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Abstract

I have calculated the total and differeistial cross sections and photon asymme-
try for the photodisintegration of the deuteron into a two body final state, i.e., into a
neutron and a proton only, using realistic radial wave functions for the deuteron as well
as realistic scattering state radial wave functions calculated in a coupled channel ap-
proach. Calculations were first performed non-relativistically in the long wavelength
limit, using Siegert’s theorem for the electric multipole matrix elements. Following
this, correction terms were calculated and added to the calculation to correct for the
use of both the long wavelength approximation and Siegert’s thoerem. A computer
program based on these calculations was written, and the results have been compared

to experimental results, as well as to the results of other theoretical calculations.

While no attempt has been made to consider the important higher energy
effects of the 1232 MeV excited state of the micleons called the A resonance, the
meson exchange currents, or relativistic corrections such as the spin-orbit force, the
corrections deseribed above make the calculation exact in so far as it goes. The
calculation therefore forms an excellent starting point for an expanded calculation
including these effects, and with this in mind it has been performed in such a fashion
that it should be possible to add these effects into the calculation in a relatively
straightforward manner. Likewise, the program readily lends itself to expansion to

include the delta resonance and meson exchange current effects.
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Chapter 1

Introduction

1.1 Motivation

In 1934 Chadwick and Goldhaber published “A ‘Nuclear Photo-effect™: Disintegration

of the Diplon by v-Rays”[1]. They explained their motivation by saying:

“Heavy hydrogen was chosen as the clement first to be examined, because
the diplon has a small mass defect and also because it is the simplest of
all nuclear systems and its properties are as tmportant in nuclear theory

as the hydrogen is in atomic theory.”

As a two-body system and the simplest nucleus, the deuteron remains the
first place in which new theoretical ideas and experimental techniques are tested.
Photodisintegration is of particular interest because the photon is a sensitive and
well understood probe with which to study the denteron interior at small radii. This
yields information about the radial part of the deuteron wave function and the size of
the D-state admixture which in turn provide information about the nucleon-nucleon
force. Significani deviation from the experimental resnlts points to flaws either in the
calculation, i. e. in the approximations being used to make the calculation tractable,
or in the underlying assumptions of the theory. To a degree, even an indication of
error in the approximations made in the calculation provides useful information by
indicating that effects which have been ignored are of greater iinportance than wis

at first assumed.



The motivation for further theoretical investigation at this time is the recent
improvement in the experimental situation. Over the past decade, several machines
with monochromatic or ¢quasi-monochromatic plioton beams have been developed and
used to study deuteron photodisintegration. The monochromatic nature of these ma-
chines has removed the principle cause of experimental uncertainty, making it possible
to subject theoretical calculations to much more stringent testing. Moreover, many
of these experiments use polarized photons, and can accurately measure polarization

observables, providing another rigorous test to any calculation.

1.2 History

In 1935 Bethe and Peierls[2] published the first theoretical investigation of deuteron
photodisintegration. The early work used only the most dominant terms in the mul-
tipole expansion of the photon clectromagnetic field and very simple deuteron wave
functions. Bethe and Peierls used only the dipole moment of the deuteron dotted
with the polarization of the photon for an operator while for wave functions they
used the ansatz of a zero range force, giving an S-state wave function only, for the

ground state and free plane waves for the final state.

This rough calculation predicts a sin? @ angular dependence of the differential
cross section which is accurately realized at low energies, and gives the shape of the
energy dependence of the total cross scction quite well for energies above ~2.5 MeV
up to in excess of 50 MeV. It fails, however, to predict the magnitude of the total
cross section, being only about 60% of what the data shows, and also to predict either
the total cross section or the shape of the differential cross section near the threshold

of 2.2 \MeV.

The error in the amplitude stems from errors in the normalization of the



scattering states due to the use of a zero range force and vanishes when even simple
wave functions are substituted for these[3]. The discrepancy with experiment at
energics near the threshold is more interesting, and stems from the importance of
the 35S, — 15 M1 transitions' at low encrgies[4], which go roughly as ka/(k? + o?).
Here, k = (1 /2) (Ep - l-:,,) is the wave number of the scattered proton and neutron in
relative coordinates, and a is related to the deuteron radius, and is (1/2.3) inverse

fermi if the radial wave function is taken to be uy(r) = Nge™".

Early improvements included the use of more reasonable deuteron wave functions|7,

8, 6} and the inclusion of higher multipoles. By 1950 it was known that:

1. Spin transitions and higher multipoles are important at higher energies[5, 6].

2. Isotropic terms which are a result of the tensor force are important to the § = 0

part of the differential cross section[9].
3. Exchange terms are important at higher encrgies(6, 9.

4. Near threshold the cross scction is mainly the 35, — 'Sy M1 transition. |3, 4].

In 1951, Feshbach and Schwinger[20] included the D-state component of the
deuteron using a Yukawa-type tensor force and noted that the use of Siegert’s theorem
implicitly includes contributions from the exchange currents. By 1954, Berger({10]
had shown that inclusion of higher multipoles has a significant effect on the shape
of the angular distribution, and indeed it is easily shown that interference between
transitions to states of different orbital angular momentum, which generally requires

different multipoles, can affect the angular distribution but not the total cross section.

In 1958, DeSwart and Marshak([11] and DeSwart[12] began using wave fune-

tions from realistic potentials, but still with only dipole operators. They concluded

1The notations M) and EX denote magnetic and electric 2*-pole mediated transitions.



that a large D-state probability was necessary to explain the isotropic component of
the differential cross section, and in the late 1950s and early 1960s various authors

found that E1—M1 interference has a large effect on polarization observables(13].

This period of work on the deuteron to some degree reached a conclusion in
the mid 1960s when elaborate calculations were done using realistic deuteron wave
functions and all the significant multipoles, most notably the calculation by Partovi

in 1964[55}, and also by Rustgi et. al. [15] and by Donnachie and O’Donnel[16, 66, 19].

1.3 Present Situation

It was clear by this time that a reasonable calculation required the inclusion of the
A-resonance in order to be valid in the energy region in which the A can be excited,
and also the inclusion of meson currents in order to produce reasonable results even at
energics as low as 100 McV. Even within 10 MeV of threshold, Kramer and Miiller[13]
had concluded that polarization observables are strongly affected by meson exchange
currents due to the importance of magnetic transitions. As a result, covariant theories
aimed at consistently including these effects were being developed. The approaches
used have been an S-matrix approach developed by Pearlstein and Klein and a disper-
sion relation approach developed by Donnachie and by Sakita and Goebel. The latter
of these allows the direct incorporation of the results from non-relativistic potential

models into the calculation and has been extended into the w-production regime.

At present, the main thrust of the work appearing in the literature is not
so much the study of the nucleon—nucleon potential as the study of sub-nuclear
degrees of freedom which have effects on meson exchange and A excitation. Such

considerations are well beyond the scope of this thesis.



Chapter 2

Calculation

2.1 Cross Section

We consider the scattering of two particles labeled 1 and 2 having velocities @) and
#i. We choose #]|2 and require that @]|7,. We follow reference [21] closely, and until

the end of the section we use natural units, i.c., h=c=1.

We let the subscript a(b) indicate that a quantity refers to the two particle
system before (after) the interaction, and let n indicate cither a or b. If we designate
the complete set. of orthonormal states which form a basis for the two particle system
as xn, then we define E, as the cigenvalue of the hamiltonian for non-interacting
particles, K, i.e.,

KXn = EnXn- (2.1)
We define the interaction part of the hamiltonian as

V=H-K (2.2)
for the interaction before the scattering, and

Vi=H-K' (2.3)

after the interaction. With these in place we can now define the scattering matriz,
T, by

1
- R —  _\V 2.4
T=V+V nllm0+ ( o+ 7 H) ( )



where it is to be understood that the limit is not to be taken until after the singularity

has been integrated across.
Now define P, by the equation
Pxn = ..an (25)

where P is the momentum operator, i.e., P, is the total momentum of the system,

and because [T, P] = 0 we can define the “reduced T-matrix” by the equation

(blTla) = 6(ﬁb - I-)‘a)Tb,a (26)

With this notation, the probability for a system to make a transition from a

state x, to a state y, is then

- —p 1
Pyo = (21)*6(P, — Pa)b(Ey — Ea)lTb,a|2mF (2.7)

where F is the total flux per unit area across the target particle due to a single beam

particle.

