
Mineral Resource Estimates with Machine Learning and Geostatistics

by

Matthew Samson

A thesis submitted in partial fulfilment of the requirements for the degree of

Master of Science

in

Mining Engineering

Department of Civil and Environmental Engineering
University of Alberta

© Matthew Samson, 2019



ABSTRACT
Mineral resource estimation is an integral part of making informed decisions while evaluating the

feasibility of a mining operation. Geostatistical tools estimate geological and spatial features with

the assumptions of first and second‑order stationarity. In the modelling process, Geostatisticians

make subjective decisions regarding stationarity, potentially introducing bias into the estimates.

Kriging is considered the best unbiased linear estimation technique for modelling geological and

spatial features; however, in domains where data is non‑Gaussian, and features are complex, the

assumption of stationarity can cause difficulties in themodelling process. The purpose of this thesis

is to present two new estimation techniques. The first estimation technique uses machine learning

for geological and spatial estimations without assuming first and second‑order stationarity, min‑

imizing human interaction and potentially reducing estimation bias. The second technique is a

hybrid method that consists of using geostatistical methods combined with the machine learning

method. Integrating geostatistics andmachine learning improves geological and spatial estimation

in situations that have complex features, poorly defined domains, or non‑Gaussian data.

Elliptical radial basis function networks (ERBFN) and k‑means clustering are used for estima‑

tion. An ERBFN machine learning method takes advantage of a Gaussian function to generate

geological estimates similar to kriging. An ERBFN does not require the assumption of stationarity

and the only input features required are the spatial coordinates of the known data. The parameter

required for the ERBFN is the number of nodes to model the estimations domain. Each node learns

a unique anisotropy allowing for complex features to be modelled.

The hybrid estimation takes advantage of the machine learning estimation from the ERBFN

and uses it as an exhaustive secondary data in ordinary intrinsic collocated cokriging. The hybrid

estimation requires the assumption of stationarity and variograms must be modelled. Combining

machine learning and geostatistics takes advantage of the unbiasedness of kriging while including

the non‑stationary features modelled in the ERBFN.

To validate the estimation techniques, examples are simulated and sampled. Machine learn‑

ing, hybrid, and kriging estimates are made using the sampled dataset and compared to the exact

truth. Multiple validation checks are used to compare the different estimates. The coefficient of

determination and root mean squared error are used to assess model performance.Plots of the esti‑

mates and error maps are used for visual inspection to determine if modelling artifacts are present.

Histograms determine if the mean and data distribution reproduction are reasonable.
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Abstract

The machine learning estimation method developed in this thesis is shown to produce similar

results to simple kriging without requiring the assumption of first and second‑order stationary.

The hybrid estimation technique developed in this thesis appears to outperform simple kriging

in scenarios that demonstrate non‑stationary features, poorly defined domains, and non‑Gaussian

data. The research work of the thesis has led to a significant contribution in making spatial and

geological predictions.
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CHAPTER 1

INTRODUCTION
1.1 Problem Setting and Background

With the recent increase in available computation power and increases in available data, machine

learning(ML) has become an area of significant research interest. It is estimated that from 1993 until

2017, the total number of floating‑point operations carried out per second(FLOPS) on a supercom‑

puter has increased from 124 billion to 93,000 trillion: almost one million times greater (Roser &

Ritchie, 2019). Along with an increase in computational power, there has been an increase in avail‑

able data storage. Hard drive capacity has increased exponentially since 1980 with massive hard

drives having megabytes of memory to significantly smaller hard drives with terabytes of memory

(Roser & Ritchie, 2019). Not only has memory and computation power increased, but the cost per

computation has decreased significantly. In 1990 a computer that cost $1000 was capable of mak‑

ing 10−5 calculations per second, in 2010 a computer that cost $1000 was capable of making 1010

calculations per second (Roser & Ritchie, 2019). Similar computational power increase statistics can

be found in William D. Nordhaus ”The Progress of Computing” that discusses the computer power

increase over the twentieth‑century (Nordhaus, 2001).

ML can be used in many different applications from simple regression to handwritten number

classification and, recently, autonomous driving. ML algorithms provide an exciting opportunity

to simplify and automate a process that usually would be tasked to humans (Musumeci et al., 2019).

Having a machine perform these tasks will help reduce human error and allow time to be allocated

to more desirable tasks (Boutaba et al., 2018). For this thesis, ML will be used to generate geo‑

logical/spatial estimates at unsampled locations while reducing the amount of human interaction

required in the modeling process. Traditionally geological/spatial modeling is done using a set of

techniques known as Geostatistics (C. V. Deutsch & Journel, 1992).

Geostatistics is primarily concerned with estimating/predicting geological and spatial features

such as grade, thickness, porosity, or rock type that are then used by engineers and geologists to

make an informed decision while evaluating mineral deposits (Rossi & Deutsch, 2016). It is worth

noting that Geostatistics does not follow a classical statistical framework; it was developed to suit

the purposes of spatial modeling (Matheron, 1963). Matheron used this example to demonstrate

that Geostatistics does not follow a classical statistical framework:

‘A given deposit is explored by drilling, it would suffice to cut the cores into 5mm pieces instead of

50cm pieces to obtain 100 times more samples, and therefore 100 times high accuracy. This, of

course, is wrong.’

1



1. Introduction

Matheron describes how the extra data would be considered redundant due to spatial continuity.

In Geostatistics there are many different ways to perform predictions and classifications each

with there own unique advantages and disadvantages; however, for this thesis, the primary tech‑

niques that will be used for making Geostatistical predictions will be Simple Kriging (SK) and Or‑

dinary Kriging (OK) (Rossi & Deutsch, 2016).

1.1.1 Machine Learning

ML research can be dated back to 1949 when Donald Hebb introduced the Hebbian Learning Rule,

which states:

‘When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes part in

firing it, some growth process or metabolic change takes place in one or both cells such that As

efficiency, as one of the cells firing B is increased.’

The Hebbian Learning Rule can be viewed as the building blocks of today’s neural networks, how‑

ever; the first perception network was not developed until 1958 by Frank Rosenblatt which was a

supervised neural network used for simple binary classification (Wang, Raj, & Xing, 2017).

ML is typically divided into supervised learning and unsupervised learning (Dey, 2016). Both

supervised, and unsupervised learningmethods follow a similar three‑step process of training, test‑

ing, and application, as seen in Figure 1.1 (Machine Learning: a brief breakdown, 2018). In supervised

learning, the ML algorithm has input features x which are then used to predict the solution y, dur‑

ing training the solution to the hypothesis is known and used to generate/test the ML algorithm

which is why the process is known as supervised learning. After the ML algorithm is trained and

the hypothesis is validated using k‑fold validation or cross‑validation theML algorithm can be used

to predict/classify similar problemswith the same input features xwhere the solution y is not know.

Different types of supervised learning techniques include but are not limited to regression, decision

trees, random forests, support vector machines, and neural networks (Dey, 2016). For the purposes

of this thesis, the key supervised ML method that will be explored will be neural networks.

In unsupervised learning the ML algorithm has input features x which are then used to pre‑

dict the solution y, however; while training the ML algorithm the answer to the hypothesis y is not

known. The solution to the hypothesis will need to be verified by using k‑fold validation, cross‑

validation, or by minimizing error in dimension reduction techniques. Unsupervised learning tech‑

niques include but are not limited to k‑mean clustering, principal component analysis, and rein‑

forcement learning (Usama et al., 2017). For the purposes of this thesis, the primary unsupervised

ML method that will be explored will be k‑means clustering. A brief example of supervised vs.

unsupervised machine learning techniques can be seen in Figure 1.2.

2



1. Introduction

Figure 1.1: Stages in Machine Learning (Similar toMachine Learning: a brief breakdown (2018))

Figure 1.2: Types of Machine Learning (Similar toMachine Learning: a brief breakdown (2018))

3



1. Introduction

1.1.2 Kriging

Kriging is a method of estimating/interpolating spatial data, and is described by Matheron as:

‘It consists in estimating the grade of a panel by computing the weighted average of available

samples, some being located inside others outside the panel. The grades of these samples being

x1, x2, ...xn we attempt to evaluate the unknown grade (z) of the panel with a linear estimator z∗.’

Where the weights are often sum to one and minimize the estimation variance. Further discus‑

sion into estimation variance, unbiasedness, and the framework behind krigingwill be discussed in

the kriging section of Chapter 2; however, how the weights for simple kriging are calculated with

an assumption of second‑order stationarity is discussed below.

Second‑order stationarity assumes that the variance of the random variable is constant through‑

out the estimation domain. The weights for kriging are calculated based on distance and variance

at that distance; hence, an anisotropic model must be calculated (Boisvert, 2010). This anisotropic

model is known as a variogram. Experimental variogram points are calculated, and then a vari‑

ogram model is fit to those points (Ortiz & Deutsch, 2002).Variograms are typically calculated in

three directions: the principal direction of the deposit, a secondary direction defining the plane

of greatest continuity, and a minor perpendicular direction of anisotropy. From these three var‑

iograms, the variance in any direction and distance can be calculated and used to determine the

kriging weights (Gringarten & Deutsch, 1999). Criteria must be established to determine if the es‑

timate is acceptable and which method of estimation is best. In the next section, an overview of

estimation criteria is presented.

1.1.3 Estimation Criteria and Validation

Generally, the truth is not known, which can make it difficult to perform a true comparison/valida‑

tion of results. Example deposits could be simulated and then sampled so the estimations can be

compared to the truth. A data spacing and data configuration study could be performed.

Whenworkingwith real‑world problems, the truth is unknown, and other estimation validation

techniques are implemented. Validation methods include K‑fold validation, appropriate statistic

reproduction, and visual inspection for errors and artifacts. K‑fold validation is a validationmethod

divides the data into a training/estimation dataset and a validation dataset (Reich&Barai, 1999). For

example, in 5‑fold validation, the data would be divided 5 folds consisting of 20% of the data each.

The full estimation process would take place five different times with the 80% training/estimation

datasets, and then the results would be compared to the 20% left out. The R‑Squared (R2) statistic

measures the explained variance from the dependent variable to the total variance in the predicted

variable (FuquaSchoolofBusiness, 2019). The root mean squared error (RMSE) could also be used as

a comparison of the difference between the estimated values and the validation values. The RMSE

is in the units of the data. The mean of the estimation should be compared to the de‑clusteredmean
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1. Introduction

of the sample data and be similar. Histogram reproduction can also be assessed. Ideally, the known

data histogram should be similar to the estimation histogram.

1.2 Thesis Statement

In order to address issues connected with assuming first and second‑order stationarity while mak‑

ing an estimation with spatial data and human error introduced in the kriging workflow amachine

learning workflowwill be proposed in this thesis that does not require the assumption stationarity.

The algorithm will minimize human interaction, perhaps minimizing error and bias. The thesis

statement:

An integrated machine learning and geostatistical framework for modelling spatial data that more effec‑

tively takes into account complex anisotropy while minimizing human interaction required in the modelling

process which will improve mining resource estimates.

