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ABSTRACT

The Sign test is employed to study the change-point problem with epidemic
alternative. Discussions focus on the two different cases that under the null hy-
pothesis the population median is known or unknown. The asymptotic distribu
tions of the test statistic under the alternative hypothesis are proved. Numerical
simulation is carried out to calculate the estimated change-points, test statistic

values and their P-values.
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Chapter 1

INTRODUCTION

Change-point problem originally arose in the field of qualit control. When
one monitors the output in a production line, one wants to keep the quality of the
product within a required region and to detect the quality deviation across the
threshold values as soon as possible. In Statistics, this problem can usually be
modeled as follows. We have a sequence of observations of independent randormn
variables z;, £, - - of identical distribution and want to detect whether a change
at time 7 could have occured in this sequence and that after time 7, ., Typry -
have different distribution as that of z;,z,,---,z,_;. We call this problem the
change-point problem and the 7 the change-point.

In change-point problem, one usually needs to consider following :

[1]Testing the hypotheses:

Hy: Ty, 3 oy tid ~ F(z) No change.
H] . Tiy° 3y Trmy iti.d~ F(.’L‘) (11)

Trye 3Ty Lid~ G(z), F(z) # G(z)for some z. There is a change.



7 is the unknown change-point.

[2]Employing a suitable statistic T}, for the test problem to obtain an esti-
mator 7(n) for the unknown change-point 7.

[3]Discussing the properties of T, and 7(n) and carrying out some numerical
simulations to confirin the theorctical results.

For the test hypotheses of change-point problem, usually we assume that
T1,-:+,Tn,- - are independent continuous random variables. Beside (1.1), there
are many special forms to ¢ the test hypotheses. For example, the test for
change in the location par. er can be written as

Ho: zy, -+ 2, ti.d ~ F(z)
Hy: z,- 2, idid ~ F(z); (1.2)
Trye, Ty td ~ Fz + A), —00 < A < 4o0.
(1.2) is equivalent to:

Ho: A=0
(1.3)
H]Z A#O

Sometimes people look at

Hy : M1 = = iy = Ho, /‘Lt:E(‘Ti)
(1.4)

Hy: = =pea#Fpr=-=py

In these above models, one just considers the alternative hypothesis of at
most one change, the so called AMOC model. A slight generalization of the

AMOC model, that is often very useful, is the more than one change point



model with the epidemic or square wave alternative,

Hy: zy, - 0y tid ~ F(x)
Hy: o x0,00, g Lid ~ F(2) (1.5)

Trpyt oy Ty td ~ Ga), F(x) # G(x),

where 73,7, are unknown change-points.

There are also many different viewpoints used in change-point rescarch,
When one observes the output in a production line, one can use a sequential
procedure where one observes the products sequentially and stops the line at
a random time when one detects a change in quality, or fixed sample size pro-
cedure also called retroactive change-point detection procedure where one ols-
serves a large finite sequence of output such as the product produced in a day
to determine possible change within the collection. People also use classical and
Bayesian approaches, parametric and nonparametric models for change-point
problem. So, there has been much research done for the change-point problem
with the combination of different methods and models.

The basic AMOC problem was first considered by Page (1954, 1955) in the
model (1.2). Assuming the initial value po known, Page studied testing the null
hypothesis of no change (Hy : A = 0) against either one or two sided alternatives

(Hi:A>00r H : A#0). Let So =0 and Sk=):f=lvjk=l,---,n

a if z; > po,
V, =
b ifmj<ﬂo

where a > 0, b > 0 are constants, such that £, (V;) =0,j =1,-..,n. Page’s

decision rule rejects Hy : A = 0 in favour of the alternative of one change
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II] A > U, if
T,, = 1'n.a:r(,5k5n{5k - minOS(SkS,-} (16)

15 too large.

S. Csorgd and Horvath (1983) calculated the limit distribution of T),.

Lty —.oo{ T} [(nab)? < t} = P{supocici|w(t)| < z} (1.7)
= 1-43 (-1)"1®(—(2k — 1)z), z > 0.
k=1

where w(t) is a Weiner process and @ is the standard normal distribution func-
tion. A table for this limit distribution was also given.
G. K. Bhattacharyya and Johnson (1968) considered a general class of locally

optimal rank tests for the change-point problem in the following two cases:

1 The initial distribution Fp is known and symmetric around the origin. Testing
of these hypothesis corresponds to the shift problem in model (2) with
unknown A > 0. Bhattacharyya and Johnson employed the criterion of
maximizing the average local power B(A) = 31 ¢iB(Alr) with respect to
arbitrary set of weights ¢; that satisfies ¢y =0, ¢ >0, i =2,---,n and

i1 gi = 1 to get a nonparametric statistic

T, = 3 Qusgn(z) E{— fy(VV™)/ fo(V )} (18)

=1
to reject Hy at large value of T,. Here V(1) < ... < V(" is an ordered

statistic of n i.i.d random variables having a distribution Fy, Q; = Zj-=1 qi,

4



(R, -+ Ry) is the vector of the rank of (xy,---x, ) and F{A]7) is the power
at A when the change occurs at time i. From the Bayesian viewpoint, ¢,

may be regarded as the prior probability of a change to oceur at time .

2 When initial level is unknown, they proposed the
Su= 2 QiE{= (VY £V, (1.9)
=1
and suggested to reject Hp for larger value of S,,. In both cases, the tests
are distribution free, they depend upon the weight function {¢;} and are
unbiased for general classes of shift alternatives. The asympototic distri-

bution of the test statistic under the local translation alternative was also

reached.

A. Sen and Srivastava (1975) proposed two nonlinear rank test for one-sided
alternative with z; ~ N(g;,0?%),¢ = 1,---n and unknown initial yzy and o?. They

suggested rejecting Hp : A = 0 in favor of H, : A > 0 for a large value of

I = mazichgn-1{[Min-t — Eo(Mip—i))/[Varo(Mina-i))%}, (1.10)

or
I = maz1ckgn-1{[Urnt — Eo(Un-i))/[Varo(Us-k)]?}, (1.11)
where
Min-x = Ziogr V{zi — medianigjcn(z;)}y
(]k.n—k = ?:k-i-] Zf:l \p(I, - x.‘i)’
[ =4

Q



and

1 t>0,
Y(1) =
0 <0,

i29(+), Vary(-) above denotes the mean and variance taken under null hypothesis
respectively. Some Monte Carlo simulations for the estimated critical values
were also provided.

A model that is similar to A.Sen and Srivastava’s was studied by Hawkins(1977)

for the two-sided alternative hypothesis. He provided the test statistic

Un = Mar1<k<n~1 ITk I7 (112)
where
To= (e} (i = 7), k=1 1
Sl ew) T A

The recursive formulae for the exact determination of the distribution of U,
were also proved. With the normality of T3,---,T,, he got the asympototic
distribution of U, from the behavior of the maximum properties of a Gaussian
process.

Pettitt (1979) proposed quite similar statistic to that of A. Sen and Srivastava
for the one and two-sided tests. For the one-sided test: Hy: A =0vs Hy : A > 0,

he suggested the statistic

k n
J = minxgkgn-l{z Z sgn(z; — z;)}

1=1 j=k+1
= minick<n—r{Vin} (1.13)

for the test and rejected Hy for its large value. Here Vi, = E?:l Yk Sgn(zi—
.‘ITJ’).

6



Pettitt proposed rejecting Hy : A = 0 in favour of the two-sided alternative

H, : A # 0 for large values of

k n
Jy, = 711(1,:1‘15k5,,_,|z Z sgn(r; — ;)| (r.19)
i=1 j=k+1

Pettitt proved that the limit distribution of

3

nH}%Vk,n (1.15)

Yn(z) = 1Y

is a Brownian bridge y(z) and we know that

P{sup|y(z)|< a}=1+2 Z(—l)r(::ztl)(—27'2(t2).

r=1

This is the limiting distribution of the Kolmogorov-Smirnov goodness of fit
statistic and is extensively tabulated.
Comparing statistic I and J,, Schechtman and Wolfe (1981) proposed the

following statistic
Iy = mazychen-  (Ukn-tk — Eo(Ukmi)l/[Vare(Ukni)]?} (1.16)

for the two-sided test to reject Hy: A = 0 in favor of H; : A % 0 for large value
of I3. The asymptotic properties of I3 were also studied.

Loibard (1987) studied the smooth change model:
Hy: m=---=pu, =6 No change.