If we now write Np as the number of beam particles impinging on a target
having Np target particles in a time At and AN as the number of scattered particles,
theu with Fjy as the flux per unit area due to the entire beam we define the scattering

cross section as
ANg

= WE (2.8)

Ao

and we get for the cross section

1

- a
Ao = (27) A

S 6(By - B)S(Ey — Eo)|Thl® (2.9)
b

Clearly, the number of scattered particles is the number of particles in all states b

which are not the initial state. In terms of P, ,,

ANs = NrNg Y P, (2.10)
b



where the sum over b implies an integration over the continuous quantum numbers of
the particles in the final state (e.g., the momenta) as well as a sum over the discrete

quantum numbers.

For a beam of Np particles, Fg = NgF where F is the single particle flux

used earlier. Thus we have

NrNp ¥y Do
A —_—
7 NrNyF
1
= =%'p, 2.11
FEn e
and we get for the cross section
A0 = (@n) = S 8(F = P)S(Es — B Tol? (2.12)
[T — ] 5

Restoring the factors of /i and writing out the momentum integrations explicitly we

arrive at the expression for the cross section which will be used in our calculation,

(27r
|v1 — | Bl

dP]degf -

Ac = (P, = P)6(Ey, — E,)|Thal’. (2.13)

Jinal I’

stales

2.2 Interaction Hamiltonian

The hamiltonian for the system is

H =K + H, (2.14)
where
.k P .
=P 4 fn 2.15
2m, + 2m, (2.15)

and H; is the interaction hamiltonian. The coupling to the photon is achieved by

making the minimal substitution,

p; = p; — —A( 7j)- (2.16)



where /f(f“,) is the vector potential.
With ¢, = ¢ and ¢, = 0 and letting mp, = m, = M the hamiltonian for the

deuteron is

-

e L AR A L 2 Ap() Apl() |
]{—ém )p—e]),,- — € c Pp+e ¢ ¢ +pn . (2’17)

We are dealing with single photon processes, so we ignore the terms which are

quadratic in A and the interaction hamiltonian is

—e - - - . .
Hy = Y (pp - Ap(Tp) + Ap(Tp) - Pp) . (2.18)

Our coordinates are defined as in the following diagram. In this geometry, 7

Figure 2.1: Coordinates of the deuteron system

and 7 are the positions of the proton and neutron, R is the center of mass coordinate,

and 7 is the relative coordinate. We have

R =LlR+m) , 7= fi-f
2 3 (2.19)
Moo= R+if R/ = R-IF



and in a similar fashion the corresponding momenta are

P -~ ) po= L(p -
P = 1)1~+1’z y P 2(~1’1 2) (2.20)
P = P+j ., o = 4P -

Accomplishing the transition to quantum mechanics by making the substitution
p; = —ihV; (2.21)

we have the interaction hamiltonian

H; = 2” (th A p(Tp) +1RA (r,,) V,,) (2.22)
which can be rewritten in the reduced coordinates as
ieh Y = Y. L. N
= Zme [2 v Aoli) + A7) - F) + (Ve A7) + A7) 9.)| . 229)

2.3 T Matrix

For the initial (final) state of the proton-neutron system we define the centre of mass
momentum and wave number as I-".(I-’}) and I'\;,-(I?,). The relative momentum and
wave number in the final state are ¢ and E;, and the momentum and wave number

for the photon, which is present only in the initial state, arc 13., and K.

In the Born approximation equation 2.4 becomes 7 ~ Hy, and with the above

notation we have

- - —iKy-R ,—iky-¥ h 1 - ~ .
6(P - P )T[,a = /e 3 ¢ ( ke ) [(5) (VR' Ap(rp) + A,,(T,,) ' VH)

- - - iR R

+ (Ve Ayl7) + Ayl7) - V)] (32—7r—)—%¢,1(7”‘)fl"’12(1"r (2.24)

where ¢4(7) is the wave function of the deuteron.



For photons such as will be in the beam in an experiment, the vector potential

will be a vector plane wave. In relative and center of mass coordinates we have

A(7,) = ace
= aéic® R T (2.25)
50 that
- - e—ll\! R eh - ei’?.-.R
P, - P)Tha = — | |Vg-ée® + .V d°R
(P, T, a @)} <4mc)[ R-€€" + ée R] 2m)]
c—iEIF .
X €' 7o (F)dY
—iRy it _ = piRiR
+ ¢ 5 (_f_h_) e'® R € . dSR
(27)2 2me 2m)?
(2.26)

The first half of this equation can be eliminated by evaluating the integrand

on the first line. Specifically, it can casily be shown that

(Vi e +c%. V| Pl = 2. [(re +2R)) e'(f“"-‘)"?] : (2.27)
Because we have insisted that @) ||z, i.e.,A’HI-\"’,-, and because € L K we have
(2.28)

ER=¢K;=0

Equation 2.26 now reduces to
T — s 3 f £ - 3 23
8P~ P)Tia = a (—2‘;26) [(ziw) / e'("‘+“""f)'Rd3R]
1 A ST T
2 )%/(Zw)% (V,-eez + ée'z -V,) da(P)d¥r, (2.29)
T

where we recognize that the term inside the square brackets is just a delta function

for momentum conservation,

3 2.~ 2\
1 ) /ei(l‘i+"_h’)'Rd3R. (230)

W6 (B - P) = (5;

10



where P, = P, + 5, so that the T-matrix is

eh4 i" - - - ;\’ - E -
= — —ikyF LAl 7 NS A. 9
Toa (anc) /"’ [V' A (2*) +4 (er) Vr] da(F)d, (2.31)

where the k dependence is shown explicitly.

We write the convection current density as

- eh - = - B
Je () = (%) (\p A T AVAY ,.) , (2.32)

where the factor of 1/2 appears because only the proton has charge. This gives for

the interaction hamiltonian

c 2ime

.- A h - -
Je- A D) (934-9,0, - 0,A-9,93). (2.33)
H J

Now consider the second term. The vector identity
V. (¥@)=a- V¥ +9V-d (2.34)
allows us to write
- [ v v = - [ [V, A0+ 959, - Av] db (2.35)
and applying the divergence theorem to the first term gives

- [wA Vwdr = - [GA0-dd0,+ [59, Ay

[u9. - Aviay (2.36)

and we get

(-4

c

. . o o
) = ( - ) [w¥ A+ A Vwdy (237)

2ime

(v

so that

1\3
— a3 =
Tya = —ih (27() <\1:,

\11.-> . (2.38)



So far we have not considered the coupling of the photon to the spin of the
nucleons or to the mesons which we know exist in the deuteron. Unfortunately, since
we are doing a non-relativistic calculation, and these phenomena are intrinsically
relativistic, they are not derivable per se. Here we put them into the calculation by

hand. We write simply

1\ /_ [(T-4)
f—t —7 3 —— : 2- 9
T = it (5-) (w, : w> (2.39)
where
j= J-; + jM + J::ch- (240)

The three terms on the right are the convection current density, the “magnetization”
or spin dependant current density, and the “exchange” current density due to the

exchange of mesons in the nucleus respectively.

The magnetization current density is given by

JM = (E‘;) Ej:'ﬁ(r - Tj)Vj X ( IO’j\I’,') (241)
or in reduced coordinates (which correspond to the deuteron center of mass before
interaction)

Ju= (229, x [ (16, - 1ad

M= |5 Ve X [ 7 (1pGp = 1) \Il,-] . (2.42)

The exchange current is beyond the scope of this work, and we will ignore it
in our calculations. It is important, however, to know that it is there and we may on

occasion comment on it.