An integrated ML and Goestatistical approach consists of two ML techniques with a geostatis‑

tical finisher, the first ML method is k‑mean clustering, the second an elliptical radial basis neu‑

ral network (ERBFN), and the geostatistical finisher is intrinsic collocated cokriging (OICCK). The

ERBFN will optimize multiple parameters using a form of gradient descent in order to minimize

the error between the known data locations and the estimation while keeping the estimation geo‑

logically sound and free of artifacts. The ML algorithm will not require variograms to be modeled

or kriging parameters to be determined and instead will simply require the X,Y,Z data location of

the known data as input features x and the known data sample y to compare the estimate with in

order to optimize the machine learning parameters. The output of the ML algorithm will result in

an estimation that is very similar to kriging in terms of RMSE, R2, histogram reproduction, statical

reproduction, and will be free of estimation artifacts. The ML estimate more effectively reproduces

complex anisotropy and is used as a super secondary variable in OICCK, enforcing the complex

anisotropy in the geostatistical prediction. The hybrid algorithm outperforms kriging in complex

scenarios. The estimation results from the ML algorithm and hybrid ML+OICCKwill be compared

to the kriging estimations results using K‑fold validation.

1.3 Thesis Outline

Chapter Two establishes the framework of estimation for bothML and Geostatistics that are prereq‑

uisites for the modeling process proposed in this thesis. Chapter Two discusses relevant equations

and concepts. Chapter Three compares Geostatistical estimates to the ML estimates and hybrid

estimates with simulated models. Chapter Four shows a case study comparing the Geostatistical

estimation to ML estimation with k‑fold validation. Finally, Chapter Five concludes and summa‑

rizes the findings and discusses future work and limitations of the ML algorithm. The code used
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1. Introduction

to develop the machine learning estimation is developed in python using the TensorFlow machine

learning library (TensorFlow, n.d.).
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CHAPTER 2

GEOSTATISTICAL AND MACHINE LEARNING
FRAMEWORK
In Chapter 1, Machine Learning (ML) and Kriging were broadly defined for estimation based on

input features and weights. In kriging the estimates are calculated based on the input features de‑

noted as xi, which are the grades at the sampled locations thenmultiplied by the weightswi. In ML

the input features denoted as xi are used to generate the estimate, which can be any relevant data

at the sampled location. The estimation techniques explored in this thesis use X,Y,Z coordinates as

the primary input features. The MLweights wi are determined by a form of optimization using the

known values ys. Kriging weights are determined based on a variogram model and on the X,Y,Z

data locations relative to the estimation location. The data are multiplied by the weights to calcu‑

late an estimate. In ML, the weights are determined by known values at X,Y,Z locations, and then

combined for an estimate; which is is very different from kriging.

This Chapter focuses on the framework behind estimation in both geostatistics and ML. Sim‑

ple regression, neural networks, activation functions, training/optimization, and k‑means are the

primary discussion points for machine learning. Stationary/domain selection, variography, simple

kriging, ordinary kriging, intrinsic collocated cokriging, and ordinary intrinsic collocated cokrig‑

ing are the primary discussion points for geostatistics. Different methods for model‑checking are

presented at the end.

2.1 Machine Learning Framework

Machine learning was theorized in 1949 with the first perception network being built in 1958 for

binary classification; Wang et al. (2017). Since 1958 there have beenmany advancements inmachine

learning; algorithms have been developed to do everything from binary classification to text/image

recognition. There are many methods to perform these tasks. The primary focus is on regression

and classification in supervised learning and cluster analysis in unsupervised learning. The first

step in determining the ML algorithm is to determine the hypothesis or objective of the problem

and then to determine the available data.

2.1.1 Choosing a Machine Learning Algorithm

Aminimum of 50 data are required for a straightforward classification or regression problem. The

performance of the algorithmgenerally scaleswith the amount of useful data (Pedregosa et al., 2011).

The category the ML problem falls under should be determined, see Chapter 1 Figure 1.2 where
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2. Geostatistical and Machine Learning Framework

four main types of machine learning are introduced: regression, classification, cluster analysis, and

dimension reductions. One must consider the available data, that is, the available features xs and

the response variable being predicted ys. If there is no known response data, an unsupervised

technique is required. Prediction with supervised neural networks requires a subset of the data

to have a known solution to train the network before making a prediction. Hyperparameters are

tunned based on the data available and the ML algorithm chosen. Scikit‑learn, a machine learning

package for python, has come out with a useful algorithm cheat‑sheet that can be seen below in

Figure 2.1 (Pedregosa et al., 2011). Microsoft Azure’s machine learning studio has a very similar

workflow, methodology, and cheat‑sheet to the Scikit‑learnmethod (Xiaoharper, n.d.). For a neural

network, the hyperparameters would include the number of hidden layers, nodes in a hidden layer,

learning rate, and activation functions for the hidden layers. K‑means hyperparameters would

include the initial cluster center, number of iterations, number of clusters to inspect, and method of

error calculation. Determining these hyperparameters is explored below.
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2. Geostatistical and Machine Learning Framework

Figure 2.1: Scikit Learn Algorithm Cheat‑sheet Similar to Pedregosa et al. (2011)

2.1.2 Regression

There are many types of regression including linear and logistic. Regression is a form of supervised

learning that aims to predict a dependent variable based on the available data. A function is fit to the

data that minimizes the distance between the function and all the points (Stulp & Sigaud, 2015).Fig‑

ure 2.3 is an example of linear regression in 2D and 3D using ultimate compression strength (UCS)

and quartz content in the 2D example and including hornblende into the 3D example. Equation

2.1 is the regression algorithm with y∗ being the estimate. When k is equal to one, it is considered

linear regression when k is greater than one; it would be considered polynomial regression. Figure

2.2 is a simple visualization of a regression network.

y∗(x) = w0 + w1x1
i + w2x1

i + ... + wnxn
i (2.1)

x1...xn are the features and w1...wn are the weights. The weights and features are trained by the
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Figure 2.2: Simple Regression Network

Figure 2.3: 2D/3D Linear Regression

learning algorithm. For unbiased estimation, the w0 term is added(Stulp & Sigaud, 2015).

To determine the weights w1...wn the error for learning step must be calculated, and then the

weights must be adjusted. The known truths are compared to the predicted outputs of the ML

algorithm to calculate, J , the error of the algorithm (Equation 2.2). In the error equation, m denotes

the number of training examples, and i denotes the training example.

J(w) = 1
2m

m∑
i=1

(y∗(xi) − yi)2 (2.2)

Once the error has been calculated for the current learning step the weights must be modified for

each feature this done with Equation 2.3.

wj+1 = wj − α( 1
2m

m∑
i=1

(y∗(xi) − yi)2)xi
j (2.3)

In the weight modification equationwj is the jth parameter for j = 1, ..., n from the regression equa‑

tion, α is the learning rate and controls how fast the weights are able to change, typically a learning

rate much less then one is used; however, recently adaptive learning rates have been introduced in

to machine learning algorithms (Dorffner, 2001). Using Equations 2.2 and 2.3 the regression algo‑
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2. Geostatistical and Machine Learning Framework

rithm is trained until the desired fit has been reached. Note that the weights for simple linear or

polynomial regression can be directly calculated and need not be estimated iteratively.

Similar to polynomial/linear regression, logistic regression is a classification tool; however, the

error and regression equations are slightly different. Logistic regression takes advantage of the

sigmoid function g(x), Equation 2.4, with e being Euler’s number, and a visual representation of

the sigmoid function in Figure 2.4

g(x) = 1
1 + e−x

(2.4)

Figure 2.4: Sigmoid Function

The logistic regression formula is:

y∗ = 1
1 + e−wT x

(2.5)

WithwT
j denoting the transpose of theweights in vectorized form. In this form of logistic regression

all values will fall between zero and one, hence a threshold will have to be set. This threshold T

will vary depending on the problem.

y∗(x) =

 1, x < T

0, x ≥ T
(2.6)

Error is calculated as follows:

J(w) = 1
−m

m∑
i=1

yi log(y∗(xi)) + (1 − yi) log(1 − y∗(xi)) (2.7)

The weight modification formula is similar to Equation 2.3. A more general weight modification

equation is shown in the optimization equation subsection to follow. Logistic regression is typically
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used for classifying things like spam email, credit card transactions, and medical diagnosis (Ng &

Katanforoosh, 2018). A method of evaluating the error in a regression model and how to use that

error in determining the weights has been described, the next step is to look at the training.

2.1.3 Training

After the architecture of the machine learning algorithm has been determined, the next step is to

train the weights of the algorithm. Typically the data are split into training, testing, and a develop‑

ment set. The training and testing set have known solutions, and the development set will not. A

common test/train split would be a test set consisting of 20% of the known data, and the training set

consisting of 80% of the known data (Raschka, 2018). As suggested by the naming convention, the

training data set trains the ML algorithm. The test data set is used to ensure that the ML algorithm

is not over‑fitting the training data.

While training the ML algorithm, the error for both the training data set and testing data set are

continuously calculated using Equation 2.2. Ideally, the error of the training dataset decreases at

the same rate as the testing data set. If the error of the training dataset and the error of the testing

data set are significantly different, this would indicate over‑training. When the training data and

testing data error look similar, and then the test data error begins to deviate from the training data,

this would indicate an early stop at the point of separation is required. In Figure 2.5, an example of

good training, bad training, and early stop are available.

Figure 2.5: Training vs Test Cost Examples

The training cost can also be used to help tune the learning rate for the ML algorithm. Below

in Figure 2.6, three examples can be seen. On the left would be an example of the correct learning

rate with good training; this can be seen by the initial training cost‑reducing quickly then slowing

down as it approaches the minimum error. In the middle would be an example of a learning rate

that is too large. Finally, on the right is an example of a learning rate that is too small as the initial

cost decreases relatively slowly compared to the other example.
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Figure 2.6: Training Cost Examples for Determining Learning Rate

Along with looking at the error/cost of the train/testing data set for a polynomial regression

problem, at each training iteration, the coefficient of determination or R2 value is calculated and

used as an indicator for training performance. Equation 2.8 shows the R2 metric and an example of

how the desired training cost vs. R2 value is shown in Figure 2.7. Ensuring that both the R2 value

is high and the cost of training is low is essential to a good estimation. The cost of training scales

with the data values, whereas R2 does not.

R2 = 1 −
∑

(yi − y∗
i )2∑

(yi − y)2 (2.8)

Figure 2.7: Training Cost Vs R2

Neural networks are similar to regression. The critical difference is that a neural network has
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at least one hidden layer. Regression only has an output layer and an input layer. The second

significant difference is the use of activation functions on the hidden layers.

2.1.4 Neural Networks

Figure 2.8 shows an example of a simple neural network, the architecture can be compared to the

regression architecture in Figure 2.2. The input layer is the first layer in the simple neural network,

the middle layers are the hidden layers, and the final layer is the output layer. A set of weights

connects each of the layers, and typically hidden layers have a form of activation function.

Figure 2.8: Simple Neural Network

The equations for solving for the optimal solution for the network in Figure 2.8 are below in 2.9

and 2.10. The equation for the hidden layer nodes is:

a2
1 = g(x1

1w11
1 ) + g(x1

1w11
2 ) + g(x1

3w11
3 )

a2
2 = g(x1

1w12
1 ) + g(x1

2w12
2 ) + g(x1

3w12
3 )

(2.9)

with g() being the activation function. The following equation is for the output of the neural net‑

work:

y∗(x) = g(a2
1) + g(a2

2) + x0 (2.10)

From the equations for a simple neural networkwith only one hidden layer, it is easy to imagine

howcomplex a network could getwithmultiple layers, more nodes, or different activation functions

on different layers.

