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ABSTRACT

We examine in this thesis the unconditional structure of twisted sums of
Hilbert spaces. Johnson, Lindenstrauss and Schechtman proved that Z; does
not have unconditional basis. In Chapter 4 we prove the same result for an
arbitrary nontrivial Z,(). Further we can look at general twisted sum of /5,
X &rY for F nontrivial quasi-linear function (as described in Chapter 4), and
ask the same question! We give some general conditions on X ©fY’, which,
if satisfied, would enssure that X @®rY does not have unconditional basis.
Later, we prove a general result that allows us to pass from a space having
FDD and an unconditional basis to a subspace having UFDD. This result
will be used to prove some statements about the unconditional structure of
subspaces of twisted sums of [, with itself. Finally, we look at subspaces of
twisted sums, in particular at subspaces of twisted sums of {, with itself, and

examine when such subspaces are isomorphic to the original space.
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Chapter 1

Introduction

Let X be a Banach space. It is usual to identify a collection of subsets of X called
closed subspaces of X. When endowed with the structure inherited from X, these
subspaces are themselves Banach spaces. For each closed subspace Y of X there is
a general construction of an object called quotient space which is denoted by X/Y,
and again has the natural structure of a Banach space coming from X. In studying
the structure of Banach spaces a natural type of questions are the so-called three
space problems: if both Y and X/Y have some Banach space property, does X has
it as well? A property which yields a positive answer to the previous question is
called a three-space property. For example, reflexivity is a three-space property. The
notion of twisted sums gives a general setting for studying some of the three-space

properties.

When X and Y are quasi-Banach spaces, a twisted sum of X and Y is a quasi-
Banach space Z that contains a subspace X isomorphic to X such that the quotient
Z/X, is isomorphic to Y. The twisted sum Z is trivial if X, is complemented in Z,
otherwise Z is nontrivial.

Even though questions related to twisted sums were studied earlier, the systematic
study of this notion was motivated by the problem posed by Palais (the three space

problem), whether there are nontrivial twisted sums of [, with itself. In a paper
from 1973 Enflo, Lindenstrauss and Pisier gave the first example of such a space.
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Their approach was ”"local” in nature. The notion of a quasi-linear function was
introduced by Ribe in 1979; he used it to construct a nontrivial twisted sum of R
and [; (example presented here). The first detailed study of quasi-linear functions
and their connection to twisted sums was done by Kalton and Peck in the 1979 paper
[KP]| that initiated considerably further research.

Twisted sums of a Hilbert space with itself are probably the most interesting
examples of twisted sums and they were used to illustrate several important points
in Banach space theory. There is a particularly intersting class of twisted sums of
I, with itself, introduced in the above mentioned paper of Kalton and Peck. If ¢
is a Lipschitz function on (0, c0) the space Z»(y) is the completion of the space of
pairs of finitely supported sequences of reals ¢ = (z,) and y = (y.) endowed with
the quasi-norm

oo 1/2
iz, )l = (Z(:vn —ynSD(ln(IlyIIz/lan)))z) + llll2

where ||y||. denotes the ¢;-norm of a sequence y € ¢;. For () =t the space Za(p)
is denoted by Z, and is called the Kalton-Peck space.

Johnson, Lindenstrauss and Schechtman proved that Z, does not have uncondi-
tional basis. In Chapter 4 we prove the same result for an arbitrary nontrivial Z3(¢).
Further we can look at general twisted sum of [, X @Y for F' nontrivial quasi-linear
function (as described in Chapter 4), and ask the same question! We give some gen-
eral conditions on X @rY, which, if satisfied, would ensure that X ©rY does not
have unconditional basis. Later, we prove a general result that allows us to pass from
a space having FDD and an unconditional basis to a subspace having UFDD. This
result will be used to prove some statements about the unconditional structure of
subspaces of twisted sums of [; with itself. Finally, we look at subspaces of twisted
sums, in particular at subspaces of twisted sums of [, with itself, and examine when
such subspaces are isomorphic to the original space.

There are many important questions regarding twisted sums of Hilbert spaces
and perhaps the most important one is whether there exist nontrivial twisted sums
of Hilbert spaces that have unconditional basis. Casazza and Kalton conjectured a
negative answer to this questions.
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Chapter 2

Preliminaries

In this Chapter we present basic concepts in Functional Analysis which the Banach
space theory rests upon. They can be found in any textbook in Functional Analysis,
see e.g., [HHZ].

2.1 Normed and Banach spaces

Definition 2.1 Let X be a vector space. A norm on X is a real-valued function ||.||
on X such that the following conditions are satisfied by all vectors z and y of X and
each scalar a:

(i) |l|lz|| >0, and ||z]| =0 if and only of z = 0;
(1) llez|| = |el|]];
(iii) ||z + yl| < ||zl + llyll (the triangle inequality);

If we have a norm on X we can naturally define a metric by p(z,y) = ||z —y|| which
further defines the topology on X. A topological vector space X with the topology
given by a norm is called a normed space or normed vector space or normed
linear space and denoted by (X, ||.|).

Definition 2.2 A Banach space is a complete normed linear space (X,]|.]|)-

Example A Let X be the n-dimensional vector space of n-tuples of real or complex
numbers (R™ or C*). The supremum norm [|.||c on X is defined as follows:

|z]|eo = max|z;|, where z = (zy,....,z5) € X.
T
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The function |.||le is easily found to be a norm on X. The space (X,||.||l«) is
denoted by (7.

Example B Let X be as in Example A and let p € [1,00). Then the function ||.||,
on X defined by:

lelly = (3" lesf?)#7, where = (21, ...z) € X.
=1
is a norm on X. The space X together with the norm ||.|[, is denoted by .

Example C Similarly, for p € [1,00) we introduce the normed space {, = [,(N) of
all scalar valued sequences (z;)&, satisfying >, ||’ < oo together with the norm:

lll, = (O lil?)! /P for z = (z:)Z,.

=1

Definition 2.3 An inner product (or a scalar product or a dot product) is a
scalar valued function (.,.) on the product X x X such that:

(i) £ — (z,y) is a linear function for everyy € X;
(i) (z,y) = (y, x), where the bar denotes the complex conjugation;

(tii) (z,z) >0 for everyz € X , and (z,z) =0 if and only if z = 0;

Definition 2.4 A Banach space X is called a Hilbert space if there is an inner
product (.,.) on X x X such that ||z|| = \/(z,x) for every z € X.

It is straightforward to check that the norm |.|| on a Hilbert space H satisfies the
parallelogram identity, namely, for every z,y € H we have:

e +yl* + llz — ylI* = 2(ll=]I* + |ly|*)-

On the other hand , if a norm on a Banach space satisfies this equality, then, as it is
directly checked, ||.]| is Hilbertian norm with the inner product (z,y) defined by

(2.9) = 1(llz +3ll* = [l — 9I1")

in the real case, and by
1 . . .
(z.9) = z(le + 9l — ll= - ylI* +i(llz +iyl* = Iz — wll*))

4



in the complex case.
Therefore a Banach space is a Hilbert space if and only if every two-dimensional

subspace of X is a Hilbert space. The parallelogram equality also gives, by inspection,
that out of the spaces introduced before only {3 and [, are Hilbert spaces. It is easy

to see that the inner product in [; is given by:

fe o)

(xry) =Z$i'E

=1

where z = (z;)2; and y = (y:)2, are in ;.

2.2 Linear operators between normed spaces

Definition 2.5 Let X and Y be vector spaces. A linear operator orlinear trans-
formation from X into Y is a function T : X — Y such that the following two
conditions are satisfied whenever z,y € X and a is a scalar:

(i) T(z+y) =T(z) + T(y);
(i) T(az) = oT(x).

If the scalar field (R or C) is viewed as a one-dimensional vector space, then a linear
operator from X into R or C is called a linear functional.

We say that an operator T between normed spaces X and Y is continuous if it is
continuous in the topology defined on X and Y by the coresponding norms, and is
bounded if T(B) is a bounded subset of ¥ whenever B is a bounded subset of X.
The collection of all bounded linear operators from X into Y is denoted by B(X,Y)
and has the natural structure of a vector space.

Next we'll recall a classical result about operators between normed spaces, that
gives the equivalence between the notions of continuity and boundness for linear

operators.

Proposition 2.6 Let X, Y be normed spaces and T a linear operator between X

and Y. Then the following are equivalent:
(i) T is continuous;

(ii) T is continuous at some 9 € X;



(itt) T is bounded;
If X and Y are normed spaces we can define a norm on B(X,Y’) by:
IT|l = sup{l|Tz|ly; = € X, ||lz]| = 1}

It is easy to see that this formula indeed defines a norm on B(X,Y) and if Y is a
Banach space then B(X,Y) is a Banach space as well.

Definition 2.7 An operator T € B(X,Y) is called a linear isomorphism (or just
isomorphism) if it is one-to-one, onto Y, and T™! € B(X,Y).Two normed spaces
are called isomorphic if there is a linear isomorphism T of X onto Y.

It is easy to see that an isomorphism T carries Cauchy (convergent) sequences onto
Cauchy (convergent) sequences, respectively. Therefore, if X, Y are isomorphic
normed spaces and X is a Banach space, then Y is a Banach space as well. An
operator T' € B(X,Y) is called a (linear) isomorphism of X into Y if it is an
isomorphism of X onto a closed subspace T'(X) of Y.

Definition 2.8 An operator T is called a linear isometry if it is a linear isomor-
phism and ||Tz|ly = ||z|lx for every z € X. Spaces X,Y are called isometric if
there erist a linear isometry T of X onto Y.