12



2.4 Phase Space

Combining equation 2.13 with equation 2.39 the differential cross section of the

deuteron is given as

(2n/1) s p (T A\
= )8 ( - 2.4
Ao= ot hzn;'/d%,,d}; §(P, — P)6(E, - E,) <\p, - \p,> (2.43)
states

where p,(f,) is the momentum of the proton (neutron) after scattering. We denote

the phase space part as I',
D= [ dbpdpud (5, + 5 = By = )8 (By + En = By = Eu). (2.44)
which in relative and center of mass coordinates is
D= [ dPEs (5, + P = (Fy + 7)) 8 (By + B — (B, + Ea)). (2.45)

In the center of mass frame p, + jy = 0 = j, + p,,, and since we have taken m, =

m, = M, E, = E,. Performing the integration over center of mass momentum we

have
= 2
27 h4 J-A
|(v11v2| > /6 2E, — (E, + Ey)) <\If, ( - 7 \1:,~> q*dqdS),.  (2.46)
Jinal
stalecs

Now p, = %ﬁ; + ¢, but for the center of mass frame, 13} =050 p, = ¢, hence

E? = c*q* + m%c* which implies 2E,dE, = 2c%qdq so that

(2o

The integration over the remaining one dimensional delta function can now be per-

(7
/

dE,.

.A')

do 27

= E E,6(2E, - (E,+ E

qu I'vl’_v2|ﬁ'4C2 ]inul/q P ( ? ( Y 4)
stales

(2.47)

formed giving

do ) \/ Ep)* -m22E,|( ¥ (f A) ¥, 2 (2.48)
qu Ivl - v2| h C2 Jinal ]
stales

13



B, +E,
where now E, = (—JTA)

2
Finally, from the kincmatics [ (22)° — m2c? = hk and E, = y/A%c2k? + m2c!

where § = p, so that

- 2
do T (J . ff) >
= kLE ¥ v, 2.49
d, — (luzul) (he)® ”,,.zn;, < e (2.49)
S states

which forms the basis of the rest of our calculation.

2.5 Multipole Expansion

The vector multipole expansions are well described in reference [24]. We consider
a field with a definite frequency, which we can do without loss of generality since
a ficld with an arbitrary time dependence can be constructed from this by Fourier
techniques. For such a field, in the Lorentz gauge, Maxwell’s equations in four-vector
notation are

V24, + k%4, =0 (2.50)

for which the solutions are

-

A(R,7) = aée™™ (2.51)

for the three vector components, and

& (R, 7) = ae'™" (2.52)

as the fourth component, ¢ (R, 7) = Ay (R, 7) ,where

a= (517;) (ﬁhf)l (2.53)

gives the correct normaiization.
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These can be written in a vector multipole expansion as

) oo
A=a Z AC,\'O + Z z b“ (E,\,“ + /IM,\‘“) (2.54)
A=1 A=l p==x1
and
)
o=a)y_ o (2.55)
A=1

Henceforth we suppress the limits on the sums over the multipolarities A and polar-

izations p.

Taking 7|2 gives Y™ (R) = 6 (m;,0) /(20 + 1) /47 for the Legendre polynomial

Writing ja (k7) for the spherical Bessel function of order A this in turn gives us

& = P 4m (24 + 1) Ga (k1) YT (7). (2.56)

We define the vector spherical harmonics )7,\‘:\" as
[

Y= S clomLuy Y, (2.57)
where we have made the limits on the sum over projections of the spins explicit.
Henceforth, it is to be assumed that sums over the projections are to be over all
possible projections of the associated angular momentum unless otherwise noted with
the exception of the photon polarization p which as already noted is smmmed over

only £1. With the vector spherical harmonics thus defined we have also

- 1\ =
b = (5) 944
= PIaT (VX o (k) Yy (F) + VA T jagr (57) Vi1 (7)) (2.58)

-t 1 - -
& = —_— | V X L
g (,/Ke,\(,\ﬂ)) x Las

= MV (VI Liaoa (6) Vi (F) + Vs (67) Vg1 () (2.59)



and

S 1 -
M (—m) e
= Mar (2A+ 1) ji (kr) P, (7). (2.60)

The freedom to perform a gauge transformation on A makes it possible to
make the transformed ¢ and £y, zero. Alternately, consider the interaction with
a current density J. Considering only these two parts of the vector potential and

assuming a current with a definite frequency w, we have
/A'J(13,- = l/[‘:-fd"‘r—/¢pd3r
c c
1 - - X
m/V(i)-Jd"r—/qbpda/'
—3—/¢[6-f+ iwp) dr (2.61)
iw

where we have used the vector identity of equation 2.34 and the divergence theorem
2.36, i.c.,
[Ve-Jdv = [[9-(s]) =¥ J]r
- /¢f-ﬁdn-/¢€7-fd-"r
-/N - Jd¥- (2.62)

Finally, we note that since we have assumed a current with a definite frequency

w the equation of continuity gives

> = dp
vV.J = 5
= —iwp. (2.63)

The quantity in the square brackets in equation 2.61 is therefore zero, so that the
effects of £ and ¢ cancel each other out and we need concern ourselves only with

the electric and magnetic multipoles, gf\‘ and ./\:1'; , giving

A=aY b, (Eip+puMyy) (2.64)

A

16



2.6 The Long Wavelength Approximation

We begin by writing a small argument (xr & €) approximation for the spherical
Bessel functions,
(nr)’

Je(kr) ﬁ'm (2.65)

From this expression, it is clear that for small arguments we can ignore jeyy (k1) by
comparison with je_; (k7). Since x is the inverse of the wavelength, this condition is

called the long wavelength approzimation.

Now consider the case of the deuteron. The argument of the Bessel function
in centre of mass coordinates is x7/2, so that the long wavelength approximation
is reasonable for sufficiently small photon energics. Morcover, if we calculate the
first { terms exactly, the approximation will be reasonable to higher energies for the
following terms, since the condition for accuracy of the expression we stated at the
start of this section was that the argument of the Bessel function be small relative to

its order.

When making the long wavelength approximation we drop Bessel functions of
two orders higher than those we keep, without reducing the Bessel function we keep
to the polynomial form. This will make it simpler to calculate correction terms later

on.

2.7 Siegert’s Theorem

For electric multipoles in t  long wavelength approximation we can use Siegert’s
L}

theorem [22], allowing us to calculate the electric multipole transition matrix elements

using only the charge distribution of the nucleus, i.e., without the necessity of knowing

the current densities.

17



The electric multipole is,
€y = M Nam (VX Tamr (k) V13 (7) = VXiaa (k) Vi1 (7))
which in the long wavelength approximation is
1 o MV XF T jaca (k) Vi1 (7).
The longitudinal component of the multipole expansion,
Lo = VAT (VX faca (k) Py () + VAT g (k1) Py (7))
hecomes in the long wavelength approximation

EA.;: >~ i'\_l \/E\/ij\—l(kr) )71\‘:/\—1,1 (7:)

so that we have
A+1
A

which means that the & term in J - A becomes

[& i = |2 (o gw

= (5 e 5o
= - (2) 2 atos

G d
EY ~ — C,\',,

(2.66)

(2.67)

(2.68)

(2.69)

(2.70)

(2.71)

where the continuity equation has been used. This last line, valid only in the long

wavelength approximation, is Siegert’s theorem.

2.8 Correction Terms

Eventually we will want to correct for our use of the long wavelength approximation

and Siegert’s tiicorem. For the magnetic multipole terms we will simply review our

18



original calculation of the matrix elements and calculate those terms which were
dropped in the long wavelength approximation. These terms will be easily calculated

by analogy with the long wavelength terms.