Activation functions are used to introduce non‑linearities into a neural network (Manavazhahan,

2017). There are many different types of activation functions, each useful in different scenarios. A

few examples of activation functions include to Sigmoid, Soft‑max, Tanh, Gaussian, and Rectified

Linear. Soft‑max and sigmoid are similar and used for classification problems. The sigmoid equa‑

tion is defined in Equation 2.4 (Farnoush, 2017). When attempting to classify multiple classes, using

the soft‑max activation function on the output layer results in an output with the probability of each
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class. The sum of a soft‑max activation function is one (Equation 2.11).

S(xi) = exi∑nclasses
j=1 exj

(2.11)

The Tanh is a shift version of the sigmoid function and output values from a Tanh function can

range from negative one to positive one. Typically Tanh is used in hidden layers (Farnoush, 2017).

The Tanh activation function is illustrated below in Equation 2.12 and Figure 2.9.

tanh(xi) = 2 ∗ 1
1 + e−2xi

− 1 (2.12)

Figure 2.9: Tanh Function

AGaussian activation function is used in the hidden layer when attempting to keep estimations

smooth. The value of the Gaussian is also based on the input data range and can be either positive

or negative (Manavazhahan, 2017). Equation 2.13 is the equation, where cc is the center of the

Gaussian function, and r is the radius of the Gaussian function. Figure 2.10 is a graph of Gaussian

functions with different radii and a center of zero.

Gaussian(xi) = e−(r∗(cc−xi))2
(2.13)

In higher dimensional problems typical Euclidean distance is used; however, in more complex sit‑

uation when the covariance should be considered using a Mahalanobis distance is beneficial. Equa‑

tion 2.14 is the Euclidean distance in 3D.

de(x, y, z) =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 (2.14)
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Figure 2.10: Gaussian Function

Equation 2.15 is the Mahalanobis distance between two random vectors.

dm(x,y) =
√

(x − y)T S−1(x − y) (2.15)

Where (x − y) is the difference between the estimation location and the cluster center, (x − y)T

would be the transpose of the difference, andS−1 is the inverse of the covariancematrix between the

cluster center and the estimation location (Todeschini, Ballabio, Consonni, Sahigara, & Filzmoser,

2013). For n dimensions space (x − y) is represented with ∆.

The rectified linear (RELU) activation function is a piecewise linear function that stops at zero

and goes to infinity (Manavazhahan, 2017). Equation 2.16 is the RELU activation function.

RELU(x) =

 0, x < 0

mx, x ≥ 0
(2.16)

RELU is typically used as a hidden layer activation function. Figure 2.11 is a graphical representa‑

tion of the RELU activation function.

Different activation functions can be used in different layers. It is generally best to start simple

when designing a neural network and gradually get more complex by increasing the number of

hidden layers and the number of nodes in the hidden layers. Activation functions are chosen based

on the problem. Starting simple and becoming more complex also helps keep the machine learning

algorithm more computationally efficient. The degrees of freedom can be viewed as the number of

nodes and layers, having too many nodes and layers can often lead to over‑fitting the training data

or make optimization very slow.
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Figure 2.11: RELU Function

2.1.5 Optimization Equations

Equation 2.3 gradient descent iterations:

wj+1 = wj − α
δ

δwj
J(w) (2.17)

Where
δ

δwj
J(w) is the gradient of the cost with respect to the current weight.

Other optimizationmethods include: momentum‑based gradient descent, adaptive gradient op‑

timization, root mean squared prop (RMSprop), and the adaptive moment estimation optimization

(Adam) (Wang et al., 2017).

Momentum based on gradient descent proposed by Boris T. Polyak is a method of speeding

up the optimization process by not only depending on the current gradient but by introducing

a velocity term (Polyak, 1964). The velocity term is the uncentred variance of the gradient. The

equation for momentum‑based gradient descent is:

wj+1 = wj − αVj (2.18)

where Vj is the velocity term:

Vj = βVj−1 + (1 − β) δ

δwj
J(w) (2.19)

V is initially set to zero and β which controls the rate of momentum change is generally set to 0.9;

however, this value should be adjusted based on the problem being solved.

RMSprop uses an exponential moving average to help determine how the weights are modified,

which speeds up the learning process (Ruder, 2017). Equation 2.20 is RMSprop:

wj+1 = wj − α√
Sj + ϵ

δ

δwj
J(w) (2.20)
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With Sj being the exponential moving average:

Sj = βSt−1 + (1 − β)( δ

δwj
J(w))2 (2.21)

In this method Sj is initialized to zero with β typically being set to 0.9 and ϵ being set to a very

small number. The Adam optimizer is a combination of the previous two optimization techniques

using both a velocity term and an exponential moving average value. Equation 2.22 is the Adam

optimizer:

wj+1 = wj − α√
Ŝj + ϵ

V̂j (2.22)

The Ŝj and V̂j are introduced to help counteract biases introduced when b1 and b2 are close to one

(Ruder, 2017):

Ŝj = Sj

1 − βj
1

(2.23)

V̂j = Vj

1 − βj
1

(2.24)

Sj and Vj are then similar to as seen above:

Sj = β1St−1 + (1 − β1)( δ

δwj
J(w))2 (2.25)

Vj = β2Vj−1 + (1 − β2) δ

δwj
J(w) (2.26)

The Adam optimization equation is a combination of the RMSprop and the momentum‑based gra‑

dient descent equation. S and V are initialized at zero, β2 is generally set to 0.9, and ϵ is set to a

very small number, the only difference being β1 is generally set to 0.99. Again, these hyperparam‑

eters should set to values that best suit the given problem. The optimization equations presented

are for supervised learning, K‑means is an unsupervised learning technique and is discussed in the

following section.

2.1.6 K‑Means

K‑means is an unsupervised ML technique that separates samples into n clusters C with equal

variance while minimizing the inertia (Pedregosa et al., 2011). K‑means divides the samples into n

centers µ, which are also themean of the data. The centers are not necessarily from the data samples;

however, the data samples and the centroid must exist within the same space. The inertia (I) of a

cluster is:

I =
n∑

i=0
min
µjϵC

(∥xi − µj∥2) (2.27)

where ∥xi − µj∥ is the Euclidean distance between the point and the centre the point is assigned

to. The next step after calculating the inertia of each cluster is to adjusted the cluster centres and

potentially reassign the data to a new cluster centre location. Generally cluster centres are randomly
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initialized, the cluster centres are then adjusted using:

µj = 1
Cj

Ci∑
j=1

xi (2.28)

where Ci is the ith cluster center. These two steps are repeated until the minimum potential iner‑

tia between all clusters is reached. Figure 2.12 is an example of k‑means clustering (Maklin, 2019).

Note that as the number of centroids approaches the number of data, the total inertia of the system

Figure 2.12: K‑means Example (Similar to Maklin (2019))

decreases (Figure 2.13). When the number of nodes is equal to the number of data, the inertia is zero;

however, choosing a large number of nodes is computationally inefficient. The elbow method is a

commonmethod used in determining the optimal number of nodes. A simple example is shown in

Figure 2.13 where the decreasing error(y − axis), of a K‑means system as the number of centroids

increases(x−axis), for this example the elbowwould be around 20 centroids. After this point, infor‑

mation gained from adding centroids is not substantial, and the information loss is not significant

(A Syakur, K Khotimah, M S Rochman, & Dwi Satoto, 2018).

2.2 Kriging Framework

Simple kriging in geostatistics is the best linear unbiased estimation (BLUE). In this section, the

framework behind ordinary kriging and simple kriging are explored and explained. The first step

is to determine the estimation domain where the assumptions of first and second‑order stationarity
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Figure 2.13: K‑Means Error Example

are valid. Then, an experimental variogram is calculated and fit to provide the variance/covariance

values for the kriging estimation.

2.2.1 Stationarity

Stationarity and domain decisions are required for all statistical analyses and are one of the most

crucial steps in any statistical analysis. A bad decision of stationarity can result in poor results

(McLennan, 2007). There is no one correct answer when it comes to deciding stationarity. The de‑

cision is subjective, which can make it difficult in some cases to determine the correct domain. In

Jason McLennan Ph.D. thesis, five steps for making a reasonable decision of stationarity for geosta‑

tistical models are presented:

1. Choosing the number and types of domains for numerical petrophysical property modelling

2. Modeling the domain boundaries

3. Boundary type detection and model mixing

4. Trend modelling

5. Predicting with a trend model.

Often the number and type of domains are based on the deposit. Typically when defining the

domain, it is best to start off looking at the entire deposit and then to split the deposit based on

multiple smaller, more geologically homogeneous domains. Decreasing the size of the domain can

help increase geological precision; however, decreasing the size of the domain results in a decrease
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in the number of data samples available for making estimation and inferring the stationary random

functions (SRF) more difficult (Wilde, 2011). In Jason Mclennan Ph.D. it states that:

‘A stationary random function (SRF) is a probabilistic representation of a petrophysical property

with the constant expected value and covariance moments independent of location.’

SRF encompasses first and second‑order stationarity. As mentioned above, domain selection is

subjective; hence is typically done manually and deterministically. Manually digitizing domains

deterministically can be time‑consuming and is unable to capture uncertainty in size, shape, and ori‑

entation of the domain (Wilde, 2011). Within the defined domain, we have petrophysical properties

distributed. These variables referred to as regionalized variables (ReV). Geostatistics aims to predict

ReV at an unknown location u, given the location‑dependent random variables (RV) (McLennan,

2007).

Within the domain, a continuous RV has an infinite number of possibilities. The cumulative den‑

sity function (CDF) fully characterizes continuous randomvariables.A stationary random functions

assumes that:

m(u) = E{X(u)} ∀u ∈ D (2.29)

Cx(u,u
′
) = E{X(u) · X(u)

′
} − E{X(u)} · E{X(u

′
)} ∀u ∈ D (2.30)

Where m(u) is first order stationarity assuming that the expected value for each RV pair X(u) and

X(u′) that are distance of h apart, and has the same second order covariance Cx at distance h for

all u within the domain D, where D may be be a subset of N domains {D = D1, ..., DN } and the

assumptions for valid SRF must be reconsidered within each subset domain.

Boundary surfacemodels are requiredwhen splitting geological domains intomultiple domains

consisting of valid SRFs. When modelling boundary surfaces, both deterministic and probabilistic

techniques can be employed; however, this thesis is not focused on probabilistic methods. The de‑

terministic method used for estimating boundary conditions is, in fact, kriging, generally with a

Gaussian variogram to ensure smooth distance functions (Wilde, 2011). If possible, using global

kriging for surface boundary estimation is recommended to help prevent artifacts from the mod‑

elling processes.

