the MTs from the opposite poles of the mitotic
spindle. According to the estimate made in [12] a connection of a MT to a kineto-
chore is made within 2 minutes. In this process errors can occur, most frequently
when both chromatids of the same chromosome attach to the MTs from the same
pole, but usually these errors are quickly corrected. MTs attached to the kineto-
chores are called kinetochore MTs. Kinetochore MTs are not static. While the
kinetochore maintains its mechanical attachment to the MT plus end, there is a
constant loss and addition of tubulin subunits at this end.

In the third stage of mitosis, metaphase, kinetochore MTs align the chromo-
somes in a plane that is halfway between the two poles of the mitotic spindle so that
the chromosomes become ready for segregation. The kinetochore MTs continuously
lose tubulin subunits at the minus end and gain them at the plus end keeping the
net length constant.

Inactivation of MPF triggers the beginning of anaphase. The two sister chro-
matids of each chromosome are freed from the bond that has held them together
and are pulled towards the opposite poles of the mitotic spindle. This process is
accompanied by depolymerization of the kinetochore MTs. From 60% to 80% of the
assembled tubulin is depolymerized at the kinetochores and the rest at the minus
ends.

The mechanism that causes the sister chromatids to move towards the spin-
dle poles is not exactly known. One possible hypothesis is that the kinetochore of
a sister chromatid is attached to the MT plus end through a motor protein that
moves towards the MT minus end by hydrolysing adenosine 5' triphosphate (ATP)
(see section 1.5.2). As the motor protein moves, it pulls the chromatid. At the
same time the MT plus end becomes exposed and dissssembles molecules of tubu-
lin. Another possible explanation of the poleward movement of the chromatids is
that the kinetochores are attached to the MT plus end through a protein which has
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high affinity for polymerized tubulin. Hence, as the MT plus end is disassembling,
both the protein and the chromatid follow the shortening MT. In recent experi-
ments minus-end-directed movement of motor proteins in the kinetochore has been
detected. This finding favours the first hypothesis.

In the second stage of anaphase, the kinetochore MTs are completely depoly-
merized. The two poles of mitotic spindle are moved apart by elongation of polar
envelope forms around each group of daughter chromosomes.

The division of the cell is completed by cytokinesis (Figure 1.9). The cell mem-
brane and the cytoplasm divide into two halves by means of the contractile ring that
starts to assemble in the middle of the cell during anaphase from actin and myosin-
II. The contractile ring pushes the cell membrane inwards perpendicular to the rests

and eventually breaks down resulting in a final formation of two new daughter cells.
1.4.3 GTP Hydrolysis in Microtubule Assembly/Disassembly

According to in vitro observations, MT polymerization takes place when the
concentration of free tubulin molecules that bind at their exchangeable nucleotide
binding site GTP reaches a certain critical value. The attachment of a tubulin dimer
to a MT is accompanied by the hydrolysis of GTP bound at the exchangeable
binding site. In the GTP hydrolysis, a molecule of water breaks the bond between
the high energy phosphate group of GTP (Figure 1.10) and the rest of the molecule
which results in a formation of GDP and a phosphate group.

It should be pointed out that according to standard view, the exchangeable nu-
cleotide binding site is placed at the § monomer of the tubulin dimer [4,11,13].
After GTP hydrolyses, this site binds GDP3. GDP on the f-tubulin is exchanged
for GTP after a MT depolymerizes. In this way the pool of free tubulin that binds
exchangeable GTP is regenerated and the MT assembly followed by the GTP hy-
drolysis can start again. The a monomer binds GTP as well but with a much greater
affinity than the § monomer. Due to this the GTP on the a monomer is bound

permanently and can not be exchanged.

] sibiﬂu;l ﬁhichﬁﬁzds on th;ex\:h?;ngeable nucleotide binding site GTP will be termed GTP
GDP tubulin.
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Figure 1.10: Guanosine 5’ triphosphate. Drawn according to [14].

At pH=7, the GTP hydrolysis reaction can be written as
GTP*" +H,0 — GDP*- + HPO?~ + H+ + AE. (1.1)

At pH=9, the result of the GTP hydrolysis is a phosphate group PO}~ and two
protons H*. In both cases, the standard free energy AFE is released.

The energy AE is the same as the energy of the ATP hydrolysis, AE = 8.7 kcal/mol
[15]. The ATP hydrolysis is a major source of free energy utilized by biological sys-
tems. However, the free energy can also be supplied by the hydrolysis of other
nucleoside 5 triphosphatesf, among them GTP [14]. Other nucleoside 5  triphos-
phates are present in the cell in much lower concentrations than ATP. This implies
that they are specific only for some biological activities.

A number of experiments have shown that the GTP hydrolysis is linked to MT as-
sembly and disassembly processes. This pLenomenon has been studied by examining
the MT assembly from tubulin molecules that bind to their exchangeable nucleotide
binding sites very slow hydrolysable GTP analogues. Such a GTP analogue is, for
example, guanylyl-(a,3)-methylene-diphosphate (GMPCPP) that hydrolyses very
slowly into GMPCP [16,17]. The half-life time of the GMPCPP hydrolysis is about
10 hours, which is very long compared to the half-life of a MT. Consequently dur-
ing MT polymerization from GMPCPP tubulin, GMPCPP doesn’t hydrolyse. Such

®Nucleoside is the base of the nucleoside 5 triphosphate molecules, for example, guanine in
GTP or adenin in ATP. Nucleotide is the whole molecule, i.e., GTP, ATP, etc.
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MTs were found to be very stable. The rate of dissociation of GMPCPP tubulin
is 100 times slower than the rate of dissociation of MTs composed of GMPCP and
GDP tubulin. These observations imply that the GTP hydrolysis is not necessary
for the MT assembly, but it is essential for the disassembly.

In [16] the measurements of the standard free energy of the GMPCPP hydrolysis
are reported. This energy is 5.18 kcal/mol (0.21 eV) in solution, 3.79 kecal /mol when
GMPCPP is bound within a free tubulin molecule and only 0.9 kcal/mol when the
tubulin is bound in a MT. It can be assumed that the energies of the GTP hydrolysis
are in a similar ratio. Then the values above imply that most of the energy freed
during the GTP hydrolysis in the process of the MT assembly is stored in the
assembled MT. The way this energy is stored could be a conformational change of
tubulin molecules induced after the GTP hydrolysis. The stored energy must be
released during the MT disassembly. If it is larger than the energy needed for the
breakage of the bonds between the tubulin molecules in the disassembling MT, the
surplus can be used to do mechanical work, for example, by coupling disassembly
to the vesicle or chromosome movement [18). This conjecture was supported by the
finding that in the chromosome movement during mitosis no exogenous energy is
supplied [19].

1.4.4 Tubulin Conformational States and Microtubule
Assembly/Disassembly

Observations of the MT assembly/disassembly indicate that the conformation
of the tubulin molecule changes after the exchangeable GTP hydrolyses. In other
words, the conformational states of the GTP tubulin and GDP tubulin are different
which may be closely linked with the MT assembly /disassembly.

In experimental measurements no GTP tubulin has been detected in MTs until
now. This {inding suggests that GTP hydrolysis takes place soon after a tubulin
dimer attaches to the growing MT end. Due to this, the tubulin subunits in the
interior of a MT bind GDP and so do the molecules of tubulin from the disassembled
MTs. Furthermore, it has been observed that at the growing MT end the protofil-
aments are straight, while at the disassembling end they tend to uncoil [2,18,19].
After disassembly, rings and double rings composed of GDP tubulin are often ob-
served. The possible explanation of these experimental facts could be the following:



At the growing end, the tubulin protofilaments are capped with GTP tubulir
The GTP tubulin promotes formation of straight and stable protofilaments that ar
favourable for growth. The disassembling end consists mostly of GDP tubulin. Du
to the different conformation of the GDP tubulin the protofilaments uncoil as th
MT disassembles and form rings composed of GDP tubulin (Figure 1.11).

Figure 1.11: The growing MT end is capped with the GTP tubulin (solid circles). Af-
ter GTP hydrolyses the tubulin binds GDP (open circles). When the protofilaments
are not capped with tubulin GTP they start to uncoil and the MT disassembles.
The disassembled GDP tubulin molecules associate themselves into rings and double
rings. (From Reference [19).) '

The concept above is known as the conformational (lateral) cap hypothesis. It
may provide a possible explanation of the experiments discussed in the previous
section according to which most of the energy of the GTP hydrolysis is stored in the
MT in the form of the conformational states of the tubulin molecules. The interior of
MTs is formed mainly of GDP tubulin which has the intrinsic tendency to coil. On
the other hand, the lateral bonds between the neighbouring protofilaments stabilize
the MT. Thus there is a competition between the tendency of tubulin GDP to curve
and the stabilizing effect of the lateral bonds and most of the energy of the GTP
hydrolysis is stored in the MT as a mechanical strain due to this competition.

On the basis of the considerations and observations above a mechanism of the MT
disassembly has been suggested in [19]. In the interior of the MT the protofilaments
are stabilized by the lateral bonds. However, the ends are exposed and if they are
not capped by a sufficient fraction of the GTP tubulin molecules it is more likely
that the tendency of the GDP tubulin to uncoil overpowers the stabilizing effect of
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in the MT lattice of tubulin dimers is freed and the unwinding of protofilaments
propagates inwards along the MT. Similarly, a defect inside the MT that destabilizes
the bonds between the tubulin dimers can propagate along the MT and cause an
overall internal breakage of the MT [4]. This direct route, rather than dynamic
instability could be utilized by the cell when MTs undergo quick reorganization.

The growing MT ends have been observed in a tubular form but as well as in the
form of a sheet of protofilaments [20,21]. The reason for this behaviour is unclear.
The experiments in [19] showed that the growing MT ends are usually smooth but
some protofilaments can protrude straight out up to 100-200 nm. This means that a
MT grows along the protofilaments and not along the helix and thus doesn’t behave
in a helical manner. Secondly, there must be cooperative interactions between the
neighbouring protofilaments that don’t let a single protofilament grow too long.

The conformational cap hypothesis can be connected with the GTP cap hypoth-
esis. The GTP cap hypothesis postulates that a MT end grows when it is capped
at least by one layer of tubulin GTP. This means that the rate of GTP hydrolysis
must be smaller than the rate of attachment of the GTP tubulin dimers to the MT.

Numerical simulations of MT assembly/disassembly based on the GTP cap
have successfully reproduced the dynamic behaviour of MTs |3, 18,22]. However,
these models have not taken into account some observed features of the assem-
bly/disassembly of a MT such as coiling of protofilaments at the disassembling ends
or the anisotropy of the tubulin-tubulin bonds.

Figure 1.12 shows the length versus time plot of a MT with A and B lattices
obtained from the simulations presented in [3]. The simulated growth and shrinkage
behaviour of the MT is very similar to that observed for a real MT shown in Figure
1.6. The calculated plots show that the type of the lattice and the number of
protofilaments have an effect on the overall growth but they don’t change the nature

Figure 1.13 represents the simulated effect of a nonhydrolysable analogue of GTP
and GDP tubulin on the assembly of a single MT. As the plots show, a fraction of
GMPPNP or GDP tubulin introduced into the pool of free GTP tubulin suppresses
considerably the dynamics of the MT,

has been detected in MT tubulin may mean that either the size of the GTP cap is
so small that it is below detectable limits or it is nonexistent. There is also evidence
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Figure 1.12: Numerically calculated length changes as a function of time for the M'T
lattices (a) A with 13 protofilaments, (b) A with 14 protofilaments, (¢) B with 13
protofilaments. (From Reference [3].)

that some fraction of tubulin GDP can be used in the assembly of MTs [18,23].
In [21] observations of shrinking MT ends that are blunt, not coiled, were reported.

It also has been suggested that the behaviour at the MT ends depends on the
communication between them by means of diffusion of tubulin subunits. According
to [10], the diffusion of free tubulin molecules towards the growing end of a MT is
faster than the rate of incorporation of the molecules into the MT. This means that
there is another mechanism necessary for attaching the tubulin dimers to the MT.

It should be pointed out that under favourable combination of the free GTP
tubulin concentration, presence of microtubule associated proteins (see section 1.5),
the rate of GTP hydrolysis, etc., a MT can exhibit treadmilling.

1.4.5 Microtubule Oscillations

In vitro experiments have shown that under certain conditions the dynamic in-
stability in an assembly of MTs can be synchronized. In other words, the amount
of tubulin can oscillate in regular time intervals between a phase when almost all
tubulin is bound in MTs and a phase when almost all tubulin is free [18,19,24].
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Figure 1.13: Numerically calculated length changes of a MT with the A lattice with
13 protofilaments as a function of time. The pool of free GTP tubulin contains (a)
tubulin GTP only (b) 20% of GMPPNP, (¢) 10% of tubulin GDP. (From Reference
[3].)

In order for the oscillations of the assembly of MTs to be synchronized the
disassembled tubulin can not be used immediately in the new MT assembly. As
follows from the previous sections, MTs can assemble only in the presence of tubulin
GTP and the product of disassembly is tubulin GDP. This implies that the condition
for synchronized oscillations is that the regeneration of the GTP tubulin from the
GDP tubulin has to be sufficiently slow. When the MTs have used all GTP tubulin
and the GTP tubulin within the MTs hydrolyses there won’t be any stabilizing cap
and the MTs disassemble, If the rate of regeneration of the GTP tubulin from the
GDP tubulin is slow, all tubulin will bind GDP on its exchangeable binding site and
the MTs won’t be able to start to assemble immediately after the disassembly, but
only after a sufficient amount of GTP tubulin is regenerated from the GDP tubulin.

The regeneration of GTP tubulin from the GDP tubulin can be limited due to
several factors. One is the rate of exchange of GDP for GTP on the disassembled
tubulin. However, numerical simulations indicate that the rate of this process is
too high to slow down the assembly significantly [18]. Therefore it was proposed
that the regeneration of the GTP tubulin is prevented by binding GDP tubulin in
the disassembly products. These could be rings or curved protofilaments that were
observed to coexist with oscillating MTs in a substantial fraction [19]. Since it is
known that GDP can be exchanged for GTP only on free tubulin the regeneration of
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GTP tubulin is limited by the rate of dissociation of the curved oligomers. Indeed the
numerical simuations presented in [19] have shown that curved oligomers oscillate
in antiphase with MTs.

Figure 1.14 shows the reaction cycle for the synchronized oscillations of the
MT assembly which was propesed in [19]. MTs start growing from the nucleation
sites. These could be oligomers of globular form that have been observed to ap-
pear when MTs start growing. These globular structures could be associations of
tubulin dimers that look like small parts of MT walls. Under favourable conditions
determined mainly by the GTP tubulin concentration, a MT' grows capped with
GTP tubulin molecules. After the growing phase the MT starts shrinking due to
lack of GTP tubulin. The protofilaments at the disassembling ends coil and form
curved oligomers. Oligomers transiently bind GDP tubulin so that GDP can not be
exchanged for GTP. After oligomers depolymerize, GTP tubulin is recovered and
MTs start assembling again.

An example of simulated oscillations compared with the real oscillations observed
in vitro is shown in Figure 1.15. The calculations are based on the reaction cycle
drawn in Figure 1.14. The amount of tubulin molecules polymerized in MTs is
plotted versus time. The calculated oscillations fit very well the observed oscillations
of the assembly of MTs.

However, according to simulations presented in [24] oscillations can be also pro-
duced when the rate of dissociation of the oligomers is not limiting and thus the
rate of exchange of GDP for GTP on the free tubulin is the crucial mechanism
for generating synchronized oscillations. The authors of [24] also suggest that the
destabilization and consecutive depolymerization of a MT is not connected to the
GTP hydrolysis but to the release of the phosphate group HPO;™. Thus the tubulin
that binds the GTP hydrolysis products GDP+HPO2- forms stable MTs.

Other mechanisms that could destabilize MTs and consequently prevent the MT
polymerization were proposed in {18]. One is the interaction of the MT ends with
curved oligomers. If the ends of » MT are slightly bent (marginally stable MT),
the probability for switching to shrinkage is higher. If curved oligomers attach to
a curved protofilament at one of the MT ends, there is a competition between the
lateral interactions between the oligomers and the protofilaments and the longitu-
dinal interactions in the protofilament. This can eventually make the catastrophe
probability sufficiently high and the MT starts to disassemble.

As was shown in the previous section, the presence of a fraction of free GDP
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Figure 1.14: The oscillation cycle of an assembly of MTs. (From Reference [19].)
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Figure 1.15: Regular oscillations of the MT assembly. Cpot is the concentration of
the tubulin GTP in the MT polymer, ¢, is the total concentration of tubulin, the
solid line is the calculated MT dynamics and the dotted line represents in vitro
observations. (From Reference [18].)
tubulin considerably suppresses the dynamic instability. This means that incorpo-
ration of GDP tubulin at the growing MT end may be a factor which destabilizes
MTs since it prevents them from growing. Destabilization could be also caused by
the direct interaction between MTs. Such an interaction exists since regular spatial
patterns former Ly MTs have been observed (see Chapter 3). However, it is not
clear how these interactions could influence the regular transitions between the two
phases in the MT assemblies.

The dependence of the rate of growth of an assembly of MTs on the GTP con-
centration was numerically studied in [3]. Figure 1.16 shows the plots of growth rate
of a MT assembly as a function of free GTP tubulin concentration. Below the con-
centration at which the point on the curve corresponds to the zero growth rate the
MTs will disassemble, above this concentration the population of MTs will exhibit
assembly. At a certain concentration, called the critical concentration, the growth
rate doesn’t change any more as a function of the GTP tubulin concentration.

Here it should be pointed out that the GTP tubulin concentration depends on
various factors, e.g., concentration of different ions (Ca?t, Mg?*), temperature, the
presence of microtubule associated proteins, drugs, ete., [3]. The effects of these
factors on the dynamic instability can be multiple and interrelated. For example,
high Mg?* concentration increases the critical concentration of tubulin GTP, but at
the same time it is favourable for forming oligomers which prevents the regeneration
of the GTP tubulin from the GDP tubulin.
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Figure 1.16: The rate of growth of the assembly of MTs with the A lattice which
consists of 13 protofilaments as a function of the tubulin GTP concentration. (From

Reference [3].)

1.5 Microtubule Associated Proteins

Microtubule associated proteins are special groups of proteins which bind to
MTs. They are characteristic for specific cellular functions of MTs and can be
divided into two main classes, MAPs and motor proteins [1,25).

1.5.1 MAPs

MAPs are mainly known as promoters of the MT assembly in vitro and as bridges
that interconnect MTs and also determine spacing between them [25). MAPs so far
identified have been termed MAP1, MAP2, MAP3, MAP4 and tau, each of which
represents a family of isoforms”. Different MAP isoforms exist in different parts of
cells and in different stages of cell morphogenesis.

MAPs are several times heavier than tubulin molecules. Their molecular weight
ranges from 200 to 420 kilodaltons with the exception of tau whose molecular weight
is between 59 and 62 kilodaltons. MAP1, MAP2 and tau have been detected mainly
in neuronal cells. MAP4 has been found in many types of mammalian cells. The
biochemical properties and the tissue distribution of MAP3 are similar to those of

7Isoforms or isotypes of a protein molecule differ by a small fraction of residues, but a substantial
fraction of residues is the same. (For the definition of a residue see section 1.6.)

30



MAP4 which has lead to the conclusion that MAP3 and MAP4 are very likely the
same proteins [25].

MAPs can be posttranslationally modified. Different modifications are asso-
ciated with different functions. The best known modification of MAPs is phos-
phorylation by protein kinases. Phosphorylated MAPs are known to be less ef-
lation/dephosphorylation of MAPs is also associated with different stages of cell
morphogenesis [25].

The tau protein is the most efficient assembly promoter among MAPs. Because
tau significantly increases the rate of MT polymerization and decreases the rate of
MT depolymerization it has been suggested that neurites grow as a consequence of
MT polymerization promoted by tau [25].

MAP4 has been detected along all cellular MTs during all stages of the cell
cycle. Since MAP4 is widely distributed in many types of cells, it is likely to be
involved in a number of MT functions such as transport of organelles or cell motility.
Growing experimental evidence indicates that MAP4 could be the regulator of the
MT behaviour during the interphase-mitosis transition. It is known that MAP4
becomes phosphorylated at the onset of mitosis. It interacts with cyclin B which
together with p34¢d<? kinase constitutes MPF [1]. This reaction could serve to
target MPF to mitotic MTs. Since MAP4 is the predominant MAP in many types
of dividing cells, its phosphorylation may indeed be an important factor in the
dramatic changes in the dynamics and organization of MTs during cell division [25].

MAP molecules are composed of two domains, one with which they bind to MTs

MAPs are larger than tubulin dimers except for tau, they most likely bind to more
than one molecule of tubulin. This may be one of the reasons why MAPs speed up
the nucleation and assembly of MTs [1].

Different forms of MAPs with different size of side arms can determine different
spacing between MTs. For example, in dendrites where MTs are closely spaced, the
main MAP is a short-armed tau while in axons where the spaces between MTs are
larger, high levels of long-armed MAP2 have been detected. It has been suggested
that different spacings between MTs may be also achieved by means of different
forms of the same MAP. This has been demonstrated for tau whose phosphorylation
causes enlargement of its projection arms [25).
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large variety of other structures which are not cylindrical and whose formation
depends on the presence of various drugs. MTs with bound MAPs usually have 13
protofilaments while MTs assembled from pure tubulin consist of 14 protofilaments
[4].

Observations show that the patterns of MAPs bound to MTs in the brain cells
are irregular. However, it has been suggested that MAPs can also form regular
patterns, some of which are shown in Figure 1.17 [26]. This suggestion is supported
by experiments which indicate that MAP2 may bind to the MT surface coopera-
tively. The measured ratio of MAPs to the number of tubulin molecules at which
the binding of MAP4 to MTs is saturated was found to range from 1:2.3 to 1:20.
The saturation level of MAP2 was reported to be 1:4.3 [25].

1.5.2 Motor Proteins

Motor proteins are involved in MT-based motility and the motions of cilia and
flagella. Two classes of MT-associated motor proteins have been identified, kinesins
and dyneins. Dyneins which bind to MTs within the cytoskeleton are called cyto-
plasmic dyneins while ciliary dyneins are bound to the MTs in cilia and flagella [1].
Both kinesins and dyneins are families of structurally different proteins. The family
of kinesins is much more diverse than the family of dyneins. Binding of kinesin
and dynein to distinct cellular sites may be determined by structurally different
subdomains of these molecules [25].

Numerous experiments have shown that kinesins are mainly associated with
movement of organelles and axoplasmic vesicles towards the MT plus end (away
from the cell body) while the cytoplasmic transport mediated by dynein is directed
mainly towards the MT minus end (towards the cell body). However, some obser-
vations indicate that the transport in the opposite direction for both kinesin and
dynein can not be excluded [25]. For example, a Droscphila kinesin Ncd moves
towards the MT minus end [1).

Kinesin is a prolonged molecule with molecular weight of about 200 kilodaltons.
It consists of two heads, a long rod-like domain and a tail (Figure 1.18). The tail is
composed of several heavy chains and several light chains. Besides axoplasmic and
organelle transport, kinesin has also been detected in other cell activities. It seems
to participate in the interaction of organelles and intermediate filaments. There is
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Figure 1.17: MAP attachment patterns observed by electron microscopy. (From
Reference [26].)
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a special group of kinesins keeps the two spindle poles apart until anaphase [25].

plus end

“heavy -
chaing

Figure 1.18: A schematic drawing of kinesin and cytop!=smic dynein. The direction
of movement along MTs is indicated by arrows. (From Reference [1].)

The rate of kinesin associated transport has been measured for several species.
Kinesin purified from squid axons has been observed to move MTs at a velocity
0.5 ums~! [25]. Experiments show that the cytoplasmic transport along MTs with
monomer. Other observations indicate that only 1 to 5 kinesin molecules are involved
in the transport along MTs [25].

Kinesin has been observed in two forms, inactive folded and active extended.
This feature may be important in regulation of the cytoplasmic transport when the
activation of kinesin can be achieved by means of posttranslational modifications
such as phosphorylation. It is known that organelle transport activity is high during
interphase but is very low during cell division, while the concentration of kinesin
doesn’t change during the cell cycle. This means that there must be a regulatory
mechanism which activates the organelle transport mediated by kinesin [25].

A molecule of cytoplasmic dynein consists of two heads connected to the common

weight of about 400 kilodaltons and the molecular weight of the entire molecule is
about 1.2 megadaltons [25].

Cytoplasmic dynein was detected along axonal MTs, kinetochores, spindle poles
and spindle MTs. The poleward movement of chromosomes in prometaphase has
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been found to have rates associated with cytoplasmic dynein which are in the range
1.25-2 pyms™1. In axons, the transport of vesicles from the synapse towards the cell
body is most likely mediated by dynein. Since all proteins are made in the cell body,
dynein must be first carried along the axon to the synapse, most likely by kinesin,
in order to pass the vesicles back to the cell body [1]. Similarly to other associated
proteins, cytoplasmic dynein can be phosphorylated which may be important in the
regulation of dynein function [25].

The movement of kinesin and cytoplasmic dynein is driven by the hydrolysis of
ATP that is bound to the heavy chains of both motors. However, the mechanism
of conversion of the chemical energy of the ATP hydrolysis into the mechanical

movements is not known [1].

1.5.3 Cilia and Flagella

Ciliary dynein is associated with motions of cilia and flagella [1,2,25]. Cilia
are projections from the cell surface that are used to move the fluids and other
particles around the cell and sometimes the whole cell. Fields of cilia move in
coordinated unidirectional waves which are the result of a whiplike motion of each
cilium. Flagella are very similar to cilia but usually they are much longer. They
are the tails that propel sperm and their motions resemble quasi-sinusoidal waves.
originates from cooperative interactions within these structures.

