
Machines will be capable, within twenty years, of doing any work that a man can do.

– Herbert Simon, 1965.
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Abstract

This work focuses on the evaluation of a bagging EB method in terms of its ability to select a

subset of QTL-related markers for accurate EBV prediction. Experiments were performed on several

simulated and real datasets consisting of SNP genotypes and phenotypes. The simulated datasets

modeled different dominance levels and different levels of background noises.

Our results show that the bagging EB method is able to detect most of the simulated QTL, even

with large background noises. The average recall of QTL detection was 0.71. When using the

markers detected by the bagging EB method to predict EBVs, the prediction accuracy improved

dramatically on the simulation datasets compared to using the entire set of markers. However, the

prediction accuracy did not improve much when doing the same experiments on the two real datasets.

The best accuracy of EBV prediction we achieved for the dairy dataset is 0.57 and the best accuracy

for the beef dataset is 0.73.
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Chapter 1

Introduction

Animal evaluation programs based on phenotypes or estimated breeding values (EBVs) have been

used in many countries to aid breeders in their selection decisions. The phenotypes of quantita-

tive traits typically vary along a continuous gradient depicted by a Gaussian distribution and are

attributed to quantitative trait loci (QTL) and their interactions with the environment [4]. QTL refer

to chromosomal loci containing mutations that have effects on the phenotypic trait being assayed or

measured.

Traditional phenotypic selection methods derive EBVs from phenotype and pedigree informa-

tion. Though these methods have gained success in some economically important traits, they have

many limitations [23]. The ideal situation for using the traditional selection methods is that the trait

has high heritability, high quality data records and the phenotype can be observed in all individuals

before reproductive age and with a relatively low cost. However, this ideal situation can hardly be

achieved, which makes traditional selection methods costly or ineffective. Besides, the traditional

selection methods lack detailed knowledge of the genetic architecture of the selected traits. If we

can gain insight into the genetic architecture of the traits by using genetic markers, the selection

progress may be greatly enhanced as we can know the actual chromosomal areas (i.e. QTL) affect-

ing the traits. QTL mapping aims to identify QTL that are associated with the target phenotypic

traits.

There are two main objectives in this research. One is QTL mapping to detect QTL for the target

phenotypic trait. The other is EBV prediction, which is used for the selection of the best breeding

animals. Due to the availability of a large volume of single nucleotide polymorphism (SNP) markers,

we can exploit the linkage disequilibrium (LD) between SNP markers and QTL for QTL mapping

and also use the genotype of SNP markers to predict individual EBV. As a result, the detection of

QTL becomes the detection of the SNPs that are associated with the phenotypic trait. The focus of

here is on the evaluation of a bagging empirical Bayes (EB) method, for its ability to select a subset

of SNP markers that are significantly associated with the trait and then to use this subset of SNPs

for accurate breeding value prediction. The evaluation was performed using several simulated and

two real datasets consisting of genotypes and phenotypes.
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The accuracy of EBV prediction is dependent on many factors, such as the number of samples

and the proportion of the phenotypic variance attributable to genetic variation (i.e. heritability).

The more phenotypic records available, the more observations there will be per haplotype, or per

marker allele if single markers are used, and the higher the accuracy of QTL detection. However,

for the SNP datasets we use, the number of SNPs is usually relatively large compared to the number

of samples, which makes the detection of QTL-associated SNPs difficult. On the other hand, the

higher the heritability, the more accurate the prediction of phenotype expected based on marker

information, and the fewer records may be required while still achieving high prediction accuracy

[23]. Nevertheless, high heritability cannot be guaranteed for most economically important traits.

The experiment design is as follows: For each dataset, the bagging EB method is used to identify

potential trait-associated SNPs. These SNPs are then used in regression models to predict breeding

values. Seven commonly employed machine learning regression models are used for the predic-

tion: support vector machine (SVM), Gaussian process (GP), principal component analysis (PCA),

partial least square regression (PLS), ridge regression (Ridge), least absolute shrinkage and selec-

tion operator (LASSO) and elastic net (ElasticNet). Ten types of simulation datasets are simulated,

which model different dominance levels (completely recessive, partially recessive, co-dominant,

partially dominant, completely dominant) and different levels of background noise. One of the real

datasets is a dairy dataset, which contains 462 samples and 1341 SNPs. The other one is a beef

dataset, which contains 433 samples and 47108 SNPs.

In summary, experimental results show that the bagging EB method is able to detect most of

the simulated QTL even on datasets with large background noise. Also, when using the markers

selected by the bagging EB method to predict breeding values, the prediction accuracy improved

dramatically on the simulation datasets. However, the prediction accuracy did not improve much

when using the markers selected by the EB method on the two real datasets. The best accuracy

of EBV prediction achieve for the dairy dataset is 0.57 and for the beef dataset is 0.73. The top 3

regression methods for the dairy dataset are Ridge, SVM and PLS, and the top 3 regression methods

for the dairy dataset are GP, Ridge and PLS.

The rest of this thesis is organized as follows: in the next chapter, some background information

on QTL mapping and genomic selection are given. In the third chapter, we give a brief review of

the related work in QTL mapping, EBV prediction. The fourth chapter presents the datasets and

methods used in the experiment. The experimental design and results are given in the fifth chapter.

Finally, chapter six concludes the thesis with some potential future research directions.
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Chapter 2

Background

In livestock production systems, a large number of the economically important traits, such as milk

yield and protein yield, are quantitative in nature. That is, they are measured to a numerical scale, as

opposed to categorical variation traits (those that have two or several character values, e.g. disease,

sex, eye color in humans). The phenotypes of quantitative traits typically vary along a continuous

gradient depicted by a Gaussian distribution. The genetic variation of a quantitative trait is usually

attributable to multiple genes and their interactions with the environment. For example, increases in

milk production go together with increases in feed quality.

2.1 QTL Mapping

2.1.1 Goals of QTL Mapping

QTL refer to chromosomal loci each containing a gene that has an effect on the phenotypic trait

being assayed or measured. QTL mapping is the technique that identifies QTL associated with that

particular quantitative trait.

QTL mapping is a problem of great importance to biologists. First of all, QTL mapping can

lead to the identification of the underlying genetic difference responsible for the phenotypic effect.

Secondly, many QTL are associated with a particular trait and these QTL are often found on different

chromosomes. Therefore, identification of QTL is critical for understanding the complexity of the

genetic architecture of a trait. Moreover, knowledge of these loci can aid in selective breeding

decision to improve the economically important trait [23].

2.1.2 The Distribution of QTL Effects

It has been verified that the amount of genetically inherited materials (i.e. genes) in the genome is

finite, which means the number of loci underlying the variation in quantitative traits is also finite.

In addition, the distribution of QTL effects may be described by a negative exponential distribution:

there are only a few loci with moderate to large effects while the large number of remaining loci

explain a relatively small portion of the phenotypic variability [45]. Although any locus with an
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effect on the quantitative trait is called a QTL, we are only interested in the search for QTL that

have moderate to large effects on the trait, and the use of this information to increase the accuracy

of breeding selection. Figure 2.1 shows the number of QTL vs. QTL effects based on QTL mapping

experiments in two datasets: pigs and dairy cattle [23].

Figure 2.1: Distribution of QTL effects, which shows that there are many loci with small effects,
and few loci with large effects [23].

2.1.3 Linkage Mapping

QTL detection using the linkage mapping approach has been performed for a large number of traits

in livestock species for many years. To begin, a set of genetic markers must be developed, where a

marker is an identifiable physical region of genome whose inheritance can be monitored. Markers

are used because the actual genes that affect a quantitative trait are usually unknown and can only

be identified using genetic markers that are linked to QTL. We can check the associations between

allelic variation at the marker loci and variation in the quantitative trait to detect markers that are

significantly more likely to co-occur with the trait than expected by chance. When there is evidence

for co-occurrence, we say that the markers are linked to QTL which cause the variation of the

quantitative trait.

Here is an example illustrating the procedures of QTL detection using the linkage mapping

approach. We are assuming that a sire is heterozygous at a marker locus, and it has a large number

of progeny. Suppose the alleles carried at this marker locus are ‘A’ and ‘B’ respectively. We can

separate the progeny into two groups, those that receive allele ‘A’ and those that receive allele ‘B’.

If there is a significant difference between these two groups for a particular quantitative trait, it

indicates that this marker is linked to a QTL of that trait.

The disadvantage of the linkage mapping approach is that it requires thousands of progeny. Oth-

erwise, the QTL are mapped to very large confidence intervals on the chromosome [1]. Such large

confidence intervals will cause two problems. First, a large number of genes need to be investigated
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in such large chromosome intervals if we want to identify the genes underlying the quantitative trait.

Secondly, it will decrease the confidence of using QTL to assist selective breeding decisions, be-

cause the linkage between marker and QTL is not sufficiently ensured in such a large confidence

interval.

Due to the availability of a large volume of SNP markers in livestock, we can exploit the LD

between SNP markers and QTL to do QTL mapping, which overcomes the problem of linkage

mapping as we can exploit LD in the whole population.

2.1.4 SNP

SNPs are an abundant source of genetic variation in the genome. It was shown that on average

99.9% of human’s DNA sequence will be identical to that of another individual. However, over 80%

of this 0.1% human genome variation comes in the form of SNPs [50]. Moreover, SNPs have a low

mutation rate, which makes them useful in QTL analysis as markers in place of microsatellites.

As the name implies, a SNP marker is a DNA sequence difference occurring in a nucleotide be-

tween members of a species at a specific locus in the genome. For example, here are two sequenced

DNA fragments from two people (DNA is comprised of four chemical entities, i.e. nucleotides A,

G, C and T):

Individual 1: AGTCGCGC

Individual 2: AGTTGCGC

One can see that there is a difference in the fourth nucleotide, which is called a SNP if this

variation is observed in the general population at a frequency greater than 1% [50]. With the advent

of new molecular technology, a SNP marker can be genotyped in an individual for less than 1cUSD.

2.1.5 QTL Mapping Based on LD

The classical definition of LD is the non-random association of alleles between two or more loci,

and not necessarily on the same chromosome [26]. Consider two marker loci A and B each with two

alleles. Suppose A has alleles A1 andA2, and B has alleles B1 and B2. If we look at the haplotypes

for loci A and B, there are four possible haplotypes: A1B1, A1B2, A2B1 andA2B2. Assuming that

the frequencies of alleles A1, A2, B1 and B2 in the population are all 0.5. If the two loci and the

alleles are independent from each other, then the expected frequencies of each of the four haplotypes

in the population would be 0.25. The LD level of the two loci is calculated by the deviation of the

observed frequency of haplotypes from the expected value 0.25.

LD describes the situation that the combinations of genetic markers occur more or less frequently

in a population than would be expected from random associations. This definition can be extended to

the non-random association between markers and QTL. The underlying assumption of LD mapping

of QTL is that a marker will affect the trait only if it is in LD with an unobserved QTL.
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The difference between linkage mapping and LD mapping is the following. Linkage analysis de-

scribes the association between markers and QTL within families. The linkage can be broken down

by recombination after only a few generations [23]. Therefore, the linkage between the markers and

QTL is not sufficient to ensure that it will persist across the population. In contrast, LD mapping

requires that a marker is in LD with a QTL across the whole population. To achieve this, the associ-

ation must have persisted for a considerable number of generations. As a result, the marker should

be closely linked to the QTL.

In conclusion, LD mapping of QTL exploits population LD levels between markers and QTL.

The simplest method to perform LD mapping is to do a genome wide association study (GWAS)

using single marker regressions.

2.2 Breeding Value Estimation

Genetic improvements through selective breeding have been used to improve the quality and prof-

itability of livestock in many countries. Selective breeding is the process of selecting breeding plants

and animals for particular phenotypic traits. Current selection programs in livestock are primarily

based on selection of EBV derived from phenotype for traits of economic importance.

The EBV of an animal is an estimate of the animal’s genetic breeding value for a particular trait.

EBVs do not necessarily reflect animal’s phenotypic performance, which is determined by both

genetics and environment. In some cases, environmental factors can affect an animal’s performance

as much or more than the animal’s genetic inheritance. The EBV is just the estimate of the genetic

component of the phenotypic performance of an animal. As a result, it describes the heritability of

the phenotypic trait, or that part of a trait that is expected to be inherited.

The task of genetic improvement of livestock is to select those animals that are genetically

superior, not animals that have been raised under ideal management conditions. Therefore, we need

to distinguish between genetic and environmental factors influencing phenotypic performance of a

trait. As we know, performance that is the result of good management (i.e. environmental factors)

will not be passed on to the next generation, whereas performance due to genetic superiority will be

inherited by the progeny.

In order to explain the genetic variation of the phenotypic trait, two types of approaches have

been proposed: the traditional quantitative genetics approach and the marker assisted selection

(MAS) approach. There are basically three types of data available for breeding value estimation:

pedigree, phenotypes and DNA markers. The quantitative genetics approach is based on the first

two types of data, while MAS methods take advantage of DNA marker data in addition to the first

two.
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2.2.1 Quantitative Genetics Approaches

In the quantitative genetics approach, the genetic architecture of the trait of interest is treated as

a “black box”. EBV are derived from phenotype without knowing the specific role of any genes

that affect the trait (i.e. without knowing where the genes that control the trait are located in the

genome or what their individual effects are). The overall genetic variance of a quantitative trait is

described by the infinitesimal model, which assumes that the trait is determined by an infinite num-

ber of unlinked and additive loci, and each with an infinitely small effect [18]. The genetic variances

of individual loci are so small that they cannot be investigated separately, but the overall effects of

all genes can be estimated via phenotypic resemblance between relatives. Therefore, the estimate

is made by utilizing all the currently available information of the animal (e.g. the individual’s per-

formance, the parent’s and sibling’s performances and progeny performances). Naturally, the more

information that is available, the greater the accuracy of the EBV, and the estimate will be less likely

to change even when additional information becomes available.

Although the quantitative genetics approaches for selection have been effective for many traits,

they have many limitations. The ideal situation for quantitative genetics selection is that the trait has

high heritability, high quality of data recording and the phenotype can be observed in all individuals

before reproductive age and with a relatively low cost. However, some traits, such as yield in plants,

are of low heritability. Some traits, like milk production in dairy cattle, are only observable in one

gender. And for some traits, such as carcass merit, slaughter quality, the selection decisions must be

made before we can have the phenotype data.

Therefore, as we can see, many traits are not ideally suited to the quantitative genetics approach,

which makes quantitative genetics selection difficult or costly for many traits. Moreover, if we can

gain insights into the “black box” of genetics to elucidate the genetic architecture of the trait by

using information of genetic markers, breeding progress could be greatly enhanced as we will be

able to predict EBV more accurately and earlier in the life of animal (e.g. without examining its

progeny).

2.2.2 MAS

MAS is the use of molecular genetic marker information in selection programs. MAS offers advan-

tages over quantitative genetics approaches as marker information can be obtained for all animals at

a young age and with low cost due to the advent of molecular genetic technology. In general, MAS

is beneficial for traits with low heritability and traits with restrictions on phenotypic recordings, such

as sex limited traits and traits recorded after selection [44].

When making selection decisions based on marker genotypes, a two-step procedure can be ap-

plied. Step 1 estimates the effects of markers in a reference population, while in step 2, the EBV of

selection candidates are calculated using the information obtained in step 1.

Advances in genotyping technology and the discovery of thousands of SNPs in genome sequenc-

7



ing projects have provided new opportunities to find markers in linkage with QTL. Thus the use of

molecular markers in genetics selection programs has become feasible. However, using the newly

developed marker panels is especially challenging due to the high dimensionality of the datasets.

More specifically, it is referred to as a large p (number of SNPs), small n (number of samples) prob-

lem, where the number of molecular markers is usually much larger than the number of samples.

2.2.3 Machine Learning

Machine learning involves the design and application of algorithms to automatically recognize com-

plex patterns in large datasets. Machine learning has been applied in many fields, such as computer

vision, natural language processing, medical diagnosis, bioinformatics, and speech and handwriting

recognition.

When SNPs are used as molecular markers, the number of molecular markers is often much

larger than the sample size (i.e. n � p). Traditional statistical approaches are severely challenged

when dealing of this problem. Therefore, many machine learning techniques have been developed

for large p small n datasets.

The prediction of EBV is essentially a regression problem, which is one of the most widely

studied problems in machine learning. Given a set of known response variables , and a set of features

(i.e. markers), the goal is to predict further responses for new values of the features. The problem

becomes difficult when the sample size n is substantially smaller than the number of features p.

Although many machine learning methods (e.g. SVM) can handle the high dimensionality, applying

a variety of feature selection methods first to remove noise features and select informative features

may still be useful for the prediction [16].

Another issue of potential importance is that the markers might act dependently. A framework

for understanding interactions is necessary when analyzing genetic data; otherwise useful knowledge

(e.g. gene-gene interactions) will go undetected. However, identifying interactions between marker

loci is a challenging problem. Traditional statistical methods have difficulty modeling interactions

because of combinatorial challenge. When the number of loci (i.e. the dimensionality of the dataset)

increases, the number of combinations of interactions increases exponentially. Fortunately, machine

learning offers many powerful models to identify interactions among features in high dimensionality

datasets.

2.3 Genomic Selection

2.3.1 What is Genomic Selection?

Genomic selection is a form of MAS in which genetic markers, assumed to be in LD with QTL,

covering the whole genome are used, so that potentially all the genetic variance is explained by the

markers. Due to the large number of SNPs identified by genome sequencing in livestock species and
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new technology for genotyping large numbers of SNPs for less than 1c USD per SNP, the genomic

selection approach has become feasible for genetic improvement programs. The key feature of

this method is that markers across the whole genome are used to divide the entire genome up into

chromosomal segments (e.g. defined by adjacent markers) [45].

When performing genomic selection, the initial input is a SNP dataset assayed on a moderate

number of animals with phenotypes. A regression model is then built from the input and used to

predict the EBVs of testing samples, which have SNP genotypes but no phenotypic information.

2.3.2 Why use Genomic Selection?

Genomic selection has radically altered the structure of livestock breeding programs as the selection

decision can be made based on genetic markers only. Optimal breeding programs designed with

genomic selection can gain an increase in selection accuracy [23]. Furthermore, formal progeny

testing will be unnecessary, which would potentially cut 92% of the cost for operating dairy breeding

companies [55]. Moreover, genomic selection can predict EBVs for animals at a young age, which

can reduce the generation interval by at least half [55].

