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Abstract

In both health and disease, cells interact with one another through cellular
adhesions. Normal development, wound healing, and metastasis all depend on
these interactions. These phenomena are commonly studied using continuum
models (partial differential equations). However, a mathematical description of
cell adhesion in such tissue models had remained a challenge until 2006, when
Armstrong et al. proposed the use of an integro-partial differential equation
(iPDE) model. The initial success of the model was the replication of the cell-
sorting experiments of Steinberg. Since then, this approach has proven popular

in applications to embryogenesis, wound healing, and cancer cell invasions.

In this thesis, I present a first systematic derivation of non-local (iPDE)
models for adhesive and chemotactic motion. For this purpose, I develop a
framework by which non-local models can be derived from a space-jump process.
I show how the notions of cell motility and cell polarization can be naturally
included. The significance of such a derivation is that, it allows me to take
cell-level properties such as cell-size, cell protrusion length or adhesion molecule
densities into account. Thus this derivation validates these popular non-local
models. I show that particular choices of these properties yield the original
Armstrong cell-cell adhesion model. Finally, I extend the cell adhesion model

to include volume exclusion, and complex cell adhesion molecule kinetics.

In Chapter 3, I present a first in depth analytical study of the steady-states
of the non-local cell adhesion model derived in this thesis. The importance

of steady states is that these are the patterns observed in nature and tissues
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(e.g. cell-sorting experiments). As a prerequisite to the subsequent analysis, [
present an in depth study of the properties of the non-local cell adhesion oper-
ator. I present results on its continuity, compactness, and spectral properties.
I then combine bifurcation techniques pioneered by Rabinowitz, equivariant
bifurcation theory, and the properties of the equation’s solution, to obtain the
existence of an unbounded bifurcation branch of non-homogeneous solutions.
Using the equation’s symmetries, | further classify the solution branches by the
derivative’s number of zeros (i.e., number of extrema remains fixed). Signifi-
cantly, this parallels the classifications of solutions of nonlinear Sturm-Liouville
problems and equivariant nonlinear elliptic equations. I identify the bifurcation
type as pitchfork, and show that integration kernel in the non-local term de-
termines whether an immediate switch in the solution’s stability takes places.
Finally, using numerical techniques, I verify my analysis, and demonstrate the

existence of rotating waves of steady states.

In the final chapter, I extend the non-local cell adhesion model to a bounded
domain with no-flux boundary conditions. In the past, boundary conditions
for non-local equations were avoided, because their construction is subtle. I
encounter three challenges: (1) ensure the non-local operator is well-defined
near the boundary, (2) ensure that the non-local operator satisfies the no-flux
boundary conditions, and (3) the constructed non-local operators are non-
unique in the boundary region. I address the first challenge by introducing
spatially dependent integration limits. While more complicated, the new non-
local operators share many of their mathematical properties with the periodic
non-local operator. However, the spatial dependence of the integration limits

complicates differentiation. Indeed, the theory of distributions must be used, to
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compute the non-local operator’s weak derivative. Using the model’s derivation,
I ensure that the constructed operators satisfy the no-flux boundary conditions.
Finally, I classify the constructed non-local operators, by comparing their action
to the periodic non-local adhesion operator, into either repellent, neutral, or
attractive. It is however, an open problem to match these newly constructed

non-local operators to cell behaviour near physical boundaries.
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Chapter 1

Introduction

1.1 The effect of cellular adhesions in tissues

In both normal and diseased tissues, cells interact through adhesions, with
each other and the extracellular matrix (ECM), a ubiquitous protein scaffold.
At the molecular level, cellular adhesions are facilitated by proteins such as
integrins (cell-matrix adhesion protein) or cadherins (cell-cell adhesion protein)
[78], which are situated on the cell surface. Today, we recognize that cell adhe-
sions are fundamental in determining outcomes of normal development, wound
healing and metastasis [77, 119, 142]. Early in the last century, however, the
first biological experimenters had only just begun to uncover the role the cell

adhesion molecules play in tissues.

One of the earliest observations was that if a sponge is squeezed through a
fine mesh (Wilson, 1907 [160]), it will reform into an again functional sponge. A
few years later, Hoftreter observed that different tissues have different associa-
tive preferences [160]. To describe his observations, he introduced the concept of
“tissue affinities”. Further, he repeated the earlier observations that previously
dissociated tissues have the ability to regain their function. Today, this phe-
nomenon is referred to as cell-sorting, and we recognize its critical importance
in the formation of functional tissues during organism development.

In 1963, Steinberg proposed the first theory of cell-sorting that argued

that cell-level properties, namely a cell’s adhesion molecules, drive cell-sorting
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Figure 1.1: Two cell populations with different strength adhesion molecules on
their surfaces. Initially (a) the cells are mixed, and then slowly (b) re-sort themselves
to the final configuration (¢) (For details on the experimental setup and the figure
see [12]).



O @e) o

Mixing Engulfment Partial Engulfment Complete Sorting

Figure 1.2: The four possible outcomes of cell-sorting with two cell populations.
The more cohesive cell population is black. Mixing occurs with preferential cross-
adhesion, engulfment with intermediate cross-adhesion, partial engulfment with weak
cross-adhesion, and cell-sorting with no cross-adhesion [10, 59].

[160, 161]. His theory, capable of explaining the different cell-sorting patterns
is known as the Differential adhesion hypothesis (DAH), which argues that
cell-sorting is mechanistically equivalent to surface tension driven behaviour
in liquids. In other words, cells solely move to maximize their intra-cellular
attraction. That is, the DAH asserts that cell-sorting is solely driven by the
quantitative differences in the work of adhesion between cell types (e.g. cells
with the highest work of adhesion are found at the centre of aggregates). In-
teresting is that Steinberg referred to adhesion being a “merely close range
attraction” [160]. An overview of the experimental verifications can be found
in [162].

Harris formulated a first critique of the DAH [82]. The main points of
his critique were: (1) cells are living objects, and thus open thermodynamic
systems (not closed as assumed by the DAH), (2) cell size and cell membrane
protrusions are much larger than individual adhesion bonds, thus making cellu-
lar adhesions a non-local process, and (3) the work of adhesion and de-adhesion
may be different, as cells can stabilize adhesion bonds after their formation [82].
To resolve these issues, Harris proposed the differential surface contraction hy-
pothesis, argning the contractile strength of a membrane completely describes
its surface tension. A model similar to this idea was later implemented in a
suceessful vertex model of cell-sorting in epithelial tissues [20, 21, 30].

In both health and disease, cells interact with one another and their sur-
rounding protein scaffold (the extracellular matrix, ECM), through adhesions.

Normal development, wound healing, and metastasis all depend on these in-
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teractions [77, 119, 142]. For instance in metastasis, an important question
is how changes in cell adhesion affect transitions from epithelia (quiescent)
to migratory (mesenchymal) cells (EMT) [77, 129], a hallmark of metastatic
cancer [79, 80]. To understand such complex systems, the information gath-
ered from biological experiments and medical data alone is not sufficient, we
have to understand this information. Using mathematical models and rigorous
mathematics, we can understand in detail the underlying properties driving
the observed behaviour.

1.2 Prior modelling efforts on cellular adhe-

sions

The first use of cellular adhesions in a model was a model of cell-sorting in
1992. Graner, Glazier modelled cells as collections of connected lattice sites [71,
74, 75, 76]. Cellular adhesions are implemented by assigning a certain energy
value to any interface between two pixels belonging to two different cells. Since
a single cell contains many lattice sites, this is a non-local interaction. The
evolution of the cells is energy driven i.e. at each step random changes in the
lattice configuration are proposed and accepted by a Boltzman like function.
This approach is now known as the Cellular Potts model and is widely used in
modelling of cell biology. For an overview, see the recent book [156].

In 1996, Byrne, Chaplain studied the growth of avascular tumour spheroids
in the presence of an external nutrient [25]. The tumour growth is determined by
the balance between proliferative pressure and cell-cell adhesion, which keep the
spheroid compact. The Gibbs-Thompson relation is used to relate the tumour
spheroid’s curvature to the external nutrient concentration. It is assumed that
cell-cell adhesions are the forces that maintain this curvature [25]. Later, this
model was modified such that the cell’s proliferation rate depended on the
total pressure acting on the cell (due to adhesion and repulsive forces) [26].
This model was then successfully compared to a cell-based model of tumour
spheroid growth [26]. In a similar model, Perumpanani et al. introduced a

density dependent diffusion term in a tumour spheroid model, the idea was
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that cells in high density areas are slowed down by the presence of adhesion
bonds to neighbours [141]. Since then, this approach has been used in more
complicated models of tumour growth (see [115, 116]). The adhesive mechanism
in these models are purely local. Further, neither of these models was able to
reproduce cellular aggregations nor cell sorting commonly linked to adhesive
interactions.

Palsson, Othmer used a cell-based model to study collective movements in
slugs [140]. Differently to the Cellular Potts model, they used a lattice-free
model, resolving the individual physical forces between the cells. This is a
non-local description of cell-cell adhesion [139, 140].

In physics-based cell-based models such as that developed by Palsson et al.,
the adhesive and repulsive forces between individual cells are resolved using the
theory of elasticity. Modelling cells as elastic isotropic spheres is the simplest
available cell model. The adhesive and repulsion forces between adhering elastic
spheres is resolved using a modified Hertz model [153, 154] or the Johnson,
Kendall, and Roberts (JKR) model [49, 93, 103]. Since these interactions act
over a wide range of cell separations, they are non-local models.

Brodland, Chen used a vertex model (an individual-based model) to model
cell-sorting in epithelial tissues [21, 30]. The process was driven by the surface
tension at cell-cell interfaces. The surface tension in their model depended on
the forces of adhesion, membrane contraction, and circumferential microfila-
ment bundles [21]. They summarized the findings of their numerical studies by
formulating the differential interfacial tension hypothesis of cell-sorting [20].
Once again this was a non-local description of cell-adhesion.

Turner, Sherratt used a Cellular Potts model to study the effect of adhesion
at the invasion front of a tumour [167]. They observed the formation of clusters
of invasion, and the formation of “fingering” invasion fronts. In [168], they
attempted to scale the Cellular Potts model to a partial differential equation.
However, the obtained equations are notoriously difficult even in the simplest
settings. This is due to cells occupying several lattice sites (non-local spatial
extend) in Cellular Potts models.

Since up to this point all cellular adhesion models capable of explaining

aggregations were based on non-local models in cell-based approaches, Ander-
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son proposed to combine the continuum and cell-based approach in a hybrid
model [9]. The significance of this hybrid approach is that cells are individually
represented (adhesion effects can be taken into account) and environmental fac-
tors such as diffusing proteins can be modelled using well-established reaction
diffusion equations. This approach has been popular in studying the dynamics
of tumour spheroids [145, 146].

In 2006, Armstrong, Painter, Sherratt proposed the first continuum model
of cellular adhesions capable of explaining adhesion driven cell aggregations
[10]. Let u(z,t) denote the density of a cell population at spatial location = and
time t. Then its evolution subject to random motility and cell-cell adhesion is

given by the following non-local integro-partial differential equations.

u(z,t) = DAu(x,t) —aV - (ul[:r?t) . h{u(z + 7, 1))82(r) dfr), (1.1)

random motility

-
cell-cell adhesion

where I is the diffusion coefficient, o the strength of the homotypic adhesion
strength, g(u) is a possibly nonlinear function describing the nature of the
adhesive force, {)(r) an odd function, and R the sensing radius of the cell (for

more details on these functions and their biological meaning, see Chapter 2).

0 0 0 O o
r— R - T . r+ R
Force direction due to Force direction due to
cells on the left cells on the right

Figure 1.3: An intuitive explanation of the non-local cell-cell adhesion term in
equation (1.1). Intuitively the non-local term represents a tug-of-war of the cells on
the right and the cells on the left, with the cell at  moving in the direction of largest
force. The result of the scenario here would be that the cell at x moves to the right
(assuming that {}(r) is uniform and h(u) is linear).

The novelty of equation (1.1) is the integral term to model cell-cell adhesion.
Intuitively, the integral term can be interpreted as a tug-of-war or in physical
terms, cells move in the direction of the largest acting force. The effect is
that cells move up “non-local” gradients of cell population and thus arises

the possibility for formation of cell agpregates. The two-population version
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of equation (1.1) was the first continnum model that correctly replicated cell-
sorting experiments [10].

As discussed above, cellular adhesions feature prominently in organism
development, wound-healing and cancer invasion (metastasis). Therefore, it
is unsurprising that model (1.1) has found extensive use in modelling cancer
cell invasion [7, 28, 67, 68, 135, 157], and developmental processes [11]. More
recently, spatio-temporal variations of the adhesion strengths [47], and adhesion
strength variations due to signalling proteins [16] were considered.

The non-local model (1.1) has also been criticized for oversimplification,
namely for its use of a simple diffusion term [123]. Murakawa et al., supported
by experimental data, noticed that under certain conditions equation (1.1)
gave unrealistic solutions [123]. To address this shortcoming, Murakawa et
al. modified the modelling assumption “cells move randomly” to “cells move
from high pressure to low pressure regions”. For this reason, they introduced
a density-dependent diffusion term [123].

Prerequisite for the extensive numerical exploration of the solutions of the
non-local equation (1.1) was the development of efficient numerical methods to
evaluate its integral term. An efficient method based on the fast Fourier trans-
form was developed in [66]. Using this efficient algorithm, numerical solutions
of equation (1.1) are implemented using a spatial finite-volume discretization
and the method of lines for the temporal advancement [65].

Existence results for the solutions of the non-local equation (1.1) were devel-
oped in [7, 16, 92, 157]. Most significant is the general work by Hillen, Painter,
Winkler, who showed local and global existence of classical solutions [92]. For
the case of small adhesion strength, travelling wave solutions of equation (1.1)
were found and studied in [133].

1.2.1 Non-local partial differential equation models

Having introduced the non-local adhesion model (1.1), we take a look at devel-
opments of non-local models in general. Non-local models arise in two different
situations: First, one assumes the a priori existence of some non-local interac-

tion, or they arise from local reaction-diffusion equations, upon taking some
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limit, or the introduction of a simplification [101, 105]. For example, in a system
of four partial differential equations (two cell populations and two diffusing
signalling molecules), Knitsdéttir et al. [105] applied a quasi-steady state
assumption assuming the signalling molecules diffuse much faster than the
cellular populations. The resulting elliptic equations were solved using Green's

functions, and thus non-local terms were introduced in the advection terms.

Non-local models have been proposed to describe many different phenom-
ena, such as the fractional Laplacian (Levi random walks). Integro-difference
equations, discrete in time, and continuous in space, are popular to study the
dispersal of animal populations in ecology [128]. In the continuum time setting,
non-local equations arising for birth-jump processes [88] are gaining traction,
with applications in cancer stem cell dynamics [18, 44] and fire spotting [117].

The non-local cell-cell adhesion model (1.1) has the non-local term in the
advection term. The first non-local equations with the non-local term contained
in the advection term were proposed in a series of papers by Nagai et al. in
1983 [124, 125, 126]. Their introduction of the non-local term was driven by
a desire to model aggregation processes in ecological systems. For comparison
with the non-local adhesion model (1.1), the equations of Nagai et al. looked
like this,

w = (u™), — [{[ZK{m—y)u{y,t}dy}HLJERJ}D? (1.2)

where m > 1. Shortly after Alt, studied generalizations of equation (1.2) in
[3, 4]. A version of equation (1.2) with finite integration limits and with the
special choice of K(z —y) = sgn(z —y) was studied by Ikeda in [99, 100]. Ikeda
established the existence of solutions of equation (1.2) on an unbounded do-
main and developed spectral results in the special case of m = 2, that was used
to give a classification of the steady-states of equation (1.2). In 1999, Mogilner
et al. used this approach to derive a non-local model describing the evolution of
swarms [121]. More recently, such models were used to describe the aggregation
of plankton [1], and to model animal populations featuring long-ranged social
attractions and short-ranged dispersal [166]. Eftimie et al. used a Lagrangian

formulation to obtain non-local hyperbolic models of communicating individu-
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als [51, 52|. Since then, equivariant bifurcation theory was used to study the
possible steady states of such communication models [23], and very recently
they discussed the use of Lyapunov-Schmidt and centre-manifold reduction to
study the long-time dynamics of such equations. The non-local adhesion model
falls also in this category of equation (1.1) and more recently it was generalized
to include both aggregations and repulsive behaviour [136].

A similar type of model was proposed by Othmer, Hillen [132] to replace

the chemical gradient in a chemotaxis model by the following non-local term,

mn

'331;(5:) = Y

[ ov(z + Ro)do, (1.3)
Sg—i

S5 '(z) = {¢ € 8" L z+0R € D}, and wp(z) = |S " (z)|. It was shown in [91]
that this change leads to globally bounded solutions of the non-local chemotaxis
equation. Extending the work on steady states of the local chemotaxis equation
[151, 170], Xiang used bifurcation techniques to analyse the steady states of

the non-local chemotaxis equation in one dimension.

Non-local terms have also been considered in reaction terms, i.e., in equa-

tions of the form
U = Uzr + flT, U, T), (1.4)

where

ﬂ:[gl[:r?u}d:r. (1.5)

These types of equations were studied in [19, 40, 41, 42, 60, 61, 62]. An appli-
cation of such a model is for example to Ohmic heating in [110]. A different
application considers the growth of phytoplankton in the presence of light and
nutrients [178]. Yet another application of such a model is a study on the effect
of crop raiding of large bodied mammals [97].

Many of the above mentioned examples are formulated on infinite domains,
to avoid subtleties in dealing with boundary conditions, or subtleties in en-
suring the non-local term is well-defined. Indeed, even the analysis of local
equations such as the viscous Burger equation on bounded domains have re-
mained unaddressed until recently [171].
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1.3 Outline of the Main Results

In this thesis I consider non-local models of cell-cell adhesion in the form of
integro-partial differential equations (see equation (1.1)). The central problems
which we would like to address in this thesis are:

1. Can non-local models be derived from an underlying individual deserip-

tion of cell movement?

2. What are the steady-states of the non-local cell adhesion models (i.e.
equation (1.1)) in the absence of boundary effects?

3. How to model and include boundary effects in the non-local term of the
cell adhesion models (i.e. equation (1.1))?

In Chapter 2, I develop a framework to derive non-local taxis models from
stochastic random walks. The key to the derivation is the extension of the
biological concept of a cell’s polarization vector to the mathematical world.
Intuitively speaking, once a cell has polarized, it will move in that direction.
Using this framework, all that remains is a definition of how cells polarize. We
develop a cell polarization vector due to the interactions of adhesion molecules,
and for non-local chemotaxis. The significance of this work is that it allows us
to elucidate in detail how cell level properties such as cell size or density of
adhesion molecules affect tissue-level phenomena. Chapter 2 has been published
as [24].

In Chapter 3, I investigate the steady states of a single population non-local
model of cellular adhesions on a periodic domain. I combine global bifurcation
techniques pioneered by Rabinowitz, equivariant bifurcation theory (the equa-
tion is O(2)-equivariant), and the mathematical properties of the non-local ad-
hesion term, to obtain the existence of an unbounded global bifurcation branch
of non-homogeneous solutions. [ further classify the first solution branch by the
derivative’s number of zeros (i.e. number of extrema remains fixed). The sig-
nificance of this result is that it parallels the seminal classification of solutions
of nonlinear Sturm-Liouville problems (Crandall & Rabinowitz, 1970) and the
classification for equivariant nonlinear elliptic equations (Healey & Kielhdfer,
1991).
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In Chapter 4, I study the existence of steady states for a non-local model of
cellular adhesions on a bounded domain with no-flux boundary conditions. In
the past, boundary conditions for non-local equations were avoided, because
their construction is subtle and requires biological insight. Using the insights
from Chapter 2, I construct a non-local operator, which takes boundary effects
into account. The significance is that correct boundary conditions are important
to accurate model construction (e.g., boundary dependent organogenesis in
zebrafish). Mathematically significant is the construction of the weak derivative
(using distributions) for the “no-flux” non-local operator. Using this, [ study
the effect of no-flux boundary conditions on the steady states of a cell adhesion
model.

In Chapter 5, I conclude with a discussion.
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Chapter 2

Derivation of a Cell-Cell
Adhesion Model Using a

Space-Jump Process

Published: A. Buttenschon, T. Hillen, A. Gerisch, and K. Painter, " A space-
jump derivation for non-local models of cell-cell adhesion and non-local chemo-
taxis,” Jowrnal of Mathematical Biology, online June 2017.

2.1 Introduction

The building blocks of multicelluluar organisms are cells, vessels and protein
fibres. These tissue constituents display complex biochemical and physical inter-
actions with cell adhesion and chemotaxis being two such examples. Adhesion
is facilitated by transmembrane adhesive complexes, while chemotaxis requires
receptors on the surface of the cell membrane. Both chemotaxis and cellular ad-
hesion are instrumental in embryogenesis, cell-sorting and wound healing, along
with homoeostasis in multicellular organisms. Misregulation of chemotaxis and
cellular adhesion may lead to pathological conditions such as cancer and other
degenerative diseases [63, 149]: for instance, reduced cellular adhesion in cancer
cells can lead to invasion and metastasis [63]. Both chemotaxis and cellular
adhesion have been the focus of intense mathematical modeling efforts, both at
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the level of agent-based and continnum models, with the latter typically based
on local or non-local partial differential equations [10, 47, 89, 96, 134]. Local
models, typically based on the reaction-advection-diffusion framework, have a
solid foundation in biased random walks. Non-local models appear to be better
snited to describe certain aspects of adhesion, along with non-local chemotaxis,
yet as far as we are aware there is no convincing microscopic random walk
process that leads to these non-local models. In fact Gerisch et al., [68] have
written on page 328 that “A highly desirable objective is to develop continuous
models for cellular adhesion as the appropriate limit from an underlying indi-
vidual model for cell movement”. In this chapter we propose to fill this gap and
introduce a spatial stochastic random walk that leads, in an appropriate limit,
to the non-local adhesion and chemotaxis models. This approach provides a

better understanding of the underlying modelling assumptions and allows to
modify the continuous model as needed.

2.1.1 Biological Background

This section reviews pertinent biological background on cell adhesion, required
for the subsequent derivation. Cellular adhesions are facilitated by cell adhe-
sion molecules, which are proteins present on the cell surface [108]. In layman’s
terms, they act to stick cells to each other and their surroundings. Through
these connections, cells can sense mechanical cues and exert mechanical forces
on their environment. It is of note that cellular adhesion is important in both
adherent (static) cells and in motile cells [108]. Due to their importance ad-
hesion molecules are ubiquitous in biological organisms and, accordingly, it
is not surprising that numerous adhesion molecules are known with integrins
and cadherins forming two prominent classes. Integrins are important in both
the static and dynamic case [108] and are commonly associated with contacts
between cells and the extracellular matrix (ECM) [45]. Cadherins, on the other
hand, are more commonly associated with forming stable cell-cell contacts [108].
The density and types of presented adhesion molecules determine the mechan-
ical interaction strength between a cell and its neighbours or the environment.

While cell adhesion is important during both homoeostasis and during cell
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migration, we will treat the homeostatic case as a special case of migration, in
which cells are in a mechanical equilibrium or at a so called steady state.
The motility of cells is fundamental during many biological functions, in-
cluding embryogenesis and wound healing [43]. In this dynamic setting, cellular
adhesion plays an important role in guiding migrating cells. Cells have de-
veloped many mechanisms of translocation, with at least four different kinds
of membrane protrusions distinguished: lamellipodia, filopodia, blebs and in-
vadopodia [147]. How the directionality of these protrusions is determined
varies greatly between cell types, but a unifying feature of migrating cells is
the formation of a spatially asymmetric morphology, allowing a clear distine-
tion between front and back [107, 148]. This is the so-called process of cell
polarization and can result from a wide variety of intrinsic and extrinsic cues,
including chemical or mechanical stimuli [39, 64, 148, 165, 173]. Once polarized,
membrane protrusions are extended primarily at the cell front [107].

2.1.2 Mathematical Background

Many partial differential equation models for the dynamics of cellular popula-
tions are motivated by the conservation of mass equation. Suppose that the
population density is given by u(z,t) and its flux by J(z,t). The conservation

equation is then given by,
Uz, t) = -V - J(z,1). (2.1)

Different biological phenomena can be described by an appropriate choice for
the flux. In many common models the flux is divided into multiple additive
parts: for example, a part due to random motion denoted J;, and a part due
to adhesion denoted .J,, that is

I(z, 1) = Ja(u(z, 1)) + Ja (uz(z, 1)) . (2.2)

In the following discussion we focus on different choices for J, and assume
Fick’s law for the diffusive flux, i.e, J; = —Du,(z,t). Armstrong, Painter,

Sherratt [10] suggested the following flux term to model movement through
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the formation and breaking of cell-cell adhesion between cells. The flux J, is
assumed to be directly proportional to the created force and the population

density, and inversely proportional to the cell size, such that
¢
J,= EH(I’ t)F, (2.3)

where ¢ is a constant of proportionality, F' the total adhesion force and L the
typical cell size. This follows from Stokes’ law, which gives the frictional force
of a spherical body moving at low Reynolds numbers. The total adhesion force

is the result of the forces generated within the sensing radius, i.e.,
F= f h(u(z +r,t))Q(r)dr, (2.4)
B"(R)

where h(u(z,t)) describes the nature of the force and its dependence on the
cell density and (2(r) describes the force’s direction and dependence on the
distance r. Substituting the fluxes into the conservation equation we obtain
the following integro-partial differential equation:

u(z,t) = DAu(z,t) — V- (u(z, t) K (u(z, t))(z, 1)), (2.5a)

where
K(u(-,t))(z)=a fnﬂm) hiu(z +r,t))Q(r)dr (2.5b)

and a = ?/;,. It is noted that this model was the first continnum model that
successfully replicated the patterns observed in Steinberg’s classic adhesion-
driven cell-sorting experiments [10].

In this chapter we will focus on the modelling of the non-local adhesion
process, for this reason we assume in equation (2.5) that the diffusion coefficient
is constant. For the modelling of spatial dependent diffusion coefficients we
refer the reader to [163] and [27].

The adhesion model (2.5) has since been extended to include both cell-
cell and cell-ECM adhesion [67], with this extended version used to study the
invasion of cancer cells into the ECM [8, 28, 47, 67, 135, 157]. The adhesion

model was also used in a model of neural tube development in vertebrates [11].
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In addition to the various biological applications, the mathematical properties
of the adhesion model (2.5) have been under intense investigation: conditions
for global existence were developed in [28, 50, 92, 157]; travelling wave solutions
were found for small parameters a in equation (2.5b) [133]; an efficient and
robust numerical scheme for the non-local adhesion model has been developed
in [66].

While successful in application it is not yet clear how the microscopic
properties of cells, such as cell size, cell protrusions, nature of the adhesion
forces or the distribution of adhesion molecules enter the adhesion model (2.5).
A derivation of the non-local adhesion model (2.5) from an underlying random
walk promises to answer these questions. An early attempt was undertaken by
Turner et al. [168], who studied the continuum limit of a Cellular Potts model
that included cell-cell adhesion, yet the resulting continuum model was too
complicated for significant analysis. Johnston et al. [104] studied the continuum
limit they obtained from a stochastic exclusion movement model; under certain
parameter regimes, however, the continnum model permits negative diffusion
and is unable to replicate the pattern formation observed during cell-sorting.
Recently, Middleton et al. [120] showed that an integro partial differential
equation (iPDE) model similar to equation (2.5a) can be obtained from the
mean field approximation of Langevin equations. There it is shown that this
iPDE limit is only effective for weak cell-cell adhesion.

Many commonly used partial differential equation models, such as the
chemotaxis equation, have been derived from a space-jump process [89, 131].
This motivates us to derive the adhesion model (2.5) from an underlying
stochastic random walk model based on cell-cell mechanics. The challenge
is maintaining the finite sensing radius while taking the formal limit of the
space-jump model. Through this we offer not only insight into the complicated
assumptions on which Armstrong’s model (2.5) is based, but also extend it to
a more general form. We see that Armstrong’s model implicitly assumes (i)
point-like cells, (ii) mass action for the adhesion molecule kinetics and (iii) no
volume exclusion effects. Our approach allows us to relax these assumptions
and extend the model to include large cells, volume exclusion and more compli-

cated adhesion molecule kinetics. In the process we find that our derivation is

16



general, and hence applicable to other non-local models such as the non-local

chemotaxis model in Section 2.4.

2.1.3 Layout of the chapter

The key to a mathematical derivation of a continuum adhesion model lies in the
definition of cell polarization. In Section 2.2 the biological notion of a polariza-
tion vector is integrated into the framework of a stochastic random walk. This
preparatory work will allow us in Section 2.3 to derive the non-local adhesion
model from an underlying stochastic random walk and in Section 2.4 to derive
the non-local chemotaxis model. In Section 2.5 the proposed stochastic random
walk is compared to numerical simulations of the integro-partial differential
equation model of adhesion. Finally, in Section 2.6 our results will be discussed

and an outlook given on open questions and future work.

2.2 A population model informed by the po-

larization vector

For the following discussion we let the domain be given by (1. Here we restrict
the domain to {2 = K" in order to focus on modelling cell-cell interactions
in the absence of boundary effects. Suppose that a cellular population with
population density function u(z,t) is present in (). To define precisely the
meaning of this population, we make a couple of assumptions. Cells send out
membrane protrusions to sample their environment and we assume that these
membrane protrusions are much more frequent than translocations of the cell
body; the cell body includes the cell nucleus and most of the cell’s mass. In
modelling cell migration we are most interested in the translocation of the
cell body and not the frequent, but temporary, shifts due to cell membrane
protrusions. For this reason, we define the population density function u(z,t)

as follows,

u(x,t) = Density of cells with their cell body centred at z at time t. (2.6)
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This precise definition of the cell population will become important later in
Section 2.3.

e ( Population Level J

S Diffusion Scaling

3’ o ( cottmemon )

A

Pala nzatlﬂn vector
Microscopic Model of
Adhesion molecules

Figure 2.1: Schematic of the bottom-up approach of modelling cell movement due
to cell-cell adhesion. Our final goal is to derive an equation describing the evolution
of the cell population density. This is called the population level The population level
model is derived from a cell level model. Finally, the cell level model is informed by
the polarization vector. The cell depicted in red is given an arrow shape to indicate
the polarization vector p(x). The polarization vector is determined by the formation
and breaking of adhesion bonds between the cells. The adhesion bonds are depicted
as blue sticks. The polarization vector connects the microscopic and the mesoscopic
scale (see Section 2.2.1). The diffusion scaling connects the mesoscopic and the
population level (see Section 2.2.3).

WV

We model the evolution of the cell population u(x,t) using a space-jump
process, using stochastically independent jumpers. In other words, we use a
continuous time random walk for which we assume the independence of the
waiting time distribution and spatial redistribution. Here the waiting time
distribution is taken to be the exponential distribution, with a constant mean
waiting time. A possible extension in which the mean waiting time is a function
of cell density is briefly motivated in Section 2.6. Let T'(x, y) denote the tran-
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sition rate for a jump from y € 2 to z € (). The evolution of the population

density u(-,t) due to these particle jumps is given by the Master equation [131],

u(z,8) = A L (T(z.v)u(w.t) - T@w.zju(z,0)] dp(w),  (27)

where (D, p(y)) is a measure space with D) C (2, and 1/A is the mean waiting
time. Note that, T'(z,y) depends on the population density u(-,t), however
we do not explicitly track this to keep the notation managable and within
convention see for instance [89]. For more details on the derivation of the
master equation see [98, 169].

We make two assumptions about the movement of the cells:

Modelling Assumption 1: We assume that in the absence of spatial or tem-
poral heterogeneity the movement of individual cells can be described by
Brownian motion. It has been shown that this is a reasonable assumption
for many cell types [15, 122, 152].

Modelling Assumption 2: The cells’ polarization may be influenced by spa-
tial or temporal heterogeneity. We denote the polarization vector by p(z).

In this section we will show how these two assumptions can be naturally in-
cluded within the space-jump framework. We will further discuss the formal
limit of equation (2.7) which will lead to macroscopic models describing the
spatial-temporal evolution of u(x,t). Figure 2.1 gives an overview of how the
polarization vector and the diffusion scaling are used to obtain the final popu-

lation model.

2.2.1 The polarization vector in a space-jump process

For notational convenience we associate to a jump from y € Q) to z € () the
heading z :== r —y. Using the heading we define Ty(2) =T(y+ 2z,y) =T(z,v).
Let ¥ denote the set of all possible headings from y. We assume that if z € D¥
then so is —z € DY. In other words, DY is a symmetric set. In most cases DY
will be independent of y. We further assume that for every y € {1, the function

T, is non-negative as it represents a rate.
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Given y € {1 we denote the redistribution kernel at this location by T,(z);
we assume that T, € L'(D¥) and that ||T,||, = 1 holds. Note that here we use
the measure associated with Y. This measure can be the standard Lebesgue
measure in R™ if D¥ is the ball with radius h in R", i.e., D¥ = B"(h), or it could
be the surface Lebesgue measure in B™ if DY is the sphere with radius h in
R", i.e., D¥ = §*!(h), or it can be a discrete measure if modelling movements
on a lattice and DY = { he;, —he,, hey, ..., —he, }, where e;,e,, ..., e, are the
Cartesian unit vectors. In any case, this normalization makes T, a probability
density function (pdf) on DY.