The movement of a cilium or a flagellum is produced by the bending of its core
called the axoneme. The usual length of an axoneme is 10 um but it can be as
long as 200 p1n. The axoneme is composed of MTs and their associate proteins.
In the center of the axoneme is a central pair of MTs around which are positioned
9 MT doublets (Figure 1.19). The central MTs are complete and each consists of
13 protofilaments. In each doublet, one MT is complete and is composed of 13
protofilaments. This is the A tubule. The other tubule, B tubule, is incomplete. It
shares part of its wall with the A tubule and consists of 10 protofilaments [1].

Ciliary dynein binds to the MT doublets and forms outer and inner arms. This
dynein is a larger and more complex molecule than the cytoplasmic dynein. Its
molecular weight is nearly 2 megadaltons. The molecule consists of 2 or 3 heavy
chains and about 10 light chains that form two or three head domains attached by
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Figure 1.19: A schematic cross-section through a flagellum (a) and the MT doublet
(b). (From Reference [7).)

the tail binds to the A tubule [25]. By hydrolysing ATP in the head the dynein
molecules produce movement of MTs which would be sliding if the MTs were free,
but becomes a bending movement because of the many links between MTs in the
axoneme. This is the basis of the coordinated motions of cilia or flagella. However,
the mechanism of the interactions between the MTs and the motor proteins which
leads to such a regular behaviour is so far unexplained.

It has been found in experiments that the outer arm dynein binds to the MT
doublets every 24 nm. The binding is cooperative. That means if a molecule of
outer arm dynein binds to a MT, it is more likely that another one will bind next
to it. The inner arms form a pattern where the dynein with three heads is followed
by the dynein with two heads and the whole sequence repeats every 96 nm [25].

The rates of movement associated with ciliary dynein have been found to be
higher than the rates of movement produced by kinesin and cytoplasmic dynein.
MTs added to the mixture of ATP and outer arm dynein from sea urchin sperm
flagella, were gliding on a glass surface at rates up to 7pums™!, The rate of gliding
didn’t depend on the length of the MT, i.e., on the number of outer arms. This
means that the generation of force by the outer dynein arms must be very synchro-
nized. In experiments with Chlamydomonas the measured rates of translocation of
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MTs with their inner arms ranged from 2.7 to 11.5 ums~!. Both outer and inner
arm dynein have been found to be the MT minus end motors [25].

Other experiments indicate that the number of outer arms affects the frequency
of the ciliary and flagellar motion but it is not responsible for the waveform. On the
other hand, structurally different inner arm dyneins can be distributed along the
axoneme which may be connected with the determination of the waveform and also
with the initiation of bending. Different dyneins also produce different rates of MT
gliding [25].
from 9 triplets of MTs which are arranged in a ring and tilted as the blades of a
turbine. Each triplet is comprised of one complete A tubule and two incomplete
tubules B and C. The triplets are interconnected with a central core so that the
cross-section of a basal body resembles a cartwheel [2]. Adjacent triplets are cross-
linked at regular distances. The structure of basal bodies is the same as the structure
of centrioles. Both cell components are about 0.2 um wide and 0.4 gm long [1].

1.6 Structure of Proteins and Structure of Tubulin.

Proteins are chain-like molecules that form from amino acids. At present time
22 amino acids are known that constitute the protein polymers [26]. A general

an amino group NHy, a carboxyl group COOH and they differ by their radical. The
atomic structure of 20 most common amino acids can be found, e.g., in [14].

Figure 1.20: An amino acid molecule,

Amino acids can join together by releasing an H,0 group and forming a covalent
C-N bond called peptide bond as is shown in Figure 1.21. The result of such reactions
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a protein molecule determine the primary protein structure.

Some bonds in the polypeptide chain can rotate freely, changing the spatial
arrangement of the chain resulting in the secondary protein structure or confor-
mation. The most common protein conformations are random coils, a-helices and
f-sheets [14]. Among them the a-helix is the most frequently found polypeptide ar-
ragement. It is a helical structure which is created by forming H-O bonds between
every 3-rd or 4-th residue of the polypeptide chain. S-sheets arise by forming bonds
between paralle] polypeptide chains.

According to present experiments a-tubulin consists of four o-helices, two f-
sheets and two random coils. S-tubulin is comprised of six a-helices, one S-sheet and
seven random coils [27]. Each monomer has about 450 residues and is divided into

domain is called the carboxyl terminal (C) (Figure 1.22). Binding of MAP2 takes
place at the C terminai of §-tubulin, tau binds at the N terminal of a- and C terminal
of f-tubulin. GTP is bound on the N terminal of both a- and S-tubulin [11,28].

All three tubulins, @, 8 and =, contain areas in which they differ but also possess
highly conserved areas. The similarities between these areas undoubtedly point out
that the tubulins are closely related [8]. The differences between various tubulin
isoforms occur mostly in the C terminal region which is larger in the f-tubulin
compared to the a-tubulin.

The primary structure of tubulin has been identified only for several species.
The sequences of amino acids found in the tubulin extracted from chick brain and
sea-urchin are listed in [2]. The similarities between the amino acid sequences of a-
and S-tubulin of these two widely separated species confirm that the two tubulins

belong to the same family of proteins.
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Figure 1.22: The domain structure of a- and p-tubulin. Nonexchangeable GTP
(GTP,,) is bound to the o monomer, Exchangeable GTP (GTP,) binds to the J¢;
monomer. (From Reference [13].)

Compared to the a- and S-tubulin, ¥-tubulin doesn’t appear to be a building
block of MTs. This tubulin is located in the MT nucleating centers. It has been
found that the disruption of ¥-tubulin causes the inhibition of nuclear division,
weaker inhibition of nuclear migration and the disassembly of most mitotic and all
cytoplasmic MTs [29]. This suggests that 7-tubulin is closely related to these cell
processes. .

Tubulin is a complex chemical structure and several different isoforms of tubulin
have been found in various organisms and cells. In [30] the results of experiments
are reported in which 12 different subspecies of f-tubulin have been detected in
mammalian brain and fewer in other tissues. Other experiments have shown that
different isoforms of a- and A-tubulin can copolymerize so that they don’t necessarily
form specific subsets of MTs [11].

Similarly to the MT associated proteins, tubulin can be posttranslationally mod-
ified [4,11]. The modifications are not determined by genetic factors but by local
conditions in the cytoplasm [26]. The most common are the phosphorylation of
Eitubulin, acetylation of a-tubulin, removal or readdition of the C-terminal tyrosine
of a-tubulin and glutamylation of a- and 8-tubulin [28].

The specific functions of different tubulin isoforms and posttranslational modi-
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fications in MTs are at present not very well understood. Observations show that
there is not a significant difference between the distribution of modified and unmod-
ified cytoplasmic MTs [11]. On the other hand, there is increasing evidence that
the diversity of tubulin isoforms and modifications is connected with specific MT
functions. A number of studies have shown that stable MTs are mostly acetylated
and detyrosinated. However, this may be due to different functions the modifying
enzymes have in free tubulin and in MTs [11,28]. In squid axons, different sub-
sets of MT's have been identified in different cytoskeletal regions corresponding to
differences in MAPs, §-tubulin isoforms and phosphorylation [31]. In Drosophila,
a mutation of the testis fy-tubulin has been found that fails to form closed tubes
but it assembles into S shaped sheets instead. The tubulin has only one amino acid
substitution at residue 288 which must be essential for the correct curvature of the
MT wall [32].

Since protein chains can form different spatial arrangements, or conformations,
it has been suggested that the different conformations of tubulin dimers in a MT
are also associated with a specific MT behaviour [26]. The ways the conformational
states of tubulin dimers could be linked to the physical properties of MTs and their
functions in the cell are discussed in the following chapters of this work.
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2 Dielectric Phases in M

Experiments strongly indicate that tubulin molecules, like many other biological
molecules, carry permanent dipole moments [1]. Based on this a MT can be viewed
as a ferroelectric crystal. Ferroelectric crystals are composed of particles which carry
permanent dipole moments. They are known to undergo a phase transition from
a low temperature state in which all dipoles are aligned in the same direction to
a high temperature state in which the dipoles are oriented at random. The goal
in this chapter is to investigate the possibility of such a transition in MTs and its
significance for the biological functions of MTs.

2.1 Some Features of Phase Transitions

Systems that possess very strong interactions between their constituent particles
are known to exhibit phase transitions. This phenomenon can be observed in the
condensation of gases, melting of liquids, ferromagnetism and antiferromagnetism,
ferroelectric crystals, order-disorder transitions in alloys, and many other physical
systems [2-5].

A phase transition is manifested by discontinuities in thermodynamic functiors
and the emergence of a non-zero order parameter at a transition temperature 7.
The thermodynamic functions mentioned above are, for example, the free energy,
specific heat or susceptibility of a ferromagnetic or ferroelectric material, specific
hes: and compressibility of a gas, ete.

The concept of an order parameter is associated with the critical behaviour of
many systems. The order parameter is a quantity that is nonzero below 7. and
zero above T.. Examples of an order parameter are the difference in the densities
of gas and liquid phases, spontaneous magnetization of a fe:ram_agnet, spontaneous
polarization of a ferroelectric crystal, the displacement of atoms in alloys [3,4].

Depending on the character of the discontinuities in the thermodynamic func-
tions and the order parameter, phase transitions are usually classified as first order
or second order. Since the investigation presented in this chapter is based on the
assumption that a MT can be viewed as a two-dimensional ferroelectric crystal, in
what follows, the concept of first and second order phase transition is explained for

a ferroelectric system.



As was mentioned earlier, a ferroelectric crystal is composed of particles that
possess permanent dipole moments. If the crystal is not exposed to an external
electric field the overall configuration of the dipole moments results in a non-zero
net spontaneous polarization.

A first order phase transition in a ferroelectric crystal is characterized by a dis-
continuous jump in the spontaneous polarization and a finite discontinuity in the
electric susceptibility. In a second order phase transition, the spontaneous polariza-
tion decreases continuously until it reaches zero at T, and the electric susceptibility
is divergent at T,. The character of the discontinuities in both spontaneous po-
larization and electric susceptibility for a first and second order phase transition is
illustrated in Figure 2.1.

(a) ®

Figure 2.1: Spontaneous polarization (a) and electric susceptibility (b) for a first
and second order phase transition.

Corresponding to the change in spontaneous polarization, the minima of the free
energy of the ferroelectric system change as the temperature increases as shown
expansion [3,6] )

=3P+ %F‘ + %Pﬁ +., (2.1)

where a = (T ~Ty), a > 0, § and v are temperature independent constants and P
is the spontaneous polarization.

characterized by an order parameter. It contains only even powers of P because it is
assumed that the free energy is the same regardless of the sign of P. The minima of
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the free energy (2.1) determine the equilibrium value, i.e., the most probable value
of the spontaneous polarization P at a temperature T. They can be obtained by

solving the equa.tmn
( )T 0=a(T - Tp)P + PP+ ~vP5 + ... (2.2)
When T > Tp and a, £ and 7 are all positive, the only solution of equation (2.2)

(a) ()

F(P) T, F(p)

Figure 2.2: The free energy of a ferroelectric crystal as a function of spontaneous
Polarization for a first (a) and second order (b) phase transition.

is P = 0. In a second order phase transition Iy = T.. For positive g below T,
equation (2.2) has two other symmetric solutions

Py = a:[#]m. (2.3)

The solutions (2.3) were obtained when the term 4 P5 was neglected since P is small
in the vicinity of T;. This shows that in the second order phase transition the minima
of the free energy change continuously from two values symmetric about the origin
for T < T, to zero for T > T..

Consider now the first order phase transition and Ty < T.. For negative 8 and
after neglecting the term vP5, the nonzero solutions of (2.2)for Ty < T < T. are

Pi= i[%jm_ (2.4)

This means that in the first order phase transition just above 7. the minimum of
the free energy is at P = 0 and after the temperature decreases just below 7.
this minimum changes discontinuously into two finite minima symmetric about the

origin.



The free energy shown in Figure 2.2 can, for example, describe a ferroelectric
crystal in which each pariicie can be in one of two dipole states that are parallel to the
same axis but point in the opposite directions. The finite value of the spontaneous
polarization below T results from ordering of dipoles in a preferred direction due
to the interaction between them. This state is called the ferroelectric phase. When
the temperature in the crystal is increased, the thermal energy increases as well and
eventually at T. becomes larger than the interaction energy between the dipoles.
Due to this the dipoles cease to be aligned and become oriented randomly which
results in a zero net spontaneous polarization. This state of a ferroelectric crystal

is called the paraelectric phase.

2.2 Phase Transitions in Lattices

to a varying degree of accuracy, by an array of lattice sites. Although this is a simpli-
fied description, it has been successfully used to study a variety of phenomena such
as ferromagnetism and antiferromagnetism, gas-liquid and liquid-solid transitions,
transitions in binary alloys, etc., [2].

The problem of phase transitions on a lattice is usually formulated for the case
of ferromagnetism. A magnetic solid can be viewed as a collection of magnetic spins
distributed on sites of a crystal lattice. If only the interaction energy between the
atoms in the solid is considered, the Hamiltonian of the system can be assumed in
the following form (7]

Hy=-2Y"J;8.5;. (2.5)

Cartesian components S;, obey the following commutation relation
[SiaSip] = biihieapy Siy - (2.6)

The operator §;2 commutes with the Hamiltonian (2.5) and its eigenvalue is S;(S; +
1). Ji; are the exchange constants that represent the interaction between spins
located at sites ¢ and j. They depend on the distance between sites i and j and
can be calculated from the spin wave functions [2,7]. The sign in the Hamiltonian
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(2.5) is chosen in such a way that for Ji; all positive the groundstate of the system
is ferromagnetic. If J;; are not all positive, a much more complicated situation may
occur, one possibility is antiferromagnetism.

When the magnetic crystal is subjected to an external magnetic field the inter-
action of each spin # with the magnetic field leads to a potential energy [2]

€ 2 = ,
i = g——8;.B, 2.7
Eu=g ome"" (2.7)
where e and m are the charge and mass of an electron, B is the external magnetic
field and g is Lande’s factor which for the spin electron angular momentum has a
value very close to 2. Based on (2.7) and (2.5) the Hamiltonian that describes an
assembly of magnetic spins which are exposed to an external magnetic field B is
Hy =23 7,88~ g=—B. 7 §,. (2.8)
If quantization takes place only along the z-axis and the magnitude of the spin
is %, then only two orientations of the spin are possible and the vector S; has two
components Sy; = —4 and S; = +4. In such case the Hamiltonian (2.8) becomes

HI = i—’ZJ;j(T,*Ej sﬂgEZﬂ’i, (29)
>3 i

where pp = ehi/2mc is the Bohr magneton, o; = =1 are classical variables and
g = 2. The fraction 3 that should be in front of the sum in (2.9) was included in
the interaction constants, i.e., one can put Ji; = J;;/2 and then drop the prime.
The model based on the Hamiltonian (2.9)is known in the physical literature as the
Ising model. It is a classical model and can be used to study phase transitions in
systems whose components can be in two distinct microstates.

As was explained in the previous section, a phase transition is characterized by
discontinuities in the thermodynamic functions of a system. These functions can be
evaluated using the partition function. For the Ising Hamiltonian (2.9) the partition
function is given by the formula [2,4] '

vBT) =S expl- ol 1, wgBe
Qn(B,T) = gexp[ kT -] = %Exp[kBT é Jijoi0; + kE—Tf;cr,], (2.10)
where the sum goes over all possible configurations of the spin variables {0}, H;{0;}
is the Hamiltonian for a configuration of the spin variables {0;}, and kg is the
Boltzmann constant.
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To evaluate the partition function (2.10) exactly is a difficult mathematical prob-
lem since the Hamiltonian (2.9) is still very complicated. Because of that, further
simplifications have to be introduced. A standard approach is to take into consid-

fication an analytical expression for the partition function in zero magnetic field
could be found only for two cases - for the one-dimensional lattice (Ising in 1925)
and a two-dimensional square lattice (Onsager in 1944). Evaluation of magneti-
zation and magnetic susceptibility on the basis of the resulting partition function
showed that the one-dimensional lattice doesn’t exhibit any phase transition but
the two-dimensional lattice undergoes a second order phase transition at a transi-
tion temperature T, which is proportional to the interaction constant J.

2.3 Calculation of Polarization and Electric Susceptibility
of the Microtubule Lattice

As was mentioned earlier, tubulin is a dipolar molecule. Since the tubulin dimers
in a MT are arranged in a regular manner, the dipoles on the dimers form a regular
two-dimensional lattice. As will be discussed in the following section, it will be
assumed that the dipole on each tubulin dimer can be in one of two distinct states.

According to Chapter 1, two possible geometrical arrangements of the tubulin
dimers in a MT are considered at present and they are termed the A and B lattice.
Sections of both lattices for a MT with 13 protofilaments are drawn in Figure 2.3
where each tubulin dimer is represented as a site. Both lattices are hexagonal; each
site has six nearest neighbours. When the lattices are folded into a tube, column
(protofilament) number 13 becomes adjacent to column number 1. Since the A
lattice with 13 protofilaments is symmetric, the geometrical structure of this lattice
between columns 1 and 13 is the same as inside the lattice. The B lattice is not
symmetric and the mismatch of the rows results in a structural discontinuity or
seam. Due to this, the arrangement of lattice sites at the boundaries of the B lattice
is different from that inside the lattice.

It is obvious from Figure 2.3 that each three nearest sites in the hexagonal MT
lattice form a triangle and all triangles formed in this way are equivalent (except for
those along the seam in the B lattice). This means that the MT lattice can be treated
as a triangular lattice. Depending on the way the hexagonal lattice is transformed
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into the triangular lattice and on the type of the lattice, at the boundaries along the
MT, the end of the i-th row matches with the beginning of the (i+n)-th row and the
beginning of the i-th row matches with the end of the (i-n)-th row. The boundary
conditions at the ends of the MT can be set up so that the first row is adjacent to
the last row. These boundary conditions are toroidal boundary conditions.

The exact partition function for a triangular lattice in the absence of an external
field and with the inclusion of only nearest-neighbour interactions, hasn’t been found
yet. However, the average spontaneous polarization of an assembly of dipoles which
are placed at sites of a regular lattice, can be calculated precisely at each temperature

as a weighted average

- E{ﬁ}fj {G’e} E‘xp[f %%H’ {‘j‘ﬂ

T (o) exp[- iz H{0:}] (2.11)

< P>

In (2.11) the sum goes over all possible configurations of the spin variables {a:},
where o; represents dipole states of each dipole. H{s;} is the potential energy of a
configuration of dipoles which is due to the interactions between them and with an

external electric field.

and a number of rows ranging from 100 up to 3000. To find all possible configurations
of dipoles for lattices of this size would take an unreasonably long time. However,
from statistical mechanics it is known that a statistical system which consists of
N particles, spends the majority of its time in states whose parameters are within
O(1/vN) of those in thermal equilibrium [5]. Since these are the states with the
highest weight, it is reasonabie to use only these to calculate the statistical average
of a thermodynamic quantity. This approach is called importance sampling.

To find the states with the highest weight, the Monte Carlo procedure of the
importance sampling has been used. This procedure generates a Markov chain of
states which has the property that the average of a thermodynamic quantity over
these states converges to the exact thermal average defined in (2.11). The chain of
states is generated according to the transition probabilities which are not defined
uniquely.

An often used choice for realization of the Monte Carlo procedure is the Metropo-
lis algorithm, which has been also utilized in the simulations presented below [8].
According to this algorithm a new state in the Markov chain is generated when the
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Figure 2.3: The geometrical configuration of the A and B lattice for a MT with 13
protofilaments. The hexagonal lattices can be transformed into triangular lattices
in which the hexagonal arrangement of sites in the MT lattices is taken into account
by shifting the rows at the boundaries by a number of rows n.
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is between 0 and 1. This transition probability is calculated as
exp[— (Eneza} Eold)] , (2'12)
where E,,.,, is the energy of the possible new state and E,4 is the energy of the old
state. In an assembly of dipoles the possible new state is obtained from the previous
state by changing the value of the spin variable 0:; which represents the dipole at a
-site (7, 7). In a MT lattice of dipoles the spin variable at each lattice site can assume
values +1 or -1 corresponding to the two states of the dipole on the tubulin dimer.

In the actual computer simulation the Markov chain begins from a chosen initial
configuration. In the calculations presented here, at each temperature all dipoles
were initially completely ordered, that means, all 0i;’s were put equal to either
+1 or -1. After the initial configuration is determined, at each lattice site (,7) the
transition probability (2.12) is calculated. If this number is greater than a generated
random number the dipole at this site is flipped, i.e., 0;; changes its value from +1
to -1 or vice versa. If the transition probability is smaller than the random number
the dipole is not flipped and the same procedure repeats at the next lattice site. At
each temperature, the whole lattice is examined in this way a number of times so
that the state of the system is not correlated with its initial state. One examination
of the whole lattice is called one Monte Carlo step.

When such a number of Monte Carlo steps is performed that the state of the
lattice is not correlated with its initial state, the spontaneous polarization is found at
the end of each of the following Monte Carlo steps from the configuration of dipoles
in the lattice. In the calculations presented here the polarization was calculated
as a sum of the projections of the dipole moments of the dipoles on the MT axis.
The values of polarization obtained in a sufficiently large number of Monte Carlo
steps were then used to calculate the required thermal average of polarization at
temperature T'.

The electric susceptibility can be calculated from the known values of polarization
according to the formula [2,4]

= o<P> 1

T chT(< P> —<P>?, (2.13)

2.4 Two Models of the Dipole States of the Tubulin Dimer

A model of the tubulin electric states is presented in [9] and related works in
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Beta
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Figure 2.4: The o and the f state of the tubulin dimer. In the g state the tubulin
dimer is shifted with respect to the vertical axis by about 29°. (From Reference [9].)

which it is used to simulate the MT behaviour by means of cellular automata (see
Chapter 4). A tubulin electric state is represented by a mobile electron, the average
position of which can be located either more towards the & or more towards the 3
monomer (Figure 2.4). The states of the tubulin dimer are then correspondingly
named the a and 3 state. Experiments indicate that when the electron moves from
the a to the # monomer, the tubulin dimer undergoes a conformational shift of
about 29° with respect to the vertical axis [10].

In analogy with these considerations, two dipole states of the tubulin dimer have
been defined here, the state, when the dipole moment is pointing towards the
@ monomer and the f state, when the dipole moment is pointing towards the g
monomer. The a state will be also referred to as the “up” state and the S state will
be referred to as the “down” state.

Two models of the tubulin dipole states have been considered here and are shown
in Figure 2.5. These models differ by the orientation of the dipole in the g state. In
the model called the model with nontilted states, the dipoles in the o and S states
are oriented along the vertical axis and in the opposite directions. In the second
model called the model with tilted states, the a dipole states are the same as in the
model with nontilted states, but the dipoles in the f state are tilted by 29° with
respect to the vertical axis (the MT axis). In both models, the magnitudes of the
dipole moments in the up and down states are assumed to be equal.

Since in the model with nontilted dipoles it is assumed that the dipoles are ori-
ented along the MT axis, the polarization of the lattice js also oriented along the
MT axis, and it can be calculated as a sum of the dipole moments =p corresponding
to the up and down states of the dipoles. Because the magnitudes of the dipole
moments are equal, they can be represented by the values of the spin variables +1
or -1. Then by summing up the values of the spin variables at all lattice sites the
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MNontilted model Tilied model

Figure 2.5: The hexagonal nearest-neighbour cluster for the model with nontilted
and tilted states. The corresponding up and down states are at the same sites in

the cluster.

polarization of the whole lattice is obtained in the units of the dipole moment. Di-
viding this number by the total number of dipoles in the lattice N gives polarization
per site (relative polarization)

T—-nN!
N 219

In (2.14), N is the number of dipoles in the up state, N! is the number of dipoles
in the down state.

In the model with tilted dipoles, the dipoles in the 8 state are not oriented along
the MT axis. Therefore, to calculate the component of the polarization along the
MT axis the magnitude of the dipole moment in the £ state has to be projected on
the MT axis and the formula (2.14) is modified as follows
NT — N' cos29°

I (2.15)

P

2.5 Model with Nontilted States

If it is assumed that each dipole in a MT interacts only with its nearest neigh-
bours, the potential energy of the whole assembly of dipoles in the MT due to the
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dipole-dipole interactions and a non-zero external electric field E is

NCNR B B NCNR B
I == Z Z(J1§'fji§fi+1gf + Jgﬁfi!jﬁ‘filj.i.l + Jgﬁiijﬂ*i,j*j) - ?EZ Zf&g . (2;16)

j=li=l Jj=li=1

In (2.16) the interaction constants J; and J; represent the interaction in the vertical
and horizontal direction, respectively. J, represents the interaction along the diag-
onal (Figure 2.6). The dipoles are placed at sites of a triangular lattice with NR
rows and NC columns and the toroidal boundary conditions are assumed. It can
be noted that the equation above is the same as the Ising Hamiltonian (2.9) for the
case when only nearest-neighbour interactions are included and the potential energy
FupB is replaced by £pE .

MT lattice.
The interaction constants Ji, Ja, J; were calculated according to the expression
Wil —wl =27, (2.17)

where W]IT is the interaction energy between two neighbouring dipoles in the n-th
direction when they are both in the up state and W! is the interaction energy
between two neighbouring dipoles in the n-th direction when one dipole is in the up
state and the other dipole is in the down state. W' and W;]! were calculated using
the classical formula for the interaction energy between two dipoles

1 (P1.52)n — 3(F.51)a(E.P2)u

4mege, | (£1 = Z2)a |2 (2.18)

¥n

In (2.18), §1 = q151, P2 = qu55 are the dipole moments, q, g2 are the charges of the
dipoles, sy, 52 are the dipole lengths, # is a unit vector that connects the centers of
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the two dipoles, Z;, 5 are their position vectors, ¢, is the permittivity of vacuum,
and ¢, is the relative permittivity of the medium.
As was stated earlier, the dipole moments in the up and down states can differ
by their directions, but they are assumed to have the same charge and length, i.e.,
@1 = ¢; and s, = sp. Using this assumption in (2.17) and (2.18) gives the following
formula for the interaction coefficients J,
. q%s? 3cos?6, —1

, n=123, (2.19)

4Tege, r,3,
where 0, are the angles between # and positive vertical axis and Tn =| (T1 = Ta)n |
(Figure 2.7).