Hy: p=0; t=1,--,n
& i<n (1.17)
bi=¢ L+(@E-—n)&-&)/(n—n) n<in

62 1> Ty.



He considered the statistic

n-1 n
n = Z Z {‘/t:,tz}z

t1=1t=t; 41

where

Vt:,12 = 2;2=t1+1 Zf:x S(ri),
S(r) = {@fi/(n + 1)] - T}/A,
S = u L, /(a4 1),

(n =)L {eli/(n+1)] - 2},

é is an arbitrary score function satisfying 0 < J} ¢*du < oo, and rq,---,r, are the
ranks of xy,- -, z,, respectively. As n — oo, the null distribution of n~°¢, goes
to the random variable ¢ = 322 ,(n7)~*Z,? where Z,,- -, Z,,- - - arei.i.d N(0,1)
random variables. For ilie onset of trend model with 74 = n, Lombard’s statistics
is ¢n" = L0 {Vin}?. As n — oo,the null distribution of the T~*¢,,* approaches
that of the random variable ¢* = 22, A\, Z,? where \; > Az > -+ > 0 is the
positive real solution of the equation tan\~% +tanhA~% = 0. The AMOC model
and multiple change point model were also discussed by Lombard.

For model (1.3) or (1.4), we have a general statistic to reject Hq in favour of

H, for large values of

mazickenf] Sk — kS | /(K(1 = k/n))?}. (1.18)

Csorgo and Horvath (1986) studied the above statistic by considering
{ (Simt1yg ~ [(n + 1)t]Sa/n)/(n20) 0<t <1,

0 t=1,

Z,(t) = (1.19)



where 02 = E(ux; — E(x;))%.

They proved that the process Z,(t), (0 <t < 1) has the same asymptotic
behaviour as the uniform quantile and empirical processes. Many asympototic
properties of nonparametric statistics were also given in their paper.

Gombay (1994) considered rank and sign stastistic for the epidemic alterna-

tive model of (1.5). She suggested the statistic
1=
T, = mazraln? Y S(I;)|.
1=k
for the rank test and proved the asymptotic distribution of 7%:
hiad o2 .2
bmy o P{T, <c}=1- 22(4j2(:2 —1)e™*7, (1.20)
=
The asympototic consistency of T}, was proved under some regularity conditions.
For the sign statistic, Gombay proposed the statisitc
-1
Un = mazicikcicn Z sgn(z; — o). (1.21)
i=k
for the test:

Ho: =z, i=1,---,n have known median &
H: z,i=1,---,1n—1,7, ---,n have median &

zi, t =71 — 1,--, 73 have median &, & # &;.

Gombay suggested that Hy be rejected for large values of U/, when € > &, and
similarly for the & < & case. She also got the asymptotic distribution under

the null hypothesis of the U,

, _1 4. (-1)* 22k + 17 o
limyeP{n 22U, >c} =1- —Eﬂ Tan 1c:cp{—7r ¥ }, e>0.(1.22)

9



Based on the research of Gombay, I consider the sign statistic for the epidemic
alternative hypothesis. When &, is known, the asymptotic distribution under the
alternative hypothesis is proved.

When the initial value &, is unknown, I suggest the use of the statistic

_1 -
M(n) = mazickcicnn” 2| Z sgn(z; — &)
k<i<!

o . . . . 1 .
where &, = median(zy,---,z,). The exact distribution of nz M(n) under Hy is
same as that of the maximum deviation in a simple symmetric random walk and
it has been calculated exactly for each sample size.

To estimate the change-points, I use

-1
. . _1 ~
(T1(n), 72(n)) = argmaziq|n™? Z sgn(z; — &)}
1=k

as the estimatiors of m,7,.

Finally, under H;, I proved the asymptotic normality of M(n) and
[1(r) = 11| + |F2(n) — 72l = O,(1)

In the third part, I calculated the power of sign test and do some numerical

simulations.

10



Chapter 2

SIGN TEST FOR THE
CHANGE-POINT PROBLEM
WITH KNOWN INITIAL
MEDIAN

Let z;,---,z, be a sequence of independent continuous random variables.

Consider the following hypothesis test with two change-points :

Ho: =z, i=1,---,n have known median &,
Hy: zj,i=1,---,7y - 1,7, --,n have median &, (2.1)

Ty, 1t =Ty, ,T2 — 1 have median &, & # &,

where & is known. The unknown integers 7, 7, are the change-points. We
assume 7; = [nA], T2 = [n);] for some 0 < A} < Ay < 1. By [a], we denote the
integer part of a.

We employ the sign statistic for our test problem. Let

-1

Un = maziq ) sgn(zi — &o)
i=k

= mazra(Si-1 — Sk-1)- (2.2)

11



where Sy = Y5 sgn(z; — &).

Under H,, Gombay (1994) proved that the exact distribution of U, is

‘ 2N ol —(—1}\
P{UHZN}:-l—QNzH;(c<j)>"s<j(N+1))1j(].§’“ U 23

where N is a positive integer and

b sl) = sin(5l)

Also, the asymptotic distribution of the test statistic under the null hypothesis

H,, was shown to be

lim P{n~ U, >C}__1__Z( 1)* exp(~ 7‘_2(2k+1)2

, 2.4
n—00 T o 2k + 1 ) (24)

for all ¢ > 0.

Denote é,, = P{z,, > éo}. We consider the following two cases of alternatives.

(): 6.=6 for eiln
(2.5)
(i2): 6, =}

2

and \/n}é, — }| — oo.
Case (i) is the fixed alternative, while case (4i) is the local but not contiguous
alternative.

Assume 8, > ,1—,, as the other case is similar by symmetry.
Lemma 2.1 Under the hypothesis H, :

P{mazi<i¢r,(S1 — Srp-1) 2 maz,<i(S1 — Si,-1)} — 0, asn — oco. (2.6)

12



Proof: We want to prove the lemma by cousidering ! in ditferent arcas for the

first term and keeping the second term unchanged.

((I.)[< T

mazicr, (St — Sr—1) = maxicr, [(St = S =1) + (Sr=t = Sr )}

Note that S5; — S;,_1, | < 11 is a simple symmetic random walk.

In the sum S, -, — §;,-1, the terms are

1 W.p ‘Su 71 S 7 < T2

sgn(z; — &) = { -1 wp 1-6,

SO

E(sgn(z; — &)) = b+ (=1)(1 - 6,)

= 26,—-1>0 n<t

Var(sgn(zi — &)) = El(sgn(z: = &))*] ~ (Esgn(z: — &o))*
= but(1-8,)—(1-26,)

= 46,(1 - &,) n<i<m
from (2.8), (2.9) we have
E(ST]—I - S‘I’z-—l) = _(T2 - T’)(26n - l)

< 0

V(I.'I‘(Sn_] - 572_1) = (Tz - 71)46,.(1 - 6,,)

13
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Employ C.LT to S;,-y — Sr,21

1
V(r2 = 1)16,(1 = 6,)

[Sry-1 = Srpm1 + (12 — 11)(26,, — 1)]

L)»N(O,l) n — oo

Note that 7 — 71 = n(A; — A).
Under the condition of () or (iz) of (2.5)

_ (12 — 11)(26, — 1)
V(72 = 1)46,(1 = 6,)

— —o00, n — oo,

50

Sr=1 = Srm1
V(72 = )46,(1 = 6,)

has mean that converges to —oo and it has asymptotic variance 1.

(2.12)

(2.13)

(2.14)

According to Billingsley (1968), the properties of the simple random walk

St — S;,—1 are

1
—===mazi<, (S — Sr,—1) ~ |[N(0,1)],

T]'—'l

hence

V(r2-n )146"(1 ~6n) mazigr, (S: — S, __1)

- AT s
\/(”2"’1)45n(l—6,.) V-1

mazig. (St — Sr,—1)

= 0,(1).

Similarly, for the simple random variable S; — S,,;, 72 <1< n,

1
2\/("‘2—11)Sn(l_gn)max‘rzsl(sl - 57-2_.1)

_ Jimw .

= 0,(1).