Any function which is defined for both z and —z can be decomposed into
even and odd components, which are denoted by S, and A, respectively. This
notation is chosen in imitation of the even/odd notions introduced by Mogilner
et al. [121] in a non-local modelling study of swarming behaviour.

Lemma 2.1. Consider y € (1, given T, € L'(D¥), then there exists a decom-
position as

1) {Sy{z}+ﬂq{z} & 240 .

Sy(2) ifz=0

with S, € LY(D¥) and A, € (L*(D¥))". The even and odd parts are symmetric
such that

S,(2) = S,(=2) and A,(z) = A,(~2). (2.9)

Proof. Given T, define

5u(2) = 5 (T(2) + Ty(~2),

Ayz) =3 (Ty{z}i - Ty(—zyi) . 240,

|2] K

Then the above properties can be checked by direct computation. |

Using this decomposition we define two properties which are analogous to
Modelling Assumptions 1 and 2 above. First, we define the motility.



Definition 2.2 (Motility). We define the motility at y € £ as

M(y) = [D %{H}Ty(z) dz = j; o S,(2)dz, (2.10)

where the integration is w.r.t. the measure on DY.

The motility is the probability of leaving y. This probability is 1 if 0 ¢ D¥;
it is also 1 if 0 € D¥ and T, is a continuous pdf, and it may be smaller than 1 if
0 € D¥ and T, is a discrete pdf. Here we find that the motility depends solely
on the even component S,, in other words solely on modelling assumption one.

Secondly, we define the polarization vector in a space-jump process.

Definition 2.3 (Polarization Vector). The polarization vector at y € (0 is
defined as,

E(y) = Jrj:w 2Ty(2)dz Jov 2 A44(2) - ﬁ dz

T o 2 Tu(2) A2l || 2 Au(2) - Z & (2.11)

where the integration is w.r.t. measure on DY.

The first moment of the pdf T, can be intuitively understood as the ex-
pected heading of a jump originating at y. This is in direct correspondence
with a polarized cell which, following polarization, moves in the direction of the
polarization vector. The expected heading is solely determined by A,, which
therefore plays the role of the polarization vector p(y) in a space-jump pro-
cess. This correspondence motivates us to set A, = p(y) in the subsequent

derivations.

2.2.2 Derivation of macroscopic equations

For the following derivations of the population model, we require the following

assumptions.
1: We consider a myopic random walk, i.e.
S.(2) = 5,, A(z)= A,
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then

Tz[z)=51+ﬂz-%.

Note that T(2) still depends on 2z and = and the scalar S, and vector
A, depend on z.

2: We consider small jumps of length h, and write
D* = pS™ L,
Note that D* is the same for all points in the domain. Elements of §*—!

are denoted by ¢ with measure do.

Using Lemma 2.1 and assuming that the set of destinations is uniform across

the domain, we can rewrite the Master equation (2.7).

(2, £) = A [ T,_.(2)ulz — 2,t) — Tu(—2)u(z, ) du(2),
D=

T\ [ See(2)u(x — 2,1) — S(—2)u(z, ) dpi(2)
=z

+A f ! A,,_z{z]%u{x —2,0) + A=) U@, O dpz). (212)

Using assumptions 1 and 2, and the fact that ||o|| = 1, we can rewrite (2.12)
as

w(zx,t) = A"! f Sr_nott(z — ho,t) — S;u(z,t)do
gn—1

, -

()
_|_/\h’"-—1f A, poou(r — ho,t) + Ayou(z,t)do. (2.13)
gEn—1

. -

()
Let us consider the integrals (I) and (II) separately.
O = [ Sesoulz—ho,t) - S.u,)do,
gEn—1
= [ Spu(x,t) — Spu(z,t)do — f ho -V (Szu(z,t))do
En—1 grn—1
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2
+f %{TJT : VVE (Spu(z, 1)) do + O(h?),
B“_i

2
- h.f odo -V (S:u(z,t)) + %[ oo’ do : VV7 (S.u(z,1)) + O(h?)
Bn—1 gn—1

2
= ;—|S“_1|ﬂ{.5'zu{:r, t)) + O(h*).
n

The colon notation used above denotes the contraction of two rank-two tensors

as
a a
T, — T —

oo VV(5u) = E,-j 0:0; Bz, bz, (Su).

In the last step we used the fact (see for example [87]) that

-1
f odo =0, [ oo’ do = I5” |I? (2.14)
gn—1 gn—1 i

where [ is the n x n identity matrix. Consider integral (II)

(IT) = f A, po -ou(r — ho,t) + A, - ou(z, t) do,
Bn—1

= f A, -ou(x,t) + A(z) - ou(z,t)do — f hoo! : V(Azu(z,t))do
S“_i g -1

2
+[ h—crm:r : VV(Azu(z, t)) do + O(h?),
gn—1

- —hﬁ:l'v (Auu(z, 1) + O(R2).

Here the colon notation denotes the contraction of two rank-three, tensors as

a o
JoaT 'ﬁ"ﬁ'{Au} = Zﬂiﬂjgka—ha—%(mﬂ).

ijk

Additionally, we used the above identities (2.14) and the fact that

f 0;0;0,do =0
gEn—1

for all 4,7,k = 1,...,n, as shown in [87]. Using the approximate expressions
(dropping all O(h®) terms) for the integrals (I) and (II) in equation (2.13) we
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obtain

ARnH AR™

w(z,1) & SIS AS,u(z,0) - ISV - (Au(z,0). (215)

n
It is interesting to note that the even part of T enters the diffusion term, while
the odd part enters the drift term.

2.2.3 Scaling

We now study the asymptotic behaviour of equation (2.15). In the following
u(-,t) will denote a possible non-local dependence on the population density
u(x,t). Here we are interested in the limits as the lattice spacing h tends to
zero and large time. The large time limit is obtained by letting the rate of steps
per unit time A tend to infinity. Different asymptotic equations are obtained,
depending on the asymptotic behaviour of A(h). We consider two cases:

1. Drift dominated: In this case we assume that S, and A, are of order 1
relative to h and A, and that space and time scale to the same order. That
is, 1/A ~ h™ | which is a hyperbolic scaling. With these assumptions, we
can guarantee that the following limits exist.

]r;ml} %B"_lp—lz = a(z,u(-,t)) < oo (2.16a)
A—ben
and it follows that
Mt
lim |S™1|S, = 0. (2.16b)
P 2n

Note that in the limits (2.16a) and (2.16b), A, and S, respectively may
depend on the cell population u(-, t). For this reason, we make the function

a depend on u(-,t). The limit equation is then a pure drift equation
uy(x,t) + V- (a(z,u(-,t))u(z, ) = 0. (2.17)

2. Advection-Diffusion: In this case we assume that 5, is of order 1 relative
to h and A and A, is of order h and of order 1 relative to A. This means,
1/A ~ h™*! and that time is scaled with one order of h higher than
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space. This is a parabolic scaling. With these assumptions, we ensure the

existence of the following limits,

Ah™

. 1 _
lim ?|S’"‘ | Az = oz, ul-,t)) (2.18a)
A —be
and Yo 1
lim o [5" 7|5 = D(z,u(-,t)). (2.18b)
A—rex

Note that in the limits (2.16a) and (2.16b), A, and S, respectively may
depend on the cell population u(-,t). For this reason, we make the func-
tions [) and o depend on u(-,t). Then we obtain an advection-diffusion

equation
Uz, t) + V- (a(z,u(-,1))u(z,t)) = A(D(z,u(-, t))u(z,t)). (2.19)

Note that the spatial diffusion constant appears inside the Laplacian:
this is expected for transition rates based on local information only; for
more details see [27, 163].

An in depth discussion of the different scalings together with their motivation

can be found in [90].

2.3 Derivation of non-local adhesion models

In this section the adhesion model (2.5), as proposed by Armstrong et al.
[10], will be derived using the framework developed in Section 2.2. In the first
step we will derive an expression for the adhesive polarization vector while
in subsequent steps we show how different modelling assumptions give rise to
different cell-cell adhesion models. This derivation is carried out on the infinite
lattice hZ™. In addition we choose our time steps sufficiently small such that
only a single cell moves in each infinitesimal time interval, while the remaining
population effectively remains constant. This non-moving population is referred

to as the background population in the following (see Fig. 2.2).

25



2.3.1 Microscopic Model of adhesion molecule interac-

tions

t —=-
x-R x x4+ R

Figure 2.2: The single jumper (white-red checkerboard pattern) with its cell body
(black disc) located at x, interacts with the background population (grey) via the
adhesion molecules on the respective surfaces, represented as blue sticks.

Consider a cell located at x € 2. This cell senses its environment by send-
ing out many membrane protrusions. We now study how a single membrane
protrusion interacts with the cell’s environment in a test volume Vj(z + r) of

side length h, centred at z + r. We make four assumptions:

1. The probability of extending a membrane protrusion to V}, depends on the
distance |r|. Let the proportion of the cell extended into V}, be denoted by
w(|r|). Since the protrusions are long and thin, the covered volume within
the small test volume is proportional to k. Cell protrusions are limited
in length by the cell’s cytoskeleton, which above a certain threshold will
resist further extension [21]. This physical limit is a natural interpretation
of the sensing radius R. Consequently, the distribution w(-) has compact

support i.e. suppw(r) C B*(R).

2. Cell membrane protrusions are very flexible and are able to fit into
very tight spaces. Nevertheless, free space is still required to establish
contact. The fraction of available space in Vi (z + r) is denoted by
f(x + r,u(x + r,t)). This quantity is dimensionless and one choice is

discussed in equation (2.32) later.

3. Once a cell protrusion reaches V,, the adhesion molecules on its surface
form adhesion bonds with free adhesion molecules of the background
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population. If sufficiently many adhesion bonds form the membrane pro-
trusion is stabilized and persists [148]. Otherwise, the protrusion retracts.
This retraction is commonly observed as ruffles on the cell surface [2].
We denote the density per unit volume of formed adhesion bonds in Vy
by Ny(x + r). We assume that the more adhesion bonds are formed,
the stronger the generated adhesion force, and the more likely it is that
the protrusion persists. Later we will assume that the number of ad-
hesion bonds in V,, are related to the background cell population i.e.
Niy(z +r,u(-,t)). Note that this dependence may be non-local as in Sec-
tion 2.3.5.

4. The direction of the adhesion force is ﬁ
In summary the adhesion strength generated in Vi(z + r) is determined by
distance effects, free space and the number of formed adhesion bonds. Detailed
functional forms for f(-), w(-) and Ni(-) will be discussed in subsequent sec-
tions. Let pn(z,r) denote the adhesion strength generated in V3. Then, after

incorporating the three effects, pr(z,r) is given by

p ™

pu(z, 1 u(- 1)) = B(z) A" Ny(z +ru(, 1)) ho(r])  flz+ru(z+r)),

& adhesion bonds ~ amt. of cell in Vi, free space
(2.20)

where 3(z) is a factor of proportionality. The factor 5(r) may include cellular

or environmental properties, such as a cell’s sensitivity to polarization.

Next we sum over all test volumes present within the sensing radius of the
cell. In this step the direction of the adhesive force is important i.e. assumption

4 above. We obtain the cell’s polarization vector,

Phsee(2) = hB(z) D 1" Nufz+r,u(,1)) f@-+ru(+1)) wlir) . (221)
Bn(R)

Now we can make use of our general derivation from Section 2.2. In detail, we
let Ay = Phnet(T) and take the formal limit as h — 0 and A — oo. Note that in
this case A, = OQ(h), hence limit (2.18a) applies and the final advection term
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is
a(z,u(-,t)) = B(x) jl;"(R) Ny(z+r,u(-, 1) f(z+r, u(z+r)) w{|r|]|:—| dr. (2.22)

The nature of the dependence of N; on the cell population u(-,t) will be
discussed in the following sections. Here we do not specify S, further, we only
require 5, to satisfy the assumptions in Section 2.2. In particular, we will
consider the case in which S, does not depend on u(-,t). The complete model

is then,
w(z,t) =V - [V (D(z)u(z, 1) — a(z,u(-,t))u(z, )], (2.23)

with a(z) given by (2.22) and D(z) by (2.18b).

2.3.2 The Armstrong Model

To obtain the Armstrong model (2.5) as a special case of (2.23), we assume

the following choices.

1. w(r) is the uniform distribution on the sensing region B"(R). That is,

1
~ [Br(R)I

w(r) (2.24)

2. There is always free space and spatial constraints do not restrict the

adhesion process, so f(z) = 1.

3. Mass action kinetics for the reaction between the adhesion molecules of
the background population and the extending cell. Specifically, let N;(x)
and N3(z) denote the density per unit area of adhesion molecules of
the walking cell and the background population at z respectively. The

binding-unbinding reaction can be written

Ni + Ny === N,. (2.25)
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Using the law of mass action, the kinetics for this reaction are

% = ks Ny Nz — ky N (2.26)

Assuming that these reactions are fast, the steady state population of N,
may be expressed by
N, = KN N5, (2.27)

where K = *r/ k- Lhe density of adhesion molecules a given cell has on its
surface depends on various factors. Here it is assumed that the density of
surface adhesion molecules is a given constant. The density of adhesion
molecules in the background population Na(x) is assumed to be directly
proportional to the density of the background population at x. Therefore,
Na(z) ~ u(z).

With these choices for the relevant functions, equation (2.23) becomes

u(z,t) = V- [V (D(z)u(z,1))
r (2.28)
- {].'H-'l:$, E} H(I +7, t} M(ITH_ dr|,
B (R) 7|
where a = SKN,; and w(r) by (2.24). The one dimensional version of equa-
tion (2.28) is the adhesion model proposed by Armstrong et al. [10].

Different choices for w(-)

The physical limit of cytoskeleton extensions was modelled using w(-) where
the compact support of w(-) introduces the notion of the sensing radius. This is
undoubtedly the most important contribution of w(-). However, the distribution
w(-) may vary between different cell phenotypes and we briefly discuss some
commonly used distributions. The simplest would be the uniform distribution
ie.

w(r) =

R (2.29)

Such a uniform distribution may be too unrealistic. The resistance to extension

in the cytoskeleton may build up gradually. In such a case a distribution like a
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triangle distribution or a Gaussian may be more appropriate. In n-dimensions

the triangle distribution generalizes to a cone shaped distribution,

n+1

‘) = R

max (R — |Irll,, 0), (2.30)
where the prefactor normalizes the distribution. For a discussion of the use
of the Laplace or Gaussian distributions see [136]. Mathematically, we may
choose any distribution w(-) which satisfies w(-) > 0 and w(-) € L(-). Note
that these are the only required conditions on w(-) to guarantee the existence
of solution to (2.5) [92].

2.3.3 Volume Filling

In this section two different mechanisms are studied by which volume filling

can be included in the adhesion model.

Destination dependent volume filling

First we consider the well known volume filling introduced by Painter et al.
[137]. In this work, the transition rates are modified via a decreasing function
of the occupancy of the destination site. That is, we modify the transition rates

as follows:

To(2) = qlu(z + 2)) (s,{z} + As(2) - ﬁ) : (2.31)

The function g(-) denotes the probability of finding space and it is chosen such
that g(Upex) = 0and g(u) =0 V0 < u < U,,,. The effect g(-) has on cell
movement is that it reduces the rates of moving to areas with high occupancy.
There are many possible choices of g(-). One of the most logical choices is

+
q(u(z, 1)) = (1 - %} : (2.32)

where {-]+ = max (0, -). For this special choice, the term modifying the diffusion

term equals one (for details see Painter, Hillen [137]). If such a volume filling
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is added, the adhesion model (2.28) becomes,
HE(I'.- t} =V- [v {Du{m]u{:r, E}) -

o) (1- 229 ugan

u(z +1,1) w(lrl)— dr
B~ (R) T

(2.33)

This equation describes the situation in which a cell is unable to move if it is
fully surrounded by neighbouring cells.

Adhesion molecule volume filling

A second possible form of volume filling is introduced through the free space
f(-) term in the polarization of the cell (see equation (2.20)). The free space
term in the cell’s polarization captures the idea that high occupancy reduces
the influence of that location on the cell’s polarization: high occupancy is
expected to reduce the probability of membrane protrusions that feel out that
location. Secondly, a high occupancy could also correlate with a low number
of free adhesion molecules. Upon letting the free space term in (2.20) be
f(z) = g(u(x)), equation (2.23) becomes,

u(z,t) = V- [V (Du(z)u(z, 1)) -

B(z)u(z, 1) j;"{m u(z +1,1) (1 _ @T w(|r))— dr] ,

7|

(2.34)

where (-)* = max(0,-). Equation (2.34) is the same as one of the models
presented by Armstrong et al. [10], in which the h(-) function was chosen to
be logistic. In this case, areas with high occupancy do not contribute to the
adhesion force.
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2.3.4 Bell adhesion bond kinetics

Adhesion molecules are confined to the cell surfaces and, for this reason, their
binding-unbinding kinetics are different to those of a chemical species moving
freely in space. This was recognized by Bell [13], who developed detailed reaction
rate constants for this situation. In this section, Bell kinetics replace the mass
action kinetics (2.25) used in Section 2.3.2.

Bell kinetics are used in each of the small test volumes V},, in which a mem-
brane protrusion interacts with the background population (see Section 2.3.1).
As in equation (2.25) the densities of adhesion molecules on the membrane
protrusion and the background population are denoted by Nj and Ns, respec-
tively. The density of formed adhesion bonds is denoted by N;. In contrast to
mass action kinetics we distinguish now between free adhesion molecules and

formed adhesion bonds. Then the densities of adhesion molecules is split,
N;=Nj;+N, i=1,2 (2.35)

where N;; denotes the unit densities of free adhesion molecules. The kinetic
equation governing the evolution of N is

dN; . "
& = kT NigNos — K™ N, (2.36)
where kT and k™ are the rate constants of bond formation and bond dissocia-
tion, respectively. For details on how the reaction rates kff_ are determined

see Bell [13]. To remove the dependence on N;; we use identity (2.35) to obtain,
dN,
dt

Following [13, 106] it can be assumed that the number of adhesion molecules

= k7 (Ny — Ny) (N2 — Ny) — K™ N, (2.37)

in the background population is much larger than the number of adhesion
bonds formed, i.e. Ny = N,. This is particularly true, since the number of
adhesion molecules on the membrane protrusion is generally expected to be
much lower than the background population i.e. Ny < N,. Then equation (2.37)
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approximates to
dN,

dt
The non trivial steady state of this equation is given by

= kT Ny (N; — N;) — k™ Ny, (2.38)

KNN3

Ny = 1+ KN,

(2.39)

where K = *¥/im. Once again it is assumed that N; is given by a constant and
that Na(z) ~ u(z). Then using f(z) =1 equation (2.28) becomes

u(z,t) = V- [V (D(z, t)u(z,t)) —

2.40
Ku(z +r,t) w(|r|}idr ? (2.40)
B"(R) 1+ KH(I‘I‘T,I'-)

au(z,t) i

where a = [GN;. This describes the situation in which the adhesion force

saturates for large cell densities.

2.3.5 Adhesivity of the background population

In the previous sections the adhesion molecules of the background population
were assumed to be directly proportional to the background population at
that location i.e. N3(x) ~ u(x). The implicit assumption here, however, is that
adhesion molecules of background cells are concentrated at their centres. We

(a) Armstrong model (2.28) assumes (b) In this case the cells in the back-

that the cells in the background popu- ground population are assumed to be

lation are point like. of similar spatial extent as the single
jumper. This means that cells located
at x contribute adhesion molecules at lo-
cations other than .

Figure 2.3: In this figure, cells in the background population are shown in grey,
while the single jumper is shown with a white-red checkerboard pattern. The adhesion
molecules are depicted as blue sticks.
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introduce the distribution 7(r) which describes the distribution of adhesion
molecules across the full cell body. Then the sum total of adhesion molecules

present at a location x is given by,
Ny(z) = [ u(x +r,t) p(r)dr, (2.41)
Br(R)

Note that 7(-) has no y-dependence, as it is assumed to be equal for all cells.
With this definition the adhesion model (2.23) becomes,

w(z,t) =V - ['ﬁ' (D(x)u(z,t))

— B(z)u(z,t) f u(z +y+rt)ny) dy w(lr)— dr | .
B(R) JB(R) I
(2.42)

The double integral formulation of the adhesion model includes all possible
adhesion molecules within a small test volume V3. Therefore, this formulation
generalizes the adhesion model (2.28) by treating both the single cell jumper
and the background population equal. A pictorial comparison of these two
models is shown in Figure 2.3.

Note that, if we assume that 7(r) = dp(r), then we recover model (2.28).
In summary the assumption for Armstrong’s model (2.28) are that cells are
point-like, have uniform densities of adhesion molecules, and that the adhesion
molecules interact via mass action kinetics. At the same time, however, we
retain the assumption that cells are able to sense their environment in a non-
local fashion.

Centered adhesion molecule distribution

In this section the adhesion molecule distribution 7(-) is considered, in more
detail. The analysis in this section will be carried out in one dimension. The
main assumption of the following scaling argument is that most adhesion
molecules are concentrated at the cell middle. Hence, the majority contribution
to the integral in equation (2.41) originates around r = 0. Asymptotic analysis
on a small parameter e that controls the width of the distribution 7(-) is used
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to simplify model (2.42). Introduce € to control the width of the distribution
ﬂ{}? r
) =e'n (=), (2.43)

3
then 7 integrates to unity and has compact support.
An asymptotic moment expansion can be obtained for the functional defined
in (2.43) [54].

( ) Z{ " F‘n&( (z) et 4 O(V+?) (2.44)

where 4™ is the nth derivative of the Dirac delta distribution. The moment
i is given by,
fly = f rn(r) dr. (2.45)
B

Then 7* becomes,
r 1
elp (E) = 1od (@) + eprd (@) + S0P (2) + O(). (2.46)

Note that pp = 1 as n(r) is a normalized distribution. Upon substitution
of (2.46) (dropping all O(€*)) into model (2.42) the following is obtained,

R R
U (z,t) = % [{D{x}u{m? t), — ﬁ{m)u{m,t}[ f u(r+r+y,t) (6{?;}

+ s (y) + 22 Y {y} ) dy w{|r|}ﬂ dr]

(2.47)

Thus resulting in

R
u(z, 1) = % (D(z)u(x, 1)), —ﬁ{x]u{x,t)f (u{:‘.’:+r,t) (2.48)

This describes the situation in which the adhesion molecule distribution on

+ep(z+rt)+ L2 ””3 u(z 4T :)) w(lrl) dr]

the cell surface is concentrated at the cell body. In the macroscopic equation
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this results in a dependence on higher order derivatives within the non-local
term. An open question follows: “In what sense does this equation converge to
model (2.28) as e —+ 07".

2.4 Derivation of the non-local chemotaxis model

Chemotaxis defines the directed movement of a biological cell in response to an
external chemical gradient. A cell may either move up or down this gradient.
Therefore, the directional motion component of the flux is proportional to
the chemical gradient. One of the most prominent features of the Keller-Segel
chemotaxis model is the formation of blow up solutions [96], although these
are not biologically realistic. This has been remediated in many ways, one of
which is through the introduction of a non-local chemical gradient by [132]
and [91]. The non-loeal gradient is motivated by the observation that a cell
senses the chemical gradient along its cellular surface. In n-dimensions the cell
surface is approximated by a sphere of radius R, and the non-local gradient is
then defined as,

¥ po(z, t) = ﬁ [ 2(z+ Rz, ) dz (2.49)
gn—1

where z is the unit outward normal. Once again the conservation equation (2.1)
can be used, by setting the flux J = J; + J., where J. = yu ‘8‘ rv. We then
obtain,

=V (D.Vu—xu¥pv),

vy = DyAv — v+ u,

(2.50)

where the evolution of the chemical v(z, t) is modelled using a reaction-diffusion
equation. It was shown that this model features globally existing solutions [91].

It is well established that cells undergoing chemotaxis polarize in response
to the gradient of an external chemical cue [102, 173]. Intracellular mechanisms
then amplify, interpret and select the polarization direction [172]. Consequently,

it is expected that the cell’s polarization vector is proportional to the chemical
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gradient that the cell detects.
4]
Following the general derivation in Section 2.2 we let A, = #(z) Vg v(z).

We then obtain two different cases depending on the asymptotic behaviour of
A,

Taxis dominated migration: Suppose that A, ~ @(1). In this case we use
limit (2.16a) and limit (2.16b). to obtain,

u(x,t) + V- [x{:r)u{:r,t] %’g u{m,t}] =0, (2.51)

where y(z) is determined by the limit (2.16a). Taxis dominated chemo-
taxis models such as this have been studied in detail in [46].

Advection-Diffusion Limit: Suppose that A, ~ O(h). In this case we use
limit (2.18a) and limit (2.18b), to obtain

u(z,t) =V - [v (D(z)u(z,1)) — x(z)u(z,t) Vi v(z, t}] . (252)

where x(z) is determined by limit (2.18a) and D(z) is determined by
limit (2.18b). This equation is the non-local chemotaxis model (2.50)
from [89]. The key idea of this space-jump derivation of the non-local
chemotaxis model was that the sensing radius of the cell remains constant

while taking the mesh size h to zero.

2.5 Numerical verification of the derivation

In this section we carry out a numerical verification of the space-jump process
presented in Section 2.2 for the adhesion model (2.5). For this purpose we will
solve both the stochastic random walk and the partial differential equation (2.5)
and compare the results. The stochastic simulation is implemented using the
well known Gillespie SSA algorithm [53, 70]. The non-local partial differential
equation is solved using a method of lines approach, for details see [66]. Both
simulations are carried out on a one dimensional finite domain, with periodic
boundary conditions. For the detailed implementation of both simulations see
Section 2.5.1 and Section 2.5.2.
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2.5.1 Outline of the stochastic simulation

The Gillespie algorithm is originally formulated for the reactions between chem-
ical species [53, T0]. However, it can be applied to spatial phenomena as well.
As a foundation for our algorithm we use the stochastic diffusion process from
Section 3.2 in [53]. This means, the domain is discretized into uniform intervals
i.e. ! = hZ. The state vector Y;(t) denotes the number of cells on lattice site

i. Then the reactions between the compartments are,

ka k3 ki kn 1 En
)£ [ Y,  knya Y knya 777 k2na Yoi TY"

and for the periodic boundary conditions

_k
Eny1

Ya Y

Here the reaction rates are non-local spatial functions (see definition of
the rates T'(z, y) in Section 2.2). The reaction rates for the non-local adhesion

models are thus given by,

(2.53)

d+ chp,(i) jump from i to i+ 1
d — chp, (i) jump from i to i — 1

where ppe(x) is from equation (2.21). This means that ppe (i) at lattice location

i is given by,
k
L Wy :
Poat(i) = o5 j_E_k sen(7)Yiis, (2.54)

where k is chosen such that R = kh. Note that in this case the second factor
of h is not required as ¥;(t) already represents a population and not a density.
In other words, hNy(i) ~ hu(i) = Yi(t). The diffusion coefficient and drift
coefficient are transformed into reaction rate constants d and ¢ respectively,
via limits (2.18b) and (2.18a). That is,

D i

i=32 = om

(2.55)



The Gillespie algorithm is implemented in C++, while the setup, data
processing and plotting is written in python. The Mersenne Twister algorithm
is used to generated random numbers'. All the numerics were carried out on
an Intel Core-i7 4790K (Haswell) running Linux. The simulation parameters

are given in Table 2.1.

The implemented Gillespie SSA algorithm was verified against two test
cases; a constant diffusion simulation, and a constant diffusion with constant
advection simulation. The average of 64 stochastic paths generated for both
test cases was compared to the solutions of the constant diffusion equation and
the constant advection-diffusion equation respectively. The solutions of both
test case PDEs were computed using spectral methods. For this the discrete
Fourier transform methods from NumPy 1.9° were used. In both cases the
average of the stochastic paths agreed with the solutions of the PDEs. The
verification results are not shown.

2.5.2 Outline of the numerical method for the adhesion

model

For the comparison the simple Armstrong adhesion model (2.56) is solved
on a one dimensional interval [0, L] with periodic boundary conditions. The
equation is solved using a method of lines approach, for more details see Gerisch
[66].

The detailed model formulation is,

1
us(z, 1) = w . aa—i (u{m? f) _/: 1 I%:lu{a: + o t)w(r) dr) . (2.56)

subject to
u(0,t) = u(L,t)
Hz('}s t:l' = ﬂ'r{L'.- t)
u(z,0) = f(z).

Implementation from libste++ gee 4.9.3 https://gec.gou.org/
2www . numpy . org
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The function w(-) is the uniform distribution over the sensing radius. That is

")
o
w(r) = —=. 2.58
(=22 (2:58)
Note that the normalization factor in the continuum case 1} g is different from
the normalization factor in the stochastic simulation /o see equation (2.54).

The simulation parameters are listed in Table 2.1.

2.5.3 Simulation Parameters

The parameters for both the stochastic and the continuum numerical solutions
are listed in Table 2.1. Both the diffusion coefficient and the sensing radius were
set to 1.0 to satisfy the non-dimensionalization in [10]. The population density
was not rescaled as the stochastic simulation tracked individual particles. The
domain size was chosen such that only a single solution peak would form
(see Fig. 2.4). The initial cell density was chosen such that it corresponds to a
sufficiently large number of particles in the stochastic simulation. The initial
density of 4800 cells per unit length, for example, corresponds to approximately
50 cells per lattice site, and a total of approximately 15000 particles. For
smaller total cell numbers we observed that the results from the continuum
and stochastic simulation deviated for intermediate times, while agreeing for
long times. In particular, the time to reach steady state was shortened for
the stochastic simulation. The adhesion strength a was chosen such that the
constant steady state of equation (2.56) is unstable. Finally, the transition rate
scaling A was chosen and set to 100. Variations of this constant did not affect

the simulation outcome.

2.5.4 Results

In Fig. 2.4 we compare the average density of the state vector of 64 stochastic
simulations at different time points to the continuum adhesion model (2.56).
The relative error between the average density from the stochastic simulations
and the numerical differential equation solution is, at maximum, = 2%. Thus,

under appropriate functional choices, the stochastic model converges to the
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Model Parameter Value

Domain Size L 3.0
Domain subdivisions per unit 96
length

Diffusion coefficient D 1.0
Adhesion strength coefficient @ 0.003
Sensing radius R 1.0
Transition rate scaling A 100
Weighting size w, 0.82
Initial density g 4800.0
Initial conditions (IC) ug(1l + ksin(x))
Perturbation Size of IC & 0.09

Table 2.1: Parameters for Adhesion simulations

Armstrong et al. [10] model.

2.5.5 Correction of adhesion paths

Typical sets of paths generated via the Gillespie SSA with the adhesive reaction
rates (2.53) are shown in Fig. 2.5a. Studying Fig. 2.5a it is noted that the peaks
do not form at the same location between runs. This behaviour is expected, since
we have a periodic domain and almost uniform initial data. This disagreement
is corrected for by shifting the medians of each individual path to the location
at which the PDE forms its peak. This is not a problem because the equation
is solved with periodic boundary conditions. For an example of the result of
such a correction see Fig. 2.5b. Note that the agreement between the average

of stochastic simulation and the continuum solution is much better.

2.6 Discussion

The adhesion model of [10] has been a step forward in the modelling of cohesive
cell populations. The model has been used successfully in applications ranging
from cell sorting to cancer invasion. Non-local models have been used previously

to model cohesion in biological processes, see for example, the work on swarming
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Results of a simple adhesion space-jump process Results of a simple adhesion space-jump process

with 15124 players at time 0.00 with 15124 players at time 0.10
or 0 simulations steps or 4.4e+05 simulations steps
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Results of a simple adhesion space-jump process Results of a simple adhesion space-jump process
with 15124 players at time 0.20 with 15124 players at time 0.50
or B.9e+05 simulations steps or 2.2e+06 simulations steps
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Figure 2.4: The average over 64 stochastic simulations of the state vector is shown
as black circles, one for each lattice site. The line (red) represents the solution of
equation (2.56). The first image shows the initial condition, then times 0.1, 0.2 and
0.5 are shown. Steady state is reached some time before time point 0.5. The initial
condition is given by f(x) = up + kugsin(z). Note the stochastic paths are shifted
by the procedure described in Section 2.5.5. For details on the implementation of
the numerical simulations see the appendix. The simulation parameters are listed in
Table 2.1.

behaviour by Mogilner et al. [121].

Our derivation from a stochastic random walk perspective allows us to con-
nect the macroscopic quantities of drift and diffusion to microscopic properties
of cell behaviour. We analyzed adhesion binding and unbinding dynamics, the
availability of free space, the extensions of protrusions and the force balances
between adhesion in different directions. We found that the simplest case, in
which background cells are local, free space is plenty and adhesive forces are pro-
portional to the cell population, leads to Armstrong’s model. However, we also

show that more complicated and more realistic assumptions can be included to
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Results of a simple adhesion space-jump process Results of a simple adhesion space-jump process

with 3774 players at time 25.00 with 3774 players at time 25.00

or 6.90e+06 simulations steps or 6.90e+06 simulations steps
F —  GilleRgie awverage cuer 65 runs F —  GilleRgie awverage cuer 65 runs
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(a) Uncorrected paths (b) Corrected paths

Figure 2.5: On the left a typical set of 8 simulation paths generated with the
Gillespie SSA algorithm. Each separate path is indicated by a different colour (please
see online version for the colour figure). The straight (red) line is the continuum
prediction and the black curve the average of the 8 stochastic paths. On the right
are the same paths after rotation. Rotation is done as described in the text.

obtain extensions to Armstrong’s adhesion model. It is an interesting task for
future research to study the properties of volume filling, adhesion saturation

and double non-locality.
The key to the presented derivation is the definition of the polarization

vector. It is commonly known that cells polarize due to many different gradi-
ents [29], including adhesive gradients [130, 148, 165]. Further, during embryo
compaction, adhesion between neighbouring cells is established by E-cadherin
dependent filopodia, which extend and attach to neighbouring cells. Subse-
quently, the filopodia remain under tension to bring cell membranes into close
contact [175]. This observation fits closely with our definition of the adhesive
polarization vector. The definition of the polarization vector allows us to keep
our derivation general. This makes it straightforward to derive other taxis
models through simply replacing the polarization vector. Here we derived two
taxis models: the non-local adhesion model (2.5) and the non-local chemotaxis
model (2.50). It is easy to envision similar derivations for other mechanisms of

cell polarization.