8 nm

)

7.1 nm

Figure 2.7: The geometrical configuration of the A lattice and inside the B lattice.

On the basis of the dimensions of the A lattice and inside the B described in
Chapter 1, the angles 6, and the lengths of the sides of the triangular cell r, have

the following values

of = 0°, 0 = 0°,
04 = 58.2°, 07 = 79.8°, (2.20)
64 = 45.6°, 67 = 352°,

L ]
|

8.00 x 10~°m,
5.08 x 10~?m, (2.21)

8.00 x 10-9m,
5.88 x 10~9m,

~3
—
I
=

rd = 8 =
2 = 2
r4 = 7.00%10°m, ¥ 3.68 x 10™°m.
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Figure 2.8: Relative permittivity of free water as a function of frequency at 20°.

(From Reference [11].)

Along the boundaries in a MT with the B lattice the angles 0, and 63 and the
distances r, and r3 are different from those listed in {2.20) and (2.21). This means
that the values of the interaction constants JZ at the boundaries of the B lattice
will be different from the interaction constants inside the B lattice.

From equation (2.19) it is obvious that for fixed 6,.’s and r,’s, that means, for
a fixed type of the lattice A or B, the interaction energies J;, depend only on the
parameters ¢, s and ¢,. This dependence can be reduced to a dependence on the
single parameter @ = ¢252/e,.

In a realistic model, ¢ should have a value of the order of one electronic charge
1.602 x 1079 C and s should be of the order of several nanometers. The relative
permittivity of the medium surrounding a MT can be approximated by the per-
mittivity of free water since the bulk of the cell’s mass is due to free water [11].
The relative permittivity of free water as a function of frequency of oscillations of
the dipoles in the medium is plotted in Figure 2.8. For a static case, i.e., for no
oscillations, €.(0) is close to 80, With increasing frequency ¢, rapidly decreases and
in the limit w — 00, ¢,(c0) = 4.5. At body temperature these values would drop by
about 10 %.

For the value @ = 12 x 10% C2m? which is consistent with the above estimates
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as will be shown later, the interaction constants for the A lattice and inside the B

lattice are

Jf = +4.21x10°%], JB = 4421 x 10-2'],
Jf = -089x107J, JP = —7.46 x 10727, (2.22)
Jéq = +1.48 x 10~ J, JSB =+41.66x%x 10-21].

In both lattices two interaction constants are positive and one is negative. If one
of the positive interaction constants and the negative interaction constant had the

same magnitude, the assembly of dipoles in a MT would be frustrated.
o3

Figure 2.9: A system of three frustrated spins.

An example of a frustrated system is shown in Figure 2.9. The figure depicts
a system of three spins (dipoles) characterized by three interaction constants that
have the same magnitude but one of them is negative. The spins are placed in the
corners of a triangle and they are represented by a spin variable o; which can have

is
3
Hp = ‘JZ 0i0ip1 = +Jo109 — Joooz — Joyoz. (223)
i=1

spins 1 and 2 and 1 and 3 to be the lowest, spin 2 has to be in the down state and
spin 3 has to be in the up state. However, according to (2.23), the interaction energy
between spins 2 and 3 is the lowest when they are in the same states which is in
conflict with the state of spin 1. A system with such a property is called a frustrated
system.

In the frustrated system of spins in Figure 2.9, there are 6 configurations of spins
for which the system will be in its ground state. However, the three interaction
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constants that characterize the MT lattice have different magnitudes which means
that there is only one state with the lowest energy. For example, the ground state
of a trianguiar cell of the A lattice is the state when the two dipoles which interact
through J; ar2 both up and the third dipole is up as well. This gives the interaction
energy of the three dipoles —9.61 x 10~21J. Such a state is in conflict with the
interaction through J; which requires the third dipole to be down. In that case the
interaction energy of the three dipoles would be —7.25 x 10~2! J. Since this state
has higher energy compared to the ground state, it is much less likely for the three
dipoles to be in it. Similar considerations can be done for a larger lattice.

These considerations show that the MT lattice of dipoles (in which the dipoles
are nontilted) is not really frustrated even though the concept of frustration in MTs
is very appealing. Frustration is a feature of the class of magnetic systems called
spin glasses [12-14]. In spin glasses, each spin is frozen in a random direction for
a certain period of time but it changes its direction after a very long time. This is

glasses possess a multitude of relatively long-lived ground states separated by only
small potential barriers. Switching between two states can happen either at no or
very little energy cost. If such properties existed in MTs they could be very well
suited for information processing. (In the triangle in Figure 2.9, the number of states
with the lowest energy is 6. In a MT the number of triangles is of the order of the
number of lattice sites, that means, N ~ 2 x 10?. This gives the degeneracy of the
ground state 6" which is a very large number [15].)

Based on the considerations above, the expected dielectric behaviour in the MT
lattice of dipoles is the following: At low temperatures the behaviour of the system of
dipoles will be dominated in the A lattice by the two directions which possess positive
interaction constants Ji! and J{ and in the B lattice by the direction characterized by
the negative interaction constant J#. Hence, all dipoles will tend to align themselves

are thermal effects since the thermal energy is larger than the interaction energies
between dipoles. These effects will cause disorder of dipoles resulting in a net zero
polarization.

The dielectric behaviour in a MT can also be influenced by external electric
fields. An electric field the direction of which is the same as the direction of dipoles
at low temperatures, will force the dipoles to keep their original orientation. On the
other hand, the electric field applied in the opposite direction will force the dipoles
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to switch their orientation. In both cases the external electric field will act against
the thermal fluctuations and will promote ordering of dipoles in the MT.

As will be discussed in the next chapter, the background of ordered dipoles in
the ferroelectric phase can serve for propagation of kink-like waves of tubulin dipole
states that are coupled to the tubulin conformational states. Such excitations can
be bits of information that signal other cellular events. Another effect of the dipole
with the dipole moment of a nearby MT [16]. Therefore, the dynamical behaviour
of assemblies of MTs in which the MTs are concentrated with high density should
be different from the dynamical behaviour of an individual MT. Here it can be
recalled that assemblies of MTs in vitro exhibit oscillatory behaviour while the
growth dynamics of a single MT is a stochastic process (see Chapter 1).

At higher temperatures the ferroelectric phase can become destroyed since, due to
thermal fluctuations, clusters of dipoles with different orientation of dipole moments
start to form. A MT in such a state may be able to store information by means of
the patterns of the clusters. This possibility will be studied in Chapter 4.

The discussion above implies that the dipolar order in the MT lattice can be
determined by such parameters as temperature or presence of external electric fields.
The effect of these parameters as well as MAPs on the ordering of dipoles in a MT
is studied in the following sections of this chapter.

2.5.1 A Lattice

Figure 2.10 shows plots of the spontaneous polarization per site (relative polar-
ization) and the electric susceptibility (normalized to unity) of a MT with the A
lattice. The size of the lattice is 13 columns and 100 rows!, and the value of the
parameter Q@ = ¢%s%/e, is 12 x 105 C2m2. The figure shows that the MT lattice of
dipoles undergoes a transition from a ferroelectric phase at low temperatures to a
paraelectric phase at high temperatures. The transition between the the two phases
is gradual with a number of excursions. The transition temperature was taken as a
temperature at which the electric susceptibility has its maximum. For this lattice
T.=300K.

IThe type and si;se of the MT littic:e will be also written as 13x100B, 13x3000A, efc., where
the first number is the number of columns, the second number is the number of rows, and A or B

stand for the lattice type.
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Figure 2.10: Dielectric transition in a MT with the A lattice. The size of the lattice
is 13x100 and Q = 12 x 10756 C?m2, The spontaneous polarization per site decreases
from P = 1 at low temperatures to almost zero at high temperatures. The transition
temperature is indicated by the peak of the electric susceptibility, 7, = 300 K.
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Figure 2.11 is a plot of the spontaneous polarization per site of a MT with the
A lattice and 13 columns and 3000 rows. The value of @ is the same as for the plots
in Figure 2.10. The transition is similar to that in Figure 2.10, but the polarization
curve is much smoother. This implies that the excursions of polarization observed
in the lattice 13x100 are due to the smaller size of the lattice.

1.00 . )
0.75 -
2
[
S
go.so-
2
0.25 4
o L LS v 177”!7'7!7 —afl;rir;r "7!‘7 !V’ 7|7" =
0O 50 100 150 200 250 300 350 400 450 500 S50 600
Temparatura (K)

Figure 2.11: Spontaneous polarization per site in a MT with the lattice 13x3000A
for @ = 12 x 105 C2m?. The excursions of polarization are almost removed due to

the large size of the lattice.

The critical temperature of the transition in Figure 2.11 obtained from the cal-
culation of the electric susceptibility is 311 K. This is close to the 7, of the lattice
with 100 rows. For a lattice with 500 rows the critical temperature was 306 K. This
shows that T, doesn’t significantly change as a function of the MT length but it
seems to increase with the increasing size of the MT. The magnitude of the max-
imum of the electric susceptibility was also found to increase when the number of
rows in the lattice increased. In the lattice with 3000 rows the susceptibility was
two orders of magnitude larger than in the lattice with 100 rows. Investigations
with other finite systems have revealed that such behaviour is characteristic for a
phase transition. A phase transition is defined in an infinite system. Since the MT
lattice is finite, its electric susceptibility doesn’t diverge as it is in a second order
phase transition. However, with increasing size of the MT lattice the temperature

62



at which the electric susceptibility peaks, approaches the critical temperature and
the maximum of the electric susceptibility approaches infinity.

Figure 2.12 shows plots of the spontaneous polarization per site in the MT
lattice 13x100A when the values of Q are 10 x 10~% C?m2, 12 x 103 C?m? and
14 x 10~% C?m?®. As can be seen from the figure, with increasing Q the transition

bilities peaked at temperatures 264 K, 300 K and 361 K.
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Figure 2.12: Transition in the MT lattice 13x100A when @ is 10 x 10~% C2m?,

Hence, for different configurations of ¢, s and e, the critical temperatures of the
dielectric transition in a MT are different. The range of different T.’s is given by the
range of possible values of ¢, s and ¢,. As was mentioned in the previous section,
q should be of the order of the electronic charge and the value of s is up to a few
nanometers. The relative permittivity e, could have different values if the lattice of

For the value Q = ¢%s%/¢, = 12 x 10~% C2m?, the transition temperature of the
A lattice is in the range of body temperature, T = 310K. For the static value of
the relative permittivity €, ~ 70 and the value of the charge ¢ = 2 x 1.602 x 10-1°C
the dipole length would be s = 9 x 10~ m, which is close to the acceptable limits.



Increasing g or decreasing e, will require smaller s if the transition temperature is
to be close to body temperature. It should be noted that the fluid surrounding MTs
is cytosol which is a solution of water, ions and other molecules and that, except
for free water, there exists bound water in the cell as well. These fluids may have
somewhat different ¢, from that of free water.

As has been shown here, not a substantial change of the parameters ¢, s and
¢ may cause a shift of the transition region towards higher or lower temperatures.
When the critical temperature is higher than body temperature, the assembly of
MT dipoles is in the ferroelectric phase. When a MT is in this phase it may be able
to propagate kink-like excitations of tubulin dipole states, and also to interact with
other MTs by means of electric fields. When T, is less than body temperature, a MT
may store information in the form of patterns of clusters of dipoles with different
orientation of polarization. The calculations shown here suggest that if there are
such mechanisms in the cell which control the values of the parameters g, s and e,
and consequently the interaction constants Jn in the MT with the A lattice, these
mechanisms determine the dielectric state of the MT which may be linked to a
different mode of operation of the MT.

It can be noted that the values of the interaction constants J, can also be altered
by changing the geometrical arrangement of the tubulin dimers in the MT lattice
which results in different values of the angles 0, and distances r, (see equation
(2.19)). Even though the arrangement of the tubulin dimers in a MT with either A
or B lattice is fixed, changes can occur due to the twisting of the MT or defects in
the MT lattice, etc.

The effect of external electric fields on the dielectric transition in MTs is studied
in this work for the values of E found in the literature. The results of the experiments
in vitro reported in [17] imply that MTs can interact with electric fields as small
as 1Vm~!. The authors of [18] reported that naturally occurring fields may be in
the range 2 — 50 Vm™!. In the cell membranes, the magnitude of the membrane
Potential was measured in the range 0.02 — 0.2V [19]. The thickness of the the cell
membranes is about 5 nm. This gives the electric fields across the membrane in the
range 4 X 105Vm™! to 4 x 10" Vm~1.

In Figure 2.13 the polarization per site is plotted in the MT lattice 13x100A
which is subjected to external electric fields 0 V™, 10° Vm~!, 10 Vm~?, 10° Vm™!,
10Vm~!. The electric fields point in the direction in which the dipoles are aligned
in the ferroelectric phase. For all curves § = 12 x 10~5 C2m?, The figure shows
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that the external electric field tends to order the dipoles in the MT lattice in the
same direction. The larger the field, the larger the degree of ordering.
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Figure 2.13: Polarization per site in the MT lattice 13x100A when the external
electric fields are 0Vm™, 10°Vm™, 10*Vm™, 105Vm™!, 106 Vm~!. Q =12x
10~%8 C?m? for all curves. As the external electric field increases, the ordering of
dipoles in the lattice in the direction along the field increases as well.

The effect of the external electric field on the ordering of dipoles in a MT, shown
by the Monte Carlo calculation in Figure 2.13, can be estimated qualitatively by
comparing the potential energy associated with each dipole due to its interaction
with the electric field and tke interaction energy between two dipoles. If the static
value of the relative permittivity of free water & = 70 is assumed then for Q =
12x107% C2m? the product gs = 2.9x10-27 Vm~!. Choosing ¢ = 4x1.602x 10-19C
gives the dipole length 5 = 4.5 x 10~ m. Assuming that the magnitude of the dipole
moment is 2.9 X 1072" V™!, the contribution to the potential energy due to the
interaction with the electric field from each dipole is +pE = +qsE = 2.9 x 10-27E.,
For E = 10°Vm™, the potential energy is +qsE = +0.0029 x 10-2 J. This is
very small compared to the interaction energies given in (2.22) and the dielectric
transition in the MT is not affected. With increasing external electric field the
magnitude of the potential energy +¢sE increases as well, and the electric field will
start to have an effect on the ordering of dipoles. For E = 106 Vm~! the potential



energy due to the electric field is +¢sE = £2.9 x 10~2!) which is almost as large
as the la.rgest interaction constant JA n ( 22) WTlen the electm: ﬁeld is so large

thag t.he energies clue ta the dlpalesd,;pgle mteras:tmn, the lattlc;e w1ll bg cc:mplet.ely
(:ordered at all temperatures It shguld be poirlted out that fﬂf smaller eler:tric fields
certain limit as was d,;scussed befcrei

The calculation for the case when the lattice of dipoles is subjected to an external
Electnc ﬁeld which pumts in the direction oppgslte to the d1rect19g in whlch the

lattn;e 13:EIDDA and Q =12 x 1()‘56 sz . All dlpales are mlt;a.ll,y in the up state
and the fields are —10*Vm™? and ~10°Vm™. The plots show that the assembly
of dipoles switches into the branch with the opposite sign of polarization and then

undergoes a transition into the paraelectric phase.
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Figure 2.14: Polarization per site in the MT lattice 133;100A when the external
electric fields are —10° V™! and ~10°Vm™ and @ = 12 x 10~% C?m? for both

Such behaviour is due to the properties of the model, in which each dipole can
be in two states of equal magnitude that are parailel but point in the opposite
directions. In a lattice which is not subjected to a external electric field, the two
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applied in the direction antiparallel to the orientation of dipoles produces additional
potential energy. This energy lowers the potential energy of the dipoles which point
in the same direction as the electric field. Consequently, this state becomes the state
with lower energy and the assembly of dipoles switches into this state.

According to Figure 2.14 the effect described above depends on the magnitude
was performed at low temperatures in order for the state of the assembly of dipoles
to become uncorrelated with its initial state. If a sufficient number of Monte Carlo
steps had been performed, the assembly of dipoles would have switched into the
state with opposite orientation already at the lowest temperature independently of

To study the influence of MAPs on the dielectric behaviour of a MT with the
A lattice, three regular MAP distributions were constructed according to Figure
1.17. The patterns are shown in Figure 2.15. The sites (dimers) at which MAPs
are attached, are represented by 0’s and the rest of the sites are represented by 1’s.
The ratios of the number of MAP attachment sites to the total number of sites are
1/11, 1/22 and 1/48, respectively.

The effect of a MAP attached on a tubulin dimer may be to prevent it from
changing its conformational state. Since the conformation of the tubulin is coupled
to its dipole state, the dipole on the tubulin dimer on which a MAP is attached,
won’t be able to flip. In the Monte Carlo procedure this was taken into account by
putting the value of the spin variable equal to 1 at the sites with attached MAPs
and during the importance sampling these sites weren’t examined. For comparison,
calculations were also performed when at the sites on which MAPs were attached
the spin variable was put equal to 0. For this case, the initial value of polarization in
the lattice is smaller due to the zero dipole moment at the sites of attached MAPs.

Figure 2.16 shows the results of Monte Carlo simulations for the MT with the
A lattice in which attached MAPs form three patterns depicted in Fijure 2.15 and
for the lattice without MAPs. The parameter Q is set to 12 x 10~56 C?m? for all
curves. As can be seen, the effect of MAPs is similar to the effect of the external
electric field. With the increasing number of MAPs attached to the MT the number
of dipoles aligned in the same direction at a temperature T increases. Since MAPs
are assembly promoters, this suggests that the ferroelectric phase may be the phase
suitable for the assembly of MTs.
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Figure 2.16: The effect of MAPs attached to the MT A lattice in the three regular
patterns shown in Figure 2.15. The lattices consist of 13 columns and 99, 110 and
96 rows for the corresponding ratios 1/11, 1/22 and 1/48. §Q = 12 x 10-56 C2m? for
all curves. The values of the spin variable at the MAP attachment sites are +1 and

0.



2.5.2 B-lattice

When the arrangement of the tubulin dimers in a MT is of the B type the
distances r; and r3 and the angles 8, and 63 in the triangular cells formed between
the 1-st and 13-th column are different from those inside the lattice. According
to (2.22) this gives different interaction constants J¥ and J& associated with the
interaction between dipoles placed at the boundaries. For Q = 12 x 10~5¢ C2m?,
the interaction constants at the boundaries of the B lattice are

JEMnﬁry = +4.21 x ].0_-2l J ,
J2B;botmdary - —1.63 X 10—21 J y (224)
J:!B;boundary = +1.61 X 10—21 J.

They correspond to the angles and distances

oig,boundary = 0° rlB,boundary = 8.00x10°m s
BZB,boundary = 43.9° ’ T2B,boundary = 7.21% 10—9 m, (225)
03B,boundary = 60.8° ’ TSB,boundary = 573x10%m.

It can be noted that the magnitudes of the interaction constants JZ,,4 and J&,, 4
are almost the same due to which the B lattice can be frustrated along its boundaries.

Figure 2.17 depicts spontaneous polarization per site for lattices with a stagger
3.1 nm (A lattice), 2.9 nm, 2.3 nm, 1.5 nm and 0.9 nm (B lattice). The lattices
consist of 13 columns and 100 rows and the value of Q is 12 x 10~ C2m2. As can be
seen from the curves, with the decreasing stagger of the lattice the transition tem-
perature moves towards lower temperatures. In the B lattice the assembly of dipoles
is in a state with almost zero polarization at all temperatures, that means, it doesn’t
undergo a dielectric transition. This result was found for several different values of
Q up to 1000 x 10-% C2m2. Figure 2.17 also illustrates how the transition in tae
MT lattice depends on the geometrical arrangement of the tubulin dimers and the
degree of mismatch of the successive rows in the MT since these are characteristics
given by the stagger of the lattice.

2.6 Model with Tilted S:ates

In the MT lattice in which the dipoles are tilted in the g state, the potential

70



1.00 qr

Stagger:
= 3.1 nm (A lattice)
=- 29 nm
- 23nm

0.75 -,

1

i

1

l —-——15nm
o ' ——— 00 nm (B latiice)
= I | o 7 77
] ,
- [}
g i
§ osod
g
I |
& i

0254} :
, ¢
! gg-i
. ST
0 %0

Figure 2.17: Spontaneous polarization per site for the values of the stagger of the
MT lattice 3.1 nm (A lattice), 2.9 nm, 2.3 nm, 1.5 nm, 0.9 nm (B lattice). The size
of the lattice is 13x100 and Q = 12 x 10~56 C?m? for all curves.

energy due to the interaction between the dipoles can be expressed as [5]

3
H= ;11' Y > Jua(I+se)(A4s)4Jna2(1—sk)(1—s1)+ sl (1458 ) (1—s1)+(1—si)(1+s,)].
n=1 <nn> (2.26)
The expression above represents the interaction energy between particles which can
be in two distinct states (they can also be two different particles). The particles are
placed at sites which form a triangular lattice and interact only with their nearest
neighbours. The sum over n in (2.26) is a sum over the sides of a triangular cell of
this lattice and the sum over < nn > runs over the nearest neighbours. The variable

particle. Each direction n of the triangular cell is characterized by three interaction
constants J,,.

If the particles are dipoles on the tubulin dimers that compose a MT then the
two values of s, represent the tilted (o) and nontilted (3) state, respectively. J,,; is
the interaction energy between two dipoles that are in the nontilted state, J,2 is the
interaction energy between two dipoles that are both tilted and J,; is the interaction
energy between a dipole in the tilted and a dipole in the nontilted state. Thus, the
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MT lattice in which the dipoles are tilted in the B state possesses altogether 9

interaction constants.
of dipoles which are tilted in the f state has the form
NC NR

(2.27)

After rearranging terms in equation (2.26), the potential energy of :he assembly
H=Hip+ Ve 3D 0ii+C.
Vers

j=li=1

In (2.27), Hin, is the same as the interaction part of (2.16) but with a plus sign,
is an effective potential energy, NR and NC are the number of rows and number of
columns in the lattice, and C is a constant.
The three interaction constants J, in Hy,, are given by the equations
Jy = $(Ju1 + Jiz2 = 2J13),
Jy = (Jn + Joo — 2J153) (2.28)
J3 = 3(Ja1 + Js2 — 2J33) .
where the interaction energies J,,, were calculated from the formula (2.18) and they
1,2,3, m=1,2,3. (2.29)

are of the following form
g%s® cos anm — 3 €08 Barm COS Ynm

Jam = -
) 47ege, rd
The variables @am, fnm and Ynm in (2.29) are given in terms of the angles 6, that

characterize the MT lattice and the angle 6, by which the dipoles are tilted in the

B state with respect to the MT axis as follows
o1 =0an2=0, ay=7~0u,,
Bu=1m=0, Bar=" =0, P35 =73 =0,
Brza=m2 =06k, Bor=122=02—0,, Paz="32 =0y +6;, .
, , (2.30)
Pis=01, ma=m="0u;,

Boa =02, a3 =m— (62~ Opar),
B3z =103, Y3 =m—03.
The effective potential energy Vs and the constant term C have the following
(2.31)

. | . ) ”
Verr = §(J11 =12+ Joy = Jaz + J3; ~ J39)

form
(2.32)

and
N
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In the latter equation N = NC x NR is the total number of lattice sites.

It should be pointed out that all terms in (2.27) are exactly valid for the A lattice,
but they have to be modified for the B lattice for which the interaction constants at
the boundaries are different from those inside the lattice.

Based on (2.28) and (2.18) for the value of @ = 12 x 10~56 C2m?, the values of
the interaction constants J, of the A lattice and inside the B lattice for the model
with dipoles tilted in the § state by 29° to the left with respect to the M'T axis? are

Jf = -3.58x1072], JE =-3.56x10"21],
Ji = -282x10-21], JP =+3.67x10"21], (2.33)
Jf = +0.75x 10217, JPf =—040x10-217].

Similarly to the model with nontilted dipoles the interaction constants have different
signs ai. different magnitudes. However, inside the B lattice the magnitudes of the
constants J{ and J£ are very close. This means that by tilting the dipoles on the
tubulin dimers the MT can become frustrated. Cn the other hand, the effective
potential energy (2.31) can be viewed as a consequence of the interaction of dipoles
with an effective electric field which suppresses frustration. For O = 12 x 10~56 C2m?
the values of V., for the A lattice and inside the B lattice are

Vir=+113x 1072 Vg =+261x10"%] (2.34)

e

In the next two sections, the effect of tilting the dipoles on the tubulin dimers
in the f state on the dielectric transition in a MT is studied and compared with the

results for the model with nontilted dipoles.
2.6.1 A Lattice

In Figure 2.18 are plotted two curves which represent the spontaneous polariza-
tion in the 13x100A lattice of dipoles that are tilted in their B state by 29° to the
left with respect to the MT axis. The solid line corresponds to the simulation when
in the starting configuration at each temperature all dipoles are in the nontilted
state, i.e., 0;; = +1 at each lattice site. The dotted line shows the calculation when
the initial state of all dipoles at each temperature was tilted, i.e., all 6;; = ~1. The
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Figure 2.18: Polarization per site in a MT with 13x100A lattice for § = 12 x
10~ C?m? and €y, = 295. The two curves correspond to the tilted and nontilted
starting configuration of dipoles, respectively.

value of the parameter @ is 12 x 10~5 C2m2.

The figure shows that when all dipoles are initially in the up state, that means,
the spontaneous polarization per site is P = +1, the lattice switches into the oppo-
site state in which all dipoles are tilied and corresponding value of P = — cos 29° =
lower energy compared to that in which all dipoles are nontilted. Using the values of
the interaction energies Jy, Ja, J3, Ji2, Jo2 and Jap for @ = 12 x 10~% C2%m?, the en-
ergy of a dipole in the A lattice due to the interactions with its nearest neighbours is
ET = —9.61 x 10~2! ] when all dipoles are nontilted (up) and E} = —14.13 x 102! J
when all dipoles are tilted (down) (Figure 2.19). This means that unlike the model
with nontilted dipoles, in the model with tilted dipoles the up and down configu-
rations of dipoles are not energetically equivalent and due to this the assembly of
dipoles in a MT will always tend to be in the state which has a lower energy.