Definition 2.9 Consider the space X endowed with two norms, say , X1 = (X, |-||1)
and X, = (X, ||.|l2). Norms ||.|l1,]|-]|l2 are called equivalent if the formal identity
mapping Id : X — X is an isomorphism between the spaces X, and X, , t.e. if
there exist constants c,C > 0 such that:

cllzllz < llzlly < Clizll2,
for every z € X.

Note that two norms [|.||1 and ||.]]2 on a vector space X need not be equivalent just
because there is some one-to-one bounded linear operator that maps ||.||; onto |{[.||2,
even if the map is an isometric isomorphism.

It is a classical fact that if X is a finite-dimensional vector space then any two norms
on X are equivalent. In particular, all finite dimensional normed spaces are Banach
spaces and every normed space of dimension n is isomorphic to (3.



2.3 Direct Sums and Quotient Spaces

For a pair X, Y of normed spaces we introduce a normed space X @Y called a direct
(topological) sum of X and Y that consist of all ordered pairs (z,y),z € X,y €Y
together with the norm

(@, )l = llzllx + llylly-

X and Y are isometric to subspaces {(z,0);z € X} and {(0,y);y € Y} of X &Y,
respectively. Also, X @Y is a Banach space if and only if both X and Y are Banach

spaces.
There are other ways to define a norm on the sum of the vector spaces X and Y. For

example:
%+ llyliE)®

I(z.y)llz = (ll=
or:

(2, y)lleo = max{|lz]|x, lyllv}
Fortunately, all these norms are trivially equivalent.

Let X be a normed space and Y be a closed subspace of X. For z € X we consider

the coset T:
T={zeX;(z—2)eY}={z+y;ye Y}

We can give the set X/Y = {Z;z € X} of all cosets a vector space structure by
T+y= a:/-{—\y and aF = az, where « is a scalar. [t is easy to check that

1zl = inf{llyll; y € z}
makes X/Y into a normed space.

Definition 2.10 Let X be a Banach space, and Y a closed subspace of X. The space
X/Y together with the canonical norm ||Z|| = inf{|ly|l;y € T} is called a quotient
space of X modulo Y.

If X is a Banach space and Y is a closed subspace of X then X/Y is also a Banach
space. It is easy to check that (X @ Y)/X is isomorphic to ¥ and (X @ Y)/Y is
isomorphic to X. However, X may not be isomorphic to Y & (X/Y) !

Definition 2.11 Let X be a Banach space and Y be a closed subspace of X. An
operator P € B(X) is called a projection onto Y if P(y) =y for everyy € ¥ and
P(X)=Y.



Equivalently, we may say that P is a projection onto Y if and only if P? = P and
P maps X onto Y. Indeed, if P is a projection then Pz € Y for z € X and thus
P2z = P(Pz) = Pz. Conversely, if P € B(X) satisfies P> = P and P is a map onto
Y, then given y € Y, there is z € X such that Pz = y and then Py = P’z = Pz = y.

Definition 2.12 Let X be a Banach space and Y a closed subspace of X. Then Y
is said to be complemented in X if there is a bounded linear projection of X onto

Y.

It can be easily proved that when Y is complemented in X there exist a closed
subspace Z of X such that X =Y @ Z. For example, we may put Z = ker P. Every
such Z is called a complement of Y in X. Also X/Y is isomorphic to Z.

We may ask ourselves whether every closed subspace of a Banach space is com-
plemented. This is not true in general, although deciding whether a specific subspace
of a given Banach space is complemented or not is often a very difficult problem.

Let us just mention the case of ¢y and /. Clearly co is a closed subspace of [, but
it can be proved that every complemented subspace of ¢, is very large (non-separable)
(see e.g., [LT]), and co does not satisfy this condition, hence is not complemented.

Lindenstrauss and Tzafriri showed that

Theorem 2.13 (Lindenstrauss, Tzafriri) A Banach space X  has the
property that every closed subspace of X is complemented in X if and only if X
is isomorphic to a Hilbert space.



Chapter 3

Schauder Bases

In this chapter we present basic structural notions in the Banach space theory. The
definitions and results can be found in many books in the Banach space theory, for

example, [LT] and [HHZ].

3.1 Definitions and Properties

Definition 3.1 A sequence {z,}3, in a Banach space X is said to be a Schauder
basis of X if for every x € X there is a unique sequence of scalars {a,}3%| so that
is the sum of the norm convergent series £ = Y oo | anZn. A sequence {z,}32, which
is a Schauder basis of its closed linear span is called a basic sequence. A basis (or
a basic sequence) {z,}S2, is called normalized if ||z,|| =1 for all n.

It is easy to verify that whenever {z,}52, is a Schauder basis (basic sequence) of (in)
X, the sequence {z,/||z.]|}, is a normalized basis (basic sequence).

If X is finite dimensional it is trivial to verify that the notion of Schauder basis
coincides with that of a vector-space basis.
Also note that if a Banach space X has a Schauder basis then X is separable. Indeed,
all rational linear combinations of the basis vectors form a countable dense set.

Example A If X is ¢g or [, for 1 < p < oo, then it is easy to check that the sequence
{e.}22, of standard unit vectors of X is a basis for X and that {on}32; = oo anen
whenever {o,}32, € X However the sequence {e,}32, is not a basis for le. Actually
[ does not have a Schauder basis since it is not separable, see e.g.[HHZ]

Example B Any orthonormal basis of a Hilbert space H is a Schauder basis of H.
Indeed, if {h,}2, is an orthonormal basis of H then for any z € H we can write

9



=) o (z,hn)h. where (.,.) denotes the inner product in H.

From now on we shall not consider any other type of basis in infinite-dimensional
Banach spaces besides Schauder basis. We shall therefore often refer to it as basis
instead of Schauder basis.

If {z,}32, is a basis of a Banach space X, then the canonical projections P, :
X — X are defined for n € N by P,(z) = Y I, aiz; for z = 3 2, aiz;.

Let (X, ||.]|) be a Banach space with a basis {z,}32,. For every £ = "7 | anzn

n n

in X the expression |||z||| = sup, || Za;x;” is finite (because || Za;x,—[l — |lz|| as

n — o). |||-||| is in fact a norm 01;_3( and also ||z|| < [l|z||| for every z € X. It
can be proved that X is complete also with respect to |||.||| and thus, by the open
mapping theorem, the norms [|.|| and |||.]|| are equivalent. Using these remarks it
immediately follows that

Proposition 3.2 Let X be a Banach space with a basis {z,}2,. Then the canonical
projections P, are bounded linear operators and sup || P,|| < oco.

Definition 3.3 The number sup, ||P.|| is called the basis constant of the basis
{z.}32,. A basis whose basis constant is 1 is called a monotone basis.

There is a simple and useful criterion to check whether a given sequence is a Schauder
basis.

Proposition 3.4 Let {z,}52, be a sequence of vectors in X. Then {z,}3%, ia a
Schauder basis of X if and only if the following three conditions hold:

(i) . #0 for all n.

(ii) There is a constant K so that, for every choice of scalars {a;}2, and all integers

n m
1> i < K| D asill.
=1 =1

(iii) the closed linear span of {z,}32, is all of X.

n < m, we have that

Clearly, conditions (z) and (7¢) of the previous proposition give a necessary and suf-
ficient condition for a sequence {z,}52, to be a basic sequence. Also it is easy to see
that the smallest number K for which (i) holds is the basis constant of {z,}52,.

10



It is natural to ask whether every infinite-dimensional separable Banach space has
a basis.

This question goes back to the early 30’s and appeared in an equivalent form in
the Scottish Book. It remained open for forty years, but was finally settled in the
negative in a 1973 paper by Per Enflo. It is true however (and classical) that every
infinite-dimensional Banach space has a basic sequence.

Definition 3.5 Two bases, {z,}2., of X and {y.}2, of Y, are said to be equiva-
lent provided a series Y oo anTn converges if and only if 3 >7 | anyn converges.

In other words, bases are equivalent if the sequence space associated to X by {z.}72,
is identical to the sequence space associated to ¥ by {y»}22,. There is an equivalent
way of saying that two bases are equivalent

Proposition 3.6 Let {z,}32, be a basis in a Banach space X and {yn}3, be a basis
in @ Banach space Y. Then the following are equivalent:

(i) {z.}2, is equivalent to {y.}o,.
(i) There is an isomorphism T of X onto Y such that Tz; = y; for all i.

(iii) There are Ky, K, > 0 such that for any n and for all scalars ay, as, ..., an we

1 n n i n
L Y awlx <11 awdly < Rl ) el
=1 =1 =1

Definition 3.7 Let {z,}3,; be a basic sequence in a Banach space X. A sequence
of non-zero vectors {u;}3%, in X of the form

have

X-

P+l

u; = Z AnTn
n=p,+1
with {a,}%, scalars and p; < p2 < p3 < .... an increasing sequence of natural

numbers, is called a block basic sequence or briefly a block basis of {z.}72,-

Note that a block basis of {z,}22, is a basic sequence with the basis constant less
than or equal to the basis constant of {z,}3%,.

11



3.2 Duality

Let X be a Banach space with a Schauder basis {z,}32,.

Definition 3.8 The functionals z, € X~ defined for each n by

o0

o
x;(z a;z;) = @, for anyz = Z a;z; € X

i=1 =1
are called the biorthogonal functionals associated to the basis {zo}32,-

The biorthogonal functionals are bounded linear operators. Indeed, for each n we
have that

o
lesll = sup [l250) aws)l|
[[z]|=1 =1

= sup [an]
flzll=1
| Paz — Pa_yz|
sup

llzll=1 Hi’?n”
< 2R

[EA!

where K is the basis constant of {z,}52,-

It can be easily shown that the sequence {z}22, is a basic sequence in X~ and
it is a basis for X~ if and only if the span of {z;}52, is all of X*. Note that for this
to happen, in particular we must have that X is separable. Hence, for example, for
X =1, or X = C(0,1) this cannot happen for any basis. On the other hand this is
always the case for X reflexive.