2.3.3 Challenges for Genomic Selection

Implementation of Genomic selection proceeds in two steps:

1. Estimation of the effects of markers in a reference population for the quantitative trait.

2. Prediction of EBVs for selection candidates by summing across genome all the marker effects.

The above genomic selection approach can be used to map QTL as well as to predict EBVs.

Note that, genomic selection can proceed using single markers, marker haplotypes, or using an IBD

approach.

The factors governing the accuracy of estimates of QTL effects include the following:

• The number of samples in the reference population. The more phenotypic records available,

the more observations there will be per haplotype, or per marker allele if single markers are

used, and the higher the accuracy of genomic selection. This increased accuracy is because

individual markers or haplotypes are likely to have small effects, so a large amount of data is

needed to accurately estimate their effects.

• The proportion of the phenotypic variance explained by the DNA markers (i.e. heritability).

The higher the heritability, the more accurate the prediction of phenotype based on marker

information.
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Chapter 3

Related Work

3.1 QTL Mapping

Understanding the complex genetic architecture of quantitative traits is a principal goal for biol-

ogists. If we can locate the genes affecting quantitative traits, it will lead to characterization and

possible manipulation of these genes. Moreover, knowledge of these loci can aid in designing selec-

tion experiments to improve the traits.

Until recently, it was generally believed that quantitative traits are determined by a large num-

ber of QTL, each having a small effect on the phenotype. If this were true, then the molecular

characterization of QTL would not be an attractive proposition, because the very large amount of

effort required would probably not equal the value gained from characterizing each locus. However,

analysis of QTL segregating from many experiments verified that only a small number of genetic

loci contributed to a large proportion of the variance of each trait, whose effects can be obtained via

segregation analysis [69].

Therefore, although the term QTL applies to any gene that has an effect on the quantitative trait,

in practice, we seek only the major QTL, which have moderate to large effects, because only these

have effects that are large enough to be detected and mapped on the genome.

The use of genetic markers to locate QTL is well established. There are a large number of

different QTL mapping methods for identifying QTL by exploiting LD between markers and QTL

[5]. Our concentration here is almost exclusively on detecting QTL, while the estimation of the QTL

effects and precise locations are of secondary importance. There are basically two kinds of methods

for QTL mapping, the ones that model a single QTL at a time and those that attempt to model several

or all QTL at once.

3.1.1 Single-QTL Models

Considerable attention has been paid to the case of association between a single marker and a quan-

titative trait. The simplest one of all QTL mapping methods is the genome wide association test

between the trait value and the genotypes of marker loci. In this method, each marker locus is
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considered separately to test for association with the trait. If a marker is associated with the trait, it

suggests that the trait is affected by a QTL close to the marker. To estimate the effects of marker loci,

two general methods have been used: least square regression (LS) and maximum-likelihood (ML)

estimation using the estimation-maximization (EM) method [22, 28, 9]. After obtaining the marker

effects, for each marker locus, a number of statistical tests can be used to determine the significance

of the association with the trait, e.g. student’s t statistic, the LOD score, the likelihood ratio statistic

(LRS) and a nonparametric statistic is also available [22, 37, 39, 35].

The second level of QTL mapping is simple interval mapping (SIM) and various modified

versions of SIM. Lander and Botstein presented a likelihood-based framework for interval map-

ping [37]. The basic idea of these methods is to construct a marker genetic map first by dividing

the entire genome into a finite number of intervals 1 or 2 cM apart, which contain putative QTL.

The genotypes of the intervals are not observable but can be inferred from the genotypes of flanking

markers. Two flanking markers define an interval that may contain several putative QTL. Interval

mapping is a single-QTL model in the sense that it tests one interval at a time. Only effects of the

putative QTL at the current position are included in the model and all other QTL effects are ignored.

Interval mapping has several advantages over analysis at single marker locus. First of all and per-

haps most important, interval mapping allows incomplete marker genotype data. If an individual is

missing the marker genotype for a flanking marker, one can move to the next flanking marker whose

genotype data is available. Secondly, interval mapping can improve estimates of QTL effects. If

using single marker locus analysis, the effect at a marker locus might be attenuated as a result of

recombination between the marker and the QTL [5].

The disadvantage of SIM is that it does not take account of all markers at once, which causes the

problem called ghosting effects. The ghosting effects problem refers to the situation where if there

is a QTL in one interval, adjacent intervals may also show peaks with “significant” likelihood ratios.

“If a QTL is actually present in one interval, the hypothesis of a QTL in an adjacent interval will

still fit the data better than the hypothesis of no QTL at all” [9].

Motivated by the dependency between markers, a variant of the interval mapping method, com-

posite interval mapping, was proposed by Jansen [27]. Composite interval mapping treats QTL

effects ignored by SIM as background effects, which are absorbed by the other selective markers

(called the co-factors) outside the tested interval. Composite interval mapping can substantially im-

prove the efficiency of QTL mapping as it reduces the confounding effects from nearby QTL if the

background markers and the target interval are linked.

However, to maximize parameter estimation efficiency and statistical power and to estimate

epistasis (i.e. interaction effects between QTL), multiple QTL must be mapped simultaneously.

Moreover, because all QTL effects are estimated simultaneously, the problem of over-estimation of

QTL effects due to single QTL analysis can be overcome [23].
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3.1.2 Multiple-QTL Models

It is better to study all QTL jointly because they may be correlated due to physical linkage of their

gene products to act interactively in determining the phenotype of the trait. For example, a dis-

ease might occur only if a particular combination of genotypes is present at different susceptibility

loci, instead of just the result of a single disease gene alone. Therefore, multiple QTL mapping

has become the state-of-the-art QTL mapping method. However, these methods require orders of

magnitude more computation as the number of genetic markers is far larger than sample size, which

is called the over-saturated model. Special techniques are required to deal with the over-saturated

model if we want to study all of the QTL jointly. In general, there are two ways to handle such

over-saturated model: variable selection and shrinkage estimation.

Variable selection is an important technique for dimension reduction. Several heuristic search

approaches have been taken for selecting the optimal set of putative QTL. Kao et al. adopted a

stepwise regression approach to add and delete QTL progressively until the model is stabilized [30].

QTL are added to the model if they significantly improve the fit of the existing model. It seems,

however, quite arbitrary to set the effects of loci to zero that are below the significance threshold and

include the full effects of those that are above this threshold. Furthermore, the selection of loci with

the largest effects would probably result in the inclusion of over-predicted effects in the model.

Bayesian variable selection is an alternative approach. It assumes a prior for all loci and priori

distributions for the unknowns in the model. Inference is then based on the conditional distribution of

the unknowns given the observed data, the posterior distribution. A Bayesian method implemented

via the Markov chain Monte Carlo (MCMC) algorithm has been developed for mapping multiple

QTL [25]. The number of QTL is determined either by the Bayes factor or by reversible-jump

MCMC. It has been noted that the reversible-jump MCMC for model selection usually has the

problem of slow convergence.

Instead of deleting all non-significant variables from the model, in shrinkage analysis, all vari-

ables are included but their estimated effects are shrunk toward zero. Ridge regression is a typical

example of shrinkage estimation. Recently, Xu showed that the usual ridge regression method can

fail if the number of model effects is too large [68]. Ridge regression actually has a Bayesian anal-

ogy. The small positive number added to the diagonal elements of the coefficient matrix in ridge

regression is equivalent to the ratio of the residual variance to the variance parameter of the QTL

effects. Xu then modified the variance parameter of the prior distribution of the QTL effects and let

the variance parameter vary across QTL [69]. As a result, the method can handle models with the

number of effects many times larger than the number of samples.
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3.2 EBV Prediction

3.2.1 Genomic Selection

A number of approaches have been proposed for breeding value estimation. The key difference

between these approaches are the underlying genetic models and the assumptions they make about

the variances of haplotype or single marker effects across chromosomal segments.

Least Square Regression (LR)

As described by Meuwissen et al., LR genomic selection treats marker effects as fixed in the re-

gression model and uses single marker regression analysis to test the statistical significance of each

marker separately [45]. Next the multiple regression model is used to select the most significant

markers, which pass the significance threshold, and to estimate their effects simultaneously, while

all of the other marker effects are assumed to be zero. Due to the degrees of freedom shortage in

LR, when the number of markers is larger than the number of phenotypic records, a regular LR

approach would fail. Therefore, by imposing a significance threshold, the dimension of the model

can be reduced significantly.

One of the problems that arises is the selection of the significance threshold. Another problem is

the over-estimation of marker effects due to the single marker regression analysis for the selection

of marker effects to be included in the final regression model.

Ridge Regression and Best Linear Unbiased Prediction (BLUP)

Whittaker et al. proposed a ridge regression MAS method in an attempt to avoid the problem of

over-estimation [66]. In ridge regression, the marker effects are not treated as fixed effects, instead,

the marker effects are estimated by shrinking toward the population mean. All marker effects can be

estimated simultaneously, which overcomes the problem of significance testing.

In ridge regression, the effects of markers are estimated by:

ĝ = (XTX + λI)−1XT y, (3.1)

where X is a matrix allocating all marker genotypes or haplotypes to phenotypes, and y is a vector

of phenotypes. For BLUP as used by Meuwissen et al., λ is equal to σ 2
e/σ

2
g in the equation for

ridge regression, where σ2
e is the error variance and σ2

g is the variance of the effects across all

segments [45].

Both the ridge regression method and BLUP assume the variances of all marker effects to be

the same. Actually, the ridge regression method uses the infinitesimal model by assuming that traits

are determined by an infinite number of markers, each with an infinitesimally small effect scattered

along the chromosomes. This model has been exceptionally valuable for animal breeding, and

forms the basis for breeding value estimation theory. However, this assumption does not capture

the “prior” knowledge that many markers have negligible effects while only a few have significant
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effects. Therefore, the marker with the largest variance will tend to have its effect over-estimated,

which will decrease the accuracy of EBV prediction. Better estimates of breeding value can be

obtained by methods that allow varied variance for different markers.

Bayesian Methods

The Bayesian method assumes varied variance of effects for different markers, and the variances are

estimated by using a prior distribution.

In probability theory, Bayes’ theorem relates the conditional probabilities of two random events

by a simple rule

P (x|y) =
P (xy)
P (y)

=
P (y|x)P (x)

P (y)
, (3.2)

where

• P (x) is the prior probability of x. It is “prior” in the sense that it does not take into account

any information about y, and allows us to incorporate prior knowledge into the estimate of x.

• P (x|y) is the conditional probability of x, given y. It is also called the posterior probability,

because it is derived from or depends upon the specified value of y.

• P (y|x) is the conditional probability of y given x.

• P (y) is the prior probability of y, and always acts as a constant.

A number of approaches have been proposed to calculate the posterior distribution. To make things

easy, it assumes that the data are normally distributed, and the prior and posterior distributions are

also assumed to be normally distributed.

Meuwissen et al. described a Bayesian method to estimate both the chromosome segments

effects and their variances simultaneously. The experimental results of Meuwissen et al. showed

that the prior distribution of the variances of effects across chromosome segments was an inverted

χ-square distribution. It is consistent with what would be expected from the theorem that many

QTL have small effects while a few have large effects [45]. An advantage of using an inverted χ-

square distribution as a prior for the variances is that with normally distributed data, the posterior

is also inverted χ-square. Meuwissen et al.’s Bayesian method uses Gibbs sampling to estimate

the variances of effects as we cannot estimate them directly because they are conditional on the

unknown marker effects [45].

Xu also described a Bayesian method for single SNP markers with a similar prior for the variance

of chromosome segment effects, i.e. an inverted χ-square distribution [68]. The implicit assumption

of Xu is that the effect of marker i on the trait will absorb partly the effects of all QTL located

between markers i − 1 and i + 1 [68]. The validity of this assumption will depend on the LD

between the markers and the QTL. Actually, Xu proposed this method for QTL mapping instead

of EBV prediction. As a QTL was restricted in adjacent marker brackets, the QTL was mapped
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to a small interval. Therefore, this method gives a more precise estimate of QTL locations. Many

Bayesian methods that have been developed for QTL mapping can also be used for EBV prediction,

such as the Bayesian shrinkage method and empirical Bayes method.

3.2.2 Factors Affecting the Accuracy of EBV Prediction

The accuracy of EBV prediction depends on the number of markers, the number of phenotypic

records per haplotype or marker allele if single markers are used, the heritability of the trait and the

ratio of non-additive effects to additive effects for the trait.

The number of markers required is determined by the level of LD between adjacent markers.

Meuwissen et al. stated that the level of LD should be > 0.2 for genomic selection to be successful

[45]. Calus et al. used simulation to assess the effect of the level of LD between adjacent marker

pairs on the accuracy of EBV prediction. They found that the accuracy increased dramatically as the

level of LD between adjacent markers increased. In a dairy cattle population, in order to achieve an

LD level of 0.2 between adjacent markers, the markers should spaced at most 100kb apart [8].

Meuwissen et al. compared the accuracy of EBV prediction with different numbers of pheno-

typic records. Their results suggest that 2000 phenotypic records are required to accurately estimate

the haplotype or marker effects [45]. It is easy to see that the more phenotypic records are avail-

able, the more observations there will be per haplotype or marker, and the higher the accuracy of

estimation of marker effects.

For heritability, higher heritability means that the phenotype is more dependent on the genotype.

Therefore, the more accurate the prediction will be.
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Chapter 4

Datasets and Methods

This thesis encompasses two main objectives:

• QTL detection, which can be regarded as an association study between QTL and the pheno-

typic trait. Our focus here is exclusively on detecting QTL, considering the estimation of the

QTL effects and precise locations of secondary importance. As we are using a SNP dataset in

our study, this objective can also be regarded as the detection of a subset of SNPs which are

highly correlated with the trait.

• EBV prediction. The accuracy of the predicted EBV values is important for the selection of

the best breeding or performing animals.

The focus of this work is mainly on the evaluation of an EB method, in terms of its ability to

select a subset of SNP markers for accurate breeding value prediction. The evaluation was performed

using several simulated and real datasets consisting of genotypes and phenotypes.

4.1 Datasets

4.1.1 Dairy Dataset

A total of 462 Canadian Holstein dairy bulls from Semex Canada (Guelph, ON) were used in the

study. 319 of them originating from 10 core sire families, and the rest (143) from the general

pedigree. A set of 1536 SNP markers was selected to strategically represent potential candidate

genes across the bovine genome sequence assembly. After removing 139 poorly amplified and 56

monomorphic SNPs, 1341 SNPs were used for further analysis [34].

Five production traits: milk yield (MY), protein yield (PY), fat yield (FY), protein percentage

(PP) and fat percentage (FP) are used in this study for prediction. The systematical environment

effects of each phenotype trait have already been excluded by BLUP.
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4.1.2 Beef Dataset

This dataset includes genotype, phenotype, and pedigree information for cattle located at the Univer-

sity of Alberta’s Kinsella Ranch, Alberta. The dataset consists of a set of animals for which various

traits were measured, including feed efficiency. The genotypes of these animals, and the genotypes

of their sires were also determined.

A 58K genotyping panel developed by Illumina was used for genotyping [41]. Positions of

SNPs on the bovine genome assembly version Bta V 4.0 were determined by BLAST and sequence

alignment. There are 469 genotyped animals and a total of 51828 markers in the dataset. 47108 out

of the 51828 total markers are polymorphic markers and 446 out of the 469 genotyped animals have

both genotype and phenotype values.

We did some pre-processing for this dataset as the number of SNPs far exceeds the number of

samples. Before applying EBV prediction algorithms to this dataset, we first removed some SNPs

from the dataset, which we think are redundant for prediction purposes. We selected SNPs randomly

from each chromosome but ensured that the proportion of SNPs on each chromosome is consistent

with that in the original dataset. After the pre-processing, only 5000 SNPs remained in the dataset.

In summary, the dataset used in our study contains 446 samples and 5000 SNPs. Three produc-

tion traits: ADG, birth weight (BW) and RFI are used in this study for prediction. The EBVs of

these traits are derived from phenotype and pedigrees by BLUP.

4.1.3 Simulation Datasets

In the simulation, we assume that the QTL act additively because identifying interactions between

loci is a much more difficult problem. Considering only the simple additive case will lead to greater

clarity.

Suppose yi is the phenotypic value of the ith animal, i = 1, 2, . . . , n. The simulation model for

yi is

yi =
p∑
j=1

Xijbj + ei (4.1)

where

• p is the number of QTL included in the model.

• Xij is the genotype information.

• bj is the jth QTL effect.

• ei is the background error ∼ N(0, β · std(QTLi)):

– β is the level of background noise

– std(QTLi) is the standard deviation of all the QTL effects of the i th animal.
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We also consider several dominance levels (α) to simulate. Suppose the alleles carried at a

marker locus is A and B, and A is the QTL allele. Assuming that an animal is heterozygous at that

marker locus, and then the effects caused by the heterozygous marker can be calculated in this way:

Effectheterozygous = α · EffectsAA (4.2)

• completely recessive: α = 0.

• partially recessive: α = 0.25.

• co-dominant: α = 0.5.

• partially dominant: α = 0.75.

• completely dominant: α = 1.

We simulated 100 datasets for each of the following 10 types:

• α = 0, β = 0.

• α = 0.25, β = 0.

• α = 0.5, β = 0;β = 0.1;β = 0.2;β = 0.3;β = 0.4;β = 0.5.

• α = 0.75, β = 0.

• α = 1, β = 0.

Therefore, a total of 1000 datasets were simulated, with each dataset containing 353 samples

and 1341 SNPs on a chromosome. The reason that we only simulate different background noise for

the co-dominant model is that it is believed that the real data usually follows the co-dominant model

with background noise.

4.1.4 Data Pre-processing

As mentioned earlier, the big challenge of SNP datasets is that the number of features (i.e. SNPs) is

far larger than the number of samples (i.e. animals). Therefore, our fist step in data pre-processing

is to remove some features that are not informative (i.e. the same genotype is present in all or almost

all animals). If a feature has the same values for almost all animals, we remove this feature from the

dataset.
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SNP encoding

The genotype of each SNP (feature) can only take three values (e.g. AA, AT, TT): 2 homozygous

alleles (i.e. AA, TT) and 1 heterozygosis allele (i.e. AT). For each SNP, we define one of the

homozygous allele as homozygous majority if its occurrence is more frequent and the remaining

one is defined as homozygous minority.

• Co-dominance representation :

– homozygous majority → 1

– heterozygosis → 0

– homozygous minority → −1

• Binary representation :

– homozygous majority → 001

– heterozygosis → 010

– homozygous minority → 100

The binary representation seems to make more sense as it measures the presence and absence of

the effect of each allele. SNP encoding is also one of the tasks that we want to evaluate in our

experiments.