1t should be pointed out that if at low temperatures a sufficient number of Monte

2Tilting to the leﬁ/éght with respect to the MT axis in the 8 state will be written with a
subscript +/-. For example, 295 means tilting by 29° to the left with respect to the MT axis, 52
means tilting by 5° to the right with respect to the MT axis, etc.
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Carlo steps had been performed, the assembly of dipoles in the up state would have
switched into the state when all dipoles are down already at the lowest temperature,
i.e., no transition from the state with P = +1 to the state with P = —0.875 would
have been observed.

TEQ.&:’;;W?‘ I dE= 141351021 ]

Figure 2.19: A dipole in the MT A lattice and its nearest neighbours in the tilted
and nontilted configuration, respectively. The energy of the central dipole due to

the interaction with its nearest neighbours is calculated for Q = 12 x 10756 C2?m?
and Gy = 295.

So far no experiments have been done in which the orientation of the dipole ou
the tubulin dimer was measured. In this work the assumption has been made that
the angle 6;; by which the dipole on the tubulin dimer is tilted with respect to the
MT axis in the g state is the same as the conformational shift of the dimer in the
B state, i.e., O, = 29° to the left with respect to the MT axis.

Figure 2.20 shows a set of calculations when Ouie is assumed to be either 5° or
29° both to the left and to the right with respect to the MT axis. When Orinn = 55 or
6ty = 293, the tilted configura’ion is the configuration with a lower energy and in
the Monte Carlo simulations this is the starting configuration. The corresponding
polarizations per site are P = — cos5° = ~0.996 and /* = — €0529° = —0.875. In a
lattice in which 6y = 5° and 6y, = 292, the energies of a tilted dipole due to the
interaction with its nearest neighbours that are all tilted, are E! = —8.79 x 10-2! J
and B! = —5.99 x 10~2! J, respectively. This shows that the nontilted configuration
has a lower energy compared to the tilted one and it is the starting configuration
in the Monte Carlo simulations with the corresponding value of the spontaneous
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Figure 2.20: Polarization per site in the MT lattice 13x100A for B = 53 and 295
and Q@ =12 x 10~ C2m?2,

As can be seen from Figure 2.20, tilting the dipoles in the MT lattice to the
left with respect to the MT axis results in a dielectric transition with a higher T,
compared to the transition in a lattice in which the dipoles are nontilted. On the
contrary, tilting the dipoles to the right with respect to the MT axis moves the tran-
sition from the ferroelectric to the paraelectric phase towards lower temperatures.

The effect of external electric fields on a MT A lattice of dipoles that are tilted in
the J state is shown in Figure 2.21. In the starting configuration at each temperature
Bt = 295, @ = 5x 1075 C?m? and the size of the lattice is 13x100. The calculation
was performed for the values of the external electric fields —106 Vm™!, —10° Vm™!,
~10*Vm~™!, +10*Vm™!, +10°Vm~!, and +10%Vm~'. According to the figure,
the lattice with tilted dipoles behaves similarly to the lattice with nontilted dipoles.
When the external electric field points in the negative direction, i.e., in the direction
of the projection of the dipoles in the tilted state on the MT axis, the dipoles tend
to be ordered in the tilted state. The larger is the field, the larger is the degree of
ordering of dipoles in this state at each temperature.

This result can be explained by calculating the potential energy of interaction of
the dipoles with the external electric field and comparing this energy to the energy of
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Figure 2.21: Dielectric transition in the MT lattice 13x100A in which Oune = 293,
Q = 5x107% C%m? and the external electric field is present. The values of the exter-
nal electric fields are —10°Vm™, —10°Vm™!, —=10*Vm™!, +10* V™!, +105Vm™!,
and +10Vm™1.

each dipole which is due to the interaction with its nearest neighbours. The relevant
interaction energies in the A lattice for Q = 5 x 10~56 C2m? and 6y, = 293 are

Ji = -176x10"2], Jh=-114x10"2],
J5i = +0.37x10727, Jh=—~2.84x 10727, (2.35)
Jfi = —0.62x10"%7, Jf=+1.03x 10721].

In (2.35), the interaction energies J4 represent the interaction between two nontilted
dipoles, i.e., they are the same as the interaction energies J# that characterize the
model with nontilted dipoles. The interaction energies J4, represent the interaction
between two tilted dipoles. _

If the static value of the relative permittivity ¢, = 70 is assumed and Q =
5 x 10~ C?m? then the magnitude of the dipole moment on a tubulin dimer is
gs = 1.87 x 107’ Cm. Based on these values, for £ = —10*Vm™! the potential
energy due to the interaction of a dipole in the § state with this electric field is
—pE c0s29° = —0.0164 x 10~2! J. This potential energy is only a small fraction of
the interaction energies listed in (2.35) and consequently it won’t significantly affect
the dielectric state of the MT lattice of dipoles. However, when E = —10°Vm™!
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the potential energy is ~pE cos29° = —1.64 x 10~2'J which is comparable to the
interaction energies (2.35) and the assembly of dipoles in the MT exhibits a high
degree of ordering in the tilted state.

When the external electric field points in the same direction as the dipoles in
the nontilted state, it forces the dipoles to change their orientation from the tilted

equivalent: the state when ali dipoles are nontilted has higher energy. This means
that in order for the dipoles to switch into this state the external electric field must
be so large that the potential energy of the assembly of nontilted dipoles becomes
lower than the potential energy of the assembly of tilted dipoles. This can be shown
as follows:

Using the values of the interaction energies (2.35), the energy of a dipole due to
the interaction with its nearest neighbours is E! = —.9 x 10~2'J in a lattice in
which all dipoles are tilted and E' = —4.02 x 10~2! ] in a lattice in which all dipoles
are nontilted (Figure 2.20). The potential energy due to the interaction of a dipole
which is in the nontilted (up) state with the electric field E = +10°Vm™! is —pE =
—1.87 x 1021 J. This energy lowers the value of the energy E' to —5.89 x 10~2! J.
The potential energy of a tilted dipole due to the interaction with the electric field
E = +10°Vm™ is +pE c0s29° = 1.64 x 10~2! J which brings the value of E' up to
—4.27 x 10721 J. Hence, the assembly of nontilted dipoles compared to the assembly
of tilted dipoles is in a state with lower energy when subjected to the external
electric field E = +10°Vm™'. Consequently, the array of tilted dipoles switches
into the state in which all dipoles are nontilted when it interacts with this field or a
sufficiently large external electric field.

On the basis of the calculations above it is easy to see that in the external electric
field £ = +10°Vm™' the assembly of tilted dipoles has lower potential energy
compared to the assembly of nontilted dipoles. Due to that, the dipoles remain in
the state with negative polarization, that means, in the tilted state, but as can be
seen from Figure 2.20 the transition from the ferroelectric to the paraelectric phase
shifts towards lower temperatures. The effect of the electric field £ = +10Vm™!
is very small because the potential energy of a dipole in the MT lattice due to the
interaction with this field is negligible.

The results of the calculations for the model with tilted dipoles when MAPs are
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Figure 2.22: Dielectric transition in the MT A lattice to which MAPs are attached
according to the patterns shown in Figurs 2.15. The corresponding lattice sizes are
13x99, 13x110, and 13x96. By = 293 and @ = 2 x 10~% C?m? for all curves. The
value of the dipole variable at a MAP attachment site is -1 or 0.
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-1 and 0. The plots show that the effect of attached MAPs is similar as in the lattice
in which the dipoles are nontilted. The presence of MAPs increases the number of
dipoles aligneﬂrin the same direction, which is the tilted direction in this case. This
effect is larger when the dipole variable on the MAP attachment site is represented
by a 0.

2.6.2 B Lattice

Spontaneous polarization in the B lattice, in which the dipoles are tilted by 29°
to tle left with respect to the MT axis, is plotted in Figure 2.23. The lattice has
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Figure 2.23: Spontaneous polarization per site in the MT lattice 13x100B in which
Oty = 295 and Q = 5 x 10~ C2m?2. For comparison, the corresponding curve for

the A lattice is also shown.

13 columns and 100 rows and Q = 5 x 10~ C2m2, The values of the interaction
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constants at the boundariss for this value of Q are
Jﬂmﬂm =-3.58x 10721 ]
I houndary = —2.34 X 10-21] | (2.36)
I3 houndary = +0.37 x 10721 J .

For comparison, a curve for the A lattice with the same parameters is shown as
well. Unlike the model with nontilted dipoles, this lattice undergoes a transition
from the ferroelectric to the paraelectric phase. However, after the transition into
the paraelectric phase at some temperature the polarization increases to a value of
about —0.2.

In Figure 2.24 are shown plots of the spontaneous polarization per site in the
13x100B lattice for @ = 5 x 10-%C?m?, § = 25 x 10-% C2m? and Q@ = 55 x
107%C2m?. The corresponding critical temperatures are T, = 17K, 97K and 210K
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Figure 2.24: Dielectric transition in the MT lattice 13x100B for the values of Q:
5 X 107%C?m?, 25 x 10~% C2m? and 55 x 10~ C?m2. The Q’s are shown in units
10~% C?m? and 6, = 293.

and gy = 295 for all curves, Similarly to the A lattice, when the value of Q@ increases
the transition temperature increases as well. It can be noticed that the plots exhibit
more excursions as the temperature increases. When § = 25 x 10-5 Q22 and
@ = 55 x 105 C2m? the polarization doesn’t increase at high temperatures as it is

for Q =5 x 10-%C2m2,



The results above imply that a MT with the B lattice in which the dipoles are
tilted in the # state can be in the ferroelectric phase, however, for quite high values
of Q compared to those for the A lattice. If the smallest possible value of ¢, is about
4, then for @ = 55 x 10~% C2m? the dipole length is about 4 x 10~%m and the charge
on the dipole would be about 3 x 1.602 x 10-1°C.

The calculations presented in this chapter demonstrate that a MT with i3
protofilaments may undergo a dielectric transition from a ferroelectric phase at low
temperatures to a paraelectric phase at high temperatures. The existence and the
character of the transition depend on the configuration of the parameters of the
MT lattice of dipoles. These parameters are the geometrical arrangement of the
lattice, the orientation of dipoles on the tubulin dimers, the magnitude of the dipole
moments and the relative permittivity of the surrounding medium.

In the A lattice in which the dipoles are nontilted, the critical temperature of the
transition is in the range of body temperature for acceptable values of the magnitude
of the dipole moment of the dipoles and relative permittivity. In the B lattice in
which the dipoles are nontilted no dielectric transition was found for any feasible
values of the dipole moments and relative premittivity. Along the seam of the B
lattice with nontilted dipoles two of the interaction constants have opposite signs
but almost the same magnitude, which suggests that this lattice can be frustrated
along the boundary.

The A lattice in which the dipoles are tilted in the  state undergoes a smooth
transition between ferroelectric and paraelectric phases. In a MT with the B lattice
in which the dipoles are tilted in the 3 state, the transition from the ferroelectric to
of the transition to be close to body temperature the values of the dipole moments
have to be quite large or the relative permittivity has to be small. In this lattice,
two interaction constants were found to have opposite signs and close values of their
magnitudes. This means that depending on the angle by which the dipoles on the
tubulin dimers are tilted, a MT with the B lattice can become frustrated.

When the MT with the A lattice is subjected to external electric fields which
point in the same direction as the dipoles in the ground state, the critical tem-
perature of the dielectric transition moves towards higher temperatures depending
on the size of the electric field for both tilted and nontilted model. Similar is the
effect of MAPs attached to the MT lattice at regular sites. The higher the ratio
of attached MAPs to the total number of lattice sites, the higher is the degree of
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alignment of dipoles in the direction they have in the ground state. Thus, both
MAPs and external electric fields which point in the same direction as the dipoles
in the ground state promote the existence of the ferroelectric phase in a MT.

When the external electric field is applied in the direction opposite to the direc-
tion of dipoles in the ground state of the MT A lattice, the assembly of nontilted
dipoles switches into the state with opposite polarization (which becomes the ground
state due to the external electric field) and then undergoes the transition into the
paraelectric phase. In the assembly of tilted dipoles this effect is observed when
the external electric field is sufficiently large since the state when all dipoles are
nontilted has higher energy compared to the state when all dipoles are tilted.

The results above imply that MTs with the A lattice, rather than MTs with
the B lattice, can exist in different dielectric states which can be linked to different
biological functions of MTs. However, MTs with the A lattice haven’t been ex-
perimentally observed yet. This may mean that they don’t exist at all or that the
MTs with the A lattice are present in the cell in a very small fraction or only in
some sections of MTs. If the latter alternative is true then the occurrence of the A
type arrangement of the tubulin dimers in the MTs may signal the onset of cellular
events that result from the special dielectric properties of the MT A lattice which

exhibit frustration which is a feature that wasn’t found in the A lattice. As was
discussed earlier, this property may be very well suited for processing information.
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3 Energy Transfer in Microtubules

As was discussed in the first chapter, the addition of a tubulin dimer at the
assembling MT end is followed by the hydrolysis of exchangable GTP bound to the
tubulin. Most of the standard free energy released in the hydrolysis is stored in the
MT in the form of conformational changes of the tubulin molecules. A small portion
of the free energy is freed and it is not known how is it utilized in the MT.

In this chapter it is argued that the free portion of the energy released in the
GTP hydrolysis propagates along a MT in the form of solitary waves of tubulin
dipole states coupled to tubulin conformational states. The existence of solitary
waves in biological systems has been suggested before and it is briefly discussed in

the next section.

3.1 Solitary Waves in Biological Systems

Many biological activities in the cell require input of energy. Examples of such
activities include the synthesis of biomolecules from smaller precursors, the perfor-
mance of mechanical work, for example, in muscle contraction, or transport of ions
and biomolecules across membranes in the direction of increasing concentration [1].
The energy needed in these biological activities is supplied mainly from the hydroly-
sis of ATP but it could also be supplied by an electrical pulse or an electromagnetic
wave [2].

However, little is known about the way the free energy is utilized by the biological
structures or molecules. In other words, the mechanisms by means of which the
free energy is transformed or transported in the biological systems haven’t besn
elucidated yet. In 1973 A. Davydov showed that the transport of the chemical
energy could be achieved by means of soliton-like excitations [3].

Solitons are a special class of solitary waves. Solitary waves are travelling local-
ized waves which preserve their shape and velocity. They are particular solutions
of quite a large number of partial differential equations that contain dispersive and
nonlinear terms [4-6]. The solitary wave solutions of some of these equations pre-
serve their shape and velocity also in collision with other solitary waves and they
are called solitons. The most well-known solitary waves are depicted in Figure 3.1.

Solitary waves arise as a result of a delicate balance between dispersion and
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Figure 3.1: Possible types of solitary waves: (a) pulse, (b) kink, (c) breather, (d)
symmetric envelope solitary wave, (e) asymmetric envelope solitary wave, (f) sym-
metric dark solitary wave. Asymmetric dark solitary wave and nonlinear periodic

_

wave are not shown. (From Reference [7].)

nonlinearity [4]. Since a number of physical systems possess these properties, it is
quite natural to expect that these characteristics will be also found in biological
systems. Some indications that excitations of the solitary wave type may arise in
biological systems are based on the dielectric properties of biological molecules. It is
known that the structure of biomolecules is similar to the structure of ferroelectric
crystals. Thus the models that describe these crystals can be adapted to describe
biological systems. Such types of models are characterized by a nonlinear coupling
between electric and elastic degrees of freedom which results in the formation of
solitary waves. For example, in [8] by means of a two-dimensional smectic liquid
crystal model it is shown that localized electric excitations can propagate along the
cell membrane of a nerve axon. The mcdel equations account for both electric and
elastic properties of the studied system.

In another work [2], it is suggested how a model proposed for the ferroelectric
phase transition in perovskites could explain some features of the behaviour of mem-
branes and enzymes. A chain of positive and negative ions such as K*, Nat, Ca2t
Tit*, H™, 0%, efe., is described by the equations of motion that are nonlinear and
contain both elastic and electric degrees of freedom. When this system of ions is in
the ferroelectric phase the solutions of the equations of motion are kinks and pulses.
Since biological systems contain similar types of ions as ferroelectrics, such localized
excitations could exist in these systems.

An instructive example of how the nonlinear coupling between elastic and electric
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degrees of freedom gives rise to localized travelling waves is the original model due
to Davydov which describes the propagation of solitons along an a-helix . By means
of this model Davydov attempted to explain the utilization of the energy of ATP
hydrolysis in muscle contraction.

3.2 Davydov’s Model of Propagation of Solitons along an
a-Helix!

Davydov suggested that the energy of ATP hydrolysis can travel along one of
the spines of an a-helix in the form of the amide-I bond vibrational energy which is
about one half of the energy of the ATP hydrolysis. The amide-I bond is the double
bond between a carbon atom and an oxygen atom which is located in each peptide
group of the protein molecule (see section 1.6 in Chapter 1).

The o-helix is one of the possible conformational arrangements of a protein
molecule. This arrangement arises by twisting the protein chain in a helical fashion
and binding the hydrogen atom of the first peptide group to the oxygen atom of the
fourth group, the hydrogen of the second group to the oxygen of the fifth group, etc.,
(Figure 3.2). Such binding of the peptide groups results in the formation of three
chains called spines which are parallel to the axis of the a-helix. The first spine
consist of the first, fourth, seventh, ... peptide groups, the second spine is composed
of of the second, fifth, eighth, ... peptide groups and the third spine contains the
third, sixth, ninth, ... peptide groups.

Davydov based his suggestion, that the energy of the ATP hydrolysis can propa-
gate along a spine of the a-helix in the form of a localized soliton excitation, on the
following considerations. When the amide-I vibration in one of the peptide groups
of one of the spines is excited, for example, by the energy of the ATP hydrolysis, the
energy of this vibration will propagate through the dipole-dipole coupling between
the neighbouring peptide groups in the spine. The energy of the electromagnetic
dipole-dipole interaction between two amide-I bonds is given by the equation

2
= 2%'—?—3 , (3.)
where d is the dipole moment of a peptide group bond and R is the separation
between two neighbouring peptide groups.

1Based on [4].
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This figure has been removed due to copyrights. It is
Figure 7-6 (b) at page 152 in Reference 1.

Figure 3.2: The a-helix conformation of a protein molecule, (From Reference [1].)

The coupling between the dipoles of the neighbouring peptide groups in the
spine will cause the dispersion of the vibrational energy. However, stretching and
contraction of the C=0 bond in the vibration leads to the displacement of the
peptide group from its equilibrium position resulting in deformation of the H-O
bond between the neighbouring peptide groups in the spine. Since there are forces
acting between the peptide groups (van der Waals forces, hydrogen bond, etc.),
the displacement of one peptide group causes the displacement of the neighbouring
peptide group and so on which results in the formation of a longitudinal sound wave.

Davydov pointed out that the electromagnetic wave and the sound wave are
coupled since the vibrational energy of the amide-I bond changes due to the change
of the distance R between two peptide bonds. Thus the longitudinal sound acts
as a potential well that traps the electromagnetic energy of the amide-I vibration.
The vibrational energy doesn’t disperse but it travels localized together with the
longitudinal displacement without loss of energy as a soliton.

The model originally developed by Davydov is a semi-classical model in which
the amide-I vibration was treated quantum mechanically and the longitudinal sound
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classically. In the continuum approximation this approach leads to a nonlinear
Schrédinger equation.

In the special case of the travelling wave solutions the nonlinear Schrodinger
equation obtained by Davydov for the system of peptide bonds in a spine of the
a-helix has the following form

ihBE(I, N 3211(:1: t)
at T oz2
Equation (3.2) is the equation for the probability amplitude of the exciton a(z,t).

~ Eqa(z,t) + kla(z,t)[?a(z,t) = 0. (3.2)

The energy constant Ej is given by the formula
Ey=E-27+1 / [m (E"(z e E(a“(‘z 0u(z,t) i, (3.3)

where E is the energy of amide-I vibration, m is the mass of a peptide group, K is
the strength of the spring that represents the H-O bond between the neighbouring
peptide groups and u(z,t) = u(z — vt) is the displacement at time ¢ and at a point
z along the chain of peptide groups. The nonlinearity constant & is given by the
expression

) i
F= K- (34)

where x = dE/dR is the parameter that characterizes the coupling between the
amide-I vibration and the longitudinal sound wave, s = v/v, < 1, where v is the
velocity of the soliton and v, = R(K/m)"/? is the velocity of sound.

The stationary solution of the equation (3.2) is obtained when s = 0 and it has
the following form

alz) = (25’1)1/2 SE“:h[EJ( ’ED)IEXP[’%(Eu— fgj)t]i (3.5)

Equation (3.5) represents a pulse soliton centered at point zo. The energy of the
soliton is ,
) x* 16
Es’ : 2;] - —— » L) -a

o 3K2J (3.6)
If the chain of peptide groups were absolutely rigid, that means, K = oo, then

k = 0 and equation (3.2) would contain only linear terms. The solution of this
linear equation is a plane wave which means that the energy of the C=0 vibration
would become uniformly distributed along the whole chain, i.e., it would no longer
be localized. The energy of the plane wave is equal to Epiane = E — 2J which is
larger than the energy of the soliton. This implies that it is more favourable for
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the ckain of peptide groups along the a-helix to localize its energy, i.e., to take into
account the nonlinear coupling between the amide-I vibration and the displacement
of a peptide group.

Some indications that C=0O vibrational energy may be localized on an a-helix
comes from the experiments with the crystalline polymer acetanilide or ACN ((CH;C-
ONHGCgHs).). The molecule of ACN is arranged in a hydrogen-bonded chain that is
similar to the polypeptide chains in the proteins with  helical structure. The ACN
spectrum contains an anomalous line which is very close to that corresponding to
the amide-I vibration in the spectra of proteins. Theoretical calculations show that
this line may be due to the soliton-like excitation described above, however, other
explanations of its origin can not be excluded [9]. The possibility of the existence
of solitons on an a-helix is also supported by the estimated values of the coupling
parameter x in real proteins. According to these estimates the coupling between
the C=0 vibration and elastic displacement in these molecules may be sufficiently
strong for the solitons to arise.

3.3 Kink-Like Solitary Waves in Microtubules

By means of the Monte Carlo simulations performed with a lattice of dipoles in
the previous chapter it was shown that depending on the conditions in the cell a
MT can be in ferroelectric or paraelectric phase. It is suggested here that in the
process of the MT assembly the low-temperature ferroelectric phase can support
propagation of the free portion of the energy released in the GTP hydrolysis along
a MT in the form of kink-like solitary waves of tubulin dipole states coupled to its
conformational states.

In the ferroelectric phase, all dipole moments on the tubulin dimers in the MT
are oriented in the same direction. It will be assumed here that this direction
corresponds either to the a or to the 3 state of the tubulin dimer. Further, let us
assume that when a free tubulin dimer attaches itself to the MT its dipole moment
flips into the opposite state. The work needed for the flip is done using the free
portion of the energy released in the GTP hydrolysis. The amount of this energy
can be comparable to 0.9kcal/mol = 6.25 x 10~2!J (see section 1.4.3 in Chapter
1). Due to the dipole-dipole coupling flipping one dipole induces flipping of one or
more neighbouring dipoles and so on along the most energetically favourable path.
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In this way the free energy released in the GTP hydrolysis can propagate in the MT
wall.

To illustrate the above described process, a situation can be assumed when at
the assembling end of a MT with the A lattice all dipoles are in the same state,
say . A free tubulin dimer that also happens to be in the o state is attached to
one of the protofilaments of the assembling end. Using the values of the interaction
constants calculated in Chapter 2 for the case when the dipoles in the £ state are
nontilted, the energy of the just attached dimer is Ejn g = —4.81 x 10~2' J. After
the flip of the dipole into the J state its energy would be Efinat = 3.04 x 10~21],
The difference of the two energies is AE = 7.85 x 10~2!J and this is the energy
needed to flip the dipole from the « to the 8 state. AE is indeed comparable with
6.25 x 1072! J which suggests that the propagation of the free portion of the energy
of the GTP hydrolysis in the way described above is quite feasible. It can be noted
that the energy needed to flip the dipole of the just attached dimer depends on the
configuration of dimers at the assembling end.

However, just as in Davydov’s model the dipole-dipole interaction would lead to
the dispersion of the portion of the energy freed in the GTP hydrolysis along a MT.
But, if the interaction between two neighbouring dipoles is nonlinearly coupled to
the elastic distortion along the chain of dimers, the energy may become localized
and it can travel along a MT as a solitary wave. If all dipoles in the MT are initially
in the same state, then this wave represents a domain wall between two subchains
of dipoles in each of which all dipoles are in the o and in the B state, respectively.
Hence, the possible excitations of tubulin dipole states in MT's can be described as
kink-like solitary waves.

In the rest of this chapter, a simplified situation is assumed in which the lateral
interactions between the tubulin dimers in a MT are neglected. Due to that the

the following section a model is studied which was originally proposed in [10]. This
model is based on the assumption that the dipole state (polarization) of the tubulin
dimer and the distortion (displacement) of the dimer are linearly proportional, for
example, due to a strong coupling between them. In such a case, the dipole dynamics
in the chain of tubulin dimers can be described by only one equation, e.g., for the

In the last section, two other models of propagation of kinks in ferroelectric sys-
tems are described. In these models polarization is nonlinearly coupled to displace-
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ment or stress. The equations of motions are represented by two coupled equations.