Definition 3.9 4 basis {z,}2, of a Banach space X is called shrinking if

lz"l{z3 || —> 0 as n —> oo

for every z= € X~.

There is a simple characterization in terms of shrinking bases of the spaces for which
the biorthogonal functionals form a basis of the dual:

Proposition 3.10 Let {z,}32, be a basis for a Banach space X. Then the biorthog-
onal functionals {z3}2, form a basis of X~ if and only if {z,}22, is shrinking.

Another important notion concerning bases is that of boundedly complete basis.

12
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Definition 3.11 A basis {z,.}32, of a Banach space is called boundedly complete
if, for every sequence of scalars {a.}; with sup, || > i, aiz:i|| < oo, the series
> o 1 GnTn converges as well.

Example A The unit vector basis is boundedly complete for any [, space , 1 <p <
oo. An example of a basis which is not boundedly complete is the unit vector basis
of cg. Indeed, if we take for example {a,}32, to be the sequence (1,1,1,....) the it
is easy to see that sup,| .7, a@:izi]| = 1 < oo but the series ) o> a,z, does not
converge in Cg.

By combining the notions of shrinking and boundedly complete James gave an ele-
gant characterization of reflexivity in terms of bases:

Theorem 3.12 (James) Let X be Banach space and {z,}2, a Schauder basis of X.
Then X is reflezive if and only if {z,}32, is both shrinking and boundedly complete.

3.3 TUnconditional bases. Symmetric bases

A very important notion in the study of Banach spaces is that of unconditional bases.
Before giving the definition of this notion we present some general facts concerning

unconditional convergence.

Proposition 3.13 Let {z,}32, be a sequence of vectors in a Banach space X. Then
the following conditions are equivalent:

(i) The series Y oo z-(n) converges for every permutation ® of natural numbers.
(ii) The series Zf___l T,, converges for every of ny < ng < ns.....
(iii) The series Y .o | €nTn for every choice of signs &n.

(iv) For every e > 0 there exists an integer n so that || 3_.c, zi|| < ¢ for every finite
set of integers o which satisfies min{i € o} > n.

A series S ooz, which satisfies one, and thus all of the above conditions. is said to
be unconditionally convergent.

In finite-dimensional spaces a series Y .. | z, converges unconditionally if and only if
converges absolutely (i.e. > oo, |[zx]| < co. In infinite dimensional spaces however we
can always find a series sum,z, that converges unconditionally but not absolutely.

This result is due to Dvoretzky and Rogers:
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Theorem 3.14 Let X be an infinite-dimensional Banach space. Let {1, }32, be a se-

< 1 A2 < oo. Then there is an unconditionally

convergent series Y - | Tn in X such that ||z,]| = An, for every n.

quence of positive numbers such that )

Definition 3.15 A basis {z,}52, of a Banach space X is called unconditional if for
every x € X, its expansion in terms of the basis Y .. | anTn converges unconditionally.

In view of Proposition 3.13, there are several equivalent conditions that ensure a basis
is unconditional:

Proposition 3.16 A basic sequence {z,}22, is unconditional if and only if any of
the following conditions hold:

(i) There is a constant K such that for all n and all scalars a,,a,, ...,a, and every
subset o of {1,...,n} we have
1Y aszdl < KD aill-
i€o i=1
(it) There is a constant K such that for all n and all scalars ay,a,, ...,a, and signs

g; = +1 we have
n kL3
1) cazdl < KD asaill.
=1 i=1

The best possible constant K from the condition (i:¢) in the Proposition 3.16 is
called the unconditional basis constant of {z,}52,. Of course, not every separable
Banach space has an unconditional basis, and one classical example of such a space
is L1(0,1) (see [LT]).

There was a natural and very important question in the structural theory of Ba-
nach spaces whether every Banach space contains an unconditional basic sequence.
This long-standing problem was answered in the negative when in 1991 Gowers and
Maurey constructed a Banach space that does not contain an unconditional basic
sequence.

Note that a Schauder basis decomposes a Banach space into sum of 1-dimensional
subspaces. It is useful in applications to consider decompositions where the com-
ponents into which we decompose a given Banach space are subspaces of dimension
larger than one.
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Definition 3.17 Let X be a Banach space. A sequence {Xp}22, of closed subspaces
of X is called a Schauder decomposition of X if every ¢ € X has a unique
representation of the form z =Y oo =, with z, € X, for every n.

The decomposition is called shrinking if for every z= € X~ we have that
lz"[(x3e ll — O0asn — o0

The decomposition is called unconditional if, for every z € X, the series that
represents z converges unconditionally.

In applications the decompositions for which dim X, < oo for all n play a partic-
ularly important role (note that in the general definition above sup,dim X, need not
be necessarily finite). Such decompositions are called finite dimensional decom-
positions, in short FDD. If additionally the decomposition is unconditional then it
is called unconditional finite dimensional decompositions, in short UFDD.

We conclude this chapter by presenting another important concept in the study of
Banach spaces. To begin, note that the unit vector basis of [,, for 1 < p < oo, besides
being unconditional, has the property that is equivalent to any of its permutations.

Definition 3.18 A basis {z,}32, of a Banach space X is said to be symmetric if,
for any permutation w of the integers, {z.(n)}2, is equivalent to {z,}2,.

Comparing this definition to the one for unconditional basis, it is a trivial conclusion
that every symmetric basis is unconditional. There is a notion which is weaker than
that of a symmetric basis, but of no less importance.

Definition 3.19 A basis {z,}32, of a Banach space X is called subsymmetric if
it is unconditional and, for every increasing sequence of integers {ng},;, {zn, }32,

s equivalent to {z,}32,.

It is not hard to prove that every symmetric basis is subsymmetric.
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Chapter 4

Twisted Sums

In the first three section of this chapter we discuss classical results about twisted sums
as they have been developed in the original paper of Kalton and Peck [KP], and
described in specialized monographs (see e.g. [BL], Chapter 16). In the remaining
sections we present new results regarding twisted sums of Hilbert spaces.

4.1 Introduction

Definition 4.1 A quasi-norm on a real vector space X is a real valued function
I.]| satisfying:

(i) llzll >0 forz € X,z #0,
(i) ||laz|| = |a|||z||, for z,y € X and o € R,
(iir) |z + y|| < k(||z|| + |lyl}) for z,y € X and some k > 1.

The smallest possible k in (i27) is called the modulus of concavity of ||.||

First note that in contrast with the case of normed spaces, in quasi-normed spaces
which are not normed, balls with respect ||.|| are not convex sets. Nevertheless, they
define the topology on X and it is possible to define a metric d on X invariant under
translations which determines the same topology. A quasi-normed space X is called
a quasi-Banach space if X is complete with respect to the invariant metric d, i.e.,
every [|.||-Cauchy sequence in X converges.

Example A The most important class of quasi-Banach spaces which are not Banach
spaces is the class of L,(u) spaces for 0 < p < 1 with the usual quasi-norm ||g||, =
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(flglp)l/”. In this case:

llg + Al < 277" (llglls + l12ll),

i.e., the modulus of concavity of of L,(u) is 2571,

A linear operator T between quasi-Banach spaces X and Y is continuous if and
only if it is bounded, and we put ||T'|| = sup{||Tz||;||z|]| < 1} (as in the convex case).
The standard results depending on Baire category, like open mapping theorem and
closed graph theorem, are valid for quasi-Banach spaces. On the other hand, quasi-
normed spaces are not necessarily locally convex, and the Hahn-Banach theorem and
other results depending on it are in general false in this context. If X is a Banach
space and Y is a closed subspace of X, then the quotient space X/Y is a quasi-
Banach space with the usual definition of the quotient quasi-norm. Equivalence of
quasi-norms is defined the same way as for norms.

The question that motivates the study of twisted sums is the following: Given X
and Y quasi-Banach spaces , what are the quasi-Banach spaces Z which contain a
subspace X, isomorphic to X so that Z/X, is isomorphic to Y. Clearly the direct
sum X @ Y satisfies this condition.

Definition 4.2 Let X and Y be quasi-Banach spaces. A twisted sum of X and
Y is a quasi-Banach space Z which contains a subspace X, isomorphic to X so that
Z| X, is isomorphic to Y. The twisted sum Z is trivial if X, is complemented in Z.
Otherwise Z is nontrivial.

Another way of saying that Z is a twisted sum of X and Y is to say that there
exists a short exact sequence with bounded linear operators:

0 x— .z 9 .y 0

If X,Y and Z are such that
lizll = llzll,z € X

and
lyll = inf{||z]l: gz = y}.y €Y

then we say that Z is an isometric twisted sum of X and Y. In this case Z has a
subspace j(X) isometric to X and Z/j(X) is isomorphic to Y.

17



Definition 4.3 Two twisted sums Z, and Zy of X and Y are called equivalent if
there is an isomorphism T from Z, onto Z, so that the diagram:

0 x—L oz By 0
j;X [T I,
0 Xx—2 .7 2 v 0

commutes, where [y and [y are the identity operators.

4.2 Quasi-linear functions

Definition 4.4 Let X and Y be quasi-Banach spaces. A function F' :' Y — X s
called quasi-linear if there is a constant M so that:

(i) F(tz) =tF(z) forallt e R andz €Y.
(@) |F(z +y) - F(z) = F)ll < M(ll=]| + [lyll) for allz,y €Y

Definition 4.5 Two quasi-linear functions Fy and F> from Y to X are called equiv-
alent if there is a linear map T : Y — X and a constant C such that:

| Fi(z) — F2(z) — Tz|| < Cl«|
forallz €Y

We shall define, for each quasi-linear function F', a twisted sum of X and Y, which
will be denoted by X @rY. Then we show that each twisted sum of X and Y is
isomorphic to X @Y , for some F'.