4.2 Methods

4.2.1 Feature Selection Methods

Because of the high dimensionality and small sample size of each SNP dataset, it is very necessary

to select a subset of SNPs that are highly correlated with the phenotypic trait first. Feature selection

is the commonly used technique in machine learning to select a subset of relevant features to build

robust learning models.

Feature selection can help to improve the learning performance of many machine learning algo-

rithms by removing irrelevant and redundant features from the high dimensional data.

The feature selection method also serves as a QTL detection method, i.e. we may consider the

selected subset of SNPs as related to QTL. Therefore, we can locate the QTL for the phenotypic trait

and gain a better understanding about the genetic structure of the trait. Moreover, if the number of

markers required to apply genomic selection can be reduced, this could represent a large savings to

the breeding program for marker genotyping.
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Correlation-based Feature Selection

The correlation-based feature selection method evaluates features individually by measuring their

correlation with the phenotypic trait. The aim is to select a subset of features by considering the

individual predictive ability of each feature along with the degree of redundancy between them. In

other words, subsets of features that are highly correlated with the phenotypic trait while having low

inter-correlation are preferred.

The correlation-based feature selection method iteratively adds features with the highest corre-

lation with the phenotypic trait as long as there is not already a feature in the selected subset that has

a higher correlation with the feature currently in question.

M5

The basic idea behind the M5 feature selection is actually model selection using Akaike Information

Criterion (AIC). The AIC is given by the following formula:

AIC = 2(p+ 1) + n[ln(
ln(yi − f(xi))2

n
) + 1] (4.3)

where k is the number of parameters in the statistical model, and i = 1, ..., n is the observations, n

is the number of observations.

Lower AIC values indicate a better model. The AIC methodology attempts to find the model

that best explains the data with a minimum of free parameters. The M5 method adopts the greedy

backward elimination approach for feature selection by stepping through the parameters and remov-

ing the one with the smallest standardized coefficient until no improvement is observed in the score

given by the AIC.

Empirical Bayes (EB) [69]

The EB method is a selective shrinkage method for the “large p small n” model [69]. Selective

shrinkage means different regression coefficients are assigned different prior variances. A smaller

prior variance will cause the regression coefficient to shrink more, while a larger prior variance

will lead to less shrinkage. As mentioned before, most quantitative traits are actually controlled

by a large number of markers with small effects and a few markers with large effects. As a result,

allowing the ridge factor to vary across different markers instead of allowing all model effects to be

shrunk by the same factor would be better.

Let yi for i = 1, . . . , n be the phenotypic value for the i th animal in the population dataset. The

linear model for yi is

yi = Xα+
p∑
j=1

zijγj + ei (4.4)

where X and α are defined as the environmental variants, which are not genetically interesting

but should be included in the model to reduce the residual error. X is identity matrix. p is the
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total number of markers (SNPs) in the entire genome, z ij is the genotype of the j th marker for

individual i, γj is the QTL effect associated with marker j, and ei is the residual error with a

N(0, σ2) distribution.

This model is called an over-saturated regression model because q + p � n. We can always

assume that q � n for genomic selection datasets, so we can estimate α easily by ordinary least-

squares method. However, p can be very large and most elements of γ will be zero or close to zero.

When the number of markers exceeds the number of animals, the ordinary least-squares approach

will have no unique solution. Therefore, Xu proposed a Bayesian regression method to handle the

problem of over saturation [69].

In the Bayesian framework, every regression parameters of γ j is considered as a random variable

with a prior distribution. The purpose of Bayesian analysis is to infer the posterior distribution of

the parameters given the observed data. The distribution of the observable is a likelihood function

of the unknown parameters.

A normal prior distributionN(0, σ2
j ) is assigned to γ with σ2

j ∼ Inv − χ2(τ, ω) as the prior for

σ2
j , where τ is the degree of freedom (prior belief) and ω > 0 is the scale parameter. The actual

form of the inverse χ-square distribution is

p(σ2
j ) ∝ (σ2

j )
−(τ+2)/2 exp(−1

2
ω/σ2

j ). (4.5)

The likelihood is proportional to

p(y|θ) = φn(y;Xα+ Zγ, σ2), (4.6)

where θ = (α, σ2, γ), and φn(x; a, b) represents the n-dimensional multivariate normal density for

vector x with mean a and covariance matrix b. Therefore, the prior density is proportional to

p(θ|D) = φp(γ; 0, D), (4.7)

where D = diag(σ2
1 , σ

2
2 , . . . , σ

2
p) and with a distribution of

p(D) = ϕp(D; τ, ω) ∝ |D|−(τ+2)/2 exp−ω
2
tr(D−1). (4.8)

The posterior distribution of θ, p(θ|y), is proportional to p(θ, y,D)

p(θ, y,D) = p(y|θ)p(θ|D)p(D). (4.9)

From above, we can then get the joint likelihood function for ψ = (α, σ 2, D) as proportional to

p(y|ψ) =
∫
. . .

∫
p(θ|y)dγ = φn(y;Xα, V )ϕp(D; τ, ω), (4.10)

where ψ is the vector of parameters in the model, and V =
∑p

j=1 ZjZ
T
j σ

2
j + Iσ2. Finally, the log

likelihood function for parameter ψ is

L(ψ) = −1
2

log |V | − 1
2
(y −Xα)TV −1(y −Xα) − 1

2
(τ + 2) log |D| − ω

2
tr(D−1). (4.11)
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The maximum likelihood estimation of ψ can be estimated by using the following algorithm itera-

tively.

Start with some initialized values of the parameters ψ (t) for t = 0. We can obtain ψ(t+1) by

maximizing the log likelihood function given ψ (t). Denote ψk as the kth element of ψ, then the

log likelihood function for ψk given ψ(t) is denoted by L(ψk|ψ(t)). Then, the maximum likelihood

estimation of ψk conditional on ψ(t) can be obtained by setting ∂
∂ψk

L(ψk|ψ(t)) = 0 and solving for

ψk. Here are the steps of the algorithm [69]:

• Step 1: Updating the environment effects using

α(t+1) = [XT (V (t))−1X ]−1XT (V (t))−1y; (4.12)

• Step 2: Updating the residual variance using

σ2(t+1) =
σ2(t)

n
(y −Xα(t))T (V (t))−1(y −Xα(t)); (4.13)

• Step 3: Updating σ2
j (j = 1, . . . , p) by maximizing

L(σ2
j |ψ(t)) = −1

2
log(ZTj (V (t))−1Zj(σ2

j − σ
2(t)
j ) + 1)

+
1
2

(σ2
j − σ

2(t)
j )[(y −Xα(t))T (V (t))−1Zj]2

ZTj (V (t))−1Zj)(σ2
j − σ

2(t)
j ) + 1

− 1
2
(τ + 2) log σ2

j −
ω

2σ2
j

;

(4.14)

• Step 4: Repeat Steps 1-3 until a certain criterion of convergence is satisfied.

The striking feature of the EB method is that most of the markers have an estimated effect close to

zero. Therefore, the signal of QTL associated markers are so clear that we can detect these markers

without effort.

Bagging EB

The EB method did capture the most significant features from the dataset, however, the problem is

that it also ignores a lot of other informative features, which would definitely affect the accuracy of

EBV prediction. Therefore, we proposed the bagging EB method to overcome this problem. Here

is the procedure of the bagging strategy:

Given a dataset, we generated 999 new datasets having the identical genotype data but re-scaled

trait values. The scale ratios are random numbers selected out of range [0.001, 1000]. On these 1000

datasets, the EB algorithm was run and the returned SNPs of significant effects were collected.

4.2.2 Regression Methods

We applied seven regression methods which are commonly used in the field of machine learning

to deal with high dimensional data. These methods are SVM, GP, PCA, PLS, Ridge, LASSO and

ElasticNet.
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Support Vector Machine

The SVM was developed by Vapnik to solve the classification problem [62]. But gradually, SVMs

have been successfully extended to regression problems. SVMs are gaining popularity due to many

attractive features and promising empirical performance. They have been used for isolated hand-

written digit recognition, object recognition, speaker identification, face detection in images, and

text categorization [10,2,49,29]. For the regression estimation case, SVMs have been compared on

benchmark time series prediction tests, the Boston housing problem [49,15,48,47]. In most of these

cases, SVM generalization performance either matches or is significantly better than that of other

competing methods.

The regression problem can be stated as: given a training data set D = {(x i, yi)|i = 1, 2, ..., n},

of input vectors x and associated targets y, the goal is to get a function g(x) to infer the output y for

a new input data vector x. Any practical regression algorithm has a loss function L(y, g(x)), which

describes how the estimated values deviate from the true values. Many forms for the loss function

can be found in the literature: e.g. linear, quadratic loss function, exponential. Here, Vapnik’s loss

function is used, which is known as the ε - insensitive loss function (also called the soft margin loss

function) and defined as [62]:

L(y, g(x)) =
{

0 if|y − g(x)| ≤ ε
|y − g(x)| − ε otherwise (4.15)

where ε > 0 is a predefined constant which controls the noise tolerance. With the ε - insensitive loss

function, the goal is to find g(x) that has at most ε deviation from the actually obtained targets y i for

all training data, and at the same time is as flat as possible. In other words, the regression algorithm

does not care about errors as long as they are less than ε, but will not accept any deviation larger

than this.

Figure 4.1: The Soft Margin Loss Function for linear SVM [15].

For the simplest case, function g can take the following linear form: g(x) = w.x + b. Thus, the

regression problem can be written as a convex optimization problem:

minimize 1
2 ||w||2

subject to |yi − (w · y + b)| ≤ ε.
(4.16)

As shown in Figure 4.1, only the points outside the shaded region contribute to the cost, as the

deviations are penalized in a linear fashion. For complicated problems, non-linear kernel functions
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have been used to replace the dot product, particularly to reduce the effect of outliers on the classifier.

Some common used kernel functions are listed below:

• Polynomial (homogeneous): k(xi, xj) = (x, x′)p, p ∈ N

• Polynomial (inhomogeneous): k(xi, xj) = (xi · xj + c)p, p ∈ N, c ≥ 0

• Gaussian Radial Basis Function: k(xi, xj) = exp− ‖xi−xj |2
2σ2

• Radial Basis Function: k(xi, xj) = exp−γ‖xi−xj‖2
, for γ > 0

GP

In the mathematical theory of probability, a GP is a stochastic process for which any finite combina-

tion of random variables have joint Gaussian distributions (or more generally, any function applied

to the random variables will give a normally distributed result) [67]. From the above definition,

we can say that GP specifies a distribution over functions. Inference of continuous values with a

Gaussian process prior is known as Gaussian process regression.

GP is completely specified by a mean function μ(x) and positive definite covariance function

k(x, x′). In most cases, we can assume the random variables have mean zero. For any finite set

of variables, it will have a joint multivariate Gaussian distribution. Therefore, given a set of noise

free training data xi|i = 1, ..., n, we may draw samples f(x1), . . . , f(xn) from the GP prior with

f(x1), . . . , f(xn) ∼ N(0, k), where k is the covariance function k(x, x ′). We want to maker pre-

dictions f ∗ for testing data x∗. The joint distribution of f and f ∗ is as follows:
[
f
f∗

]
∼ N(

[
μ
μ∗

]
,

[
k(x, x)k(x, x∗)
k(x∗, x)k(x∗, x∗)

]
), (4.17)

where μ is the training mean and μ∗ is the testing mean, k(x, x) is the training set covariances,

k(x, x∗) is the training-testing set covariances and k(x∗, x∗) is the testing set covariances. There-

fore, the conditional posterior distribution f ∗ given D = {X, f} is P (f ∗|x∗x, f) with Gaussian

distribution N(μ,
∑

), where

μ = k(x, x∗)k(x, x)−1f, and∑
= k(x∗, x∗) − k(x, x∗)k(x, x)−1k(x∗, x). (4.18)

From the posterior distribution, we can sample function values for the testing data. Then we

can either use the mean values as our predictions, or express our uncertainty of the predictions by

confidence intervals. There are many choices of reasonable prior mean and covariance functions.

Therefore, one important issue is to choose the best prior mean and covariance functions for the

specified dataset.

PCA

PCA is a mathematical procedure that reduces the dimensionality of the data while retaining most

of the variation in the dataset. It accomplishes this reduction by transforming a number of possibly
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correlated variables into a smaller number of uncorrelated variables called principal components,

along which the variation in the data is maximal [56]. More generally, PCA projects the data along

the directions where the data varies the most. By using a few components, each sample can be repre-

sented by relatively few features – the principal components, which are orthogonal linear transforms

of the original variables.

The first principal component accounts for the largest percentage of the variation and the sec-

ond principal component explains the second largest percentage and so on. Typically the first few

principal components account for most of the variation while the remaining principal components

make a negligible contribution. PCA is theoretically the optimal orthogonal linear transformation

for given data in least square terms at the price of greater computational requirement compared with

other dimensionality reduction techniques.

Using PCA to do regression is to predict continuous responses based on estimated regression co-

efficients of constructed principal components instead of original variables. Typically, only a subset

of the principal components are used in regression. Although it is usual to select the principal com-

ponents with the highest variances, the low variance principal components may also be important.

In practice, we often use cross-validation to select a subset of principal components.

PLS

PLS is a statistical method that is similar to PCA as both PLS and PCA produce factor score variables

used in the predictive regression model as linear combinations of the original predictor variables.

PLS and PCA differ in the methods used in extracting the factor scores. In short, PCA reflects the

covariance structure between the predictor variables, while PLS examines the covariance structure

between the responses and corresponding variables [19]. PLS regression finds components from

variables that are also relevant for the responses.

PLS is an extension of the multiple linear regression model. Note that the emphasis is on pre-

dicting the responses but not necessarily on trying to understand the underlying relationship between

the variables. PLS is a method for constructing predictive models when the factors are many and

highly co-linear.

LR

Consider the usual linear regression model: Given p predictors x1, . . . , xp, predict the response

variable Y by the linear model

y = β0 + x1β1 + . . .+ xpβp. (4.19)

Given a dataset, a model fitting procedure gives the vector of coefficients β = (β 0, . . . , βp) =

(X ′X)−1X ′y by minimizing the residual sum square error. However, ordinary least square re-

gression may result in large variable estimates of the regression coefficients when the number of
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parameters to be estimated (p) is large compared to the number of observations (n). From a mathe-

matical standpoint, in this situation, the X ′X matrix is ill-conditioned: the value of its determinant

is nearly 0, and attempts to calculate the inverse of the matrix run into numerical snags with un-

certain final values, and so var(β) will have very large elements. For a statistical model with too

many degrees of freedom, the learner may adjust to very specific random features of the training

data, which have no causal relation to the target function. Therefore, although the performance on

the training examples still increases, the performance on testing data becomes worse. This is the

problem called overfitting.

Several regularized regression methods have been developed in the last few decades to over-

come the overfitting problem of ordinary least squares regression, such as Ridge, LASSO, and more

recently LARS and ElasticNet [60, 17, 75].

Ridge

Ridge is the most commonly used method of regularization and works by adding a quadratic penalty

term for large parameter estimates to the residual sum square error. Ridge reduces this variability by

shrinking the coefficients, resulting in better prediction accuracy at the cost of usually only a small

increase of bias. In Ridge, the sum of squares of the coefficients is constrained as follows:

Lridge(β1, . . . , βp) = ||y −
p∑
j=1

βjxj ||2 + λ1

p∑
j=1

β2
j , (4.20)

where p is the number of predictor variables, β j , j = 1, .., p are the regression coefficients, || · ||
denotes the squared Euclidean norm, and λ1 is the ridge parameter, which determines how much

ridge regression departs from least square regression. The optimal value for the ridge parameter is

estimated by a series of trial and errors, and involves cross validation.

LASSO

LASSO was developed by Tibshirani to improve both prediction accuracy and model interpretability

[60]. The LASSO method reduces the variability of the estimates by shrinking the coefficients and at

the same time produces interpretable models by shrinking some coefficients to exactly zero. In [60],

it was demonstrated that in terms of prediction accuracy and interpretability, the LASSO method

outperforms ridge regression for data with a small to moderate number of moderate-sized effects,

but ridge regression performs better with a large number of small effects.

LASSO minimizes residual sum squared error subject to a bound on the L 1 norm of the coef-

ficients. LASSO constrains the sum of the absolute values of the coefficients using the following

formula:

Llasso(β1, . . . , βp) = ||y −
p∑
j=1

βjxj ||2 + λ2

p∑
j=1

|βj |, (4.21)

where λ2 is the LASSO parameter again estimated by a series of trial and errors and cross validation.
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The limitation of LASSO is that if p > n, the LASSO method selects at most n variables, i.e. the

number of selected coefficients is bounded by the number of observations.

ElasticNet

ElasticNet is a least squares method with both an L1 penalty and a quadratic penalty. The L1

penalty is a LASSO type threshold that performs variable selection thus inducing a sparse model.

The quadratic penalty, related to Ridge, encourages a grouping effect and places no limitation on

the number of variables that may be selected for the model. Therefore, the ElasticNet combines the

Ridge and the LASSO constraints:

Lelasticnet(β1, . . . , βp) = ||y −
p∑
j=1

βjxj ||2 + λ1

p∑
j=1

β2
j + λ2

p∑
j=1

|βj |, (4.22)

where λ1 is the Ridge penalty parameter, penalizing the sum of the squared regression coefficients

and λ2 is the LASSO penalty, penalizing the sum of the absolute values of the regression coefficients.

BLUP

BLUP assumes the infinitesimal model that traits are determined by a large number of genes each

with small effects scattered along the chromosomes. All marker effects can be estimated simultane-

ously through fitting the marker effects as random effects which does not require degrees of freedom

without the problem of significant testing and overestimation. Random effects require however an

estimate of the variance of the marker effects. BLUP assumes that the marker effects are drawn

from normal distribution with constant variance across chromosome segments [45, 32]. The marker

effects can be calculated through:

y = 1nμ+
∑
i

Xigi + e (4.23)

where X is the design matrix allocating all marker genotypes to phenotypes, y is a vector of pheno-

types; gi is the genetic effects of the marker at the ith segment.