14
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Combine (2.14) (2.16) (2.17), we get
P{mazc+,(Si — Sr;-1) 2 maz,<i(Si— S,-1)} 2 0 asn— o0 (2.18)

() mn <l< .
First consider the case (i) of (2.5), that is when &, = & for all n. It is a well

known fact (see, page 72 in Billingsley (1968)) that

1
b—mam,2515n(51 - Sh-1) 5 IN(0, 1), n — 0o, (2.19)

where b, = /n — 7, + 1.
Let {€,} such that €,b, — oo and ¢, — 0.
Denote A = {maz, <i<r,(Si — Sr-1) = mazr,ci<n(Si — Sry—1)}-

Then we have

P{Zl—-ma:cﬁgs,,(Sl = Spo1) < €2} = O(en)- (2.20)

and

P{maz; <i<r,(Si — Sr,-1) = maz ,<1ca(St — Srpm1)}
= P{AN (;:Mmazr,<icn(Si — Sr,m1) 2 )}
+P{AN (Emazrcicn(Si = Smpo1) < €0)} (2.21)
< P{maz; <icr, (St — Sry-1) 2 buen}

+P{;-maz,<i1cn(S1 — Sr-1) < €a}.

The first term in (2.21) can be written as

J
P{ max Zn;ancn}, (2.22)

1<5<(n~n) {5

15



where
= —.s'gn(.’n.'+-,,..1 - fo) 1< 1 < (7'2 - 7'1)7
Denote .§'j(w) = Zle 7:i(w).

By the Strong Law of Large Numbers

P{w: lim S5(w)

J—oo J

=a}=1 (2.23)

wherea = En; =1 -26 < 0.
re. 30 C Q, P({2) = 0s.t. for all w & Qo
§j(—.w2 —a <0, j — oo, (2.24)
J
i.e. for all w & Q, Fjo = jo(w) s.t.

~i(w) <0, for all 7 > j0. (2.25)

Combine (2.25) and bpe, — 00, for every w & Qg

Maz1<j<ioSi(w) < bnén, when n is large. (2.26)
$O
Plw: m(wlsjs(,,_ﬂ_l)gj > bpen} — 0, n — oo. (2.27)

Using (2.20) and (2.27), we get
P{maz,, <1cr (St — Sr,-1) 2 maz,<i(Si — Sr;-1)} — 0, as n — oo. (2.28)

The last caseis i <1 < 1 and \/ﬁ|6,,—%|—->0 as n — oo.

16



Let r satisfy A} < r < Ay and rn is an integer.

T’l(l$115l5r11(5'l - 5‘*rg—l) = n““rrl_<_l$rn(sl - Srn) + (Srn - Sr)—l)-

E(Sin = S,01) = (n—1—-m)(1-26,)

(A=) = 26)n.

Var(S, — Sr,21) = (2~ 1-=rnjt6,(1 - 6,)
~ (A —r)6,(1 — 8,

= dn.

where d = (A; — r)46,(1 = 6,,).

The same way as in (a) by C.L.T.

(9rn = Srmt) = (12 = 1 = 0)(1 — 26,) p
V46.(1 = 8,)(r2 ~ 1 — rn)

On the other hand, we have
ﬁ:maanISrn(Sl - Srn)

%mmaznngrn(Sl - S‘rn)

= OP(I)v
and

T:l’vfmam’zS‘S"(SI — Srp-1)
= g]—d'\ VVL_T,"”"'BTleSﬂ(Sl — Srp-1)
= 0,(1).

17
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The mean of the dominating term in (7 .29) is

P (é'_'i__ S,.z_l) (=1 —rn)(1 - 26,)
’ Vdn

— —00, as n — oo,

e
vidn

Join (2.30), (2.31), (2.32), (2.33), we have

(2.33)

P{maz, <icrn (St — Srym1) 2 mazo,<1<n(Si — Sr-1)} — 0, n — oo. (2.34)

Now consider a sequence r(,y / Az, r()n is an integer. We want to show

that

P{maz, <<, (St — Sr—1) 2 maz,<i(S) — S,-1)} = 0, n — oo. (2.35)

Dividing by +/n on both sides of the inequality of (2.35) and employing (2.52),

we can write (2.35) ~quivalently as

1 -
P{\/—Hmaxlsjs,:(")”Sj :\‘_ Op(l)} — 0, n — o0,

(2.36)

where S; has independent, identically distributed terms with mean (1 ~24,) < 0

and finite variance 46,(1 — é,) and 7, = an] _ Tn) \ 0. But

n

MAT1CicimnSi < MaTigicinn(Si + 5(260 — 1))
(n) (n)

~

= MAT1g<raynS)

- .
where S; has terms with mean zero and

1 sx _ \Tmm 1

—=MAT1<i<ignd; = mazi<i<insi
\/T_l JISTnYs \/-T_L- \/fm LIST(n)n*)

(2.37)

(2.38)



From (2.36), (2.38), using that 7,) — 0, we can conclude (2.35) is true.
It remains to prove that
1
P{—\/—_m,a..'lrmd(,("),,(S'l - S5,21) 2 0,(1)} — 0, n — 0o. (2.39)
n

We may write

1 .
m(ll‘rn<1<r(n)n %(S{ - .51-2_1)
P |
= m(lmrn<1<r(,,)n\/_r—l{('51 - Sr(")n) + (Sr(,,)n - S‘r;—-l)} (21“)
1 N 4 Ll 1]
< 7".(1.-77rn<l<r(")n——\/ﬁ{(sl — Sr(,,)n + (7‘(")71 - 1)(25" — l)) + (‘Sr(")n — .Lo{\u,‘]__l)}’

Similarly as before

mawrn<l<r(")nﬁ{(51 - S',-(")u) + (7'(")7l - 1)(25" —_ 1)}

‘ (2.41)
= 0,(1), n — oo.
we have
E{Vl;'.'(sr(..)n - .\-;.n]—l)}
(2.42)
_ \/T_L-(Ag - 1'(,,))(1 - 25,.) < 0,
and
S-D-{'\};(Sr(")n - S[’\T"]_l)}
(2.43)

=~ \/46n(1 - 5,1)()\2 — T‘(n))
Hence, if we choose a seguence r(n) — A3 such that we also have {/n(X, — rwm))(1-
26n) — —o00. We get that (2.39) holds.

Now consider

maz‘rlS'STz(Sl - S"’z—l)
= maz{mazr <icrn(St = Sr,-1),
(2.44)
mazrnSl<r(,‘)n(Sl - S‘Tz—l)) maﬂ:r(")"sl(f,(lS'l - 5177—1)}

= maz{A,, A2, As},
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where
Ay = maz<emn (St — Sry-1),

A, = m,a.;r,,,s,<,("),,(S,—5,2_1),

A3 7’l(l$,~(n)nsl<1-2(5'[ - S‘Y‘z—])'

Also, denote B =1 1,,¢(5; — Sy,—1) and we have

P{maz(A,, Ay, A3) > B}
= P{A; > Bor Ay> B or A3 > B}
(2.45)
< P{A, > B} + P{A; > B} + P{A; > B}

— (), n — 00.

Combining the above (2.34), (2.35) and (2.39), we get
P{maz. cicr,(St — Sr,21) > maz,<i(Si — Sry21)} — 0, n — oo, (2.46)
as claimed, and the Lemima 2.1 is proved. (]
Lemma 2.2 Under hypothesis H, :
P{mazi>,,(Sr, — Sk) > mazier, (S, ~Sk)} =0  asn—o0  (2.47)

Proof: It can be proved by using the method in the proof of Lemima 2.1 and
observing the symmetry. O

Il\ . - . .
o estimate 71, T, 1t 1s customary to use

(7:1(71), 7:'2(”‘))
= ! 4/lll(l:tk<l(sl_1 — Sk—l) (2'48)
-1 v-1
= {(min(k), max(l)): Z sgn(z; — &) = MaTi<u<v<n Z sgn(z; — &o)}-
=k i=u
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Combining Lemma 2.1 and Lemma 2.2 together, when n — co we get that

P{#i <n} -1,

(2.49)
P{7, > n} - L
We can write
mazr<i(Si—1 ~ Sk-1)
= maxrc{(Si-1 — Sr,=1) + (Sr=1 — Sr,) + (57, — Sk-1)} (2.50)

= maxgq{maz(Si-y — Sr,-1) + maxi(Sy, — Sk-1)} + (Sr—1 — Sh,),

and
mazx(Si-y — Sry-1) = max{maxic,—1(Si—1 ~ Spy1),mar,<( Sy — Sy -)}
mazi(S;, — Sk1) = maz{mazi>,(Ss — Sk=1),maxrcn,(Sr, — Sk-1)}

To get the asymptotic distribution of /nmazic(Si-1 — Sk-1) under the alter-

native hypothesis, we have by the properties of simple symmetric random walk

that
—;llTlm‘”ls«n }ésyn(wj =) 2 Ni(0,1)], m— oo, (2.51)
=
and
__I__maxfzggn isgn(mi - &o) LA |N2(0,1)], n— o0, (2.52)

where V; and N, are indepedent standard normal random variables.