Proposition 4.6 Let X and Y be two quasi-Banach spaces and F : 'Y — X a
quasi-linear function. Then the formula:

Iz )l = llz — F()ll + [yl (4.1)

defines a quasi-norm on the space of pairs (z,y), z € X and y €Y and this space is
a twisted sum of X and Y.
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Proof First we check that formula (4.1) defines a quasi-norm. For that, let C be the
quasi-linearity constant of F' and k; and k; be the concavity constants for X and Y
respectively. We have:

(z1 + z2, y1 + y2)]| lz1 + z2 — F(y1 + y2)ll + llyr + v2l|

IA I

killzy — F(y1) + z2 — F(y2)||
+ki[|F(y1) + F(y2) — F(yr + v2)ll
+ha([ly1ll + lly2ll)

< E(llzy = Fy)ll + llz2 = F(y2)ll)

+e.C(llyull + llwall) + F2llyll + Hly=1)
< M(I(zey)ll + (22, 92)l)

where M = max(k?, k, +k,C). We denote the space of pairs (z,y) endowed with this
quasi-norm by X @rY. Next we’ll prove that X @Y is a twisted sum of X and Y.

Let {z,.}22, be a Cauchy sequence in X @rY and let ¢: X &rY — Y be the
map ¢(z,y) =y. q is clearly linear and we have that:

llgll = sup{lia(z, v)|l; li(z, )]l = 1}
sup{|lyll; Iz — F(y)ll + llyll = 1}

sup{|lz — F()ll + llyll; llz — @) + llyll = 1}
1

[

A

Hence ¢ is bounded. Moreover, we have that:

llvll < inf{jlz]; ¢z = y} < (£ (y) v)Il = llyll

therefore, |y|| = inf{||z]|; ¢z = y}.

Now consider the map j : X — X &¢Y defined by j(z) = (z,0). We have that 7 is
linear and it is trivial to check that ||7(z)|| = ||z||. We can see now that the subspace
Xo = {(2,0);z € X} of X &Y is isometric to X and the quotient (X &rY)/Xo is
isometric to Y. Hence we have a exact short sequence with bounded operators:

0 X~ oxgy—L .y 0

It remains to check that X @&zY is complete. Let {z,}52, be a Cauchy sequence
in X ®&rY, and let ¢ be the map defined before. Since ||¢(z)|| < ||z|| for any z €
X &rY we have that {gz,}32,is Cauchy. Therefore, since Y is complete and q is
onto, we conclude that there is a z € X @rY so that gz, — gz as n —> oo. If
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we let z = (z,y) and 2z, = (Z.,yn) then we have ||z — z, — (u,,0)|| — 0 where
Up =T — Tn — F(y — yn) € X. Furthermore, we have:

lun — umll = [[(¢n,0) — (um, 0)]|
=z —zm — (Um,0) = (2 — 2n — (Un, 0)) + (2m — 2a)||
<z = zm — (Um, O]l + llz — 20 — (wn, O)|| + [[2m — zall

therefore {u,}22, is a Cauchy sequence in X, hence converges to some u € X. So we
obtain in the end that lim z, = z — (u,0), hence X &rY is complete.
n—oo .
Next we’ll prove a theorem, due to Kalton, which gives the correspondence be-
tween equivalence classes of quasi-linear functions and twisted sums.

Theorem 4.7 Let X and Y be two quasi-Banach spaces. Then the correspondence
F < X ©FY is a one-to-one correspondence between equivalence classes of quasi-
linear functions from Y to X and equivalence classes of twisted sums of X and Y.
In particular, X @Y is a trivial twisted sum if and only if F' is equivalent to a linear
function.

Proof First, we’ll prove that if Z is a twisted sum of X and Y, then there is a
quasi-linear function F' : X — Y so that Z is equivalent to X @Y. Consider the
short exact sequence giving the twisted sum Z:

0——x—L 7L v .9

Let v : Y — Z be a linear mapping (not necessarily continuous) such that
gp(y) =y forally € Y (i.e. ¢ is a linear right inverse of ¢). To construct such a ¢
we define it first on a Hamel (algebraic) basis of Y and then extend it by linearity.
Since q is onto and bounded g is a open mapping, therefore, by the open mapping
theorem, there is a constant M > 0 such that for any y € Y there exist z, € Z with
llzy|| < M||y]| satisfying ¢(z,) = y. Define ¢ : Y — Z by ¥(y) = z,. We can define
this ¥ such that it is homogeneous, by defining it first on the unit ball of ¥" and then
extend it by homogeneity on whole Y.

Consider now the map F': Y — X defined by:

F(y) =7"'(%(y) — »(y))
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Note that F' is well defined since Kerq =Imj and ¥(y) — ¢(y) €Kerq for any y € Y.
Clearly F' is homogeneous and next we’ll check that F' is quasi-linear:

IF(z+y)— F(z) = Fiy)ll = 57z +y) —¥(z) — 4(y)ll
< 57 HHlb(z + y) — o(z) — L)l
< IR Ulb (= 4+ ) = (@) = ()
< lgTHIEEM (= + yll + =l + vl
< IR M (K2 + 1) (Il + )

where ki, k; are the moduli of concavity for Z and Y respectively. Hence F' is quasi-
linear. We’ll prove next that Z is equivalent with X ¢gY.
Define T : Z — X &rY by:

z= 7"z — v(qz)). q2)

Again, note that T is well defined since z — ¢(qz) €Kerq. Also T is clearly linear.
We have:

1Tzl = llg=ll + l77(z — @(qz)) — F(g=)ll

lgzll + 57" (= — ¢(q2)) — 57" (¥(q2) — w(g=))l]
llgzll + 77z — ¥ (g=))l

157 Hlllz = & (g=)]l + llallll=]]

l=HIA=N + Mlalll=1) + lallll=]

(=L + MiqlD) + lalDIl=]

therefore T is bounded. Next we’ll prove that T is one-to-one and onto.

IAIAIA I

T(z) = T(z) < { Iz — o(gz1)) = 77 (22 — w(gz2))

gz, = gz
. { 21 — (gz1) = z2 — p(g=2)
gz = gz2

= I} = 29

therefore T is one-to-one. Given (z,y) € X ®fY ir is easy to check that for z =
Jj(z) + ¢(y) we have T'(z) = (z,y), hence T is onto. Moreover the required diagrams
commute, therefore T is an equivalence between Z and X @frY.

Assume now that X @®rY and X ®gY are equivalent twisted sums, and let
T: X&Y — X @&gY be the isomorphism which gives the equivalence. Then, since
the required diagrams commute, there exist a linear operator L : ¥ — X such that
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T(z,y) = (z + Ly,y)- Since T is bounded we have that ||T(z,y)| < |T||l[(z,y)]| for
any (z,y) € X ®r Y. So, for (Fi(y),y) € X ®r Y, for any y € Y we obtain that

T (Fu(y),w)ll = I(Fi(y) + Ly, )l = llyll + | Fi(y) — F2(y) + Lyl| (4.2)

and
I1CFu(y), o)l = Nyl + 1 Fu(y) — Fu@)l = |yl (4.3)

The relations (4.2), (4.3) the boundness of T yield:

| Fi(y) — F2(y) + Lyl < (ITH — DIyl

and thus F} is equivalent to F5.

Also if F} and F; are equivalent then X &Y and X &g, Y are equivalent twisted
sums as well. Indeed, the map T'(z,y) = (= + Ly,y) where L is such that || Fi(y) —
Fy(y) + Ly|| < K||y|| is an equivalence map between X @r Y and X &gY.

|

Quasi-linear maps are in general discontinuous so it may come as a surprise thet
they actually can be extended from any dense subspace of Y" to the whole space in
an essentially unique way.

Proposition 4.8 Suppose that X and Y are quasi-Banach spaces and Y; is a dense
subspace of Y. Suppose that Fy : Yo —» X is a quasi-linear function. Then Fy can be
extended to a quasi-linear function F : Y — X and F is unique up to equivalence.

Proof Consider the space X @ g Yo with a quasi-norm given by :

)l = llz — Fo()ll +llyll

Let Z be the completion of this space. We'll verify that Z is a twisted sum of X and
Y. Define j : X — X @Y, by j(z) = (z,0) and ¢/ : X Br Yo — Y by ¢/(z,y) = y.
Then ¢/ extends to a quotient map q of Z onto Y. To prove that the sequence:

0 x—1—wz— 9 .y 0

is a short exact sequence, remains to prve that Kerg=j(X). We clearly have j(z)
CKerq. Now, if z € Z such that g(z) = 0, then z = lim,(zn,yn), where (Zn,Yn) €

N
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X @FOYE) for all n, and q(IDn,yn) e q(::) = 0’ hence Yn — 0. But ”(Fo(yn)’yn)” —
l|yn]| — O, so we have that:

[(zn — Fo(yn),0) — 2|l £ [[(zn — Fo(yn), 0) — (zn, yu)ll + [(zn,yn) — =||
= [[(Fo(yn); yn)ll + [[(Zn:¥n) — =l|
= |lyall + |[(zn,yn) — 2}l — O0asn —r o0

Hence z = lim,(z, — Fo(yn),0); thus (z, — Fp(yn)) converges to some zg in X and
z = j(zg). Therefore j(X) =Kergq.