The estimates of gi are obtained from the Henderson Mixed model equations:

[
X ′X X ′Z
Z ′X Z ′Z +A−1λ

] [
μ
g

]
=

[
X ′Y
Z ′Y

]
(4.24)

where λ = σ2
e

σ2
g

, σ2
g is the variance of marker effects at a chromosome segment. The problem with

BLUP is the same variance assumption made for every marker. The majority of the markers which

have very little effect on the trait and being estimated to be small but non-zero and their cumulative

effect adds noise to the estimates and dominate the variance of the marker effects.
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Chapter 5

Experiment Results and Discussion

5.1 QTL Mapping

There are 20 pre-defined SNPs in each simulation dataset that are related to QTL. The purpose of this

set of experiments is to detect those SNPs using the bagging EB method. We use two measurements

to guage the performance on each dataset:

• precision = number of correctly detected SNPs / number of all detected SNPs

• recall = number of correctly detected SNPs / number of pre-defined QTL related SNPs=20

We care about recall more than precision, considering precision as a measurement of false pos-

itives. A small number of false positive SNPs should not adversely affect EBV prediction. We use

the average precision and recall over 100 datasets for each simulation type as the precision and recall

for that simulation type.

5.1.1 Effects of Dominance Model
α β Precision Recall

0 0 0.1259 0.4000
0.25 0 0.1887 0.8170
0.5 0 0.5472 1.0000

0.75 0 0.1957 0.8790
1 0 0.1806 0.7754

Table 5.1: SNP Mapping precisions and recalls of the bagging EB method on the 5 types of domi-
nance models. α describes the dominance model and β describes the noise level, respectively, in the
simulation type.

From Table 5.1 , it is apparent that all of the pre-defined QTL-related SNPs can be detected with

the co-dominant model (i.e. α = 0.5). Even for the completely recessive model (i.e. α = 0), 40%

of the pre-defined QTL-related SNPs can still be detected. The average recall of QTL detection for

these five types of dominance models is 0.77428, which is quite a good result for QTL detection

according to our knowledge.
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5.1.2 Effects of Noise Level
α β Precision Recall

0.5 0 0.5472 1.0000
0.5 0.1 0.2557 0.8589
0.5 0.3 0.2504 0.7538
0.5 0.5 0.2240 0.6352
0.5 0.7 0.2135 0.5400
0.5 0.9 0.1963 0.4480

Table 5.2: SNP Mapping precisions and recalls of the bagging EB method on co-dominant model
with 5 noise levels. α describes the dominance model and β describes the noise level, respectively,
in the simulation type.

From Table 5.2, it is apparent that, even when the background noise level is as large as 0.9, more

than 40% of the pre-defined QTL-related SNPs can still be detected. The average recall of QTL

detection for these six types of background noise levels is 0.70598.

5.1.3 QTL Mapping using Real Datasets

Dairy Dataset

On the dairy dataset, we compare the SNPs identified by the bagging EB method with the previously

reported SNPs that are in LD with the target traits, identified by Kolbehdari et al. using more

conventional approaches [33].

• Fat Yield

The bagging EB method identified 59 SNPs for the fat yield trait (see Table 5.3 for more

details). In Kolbehdari et al., 20 SNPs were identified as being linked to fat yield QTL (see

Table 5.4 for more details). 14 of these were located by the bagging EB method (high-lighted

in Table 5.4) [33]. The chromosomal distribution of the 59 SNPs detected by the bagging EB

method and the 20 SNPs detected by Kolbehdari et al. is illustrated in Figure 5.1. Every circle

(asterisk) corresponds to identified SNP by the bagging EB method (by Kolbehdari et al.,

respectively) and is placed according to the physical position of the SNP on the chromosome.

Every line for each chromosome starts from 0 to the length of that chromosome.
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SNP ID SNP NCBI ID Chr Position (bp) SNP ID SNP NCBI ID Chr Position (bp)

BTA-25798 rs41631818 1 57471639 BTA-67252 rs43625320,
rs43710950

10 47378178

BTA-51387 rs41637121 1 9825544 BTA-62316 rs43619490,
rs41645645

10 32078348

BTA-51334 rs41582208
rs43266357

1 129330659 BTA-85521 rs41660431 11 27756098

BTA-37517 rs41634488
rs43245382

1 82400004 BTA-85502 rs41570374 11 14380343

BTA-56358 rs41643471 1 147169741 BTA-35689 rs41580517 14 8445108
BTA-58283 rs41584322 1 155161056 BTA-34428 rs41579049 14 600616
BTA-32668 rs41629125 1 70388299 BTA-36296 rs41568366 15 27439579
BTA-48448 rs41641845 2 101743148 BTA-37330 rs41606411 15 65711950
BTA-49758 rs41637017 2 133582794 BTA-05419 rs29019578 17 69608829
BTA-67720 rs43712273 3 48985550 BTA-41575 rs41642341 17 66728166
BTA-67008 rs43709929 3 27529775 BTA-41937 rs41634832 17 73637371
BTA-69049 rs41601701 3 107600745 BTA-43272 rs41581637 18 43245535
BTA-03119 rs29010885 3 120330624 BTA-43383 rs41606586 18 45878855
BTA-69344 rs43714172 3 113526879 BTA-44132 rs41583655

rs41897273
18 63546879

BTA-70719 rs41588659 4 12041038 BTA-42463 rs41578926
rs41852614

18 1829874

BTA-72027 rs41591535 4 21357942 BTA-45168 rs41571919 19 36145441
BTA-72646 rs41653936 4 121014987 BTA-44625 rs41640962 19 19223211
BTA-71929 rs41590706 4 104509458 BTA-44769 rs41584901 19 22105731
BTA-70031 rs41648823 4 42247660 BTA-54527 rs42007974

rs41603503
22 43868960

BTA-74391 rs41591894 5 89352039 BTA-55670 rs41640789 23 17701316
BTA-73124 rs41604534 5 30267651 BTA-19607 rs41626402 23 31741848
BTA-74666 rs41592942 5 102184668 BTA-56065 rs41642095 23 27420716
BTA-74378 rs41591891 5 89675691 BTA-56444 rs41588598 23 35537384
BTA-74374 rs41591890 5 89820118 BTA-57584 rs41645253 24 22884730
BTA-76476 rs41653363 6 60256066 BTA-57948 rs41584244 24 35759732
BTA-38255 rs41799542

rs41578761
7 39069058 BTA-58138 rs41601307 24 42308240

BTA-79577 rs41655323
rs43522598

7 62174885 BTA-60610 rs41588786
rs29017003

25 3625175

BTA-48814 rs41585631 7 91545853 BTA-63460 rs41650226 27 16214506
BTA-80348 rs43536843

rs41657346
7 101670999 BTA-63997 rs41653491 28 30354771

BTA-82018 rs41658330 8 86000952

Table 5.3: Significant SNPs with fat yield identified by bagging EB method.

SNP NCBI ID Chr Position (bp) SNP NCBI ID Chr Position (bp)

rs29020642 1 8944582 rs41653025 10 55554590
rs41637121 1 9825544 rs43703342 11 70223472
rs41631818 1 57471639 rs41579049 14 600616
rs41629125 1 70388299 rs41580517 14 8445108
rs41634488 1 82400004 rs41644615 21 59512214
rs41588659 4 12041038 rs41640789 23 17701316
rs41652648 5 89734677 rs41645253 24 22884730
rs41591894 5 89352039 rs41653440 28 27379015
rs41592942 5 102184668 rs41569649 28 29126150
rs41578761 7 39069058 rs41653491 28 30354771

Table 5.4: Significant SNPs with fat yield identified by Kolbehdari et al. [33]
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Figure 5.1: The distribution of SNPs located by the bagging EB method (circles) and Kolbehdari et
al. (asterisks) for the fat yield trait.

• Fat Percentage

The bagging EB method identified 137 SNPs for the fat percentage trait (see Table 5.5 for

more details). In Kolbehdari et al., 18 SNPs were identified as being linked to fat percentage

QTL (see Table 5.6 for more details). 14 of these were located by the bagging EB method

(high-lighted in Table 5.6) [33]. The chromosomal distribution of the 137 SNPs detected

by the bagging EB method and the 18 SNPs detected by Kolbehdari et al. is illustrated in

Figure 5.2.

31



SNP ID SNP NCBI
ID

Chr Position (bp) SNP ID SNP NCBI
ID

Chr Position (bp)

BTA-50282 rs43266506
rs41639301

1 124766305 BTA-35689 rs41580517 14 8445108

BTA-49418 rs41578215
rs43264225

1 124619364 BTA-63809 rs41587081 14 36931412

BTA-90879 rs41593713
rs43652289

1 64972044 BTA-35529 rs41633631 14 7751463

BTA-51387 rs41637121 1 9825544 BTA-34504 rs41732038
rs41579063

14 31239726

BTA-49758 rs41637017 2 133582794 BTA-63808 rs41587080 14 36931826
BTA-47550 NoName 2 50485349 BTA-34365 rs41627981 14 21749163
BTA-47554 rs41636197 2 50531534 BTA-36071 rs41746511 15 22061623
BTA-49211 rs41578169 2 124588209 BTA-37321 rs41606408 15 64762463
BTA-48448 rs41641845 2 101743148 BTA-14362 rs17870648 15 77489176
BTA-47345 rs41601048 2 37581122 BTA-36903 NoName 15 42919183
BTA-66873 rs41587426 3 21330178 BTA-36417 rs41629524 15 30748428
BTA-69473 rs43714209 3 9265271 BTA-06131 rs29020495 15 4707548
BTA-66828 rs41587408 3 23563371 BTA-93018 rs41663273 15 12055763
BTA-67710 rs43712268 3 46520676 BTA-37898 rs41632676

rs41783454
15 82813803

BTA-68437 rs41591426 3 85497115 BTA-13080 rs29018045 15 33209840
BTA-66884 rs43709850 3 21729249 UCP2-119F1-SNP2 rs41255549 15 52967147
BTA-67008 rs43709929 3 27529775 BTA-40104 rs41634808 16 70486364
BTA-67032 rs43710740 3 28510731 BTA-39644 rs41640597 16 61438252
BTA-68440 rs43709367 3 85504135 BTA-40115 rs41634811 16 70316526
BTA-67006 rs43709927 3 27529597 BTA-41122 rs41570561 17 53839339
BTA-69971 rs43381342

rs41648794
4 32921996 BTA-05419 rs29019578 17 69608829

BTA-70630 rs41651931 4 53780816 BTA-41575 rs41642341 17 66728166
BTA-71929 rs41590706 4 104509458 BTA-06993 rs29021347 18 23275330
BTA-71995 rs41590720

rs43372455
4 21506496 BTA-43272 rs41581637 18 43245535

BTA-71709 rs41603667
rs43412863

4 99108543 BTA-43456 rs41639020 18 52971579

BTA-70719 rs41588659 4 12041038 BTA-42474 rs41862956
rs41635530

18 35101896

BTA-70305 rs41586929
rs43385300

4 51290584 BTA-43586 rs41667443 18 46227259

BTA-72172 rs41591551 4 106221452 BTA-45612 rs41577553 19 49300176
BTA-70031 rs41648823 4 42247660 BTA-45318 rs41576373 19 38107017
BTA-03561 rs29011323 4 63659276 BTA-45274 rs41576348

rs41910839
19 37412442

BTA-74704 rs41654440 5 106919474 BTA-45999 rs41578668
rs41926374

19 57489886

BTA-74374 rs41591890 5 89820118 BTA-46516 rs41641481 19 14133569
BTA-74708 rs41592948 5 107086994 BTA-45737 rs41577583 19 51307694
BTA-14452 rs29023214 5 72940885 BTA-46471 rs41579796 19 13241023
BTA-73401 rs43435053

rs41656716
5 43735760 BTA-50505 rs41640212 20 39860784

BTA-74041 rs41590820 5 80725826 BTA-68718 rs43711332
rs43350564

20 4745147
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Continued From Previous Page
SNP ID SNP NCBI

ID
Chr Position (bp) SNP ID SNP NCBI

ID
Chr Position (bp)

BTA-76476 rs41653363 6 60256066 BTA-52607 rs41608371 21 57134316
BTA-77588 rs41654079 6 17969409 BTA-52481 rs41986690

rs41643783
21 50199271

BTA-77190 rs41655369 6 14138172 BTA-52116 rs41641678
rs41965754

21 6373428

BTA-48814 rs41585631 7 91545853 BTA-53018 rs41565637 21 65108809
BTA-78503 rs41591999 7 19087354 BTA-54823 rs41637661 22 53094097
BTA-00518 rs29013673

rs41588250
7 10644280 BTA-54815 rs41603523 22 53524088

BTA-78885 rs41593188 7 5690741 BTA-53782 rs41640891 22 22353504
BTA-01023 rs29011990 8 31322025 BTA-54516 rs41643865

rs42007232
22 44041777

BTA-63744 rs41587051 8 88219117 BTA-54885 rs42017576
rs41585965

22 54680513

BTA-82711 rs41591739
rs43580165

8 110811676 BTA-54520 NoName 22 43903694

BTA-85058 rs41657163 9 15356131 BTA-54684 rs41644468 22 48236460
BTA-84818 rs41656367 9 98959285 BTA-55670 rs41640789 23 17701316
BTA-67252 rs43625320

rs43710950
10 47378178 BTA-56497 rs41644254 23 40127883

BTA-75267 rs41593881 10 75989024 BTA-56444 rs41588598 23 35537384
BTA-72346 rs41591576 10 61401897 BTA-56321 rs41643446 23 33379805
BTA-15159 rs29026524 10 25201003 BTA-58227 rs41567447 24 42941049
BTA-60288 rs41644756 10 21174069 BTA-57584 rs41645253 24 22884730
BTA-85502 rs41570374 11 14380343 BTA-60378 rs41587828 25 41030299
BTA-88633 NoName 11 30892953 BTA-59785 rs41649668 25 29478794
BTA-96128 rs41665730 11 51401510 BTA-59747 rs42063277

rs41649644
25 26760577

POMC-J00021-254 NoName 11 76263770 BTA-60552 rs41605903 25 4269013
BTA-110430 rs41606063 11 90467185 BTA-61400 rs41648148 26 34505207
BTA-109326 rs41569023 11 89254142 BTA-62026 rs41650578

rs42088425
26 11162266

BTA-85521 rs41660431 11 27756098 BTA-62917 rs41647955 27 39075830
BTA-116618 rs41568304

rs29025976
11 101649690 BTA-63971 rs41587125 28 29071239

BTA-20730 rs41623430 12 36358485 BTA-63997 rs41653491 28 30354771
BTA-02763 rs29010310 12 35004860 BTA-64756 rs41648852 28 11042931
BTA-32313 rs41628258

rs41683033
13 32892499 BTA-63978 rs41587129 28 29116905

BTA-33038 rs41698732
rs41630688

13 58697423 BTA-03525 rs29011289 29 36374464

BTA-32394 rs41566165
rs41686749

13 37823571 BTA-65265 rs41650027 29 31192423

BTA-34428 rs41579049 14 600616 BTA-65568 rs41586159 29 36378367
BTA-35480 rs41567322 14 7873197 BTA-66351 rs43707575 ? 137090
BTA-35305 rs41632222 14 62549835

Table 5.5: Significant SNPs with fat percentage identified by bagging EB method.
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SNP NCBI ID Chr Position (bp) SNP NCBI ID Chr Position (bp)

rs41587408 3 23563371 rs41580517 14 8445108
rs43709929 3 27529775 rs41579063 14 31239726
rs29018853 6 80568731 rs41587081 14 36931412
rs41657163 9 15356131 rs41639879 17 4328233
rs41592660 9 35968706 rs41570561 17 53839339
rs43710950 10 47378178 rs41641678 21 6373428
rs41579049 14 600616 rs41643783 21 50199271
rs41633631 14 7751463 rs41640789 23 17701316
rs41567322 14 7873197 rs41648176 26 37373547

Table 5.6: Significant SNPs with fat percentage identified by Kolbehdari et al. [33]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 X   Unknown 
0

2

4

6

8

10

12

14

16

18
x 10

7

Chromosome

P
os

iti
on

 

 
detected by bagging EB method
detected by conventional method

Figure 5.2: The distribution of SNPs located by the bagging EB method (circles) and Kolbehdari et
al. (asterisks) for the fat percentage trait.

• Milk Yield

The bagging EB method identified 8 SNPs for the milk yield trait (see Table 5.7 for more

details). In Kolbehdari et al., 21 SNPs were identified as being linked to milk yield QTL (see

Table 5.8 for more details). 4 of these were located by the bagging EB method (high-lighted

in Table 5.8) [33]. The chromosomal distribution of the 8 SNPs detected by the bagging EB

method and the 21 SNPs detected by Kolbehdari et al. is illustrated in Figure 5.3.

SNP ID SNP NCBI ID Chr Position (bp) SNP ID SNP NCBI ID Chr Position (bp)

BTA-25798 rs41631818 1 57471639 BTA-82018 rs41658330 8 86000952
BTA-74391 rs41591894 5 89352039 BTA-37379 rs41634441 15 65118611
BTA-01562 rs29012523 6 96681568 BTA-52804 rs41585246 21 59696422
BTA-79411 rs41568570 7 61523523 BTA-57215 rs41643632 23 9148248

Table 5.7: Significant SNPs with milk yield identified by the bagging EB method.
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SNP NCBI ID Chr Position (bp) SNP NCBI ID Chr Position (bp)

rs41631818 1 57471639 rs41633631 14 7751463
rs41629125 1 70388299 rs41628862 14 31340161
rs41633664 1 72671082 rs41587081 14 36931412
rs41643471 1 147169741 rs41632222 14 62549835
rs43709850 3 21729249 rs41581694 18 53174491
rs41655901 5 31294522 rs41577598 19 53085652
rs41656714 5 34116566 rs41608371 21 57134316
rs41592943 5 102164054 rs41644615 21 59512214
rs41658330 8 86000952 rs41585246 21 59696422
rs41662488 9 72868606 rs41643632 23 9148248
rs41569023 11 89254142

Table 5.8: Significant SNPs with milk yield identified by Kolbehdari et al. [33]
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Figure 5.3: The distribution of SNPs located by the bagging EB method (circles) and Kolbehdari et
al. (asterisks) for the milk yield trait.