Furthermore (2.12) can also be written as

1
sgn(zi — o) — pn} — Na(0,1),  (2.53
T, e ) k) = MO, (259

where N3 is a standard normal random variable, independent of Ny and N,, and

ftn = n(Ay ~ A1)(26,, — 1). So using Lemmas 2.1 and 2.2 and (2.49), we get that
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the asymptotic distribution of n‘;‘muzkd(sl_l —~ Sk-1) under the alternative

hypothesis is that of

VAN 4 V1= 2 INa] + 20/8,(1 = 6.)(0a — M) Ns + M, (2.54)

where M, = (26, — l)‘/fgﬁ)}. As M, > 0, from (2.55) the consistency of our

test follows.

Recall that
P{fi(n) £ n(n)} - 1,

P{#:(n) 2 12(n)} — 1.

In the case of symmetricsimple random walk {S;}, given 71(n) < 1 (n), 72(n) >
72(n}, the distribution of 71(n) and 72(n) can be obtained. By svmmetry, it is

sufficient to consider
P{7y(n) = j | 2(n) 2 72(n)}
= P{argmaz.,<icn(St — Sr,-1) = j}
(2.55)
=P{Sk<0; k=1, ,j}P{Sk—-5;£0; k=j+1,---,n}
=P{S<0; k=1,---,j}P{Si1<0; I=1,---,n—3}.

using time reversal and indepedent increments property, the expressions for the

two factors are well known:

P{Sk<0; k=1,---,5}
LP{S; = 0} = (}5)(3p* j is even (2.56)
b—-_—j-l Q-P{Sj = b} j ts odd

2
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and

P{Si <t k=1,--- L}
P{S. =0} J 1s even. (2.57)
P{S,41 =0} j is odd.
From (2.49), P{ri > n} — 0 and P{A < n} — 0, we conclude that
(F1(n), T2(n)) = argmazi(Si-1 — Sk-1) is not a good estimation for the change-
points (71(n), 12(n)).
We will see in the next chapter that we can get a better estimator for the
change-points (71, 7;) even though we do not know the initial value of the median

o, but have to use its estimator under Hy.
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Chapter 3

SIGN TEST FOR THE
CHANGE-POINT PROBLEM
WITH UNKNOWN MEDIAN

Let z;,---,z, be a sequence of independent continuous random variables.

We want to consider the following hypothesis test for the change-point problem.

Hy : :B;QY; 1=1,---,n
H: z,2Y,i=1,---,n—1,m, -,n (3.1)
522 i=7n,- -1 Y # Z.
H, is called the epidemic or square-wave alternative. We assume Y and Z have
distribution functions F(z) and G(z) reépectively where F(z) # G(z) at least
for some r and
F =t GG)=t
where §, and {4 are unknown. Also unknown are parameters 74 and 7, the

change-points. We assume 7, = [n);], 72 = [nA;], for some 0 < A; < \; < 1.
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First we consider the distribution of test statistic under fH,.

Let

{A,, = median{ry, - -, 1.},

and

Valu) = n=1 Z sgn(x; — é,,), 0<u<l.

1<i<[nuy)

We employ the following statistic

-1 k—1
M(n) = 1‘na:1:k<,(V,,(T) - V,,(—;—-)[
= m(1$15k<,5n|n‘% Z .sgn(a:;-é,.)l.
ko<l
Under Hy, as n — oo
Va(u) = n"z Z sgn(z; — fu,,) LA B(u), 0<u<l.

1<i<{ny)

where {B(u);0 < u < 1} is a Brownian bridge (see Billingsley 1968).

(3.4)

The asymptotic distribution of M(n), under Hy, when A; = 1, is the same as

that of the Kolmogorov-Smirnov test of the equal sample sizes, m

in case

n is even and 25! when n is odd, (in this case sgn(0) = 0). This case is the

at-most-one-change alternative
HY: =z, 2,04 ~ F(z),
Tey-, T ~ G(z), F(z)# G(z).

Tables for this distribution can be used.



When 0 < A} < Ay < 1 is assumed, 1.e. when we test Hy against H;, from

Gnedenko (1954, p.53), we have the exact formula:

P{M(n) < =}

[ 1) 2m (2] j2m
- ] + (2'"){[( 3_+l (fit—s(u-{-])) - (a - 1) zs:l 371—.90)] (36)
a m a— [m m
[Z —'.l.l 371-*-1'-—3(0-{-1)) - i=11 s-—l 3n+l sa)]}

where m = [3], a = [z4/n].

Now we consider the distribution of test statistic under the alternative hy-

pothesis. Suppose

1

6= Plz, <&}> 3 (3.7)

where & = F"'(%). We use the notation
€. = median{z,,- - - i under H,. (3.8)
H(z) = [1 = (A = M)]F(2) + (A2 — \1)G(z) (3.9)

Let 9o = H "(%). Note that 7o is an unknown number that does not depend on

n. We have
l()<H ()<F‘() (3.10)
Let
s = P{‘T'SUO}<% 1=1 » 71 1)7-2’ s 1
(3.11)
Sl = P{$xﬁﬂo}>% =T, ’7-2_1



By the well known property of quantile process (see e.g Csorgd-Révesz 1981),

we get
£n — o = O,,(n'%), for large n. (3.12)

From (3.11), we get that

Tn = P{JJ,S{,,}<%, i:l’-..,rl_l,—r'z’.__,"”
(3.13)

Ty = P{xiS£vt}>%7 i:Tla"'yTZ_l-

Lemma 3.1 Under the alternative hypothesis Hy, for 0 < u < 1, we have

E{V.(u)} (3.14)
ntuCy + O,,(n’%), < Ap,
=40 03I MC + (v = \)Cy] + 0p(nF), A < u < Ay,

n¥[(u =g+ M)Cr + (he — M)Ca] + Op(n~F), A <

Var{nzV,(u)} (3.15)
nuD, + M’;“—"QOP(TL‘;‘), w < Ay,
=1 nMDy + (u—=\)nD; + '—"A%DO,, n‘%), A Su< Ay,

(u4 A = d)nDy + (Ao = A)nD 24200 (n73), Ay < u

¢

where Cy =1 —2r,, Cy =1 —2r,, Dy = 4dr, (1 —r,), Dy =4r (1 — 7))

n

Proof: For the sake of brevity, we give the proof for u > X,. The proof for
other cases are quite similar. Hence they will be omitted. Note that z; 2 Y, for

1 < [nAq], or 7 2 [nrAy], and z; L 7 for [nAf] €1 < [rAy). To calculate the mean,
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we have

E{Vii(u)}
o= 1’/‘{77._% Z .S‘{jTl(in - 6‘"}
1<i<{ny}
= n_%[ Z E{sgn(zi — &)} + Z E{sgn(zi - &)}
1¢i<luh] [nha]si<inl]

+ Z E{sgn(z; — f:l)}]
[z i<l ‘ .
= n_%[(n)\, — DNE{sgn(Y = &)} + n(Ay — M) E{sgn(Z - &)}
+(nu = ndy + 1) E{sgn(Y — )} + O,,(n_%) (3.16)
= 1L—%['IL(A1 - l)Cl + Tl(/\2 hand /\I)CQ + (nu —_ n/\2 + 1)0]] + O,,(n_%)
= ni[MCy + (A2 — M)Co + (u = A)Ch] + n~ % ([nu] — nu + 1) + Op(n5)

= n#[(n — X + M)C1 + (A2 = M)Ca] + Opn~¥).
with

E{sgn(Y = &)} = P{Y > &}+ (-1)P{Y <&}
= 1-2P{Y <&} (3.17)
= 1-2r,.

and E{sgn(Z — £,)} =1 — 2r.,, we get (3.14)

For the variance calculation, we have

Var{sgn(Y — &)} = E{[sgn(Y > &)]*} — [E{sgn(Y — £.}]?
= 1=(1-2r,)? (3.18)
= 4dr,(1 —ry).
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Var{sgn(Z — £)} = 4r (1 = 1))

and

V(l.'r{n%Vn(u)} = Var{ Z .*g?l(il‘».‘—f:;)}

1<i<[nuy)
= Y. Var{sgn(z; - ) (3.19)
1<ig[nu}
+ Y. Cov{sgn(z; - &), sgn(r; — fn)}
1<i<5<[ny]

(1) We consider first i and j < [nA] or > [n)y)

Cov{sgn(x; — fn), sgn(z; — {:,)}
= E{sgn(zi - £&)sgn(z; — £.)} — E{sgn(z: — £)}E{sgr(z; - £,)}
= E{sgn(zi: — no)sgn(z; —no)} — (1 — 2r,)?