The final three steps in decision of stationarity are available in Jason McLennan Ph.D. thesis

”The Decision of Stationarity”; however, it is important to discuss the first steps to make it clear that

the assumption of stationarity is necessary and in complex deposits multiple kriging and boundary

modelling steps might be required. The next section explores variogrammodelling. It is important

to note that a variogram is required to be modelled separately for each variable in each domain.
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2.2.2 The Variogram

The variogram γ(h) is a distance function that indicated the dissimilarity of two points separated by

a distance of h =| u−v |where u and v are spatial locations; however, beforemodelling a variogram

the experimental variogram must be modelled from pairs of observed data {x(u), x(u + h)}. The

equation of the experimental variogram is as follows:

γ̂(h) = 1
2 · n(h)

n(h)∑
i=1

[x(ui) − x(ui + h)]2 ∀ui,h,ui + h ∈ D (2.31)

where n(h) is the total number of pairs sampled at distance h. The variogram is then modelled by

fitting the experimental point with a variogram function. There are three widely used variogram

functions; however, there are many more potential options (Manchuk, 2017). The three variogram

types mainly used are, exponential:

exp(h) = 1 − exp−3h/a (2.32)

spherical:

Sph(h) = 1.5(h/a) − exp−3(h/a)2
(2.33)

and gaussian:

Gaus(h) = 1 − exp−3(h/a)2
(2.34)

where a is the isotropic range of that portion of the variogram function. Often multiple variogram

structures with different isotropic ranges and types are used to ensure a good variogram fit. The

equation for a variogram model is:

γ(h) =
nst∑
i=0

CiΓi(h) (2.35)

where Ci is the contribution of each structure, Γi(h) is the ith variogram structure and nst is the

number of structures in the variogram model. Typically the 0th variogram structure is a nugget

effect which accounts for out of average discontinuity at the short scale (Matheron, 1963). Figure

2.14 is an example of an experimental variogram. The variogram is then related to covariance C(h)

via the variance σ2:

C(h) = σ2 − γ(h) ∀h ∈ D (2.36)

the covariance is then used in the kriging equation for estimation as it represents the spatial vari‑

ability of the RV (Qu, 2018).

2.2.3 Kriging

Every domain definedwith the assumption of a valid SRFhas an experimental variogram calculated.

Then a variogram is modelled based on the experimental variogram points. The next step is to
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Figure 2.14: Example Experimental Variogram and Variogram Model

generate an estimate by kriging using the variogram model. As mentioned above in Chapter 1

kriging is essentially a linear estimation based on a summation ofweightsmultiplied by data points,

in simple kriging the mean of the domain is used in the prediction hence SK equation is:

y∗(u) − m =
n∑

i=1
λi · [xi − m] (2.37)

where λi is the weight assigned to the ith known data sample sample xi. The weights are calculated

using the covariance between known sample locations and the covariance unknown and known

sample locations. Generally, kriging with all data is not practical, so using a large number (100) is

recommended (J. Deutsch & Deutsch, 2012). A more general form of the equation is:
n∑

j=1
λjCi,j = Ci,∗ i = 1, ..., n (2.38)

with the SK estimation variance give as:

σ2
sk = σ2 −

n∑
i=1

λiCi,∗ (2.39)

To move to ordinary kriging where knowing the mean is not required, the sum of the kriging

weights is constrained to one and a Lagrange multiplier is added(λL):

y∗(u) =
n∑

i=1
λi · xi (2.40)


∑n

j=1 λjCi,j + λL = Ci,∗ i = 1, ..., n∑n
j=1 λj = 1

(2.41)

Intrinsic collocated cokriging (ICCK) is a multivariate estimation technique, develop by Olena

Babak, that takes advantage of exhaustive collocated data (Babak & Deutsch, 2009). ICCK aims to

reduce artificial variance inflation while using collocated cokriging. Traditionally the multivariate

geostatistical full cokriging is used. Theworkflow is complex and requires variograms for each vari‑
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able being estimated, across variograms between the variables, and finally, a linear model of core‑

gionalization (LMC), which represents the spatial correlations between all estimation location and

all knownvariables (Babak&Deutsch, 2007). Building an LMCcan be difficult and time‑consuming,

hence leading to the development of ICCK, which only requires the variogram of the primary vari‑

able and then scales the secondary variable based on the correlation between the primary and sec‑

ondary data. The ICCK equation is as follows:

y∗(u) − my = λsc · [zo − mz] +
n∑

i=1
λi · [xi − my] +

sn∑
i=1

λsi · [zsi − mz] (2.42)

where λsc represent the weight given to the secondary value, zo, at estimation location and zsi, mz

are the secondary data and mean of the secondary data. A more in‑depth description of cokriging

and intrinsic collocated cokriging is available in Olena Babak and Clayton V. Deutsch ”An Intrinsic

Model of Coregionalization that Solves Variance Inflation in Colocated Cokriging”

Ordinary intrinsic collocated cokriging (OICCK) has the same constraint of the weights sum‑

ming to one similarly to OK. Generally speaking, this is not particularly useful, by using the La‑

grange formalism to constrain the sum of the weights to one will result in most of the weight being

assigned to the collocated data when there is no primary data within variogram range. Generally

this is not desired when making a multivariate estimation. Using OICCK assigns a majority of the

weight to the secondary data when outside of variogram range with a small amount of the weight

being assigned to the unbaised estimation of the mean at that location. This is desired and these

reason are discussed in Chapter 3,Proposed Estimation Methods. The OICCK equations are as fol‑

low:

y∗(u) = λsc · [zo] +
n∑

i=1
λi · [xi] +

nsec∑
i=1

λsi · [zsi] (2.43)
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

C1,1 C2,1 ... Cn,1 Cs1,1 Cs2,1 ... Csn,1 Cs0,1 1

C1,2 C2,2 ... Cn,2 Cs1,2 Cs2,2 ... Csn,2 Cs∗,2 1

... ... ... ... ... ...

... ... ... ... ... ...

... ... ... ... ... ...

C1,n C2,n ... Cn,n Cs1,n Cs2,n ... Csn,n Cs∗,n 1

C1,s1 C2,s1 ... Cn,s1 Cs1,s1 Cs2,s1 ... Csn,s1 Cs∗,s1 1

C1,s2 C2,s2 ... Cn,s2 Cs1,s2 Cs2,s2 ... Csn,s2 Cs∗,s2 1

... ... ... ... ... ...

... ... ... ... ... ...

... ... ... ... ... ...

C1,s2 C2,sn ... Cn,sn Cs1,n Cs1,sn ... Cs2,sn Csn,sn

C1,s∗ C2,s∗ ... Cn,s∗ Cs1,∗ Cs2,s∗ ... Csn,s∗ Cs∗,s∗ 1

1 1 ... 1 1 1 ... 1 1 0





λ1

λ2

...

...

...

λn

λs1

λs2

...

...

...

λsn

λsc

λL



=



C1,∗

C2,∗

...

...

...

Cn,∗

Cs1,∗

Cs2,∗

...

...

...

Csn,∗

Csc,∗

1



(2.44)

Where Cn,sn would represent the correlation between the secondary and primary variables (s

standing for secondary), Cn,n is the correlations between primary variable, Csn,sn would be the

correlation between the secondary variable, and finally the krigingweights λ and λL is the Lagrange

multiplier weight.

2.3 Estimation Criteria

Ageomodellermust set up amethod to validate estimations. K‑fold validation is a commonmethod

used to validate estimation techniqueswhere all relevant statistics are calculated based on each fold.

K‑fold validation splits the data set into k. Each setwill have
100
k

% of the data. The estimation is run

k times, withholding one fold of the data for testing and using the rest of the folds for training. After

all folds have run, relevant statistics are calculated based on the training and test folds (Raschka,

2018). Figure 2.15 is a sketch of how the data would be split up in k‑fold validation.

Figure 2.15: K‑Fold Data Setup Example

Each estimation method is compared based on the R2 values, and the RMSE is calculated on the
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test set. Equation 2.8 is the R2 equation and the RMSE equation is as follows:

RMSE =

√∑
(yi − y∗

i )2

ndata
(2.45)

Where yi would be the test validation data, and y∗
i would be the estimated data. RMSE scales with

the data units. The R2 value and RMSE are considered. It is also important to check for histogram

reproduction and de‑clustered mean reproduction.

Figure 2.16: Location Map of Error

The second visual check involves inspecting slices of the estimation to ensure that the estimation

is free of artifacts; such as jagged shadow‑looking features that are not geological. An example of a

prediction with artifacts can be seen below in Figure 2.17 on the left.

Figure 2.17: Example Estimation Slice (Left: With artifacts, Right: No artifacts)

Scenarios where the full solution to the problem is known, are best suited to compare different

estimation methods; this is because the exact solution known, and we can have a direct compari‑

son between the different estimations methods and the truth. The K‑fold estimations are used to

validate the method, but also, by comparing it to the exact truth, it is possible to make a directed

comparison of errors between estimation methods. Theoretically, K‑fold and full model compari‑

son results should agree.
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2. Geostatistical and Machine Learning Framework

The next chapter explores the proposed machine learning estimation technique for spatial mod‑

els and a hybrid method that includes ML and geostatistics.

27



CHAPTER 3

PROPOSED ESTIMATION METHODS
In this chapter, two estimation methods that involve machine learning (ML) are explored. ML does

not require the assumption of stationarity in estimation; however, ML is a data driven method and

a form of regression; hence, data are not reproduced. Kriging, requires the assumption of station‑

arity, which, is not always valid; however, kriging is a model‑driven estimation, and, reproduces

data at their locations. The first method explored is an elliptical radial basis function neural net‑

work (ERBFN), a ML technique. The second method explored is a hybrid of ML and kriging. The

second method involves making an estimation with ERBFN and then using simple or ordinary in‑

trinsic collocated cokriging using the ERBFN results as the secondary data in the intrinsic co‑kriging

workflow. A hybrid estimation brings the best of both estimation methods into a single estimation.

The ML approach brings the non‑stationary features into the estimation, while the kriging method

enforces data reproduction and unbiasedness. A neural network with a more traditional activation

functions, or a deep network is shown to be less effective than an elliptical radial basis function

network.

3.1 Geostatistical Prediction With a Neural Network

This section explores, estimations with neural networks and multiple types of activation functions.

Estimations aremade varying the size, depth, and activation functions used. The proposed network

that is the primary focus of this thesis is a simple one‑layer network using RBF to activate the hidden

layer; however, there is still an issue with anisotropy using a simple RBF as an activation function.

Hence the RBF is converted to an elliptical radial basis function (ERBF) to reproduce anisotropy

more effectively. In this section, a 3D data set is simulated and drilled so that the exact solution to

the problem is known. The different types of networks are tested and compared to a simple kriging

model.

3.1.1 Simple Linear Neural Network

In this section, a spatial prediction is made using a simple linear neural network and compared to

a kriged model. Figure 3.1 illustrates the simulated data for this study. The data set was simulated

using a drill hole spacing to variogram range of 40% in the major and minor direction and a range

of 3% in the vertical direction resulting in 600 data points. A fivefold validation method is used on

the synthetic data set (Figure 3.1), resulting in 480 data points in each training data set and 120 data
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points in each testing data set. Figure 3.2 shows the results of a simple linear neural with 25 nodes

in the hidden layer, using X,Y,Z values as features.

Figure 3.3 illustrates the results from one fold. Table 3.1 is a statistical summary of the results

for the simple neural network and can compare to kriging results in Table 3.2.