• Protein Yield

The bagging EB method identified 73 SNPs for the protein yield trait (see Table 5.9 for more

details). In Kolbehdari et al., 15 SNPs were identified as being linked to protein yield QTL

(see Table 5.10 for more details). 14 of these were located by the bagging EB method (high-

lighted in Table 5.10) [33]. The chromosomal distribution of the 73 SNPs detected by the

bagging EB method and the 15 SNPs detected by Kolbehdari et al. is illustrated in Figure 5.4.
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SNP ID SNP NCBI
ID

Chr Position (bp) SNP ID SNP NCBI
ID

Chr Position (bp)

BTA-25798 rs41631818 1 57471639 BTA-109326 rs41569023 11 89254142
BTA-40545 rs41570536 1 138164597 BTA-87550 rs43673339 11 23267364
BTA-37517 rs41634488

rs43245382
1 82400004 BTA-100126 rs41255194

rs41610129
11 5734704

BTA-56358 rs41643471 1 147169741 BTA-33166 rs41576572 13 63707683
BTA-32668 rs41629125 1 70388299 BTA-35305 rs41632222 14 62549835
BTA-47302 rs43303789

rs41645054
2 35552829 BTA-35100 rs41580090 14 53159463

BTA-47097 rs41644050 2 28058808 BTA-36218 rs41628605 15 5117022
BTA-49693 rs41636979 2 130329371 BTA-36533 rs41606337 15 33741493
BTA-49690 rs41579185 2 131520473 UCP2-119F1-SNP1 NoName 15 52967013
BTA-03117 rs29010883 3 120343156 BTA-37712 rs41789652

rs41635079
15 76184495

BTA-67720 rs43712273 3 48985550 BTA-39553 rs41581442 16 2632304
BTA-67710 rs43712268 3 46520676 BTA-41575 rs41642341 17 66728166
BTA-13888 rs29018845 3 127404885 BTA-43450 rs41581694

rs41881775
18 53174491

BTA-08621 rs29022178 3 1748195 BTA-43860 rs41893922
rs41636749

18 56665828

BTA-70719 rs41588659 4 12041038 BTA-43473 rs41639029 18 52354543
BTA-72014 rs41590729 4 21363040 BTA-43272 rs41581637 18 43245535
BTA-70439 rs41650728

rs43389706
4 46392237 BTA-44769 rs41584901 19 22105731

BTA-70974 rs41589533
rs43407614

4 67929148 BTA-46467 rs41641448 19 13446096

BTA-72511 rs41652790 4 117074929 BTA-52702 rs41644615 21 59512214
BTA-03561 rs29011323 4 63659276 BTA-52804 rs41585246 21 59696422
BTA-74376 rs41652648 5 89734677 BTA-51859 rs41973813

rs41640667
21 20350613

BTA-73161 rs41655901 5 31294522 BTA-14847 rs29023606 22 32356601
BTA-73124 rs41604534 5 30267651 BTA-57215 rs41643632 23 9148248
BTA-74666 rs41592942 5 102184668 BTA-56601 rs41588624 23 51470673
BTA-73401 rs43435053

rs41656716
5 43735760 BTA-56127 rs41642130 23 28771706

BTA-01562 rs29012523 6 96681568 BTA-56133 rs41642736 23 28774680
BTA-76424 rs41597173 6 59468702 BTA-57584 rs41645253 24 22884730
BTA-05111 rs29019275 6 31895195 BTA-60610 rs41588786

rs29017003
25 3625175

BTA-78885 rs41593188 7 5690741 BTA-62026 rs41650578
rs42088425

26 11162266

BTA-38255 rs41799542
rs41578761

7 39069058 BTA-61900 rs42109870 26 51720076

BTA-78503 rs41591999 7 19087354 BTA-08995 rs29022551 26 34481741
BTA-79543 rs41595443 7 60350545 BTA-63997 rs41653491 28 30354771
BTA-01023 rs29011990 8 31322025 BTA-63780 rs41606880

rs42142454
28 23479471

BTA-80822 rs41607547 8 18591285 BTA-64465 rs41647684
rs42150400

28 41464821

BTA-82018 rs41658330 8 86000952 BTA-64112 rs41646367 28 34713358
BTA-85294 rs41610029 9 14494768 BTA-65667 rs41652241

rs42183180
29 37723374

BTA-62324 rs41584755 10 6357459

Table 5.9: Significant SNPs with protein yield identified by the bagging EB method.
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SNP NCBI ID Chr Position (bp) SNP NCBI ID Chr Position (bp)

rs41631818 1 57471639 rs41581694 18 53174491
rs41629125 1 70388299 rs41636749 18 56665828
rs41591535 4 21357942 rs41644615 21 59512214
rs41578761 7 39069058 rs41585246 21 59696422
rs29011990 8 31322025 rs41643632 23 9148248
rs41662488 9 72868606 rs41648723 26 45430061
rs41569023 11 89254142 rs41606880 28 23479471
rs41628862 14 31340161

Table 5.10: Significant SNPs with protein yield identified by Kolbehdari et al. [33]
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Figure 5.4: The distribution of SNPs located by the bagging EB method (circles) and Kolbehdari et
al. (asterisks) for the protein yield trait.

• Protein Percentage

The bagging EB method identified 144 SNPs for the protein percentage trait (see Table 5.11

for more details). In Kolbehdari et al., 11 SNPs were identified as being linked to protein

percentage QTL (see Table 5.12 for more details). 7 of these were located by the bagging EB

method (high-lighted in Table 5.12) [33]. The chromosomal distribution of the 144 SNPs de-

tected by the bagging EB method and the 11 SNPs detected by Kolbehdari et al. is illustrated

in Figure 5.5.
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SNP ID SNP NCBI
ID

Chr Position (bp) SNP ID SNP NCBI
ID

Chr Position (bp)

BTA-50282 rs43266506
rs41639301

1 124766305 BTA-35305 rs41632222 14 62549835

BTA-49418 rs41578215
rs43264225

1 124619364 BTA-63809 rs41587081 14 36931412

BTA-43363 rs41581670 1 99940814 BTA-34428 rs41579049 14 600616
BTA-47237 rs41573015 1 114530617 BTA-35120 rs41580092 14 53423375
BTA-25798 rs41631818 1 57471639 CRH-AF340152-240 NoName 14 30476920
BTA-56358 rs41643471 1 147169741 BTA-37379 rs41634441 15 65118611
BTA-58283 rs41584322 1 155161056 BTA-36296 rs41568366 15 27439579
BTA-66873 rs41587426 3 21330178 BTA-13080 rs29018045 15 33209840
BTA-68437 rs41591426 3 85497115 BTA-10839 rs29016390 15 29531720
BTA-66828 rs41587408 3 23563371 BTA-36533 rs41606337 15 33741493
BTA-69473 rs43714209 3 9265271 BTA-37362 rs41634436 15 65444437
BTA-03117 rs29010883 3 120343156 BTA-36821 rs41606367 15 41084436
BTA-67008 rs43709929 3 27529775 UCP3-119F1-SNP1 NoName 15 53109621
BTA-67150 rs43710804 3 18511564 BTA-37330 rs41606411 15 65711950
BTA-66884 rs43709850 3 21729249 BTA-93018 rs41663273 15 12055763
BTA-67006 rs43709927 3 27529597 BTA-36403 rs41629522 15 30711830
BTA-67726 rs43712279 3 48936455 BTA-37921 rs41783616

rs41632689
15 84403742

BTA-69502 rs43715231 3 117182169 UCP2-119F1-SNP2 rs41255549 15 52967147
BTA-68440 rs43709367 3 85504135 BTA-38218 rs41634657 16 24139267
BTA-70719 rs41588659 4 12041038 BTA-38214 NoName 16 24118162
BTA-02213 rs29009770 4 52897683 BTA-41122 rs41570561 17 53839339
BTA-05538 rs29019697 4 120976229 BTA-41575 rs41642341 17 66728166
BTA-70628 rs43390740

rs41651229
4 53778230 BTA-41557 rs41605775 17 67182104

BTA-71427 rs41653715 4 78988138 BTA-41937 rs41634832 17 73637371
BTA-72640 rs41653934

rs43421610
4 121112757 BTA-41178 rs41639856 17 56142931

BTA-71995 rs41590720
rs43372455

4 21506496 BTA-06993 rs29021347 18 23275330

BTA-70627 rs41602694 4 53769553 BTA-43586 rs41667443 18 46227259
BTA-72646 rs41653936 4 121014987 BTA-43456 rs41639020 18 52971579
BTA-70640 rs41651938 4 53871899 BTA-43817 rs41635828

rs41890212
18 55262674

BTA-14452 rs29023214 5 72940885 BTA-45318 rs41576373 19 38107017
BTA-73397 rs41656714 5 34116566 BTA-45122 rs41915188

rs41585787
19 35996053

BTA-01251 rs29012216 5 43717398 BTA-45675 rs41636128 19 47491519
BTA-74704 rs41654440 5 106919474 BTA-45737 rs41577583 19 51307694
BTA-74077 rs41590827 5 81313130 BTA-45999 rs41578668

rs41926374
19 57489886

BTA-74399 rs41652659 5 89297080 BTA-45274 rs41576348
rs41910839

19 37412442

BTA-77147 rs41655339 6 94872476 BTA-03003 rs29010770 19 23025802
BTA-76945 rs41654417

rs43703009
6 86123130 BTA-44625 rs41640962 19 19223211

BTA-01562 rs29012523 6 96681568 BTA-48448 rs41641845 2 101743148
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Continued From Previous Page
SNP ID SNP NCBI

ID
Chr Position (bp) SNP ID SNP NCBI

ID
Chr Position (bp)

BTA-75696 rs41595102 6 31963668 BTA-68718 rs43711332
rs43350564

20 4745147

BTA-78536 rs41592010 7 19658645 BTA-50442 rs41942245
rs41640182

20 38231035

BTA-78624 rs41658022 7 38195149 BTA-50648 rs41641089 20 3918842
BTA-79604 rs41595457 7 62825607 BTA-51721 rs41639611 21 30670019
BTA-80071 rs41656596 7 88265052 BTA-52629 rs41644583 21 55368160
BTA-80658 rs41658112 7 8962192 BTA-52485 rs41643786 21 50151532
BTA-78828 rs41659935 7 37422303 BTA-52804 rs41585246 21 59696422
BTA-78885 rs41593188 7 5690741 BTA-51888 rs41583332 21 24520032
BTA-82798 rs41591758 8 114064165 BTA-54695 rs41584607 22 48502182
BTA-32914 rs41693478

rs41630632
8 60094652 BTA-54895 rs41565711 22 54320773

BTA-09463 rs29025624 9 41600425 BTA-56321 rs41643446 23 33379805
BTA-84964 rs41588204 9 100456943 BTA-10604 rs29016156 23 16037615
BTA-85058 rs41657163 9 15356131 BTA-56497 rs41644254 23 40127883
BTA-75267 rs41593881 10 75989024 BTA-56444 rs41588598 23 35537384
BTA-67252 rs43625320

rs43710950
10 47378178 BTA-55670 rs41640789 23 17701316

BTA-73370 rs41656695 10 10350925 BTA-58227 rs41567447 24 42941049
BTA-60288 rs41644756 10 21174069 BTA-01508 rs29012470

rs41588810
25 1413389

BTA-62316 rs43619490
rs41645645

10 32078348 BTA-60133 rs41651853
rs43725940

25 38292098

BTA-87573 rs41661853 11 2672910 BTA-60552 rs41605903 25 4269013
BTA-110430 rs41606063 11 90467185 BTA-60378 rs41587828 25 41030299
BTA-96122 rs43663179

rs41665725
11 3083261 BTA-60610 rs41588786

rs29017003
25 3625175

BTA-87550 rs43673339 11 23267364 BTA-59785 rs41649668 25 29478794
BTA-88633 NoName 11 30892953 BTA-62084 rs41606816 26 17965776

BTA-114551 rs41616840 11 96375898 BTA-61400 rs41648148 26 34505207
BTA-20730 rs41623430 12 36358485 BTA-62109 rs41650612

rs42084993
26 18119148

BTA-21642 rs41626908 12 36683471 BTA-63448 rs42116333
rs41650218

27 15950856

BTA-11237 rs29017000 13 18150380 BTA-66883 rs43709849
rs43333444

27 25391156

BTA-32708 rs41687245 13 42753587 BTA-64756 rs41648852 28 11042931
BTA-32313 rs41628258

rs41683033
13 32892499 BTA-63971 rs41587125 28 29071239

BTA-33849 rs41633517 13 74140464 BTA-66155 rs43706971 29 49418532
BTA-33334 rs41566230

rs41709315
13 67626097 BTA-03525 rs29011289 29 36374464

BTA-33840 rs41633516 13 74160790 BTA-65263 rs41584970 29 29174128
BTA-33108 rs41702018

rs41601522
13 60331867 BTA-65386 rs42176863

rs41650995
29 30611970

BTA-63808 rs41587080 14 36931826 BTA-66351 rs43707575 ? 137090

Table 5.11: Significant SNPs with protein percentage identified by bagging EB method.
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SNP NCBI ID Chr Position (bp) SNP NCBI ID Chr Position (bp)

rs41587408 3 23563371 rs41566192 13 38542259
rs41650658 4 51278419 rs29021058 13 70531797
rs29014633 5 80625519 rs41570561 17 53839339
rs41590827 5 81313130 rs41637636 22 51046178
rs41578761 7 39069058 rs29016156 23 16037615
rs41593881 10 75989024

Table 5.12: Significant SNP with protein percentage identified by Kolbehdari et al. [33]
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Figure 5.5: The distribution of SNPs located by the bagging EB method (circles) and Kolbehdari et
al. (asterisks) for the protein percentage trait.

Beef Dataset

• ADG

The bagging EB method identified 118 SNPs for the ADG trait (see Table 5.13 for more

details). The chromosomal distribution of the 118 SNPs (circles) is illustrated in Figure 5.6.
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SNP ID Chr Position (bp) SNP ID Chr Position (bp)

ARS-BFGL-NGS-49636 1 72115871 ARS-BFGL-NGS-104129 13 14703664
ARS-BFGL-BAC-3570 1 68876072 ARS-BFGL-NGS-25461 13 55420918
ARS-BFGL-NGS-23990 1 94409183 BFGL-NGS-114069 13 80191338
ARS-BFGL-NGS-104338 1 143049917 BTA-26152-no-rs 13 26932538
BTA-89820-no-rs 1 47065260 ARS-BFGL-NGS-11692 13 57473029
BTA-123503-no-rs 1 5222500 UA-IFASA-2669 13 8918717
BFGL-NGS-116361 1 64054878 ARS-BFGL-BAC-1991 14 79193975
BTB-01996267 1 4284068 ARS-BFGL-NGS-107714 14 61455546
ARS-BFGL-BAC-34933 2 117246367 ARS-BFGL-BAC-25195 14 46871848
BTA-29589-no-rs 2 69069976 ARS-BFGL-NGS-84700 14 36497204
ARS-BFGL-BAC-33346 2 14563745 ARS-BFGL-NGS-94777 14 19847065
ARS-BFGL-NGS-104615 2 51431329 BTB-01582460 14 47833670
Hapmap44041-BTA-23382 2 11060396 Hapmap27935-BTC-

065354
14 25031801

Hapmap53196-rs29011523 2 122576368 UA-IFASA-7214 14 29767185
ARS-BFGL-NGS-91059 3 17276446 BFGL-NGS-115168 15 77151019
Hapmap35643-
SCAFFOLD318144-4314

3 118929393 Hapmap42192-BTA-37799 15 78182163

ARS-BFGL-NGS-104320 3 12634099 ARS-BFGL-NGS-23826 16 18523072
BFGL-NGS-112252 3 1480364 ARS-BFGL-NGS-77702 16 76450290
Hapmap50807-BTA-86717 3 50351708 BFGL-NGS-113782 16 73039934
Hapmap57193-rs29021598 3 57084078 ARS-BFGL-NGS-24777 16 62219285
BTB-00194057 4 68649907 ARS-BFGL-NGS-80663 17 73245015
Hapmap27013-BTA-
158242

4 24624405 ARS-BFGL-NGS-107698 17 65658383

BFGL-NGS-110933 5 105049077 ARS-BFGL-NGS-41524 18 65248992
BTA-26132-no-rs 5 45035030 ARS-BFGL-BAC-33724 19 31556338
BTA-15444-no-rs 5 109182394 ARS-BFGL-NGS-28151 19 11121958
Hapmap26308-BTC-
057761

6 37963147 ARS-BFGL-NGS-38061 20 69341094

BFGL-NGS-119662 6 121559687 ARS-BFGL-NGS-21312 21 22277790
BTB-00259424 6 63426671 ARS-BFGL-NGS-5033 21 30421616
BTB-01322000 6 10526583 BTB-01275085 21 44103471
Hapmap39094-BTA-75706 6 33328169 Hapmap48168-BTA-

106480
22 42520656

Hapmap48464-BTA-77646 6 18119103 Hapmap36428-
SCAFFOLD91128-4487

22 55536152

ARS-BFGL-NGS-107035 7 91836262 ARS-BFGL-NGS-28703 22 50897530
BTB-01269021 7 75830004 ARS-BFGL-NGS-62095 22 4942114
BTB-00956439 7 105905909 BFGL-NGS-119695 23 2310949
ARS-BFGL-NGS-44014 7 1343222 BFGL-NGS-116395 23 11896040
Hapmap42417-BTA-
108192

7 1304084 ARS-BFGL-BAC-43516 23 1481289

Hapmap24348-BTA-
159633

8 70345145 ARS-BFGL-BAC-30064 23 13056038

ARS-BFGL-NGS-67446 8 82931653 ARS-BFGL-NGS-102124 24 9983648
ARS-BFGL-NGS-44247 8 95681398 Hapmap42819-BTA-

114761
24 62604210
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Continued From Previous Page
SNP ID Chr Position (bp) SNP ID Chr Position (bp)

ARS-BFGL-NGS-34990 8 11558500 ARS-BFGL-BAC-30721 24 3829304
BFGL-NGS-110811 8 72054743 BTB-01448403 24 1670594
Hapmap41091-BTA-81593 8 65835035 Hapmap60714-rs29019480 24 31555267
Hapmap44492-BTA-88469 9 3523789 Hapmap38513-BTA-58574 24 51201344
Hapmap45612-BTA-28859 9 80520854 Hapmap41212-BTA-26034 25 21490449
ARS-BFGL-NGS-55693 9 22678278 ARS-BFGL-NGS-1638 26 44493220
ARS-BFGL-NGS-10386 9 79108555 ARS-BFGL-NGS-32517 26 48311186
BTA-117313-no-rs 9 42477655 ARS-BFGL-NGS-39006 27 38059196
ARS-BFGL-NGS-247 10 69088790 ARS-BFGL-NGS-18023 28 6656202
Hapmap48018-BTA-60331 10 2258968 BTA-100905-no-rs 28 2832256
ARS-BFGL-NGS-55327 10 87407821 Hapmap59655-rs29010842 28 5993743
BTB-00445816 10 95733847 ARS-BFGL-NGS-86495 29 41659431
ARS-BFGL-NGS-105394 10 11991392 BTA-66199-no-rs 29 49924569
ARS-BFGL-NGS-93718 10 15252637 BTA-27090-no-rs X 82480759
BTB-00445989 10 95935849 ARS-BFGL-NGS-91969 X 28044
ARS-BFGL-NGS-107825 11 88002621 ARS-BFGL-NGS-30224 ? 204045
ARS-BFGL-NGS-12433 11 51613089 BFGL-NGS-111321 ? 48338
ARS-BFGL-NGS-105689 11 106007656 ARS-BFGL-NGS-70477 ? 184737
ARS-BFGL-NGS-28721 12 36308360 BTB-01349004 ? 442886
BFGL-NGS-116551 12 11153570 ARS-BFGL-NGS-102954 ? 564808

Table 5.13: Significant SNPs with ADG identified by the bagging EB method.
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Figure 5.6: The distribution of SNPs located by the bagging EB method for the ADG trait.