The correction of the electric multipole terms will be more difficult. We will
have to correct for the part which we did not include when we ignored the second
term in the expression for the electric multipole and subtract off the extra contribution
from the second term of the longitudinal multipole which we implicitly included when

substituting £% for £

We call the electric correction multipole K% . This will be the difference between
the exact electric multipole and the expression used after applying Siegert’s theorem.

Using expressions from sections 2.5 and 2.7 we have

=, - /,\+
’Cf\ = gf\‘"i‘ Y C,\,,,

= =" MNaATX (k) Y (F)

L}

//\+ ;
+ 1+ 5 47r(/\+1)J,\+1(k7))u+11(’)

. 4 . > -
= z”"(—/\+(z\+1))VTJAH(k’"))fHH(T)
4 7
= 1“\/ Y JA+l(k7')Y,\,\+11(7) (2.72)

This done, we must calculate matrix elements for the electrie correction mul-
tipole with both the convection and magnetization currents. This means that there
will be electric correction spin flip terms, and singlet final states will be accessible to

these correction terms, unlike the case for the Siegert terms.

Finally, we will not be able to algebraically manipulate the expressions so that
the action of the V operator is entirely on the angular part of the deuteron ground
state as we will for the magnetic multipole terms. It will be necessary to take the

derivatives of the radial parts of the deuteron ground state wave functions.
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Chapter 3

Matrix Elements

3.1 Wave Functions

The differential cross section is given by equation 2.49 as

(-4

o

1 ki (hek)? + (me?)? 1
do _ \/(ﬁ_ﬁ) (me?) ( ) 5 <w, 31)
ds,, (I 1% ) (he) (2)(2J +1) Mgt it c
with
A= aZbﬂ (g,\',, + /1/\-/‘(,\',‘) (3.2)
A

where for unpolarized photons, b, = 1/V2.

We have chosen to label the initial state by the photon polarization u and
the projection of the deuteron’s total angular momentum mj, and the final state by
the projection of the spin of the combined neutron-proton system, m,. The factor of

2(2J + 1) is duc to the averaging over the projections of the initial states.

With this choice for the projections the final scattering state is

"I/f) = zeiE-FX;’"S’
S!

= 3 iamjp (k) YO (R) |, mp) |S' ma) (3.3)
L's!
mye

for plane wave final states. In L,S,J coupling the bra-space final states is

(¥l = 3 (=) amypv (k)
LS
")Ll
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x Y julkr)C(L'ymp,S' ymg, J' \my) (L', S 0 ymyl. (3.4)

J'.m_,l
which for distorted waves becomes
(Tl = 3 (=) amypv (k)

L'.S'
mg:

X Z fosy(kr)C(L'ymp,S'  me, J',mp ) (L', S J ymy|.  (3.5)

J"mJI

A slight discrepancy between the deuteron magnetic moment and the sum of
the proton and neutron magnetic moments indicates that there is an admixture of a
higher L component in the dcuteron ground state. This is reasonable if we have a
tensor component in the NN potential, but J is still a good quantum number, so
that the admixture can only consist of L = 1 and L = 2 components. The L =1
part can be ruled out as not having the same parity as the obviously dominant L =0

part, leaving us with a deuteron ground state wave function

W) =3 (ULT ")) L, S, J,my) (3.6)

L
where Uy (r) =0for L#0,2,and S=J =1.

3.2 Electric Multipole Siegert Terms

For the electric multipoles,

(0=

which has the explicit form

J- &

w.->=— At Lg, 1ol ) (3.7

~1
<\11, T \1;.>=—(i*)e\/(“l)f””m(ql,lh(?_ )y w). @8)
We adopt a convention for writing the radial integrals,
R(L.S',J'\ M, 8, ) = /f,, o kr)],\( )U,, (r)dr (3.9)
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and the matrix element is

(wslis (5r) v @) = an & (=" Vi (§) RIS, T\ A LS, )
sy L
mpr,mp
X C(L”mL'aS,)mS';J’amJ')
X (L’,S’,J',erIYA”(f)IL,S,J,mJ). (3.10)

The Wigner-Ekhart theorem gives us

n C(J my A II,'J',er)
LS\ mp VAL, S, Jymy) = ——2Dob
( my [YY(F)] my) 37 + 1

x (LS, JI\A)IL,S,J)  (3.11)

and applying standard techniques of tensor algebra gives us

g 1
(S S,, LI ! ! }/ ~ L, J — ! "‘].\L—S+J -A
(S, SIL, SV TIRILST) = 6(5,8)(-1) =

x (2J+1)(2J'+1)(2A +1) (2L -+ 1)
x C(L,0,),0;L,0)
x W(L,J,LJ;SW) (3.12)

where W is the Racah coefficient, so the electric multipole matrix element becomes

‘I—.' -‘I‘
<\1:, c‘g* \1/.-> = —dnite(2A+1) (’\/\Ll)
x Y (-)YR(L',S,J\L,S,J)C(L,0,)0;L',0)
L'J'\L
Myps,M e

x (2L +1)(2J +1) (=15
x W(L,J,L,J;S,\)C(J,my,\,u;J ,my)
x C(L,mp,S,meg;J' \mp)YY (IE) . (3.13)
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3.3 Magnetic Multipole Convection Terms

The magnetic multipole matrix element is

— ' ] ] - N
<q:, Jo - MY \p,-> = —(215%)/[@; (Vow) - MY = 0, (V,97) - 4]
-7 (é%?é) / [‘I'} (V"‘I"‘) MY = UMY - V03] dr(3.14)

The juggling of the ¥ operator using vector identities and the divergenee theorem is

by now familiar, and we use it to write
[kt Vvl = - [ 05 (V, - 0k15) d*r (3.15)
which we can easily rewrite as

— [ 95 (Ve wikt) dr = = [ (K- Vow) dr = [ 95 (9, - A1) wid™.
(3.16)

If we now choose the Coulomb gauge we have V, - M4 = 0,50 that we have
ok . . } 3 '
<\1:, w> = - (%&) [ / U5 (V1) - M + / UAL; - (Vo) (1-‘1-]

= _(’6") [ w4 (Vo) ] (3.17)

Using the definition

J. - M

- -o —_ K - -
M ——E \#xi,V, (3.18)
(2,/A(A+1)) H

and using the triple product rule we have for the matrix element

(\11, w>—( ehr )(w,|EA,,,-E|\I/.-). (3.19)
\

2mc\/ A(A+1)
In the long wavelength approximation,

J. - MY

c

E,\,, % l\/4—7?\/—]A 1( )Y,\A “(7’) (3.20)
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s0 that
¥ g )= () [T <\Il
/ )=t me A+1\

Writing the wave functions explicitly, this is

J. - M

c

. K - . -
Ja-1 ('2"') Y11 (F)- L' ‘I’i> .
(3.21)

(9 [inesPtsorn - L)) = LSZ (—i)* 4y (k)
"S'\m
x Y SRS, A=1,L,8J)
Jmp LS

x C(L,my,S' mg;J my)
x Y. (-1)°C(A=1,p+0,1,-0;)p)

Y L,|L,S,Jmy).  (3.22)

X

(L’, S’, J', mg

To evaluate the matrix element <L’,S’, J'\my IY,\":']”L_,I L,S,J, mJ> we ex-
pand the wave functions |L, S, J,my) as |L,m,)|S,ms). For an operator Of which

affects only L and not S we have

(L',S" J\mp|O§|L,S,Jmy) = Y. > C(L',o,8,6;J ,my,)
X gﬂ(z:ﬁclr, S,B;J,my,)
x (L',d|O5| L) (S', 8| S,5)
= > > C(,a, 8,657 my)
X SB(Z,'[Z, S,B;J,my,)

x (L',d|O%|L,a)6(S,5)6(8,8). (3.23)

where a, £, and so on are summed over all possible projections of the angular momenta

to which they correspond in the Clebsch-Gordon coefficients.
Using
L_s|L,a)=/L(L+1)C(L,0,1,-0;L,a —0)|L,a—0o) (3.24)
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and evaluating the matrix element of the spherical harmonics we get