Figure 3.1: Simulated and Drilled Data
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Figure 3.2: Simple One Layer Linear Neural Network (TensorBoard: Graph Visualization | TensorFlow Core |
TensorFlow, n.d.)
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Figure 3.3: K‑Fold Results From Simple Linear Neural Network

Simple Neural Network
Fold RMSE ‑ K‑Fold R2 ‑ K‑Fold RMSE ‑ Full Model R2 ‑ Full Model Sigma Mean
Truth N/A N/A N/A N/A 0.776 0.372
1 0.695 0.071 0.745 0.078 0.089 0.341
2 0.747 0.108 0.739 0.094 0.111 0.361
3 0.710 0.164 0.713 0.155 0.318 0.269
4 0.754 0.075 0.748 0.069 0.079 0.334
5 0.700 0.062 0.749 0.067 0.085 0.449

Average 0.114 0.096 0.739 0.093 0.136 0.351

Table 3.1: K‑fold Simple Neural Network Results Summary
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Kriging
Fold RMSE ‑ K‑Fold R2 ‑ K‑Fold RMSE ‑ Full Model R2 ‑ Full Model Sigma Mean
Truth N/A N/A N/A N/A 0.776 0.372
1 0.123 0.971 0.239 0.905 0.728 0.370
2 0.109 0.980 0.219 0.921 0.739 0.369
3 0.107 0.981 0.239 0.905 0.720 0.373
4 0.110 0.980 0.238 0.906 0.727 0.369
5 0.119 0.973 0.229 0.913 0.733 0.372

Average 0.114 0.977 0.233 0.910 0.729 0.371

Table 3.2: K‑fold Kriging Results Summary

From the k‑fold results it is evident that the simple neural network using X,Y,Z locations is

unsuccessful. The simple neural network estimate values are close to the mean, resulting in an R2

value of only 0.096. The kriged estimate has an R2 of 0.910.

Figure 3.6 shows the results from the machine learning using X,Y,Z coordinates and the nearest

40 data. Adding the extra features appears to improve the estimation. The R2 value increase to

0.742. The new ML model is considerably better than the previous model. When looking at the

statistics in Table 3.3, the kriging results are still significantly better. The final check is a visual

inspection to ensure that the ML estimation is artifact‑free. From the prediction maps in Figure 3.6,

the estimate appears to be similar to a nearest neighbour estimate as the width and height of the

block are precisely the drill hole spacing; these are estimation artifacts. Although thisML estimation

was better then the previous ML estimation, it is still not nearly as good as the kriged estimate in

Table 3.2. In the next network, the depth is increased to five hidden layers in an attempt to improve

the results.
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Figure 3.4: K‑Fold Results From Simple Linear Neural Network Using XYZ data and nearest 40 Data

Simple Neural Network Using XYZ Data and Nearest 40 Data
Fold RMSE ‑ K‑Fold R2 ‑ K‑Fold RMSE ‑ Full Model R2 ‑ Full Model Sigma Mean
Truth N/A N/A N/A N/A 0.776 0.372
1 0.695 0.071 0.745 0.078 0.089 0.341
2 0.747 0.108 0.739 0.094 0.111 0.361
3 0.710 0.164 0.713 0.155 0.318 0.269
4 0.754 0.075 0.748 0.069 0.079 0.334
5 0.700 0.062 0.749 0.067 0.085 0.449

Average 0.114 0.096 0.739 0.093 0.136 0.351

Table 3.3: K‑fold Simple Neural Network Using XYZ Data and Nearest 40 Data Results Summary

Figure 3.5 shows the structure of the five‑layer hidden layer neural network and the results

of one fold are shown in Figure 3.6. Table 3.4 is a summary of the five‑layer hidden layer neural

network. Adding layers to the network did not have much impact on the results. Adding layers

does not appear to be the solution to fixing the artifact issues. In the next section, using a Gaussian

activation function to activate the hidden layers, such as in Figure 2.10, is explored.
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Figure 3.5: Simple Five Layer Linear Neural Network (TensorBoard: Graph Visualization | TensorFlow Core |
TensorFlow, n.d.)
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Figure 3.6: K‑Fold Results From Simple Linear Neural Network Using XYZ data and nearest 40 Data

Simple Neural Network XYZ Data 40 Closest Data With 5 Hidden Layers
Fold RMSE ‑ K‑Fold R2 ‑ K‑Fold RMSE ‑ Full Model R2 ‑ Full Model Sigma Mean
Truth N/A N/A N/A N/A 0.776 0.372
1 0.195 0.941 0.392 0.745 0.719 0.369
2 0.185 0.935 0.409 0.722 0.825 0.358
3 0.185 0.944 0.390 0.747 0.766 0.337
4 0.216 0.904 0.398 0.737 0.739 0.328
5 0.182 0.947 0.382 0.758 0.694 0.378

Average 0.193 0.934 0.394 0.742 0.749 0.354

Table 3.4: K‑fold Simple Neural Network Using XYZData andNearest 40 Data Using 5Hidden Layers Results
Summary

3.1.2 Elliptical Radial Basis Function Neural Network

This section explores the elliptical radial basis function neural network (ERBFN). The ERBFN is

a modified version of a radial basis function neural network (RBFN) using Mahalanobis distance

instead of Euclidean distance. ERBFN have been used in text‑independent speak verification, for

example, in M. W. Mak and C. K. Li ”Elliptical Basis Function Networks and Radial Basis Function Net‑
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works for Speaker Verification: Comparative Study.” Examples using the RBFNandERBFNare explored

to demonstrate why using Mahalanobis distance is preferable to using Euclidean distance.

Cristian Rusu and Virginia Rusu use the RBFN in ”Radial Basis Functions Versus Geostatistics in

Spatial Interpolations” to predict the 2004 Spatial Interpolation Comparison dataset. They found

that using an RBFN generates similar results to kriging and was the best option for geostatistical

prediction with machine learning. Due to the similarity and ease of using an RBFN to make a

prediction, they recommended using an RBFN over kriging for spatial interpolation (Rusu & Rusu,

n.d.).

Three parameters are required when using a Gaussian activation function Equation 2.13: the

number of Gaussian kernels, the radius r of each kernel, and the location of each kernel center

cc. To determine the kernel centers of each RBF k‑means is first used to get an initial location of

the centers, the centers’ locations are then optimized through training the neural network. Each

kernel has a radius of one when training is initiated. The ADAM optimizer is used throughout

training to optimize the radius of the kernel (Kingma & Ba, 2014). Finally, the number of kernels

must be selected. Choosing the number of kernels is challenging; if the number of kernels is too

small, the estimation is smooth and not be able to fit the data adequately. If the number of kernels

is too large, the data is overfit, resulting in artifacts in the estimate. When estimations are overfit

a small Gaussian filter can be applied to reduce the noise of the estimation (Elboher & Werman,

2012). In Figure 3.7 andFigure 3.8 showavisual representation of how theRBFNmakes a prediction.

Essentially the RBFN is the sumofmultiple kernelsmultiplied by aweight at the prediction location

to generate an estimate.
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Figure 3.7: Simple RBF Example
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Figure 3.8: 3D RBF Example

The matrix form of the equation can be seen below in Equation 3.1.


e−(r∥cc1−x1∥)2

... e−(r∥cc1−xi∥)2

...
. . .

...

e−(r∥ccn−xi∥)2
... e−(r∥ccn−xi∥)2




w1
...

wn

 =


y1
...

yn

 (3.1)

Where ∥ccn − xi∥ is the Euclidean distance between the cluster center and the estimation locations.

An example of RBFN graph can be seen in Figure 3.9.

Figure 3.9: Radial Basis Function Network In Tensorboard (Note each Gaussian Kernel has its own radius
value r ) (TensorBoard: Graph Visualization | TensorFlow Core | TensorFlow, n.d.)
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Everything is being optimized by the ML algorithm except the number of kernels. The more

complex the deposit, the more kernels that are required. A few scenarios could be tested to ensure

that the network is training to an acceptable error. Overfitting can occur if there are too many

kernels.

Figure 3.10 shows the error andR2 of the ERBFN as it trains. From Table 3.5, 15 kernels train the

slowest and have the second‑worst statistical results; there are not enough kernels to fit the data. 30

kernels train the fastest and has the worst results; there are too many kernels and the data is overfit.

The overfitting can be confirmed by looking at Figure 3.10 in the 30 kernels example. It is evident

that there are too many nodes, and it can be seen clearly in the error map. Looking at the Summary

Table 3.5 it can be seen that in the k‑fold, the best results come from a balance between a low R2

and a high RMSE as they are both equally important.
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Figure 3.10: Example of Using Different Number of Kernel While Train an RFBN (Training Steps x 100)
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Figure 3.11: Example of Using Different Number of Nodes While Train an RFBN k‑fold 3 Results

Radial Basis Function K‑fold 3 Kernel Comparison
Kernels RMSE ‑ K‑Fold R2 ‑ K‑Fold RMSE ‑ Full Model R2 ‑ Full Model Sigma Mean
Truth N/A N/A N/A N/A 0.776 0.372
15 0.264 0.860 0.316 0.833 0.716 0.325
20 0.230 0.894 0.281 0.868 0.766 0.317
25 0.227 0.897 0.291 0.859 0.759 0.309
30 0.372 0.928 0.563 0.473 0.915 0.372

Table 3.5: Summary Kernel Comparison Radial Basis Ensemble Using XYZ Data

Trial and error is not always suitable for determining the best estimation; another solution is to

use an ensemble technique. Ensembling is a method of combining multiple estimations into one

buy averaging all estimates together. Using a range of kernels that go from too low to high and

ensembling balances out the estimation, resulting in an improved estimation.

Table 3.5 confirms that using an ensemble estimate results in a better estimation then each node

estimate alone.
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Radial Basis Function Neural Network Using XYZ Location Ensemble
Fold RMSE ‑ K‑Fold R2 ‑ K‑Fold RMSE ‑ Full Model R2 ‑ Full Model Sigma Mean
Truth N/A N/A N/A N/A 0.776 0.372
1 0.201 0.937 0.280 0.870 0.728 0.325
2 0.201 0.935 0.255 0.892 0.729 0.317
3 0.198 0.922 0.274 0.875 0.747 0.331
4 0.208 0.904 0.304 0.846 0.753 0.309
5 0.240 0.947 0.298 0.852 0.698 0.370

Average 0.210 0.922 0.283 0.867 0.731 0.330

Table 3.6: Summary of Radial Basis Ensemble Using XYZ Data

The kriging statistical in Table 3.2 are compared to the ensemble results in Table 3.6 and the

visual checks in 3.14.

From the visual and statistical check, the RBFN and kriging give similar results, which sup‑

port M. W. Mak and C. K. Li ”Elliptical Basis Function Networks and Radial Basis Function Networks

for Speaker Verification: Comparative Study” findings. It is worth noting how similar the variogram

reproduction is between the RBFN and the kriged estimate, even though we do not expect repro‑

duction to the variogram and how both estimation methods produce similar estimation continuity

(Figure 3.12).

Figure 3.12: K‑Fold Results Variogram Results From Radial Basis Neural Network Using XYZ Data
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Figure 3.13: K‑Fold Results From Radial Basis Neural Network Using XYZ Data)
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Figure 3.14: K‑Fold Results From Radial Basis Neural Network Using XYZ Data

Using an ERBFN, instead of an RBFN, further improves the ML estimate. The purpose of con‑

verting the RBFN to an ERBFN is to include anisotropy into the estimation by introducing a covari‑

ance term into the estimation with Mahalanobis distance. The ERBFN has the same structure as the

RBFN Figure 3.9; however, a covariance term for each node is learned, see Equation 3.2.
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...
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 =


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...

yn

 (3.2)

Looking at the ERBFN S−1
n or the covariance/shape of each kernel is a new parameter that must

be optimized by the neural network. The covariance term is different for each kernel allowing for

multiple directions of anisotropy in a single estimation. Kernels are no longer forced to be circular.

Figure 3.15 shows a simple data set simulated in 3D with 10000 data points and then sampled for

20% of data set (2000 data points), the sampled data is passed through a RBFN and a ERBFN with

one node. Figure 3.16 shows that the ERBFNbetter reproduces the simulated data,R2 equal to 0.948,

as it is able to develop the correct distribution shape due to the Mahalanobis distance; whereas, the
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RBFN, R2 of 0.782, is limited to a traditional Gaussian structure using Euclidean distance.