• Birth Weight

The bagging EB method identified 74 SNPs for the birth weight trait (see Table 5.14 for more

details). The chromosomal distribution of the 74 SNPs is illustrated in Figure 5.7.
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SNP ID Chr Position (bp) SNP ID Chr Position (bp)

Hapmap47302-BTA-45176 1 102365562 ARS-BFGL-BAC-23075 14 66302948
ARS-BFGL-NGS-34687 1 46663776 ARS-BFGL-BAC-19427 15 57106189
Hapmap41804-BTA-24071 1 93283602 BTB-01786587 15 10317507
ARS-BFGL-NGS-36803 2 63623562 BTB-00587441 15 23622087
Hapmap44597-BTA-47277 2 33028755 BFGL-NGS-114653 15 54681301
BTB-01071390 2 63146406 BTB-01296218 15 15505958
ARS-BFGL-NGS-17147 2 6502336 Hapmap47274-BTA-37477 15 70477467
ARS-BFGL-NGS-103120 3 14284629 ARS-BFGL-BAC-34362 17 10728397
BTA-68842-no-rs 3 101025935 ARS-BFGL-NGS-31362 17 13089206
ARS-BFGL-NGS-36551 3 109411154 ARS-BFGL-NGS-101525 17 9367689
BTB-01493530 4 119764535 BFGL-NGS-118873 17 73529631
BFGL-NGS-110046 4 87394228 BTB-00745347 19 28700644
Hapmap23022-BTA-
161235

5 34648814 ARS-BFGL-NGS-37850 19 32807055

ARS-BFGL-NGS-72188 6 41541414 BTB-00745293 19 28671067
ARS-BFGL-NGS-29722 6 97364829 ARS-BFGL-BAC-27914 20 30128561
BTB-01900621 6 81244923 ARS-BFGL-BAC-31759 20 71553129
Hapmap23186-BTC-
046762

6 41208356 ARS-BFGL-NGS-30365 21 22006620

BTA-26162-no-rs 6 57416736 ARS-BFGL-NGS-89251 21 33370896
Hapmap33170-BTC-
071249

6 38756335 ARS-BFGL-NGS-4067 22 30952220

BTA-100891-no-rs 6 38076963 BFGL-NGS-118012 23 38509097
Hapmap27537-BTC-
060891

6 38638962 ARS-BFGL-BAC-29235 24 49701953

ARS-BFGL-NGS-57673 8 87229588 Hapmap50403-BTA-58218 24 44777710
ARS-BFGL-NGS-10386 9 79108555 ARS-BFGL-NGS-37419 24 1011550
BTB-00385217 9 25430999 ARS-BFGL-NGS-36333 25 39561967
BTA-84883-no-rs 9 97381353 Hapmap54366-rs29015052 25 17517068
Hapmap41972-BTA-79298 10 87622309 ARS-BFGL-NGS-86242 27 4521654
ARS-BFGL-NGS-32292 10 25221613 BTA-63422-no-rs 27 15259667
ARS-BFGL-NGS-29976 11 102812100 Hapmap49694-BTA-64179 28 36295371
BFGL-NGS-114345 11 23286507 Hapmap38041-BTA-64824 28 12122846
ARS-BFGL-BAC-15562 11 70364978 Hapmap51476-BTA-63589 28 14635797
ARS-BFGL-NGS-26350 11 76122798 ARS-BFGL-NGS-101448 29 45972848
Hapmap26194-BTA-
158111

11 20901523 Hapmap30567-BTA-
151983

X 43569929

Hapmap52802-ss46526242 11 106092699 ARS-BFGL-NGS-36429 X 64480988
ARS-BFGL-BAC-14357 12 64406055 ARS-BFGL-NGS-26893 X 65813619
ARS-BFGL-NGS-16128 13 15267627 Hapmap60033-rs29012094 X 39452099
BTA-03159-no-rs 13 50414986 ARS-BFGL-NGS-102959 X 66444708
Hapmap39263-BTA-33871 13 77245638 Hapmap39109-BTA-30591 ? 364178

Table 5.14: Significant SNPs with birth weight identified by the bagging EB method.
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Figure 5.7: The distribution of SNPs located by the bagging EB method for the birth weight trait.

• RFI

The bagging EB method identified 108 SNPs for the RFI trait (see Table 5.15 for more details).

The chromosomal distribution of the 108 SNPs is illustrated in Figure 5.8.
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Figure 5.8: The distribution of detected SNPs with RFI on genome located by the bagging EB
method.
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SNP ID Chr Position (bp) SNP ID Chr Position (bp)

ARS-BFGL-NGS-34197 1 129626479 ARS-BFGL-NGS-103773 12 80698939
BTA-49236-no-rs 1 24657856 ARS-BFGL-BAC-15708 13 16221252
BTB-00027149 1 65712986 ARS-BFGL-NGS-65910 14 72750829
BTA-49381-no-rs 1 123444391 BTB-00563522 14 31305251
ARS-BFGL-BAC-11057 1 135081108 Hapmap49133-BTA-35076 14 52852261
ARS-BFGL-NGS-31767 1 156966213 ARS-BFGL-NGS-101613 14 45512732
BFGL-NGS-110620 1 60663283 BTB-02056709 14 23394459
BFGL-NGS-116430 1 20294179 ARS-BFGL-NGS-66553 14 20929826
ARS-BFGL-BAC-33163 2 4344036 ARS-BFGL-NGS-71623 14 8065775
ARS-BFGL-NGS-88498 2 133522697 BTB-01790975 14 52715978
UA-IFASA-3968 2 68006157 ARS-BFGL-NGS-13356 15 17437755
ARS-BFGL-NGS-36162 2 112633454 Hapmap44375-BTA-37785 15 14339378
ARS-BFGL-NGS-15468 2 127414821 ARS-BFGL-NGS-71816 15 62626005
BTB-01860738 2 82120284 ARS-BFGL-NGS-106467 16 46125996
ARS-BFGL-NGS-39303 2 136766494 ARS-BFGL-NGS-102714 16 73465805
Hapmap35082-BES9-
Contig524-1040

2 95762272 Hapmap60572-rs29010980 16 74557208

Hapmap52382-rs29019574 2 38762006 ARS-BFGL-NGS-36880 16 69727165
ARS-BFGL-NGS-26956 3 30065978 Hapmap38110-BTA-38625 16 32278543
BTB-00134661 3 74265239 Hapmap42977-BTA-55653 16 965541
BTA-71817-no-rs 4 103395988 BTB-00667048 17 5044986
BTB-01148141 4 121700061 Hapmap48751-BTA-41232 17 58707513
Hapmap55237-rs29010308 5 17272101 Hapmap34615-BES10-

Contig586-1594
18 8552751

BTB-00214293 5 2595077 ARS-BFGL-NGS-21227 18 42661333
Hapmap58596-rs29013530 5 40852253 Hapmap30624-BTA-42324 18 10031352
BTA-73549-no-rs 5 55176318 ARS-BFGL-NGS-88748 19 63380264
Hapmap30691-BTC-
038216

6 44643940 ARS-BFGL-NGS-57209 19 31896076

BTB-01428731 6 93704721 BFGL-NGS-110331 19 25110983
Hapmap48464-BTA-77646 6 18119103 ARS-BFGL-BAC-2524 21 65804493
Hapmap27487-BTA-90787 6 15457973 BTA-24891-no-rs 21 62502471
Hapmap40325-BTA-80477 7 106599922 ARS-BFGL-NGS-71975 21 22886913
ARS-BFGL-NGS-109201 7 36645610 ARS-BFGL-BAC-2600 22 7116084
BFGL-NGS-115333 7 3274931 Hapmap49546-BTA-25249 23 50364385
Hapmap47734-BTA-78811 7 36784990 Hapmap54795-rs29014478 23 10843024
BFGL-NGS-111964 8 100157121 BTB-01970944 24 11943588
ARS-BFGL-NGS-33628 8 26365756 Hapmap55314-rs29026474 24 54401219
ARS-BFGL-NGS-5096 8 567527 ARS-BFGL-NGS-21527 25 27022645
BTB-01092452 8 85420151 BTA-110448-no-rs 25 27513378
BTB-00285653 8 31663727 ARS-BFGL-NGS-13248 26 5318047
ARS-BFGL-NGS-10254 9 41579851 Hapmap59240-rs29019735 26 29771636
BTB-01715634 9 13821086 ARS-BFGL-NGS-108861 27 37445592
ARS-BFGL-NGS-85461 9 105471834 ARS-BFGL-NGS-105349 27 36341427
ARS-BFGL-NGS-104698 9 101590454 ARS-BFGL-NGS-42178 27 22286
Hapmap43073-BTA-83925 9 62572059 BTB-00959704 27 21942706
ARS-BFGL-BAC-7166 10 74550952 ARS-BFGL-NGS-39294 27 15979955
ARS-BFGL-NGS-106325 10 2841923 BFGL-NGS-111706 28 33312204
BTB-00434073 10 72886486 ARS-BFGL-NGS-14076 28 2334737
Hapmap42386-BTA-98732 10 69999527 BFGL-NGS-116005 29 51766334
ARS-BFGL-NGS-1846 11 96707761 Hapmap41822-BTA-30608 X 75065677
ARS-BFGL-NGS-14449 11 30628461 BTA-21001-no-rs X 82814214
ARS-BFGL-BAC-16175 11 20279452 ARS-BFGL-NGS-18028 X 63961868
BFGL-NGS-115114 11 74699947 BTA-27090-no-rs X 82480759
BTB-01293391 11 35716271 ARS-BFGL-NGS-16263 ? 181736
ARS-BFGL-NGS-18439 12 82833172 BTB-00118945 ? 74933
BTB-02035517 12 57219962 BFGL-NGS-117409 ? 51744

Table 5.15: Significant SNPs with RFI identified by the bagging EB method.
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Figure 5.9: Experiment procedure used to evaluate the performance of EBV prediction methods

5.2 EBV Prediction

5.2.1 Experiment Design

Our experiment design for EBV prediction is illustrated in Figure 5.9. After data pre-processing as

mentioned in the previous section, we use 10-fold cross validation by partitioning the data into 10

folds. One round of cross-validation involves validating the model on one fold (called the testing

set) while the model is learned by performing feature selection and model selection on the other

folds (called the training set).

Cross-validation is a way to estimate the average accuracy of a model. Suppose we have a model

with one or more unknown parameters, and a dataset to which the model can be fit (the training

dataset). The fitting process optimizes the model parameters to make the model fit the training data

as well as possible. As a result, the model fits perfectly on the training data, but it might not fit well

on the independent validation data extracted from the same population as the training data. This

problem is particularly likely to happen when the size of the training data set is small, or when the

number of parameters in the model is large.

5.2.2 Performance Measurements

Three performance measurements are used in our experiment, which are the correlation coefficient

(CC), the rank correlation coefficient (rCC) and the normalized root mean square error (NRMSE).

CC

CC indicates the strength and direction of a linear relationship between two variables. The range

of CC is [−1, 1]. A CC value of 1 indicates an increasing linear relationship, a CC value of −1

indicates a decreasing linear relationship and CC values between −1 and 1 indicate the degree of

linear dependence between the two variables. We usually take the absolute value of CC. The closer

the coefficient is to 1, the stronger the correlation between the variables. A CC value of 0 means the
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variables have no correlation. The equation for the calculation of CC is as follows:
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(5.1)

where n is the number of observations, y is the vector of target values and y
′

is the vector of the

predicted values.

rCC

rCC is the CC between target ranking and predicted ranking. We rank both the target trait values and

predicted trait values, and then calculate the CC between these two rankings using the same formula

as CC. The reason for using this measurement is, in livestock industry, breeding animals are usually

selected according to the EBV ranking, e.g. the top 20% animals are selected by ranking EBVs of

the economically important trait.

NRMSE

The root mean square error (RMSE) is a frequently used measurement of the differences between

values predicted by a model and the actual values. NRMSE is a further normalization of the RMSE,

calculated by dividing the RMSE by the standard deviation of the actual values that we are trying to

predict. NRMSE is quite useful because we can compare the accuracy of the model across different

datasets. NRMSE will reach the value of 1 if the method of prediction is no more accurate than

forecasting the unconditional mean of the prediction set while a value of 0 corresponds to a perfect

fit. The equation for the calculation of NRMSE is as follows:

NRMSE =

√∑n
i=1(y

′
i − yi)2/n

std(y)
(5.2)

where n is the number of observations, y is the vector of target values, y
′

is the vector of the predicted

values and std(y) is the standard deviation of the target values.

5.2.3 Methods Implementation

As discussed previously, seven machine learning regression methods were used for EBV prediction.

All of these methods were implemented in R by using existing R packages. The specific packages

and methods used are given in Table 5.16:

5.2.4 Comparison of Algorithm Performance on Real Datasets

Dairy Dataset

We used 10 methods, SVM with a linear kernel, SVM with an rbfdot kernel, GP, PCA, PLS, LASSO,

ElasticNet, Ridge, LR, and BLUP for EBV prediction and measured their performance using CC,

rCC, and NRMSE. Figure 5.10 plots the CCs of these 10 methods for the 5 traits from the dairy

47



R Package Version R Method
SVM (linear kernel) kernlab 0.9-5 ksvm
SVM (rbfdot kernel) kernlab 0.9-5 ksvm

GP kernlab 0.9-5 gausspr
PCA pls 2.1-0 pcr
PLS pls 2.1-0 plsr

LASSO lars 0.9-7 lars
ElasticNet elasticnet 1.0-3 cv.enet

Ridge MASS 7.2-40 lm.ridge

Table 5.16: R implementation for machine learning regression methods.

dataset. Table 5.17 lists all the CCs, rCCs, and NRMSEs of the 10 methods for the 5 traits from

the dairy dataset. For each trait, the top 3 performing methods are highlighted. As we can see, the

CC and rCC measurements are consistent with each other in most cases, while NRMSE does not

always match up with the above two measurements in terms of ranking. We focus only on the CC

measurement of performance during our experiments. Please refer to Section 5.3 for comparisons

of rCCs and NRMSEs.

From the table, one can see that the machine learning methods outperform the traditional ge-

nomic selection method BLUP on all of the five traits. No single machine learning method per-

formed the best on all traits. The best method in this experiment is Ridge with an average CC of

0.49724 on the 5 traits, followed by SVM (linear kernel) with an average CC of 0.4514 and then

PLS with an average CC of 0.4496.
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Figure 5.10: Performance of EBV prediction algorithms on dairy dataset by CC measurement, which
shows that for fat yield trait, Ridge is the best method; for fat percentage trait, PLS is the best
method; for milk yield trait, SVM (linear kernel) is the best method; for protein yield trait, PLS is
the best method and for protein percentage trait, Ridge is the best method.
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Trait Measure
SVM

(linear)
SVM

(rbfdot)
GP PCA PLS LASSO

Elastic
Net

Ridge LR BLUP

CC 0.401 0.441 0.493 0.481 0.447 0.521 0.365 0.523 0.459 0.413
FY rCC 0.393 0.448 0.487 0.493 0.461 0.510 0.376 0.526 0.425 0.472

NRMSE 0.991 0.674 0.858 0.658 0.901 0.854 0.740 0.903 0.908 0.732
CC 0.450 0.236 0.363 0.395 0.470 0.305 0.401 0.464 0.402 0.234

FP rCC 0.462 0.227 0.345 0.406 0.434 0.331 0.423 0.473 0.392 0.252
NRMSE 0.955 0.816 0.934 0.701 0.899 0.977 0.662 0.926 0.948 0.785
CC 0.506 0.440 0.416 0.366 0.452 0.317 0.293 0.493 0.313 0.212

MY rCC 0.420 0.432 0.391 0.313 0.441 0.305 0.298 0.470 0.328 0.237
NRMSE 0.872 0.660 0.901 0.708 0.895 0.965 0.768 0.933 0.975 0.799
CC 0.401 0.366 0.480 0.332 0.516 0.392 0.351 0.436 0.290 0.270

PY rCC 0.322 0.380 0.438 0.350 0.461 0.385 0.345 0.408 0.289 0.289
NRMSE 1.031 0.737 0.875 0.709 0.889 0.932 0.696 0.895 0.973 0.767
CC 0.500 0.367 0.423 0.236 0.426 0.341 0.334 0.570 0.274 0.108

PP rCC 0.504 0.362 0.357 0.215 0.401 0.350 0.326 0.523 0.291 0.276
NRMSE 0.890 0.765 0.950 0.794 0.930 0.960 0.714 0.852 0.955 0.828

Table 5.17: The average CCs, rCCs, and NRMSEs of 10 methods for EBV prediction on 5 traits
from the dairy dataset.

Beef Dataset

Similarly for beef dataset, Table 5.18 lists the CCs, rCCs, and NRMSEs of the 10 methods on the 3

traits. For each trait, the top 3 performing methods are again highlighted. From the table, one can see

that BLUP again performed poorly. The best accuracy achieved by the machine learning methods is

over 20% higher than that of BLUP on all of the three traits. Similarly, no single machine learning

method won out all the time. Specifically, PLS is the best method for predicting ADG trait, while

GP is the best method for predicting both birth weight and RFI traits. Compared to the dairy dataset,

the CCs achieved on the three traits here are much higher, for example, 0.733 for the RFI trait. Note

that beef dataset contains many more SNP markers genotyped using a better chip, which likely make

it a better dataset for quantitative association studies. By averaging the results of each method on all

of the 3 traits, GP is the best method in this experiment with an average CC measurement of 0.6421,

followed by Ridge with an average CC of 0.6128 and then PLS with an average CC of 0.6062.
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Figure 5.11: Performance of EBV prediction algorithms on beef dataset by CC measurement, which
shows that for ADG trait, PLS is the best method; for birth weight trait, GP is the best method and
for RFI trait, GP is the best method.