The polarization of cells is persistent, meaning that even in the absence of

an external signal the cells retain their polarization [109]. For instance, amoebae
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show a persistence time of approximately 10min [109]. Li et al. conclude that
the motion of amoebae is not a simple random walk, but a process by which
left and right successively follow each other to avoid expensive backtracking
[109]. During the development of the Dictyostelium slug, periodic waves of
chemo attractant cAMP are observed [48], which will result in a flipping of the
gradient as it passes over the cell. Despite this, the direction of cell migration
does not change [48]. Such a persistence mechanism has been studied in other
modelling approaches, such as velocity jump processes [86]. It remains, however,
an open problem of how to include persistence of cell polarization within the
space-jump framework.

A key assumption of our derivation is that the mean waiting time or mean
residency time between jumps, is a constant with respect to the population
density. An interesting direction of future research would be to weaken this
assumption. In the case of cell-cell adhesion, the mean residency time would be
expected to increase when strong cell adhesions are made with juxtaposed cells.
Therefore, it would be expected that the mean residency time A is an increasing
function of cell density. A good starting point for such an investigation may
be the work of [159, 177], who both considered a coupling between the waiting
time distribution and jumps.

In this work we have not been concerned with the internal cell dynamics
which translate extrinsic or intrinsic cues into cell polarization. For a review
discussing internal cell dynamics giving rise to cell polarization see [102]. A
common feature of these models is a symmetry breaking process, thus distin-
guishing the cell front and back. It is an interesting task, to couple such a
detailed model of cell polarization to our cell movement model. Such a multi-
scale approach would be particularly interesting with respect to the persistence
of cell polarization: for example, is it possible to obtain cell polarization by
coupling two such models? A further interesting modelling question is whether
such a coupling gives rise to models similar to the non-local chemotaxis or
non-local adhesion model.

Mathematically, the non-local model (2.5) is very interesting. For the single
non-local model existence and uniqueness results are available [28, 92] while the

existence of travelling wave solutions has been demonstrated by Ou et al. [133].
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The existence of spatially non-homogenous steady states and hence pattern
formation has been numerically observed by Armstrong et al. [10]. However,
an analytical treatment of the steady states of this model and the conditions
under which they form remains a challenge.

The doubly non-local model (2.42) appears to be mathematically new. For
this reason, the questions of existence, uniqueness, travelling waves, steady
states are all open problems. It is further an open problem to understand the
differences of such a doubly non-locality compared to the single non-locality
on the form of solutions observed.
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Chapter 3

Steady States of a Cell-Cell
Adhesion Model on a Periodic

Domain

3.1 Introduction

In this chapter, we consider the steady states of the non-local adhesion model
introduced in [10]. Let S} denote the L-length circle. Let u(z,t) denote the
density of the cell population at location z € S} at time ¢t € R*. The non-local

operator modelling cell-cell adhesion interactions is given by
R
Klu(z,t)](z,t) = f h(u(z + r,t))Q(r) dr. (3.1)
-R
The full evolution equation is given by
w,(2,1) = Dt (2,1) — a (u(z, t) Klu(z, )] (2, 1), - (3.2)

In the previous, D) is the diffusion coefficient of the cell population, a the
strength of the homotypic cellular adhesions, and finally R is the cell’s sensing
radius. The sensing radius is the distance over which cell's sample their envi-
ronment using cell membrane protrusions. For more details on this process, see
[24]. The initial condition of equation (3.2) is denoted by ug(z, t). Note that as
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we consider the equation on the circle we do not require boundary conditions
(or in other words periodic boundary conditions are imposed).

We start off by giving a precise mathematical definition of the non-local
term.

Definition 3.1. Let X, Y be Banach spaces of functions, then we define the
operator K: X = Y by

1

Klu(z)](z) = fl h(u(z + r))Q(r)dr. (3.3)

The directionality function {2 is assumed to satisfy the following conditions:
(K1) Q(r) = u(ir),
(K2) w(r) >0,
(K3) w e LY(0,1)n L>=(0,1),
(K4) |wllpioqy = 2.

The function h(-) within the integral describes the nature of the adhesive force

and is assumed to satisfy:
(H1) h e C}(R),
(H2) h(u) = 0 for u = 0,
(H3) h{u) < C(1+u) for all u = 0, for some R 3 C' = 0,
(H4) h'(@) # 0, where @ is the real number defined in equation (3.10b).

Remark 3.2. Using the assumptions K1 to K4 we can rewrite the non-local
function defined in equation (3.3) as

i
Klu]: z —}[ [A(u(z+ 1)) — h(u(z — 1)) |w(r)dr. (3.4)
0
This equivalent formulation will be frequently used in the following.
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In the remainder of this chapter, we will work with a non-dimensionalized
version of equation (3.2). This is to reduce the complexity of our exposition.

For this, we introduce the following non-dimensional variables,

T D u o
==, t=t—, w=-, a*‘=—, 3.5
R R? it i (3:5)
where i depends on the precise choice of the funetion h(u), and & is given by

D
Rt

&= (3.6)

Finally, L = L/ p. The non-dimensionalization of equation (3.2) is given by

U (T, 1) = Upe (T, 1) — ¥ (u{m,t}[ll h(u(z +r,1))Q(r) dr) . (3.7)

In the following, to make our notation simpler we will drop the tildes from L
and h(-). For details on this non-dimensionalized, see Appendix A.

3.1.1 Conservation of Mass

As we do not consider any population dynamics (cell production or cell death)

in equation (3.2), it is easy to see that mass in the system is conserved.

Lemma 3.3. Let u € C'(S}) then from [92] we have that equation (3.2) has
globally eristing solutions. We define the total mass of the population u(z,t)

by
1 [E
ia(t) = —f u(x,t)dz, (3.8)
L J
which is conserved.

Proof. We proceed by computing

da L k
LE = j; u(z, t)dz = L (1, — ouKlu]), dz (3.9)
i?m_%@—m@mmm—mﬁm
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3.1.2 The steady-state problem

The steady states of equation (3.7) are solutions of the following non-local
equation,
u"(z) = a (u(z) Klu(z)](z)) in S}. (3.10a)

Due to the mass conserving property of equation (3.7), we will impose the
following integral constraint. Let B > @ = 0, and set

i

% ﬁ ’ u(r) dr. (3.10b)

This constraint will ensure that all solutions that are obtained to the steady

state equation of equation (3.7) satisfy its mass conservation property.

3.1.3 Mathematical Background

The success of equation (3.2) is that it can replicate the complicated patterns
observed in cell-sorting experiments [10]. In mathematical terms, these patterns
are steady states of equation (3.2). Thus understanding the conditions, under
which these steady states form and become stable are important. Furthermore,
knowing the steady states of this equation is one of the first steps toward
understanding the equation’s global attractor.

Up to this point, the steady states of equation (3.2) have only been studied
numerically and using linear stability analysis [10]. Closely related to equa-
tion (3.2) are the local and non-local chemotaxis equation [89, 91, 132]. For
both the local and non-local chemotaxis equations a global bifurcation analy-
sis, to understand their steady-states, was carried out [170, 176]. Inspired by
their results, we present here a first exploration of the set of non-homogenous
steady-states solutions of equation (3.2).

Central to our analysis are the abstract local bifurcation theorem [35] and
global bifurcation theorem [144], which originated from work by Crandall, Ra-
binowitz. Preceding to the formulation of these general theorems, Crandall,
Rabinowitz studied the set of solutions of non-linear Sturm-Liouville problems

[34, 143]. For linear Sturm-Liouville eigenvalue problems it is well known that
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the eigenfunctions can be classified by their number of zeros [32]. Crandall,
Rabinowitz showed, that under rather weak assumptions the same classification
holds for non-linear eigenvalue problems. In fact, each global solution branch
inherited the number of zeros of the eigenfunction at which it originated (bi-
furcation point). Furthermore they showed, that each global solution branch is
unbounded and that branches do not meet (since it is impossible for solutions
of Sturm-Liouville problems to have degenerate zeros). In [144], Rabinowitz
generalizes the global bifurcation theorem to general non-linear eigenvalue
problems. The main theorem gives two alternatives for the behaviour of the
global bifurcation branch. It is either bounded, connecting two bifurcation
points, or it is unbounded (see Theorem 1.3 in [144]). This is now known as
the Rabinowitz-alternative. An extension of the global bifurcation theorem
to study so called unilateral (sub-branches in only the positive or negative
direction of the eigenfunction at the bifurcation point) branches was originally
reported in [144]. The original proof contained holes that were filled in by [111,
113, 158]. Since the original formulation of these bifurcation theorems, similar
theorems which apply in more general settings have been developed. Here, we
will use bifurcation theorems that are applicable to Fredholm operators [111,
113, 158] (see Section 3.2).

While, both the local and non-local chemotaxis model in [170] and [176]
were formulated with no-flux boundary conditions, the formulation of no-flux
boundary conditions for equation (3.10) was more challenging due to the com-
plicated non-local structure of K[u]. Thus, to study and analyze the formation
of non-homogenous solutions in isolation of boundary considerations, we formu-
late equation (3.2) on a circle (equivalently periodic boundary conditions). A
more detailed discussion on the challenges of construction of no-flux boundary
conditions can be found in the next chapter.

At the same time however, formulating our model on a circle gives rise
to some additional challenges. The most critical being that eigenvalues of the
Laplacian on Srl, need not be simple. This is a challenge, because bifurcations
require eigenvalues of odd multiplicity (the theorems in [113, 158] require
simple eigenvalues). This challenge was previously observed by Matano, who

studied nonlinear reaction diffusion equations on the circle [118]. The solution
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of Matano was to impose symmetry requirements on the non-linear term, so
that the equation would be O(2) equivariant (invariant under translations and
reflections see also Section 3.5.1).

Around the same time, Healey extended the Rabinowitz alternative to so
called G-reduced problems (G being a symmetry group), which is a nonlinear bi-
furcation problem formulated on a Banach space whose elements are fix-points
of the symmetries defined by G [83]. Thus, showing that certain symmetries
persist along global bifurcation branches (similar results are often referred to
as the equivariant branching lemma [73]). Subsequently, these ideas were used
in a series of papers, which studied the conditions under which solutions of
non-linear elliptic equations are classifiable by their number of zeros. The key
to these results, was to impose sufficient conditions on the nonlinear terms
such that the resulting equation was equivariant under actions of O(2) xZs
(Zs describes the action of the negative identity, i.e., a reflection through the
z-axis). [84, 85]. Intuitively, this symmetry requirement ensured that the zeros
of solutions were “frozen” (i.e., fixed location), and thus the number of zeros is
preserved along the global bifurcation branch. Furthermore, this result easily
shows that global solution branches do not meet. Much more recently, Buono
et al. used O(2) equivariance to compare the accessible bifurcations in a non-
local hyperbolic model of swarming and the equation’s formal parabolic limit
[23].

In a similar spirit, we will show that the steady-state equation (3.10) of
equation (3.2) is indeed equivariant under actions of O(2). Using the properties
of the non-local term K[u], we will then show that this leads to “frozen” maxima
and minima (equivalently frozen zeros of the derivative u'). Since we consider
equation (3.10) on a periodic domain, we can prescribe the location of one
maxima (or minima) without restricting possible solutions. This ensures that
only simple eigenvalues oceur in our subsequent analysis. In the grand finale we
prove a global bifurcation result for the steady-state solutions of the non-local
cell-cell adhesion equation for the first bifurcation branch. Finally we discuss
how this proof could be extended to all bifurcation branches.

This chapter is structured as follows: In Section 3.2 we review the required
mathematical background for this chapter. In Section 3.3 we introduce the
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required mathematical formulation of equation (3.10) and explore the mathe-
matical properties of the non-local term K[u|. We continue in Section 3.4 with
the exploration of steady state properties that are a result of the structure of
equation (3.10). In Section 3.5 we carry out the local and global bifurcation
analysis, and in Section 3.6 we find conditions that imply a switch of stability at
the first bifurcation point. In Section 3.7 we discuss some interesting numerical
solutions; and finally in Section 3.8 we discuss our findings and indicate areas

that we think merit future exploration.

3.2 Fredholm operators

This section is based on [113], and is meant as a quick introduction to the

abstract framework which will be employed in this work.

3.2.1 Notation

In the following document we will use the following notation conventions.
Banach spaces and their subspaces will be denoted using capital letters that is
X.Y, U,V and so on. Operators between function spaces will be denoted using
the calligraphic font for example £, F, K. The argument of an operator will be
enclosed in square brackets. For instance

L:X =Y, Llz] =y. (3.11)

This is to distinguish the action of the operator from a family of operators. For
example a family of operators may be indexed using a real number A. Then
we have a map from R — £(X,Y) (space of linear operators from X to Y)

A= L)X oY, (3.12)

and for each fixed A we may study L£(A)[z] = y. The kernel and range of an
operator is denoted N[L] and R[L].
Spaces of operators are denoted using the fraktur font. The most important

is the space of continuous linear operators denoted £ and the space of compact
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operators &. The space of Fredholm operators is denoted Fred; where i denotes
the index.
Special subspaces such as a continuum of solutions or the solution set of an

operator equation are also denoted using the fraktur font. For example, €, &.

3.2.2 Introduction to Nonlinear Analysis

The following sections are based on [113, 114]. Let U/, V' be two real Banach
spaces. We denote the space of bounded linear operators from U to V by
L(U, V), and by Fredy(U, V) the subset of £(U, V) containing all Fredholm
operators with index 0. The set of all isomorphisms between [/ and V is
denoted Iso(U/, V). The operator L is said to be Fredholm, whenever

dim N[£] < oo, codim R[L] < co. (3.13)

Recall that
codim R[£] = dim V/R[L]. (3.14)

The index of a Fredholm operator, is defined by
ind[£] = dim N[£] — codim R[L]. (3.15)
Therefore, if £ € Fredy then
dim N[£] = codim R[L] < cc. (3.16)
Lemma 3.4. If Fredy(U, V) # 0, then U and V' are isomorphic.

Proof. 1If Fredy(U, V') # 0, then there it is an isomorphism from its domain to
its range. As the map is Fredholm its kernel and co-kernel are finite dimensional.
Further, as the map has index zero they have the same dimension, thus are

isomorphic. H

The most important example of a Fredholm operator with index zero is the

following.
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Theorem 3.5 ([72]). Let KK € &(U) (compact operator), then F =T —K is a

Fredholm operator of indez zero.

3.2.3 Operator families and generalized spectrum

This section follows from the abstract setting introduced in [114] that is then
used for the formulation of the global bifurcation theorems in [113].

Definition 3.6. Let U,V be two Banach spaces over the field K and r € M,
then an operator family of class C" in () C K from U to V is a map

LeC(Q LU V). (3.17)

In our case 2 C R always. We now define the generalized spectrum of an

operator family.

Definition 3.7. Let £ € C(2, £(U,V)) be an operator family, then the point

Ao € Q1 is a singular value of L if
Ly = L(Ay) & Iso(U, V), (3.18)
and it is a generalized eigenvalue of L if
dim N[Lg] = 1. (3.19)
A generalized eigenvalue A is simple, whenever
dim N[Ly] = 1. (3.20)

Definition 3.8. The set of all singular values of the operator family £ is called
the spectrum, and is defined by

Y=EL)={Ae L) ¢lIso(U,V)}. (3.21)
Similarly, the set of all generalized eigenvalues of the operator family L, is

54



defined by
Eig(£) ={A € :dimN[L(N\)] = 1}. (3.22)

By the preceding definition it is immediate that Eig(L) C X(L).
Definition 3.9. The resolvent set of L, is defined by
p(L) =Q\ L. (3.23)

Remark 3.10. Since £ € C(R, £(U,V)) and Iso(U,V) is an open subset of
L(U, V) we have that p(L) is open and possible empty. Thus X(L) is closed.

Lemma 3.11. If £y € Fredo(U, V') then Ao € E(L) if and only if Ao € Eig(L).

Proof. We only have to prove one direction. Let Ag € X(L), then Lo: U/ N[Lq] —
R|[Lg] is an isomorphism by the open mapping theorem. As Ly is Fredholm
with index zero we have that dim N[Lg] < oo, hence Ag € Eig(L). O

Hence, if £(Q) C Fredo(U, V), then £(£) = Eig(L).

Remark 3.12. Note that the concept of a generalized eigenvalue of an operator
family £(£2), should not be confused with the classical notions of an eigenvalue
and spectrum (denote o(L£(A))), which is only defined for fixed values of A € (1.
The classical spectrum is defined as (see for instance [56 Chapter 7])

a(T) = {A € K: A\Z —T is not invertible}. (3.24)

(Note that o(T") can be decomposed into the point, continuum and residual
spectrum depending on the precise way the operator fails to be invertible). It
is however, possible to recover these classical notions from this more general
definition. Indeed, suppose that T' € £(U, V'), and consider the operator family

LT) =My —T, (3.25)

then
a(T) = E{;ST). (3.26)
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3.2.4 Abstract Bifurcation Theory

Let U,V be two real Banach spaces, and suppose that we want to analyze the

structure of the solution set of the nonlinear operator given by
F(Au)=0, (AueRxU, (3.27)

where
FRxU—=YV, (3.28)

is a continuous map satisfying the following requirements:
(F1) For each A € R, the map F(A,) is of class C'(U, V) and

D, F()\ u) € Fredo(U, V) forallu e U. (3.29)

(F2) D, F:R x U — £(U,V) is continous.
(F3) F(A,0)=0for all A € R.
Definition 3.13. A component € is a closed and connected subset of the set
S={(o,u) e RxU: F(a,u) =0} (3.30)
that is maximal with respect to inclusion.
Definition 3.14. As (A, 0) is a known zero, it is referred to as the trivial state.

Definition 3.15. Given Ay € R it is said that (Ag, 0) is a bifurcation point of
F = 0 if there exists a sequence ()., u,) € F'(0), with u, £ 0 foralln > 1,
such that

n]iﬂ}{ln,uﬂ) = (Ao, 0). (3.31)

For every map JF satisfying F1, F2 and F3, we denote
LX) =D, F(A0), AelR (3.32)
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By property F2 we have that £ € C(R, £(U,V)) and by F1 we have L£()\) €
Fredy(U, V), thus

L(A) € Iso(U, V) if and only if dim N[L(\)] = 0. (3.33)
Lemma 3.16 ([113]). Suppose (A\o,0) is a bifurcation point of F = 0. Then,

Ao € £(L) (L =D,F()0)).

Theorem 3.17 (Local Bifurcation [35]). Let U,V be Banach spaces, W a
neighborhood of 0 in U and

F(-1L,1)x W =V, (3.34)
have the properties:
1. F(A0)=0 for |A] <1,
2, The partial derivatives F,, F ., F,, exist and are continuous,
3. N[F.(0,0)] and V/R[F.(0,0)] are one-dimensional,

4. Fx(0,0)[z0] & R[F(0,0)], where

N[F.(0,0)] = span(zg). (3.35)

If Z is any complement of N[JF.(0,0)] in U, then there is a neighbourhood N of
(0,0) in R x U, an interval (—a,a), and continuous functions ¢: (—a,a) = R,
Ut (—a,a) — Z such that ¢(0) = 0,1(0) =0 and

FH0) NN = { (6(s), azp + a(s)): |s| < @} U{ (A, 0): (A, 0) € N}. (3.36)

If F.: is continuous then the functions ¢ and v are once continuously differ-
entiable.

Theorem 3.18 ([35]). In addition to the assumptions of Theorem 3.17, let F
be twice differentiable. If ¢, are the functions of Theorem 3.17, then there is
& > 0 such that ¢'(5) # 0 and 0 < |s| < § implies that F_(¢(s), azy + ar)(s))

is an isomorphism of U onto V.

a7



Theorem 3.19 ([35]). In addition to the assumptions of Theorem 3.17, suppose
F has n continuous derivatives with respect to (A, z) and n + 1 continuous
derivatives with respect to x. Then the functions (¢,v) have n continuous
derivatives with respect to 5. If

F9N0,0)(z0) =0 1<j<n then ¢ (0)=0, (3.37)
an
0 =0 for1<j<n-—1, (3.38)
an
(1/(n+ 1)) FE+(0,0)(z0)™" + F=(0,0)%™(0) + 6™ (0) Frz(0,0)z0 = 0.
(3.39)

Remark 3.20. F9)(0,0)(zo)’ means the value of the j-th Fréchet derivative of
the map r — F(0,x) at (0,0) evaluated at the j-tuple each of whose entries is

Ipn.
The global version of Theorem 3.17 reads.
Theorem 3.21 ([113]). Suppose £ € C'(R,Fredy(U,V)) and Ay € R is a

simple eigenvalue of L, that is

N[£(Xo)] = span|o], (3.40)

and satisfies the following transversality condition
£'(M)éo ¢ RIL(). (3.41)

Then, for every continuous function F:R x U — V satisfying (F1), (F2), and
(F3) and D, F(-,0) = L(-), (Ag,0) 15 a bifurcation point to a continuum € of
non-trivial solutions of F = 0. For any of these F s, let € be the component of
the set of non-trivial solutions of F = 0 with (Ap,0) € €. Then either,

1. € is not compact; or

2. there is another ¥ 3 Ay # Ag with (A,0) € €.

58



XJL

a* o

o 0y Qg o
Figure 3.1: Phasespace plot of the two possible alternatives of Theorem 3.21. On

the left, the bifurcation branches are unbounded, while on the right, the non-trivial
solution branch connects two bifurcation points.

And finally, we have the following unilateral result.

Theorem 3.22 ([113]). Suppose the injection U — V' is compact, F satisfies
(F1) to (F3), the map

N\ u)=FA\u)— D, F(A\0u, (Au)eRxU (3.42)

admits a continuous extension to R x V', the transversality condition (3.41)

holds, and consider a closed subspace Y C U such that

U=N[L()] @Y. (3.43)

Let € be the component given by Theorem 3.21 and denote by €* and € the

subcomponents of € in the directions ¢y and —gyg respectively. Then for each
v € {+,—}, € satisfies some of the following alternatives:

1. € iz not compact in B < U,
2. There exists Ay # Ap such that (X,0) € €.
3. There exists (A, y) € € withy € Y\ {0}.

In Section 3.5.3, we apply Theorem 3.17 to find local bifurcation branches
originating from the trivial steady state solution of the non-local equation (3.10a).

In Section 3.5.4, we apply Theorem 3.21 and Theorem 3.22 to obtain a global
bifurcation result for the steady states of equation (3.10).
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3.3 Mathematical Problem Formulation

In this section, we define the function spaces in which we will look for a solution
to equation (3.10a). The search for the appropriate spaces will be guided by
the goal of making sure that the Laplacian in equation (3.10a) is invertible.

3.3.1 The Laplace operator with periodic boundary con-
ditions

As we are dealing with functions on S} we implicitly defined periodic boundary
conditions. Sometimes it is useful to explicitly use these boundary conditions.

For this reason, we define the boundary operator
Blu, o] == (u(0) — u(L),(0) — (L)), (3.44)

which of course has to be equal to zero if we impose periodic boundary condi-

tions.

Definition 3.23. We define the set of test functions
Coee(0, L) :=={ f € C*=(0, L): f is L periodic } . (3.45)

Then, for example, H;E,{D, L) is defined as the completion of C3; (0, L) with

respect to the H! norm.

The abstract formulation in terms of an operator equation will be facilitated

by the following operators that we will now define.

Definition 3.24. The averaging operator
1 rE
A IP(5}) = R, Alu] — Ef u(r)dz. (3.46)
0

It is clear that this operator is continuous and compact.
Definition 3.25. We define the following sub-manifold of L*(S})
Lg={ue L*S[):Au] =0}. (3.47)
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Lemma 3.26. L3(S}) is closed and hence a Banach space.

Proof. Note that L}(SL) = A~'(0), hence it is closed as A is continuous. Finally,
a closed subspace of a Banach space is again a Banach space. H

Lemma 3.27. The Laplacian operator
A:W2E(SL) — L*(S), A =", (3.48)

15 confinuous.

Lemma 3.28. A is a Fredholm operator. In particular, we have that
N[A]=R[A] = {fe HA(S]):f(z)=ceR}, R[A]=N[A]=Lj. (3.49)
Further, we have that
dim N[A] = dim L*(S})/R[A] = 1, (3.50)

and thus ind A = 0.

Proof. uw e HZX(S1) is an element of N[A] if and only if it is a solution of

u” =0
: (3.51)
Blu,u'] =0
Then, we find that
u'(z) =[ u"(s)ds = 0. (3.52)
0

Hence, u = ¢ € R. Next suppose that we have f € R[A], that is there is u € H}
such that u" = f. Integrating

L
0=u'(0)— /(L) = A f(s)ds. (3.53)

Hence A[f] = 0, and f € N[A]. Thus, R[A] C N[A]. Next suppose that
f € N[A]. Then, the solution of

u' = f, (3.54)
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is given by

u'(x) =f f(s)ds. (3.55)

0
Hence we find that »'(0) = 0. Finally, note that u'(L) = 0 if and only if
A[f] = 0. Thus, we find that N[.4] C R[A]. O

Remark 3.29. Lemma 3.28 shows that N[A] and coker[A] = L%(S})/R[A] are
finite dimensional. We note that 4 can be used as a projection onto both N[A]
and coker[A].

Lemma 3.30. The restriction operator A4
Ag=A :N|A| = R[A 3.56
A N[Al [ ] [ ]: ( }

is an isomorphism.

Proof. The operator A 4 is by definition injective and surjective, and hence by

the bounded inverse theorem an isomorphism. H

3.3.2 Estimates for the non-local operator

In this section we discuss the mathematical properties of the non-local operator
K[u] as introduced in Definition 3.1. We begin this section by discussing some

common choices for integration kernel w(-).

3.3.3 Common choices of functions

For the function w(r) there are three commonly used forms (see for instance
[136])

(O1) Uniform distribution

w(r) = —. (3.57)
(O2) Exponential distribution
r
w(r) = wpexp (—g) , (3.58)
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where £ is a parameter controlling how quickly w(-) goes to zero, and

wyp is a normalization constant.

(O3) Peak signalling at distance £, is given by

2
w(r) = wng exp (—% (g) ) , (3.59)

where £ is a parameter controlling how quickly w(-) goes to zero, and

wy i8 a normalization constant.

For visual examples of these distributions see Fig. 3.2.

e —— Normal
A ——— Exponential
b —-— Uniform

Figure 3.2: The different distributions for w(-) with & = 1/,.

3.3.4 Estimates for the non-local operator

We study the continuity of the function
z — Klu](z), (3.60)

when u is in different function spaces. We start by developing conditions under

which the function given in equation (3.60) is continuous.
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Lemma 3.31. Let u € C°(S}) then the function in equation (3.60) is contin-

UOUS.

Proof. Let € > 0, let xy, 75 € S} such that |z, — x| < 4, then consider

1
IKlul(z1) — Klu](x2)| < fu |h(u(z1 + 1)) — Au(zz2 +1))|w(r) dr

1
+f |h(u(z1 — 1)) — h(u(zz — 7)) |w(r)dr
0 (3.61)

1
< Cf |w(zi +7) —u(z2 + 7)|w(r)dr
0

1
+ Cf |u(zy — 1) —u(zy — 7)|w(r)dr,
0

where in the inequality we used that since h € C* we have that h is Lipschitz
continuous. Then |z, £r — (29 £7r)| = |7y — 23| < 4. Since, by the assumptions
of this lemma u(-) is continuous we choose 4 sufficiently small such that |u(z; £+
r) —u(re £ 1)| < 9. Finally, using assumption K4 we have that the integral
of w equals !/, and we obtain that,

|K[u)(z1) — Klu](z2)| < e. (3.62)
|

Lemma 3.32. Let u € LP(S}) then the function defined in equation (3.60) is
CONLiNUous.

Proof. Let € > 0 and let z;, 7, € S} such that |z; — x5| < 4. By the density of
C% in L” there is a sequence (u,) C C° such that u,, — u in L?. This means
that IN:¥n > N we have that |u, —u|, < %ay_-

Then, we compute

Kul(21) — Klul(22)| <IK[u)(z2) — Klun](x2)] + [Kltn] (21) — Klul(z1)|+

Kl (2) — Kltn] (1))
(3.63)



The first two terms are treated equivalently. Let n = N, and i = 1, 2, then
1
|Kul(z;) — Klug](z:)] < /; [h(u(z; + 7)) — h(ug(z; + 7)) |w(r)dr
1
+ [ Ih(u@ = 7)) = bz~ )l dr
0 1
< E‘f |w(z; +7r) — u,(z; + 7)|w(r)dr
Dl
- E‘f [w(x: — 7)) — Un(z: — 7)|w(r)dr
0

< ( ﬁ * lu(z) — u,,(:cn?dx) " ( ﬁ () dr)

< |t =ty |l < T

1/q

(3.64)
The last term can be estimated by Lemma 3.31 such that we have
|K[un](22) — Klun](z1)] < 7. (3.65)
Putting everything together, we obtain
|K[u)(z1) — Klu](z2)| < e. (3.66)
H

Lemma 3.33 (Non-local Regularity). Let p > 1 and u € LP(S}). Then the
non-local function K[u] defined in equation (3.60) is in L?(S}). In particular,
the following estimate holds

IKlull, p < [h(u)],, (3.67)
and if we use assumption HI1, then obtain
KLl p < C (jul, +L). (3.68)
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Proof. By applying Theorem B.1 to equation (3.3), we obtain

1
IK[u](z)], = ‘ f_ h(u(z +7,0)(r)dr

i
< f Ih(u(z +r, 1)), dr
p —1

1 L 1/p
- [ { f |h{u(m+r,m|”dz} Q)dr < jh@), 369
-1 0
<C (|u|p + L) .
Note that due to assumption K4 we have that |(}|; = 1. O

Next we extend this result to Sobolev spaces.

Lemma 3.34 (Non-local Regularity). Let p > 1, and u € W'?(S}). Then
Klu] € Whr(S1).

Proof. The first derivative with respect to z of the function defined in equa-
tion (3.60) is given by

(K[u)(z)) = f 11 B (u(z + r))d (z + r)Q(r) dr. (3.70)

Its L? norm can be estimated using equation (3.67) from Lemma 3.33, we then
compite

KLl = (KL + 1K) < (07 (hul, + 1) + W)
< (2o (17 +u) + W o) v

1/p
< 2C|H| (LP + [uf? + |u’|§;) .
(3.71)

Then using that u € W'#(S5]) and assumption H1 all the terms on the right
hand side are bounded. M

For the following result we need one higher order of differentiability than
obtained in Lemma 3.34.



Lemma 3.35 (Non-local Regularity). Let p > 1, and u € W2?(S}). Then
Klu] € W2r(51).

Proof. The second derivative with respect to x of the function defined in equa-

tion (3.60) is given by

(K[u](z))" = /1 (h’{u{x +r)u"(z + 1)+ h(u(z + 7)) (v (z + r})z) Q(r) dr.
- (3.72)
Its L? norm can be estimated using equation (3.67) from Lemma 3.33, we then

compute

IKClu]”|, < |F (w)u], + |B" (u) (w)’],

' " I 12 (3'?‘3}
< |W|eolu”|, + [R¥|go 0] .

Then using that u € W2#(S]) and assumption H1 all the terms on the right
hand side are bounded. Combining this result with the result of Lemma 3.34
we obtain the required result. O

Lemma 3.36. Let p > 1, then the map K: LP(S}) — L*(S}) defined in equa-
tion (3.3) is C(LP(S}), L*(S})), and its Fréchet derivative is given by,

1
D, (K[u(z)]) [w(z)](z) = /:1 h(u(z + r))w(z + r)Q(r) dr. (3.74)

Proof. Let’s compute

d 1
D, (Kful) [wl(z) = —| j: h(u+ ew)(z +r)(r) dr

. (3.75)
=f W (u(z + r))w(z + r)Q(r) dr.
—1
Then to show that K is C', it suffices to show that the map
D, K:L*(S}) — £(L*(S}), L*(S}
(SL) = &(L*(SL), L*(SL)) (3.76)

u — D, (Kfu]) [w],
is continuous. Meaning, that we have to show that the operator norm of D, X
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iz bounded. From Lemma 3.33, we have

IDu (K[u) [w]l, < C (IWloslwl, + L) (3.77)

Hence
1D (Kfu]) [w]ll,, = ﬂ:&'m (Klu)) [w]l, < C(|W]co + L). (3.78)
This gives us what was to be proven. O

Lemma 3.37. Let u € C*(S}) then the function defined in equation (3.60) is
also in C*(S}).