<L' S’,J' my

VL LS. Jm,) =

A—1 [L(L+1)(2L+1)
an 2L+ 1)
x 6(S',8)C(L,0,\—1,0;L’,0)

X ZC(L,mJ -3,8,8;J,my)

X g(L,7m—[1—a,A—1,u+a; L' ,my+pu—p3)
x C(Lymy—p,1,—-a;L'\m; - ~a)

x C(L'ymy—p+unS, 0,0 myp). (3.25)

so the transition matrix element is

T Mt

(o]

\1:>=

bes

X

A+ 2nKeh 2/\—12 L(L+1)(2L+1)
me A+1 (2L'+1)

S R(L,S,J, A~ l,L,S,J)C(L,O,A -1,0; L',0)
Jl

C(L my+p—mg,Syme J' ymy + p) Y/ (k)
Y (-1 C(A=1p+0,1,-0;\ 1)

g’(L,mJ -B,8,8;J,my)
C(Lymy—B—-0a,X=1,u+0o;L',my+p~f)
C(L,my-B,1,—0;L ,m; - —o0)

C(Llanl.l _ﬂ+“1saﬂ) J”mJ') (326)

where we have used the orthogonality of the Clebsch-Gordon coefficients to perform

the sums over as many of the projections as possible.

3.4 Magnetic Multipole Spin Terms

Recalling equation 2.42

Ju =

(;">v x (U7 (1y5p — pp7a) W] (3.27)
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the terms we have to calculate are of the form
/ V x (2;0n0:) - MhdPr. (3.28)

With the vector identity (V X B) A=B. (V X ff) -V (A‘ X ﬁ) the magnetic

mnltipole spin term is

[9x (waww) - M = [ (w38w8) - (9, x A1) d°r

-

- [V (M4 x (9580 Ts)) &
= / (T;an %) - (V x M) d*r  (3.29)

where the divergence theorem has been used to eliminate one of the terms.

The next obvious task is to calculate the curl of ./\;1.’,( We have

Vx MY = A 4r (20 + 1)V x (J'A (%7‘) Y’«\'fx.l (’:))

. ¥ = . (K \ o -
= @D A (9% (3 (37) %21 )
= AerACA+ )W (A =1,1,0, ;) 1)«

(3 )zc — 1= (u+q), L g A —p) Y (7) R, (3.30)

q9

bod

In evaluating V x (j,\ (% ))“ I (r)) we have used the long wavelength ap-

proximation, specifically,
(9% (s (57) Pt ) = -ivEEC0,L,9-031,0)
q 4
Chu+g—o,1,~(g=0);\n)
x (~)7 9,0 (1) V@) @3

X

and

= . (K it (a—0) o - 20 +1
Vo i (-r) YOGy = ‘/———C(/\,O,I,O;K,O)
2 K§:&l 2K +1

CA\p+g—o0,1,0,K,p+q)
Y+ (7) DK (j,\ (%r)) . (3.32)

X

X
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where,

d A
e (3.33)
and
d
D! = o+ ’\“:1. (3.34)

When operating on the Bessel functions these give

o (is(5r)) == (5) s (57) (3.35)
7 (:50) - () -(5)

so that ignoring the term for which K = X + 1 meets our definition of the long

and

wavelength approximation.

Returning our attention to equation 3.30 we consider more carefully the pro-
cess of taking the curl of the vector potential A. Our calculation has produced a
multiplication by x/2, but if we consider ¥z, X A () and note that & L 2,7 and || &
then only the 8/0z term in the curl nced be considered. Next, because € = ét or €7,

both L E, the curl reduces to je,d/0z — i¢,8/dz which gives

Vay X A(Fy) o Vg, x xRN
- 0

x €éf—e

aZN

IKIN

INZN
x €Tike

x €Fire’®N, (3.37)

Now consider V7x A (7). We still have the transversality conditions as before,

but now

e5 N, (3.38)



so that where our calculation has produced a multiplication by x/2 we must multiply

by k instead, giving
¥ x ME = 12, /6mA (A + DW (A= 1,1, A, 1; A, 1) ks 1(2 )Y“ 11 (7). (3.39)
where we have recoupled the vector spherical harmonics.

We now have matrix elements of the form

(1|2 x (0 7 - o S -T)[ ). (30)
From the definition of M¥ (7) we can write
K (=7 o s (—57) Voa () = (<D0 (5r) oa () (341)
so that
~7) = (~1) M (7). (3.42)

- -1
IIA’ 'Mf\

C

This gives us
<\p, q:,-> = %(i)**’ VETA @A+ D)W (A= 1,1, 131, 1)
X <‘I’I (/l.pﬁp—(—l)'\u,,&‘,,)-j,\_l(gr) Yio1a(7)
and if we now define pu* = i, + p,, and St = §,,:h§,, = (1/2)(6,+5,) we can write
<\1/, \p,> = i;"c‘( Y+ JETA 2+ W (A = 1,1,A,1;A,1)
x <\p 7|0 8%+ 557 - oy (gr) P, () \1:;> (3.44)

where for A =1,3,5... we use the top sign and for A = 2,4,6... we use the bottom

\p.~>(3.43)

]M M}

c

sign. This leaves us with the task of finding matrix elements of the form

(8, @e) = ¥ X % an=)¥ vpv (i)
L',S'\J' LS mpmy

X C(L’,le S’,msl'.], mJ')
x (LS, J'my |[S% -Vt (F)| L, S, J;my) (3.45)
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Writing out the dot product as a tensor product

SE.¥E Ly = CA-Lu+ql,—gAp)
q

x S CA-Lp+gl-gAp[HHes]  (3.40)
A

and applying the Wigner-Ekhart theorem

C(J, my, A,[I;J" 7HJ:)
V2T +1
x (L8 J| [)’,\"-+1q ® Sil_q]AHL.S, J)

(L, S, my| [V @ S*°]) 1L, S, Jimy) =

(3.47)

The reduced matrix element can be decomposed into its orbital and spin com-

ponents

(LS, [V @ s*77) L, S, ) = V2T +1)(2 + 1) (24 + 1)
x X(L',S' J:L S J;A=1,1,A)
(S'l| S* I1S) (L' Ya-i L) (3.18)

X

where X is the 9-j symbol. (L'|| Ya_; ||L) is easily evaluated, but (5’|l S ||S) must be

written out more fully as

! S> (3.49)

mstysy= (1Ll g 11
(S1515) = (555 55

S, + s,,|

where the factors of 1/2 are the spins of the proton and neutron. We decompose this

to separate the proton and neutron spin functions thus,

11,
<§'§’5

' 11 1,1 1
S£8.5.3.5) = ~yES+nES+IW (5,5,5.5:5.1)

2 2 2
e e sy Qs s

leaving only reduced matrix elements of the operators between their cigenstates.