Now by Theorem 4.7, Z is equivalent to X @Y for some quasi-linear map H, therefore
there exists an isomorphism T : Z — X &g} such that the following diagram
comrnutes:

0 x—2 A 7 .y 0
X }T [y
0 X X @Y Y 0

Then the restriction of T' to X & g, Yo has the form T(z,y) = (= + Ly,y) where
L : Yy — X is linear. From this we obtain that

| Fo(y) — H(y) + L)l < 1Tl

for any y € Y;. Now define the function F: Y — X by

_J H(y)-L(y) ifyé¢ Yo
F(y)“{ Foly) ify € Yo

It is trivial to verify that F' is quasi-linear, and the uniqueness up to equivalence

follows from the uniqueness of the completion.
[

Example We'll construct a nontrivial twisted sum of R and [;. First we define a
non-trivial quasi-linear function F' :[; — R. From the previous theorem, is enough
to define F on on the subspace R of finitely supported sequences on [;, with the
norm from [;. Let:

F(z)= Z zoln|z,] — (Z ZTp)-ln| z z.|, ¢ = (21,22,...) E R®
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where 01n 0 is taken as 0. It is easy to see that F'is quasi-linear . We’'ll prove that F
is not equivalent to 0, i.e. there isn’t any linear function ¢ : [; — R such that:

|F(z) — o(z)| < M||z]|- (4.4)

Note that F(e,) = 0, where {e,}22, denotes the unit vector basis in ;. Assuming
there exist a linear function ¢ satisfying (4.4) then we have that |@(e,)] < M for all
n, hence ¢ is bounded on the unit sphere of R*. On the other hand:

1 n
n:-E ; R*) f .
T ~ e; € S(R*) for any n

=1

and F(z,) = —lnn. So:

|[F(zn) — ¢(zn) — F(za)]

| F(zn)| = [F(zn) — @(za)ll

|F(z4)| — |F(zn) — @(z)] for n large enough
Inn — M — occ as n —> o

lo(zn)

vV v

contradiction with ¢ bounded on S(R*).

Therefore R &l, is a non-trivial twisted sum of R and ;. In particular, R &/, is not
isomorphic to a Banach space, since in a Banach space any 1-dimensional subspace
is complemented.

This example makes it clear that the natural setting for discussion of twisted sums
is that of quasi-Banach spaces. In general, even when X and Y are Banach spaces,
the quasi-norm in X @rY may fail to be equivalent to a norm (as in the example
above). However, given some regularity conditions on X and Y, we may conclude that
X &rY is isomorphic to a Banach space. The regularity conditions involve notions
as type, cotype, superreflezivity. Without entering into the definitions of these terms,
we'll list the following theorem, due to Kalton and Peck

Theorem 4.9 (Kalton,Peck)

(i) If X and Y have nontrivial type then any twisted sum Z of X and Y is iso-
morphic to a Banach space.

(i) If X and Y are superreflezive then so is any twisted sum of X and Y.

Let us note that {; is a prime example of a Banach space without nontrivial type. As
it will be needed in the next chapters, we also note that [, has a nontrivial type and
is superreflexive.



4.3 Twisted sums of [,

Definition 4.10 A function ¢ : X — Y between two Banach spaces X and Y is
called Lipschitz if there exist a constant K such that for any z,y € X we have

le(z) —e@lly < K-l —yllx-

There is a general simple way to build quasi-linear functions from [ to ;. Let £
denote the class of Lipschitz functions ¢ : Rt — R. For v € £ we can define a map
Fo : R*® — [,, where R is the subspace of finitely supported sequences of [,, given

by:
. ll=ll .
Fyz)[k] =4 %% (In lrkl) »for z, # 0 (4.5)
0 Jfor 2, =0

Proposition 4.11 Fy defined in (4.5) is a quasi-linear functiora.

Proof First we’ll show that for all scalars a,b we have:
[(a +b)p(ln|a + b]) — ap(ln|a|) — be(ln [b])] < 2L(|a| + [b]), (4.6)

where L is the Lipschitz constant of ¢, and 0¢(ln0) is taken to be 0. Also, without
loss of generality, we may assume that ¢(0) = 0. Note that for any 0 < ¢t < 1 we
have [tln|t]] < 1/e. We distinguish two cases:

Case [ |a| + |b] = 1. In this case we have:

(@ + b)p(ln |a + b)) — ag(in]al) — bea(ln [8])]
< L([(a+b)Inja+ bl + |aln]a]| + |bln [b]])
< 3L/e
< oL

Case 2 |a| + |b] # 1 In this case put s = |a| + |b] and let ¢ = a/s, d = b/s and
¥(t) = ¢(t +Ins) — ¢(Int). We have now that |¢| + |d| = 1 and therefore we have
the inequality (4.6) for ¢,d and %, according to Case I. Doing the calculations, we
obtain the required inequality for a,b and .

Define now G : R*® — [, by:

:z:k-g:(lnlz—lkl) Jfor zp # 0
0 forzr =0

G(z)[k] = {



From (4.6) we obtain that:
G(z +y) — G(z) — G| <2L(l|l=|l + [lyll), for z,y € R

Fix now u € R® with ||u|| < 1. From the definition of &G and from the fact that ¢ is
Lipschitz it is easy to see that the k* coordinate of ||u||G(u/||u]|) — G(u) is bounded
by L|ukln [|ul|]. Therefore:

MwllGu/llull) — Gl < Lilull|ln ]| < L/e.
Note that Fo(z) = ||z||G(z/|lzl]). For |z|| + |ly]| = 1 we have:

IFo(z + y)— Fo(z) — Fo(y)ll = IG(z +y) — lzl|G(=/llzll]) — lylIG(y/llyIDII
< G(z +y) — G(z) — Gl
+ [ lzlG(=/ll=ll) = G(=)ll
+ ylG/llyl) — GW)I
< 2L+ Lje+ Le.

Since Fy is homogeneous, it follows from above that is quasi-linear.
|

Since Fp : R® — [3 is quasi-linear and R* is dense in [; it follows from Proposition
4.8 that Fy can be extended to quasi-linear function F : [, —» [, and the extension
is unique up to equivalence. For any ¢ € £ we’ll denote by Z;(¢) the twisted sum
lo ®Fly, where F is defined as above. Note that the definition is unambiguos, since
the extensions F' of Fy are all equivalent. So, in other words, Z;() is the completion
of the space of pairs of finitely supported sequences ¢ = > zZne, and y = > ynhn
(where by {e,}22, and {h.}32, we denote the usual unit vector basis in the two [,
spaces) endowed with the quasi-norm:

oo 1/2
(=, y)|| = (Z(wn - yw(ln(llyllz/lynl)))Z) + 1yl (4.7)

For w(t) = t the space Z2(y) is denoted by Z, and is called the Kalton-Peck space.
We mentioned in the previous section that /; has nontrivial type, therefore, from
Theorem 4.9 we have that the quasi-norm from (4.7) is equivalent to a norm, i.e.
Z,(p) is a Banach space.

A result of Kalton and Peck gives sufficient conditions for Z;(y) to be trivial
(we also say that the twisted sum splits).
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Theorem 4.12 (Kalton,Peck) Let ¢ and ¢ be in L. Then Zy(p) and Zx(¥) are
equivalent twisted sums if and only if sup |p(t) — ¥(t)| < oco.
t>0

It follows in particular that, if Z,(y) splits, so Za() is isomorphic to l; and the
converse is also true!

Remark: In 1975 , Enflo, Lindenstrauss and Pisier gave a negativ answer to
the Palais problem: If both ¥ and X/Y are isomorphic to a Hilbert space, is X
necessarily isomorphic to a Hilbert space? The spaces Z() with sup,,q[@(t)| = 0o
give an alternative answer to the problem. Indeed, if sup,sq [@(t)] = oo then Za(¢)
does not split, hence is not isomorphic to Iz, but both ¥ = span{(en,0),n € N} and
X/Y are isomorphic to l, , by the very definition of a twisted sum.

4.4 TUnconditional structure of Z>(¢p)

In this section will examine the unconditional structure of Z;() Johnson, Lin-
denstrauss and Schechtman proved in [JLS] that the space Z; does not have
unconditional basis. We’ll prove the same result for an arbitrary nontrivial Z>(¢)
Let » € L such that Z,(0) does not split. Denote by E., the two-dimensional subspace
of Z3(ip) spanned by the vectors (e€,,0) and (0, h,), i.e. £, = span{(ex,0),(0,h,)}.

Proposition 4.13 The spaces E,, n € N form a 2-dimensional UFDD for Zy(9),

which is 1-unconditional (i.e. || 3 unll = || X entall for every choice of finitely many
vectors u, € E. and signs e, = *1). Moreover this UFDD is symmetric in the
sense that for any permutation © : N — N we have |[(zx, y=)|l = [[(z,y)|| where
z.(n) = z(w(n)).

Proof

Fix uy, U2, ..., U, arbitrary n vectors with ux € Ei for any k between 1 and n and
fix arbitrary n signs €1, €2,...,6n- Let ux = (arer,brhy) for any k. Also note that
the standard vector basis of {3 is unconditional, so || Y €na@nean|| = || 22 anexl| for any
a = {a,}2, € ly. Let Fy be the function defined by 4.5. Therefore we have:



I L‘i exur]| = Z Exaer, Z exbihi) ||
) = ||Zskbkhk ||+||Zekakek—Fo(Z,kbkhk
= | Z bihi)l| + | Z(ekak — exbrep(In( Z biche) || /16&]) ekl
= | 2 bkl + | Zek(ak — bl (]| Z bich)l|/16x])exl
= | Z bkl + | Z arer — FO(Z bk |
= n;uku

Hence the spaces E, form a l-unconditional 2-dimensional UFDD for Z3().
Simple calculations and the fact that the standard unit basis in [ is symmetric gives

the fact that this UFDD is symmetric.
|

Also from the previous proposition follows easily that the sequence
e, hi,ea, ha,e3,ha,..... is a basis for Z3()

To prove that Z,(¢) doesn’t have an unconditional basis, we’ll prove a slightly
stronger result, that Z,(¢) doesn’t even have Gordon-Lewis local unconditional
structure.