Figure 3.15: Simple Simulated and Sampled Data Example for RBFN to ERBFN
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Figure 3.16: Results From Simple Simulated and Sampled Data Example for RBFN to ERBFN

The ERBFN outperforms the RBFN in this simulated example. The test case from above will

now be considered.

Similar to the RBFN, the number of nodes is not optimized. Figure 3.17 and Table 3.7 shows the

kernel comparison of k‑fold three. All folds produced similar results and k‑fold three was chosen

at random. In the location map there is visible evidence of modelling artifacts; however, looking

at Figure 3.14 it can be seen that by ensembling the different kernel estimations the artifacts are

smoothed out and are statistically better than the single kernel estimations, see Tables 3.7 and 3.8.
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Figure 3.17: Example of Using Different Number of Nodes While Train an ERFBN k‑fold 3 Results

Elliptical Radial Basis Function K‑fold 3 Kernel Comparison
Kernels RMSE ‑ K‑Fold R2 ‑ K‑Fold RMSE ‑ Full Model R2 ‑ Full Model Sigma Mean
Truth N/A N/A N/A N/A 0.776 0.372
10 0.254 0.866 0.345 0.802 0.789 0.333
12 0.268 0.852 0.333 0.816 0.783 0.335
25 0.239 0.882 0.291 0.859 0.778 0.352

Table 3.7: Summary Kernel Comparison Elliptical Radial Basis Ensemble Using XYZ Data

Elliptical Radial Basis Function Neural Network Using XYZ Location
Fold RMSE ‑ K‑Fold R2 ‑ K‑Fold RMSE ‑ Full Model R2 ‑ Full Model Sigma Mean
Truth N/A N/A N/A N/A 0.776 0.372
1 0.219 0.920 0.269 0.879 0.752 0.357
2 0.224 0.926 0.262 0.886 0.748 0.365
3 0.223 0.897 0.271 0.878 0.763 0.340
4 0.234 0.900 0.275 0.874 0.746 0.339
5 0.223 0.915 0.306 0.844 0.767 0.358

Average 0.225 0.912 0.277 0.872 0.755 0.352

Table 3.8: Summary of Elliptical Radial Basis Ensemble Using XYZ Data

The results of RBFN and the ERBFN, are similar, 0.283 RMSE with 0.867 R2 and 0.277 RMSE

and 0.872R2, respectively for the full model. The example data set has relatively simple anisotropy.

When comparing the ERBFN to the kriged model, the kriged model still out preferences the ML

algorithm with a kriging RMSE and R2 of 0.233 and 0.910, respectively.
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Figure 3.18: K‑Fold Results From Elliptical Radial Basis Neural Network Using XYZ Data(Training Steps x
100)

Figure 3.19 shows a simulated data set that resembles a doughnut and drilled at a spacing of

35% of the variogram range in the X and Y direction and 5% of the range in the Z direction.
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Figure 3.19: Complex Structure Example, Doughnut Data

Estimations are generatedusing afivefold validationmethod for both kriging andmachine learn‑

ing. Estimations are generated using an omnidirectional variogram for the kriging workflow and

the XYZ locations for the ML features.

Figure 3.20 show the results from one fold with the statistical results of all folds in Table 3.9.

From the k‑fold results, it appears as if the kriging is slightly better; however, looking at the kriged

prediction plot, there is evidence of artifacts. Looking at the full model data reproduction, the

ERBFN outperforms the kriged model in terms of both RMSE and R2. For this complex scenario,

the ERBFN estimation is better than the kriged estimation.
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Figure 3.20: K‑Fold Results From Elliptical Radial Basis Neural Network Using Doughnut Data Set (Training
Steps x 100)

Elliptical Radial Basis Function Neural Network Using Doughnut Data Set
Fold RMSE ‑ K‑Fold R2 ‑ K‑Fold RMSE ‑ Full Model R2 ‑ Full Model Sigma Mean
Truth N/A N/A N/A N/A 0.518 0.604
1 0.100 0.964 0.207 0.866 0.500 0.654
2 0.084 0.972 0.214 0.857 0.499 0.657
3 0.093 0.967 0.216 0.854 0.496 0.661
4 0.099 0.964 0.221 0.847 0.497 0.664
5 0.099 0.964 0.210 0.862 0.500 0.653

Average 0.095 0.966 0.214 0.858 0.498 0.658

Table 3.9: Summary of Elliptical Radial Basis Ensemble Using Doughnut Data Set
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Simple Kriging Using Doughnut Data Set
Fold RMSE ‑ K‑Fold R2 ‑ K‑Fold RMSE ‑ Full Model R2 ‑ Full Model Sigma Mean
Truth N/A N/A N/A N/A 0.518 0.604
1 0.035 0.995 0.267 0.778 0.477 0.700
2 0.033 0.996 0.268 0.776 0.477 0.699
3 0.030 0.997 0.267 0.778 0.479 0.700
4 0.032 0.996 0.267 0.778 0.480 0.699
5 0.033 0.996 0.269 0.774 0.477 0.701

Average 0.033 0.996 0.268 0.777 0.478 0.700

Table 3.10: Summary of Simple Kriging Using Doughnut Data Set

A machine learning neural network algorithm is a regression,with no data reproduction at the

known locations. In real estimation scenario data reproduction is required. Figure 3.21 shows the

drill hole reproduction for kriging and the ERBFN.

Figure 3.21: Drill Hole Data Reproduction for ERBFN and Kriging

The estimates at data locations could be replaced with the correct value; however, this would

lead to artifacts. Amethod of combining bothML andGeostatistics estimationmethods is the focus

of the next section.

3.2 Combining Machine Learning and Geostatistical Estimation

Recall from Chapter 2 the geostatistical method using exhaustive secondary data, Equation 2.42

intrinsic collocated cokriging (ICCK); this estimation method takes advantage of super secondary

data and the correlation between the super secondary and the primary data. In Figure 3.22, the ma‑

chine learning and geostatistical estimation workflow can be seen. The workflow involves making

a ML estimation to generate a super secondary variable for an ICCK estimation. At first glance this
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seems strange, using an estimation to make an estimation; however, machine learning estimate is

used to enforce non‑stationarity feature into the ICCK estimation. Due to known data not being

reproduced exactly in the machine learning method the correlation between the estimation is close

to one, giving fairly similar weights to the primary and secondary data in the ICCK workflow.

Figure 3.22: Machine Learning And Geostatistical Estimation Work Flow

As demonstrated above, the ERBFN helps model non‑stationary features and provides a rea‑

sonable estimation. Also, from above, it can be seen that kriging is better when deposits are not

complex and reproduce data exactly; thus combining these two estimation methods using ICCK

should allow for data reproduction and model non‑stationary features more effectively. Figure

3.23 shows the results with a summary of the results in Table 3.11. The results and summary ta‑

ble illustrate that combining the estimation methods further improves the results of the estimation,

with the R2 being closer to one and the RMSE being lower in the full model results. Figure 3.24

confirms data reproduction. Another advantage of combining these estimations is that by using the

Geostatistical framework it is possible to simulate multiple realizations. In Pierre Goovaerts’ book

Geostatistics For Natural Resources Evaluation and A. G Journel/Phaedon C Kyriakidis’ Evaluation of

Mineral Reserves: a Simulation Approach the method of simulating models for uncertainty and the

purpose of simulating models for uncertainty is described.
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Figure 3.23: K‑Fold Results From ICCK Plus ERBFN Using Doughnut Data Set
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ERBFN + ICCK Using Doughnut Data Set
Fold RMSE ‑ K‑Fold R2 ‑ K‑Fold RMSE ‑ Full Model R2 ‑ Full Model Sigma Mean
Truth N/A N/A N/A N/A 0.518 0.604
1 0.038 0.995 0.189 0.889 0.536 0.652
2 0.039 0.994 0.189 0.889 0.531 0.654
3 0.031 0.996 0.189 0.889 0.529 0.653
4 0.037 0.995 0.194 0.882 0.526 0.659
5 0.040 0.994 0.192 0.885 0.537 0.652

Average 0.037 0.995 0.191 0.887 0.532 0.654

Table 3.11: Summary of ICCK Plus ERBFN Using Doughnut Data Set

Figure 3.24: Drill Hole Data Reproduction for ICCK Plus ERBFN

In the next example (Figure 3.25) ordinary intrinsic collocated cokriging is demonstrated (OICCK).

OICCK reproduces the secondary data when there is no local conditioning. There is a slight devia‑

tion between the OICCK estimate and the secondary data if the OICCK search range is greater then

the variogram range. If there is conditioning data in the search range, a small amount of weight is

given to conditioning data to estimate the unbiased conditional mean.

Figure 3.25 shows the conditioning data, secondary data, ICCK estimate, and the OICCK esti‑

mate. A variogram range that is 20% of the domain and a search radius that is 50% domain for

both estimate types is used with a mean of two for ICCK. In Figure 3.25 as the easting increases

for the estimates, the influence of the conditioning data decreases. In ICCK, as the influence of

conditioning data decrease, more weight is transferred to the mean. In OICCK, as the influence of

conditioning data decrease, moreweight is given to the secondary data. For the proposedworkflow

in Figure 3.22, if the estimate location is outside conditioning data range, using OICCK to generate

the posterior estimate results in the ML estimate.
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Figure 3.25: Small Example Demonstrating the Difference Between ICCK and OICCK (Estimates Are Made in
Red Circles)

3.3 Sensitivity Studies

The first sensitivity study shows that, the ICCK+ML estimationmethod behaves similarly to kriging

as the number of data increase. In Figure 3.26 a simulated data set that is Gaussian in nature with

a variogram that has a major direction of 135◦ with a major range that is 40% of the width and

minor and vertical range that is 15% of the width. This data set was then sampled one‑hundred

times randomly with a vertical sampling that is 4% of the elevation. Kriging, ML, and ICCK+ML

estimation generated using a fivefold validation method and all relevant statistics calculated.
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Figure 3.26: Simulated Data Set for Number of Data Sensitivity Study

Figure 3.27, 3.28, 3.29, and 3.30 show examples with 100,75,50,and 25 drill holes. The summary

graph of the RMSE and R2 is shown in Figure 3.31 with a table of the summary statistics in Tables

3.12, 3.13, and 3.14 for examples ranging from 100 to 5 drill holes.
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Figure 3.27: Sensitivity Study 100 Drill Holes
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Figure 3.28: Sensitivity Study 75 Drill Holes
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Figure 3.29: Sensitivity Study 50 Drill Holes
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Figure 3.30: Sensitivity Study 25 Drill Holes
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Figure 3.31: Summary Graphs of RMSE and R2 Values for Number of Data Sensitivity Study
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Number of Data Sensitivity Analysis For Simple Kriging
Number of Drill Holes RMSE ‑ Full Model R2 ‑ Full Model Sigma Mean