Sp
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The transition matrix element is then

g . —.“
<‘h Ju 2 w.~> — (i [(————12,’:‘;””) \/mmﬂ)]
x W(A=1,1,\171)

% Z Z (__z-)L’ YIZIJ+#—ms1 (K)

Ls,J LS
x C()\0,A—1,0;L',0)

x R(L',S' J,A-1,LS,J)
x (25 +1)(25' +1)(2J +1)(2L +1)

X C(.I,WIJ,A,/I;J,,mJ'*‘,U)

x C(L',my+p—mg,S ,me;J ,my+ )
1 1 1
vi=. s = -_1)
x W (5,85 55
x X(L'WS',WJ;L,5J;A—1,1,1)

(1% pp £ (=1)° ) (3.51)

X

3.5 Corrections to Siegert Terms

3.5.1 Convection Terms

Recall equation 2.72

=, . ir . K -~ R -

By proceeding in exactly the same way as we did in section 3.3 we get
R ieh =
(o) = (22l o)
eh 1>, . =
= - <2—) [(‘Pf‘rz {7 L)

+ i<\p, l-:-ﬁ'; 79 \1:>] (3.53)

or
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where we have used the identity

~ T 0 i, =
Beginning with the first term
1 =, - = . 47 1 N - . - =
SR (Fx E) =1 i (-2-r) [Vt () (7 x L)] (3.55
and with
=) (-1)° 2_0\/%7[ Y (7) (3.50)
we have

FxL=-ivV2Y (-1 2., Y 4?” Y (F) Lg—aC (1, 0,1, — i 1,q)  (3.57
q a

In terms of the angular functions C§ = /47/(2A + L)Y} this gives us
20 +1

27 T Z Z(_l)—ﬂ

A=A A+2 a8

x C(l,a,1,—(a+p);1,-0)

Yihaa(7) - (Fx L) = —i

x C(A+1,pn+4+08,1,-5;2n1)
X C(A+1,p+08,1,a;A, n+a+f3)
x C(A+1,0,1,0;A,0)

x CRPYL_iavp) (3.58)

SO

1=y, /o = 2 [2(22+1) 1. K -

—IC{\-(rxL) = -L/\—)—JAH(ET) Z Z(“l) !
T A=A 24204

x C(l,a,1,=(a+p);1,—-f3)

X CA+1,p+08,1,-6;\n)

X C(/\+1,/l+ﬂ,1,a,/\,ll+a+ﬁ)

X C(/\“l"l,O’laO’AaO)

X CHYP*L_(a1p). (3.59
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The matrix element of C4*P** L_ ., 4) is easily evaluated in direct analogy with

the evaluation of equation 3.25 giving at last

<\p,|:—21€';-f‘x E| \1:,~> =

Z Z Z (i)L'H (_I)L'—ﬁ 4T

L A=AA42 a8
L o

2(2A+ 1) L(L + 1) (2L + 1) m4p-mg (i
\l A2l +1) e (k)

C(L’anl.l +u-— ms’,11mS’;Jl7mJ +ll')

R(L,S,J'\A+1,L,8,J)

c(l,o,1,—(a+p8);1,-5)

CA+1,n+08,1,-5:Ap)

CA+1,p+8,1,0;A,p+ a+f)

C(A+1,0,1,0;A,0)

C(L,0,A,0;L',0)

C(L',my+p—o,1,0;J ,my+p)

C(L,my —o0,1,0;1,my)

C(Lymy—oc—a—-B,Apu+a+p;L,my+p-o)

C(L,my—o0,1,—(a+pB);L,my—0—(a+f)).
(3.60)

For the second term we write the operator as

0
SR

e =
T or

The dot product.

, 4r 1 . K - . 0
IHIV 5y ;J,\+1(§T) [Y,\'f,\+1,1(r) fj o (3.61)
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so that the operator is

S |-
el

>0

3
¥l

X

X

X

X C(/\+ lyll+ﬂv1v_ﬁ;’\v/‘)
X C(/\+1,/1+ﬂ,l,—ﬁ,1\‘ﬂ)

x C(A+1,0,1,0;A,0)C" (3.63)

. ’2/\ +1. -
— (I)z\+l X Fat1 Z Z(_l) A
A=AA42 8

CA+1,u+08,1,-6; A1)

C(A+ 1,/1'+ﬂt11_.3;A’”)

g

C(A+1,0,1,0;A,0)Clk— (3.64)

or’

The matrix element is now easy to evaluate. We define

Q(L’,S,, J',)\,L, S, J) = /fLr'sl‘_]l(kT)j,\(g:T) ((-OOTM)) rdr (305)

r

and the matrix element of the second term is

(v,

1
r

-
A

22 +1
A

r.Jg.L

Q(L,1,J'\ A+ 1,L,1,1)Ytms (i:)

C(L',my+p—mg,1,mg;J my;+ 1)
Y. C(A+1,0,1,0;A,0)

A=A A+2

C,my, A p;J ,my + 1)

C(1,0,A,0;J',0)

w(L',J',L,1;1,A)

S (-1)PCOA+1,u+B,1,~B A p)

B

CA+1,u+p8,1,-5Ap). (3.66)
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3.5.2 Magnetization Terms

This entire matrix element is calculated by an almost complete analogy with the

calculation of the magnetic multipole interaction with the magnetization current cal-

culated in section 3.4.

Recall equation 2.42,
T eh = " ~ -
Ju= 5] Ve x (97 (158 — pna) W] (3.67)
This will give us matrix elements of the form
[ 9 x (wiawws) - Rodbr = [ (w30w8:) - (V x %) dr (3.68)

giving us terms like

- = . K v, .
<ql ; |,m- (v x ],\+1(§r) },\’le'l(r)) w) (3.69)

We find V x (jH, (%r) ﬂ‘fum (f)) by the method used in equation 3.31 giving

. ehK /37r(/\+1)
\I’ i [ rE€
< / \p> (2) me 2

x W(NLA+1L,1;A+1,1)

[(‘I’f HpOp - (jA (gr) }7,\”+1,,\,1(7:)) ‘I’i>

- (-1 <‘I’f PnGr - (jA (%7') l7:\“4-1,,\,1(7“))

- =

C

X

\11>] . (3.70)

By the same methods as gave us 3.44 we get
K

<‘I’f (/‘PEP + (—I)A l‘na‘n) : (]A (27‘) ?4{‘+1,,\,1(7=)) \I’i>
= Z Z Z 4m (_i)L' }/;L, (E) 9 (L’v mp, 5,1 mg; le m.l')

L'S'J LSmy,myp

X <L,’ S'\J'\my

L,S,J, m,> (3.71)

i -a . (K \& .
(“+Si+ K S;) KA (57') Y (A
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where now for A = 1,3,5... we use the bottom sign and for A = 2,4,6... we use the

top sign. The matrix element (L', S J my IS"‘* . )7,\';1.,\.1 (1“)| L,S,J, nu) is evaluated

in exactly the same way as equations 3.45 through 3.50 giving us the final result,

Ju - K5
[

(e, w) =

X

- (7)
WOLLA+1, LA +1,1)

S St v ()

L.s.J LS
C(L,0,A,0;L',0)

A 121re7m\/(/\ +1)(2A +1)(2) + 3)
mc A

R(L'.S',J'\L,S,J)

V(@S +1)(25 +1)(2J +1) (2L + 1)
C(J,my, A+ 1,1, ,my+ )

C(L,mp,S mg;J' ,my + )

A 1 / 1 -.]; )
W(5.8,5:5 5.1

X(L,S,JGL, S, ;01,0 +1)

((=1)% pp £ (=1)% pra) . (3.72)

t

3.6 Corrections to Magnetic Convection Terms

The correction term is
7. A

The matrix element becomes

<‘I’/ |J'A+x}7,\':,\+1,1 : E| ‘I’.‘>

\1:,~> = M1 (“h—") \/§<\p,

mc

. K 71 - r o e

= ¥ (=) anypv (k)
L',S',mLI
> S rR(L,S,J A+1,L,5,J)
J'm gy LS
x C (L’a mg, S’a mg; 'l,a T"J')

X
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x Y (-1°C(A+1,p+0,1,-0;\p)

x (L',8J'\mp Y& Lo|L,S, Jymy)  (3.74)

and following the steps which gave us equation 3.25 we have

<L, S' I’ mJII

i Loo|L,S, Jymy)

so the matrix clement is

(o

. /\7){‘

[

)

X

2A+3 |L(L+1)(2L+1)
4r (L' +1)
§(S',S)C(L,0,A+1,0;L’,0)

Y. C(L,ymy—p,S,p;J,my)

g(L, my—B—0,A+1,p+0; L',m;+p—pB)
C(L,my - p,1,—0;L,m; — 3 —0)
c(L'\my-B+pS,6;J ,mp), (3.75)

A (27refm

mc

2/\+3 L'y m -mgr (7.
WEE 5 5o v ()

rJ' LS

R(L,S',J A+1,L,S,J)

C(L',my+p—mg,S mg;J ,my+ )