Proof. Let’s compute

1
()| < [ [+ ) @ +n)?+ W e+ e+l 1e)]dr

< Il ot o + IRl 1] o,
(3.79)

where we used assumption K4 for [(}], = 1. Finally, all the terms on the right
hand side are bounded by u € C*(S}) and assumption (H1). [

The following lemma will later be used to derive an a priori bound for
positive solutions of equation (3.10a).

Lemma 3.38. Let the operator Klu)(x) be defined as in equation (3.3), and
suppose that u € L?(S}) such that u(z) > 0 (this means that |u|, = Afu] < o).
Then, we find that

|K[u](z)| < Clwl|, (Alu] + L). (3.80)

Proof. Let u € LP(S}) such that AJu] < oo and u(z) > 0. Then, we compute

1
Klu|(z) = j:l h(u(z +r))Q(r)dr

. (3.81)

= fl h(u(z + r))w(r)dr — f h(u(x + r))w(r)dr.
0 1

68



It is easy to see that both integrals on the right hand side are non-negative
as h(u(z)) = 0 whenever u(z) = 0 (assumption H2) and w(r) = 0. Using

assumption H3, it follows that
Klul(z) < fi h(u(z +r))w(r)dr < Clw|__ (Alu] + L). (3.82)
0

In the same spirit, we find for

0

Klul(z) > — f hu(e + () dr > ~Clul, (ARl +1). (389

O

3.3.5 Continuity and equicontinuity of the non-local op-

erator

The goal in this section is to establish equi-continuity of the non-local operator
when applied to bounded subsets of L7(S}). This will then be used to show

compactness of the non-local operator.

Lemma 3.39. Let the family of bounded functions in LP(S}) be given by
By = {u € LP(S}): Jul, < K} . (3.84)

Then K[Bk]| is uniformly equicontinuous.

Proof. For the following, we introduce the function
w(r) ifrelo,1
@(r) = { ) 0,1] X (3.85)

Let € = 0, choose § < and let z1, 22 € SI{ such that |z;—x2| < 4.

L3
AC(L+K) L]
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Then consider

1
K] (z2) — Klul(21) = f [h(u(zs + 1)) — hu(z; + 7)) |w(r)dr
0 (3.86)

1
- fu [h(uz; — 7)) — h(u(z, — ) |w(r)dr.

We denote each of the terms by I through IV.

To+1

1 L
I= fu h(u(zz +r))w(r)dr = f h(u(y))w(y — z2)dy < /; h(u(y))@(y — z2) dy,

3
z+1

1 L
1= L h(u(z; +7))w(r)dr = f h(u(y))w(y — =) dy < A h(u(y))e(y — 1) dy,

1
T

1 L
M= [ hua = matryar = [ wu)ote -vdy < [ huw)ate - dn

zy—1

1 z2 L
vV = [ hutes -ty dr = [ bt -9 du < [ b)) - v du

Then, we compute
L
111 = [ hut) [0~ 22) — 60 = 20)] dy
L l/g
< O(L + Jul) ( [ 1ot -2 -at- :trl]l"dy) ?
L
M-IV = [ hu() @z ~v) - &z - v)] dy

1/q

L
< C(L+ [uly) (/; |&(z1 —y) — w(z2 — ’y]lqﬂy)

Then for any ¥ € S} we have that |z, —y — (z2 — y)| < & (see Fig. 3.3),
and so we find that

L 1/q
(/[; |&(z1 — y) — @&(z2 — y)|q) < 20|w|__. (3.87)
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L1 X2

Figure 3.3: Two sensing domains E(z;) and E(z2) centred at x; and x2 respectively.
This is the situation estimated in equation (3.87). The area contributing to the
infinity norm of & is shaded in grey. Note that the grey area is E(x1) A E(za).

Then using this estimate in equation (3.86), we find that
[KClu](x2) — Klu](z1)| <e, (3.88)

for all u € By. A

3.3.6 Compactness of the non-local operator

In this section we continue to study the functions generated by the non-local
operator. From Lemma 3.33 we know that X[u] maps L%(S}) into L*(S}).

Lemma 3.40. Let K[u] be as defined in equation (3.3) then K € £(L?).
Proof. Follows from Lemma 3.33. ([l

Lemma 3.41. The function defined in equation (3.3) is uniformly bounded
foru € By (set of bounded functions with norm less than K ).
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Proof. Let u € By, then

1
IKu](z)] < ﬁ [(u(z + 1)) — h(u(z —7))lw(r)dr

< (L”h{u{x + 1)) — h(u(z — ) |? dr) " (/: w(r) d*r)Lm

< Clulylwl,, < CKlwl,,.
(3.89)

Note that because u(xr+r) and u(x —r) do not overlap that integral is bounded
by the 2-norm of u. H

Lemma 3.42. Let u € B(L*) (the unit ball of L?), then Ve > 0,36 > 0 such
that for y € R such that |y| < 8, we have that

L
[ﬂ IK[u](z + y) — K[u](z)[ dz < €. (3.90)

Proof. Let € > 0, by Lemma 3.39 we have that for z;, 72 € S} such that
|z1 — z2| < 4, and Yu € B(L*) we have that |[Klu](z1) — K[u](z2)| < Yrie.
From this observation, we easily obtain the required result. ([l

Lemma 3.43. The set K[B(L*)] is totally bounded.

Proof. This follows from Theorem B.5, with all the requirements given by
Lemma 3.42 and Lemma 3.41. O

Theorem 3.44 (Compactness non-local operator). The operator K: L*(S} ) —

L*(S}) is compact.

Proof. In Lemma 3.43 we have shown that KC[B(L?)] is totally bounded subset
of the complete metric space L%(S}), hence it is relatively compact. Thus,

K[B(L?)] is compact in L?(S}) and K is a compact operator. O

Remark 3.45. This has far reaching consequences, namely it means that K[u]
can never be invertible, as otherwise 7 = KX~ K would be compact. Further a
compact operator can never be surjective, and the closed subspaces of its range

must be finite dimensional.
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3.3.7 Spectral properties of the non-local operators

In this section, we study the spectral properties of the linear non-local operator,
that is with h(u) = u. That is

Klu] = /:11 u(z + r)(r)dr. (3.91)

The results of this section will be used in Section 3.5 to study the properties
of the linearization of equation (3.10a).

Lemma 3.46. The operator K: L*(S}) — L*(S}), defined in equation (3.91)
is skew-adjoint (that is K* = — K ).

Proof. We compute, let y,t € L%(S}) (the brackets denote the L?(S}) inner
product)

(K[u], 2) = [Lf [u(z +7) — y(@ — ) |w(r) dr 2(z) da
o Jo (3.92)

=II[L[y{;r+r}—y{x—r}]w{r}z{m)d:rdr.
o Jo

Then applying the change of variable y = x4+ for the first term, and y =z —7r
for the second term, and using the periodicity of the domain, we obtain after
applying Fubini
L pl
w2 = [ [ 120¢= ) = 200+ 1)) dry(o dx
o Jo

(3.93)

Hence we find that X* = — K. O

Lemma 3.47. Let H be a Hilbert space. Let L € £(H) such that L* = — L.
Then the quantity (L(z),x) is purely imaginary and £ has purely imaginary
eigenvalues.

Proof. Let x € H, (the brackets denote the H inner product) then
(L(z),z) = (z,L%(z)) = (z, — L(z)) = —(L(z), 2). (3.94)
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Then if A is an eigenvalue of £ with eigenvector x, we find that

_ (L(z), x)
A= @a) (3.95)
Hence, all eigenvalues are purely imaginary. O

Remark 3.48. Note that since any skew-adjoint operator is normal, we have
that K is a normal operator. Thus we have that K is a compact and normal
operator on L?(S}). This means that it is also a compact, and normal operator
on the canonical complexification of L*(S}) (H = L* +4L?) and hence we can
apply a spectral theorem [56 Theorem 7.53] to obtain an orthonormal basis of
H over which the operator K is diagonalizable.

Eigenvalue and eigenfunctions of the linear non-local operator

Next we study how the linear non-local operator (3.91) acts on the eigenfunc-
tions of the Laplacian. For this the following integral identities will become
useful.

Lemma 3.49. Let () satisfy (K1), (K3) and (K4), then

j: 11 cos (ET‘") Q(r) dr = 0, (3.96)

j: sin (Zﬂgt.r) Q(r)dr = ELISm (2?(;-?") w(r) dr. (3.97)

Proof. Both identities follow by integration and the properties of 2 listed in
Definition 3.1. O

and

Lemma 3.50. The linear non-local operator is bounded.

Proof. We compute, using Lemma 3.33
K[l < Jul,. (3.98)

Thus, we find that
| K| <1. (3.99)
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O
Lemma 3.51. Let the non-local operator K- as defined in equation (3.91). Then

K[1)(z) = 0, (3.100)
2 2
K {sin ( TE) } (z) = 2M, (w) cos ( TE) , (3.101)
2mnx . 2mnx
K | cos (r) = —2M,,(w) sin , (3.102)
L L
where
1 2mnr
M, (w)= f sin ( 7 ) w(r)dr. (3.103)
0
Proof. Apply the double angle formulas and the integral identities from Lemma 3.49.
-

Remark 3.52. Note that it is easy to see from Lemma 3.51 that the non-
local operator K[u] removes mass, that is A[K[u]] = 0 always (A was defined
in (3.24)). Hence, for example if KC: L?(S1) — L*(S}), then we conclude that
R[K] = L&.

If instead we consider the canonical complexification of L?(S}) we obtain

the following result.
Lemma 3.53. Let the non-local operator KO as defined in equation (3.91). Then

K[1](z) =0, (3.104)

K [exp (gﬂzm) } () = 2iMy(w) exp (Zﬂf"ﬂ) . (3.105)

Remark 3.54. For the sake of comparison, the eigenvalues corresponding to

exp (@) of the derivative operator are,

An = QTH. (3.106)

Eigenvalues and eigenfunctions of non-local curvature

In this section, we continue to study the functions generated by the linear

non-local operator. From Lemma 3.34, we know that K[u] maps H(S}) into
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H'(S}). Here we study the operator, which we will refer to as the linear non-

local curvature,
!

Klu]:z — (_[_11 u(z + r)Q(r) dfr) , (3.107)

where (-)" denotes the spatial derivative with respect to x. Note that using the
properties of {1, this function can be rewritten as

i
(Ku]) :z — [ (W'(z+7r)+u(z—r))w(r)dr (3.108)
0
Lemma 3.55. The operator (K)' given above is self-adjoint.

Proof. Let y,2 € L*(S}), we then compute using integration by parts and

using Lemma 3.46, to obtain
(K@), 2) = = (K[y], ) = (v, K[2]) = (v, (K[2])) . (3.109)

O

Lemma 3.56. Let v, be an eigenfunction of,

{—Uﬁ:)ﬁﬂwﬂ, in [0,L] (3.110)

Blv,,v!] = 0.

The solutions to this problem are given in Lemma B.12. Then the operator (KC)'

from equation (3.107) has the same set of eigenfunctions satisfying
K(v] = pintn, (3.111)

where

fin = — T My (@), (3.112)

where M, (w) is defined in equation (3.103).

Proof. For n = 0 we have that vy ~ 1, then trivially K[1] = 0 and hence pg = 0.
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Next consider, v, = sin (3"”"’) then

L
Kv,] = [11 (sin (W));ﬂ{r] dr. (3.113)

Using both the integral identities from Lemma 3.49, we obtain
Klv,]' = —4? sin (QTQ’) M, (). (3.114)

Finally, consider v,, = cos (222}, then

Klv,) :/:11 (ms (w));ﬂ{r) dr. (3.115)

Once again using the identities in Lemma 3.49, we obtain

Klv,]' = —? cos (QTQ’) Mo (w). (3.116)

O

Asymptotic behaviour of the non-local eigenvalues

From the definition of M, (w) in equation (3.103) we easily see that |M,(w)| <
1/5. Here, we want to understand in more detail how M,(w) behaves as n — cc.
For this reason, we introduce the following common definition from Fourier
analysis (see for instance [179 Chapter II]).

Definition 3.57. The integral modulus of continuity is defined for periodic
fer”(S)),p=>1by

1 & I/p
mp(d) = sup { —f |f(z+h) — f{.-r)|”d$} . (3.117)
o<hes | L Jp
It is obvious that as 4 — 0 we have that my(d) — 0.

Lemma 3.58. Letw(r) satisfy (K1), (K3), and (K4{), then (from equation (3.103))
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M (w) = fu sin (ZT"") w(r) dr. (3.118)

Then, we have that

L L
< — — . .
M@ < 5ma (55) 3119
Proof. First we extend w(r) to the whole of [0, L] by defining
w(r) ifr<1
@(r) = . (3.120)
0 otherwise

Then we use an common technique from Fourier theory, (see for instance [179
Chapter II])

My (w) = fn " sin (QTT) o(r)dr = — fn *in (2“%) &(x + L/2n) dr.

(3.121)
Taking the average of both integrals, we obtain
1k . . . 2mnr
M, (w) = Ef (@(r) —@(r + L/2n))sin 7 dr. (3.122)
0
Hence, we obtain the conclusion. O

Example 3.59. Suppose that w is chosen to be the uniform function i.e. O1
(see Section 3.3.3). Then we can compute M, (w) and find that

M, (w) = %m 2 (?) : (3.123)

Hence, My(w) —+ 0 as n — oo, and thus so do the eigenvalues of K from
equation (3.91) see Lemma 3.51 (since K is compact this is expected as the
only possible accumulation point of the eigenvalues is zero). But the eigenvalues

of the non-local curvature (3.107) are given by (see Lemma 3.56)

4mn . o (TN
[l = —TM,,{L.J] = —2sin (T) . (3.124)

Thus, the eigenvalues of the non-local curvature keep oscillating in (—2,0).
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Example 3.60. Suppose that w is chosen to be the exponential function i.e. O2.

Then we can compute the modulus of continuity by

1—e L

mi(6) = (1— ™) —

(3.125)

Hence, we obtain that

— gL

|M,(w)] < (1—e5) ! 5 (3.126)

Note that for the case of exponential w it is also possible to find an ezxact
expression for My(w). Then the eigenvalue of the non-local curvature (3.107)

is given by

4mn Ly L —€”
It < = (1—e ") 5 (3.127)
Thus, we find that
| = 7 (1 —e7F) ,as n — . (3.128)

3.3.8 The non-local operator generalizing the classical

derivative

We will explore in what way the linear non-local term X from equation (3.91) is
related to the classical derivative. In particular, we study what happens when
the sensing radius K converges to zero. For this section only we consider the
R-non-local operator K having a sensing radius B 5 R > 0 instead of 1. That

is,

R
K g [u] :=[ u(x +r)Q(r) dr, (3.129)
-R
where ( is defined by .
Q= HEJ{T), (3.130)
where ) w(r/R)
w(r)= —r (3.131)



With the aim of producing an asymptotic expansion of K[-] as R — 0, we

compute the moments of the distribution &

= (r", &) = fR riw(r)dr
—-R
= f 1 (tR)" w(r)dt (3.132)
-1

0 if n odd
2R [ t"w(t)dt if n even L

In other words, we obtain that
} 0 if n odd (3.133)
fin = : )
R"u, if n even

where pi,, is the n-th moment of w. Note however, that in the non-local gradient

we are dealing with {2, its moments are defined similarly. We compute
R
pn = (r", ) = f r —w{r}dr [ (tR)" w{t)dt
_r 7l |t HI

= R fn t"w(t)dt — R f_ tw(t)de 10

1 1
—_ T _ 1 TL
_R“L t"w(t)dt + (—1)"* R"'L t"w(t) dt

0 if n even
2" [l "w(t)dt ifnodd

Note that we can use a distribution moment expansion for the compactly

supported (). Hence, we obtain

(v
n(r}=|:j:g|”(gm Z{ b ‘“"‘5 ") o (3.135)
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Using the previous equation, in the non-local term K g[u] we obtain

R =1y (n)
Krlu](z) = [Ru{:r-lri"] Z = i::a {T)Rn ar (3.136)
—_ =0 : :

3
~ uiRu'(z) + m%u’”(m) + O(R%).

If we divide the non-local operator from equation (3.129) by p1 R, i.e., consider
the operator

R
Krlu](z) = PHLR [Ru{:r—l— r)€(r)dr, (3.137)

then we have that g — o' as R — 0. In that sense, the non-local operator
Krlu] is a generalization of the classical local derivative. We can obtain a
similar asymptotic expansion for the non-local curvature (i.e., the derivative
of Kg[u] as R — 0)

Kglu](z)" = u"(z) + O(RY). (3.138)

Thus in the same sense as Kp[u] is a generalization of the classical derivative,

this makes Kp[u]’ a generalization of the classical Laplacian.

Example 3.61. Suppose that

1 .
=5 e|—-R R
w(r) ={ frel ] (3.139)
0  otherwise.
Then the moment of w (see equation (3.134)) is computed to be p, () = n£+1
Hence
9 R
Krlu](z) = ﬁfﬂu{m+r}ﬂ{r)dt (3.140)

The special case of uniform {2

In this section we assume that the directionality function ({2) in the non-local

operator is uniform, that is w = /5.
Definition 3.62. For any R 3 R > 0, we define the first order non-local
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derivative is defined by
Vreu(z) = % (u(z+ R/2) —u(zx — R/2)). (3.141)

Definition 3.63. For any R 5 R > 0, we define the second order non-local
derivative is defined by

Apu(z) = % (u(r + R) +u(r — R) — 2u(x)). (3.142)

Remark 3.64. Note that with these definitions we have that Apgu = VzVpu.

Lemma 3.65. Let u € L*(S}) and suppose that the directionality within the

non-local term (see equation (3.140)) is uniform i.e. w = Yo, then we have that

(Krlu](@)) = Agu(z). (3.143)

|

I
o = = = =
[ T | I |
[=J =R PR
=

B

Klu)

Space [z]

Figure 3.4: Comparison of the non-local term to the first derivative of a function
for several values for the sensing radius K.

3.3.9 Summary of mathematical properties of K

In this section, we studied basic mathematical properties of the non-local op-

erator K[u], such as continuity and growth estimates. The classical chemotaxis
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equation is, i.e.,

Up = Upr — X (UVz), . (3.144)

In the non-local adhesion model (3.10), the non-local term K[u| takes the place
of the classical derivative v,. In this section, we have seen that the non-local
operator K[u] can be viewed as a generalization of the local derivative (in
the sense that as R — 0, Kg[u] — v'. In view of this analogy, the estimate
(IK[ul|, < C(lul, + L)) obtained in Lemma 3.33 can be viewed as a type of
reverse Poincaré inequality. Intuitively, this estimate “earns” us an order of
differentiability. Similar results for other non-local operators have been obtained
in [91, 99, 100].

The linear non-local operator defined in equation (3.91) and its derivative
share many mathematical properties with the classical first and second-order
derivatives respectively. For the non-local operator K[u] the shared properties
are: skew-adjointness, the eigenfunctions, the zero eigenvalue, the range is
contained in the subspace of zero average function, and the null-spaces are all
the constant functions. There are however some difference. Most notably is
that KC[u] is a compact operator, thus its eigenvalues accumulate at zero (see
Example 3.59 and Example 3.60), while the eigenvalues of (-)") diverge.

Similarly, for the non-local curvature K[u]' which shares the properties
self-adjointness, eigenfunctions, and zero eigenvalue with the classical second-
order derivative. Differences are that X[u]' is always a bounded operator, with
bounded eigenvalues. Further, in the special case of uniform directionality
(Q2) we have that K[u]' is equivalent to the non-local Laplacian defined in
equation (3.142), which also appeared in [99].

3.4 Properties of non-trivial solutions

In this section, we prove several properties of solutions of equation (3.10a).

These will be useful later, when we carry out the bifurcation analysis.

Lemma 3.66. Let u € L*(S}) be L-periodic and the nonlinearity within the
non-local term is linear i.e. (h(u) = u), then Alu(z) K[u](z)] = 0, where A[]
is the averaging operator defined in Definition 3.24.
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Proof. We proceed by simple calculation, and an application of Fubini’s theo-

Tenl.

j: u(z) Klu](z)dz = /: u(z) _[_11 u(z+r)Q(r)drdz

_ /L u(z) fi (e +7) — uz — ) wr)drde O 145)
0 0

= [1 [L u(z) (u(r+7r) —u(r —r)) drw(r)dr.
o Jo

Then we claim that
L L
f u(rju(r +r)dr = [ u(z)u(z —r)dz, (3.146)
0 0

for all r € [0, 1]. Using a simple change of variables in the second integral, we
note that

L—r

fL u(z)u(z —r)dr = u(z +rju(z)dr = fL u(z + rju(z)dz, (3.147)
0 0

—r

where the last equality holds due to the periodic domain. Hence, the result
follows. O

Note that in the proof of Lemma 3.66, we required that the nonlinearity
within the non-local term is the simple linear function (h(u) = u). The previous
proof does not work for non-linear h(u). We can however recover the result by

imposing an additional assumption.

Lemma 3.67. Let u € L*S}) be L-periodic and u(z) = u(L — z) then
Alu(z) K[u](z)] = 0, where A[-] is the averaging operator defined in Defini-
tion 3.24 and h(-) satisfies HI-Hj.

Proof. Due to the fact that u(x) = u(L — =), we obtain that

u(z) Klu|(z) = —u(L — z) K[u](L — z). (3.148)
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Hence, upon integration we obtain
L

L L2
f u(z) Ku|(z)dz = f u(x) Klu(z)dz + f u(x) Klu](z) dz
0 0 L2

Lj2 L2
= f u(z) Klu](z) dz — f u(z) Klu|(z)dz = 0.
0 0
(3.149)

A

Remark 3.68. Note that if u € H?, then Lemma 3.66 implies that the flux
defined by

J(z) = —u'(z) + ou(z) K[u(z)](x), (3.150)
satisfies A[J] = 0, and since J is continuous we have that 3¢ € S}: J(%) = 0.
Note that the continuity of J follows, since u € H? cc C.

We derive an a priori estimate of positive solutions of equation (3.10a).
Prior to being able to prove the estimate we require a few technical results.
Proposition 3.69. Let u € HE be a solution of equation (3.10a). Then u €
C*(SL).

Proof. By Sobolev’s theorem (Theorem B.4) we have that u € CUY/2(S}).

Integrating equation (3.10a) from # (the point at which the flux is zero, whose
existence is guaranteed by Remark 3.68) we observe that,

u'(z) = au(z) Klu)(z). (3.151)

Lemma 3.34 implies that whenever u € H? we also have that K[u] € H?, hence
applying the Banach algebra property of H? and Sobolev’s theorem (Theo-
rem B.4) we have that u[u] € H*> cc C"/?  C'. Then by equation (3.151)
we have that u' € C'(S}) and thus u € C*(S}).

From equation (3.10a) we have that,

u"(z) = a (u(z) K[u](x)). (3.152)

As u € C*(S}) we apply Lemma 3.37 to find that K[u] € C*(S} ), hence u K[u] €
C*(S}). This means, that u” € C'(S}) and finally we have that u € C*(S}). O
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Lemma 3.70. Let u € C'(S}) be a non-negative solution of equation (3.10a),
subject to the integral constraint

Alu] = a, (3.153)
where @ > 0. Then we have,
e~ < u(r) < ek, (3.154)
where p = C'( + L)|w|_ . Further we have that,
lu'(z)| < apde™E. (3.155)

Then,
luller < (1 + ap) @e™* = K(a, L,a,9Q). (3.156)

Proof. Equation (3.10a) is given by,
u"(z) = a (u(z) Klu](zx))". (3.157)
Integrating equation (3.157) from % (given in Remark 3.68) to = we obtain,
u'(z) = au(z) Klu)(z). (3.158)
Thus using Lemma 3.38 we obtain the following differential inequality,
u'(r) < aClw| u(x) (2+ L). (3.159)

Let’s denote p = C(@ + L)|w|_. Next we note that if u(z) has mass @ then
there is # € [0, L] such that u(%) = @. Then, integrating from z to & we obtain,

Inu(z) —Inu(zr) < apl, (3.160)
integrating from # to x we obtain,
Inu(z) —Inu(f) < apl. (3.161)
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Combining the two inequalities we obtain,

—apl < lnu(r) —Inu(f) < apl (3.162)

Hence we obtain that,

se "t < u(r) < ae™E. (3.163)

The estimate for u'(z) follows from the estimate from u(z). O

Next we show that for steady states u(z) and K[u|(z) have the same maxima
and minima and the same inflection points.
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Figure 3.5: Examples of the non-local term K[u], K[u]', and u' applied to a positive
solution of equation (3.10a). We observe the properties proven in Lemma 3.71 and
Lemma 3.72. The dashed black line denotes the locations of the zeros of K[u](z) and
u'(z).

Lemma 3.71. Suppose u(x) is a solution of equation (3.10a) then u'(z) =0
if and only if K[u](%) = 0 (see Fig. 3.5).

Proof. Without loss of generality, suppose that at & € S} we have u'(%) = 0,
then equation (3.151) implies that

0 = au(z) Klu)(2). (3.164)
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but both a # 0 and w(%) # 0, thus Klu](%) = 0. O

Lemma 3.72. Suppose u(x) is a solution of equation (3.10a), then it achieves

a non-zero marimum (minimum) at & if and only if
1. K[u](%) =0,
2. (KR)(2))' < (2)0.

See Fig. 3.5 for an example.

Proof. (1) from Lemma 3.71.
(2) Without loss of generality, suppose u(x) achieves a non-zero maximum at
Z. This means that u"(z) < 0. Thus from equation (3.10a), we get that

0> u"(2) = au(#) (K[u](2)) . (3.165)

But both a # 0, and u(%) # 0 and thus (K[u])’ < 0. |

-— Klu](z)w'(z)
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Figure 3.6: Example of the non-local operator K[u| and u' of a solution of equa-
tion (3.10a). It is demonstrated that the sign of both terms is always the same. The
dashed black line denotes the locations of the zeros of K[u|(z) and u'(z).

Corollary 3.73. Suppose u(z) is a non-constant solution of equation (3.10a)
that achieves non-zero mazimum at ¥ then there erists ¥ such that K[u)'(Z) = 0.
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Proof. If u(x) is a solution, then it is u € C*(S}). Then due to periodicity
of the solution, there exists  such that u(z) achieves a minimum. Hence,
from Lemma 3.72 we have that (K[u](z)) > 0 and (K[u](Z))" < 0, hence
by the Intermediate Value Theorem there exists at least one x; such that

I
(Klu](z,)) = 0. O
10
2.0 8 I N VY
= ! = \
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O R '1
" ¥ ]
= g w4 ! !
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Figure 3.7: A comparision of the second derivative and K[u]’ applied to a solution
u(z) of equation (3.10a). This demonstrates the result of Lemma 3.76. The dashed

black line denotes the locations of the zeros of K[u| and u'.

Definition 3.74. Let u(z) be a function, we say that
e it is non-locally convex whenever (K[u](z)) > 0,

e it is non-locally concave whenever (K[u](z))" < 0.

Lemma 3.75. Let u(x) be a positive solution of equation (3.10a) for a = 0,

then
u'(z) Klu)(z) = 0. (3.166)

For an example, see Fig. 3.6.

Proof. Substituting equation (3.151) into equation (3.10a), we obtain
o(z) = o’u(z) (K[u](2))* + au(z) (K[u])', (3.167)
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note that the first term on the right hand side is positive, and thus we have
that
u” > au(z) (Klu]) . (3.168)

Then using equation (3.10a) and result (3.168), we obtain that

o' (z) Kul(z) = u"(z) — au(z) (K[u](z)) = 0. (3.169)

Since a > 0, we obtain the result. ([l
Lemma 3.76. Let u(z) be a solution of equation (3.10a), then we have that
1. Ifu"(x) <0, then (K[u](z)) <0,
2. If (K[u](z)) = 0, then u"(x) = 0.

Proof. Proof is by equation (3.168). ([l

3.5 Bifurcation Analysis

We define the following function space
Hg = {ue H}S):Blu,u]=0}, (3.170)
where B[, -] was defined in equation (3.44) and we define the following operator

F:R x HX(S) — L3(S!) x R, (3.171a)

Fla,u] = (3.171h)

(—u' + au K[u])'
Alu] — 1 '
In the following, we will need the Fréchet derivative of F.

Lemma 3.77. The Fréchet derivative D, F:R x HE — £(HZ, L* x R) of the
operator F, is qiven by

[~ + & (uChlw] + w Klu]) ]’) , (3.172)

Dy F(a,u)|w] = ( A
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where X
Knw] = f K (u(z + r))w(z + r)Q(r) dr. (3.173)
-1

Proof. Let u,v,w € HZ, then we compute the first component of D, F.

Fla,u+w) — F(a,u) — D, F(a, u)[w]

p ™ -
il
I

(3.174)

! )
=« u[ (h(u+w) — h(w) — h'(u)w) Q(r) dr
-1
)

: \
+|w f (h(u + w) — h(u)) Q(r)dr
-1

- J
II

Note that in the previous we only consider the first component of 7, because

the second component is trivially zero. Next we require a L? estimate of the
previous term. For this we consider the two terms separately (we denote them

by I and II respectively).

h{u 4+ w) — h{u) — h'(u)w

[D)'ly < 1Tl gge < Nl s [l ” (3.175)
H1
Now by H1 h(-) € C?, hence we have that
h — h(u)—H ]
(utw) = hlw) = Kwwl (3.176)
Jlwli—0 w -

For the second term, we proceed similarly

I']y < 11 < lwllga i+ w) =A@l < CllwlZ,,  (3.177)

where for the second last inequality, we used the Banach algebra property of
H' and Lemma 3.33. Finally, for the last inequality we used the properties of
h(u) (H3).
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Thus, we find that

|F(a,u+ w) — F(a,u) — D, Fla,u)[w]],

]l g (3.178)
h(u+ w) — h(u) — h'(u)w
e e
Hi

and then, we have that

o @t w) — Flo,u) — DuFla,wwlly, _ o (3.179)
[[w]|—0 l[wl[ 72

Hence D, F(o,u) is the Fréchet derivative of JF. O

We then prove a series of properties of F that allow us to apply the theorems
from Section 3.2.

Lemma 3.78. For each R 3 4@ > 0, the operator F be defined as in equa-
tion (3.171) has the following properties:

1. Fla,@w =0 for all a € R.

2. The first component of F(a,u) maps into L3(S}) (defined in Defini-
tion 3.25).

3. D, F(a,u) is Fredholm with indez 0, for each o € R.
4. Fla,u] is C' smooth.
5. DouF(a,u) exists and is continuous.
Proof. 1. We note that K[&@] = 0, hence the conclusion follows.

2. This is easily seen by integrating the equation, and using the periodic
boundary conditions B.

3. The Fréchet derivative of 7 with respect to u was found in Lemma 3.77
to be,

(3.180)

D, Fla, u)[w] = ((“”' * ﬂi“iﬁ] + wx?[u]})’)
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We split this operator like,

D, Flo,u)w] = T (o, u)[w] + Tao, u)[w] (3.181)
where
T(a, u)[w] = (_:]”") ? (3.182)
and ;
Tola, u)w] = (a (uKalw] +wKlul) ) : (3.183)
Aluw]

T1(ex,u) is Fredholm with index 0, by Lemma 3.28.

The operator Ta(a,u) is compact. First, consider the first component
of T5. Now D: H' — L?, w — w' is continuous. Then let T (u)[w] =
ulCy[w] + wK[u], where u,w € H}. Since h'(u) € C' we have that
Ki[w] € H:. Since HE is a Banach algebra we have that u K, [w] € H3
and wK[u] € Hg. Since, H> cc C', we can conclude that the first

component is given by the composition Do T (u) and hence is compact.

For the second component we let (w,) C H? be bounded, then Afw,| =
I f[f' Wn(z)dz, but as (w,) C L*, we have that A[w,] is a bounded
sequence in R and thus has a convergent subsequence, making A compact.

Finally, we recall the well known results that the compact perturbation of
a Fredholm operator is Fredholm with the same index (see Theorem 3.5).
Hence, D, F(a,u) is Fredholm with index 0.

. For this we have to check that the operator
Dy:u — Dy F(a,u), (3.184)

is continuous. For this suppose that uw, — u in H? and note that the
operator norm in this case for an operator T € £(H?, L?) is given by,

IT|| = sup [TTw]l,. (3.185)

l[wll g2 =1
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Thus we have to verify that | Dy F(a, un)—Dy F(a, u)|, — 0. We compute

D, Fla,u,) — Dy Fla,u),

; ' (3.186)
= (E” (K] —KJ[H]]) + (:w K[t —w.‘-'C[u],) .
1 1 2
Then, we find that
1
Uy < Il < llun /:1 [A' () — B'(u) Jw(z + r)2(r) dr||
(3.187)

1
+mm—m[f%m@+ﬂmﬂwn
< Ml — u] (Jlun Koll] + 1Kao]l)

where we used that since k' is differentiable it must also be Lipschitz
continuous with constant M. Thus we have that |(I)'| — 0.

1
T, < |l < IIWIIH f [R(u,) — h(u) |w(z + r)Q(r)dr|| . (3.188)
-1 Te}
Then, we have that
Ul [A(un) — h(u) Jw(z +r)Q(r)dr| <|h(u,)—h(u)|, < Clu,—ul,
-1 -
(3.189)
and
‘fl [ A (u,)u, — B (w)u]w(z + r)Q(r)dr (3.190)
-1

P

< ] (t )t — (W)l < CJ| oty — ul,.