Truth N/A N/A 0.601 0.371
100 0.167 0.954 0.790 0.389
95 0.173 0.950 0.789 0.393
90 0.175 0.949 0.791 0.393
85 0.171 0.952 0.786 0.391
80 0.179 0.947 0.779 0.385
75 0.186 0.943 0.768 0.377
70 0.189 0.941 0.762 0.378
65 0.207 0.928 0.751 0.374
60 0.208 0.928 0.749 0.377
55 0.213 0.925 0.749 0.379
50 0.228 0.913 0.742 0.372
45 0.231 0.911 0.744 0.375
40 0.308 0.842 0.688 0.338
35 0.322 0.828 0.684 0.339
30 0.327 0.822 0.678 0.329
25 0.373 0.768 0.645 0.336
20 0.505 0.577 0.542 0.240
15 0.587 0.427 0.453 0.205
10 0.682 0.226 0.384 0.199
5 0.680 0.231 0.313 0.275

Table 3.12: Summary of Kriging Number of Data Sensitivity Analysis

Number of Data Sensitivity Analysis Machine Learning
Number of Drill Holes RMSE ‑ Full Model R2 ‑ Full Model Sigma Mean

Truth N/A N/A 0.601 0.371
100.000 0.191 0.939 0.755 0.421
95.000 0.193 0.938 0.765 0.380
90.000 0.188 0.941 0.765 0.396
85.000 0.194 0.938 0.770 0.382
80.000 0.203 0.931 0.766 0.387
75.000 0.204 0.931 0.739 0.377
70.000 0.238 0.906 0.756 0.363
65.000 0.240 0.904 0.757 0.337
60.000 0.224 0.917 0.757 0.363
55.000 0.238 0.905 0.752 0.352
50.000 0.268 0.881 0.748 0.338
45.000 0.252 0.894 0.737 0.392
40.000 0.366 0.777 0.751 0.362
35.000 0.461 0.648 0.788 0.271
30.000 0.392 0.745 0.784 0.378
25.000 0.557 0.485 0.847 0.362
20.000 0.706 0.172 0.814 0.256
15.000 0.815 ‑0.103 0.735 0.129
10.000 1.206 ‑1.417 0.957 0.021
5.000 1.205 ‑1.414 0.819 ‑0.190

Table 3.13: Summary of Kriging Number of Data Sensitivity Analysis
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Number of Data Sensitivity Analysis ML+ICCK
Number of Drill Holes RMSE ‑ Full Model R2 ‑ Full Model Sigma Mean

Truth N/A N/A 0.601 0.371
100.000 0.165 0.955 0.789 0.384
95.000 0.168 0.953 0.788 0.380
90.000 0.169 0.953 0.790 0.381
85.000 0.165 0.955 0.780 0.388
80.000 0.173 0.950 0.775 0.382
75.000 0.179 0.947 0.769 0.373
70.000 0.188 0.941 0.768 0.382
65.000 0.185 0.943 0.767 0.377
60.000 0.186 0.942 0.763 0.377
55.000 0.194 0.938 0.764 0.381
50.000 0.225 0.916 0.746 0.368
45.000 0.217 0.922 0.756 0.372
40.000 0.301 0.850 0.706 0.344
35.000 0.369 0.774 0.726 0.280
30.000 0.335 0.813 0.743 0.325
25.000 0.406 0.726 0.696 0.297
20.000 0.542 0.511 0.619 0.224
15.000 0.614 0.374 0.557 0.191
10.000 0.741 0.088 0.510 0.149
5.000 0.744 0.080 0.440 0.197

Table 3.14: Summary of ML+ICCK Number of Data Sensitivity Analysis

From the results, the ICCK+MLandkriging estimations behave very similarly in terms ofRMSE

andR2, with themachine learning being slightly inferior to the other twomethods. Looking atmean

reproduction, the SK, ML, and ML+ICCK all start to have poor reproduction when there are less

than 40 drill holes. Similarly, the machine learning algorithm also begins to demonstrate artifacts

below 40 drill holes.

ML+ICCK method behaves similarly to kriging in a Gaussian stationary system, the next ex‑

amples explore the sensitivity of the ML+ICCK and kriging in a non‑stationary example and non‑

Gaussian examples.

The next example looks at using the ML and ICCK method to predict locations where there is

no conditioning data within the variogram range. With simple kriging, if there are no conditioning

data within the variogram range, the estimation is set to the mean; however, this is likely not the

correct solution. Using the ML estimate as a secondary data with ICCK results in a prediction that

is similar to theML prediction where there is no conditioning data, and not just estimates the mean.

In Figure 3.32, a similar doughnut data set was simulated and sampled with drill holes missing on

the left of the estimation area. An omnidirectional variogram that has a range of 17.5% of the Easting

hence everything from zero to about two‑hundred east is outside the range of the conditioning data.

Figure 3.33, shows kriging gives an estimate of the mean at a location outside of the range of

conditioning data. The ML estimation results in almost a doughnut; however, the estimation has
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artifacts. Looking at the hybrid method of estimation, the estimation is now artifact‑free, and best

resembles the simulated data set. Looking at Tables 3.15 and 3.16 it can be seen that the hybridmeth‑

ods of estimation result in the best estimate in terms of minimizing root mean squared error and

R2 . The mean and distribution reproduction between the hybrid methods is similar to the kriging

having a slight underestimation of 0.03 and the ML+ICCK having a slight over mean estimation of

0.04. In this scenario, it appears as if ML plus geostatistical hybrid method outperforms kriging.

Figure 3.32: Doughnut Data Set With Missing Drill Holes
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Figure 3.33: K‑Fold Results From OICCK Plus ERBFN Using Doughnut Data Set Missing Drill Holes
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OICCK+ ML Using Doughnut Data Set Missing Left
Fold RMSE ‑ K‑Fold R2 ‑ K‑Fold RMSE ‑ Full Model R2 ‑ Full Model Sigma Mean
Truth N/A N/A N/A N/A 0.75 1.112
1 0.058 0.994 0.533 0.545 0.769 1.034
2 0.061 0.993 0.325 0.831 0.742 1.189
3 0.060 0.994 0.385 0.763 0.750 1.147
4 0.052 0.995 0.332 0.823 0.776 1.197
5 0.063 0.993 0.300 0.856 0.744 1.200

Average 0.059 0.994 0.375 0.764 0.756 1.154

Table 3.15: Summary of OICCK Plus ERBFN Using Doughnut Data Set Missing Drill Holes

Kriging Using Doughnut Data Set Missing Left
Fold RMSE ‑ K‑Fold R2 ‑ K‑Fold RMSE ‑ Full Model R2 ‑ Full Model Sigma Mean
Truth N/A N/A N/A N/A 0.75 1.112
1 0.060 0.993 0.525 0.558 0.685 1.081
2 0.066 0.992 0.525 0.559 0.684 1.080
3 0.062 0.994 0.526 0.558 0.684 1.081
4 0.061 0.993 0.524 0.560 0.684 1.081
5 0.059 0.993 0.525 0.559 0.686 1.081

Average 0.062 0.993 0.525 0.559 0.685 1.081

Table 3.16: Summary of Kriging Using Doughnut Data Set Missing Drill Holes

Lognormal data sets are simulated, with a mean of one and standard deviations from 0.2 to 2

incrementing by 0.2. Each simulated data set is drilled and then used for estimation. Figure 3.34

shows the cumulative distribution function for each simulated data set with an example of a drilling

pattern and simulated data set in Figure 3.35. The purpose of this study is not the variogram, the

data set is drilled at a spacing that is 37.5% of the major direction variogram range and 50% of the

minor direction variogram range. 6% of the variogram range, in the verticle direction, is used as

the sample spacing.

An example estimation and visual check can be seen in Figures 3.36. Figure 3.37 shows a visual

summary of the results. Tables 3.17, 3.18, and 3.19 shows a statistical summary of the results. From

the tables and graphs, themachine learning and theML+ICCK estimates perform similarly in terms

of R2 and RMSE. All estimates perform similarly in terms of RMSE; however, the R2 when

the standard deviation is low is best in the kriged estimate. As the data becomes more skewed

the machine learning estimate and the ML+ICCK becomes a better estimation. The ML estimation

becomes a better estimation at a standarddeviation of about 1.80 and theML+ICCKbecomes a better

estimate at a standard deviation of 1.60. It would be reasonable to say based on the trend of the R2

andRMSE that all three estimationswould continually getworse as the distribution becomesmore

skewed; however, theML estimate and theML+ICCK estimate should remain a better estimate then

kriging. As for mean reproduction, all three estimation techniques behave similarly and reproduce

the mean reasonably. These results are reasonable as kriging is not optimal when the data are not

Gaussian.
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Figure 3.34: Cumulative Distribution Functions of Lognormal Data Sets
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Figure 3.35: Example of Lognormal Data Set
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Figure 3.36: Example of Lognormal Estimation Standard Deviation = 2.0
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Figure 3.37: Lognormal Sensitivity Summary Graphs

Lognormal Sensitivity Study ‑ Kriging
Truth RMSE ‑ Full Model R2 ‑ Full Model Estimation

Sigma Mean Sigma Mean
0.200 1.047 0.043 0.948 0.186 1.052
0.400 1.084 0.092 0.946 0.392 1.095
0.600 1.113 0.150 0.941 0.608 1.129
0.800 1.134 0.216 0.934 0.825 1.156
1.000 1.150 0.290 0.925 1.035 1.177
1.200 1.161 0.368 0.916 1.236 1.193
1.400 1.169 0.449 0.907 1.424 1.206
1.600 1.175 0.531 0.898 1.599 1.216
1.800 1.179 0.614 0.889 1.761 1.224
2.000 1.182 0.695 0.880 1.911 1.231

Table 3.17: Summary of Kriging Using Lognormal Data Sets
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Lognormal Sensitivity Study ‑ Machine Learning
Truth RMSE ‑ Full Model R2 ‑ Full Model Estimation

Sigma Mean Sigma Mean
0.200 1.048 0.054 0.918 0.186 1.056
0.400 1.085 0.108 0.925 0.390 1.101
0.600 1.100 0.168 0.926 0.603 1.127
0.800 1.154 0.265 0.900 0.837 1.147
1.000 1.137 0.307 0.916 1.014 1.172
1.200 1.186 0.378 0.911 1.278 1.202
1.400 1.168 0.480 0.894 1.513 1.224
1.600 1.168 0.533 0.897 1.583 1.216
1.800 1.189 0.586 0.899 1.736 1.211
2.000 1.180 0.623 0.904 2.004 1.238

Table 3.18: Summary of Machine Learning Using Lognormal Data Sets

Lognormal Sensitivity Study ‑ ML+ICCK
Truth RMSE ‑ Full Model R2 ‑ Full Model Estimation

Sigma Mean Sigma Mean
0.200 1.048 0.057 0.909 0.181 1.049
0.400 1.085 0.116 0.914 0.382 1.105
0.600 1.100 0.179 0.916 0.587 1.113
0.800 1.154 0.272 0.895 0.819 1.164
1.000 1.137 0.324 0.906 0.986 1.194
1.200 1.186 0.385 0.908 1.241 1.230
1.400 1.168 0.475 0.896 1.455 1.209
1.600 1.168 0.549 0.891 1.531 1.193
1.800 1.189 0.596 0.895 1.719 1.201
2.000 1.180 0.658 0.892 1.929 1.237

Table 3.19: Summary of ML+ICCK Using Lognormal Data Sets

ML+ICCK estimation appears to work more effectively then kriging in non‑Gaussian scenarios.

The next step is to explore how the drill hole spacing to variogram range effects a non‑Gaussian

distributed scenario.