L(L+1)(2L+1)
(2L’ + 1)

C(L,0,A+1,0;L',0)

(-1 C(A+1,p+0,1,-0;Ap)

0.3

C(La nlJ_ﬂ_Ua )‘+1’“+01 le mJ'Hl—ﬁ)

C(L,my;-p,S,8;J,my)
C(L,my-p,1,—0;L,my;—f—0)
C(L'\my—B+pS,0;J \my+p). (3.76)
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3.7 Corrections to Magnetic Spin Terms

We add to equation 3.30 a correction term W/ giving for an operator

VxWi = Mer(A+ 1) @A+ DW A+ 1LLA LA DK

K

X jatl (51-) Y CA+1L,— (1 +9), L A —p) Y (7) Xy (3.77)
q

This gives us
(v

and the matrix element is

(o}l

Jog - WE
C

ehr a1
U;) = —(z A A W(A+1,1,A 141
> — (O™ er(A+ D @A+ W (A + A1)

x (] (185 - 17 87) - dan (57) Taena 9] 1) (378)

Jar - W

C

Il

— ()M [(-1-2-”—6"—") JO+1) (20 +3) (21 + 1)]

mc

x W(OA+1,1,01;),1)

x Z Z(—i),‘r},lzu-ﬂlwmsl (i\)
Ls'J' LS

x C(L,0,A+1,0;L,0)

x R(L',S',J',A+1,L,S,J)

x (25 +1)(28' +1)(2J + 1) (2L + 1)

X C(Js"l.la/\a/l; J’amJ +/1)
C(

L'my+p—mg, S, mg;J g+ 1)
1 1 1
W (_a I$_a ;_71)
x Wiz 353
x X(L,6S',J;L,S J;A+1,1,))

(1) mp £ (=1)° pa) (3.79)

X

where for A = 1,3,5... we use the top sign and for A = 2,4,6... we use the bottom

sign.
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Chapter 4

Results

4.1 Initial and Scattering States

To evaluate the expressions derived in the previous chapters a program was written
and executed on the DEC Station 3100. Radial wave functions for the scattering states
and the deuteron ground states were calculated by programs based on reference [51]
with additional deuteron ground states coming from reference [52] for comparison.
Although the wave functions of reference [51] explicitly contain the A components in
the ground state, only the nucleon components were used in the calculation.

6 T T T T T

Amplitude (fm™'/2)

0 05 1 15 2 25 3 35 4 45 5
Radius (fm)

Figure 4.1: Nucleon S (upper) and D (lower) ground state radial wave functions:

Solid, [51]; long dash, 4.38% D-state [52]; medium dash, 4.99% D-state [52]; short
dash, 5.61% D-state [52].
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Figure 4.1 shows the radial! wave functions for the deuteron ground state. The
top curves are the S-states components, and the bottom are the D-state components.
The principle difference between the three wave functions of [52] and the wave function
[61] is the behavior at small radii. For this reason we expect that any differences in
our calculation will occur mainly at higher energies, where the deuteron is probed to

a smaller radius.

4.2 'The Total Cross Section

101

o (fm?)

103
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Energy (MeV)

Figure 4.2: Theoretical curves for the total cross section: Solid, using [51]; dash and
dot using 5.61% and 4.38% D-state [52];dot dash,[55]; double dot dash,[40]; double
dash dot,[66).

Figure 4.2 shows theoretical curves for the total cross section from just above threshold
to 500 MeV on a log-log plot. The calculations shown from the literature are cal-
culations performed in the same manner as the current calculation, having in them
no meson exchange currents beyond those which are included by the use of Siegert’s
theorem, no consideration of the A resonance, and no relativistic corrections, i.c., no

spin orbit terms. The different calculations are in general agreement with each other,
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with the calculation of [66] being the only significantly deviating line below 100 MeV.
By 500 McV the effect of the different radial wave functions has become pronounced,

and a 1.3% difference in the D-state probabilities between the ground states of [52]

causes a 20% difference in the total cross section.
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Figure 4.3: Total cross section with experimental points: Lowest energy open square,
[29]; open up triangles, [32]; open diamond, [33]; open down triangle, [35]; solid circles,
[37); solid squares, [38]; solid up triangles, [39]; solid diamonds, [40]; crosses in delta
region, [41]; solid down triangles, [42]; pluses, [34]; higher energy open squares, [43];
crosses at low energy, [54].

Figure 4.3 shows the total cross section calculated with the ground state of
reference [51] (nuclcon components only), which will be used unless otherwise noted
from here on, and a selection of data points from experiments. The agreement with
experiment is excellent up to about 100 McV, in spite of the absence of relativistic
corrections and meson effects beyond those included by the use of Siegert’s theorem.
After 100 MeV, the experimental cross section begins to rise rapidly due to the pres-
ence of the A (1236) resonance. The calculation does not follow the data since no

attempt was made to include the A in the calculation. At 500 MeV, when the delta
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should no longer be a significant contributor to the total cross section, the data is
still about 30% higher than the calculation. This is not surprising since the calcula-
tion was performed without relativistic corrections, without meson exchange currents
beyond those included through the use of Siegert’s theorem and using only a limited

number of multipoles, and therefore should not necessarily be valid at higher energies.

4.3 Differential Cross Sections
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Figure 4.4: Differential cross section at 60 MeV: Solid, present work; dash, [55]; dot,
[70]; open squares, [60]; solid circles, [30].

Figure 4.4 shows the differential cross section at 60 McV. The squares are data from
1955 while the circles are from a monochromatic 1983 experiment, and the circles
should therefore be conside:  ’ the more reliable data points. The present work then
appears to fit the data better than the calculation of [55]. The principle differences
between this calculation and that of [55] are the radial wave functions used for the

scattering states and deuteron ground states. The caiculation of [70] includes meson
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exchange and delta effects, but the majority of the difference between it and the
present calculation is due to the relativistic corrections which it also contains, and

which interferes destructively with the rest of the calculation to reduce the cross

section in general.
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Figure 4.5: Differential cross section at 80 MeV: Solid, present work; dashed line,
[55]; open triangles, [33]; plus, [37]; solid triangles, [59].

Figure 4.5 shows the differential cross section at 80 MeV. It is not possible
to make a choice between the different calculations. The data are scattered and
contradictory, and there is no reason to prefer the results of one of the experiments

over the results of the others.

Figure 4.6 shows several theoretical calculations at 100 MeV, and one at
107 MeV which is close enough for reasonable comparison. The striking discrep-
ancy between the calculations of [55] and [66] is not due to the 7% difference in
photon energy. The discrepancy results from the neglect of higher order and correc-
tion terms in [66], and in differences between radial wave functicns. The agreement

of the present calculations with either of these two calculations, while not inspiring,
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Figure 4.6: Theoretical curves for the differential cross section at 100 MeV: Solid,
present work; long dash, 4.38% [52]; medium dash, [55]; short dash, 107MeV[G6]; dot
dash[70].

is better than their agreement with each other. The calculation of {70} including the
meson exchange and A resonance effects and relativistic corrections is also shown.
The dominant effect of these three is again the inclusion of relativistic corrections,
which lowers the cross section throughout. The effect of the meson exchange current
and A effects was to increase the cross section, especially around 90 degrees and
slightly larger angles, so that the combined effect has been a lowering of the cross

section at forward and backward angles.