Hence, we obtain that |(IT)'| — 0, and so we have found that D, F(a, u)

is continuous.



5. We simply compute, to find

K K[u])'
Do Fla,u) = ({” al] ;r w [“]}) . (3.191)
Its continuity follows from the argument above.
-

Remark 3.79. Note that Lemma 3.78 implies that F satisfies properties (F1),
(F2) and (F3).

3.5.1 Symmetries and equivariant flows

For the following bifurcation analysis we will require a detailed understanding of
symmetries of our solutions. We use group theory to describe these symmetries.

We obtain the following result.

Lemma 3.80. The operator F defined in equation (3.171b) is equivariant
under the actions of O(2), i.e.

Fla,vu] = v Floyu]l, Vye O(2). (3.192)

Remark 3.81. The group O(2) is generated by SO(2) and a reflection. In more
detail, SO(2) can be represented in B? hy

sinf cos#

1 0
p= (D _1). (3.194)

It is easy to see, that this group is compact and hence proper. Here we represent

Ty = (mﬁg _3"19) . @e[0,2m), (3.193)

and the reflection is given by
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the group by its action on functions on S} by

o.u(r) = u(r —a) translation,

(3.195)
pu(r) =u(L —z) reflection.
In the following, we will denote reflection about a € S} by
pati(z) = u(2a — ), (3.196)

it is easy to see that this operation is in O(2). For an example, see Fig. 3.8.

Shift by L/4 Reflect through L/4

b ,
T T T T

0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5

Space [z Space [z

-~

0.0 T

Figure 3.8: Examples of the actions of o, (left) and p, and (right). Here a = L/,.
In both subplots, the original function is shown in dashed black, while the shifted
and respectively reflected functions are solid.

For the proof of this lemma we require the following lemma describing how
the non-local operators behaves under actions of O(2).

Lemma 3.82. Let the non-local operator K[u] be defined as in Definition 3.1,
then

Klogu] = 0p K[u],  Klpau] = —pa Klul, (3.197)

and for the non-local curvature operator, we have that
(Kloou))' = 00 (K[u])',  (K[pat])’ = pa (K[u])". (3.198)
Proof. The results for o, are trivial. For p,, we first deal with K[u](z). Then,
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we find that

Klpaul(z) = Ll [h(u(2a —z—71)) — h(u(2a —z + 7)) Jw(r)dr

= —K[u](2a — z) = —p, (K[u]).

(3.199)

Second, we show the same for X[u]" using a simple change of variables

Klpau]' = ( f_ 11 —h(u(2a — T — r)]ﬂ{r}dr);

r

= ( f 11 ~h(u(2a -z +))(y) dy) (3.200)

= —K[u]'(2a — z) = pK[u]".

Now we can complete the proof of Lemma 3.80.

Proof of Lemma 3.80. The elements of SO(2) are given by the translations.
Since

%u{m —a) = ﬁu{ﬂ: —a), (3.201)

it is trivial to see that F is equivariant under actions of elements in SO(2).

Note that to obtain all elements in O(2) we only need the reflection through
a = L/, as defined in equation (3.195), we find that

(pv(z)) = (v(2a — 7)) = —v'(2a — 7) = —(pv') () (3.202)

and hence (pv(z))” = (pv")(z). For the non-local term we apply Lemma 3.82
with a = %/,. Then substitute these into equation (3.171b) and we obtain the
result. M

Note that because we are working on a periodic domain, we know from
Lemma B.12 that both sin(-) and cos(-) are eigenfunctions of the lineariza-
tion of equation (3.10a), and hence upon linearization of F we expect to
find eigenspaces spanned by both. For bifurcation we however, require odd-

dimensional nullspaces (here one-dimensional). Here, we will exploit the equiv-
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ariance with respect to reflection to reduce the dimensionality of the nullspace.

We define a new function space
H} ={ue Hp(S):u(z)=u(lL—1x)}. (3.203)

It is then easy to see that the operator F now maps R x Hz — L} x R, since
if u € HE we find that

Fla, u] = Flo, pu] = p Fla, u]. (3.204)

3.5.2 Generalized Eigenvalues of F

Due to Lemma 3.16, we have that possible bifurcation points are those that are
generalized eigenvalues of the Fréchet derivative of F evaluated at the trivial
solution (a,@). To work, with a trivial solution that is (e, 0) we introduce the

following change of variables,
v(z) = u(zx) — 1. (3.205)
Under this change of variable, the operator 7 becomes

(—v' + a(v +a) K[v])

X 3.206

.}C[Ct.,ﬂ]:[

and its Fréchet derivative becomes

— T H i
D, F(a,v)[w] = (—w' +a((v+ @) Kalw] + w K[v])) ‘ (3.207)
Aluw]
Note that we treat this now as an operator family indexed by o € R. In the
next two lemmas we characterize the values of o, which lie in the generalized

spectrum X (D, F(a, 0)).

Lemma 3.83. Let the operator F be as defined in (3.206), and let o = 0. [is

Fréchet derivative has been shown to erist in Lemma 3.78. M, (w) denotes the
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quantity introduced in Lemma 3.51. Then, define

nm
= M. 3.208
O = M@ " E (3.208)

Then if M,,(w) = 0 we have that
dim N[D, F (o, @)] = 1. (3.209)

Thus, the spectrum of the linearization is given by
Y (D Fla,0)) ={an:mne N\ {0}}. (3.210)

Remark 3.84. Note that o = 0 is not an eigenvalue of D, (v, 0), since in this

case, the only solution of (3.211) is the zero solution.

Remark 3.85. Note that since we assume that L > 2 we have that Mi(w) > 0,

since then we have that sin {QT") > 0 on (0,1) and w(r) = 0 by assumption.

Thus, there is always one such bifurcation point.

Proof. The nullspace of D, F(a,0) is given by the solution of equation

(3.211)

—w" + otk (@) ( [, w(z +9Ar) dr)’ —0 in [0,L]
Blw,w'] =0, Alw]=0.

We solve this system using an eigenfunction (see Lemma B.12) ansatz.

w{:r]=aﬂ+2&ﬂms(2ﬂ£m) —I—ansin (ﬂngrx)? (3.212)
n=1 n=1

then, because A[w| = 0 we have that ay = 0 and as w € Hf-,? we have that
b, = 0,%n € N. Hence

w(r) = Z p COS (zﬂ%) , (3.213)
n=1
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which is then substituted into equation (3.211) to obtain,

= 1
; @, COS (Eﬂgm) {ﬂafﬁh’{ﬂ]L sin (En%) w(r)dr — ZHT'?T } = 0.

(3.214)

Hence to obtain a non trivial solution we require that,

{aﬁh.’{a] /; 'sin (2“?) w(r) dr — % } —0. (3.215)

Hence, D, F(c, 0) is not an isomorphism, whenever v equals one of the following

o — nmw
" LaM,(w)h'(a@)’
where M, (w) is defined in equation (3.103). O

(3.216)

Remark 3.86. Note that the values a, found in Lemma 3.83 are exactly the

values at which an eigenvalue A of the linear operator
v" — ot (Ku]) = v (3.217)
crosses through 0.

Lemma 3.87. Let o, be a generalized eigenvalue of D, F(a,0) as found in
Lemma 3.83. Then we have that,

D, F(a,,0)[u,] ¢ R[D, F(a,,0)]. (3.218)
where u,(x) is the eigenfunction corresponding to o, from (3.208).
Proof. We proceed by contradiction. We assume that
D., Fla,, 0)[u,] € R[D, F(ay, 0)]. (3.219)
That means, that there is y € R[D,F(ay,0)] and a 2 € Hg such that
D, F(ay,,0)[z] = v. (3.220)
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Finally, that y has to be
'Er.K: I
D, Flan,0)[uw] = [ ’E}[w]] . (3.221)

Then equation (3.220) is equivalent to

—"+ k! (@) ( [, wz +1)Q(r) dr) = aKalus]' in [0,L] 3.2
B[z,2'] =0, A[z]=0.
We note that (refer to Lemma 3.56)
' peos | ATT 2mnx
Krlu,] = h'(@) (T) cos ( T ) M, (w). (3.223)

Like in the previous lemma, we once again use the ansatz

2(z) = izj cos (ETI) . (3.224)
=1

Upon substitution into equation (3.222), we obtain

5 (D)) aom

|
= ah'(@) (“T”) cos (ETT%) M, (w).

Then this equation has a solution if and only if t; = 0,¥7 # n and

tn { QMo () () — ™ } =t @ M(w), (3.226)
is satisfied. But o,, = m, hence the term on the left hand side is zero,
and we have found a contradiction. H
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3.5.3 Local Bifurcation Results

Based on the previous lemmas, we can now formulate the local bifurcation
result.

Theorem 3.88. Let F be given as in (3.171). Then by Lemma 3.78, Lemma 3.83
and Lemma 3.87 all requirements of Theorem 3.17 are satisfied. Then there

are continuous functions
(ar(s), ur(s)): (—0k, &) = R x Hp (3.227)

with o (0) = oy, such that

2k
uk(x, 8) = @ + S0y COS (%) + o(s) (3.228)
where (ou(8), ur(s)) is a solution of equation (3.10) and all non-trivial solutions

near the bifurcation point (o, @) lie on the curve I'y = (ow(5), ux(s)).

Proof. To be able to apply Theorem 3.17 we set U = Hp and V = L§ p xR (Lj p
is the sub-space of functions in L? with the symmetry as in equation (3.203) and
average zero as in equation (3.25)) and W = H}. Then the operator defined in
equation (3.206) satisfies all the properties required by Theorem 3.17. These
properties are proved by Lemma 3.78, Lemma 3.83 and Lemma 3.87. Finally,

we revert the change of variables given in equation (3.205). ([l

3.5.4 Global Bifurcation

In the above, we found that bifurcations occur at (o,,,0) and the non-trivial

eigenfunctions of D, F(ay,,0) (see equation (3.172)) are given by

u,(z) = cos (gﬂ; x) . (3.229)

Following the observations for some PDEs [73, 83, 84, 85|, that symmetries of
the bifurcating mode u,, are conserved along the bifurcating solution branch,
we will show that this is the case here as well. For this we define the so called
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isotropy subgroup associated with wu,. The isotropy subgroup contains all the

group actions that leave u, invariant.
Yo ={7€02):vu, =u, }. (3.230)

It is easy to see, that for the eigenfunction u,, (see equation (3.229)) the isotropy
subgroup is given by

E,,,::{am_L?pam_L:meﬁ,lﬂmgn}=Dn, (3.231)

where D), is dihedral group of order 2n, which is the group of symmetries
of regular polygons with n sides. Using the isotropy subgroup, we define the
fixed-point subspaces (containing all the functions invariant under actions of

the isotropy subgroup).

Hi ={ue H:ou=uoe€XL,}

, _ (3.232)
Ly, ={ue€ L™ ou=u,Vo € £,}.

Note that both of the above spaces are again Banach, since both are closed
subspaces, which follows from the fact that %, is a topological group and hence
the action generated by ¢ € ¥, is continuous. Then for each n € M, we obtain
a ¥, reduced problem of F such that

F:Rx Hy — L} xR, (3.233)
since whenever u € HZ_, we have that
Fla,u] = Fla, ou] = o Flo,ul. (3.234)

Then this problem has bifurcation points given in Lemma 3.83 at oy, 1 < k.

Lemma 3.89. Suppose that u € H%n, then

K[u] (%‘:’) =0, u (%’) =0. (3.235)
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Proof. From Lemma 3.82, we have that
Klpu] = —p, K[ul. (3.236)

Since u € HZ_, we have that PmLll = U and so we find that

L
Klu](z) = Klpgrt] = —pae Klul(z) = — K[ul (mT _ :r) . (3.237)

where the last equality is simply the application of pmL to the function z — K[u|(z).
Letting r = @& we obtain that

e (2) =t (2. -

O

Remark 3.90. Note that if u(z) is a solution of equation (3.10), then the previous
Lemma 3.89 fixes the locations of its maxima and minima, since we have that
u'(z) = 0 if and only if K[u](z) = 0, from Lemma 3.72.

Remark 3.91. Note that the same result as in Lemma 3.89 has to hold for the
second derivative of the non-local term K[u]". That is, we have that

K[u]” (?;L?f) = —K[u]" (%{’) : (3.239)

and thus we must have that Ku]” (2=) = 0.

The symmetry imposed on £, by the dihedral group motivates the following
definition of a tiling of the domain S}. Intuitively, the tiling segregates the

domain into pieces on which the function u(z) is increasing and decreasing.

Definition 3.92. For n € N we define, a tile by

_ (g (i+1)L

=5 )?3=G?...?2n—1. (3.240)
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Then, we have that
In—1
St =l ( U n,-) : (3.241)
i=0

The points between tiles will be denoted by

n—1
o0 =5;\ J (3.242)
i=0
&pﬂl |_|.|_|.92“_1|
0 L L 3L (2n-1)L
2n n 2n T 2n

Figure 3.9: A tiling for Si as defined in Definition 3.92 and where n € M. The solid
components form 2! while the dashed components form 2. 8 is denoted by the
vertical lines.

Using the tiling, we now define function spaces that contain functions with
alternating regions of where they are increasing and decreasing. We make this
precise in the following definition.

Definition 3.93. Let n € N, using the tiling from above we define

n—1 n—1
Q=% 2= % (3.243)
i=0 i=(0

Then we define the spaces of functions that have n tiles on which they are
increasing and n tiles on which they are decreasing. Equivalently, they are the
spaces of functions for which «' has 2n simple zeros, which are located on 952
(this is motivated by Lemma 3.89).

Si={uelCku>0m 0 v <0in Q* u'(z) #£0, €80}, (3.244)
and

S;={uelCku <0in Qv >0in Q% u'(z) #£0, z€8Q}. (3.245)

Remark 3.94. It is easy to see that both Si are nonempty, since cos (252) € S,
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while the negative of this function is an element of Sf (see Fig. 3.10).

u

Figure 3.10: An example of a function in 55

Lemma 3.95. Letu € Sf NHZ , be non-constant and positive. Further suppose
that h(u) = u, then K[u](z) # 0 for all z € int Q2.

Proof. Without loss of generality, we choose the tiling of the domain to be
such that u' > 0 on 2! and w’ < 0 on Q2. Pick # € int 0!, then we denote
N = {x;, z,} and

ry = |z — &|, TR = |x, — |, (3.246)

Then if rr,rg = 1 then by the monotonicity of u we have that u(z —r) <
u(Z+r), r € (0,1) and thus K[u|(%) # 0. If one or both of r;,rp < 1 then
since L > 2 we have that |Q'| = £/,> 1, thus rp + rg > 1. Since we have ¥,
symmetry, we use the reflection to map # + r back into Q' whenever it hits the

boundary #!. For this we require some more notation (also see Fig. 3.11).
R ={F+rre(0,1)} (3.247)
It is clear that R* N B~ = @, since L > 2. Then the sets that are not in (!,
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and have to be reflected back are given by

Rt ={F+rre(rpl)}

. (3.248)
R ={z—rre(rl)}.

Following reflection, the subsets of R* become the following subsets of 0!

RY ={zg—rr€(0,1—rg)},

i (3.249)
R ={zp+rre(0,1-ry)}
Then, we claim that
# =sup R~ < inf R* = Zp. (3.250)
Indeed, suppose otherwise i.e. £y > . Then, this means that
zr+(1—rL) > xzr— (1 —rg). (3.251)

Solving this inequality we obtain that rz — x; < 1. But this is impossible,
since I > 2.

The proof of the claim implies that u(Z —r) < u(Z+r), r € (0,1) and thus
Klu](Z) # 0. O

Remark 3.96. Note that Lemma 3.95 only works for the linear choice of h(u).
Generalizing this result to nonlinear functions that satisfies the fairly general
assumptions H1-H4 is not straight forward. In Section 3.5.6, we will discuss a
more appropriate method, which if successful will make Lemma 3.95 superflu-

Onus.

Theorem 3.97. Let F be given as in equation (3.171) with h(u) = u. Then for
each @ = 0, the set of solutions of equation (3.10a) contains a closed connected
set € C R x H3 such that

1. € contains (o (s),uw1(z, 8)) for s € (—é1,61).
2. For any (o, u) € €, we have that o = 0, u > 0.
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(XTI SRR

LL LR
- TL -| TR -

Figure 3.11: The setup for the proof of Lemma 3.95.

3. Let € = €U €, are the subcomponents of € in the positive and negative
direction of the eigenfunction given in (3.229) with n = 1. €* are closed
and connected subsets of € such that € N& = {(a,1)}. We denote
€7 == €*\{(o4, @)}, and we have € C R x 87, and that € C R x 87,
where ST are given by equations (3.244) and (3.245).

4. The unilateral branches (€*) are unbounded, that is for any o > ay there
exists (o, u) € €*.

Proof. 1. From Theorem 3.21, it follows that there exists the component €,
which is the maximal, connected and closed subset of the closure of the

set of non-trivial solutions,
S={(o,u) eRx H : Fla,u) =0,u#a}. (3.252)

containing (o, @), this of course is also a consequence of Theorem 3.88.
This proves 1.

2. Since (o, u) € €, we have a; > 0. Indeed, if a < 0, then by the connect-
edness of € there would have to be a point in € at which « = 0. Thus
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suppose that (0,u) € €, but then from equation (3.10a) we have that
1 = 1. Thus (0, @) is a bifurcation point. But this contradicts Lemma 3.83,
which showed that all bifurcation points are non-zero.

We show the positivity of u by considering
P={u€eHgu>0inS]}, (3.253)

Then we want to show that € C R x P. We first note that @ € P
and by Theorem 3.88 we have that the solution component around the
bifurcation point is also in P. Since € is connected and P is open, we
have that if € ¢ R x P, then there exists a (o, u) € R x 8P such that
0 < u. First, suppose that there exists # € S such that u(#) = 0. Then

note that equation (3.10a) can be written as,

{—u”+a{m)u’{m) +b(z)u(z) =0 in [0,L] (3254
Blu,u'] =0,
where

a(z) = a Klu](x) b(z) = a K[u'|(z). (3.255)

Due to Proposition 3.69, we have that both a(z),b(z) € C*(S}). Then,
the maximum principle (Theorem C.2) implies that u = 0. However, this
contradicts the integral constraint in equation (3.10), which must hold
on €.

Thus we have that, € C R x P.

. Then consider the decomposition of € into subcontina such that € ne= =
{(a1,1)}. We claim that, € C R x &7 Since, €] is a connected topolog-
ical space it suffices to show that € N(R x S7) is nonempty, relatively
open and relatively closed in €. Then we conclude that this space is all
of Ef. We split the proof of this claim into three pieces.

(1) To show that €] N(R x S]) is non-empty, we note that due to the
local bifurcation result Theorem 3.88 for small s the solution along the
branch is given by equation (3.228) with n = 1, thus the solution branch
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is in €7 N(R x S7).
(2) To show that €] N(R x S7) is relatively open in €], we use sequential
openness (see Lemma B.11). Let (&, i) € €] N(R x 87), and consider
any sequence (o, Uy) C QI‘I" convergent to (&, ). Then we are left with
showing that the tail of this sequence is contained in €] N(R x S7).
Without loss of generality consider Q := [0, L/2] (the treatment of €} is
analogous). Since @t € &7 we have that 4’ < 0 on {};, and that u" # 0
on df);. Further, we must have that ' is decreasing at the left boundary
(r; = 0), and increasing at the right boundary (z, = L/2). Hence, we
have that

" (zy) < 0 < 4" (z,). (3.256)

L Yk Lk | Ly

Figure 3.12: Plot of the derivative u'. The point =} is such that «'(z) = 0, this
implies the existence of point y; at which u"(y.) = 0.

Since u; converges to i, we have that eventually uj, < 0 on (5. Suppose
that there exist a z, (k. a subsequence of k — oo) such that u'(z, ) = 0.
This implies that there exists y,, such that u}/(y,,) = 0 (Y, € (T3, T4,,)
or Yy, € (T, , ). Without loss of generality suppose that vy, € (77, 7, )
(see Fig. 3.12). Since, @t € &7 we must have that z,, — 7; as k — oo,
which implies that y;,, — x;. Hence, we have that u”(y,, ) = 0fory,, =+ z;
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contradicting (3.256).

(3) To show that € N(R x S7) is relatively closed, we consider the
sequence (o, ux) C € N(R x 87) convergent to (&,4) € €. Then
again consider {)y such that uj < 0,Vk. Then we must have that, @' < 0.
Suppose that there exists ¥ € () such that 4'(Z) = 0. This means,
since i’ < 0, that that 4"(#) = 0. Evaluating equation (3.10a) and
equation (3.158) at ¥ we obtain that

Kla)(z) =0,  K[i]'(z) = 0. (3.257)

If # € int{); and if % is non-constant, then Lemma 3.95 implies that
K[i](%) # 0. Thus we have a contradiction.

If however & € 8()p with @'(%), &t"(Z) = 0, then evaluating equation (3.10a)
at ¥ we again obtain the results as in equation (3.257). If, however i is
non-constant, then without loss of generality suppose that # = x;. Then
we have that i'(z) < O forr < Z and @' = 0 for z > . Since, L = 2
the domain of the non-local term K[u]' do not overlap. Then referring
to the non-local curvature (3.107) we easily conclude that we must have
K[u]'(#) = 0, which is a contradiction to (3.257).

Together, the previous two paragraphs exclude the possibility that i is
a non-constant function. If on the other hand i is constant, then ii = @,
from the integral constrain in equation (3.10). This means that (&, )
is a bifurcation point. Therefore we must have that & = oy for some
M 3 k > 1. The case k = 1 cannot occur since €; does not contain (ay, ).
For k = 2 we have from the local bifurcation result (see Theorem 3.88)
that in a small neighborhood of (o, @) the solution branch must be given
by (3.227). But this means that u, > 0 and uj, < 0 on {}p, which is a
contradiction. Thus, € N(R x 87) is closed.

Thus, we have proven that '.’."1" C R x &7, For €] we proceed analogously.

. Theorem 3.22 implies that €* each satisfies one of the following alterna-
tives:
i it is not compact in R x H3

11
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ii it contains a point (&, #) where & # oy,

ifi it contains a point (a, @ + @) where @ € ¥\ {0},

Y = {uEH%l:LLu{m)cus (%Tx) =u}. (3.258)

If alternative ii holds, then & is a bifurcation point, which is impossible
after the proof of 3.

where

If alternative iii holds, then there is a (o, @ + 1) € €* where @ € Y \ {0}.

This means the following holds, where we integrate by parts

0= j: 1i(z) cos (2%) dr = —% j: /() sin (ZWTx) dr (3.259)

then we note that sin {QT") and i’ have the same zeros and since @" # 0

on A4} we have that @' must change sign at those points. Hence we have

two cases. If sin (%) < 0 whenever @' < 0, then we find that
2
i'(x) sin (T) > 0,Vz (3.260)
and if sin (£%) > 0, whenever @' < 0, we find that
iy . [ 27z
' (z) sin I < 0,V (3.261)
In both cases, we then find that

j: il'(z) sin (2%) dz #0 (3.262)

which contradicts equation (3.259). Therefore only alternative i holds,
and thus € are non compact.

Finally, to show 4 we note that since €* are connected its projection onto
the a coordinate are intervals containing ;. From the a-priori estimate
for positive solution derived in Lemma 3.70 we find that for bounded o

the solution u is bounded. In particular, uniformly bounded in C*'. From
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equation
u" = ou' Klu] + ouk[u]', (3.263)

we then also have that 4" is bounded, since u and u' are bounded. [terating

I

this process one more time for u"', we consider equation

u" = ou” Klu] + 20u'K[u] + auk[u]”. (3.264)

The first two terms on the right hand side are bounded, and the second-
derivative of K[u] is also bounded since u € C* and h(-) € C%. Hence u is
bounded in the norm of C* and hence H* for bounded a. But H® cc H?,
thus €* are compact in R x H? a contradiction. Thus the o coordinate
must be unbounded.

A

Remark 3.98. Note that in part 3 of the proof of Theorem 3.97 we cannot use
the symmetry of the function space H3 to show that €] N(Rx S7) is both open
and closed. This is because the imposed symmetry only restrict the solution’s

(u(z)) behaviour on the tile boundaries, and not in the interior of a given tile.

Remark 3.99. The most challenging part of the proof of Theorem 3.97 was to
show that €] N(R x &7) is relatively closed (see part 3 of the proof). There
the argument depended on the result of Lemma 3.95. In other words, the
mathematical properties of the non-local term KC[u] lead the proof to success.
Furthermore, we note that this is step is what limits the result of Theorem 3.97
to only the first bifurcation branch and linear h{u).

If we can generalize the proof that €] N(R x S7) is relatively closed, Theo-
rem 3.97 would be valid for all bifurcation branches. This would mean that the
results of Theorem 3.97 parallel those obtained by Rabinowitz [143] for nonlin-
ear Sturm-Liouville equations and Healey et al. [84] for nonlinear equivariant
elliptic equations.

3.5.5 Degenerate Case

Suppose that w = Y/, and that L = 2kR where k € M. Then we have the
following result, indicating a degenerate situation.
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Lemma 3.100. Let L = 2k, for N3 k > 0, and w(r) = Y2, then forn e N

such that T is an even integer, we have that
M, (w)=0. (3.265)

The significance of M, (w) being zero is that under those circumstances
(o, 1) is not a bifurcation point of equation (3.171b). Since we had to as-
sume that M, (w) is positive in the result of Lemma 3.83. Thus under those

circumstances it is impossible to obtain steady-state solutions having n-peaks.

Proof of Lemma 3.100. The term M, (w) is introduced in equation (3.103), as

M, (w) = [ﬂ 'sin (ZT‘T) w(r)dr = % [ﬂ ' sin (E;) dr, (3.266)

then this is zero whenever  is an even integer. O

3.5.6 Thoughts on generalizing the previous proof

A unresolved challenge in the proof of Theorem 3.97 is to generalize the proof
that shows that € N(R x 87) is relatively closed (see part 3 in the proof). This
proof would be considerably more general if a maximum principle could be
applied (e.g. Theorem C.3). Remark 3.91 suggests that the sign of the second
derivative of the non-local term K[u] changes at the same points as K[u]. This

observation motivates the following approach.

Since we have that u € C*(S}) we have that u" exists and is continuous,

thus we can differentiate equation (3.10), to obtain
u" — ou” Klu] — 20v'K[u] = aukl[u]”. (3.267)
Now we denote w = u', and
a(z) = —a Klu(z), b(zr) = —2aK[u]'(z). (3.268)
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Then, we obtain the following linear non-homogeneous elliptic equation
w”(z) + a(z)w'(z) + b(z)w(z) = au(z)Ku]". (3.269)

Now suppose that we are on a tiling {}; on which w > 0, and that there exists
a point x € int {}; such that w(z) = 0. Then to apply Theorem C.4, we need
that the right hand side of equation (3.269) be non-positive. Indeed, numerical
simulations together with Remark 3.91, suggest that

u'(z)K[u]"(z) <0, (3.270)

thus if w > 0, this would imply that K[u]" < 0 (see Fig. 3.13 for a numerical
example). Then, since u > 0, we have that the right hand side of equation (3.269)
is non-positive. Hence, Theorem C.4 can be applied, to obtain that either
w =0 or w > 0. But if w =0, then u = @ and hence we must be located at a
bifurcation point, which was excluded in the proof of Theorem 3.97. Thus, we

find that w > 0 contradicting our assumption.

i
4 -
=
g 2-
I
o \ - —
= #
! 1 r
'E 2 S 1 S
;'E L
44 T u'(x)
—— i
i K[u]”
T T

0.0 0.5 1.0 1.5 2.0
Space T

Figure 3.13: A plot demonstrating equation (3.270). On the left, a steady-state
solution u(z) of equation (3.10) is shown, for which, on the right, we compute K[u],
K[u]", and u'. The dashed black line denotes the location of the zeros of K[u].

Thus it remains to prove that inequality (3.270) is indeed correct. A possible
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approach would be to show that K[u] is mid-point convex (concave); then the
continuity of X[u] would imply convexity (concavity), and we have the result of
equation (3.270). Then the proof of Theorem 3.97 will work for any bifurcation
branch and any nonlinear function h(u) satisfying assumptions H1-H4.

In this case, the complete separation of the unbounded global bifurcation
branches is a result of the “frozen” zeros of the solution’s derivative. Critical
for the result was the fact that the non-local term K[u] shares its zeros with
the classical derivative.

3.6 Stability of bifurcating branch

We study the stability and the type of the first bifurcating branch. Note that
this work is limited to the case h(u) = u as we make heavy use of Lemma 3.51
and Lemma 3.56.

From earlier sections, we can decompose the function space H}i into two

pieces,

H3(S}) = span { cos (%Tm) } @Y, (3.271)

where cos (£Z) spans the nullspace of D, F(a;,0), and where

Y = {u € H2(SL): f: u(x) cos (%Tx) dr = n} : (3.272)

Theorem 3.101. Suppose that all the assumptions of Theorem 3.97 are satis-
fied. Then the first bifurcation branch I'; around (o, @) is locally parameterized

by
ui(z, 8) B
oy(s) B

for s € (—94,6), where pi(x) is determined above. Then the direction of the

il
+ 5

¥y 3

o) e o

bifurcation is determined by the sign of &y and it is a pitchfork type bifurcation
as oy (0) = 0.
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The value of Gs can be computed from

- 1y w2 1
GSZE(EEL) M, (w)(2M; (w) — My(w))’ (3:274)

where M, (w) is defined in Lemma 3.51.

Proof. Then from Theorem 3.19 we have that the bifurcating branches are of
class C* in particular (a(s), u(z, s)) € C* with respect to s. Then we can write
an asymptotic expansion of (u(z, s), @(s)) for the first bifurcation branch (see
Theorem 3.88), that is,

2mr

L

a(s) = a1 + sdia + %G + o(s%),

u(s, ) = 4 + say sin ( ) + 8%p1(x) + $°pa(z) + o(s%)

(3.275)

where p; € Y. Since Afu(s, z)] = Lu*, we have that A[p;] = 0. In the following,
we will denote u; = cos (2=). For the following discussion, we will also need

fourier expressions for the functions p;(x). That is, we express both by

pi(x) = i b}, cos (ET x) : (3.276)
n=2

Then we substitute the asymptotic expansion into equation (3.10a), and we

group the result by associating terms of equal powers of s.

The terms of order s give

o — odaK ] = 0. (3.277)

It is straightforward to verify that this equation is satisfied precisely when
@, is a bifurcation point (see Lemma 3.83). In the following, we use roman

numerical (i.e. I) to refer to the projected variants of the terms shown below.

The terms of order s? give

pl(z) — aK[p}] 40f (ui1K[wi]) —aido aK[u)] = 0. (3.278)
I II 111
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First we show that ds = 0. Indeed, by projecting equation (3.278) onto the
nullspace of D, F(a,0), we will obtain the result. We will show the work term

by term in order as they appear in equation (3.278). First,

I= jD.Lp';’{:r) oS (MTI) dr=0 (3.279)

by integration by parts. For the second term, we apply the results of Lemma 3.56

to obtain

K[p)](z) = —2 ; M, (w]z%b},_ cos (ZW;‘T) . (3.280)
Then projecting those terms on the nullspace easily shows that
II=0. (3.281)

We proceed similarly for the third term. Using Lemma 3.51, we obtain

L L
11 = f (uy K[uy]) cos TN gy = 2T 1y K [uy] sin ELEA

0 L L fo L

) . , ) (3.282)

- —%Ml{w} j; sin? (%) cos (%) dz = 0.
Finally, for the fourth term, using Lemma 3.56, we obtain
or E 5 [ 2mx
IV = _ZMI{W}T_[ cos” ( —— dzr = —2M;(w)m. (3.283)
0

Substituting all these results into equation (3.278), we obtain that

Gy = 0. (3.284)

The terms of order s*, with the terms involving és, are

ph(x) —on uK[ph] —af (w, K[ps])' —of (01 K[wy])' —ayég aK [u}] = 0. (3.285)
I 1 h 1 ’ h v - v

Again we project this equation onto the nullspace of D, F(a,0) term by term.
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The first term is
I_f pﬁ{m)cus( ) dr =0. (3.286)

The second term, projected onto the nullspace is given by

11=—2/:ms (2”) ZM( ]m S(ET‘“). (3.287)

Evaluating this, we obtain

I = 0. (3.288)

For the third term, we compute

I = [ (uy K [uy))’ ms(zzx) de. (3.289)

We note that, using Lemma 3.51 we have that

(i K [uq])' = —Ml(‘-‘f‘}%‘r cos (MTx) , (3.290)
and it is easy to see that III is orthogonal to cos {‘1;’)

The fourth term is more interesting. Following integration by parts, we

obtain
v=2m pl{x}K[ul] sin (22 da. (3.291)
L Jy L
In this case, following integration by parts we encounter terms of the form
L 0 if n#2
f cos (ﬂ?mx) sin® (Zﬂ—x) dz = 7 (3.292)
0 L L —L/4 ifn=2

Then collecting all the terms, we obtain
IV = w M, (w)bi. (3.293)
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Finally, we deal with the last term,

L
\Y% =f K[u]' cos (Zﬂ—x) dz
0 L

N L ) (3.294)
= —ZMl{w}—ﬂf cos” (E) dr = —2M;(w)m.
L J; L
Hence solving for d; we obtain
L
Gig = if pi(x) cos (M—I) dz. (3.295)
U Jo L

at

Thus next we will have to find bl.
To find this coefficient, we simply solve the equation of order s* for p(z),
and recalling the result from equation (3.290), we then obtain

P () — wo Klp] = o (K] = o M) cos (). (3290

Using the Fourier expansion (3.276) of pi(r) and substituting it into the pre-

vious equation and matching modes, we obtain

1 o

b2 = 202 L(2M; (w) — Ma(w))’ (3:297)
which we can substitute into our expression for dg. We find that
1y m 2 1
g = — . 3.298
=3 (aﬂL) M (@) (2M: (@) — Ma(w)) (3.298)
O

Example 3.102. Suppose that w is chosen to be the uniform function i.e. O1,
then from Example 3.59 we can compute M, (w). Using this information, we

can compute dy. In this case, we find that

Gig = (_1)d ! (3.299)



which is always positive.