3.4 Model with Strong Coupling between Polarization and
Displacement

3.4.1 Equation of Motion

The Hamiltonian associated with the dynamics of a dipole placed at site n in
a MT protofilament with N tubulin dimers can be represented by the following
equation [10]

N
1= S M2 4 e — ) — (%202 - St ot (s
H= néI[ZM( dt*) + EK(un+l u!‘!) (2 U, — '472‘&1'1 cuﬂ]' (3-7)

In (3.7) the variable u, represents the projection on the protofilament axis of the
distortion of the dimer which is in the f state with respect to the a state [16],
$M (du, /dt)? is the kinetic energy of the tubulin molecule of mass M, 1K (upyy —
u,)? represents the elastic energy that originates from the restoring elastic forces
characterized by a constant K that act between each two dimers. The quartic
double-well potential energy V(u,) = —3u? + %ul approximates the average effect
of the surrounding dipoles on the dipoie at site n. V(u,) can be viewed as the
Landau free energy expansion where u, corresponds to the order parameter and the
coefficients oz and a4 are characteristics of the physical system. Assuming that the
phase transition from a ferroelectric to a paraelectric phase in a MT is a second
order phase transition, a, is a positive constant and a; = (7T, — T), where a; > 0
(see section 2.1 in Chapter 2).

A plot of the potential energy V(u,) when a; > 0 and T < T, is shown in
Figure 3.3a. The potential energy V(uy.) has two symmetric local minima such that
V(£(e2/a4)'/?) = ~a}/(4a4) and a maximum at V(0) = 0. The two symmetric
local minima correspond to the two states of the tubulin dimer @ and 3. The
approximation of the effect of the environment by the double-well quartic potential
assumes that all dipoles are in their equilibrium positions and they can be either in

the a or in the f state.
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The last term, —cu,,, in (3.7) accounts for the effect of the electric fields to which
the chain of dipoles can be exposed. The total electric field E at a site n along a
MT protofilament produces potential energy Vg = —cu, = ~QessEun, where g.gy
is the effective charge of the n’th tubulin dimer. The addition of VE to the quartic
double-well potential energy V(u,) results in an asymmetric function with two local
minima and one local maximum that is plotted in Figure 3.3b. To one of the minima
corresponds a lower value of the potential energy than to the other. This means that
the two dipﬁsle states of the system are not equivalent but the state that is oriented

€) . (b) .
= = 729, ® - - - = _ -
V(u) (2.5x10°20 ) V(u)+Vg (2.5x10°20 1)
4 .
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2 3
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Figure 3.3: The local potential energy at a site n in a MT protofilament when the
MT is in the ferroelectric phase. (a) V(u,), (b) Viug) + V.

In order to derive a realistic equation of motion the effect of the medium sur-
rounding the MT has to be taken into account. As has been mentioned several
times, cellular MTs are embedded in cytosol which is a water solution of various
ions. Ions and polar water molecules can affect the electrostatic interaction between
the dipoles on the dimers and they can also act as a viscous medium and damp the

motion of the dimers [10]. The damping effect can be represented by a viscous force
] du :
F, = - n 3.8
5 (3.8)

where 7 is the damping coefficient.

If the displacements of the neighbouring dimers are assumed to be small and
gradual, the equation of motion can be derived using the continuum approximation
[10]. The discrete variable un(t) is replaced by the continuum variable u(z,?) and
tn41(t) is expanded in a Taylor series about the point z, i.e.,

2
wn() = ) + R 2B 4 LpafUEl) (3.9)
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Lz (3.9), Ry is the equilibrium distance between two neighbouring tubulin dimers.
When only the first two terms in (3.9) are considered, the equation of motion that
corresponds to the Hamiltonian (3.7) and the dissipative force (3.8) is the following
M % -1 Rﬁ% — aqu(z,t) + agu(z, t)® + 751:{(;, t)_ gesrE(x) = 0.

(3.10)

The values of the constants in (3.10) can be determined as follows [10]): The
mass of the tubulin dimer was calculated as M = 2 x 55000 x 1.66 x 10~2"kg =
1.83 x 10-22kg, The constants K and Ry are related to the velocity of longitudinal
sound waves through the formula K R} = Mu}, where v, is tke sound velocity. Since
no value for the velocity of sound in a MT has been known to the author of this
work so far, the value found for DNA, vy = 1700 ms™! [11], has been used here. The
coefficients a, = ay(T,. —T) and a4 for a MT are also not known. However, inorganic
crystals exist in which ferrodistortive domain walls can be formed. For example,
for the crystal PbsGe;O,; below the critical temperature, ay = 1.6 x 1024 Jm—1
and a; = 10Jm™?K~!. If the MT is in the ferroelectric phase then the critical
temperature T, cun be approximately taken as 350 K and T is body temperature

310 K. This gives for the coefficient sy
ap = 10 x (350 — 310) = 400 Jm™2. (3.11)

To estimate the damping coefficient 7, the tubulin dimer can be considered a
sphere of radius R = 4 x 10" m and mass M that is moving in a fluid of viscosity
7. The drag force exerted by the fluid on the sphere is

’ FD - = .
B "dt dt

Assuming that a MT is mainly surrounded by water molecules, n can be taken as
the viscosity of water. At body temperature, 1) = fjyarer = 6.9 X 10~*kgm=1s~1,
Consequently, v = 67Rn = 5.2 x 10~ kgs™?,

3.4.2 Electric Fields in Microtubules

The total electric field E on each site in a MT is due to the external electric
fields of other MTs and cell membranes and the electric field of the MT itself. The
intrinsic electric field of a MT is caused by the distribution of positive and negative
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charges and ions within the tubulin molecules which produce electronegative fields
on the MT surface.

An indication of the presence of the electronegative fields in MTs is the existence
of the so-called “clear zone” [12]. This is a space in the shape of a tube that surrounds
a MT and is 5-10 nm wide. According to experiments organelles, the cytoplasmic
ground substance or any other material normally seen throughout the cell are very
seldom present in this zone.

Further indications about the electromagnetic nature of MTs are in vitro experi-
ments in which a pool of assembling tubulin was subjected to electric and magnetic
fields. In [13] electric fields of the order 1 Vm™ and a magnetic field of intensity
0.02T were used. After 10 minutes the assembled MTs ordered along the direction
of the field. Applying higher electric fields resulted in larger amounts of assembled
MT polymer.

Ordering of MTs is observed in many cellular structures. Regularly aligned MTs
exist in axons, cilia, and mitotic spindles (see Chapter 1). These and other cellular
elements that contain parallel arrays of MTs perform important functions in the
cell. Control of these functions may be also related to the electromagnetic fields in
MTs and in the cell. According to [14] electric fields inside the cell are in the range
2—-50Vm™.

The exact distribution of charges in the tubulin molecules bound in a MT is

+gess at one end and the net point charge —g.ss at the other end of each MT
protofilament. It will be assumed that the protofilament on which the dipoles change
their states due to the travelling free portion of the energy of the GTP hydrolysis is
subjected to the electric field produced by the remaining protofilaments. In a MT

The longitudinal component of the electric field produced by 12 protofilaments
at a point z along the axis of the 13-th protofilament can be calculated using the
expression

— & Qeff ¢ L/2+zx ) L/zéz )
Ble) = ; 47"62{5-{[11? + (L/2 + z)2]P72 + [+ (/2= 5)3]3’/2}‘

(3.13)

In (3.13) the sum over i adds up the electric fields from each of the 12 protofila-
ments surrounding the 13-th protofilament, the permittivity of vacuum e, = 8.85 x
1072Fm™!, ¢, is the relative permittivity, L is the length of the MT and d; is the
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distance between the axes of the i-th protofilament and the 13-th protofilament
(Figure 3.4). d; can be found from the formula

d; = 2Rsin 13 , (3.14)
where R = 10.4 x 10~%m is the distance of the charges from the center of the MT
and o = 27/13 is the angle subtended by a tubulin dimer. Each protofilament is
assumed to have a circular cross-section of radius r = 2.5 x 10~?m. The charges are
placed in the centers of the cross-section (on the axes of the protofilaments).

Figure 3.4: The cross-section of a MT with 13 protofilaments. The 13-th protofila-
ment is subjected to the electric field of the surrounding 12 protofilaments.

The electric field calculated according to formula (3.13) for a MT with length
10~%m, which corresponds to protofilaments composed of 125 dimers, is plotted in
Figure 3.5a. The field has the lowest value in the center of the MT and increases
towards the ends. The charge g.;s was chosen to be 1.602 x 10~'°C and ¢, = 1. This
gives E(0) = 2.3 x 10*Vm™! and at the maxima E,,,; = 2.62 x 108Vm™~!. These
values are considerably higher than 2 — 50 Vm™!. By choosing a different value of
€- the values of E(z) can be decreased. As in previous chapter, ¢, can be taken
as the relative permittivity of free water whose value at body temperature ranges
from about 4 to about 70. Setting ¢, = 10 would decrease E(z) by one order of
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Figure 3.5: The electric field generated by 12 protofilaments on the axis of the 13-th
protofilament of a MT whose protofilaments cousist of (a) 125 and (b) 1000 dimers.
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magnitude. Due to screening caused by other charges within the tubulin molecule,
the value of the electric field in the MT can be also substantially lowered.

Furthermore, it can be noticed that the electric field is different for MTs of
different lengths. In Figure 3.5b is plotted the electric field for a MT in which the
protofilaments consist of 1000 dimers, i.e., L = 8x10~%m. For Qess = 1.602x1071°C
and €, = 1, in the center of the MT E(0) = 360 Vm™! and at the maxima E,.,, =
2.62 x 106 Vm™. This implies that longer MTs produce lower fields which is the
natural feature of the charge distribution (3.13).

3.4.3 Analytical Solution

For a constant electric field E, equation (3.10) can be solved analytically. In
order to find a solution in the form of a wave that travels at a constant velocity
v [10], 2 moving coordinate £ = £(z — vt) can be introduced as follows

|ay| 1/2 o1

=l (- vt). 3.15

E LM(‘U% . v2)] (.‘I: ) ( )

The partial differential equation (3.10) then reduces to an ordinary differential equa-
tion

Z:'f+ f;é’ P+p+o=0, (3.16)
where
vy Qy o 5
P= Mo —2 T (ag)m (3.17)
and 7
wo =28, =@y, (3.19)
4

The travelling kink wave solutlon of (3.16) is listed in [15]. The solution that
corresponds to the kink wave moving with the velocity v > 0 is

V() = o + T f;(,;_ﬁ)/ﬁ : ' (3.19)

where v; and 1), satisfy the cubic equation

(=)W~ )W —ts) =¥ -9 —0. (3.20)
Equation (3.19) is a solution of (3.16) for v > 0 when
_ Ut —2¢Yy (3.21)

=
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Equating the coefficients at the second power of ¢ in (3.20) gives another equality

for 11, 2, Y3
Yi+tha+s=0. (3.22)
Y1, 21’2; 7!’3 can be fc:und as the roots of the cubic polynamia] 1,!:3 ~Y—0. A

Y = jgms{ arc:ccs[ng 3114)1/3]} (3.23)

3 o

o= s con {5 + g arceos (S Sy (320
Yy = %ccs{ + ; arccas[agE 3&4)1/2]} (3.25)

The argument 6 = 3¢E/(2a3) x (3a4/a2)'/? in the above three equations is small
for the values of the electric field E(z) calculated in the previous section. For the
maximum value of the electric field Epnq, = 2.62 x 106 V™!, § = 0.000115. Hence
%1 = 92 is positive and the kink (3.19) is a domain wall between two states P =1
when ¢ — —o0 and ¥ = 3, when & — oo, travelling to the right as illustrated in
Figure 3.6. This solution is consistent with the potential V(u) plotted in Figure
3.3b. The state of the variable u = ug% changes from a negative to a positive value
as the domain wall moves towards the right boundary. Because the parameter § is
small for the electric fields considered here, 1, and 13 can be safely expanded with
respect to 6 around 0 which gives the following approximate expressions

Y1 = 14 < + 0(6%), (3.26)

33/2
and

Yoo ~1 o = 57+ 0(6%). (3.27)

Using the two expansions in equation (3.23) and (3.24) and substituting the result
into (3.19) yields for the continuous displacement u(§)

] 2

u(E) = ( )1/2["1 + 355 33/2 + 1 +;\‘T§E] :

(3.28)
This approximate solution was used in the numerical simulations below.

From equations (3.21) and (3.22) follows that p = =313/V2. After substituting
for p and 3 from (3.17) and (3.25), the equation for the velocity of the kink wave
v is obtained

[agM(ugz VI = ‘/_‘3@5{ arccos [3qE(3¢14)1/2]} (3.29)
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Figure 3.6: A domain wall between two subchains of a MT protofilament in which

the tubulin dimers are in two different states.

The equation above is a quadratic equation for velocity v. The velocity depends on
the values of the constants ay, a4, 7, M, q and on the value of the electric field E.
If the electric field is a function of the distance from the MT ends, then v changes
as a function of E along the MT.

Equation (3.29) can be expanded if it is assumed that the velocity of the kink
wave travelling along a MT is very small compared to the speed of sound, i.e.,
v < vp. Solving the quadratic equation (3.29) for the values of the parameters ajy,
@4, 7, M and g that were given in section 3.2.2 and maximum electric field along
the MT E,,.. = 2.62 x 10 Vm™! gives the value of the velocity v = 1.24 ms™!. This
number is much smaller than the velocity of phonons vp = 1700ms™!. Thus in the
numerator of the right hand side of equation (3.29), v2 can be neglected and 3 can
be expanded with respect to the small argument 6 as follows

, P .
¥s =~ + 0(6%). (3.30)
The result.ing approximate formula for v is
31!0 MQ‘4 1/2 3?] Mﬁ.’.; 1/2 L
V= ——(=——— 3.31
T T . @-7) 2 ) (831)

The approximate expression (3.31) shows in an instructive way how the velocity
of the kink depends on the parameters of the modelled system and on the critical
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temperature T.. Since the MT is assumed to be in the ferroelectric phase, a; > 0
and T = Tjoay < T. Then equation (3.31) implies that if the conditions in the cell
cause T, to increase, the kinks moving along the MTs will have a greater velocity.
Decreasing T, will cause the kink domain walls to move slower. The values of the
parameters as, ay, 7, g and €, used here were approximated or estimated but they
are not known precisely for a MT. More precise knowledge of these parameters would
help to determine the value of the velocities of the kink waves more accurately.

The velocity v depends linearly on the electric field E. This means that larger
electric fields on MTs will generate kinks moving at larger velocities and vice versa.
The magnitude of the intrinsic electric field of a MT can be altered if the MT is
subjected to an external electric field generated, for example, by a membrane or by
other MTs [16]. If the external electric field is oriented in the same direction as the
intrinsic electric field of the MT, this will result in a faster propagation of kinks.
If the external and intrinsic electric fields are oriented in the opposite directions,
the propagation of kinks will be slowed down or reoriented when the magnitude of
the external field is larger than the magnitude of the intrinsic field of the MT. In
the previous chapter it was shown that sufficiently strong external fields can alter
the direction in which the dipoles are aligned when the MT is in the ferroelectric
phase. Then the external field and the intrinsic MT field would be oriented in the
same direction. This would change the direction of propagation and increase the
velocity of the kink waves. When the total electric field to which the dipoles on the
tubulin dimers are subjected is zero the kinks won’t propagate at all. According to
the approximation of the charge distribution in a MT chosen here the magnitude of
the intrinsic field of a MT also depends on its length. This means that MTs with
different sizes may support kink waves travelling at different velocities.

The kinks moving along MTs represent quanta of energy that can also be viewed
alternatively as bits of information moving on an information string [16]. This in-
formation can signal other events taking place in MTs, for example, attachment of
MAPs, detachment of a tubulin dimer from the MT in the process of disassembly,
coordinated behaviour of cilia and flagella, etc., (see Chapter 4). Thus the mecha-
nisms which control the propagation of information along MTs in the form of the
kink-like waves of the tubulin dipole states can govern the various MT functions in
the cell.
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3.4.4 Numerical Solution

For the electric field {3.13) that is a function of the position along the MT axis,
equation (3.10) had to be solved numerically. As an initial condition the approxim
solution (3.28) was chosen for the value of E set equal to E(zo), where zy is the
point at which the kink is centered at ¢ = 0.

Figure 3.7a shows a numerically obtained kink wave travelling in a section of
a MT protofilament along which the electric field decreases. The length of the
protofilament is L = 10~®m ( 125 dimers). The kink starts moving towards the
right end of the MT at 2o = —4 x 10~"m where E(zy) = 274000 Vm™" and the
corresponding velecity is vg = 0.13ms™1. The time interval between two successive
plotted waves is At = 3.38 x 10~7s. The total distance D = 1.41 x 10~7 m, which
corresponds to about 16.5 dimers, was travelled by the kink in time T' = 2.7 x 105,

According to the plots with the decreasing value of the electric field along the
MT the motion of the kink is slowed down. The last plotted wave moves at a velocity
of about v = Ad,pq/At = 0.026 ms~! where Ad,,q = 8.79 x 10~°m is a distance over
which the kink moves in time At at the end of the simulation. In the center of the
interval Ad,nq the value of the electric field E = 55900 Vm™!. According to (3.31),
the corresponding velocity is v(E) = 0.027 ms~!. This shows that the analytical and
numerical solutions are in a good agreement.

Figure 3.7b shows the travelling kink wave if the electric field is assumed to have
the same value E = 274000 V™! over the entire length of the MT. The numerical
calculation reproduces the analytical solution which is a kink moving with constant
velocity v = 0.13ms™. In time T = 2.7 x 10~¢s the kink travels over the distance

than in the previous case.

Figure 3.8 depicts the situation when the kink wave moves in a section of the
protofilament along which the electric field increases. The kink starts moving at
To = 2.5 X 107" ms™!, where E(zg) = 50700 Vm™ and v, = 0.0241 ms~! towards
the right boundary. The time interval between two successive waves is the same
as before, At = 3.38 x 10~"s. Corresponding to the increasing electric field, the
velocity of the kink increases as well and at the end of the simulation v = 0.121 ms™!,
The velocity calculated according to (3.31) for the last plotted wave is about v =
0.12ms™!. Over the total time of simulation 7" = 3.38 x 10~%s the kink travelled
the total distance D = 1.45 x 10~7 m, which corresponds to 18 tubulin dimers. The
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Figure 3.7: A kink wave moving on a section of a MT which is 125 dimers long.
The time interval between two successive waves is At = 3.38 x 10~7s. Figure (a)
shows the time evolution of a kink wave exposed to a decreasing electric field of the
MT. Figure (b) chows the kink moving in a constant electric field of value equal to
that at the beginning of the kink motion in figure (a). The electric field is in units

of 2.62 x 10°Vm™ and the displacement u(z) is in units of 1.58 x 10~'! m.



dotted line shows how far the kink would travel if it mcved at the constant velocity
0.0241ms™! over the same total time. The total distance travelled in the constant
field is D = 8.15 x 108 m which corresponds to 10 dimers.
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Figure 3.8: A kink wave moving on the background of an increasing electric field
along a MT which is 125 dimers long. The time interval between two successive
waves is At = 3.38 x 10~7s. As the electric field increases the kink moves faster.
The dashed line shows how far the kink would travel if the electric field was constant

and equal to the value at the starting point. The units of the plots are the same as
in Figure 3.7.

It should be pointed out that according to the analytical solution for a constant
electric field E given by equations (3.19), (3.23), (3.24), (3.25), the form of the kink
changes every time the value of E changes. However, the values of E along a MT

are such that the approximate solution (3.28) is valid with good accuracy and the
change in the form of the wave is negligible.

3.4.5 Numerical Solution in the Presence of an Impurity

In this section the collision of a travelling kink wave with a defect in the MT is
studied. The defect can be an attached MAP or a structural discontinuity [extra
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seams, protofilaments or even point dislocations (extra tubulin or missing tubulin)
have all been seen in experiments]. The defect is represented by a localized potential
energy of the Gaussian form

N
V(z) =V, Y e Ale=leatin-Dal}* (3.32)
n=1
In (3.32), N is the number of defects along the MT protofilament, z4 is the location
of the first defect, a, is the distance between two impurities, # is a constant that
determines the steepness of the Gaussian bump or well and Vo is the amplitude of
the potential energy.
The derivative of the potential energy (3.32) is the additional local force 544
which acts at the travelling kink. The effect of this force is included on the left hagd
side of the equation of motion (3.10) as a term

dV (z)

H r b | ; _
rraak —2Wp Z {z = [z4 + (n = 1)a,)}ePlz-lratin-1)au]}? (3.33)

n=1
local pntent;al energies and the cgrrespandmg Iaca.l fa:ces that could be due to the
impurities placed at regular distances on a section of a MT protofilament are plotted
in Figure 3.9. The parameters of the local forces are a, = const. = 8 x 10~8m (10
tubulin dimers), Vp = 1072, = 10""m2 and 2y = —=1.2 x 10~"m
Hence, a kink moving down a MT protofilament is exposed to a smoothly chang-
ing electric field E(z) and local fields such as those shown in Figure 3.9. It can
be expected that the effect of the localized potential energy will be similar to that
caused by the electric field. Where the force due to the local defect increases, the
velocity of the kink will increase as well, and vice versa.
Figure 3.10a shows the motion of a kink wave in a section of the MT protofilament
along which the backgrcund electric ﬁeld E(;t:) from the surmunding 12 pmtuﬁla—

g = —3. 7 x 10~ 7m is swrtched on. The time mterva.l between twcx successive waves
is At = 1.35 x 10~ 7s. Tbe kink starts moving at a point 7o = —4.0 x 10~"m with
a velocity vp = 0.13ms™1. The potential energy function is a bump with parame-
ters = 10" m~2 and the amplitude V; = 1.00 x 10-22J which corresponds to the
maximum amplitude of the local force £2.71 x 10-14N.

As can be seen, in the presence of the localized potential energy V(z) the velocity
of the kink wave changes more rapidly compared to the case when only the electric
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field is present. When the kink approaches the defect, its velocity decreases because
the local force produced by the impurity is negative. When the kink moves away
from the center of the defect, its velocity increases since the defect generates a
positive force. Eventually the wave moves with a steadily decreasing speed due to
the smoothly decreasing electric field E(z). The overall distance travelled by the
wave when the local potential energy is switched on is smaller than the distance
the kink moves in the same amount of time only on the background of the electric
field. This is indicated by the difference between the position of the last solid line
and the dotted line which represents a kink travelling only on the background of the
changing electric field.

The situation when the impurity is placed in the section of the MT protofilament
along which the electric field increases is depicted in Figure 3.10b. At time t = Os,
a localized potential energy is switched on at z5 = 4.3 X 10~"m. The time interval
between two successive waves and the parameters of the localized force are the same
as in Figure 3.10a.

The kink starts moving at a velocity v = 0.13ms™~!. When the wave approaches
the impurity, its velocity decreases and when it passes the center of the local potential
energy its motion is accelerated. Sufficiently far from the local defect the kink wave
accelerates only due to the electric field of the MT. The total distance travelled by
the kink is shorter compzred to the case when there is no defect. This is indicated by
the difference between the last solid line and the dotted line which show the position
of the kink reached in the same amount of time with and without the presence of the
local defect, respectively. It can be noticed that the effect of the local defect shown
in Figure 3.10b is not as large as in Figure 3.10a. The reason for this is that in
Figure 3.10b the magnitude of the electric field at the site at which the local defect
is placed, is larger than the magnitude of the local force while in Figure 3.10a the
situation is opposite.

The motion of the kink would be affected in a similar way if the local impurity
were a Gaussian well since the well differs from a bump only by a minus sign. This
means that the local force due to a well will cause a travelling kink to accelerate
before it reaches the centre of the local force and decelerate after it passes through
the centre of the local force.

Increasing the amplitude of the local potential barrier results in a greater delay
of the kink and when the amplitude reaches a critical value the kink will come to a
complete stop. This is illustrated in Figure 3.11 that shows a kink wave stopped by
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Figure 3.10: A kink wave traveling along the section of a MT protofilament in
which the electric field decreases (a) and increases (b) and a defect represented by a

Zo = 4.3 x 10~"m (b). The amplitude of the local potential energy is 1.00 x 10-22J
and the length of the MT protofilaments is 125 dimers. The solid line shows how
far the kink would travel if there was no defect. The electric field is plotted in units
2.62 x 10°Vm™, the local force is in units 2.71 x 10~3N and the kink wave is in
units 1.58 x 10~ m.
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Figure 3.11: When the defect on the MT produces a sufficiently large potential
barrier, the kink wave is stopped. In this case the amplitude of the potential energy
due to the defect is 1.00 x 102! J and it is located at 4 = —3.7 X 10~"m in the
MT which is 125 dimers long. The units for all the curves are the same as in Figure
3.10.

The force producad by the local defect can be compared to the force due to
the electric field. When the MT is 125 dimers long, the electric force ranges from
GesrEmas = 1.602 x 1071° x 2,62 x 10°N = 4.18 x 10~ N down to g.,;E(0) =
1.602 x 10719 x 2.3 x 10*N = 3.68 x 10~15N. The minima of the local forces shown
in Figure 3.10a and 3.11 have the values ~2.71 x 10~ N and —2.71 x 103N,
respectively, at the point Zmin = —3.72 x 10~"m. At this point the value of the
electric force is 1.602 x 10~19 x 1,74 x 105N = +2.78 x 10-14N. Thus, in the case
plotted in Figure 3.10a, the kink wave passes through the potential energy barrier
since the positive electric force is larger than the magnitude of the negative local
force at the point at which the local force has its minimum. In the case shown in
Figure 3.11, the kink wave is stopped by the local defect because the magnitude
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to the electric field. The plots of both local forces (with opposite sign) and the
electric force are shown in Figure 3.12. It can also be noted that the amplitude
W =1.00 x 1072 J is of the order of the interaction constants calculated for the MT

lattice of dipoles in Chapter 2.
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Figure 3.12: The electric force g.;7E(z) for a MT which is 125 dimers long and the
local forces —dV/(x)/dz that correspond to the amplitudes of the localized potential
energy Vp = 1.00x 10~22J and V, = 1.00 x 102! J. The local forces are plotted with
the opposite sign to see the difference between the electric force and the local forces

at the point of their minimum z,,;, = —3.72 x 10~"m.