+E{sgn(z; - &)sgn(z; — &) — sgn(zi — n0)sgn(z; — 10)}

(3.20)
= E{sgn(z: — no)}E{sgu(z; — n0)} — (1 — 2r,,)?
+E{sgn(z; — &u)sgn(z; — &) — sgn(zi — 10)sgn(z; — 10)}
=(1-2s)2 - (1-2r,)?
+E{sgn(z; — £.)sgn(z; — &) — sgn(zi — 10)sgn(z; — 10)}.
Because when z; and z; & (€, Ao, €a V 7o)
sgn(z; — &a)sgn(z; — £) — sgn(z: ~ n0)sgn(z; — n0) = 0
we have
|E{sgn(zi — £)sgn(z; — €n) — sgn(z; — no)sgn(z; — no)}|
< f(f:tAﬂo-f‘nVYIo)X(f.n/\no.f.y.Vnu) 2dF; ; (3.21)

= Oy(n"%)
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where F; is the joint d.f of z; and ;.

Becanse F;; is continuous and by (3.12)
(1 —25) = (1 = 2r)? =4(1 = — 8)(Tn — )

As in (3.21), we get
lr = 8| = |P{e: < &} — P{z:i < mo}|
< P{éu Ao < 3 < & V 0}
= Jigunno £uvno) 4
= Oy(n~})

Combining (3.21), (3.22), (3.23), we have

Cov{sgn(zi — &), sgn(z; — £.)} = Op(n™1),

fortand j <nk or 2nl,
(22) For : < n)y or 2 nlA; and n); <3 < nl;

Cov{sgn(z; — &), sgn(z; — €.)}

(3.22)

(3.23)

(3.24)

= E{sgn(a: - &a)sgn(z; — €)} — E{sgn(z: — €)Y E{sgn(z; - &)}

= E{sgn(z: — no)sgn(z; — n0)} — (1 — 2r,)(1 — 2r;)

+E{sgn(z; — &)sgn(z; — &) — sgn(z: — no)sgn(z; — 1o}

= (1 —-2s)(1—2s)—(1—2r,)(1~=2r)

+E{sgn(zi ~ &)sgn(z; — ) — sgn(zi — n0)sgn(z; — no)}

Because
lab — ed| < |blla = ] + |c||b - d|,
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. have

(1= 2s)(1 —2s) = (1 = 2r,)(1 = 2r,)]
(3.26)
<21 = 2s||ry — 8| 4+ 2|1 = 2ry || — 5

As in (3.23), we have

ro—s| = O,,(n"%). (3.27)
And

)]

(1 —25)(1 = 25') = (1 = 2r,)(1 = 2r)) = Op(n"%) (3.28)
Using (3.21), (3.25), (3.28), we have proved
Cov{sgn(z; — &), sgn(z; — £)} = Op(n"H), (3.29)

for i < [nM] or < [n);] and [nA;] < 7 < [rA2). So, we have

Var{n?V,(u)}
= (n/\l - l)Dl + Tl(/\g - /\2)D2 + ([nu] - nA'z + I)D] + ’['EL']—("[‘L;}"—];-QOP(TL—%)
=n(A — Ay +u)Dy + n(Ay = A2) D2 + ([nu] — nu)D; + r_zu(n;_—l)-op(n_%)'
=n(A — A+ u)D; +n(A; — A)Ds + %—"-1—)0,,(1‘-%)}. (3.30)
where
[nu]([nu] - 1) -1, nu(nu—1) -1
—_— O,(n"7) = — O,(n"72) (3.31)

Let 71(n), 72(n) be the estimators of unknown change-points 7,, 7;. Similarly

as in Chapter 2, we use the following estimators 71(n), 72(n) for 7, and
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respectively:

(T1(n), T2(n))
= argmazi<]Si-y — Sk-1| (3.32)

f=u

-1 v-1
= {(min{k}, maz{l}: |} sgn(zi — &) = mazicucven| Y sgn(z: — €)1}
1=k
Theorem 3.1 nder the alternative hypothesis Hy, if (3.7) is true, then
[71(n) — 1i(n)] + |2(n) — T2(n)| = Op(1), (3.33)

where #y(n), T2(n) are the estimators of unknown change-points of 1, 5. Fur-

thermore

: {i sgn(z; — &) — (A2 — A)nCa} 2 N(0,1). (3.34)

0'”(/\2 - /\])Tl ="
where Cy is defined in (3.15) and o = 24/5'(1 — s').

Proof: For the sake of brevity, we give the proof for the alternative hypothesis
H, C H,, where A\; = 1. The more general claim will easily follow from this
case. From now on we will drop the index of A and 7.

First we prove
[7(n) = 7(n)| = Op(1) (3.35)

This is equivalent to

Bmyg o lirLsup"_.ooP{max,-S,_kVn(%) > ma:c,_k<;<r+k‘/,,(;‘ll)}
 (a30)
+ himpoo imsupnaco P{max, 41<iVa(L) 2 MATr_kcicrikVa(i)} =0

L
n
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We show that the first term on the left hand side of (3.36) is zero. ‘The claim
for the second term can be proved the same way by symmetry. lenee it will be
omitted.

Since z;, 1 < 7 are identically distributed,

? [
P{ma:vfgf_kVn(;) 2 7"'(l$7—k<l<r+k‘/n(;)}

i l
< P{maz,-s,_k Z sgn(z; — &) 2 mar, - raes Z sgn(or; — &)}

j=1 i=1
‘ {
=P{F,i<7-k: ngn(uf,‘ — &) 2 max, _xqier Z sgn(a; — &)}
7=1 =1
l ~
=P{3,i<7-k:0> MAT,_kelcr Z sgn(z; — &)} (3.37)
j=1+1
T—k .
=P{Fi,i<t—k:0> Y sgn(z; - &)
I=i+1
d .
+ma$r—k<l<‘r Z sgn(:l:j - 6")}
1=T—k+1
7—k R
=1-P{Vi,i<t—-k:0< Y syn(z; - &)
Jj=i41

{
+Mat, —k<icr Z sgn(z; — &a)}

J=T—k+1
T—k R
=1— P{0 < minici<r—k Z sgn(z; ~ &)
j=i+1
{ R
+mMaT,_kcicr z sgn(:l:j - f..)}
J=7—k+1

1 T—k .
= P{0 > —=mincicr_x sgn{z; — &,
{ Jpmimsic ,-:L.-;. i = &)
1 ! .
+—=maz,_ r sgn(z; — &,
\/E k<i< Z gn(z; — &)}

j=7-k+1

Let £ =1,2,---, be a sequence and m(k) another sequence, such that
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! 0. (3.38)

NE

;7'1- Z;"(f) sqn(x; f,l)
> e Tt sgn(an; — 10) — 2 SIS [sgn(z; — £) — sgn(z; — no)| (3.39)

2w () 4 gl — 25D 14 0,(1),
where ¢, 6 > 0 are constants, W(-) is a Wiener process, I; is the indicator of the
event z, € {&, Ao, € Vo). As |6, — o] = 0,(n"7), we get that I; = O,(n~%).

As ﬂkﬂl -= 0, by the continuity of the Wiener process
g Jj\ P
77zzn15j5m(k)W(E) -0 (3.40)

and we also have é§ = Esgn(z; — o) =1 — 25 > 0 (see (3.11)).