Then suppose that L = 2,4 = 1, then we find that

2 4
ay = % Gig = (%) . (3.300)

A bifurcation diagram for this situation is shown in Fig. 3.14.

Figure 3.14: Sample bifurcation diagram of the supercritical pitchfork bifurcation,
i.e., we have that &g > 0 and have a switch of stability at the bifurcation point.
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o

Figure 3.15: Sample bifurcation diagram of the subcritical pitchfork bifurcation,
i.e., we have that dq <¢ 0 and a switch of stability that occurs later.

3.6.1 Stability of solutions

So far we have studied the set of solutions of the equation F[a,u] = 0, which
are the steady states of the evolution equation
du

Fri Fle, ul. (3.301)

In this section, we are interested in the linear stability of these steady state
solutions. The linear stability of such a solution, along a solution branch, is
determined by the sign of the eigenvalue of D, F(a(s),u(s)). An eigenvalue
perturbation result proven in [36], shows that the eigenvalue along the trivial

solution branch is related to the eigenvalues along the non-trivial solution
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branch near a bifurcation point. An application of the main result of [36] is the
goal of this subsection. Again we limit this to the first solution branch. The

eigenvalue problem linearized around the bifurcation point (o, @) is given by
—w" + ay(8) (w Kuy] + uy K[w])' = Aw. (3.302)
When s =0, u4(0) = i, we have that
—w" + oyt (Kw]) = Aw. (3.303)
Lemma 3.103. The eigenvalues of equation (3.303) are given by

A, 0 ifn=1
)" (- 4) >t

Since My(w) =+ 0 as n — oo, we see that A, — oo asn — oo, and Ay is an

(3.304)

isolated eigenvalue.

Proof. Apply Lemma 3.56 and Lemma 3.58. ([l

Remark 3.104. Let’s denote the set of eigenvalue of equation (3.303) by A.
Then whenever M, (w) is well behaved meaning that A, > 0 for n > 2, ie,,

Ma@)| _
< 1. 3.305
M (w) ( )
Then there exists 4 > 0 small such that,
AN{\ e C:Re) <4} = {0} (3.306)

Note that this does not hold in general as even when w = /5, since we have
that M;(w) = 0as L — oo.

Example 3.105. Suppose that w is chosen to be the uniform function, i.e. O1
(see Section 3.3.3). Then M, (w) was computed in Example 3.59. In this case,
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we find that
M, (w) B l gin’ (%)

= ——a. 3.307
Mi(w) ~ n sin® (%) ( )
If we choose L = 2, we find that
CU" ifn odd
Ma(w) _ )= 4 odd (3.308)
My (w) 0 else

Hence in this case, M, (w) is well-defined as discussed in Remark 3.104.

To apply the results of [36] we need to introduce the following definition,
and show that our problem satisfies it.

Definition 3.106 (Definition 1.2 [36]). Let T, M € £(X,Y). Then p € R is
a M-simple eigenvalue of T if

dim N[T — pM] = codim R[T — pM] =1, (3.309)
and if N[T — pM] = span{z,} we have that
Mzo & R[T — pM). (3.310)

For the purpose here, we define the operator M: H®> — L3 x R by

L
Mluw] = (w{ﬂ _%é?] w(@) dI) . (3.311)

Lemma 3.107. A =0 is a M-simple eigenvalue of D, F(ay,@).

Proof. Recall that D, F(ay,1): H> — L} x R is Fredholm with index 0. Thus,
the operator satisfies the first condition in Definition 3.106. We show the second
condition by contradiction. Suppose that

M[uwi] € R[D, F(a,@)] = {u € Lﬂ:/: u(z)dzr = 0}. (3.312)
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In other words, there exists w € H? such that

—w" + o uK([w] = a; cos (=) in [0, L] (3.313)
A(w) =0.
We expand w(z) using a Fourier series
. 2mnT 2314
w(zr) = Zwﬂ,cus ) (3.314)

and substitute that into equation (3.313). We then obtain the equation

(OIS -]

m ifn=1,

which leads to a contradiction when n = 1. -

Theorem 3.108. Let all the assumptions of Theorem 3.97, and of equation (3.305)
hold. Then for any @ > 0, and for s € (—4,0) U (0,4) the steady state u(s, )
given by equation (3.228) of (3.10a) is asymptotically stable in the class of fune-
tions such that quL u(r)dr = @, whenever s > 0 and unstable when &3 < 0.

Proof. Now we are ready to apply [36 Theorem 1.16]. That implies that there
are open intervals I, J with ay € I,0 € J, chosen such that

IR ! =R, (3.316)
such that
Y(a1) = p(0) =0, (3.317)
and
u:J — H? w: J — H? (3.318)
such that
u(oy) =uy =w(0), ula)—u €Y, w(s)-u el (3.319)
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Then we have two eigenvalue problems

D, Fla, 1l(u(a)) = y(@)Mfu(a)] (3.320)
D, Fla(s), u(s)](w(a)) = u(s) Mfu(s)). (3.321)

Whenever p(s) # 0, we have that

—sa/(s)7() _

1. 3.322
s—+0,u(s)70 () ( )

Thus we are left with computing /(a;). In the following, we use roman numer-
ical (i.e. I) to refer to the projected variants of the terms shown below. For
this reason, we differentiate equation (3.320) with respect to o and then set

@ = oy to obtain

—tir" + @k [u1] + 0 aK[w] = o' (0 )us . (3.323)

I 1I 11

Then we multiply this equation by u; and integrate by parts. We obtain the

following results term-wise. The first term gives us

= (%"T)gf:msm (ZWTQ’) dz. (3.324)

The second term gives us, recalling the result from Lemma 3.56
IT = —2am M (w). (3.325)

The third term gives us, applying Lemma 3.46 and Lemma 3.51, that

- (s (59), -~ (o[ (),

(3.326)
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Finally, the last term gives
L
IV = q"{al}g. (3.327)

Combining all the terms we get

2\ 2 47 L 2mz = L
[(T) — s M) | [ veos (B2) dr = 2amd ) = v (e

v
(3.328)
Note that when substituting a; into V, we see that this term is zero, and thus
we obtain )
2m 1
=== —. 3.329
¥(1) ( i ) = (3.320)
Then substituting what we found into equation (3.322), we find that
9 (9 2 -
lim — (E) B (3.330)
as0pu(a)20 ag \ L ()
Thus we conclude, that
sgn j(s) = sgn i, (3.331)

for s € (0,4) U (—4,0).

Then whenever ds < 0, it directly follows that the nearly bifurcated branch
is linearly unstable. If &3 > 0, and if condition (3.305) holds, we have that
no eigenvalues but the zero eigenvalue are in that set. Hence, by eigenvalue

perturbation, the result follows. ([l

3.6.2 Comparison to dispersion relation

Classically, to determine the instability of the homogeneous steady state one
derives the dispersion relation. Let’s do the same for equation (3.7). Let
u(z,t) = 4+ v(z,t), where v(z,t) is a small perturbation. Upon substitution
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of u(z,t) into equation (3.7), and neglecting the nonlinear terms we obtain
1
vz, 1) = vpo(z, 1) — Ol ([ v(z + 7)€Y r) dr) . (3.332)
1 r

Now let v ~ e**+M where k and A are the wave number and frequency respec-

tively, then we obtain
1 -
Ak) = —k% — aﬂz?k[ e*rQ)(r) dr. (3.333)

-1

Upon using the evenness of w(r) we can simplify the integral term to obtain
1
Ak) = —k* + Zaﬂkf sin (kr) w(r) dr. (3.334)
0

Then for aggregations to form, we require that Re A(k) > 0 for some k. Hence,
such a k has to satisfy the inequality

1 kﬂ
k in (k dr > —. 3.335
L sin (kr) w(r)dr Som ( )
On the bounded domain [0, L] the accessible wave numbers are ™/, . If

M, (w) = 0, then we can find the critical numbers «,,, which are given by

x> — T8
LuM(w)

These coincide exactly with those found in Lemma 3.83.

(3.336)

3.7 Numerical Verification

In this section we demonstrate some typical pattern formation experienced by
equation (3.2).
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3.7.1 Numerical implementation

The parabolic equation (3.2) is solved using a method of lines approach based
on a finite volume method which is described in [65]. The non-local term is
efficiently implemented using the fast Fourier transform technique introduced in
[68]. As an integrator for the method of lines we use the ROWMAP integrator
introduced by [174] and published on their homepage®. This integrator was
wrapped using f2py? into a scipy® class. We then implemented a method of
lines on top of the ROWMAP integrator using NumPy®.

Model Parameter Value
Domain Size L 2.0
Domain subdivisions per unit 1024
length

Diffusion coefficient D 1.0
Adhesion strength coefficient o« 6.0

Sensing radius R 1.0

Initial conditions (IC) 1+ ksin(z)

Table 3.1: Parameters for long-time cell adhesion simulations to obtain the steady
states of equation (3.2).

3.7.2 Results

Example 3.109. We continue the example with L = 2 and uniform w (see
Example 3.59 and Example 3.102). Since in this particular case M,(w) for
even n is zero, only (o, @) with odd n are bifurcation points. Thus we only
have solutions with odd number of peaks in this case. The steady states arising
from the first two bifurcations are shown in Fig. 3.17.

In Fig. 3.18 we show the short-time evolution of equation (3.2) that leads
to the single peak steady state shoum in Fig. 3.16. The long-time evolution is

*http://www.mathematik.uni-halle.de/wissenschaftliches_rechnen/forschung/
software/

ihttps://docs.scipy.org/doc/mmpy-dev/f2py/

Shttps://www.scipy.org/

6 www . numpy . org
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shoumn in Fig. 3.19, which clearly is a rotating wave. Since we used periodic
boundary conditions it is not surprising to observe rotating waves. Indeed they

are commonly observed in reaction diffusion equations with periodic boundary
conditions [118].

2.0 4

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Space «

Figure 3.16: The typical single peak steady state equation that is formed for & = 6.
Thus slightly above the first bifurcation point. The black dashed lines denote the
locations of the zeros of K[u] and u'(z).

3.7.3 Numerical shortcomings

Here we obtained the steady states of equation (3.2) by allowing the time-
dependent problem to reach steady states. However, the steady states of many
other PDE systems can be solved for directly (i.e. without solving the full
time-dependent equation). Commonly numerical schemes developed using the
approach of finite difference or finite elements are employed (e.g. Fenics”). For
nonlinear equations these methods are then combined with an iteration tech-
niques (such as newton-method like operators) to yield solutions. However,
using the implementations of these techniques in established numerical frame-
works such as Fenies, to solve our nonlinear non-local steady state equation is

not straight forward. It may well be that custom solutions are required here.

Twww.fenics.org
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0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Space

Figure 3.17: The typical triple peak steady state equation that is formed for e = 150.
Thus slightly above the first bifurcation point. The black dashed lines denote the
locations of the zeros of K[u] and u'(z).

u'DD.D 0.25 0.5 075 1.0 1.25 1.5 1.75 20
Space

Figure 3.18: Short-time dynamics of equation (3.2) showing the formation of the
single peak steady state shown in Fig. 3.16.
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Figure 3.19: Long time numerical solutions of equation (3.2), solved using a finite-
volume discretization.

3.8 Discussion

In this chapter, I explored the set of steady-state solutions of the non-local equa-
tion of cell-cell adhesion (3.2) on an interval with periodic boundary conditions.
The steady states are solutions of equation (3.10), of which the constant func-
tion is an obvious solution for all values of . Using global bifurcation theory
pioneered by Crandall and Rabinowitz (outlined in Section 3.5), we identified
bifurcation points at which branches of non-trivial solutions split from the
branch of trivial solutions. To apply the bifurcation theory outlined in Sec-
tion 3.5, we cast equation (3.10) as an abstract operator equation Flu] = 0 (see
equation (3.171)), whose linearization is shown to be a Fredholm operator with
index zero. To ensure that the trivial eigenspaces of the linearization D, F at
possible bifurcation points are one-dimensional, we imposed that solutions be
reflection symmetric through the domain centre. Since the domain is periodic,
this does not reduce the size of F-'(0). (Indeed, it is equivalent to the well-

known decomposition of any periodic function u € H! into u = @ 4+ v where
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v € H}). Then, using Fourier series expansions, we establish the existence of
the bifurcation points (o, @), whenever the quantity My (w) > 0. This quantity
can be interpreted as the n-th Fourier sine coefficient of w. Then, applying
the local bifurcation theorem (Theorem 3.17) of Crandall, Rabinowitz leads
to our local bifurcation result Theorem 3.88. While such a local bifurcation
analysis is well established in the literature, the true challenge here was the
establishment of the required technical properties of the non-local term K[u]
(see Section 3.3.2).

The global bifurcation result for the first solution branch was mathemati-
cally more challenging. Indeed, the application of the global version of Rabi-
nowitz’s bifurcation theorem is straight forward following the local bifurcation
result (see theorem statement Section 3.2). The true challenge lies in discern-
ing which of its two (three) alternatives holds. Using the seminal results of
Rabinowitz (nonlinear Sturm-Liouville problems) [144] and Healey, Kielhifer
(equivariant nonlinear elliptic equations) [84] as inspiration, we define function
sub-spaces 8:} containing functions whose derivatives have fixed zeros. For
nonlinear Sturm-Liouville problems, Rabinowitz used the fact that its solutions
cannot have double zeros. Classically, this result is proven by transforming the
second-order PDE into a two-dimensional initial value problem (IVP). Initial-
izing this IVP at the double zero will imply that zero is the only solution,
which is a contradiction. It is however impossible to transform our non-local
steady-state equation into an IVP (not even a delay IVP since our non-local
term looks both ahead and behind).

We circumvent this challenge by using the intrinsic symmetries of equa-
tion (3.10). Indeed, we show that equation (3.10) is O(2) equivariant. Employ-
ing the ideas of equivariant bifurcation theory [23, 73, 84], we construct, at each
bifurcation point, a fixed-point space, which is characterized by the isotropy
subgroup at the bifurcation point. In our case, the isotropy subgroup is the
dihedral group. Then we are able to apply the global unilateral bifurcation
theorem (Theorem 3.22) to the X, reduced problem (see equation (3.233)).

To distinguish between the three possible alternatives of Theorem 3.22,
we combine the symmetries of the fixed-point subspace with the symmetry
properties of the non-local operator K[u] (Lemma 3.89), and with the particular
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properties of positive steady-states of equation (3.10) (Section 3.4) to find
that zeros of the solution’s derivative have fixed spatial positions. Using those
locations, we introduce our domain tiling £2;, on the top of which we construct
our nodal sub-spaces Sf. Exploiting the structure of the non-local operator
K[u] one more time (see Lemma 3.95), we are in the position to establish our
global bifurcation result (see Theorem 3.97) for the first bifurcation branch.

Unfortunately, the proof of Theorem 3.97 only holds for the first bifurca-
tion branch, i.e., the one in which only a single peak formed. This is because
Lemma 3.95 requires that peaks be at minimum separated by two sensing radii.
It should be noted however that this is the only shortcoming that hinders the
proof of Theorem 3.97 to hold for all bifurcation branches and all nonlinear
funections h(-). Further, it seems that an alternative method of proof based on
the maximum principle is possible if sign properties of the second derivative of
K[u] can be established. Using the symmetry of the fixed-point subspace, we
have shown that this is equivalent to requiring that K[u] be mid-point convex
whenever u is decreasing. Numerical results of steady states suggest that this
is indeed the case. Thus it is likely that Theorem 3.97 can soon be extended to
cover all bifurcation branches and nonlinear choices of h(-). Such an extension
is mathematically significant, since it would parallel the classifications of solu-
tions of nonlinear Sturm-Liouville equations [34, 143] and equivariant nonlinear
elliptic equations [84, 85].

It has to be noted that this result does not exclude the possibility of further
secondary bifurcations along the solution branches, which may break further
symmetries. The analysis of secondary bifurcations has remained a challenge.
The only analytical tool available to study secondary bifurcations is the Leray-
Schauder degree. More precisely, we are tasked with identifying further changes
of the degree along the identified bifurcation branches. This is challenging since
no equivalent result to Theorem 3.21 exists for secondary bifurcations. Thus
one has to rely on a combination of numerical exploration and mathematical
ingemmity in using the equation’s structure to identify secondary bifurcations.

The results of Theorem 3.97 could be strengthened if we are in a position
to apply the analytic bifurcation theory developed by Dancer [37, 38] (see also
[22 Theorem 9.1.1]). This result would give us that the solution branches are
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continuous and at each point one has a local re-parameterization [22 Theorem
9.1.1]. Further, the set of possible secondary bifurcations does not have a point
of accumulation. For an example of such an application, see [14].

For the case of linear functions within the non-local operator K[u], we were
able to establish that the bifurcation is of pitchfork type. Indeed, both the
supercritical and subecritical case are possible depending on the sign of ag (see
Theorem 3.101) (whose sign is determined by M;(w) and Ms(w)). Further,
using results by Crandall et al. [36], we showed that in the case that oy > 0
an immediate switch in linear stability of the solution branches takes place at
the bifurcation point, while when o < 0 the branch of non-trivial solutions
initially remains unstable. In this case, numerical results suggest that the switch
of stability occurs later.

This abstract bifurcation analysis gives rise to several interesting modelling
observations. Most noticeable in our analysis were the mathematical properties
of the integral kernel Q(r) of the non-local operator K[u]. From the modelling
work in Chapter 2, the integral kernel w describes how likely it is that a cell
protrusion reaches a particular target. In our analysis, the properties of {2 enter
through the quantity M, (w) at several key moments: (1) the sign of M,(w)
determines whether or not we have a bifurcation and (2) it determines whether
we immediately observe a switch of stability. Interestingly, the minimum adhe-
sion strength (o in Lemma 3.83) which allows the formation of cell aggregates
(non-trivial solutions) is reduced with increasing domain size L, magnitude of
M, (w), and size of A'(i), while no parameter increases ;. Note that this is
solely for the non-dimensionalized equation.

Critical for the development of our classification of solutions was the identi-
fication of equation’s symmetries. Most important were the symmetrical prop-
erties of the non-local term, which models the cell-cell adhesion interactions
between cells. Its symmetry properties paralleled those of the classical first-
order derivative. Most biological tissues have a high degree of symmetry when
viewed under a microscope (e.g., the liver is build up of hexagonal lobules).
Even in the experimental results shown in Fig. 1.1, we can almost anticipate
the formation of symmetry if only more cells were present. Hence [ put forward

for future research the questions: To what degree are cellular adhesions (or
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non-local forces) responsible for the formation and maintenance of tissues?
Does tissue symmetry have functional roles? Could misregulation of cellular
adhesions explain the apparent lack of symmetry in cancer tissues?

While the non-local model (3.2) was initially proposed to study cell-sorting,
which requires at least two cell populations, there are biological applications
with only a single cell population. In zebrafish, for instance, cellular adhesions
control the placement of motile progenitor cells during organogenesis [138].
However, the numerical results in Fig. 3.19 suggest that long-time solutions
of model (3.2) are rotating waves, which are only observed in equations with
periodic boundary conditions (e.g., [118]). Indeed, Paksa et al. [138] reported
the physical barriers were critical to the correct placement of the progenitor
cells during organogenesis. This highlights the significant modelling challenge of
formulating model (3.2) on a bounded domain with no-flux boundary conditions.
We address this challenge in Chapter 4.

There are many worthwhile future extensions of this work. The most im-
mediate is an extension to a two-population system to study the possible
cell-sorting patterns. Another would be to consider the model extension pro-
posed by Murakawa et al. [123], who added a density dependent diffusion term.
An extension to higher spatial dimension would be worthwhile, to more real-
istically study the formation of tissues. There is a good chance that a tiling
could also be found in this situation (see for example the work by Courant who
defined tilings in higher dimensions [33]). While the global existence results for
solutions of the time-dependent equation (3.2) are known, little is known about
their qualitative long-time behaviour. Some questions one may ask are: Do
they exhibit coarsening? What is the structure of its global attractor? What

are its travelling wave solutions?
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Chapter 4

Steady States of an Adhesion

Model with a No-Flux
Boundary

Let D € R be a bounded subset whose boundary is denoted by 8D, and let
u(x,t) be the density of a cell population at location z € I} and time {. We
assume that the population density interacts via cellular adhesions. In 2006,
Armstrong et al. [10] proposed the first continuum model of cell-cell adhesion.
The Armstrong model is given by the following integro-partial differential

equation

U(T,1) = dilge(2,1) — (u{:r., t) fR h{u(z + 7, 1)) r) dr) . (4.1)
_R r

where d is the diffusion coefficient, R the cell sensing radius and « the strength
of the homotypic adhesions, and h(-) is a possibly nonlinear function describing
the nature of the adhesive force. For more details on the model parameters,
see Chapter 2. The initial condition for equation (4.1) is denoted by ug(z).
Equation (4.1) can be viewed as a conservation equation in which the flux is

given by
R
J(z,t) = —du,(z,t) + cm{:r,t)f h(u(x 4+ r,1))Q(r) dr. (4.2)
-R
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In the following, we denote the non-local operator by
R
Klu](z) = [ h(u(z + r,t))Q(r) dr. (4.3)
-R

Differently to Chapter 3, here the domain DD has a boundary. This means that
we have to impose boundary conditions and ensure that equation (4.1) is well
defined. In particular, the non-local term in equation (4.1) poses a problem,
since near the boundary (within one sensing radius R), it is not well-defined.
In this chapter, we consider the case of a solid boundary, and want to impose

zero-flux boundary conditions. That is, we want to ensure that

J(z,t) - =10 4.4
@0-n| =0 (44)

where n is a unit outward normal vector. Here, we will assume that the diffusion
flux and the adhesive flux are independent of each other. That is, to satisfy

equation (4.4) we require that

Vu(z,t)-n

—0, 45
redld { }

and that

Ku)(z) - “LEaﬂ —o. (4.6)

Condition (4.5) is easily included in the mathematical problem formulation by
restricting to the appropriate function space. For instance, define the boundary

operator
Blu] = (u'(0),w'(L)), (4.7)

and suppose that we have a function space X. Then a space of functions

satisfying boundary condition (4.5) is given by
Xg = X NN[B]. (4.8)

Condition (4.6) is more challenging, and in the subsequent sections we will

consider a few approaches to construct K[u] such that condition (4.6) is satisfied.

Other authors have also considered the problem of well-definedness and
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no-flux boundary conditions in equations with non-local operators. Hillen,
Painter, Schmeiser [91] considered the global existence of a non-local chemotaxis
equations. To correctly define the non-local chemotaxis equation on a bounded
domain, they limited the set over which the non-local operator (4.9) integrates,

namely

Viro(z) = wﬂ;} = fsg  ov(z + Ro)do, (4.9)

where S}, (z) = {0 € §" 2+ oR € D}, and wp(z) = |S " (z)|. The same
approach to ensure well-definedness of the non-local term is briefly discussed
in [50]. While the non-local gradient as defined in equation (4.9) ensures that
it is well-defined it does not ensure that the no-flux boundary condition (4.7)
is satisfied. Xiang who studied global bifurcations of the non-local chemotaxis
equation using the global bifurcation analysis by Rabinowitz and Crandall
(same approach as in Chapter 3), modified the non-local gradient (4.9) in 1D
such that condition (4.6) is satisfied [176]. The construction assumed that two
domains are in contact on the boundary, then using a reflection argument
through x = 0, L. Xiang obtained

v(z+ R) —v(R—1z) ifo<z <R,
v(z+ R) —v(z — R) fR<z<L-R. (410)
v2L—-rx—R)—v(r—R) fL-R<z<L

'3311{1:} = %

A similar reflection approach is briefly discussed by Topaz, Bertozzi, Lewis
[166].

This chapter is structured as follows: In Section 4.1, we use the insights
we obtained from the derivation of the non-local cell adhesion model from an
underlying random walk (see Chapter 2) to construct a non-local operator that
satisfies boundary condition (4.6). In Section 4.2, we study the mathematical
properties of this new operator. In Section 4.3, we present some initial findings
on the steady states of a non-local cell adhesion model with no-flux boundary
conditions. Finally, in Section 4.5, we discuss our findings and indicate areas

of future research.
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The normal directionality

1_

T T T T T T
.00 075 050 025 000 025 050 075 1.00
Sensing domain

Figure 4.1: A normal directionality function £2(r) which has a normal distribution
centred at r = %+'/5 such that (%1,0) = 0.

4.1 Adhesion model with non-flux boundary

conditions.

We begin this section by introducing some notation that will be used throughout
this section. In this section, we will assume that the spatial domain is given
by, D = [0, L], where L > 2R. As in the previous chapter, we explicitly define
the non-local term by

Klu(z)](z) :ﬁh{u{z—l—r]}ﬂ{r}dr, (4.11)

where V' is the set of all possible headings (see Chapter 2). As discussed
in Chapter 2, the set of headings is a symmetric set for example V = [—R, R]
or V = B"(R) in higher dimensions. Since here we will discuss modifications
of the operator in equation (4.11) to satisfy condition (4.6), we introduce a
clear distinction between the domain of integration V' and the spatial domain

D. We introduce the following distinction:

Definition 4.1 (Spatial and Sensing Domains). We call the set D the spatial
domain, and the set V the sensing domain of the non-local gradient K[u](z),
defined in equation (4.11).

140



..................................................................................................

L

5 L
Space
Figure 4.2: An example of the space D = V with the spatial domain on the z-axis

and the sensing domain on the y-axis. A sample sensing slice E(z) of thickness dx
is shown in the darker grey.

Since in this chapter the domain of integration of the non-local opera-

tor (4.11) may vary in space, we define a sensing slice contained in the space
DxV.

Definition 4.2 (The sensing slice). Let the direct product of the spatial domain
I and the sensing domain V' be given by the Cartesian product D) x V. Then
we define sensing slice for a fixed x € D as

Ez)y={reVire P(z)}, (4.12)

where P(z) is a property of r which may depend on the spatial location z, and
I will discuss various choices of P(x) later.

The operator K can be viewed as a function
K:D x IP(D) — R. (4.13)

The definition of appropriate boundary conditions for the non-local operator
K[u] that satisfy condition (4.6) is both a mathematical and modelling problem.
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On the one hand we need to ensure that the definition of the non-local operator
K[u] is well-defined near the boundary, on the other hand the precise behaviour
of the non-local operator near the boundary is a modelling problem. When a
cell encounters a boundary, it might attach to it, be repelled by it, or form a
neutral attachment. In either case however the population flux cannot point
outside of the domain (i.e. satisfy condition (4.6)). In Section 4.1.1 we will use
the number of adhesion bonds Ny(z) and the free space function f(z) near the
boundary to define the boundary condition. We are particularly interested in
the case that the boundary is neither sticky nor repellent and we will consider
a choice where constant solutions are steady states.

We split the development of no-flux boundary conditions of the non-local

operator K[u] into three separate steps. These steps ensure that

1. the non-local operator K[u| is well-defined near the domain boundary
(see Section 4.1.1),

2. the non-local operator K[u] satisfies the boundary condition (4.6) (see
Section 4.1.2),

3. the non-local operator K[u| describes the required cell behaviour near a
physical boundary (see Section 4.1.3).

4.1.1 Naive boundary conditions

Following [50, 91], we can ensure that the non-local operator (4.11) is well-

defined near the boundary as follows
Klu](z) = f h(u(z + r))Q(r) dr, (4.14)
E(z)

where E(z) ={reV:z+r € D}, and A(-) is continuous. Note that EF(z) is
an example of a sensing slice defined in Definition 4.2. The sensing slice E(x)
ensures that the non-local operator in equation (4.14) is well-defined. However,
this formulation does not satisfy the no-flux boundary conditions (4.4). This

is easily observed when applying the non-local operator (4.14) to the constant
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outside inside domain outside inside domain outside inside domain

Figure 4.3: The three challenges of non-local operator construction near a domain
boundary. The black dot denots the point at which we are computing the non-local
term. The sphere denotes a sensing radius of size K. Left: The part of the sensing
domain that falls outside the domain, makes the non-local operator not well-defined.
Middle: We must ensure that the non-local operator satisfies the no-flux boundary
condition on the boundary. Right: The constructed non-local operators are not
unique in the region near the boundary.

function. We observe that within a sensing radius R of the boundary K[a] is

non-zero, i.e.,
Kla] = f r)dr#0, forzel0,RJU[L—R,L] (4.15)
E(z)

See also Fig. 4.4.

4.1.2 Construction of no-flux boundary conditions

Here we construct the necessary conditions such that the boundary condi-
tion (4.6) is satisfied. We use the non-local operator as defined in the deriva-
tion of model (4.1) from an underlying random walk (see Chapter 2). In
particular, we use the non-local term that is given in terms of the densities of
bound adhesion molecules Ni(x), free space f(z), and the distance distribution
(see Section 2.3.1). That is,

K[N)(z) = /: z Ny(z + 1) f(z + r)Q(r) dr. (4.16)
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Uniform directionality €(r) Naive non-local gradient
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Sensing domain Spatial domain

Figure 4.4: Left: The uniform function £}(r) plotted with a sensing radius R = 1.
Right: The naive non-local operator (4.14) with uniform directionality ({2(r)) applied
to a constant function.

To simplify the subsequent discussion, we introduce the following change of

variables under the integral,
Yy==x+r. (4.17)

With this, the non-local term (4.16) becomes

r+ R
KINl@) = [ NS )2 - o). (4.18)

The boundary is solid. For this reason, cell protrusions cannot pass through
it. Thus, the number of adhesion bonds formed beyond the wall has to be
zero. Secondly, the solid wall may have a variety of adhesive properties, such as
repulsive or adhesive. Thus, adhesion bonds could be formed on the boundary.

These modifications enter the number of adhesion bonds formed as follows,

( Ni(y) if y € int(D)
Na() = ny(y)d(y) ify=0 (419)
nfW)sy—L) ify=L
0 else

"
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where n} (z) are functions that will be chosen such that the non-local term (4.11)

satisfies boundary conditions (4.6). Similarly, we define the free space function

fly) ifyeD
f{y)={£{y} e (4.20)

as follows

else

Since the effect of the free space function and the function deseribing the formed
adhesion bonds are the same, we drop the function f(-) from the subsequent
discussion, and focus on Nj(y) defined in equation (4.19).

First consider the non-local term K[N;](x) defined in equation (4.18) in the

interval [0, R]. There, the non-local term (4.18) can be decomposed as follows,

r+R T
KNl@) = [ N@ow-ndy+ [ M@ -a)dy +ni@)a(-z).
: ’ (4.21)
Then we choose the function n(z) so that the boundary condition (4.6) is
satisfied. That is, for z = 0 we set n(y) to be

-1 R _
m0) = g5 | M0 —o)d. (422)

Similarly, on the interval [L — R, L], we have the following decomposition
of the non-local term (4.11)

T L
KiNl@) = [ M@ -2)dy+ [ M@y - o) dy + n @QUL ).
r—R T
(4.23)
To satisfy the no-flux boundary condition (4.6) at = = L, we set nf(y) to be

L -1 [+ .
w0 =g [ Mwow g du (4.24)

To satisfy the boundary condition (4.6), we only have to ensure that the non-
local operator is zero at the boundary point. In the region within a single
sensing radius of the boundary, however, we can choose the functions ng{x}
and nf(z), and hence the behaviour of K[u] freely.
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Figure 4.5: The two sample functions uy(z) (left) and ua(z) (right) to which we
apply the various non-local operators. Important is whether the function has a peak
or trough on the boundary. u;(z) has a peak on the boundary, while ua(x) features
a trough. The average per unit length ; 2 of both functions is 1.1.

4.1.3 Various behaviours near the boundary

Depending on the adhesive properties of the boundary, a cell may either be
attracted, not-affected (neutral), or repelled. In the following, we propose vari-
ous different behaviours of the non-local term K[u] within one sensing radius

of the boundary.

Example 4.3 (Repellent boundary conditions 1). Here we choose the function
ng(z) such that it satisfies condition (4.22) at x =0 and n)(R) =0 at = = R,

and is continuous in between. We choose

1
Q(~z)

R—=x ~
w@ =g [ Mww-2w. (4.25)

Thus resulting in a non-local gradient in x € [0, R] of
4+ R -
KINJ@) = | Ny()Qy —2)dy. (4.26)

R—=rx

Similarly, we set nf'(x) such that it satisfies condition (4.24) at * = L and
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nk(L — R) = 0. That is,

L _ —1 g N _
L7 ('T} - ﬂ(L . IL‘] (L—R)—(e—1) Nb{y}n{y 'T) dy (42T}

The resulting non-local operator in [L — R, L] is given by

L—R—r
K@ = [ R —a)dy. (4.28)

Combining the boundary non-local terms (4.26) and (4.28) with the standard
non-local operator (4.11) we obtain

¢ rr+R -
L M@y —2)dy ifze [0, R]
r+R -
K[Ns)(z) = ¢ Nyw)Qy—z)dy  ifre[R.L—R]. (4.29)
r—R

L—R—r -
[ Rwew-nd frell-RL

-

Note that the €}(-) terms preceding the integrals in equations (4.25) and (4.27)
cancel out.