Figure 4.7 shows the differential cross section at 100 MeV with data from var-
ious experiments. There is no convincing agreement with the data from either the
present calculation or the “classical” calculation of [55] which contains essentially the
same physics. The discrepancy with data at small angles is a problem common to

many such deuteron photodisintegration calculations, and is related to the neglect

43



0.001 ‘ - : r———— T

] i ]
[ L ]
e ]
ge10* oy “I,/ e % ]
! X JOE It |
;32 18 ] I
:‘\5 g+10 -"".j_:/;' S —§ ll E "\A}.. % -1
E SUTETE TS TSN s
= ! M ¢ =,
G
B
5

l&r}-l" Y ] f\§;.A é ___:
4+10% ;?" ,\"7.'—’ ]

2010

. . [ | . i | VTR VIS U H S0 D S S 5 AN VS S T A S S S
0 20 40 60 80 100 120 140 160 180
Angle (Degrees)

Figure 4.7: Differential cross section at 100 MeV with experimental points: Solid,
present. work: dash, [55]; dot[70]; open circles, [27]; open squares, [29]; open up
triangles, [32]; diamonds, [33]; down triangles, [35]; crosses [37]; solid squares [44];
solid up triangles [58].

relativistic corrections and meson exchange terms beyond those in the Siegert opera-

tors, as evidenced by the improved agreement of the calculation of [70] which includes
these terms.

Figure 4.8 shows the effects of the different matrix elements on the differential
cross seetion. The addition of the magnetic correction terms makes a barely dis-
cernible difference to the cross section at this energy, so different lines are not shown
for the addition of the electric and magnetic correction terms. It is clear that the
correction terms should already be included at this energy, since the forward angle

cross section is about 13% lower with the correction terms.

Figure 4.9 shows the differential cross section at 140 MeV, the last energy at
which we can reasonably hope for any agreement before the effects of the A resonance

completely overwhelm our calculation. While the data are scattered and somewhat
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Figure 4.8: Effects of different terms on the differential cross section at 100 MeV:
Solid, E1; long dash, E1&M1; med. dash, E1,E2&M1; short dash, E1,E2,E3,M1&M2;
dash-dot, E1,E2,E3,M1&M2 and correction terms.
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Figure 4.9: Differential cross section at 140 MeV: Solid line, present work; dot [70];
solid circle[34]; open triangles, [35); soli- triangles, [37]; crosses, [44]; squares [33].



contradictory, the results with a monochromatic photon beam experiment (crosses)
are to be preferred. The amplitude is a little higher than the calculation, and the
general shape appears to be better described by the calculation of [70], the most
probable explanation being that we are beginning to see in earnest the effects of the
A.
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Figure 4.10: Differential cross section at 800 MeV:Solid, present work, open squares,
[53]; solid circles,[34]

Figure 4.10 shows the differential cross section at 800 MeV. While we aban-
doned comparison with experiment after 140 MeV due to the dominance of the delta
resonance, it is our hope that at energies beyond the delta resonance, our calculation
will again show some agreement with experiment. Since high energy photons will
probe the deuteron at small radii, the ground state wave functions we have used here
may give cross sections substantially different from what would be achieved with more

conventional wave functions such as those of reference [52].
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4.4 Photon Asymmetry

For linearly polarized photons we can define in the notation of [55] the photon asym-
metry X (@) by the equation

:—gp = I,(8)[1 + S, (8) cos (2¢)] . (4.1)

Here I, is the degree of linear polarization, &£; = (Sﬁ + 33)1/2 where ; and ¥, are
the Stoke parameters of the photon. It is an easy matter to construct the matrix ele-
ments for linearly polarized photons from our matrix elements for circularly polarized
photons, and the asymmetry is then calculated as the difference between the cross
sections with linearly polarized photons, ¥; = 1, and unpolarized photons, ¥; = 0,

divided by the differential cross section, at ¢ = 0.
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Figure 4.11: Photon asymmeiry at 60 MeV: Solid, present work; long dash, [55]; med
dash, [66]; dot, [70]; solid circles, [62]; open squares,{63]; open triangles, [64]; pluses,
[67];0pen circle, [68].

Figure 4.11 shows the photon asymmetry as a function of angle for 60 MeV
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photons. The general shape of the theoretical curves is similar for all three theoretical
curves. The caleulations of [55] and [70] are very similar and appear to offer the best
fit to the data at this energy. The calculation of [66] appears a little low, with the

current calculation being somewhat high relative to the data.
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Fi-*ire 4.12: Photon asymmetry at 80 MeV: Dot, present work; long dash, [55], med.
dash, [66]; solid circles, [64]; open squares,[67]; up triangles, [69)].

Figure 4.12 shows the plhoton asymmetry as a function of angle for 80 MeV
photons. None of the curves seem to be in good agreement with the data. It is
surprising to note that the calculations of [55] and [66] are becoming more similar,
since the principle difference between them is that the later lacks some of the higher
order terms and correction terms in the multipole expansion which one expects should

give an increasingly large contribution with increasing energy.

Figure 4.13 shows the photon asymmetry as a function of angle for 100 MeV
photons. Again, none of the curves is in agreement with the data, although [55] and

[70] substantially agree with cach other.
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Figure 4.13: Photon asymmetry at 100 MeV: Solid, present work; dash, [55]; dot,
[70]; solid circles, [64]; triangles, [67]; diamonds, [69)].
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Figure 4.14: Photon asymmetry at 140 MeV: Solid, present work; dash, [55]; dot,
[70]; open triangles, [69]; solid circles, [65].
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Figure 4.14 shows the photon asymmetry as a function of angle for 140 MeV
photons.  No fit between the data and any of the calculations is apparent. The
caleulation of [55] is no longer at all similar to the present calculation, which is
actually in reasonable agreement with the calculations of [70]. In both this and the
preceding graph, it should be noted that the photon asymmetry is highly model
dependent. In particular, reference [70] shows a variety of other calculations with
presumably identical physics to the curves shown from that reference, but having
used different potential models to calculate the ground and scattering states. The
differences between these different calculations are at least as large as the differences

bhetween the calculations shown and the data.
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Figure 4.15: Photon asymmetry at higher energies: Solid, 500MeV; long dash,
700MeV; short dash, 900MeV.

Figure 4.15 shows the photon asymmetry for a varicty of energies above the
delta resonance. There is no data to compare to as yet, but data should be available
from the Mainz accelerator in the near future. It is to be expected that meson

exchange currents and relativistic corrections will be important at these energies, and
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little can be said other than that the curves of figure 4.15 show what the contributions

of the nucleon components to the photon asymmetries look like.
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Chapter 5

Conclusion

The agreement of the present calculation with data for the total cross section is very
good up to about 100 MeV, after which point the A(1232) resonance, which is not

included in this calculation, overwhelms the total cross section.

The agreement of the differential cross section with data is not quite so sat-
isfying. Although there is still some similarity between the data and the present
calculation, the fit achieved by the calculation of [70] is significantly better, especially
at small angles. Such agreement as is achieved is mainly fortuitous, due largely to
the fact that meson exchange and isobar currents tend to increase the cross section
while relativistic corrections tend to decrease it, so that the two effects cancel each
other out to a great extent. None the less, the shape is significantly affected by these

terms by 100 McV, and even more so by 140 MeV.

Photon asymmetry also did not exhibit good agreement between theory and
experiment. Even at 60 MeV, the present calculation was significantly higher than
the data, while the calculations of [70], including isobar currents, meson exchange
currents, and relativistic corrections, and of [55], which has essentially the same con-
tent in terms of physics as the present calculation, both show reasonable agreement
with the data. At this energy, the most likely source of the discrepancy of the present
calculation with the data is the extreme sensitivity of the photon asymmetry to the

potential model chosen.

By 140 MecV, the calculations of [70] and [55] are not as close to the data as
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the nresent calculation which, however, does not itself agree with the data. Such
similarity to the data as exists at this energy must be attributed to coincidence, since
it is not reasonable to expect that the physics included in the present calculation is

sufficient to produce an accurate description of the processes involved at this energy.

What the present calculation has done is only to examine the nucleon contribu-
tions to the cross sections and photon asymmetries using radial wave functions from
reference [51]. As expected, the effects of isobar and meson exchange currents and
still more importantly of relativistic corrections are significant, especially at higher
energies, as is obvious from a comparison of our results to calculations including these
effects such as the curves shown from reference [70]. For a calculation to fully exam-
ines the influence of using the wave functions of [51] on the cross section and photon

asymmetry these effects must be included.
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