Definition 4.14 A Banach space X is said to have Gordon-Lewis local uncon-
ditiona structure(in short l.u.st.) if for every finite dimensional subspace £ of X
the inclusion operator [ : E — X factors through a finite dimensional space U with
an unconditional basis in an uniform manner, i.e. there exist a K such that for every
finite dimensional subspace E of X there exist a finite dimensional space U and op-
erators T : E — U and S : U — X such that ST = I and ||T||-||S|| - ubc(U) < K,
where ubc(U) is the unconditionality constant of U.

This definition provides a weak notion of unconditionality. A space having an uncon-
ditional basis has l.u.st. as well, but the converse is not true.

For our purpose, we’ll need a result that gives a characterization of superreflexive
Banach spaces that admit a finite-dimensional UFDD and have Lu.st. The following
theorem is due to Johnson, Lindenstrauss and Schechtman, [JLS]:
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Theorem 4.15 Let E be a superreflezive Banach space with an unconditional decom-
position into finite-dimensional subspaces {E}2,. Then E has local unconditional
structure if and only if there is a Banach space FF O E with an unconditional basis
{znktng<me k<o 50 that Ep C span{zap},.=, for all k, and so that there is a bounded
linear projection P from F onto FE with Pz, € Ey for all k and n < my.

Before proving the main result, we’ll need the following two Lemmas:

Lemma 4.16 Let ¢ be a Lipschitz function such that (p(In\/n)). is bounded. Then
sup lo(8)] < oo.

Proof We have that there exist a M > 0 such that for any n, jpo(ln /n)| < M. Pick
t > 0. Then there exists a unique n such that In/n <¢ <Invn + 1.

Then:
le(t) < o(t) — @(In v+ 1) + [p(ln vn +1)]
[t —lnvn+1|+ M
|In/7 —lnva + 1|+ M
sn(t+ L)+ M
Ln2+ M

VAN | B VAN VAN VA

Hence sup |p(t)]| < oc.
£>0
[

Lemma 4.17 Let A be a 2 x 2 matriz < @ ?
~

). Define T : E, — E, by:
T(znen Ynha) = ((aZn + BYn)en, (YTn + 6Yn)hn)

and define formally an operator T on Z5(p) by:

T(Z Tpen, Z Ynhn) = Z T(znen,Ynhbn).
n=1 n=1

n=1
Then: T continuous if and only if a = § and v = 0.

Proof For the if part assume that a = § and v = 0. Let Fy be the function defined
by (4.5) and F a extension given by Theorem 4.8 such that Z,(p) = {2 Grla.
When o =6 and v =0, T is:

T(znen, Ynhn) = ((azn + BYn)en, aynhs)
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and
T(Z ‘Tﬂeﬂd Z yﬂ-hﬂ) = (Z(axﬂ + aBy‘n)ena Z aynhn)
n=1 n=1 n=1 n=1

Then:

IT(ZznemZyn D= ”(Z(azn+.6yn)emzaynhn)“

n=1

= Ialllyll+llZawnen'*‘zlgynen_F(aZynhn)
n=1 n=1 n=1
|a|||y||+||a(2znen—F(Z ynhn))w}: Ynenll

I

IA

ladllyll + led Z F(Z yuhin) | + 18111y

= (lal + 18Dyl + Iallll‘ - F(y)ll
< (led + 18Dl )

Hence T is bounded.
For the only if part assume that 7" is bounded.

Let u, = —\/1—5- Z(ek,O). Note that |[|u,|| =1 and
k=1

T(un) = (Z(ek, = 7_ <az ek, th>
k=1

1

Then:

1T (un)ll = f;(l/lf+naZek—vFo(th)IO

k=

= %= (I*/l\/—+llazek 710(111\/_)26‘”)

= = (lvn + Valye(ln Vo) — af)
= |v| + |v¢(ln /n) — ] — oo from Lemma 4.16 if v # 0

Since T is bounded we must have v = 0.
To prove a = 4, take:

I



Again note that ||un|| = 1. We have
1

T(un) = Tn ((ap(ln v/n) + B)ek, Shy)
Tun) = o= ((aso(ln VR +8)Y e sy hk>
k=1 k=1
Hence:

1T (un)ll= = <|5|\/77+ 1((a = S)p(ln /) +6)D ekll)
= ||+ [(a = 8)y(ln/n) + B] — oo frol;lLemma 4.16 if a # ¢

Again, since T is bounded we must have o = §. This concludes the proof.
|

And now we have all the tools to prove the main result for spaces Z;(y). Later
on we’ll prove a stronger version of this theorem.

Theorem 4.18 The space Zy(p) has unconditional basis if and only if Z3(p) is triv-
1al.

Proof The if part is immediate , since Z»(¢) being trivial implies that Z;(¢) is
isomorphic to {; and the standard unit vector basis is unconditional in /5.

For the only if part we’ll prove that if Z,(¢2) is non-trivial then Z3() doesn’t
have l.u.st., hence doesn’t have an unconditional basis as well.
Assume by contradiction that Z;(¢) has l.u.st. The argument that will yield an
contradiction is divided into several steps.

Step 1 We shall construct a bounded linear operator T : Zz(p) — Za(p) with
the property that T Ey C Ei for all k and so that the matrices Ay of the restriction
of T to Ej with respect to the natural basis satisfy:

inf dist (Ak,{<‘0’ g ) ‘o, B € R}) >0 (4.8)

where the distance is taken with respect to any fixed norm on the space of 2x2
matrices. To build this 7' assume that F', z,4+’s and P are as in Theorem 4.15, and
let 2, € F~ be the biorthogonal vectors to (znx)nk. We claim that the operator
defined as:

Tyu =P < > z;,k(u)zn,k> U € Za(p) (4.9)

kned
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is bounded for any set of indices J. Indeed,

[Toull = [P (Z ZZ,k(U)zn,k) |

kneJ
< [Pl Z (EMA|
kneJ
< |I1PI-K-| Z 25 (W) znkll
k.n
= ||P||- K ||u]

where K is the unconditionality constant of (z,4)n k. Hence T is bounded for any

set of indices J.
Next, for each k, we shall find subsets J. C {1,2,...,my} such that the 2x:

matrices Ay corresponding to the restrictions of P Z zh p(w)zn e | to By satisfy:
neJg

dist (Ak,{( g '2 > a,B € R}) > u (4.10)

for all £ and some fixed p > 0.

Fix k. For each 1 < n < my consider the rank one operator S, : £y — E) defined
as Spu = P (2] 1(u)znk). Since S, is rank-one and Ej is two-dimensional, its matrix
with respect to the natural basis is either of the form

an  bn 0 0\ _ 0 0
Onln Qpby or an b, T\ Qnap Qnb,

where , in the second case we consider a, = 1 to unify notations. Note that

Z Spu = Zk P(z; (u)znk) = P (Zk z:'k(u)zn'k) = Pu = u,
n=l n=1

n=1

for any u € E. Hence the sum of all the m,; matrices is the identity matrix, so
we have that 3 % a,b, = 1. Now summing the absolute values of the upper right
entries of the matrices of the first form and the lower right entries of the matrices
of the second form and taking into account that (z,)nk is an unconditional basis
for F we obtain that there is an absolute constant Kg such that 3 "% [b,] < Ko.
Let [ := {n;|a.| > 2—1\;} We claim that Enelk apb, > é Indeed if we assume the



contrary, we get

1= |§k:anbn| < | Z anbn| + | Z 0tn by
n=1

n€l; ng¢l;
1 L. } :
< 2 + 2Ko |bn|
n&l;
L L -
S 2t Ko
= 1

and we obtain a contradiction. Hence Znelk anb, > %

Now fix an n € I and assume that for this n the matrix is of the first form. We
claim that at least one of the following possibilities must occur:

1) aqa, > |atnbnl

—L
14+2Ko
i) —anan, > m|anbn|

ill) a, — anbn _>_ mlanbnl

iv) apb, —an, > |atnbn|

L
— 142K9¢
Assume that none of the above occur. Then the negations of i) and ii) imply that
|anan| < gll,h—,o|anbn|, hence, since n € [, we obtain

a| < ———=\bn] L ——=—|anbn 4.11
lanl < T3 Ro 10! = TR, 1ot (4.11)
Also the negations of iii) and iv) imply that
n = nb-n. PR nbn 4.12
Therefore, from (4.11) and (4.12) we obtain that:
lotnbn| = |an — (an — anbn)| < lan| + |an — anby
< Thatg |onbal + 1o bl
= Ianbnl

and we obtain a contradiction. Hence our claim is true. If n € [ is such that the
matrix of S, is of the second form then we obtain trivially that |anbn| > 1555 |cnbal
hence the analogue of iii) or iv) for this n hold.
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Since Znelk anb, > % we have that there exist a subset J; C [ so that ZneJk b, >
& and so that one of the possibilities i)-iv) holds for any choice of n € J;. We’ll prove
next that for this choice of Ji condition (4.10) holds. For convenience, we’ll consider
the distance with respect to the supremum norm on the space of 2x2 matrices. For
a fixed k, we can distinguish two cases:

1) The possibilities 1) or ii) occur and in this case the lower left corner of Ay,
ZHEJk QnGn, satisfies:

1 1
1) onaal 2 — > lanbal > o5
2K, = 2
= 1+ 2K, = 8(1 + 2K%)

therefore, the distance to the set of matrices of the form ( « B is at least -t
0 « 8(1+2Ko)
2) the possibilities iii) or iv) occur. In this case note that the absolute value of

difference between the upper left corner and the lower right corner of A satisfies:
1 1

n nbn > n nbn > — nbn > AN N

|2 an—anbal 2 D lan—a '—1+21{0§|a T

neJg nedg

Therefore we have

max(| 3 an—al | 3 anba—al} 2 413 an—al+ 1Y anba—al)

n€Jg neJy neJy neJi
> 1 E ap — Qnby|
neJy
1
2 16(1+2R0) "

Hence, the distance to the set of matrices of the form ( g g ) is at least m.