Reverting the change of variables (4.17) we obtain

([ Ny(z + r)Q(r)dr if z € [0, R]
R—-2r
R
K[Ng](z) = { fR Ni(z +7)Q(r) dr ifre[R,L—R]. (4.30)
2 —R-2r
f Ny(z +r)Qr)dr ifz€[L—R,I)

—-R

In this example we modified the limits of integration so that the operator defined
in equation (4.30) is both well-defined and satisfied the boundary condition (4.6).
The reason why this is called a repellent operator is demonstrated in Fig. 4.6.
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Example 4.4 (Repellent boundary conditions 2). In this example, we set

1]
@) =200 [ ow-o)d. (4.31)

and R
n(z) = ﬂﬂf{L}/;_ Q(y — x)dy. (4.32)

Then it is easy to see that n)(z) satisfies equation (4.22) and n-(z) satisfies
equation (4.24). In the special case that w(r) = Y5 this reduces to

0., T—R L., T—R
W) =" k@)= (4.33)
Combining the boundary non-local terms (4.31) and (4.32) with the standard

non-local operator (4.11), we obtain

[ pz+R
[ No()Qy — 7) dy
0 if z € [0, R]
—oml0) [ Q—2)dy
4+ R - =R .
ke | [ M- freRL-R 4
L
[ Mwow-o)dy
=R R ifr e |[L— R, L]
+ 2nf(L) Qy — z)dy.
\ L—=x

In this example we continuously reduce the size of the correction terms ﬂE’L 50

that they are zero when the separation to the boundary is above a sensing radius
R. This example can be viewed as the naive boundary conditions combined
with correction terms ﬂE’L. This ensures that the non-local operator defined in
equation (4.34) is well-defined and zero on the boundary of D. The reason why
this is called a repellent operator is demonstrated in Fig. 4.6.

In the following, we will compare the behaviour of the non-local operators

which incorporate boundary effects to the behaviour of the periodic non-local
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Space [z] Space [z

Figure 4.6: A comparison of the various different non-local operators applied to the
functions u1(z) and us(zx) as shown in Fig. 4.5. The non-flux term (equation (4.30))
applied to u(x) is shown as the sharp solid line, the smooth solid line is the operator
defined in Example 4.4 applied to u(zx), the periodic operator (defined in Chapter 3)
applied to u(r) is shown as a dotted line, and the naive operator (equation (4.14))
is shown as a separated line. Here we used {1 being uniform (see Fig. 4.4).

operator which was used in Chapter 3. In each case, we apply the various

non-local operators to two sample functions which are shown in Fig. 4.5.

Comparisons of the repellent non-local operators constructed in this section
are presented in Fig. 4.6 with uniform €)(r) and in Fig. 4.7 with normal €}(r)
(see Fig. 4.1 for its functional form). The reason for why these operators are
called repellent will become further clear in Section 4.3.2.

We note that the non-local operator constructed in Example 4.3 and Exam-
ple 4.4 are repellent. In particular, either operator (i.e. (4.30), or (4.34)) is zero
when applied to the constant function. Since equation (4.1) conserves mass,
we want that the non-local term returns zero when applied to the particular
constant .

Example 4.5 (Neutral boundary conditions). We start with the non-local
operator constructed in Example 4.3 i.e. equation (4.30), and we add an addi-
tional correction function c(x). We require that (%) =0 for £ € 8D such that
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Figure 4.7: A comparison of the various different non-local operators applied to
the functions ui(r) and us(z) as shown in Fig. 4.5. Here we used {1 being normal
(see Fig. 4.1). The non-flux term (equation (4.30)) applied to u(x) is shown as the
sharp solid line, the smooth solid line is the operator defined in Example 4.4 applied
to u(x), the periodic operator (defined in Chapter 3) applied to u(zx) is shown as a
dotted line, and the naive operator (equation (4.14)) is shown as a separated line.

K[u] still satisfies boundary condition (4.6).

fa(=)
Klu](z) = ff - w(z +r)Q(r)dr — e(x). (4.35)

We now want to choose ¢(x) such that K[a|(z) = 0 for any x € D. We let ¢(x)
be defined by
Az) ifzel0,R]
c(z):=40 ifre[R,L—R], (4.36)
ck(z) ifze[lL— R, L]

where we will determine c°(z) and c*(z) now. For x € [0, R/2] we have that

R
Kla)(zx) = ﬁj,; ; Q(r)dr — &(z)
. (4.37)
= ﬁf w(r)dr — (z) =0,
R—2x
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and for x € [R/2, R, we have that

R
Kla)(z) = ﬂ/;;_h Q(r)dr — (x)

=i [ng{r) dr — L:: w(r) dfr] — (). e

Thus, we have that

R
ﬂ[ w(r)dr ifz e [0, R/2]

0 R—2r

O(z) = . (4.39)

R
ﬂ[ w(rydr ifz e [R/2,R]
2r—R

We carry out the same operator for the right hand side boundary, i.e.,[L — R, L].
Forz € [L — R,L — R/2|, we have that

9L—2z—R
Klal(z) =1 f_R Q(r)dr — c&(x)

2L—2z—R 0 (4.40)
_ = _ _ L
=1 [L w(r)dr /;R w{r}dr} c(x),
and for x € [L — R/2, L], we have
2L—R—2r
Kla](z) = ﬂ[ Q(r)dr — c*(z)
e R (4.41)
= —ii dr — cf(z) = 0.
u/:R w(r)dr —c-(z)
Thus, we have that
R
—ﬁf w(rydr ifze[L— R L— R/2]
2L—2r—R
(z) = N (4.42)
—ﬁf w(r)dr ifze[L—R/2 L]
-R

With that definition of the function c(z), we can rewrite the non-local op-
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erator K[u] as

Klu](z) = fhm [u(z +r) — @] Q(r)dr. (4.43)

fi(z)
Note that this definition does not change the definition of the non-local term
far away from the boundary (i.e. when x is at least a distance of R from the
boundary) since there K[@] = 0. It only changes the definition of the operator
near the boundary. For a numerical example of how the operator defined in

equation (4.43) acts on functions see Fig. 4.8.

Space [z] Space [z]

Figure 4.8: A comparison of the neutral non-local operator defined in equation (4.43)
applied to the functions uq(z) and us(zx) as shown in Fig. 4.5. The non-flux term
(equation (4.30)) applied to u(z) is shown as the sharp solid line, the smooth solid
line is the operator defined in Example 4.4 applied to u(x), the periodic operator
(defined in Chapter 3) applied to u(z) is shown as a dotted line, and the naive
operator (equation (4.14)) is shown as a separated line. Here we used {1 being
normal (see Fig. 4.1).

4.1.4 Discussion of no-flux boundary operators

We recall from Chapter 3, that the periodic non-local term always points to-

ward an increasing “mass” of u(z). Or in the terminology of Chapter 2, the cell

152



polarization points in the direction in which the most new adhesion bonds were
formed. However, when referring to the no-flux operator constructed in Exam-
ple 4.3 and Example 4.4 this is no longer the case. Indeed, near the boundary
the no-flux operators have opposite sign compared to the periodic non-local
operator (see Fig. 4.6). For this reason, we refer to them as repellent. Using the
terminology of Chapter 2, we can say that the polarization of a cell approaching
the boundary reverses. This is consistent with biological observations of cells
approaching solid boundaries [138].

The (neutral) non-local operator derived in Example 4.5 switches between
a repulsive and attractive behaviour, depending on whether the population size
is above or below the mass per unit length (). The neutral non-local operator
has the important property that K[@] = 0 for all z € D. For this reason, the
bifurcation approach used in Chapter 3 could be applied. It is interesting to
note, that only recently (2016) Watanabe et al. also used the comparison with
the mass per unit length to obtain solutions of Burger's equation on a bounded

domain with no-flux boundary conditions [171].

4.2 Mathematical properties of the non-local

operator

In what follows we will concentrate on the non-local term defined in equa-
tion (4.30), see Example 4.3. For this section, we rewrite the non-local operator
as an integral over the sensing domain, the boundary behaviour will be encoded
using the choice of the sensing slice, which will be encoded using the indicator
function of the sensing slice. That is, suppose that for z € D we have E(z) C V.
Further, in the following discussion we concentrate on the changes due to the
boundary requirements, and for that reason we do not consider a non-linear
function under the integral.

Definition 4.6. Let X, Y be Banach spaces of functions, then we define the
operator K: X = Y by

.-'C[ul[:r}]{:r]:f u(z + r)Q(r)dr. (4.44)

E(z)
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The directionality function €2 is assumed to satisfy the following conditions
(A1) Q(r) = qw(r), where w(r) = w(—r),
(A2) w(r) >0,
(A3) we LYV)n L=(V),
(A4) ||“-’||L1(V) = 1f2~

Further we assume that the set E(r) has continuous boundary, and is defined
as follows. The domain of integration of this function is very important. The
domain of integration of this function is represented in Fig. 4.2. Rewriting
equation (4.30) in terms of spatially dependent integration limits, allows us to

rewrite the operator as

fa(z)
Klul(z) = [ u(z + r)Q(r)dr, (4.45a)
fi(=)
where
R -2z, ifze|0,R]
filz) = ) (4.45b)
—R, if z € [R, L]
and

R, if z € [0,L — R]
fa(z) = : (4.45¢)
2L -2z — R, ifze[L— R, L]

Using these two functions, we define a new sensing slice (see Definition 4.2)
Ex)={reV:fi(z)<r < fo(x) }. (4.46)

Later, we write the operator in equation (4.44) as

Klul(z) = L Xe(@)(r)u(z +r)8(r) dr, (4.47)

using the indicator function xg;)(r) of the sensing slice E(z), as defined in
equation (4.46).
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4.2.1 Set Convergence

For the calculus of indicator functions we consider convergence in general metric
spaces. Let (V) A, 1) be a sigma-finite measure space. Then, let A, B € A and
we define the symmetric difference of A and B by

AAB=(AUB)\ (AN B). (4.48)
The function
dA=<A—=R, (4.49)
defined by
dA,B)=p(AAB) for A,Be A, (4.50)

is a pseudometric and is called the Fréchet-Nikodym metric [17]. This allows
us to view any sigma-finite measure space as a pseudometric space. We can

turn this into a metric by introducing the following equivalence relation
X~Y & pXAY)=0 (4.51)

It is easy to see that A ~ B if and only if they differ by a set of measure zero.
If we denote the set of equivalence classes of this relation by A/p, then the
function (4.49) is extended by setting d(A, B) = d(A, B) where A, B € A/p.
This turns .A/p into a complete metric space [17 Theorem 1.12.6].

Now suppose that V' = [a, b], and that we have a spatial domain D given,
and suppose that we have f;2: D — V continuous. Then we define the set

Y={reVifilz)<r< fi(z)} C V. (4.52)
Then let (z,) C D such that z, —+ = € D. We now define

Y, ={reV:filz,) <r < fo(z,) }. (4.53)
Then the symmetric difference of ¥ and Y, is

Yo AY ={r € Vimin(fy(z), fi(z,)) <7 < max(fi(z), fi(z,)),
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min(fa(z), fo(za)) < r < max(fo(2), fo(za)) }. (4.54)

Then we can simply compute the measure of this set by

p(Yn AY) = |fi(zn) — fi(2)] + | f2(zn) — fo(z)]- (4.55)
As both f; 5 are continuous, we have that
pYo AY) =0 asz, =+ (4.56)

We summarize the finding in the following lemma.

Lemma 4.7. Let (V, A, p) be a measure space, on this space we define the
pseudometric (4.49), which with the equivalence relation (4.51) becomes a met-
ric. With this metric, (V, A, p) becomes a complete metric space. Suppose we
have the set

E(@)={reV:fi(z) <r < fr(x)}, (4.57)

then E(z) is continuous in the following sense, if (x,) C R such that x,, — z,
then
E(zx,) =+ E(z) <« p(E(z,) A E(z))—0. (4.58)

Proof. See the above construction. ([l

Next we collect some properties of the indicator functions of symmetric
differences. Suppose that A, B € A, then

B 1 ifreAd 150
Xalr)= 0 ifreg A (4.59)

Then from the definition of the symmetric product (4.48), we compute its
characteristic function as,

Xaap(r) = xa(r) + xa(r) — 2xange(r)- (4.60)

156



Next we note that

Xang(r) = Xa(r)xe(r) = min(xa(r), xs(r)). (4.61)

Rewriting the minimum in terms of an absolute value, and substituting this

into equation (4.60), we obtain

Xaas(r) = |xalr) — xa(r)|. (4.62)

4.2.2 Estimates for the no-flux non-local operator

In this section, we explore estimates for the no-flux non-local operator defined
in equation (4.44). To distinguish between the norms over the sensing domain
V" and the spatial domain D, we introduce norm notation that indicates the

set over which the norm is taken. That is given a domain X, the L* norm over

that set is denoted y
P
lul, x = (L|u{m)|” l:lx) . (4.63)

We first check that the function defined under the integral in equation (4.44)

is integrable.

Lemma 4.8. Letp = 1, u € I?(D), and let C)(-) satisfy A1-A4. Further
suppose that E(x) C V,¥x € D, then the function

h(r;z) == X g (r)u(z +r)Q(r), (4.64)

is in LY(V),Vz € D.

Proof. Fix x € D. Then

[|XE(:;.{T}H|[:1:+T}|""{1T < flu{:r]l” dz. (4.65)
v D
Thus, xg(-)u(z+-) € LF(V). From assumption A3, we have that 2 € L*=(V)
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then ©2 € L9(V), 1 < g < oo. Thus, we apply Hélder’s inequality and find that

| oo ryute + e ar < ( / |xE{z;.{r)u(m+r}|Pdr) ”P ( / |ﬂ|qdr)

< lul, pl€

1/q

oo, V'

(4.66)

where g is such that 1/p+1/g = 1. O

Next we investigate the range of K[u), in particular we prove the following

lemma.

Lemma 4.9 (Non-local Regularity). Let D C R bounded, let p = 1, and let
u € LP(D). Then we define the function

z — Klu](z), (4.67)

where K[u](z) is defined in equation (4.44), and Al to A4 are satisfied. Then
Klu] € L?(D), in particular the following holds

IKlullp,p < [ty p|Q e,y (4.68)

Proof. Then by applying Theorem B.1 to equation (4.45a), we obtain

fa(x)
|.-'C[u]{:r]|1, = ‘f” } w(z +7r)Q(r)dr| < /';|u{:r+r)ﬂ|[r]|? dr

gz(r) te
=[ {f |u|[:1r+r}|""d:r} |2(r)| dr.
Vv gi(r)

Upon the application of Fubini’s theorem the order of integration switches, and

(4.69)

the new limits of integration are given by

2L—-y—R

an="72 gy =2

5 (4.70)

These functions describe the right and left vertical limits of the box in Fig. 4.2.
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Note that ga(r) — gi1(r) = L — R. We find, that

R ZL—;—R 1/p
|Klul(z)], E[ {f lu(z + 1) dz} |Q(r)|dr (4.71)
_R i}—'
R
< f 1) dr = ul, IO, < lul, . (4.72)
Note that ||, = 1 from A4. O

Using the result of Lemma 4.9, we show that K is a continuous operator
acting on LP(D).

Corollary 4.10. The map KC: LP(D) — L*(D), defined by equation (4.44) is

cONinuous.

Proof. Let (u,) C L*(D) such that u, — u as n — oo, then
K] — Klull,, p = 1K [un —ull, p < |un —ul, p, (4.73)

where the last inequality is by Lemma 4.9. ([l

Lemma 4.11. Suppose in addition to the assumptions of Lemma 4.8, that
U e ED{D), then the function defined by

H(z) = /'; XE(z)(r)u(z + r)(r) dr, (4.74)

15 confinuous.

Proof. Let (xz,) C D such that z,, =+ x € D. Then,

H(z) - H(z,) = [ { Xo(e) (MU(T + ) — X (anyt(Tn + 7) } r) dr

— /; { XE@ M)Wz + 1) — XB)(Ta +7)

+ XE(@)nE(z,) (T)U(Tn + T) — XE(z)nE(z,) (T)U(Tn + T)
+ XE(z)nE(z) (T)U(T +T) — XB@mnEE)(r)u(z + 1) } Q(r)dr

- /; {u(@ +r)xeE () (XeE (1) — Xe@) (1))
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+ U(Tn + T)XE(z) (T) (XE(zn) (T) — XE(=)(T))
+ XB@)nE(z,)(T) (W(Z + 1) — u(zn + 7)) } Q(r) dr.

Then we obtain
|H(z) — H(za)| < |u| |, [2/‘]:@(,}(1’] — XE(z,) ()| dr
+f |lu(x +7r) —u(z, +r)|dr|.
E(z)NE(zn)

For the integrals we obtain, that
[ e =Xz @lar = [ dr = u(E(z) A B(z,).
v E(z)AE(z,)

By Lemma 4.7, we have that pu(E(z) A E(z,)) =+ 0 as n = oo. The second

integral converges by the continuity of u(-). Hence, H(-) is continuous. |

Corollary 4.12. Suppose that all the assumptions of Lemma 4.8 hold, then

the function defined in equation (4.44) is continuous.

Proof. Let z, — z in D, and let (u,) C C(D) such that u,, — u in L?(D),

Klul(z) — Klul(za) = Klu](z) — Klux](z)
+ K:[um]{xn] - ":[H]'Exn] + .-’C[um]{x} - K:[ﬂ'm](mﬂ)
< Dty — ul, |9y + K] (@) — Ktk (2,)]-

The first term vanished due to the density of the smooth functions in L?( D))
and Lemma 4.9. The second terms vanished by Lemma 4.11. O

In summary we have shown that whenever u € LP(D) and the sensing
domain E(z) is continuous in the sense of Lemma 4.7 we have that the no-flux

non-local term in equation (4.11) is continuous.

4.2.3 Weak non-local derivative

Since in equation (4.1) we are taking the derivative of the non-local term K[u]

and since due to the spatial dependence of the integration limits in (4.30), we
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cannot simply interchange the derivative operator with the integration. The
goal of this sub-section is to understand how we can interchange the order
of differentiation and integration. The spatial dependence of the integration
limits is equivalent to the occurrence of an indicator function of the sensing
domain (see equation (4.44)) under the integral. Since the indicator function is
not even continuous, we have to to employ the notion of generalized functions.
For the following discussion, we denote the space of test functions by D(D),
and the space of generalized function or distributions by D’( ). In the end, we
are interested in the case in which D(D) = C™(D).

For the sake of clarity, we briefly introduce generalized functions. The
definitions are based on Rudin [150], and Schwartz [155], and the discussion
on weak differentiability [31].

Definition 4.13 (Generalized function [150]). Let f: D — R, such that f €
L]IDC{D], then f generates the following functional

foT,eDD) by (f.d)=(Tpd) = fﬂ fédz. (4.75)

Note we can understand the space D'( D) using the weak star topology. We
now extend the notion of a generalized function to a function, which takes an
additional parameter, denoted by v.

Definition 4.14 (Generalized non-local function [31]). Let f: D x V — R be
a generalized function in x € D for all v € V, in the sense of Definition 4.13,

such that
j;(‘/;f{:r?u}qﬁ{:r] l:lx) dv, (4.76)

exists V¢ € D(D). Then the function
g(z) = L f(z,v)dv, (4.77)
generates the following functional
§5TEeDD) by (0.8)=Td) = [ g@b@dn.  (@19)
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Remark 4.15. Note that condition (4.76) is easily satisfied for a function f that
is integrable on U x V. Further note that, if D = C;°(U) then we only need
local integrability in UV just as in Definition 4.13. Since, if the function

m—}ﬁ|f{x,v]|dw, (4.79)

is continuous, then it is bounded and achieves its extreme values on any compact
set K <C U. Hence the function is locally integrable in x, and so satisfies the
requirements of Definition 4.14.

From Lemma 4.11, we have that XC[u| is continuous and then satisfies con-
dition (4.76) in Definition 4.14 by Remark 4.15.
We find a condition that the functional T, in Definition 4.14 is indeed

continuous, in the subsequent lemma.

Lemma 4.16 ([31]). The functional T, defined in Definition 4.14, is continuous
whenever

fv sup|(, )| dv < oo, (4.80)

m

for every convergence sequence ¢, of test functions in D(U).

For Lemma 4.16, we give a more detailed proof as the one in [31].

Proof. We are required to show that the function ¢ does indeed generate a
continuous linear functional on the D(U). Let ¢, C D(U) such that ¢, —+ ¢ in
D(U), further let the common compact support of ¢,, be denoted by K cc U.
For this proof, we define the following sequence

hn(v) = (f(-,v), ¢n) - (4.81)

We find, that

U{-,ﬂ],fﬁn_ﬁb}=/;_f|[.'1r7v}{¢.n—¢] (‘B)d:E:Lf(I’?”}(én—qﬁ}{:r)dx
< ldn — oIl L f(z,v)dx.
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Then as long f(-,v) € Lllue{U) for all v € V, we have the integral in the

previous line is finite and thus

(F(v),dn) = {f(v),8) VweV. (4.82)

Next we need to show that the sequence h, is dominated by an integrable
function

ha(0)] = ‘ [ s@06. d:c‘ <sup| [ f(x,v]qén(I}dm|- (483)
U n |Ju
Then for integrability we require that,
f (sup[f{x,w]qﬁn{:r}d:rD dv < oco. (4.84)
v \n |Ju

This is exactly the condition we require in the lemma. Then by the Lebesgue

dominated convergence theorem we conclude that,

lim o) dv = @) dv. 4.85
Hence applying Fubini, we get

(9,0n) = (9.9}, (4.86)

where the function g(r) is defined in equation (4.77). [

Next we need a result on the conditions under which a linear operator on
D'(D) and integration over V' commute. This is a generalization of the result
presented in [31]. One such operator is the differential operator. For this we
have the following result.

Theorem 4.17 (Exchange of T with the integral). Let f(z,v) defined as above
(Definition 4.14), and let T:D'(D) — D'(D) be continuous. Then,

T(j'; f{:r?w}dv) =j';Tf{$,*u] dv. (4.87)
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For the proof of Theorem 4.17 we require adjoint operators.

Theorem 4.18 (Theorem 4.10 from [150]). Suppose X,Y are normed spaces
and T € B(X.,Y'), then we have unique T" € B(Y', X") such that,

(Tz,y') = (z,T') Ve X,VyeY

(4.88)
¥(Tz) = (T'Y) (z).
Moreover ||T|| = ||T7]|-
We also need the following Lemma 4.19.
Lemma 4.19. Suppose that for eachv € V, f(z,v) € D'(U), and
fv f(@,v)dv, (4.89)

erists. Further, suppose that T:T'(U) — D'(U) is continuous. Then we have,
that

h(z) = f Tfdv, (4.90)
v
defines a distribution in T'(U).

Remark 4.20. In the proof of Lemma 4.19 we make use of the adjoint of T.
Since T' is an operator on D’(U), its adjoint can be interpreted as the double
adjoint of a linear operator acting on D(U). If we use D(U) = C*(U), then
D(U) is reflexive locally convex. Under these circumstances, the double adjoint
of an operator is itself, i.e., suppose S: D(U) — D(U) then 5" = 5.

Proof of Lemma 4.19. Step 1: The integral in equation (4.90) satisfies Defi-
nition 4.14. Let ¢ € D(U), then

4.6 = [ [ Tr@)do )@z
- f (Tf.4) dv = [ (f.T'6) dv.
v v

Then T"¢ is just another test function, and since f is a generalized function
as defined in Definition 4.14 the integral on the last line exists.
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Step 2: h(z) defines a continuous distribution. Since we want to apply Lemma 4.16
we compite,

[ sulTs. sn)ldo = [ suples, T'gn) do.
VvV n vV n

If é, — ¢, then T'¢, — T"¢, since T" is continuous. Then T"¢ is another
test function, and thus the integral on the right is finite. We then apply
Lemma 4.16, to obtain the result.

A

Proof of Theorem 4.17. By Lemma 4.19, the integral on the right in equa-
tion (4.87) defines a distribution. Then let ¢ € D(U), and let g(x) be defined
as in equation (4.77).

(Tg,d) = (g, T'd) =/;r (/; f{:r?tn)d*u) T'¢(x)dx =/'; (L flz, v)T"¢(x) d:r) dv

=fv{fj¢} dv=L(Tf,q'J} dv:(Ldev?:ﬁ).

O

Remark 4.21. Note that in particular Theorem 4.17 applies to the case when
T = ajaﬂ__, which means theorems such as the fundamental theorem of caleulus
or Leipniz integral formula follow from Theorem 4.17. For a discussion on these
results and applications see [31].

We are now ready to use the theorems and lemmas of this section to compute
the weak derivative of the non-local operator.

Lemma 4.22. Suppose in addition to the assumptions of Lemma 4.8 that
u € TY(D), then the function

H(z) = f XE(z)(r)u(z + r)S)(r) dr, (4.91)
v
where E(x) is given in equation (4.46), is differentiable in D'(D) and its deriva-
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tive is given by

H’l[::r}=£u’{m+r}xg{1]{r)ﬂ{r) dr

+ fa(x)u(z + f2(2))Q fa(2)) — fi(z)u(z + fi(2)Qfi(z)),

(4.92)

in D'(D).

Proof. First, we use interval notation to rewrite the indicator function as
XE(z)(T) = X(inf V. fa(=)) (T) X (1 (2).0upv) (T): (4.93)
where X(f,(z).supv)(r) is the indicator function of the set,
{reV:filz)<r}. (4.94)
Similarly, X(infv,f(z))(r) is the indicator function of the set
{reVir < fy(x)}. (4.95)
Then in D'(D) we have
a a
g XE@ () = 5= { Xt v, fat2)) (P)X (2 (2) 50V (7)
a
=g VH(r = @) H(fa(z) — 1)},
T
where H(-) is the heaviside function. We find, that
a
FpXEE@ (1) = H(r — f1(2))é(fa(z) — 1) f3(z) — H(r — fa(2))d(r — f1(2)) f1(2).

Then applying Theorem 4.17, and the product rule one more time, we obtain

agaf) = /; %xﬂzju{z +r)Q(r) dr + /‘: XE(,)%u{x +7)Q(r) dr
= /; H(r — fi(z))o(fa(z) — 7) fo(z)u(z + r)Si(r)dr
- /; H(r — fa(x))d(r — fi(x)) fi(x)u(x + r)Q(r)dr
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+ ﬁ( XE(I)(T}%H(.T + ’r}ﬂ{r} dr
— [ xee(r)mutz + @ ar
+ fa(@)u(z + fo(2)Q(fa(z)) — fi(z)u(z + f1(2)Q(f1(2)),

where we use the fact that the distributional derivative of the Heaviside function
is the 4 distribution. O

We summarize the results of this section in the following lemma.

Lemma 4.23 (Properties of the non-local operator). Let u € IP(D), p > 1
and £} satisfy A1-A4, then K defined in equation (4.44), is

1. zero on 9D,

2. continuous,

3. is weakly differentiable (in D'(D)),

4. continuously differentiable if ()(-)-n =0 on V.

Proof. 1. We check, that if z € 8D, then p(E(z)) = 0. If z = 0 then
R —2x = R, hence E(0) = {0}. If x = L then 2L — 2z — R = —R then
E(L) = {L}.

2. By Corollary 4.12.

3. By Lemma 4.22.
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4. The derivative of K[u|(z) with respect to z is given by

( R
j};_hu (z+7)Q(r)dr if z € [0, R
+2u(R — z)(}( R — 2x)
R
K[ (z) = 4 j:Ru"{x—i—r]ﬂ{r}dr ifre[R L—-R]
U-2-R
j:R w (x4 r)Q(r)dr ifze(L—RI)
\ —2u(2L — R—z)Q(2L — 2z — R)
(4.96)

The only points, at which K[u]' may be discontinuous, are at the points

r = R, L — R. Evaluating K[u] at z = R, gives
R
]jJE_ Klu]'(z) = [ u'(R+ r)Q(r)dr + 2u(0)Q(—R), (4.97a)
T— . -
and R
lim K[u]'(z) =f (R 4+ r)Q(r)dr. (4.97b)
r— Rt —-R

These match since, {}(—R) = 0.

Similarly, at £ = L — R we obtain that

lim K[u]'(z) = [R u'(L — R+ r)Q(r)dr, (4.98a)
r—(L—R)~ -R

and

im  Ku(z) = [_ i W(z +r)Qr)dr — 2u(L)Q(R).  (4.98b)

s (L—R)*

These match since, (}(R) = 0.
O

Finally using the weak non-local derivatives, we are able to formulate results

when the no-flux non-local term are included in Sobolev spaces.
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Lemma 4.24. Let D C R bounded, let p > 1 and u € W'?(D), further let
V C R. Then we define,
r — V.- Klu](z) (4.99)

where K[u] is defined in equation (4.44) and satisfies assumption Al to A4.
The function V. - K[u](x) is computed in Lemma 4.22. Then K[u] € W?(D),
in particular the following holds,

IKCTullly ;< 6llully 512 o,y (4.100)

Proof. Note, for this proof we will use the exact form of the functions fia(z)
which are given in equations (4.45b), (4.45¢).

fa(z)
V- Klul(z)|, = f; - uw'(z +r)Qr)dr + Ji(z) + Jo(x)

P

+ [Ji(z)], + [Ja(z)],

o

[

fa(z)
/ w(z+r)Q(r)dr
fil=z)

where

Ji(z) = fi(z)u(z + fi(z))Q(f1(z))
Ja(z) = fa(z)u(z + fa(z))Q(fa(2)).

Each of the J; terms, is estimated by
[Tz} = /;If{{m]ﬂ{:r + fi(z)Q(fi(2)) ] de < 2P[ulf]QL, . (4101)
and
| Ja(z)[} = /;Ifé{m]ﬂ{:r + fa(z))2( fo(2)) P de < 2°[ulfIQL, . (4102)

For the first integral, we apply Lemma 4.9. Then combining the three terms,

we obtain,
IV - Klul(@)], < ], |90y +4ul, 10y < 5llull, |0y (4.103)
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Then we compute the Sobolev norm of K[u](z)
K[l + 1V - Ku][; < (14 57) [|Jullf |20, - (4.104)

For p > 1, the function g(p) = (1 + 57)"/% achieves a maximum of 6. Hence we
obtain the final result. O

Using the estimate in Lemma 4.24, we show that the operator K is C.

Lemma 4.25. The map K: [P(D) — LP(D), defined by equation (4.11) is C,
and its derivative is given by

D, Klw](z) = f w(z + r)(r)dr. (4.105)
E(z)
Proof. The proof is obvious, since K[u] is linear in u(x). O

In the following, we make use of quotient Sobolev spaces. The significance
of this space is that due to the no-flux boundary conditions, the steady-state
solutions of equation (4.1) are in this quotient space. In particular, spaces of
the form W*#(D)/P;_;, where P._; is the space of polynomials up to degree
k — 1, because in these spaces we have a simple equivalent norm |u| kgt Hence,

giving us a Poincaré type inequality. This space is equipped with the norm
18l sry/2, ., = LVl o (4.106)

where © are the equivalent classes in the quotient W*#(D)/P,_;. The space

Wk #(D)/Py_; has the following very useful norm equivalency.

Theorem 4.26 (Theorem 7.2 [127]). Let D C R with a Lipschitz boundary,
and let us assume that the identity mapping T: W#(D) — LP(D) is compaet.
Then let it € WP(D)/Py_1, then we have

Lip

clnﬁ”W*-P(D]jI‘k_l E [ Z |DEHIEP{D]] E C2||ﬂ||wk,p{[,};pk_1,‘?'u = ii.
|cx|=k

(4.107)
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when p = 2, W*2(D)/Py_; is a Hilbert space with scalar product
(0,8) =) L D*vD*udz,  Vuei,ve . (4.108)

|ex| =k

Remark 4.27. In our case, we are interested in the case k = 1 i.e. the spaces
WiP(D)/R, where D C R bounded and with a Lipschitz boundary. This space
is equipped with the norm

”f’”Hl(D]m = igg”””lp- (4.109)

It is easy to see, that Theorem 4.26 holds by the Sobolev embedding (see
Theorem B.4) for p > 1.

For a further better understanding of this space, we will prove the following
result.

Lemma 4.28. The space W'?(D)/R is isomorphic to
WI:{HEWl’p{D]I[H{m]d$=D}. (4.110)
D
Proof. Define the operator A: L#(D) — R by

Alf] :=|—il}|fﬂf(m)dz. (4.111)

Then it is easy to see, that ||.A|| = 1. On the other hand, the operator () :=T7—A,
gives
1

f(z)dx, (4.112)

and we find that
[ Qf(r)dz =0. (4.113)
o

Thus, @f € W. Hence, W and the set of constant functions are complements
in WiP, ie.,
WY(D)={ue WPu=ceR}a W. (4.114)
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Thus applying [55 Proposition 4.4], we have that
WlP(D)/R = W. (4.115)
O

Lemma 4.29. Let D C R bounded, let p > 1 and u € W'*(D)/R. Then we
define,
r — V.- Klu](z) (4.116)

where K[u] is defined in equation (4.44) and assumptions Al to A4 are satis-
fied, and V.. - K[u](z) is computed in Lemma 4.23. Then K[u] € W'#(D), in
particular the following holds,

IKTulll, < (4C + 1) 19 lully - (4.117)

Proof. The proof is very similar to the proof of Lemma 4.24. ([l

Finally we derive a simple estimate, that shows that the non-local term
K[u] is bounded by the average of the function u(z).