Now,

1 Zm(k)] ﬁ_lop(n 2

= 0p(1),
So we get
—~{mini<icmp)y—7 \/_ E sgn(r; — &)™ = 0p(1). (3.41)
where [u]™ = min(w, 0). It is known that
mingcc1W(t) = 0,(1). (3.42)

Also

_..[7—_7”1‘”,,,(‘)<1Sk5‘(]"(mj — {A")]“
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1 J .
= —[mmm(;\)dq{\/_ Z sgn(z; —q0) + T E[sgn(:r_, — &) — sgu(x, ~ )]}~

) k
< —[minecrcaW(2) + o,(1 Z! sk (3.43)
\/—
As I; = 0,(n"?), and ™ : — 00, we get that
. 1 Ny .
—[mmm(k)dsk\/Esgn(:nj = &) = o0,(1). (3.44)
To show that
: [ -
—[mznk<,<f_k—\—/——E ,; sgn(z; — &))" = o,(1). (3.45)
we consider
71- Z L sgn(zj — f,,)
> Ly sgn(z; - &)~ XL, I (3.46)

= \/20,((loglogl)?) + elé, + IO, (n"F), 1< 7.

Here we used that by the law of iterated logarithm

Sﬂ a.s.

T O((loglogn)?),

Lminf, . oo——

if S, is the sum of mean zero independent identically distributed random vari-
ables that have finite variance. From (3.46) we got tnat (3.45) is true. Putting

(3.41), (3.44) and (3.45) we have

T~k
~[—=minigico—x Y sgn(z; — &))"
\/— J=i+1

4

_ : . gn(z; — £,)]” 3.47
[\/_mznxgg k];SJ"( 29) (3.47)
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= maz{—| 1nml<l<m(k)\/_ Z sgn(z; — &)

=1

—[mmm(k)aq\/—zsgn(% f:;)]—,

J"‘l
~[mincacr-k—7 \/— Z sgn(z fn)] }
= 0,(1). (3.48)
On the other hand,
ﬁmaw,-kd(, Y _sgn(z; — f:,)
2 71’5"1“1‘1<1<k Z§'=1 sgn(Zypr—k-1 — én) (3.49)

> Jpmazicick et YT jrmk1 = ) — Yica I
The error of the approximation is

72'5'2§=1 I; = ‘\}T;Or(n_’)

Then we get by the strong law of large number

:};;m(ll‘lglgk Z;'=1 $gn(Z;47—k-1 — 7o)
> VEL Yk sgn(zjsr—k-1 — 70) (3.50)
23 o0, k — oo.
As Esgn(x; — 19) > 0, combining (3.47) and (3.49) we get

klim limsupn_,ooP{ma:r;«-kV(i) 2> mamr—k{i<r+kv(i)} =0
—00 - n n

As the sign statistic can be looked as a rank statistic with score function
-1, 0<u<!
P(u) =< 1, Z<u<l (3.51)

0 otherw:se.
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we can use the Hajek (1968) result for the two sample sign statistic to get

/ —
Vi(A) = #ta D N10,1), (3.52)

aﬂ
where

fn = E{Va(N)}, on=VarV,())

In the one change-point case, the test statistic

]\[(n) = mamlgkgnvn(ﬁ‘)

. ‘ (3.53)
= 7‘; Z;(:';) sgn(z; — €,)
<t
M(n) = Vo) == SI)0 son(z; — €)
D A
= —Jr Tha son(zjes ~ &) (3:54)
= 0,(1)
and similar statememt is true if ¥ > 7.
It is easy to see that for o, = 24/ra(1 — 1) and 0 = 2,/5(1 — ¢)
In P 5
— 1 (3.55)

so by Slutsky’s theorem, we can replace o, by ¢ in (3.51), and the proof of the
theorem is concluded. a

Besides showing the asymptotic distribution of the test statistic, the above
Theorem implies the consistency of our test. Furthermore, the Theorem allows
a comparision between statistic used for *wo-sample problems and those for

change-point problems. It shows that asymptotically they have same limit. The
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importaut. implication of this is, that when we compare different change-point
detection procedures, the results of asymptotic relation efficiencies of two-sample
test are valid for the change-point tests as well. This statememnt is of course

true only for at-most-one-change and for epidemic alternative cases.
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Chapter 4
SIMULATION

In this Chapter we will consider the powers of our hypothesis tests in the

previous chapters.
[1] The initial median is known case.
In Chapter 2, for the test (2.1),
Hy: z; has median & for i=1,---,n.
Hy: z; has median & fori=1,---, 71 ~1 15, ,n.
z; has median & for i =1, -, 72— 1,
we consider the following test statistic

-1

U, = maziq Z sgn{zi — &o)-
i=k

To estimate the unknown change points 7, and 75, we use
(F1(n), 2(n)) = argmazrci(Si-1 — Sk-_1)

Under Hy, Gombay proved that

Puy(U, 2 N)=1-—

25 1+e(j) 1~ (1)

T T 5 NN + )
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where N is a positive integer and

) s() = sin(gE)-

Under the alternative hypothesis F;, we have the distribution of the test

statistic U,

VAN + T = %I N) + 26,1 = 8)(02 — A)Na + M. (4.5)

All the notations here are the same as that in the Chapter 2.
For the hypothesis test (2.1), given significant level a, we reject Hp in favour

of Hy,if U, > N,, where N, is a positive number and
Pry(Uy =2 No) L a
The power of the test is

Pu,(U, > N.) (4.6)

= PLYMIN + V1 = Xl Nal + 20/6.(1 = 82) (A2 = M) Na + Mo > No}.
For the standard normal random variable X ~ N(0,1), from

—r2
e~* 2z,

P{X| <x}=/_’;\/—12=_;

we get the density function of |N(0, 1)}
2 _2
1% = —e~F /2-
fix((w) =/ e
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Also denote

we have

PHl(Un _>_ ]Va)

(4.7)
= fffaz‘+by+c:>d, >0, y>0 ﬁ(ﬁ.’lfp{-—%(.’l,‘z + y'l + 22)}(1"':(1!/(1‘:'
When n — oo, M — oo, and N, — M, = d — —co, we can siinply find
Jim P, (Un > No) = 1, (1.8)

That means the power of the test converges to one as n — oo.

Unfortunately, we can not get the explicit expression for the integer (4.7).
Numerical calculations are needed to carry out for different a, b, ¢, d.

To get some idea about the power for fixed sample size test, we do some sim-
ulation . We assume that the population distributions are normal and uniform.
For hypothesis test (2.1), we consider seven different cases for test with epidemic
alternatives. From (4.2), (4.3) and (4.4), we calculated the estimated change-
points 7] and 7, test statistic values u, and their P-values list in Table 4.1. In
the table, rnorm(20) denotes a set of twenty observations from a standard normal
population, rnorm{20, 2, 1) denotes a set of twenty observations from a normal

population with the mean of 2 and standard deviation of 1, runif(20) denotes a
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Table 4.1: Initial median_is known case
H, nim || 72|u,| P-value

rnorm{20), rnorm(20,2,1), rnorm(20) |21 41 |13 |48 | 23 | 0.004539
rnorm(20), rnorm(20,1.5,1), rnorm(20) {21 |41 | 8|40 | 24 | 0.002933
rnorm(20), rnorm(20,1,1), rnorm(20) |21 |41 | 6|50 | 20 | 0.016071
rnorm(20), rnorm(20,0.5,1), rnorm(20) | 21 | 41 | 8|18 | 8| 0.548926
runif(20), runif(20,0.75,1.75), runif(20) |21 {41 | 8|59 | 29 | 0.000223
runif(20), runif(20,0.5,1.5), runif(20) 2114111056 | 32 | 0.000039
runif(20), runif(20,0.25,1.25), runif(20) |21 {41 | 3|59 | 18 | 0.033904

set, of twenty observations from a uniform population in [0, 1] and runif(20, 0.5,
1.5) denotes a set of twenty observations from a uniform population in [0.5, 1.5].

We consider only the case where the variance of the distribution population
does not change. From the Table (4.1), we can see when the difference between
éo and & is getting large, the statistics value u,, will likely get larger and there
will be a more significant P-value. We confirm that the change-point estimators
71 and 7, are not good as our theory has predicted. They should be close to 21
and 41 but they are not. But we are able to detect the changes in all but one
case, as the P-value is small.

Now we do the simulation on a real world data. We consider the sign test
for Lon i.e.:d’s (1987) data which give the radii of circular indentations cut by a
milling machine. The sample size is 100. The data are time-ordered and to be

read row by row. A constant, 3.9, has been subtracted from all the data. We

42



assume that they are independent random variables.