So the relation (4.10) holds for p = m

Now we’ll take J = |J, Ji and define T := Ty where T is defined as in the formula
(4.9).

We already checked that T is bounded and it is easy to verify that TE; C Ex.
Also, from the previous considerations, the estimate (4.8) holds as well.

Step 2 Next we’ll prove that the existence of such a T as defined above contradicts
Lemma 4.17.
We have that T is a diagonal operator with respect to the 2-dimensional decomposi-
tion and the matrices of the restriction of this operator to Ej are Ax. Hence, we can
find a subsequence (k;): of integers such that all the matrices A, are small enough
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perturbations of a fixed matrix which cannot be of the type ( g g ) since we have

that
inf dist (Aki,{(g g) ;a,ﬂéR}) >0

Since the UFDD is symmetric (actually one only needs the subsymmetry) we have
that span{Ey, }2, is naturally isometric to Z,(y). But it is easy to see that Lemma
4.17 clearly continues to hold when all the matrices A, are small enough perturba-
tions of one fixed matrix. Therefore we obtained a contradiction with the mentioned
lemma, since the diagonal operator (with respect to UFDD) we built is bounded but
its restrictions to Ej are not of the form (or at least small perturbations) of a matrix

a B
oft:hetype(0 a) .

Therefore Z,() doesn’t have l.u.st. and the proof is complete.

4.5 Arbitrary twisted sums of [,

We begin by observing that in the Theorem 4.18 the particular form of the norm in
Z,() was not used, but rather the properties of Z,(¢) derived from previous results
turned to be of much importance. This suggest that the theorem can be extended
for arbitrary twisted sums of /o that satisfy certain properties. In this section we
shall examine an extension of the main theorem for [ @ rl; where F' is an arbitrary
quasilinear function. We also shall describe some conditions on F which ensure that
a version of the main theorem holds.

Let F : [, — [, be a non-trivial quasi-linear function and consider the twisted
sum lo ®rl;. Assume for the moment that F' is such that {3 @rly has canonical UFDD
which is subsymetric. Recall that the norm in [, & rl2 is given by

Iz, o)l = llyll + llz — Fyll.

We’ll denote by Z,(F) the space l; @ rly. Recall from previous sections that Z3(F)
is trivial if and only if there exist an linear operator T : [, — [ and a constant A
such that

|Fz—Tz| < K||=||.

Hence, Z,(F) is not trivial if for any S : [, — [; linear and for any K, there exist
an z = z(K, S) € l2, ||z|| = 1 such that

|Fz — Sz|| > K. (4.13)
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As before, we’ll denote by FE, the subspace of [, @ pl, spanned by (e,,0) and
(0,kh,). To prove that Theorem 4.18 "works” in this case as well we’ll need the
following result, a version of Lemma 4.17:

Lemma 4.19 Assume that the space Zy(F) = [, ® ply has canonical UFDD
(i.e.Zo(F) =Y oo, En), which is subsymmetric.

ﬂ).DeﬁneT:E'n—>E’,1 by:

LetAbea?x?matriz(a
v 6

T(xnenv ynh"n.) = ((axn + ﬁyn)env ("/17.,1 + 5yn)hn)

and define formally an operator T on Zy(F) by:

T(Z ZTn€n, Z Ynha) = Z T(zn€n, Ynhn)-
n=1 n=1 n=1

Then: T continuous < a =46 and v =0

Proof The argument used in Lemma 4.17 for the if part is valid here as well.

To prove the only if part assume that T is bounded. For u = > o, aie; € Iy we

have that:

[ o]

T(u,0) = Z T'(a:e;,0) = Z(aaiei’7aihi)

i=1 =1

Hence
o0

1T 0)f = 7l D_ achill + lla Y aiei = vF (D ahi)
=1

=1 =1
oo

= Iylllell + 1] I8 D ae — FOO aiki)l
=1

=1
Define the operator S : [, —> /> on the basis elements by S(k;) = ﬁ—le; and extend it
to the whole of [ by linearity. Since Z,(F') is nontrivial, from (4.13) we have that for
any K > 0 there exist an ug € l2, ||lux]| = 1 such that ||Sug — Fug|| > K. Then, if

v#0
1T (ur, 0l = 7| + [Vl Sux — Fukll = [y|(K +1) — o0 as K — co.

But since T is bounded and ||(ux,0)|| = |lux]| = 1 the above condition cannot
hold. Therefore v = 0.

For the second part let u = Z a:h; € l; and write F(u) = Z bie;.
i=1

=1
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Then -~ - o .
T(F(Z a,-h,-), Z a.-h,-) = (Z(ab; + ﬁai)ei, JZ aihi)-
=1 =1 i=1 =1

So we have

1Pl = 18lllull+lla Y bies + 8 awes = SF(Y_ aiho)

=1

= [8fllufl + llaF () + 8 Zaief —SF(u)l

=1

= [Sl[«]l + I8 Z aie; + (a — &) F(u)||

= [8lllull + e = 8] - 1525 Y _ aie: — F(u)ll.

i=1

As before, define S : [ — {3 by S(h;) = la—‘zs—le; and extend it by linearity to all of
[2. Since Z,(F') is nontrivial, from (4.13) we have that for any A" > 0 there exist a
ug € la, |lug|| = 1 such that ||Sug — Fug| > K.

Then, if @ # 6,

IT(F(uk),ur)ll = 18] +|a = 6] - |Sux — Fuk]|

> Pl+|lea—46]- K — 0 as L — o©

Note that ||(F(ux), ur)|| = |lukl]l + | F(ur) — F(ug)|| = 1 and since T is bounded the
above convergence cannot hold. Therefore & = § and this concludes the proof.
|

Now we can formulate our main theorem which strengthen Theorem 4.18.

Theorem 4.20 Let Z,(F') be a twisted sum of [ with itself such that the canonical
2-dimenstonal decompostition is unconditional and subsymmetric. Then Z3(F') has an
unconditional basis if and only if Zo(F) is a trivial twisted sum.

As remarked before, now that we have Lemma 4.19, the proof of this theorem is
similar to that of Theorem 4.18.

A natural question that appears is what conditions on F' would ensure that Z;(F)
admits a canonical subsymmetric UFDD? The following proposition gives an partial
answer to this question.

Notation If z = (z;, z2,....) is an element in [, and € = (&1,&2,...) is a vector of
signs (i.e. €; = £1) then by ez we understand the vector (€21, €&2%2,....) of la.
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Proposition 4.21 Let F' : [ — [, be a quasi linear function with the property that
there ezist a constant K such that for any finitely supported vector u € l, and for any
choices of signs € = (&1, €2, -..) the following inequality holds

1 £'(ew) —eF(u)]| < Kjul-
Then Zy(F') admits the canonical UFDD.

Proof We’ll prove that there exist a constant C such that for any finite number of
vectors uy, us, ..., Un With ux € E; and for any signs € = (&1, &2, ...6,) we have that

n n
1Y " sruell < CIY well
k=1 k=1

For any k let ur = (arex,brhr). Again note that the standard vector basis of [, is
l-unconditional, so || 3" enanen|| = || 3 anen|| for any a = {a,}32, € [;. Therefore
we have:

| Zsmll = II(Z ekam,z exbihe )|l
= | Z exbrhil + | Z Exarer — F(chbkhk)ll
< | Zekbkhku + Zskakek —eF( Zbkhk
+ |leF( Zbkhk F(Zskbkhk

< | Z bkl + || Z aer — (}: bihi)l| + K| Y bihl
k=1 k=1
< (K+1)||Zukn
k=1

Hence the spaces E, form a 2-dimensional UFDD for Z,(F) and this concludes the
proof.
|

4.6 Subspaces of twisted sums

In this section we’ll explore the unconditional structure of subspaces of twisted sums
of [,. We’ll begin by proving a general theorem, which will allow to pass from a space
having an FDD and an unconditional basis to a subspace having UFDD.
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Theorem 4.22 Let X be a Banach space and {e,}32, a monotone normalized un-
conditional basis of X. Assume that X = 3 °. | E, is a shrinking FDD. Then there
ezist a sequence (ni)i>, of natural numbers such that X = 7. | En, is unconditional.

Proof We’ll construct by induction the sequence (Ey, )i such that X =37 | F, is
unconditional.

Let E,, := E,. Since E; is finite dimensional, its unit sphere is compact, hence
for any § > 0 we can find a finite d-net of the unit sphere. Pick a finite 3-net of
S, = {z € En,;|z|| = 1}, say W, = {w!, w?,...,w'} with

(= 0]
= Z atej fori =1,2,....k;
Forany1 <¢ < Al there exist a p; such that || Y2°2 aieJ|| < L Letul =37 ale,
for any i = 1,2,...k;. Then we have that |w] — uj|| < §, for any 1 =1,2,...k. Let
= max p;.
i 1<i<k pi

Since Yo7 | E is shrinking we have that
|z"|span(Eijee || — O for any z™ € X~

For any 7, let z7 : X — R be defined by z7(3_32, aje;) = a;. Clearly z7 € X~. Now,
forany 1 <:1 < ql there exist r; > q; such that for any w € S,, with m > r; we have
that |z7(w)| < 7= o

Let r = 1%121( r; and pick an ny > r. In S, consider a finite “2 -net, say Wy =
i<qy
2

1 Sh-
{wl, w?, ..., wi?}, with:

o

E eJ for:=1,2,....,k

For any 7 between 1 and k, there exist a s; > g such that || biejll < o4z Let

uh=5% gl biej, for any i = 1,2,...k;. We have that

._JJ—’S +1Y5

llws — | < Ilzb‘egllﬂl Z bieill

j=s;+1

But we've just seen that || 352, . biejl| < = and:

1

uzb‘em <Zlb‘l—2lx (w}) I_Z4 o palrevE
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Hence, for any 1 < i < k, we have that ||w} — ub|| < 4_:2 + ﬁ = #

Continuing in this manner we obtain a sequence ( £y, )¢ such that for each S,, we
have an finite 2"1‘ -net W,,, with the property that for any w;;k € W,, there exist an
ui, € X such that ||w}, —ul || <3ix

Also from the previous construction we see that (u;* ) is a block basic sequence of
{en}2, for any choice of ¢ in the index set of W, . Since {e,}32, is unconditional,
any such block is unconditional as well.