3.5 Two Other Models of Propagation of Kinks in
Ferroelectric Systems

3.5.1 Coupled Polarization and Displacement

If polarization and displacement of the tubulin dimers are nonlinearly coupled
then the dynamics of the chain of tubulins has to be described by means of two
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equations, one for each of the two variables. The model equations in this case of
coupled elastic and dielectric degrees of freedom can be derived in the continuum
approximation from the energy density which takes the standard form [16]

1 M, du du, D OP u? ut P2 Pt .
= [ ( )2 ERD )2 ( )2 1322 +34‘§3A2?+A4T+7¢HPL

(3.34)
In (3.34), u(z,t) is the displacement at a point z at time ¢ and P(z,1) is the dipole
moment at a point z at time £. As can be noticed that P(z,t) depends on time only
through its coupling to u(z,t).

The term ¥ 84)2 in (3.34) represents the kinetic energy with M being the mass
of one tubulin dlmer@ The second term %( 24)2 describes the interaction between
points u(z) and u(z + dz) that is due to the elastic restoring forces, where K is
the elastic constant and Ry is the equilibrium distance between two tubulin dimers.
The product y.uP represents coupling between u and F’ where 4. is the eaupling
constant. The quartic double-well potential energies ap%- . "+ gy = and 4,2 2 ® + AL YR
originate from the Landau free energy expansions. The coefficients a9 and a4 are
the same as in the previous model and for a second order phase transition below the
critical temperature, ay, a4, A; and A4 are positive.

Finally, the term £( ‘l—‘ﬁ)2 is the non-uniformity energy [17]. This energy exists
in the transition regmﬂs between domains in whn:h the dlI‘ECtIDD af pclanzatmn is

and thelr width is given by the c:c:ndl,tmgs c:f the:mndygamm equlhbrlum! The
largest contribution to this energy comes from the exchange interaction [18].

'The non-uniformity energy can be expressed by means of spatial derivatives if the
gradient of direction of polarization is relatively small, that means, if the p@lanzatm;n
changes its direction over distances that are large compared to the distances between
two neighbouring dipoles. This condition is fulfilled because if the di:ctions of
neighbouring dipole moments were cnnsiderably diﬁ‘ereni this would le r to a large

Applying Lang,ra.nglan fc)rmahsm to the energy clensxt,y (&34) gives two fallowing
coupled equations for P and u

O 0% o
Mz = KRizms + 0gu ~ agu® ~ 7P (3.35)
0%P a ap
0= Dai + AsP — A P? — Yl - (336)
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When 7. = 0, equations (3.35) and (3.36) have an analytical solution [19] that can
be obtained by reducing the partial differential equations to ordinary differential
equations. This can be achieved by making the substitution £ = z — vt which gives
the solutions in the travelling wave form. Since K is related to the speed of sound v
through KR§ = Mvj, then under the assumption that v3 > v? and after performing
the above substitution, both (3.35) and (3.36) can be written in the standard elliptic
form ,

—a = —ay(€) + ey(€)°, (3.37)

where y can be either u or P. For y = u, ¢ = (v — v?)M, ¢ = oy and ¢4 = ay. For
y=P,c=D, cy = Az and ¢4 = A4. The solution of (3.37) is in the form of a kink

y(§) = ii,(z—':%;‘;)1’2 ta,nh(%g)g (3.38)

condition (3.38) at ¢ = 0. However, the values of the coefficients D, Ay, A4 and 7, for
a MT are not known at the present time. In this work A, and A4 could be estimated

the basis of the interaction energies between two dipoles. These estimates are given
in Appendix A.

To demonstrate the properties of the coupled system (3.35) and (3.36) the nu-
merical solution is presented here for parameters chosen arbitrarily. Figure 3.13
depicts the numerical solution when ap = ay = A = A4 =1, 7. =0.1,v = 1,
M =1, v = 3 and D = 2. Polarization and displacement are two coupled kink
given by the initial condition (3.38). It can be noticed that the amplitude of the u
wave fluctuates which is due to the coupling between u and P. The amplitﬁde of P
is slightly larger than the amplitude of the initial P kink and it is stable over the
course of time.

The effect of an impurity can be included in the coupled system by adding a local
force of the form {3.33) to the right hand side of equation (3.35). The numerical
results are shown in Figure 3.14a and Figure 3.14b for the parameters of the local
force § = 0.5, x4 = 15, Vp = 0.2 and Vj = 0.4. In both pictures u is shown at regular
time intervals. Tae P wave is coupled to the u wave exactly as in Figure 3.13 and
it is plotted only at the end of the last interval.

Figure 3.14a illustrates a situation when the local force is small. In this case
both waves pass through the potential energy barrier and their velocity is altered.
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for parameters 7. = 0.1, v =1, M = 1, w=3 a=a3=Ay=A;=1and D =2.

The overall distance travelled in the presence of the local defect is smaller than the

distance which the two coupled waves would travel in the same time but without

the case when the local force is large. Both coupled waves reflect from the potential
barrier and propagate in the opposite direction.

The results described above are similar to the results obtained by means of the
model represented by equation (3.10). However, the kink solutions of (3.10) are
more stable, and they preserve their shape and velocity. Since equation (3.10) also
includes the force of friction, a large potential energy barrier causes the kink to come
to a stop rather than to reflect from it.

The spatial and time scales over which u and P change are determined by the
parameters of the model (see Appendix A). According to the two models described
above the elastic state of the tubulin dimer changes within a length of about one
tubulin dimer and the relative distortion of the dimer is about 1.58 x 10-11/8x 109 =
0.002. For the estimated values of the parameters D, A;, A4 the width of the P-
kink is about three tubulin dimers when it is assumed that the maximum change
of P is the magnitude of the dipole moment on the tubulin dimer, However, a trial
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Figure 3.14: Numerical solution of the coupled system of equations (3.35) and (3.36)
when a local force —dV(z)/dz is added to the right hand side of equation (3.35).
The parameters in the equations are the same as for the solution drawn in Figure
3.13. The parameters of the local force are 8 = 0.5, z; = 15 and (a) Vo = 0.2, (b)
Vo = 0.4. The solution for u is plotted in regular time intervals and the solution for
P is plotted only at the end of the simulation. In Figure 3.14b the dotted line shows
u before it is reflected and the solid line is the solution for u after it is reflected from

the local potential energy barrier.
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model suggested in this section to describe the energy propagation along MTs may
require more extensive numerical investigation.

It can be pointed out here that another group of authors found solitary wave
solutions of an equation of motion set up for a chain of tubulin dimers in a MT
protofilament [20]. They considered only the elastic degrees of freedom. Their
solutions were kinks and pulses whose propagation along a MT could be driven, for
example, by the energy of the GTP hydrolysis. The width of the kink solution was
about 7 to 10 tubulin dimers.

3.5.2 Coupled Polarization and Stress

Another possible approach to the interface motion in ferroelectric systems is
presented in works [21], [22]. In [21] the Landau-Ginzburg type free energy expansion
is postulated in the following form
1
6

where P is polarization and o is the mechanical stress that couples to P due to

. 1 . 1 , D .8P._, L
CPS — §E§'P2 - 55362 + E(E—E)g s (3.39)

F=FR+:AP’-1ppiy

2 4 2
the piezoelectric effect. Coupling between P and ¢ is expressed by the term leoP?
where e is the elastic constant. The parameter sq is related to the velocity of sound
vo and the density p of the elastic medium through vy = (psg)~1/2.

Without the terms containing o, the free energy (3.39) describes a first order
phase transition in uniaxial proper ferroelectrics. The coefficient A4 is defined as
A = a(Tp — T), where Ty is the transition temperature at which the paraelectric
Phase loses its stability [23], B and C are positive constants, 2(9P/0z)? is the
non-uniformity energy where D > 0.

The time evolution of the order parameter P can be derived using the time
dependent Landau-Ginzburg equation [24]

OP _ _LF
at 6P’
where I' is the Landau-Khalatnikov damping coefficient. Substituting (3.39) into

(3.40)

(3.40) and performing the variational derivative 6F[6P gives the following equation

P | o o P
§P+I‘(AP55P3+C'P5—eaP);FD§ﬁfzO. (3.41)
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The second equation for o and P can be found from the coupling of & and P to the
mechanical deformation e which is equal to

oF 1 _, o o
e——g_-éeP + 500 . (3.42)

Here, € = 0u/8z is the strain tensor component corresponding to o. Hence, it
satisfies the wave equation of an elastic medium with density p
d% 8%
P2 =~ oz2
After substituting (3.42) into (3.43) the second equation for coupled polarization
and mechanical stress is obtained
ped pp_ (08 _ &
200" = (52 ~Poogp)-
To find the solutions of the system of coupled equations (3.41) and (3.44) in
the travelling wave form the standard substitution can be made £ =1z - vt. Then
equation (3.44) can be integrated which yields

(3.43)

(3.44)

%€va2 ~(1-psgp®)o=ci€+cp. (3.45)

In (3.45), ¢, and ¢y are integration constants. If it is assumed that ¢, = ¢ = 02 and
(3.45) is substituted into (3.41), the following ordinary differential equation results
for P

FD%}},; + vd? (AP - BP*+CP% =0, (3.46)
where 9 9
= pe’v 4
B=B+ 31 — psge?) prwe (3.47)
The solution of (3.46) is a travelling kink wave
_ P § \1/2 ,
P= \/2'[1 + tanh(2A)] , | (3.48)
where
P? = —[1 +(1- i“19)1/-?] (3.49)
= [=3D i (3.50)

4(BP? - A)

2The solutions for ¢; and ¢ nonzero were studied, e.g., in [25)].
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and

2
v=g

3'1,“4(444 - BP}). (3.51)

An impurity in a ferroelectric medium described by the two coupled equations
(3.41) and (3.44) can be included into this system of equations as a local fluctuation
of the density of the medium p. The model function that represents the fluctuation
was again chosen to have a form of a Gaussian. Hence, the density changes as a
function of the position along a MT as

N .
pa) = po1 + pr 3 ePlemlratnbenlly, (3.52)

n=1
where pp=const. is the density in the medium when no impurity is present, p, is the
dimensionless amplitude of the inhomogeneity function and the rest of the variables
are the same as in (3.32).

The system of partial differential equations (3.41) and (3.44) in which the pa-
rameter p changes as a function of z according to (3.52) was solved numerically. As
initial conditions were chosen the solutions obtained for a constant density (p, = 0)
from (3.48) for P and by combining (3.48) and (3.45) for 0. The values of the pa-
rameters A, B, C, D, T and e for a MT are not known. Here they were chosen as
follows: A=B=C=T=1and D=2. For the choice B =2, e = —1 and sg =1,
the velocity v obtained from (3.51) was \/g and po from (3.47) was 0.25. The solu-
tions obtained were found to have interesting properties which could be relevant for
MTs. However, this model should be examined with proper MT parameters some
of which are estimated in Appendix A.

The numerical calculations were performed for two cases. In one case the elastic
constant so was kept constant so that the speed of sound vp was changing due to
the change in p. In the second case the speed of sound was assumed to be constant,
i.e., the change in p was compensated for by the change in s .

The sequence of pictures in Figures 3.15 and 3.16 shows the results of a nu-
merical calculation assuming that sy is constant and a local density fluctuation of
the form (3.52) is switched on at time t = 0. The center of the inhomogeneity
is located at z; = 10 and 8 = 0.2. The amplitude of the fluctuation is p, = 0.5,
i.e., there is a maximum 50% increase in density. Initially, both polarization and
stress are kink waves obtained from (3.48) and (3.45). After the density fluctuation
is introduced into the medium both waves significantly change their shape. When
the polarization wave passes through the inhomogeneity, it partially recovers and
eventually disappears approximately after time t=90. The stress wave, however,

118



15 - — - _—
1.0 4 E ,,,,,——:fg;—g{), o T T ——
;
P
; IH
it
0 < = ——— =
0.5 4
-1.0 4 —
o(x)
15— Y e ¥ - ; +—
-100 <75 &0 -5 a -] ] 75 100
E
1=10
1.5 = — — —
1.0 4
0.5 4
0- __
0.5 4
+1.0 4
54— v + r —r - ——
-100 -75 50 =25 o = &0 75 100
x
=20
15 = — —
1.0 4 I .
0.5 4
0 - -
0.5 4
1.0 4
15—y v v — v v v v .
-100 <75 50 =25 [+ F--] 5 -] 100

Figure 3.15: Numerical solution of (3.41) , (3.44) and (3.52) at times t =0, ¢t = 10
and ¢ = 20 when the amplitude of the density fluctuation is p, = 0.5.
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Figure 3.16: Numerical solution of (3.41) , (3.44) and (3.52) at times t = 50, t = 15(
and ¢ = 300 when the amplitude of the density fluctuation is p, = 0.5.
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becomes trapped by the density fluctuation and approximately after time ¢ = 300 a
stationary solution forms which is characterized by a constant value along the whole
MT except for a local bump centered at the center of the inhomogeneity. It is shown
in Figures 3.17, 3.18 and 3.19 that the amplitudes that characterize the stationary
solution for stress in case of constant Sg increase with the increasing p, and with the
increasing number of inhomogeneities along a MT as well.

Figure 3.17 depicts the initial and final stationary solutions of (3.41), (3.44) and
(3.52) when the density fluctuation has an amplitude p, = 1 and the same z, and
as previously. Figures 3.18 and 3.19 show the evolution of the solutions in the case
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Figure 3.17: Numerical solution of (3.41) , (3.44) and (3.52) at times t = 0 and
t = 350 when the amplitude of the density fluctuation is p, = 1.
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when two inhomogeneities with the same parameters as in Figures 3.15 and 3.16 are
placed in the MT and they are centered at £ = z4 = 10 and z = Ta+a; =40. It
can be noticed in this sequence of pictures that the polarization wave is significantly
destructed and recovers after it passes through the density fluctuations. The latter
observation suggests that fluctuations of density located along the whole MT (for
example, due to MAPs attached at regular intervals along the protofilaments) may
cause a complete destruction of the polarization wave. At the same time one or more
local density inhomogeneities may create a permanent stress that is constant along
the MT with the exception of the sections where the inhomogeneities are placed at
which the permanent stress is smaller. Such a mechanism may play a role in the
MT destabilization and overall destruction.

The solutions obtained for the case when the speed of sound is constant were
found to have similar properties to those described above, They differed only by the
form of the stationary stress which was constant along the whole MT.

On the basis of the calculations above it can be suggested that local fluctuations
of density which could be caused, for example, by an attached MAP or a structural
discontinuity in a MT, may impose permanent stress in the MT. When the stress is
sufficiently large, for example, due to large impurity or a large number of impurities,
the whole MT could become unstable and, as a result, might rapidly disassemble.

The investigation presented in this chapter has shown that coupling between
elastic and dielectric degrees of freedom may give rise to kink-like solitary waves
travelling along MT protofilaments that could be driven by the energy freed in the
GTP hydrolysis.

In the first model studied, polarization and displacement of the tubulin dimer
were assumed to be straggly coupled so that the relationship between both quanti-
ties can be assumed to be linear. The solutions of this model are travelling kinks
represented by domain walls with a width of about one tubulin dimer. The velocity
the kink waves depends linearly on the value of the electric field on the MT surface.
A collision with an impurity placed in the MT causes the kink to travel a shorter
distance compared to the case when the impurity was not present. When the local
force produced by the impurity is sufficiently large the kink wave stops propagating.

Another model was suggested in which the coupling between the distortion of
the tubulin dimer and its dipole state is assumed to be nonlinear. Polarization
depends on time only implicitly through its coupling to the displacement of the
tubulin dimer. This model was studied with parameters chosen arbitrarily. One
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Figure 3.18: Numerical solution of (3.41) , (3.44) and (3.52) at times t = 0, ¢ = 10
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class of the solutions of this model are travelling kink-like waves for both polarization
and displacement. Both waves travelled with the same velocity. A local impurity
caused slower motion of the kinks and when the impurity was large both coupled
waves reflected from it and continued to propagate in the opposite direction. The
travelling kink waves studied by means of the first two models, could be signals for
other important cellular events.

The last model studied here is represented by equations that describe a ferroelec-
tric system in which polarization is coupled to mechanical stress. The calculations
were performed for an arbitrary choice of parameters. The system of equations has,

represented by a fluctuation of the density of the medium is included in the system
the numerical solution is a stationary stress constant along the whole MT. Depend-
ing on the way the density of the medium affects the other parameters in the system,
a local bump placed at the center of the impurity may form on the background of
the constant stress. The amplitudes that characterize the stationary solutions in-
crease when the amplitude and the number of the inhomogeneities increase. The
permanent stress imposed in the MT in this way could be a means of destabilizing

model, however, should be studied with parameters proper for MTs.
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4 Information in Microtubules

The many functions that MTs perform in the cell are a result of the interactions
within MTs and with the external environment. The internal and external interac-
tions are represented by biophysical and biochemical processes that take place at a
molecular level. These processes can be viewed as information received, processed
and transferred by MTs.

The exact ways through which MTs communicate within themselves and with
their surroundings have been the subject of the present investigation. The research
presented in this work gave rise to a few suggestions and questions about the commu-
nication pathways in MTs on the basis of their physical properties. In this chapter,
an attempt is made to qualitatively estimate the information capacity of a MT on
the basis of patterns formed by the tubulin dipole states. Before the results are pre-
sented, a well-known model of information processing in MTs called MT automata
is described. Its features are compared to those of neural networks models and
cell signalling.

4.1 Models of Communication in Biological Systems

The basic assumption in the MT automata models is that a tubulin molecule

those states at discrete time steps. The MT automaton described here is presented
in [1]. The authors assumed that a tubulin molecule in a MT can be in two electro-
static states due to the presence of a mobile electron that is located in one of the
hydrophobic pockets either closer to the a or closer to the f monomer (section 2.4
in Chapter 2). Due to the coupling between the electrostatic and conformational
states of the tubulin dimer, the electrostatic events in MTs can be coupled to the
mechanical and chemical events.

The automaton was modelled on a MT with the A-lattice and with 13 protofil-
switch from the a to the 3 state or vice versa. The switching takes place if the sum
of electrostatic forces acting on the free electron in the dimer, due to the electrons
from the six nearest dimers, reaches a prescribed threshold value. The clocking
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frequency was assumed to be a frequency at which a coherent sound wave travels
across the MT diameter.

The above rules applied to a MT lattice result in different patterns of tubulin
electrostatic states that blink or form travelling waves along MTs. The type of
pattern is determined by the value of the threshold force. Thus the threshold value
is a parameter by means of which different information flow pathways in a MT can
be selected. A different threshold can be chosen for switcaing from « to # and from
B to a state. The threshold force can also be viewed as a parameter that includes
the influence of such biological factors as the GTP hydrolysis, binding of MAPs
and other molecules and ions, genetic variations, efc., on the tubulin conformation.
All these factors can alter the propagating information patterns represented by the
electrostatic interactions.

The communication between MTs interconnected with other protein filaments
and MAPs can be modelled in the MT automata by placing connections between
MTs. The sites of the connections are chosen randomly or by some other considera-
tions. The task is to find a connection which will generate a desired output pattern
in response to some input pattern. This is achieved by parallel testing of several
automata. In this way connections can be found which are associated with a certain
input-output map.

How well a connection can perform a certain task depends on its position but
also on the values of the threshold parameters and the background of tubulin con-
formational states. For example, o gliders on the B background always travel in the
opposite direction to the 3 gliders on the o background. This means that MT au-
tomata allow for back propagation of information. By varying the parameters of the
MT automata, that is, the threshold values, the connections and the background,
the MT network can be adapted to performing different tasks.

The functioning of MT automata is similar to the well-known models of neu-
ral networks which were originally designed in order to simulate the behaviour of
neurons and on the basis of that to study the principles of intelligent behaviour.

A neural network consists of a net of units connected with each other [2]. To
each connection a certain weight is assigned. The output from each unit is created
according to mathematical rules that sum up the inputs from other units connected
with it. The goal is to obtain a certain output from the network in response to some
input signal. For example, the input can be a series of letters and the output the
correct identification of each of them. This is achieved in a similar way as in MT
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automata. The weights in the network are chosen randomly and the combination
of weights which produces the best result is maintained and further trained until
the output from the neural network is close enough to the one that is wanted. In
this way the network of units has learned which configuration of parameters can

response to an input that wasn’t originally used in the learning process.

In neural networks that have accomplished the process of iearning, specific units
of the net are strongly connected to specific inputs. For example, in the network
used for recognizing letters, a certain subset of units can be connected to recognizing
right angles or curves. The information from different subsets is then integrated
into an overall output which is recognizing letters. If some elements of the input
are missing, the network will still be able to recognize it, just its ability will be

In the same way as the nets of neurons, neural networks could model extra- and
intracellular signalling that goes on by means of molecules and ions [2]. A certain
event in the cell happens as a response to the combination of several signals. This
event can be, for example, a chemical reaction induced by an enzyme that in the

the whole process then became encoded in the genes. Through random mutation in
the genetic code the enzyme can learn a new function in response to some combi-
nation of signals which can result in the development of a more intelligent and thus
more viable organism.

The signalling pathways even in simple organisms are often very complex. An
event happens as a response to many previous events or to a combination of ap-
propriate signals. But complexity seems to be inevitable for survival. Even when
one element of the signalling pathway is removed, the cell can still function nearly
normally.

The features of neural networks or MT automata are reminiscent of the principles
of evolution that takes place by random mutation and natural selection when only
the individual species that can best adapt to the environment can survive. They are

of artificial networks of units as well.
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4.2 Calculation of Information Capacity in Microtubules

The dynamic lgstab;hty of MTs is a major tngl nf cell dwlsmn and palanzatmng
MTs serve as tracks along which organelles and neuronal vesicles are transported
to the proper place in the cell. They are the main components of cilia and flagella
that exhibit coordinated motions in cell motility. On the basis of the numerical
studies presented in the previous two chapters of this work some suggestions about
the physical processes that underlie these activities can be made.

As was shown in Chapter 2, a MT may exist at least in two dielectric phases,
ferroelectric and paraelectﬁc phase Accﬁrding to the izvestigaticn preseuted in
tations of tubulm dlpgle states whu::h are cpupled to the tubulm canfﬂrmatmnal
states. Kinks propagating along MT protofilaments or another (more energetically
favourable) path could serve as information bits or information waves. At the sites
of attached MAPs the information may be transferred to other MTs or cytoskele-
tal components. Hence, the travelling localized energy would be a means of the
intercytoskeletal communication.

By means of the kink-like excitations, the transport of organelles or beat-like
motions in cilia and flagella could be coordinated. The common wall shared by the
A and B tubules of cilia and flagella could be the place where the information is
integrated. Kink-like waves travelling to the end ofa MT eauld cause its detachmeut

At higher temperatures a MT ceases to be in the fermelectnc phas:e due to
the formation of domains (or clusters) with different orientation of dipoles. The
configuration of the domains in a MT may serve for storage of information. This
assumption is the subject of investigation in the following sections of this chapter.

The calculations of information capacity in a MT were based on Shannon’s def-
inition of information [3]

I= i g, Sm=1, (4.1)

i=]1

where p; is probability of state i, The probability p; at a temperature T is propor-
tional to the factor [4]
exp| kaT], (4.2)
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where kp is the Boltzmann constant and E; is the energy of a domain 7 in which
the individual dipoles are oriented in the same direction.

Two approaches were used to find the probabilities p; and the corresponding
information (4.1). In the first case the energy of a domain with N dipoles (sites)
was approximated by the Landau free energy expansion for the order parameter
polarization per site P (in units Cm). Because P is a continuous variable the sum
(4.1) for the discrete variable p; is replaced by an integral over P. In the second
method the energies E; at each temperature were calculated exactly by summing up
the interaction energies J, between the neighbouring dipoles in each domain.

4.2.1 Continuous Probability Distribution

If it is assumed that the mean polarization per site in the MT lattice of dipoles
changes continuously, the energy of each cluster can be expressed in the Landau
form ,

E(P,N) = (%PE + gP“)N, (4.3)
In (4.3), P is the mean polarization per site, N is the number of tubulin molecules
in the cluster, A = a(T/T. — 1) and B is a temperature independent constant. For
a second order phase transition a > 0 and B > 0 (see section 2.1 in Chapter 2).
The minima of the energy function (4.3) are obtained by taking its derivative with
respect to P and setting it equal to zero. This yields the following equation of state

0= a(% ~1)P+ BP?, (4.4)

Above the critical temperature 7, the only solution of (4.4) is P = 0, which cor-
responds to the paraelectric phase For T < T, equation (4.4) has two symmetric

nonzero roots Py = :l:\/ —a(T/T. - l\lﬁ
Using (4.3) in (4.2) gives the following probability associated with a value of

mean polarization per site P in a cluster with N members at each temperature

f(P,N)) = foexp [%‘ = foexp (aP? — gPY), (4.5)

where & = —a(T/T, ~ 1)N/2kgT, B = BN/4ksT and fo = Z~! is a normaliza-
tion constant. The above continuous probability distribution is an example of the



Boltzmann distribution. For T > T, the distribution function f(P,N)) has a sin-
gle maximum at P = 0. Below T, the probability distribution has two maxima at
P = P corresponding to the two branches of polarization in the ferroelectric phase.

For a system characterized by the continuous probability distribution (4.5) the
information capacity can be derived as follows [5]. In a continuous case the sum over
all states of the system in the formula (4.1) becomes an integral, i.e., the information
capacity of a cluster with N members can be expressed as

I(N) = — /_ : F(P,N)In f(P, N)dP. (4.6)
Similarly as in the discrete case the integral over all states P is equal to unity
/_ : f(P.N)dP =1. (4.7)
Substituting (4.5) into equation (4.6) and using the latter equality gives
IN)=hzZ-a : P*f(P,N)dP +5 [ : P*f(P,N)dP. (4.8)

The normalization constant Z and the two integrals in (4.8) can be evaluated by
means of the formula [6]

oo Sk 2
-/o z? lexp (—yz? ~ 6z*)dr = %F(V)D_y(/\) exp (%—) , (4.9)
where \ = 7/\/2—6-, Rey > 0, Rev > 0, T is the gamma function and D is the
parabolic cylinder function. The final expression for the information of a cluster
with N members has the following form

1 1 1 A2 A 3
I(N) = —2-ln7r - Zlnz - Zln6+ z-ln.D_%(A) + [-2-D_§(/\) + 'é'D_%(/\)]/D_%(iA]?(;)

where

)\ = —UT/T. ~ )VN s BN
- BksT " 4kgT"
The parabolic cylinder functions in (4.10) were evaluated with Mathematica using

the identity

(4.11)

p1l )
2 ‘2'; '2—) )
where ¥(a, b; z) is the degenerate hypergeometric function.