1.010
0.932
1.004
0.884
1.152
1.196
1.060
1.147
1.016
1.003

1.066
0.990
1.087
1.004
1.049
1.098
1.189
1.054
1.027
0.843

0.975
0.940
1.038
1.032
1.183
0.954
1.019
1.059
0.932
1.018

0.921
0.877
1.119
1.130
0.993
0.986
1.213
0.972
0.879
1.145

1.165
0.987
0.768
0.961
1.161
0.943
1.204
1.141
0.754
0.995

1.027
0.958
1.096
1.066
0.988
1.058
1.148
1.082
0.911
0.895

1.100
1.112
1.114
1.029
1.087
0.960
1.033
0.931
0.971
1.085

0.981
0.878
1.007
1.107
1.034
1.073
1.023
0.848
1.180
1.055

0.977
1.029
0.978
1.150
0.889
0.901
1.145
1.G39
0.849
0.992

1.1006
0.971
0.957
1.190
1.109
1.171
0.994
1.043
0.870
1.141

To do the calculation, first we get an estimator of the initial median & = 0.987

based on first 15 observations. Then we do calculation just like the known initial

median case, we get the test statistic value is 34 and the two estimated change-

points are 7; = 16 and 7, = 82. The P-value for the test is 0.001050026 and

- clearly indicates that there are changes along the sequence. The corresponding

test of Pettitt (1979) of H, against one change alternative got the P-valuc of

0.1324 and did not detect signal change in this data.

For test (2.1), under the null hypothesis H,, we use the relation (2.3) to

calculate the exactly critical value N,(n) for given n and « listed in Table 4.2.

[2] The initial median is unknown case.

Let’s consider the hypothesis test (3.1), we use

M(n) = ma"’vlsk<15nn—%l E sgn(z,- - én)l

k<i<l

The distribution of the test statistic M(n) under Hy is

P{M(n) < z}
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Table 4.2: N,(n) for test (2.1) that Py, {U, > Na(n

)} < a

n \ o 0.1 0.05 0.025 0.01 0.005 | 0.0025 0.001
4 4
5 4 5
6 D 6
7 ) 6 7
8 6 7 8
9 6 7 8 9
10 6 7 8 9 10
i1 7 8 9 10 11
12 7 8 9 10 11
13 7 8 9 10 11 12
14 7 8 9 10 11 12 13
15 8 9 10 11 12 13
16 8 9 10 11 12 13
17 8 9 10 11 12 13 14
18 8 10 11 12 13 14
19 9 10 11 12 13 14 15
20 9 10 11 12 13 14 15
21 9 10 11 13 14 16
22 9 11 12 13 14 15 16
23 9 11 12 13 14 15 16
24 10 11 12 14 15 17
25 10 11 12 14 15 16 17
26 10 11 12 14 15 16 17
27 10 12 13 14 16 18
28 10 12 13 15 16 17 18
(2 2)
=1+ ————{[Of Z (m-s(a+1) - (a - 1) 2 m—sa

&)

[ﬂil
at+l

]

s=1

—[Z Z (m+t—s(a+l)

=1 s=1

{°+1]

Z (m+i—s(a+l) ) -

s=1

-1 [T.'.L']
PP

i=1 s=1

Here all the notations are same as that in the Chapter 3.
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Table 4.3: Initial median is unknown case
H, LR EEED nym(n.) P-value
rnorm(20), rnorm(20,2,1), rnorm(20) {21 [ 41 [ 20 | 48 221 0.0000008
rnorm(20), rnorm(20,1.5,1), rnorm(20) | 21 | 11 { 12| 40 20 1 0.0000203
rnorm(20), rnorm(20,1,1), rnorm(20) |21 ;41 { 7|50 15 | 0.0088002
rnorm(20), rnorm(20,0.5,1), rnorm(20) | 21 [41 ] 8|40 12 0.1025916
runif(20), runif(20,0.75,1.75), runif(20) | 21 | 41 | 19 | 40 19 1 0.0000846
runif(20), runif(20,0.50,1.50), runif(20) | 21 | 41 | 23 | 46 17 | 0.0010595
runif(20), runif(20,0.25,1.25), runif(20) | 21 | 41 | 20 | 33 7 1 0.8GRTH8H
Table 4.2 : (continued)
n\ a 0.1 0.05 0.025 0.01 0.005 | 0.0025 0.001 |
29 11 12 13 15 16 17 I8
30 11 12 14 15 16 17 19
35 12 13 15 16 18 19 20
40 12 14 16 18 19 20 22
45 13 15 17 19 20 21 23
50 14 16 18 20 21 23 24
55 15 17 18 21 22 24 26
60 15 17 19 22 23 26 27
70 16 19 21 23 25 27 29
80 18 20 22 25 27 29 31
90 19 21 24 27 29 30 33
100 20 22 25 28 30 32 35
110 21 24 26 29 32 34 36
120 21 25 27 31 33 35 38
130 22 26 28 32 34 37 40)
140 23 27 30 33 36 38 11
150 24 27 31 34 37 39 42
200 28 32 35 40 43 46 19
250 31 35 39 44 48 ol 55
300 34 39 43 49 52 56 60
350 37 42 47 52 57 60 65
400 39 45 50 56 60 64 70
500 44 50 56 63 68 72 78
1000 62 71 79 89 96 102 110
2000 88 100 112 126 135 144 156

Given significance level a, we reject Hp in favour of H; for large value of




M (n), such that
Py, {M(n) > M,(n)} < a. (4.11)

where M, (n) is a positive nnmber.
From (3.34), we have the distribution of M(n) under the alternative hypoth-
esis I1). Then, at the significance level a, the power of test (3.1) is
Py, {M(n) 2 Ma(n)}

Py Mk > Mol (412)

~1— @ M"ﬂ_ £)
where @ is the cumulative distribution function of the standard normal random
variable.

For the simulation, first we consider the same data used in the simulations
summ . 'in the Table 4.1. Assuming the intial medians of population under
the u.  hv: sthesis are unknown, we calculate the medians of the observations.
Using relation (3.4), we get the estimated change-points 7; and 75, test statistic
values n7m(n) and their P-values listed in Table 4.3.

From the Table 4.1 and Table 4.3, we find that estimated change-points
calculated from statistic M(n) are closer to the real change-points than that
from statistic U,,.

For the Lombard’s (1987) data, we use the meadian of the total data {:, =
1.027 as the intial median of the population distribution is assumed to be un-

known. Then we calculated the estimated change-points 7; = 32, 7, = 76. The
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‘able 4.4: n%l\'ln(n) Py {M(n) > M.(n)} < a

n \ a| 01 0.05 [ 0.025 0.01 0.005 [ 0.0025 | 0.001
14 6 7
15 6 T
16 6 7 8
17 6 T 8
18 7 8 9
19 7 8 9
20 7 8 9 10
21 7 8 9 10
22 8 9 10
23 8 9 10
24 8 9 10 1l
25 8 9 10 11
26 8 9 10 1
27 8 9 10 11
28 9 10 11 12
29 9 10 11 12
30 9 10 11 12
31 9 10 11 12
32 9 10 11 12 13
13 9 10 11 12 13
34 9 10 11 12 13
35 9 10 11 12 13
36 10 11 12 13
37 10 S 13
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test statistic value nzm(n)) is 18 and its P-value is 0.0520979, indicating the
presence of changes. These are in good agreement with the Gombay’s (1994)
results of rank test, with the suggestion of the cusum plot and with Lombard’s
(1987) conclusins.