Next we’ll show that any sequence (wn, )i with wn, € Sn, is equivalent to a block
basis of {e,}32,. Fix such a sequence (wn, )x. Then for any w,, € S,,, there exists

an wi € W,, such that

L net.

R 1 . R
lwn, —wik || < 3 4% since Wha, is an 55

As we've seen before, for this wi there exists an ul € X such that

. . 1
”w:lkk - u'ln.kk “ S 2 . 4k -
We claim that (wn, ) ~ (ui ). Indeed,
ik i 1% i 1 ]. ].
”wnk - unk” —<—- ”w"k - wﬂ-k” + ”wnk - unk“ S 2 . 4k + 2 . 4k = 4_k
Therefore:
oC ) o0 l 1
> llwn, —ui ]l < ZF =3
k=1 k=1

so indeed (wn, )k ~ (ui )k, and this concludes the proof.

We’ll prove next a small general result regarding subspaces of twisted sums:

Lemma 4.23 Let X and Y be two quasi-Banach spaces and Z a twisted sum of X
and Y. Let Zoy be a subspace of Z. Then there exist subspaces Xy of X and Yo of Y
such that Zy is a twisted sum of X and Y.

Proof Indeed suppose we have the exact sequence with bounded linear operators:

0 x—1 .79 .y 0
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Define:
Xo :={z € X;j(z) € Zo} and Yo := q(Zo).

Clearly Xy and Yp are subspaces of X and Y respectively and it is trivial to check
that we have the following short exact sequence with bounded operators:

0 X2l 7592 oy, 0

where jo = j|x, and g = q|z
]
In the case of Z3(F'), any subspace Zg of Z,(F’) is a twisted sum of subspaces of [5.
If these subspaces are infinite dimensional then Zg is again a twisted sum of [; with
itself. Hence Z;, is equivalent with Z,(G) for some quasi-linear function G : [ — [5.
As a corollary to the Theorem 4.22 we have the following results:

Theorem 4.24 Let Z(F') be a twisted sum of I, with itself such that Zy(F') has
canonical shrinking FDD which is subsymmetric. Then Z3(F) has an unconditional
basis if and only if Zo(F') is a trivial twisted sum.

Proof The if part is obvious, and we’ll prove now the only if part.

From subsymmetry we have that the subspace > ro, En, of Z>(F’) is isomorphic
to Zy(F) for any sequence (nt)f2,; of natural numbers. Assume that Z3(F’) has an
unconditional basis. Then, from the Theorem4.22 we have that there exist a sequence
(nk)i2, of natural numbers such that the sum ) 7., E,, is unconditional. But, from
the Theorem 4.20 we have that the twisted sum > 7., E,, is trivial and, since it is
isomorphic to Z3(F’), we obtain that Z,(F') is trivial as well.

|

Theorem 4.25 Let Z>(F') be a twisted sum of l, with itself such that Zy(F') has
canonical shrinking FDD. Then if Z3(F') has an unconditional basis then there erists
a sequence (ni)$2, of natural numbers such that the sum > _po, Eyn, is a trivial twisted
sum of lo with itself.

Proof Since Z,(F') has an unconditional basis and canonical shrinking FDD, from
Theorem4.22 we have that there exist a sequence (nx)%2, of natural numbers such
that the sum > 7, En, is unconditional. But then from Theorem 4.20 we have that

the twisted sum > 7o, En, is trivial.
|

41



Clearly, not every twisted sum of [ has necessarily canonical FDD. However, if F’
satisfies some conditions, then we can conclude that Z,(F') has FDD. The result is
given by the following proposition.

Proposition 4.26 Let F : [, — [ be a quasi-linear function such that for every
y€ly
HF(y — Pay)ll — 0 for n —> o0

where P, are the canonical projections in l,. Then Z3(F') admits canonical FDD.

Proof
Let z =5 00, arer and y = > 1o | behi be in [. We have to show that

n

(z,y) — Z(akek,bkhk)ll — 0 as n —» oo.
k=1

We have:
(. y) = > (arer, behe)ll = I arer, D bihe) — > (arew, bl
k=1 k:olo k=1 . k=1
10D arer, > bkl

k=n+1 k=n+1

1Y behill + 11 D akex — F(Y_ ek

k=n+1 k=n+41 k=n+1
= |ly — Pyl + llz — Poz — F(y — Puy)ll
< ly = Payll + llx — Paz|| + || F(y — Pay)ll

But |[y — P,y|| and ||z — P.z|| both tend to 0, being the norms of the tails of elements
of [, and ||F(y — P,y)|| tends to 0 by the hypothesis. Therefore we have that

n

(2 ) — 3 (akes, behi) | — 0 as n — oo,
k=1

Hence (z,y) = 5> oo (aker, brhr). Also, since the representations z = > ;7| arex
and y = > ;2| bihy are unique it follows easily that the above representation of (z,y)

is unique as well. Therefore Z,(F') has canonical FDD and the proof is complete.
|

Note that if in particular F' is continuous at 0 the hypothesis of the previous propo-
sition are satisfied, hence Z(F') has canonical FDD.
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Next we’ll give a characterization for subspaces of Z,(F'). We start by presenting a
lemma which follows easily from Theorem 4.7.

Lemma 4.27 Let Z be a twisted sum of quasi-Banach spaces X and Y and let Zg
be a subspace of Z and Xo, Yo be the subspaces of X and Y, respectively described
before such that Zy is a twisted sum of Xo and Yo. Then there exist a quasi-linear
function F : Y — X such that Z is equivalent with X &Y and F(Yp) C Xo

Proof We have the following two exact sequences:

0 x—L -z 91 .y 0

and

0 X2tz ey 0

where jo = j|x, and go = q|z,- Recall from Theorem 4.7 that when we built a quasi
linear function F such that Z is equivalent with X @Y we constructed the functions
¢ : Y — Z a linear right inverse of ¢ and ¢ : ¥ — Z a bounded right inverse of q
and then set
Fy)=i""(¥) — #(¥))-

Note from the proof of Theorem 4.7 that we can construct this functions such that
o(Yo) C Zo and ¥(Ys) C Zy. Then the function F obtained in this way has the
property that F'(Yo) C Xo

Now consider Z a twisted sum of [, with itself and Zy a subspace of Z. We saw
that Zo is a twisted sum of Xy and Y} for some X and Yp subspaces of [;. Then there
exists a quasi-linear function F' : [, — [, such that F(¥5) C Xo and Z is equivalent
with Z,(F). Assume that X, and Yj are infinite dimensional, hence isometric with
[, and let T : [, — X, and S : [, —> Yp be the coresponding isometries. Define
G:lo, — [y by

G=T'0Fo0S

Note that G is well defined since F'(Yy) C Xo.

Theorem 4.28 In the previous setting, we have
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(i) G is a quasi-linear function
(ii) Z,(G) is equivalent with Zy

Proof
(i) For any z,y in [, we have:

IT~H(F(S(z +y)) — F(Sz) — F(Sy)l
| F(Sz + Sy) — F(Sz) — F(Sy)ll
k(l[Szl + [Syll)

k(I + 1wl

where k is the quasi-linearity constant of F'. The homogeneity of G follows easily
from the homogeneity of F,T and S. Hence G is quasi-linear.
(ii) To prove that Z,(G) and Z, are equivalent it is enough to show that

IG(z +y) — G(z) — G()l

A IA

l(z,¥)llc = [(Tz, Sy)l|F for any z,y € L.

We have:
[(Tz,Sy)llr = ISyl + |7z — F(Sy)l|

= |yl + 1T~ (Tz - F(Sy))ll
= |lyll + lle = T7H(F(Sy)l
= |lyll + llz = GW)Il

= |i(z.y)llc

Hence Z,(G) and Zg are equivalent and the proof is complete.
|

Corollary 4.29 In the previous setting, if there exist a linear (not necessarily con-
tinuous) function @ : l, —> [, such that

IT~" o FoS(y) = F(y) = Q) < Cllyll
for some constant C and for any y € [; then Zy(F) and Z,(G) are equivalent.

Proof Follows immediately from the previous theorem and the definition of equivalent

twisted sums.
| |
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4.7 Closing Remarks

Certain results presented here hold in a more general context. All the results leading
to the Theorem 4.18 can be extended if we replace [ by a space X having a 1-
unconditional symmetric basis and making some assumption on the twisted sum of
X with itself. Questions regarding this problem have been studied in [CK]. For
the purpose of this thesis we considered only real quasi-Banach spaces, but similar
constructions work for the complex case as well.

Twisted sums proved to be a useful tool in approaching several problems in the
Banach space theory. As mentioned before, they give a general way to construct
spaces which fail the three space property, i.e. spaces Z which for some 0 < p < o
contain a subspace X such that both X and Z/X are isomorphic to [, while Z itself is
not isomorphic to {,. Also using twisted sums Kalton produced an explicit example
of a Banach space that is not isomorphic to its complex conjugate.

The main conjecture related to the material presented here is that of Kalton and
Casazza who conjectured that if a twisted sum of a Hilbert space with itself has
local unconditional structure, then it must be trivial, i.e. isomorphic to a Hilbert

space.
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