Lemma 4.30. Let the operator K[u](z) be defined as in equation (4.11), and
suppose that u(z) > 0, with |u|, , = Alu] < co. Then

— sup w(r) Alu] < Klu|(z) < sup w(r) Aful. (4.118)
re(0,1] rel0,1]

Proof. Let u(z) = 0 such that Afu] < co. Then we compute

1
Klu)(z) = [ Xeo(rJu(z +r)(r) dr

1 0
:/; XE(,){r}u(m—i—r}w{r}dr—[lxgtrj{r}u(m+r}w{r}dr.
(4.119)

It is easy to see, that both integrals are non-negative as u(z) = 0 and w(r) = 0.
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Hence it follows, that

Klu)(z) < fl XE@) (r)u(x +r)w(r)dr < sup w(r) Alu. (4.120)
0 ref0,1]

In the same spirit, we find

' XE@) (r)u(z + r)w(r)dr = — sup w(r) Alul. (4.121)
1

re(0,1]

Kh@) > - [

O

4.3 Steady States

In this section, we consider the steady-states of equation (4.1) using the different

non-local operators that were constructed in Section 4.1.

4.3.1 Steady states for neutral non-local term

The steady states of equation (4.1) subject to the neutral non-local term con-

structed in Example 4.5, are given by the solutions of the following equation.

[u(z+r)—a]Q(r) dr) =0, (4.122a)

T

Upe (T, 1) — (u{x,t)

E(z)
where E(z) is defined in equation (4.46). As equation (4.1) exhibits mass
conservation we impose the following mass constraint on the solutions of equa-
tion (4.122a).

Alu] = a, (4.122h)

where R > @ > 0, is the mass per unit length of population u(z) in D). Then
since K[@] = 0 for all z € D, it is easy to see that u(z) = @ is a solution for all
acR.

If we want to extend the results of Chapter 3 to equation (4.122a), we have
to show that if u(z) is a solution so is u(L — ). Once again the non-local term

is critical.
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Lemma 4.31. Let u(z) € Cg be a positive function, and consider w(r) =
u(L —x). Then for the non-local term defined in equation (4.43), we have that

Klw](z) = — K[u](L — x). (4.123)

Proof. We only have to consider the boundary region, i.e., [0, R U [L — R, L],

since for the interior the result follows from Lemma 3.82. Thus we are left with

checking the four intervals [0, R/2|, [R/2, R],[L— R,L — R/2],[L — R/2, L].
Let x € [0, R/2], then since R — 2x > 0 we have that,

R’

Klw](z) = j:;: [w(z+71)—@]w(r)dr =f [u(L —z —r) — @]w(r)dr.

Replacing W with u, letting y = L—z, and switching the sign of the integration

variable we obtain,
91— 2y—R
Klw](x) = [ [w(y+7r)—@]w(r)dr. (4.124)
R
Since y € [L — R/2, L] we have that 2L — 2y — R < 0, thus we obtain,
22y R
Klw](z)= —[ [u(y+r)—a] Qr)dr=K[u](y) =K[u](L—zx). (4.125)
R
Let = € [R/2, R], and consider
R
Klw](z) = [ [w(z+71)—a]Qr)dr
R—2z

fﬂ [w(z+r)—T]|w(r)dr.
R—2r

=[R[w{$+r] _a]w(r)dr—
'\-.u -y LY )

i il

I I

Then we switch the sign of the integration variable in II, to obtain

R 2r—R
Klw](z) = /; [w(L—z—7r)—a@]w(r) d*r—j]. [w(L—z+7r) — @]w(r)dr.
(4.126)
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Finally, we set y = L — x to obtain

R 2L—2y—R
Kuw]() =£ [u(y — r) — @] w(r) dr—ﬁ [u(y +7) — @] w(r)dr

2L—2y—R
- [_R (u(y + ) — ] Qr) dr = — K[ul(y) = — K[u](L — z).

(4.127)

For the intervals [L — R, L — R/2] and [L — R/2, L] we simply revert the above
ATFUMEntS. O

Corollary 4.32. Letu(z) be a solution of equation (4.122a), then w(x) = u(L — x)
is also a solution.

Proof. Let w(z) = u(L — x), which we substitute into equation (4.122a) to
obtain
w'(z) — aw(z) (Klw](z)), — ow'(z) Klw](z) . (4.128)
—— L . . ”

T
1 I IT1

Then, we obtain

[=u"(L—1z),
Il = ou(L — ) (— K[u](L — z)) = au(L — z) (K[u])' (L — z),
Il = aw'(L — z) K[u](L — z).

Hence w(z) satisfies equation (4.122a). O

Corollary 4.32 shows that equation (4.122a) satisfies the basic reflection
as the equation in Chapter 3. However, the stronger symmetry property we
build into the space H3 is not satisfied until we prove that u(L — z) = u(z). In
Chapter 3, this property implied that the flux at £ = 0, L is zero. Nevertheless,
this suggests that the solutions obtained in Chapter 3 may be related to the

solutions of equation (4.122a).
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4.3.2 Steady states for repellent non-local term

The steady states of equation (4.1) with repellent non-local term K[u] (see
Example 4.3), are given by the solutions of the following equation.

Upe (T, 1) — (u{:r? t) L( }h{u{x + r]}ﬂ{r)dr) =0, (4.129a)

where E(z) is defined in equation (4.46). As equation (4.1) exhibits mass
conservation we impose the following mass constraint on the solutions of equa-
tion (4.129a).

Alu] = a, (4.129h)

where R 3 @ > 0, is the mass per unit length of population u(z) in D. To
be able to easily carry out the subsequent asymptotic expansion, we assume
that the function h(-) under the integral in equation (4.129a) is linear (i.e.
h(u) =u.)

When a = 0 the boundary conditions are given by the classical Neumann
boundary conditions (4.7). It is then easy to see, that equation (4.1) admits a
constant steady state solution u(z) = 4. When a # 0, the situation is much
more complicated. In this section, we approximate the ground steady state of
equation (4.129a) by using an asymptotic expansion for small values of a. In
this section, we assume that R = 1. In the following, we assume that a = €.

Then we consider the following asymptotic expansion,
u(z) = up(z) + eus (z) + ua(z) + O(€%). (4.130)

Substituting this into equation (4.129a), we obtain

0 = (uo(z) + eus(z) + Egﬂzfﬂ)ﬂ

1 (4.131)
—€ ((uﬂ + euy) f (uo + €uy + €us) (T + 1)Xp@) (T)r) dr) .
-1 T
Separating the scales of €, we obtain for the zeroth order equation.
(ug),, =0, (4.132)

176



and for the first order equation

1
(), — (Uu [ sl + e )90 dr) —0. (4133

r

Finally, the second order equation is given by

1
(. (s [ e+ r)xe 0 ar ) (4.134)

T

1
- (ﬂu{:ﬂ) /;1 (T + 1) XE@) (T)2(r) dr) = 0.

T

The zeroth order equation (4.132) is easily solved.
ug(z) = ax + b, (4.135)

where a,b € R have to be chosen. Due to the Neumann boundary condi-
tions (4.5), we find that a = 0, and thus ug = b. Due to constraint (4.129b), we
find that b = @. The first order equation is solved by considering the following
system

1
(1), — b ( [ XE(=z) (T)8(r) dr) =0, (4.136)
-1 r
subject to
% =0 ondD, (4.137)

where n is the unit outward normal of 0. This boundary condition is ob-
tained from an expansion of the flux condition (4.4) in €. To ensure that

equation (4.136) has a solution, we impose the constraint that

f ui(r)dr = 0. (4.138)
D
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Using the properties of the function {2, we rewrite equation (4.136) as

i
2w(1 — 2x) for z € [0,1/2]
—2w(1 — 2x) for z € [1/2,1]
(u1),, =b* {0 for x € [1,L — 1] . (4.139)

—ow(2L—2x—1) forze[L—1,L—1/2]
| 2w(2L — 2z —1) for r € [L —1/2, L]

We solve this differential equation by integrating, and impose that the solution
u1(x) be C* and condition (4.138). After much algebra we obtain, the following
expression for the function uy(x)

(" T 1
u(0) + bﬂf f w(r)drds for z € [0,1/2]
0 Ji-2s
1 p1-2s
A— E:-gf f w(r)drds for z € [1/2,1]
r J—1
u(z) =< A forxr e [1, L —1]

T 1
A—bgf [ w(r) drds forre[L—1,L—1/2]
L-1Jon—2s1

L p2L-2s1
u(L) + bﬂf f w(r)drds for z € [L—1/2,1]
T -1

.

(4.140)
where 2o
A= f/; rw(r)dr, (4.141)
and .
u(0) = u(L) = b [%} [ rw(r)dr. (4.142)
0

The second order equation (4.134) is complicated, and we do not solve it here.
For a visual depiction of the asymptotic expansion (4.130), see Fig. 4.9.

Note that this implies, that if we compare u = uy + eu; to the constant

steady state solution that we would expect in the case of periodic boundary

178



Asymptotic expansion of solutions for small o

1.10
1.06
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=
0.95 — =0
. — =01
0.90 - —— =02
------- o= 0.5
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Figure 4.9: The solution u(x) given in equation (4.130) for various values of o ~ e.
The black dotted lines denote the boundaries of the areas that are within one sensing
radius of the domain boundary. The dotted lines denote R and L — R respectively.

conditions in the following denoted by %, we observe that u(z,t) > @ for x € D,
and u(z,t) < @ for z € D\ Dy. It is of note that the point at which u(z) =

remains constant for changing values of e,

4.4 Future Outlook

In the previous section, we discussed the steady states of equation (4.1) sub-
ject to the repellent and neutral non-local term which were constructed in
Section 4.1. In the case of the repellent non-local operator, we were only able
to asymptotically approximate the steady states for small values of adhesion
strength @. A more detailed exploration of the steady-states of these equations
is hindered by the fact that there is no constant steady-state that exists for all
values of a. This means that the approach pionereed by Rabinowitz [144] (used
in Chapter 3) cannot be applied. In the following, we briefly outline approaches
frequently used in the literature to address nonlinear steady-state equations,
and discuss their challenges when applied to the non-local equations (4.129a).

A common approach to show the existence of solutions of nonlinear steady-

state equations is the construction of a monotone bounded sequence of solutions
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[5]. For this approach, one first develops weak solutions for a linear eigenvalue
problem that is related to the nonlinear equation. The solution operator of
this eigenvalue problem is then shown to be compact (elliptic regularity) and
positive (the equation’s structure). These properties allow the application of
the Krein-Ruthmann theorem to the solution operator. Thus, showing that
there exists a unique positive eigenfunction [6, 112]. The existence of solutions
of the nonlinear equation is then shown using a monotone iteration [5], which
originates either at a sub or super solution constructed from the eigenfunction.
Applications of this technique include a non-local model of Ohmic heating
[110] and the construction of solutions of a non-local equation resulting from
a birth-jump process [44].

A different approach is to rewrite equation (4.129a) as an abstract fixed
point equation. Then topological degree (e.g. Leray-Schauder degree) argu-
ments can be used to show the existence of solutions. Bifucation points are those
at which the index (degree for isolated solutions of the fixed point equation)
changes sign. Applications of the Leray-Schauder include the work by Crandall,
Rabinowitz [34] who classified the solutions of nonlinear Sturm-Liouville equa-
tions. Indeed the theorem of Rabinowitz [144] (and its extensions [113, 158]
which are used in Chapter 3) provide easy to check conditions, which identify
bifurcation points (index changes). In combination with the Krein-Ruthmann
theorem the Leray-Schauder degree is a popular tool to show the existence of

positive solutions of equations contained a non-local term of the form,

E=Lu{m)d:r (4.143)

either as perturbation of the Laplacian or in the reaction term [19, 40, 41, 42,
60, 61, 62]. In our case of equation (4.129a) the challenge of this approach is
that we cannot apply Krein-Ruthmann.

The so-called Mawhin coincidence degree is also sometimes used to prove the
existence of non-trivial solutions [57]. Using a Lyapunov-Schmidt reduction, one
obtains the so-called bifurcation equation (a mapping between the kernel and
co-kernel of the operator equation). From this equation, the Mawhin degree is

computed. While a Lyapunov-Schmidt reduction and subsequently the Mawhin

180



degree can be computed for equation (4.129a), it does not yield a useful result.

In the case of equation (4.129a), this leaves an application of the Leray-
Schauder degree to its abstract fixed point equation as the only viable option.
The challenge here is that a detailed understanding of the equation’s structure
(i.e., non-local term behaviour). Further, to ensure progresses a thorough nu-
merical study of the equation’s steady states should be done. This however
requires fast numerical methods to compute the modified non-local terms, i.e.,
extensions of the methods developed by Gerisch [66].

4.5 Discussion

In this chapter, we considered the non-local cell adhesion model (4.1) on a
bounded domain with no-flux boundary conditions. The presence of the bound-
ary meant that the definition of the non-local operator in the boundary region
(within one sensing radius of the boundary) had to be revisited. In three steps,
we constructed non-local operators that are (1) well-defined, (2) satisfy the
boundary condition (4.6), and (3) have different behaviours in the boundary
region. There are many different ways to construct non-local operators that
satisfy conditions (2) and (3). In particular, the behaviour in the boundary
region can be chosen freely. In theory, the behaviour in the boundary region
(condition (3)) could be chosen independent from condition (2). Here however,
we considered only non-local operators K[u] that are continuous in the bound-
ary region, so that some boundary effects are always felt within the boundary
region.

In Example 4.3, we modified the limits of integration so that K[u] satisfies
the boundary condition and is continuous. In Example 4.4, the correction terms
1 were continuously decreased to zero through the boundary region. Finally,
in Example 4.5, we introduced an additional correction term to ensure that
the constant @ is always a solution of equation (4.1).

Using two functions, one with a peak and the other with a trough on the
boundary, we compared the behaviour of the newly constructed non-local terms
to the periodic non-local operator used in Chapter 3, which always points in

the direction of increasing cell mass. Depending on whether this property
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is retained by the newly constructed non-local operators, we classified them
as either repulsive or attractive. The non-local operators from Example 4.3
and Example 4.4 are repellent, while the operator from Example 4.5 is either
depending on the size of u(z) compared to .

Mathematically novel is the non-local operator in which the integration lim-
its are spatially dependent (see Example 4.3), whose mathematical properties
we investigated further. The spatial dependence of the integration limits posed
a particular challenge, since properties such as continuity require a notion of
convergence of sets (integration domain). For this reason, we make use of the
Fréchet-Nikodym metric (see Section 4.2.1). Using this metric, we extended
the estimates of Chapter 3, to the non-local operator with spatially depen-
dent limits of integration. Differentiation of this non-local operator was equally
made more challenging by the spatially dependent integration limits. Using
the theory of distributions, we computed the non-local term’s weak derivative,
which coincides with the classical derivative if the integration kernel £}(-) is
zero on the boundary of the sensing domain (V).

We explored the steady states of equation (4.1) with the non-local terms
constructed in Example 4.3 and Example 4.5. In the case of Example 4.5,
there exists a constant steady state u = @ for all o. Further, we showed that
equation (4.122a) is equi-variant under reflections through the centre of the
domain. Hence, a sub-set of solutions of equation (4.122a) seem to be related
to the periodic steady state solutions found in Chapter 3. At the same time,
however, we expect the set of solutions of equation (4.122a) to be richer. An
exploration of the set of non-trivial solutions of equation (4.122a) using the
techniques employed in Chapter 3 is a worthwhile future research project.

In the case of the non-local operator constructed in Example 4.3, however,
the constant function is a solution if and only if o = 0. Using an asymptotic
expansion, we study the steady states in a zero neighbourhood (i.e. & ~ O(¢)).
We found that, near the boundary, the steady-states have values below @ while
far away from the boundary values above 4. This supports our earlier classifi-
cation of the non-local term constructed in Example 4.3 as repellent. Since the
constant solution exists only for @ = 0, it is impossible to use the approach
taken in Chapter 3. This leaves the direct application of topological degree the-
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ory as the only viable option. This is however challenging and almost certainly
requires the guidance by detailed numerical studies.

The required numerical methods to further explore the steady states and
time-dependent solutions of the non-local cell adhesion model subject to no-flux
boundary conditions need developing. For the time-dependent equation, the
methods developed by Gerisch for the periodic case are a good starting point
[66]. Equally important would be the development of methods to solve the
steady-state problem directly. This would allow the use of numerical continua-
tion techniques to explore the set of steady-state solutions directly.

The experimental results by Paksa et al. motivated the development of the
boundary dependent non-local operators [138], who studied the positioning of
progenitor cells during organogenesis. They found that cell-cell adhesions and
the presence of repulsive boundaries were critical to the correct positioning of
the final organ. In an analysis of cell polarization at the individual cell level,
they showed that when cells encounter a repulsive boundary their polarization
reverses [138]. In the derivation of equation (4.1), we assumed that the non-local
term represents each cell’s polarization. This behaviour seems to be included
in the non-local operator constructed in Example 4.3 (see Fig. 4.6), where the
non-local operator reverses near the boundary. It is however clear that the cell’s
polarization is a result of the sub-cellular signalling networks. Hence, it would
be a worthwhile future project to identify the central regulatory sub-units of
this network that control cell polarization, and cell polarization reversal upon
encountering solid boundaries. The final goal would be to obtain the behaviour
of the non-local term in the boundary region from a realistic intra-cellular

signalling model.
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Chapter 5
Discussion

In the Introduction, we formulated the aims of this thesis. These were:

1. Can non-local models be derived from an underlying individual deserip-

tion of cell movement?

2. What are the steady-states of the non-local cell adhesion model (i.e.,
equation (1.1)) in the absence of boundary effects?

3. How to model and include boundary effects in the non-local term of the
cell adhesion model (i.e., equation (1.1))?

In Chapter 2, starting from the master equation of a space-jump process, we
showed how a cell’s polarization vector is naturally included in the process’
transition rates. All that remained was to develop models of cell polarization.
We developed models for adhesion and chemotaxis. For cellular adhesion, we
developed a cell polarization model based on biological insights of individual cell
movement. We assumed that the cells “sample” their surrounding environment
using filopodia, which are thin cylindrical cell membrane protrusions. The
filopodia attach to other cells using cellular adhesion molecules. Once the
adhesion bonds are formed, the cells utilize them to pull themselves forward.
Filopodia are however only one type of membrane extension cells com-
monly use. Others include lamellipodia, a sheet like structure used during the
migration on flat surfaces, or cell blebs used during migration through three-
dimensional extracellular matrix [147]. Models of cell polarization for these
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types of structures would be great. Equally important would be the validation
of the filopodia-based polarization model against biological data. The selec-
tion of the particular reaction kinetics of the cellular adhesion molecules is of
particular interest. The original Armstrong model (1.1) assumed law of mass
action kinetics. However, cellular adhesion molecules are confined to the cell's
membrane, i.e., a two-dimensional surface. This should change the reaction
kinetics. However, without biological data this remains pure speculation. If
detailed cell-tracking data would be available, including velocity data, a more
detailed individual model based on a velocity-jump process would be more

suitable.

Most significant would be identification of the critical sub-units of the intra-
cellular signalling network of genes and proteins that control cell polarization
(e.g., Rho-Rac GTPase [94, 95]) in combination with cellular adhesion molecules.
Our definition of the polarization vector, and its inclusion in the population
level model, provides us with a natural method to build multi-scale models of

cell migration in the presence of cell-cell adhesion.

In Chapter 3, we focused on the steady states of the non-local cell adhesion
model in the absence of boundary effects. Since the constant solution is always
a steady state, we used global bifurcation results pioneered by Rabinowitz
to identify points along the constant solution branch at which branches con-
taining non-trivial solutions are spawned. We classified the solutions in the
newly spawned branches using their symmetries, which they inherit from the
eigenfunction of the linearization at the bifurcation point. Further, using the
particular structure of the non-local operator and of the cell adhesion equa-
tion (1.1), we showed that the locations of the solution’s extrema are fixed. We
characterized the solutions by showing that they are elements in a particular
subspace of C?, whose functions have derivatives of alternating sign on a fixed
tiling. Finally, we proved that the first bifurcation branch is unbounded and
has one peak, and that the bifurcation is of pitch-fork type. The integral kernel
in the non-local term determines the bifurcation’s direction and whether a
switch of stability oceurs at the bifurcation point. Finally, using numerics, we
presented some the steady-states and observe the formation of rotating waves

in the long-time limit.
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A major limitation of Theorem 3.97 is that it is only valid for the first bi-
furcation branch and only for linear h(u). However, as discussed in Chapter 3,
an extension to all bifurcation branches seems imminent with nonlinear h(u)
satisfying the assumptions outlined in Definition 3.1. Even with this result we
cannot exclude the possibility of secondary bifurcations occurring along the
branches of non-trivial solutions. These bifurcations may lead to further sym-
metry breaking. However, the identification of points of secondary bifurcations
is a challenging mathematical problem, since no result equivalent to the global
bifurcation theorems exists. This leaves a direct application of topological de-
gree theory in combination with numerical solutions as the only viable option.
A first result describing the set of possible points of secondary bifurcation could
be obtained by an application of the analytic bifurcation theory developed by
Dancer [37, 38]. However, secondary bifurcations are only truly identifiable by
discovering points at which the index changes.

The next step in the analysis of equation (1.1) is to study time-dependent
solutions. There are several interesting questions such as can formed cell aggre-
gates merge? Do there exist meta-stable solutions? Such studies have two goals
(1) the characterization of the global attractor of equation (1.1), and (2) de-
velop the mathematical insights to study extensions of the cell adhesion model.
A similar extension would be the inclusion of temporally and spatially varying
adhesion coefficients. Such varying coefficients have been used to obtain realis-
tic biological solutions describing cancerous tissues [47]. Such varying adhesion
coefficients have wide applications in biological phenomena in which the transi-
tion of stationary cells to motile cells is critical. These include wound-healing,
cancer cell invasion and normal tissue development.

Both biologically and mathematically relevant would be extensions of model (1.1)
to include several cell populations, to study the steady-states of cell-sorting us-
ing the global bifurcation approach. An extension to higher spatial dimensions
would allow us to study wound-healing and tissue formation more realistically.

In Chapter 4, we considered the non-local cell adhesion model on a bounded
domain, with no-flux boundary conditions. Without modification, the non-local
term used in Chapter 3 would neither satisfy the no-flux boundary nor be well-

defined. In a three step process, we ensured that the non-local term is (1)
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well-defined, (2) satisfied the no-flux boundary conditions, and (3) proposed
how it behaves in the boundary region. Intuitively, depending on the adhe-
sive properties of the boundary, cells would be either repelled or attracted by
the boundary. We constructed a repellent and one that is both repellent and
attractant (neutral) depending on the population level.

The cell adhesion model, including the neutral non-local boundary con-
ditions, admits a constant steady state for all values of . In addition, the
equation is equi-variant with respect to reflection through the domain’s centre.
The existence of the constant solution for all & implies that the bifurcation
theorems used in Chapter 4 are admissible to this problem. Further, similar
symmetry properties suggest that some parts of the arcuments from Chapter 3
may be applicable. In the case of the cell adhesion model including the repellent
non-local model, the constant function is a solution if and only if @ = 0. We
used an asymptotic expansion to study the first steady-state of this model for
small «. This analysis demonstrated that the solution is depressed near the
boundary, with the replaced mass being added in the middle.

In the construction of the non-local operators that include the no-flux
boundary conditions, we had freedom to choose their behaviour in the bound-
ary region (within one sensing radius of the boundary). From biological ex-
periments, it is known that the cell polarization adapts when cells encounter
physical boundaries [138]. Responsible for this adaptation are the intra-cellular
signalling networks. In Chapter 2, we argued that the non-local operator is a
model of cell polarization. Thus a natural extension would be to include the
involved intra-cellular processes in a multi-scale model of cell adhesion.

In conclusion, in this thesis we made significant progress in understand-
ing of non-local models of cell adhesion. We proposed a framework to derive
such models from an underlying stochastic random walk, studied the steady
states spawning through bifurcations from the constant solution, and finally
considered the non-local cell adhesion model on a bounded domain with no-flux
boundary conditions. Finally, perhaps one of the most important outcomes of
this thesis are the new possible directions of research that have been identified.
The main questions are: identification of secondary bifurcations, analysis of

the time-dependent solutions of equation (1.1), several cell populations, higher
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space dimensions, and multi-scale modelling including intra-cellular signalling
networks.
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Appendix A

Non-dimensionalization of
non-local cell-cell adhesion
model

Note that this non-dimensionalization is only for the case when h(u) = u
for other nonlinear functions we may want to change the scaling of u. In one
dimension equation (3.211) reads,

2 R
% = D% — af% (u% ‘/:R h{u(z + r]}ﬂ{r}dr) (A.1)

which will be non-dimensionalized by introducing the following variables,

s ._D L_u L_Q
=7 t_IR,Z U= at =~ (A.2)
Then,
* 1 * __ D * __ 1
dz* = da:ﬁ dt* = dtm du* = dﬂ-ﬁ (A.3)

== a5 =—ag (A.4)

fut R:[ 8w o8 [ ¢ [F

5 = Da [D_ﬂa:2 — 5 (”ﬁ /:R ah{u{:ﬂ—i—r]}ﬂ{r}dr)]
w18 (., (" .

=507 " Do (u- ;pj:R ah(u(z*R + r))Q(r) dr)
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We introduce the following change of variables in the integral y = "/g. Then,

* 2o L
.:Eu* - a?;}ﬂ - %ai* (H*éﬂf_lah{uiﬂ{f +9)) HE) dy)

Then we introduce,
Q*(y) =QyR) yel[-1,1], (A.5)

and we introduce 1
fz{u*} = Eh{ﬂu*). (A.6)

Finally, we note that u(R (z* + v)) = u*(z* + y) /1.

our B e 1
o a{;}ﬂ - ngm s (”[ ) dy)

Then we let,

D
b= g AT
Réii (A7)
Then the non-dimensionalized equation is given by,
Ou* 3215* a * ! * * [ F *
ot~ ~ dz=? Oz (“ j:  h(w (@° + )2 {y}dy) . (As)

For simplicity in the notion we will drop all the stars from this equation in the
subsequent discussions.
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Appendix B

Essential mathematical results

Theorem B.1 (Minkowski's integral inequality [58]). Suppose that (X, M, u)
and (Y, N,v) are o-finite measure spaces, and let f be an M x N measurable
function on X x Y.

o If f>0and g < p < oo, then
[/ ([sevaw) ] < [[ [ raraw]” wo
(B.1)

e If1 < p < oo, f(-,y) € LP(u) for a.e. y, and the function y —
IfC,9)ll, is in L'(v), then f(z,-) € L'(v) for a.e. z, the function
z— [ f(z,y)dv(y) is in LP(p), and

‘ [revaw| < [irvl, a0 (B.2)

In the following let 2 C R™.

Theorem B.2. Let Q@ € R%!, p > 1, kp = n. Then Wk?(D) c L D) alge-
braically and topologically for any q, 1 < g < co.

Theorem B.3 (Sobolev). Let 2 € R%!, p > 1, kp > n, and denote

=k—(n/p) ifk—(n/p) <1
pl <1 ifk—(n/p)=1. (B.3)
=1 ifk—(n/p) =1

Then W*»(D) c C%*(D) algebraically and topologically.
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Theorem B.4 (Sobolev). Let D C R™ bounded with Lipschitz boundary 8D,
and let k> 1,1 < p < oo.

e If kp < n, then W*?(D) — L9(D) for all ¢ < q < np/(n — kp); the
embedding is compact provided 1 < p < np/(n — kp).

e If kp =n, then W*?(D) — L4(D) for all 1 < q < oo, and the embedding
15 compact.

e If kp > n, then W*?(D) — C*3= is compact, where j = [N/p] + 1 and
a<j— N/p.

Theorem B.5 (Kolmogorov-Riesz [81]). Let1 < p < oo. A subset F of LP(R™)
is totally bounded if and only if

1. F is pointwise bounded,

2, for every € = 0 there is some R so that, for every [ € F,

j|>R|f(m}|P@ < €, (B.4)

3. for every € > 0 there is some p > 0 so that, for every f € F and y € R
with |y| < p,

/;Jf{a:-l-y) — f(z)[Pdz < €. (B.5)

Theorem B.6 (Poincaré-Wirtinger). Suppose 1 < p < oo and let D C R"
such that D has a Lipschitz boundary. Then for every u € W'?(D) there exists
a constant C such that

|u —upll, < C|[Vull, (B.6)
where

1
Up = Ej[;t.:{:.':] dz. (B.7)

Theorem B.7 (Gagliardo-Nirenberg). Let I) C R be bounded and let 1 < r <
o0, 1 <q<p<oo. Then, there exists a constant C such that

l1—a a r
lull, < Cllully *llullf,  Vue W (D), (B.8)

where 0 < a <1 is defined by a (1/g—1/r+1)=1/g—1/p.
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Theorem B.8. Suppose T X — X is a continuous and compact mapping.
Assume further that the set

{ue X:u= AAfu|for some 0 < A <1} (B.9)
is bounded. Then T has a fired point.

Theorem B.9. Leta,be R, e € R such that a,b,e > 0. Then,

b
ab R Sy B.10
< €a +4£ ( )

Lemma B.10. [85] Let Q c R be a bounded domain. If u e H'(D) N C(D)
and u = 0 on 8D then u € H}(D).

Lemma B.11. If (X,d) is a metric space. Then the following are equivalent
1. U cC X is open in (X, d),

2. V¥zr € U and for all (z,) such that x, — = there erists N € N such that
Wn > N we have that =, € U.

Lemma B.12. Let L2 (0, L) be the set of periodic functions in L*(0, L). Then

£= { 1, cos (ETI) ,sin (Zﬂfm) } (B.11)

forms an orthonormal basis for L2_.(0, L).

Proof. We solve the following operator equation

@"(z) + Ad(z) =0 in [0,L]
{B[:ﬁ? #] = 0. (B.12)

1. A = 0. Then ¢(z) = ar + b, applying the boundary conditions we get
¢(r) =1 and A = 0 is an eigenvalue.

2. A < 0. Then ¢(x) = ¢1 exp(v/Ax) +c2 exp(—+/Ax), but then the boundary
conditions imply that ¢ = 0.

3. p? = A > 0. Then ¢(z) = ¢; sin (uz) + ¢y sin (uz). Applying the boundary
conditions we obtain the system.

1 —cospl —sinplL | |eg|
sinpl 1-— cﬂspL] I:(_’Q =0 (B.13)
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We have a non-trivial solution whenever the determinant is zero that is
when 4 sin? (“?L) = 0. Solving for A respectively p we obtain that

2
Ao =pi2 = (2”%) : (B.14)

Finally as we can find a Green’s function for this problem, we have that the
inverse of this equation is compact and self-adjoint and so we can apply the
spectral result [56 Theorem 7.46] to conclude that its eigenfunctions form a
basis of L2 |
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Appendix C

Maximum principles for elliptic
equations

Let D  R™ be an open and connected subset with boundary @D. Let L be
the following second order differential operator

L= Zﬂ: ai;(x)Dy; + Zﬂ: bi(z)D; + c(z), (C.1)
i=1

ij=1

where a;; € L2 (D), and b;,c € L=(D), and D;; = 22 and D; = -2, and
wWe assume ﬂ"i_'il' == ﬂ'j'i' !
In the following we will denote u* (z) = max (u(z), 0) and v~ (z) = min (—u(z), 0).

Theorem C.1 (Strong Maximum principle [69]). Suppose that L is strictly
elliptic and that ¢(z) < 0. Ifu € C*(D)NC(D) and Lu > 0 in D, then either

1. u=suppu,
2. u does not attain a non-negative mazximum in .

Theorem C.2 (Strong Maximum principle [69]). Suppose that L is strictly
elliptic and that ¢(z) < 0. Ifu € C*(D)NC(D) and Lu < 0 in D, then either

1. u =inf Du,

2. u does not attain a non-positive minimum in .

To weaken the assumptions on the sign of the function ¢(x) we can impose
strong sign conditions on u. Then we can prove.

Theorem C.3 (Maximum principle for nonpositive functions [164]). Let D
be bounded. Suppose that L is strictly elliptic. If u € C?(D) N C(D) satisfies
Lu >0 and u <0 in D, then either
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2 u(z) <0 forallz e D.

Theorem C.4 (Maximum principle for nonnegative functions [164]). Let D
be bounded. Suppose that L is strictly elliptic. If u € C?(D) N C(D) satisfies
Lu <0 and u > 0 in D, then either

1. u=0,
2 w(z) >0 forallz e D.
Proof. Decompose ¢(z) = ¢*(x) — ¢~ (z). Then, we note that
(L-—c)u<—ctu<o, (C.2)

using both the non-negativity of ¢+ and u. Further, note that the ¢ component
in I. — ¢+ is non-positive. Hence, we can apply Theorem C.2, from which the
conclusions follow. O
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