Since equation (4.10) was derived on the basis of the distribution (4.5) and the
energy (4.3), the information of each cluster depends on the mean polarization per
site in the cluster and on the size of the cluster N.

. A2
Dp(2) =23 exp(——7)¥(~ (4.12)
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The information capacity of the lattice with n clusters can be obtained in a
straightforward manner. The probability distribution of the whole lattice can be
written as a product of the probability distributions for each cluster k¥ with N;
members, which is characterized by a local polarization per site P;

frattice = f[ forexp (ax PE — BPY). (4.13)
k=1

Using fiattice instead of f(V, P) in the integral (4.6) gives for the total information
capacity
I=Y I(N:), (4.14)
k=1

where Ii(N:) is the information of the k-th cluster that has N, members and can
be calculated according to (4.10).

The actual calculation of the information capacity of a MT was performed in
a simplified way. At each temperature the information of an average cluster was
found from (4.8). The size of the average cluster was obtained by dividing the total
number of sites in the MT lattice by the number of clusters n found in the lattice
at temperature T. To obtain the information capacity of the MT the information
capacity of the average cluster was calculated and then multiplied by the number
of clusters n. The number of clusters was determined by means of the Monte Carlo
procedure described in Chapter 2. The number and size of clusters was found from
the configuration of dipoles in the MT lattice after the last Monte Carlo step at
each temperature.

Examples of calculations are shown in Figure 4.1 and Figure 4.2. The values
of the constants a and B were chosen such that a/kp = 1KC?m? and B/kg =
1KC™*m™. The calculations were performed using both the tilted and nontilted
model. In the case of the tilted model the value of § was 4.5 x 10~56 C?m?2 and for
the nontilted model 12 x 105 C2m?2. The dipoles were assumed to be tilted by 29°
to the left with respect to the MT axis.

Figure 4.1 shows the number of clusters and the information capacity of a MT
with the A lattice of size 13 protofilaments and 100 rows. The critical temperatures
of the lattices are T, = 300K in the case of the tilted model and T. = 253K in the
case of the nontilted.

It can be seen from the above pictures that the information capacity changes in
the same way as the number of clusters. With an increasing temperature both the
number of clusters and the information capacity increase. In the lattice with tilted
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dipoles, the number of clusters is the largest at T = 251K and the information
capacity peaks at the critical temperature T, = 253 K. At temperatures higher than
the critical temperature both the number of clusters and the information capacity
decrease. In the lattice in which the dipoles are nontilted, the number of clusters
and the information capacity exhibit a local peak at temperature T' = 291 K, and at
higher temperatures both quantities increase but with a smaller slope than in the
critical region. It can be noted that the value of the information capacity in the
lattice with tilted dipoles is almost three times larger at the critical temperature
than in the lattice with the nontilted dipoles.

Figure 4.2 shows the number of clusters and the information capacity for a MT
with the A lattice which consists of 13 columns and 3000 rows. The critical tem-
peratures of the lattices in which the dipoles are nontilted is T, = 311K and the
critical temperatures of the lattices in which the dipoles are tilted is T, = 271 K.
The character of the number of clusters and the information capacity is similar to
that shown in Figure 4.1. Both quantities in the nontilted case have a local peak at
T = 303 K. The curves obtained for the tilted model have a maximum at T = 274K.
Since the lattice is 30 times larger than in the former case, the number of clusters
is larger and the information capacity is larger as well.

It can be seen in Figures 4.1 and 4.2, that at low temperatures the information
capacity is negative. This could be due to the integration over all states of P in
the infinite range while the values of the mean polarization per site are in the range
from -1 to 1. To improve the calculation, the integrals in (4.8) could be evaluated
numerically in the interval (-1,1). It should also be pointed out that the polarization
per site in a cluster is not a continuous but a discrete variable since the dipole states
of the tubulin dimer change in a discrete rather than in a continuous way.

4.2.2 Discrete Probability Distribution

For the case of a discrete probability distribution, the energies Ex(N:) of all n
clusters in the lattice were found at each temperature by summing up the interaction
energies between each two tubulin dimers in a cluster that consists of N; dipoles.
At the borders between two clusters half of the interaction energy between two
dipoles was allocated into each of the two clusters. To each cluster was assigned the
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canonical probability given below [4]

exp [_k TEE(NE)]
Zk—lexpl En TEIE(NL')]

Substituting the equation above into (4.14) gives for the information capacity of a

Pie(Ni) = (4.15)
MT at a temperature T

Thor G exp [~ 27 Ei(Na)]
k=1 €XP [’ &EE(NL-)]

From (4.16) follows that if there is only one cluster in the lattice, i.e., when all

I .

lnzexp [=‘ — Eé(Nk)] (4.16)

dipoles are oriented in one direction (ferroelectric phase) the information is zero.

According to statistical mechanics the sum in (4.16) should go over all possible
states of the system. Due to the computational limitations it was impossible to
count all possible configurations of dipoles of the MT lattice. To evaluate (4.16),
only one of the configurations of the clusters with the largest weight was used. This
configuration was determined by means of the Monte Carlo procedure similarly as
in the previous section.

Figure 4.3 is a plot of the information capacity of a MT with the A lattice
and with 13 protofilaments and 3000 rows. In this calculation the model with
nontilted dipoles was used and the critical temperature of this lattice is 7. = 311 K.
Calculations for lattices with 100 and 500 rows were performed as well. The result
was similar to that plotted in Figure 4.3.

As the figure shows, at temperatures below the critical temperature the informa-
tion capacity is zero. Above 7. at some temperatures the information has nonzero
values which are larger at higher temperatures. The regions of nonzero information
are separated with numerous regions where the information is zero or almost zero.
This result is overall similar to that presented in the previous section. The infor-
mation capacity doesn’t exhibit the expected peak at the critical temperature, it is
zero below T, and increases for T > 7T... _

The quite unusual shape of the information curve in Figure 4.3 is due to the
character of the function (4.16). Since it is composed of exponential functions then
when only one cluster has energy larger by one order than the rest of the clusters,
the resulting sum is very small. In the dielectric phase transition in the MT lat-
tice of dipoles there is usually one cluster which is much larger then the rest of
the clusters. This is the cluster that corresponds to the orientation of dipoles in
the ferroelectric phase. The clusters of dipoles which are oriented in the opposite
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Figure 4.3: Information capacity of a MT with the A lattice that consists of 13

critical temperature is T. = 311 K.

direction are immersed in the background of this large cluster. The size of this
cluster decreases with increasing temperature when more clusters with the opposite
direction of polarization form and so the sum (4.16) becomes larger. An example of
the MT lattice composed of clusters is Figure 4.4 where the configuration of dipoles
on a section of the MT A lattice with 13 columns and 3000 rows is shown for the
nontilted model at temperatures 7' =T, = 311K and T = 400 K.

The occurrence of regiéns with zero information capacity between the regions
with nonzero information capacity means that some states with the highest weight
weren’t included in the sum (4.16) [7]. To include only one state at the end of the
Monte Carlo importance sampling at each temperature is not sufficient to evaluate
the sum (4.16).

Another factor that wasn’t taken into account in the evaluation of information
according to the probability (4.15) is the degeneracy of the states of the MT lattice
of dipoles. In case of the nontilted model each configuration of dipoles in the MT
is at least double degenerate because the two orientations of polarization in the
lattice are equivalent. Degeneracy should be also considered in each cluster with N;
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Figure 4.4: The configuration of dipoles on a section of a MT with the A lattice of
size 13x3000 at T = 311K and T = 400 K. The empty sites represent the dipoles
in the down states, the sites with a star represent the up states. The configuration
was obtained for the nontilted model. 7
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of Ni dipoles in the cluster give the same energy Ei(Ni). 1t is also very likely to
fird clusters of different sizes N; that have the same energy. This is not taken into
consideration here because the formula (4.16) depends only on the energy Ei(Ny),
but not explicitly on Ng. The information capabilities of MTs should also depend
on the location of the clusters in the MT.

The objective of the model calculations presented here was to show that the
amount of information stored in a MT is connected with the patterns of dipole
states formed on the MT at different temperatures. Two models were suggested in
which the information capacity in a MT is assumed to be a function of the number of
domains in the MT that differ by the orientation of dipoles. More consistent results
were obtained in the case when the probability distribution associated with different
clusters was assumed to be continuous. To obtain a more reliable estimate when a
discrete probability distribution is used will require more extensive investigations.

The calculations were performed for a MT with the A lattice. According to the
results the information capacity of a MT is zero or very small when the MT is in the
ferroelectric phase and starts increasing in the region where the phase traunsition into
the paraelectric phase takes place. The calculations using the continuous probability
distribution showed that in the case of the model with dipoles tilted in the 3 state the
information has a maximum at the critical temperature of the dielectric transition
and decreases at temperatures larger than 7,.. The information capacity of the lattice
with nontilted dipoles exhibits a local peak at the critical temperature and then
keeps increasing but with a smaller slope than below 7.. This difference between
the results obtained for the tilted and nontilted model indicates that the information
capacity doesn’t depend only on the configuration of dipoles but on their orientation
as well. !

Using both discrete and continuous jobability distribution it was found that
at high temperatures the information capacity is nonzero. This is because at high
temperatures the dipoles are not distributed randomly but rather form quite large
clusters as is illustrated in Figure 4.4. However, due to the thermal energy the
relaxation time of a particular pattern of dipoles is proportional to exp (AE /kpT),
where AE is the difference between energies of two different patterns due to the
dipole-dipole interaction. This means that at higher temperatures, the patterns of
clusters will decay very quickly. Consequently, the MT won’t be capable of storing
information for a sufficiently long time and its information capacity will decrease.
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Conclusions

The object of the research presented in this thesis was to suggest how dielectric

As is known, tubulin molecules which are the subunits of MTs carry permanent
dipole moments. This implies that a MT may have properties similar to ferroelectric
crystals. Based on this assumption, in Chapter 2 the possibility of a transition from
a ferroelectric to a paraelectric phase in a MT was studied. It was speculated that
a certain mode of operation of a MT may be associated with its dielectric phase.

In the model suggested, a MT was viewed as a two-dimensional lattice of dipoles
and each dipole was assumed to possess only two dipole states termed a and g state.
To find the dielectric transition, the polarization per site was calculated using the
Monte Catlo procedure by means of which the states with the highest statistical
weight can be selected. Both A and B type lattices were examined for a MT with 13
protofilaments. Two possible orientations of the dipole on the tubulin dimer in the

the dipole is always parallel to the MT axis and points in the direction opposite to
the projection of the dipole in the  state on the MT axis.

When the dipoles in the f state were assumed to be nontilted, a dielectric transi-
tion was found in a MT with the A lattice but not in a MT with the B lattice. In the
case when the dipoles in the 3 state were tilted the transition from a ferroelectric to
a paraelectric phase exists also in the B lattice. The B lattice has been observed in a
great majority of MTs. However, the A lattice has not been observed yet. This may
mean that the A lattice either doesn’t exist in MTs or that MTs with this lattice
are very rare.
perature in a specified type of the MT lattice with a specified orientation of dipole
moments on the tubulin dimers depends on the magnitude of the dipole moments

parameters can considerably affect the transition temperature and, consequently, the
dielectric phase of the MT at body temperature. However, it should be pointed out
that the exact values of the dipole moment of tubulin and the relative permittivity
of cytosol are not known and they should be measured experimentally.

Further, the Monte Carlo calculations demonstrated that the states of dipoles on
the tubulin dimers can be affected by external electric fields. This effect is observable

143



if the external electric field is so large that the energy due to the interaction of the
dipoles with the field is a significant fraction of the interaction energy between
the nearest dipoles in the MT lattice. When the electric fields are oriented in the
same direction as is the direction of dipoles in the ferroelectric phase, the transition
moves towards higher temperatures, and when the electric field is sufficiently large,
the system of dipoles in the MT is in the ferroelectric phase at all temperatures.
Electric fields applied in the direction opposite to the alignment of dipoles in the
ferroelectric phase cause switching of the assembly of dipoles into the state with the
opposite sign of polarization.

The effect of MAPs attached to a MT at sites which formed regular patterns was
also studied. The results showed that the higher is the ratio of attached MAPs to
a MT the higher is the degree of alignment of dipoles. Hence, MAPs promote the
existence of the ferroelectric phase in MTs.

It can be pointed out that MTs with the B lattice may be frustrated. That means,
the assemblies of dipoles in such MTs may possess a multitude of energetically
equivalent ground states. A transition between these states can happen either at
no or very little energy cost. Such a phase may be very suitable for information
processing in MTs.

The results summarized above imply that MTs may exist in a variety of dielectric
states depending on the configuration of such parameters as the geometrical struc-
ture of the MT lattice, the magnitude and orientation of the dipolar states on the
tubulin dimers, the presence or absence of MAPs, and the magnitude and direction
of external electric fields which can be generated by other cell structures or other
MTs.

In Chapter 3, the possibility of propagation of localized quanta of energy along
MTs in the form of kink-like solitary waves of tubulin dipole states coupled to its
elastic (conformational) states was investigated. The existence of such excitations
could be a possible answe: of the question how the free portion of the energy released
in the GTP hydrolysis is utilized in MTs. .

The propagation of kink-like solitary waves along MTs was studied by means of
three models that describe the interface motion in ferroelectric systems. In the first
model, the dipole state of tubulin and its elastic state were assumed to be strongly
coupled. The model was represented by one equation of motion for the elastic
distortion of the tubulin dimer. The travelling solutions of the model equation were
kinks with a width of about one tubulin dimer. The velocity of the kinks depended
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on the parameters of the ferroelectric system (MT), on the critical temperature of
the tramsition from the ferroelectric to the paraelectric phase and on the value of
the electric field on the MT surface. Changing the values of the critical temperature
and the electric field could control the velocity of kinks.

The calculations showed that the velocity of kinks also changes in a collision with
a local defect in a MT. When the defect is large, the kink domain wall ceases to
propagate. Thus the question arises as to what happens to the energy that arrives
at the potential energy barrier created by the local defect. If the local defect is an
attached MAP, it can serve for transfer of the signal in the form of the solitary wave
to other parts of the cytoskeleton. If the travelling kink wave doesn’t encounter
any local defects, it moves along the MT to its other end where it can be used for
destabilizing the lateral bonds between the neighbouring protofilaments which may
cause detachment of the tubulin dimers from the MT end. Since the velocity of kinks
depends linearly on the value of the electric field on the MT surface, this process
may be coordinated in the assembly of MTs by means of intrinsic electric fields of
MTs. Such a mechanism could be a factor in the regular oscillations observed in
populations of MTs.

In the second model, two nonlinear equations for coupled polarization and dis-
placement of the tubulin dimer were studied. In the numerical calculations with ar-
bitrarily chosen parameters, kink-like solutions were found for both variables. They
were coupled travelling waves that were affected by a local potential energy barrier
in a way similar as in the case described above.

The last model used to describe the travelling quanta of energy in MTs was based
on Gordon’s model of stress wave propagation in ferroelectrics. The model equations
were two coupled equations for polarization and mechanical stress. The solutions
of this system of equations under certain conditions were travelling kinks. In the
numerical simulations it was found that the interaction of these waves with a local
defect imposes a stationary stress along the MT. These results could have interesting
implications for MTs. Permanent stress in a MT could be a way of destabilization
of the MT and thus a factor in MT disassembly. However, to find out whether the
latter two models are applicable to a MT, more numerical investigation should be
done using proper MT parameters that are still to be determined. Some of these
model parameters are estimated in Appendix A.

In Chapter 4, an estimate of the information capacity of a MT was presented.
The basic assumption was that information is represented by different configurations
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of the tubulin dipole states in the MT. In the low-temperature ferroelectric phase the
information capacity of a MT is zero because all dipoles are oriented in one direction.
When the temperature approaches the critical temperature of the transition from
the ferroelectric to the paraelectric phase, domains of dipoles with the opposite
orientation of polarization start to form due to which the information capacity is
expected to have nonzero values.

Two models were suggested according to which the information capacity depends
on the number of the domains with a different orientation of dipoles and on the size
of each domain. In both cases, the evaluation of the information capacity was
based on Shannon’s definition of information I = — X, p,1np;, where pi is the
probability of state i. According to equilibrium statistical mechanics, the probability
i is proportional to the Boltzmann factor exp [-E;/ kpT], where E; is the energy
in state 7.

In the first approach, the energy of a domain with N dipoles was approximated
by the Landau free energy expansion for mean polarization per site in the domain.
This results in a continuous probability distribution of energies F; in one domain.
Using this distribution, the information capacity of a domain with an average size
was determined and then muitiplied by the total number of domains in order to find
the total information capacity of a MT. The number of domains and their size were
found using the Monte Carlo procedure.

"The computations were performed for a MT with the A lattice for both the tilted
and nontilted model. According to expectations, the information capacity strongly
depended on the number of domains or clusters in a MT. When the number of
domains increased, the information capacity increased and vice versa. At low tem-
peratures when the MT was in the ferroelectric phase, the information capacity was
zero. For the tilted model, the information capacity and the number of clusters had
a maximum at a temperature close to the critical temperature, and then decreased.
In case of the model with nontilted states, both quantities had a local peak in the
critical region but then increased even at higher temperatures. These results imply
that the information capacity also depends on the orientation of dipolar states of
the tubulin dimers.

In the second approach, the energy E; of each cluster in the MT was calculated
exactly using the values of the interaction energies between the dipoles in the MT
lattice. The corresponding probability pi was assigned to each cluster and the total
information was calculated using Shannon’s definition. According to the calculations
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performed, tiie information was zero below T,.. Above 7, at some temperatures, the

separated by regions with an essentially zero information. Such a result is due to
the character of the probability distribution exp [-E:/k5T). Usually the energies
of the clusters E; are distributed in such a way that one of them is larger then the
rest, which will result in a very small value of I. The energies E; were determined
only for one state of the system with the highest weight, which was selected in
the same way as for the previous model using Monte Carlo. An estimate based

was actually demonstrated in the calculations presented here. In evaluating I, the
degeneracy of the configuration of dipoles could also be an important factor. This
means that a cluster with energy E; could be formed in many ways. Thus a more
reliable application of this method to the evaluation of the information capacity of

a MT would require a more complex analysis.

Finally, the author of this thesis concludes that MTs viewed as physical systems
open a number of possibilities for interesting theoretical research. This work was
focused mainly on the possibility of propagation of kink-like solitary waves of tubulin
dipole states along MTs and the possible existence of different dielectric phases in
MTs. These physical phenomena may underlie important biological activities in the
cell that involve MTs. Even though not all the questions put forward here have been
completely resolved, this work is hoped to lead to new ideas and further theoretical

investigations in the future.
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Appendix A

The coefiicients A; and A, in equation (3.36) and A4, B, C in equation (3.41)
can be estimated by fitting plots of polarization calculated in Chapter 2. In order
to calculate the fitting curve the following expression for the free energy has been
utilized

F= ‘;EP? "‘4**1:'-’l + "4'51@'3 EP, — NkgTS, 5, (A.1)

where P, is the total pc:lanzatmn (sum c:f all dipole moments) of a MT. In (A.1),
E is an electric field which points in the direction of orientation of dipoles in the
ferroelectric phase, Sy, is entropy of the ensemble of spins whose projections on
the z-axis can have two values i%, N is the number of spins and kg is Boltzmann
constant. Sy is given by the formula [1]

Nkalln N —2m
51/2=Nk5[1nN—1+22m n£(1+2 )= e

 In %(1 —2m)],  (A2)

where m is one half of the relative polarization, i.e.,

Ny =IY;%

o (A.3)

In the equation above N, is the number of spins up and N_ is the number of spins
down.

The minima of the free energy (A.1) at a temperature T can be found by taking
the derivative of F' with respect to P, which yields
9512

0= a}(T — T,)P, + ALP3 + ALP® — E — NkgT ol
H

(A.4)

In the latter equation the coefficient A, has been replaced by a4(T — T.). From
(A.2), 812 is in terms of m. To express the rest of equation (A.4) in terms of m as
well, P, cen be replaced by :
P, =2Ngsm, , (A.5)

where ¢ is the charge on each dipole and s is the dipole length. After substituting
(A.5) into (A.4), the following equation for the variable m is obtained

NkETI 1 —2171
2Ngs  142m’
(A.6)

0 = a3(T — T.)(2Ngs)m + A§(2Ngs)*m® + AL(2Ngs)°m® — E —
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Multiplying (A.6) by 2Ngs gives the final equation

0 = a3(T-T.)(2Ngs)’>m+A4(2Ngs)*m3+A(2Ngs)*m5~2NgsE—NkgT In i : ;:: ,
T (AT

or :
0 = a5(T — T.)m + Aym® + Aym® — 2NgsE — NkgTIn i ; :222 . (A.8)

Equation (A.8) was solved numerically (using the bisection method) to find the
equilibrium values of m such that m as a function of T fits the calculated polarization
curve for a MT with the A lattice and 13 columns and 3000 rows for which Q =
12 x 10~% C2m?. The critical temperature corresponding to this curve is 311 K and
its plot is shown in Figure 2.11. For Q = 12x10~% C?m? and ¢, = 70, the magnitude
of the dipole moment gs is 2.90 x 10~27 Cm.

The calculated fit is shown in Figure A.1. The plot corresponds to the coefficients

ah =1.5x 10716 JK1 | a=15x10"1J, AL=12x10"18J, (A.9)

and electric field
E=35x10°Vm™, (A.10)
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Figure A.1: Relative polarization in a MT with the A lattice and size 13x3000 for
Q =12 x 10~%6C?m? (dotted line), and the curve calculated by finding the roots of
equation (A.8) (solid line).

149



It can be noted that the potential energy of a dipole due to its interaction with
an electric field which points in the same direction as the dipole and has a magnitude
3.5 x 10°Vm™ is —gsE = —1.0143 x 10~2! J. The latter number is of the order of
the interaction energies between the dipoles in a MT.

A}, A and Aj can be easily obtained by comparing the coefficients at the same
powers of m in equations (A.7) and (A.8). In order to calculate A} it will be assumed
that the temperature T is body temperature 310K and the critical temperature is
T. = 350K which corresponds to the ferroelectric phase. Hence, using the magni-
tude of the dipole moment 2.90 x 10~2” Cm and N = 39000, the coefficients which
correspond to the total polarization P, are

A} = 1.74 x 10®NC2m™!,
A} = 575x 10" NC*m3, (A.11)
Al = 9.00 x 10" NC-5m~5,

per site the constants (A.11) have to be transformed according to the identity

AP = (RINRLAL, (A.12)

sponding coefficients. Their values are

A; = 4.58 x 10¥NC2m™!,
Ay = 341 x10¥NC~4m-3, (A.13)
Ag = 8.12x 10"9NC-Sm-35,

The parameter D can be estimated on the basis of the interaction energy between
two dipoles. Assume that at the interface between two subchains of a protofilament
which differ by the orientation of dipoles, two neighbouring dipoles are tilted by
angles f, = 0 and 6,41 = Af with respect to the protofilament axis and the difference
On+1 — 0, = A0 is small. The interaction energy between these two dipoles is

T 1 fﬂfliﬁu §73(§n+1.ﬁ)(ﬁn-ﬁ) - 7q252 oy .
W = Tree, R = e B3 cos (A6). (A.14)
In (A.14), ppy1 = p. = g¢s is the magnitude of the dipole moment of each dipole,

# is a unit vector oriented along a line that connects the centers of the dipoles and
Ry = 8 x10~9m is the equilibrium distance between two tubulin dimers along a MT
protofilament. Since Af is small the cosine in (A.14) can be expanded, i.e.,

cos(Af) =1~ % +.... (A.15)
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Keeping only the first two terms in the expansion above gives an approximate
expression for the energy (A.14)

W~ —

5 g's* —+ s’ - (A6)° (A.16)
nweoe Ry 2mege. R 2

The first term in (A.16) is a constant which means that it doesn’t appear in the
equations of motion. In the continuum limit (A6)? in the second term becomes
R}(36/0z)? and the variable dipole moment per site becomes polarization at a point
z. Polarization changes only due to change in 4, i.e., 9P = P(6)36. Using this and
taking approximately P =~ g¢s, equation (A.16) becomes

1 16 NO-2 ‘A 18"
T T—— . - A.].S
D S = 321 X 10°NC2m (A.18)

The coefficients (A.13) and (A.18) can be now substituted into equations (3.35)
and (3.36). The resulting equations are

2 = 2
'ZT’;" = g — +&—u°—4.58 x 10719 P (A.19)
o%p o
0=5. 323? + P —0.0625P% — 1.19 x 1018y, . (A.20)

In the system of two coupled partial differential equations above the variables are
scaled as follows

u=(az/eq)?a=158x10"1"a, P =gsP=290x10-'P,

- - A.21
T = vo(M/a2)' /2% = 1.15 x 10792, ¢t = (M/a2)/%f = 6.76 x 10~13f . (A-21)

The solution for the case when 7, = 0 are kinks for both displacement and polar-
ization. The width of the u-kink is about one tubulin dimer while the width of the
P-kink is about three tubulin dimers if both waves are moving ata velocity 17 ms™1.
It should be noted that the system of equations (A.19) and (A.20) for . = 0 doesn’t
give any equation for the velocity of the solitary waves. The only condition is that
in the case of a kink solution the velocity v has to be smaller than the speed of
sound vy.