Trait Measure
SVM

(linear)
SVM

(rbfdot)
GP PCA PLS LASSO

Elastic
Net

Ridge LR BLUP

CC 0.504 0.399 0.583 0.453 0.599 0.558 0.410 0.513 0.461 0.369
ADG rCC 0.470 0.369 0.547 0.414 0.530 0.527 0.353 0.462 0.471 0.421

NRMSE 0.879 0.681 0.819 0.635 0.816 0.827 0.687 0.875 0.943 0.762
CC 0.541 0.523 0.611 0.536 0.493 0.534 0.457 0.595 0.483 0.420

BW rCC 0.512 0.479 0.560 0.516 0.467 0.480 0.431 0.584 0.380 0.392
NRMSE 0.852 0.578 0.807 0.598 0.866 0.837 0.644 0.810 0.888 0.748
CC 0.701 0.565 0.733 0.605 0.709 0.726 0.570 0.731 0.620 0.503

RFI rCC 0.646 0.469 0.653 0.543 0.584 0.602 0.520 0.634 0.505 0.466
NRMSE 0.713 0.546 0.672 0.537 0.713 0.687 0.511 0.685 0.854 0.705

Table 5.18: The average CCs, rCCs, and NRMSEs of 10 methods for EBV prediction on 3 traits
from the beef dataset.

5.2.5 Comparison of Algorithm Performance on Simulation Datasets

On the simulation datasets, we followed the same procedure as used with the two real datasets for

EBV prediction. Again we used 10 methods, SVM with a linear kernel, SVM with an rbfdot kernel,

GP, PCA, PLS, LASSO, ElasticNet, Ridge, LR, and BLUP. For each collection of 100 simulation

datasets, indexed from 1 to 100, we calculated the CCs, rCCs, and NRMSEs for every EBV predic-

tion method. For instance, Figure 5.12 plots the CCs of these 10 methods on the 100 completely

recessive simulation datasets without background noise. In the plot, the horizontal lines show the

average CCs of these methods on the 100 datasets, and the methods are sorted accordingly top-down

in decreasing performance. Please refer to Section 5.3 for comparisons of rCCs and NRMSEs, as
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we focus on the CC measurement of performance during our experiments.

• completely recessive (α = 0, β = 0)
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Figure 5.12: Performance of EBV prediction algorithms for the completely recessive model by CC
measurement, SVM (rbfdot kernel), GP and BLUP are the top 3 methods for this model.

• partially recessive (α = 0.25, β = 0)
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Figure 5.13: Performance of EBV prediction algorithms for the partially recessive model by CC
measurement, LASSO, BLUP and SVM (rbfdot kernel) are the top 3 methods for this model.

• co-dominant (α = 0.5, β = 0)
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Figure 5.14: Performance of EBV prediction algorithms for the co-dominant model by CC measure-
ment, BLUP, LASSO and Ridge are the top 3 methods for this model.

• partially dominant (α = 0.75, β = 0)
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Figure 5.15: Performance of EBV prediction algorithms for the partially dominant model by CC
measurement, LASSO, BLUP and SVM (linear kernel) are the top 3 methods for this model.

• completely dominant (α = 1, β = 0)
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Figure 5.16: Performance of EBV prediction algorithms for the completely dominant model by CC
measurement, BLUP, SVM (rbfdot kernel) and LASSO are the top 3 methods for this model.

• co-dominant model with background noise level 0.1 (α = 0.5, β = 0.1)
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Figure 5.17: Performance of EBV prediction algorithms for the co-dominant model with background
noise level 0.1 model by CC measurement, LASSO, BLUP and PLS are the top 3 methods for this
model.

• co-dominant model with background noise level 0.3 (α = 0.5, β = 0.3)
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Figure 5.18: Performance of EBV prediction algorithms for the co-dominant model with background
noise level 0.3 model by CC measurement, BLUP, LASSO and PLS are the top 3 methods for this
model.

• co-dominant model with background noise level 0.5 (α = 0.5, β = 0.5)
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Figure 5.19: Performance of EBV prediction algorithms for the co-dominant model with background
noise level 0.5 model by CC measurement, BLUP, PLS and SVM (rbfdot kernel) are the top 3
methods for this model.

• co-dominant model with background noise level 0.7 (α = 0.5, β = 0.7)
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Figure 5.20: Performance of EBV prediction algorithms for the co-dominant model with background
noise level 0.7 model by CC measurement, BLUP, GP and PLS are the top 3 methods for this model.

• co-dominant model with background noise level 0.9 (α = 0.5, β = 0.9)
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Figure 5.21: Performance of EBV prediction algorithms for the co-dominant model with background
noise level 0.9 model by CC measurement, BLUP, GP and PLS are the top 3 methods for this model.

Table 5.19 lists the average CCs, rCCs, and NRMSEs of the 10 methods on the 10 types of sim-

ulation datasets. For each type, the top 3 performing methods are highlighted. From the table, one

can see that the traditional genomic selection method BLUP performed quite well on all types of

simulation datasets, though not always the best. In general, we conclude that, besides BLUP, SVM

with an rbfdot kernel, PLS, and LASSO have better performance than the others. It is especially
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interesting to notice that for the co-dominance simulation datasets without background noise, an av-

erage CC of 0.9 can be reached by several methods. Even for the co-dominance simulation datasets

with background noise level 0.5, the achieved accuracy (a CC value of 0.622) is better than the best

performance achieved on the dairy dataset (a CC value of 0.57).

(α, β) Measure
SVM

(linear)
SVM

(rbfdot)
GP PCA PLS LASSO

Elastic
Net

Ridge LR BLUP

CC 0.455 0.615 0.583 0.521 0.542 0.503 0.349 0.416 0.428 0.556
(0, 0) rCC 0.452 0.603 0.566 0.508 0.530 0.485 0.459 0.416 0.430 0.552

NRMSE 1.076 0.789 0.835 0.867 0.871 0.894 1.736 1.066 1.092 0.879
CC 0.751 0.774 0.717 0.698 0.766 0.807 0.479 0.718 0.568 0.801

(0.25, 0) rCC 0.744 0.771 0.717 0.690 0.758 0.793 0.581 0.710 0.581 0.801
NRMSE 0.675 0.645 0.754 0.716 0.649 0.648 1.169 0.830 0.987 0.601
CC 0.823 0.810 0.749 0.745 0.821 0.904 0.503 0.796 0.574 0.896

(0.75, 0) rCC 0.811 0.803 0.746 0.730 0.808 0.893 0.605 0.782 0.591 0.891
NRMSE 0.567 0.604 0.730 0.666 0.572 0.497 1.746 0.698 1.113 0.443
CC 0.712 0.764 0.710 0.685 0.740 0.762 0.456 0.667 0.539 0.808

(1, 0) rCC 0.700 0.752 0.702 0.669 0.726 0.753 0.579 0.654 0.554 0.802
NRMSE 0.737 0.652 0.757 0.732 0.683 0.709 1.725 0.790 1.160 0.599
CC 0.885 0.838 0.773 0.775 0.887 0.891 0.550 0.892 0.616 0.932

(0.5, 0) rCC 0.875 0.833 0.772 0.761 0.875 0.880 0.643 0.881 0.634 0.928
NRMSE 0.467 0.570 0.711 0.627 0.459 0.443 1.417 0.635 1.026 0.360
CC 0.767 0.771 0.724 0.721 0.785 0.859 0.495 0.726 0.550 0.837

(0.5, 0.1) rCC 0.751 0.763 0.720 0.705 0.770 0.843 0.601 0.708 0.560 0.827
NRMSE 0.653 0.648 0.749 0.693 0.625 0.588 1.179 0.779 1.084 0.549
CC 0.602 0.675 0.656 0.642 0.682 0.689 0.443 0.545 0.483 0.719

(0.5, 0.3) rCC 0.650 0.699 0.668 0.646 0.701 0.739 0.585 0.600 0.496 0.748
NRMSE 0.895 0.738 0.792 0.772 0.746 0.790 1.830 0.919 1.152 0.707
CC 0.482 0.587 0.585 0.562 0.593 0.577 0.410 0.436 0.405 0.622

(0.5, 0.5) rCC 0.461 0.570 0.568 0.537 0.570 0.557 0.520 0.417 0.402 0.600
NRMSE 1.060 0.815 0.836 0.837 0.824 0.868 1.617 1.022 1.216 0.804
CC 0.401 0.533 0.539 0.510 0.536 0.515 0.364 0.362 0.376 0.552

(0.5, 0.7) rCC 0.388 0.514 0.522 0.487 0.515 0.497 0.470 0.353 0.370 0.535
NRMSE 1.198 0.856 0.861 0.874 0.874 0.902 1.230 1.130 1.220 0.865
CC 0.346 0.478 0.497 0.462 0.486 0.459 0.323 0.312 0.340 0.503

(0.5, 0.9) rCC 0.337 0.461 0.479 0.439 0.466 0.443 0.444 0.304 0.336 0.486
NRMSE 1.294 0.897 0.880 0.905 0.909 0.925 1.140 1.190 1.266 0.903

Table 5.19: The average CCs, rCCs, and NRMSEs of 10 methods for EBV prediction on 10 types
of simulation datasets defined by (α, β), where α denotes the dominance model and β denotes the
background noise ratio.

We also examined the effects of dominance model and background noise level on the EBV

prediction. As BLUP is the best method according to its average performance on the simulation

datasets, we use BLUP to observe the caused effects.

Essentially, for the first five types without background noise, we simulated 100 genotype datasets

and then applied the dominance models to assign cattle their EBVs. Afterwards, we ran BLUP on the

datasets for EBV prediction, to collect for each genotype dataset the five CCs. These CCs are plot-

ted in Figure 5.22, where the horizontal lines are the average values of 0.928, 0.891, 0.801, 0.802,

and 0.552 for co-dominant, partially dominant, completely dominant, partially recessive and com-

pletely recessive, respectively. It is clear that BLUP worked quite well on co-dominance and partial-
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dominance models, while not ideally on the completely recessive model. Another observation is

that the algorithm performance on the co-dominant model and the partially dominant model are

quite close, and the algorithm performance on the completely dominant model and the partially

recessive model are quite close.

A similar experiment was set up to examine the effect of background noise level, where the

dominance model was fixed at co-dominance. Again, BLUP was run on each of the 100 genotype

datasets of six levels of background noise, at 0, 0.1, 0.3, 0.5, 0.7 and 0.9 respectively, for EBV pre-

diction to collect the six CCs. These CCs are plotted in Figure 5.23, where the horizontal lines are

the average values of 0.928, 0.827, 0.701, 0.600, 0.535, and 0.486 for β = 0, 0.1, 0.3, 0.5, 0.7, and

0.9, respectively. We can see the algorithm performance decrease as the background noise level

increases, as one can expect.

Effects of Dominance Model
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Figure 5.22: The CCs of BLUP EBV prediction on 100 simulation datasets from different domi-
nance models. The average CCs are 0.928, 0.891, 0.801, 0.802, and 0.552 for co-dominant, partially
dominant, completely dominant, partially recessive and completely recessive, respectively.
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Effects of Noise Level
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Figure 5.23: The CCs of BLUP EBV prediction on 100 simulation datasets with different levels
of background noise. The average CCs are 0.928, 0.827, 0.701, 0.600, 0.535, and 0.486 for β =
0, 0.1, 0.3, 0.5, 0.7, and 0.9, respectively.

5.2.6 Co-dominance Representation vs. Binary Representation

We examined the effect of the SNP genotype encoding scheme on the EBV prediction for the two

real datasets. Since SVM with a linear kernel performed quite well, we used it for examining the

effect of the encoding scheme. The results are summarized in Table 5.20, where one can see that

there does not seem to be much difference between the schemes for the dairy dataset. However,

binary representation generally performs better than co-dominant representation on the beef dataset.

We also examined the effect of SNP genotype encoding scheme on EBV prediction using BLUP

and the simulated datasets. The average CCs of BLUP on the 100 simulation datasets for all 10 types

are summarized in Table 5.21, where one can see that the co-dominance representation performed

the best in all cases except the completely recessive and the completely dominant models (without

background noise). There could be multiple reasons for this phenomenon, one of which is that BLUP

internally assumes the co-dominance model for EBV regression. Nevertheless, the two exceptional

cases suggest that the co-dominance representation should be used with caution, although the binary

representation might be helpful in some rare cases.

Comparing the results on the two real datasets with the results on the simulation datasets, one

conclusion is that probably none of the eight traits in the two real datasets follows the extreme cases

of the completely recessive or the completely dominant models. A tentative conclusion is that using

either representation is fine, and thus the co-dominance representation is preferred as it is easier to

use.
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Real Datasets

Co-dominance Representation Binary Representation
Trait CC rCC NRMSE CC rCC NRMSE

FY 0.401 0.393 0.991 0.450 0.478 0.977
FP 0.450 0.462 0.955 0.380 0.366 0.918
MY 0.506 0.420 0.872 0.409 0.389 0.928
PY 0.401 0.322 1.031 0.408 0.398 0.916
PP 0.450 0.504 0.890 0.421 0.380 0.902

ADG 0.504 0.470 0.879 0.527 0.459 0.854
BW 0.541 0.512 0.852 0.562 0.523 0.889
RFI 0.701 0.646 0.713 0.730 0.611 0.724

Table 5.20: EBV prediction results on all 8 traits from the two real datasets by SVM with a linear
kernel, using two SNP genotype encoding schemes. Bold text indicates the encoding scheme with
better performance.

Simulation Datasets

(α, β) Co-dominance Representation Binary Representation
CC rCC NRMSE CC rCC NRMSE

(0, 0) 0.556 0.552 0.879 0.833 0.824 0.521
(0.25, 0) 0.801 0.801 0.601 0.782 0.783 0.751
(0.75, 0) 0.896 0.891 0.443 0.831 0.827 0.635
(1, 0) 0.808 0.802 0.599 0.893 0.887 0.495
(0.5, 0) 0.932 0.928 0.360 0.769 0.765 0.795
(0.5, 0.1) 0.837 0.827 0.549 0.684 0.676 0.791
(0.5, 0.3) 0.719 0.748 0.707 0.588 0.574 0.998
(0.5, 0.5) 0.622 0.600 0.804 0.492 0.473 1.211
(0.5, 0.7) 0.552 0.535 0.865 0.448 0.429 1.243
(0.5, 0.9) 0.503 0.486 0.903 0.397 0.383 1.408

Table 5.21: EBV prediction results on all 10 types of simulation datasets by BLUP, using two SNP
genotype encoding schemes. Bold text indicates the encoding scheme with better performance.

5.2.7 Experimental Results of the Bagging EB Feature Selection Method

Real Datasets

On the two real datasets, we applied again the bagging EB method for selecting SNPs of significant

effects. Two other feature selection methods, M5 and correlation-based, were also used. We ran two

EBV prediction methods, LR and SVM with a linear kernel, to examine the effect of SNP selection.

For ease of presentation, “LR + Bagging EB” is denoted as LRb, and similarly “LR + M5” (“LR

+ correlation-based”) is denoted as LRm (LRc, respectively). Table 5.22 contains all the detailed

performance results for both LR and SVM, with or without the SNP selection. One can see that

none of the three feature selection methods improved the results much, though occasionally marginal

improvements were seen. However, for the 3 traits in the beef dataset, the algorithm accuracy does

not decrease much after using the feature selection method, but the number of SNPs used in the

regression model decreases substantially from the original 5000 SNPs to between 50 and 100 SNPs,
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which is beneficial for us as we can detect the location of actual genes which affect the traits more

precisely, or design assays that are less expensive.

Trait Measure SVM SVMb SVMc SVMm LR LRb LRc LRm

CC 0.463 0.420 0.431 0.276 0.401 0.371 0.423 0.211
FY rCC 0.465 0.403 0.429 0.294 0.383 0.366 0.418 0.209

NRMSE 0.941 0.928 0.928 0.968 1.027 1.024 0.926 1.013
CC 0.388 0.451 0.334 0.293 0.334 0.453 0.304 0.289

FP rCC 0.376 0.437 0.326 0.213 0.317 0.440 0.303 0.290
NRMSE 0.995 0.938 0.983 1.017 1.042 0.958 1.001 1.046
CC 0.475 0.263 0.326 0.201 0.482 0.277 0.355 0.239

MY rCC 0.423 0.331 0.353 0.217 0.475 0.333 0.343 0.245
NRMSE 0.897 0.985 0.988 0.989 0.911 0.953 0.972 1.019
CC 0.434 0.354 0.261 0.248 0.417 0.279 0.293 0.217

PY rCC 0.434 0.334 0.279 0.243 0.391 0.277 0.287 0.218
NRMSE 0.952 0.941 0.953 0.981 0.967 1.060 0.999 1.042
CC 0.409 0.181 0.200 0.193 0.410 0.200 0.213 0.127

PP rCC 0.371 0.192 0.195 0.187 0.373 0.187 0.210 0.131
NRMSE 0.993 1.122 1.073 1.157 1.010 1.132 1.055 1.150

CC 0.504 0.354 0.377 0.416 0.461 0.356 0.393 0.306
ADG rCC 0.470 0.310 0.344 0.377 0.471 0.319 0.356 0.304

NRMSE 0.879 1.034 1.105 0.941 0.943 1.067 0.997 1.308
CC 0.541 0.469 0.424 0.460 0.483 0.426 0.375 0.340

BW rCC 0.512 0.425 0.477 0.416 0.380 0.411 0.331 0.321
NRMSE 0.852 0.887 0.947 0.945 0.888 1.001 1.017 1.278
CC 0.701 0.657 0.624 0.691 0.620 0.555 0.538 0.515

RFI rCC 0.646 0.544 0.510 0.568 0.505 0.458 0.427 0.465
NRMSE 0.713 0.770 0.807 0.728 0.854 0.887 0.893 1.056

Table 5.22: The average CCs, rCCs, and NRMSEs of SVM and LR, with or without using a SNP
selection method, for EBV prediction on 8 traits of the two real datasets.

Simulation Datasets

EB is a shrinkage method that can be used for identifying SNPs having significant effects on the

target trait. For each of the 100 datasets for one type of simulation, we used the bagging EB method

to select SNPs in the training dataset, and then we ran the LR method to fit an EBV predictor and

tested it on the testing dataset. Using the 10-fold cross validation scheme, we collected the perfor-

mance statistics of such an approach, called “LR + Bagging EB”. For comparison, we also collected

the performance statistics for LR on the 100 datasets. Table 5.23 lists the detailed performance

results for both LR and “LR + Bagging EB”, where one can see that the bagging EB method did

improve the EBV prediction. For example, even for the simulation type (0.5, 0.9), i.e. co-dominant

model with background noise level 0.9, the bagging EB method improved the LR EBV prediction

performance more than 20%; for the co-dominant model without background noise, the LR EBV

prediction reached a CC 1, which is 40% higher than using the entire set of SNPs.