In the general case for test (3.1), under the null hypothesis Hg, we use relation
(3.6) to calculate the exact critical value nzM,(n) for given n and a listed in

Table 4.4,
Table 4.4 : (continued

n\ aof 0.1 0.05 0.025 0.01 0.005 | 0.0025 | 0.001
38 10 11 12 13 14
39 10 11 12 13 14
10 10 11 12 13 14
45 11 12 13 14 15
50 11 12 13 14 15 16
55 12 13 14 15 16 17
60 13 14 15 16 17 18
65 13 14 15 16 17 18
70 14 15 16 17 18 19
80 14 16 17 18 19 21
90 15 17 18 19 20 21 22
100 16 17 19 20 21 22 23
110 17 18 19 21 22 23 24
120 18 19 20 22 23 24 25
130 18 20 21 23 24 25 26
140 19 21 22 24 25 26 27
150 20 21 23 24 26 27 28
160 20 22 24 25 26 28 29
170 21 23 24 26 27 28 30
180 22 23 25 27 28 29 31
190 23 24 26 28 29 30 32
200 | 23 25 26 28 30 31 32




APPENDIX

[1] Program to calculate the test statistics value u,, of (1.2) and the estimated

change-points 7; and 7, when the mean £ is known.

v < — QObeservations of H,
x < — sign(v— &)

<~ o*(

w< — xx(

for(i in 1 :length(z)) {
y<— zx0
for(y in i:length(z)) {

s<— 0
for(kini:3) {
s<— s+z[k] }

yil<— s
}
a < — yli]
P <~ 1
for(lirn i : length(z)) {
b<— ol
if(a<b) {
a< - b
t<— 1}
}
zli)< - @
wt) < — ¢
}
print(z)
print(w)
a < — 2[1]
t<—1

for(m in 2 : length(z)) {b < — z[m]
ifla<h) {t<—m
e<— b
}
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print("The Statistics value u, is”)

print(a)

print("The estimated 7y 1s”)

prind(f — 1)
(
(

print("The estimated T3 1s”)
print(w{t])

[2] Program to calculate the test statistics nim(n) and the estimated change-

points 7, and 7, when the mean is unknown.

v < — Qbservations in H,

¢ < — median{v)

T < — sign(v—e)

z2<— zx*0

w< - *x0

for(i in 1 : length(z)) {
y<-— zx%0
for(j in i : length(z)) {

s<— 0

for(kini:j) {
s<— s+z[k]}
yil<—- s
}
a< - _abs(y[i])
t<— 1
for(lin i : length(z)) {
b< — abs(y(l])

if(fa<d) {
a<— b
t<—1

}
}

i< - a
wlg] < —
}
prini(z)
print(w)
a< - z|1]
t<-1
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for(lin 2: length(z)) {

b<— :z[l]

if(e < b) {
a<— b
t<— 1

}
}

print("The Statistics value o} n%m(n) 1s")
print(a)

prant("Th.  iicated 71 1s7)
print(t — 1

prant("The cated 7y 18”)
print(w|t])

[3] Program to calculate the P-Value for the test statistics nim(n) when the

mean is unknown.

n < — Sample size
a < — nim(n)
m < — floor(n/2)

d<— 2%m
suml < — 0
sum2< — 0
sumd< — 0
sumé < — 0

m+t

% calculate Y%, z't,’- i) %o
for(zin1l:a) {b<— floor((m +)/(a+1))
sumll<— 0
for(sinl:b) {c<— m+i—sx*x(a+1)
ife>0&& c<=d) {
e<— 1
f<—-¢—-1

for(kin0: f) {e<— ex(d—k)/(c—k)}

}

else if(c==0) {e<- 1}
else {e< - 0}

sumll < — sumll 4+ e

}

suml < — suml + sumll



% calculate 307! Z:j_ (2 isa) P
al < — a-1
for(iin 1 :al) {b < — floor((m +1)/a)
sum22 < — 0
Jor(s iV :b){e<— m+i—sx*xa
ifle>0&& c<=d) {e<— 1
f<—¢c-1
for(kin0:f){e<— ex(d—k)/(c—k)}
}

else if(c==0) {e<- 1}
else {e< — 0}
sum?22 < — sum22 +e
}
sum?2 < — sum?2 + sum?22
}
% calculate (o — 1)L a,(3",,) %
g < — floor(mfa)
Jor@inl:gj{c<— m—ixa
if(ce>0&& c<=4d) {e< -1
f<—-¢c—-1
Jor(kin0:f) {e<— ex(d—k)/(c—k)}
}
else if(c==0) {e<— 1}
else {e< — 0 }
sumd < — sumnd +e
}
sumd < — (a—1) * sum3
% calculate QE““ (B s(at1)) %
h < — floor(m/(a+ 1))
for(tinl:h) {c<— m—ix(a+1)
if(c>0&& c<=d) {e<—-1
f<—-c¢—-1
for(kin0:f) {e<— ex(d—k)/(c—k) }
}

else if(c==0) {e<- 1}
else {e<— 0}
sum4 < — suméd +e

}

sumd < — a * sumd



% calculate (") %

ml< - m-—1

e<~— 1

for(Gin 0:ml) {e<— ex(d=1i)/(m—1)}

p <= 2% (suml— sum?2+ sumd — sumd)/e

print("The P — Value for the test statistics value with unknow mean is”)

print(p)

[4] Program to calculate the critical value for statistics U, of {2.2) when the

initial mean &, is known.

n < — Sample size

for(nl in :n) {

pront(” * & * xn = * * %)

print(nl)
for(kin1l:nl) {s<—= 0
kl < — 2xk

for(jin t: k1) {
a< — cos(j*pif(2*xk+1))
b< — sin(j*xpif/(2xk+1))
c< — sin(j*pix(k+1)/(2xk+1))
s<— s+ (@) xcx(l+a)*x(1—(-1))/(2%b)

}

p<— 1—-(2x%s)/(2*%k+1)

if(p>0.05 && p<=0.1) {print("M1=")
print(k) }

if(p > 0.025 && p <=0.05) { print("M2 =")
print(k) }

if(p > 0.01 && p <=0.025) { print("M3 =")
print(k) }

if(p> 0.005 && p <=0.01) { print{"M4 =")
print(k) }

if(p > 0.0025 && p <= 0.005) { print("M5 =")
print(k) }

if(p > 0.001 && p <=0.0025) { print("MG=")
print(k) }

if(p<=0.001) {print("M7=")
print(k) }



[5] Program to calcuiate the P-Value fui ile test statistics value u, of (2.2)

when the initial mean & is known.

n < — Sample size
N<-—- u,

Nl<—- 2xN
s<— 0

fJor(in 1: N1) {
a<— cos(t*mf(2%x N +1))
b<— sin(i*pi/(2% N +1))
c< — sin(ixpix(N+1)/(2xN+1))
s<— st(a)xcx(l+a)s(1—(=1))/@2*b)
}
po - 1-2x8/(2x N +1)
print("The P — Value for the test of known mean is”)

print(p)
[6] Program to calculate the critical values for statistics M(n) of (3.4) when

the initial mean is unknown

n < — sample size
m < — floor(n/2)
d<— 2xm
for(ain1l:n) {
suml < — 0
sum2< — 0
sumd< — 0
sumd < - 0
for(iinl:a) {
b< — floor{(m+1)/(a+1))
sumll< - 0
for(sin1:0) {
c<— m+i—-sx*x(a+1)
ife>0&& c<=d) {
e<— 1
f<—e¢—-1
for(kin0: f) {
e<—ex(d—k)/(c—k) }



else if(c==0) {e<~- 1}
else {e<— 0}
sumll < — sumll +e

}

suml < — suml + sumll
}
al < — a-—1
for(iin 1:al) {
b< — floor((m +1)/a)
sum22 < — ()
forgsin1:0) {
c<— m+i1—s*a
Sfle>0&& e<=d) {
e< — 1
f<— -1

for(kin0:f) {e<— ex(d--k)/(c—k) ;

}

else if(c==0) {e<~- 1}
else {e<—- 0}

sum?22 < —sum?22 4 €

}

sum2 < —sum?2 + sum?22
}
g < — floor(m/a)
for(zinl:g) {
c<— m—1i*a
if(c>0&& c<=4d) {
e< — 1
f<—¢-1
for(kin0:f) {e<— ex(d—k)/(c-k)}
}

else if(c==0) {e<— 1}
else {e<—- 0}
sum3d < —sum3 + ¢

}

suml < -~ {1~ 1) * sum3
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h < — floor(mf(a+1))
Jor(iin 1:0h) {
c<— m—1ix(a+1)
T ifle>0&& c<=d) {
e< — |
f<— ¢—-1
} Jor(kin0:f) {e<— ex(d—k)/(c—k)}
else if(c==0) {e<—- 1}
else {e<—~ G}

sumd < — sumd+e
sumid < — a*sumd
ml <~ m-—1
e < — |

for(i i 0:ml1) {
e<— ex(d—=1)/(m—~1)}

p<— 2x%(suml — sum?2+ sum3 — sumd4)/e

if(p >0.05 && p <=0.1) {print("M1 =")
print(a) }

if(p > 0.025 && p <=0.05) { print("M2=")
print(a) }

tf(p > 0.01 && p <= 0.025) { print("M3 =")
print(a) }

if(p > 0.005 && p <= 0.01) { print("M3 =")
print(a) }

if(p > 0.0025 && p <= 0.005) { print("M5 =")
print(a) }

if(p > 0.001&& p <= 0.0025) { print(?M6 =")
print(a) }

if(p<=0.001) { print("M7=")
print(a) }
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