The parameters (A.13) and (A.18) may also be useful in solving the coupled
system of equations (3.41), (3.44) and (3.52).
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Appendix B

The Fortran program CLUSTER described in this section finds all clusters in
a hexagonal MT lattice of dipoles. The clusters are regions which differ by the
direciion along which the dipoles are aligned. Each dipole is represented by a dipole
variable which can have two values +1 or -1 ~arresponding to the up and down state,
respectively. The program also counts the number of dipoles in each cluster to find

the size of the cluster.
Description of the variables:

NR - number of rows in the lattice

D(1,J) - the value of the dipole variable at a site (i,j)

DN(1,K), DN(2,K) - number of -1 and +1 dipoles, respectively, in a cluster K
IC(L), JC(L) - These arrays record the position of a new found cluster member
IL(N), IE(N), IR(N) - The lattice is searched for clusters in which the state of each
dipole is represented by a number IL(N) and the background consists of dipoles
which are in stases represented by a number IE(N). A new found cluster member is
replaced by a number IR(N) so that it is not counted again

NCL - total number of -1 and +1 clusters in the lattice

Description of the algorithm:

STEP 1 The program reads the values of the dipole variables D(I,J) at each
lattice site (i,j) of the lattice.

STEP 2 The boundary conditions for a MT are set up so that the end of the first
row matches with the beginning of the 9th row, etc., and the first row is adjacent
to the last row (see also section 2.3 in Chapter 2).

STEP 3 The configuration of the dipole variables in the lattice including the
boundary conditions is printed.

STEP 4 Definition of the arrays IL(N), IE(N) and IR(N). The values of N and
NCL are initiated.

When N=1, the program first searches the lattice for clusters that consist of -1’s
on the background of +1’s. If D(I,J)=-1 is found, it is replaced by a 0 so that it is
not counted again. After all clusters of -1’s are found, the program returns to the
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statement number 1 and increases the value of N to 2. Now the program is looking
for clusters which consist of 1’s on the background of 0’s and when D(I,J)=1 is found
it is replaced by a 5. Thus at the end of the counting the lattice of -1's and 1's is a
lattice of 0’s and 5’s in which 0’s correspond to -1’s and 5's correspond to 1’s (see
Figure B.2).

STEP 5 The values K, 1, J are initiated. The program starts searching the lattice
row by row to find a site at which D(I,J)=IL(N). When such a site is found the value

STEP 6 A site at which D(I,J)=IL(N) is found. This is the first member of a
found cluster K and the program remembers the position of this site in variables IS
and JS. After the number of members of this cluster is counted the program returns
to this position and starts searching for another cluster.

STEP 7 The program examines the nearest neighbours of a cluster member
placed at site (i,j). Here the user of the program defines the type of the lattice, for
example, square, hexagonal, etc., and the nearest neighbours to the site (ij). In this
example the hexagonal lattice is defined in such a way that the nearest neighbours
to the site (i) are sites (ij+1), (i,j-1), (i-1), (i+1,), (i-1,j+1) and (i+1,-1) as
shown in Figure B.1. This means that the sites (i-1,j-1) and (i+1,j+1) are not the
nearest neighbours to the site (i,j).

(1)) (1§D

a1

() @g+)

(41§D (+1)

Figure B.1: Nearest neighbours to a site (i,j) in a hexagonal lattice.

(i,j) are equal to IL(N), they are counted into the cluster, replaced by IR(N) and
their position is remembered in arrays IC(L) and J C(L). The sites at the boundaries,

sites inside the lattice.
STEP 8 After all neares’ neighbours of the site (i,j) are exarnined, the program
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returns to the sites whose positions are stored in the arrays IC(L) and JC(L) and
examines their nearest neighbours in the same way as described in STEP 7. After all
members of the cluster K have been counted, the program prints the position (IS,JS)
of the site at which the cluster K started, the cluster number K and the number of
dipoles in the cluster DN(N,K). Then the program starts to look for another cluster
from the position (IS,JS).

STEP 9 After the whole lattice has been searched for clusters of one type, the
value of NCL is updated. Then the program continues searching for clusters of
another type. After all cluster in the lattice have been counted the program ends
the search by printing the total number of clusters and the configuration of 0’s and
5’s that replaced -1’s and 1’s, respectively.

Example:

An example of the output of the program CLUSTER for a corresponding input
lattice is shown in Figure B.2. The input lattice consists of 13 columns and 20 rows
and the boundary conditions are set up according to STEP 2. Row 20 which is
adjacent to row 1 is also row 0 and row 1 is also row 21. Column 13 is column 0
shifted with respect to column 1 by 8 rows down. Column 1 is column 14 shifted
with respect to column 13 by 8 rows up. The output lattice is a lattice in which all
-1’s have been replaced by 0’s and all +1's have been replaced by 5's.

The first cluster of -1’s which consists of 26 members starts at site (1,1). Site
(1,1) is neighbouring to sites (20,1) and (13,13). Due to this the first cluster consists
of three parts - site (1,1) and two other subclusters which start at sites (18,20) and
(12,13) and contain 5 and 20 members, respectively. These two subclusters form
also one cluster since sites (19,1) and (20,1) are nearest neighbours of site (12,13).
It can be noticed that the dipole placed at site (1,1) is not a member of the cluster
with 12 dipoles which starts at site (2,2) since it is not a nearest neighbour of the
site (2,2) in the hexagonal MT lattice as was explained in STEP 7. Third cluster
of -1’s starts at site (3,5) and has 2 members and the last cluster of -1's starts at
site (13,6) and contains 8 members. There is only one cluster of +1’s in the lattice
which fills out the space between the clusters of -1’s. Hence, the total number of
clusters in the lattice is 5 and the sum of the numbers of dipoles in each cluster is
260 which is the total number of sites in the lattice.

It is not difficult to modify the procedure described above so that it could be

155



9 10 11 12 13 i4

7 8

6

111,1,1,1,1_,1,1,1,1,,1,1,111,11,11175
[ |

dlllllllllllll-ﬂﬂ.qﬂﬂ.-ﬂ.dﬂ.l n 555555555r)50000°
lllllllllllullqﬂ.qﬂﬂ‘qlllll n 5555555555555000
1111111111111141111111 n 5555555555550000
1111111111111111111111 w 5555555555555055
1111111111111111111111 () 5555555555555555

1111111111111111111111 n o MRV OO OOnnnn
LI
1111111111111111111111 [} ~ NN o o o
[ B

=]

1111111111111111111111 m w MLV NO o oo

(]
11111111111.11111111111 H n DINocowvLULVLKLINNn
)

ZLVNN® Z o o

1111111111111111111111 Ao A T MOV INVBONINWN N
[ ~ ]
=]

1111111111111111111111 “MANM <@ eMH 4 m MOV nocoomInmvnn
1 L [ ] 7] 4]

N N

1111111111111111111111 11} @ “wooo~N Noocococoococonmmmninmn

(] [ o o [0}
7] o

0111111111111111111111 I NN WO Jno H — 0555555555555555
LR [ ~ ~ b [+
[¢] (&) .M

0123456789012345678901 AN m ~Wne =4 HTNMTNOVC OO ANM TN O

Ll B B B (P I G R (e - H = [l I N A R ]

us

54 ¢l

ain

e program
e progra

ont
th

y

, -1’s are replaced with 0’s and +1’s are replaced with 5's.

d b

ing output for th
is examine

t and correspond
156

inpu

17

An example of an
CLUSTER. The A lattice that consists of 13 columns and 20 rows c

ters of -1’s and one cluster of +1’s. After the lattice

Figure B.2
CLUSTER



clusters can be counted by defining what are the particles in these clusters and what
are the background particles.
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PROGRAM CLUSTER

INTEGER*4 D(0:3001,0:14),DN(2,13000)
INTEGER+4 IC(13000),JC{13000),IL(2),IE(2),IR(2),NCL

OPEN(UNIT=8,FILE=’clusterin.d’,STATUS=’0ld’)
STEP 1

READ(8,#) NC,NR
DO I=1,NR
READ(8,400) I,(D(I,J),J=1,NC)
400 FORMAT(1413)
ENDDO
CLOSE (UNIT=8)

=
o
=
it}
"y

0 I = » NR

DO J =1 ,NC

IF(I.EQ.1) D(NR+1,J)=D(I,J)
IF(I.EQ.NR) D(0,J)=D(I,J)

IF(J.EQ.1) THEN

D(NR-8+I,NC+1)=D(I, D)
ELSE IF (I.EQ.8) THEN
D(O,NC+1)=D(I,D)
D(NR,NC+1)=D(I,J)
ELSE IF (I.GT.8) THEN
D(I-8,8C+1)=D(I,])
ENDIF
ENDIF

IF(J.EQ.NC) THEN

IF(I.LT.(NR-7)) THEN
D{I+8,0)=D(I,J)

ELSE IF (I.EQ.(NR-7)) THEN
D{NR+1,0)=D(I,D)
D(1,0)=D(I, )

ELSE IF (I.GT.(NR-7)) THEN
D(-NR+B+1,0)=D(I,])

ENDIF

ENDIF
ENDDO
ENDDO

STEP 3

WRITE(*,101) (J,J=0,NC+1)
101 FORMAT(5X,15I3)

PRINT=,? ?



DO I=0,NR+1
WRITE(#,100) I,(D(I,J),J=0,NC+1)
100 FORMAT(I4,X,1513)
ENDDO

STEP 4

IL(1)=-1
IE(1)=1
IR(1)=0

IL(2)=1
IE(2)=0
IR(2)=5

e
w
I
=
™
e

5 IF(I.LT.NR) THEN

10 IF((D(I,J).EQ.IE(N).OR.D(I,J).EQ.IR(N)) .AND.J.LT.NC) THEN
J=J+1
GO TO 10
EKRDIF

IF((D(1,J).EQ.IE(N).OR.D(I,J).EQ.IR(N))
&.AND.J.EQ.NC.AND.I.LT.NR) THEN

(> I
== TR
L]

e I 4
D e
[
L=

IF((D(I,J).EQ.IE(N).OR.D(I,J) .EQ.IR(N))
&.AND.J.EQ.NC.AND.I.EQ.NR) GO TO 30

STEP 6 - You found a cluster!!
IF(D(I,J).EQ.IL(N)) THEN

Js=J

Is=I

K=K+1
DN(N,K)=1
D(I,J)=IR(N)



L=0
STEP 7
20 IF(I.GT.1.AND.I.LT.NR.AND.J.GT.1.AND.J.LT.NC) THEN

IF(D(I,J+1) .EQ.IL(N)) THEN
D(I,J+1)=IR(N)
L=L+1
IC(L)=1
JC(L)=3+1
DN(N,K)=DN(N,K)+1

ENDIF

IF(D(I-1,J+1) .EQ.IL(N)) THEN
D(I-1,J+1)=IR(N)
L=L+1
IC(L)=I-1
JC(L)=J+1
DN(N,K)=DN(N,K)+1

ENDIF

IF(D(I-1,J).EQ.IL(N)) THEN
D(I-1,J)=IR(N)
L=L+1
IC(L)=I-1
JC(L)=J
DN(N,K)=DN(N,K)+1

ENDIF

IF(D(I,J-1).EQ.IL(N)) THEN
D(I,J-1)=IR(N)
L=L+1
Ic(L)=1
JC(L)=J-1
DN(N,K)=DN(N,K)+1
ENDIF '

IF(D(I+1,J-1) .EQ.IL(N)) THEN
D(I+1,J-1)=IR(N)
L=L+1
IC(L)=I+1
JC(L)=J-1
DN(N,K)=DN(N,K)+1

ENDIF

IF(D(I+1,J).EQ.IL(N)) THEN
D(I+1,J)=IR(N)
L=L+1
IC(L)=I+1
Je(L)=J
DN(N,K)=DN(N,K)+1
ENDIF
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GO TO 24
ENDIF
upper left corner
IF(I.EQ.1.AND.J.EQ.1) THEN

IF(D(NR-7,NC) .EQ.IL(N)) THEN
D(NR-7,NC)=IR(N)
L=L+1
IC(L)=NR-7
Jc(L)=NC
DN(N,K)=DN(N,K)+1

ENDIF

IF(D(NR-6,NC) .EQ.IL(N)) THEN
D(NR-6 ,NC)=IR(N)
L=L+1
IC(L)=NR-6
JC(L)=NC
DN(N,K)=DN(N,K)+1

ENDIF

IF(D(NR,1).EQ.IL(N)) THEN
D(NR,1)=IR(N)
L=L+1
IC(L)=NR
JcdL)=1
DN(N,K)=DN(N,K)+1
ENDIF

IF(D(NR,2).EQ.IL(N)) THEN
D(NR,2)=IR(N)
L=L+1
IC(L)=NR
Jc(L)=2
DN(N,K)=DN(N,K)+1
ENDIF

IF(D(1,2) .EQ.IL(N)) THEN
D(1,2)=IR(N)
L=L+1
IC(L)=1
Jo(L)=2
DN(N,K)=DN(N,K)+1
ENDIF

IF(D(2,1) .EQ.IL(N)) THEN
D(2,1)=IR(N)
L=L+1
Ic(L)=2



Jo(L)=1
DN(N,K)=DN(N,K)+1
ENDIF

GO TD 24

e |

ENDIF
= % x upper right corner
IF(I.EQ.1.AND.J.EQ.NC) THEN

IF(D(8,1) .EQ.IL(N)) THEN
D(8,1)=IR(N)
L=L+1
Ic(L)=8
Je(L)=1
DN{N,K)=DN(N,K)+1
ENDIF

IF(D(9,1).EQ.IL(N)) THEN
D{(9,1)=IR(N)
L=L+1
IC(L)=9
Jo(L)=1
DN(N,K)=DN(N,K)+1
ENDIF
IF(D(NR,NC) .EQ.IL(N)) THEN
D(NR,NC)=IR(N)
L=L+1
IC(L)=NR
Jc(L)=NC
DN(N,K)=DN(N,K)+1
ENDIF

IF(D(1,NC-1).EQ.IL(N)) THEN
D{1,NC-1)=IR(N)
L=L+1
IC(L)=1
JC(L)=NC-1
DR(N,K)=DN(N,K)+1

ENDIF

IF(D(2,NC) .EQ.IL(N)) THEN
D(2,NC)=IR(N)
L=L+1
Ic(L)=2
JC(L)=NC
DN(N,K)=DN(N,K)+1
ENDIF

IF(D(2,NC-1) .EQ.IL(N)) THEN

ot
=
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D(2,NC-1)=IR(N)

L=L+1

IC(L)=2

JC(L)=NC-1

DR(N,K)=DN(N,K)+1
ENDIF

GO TO 24
ENDIF
lower left cornmer
IF(I.EQ.NR.AND.J.EQ.1) THEN

IF(D(NR-8,NC) .EQ.IL(N)) THEN
D(NR-8,NC)=IR(N)
L=L+1
IC(L)=NR-8
JC(L)=NC
DN(N,K)=DN(N,K) +1

ENDIF

IF(D(NR-7,NC) .EQ.IL(N)) THEN
D(NR-7,NC)=IR(N)
L=L+1
IC(L)=NR-7
JC(L)=NC
DN(N,K)=DN(N,K)+1

ENDIF

IF(D(1,1) .EQ.IL(N)) THEN
D(1,1)=IR(N)
L=L+1
Ic(L)=1
JC(L)=1
DN(N,K)=DN(N,K)+1
ENDIF

IF(D(NR-1,1) .EQ.IL(N)) THEN
D(NR-1,1)=IR(N)
L=L+1
IC(L)=NR-1
JC(L)=1
DN(N,K)=DN(N,K) +1

ENDIF

IF(D(NR,2) .EQ.IL(N)) THEN
D(NR,2)=IR(N)
L=L+1
IC(L)=NR
JC(L)=2
DN(N,K)=DN(N,K)+1
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ENDIF

IF(D(NR-1,2).EQ.IL(N)) THEN
D(NR-1,2)=IR(N)
L=L+1
IC(L)=NR-1
JC(L)=2
DN(N,K)=DN(N,K)+1

ENDIF

GO 10 24
ENDIF
lover right corner
IF(I.EQ.NR.AND.J.EQ.NC) THEN

IF(D(8,1).EQ.IL(N)) THEN
D(8,1)=IR(N)
L=L+1
Ic(L)=8
JC(L)=1
DN(N,K)=DN(N,K)+1
ENDIF

IF(D(7,1) .EQ.IL(N)) THEN
D(7,1)=IR(N)
L=L+1
Ic(L)=7
Jc(L)=1
DN(N,K)=DN(N,K)+1
ENDIF

IF(D(1,NC).EQ.IL(N)) THEN
D(1,KC)=IR(N)
L=L+1
IC(L)=1
JC(L)=NC
DN(N,K)=DN(N,K)+1
ENDIF

IF(D(1,NC-1).EQ.IL(N)) TEHEN
D(1,NC-1)=IR(N)
L=L+1
Ic(L)=1
JC(L)=NC-1
DN(N,K)=DN(N,K)+1

ENDIF

IF(D(NR,NC-1) .EQ.IL(N)) THEN

D(NR,NC-1)=IR(N)
L=L+1
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IC(L)=KNR

JC(L)=NC-1

DN(N,K)=DN(N,K)+1
ENDIF

IF(D(NR-1,NC) .EQ.IL(N)) THEN
D{(NR-1,NC)=IR(N)
L=L+1
IC{L)=NR-1
JC({L)=NC
DN(N,K)=DN(N,K)+1

ENDIF

G

o

T0 24
ENDIF

upper boundary
IF(I.EQ.1.AND.J.GT.1.AND.J.LT.NC) THEN

IF(D(NR,J).EQ.IL(N)) THEN
D(NR, J)=IR(N)
L=L+1
IC(L)=NR
Je(L)=J
DN(N,K)=DN(N,K)+1
ENDIF

IF(D(NR,J+1) .EQ.IL(N)) THEN
D(NR, J+1)=IR(N)
L=L+1
IC{L)=NR
JC(L)=J+1
DN(N,K)=DN(N,K)+1

ENDIF

IF(D(1.J+1).EQ.IL(N)) THEN
D(1,J+1)=IR(N)
L=L+1
IC(L)=1
JC(L)=J+1
DN{N,K)=DN(N,K)+1

ENDIF

IF(D(1,J-1) .EQ.IL(N)) THEN
D(iij-i)EIB(H}
L=L+1
Ic(L)=1
JC(L)=J
DN(N,K)
ENDIF

-1
=DN(N,K)+1
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*x

IF(D(2,J-1) .EQ.IL(N)) THEN
D(2,J-1)=IR(N)
L=L+1
Ic(L)=2
Je(L)=J-1
DN(N,K)=DN(N,K)+1

ENDIF

IF(D(2,J) .EQ.IL(N)) THEN
D(2,3)=IR(N)
L=L+1
IC(L)=2
Je(Ly=J
DN{N,K)=DN(N,K)+1
ENDIF

GO TO 24
ENDIF
lower boundary
IF(I.EQ.NR.AND.J.GT.1.AND.J.LT.NC) THEN

IF(D(1,J) .EQ.IL(N)) THEN
D(1,3)=IR(N)
L=L+1
IC(L)=1
Je(L)=1
DN(N,K)=DN(N,K)+1
ENDIF

IF(D(1,J-1) .EQ.IL(N)) THEN
D(1,J-1)=IR(N)
L=L+1
IC(L)=1
JC(L)=J-1
DN(N,K)=DN(N,K)+1

ENDIF

IF(D(NR,J~-1) .EQ.IL(N)) THEN
D(NR, J-1)=IR(N)
L=L+1
IC(L)=NR
JC(L)=J~1
DN(N,K)=DN(N,K)+1

ENDIF

IF(D(NR,J+1) .EQ.IL(N)) THEN
D(NR,J+1)=IR(N)
L=L+1
IC(L)=NR
JC(L)=J+1
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DN(N,K)=DN(N,K)+1
ENDIF

IF(D(NR-1,J) .EQ.IL(N)) THEN
D(NR-1,J)=IR(K)
L=L+1
IC(L)=NR-1
Je(L)=1
DN(N,K)=DN(N,K)+1

ENDIF

IF(D(NR-1,J+1) .EQ.IL(N)) THEN
D(NR-1,J+1)=IR(N)
L=L+1
IC(L)=NR~1
JC(L)=J+1
DN(N,K)=DN(N,K)+1

ENDIF

GO TO 24
ENDIF
*x % % left boundary
IF(I.GT.1.AND.I.LT.NR.AND.J.EQ.1) THEN

IF(I.LE.7) THEN
IF(D(NR-8+I,NC).EQ.IL(N)) THEN
D(NR-8+I,NC)=IR(N)
L=L+1
IC(L)=NR-8+I
JC(L)=NC
DN(N,K)=DN(N,K)+1
ENDIF

IF(D(NR-7+I,NC) .EQ.IL(N)) THEN
D(NR-7+I,NC)=IR(N)
L=L+1
IC(L)=NR-7+I
JC(L)=KC
DN(N,K)=DN(N,K)+1

ENDIF

ENDIF

IF(I.EQ.8) THEN

IF(D(NR,NC) .EQ.IL(N)) THEN
D(NR,NC)=IR(N)
L=L+1
IC(L)=NR
JC(L)=NC
DN(N,K)=DN(N,K)+1

ENDIF
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IF(D(1,8C) .EQ.IL(N)) THEN
D(1,NC)=IR(N)
L=L+1
ICc(L)=1
Je(L)=NC
DN(N,K)=DN{N,K)+1
ENDIF
ENDIF
IF(

-GT.8) THEN
(D(I-8,NC).EQ.IL(N)) THEN
D(1-8,NC)=IR(N)

L=L+1

IC(L)=I-8

JC(L)=NC
DN(N,K)=DN(N,K)+1

ENDIF

I
IF

IF(D(I-7,NC) .EQ.IL(N)) THEN
D{I-7,NC)=IR(N)
L=L+1
IC(L)=I-7
JC(L)=NC
DN(N,K)=DN(N,K)+1
ENDIF
ENDIF
IF(D(I-1,1) .EQ.IL(N)) THEN
D(I-1,1)=IR(N)
L=L+1
IC(L)=1I-1
Jc(L)=1
DN(K,K)=DN(N,K)+1
EXDIF

IF(D(I+1,1).EQ.IL(N)) THEN
D(I+1,1)=IR(N)
L=L+1
IC(L)=I+1
JC(L)=1
DN(N,K)=DN(N,K}+1

IF(D(I,2).EQ.IL(N)) THEN

DN(N,K)=DN(N,K)+1
ENDIF

IF(D(I-1,2).EQ.IL(N)) THEN
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D(I-1,2)=IR(N)

L=L+1

IC(L)=I-1

Jo(L)=2

DN(N,K)=DN(N,K)+i
ENDIF

GD TO 24
ENDIF
right boundary
IF(I.GT.1.AND.I.LT.NR.AND.J.EQ.NC) THEN

IF(I.LT.(NR-7)) THEN

IF(D(I+7,1).EQ.IL(N)) THEN
D(I+7,1)=IR(N)
L=L+1
IC(L)=I+7
JC(L)=1
DN(N,K)=DN(N,K)+1

ENDIF

IF(D(I+8,1).EQ.IL(N)) THEN
D(I+8,1)=IR(N)
L=L+1
IC(L)=I+8
JC(L)=1
DN(N,K)=DN(N,K)+1

ENDIF

ENDIF

IF(I.EQ.(NR-7)) THEN
IF(D(NR,1).EQ.IL(N)) THEN
D(NR,1)=IR(N)
L=L+1
IC(L)=NR
Jo(L)=1
DN(N,K)=DN(N,K)+1
ENDIF
IF(D(1,1).EQ.IL(N)) THEN
D(1,1)=IR(N)
L=L+1
Ic(L)=1
Je(L)=1
DN(N,K)=DN(N,K)+1
ENDIF
ENDIF

IF(I.GE.(NR-6)) THEN
IF(D(I+8-NR,1).EQ.IL(N)) THEN

169



D{I+8-KR,1)=IR(N)

L=L+1

Ic(L)=I+8-NR

Jo(L)=1

DN(N,K)=DN(N,K)+1
ENDIF

IF(D(I+7-NR,1) .EQ.IL(N)) THEN
D(I+7-NR,1)=IR(N)
L=1+1
IC(L)=I+7-NR
JC(L)=1
DN(N,K)=DN(N,K)+1

ERDIF

ENDIF

IF(D(I-1,KC).EQ.IL(N)) THEN
D(I-1,NC)=IR(N)
L=L+1
IC(L)=I-1
JC(L)=NC
DN(N,K)=DN(N,K)+1

ENDIF

IF(D(I+1,NC).EQ
D(I+1,NC)=IR(N
L=L+1
IC(L)=I+1
JC(L)=KC
DN(N,K)=DN(N,K)+1

ENDIF

EQ.IL(N)) THEN
)

IF(D(I+1,NC-1).EQ.IL(N)) THEN
D{I+1,NC-1)=IR(N)
L=L+1
IC(L)=I+1
Je(L)=NC-1
DN(N,K)=DN(N,K)+1

ENDIF

IF(D(I,NC-1).EQ.IL(N)) THEN
D(I,NC-1)=IR(N)

L=L+1
Ic(L)=I
JC(L)=NC-1
ENDIF
GO TD 24
ENDIF
STEP 8
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24 IF(L.GE.1) TEEN
=IC(L)
J=JC(L)
L=L-1
GO TO 20
ENDIF

WRITE(*,305) IS,JS.K,DN(N.K)
305 FORMAT(2I4,2X,214)

J=JS
I=1s

ENDIF

GO TO 5
ENDIF

STEP 9

30 IF(N.EQ.1) THEN
NCL=NCL+K
GO TO 1
ELSE
NCL=NCL+K
GO TO 40
ENDIF

40 PRINT=,’Number of clusters NCL = ’,NCL
PRINT*,? ?

WRITE(*,102) (J,J=1,NC)
102 FORMAT(SX,1313)
PRINT=,? ?
DO I=1,NR
WRITE(*,300) I,(D(I,J),J=1,NC)
300 FORMAT(I4,X,13I3)
ENDDO

STOP
END