• completely recessive (α = 0, β = 0)
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Figure 5.24: Algorithm performance with and without bagging EB feature selection method for the
completely recessive model by CC measurement.

• partially recessive (α = 0.25, β = 0)
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Figure 5.25: Algorithm performance with and without bagging EB feature selection method for the
partially recessive model by CC measurement.

• co-dominant (α = 0.5, β = 0)
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Figure 5.26: Algorithm performance with and without bagging EB feature selection method for the
co-dominant model by CC measurement.

• partially dominant (α = 0.75, β = 0)
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Figure 5.27: Algorithm performance with and without bagging EB feature selection method for the
partially dominant model by CC measurement.

• completely dominant (α = 1, β = 0)
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Figure 5.28: Algorithm performance with and without bagging EB feature selection method for the
completely dominant model by CC measurement.

• co-dominant model with background noise level 0.1 (α = 0.5, β = 0.1)
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Figure 5.29: Algorithm performance with and without bagging EB feature selection method for the
co-dominant model with background noise level 0.1 by CC measurement.

• co-dominant model with background noise level 0.3 (α = 0.5, β = 0.3)
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Figure 5.30: Algorithm performance with and without bagging EB feature selection method for the
co-dominant model with background noise level 0.3 by CC measurement.

• co-dominant model with background noise level 0.5 (α = 0.5, β = 0.5)
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Figure 5.31: Algorithm performance with and without bagging EB feature selection method for the
co-dominant model with background noise level 0.5 by CC measurement.

• co-dominant model with background noise level 0.7 (α = 0.5, β = 0.7)
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Figure 5.32: Algorithm performance with and without bagging EB feature selection method for the
co-dominant model with background noise level 0.7 by CC measurement.

• co-dominant model with background noise level 0.9 (α = 0.5, β = 0.9)
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Figure 5.33: Algorithm performance with and without bagging EB feature selection method for the
co-dominant model with background noise level 0.9 by CC measurement.
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LR LR + Bagging EB
(α, β) CC rCC NRMSE CC rCC NRMSE

(0, 0) 0.420 0.425 1.103 0.563 0.556 0.888
(0.25, 0) 0.554 0.571 1.006 0.865 0.861 0.512
(0.75, 0) 0.565 0.585 1.126 0.938 0.932 0.351
(1, 0) 0.533 0.551 1.163 0.827 0.820 0.576
(0.5, 0) 0.618 0.638 1.023 1.000 1.000 0.000
(0.5, 0.1) 0.538 0.551 1.103 0.923 0.915 0.390
(0.5, 0.3) 0.469 0.474 1.168 0.787 0.771 0.629
(0.5, 0.5) 0.394 0.392 1.229 0.659 0.638 0.777
(0.5, 0.7) 0.356 0.351 1.253 0.575 0.559 0.853
(0.5, 0.9) 0.330 0.327 1.282 0.504 0.487 0.909

Table 5.23: EBV prediction results on 10 types of simulation datasets by LR, with or without using
the bagging EB method for SNP selection.

5.3 Additional Results

5.3.1 Comparison of Algorithm Performance on Real Datasets

Dairy Dataset
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Figure 5.34: Performance of EBV prediction algorithms on dairy dataset by rCC measurement,
which shows that for fat yield trait, Ridge is the best method; for fat percentage trait, Ridge is the
best method; for milk yield trait, Ridge is the best method; for protein yield trait, PLS is the best
method and for protein percentage trait, Ridge is the best method.
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Figure 5.35: Performance of EBV prediction algorithms on dairy dataset by NRMSE measurement,
which shows that for fat yield trait, PCA is the best method; for fat percentage trait, ElasticNet is the
best method; for milk yield trait, SVM with rbfdot kernel is the best method; for protein yield trait,
ElasticNet is the best method and for protein percentage trait, ElasticNet is the best method.

Beef Dataset
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Figure 5.36: Performance of EBV prediction algorithms on beef dataset by rCC measurement, which
shows for ADG trait, GP is the best method; for birth weight trait, Ridge is the best method and for
RFI trait, GP is the best method.
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Figure 5.37: Performance of EBV prediction algorithms on beef dataset by NRMSE measurement,
which shows that if using this measurement, for ADG trait, PCA is the best method; for birth weight
trait, SVM with rbfdot kernel is the best method and for RFI trait, ElasticNet is the best method.

5.3.2 Comparison of Algorithm Performance on Simulation Datasets

In the legend of each of the following figures, the regression methods are sorted by their perfor-

mance. There are a total of 100 datasets for each simulation model. The horizontal line for each

regression method is the average performance of that method on the 100 datasets.
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Figure 5.38: Performance of EBV prediction algorithms for the completely recessive model by rCC
measurement, SVM (rbfdot kernel), GP and BLUP are the top 3 methods for this model.
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Figure 5.39: Performance of EBV prediction algorithms for the completely recessive model by
NRMSE measurement, SVM (rbfdot kernel), GP and PCA are the top 3 methods for this model.

• partially recessive (α = 0.25, β = 0)
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Figure 5.40: Performance of EBV prediction algorithms for the partially recessive model by rCC
measurement, BLUP, LASSO and SVM (rbfdot kernel) are the top 3 methods for this model.
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Figure 5.41: Performance of EBV prediction algorithms for the partially recessive model by
NRMSE measurement, BLUP, SVM (rbfdot kernel) and LASSO are the top 3 methods for this
model.

• co-dominant (α = 0.5, β = 0)
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Figure 5.42: Performance of EBV prediction algorithms for the co-dominant model by rCC mea-
surement, BLUP, Ridge and LASSO are the top 3 methods for this model.
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Figure 5.43: Performance of EBV prediction algorithms for the co-dominant model by NRMSE
measurement, BLUP, LASSO and PLS are the top 3 methods for this model.
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Figure 5.44: Performance of EBV prediction algorithms for the partially dominant model by rCC
measurement, LASSO, BLUP and SVM (linear kernel) are the top 3 methods for this model.
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Figure 5.45: Performance of EBV prediction algorithms for the partially dominant model by
NRMSE measurement, BLUP, LASSO and SVM (linear kernel) are the top 3 methods for this
model.

• completely dominant (α = 1, β = 0)
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Figure 5.46: Performance of EBV prediction algorithms for the completely dominant model by rCC
measurement, BLUP, LASSO and SVM (rbfdot kernel) are the top 3 methods for this model.
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Figure 5.47: Performance of EBV prediction algorithms for the completely dominant model by
NRMSE measurement, BLUP, SVM (rbfdot kernel) and LASSO are the top 3 methods for this
model.

• co-dominant model with background noise level 0.1 (α = 0.5, β = 0.1)
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Figure 5.48: Performance of EBV prediction algorithms for the co-dominant model with background
noise level 0.1 model by rCC measurement, LASSO, BLUP and PLS are the top 3 methods for this
model.
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Figure 5.49: Performance of EBV prediction algorithms for the co-dominant model with background
noise level 0.1 model by NRMSE measurement, BLUP, LASSO and PLS are the top 3 methods for
this model.

• co-dominant model with background noise level 0.3 (α = 0.5, β = 0.3)
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Figure 5.50: Performance of EBV prediction algorithms for the co-dominant model with background
noise level 0.3 model by rCC measurement, BLUP, LASSO and PLS are the top 3 methods for this
model.
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Figure 5.51: Performance of EBV prediction algorithms for the co-dominant model with background
noise level 0.3 model by NRMSE measurement, BLUP, SVM (rbfdot kernel) and PLS are the top 3
methods for this model.

• co-dominant model with background noise level 0.5 (α = 0.5, β = 0.5)
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Figure 5.52: Performance of EBV prediction algorithms for the co-dominant model with background
noise level 0.5 model by rCC measurement, BLUP, PLS and SVM (rbfdot kernel) are the top 3
methods for this model.
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Figure 5.53: Performance of EBV prediction algorithms for the co-dominant model with background
noise level 0.5 model by NRMSE measurement, BLUP, SVM (rbfdot kernel) and PLS are the top 3
methods for this model.

• co-dominant model with background noise level 0.7 (α = 0.5, β = 0.7)
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Figure 5.54: Performance of EBV prediction algorithms for the co-dominant model with background
noise level 0.7 model by NRMSE measurement, BLUP, GP and PLS are the top 3 methods for this
model.

76



0 10 20 30 40 50 60 70 80 90 100

0.4

0.6

0.8

1

1.2

1.4

1.6

Dataset ID

N
R

M
S

E

 

 
SVM (rbfdot kernel)
BLUP
GP
PCA
PLS
LASSO
Ridge
SVM (linear kernel)
LR
ElasticNet

Figure 5.55: Performance of EBV prediction algorithms for the co-dominant model with background
noise level 0.7 model by NRMSE measurement, SVM (rbfdot kernel), BLUP and GP are the top 3
methods for this model.

• co-dominant model with background noise level 0.9 (α = 0.5, β = 0.9)
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Figure 5.56: Performance of EBV prediction algorithms for the co-dominant model with background
noise level 0.9 model by NRMSE measurement, BLUP, GP and PLS are the top 3 methods for this
model.
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Figure 5.57: Performance of EBV prediction algorithms for the co-dominant model with background
noise level 0.9 model by NRMSE measurement, GP, SVM (rbfdot kernel) and BLUP are the top 3
methods for this model.

Effects of Dominance Model
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Figure 5.58: Performance of EBV prediction algorithms on 5 dominance models by rCC measure-
ment.
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Figure 5.59: Performance of EBV prediction algorithms on 5 dominance models by NRMSE mea-
surement.

Effects of Noise Level
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Figure 5.60: Performance of EBV prediction algorithms on co-dominant model with 5 noise levels
by rCC measurement.
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Figure 5.61: Performance of EBV prediction algorithms on co-dominant model with 5 noise levels
by NRMSE measurement.

5.3.3 Experimental Results of the Bagging EB Feature Selection Method

Simulation Datasets

• completely recessive (α = 0, β = 0)
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Figure 5.62: Algorithm performance with and without bagging EB feature selection method for the
completely recessive model by rCC measurement.
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Figure 5.63: Algorithm performance with and without bagging EB feature selection method for the
completely recessive model by NRMSE measurement.

• partially recessive (α = 0.25, β = 0)
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Figure 5.64: Algorithm performance with and without bagging EB feature selection method for the
partially recessive model by rCC measurement.
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Figure 5.65: Algorithm performance with and without bagging EB feature selection method for the
partially recessive model by NRMSE measurement.

• co-dominant (α = 0.5, β = 0)
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Figure 5.66: Algorithm performance with and without bagging EB feature selection method for the
co-dominant model by rCC measurement.
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Figure 5.67: Algorithm performance with and without bagging EB feature selection method for the
co-dominant model by NRMSE measurement.

• partially dominant (α = 0.75, β = 0)
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Figure 5.68: Algorithm performance with and without bagging EB feature selection method for the
partially dominant model by rCC measurement.
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Figure 5.69: Algorithm performance with and without bagging EB feature selection method for the
partially dominant model by NRMSE measurement.

• completely dominant (α = 1, β = 0)
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Figure 5.70: Algorithm performance with and without bagging EB feature selection method for the
completely dominant model by rCC measurement.
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Figure 5.71: Algorithm performance with and without bagging EB feature selection method for the
completely dominant model by NRMSE measurement.

• co-dominant model with background noise level 0.1 (α = 0.5, β = 0.1)
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Figure 5.72: Algorithm performance with and without bagging EB feature selection method for the
co-dominant model with background noise level 0.1 by rCC measurement.
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Figure 5.73: Algorithm performance with and without bagging EB feature selection method for the
co-dominant model with background noise level 0.1 by NRMSE measurement.

• co-dominant model with background noise level 0.3 (α = 0.5, β = 0.3)
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Figure 5.74: Algorithm performance with and without bagging EB feature selection method for the
co-dominant model with background noise level 0.3 by rCC measurement.
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Figure 5.75: Algorithm performance with and without bagging EB feature selection method for the
co-dominant model with background noise level 0.3 by NRMSE measurement.

• co-dominant model with background noise level 0.5 (α = 0.5, β = 0.5)
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Figure 5.76: Algorithm performance with and without bagging EB feature selection method for the
co-dominant model with background noise level 0.5 by rCC measurement.
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Figure 5.77: Algorithm performance with and without bagging EB feature selection method for the
co-dominant model with background noise level 0.5 by NRMSE measurement.

• co-dominant model with background noise level 0.7 (α = 0.5, β = 0.7)
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Figure 5.78: Algorithm performance with and without bagging EB feature selection method for the
co-dominant model with background noise level 0.7 by rCC measurement.
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Figure 5.79: Algorithm performance with and without bagging EB feature selection method for the
co-dominant model with background noise level 0.7 by NRMSE measurement.

• co-dominant model with background noise level 0.9 (α = 0.5, β = 0.9)
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Figure 5.80: Algorithm performance with and without bagging EB feature selection method for the
co-dominant model with background noise level 0.9 by rCC measurement.
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Figure 5.81: Algorithm performance with and without bagging EB feature selection method for the
co-dominant model with background noise level 0.9 by NRMSE measurement.

90



Chapter 6

Conclusions

6.1 Conclusions

Genetic improvement of livestock populations can be achieved though detection of genetic markers

linked to QTL. With the completion of the bovine genome sequence assembly, SNP assays span-

ning the whole bovine genome and research work on large scale genetic evaluation using genomic

selection in cattle has become possible. Since DNA extraction is not restricted by age or gender,

genomic selection can alleviate some of the limitations of quantitative genetic selection. Genomic

selection promises to allow prediction of accurate EBVs based on genotypic information in newborn

individuals without phenotypic records. Breeding program design with genomic selection will re-

duce the generation interval greatly and shift the structure of cattle breeding industry. In this thesis,

we demonstrated the use of genotype data for QTL mapping and EBV prediction, by traditional

methods and several major machine learning algorithms. We focus on the evaluation of a bagging

EB method in terms of its ability to select a subset of markers for accurate breeding value prediction.

The evaluation was performed using several simulated and real datasets consisting of genotypes and

phenotypes.

One of the major objectives of this thesis is to verify whether machine learning methods will

help in genomic selection. Results on simulation datasets and real datasets showed that machine

learning methods work well even when the noise level (environmental effect) is high. Machine

learning methods outperform the traditional genomic selection method on both of the real datasets,

which is a sign that we should start to use machine learning methods instead of traditional genomic

selection method in future breeding selection.

Another conclusion from the experiments is that, the bagging EB method can do a good job in

detecting the SNP markers associated with the phenotypic traits, which makes it possible that genes

affecting those phenotypic traits can be located. All the experiment results indicate that the bagging

EB method can serve as a method for QTL mapping on perhaps any type of datasets.

When using the SNP markers detected by the bagging EB method to predict breeding values,

the prediction accuracy improved dramatically on the simulation datasets. However, the bagging
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EB method failed as a feature selection method to help improve prediction accuracy on two real

datasets.

One possible reason is that the real datasets contain too much noise. Due to the relatively small

sample size as compared with the number of SNPs, only a few or no samples are available per SNP

marker, which makes the feature selection methods fail to discover the true interactions between

SNPs and phenotypic traits. The more phenotypic records are available, the more observations there

will be per haplotype or SNP marker, and the more accurate the detection of QTL associated SNP

markers or haplotypes.

Another possible reason might be that in real datasets, it is the haplotypes instead of single SNP

marker that are associated with the phenotype traits. In our simulation model, we simulated QTL

as they are in LD with single SNP markers. That might be why the bagging EB method makes a

great success in the simulation datasets. However, in real datasets, it would be more reasonable to

use haplotypes instead of SNP markers to do the association study with phenotypic traits. Several

experiments conducted by Hayes et al. on real datasets showed that using marker haplotypes will

give better accuracy of QTL mapping than using single markers [24]. Therefore, our future work

would be to verify the applicability of haplotypes for genomic selection.

6.2 Future Work

6.2.1 Using Haplotypes

The advantage of haplotypes over single markers in genomic selection is that marker haplotypes

may be in greater LD with the QTL alleles than single markers. This is dependent on how accurately

identical by descent (IBD) chromosome segments are identified using haplotypes, compared to that

using single markers. If the haplotype consists of many markers instead of a single marker, the

possibility of regenerating identical marker haplotypes by recombination is reduced. As a result,

the possibility that identical haplotypes carried by different animals are IBD is increased, then the

proportion of QTL variance which is explained by the haplotype effects will increase. Therefore,

we can say that the marker haplotypes are more likely to be associated with QTL alleles.

Results from Hayes et al. showed that for a real dataset, using marker haplotypes gave better

accuracy of QTL mapping than using single markers [24]. They also found that in genomic selection,

use of the IBD approach gave greater accuracy of breeding values than using either single marker

regression or regression on haplotypes, particularly at low marker densities (or lower LD between

adjacent makers). In the experiment of Roos et al. the accuracy achieved by the IBD approach was

also higher than regression on single markers or markers haplotypes [12]. On the other hand, Calus

et al. also compared the accuracy of EBV prediction using single markers or marker haplotypes on

simulated data [8]. They found that the prediction accuracy of using haplotypes increased at lower

marker densities. However, if the LD between adjacent markers was 0.2 or greater, the advantage of
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using marker haplotypes is not so obvious [8].

In future research, we would like to verify whether prediction accuracy increases using haplo-

types or IBDs instead of using single markers.

6.2.2 Including Non-additive Effects in Simulation Models

Breeding values, by definition, should include only genetic additive effects, which can be passed

from one generation to the next. However, it might improve the accuracy of estimating by including

dominance and epistatic effects. “Moreover, dominance and epistatic effects can be exploited to

produce sets of progeny with maximum genetic merit, through mate selection for example” [31].

Estimates of dominance effects with single markers is straight forward by extending the genetic

model to estimate two effects per SNP rather than one. However, the estimation of epistatic effects

is more difficult due to the extremely large number of pairwise combinations between hundreds of

thousands of markers or haplotypes, and thus is very time consuming.

In the future work, we would like to add the non-additive effects to our simulation models and

verify whether machine learning methods can still help to increase the prediction accuracy.
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BLUP (best linear unbiased prediction), 13
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EB (empirical Bayes), 20

EBV (genomic breeding value), 6

ElasticNet (elastic-net regression), 27
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QTL (quantitative trait loci), 3
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quantitative genetics approaches, 7
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