Multiple datasets are simulated froma lognormal distributionwith amean of one and a standard

deviation of 2. Each dataset was simulated with a different variogram range and drilled at the same

spacing to study how to drill hole spacing to variogram range affects the estimation techniques. The

data spacing to variogram ratio starts at 50% of the variogram range; the variogram range is then

decreased uniformly until the ratio of data spacing to variogram range is equal to 150%. Figure 3.38

and 3.39 shows two examples of the datasets used.
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Figure 3.38: Example of Lognormal Data Set DH/Varg Range = 0.46

Figure 3.39: Example of Lognormal Data Set DH/Varg Range = 1.46

With each dataset, estimation is performed with the appropriate variograms. Figure 3.40 shows

the results from the Drill Holes Spacing/Variogram Range = 0.46. Figure 3.41 shows a summary

graph of theRMSE andR2 base on the Drill Holes Spacing/Variogram Range. Tables 3.20,3.21,3.22

show summary tables for all with all relevant statistics. From the results it appears as if based on

RMSE and R2 that ML+ICCKmethod provides the better estimation until a drill hole spacing/var‑

iogram range of 110% is reached, this is likely due to the lack of data being used in the machine

learning estimation causing issues in the ML+ICCK workflow. At a ratio of 100%, the estimation

starts to have visual artifacts due to the drill hole spacing being greater than the variogram range.
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As before, it appears as if the ML+ICCK method produces a better estimation and has the same

sensitivity to drill hole spacing to variogram range as kriging.

Figure 3.40: Example of Lognormal Estimation Drill Holes Spacing/Variogram Range = 0.46
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Figure 3.41: Summary Graph for Lognormal Drill Holes Spacing/Variogram Range Sensitivity Study
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Drill Holes Spacing/Variogram Range Sensitivity Study ‑ Kriging
Truth RMSE ‑ Full Model R2 ‑ Full Model Estimation

Drill Hole Spacing/
Variogram Range Sigma Mean Sigma Mean

0.475 2.178 1.273 1.031 0.744 1.949 1.239
0.514 2.311 1.311 1.179 0.704 2.046 1.281
0.559 2.428 1.359 1.323 0.658 2.110 1.332
0.613 2.470 1.390 1.403 0.597 2.088 1.367
0.679 2.528 1.410 1.557 0.467 2.051 1.390
0.760 2.648 1.393 1.784 0.291 2.033 1.378
0.864 2.794 1.354 2.107 0.196 1.988 1.340
1.000 2.782 1.292 2.464 0.166 1.784 1.281
1.188 2.382 1.139 2.724 0.115 1.319 1.133
1.462 2.006 0.980 2.653 0.059 0.912 0.978

Table 3.20: Summary of Kriging Using Lognormal Drill Holes Spacing/Variogram Range Sensitivity Study

Drill Holes Spacing/Variogram Range Sensitivity Study ‑ ML
Truth RMSE ‑ Full Model R2 ‑ Full Model Estimation

Drill Hole Spacing/
Variogram Range Sigma Mean Sigma Mean

0.475 2.178 1.273 1.270 0.514 1.792 1.061
0.514 2.311 1.311 1.310 0.450 1.765 1.249
0.559 2.428 1.359 1.360 0.478 2.065 1.241
0.613 2.470 1.390 1.390 0.337 2.013 1.180
0.679 2.528 1.410 1.800 0.253 1.941 1.270
0.760 2.648 1.393 2.840 ‑ 0.050 2.181 1.159
0.864 2.794 1.354 2.170 ‑ 0.050 2.015 1.161
1.000 2.782 1.292 2.410 ‑ 0.077 2.076 1.332
1.188 2.382 1.139 3.150 ‑ 0.182 2.059 1.020
1.462 2.006 0.980 3.093 ‑ 0.279 1.750 0.774

Table 3.21: Summary of ML Using Lognormal Drill Holes Spacing/Variogram Range Sensitivity Study

Drill Holes Spacing/Variogram Range Sensitivity Study ‑ ML+ICCK
Truth RMSE ‑ Full Model R2 ‑ Full Model Estimation

Drill Hole Spacing/
Variogram Range Sigma Mean Sigma Mean

0.475 2.178 1.273 0.939 0.788 1.771 1.114
0.514 2.311 1.311 1.096 0.744 1.850 1.203
0.559 2.428 1.359 1.213 0.713 1.965 1.178
0.613 2.470 1.390 1.297 0.656 1.975 1.225
0.679 2.528 1.410 1.386 0.577 1.733 1.157
0.760 2.648 1.393 1.523 0.483 1.582 1.060
0.864 2.794 1.354 1.976 0.293 1.536 1.019
1.000 2.782 1.292 2.433 0.187 1.286 0.876
1.188 2.382 1.139 2.777 0.081 0.974 0.718
1.462 2.006 0.980 2.713 0.016 0.708 0.605

Table 3.22: Summary of ML+ICCK Using Lognormal Drill Holes Spacing/Variogram Range Sensitivity Study

This sensitivity study explores data with a trend. The data set initially has a major variogram
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that is 2.75 times larger then the minor, the major to minor range ratio is then increased until the

ratio is equal to 5.25 times. Each dataset is drilled the same. The minor and down‑hole variogram

range is set to the truth, so that variogram is modelled only in the major direction. Using the truth

minimizes error introduced in the variogram modelling step, and more effectively demonstrates

the difficulty modelling trends.

Figure 3.42 shows the simulated data, drilled data, and variograms can be seen for the 2.75

major/minor variogram range and in Figure 3.43 the 5.25 major/minor variogram range.

Figure 3.42: Example of Simulated and Drilled Data For Major/Minor Vargiogram Range Sensitivity Study =
2.75

Figure 3.43: Example of Simulated and Drilled Data For Major/Minor Vargiogram Range Sensitivity Study =
5.25
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Figure 3.44 shows the results with the largest trend. From the results, all methods accurately

reproduce the mean; however, the distribution of data is reproduced appears best in the machine

learning methods.

In terms of RMSE and R2 the machine learning method outperforms kriging with the hybrid

method doing the best in all cases except where the major to minor variogram ratio is only 2.75

(Figure 3.45). A summary of all relevant statistics can also be seen in Tables 3.23, 3.24, and 3.25

From the results it would be reasonable to say that the machine learning andmachine learning plus

intrinsic collocated cokriging methods outperform kriging.

Figure 3.44: Example of Major/Minor Vargiogram Range Sensitivity Study = 5.25
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Figure 3.45: Summary Graph for Increasing Major/Minor Vargiogram Range Sensitivity Study
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Summary of Increasing Major/Minor Vargiogram Range Sensitivity Study ‑ Kriging
Truth RMSE ‑ Full Model R2 ‑ Full Model Estimation

Major/Minor Varg
Range Sigma Mean Sigma Mean

2.75 0.121 1.091 0.293 0.587 0.276 1.107
3.00 0.110 1.080 0.341 0.440 0.216 1.088
3.25 0.107 1.080 0.343 0.435 0.213 1.089
3.50 0.101 1.082 0.346 0.425 0.208 1.091
3.75 0.091 1.086 0.352 0.404 0.199 1.095
4.00 0.082 1.088 0.360 0.378 0.190 1.097
4.50 0.075 1.089 0.367 0.353 0.180 1.098
4.75 0.068 1.089 0.376 0.322 0.172 1.097
5.00 0.060 1.089 0.387 0.279 0.162 1.097
5.25 0.056 1.089 0.395 0.251 0.156 1.096

Table 3.23: Summary of Kriging Increasing Major/Minor Vargiogram Range Sensitivity Study

Summary of Increasing Major/Minor Vargiogram Range Sensitivity Study ‑ ML
Truth RMSE ‑ Full Model R2 ‑ Full Model Estimation

Major/Minor Varg
Range Sigma Mean Sigma Mean

2.750 0.123 1.093 0.304 0.557 0.353 1.092
3.000 0.110 1.079 0.313 0.530 0.327 1.080
3.250 0.103 1.072 0.309 0.542 0.318 1.070
3.500 0.100 1.080 0.310 0.539 0.312 1.087
3.750 0.090 1.080 0.312 0.533 0.300 1.076
4.000 0.084 1.086 0.342 0.438 0.283 1.087
4.500 0.074 1.091 0.336 0.458 0.267 1.081
4.750 0.068 1.089 0.337 0.454 0.258 1.090
5.000 0.059 1.092 0.364 0.364 0.237 1.089
5.250 0.056 1.090 0.373 0.331 0.237 1.091

Table 3.24: Summary of ML Increasing Major/Minor Vargiogram Range Sensitivity Study

Summary of Increasing Major/Minor Vargiogram Range Sensitivity Study ‑ ML+ICCK
Truth RMSE ‑ Full Model R2 ‑ Full Model Estimation

Major/Minor Varg
Range Sigma Mean Sigma Mean

2.750 0.123 1.093 0.299 0.570 0.347 1.094
3.000 0.110 1.079 0.308 0.544 0.328 1.076
3.250 0.103 1.072 0.305 0.553 0.319 1.067
3.500 0.100 1.080 0.304 0.555 0.309 1.088
3.750 0.090 1.080 0.307 0.546 0.296 1.078
4.000 0.084 1.086 0.340 0.445 0.281 1.079
4.500 0.074 1.091 0.334 0.465 0.265 1.080
4.750 0.068 1.089 0.335 0.460 0.259 1.088
5.000 0.059 1.092 0.362 0.369 0.235 1.091
5.250 0.056 1.090 0.372 0.334 0.236 1.087

Table 3.25: Summary of ML+ICCK Increasing Major/Minor Vargiogram Range Sensitivity Study

The final important sensitivity study is run time. Figures 3.46 and 3.47 show the run time for
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training and prediction. From the runtime graphs the only thing that effects run time is the number

of nodes and input features, conceptually this makes sense. Increasing the number of training data,

and prediction locations does not change the number of equations to solve just thematrix size. From

the examples demonstrated five batcheswhere used to training the data and the prediction gridwas

split 50 times due to memory issues. Theoretically the prediction time could be sped up 50x and

training time could be sped up 5x with more memory. For these examples a NVIDIA GeForce GTX

760 was used.

Figure 3.46: Run time vs Number of Nodes for 100 Training Steps
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Figure 3.47: Run Time vs Number of Nodes for Prediction (Note: A small time discrepancy between the two
examples is likely due to a slight time deviation in computer overhead)

Using simulated data to test new estimations method is an useful way to prove the validity of

themethod; however, the best way to prove the validity of an estimation technique is with real data.

The next Chapter focuses on exploring a real dataset.
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CHAPTER 4

JA EXTENSION COPPER PORPHYRY DEPOSIT
CASE STUDY
The focus of Chapter 4 is on the practical application of the proposed estimation techniques in

Chapter 3 using the JA extension copper‑molybdenum porphyry deposit. Simple kriged estimates

are generated then compared to the machine learning and hybrid estimates with k‑fold validation.

The comparison between estimates donewith four‑folds. K‑fold 0 is the average of all estimates and

is considered the final estimate. The goal of this study is to review the three estimation methods in

a practical setting and provide modelling recommendations based on the results.

4.1 Available Data

The JA extension copper‑molybdenum porphyry deposit is located near the Highland Valley in

British Columbia and consists of 136 drill holes with 3245 copper samples. The estimation domain

in the X‑direction ranges from 34400‑36275, in the Y‑Direction ranges from 27400‑28600, in the Z‑

direction ranges from 600‑1200. Figure 4.1 is a location map of the available data in an XY(left) and

XZ(right) slices. The ore is deposited along veins, fracture and faults similar to many porphyry

deposits (Daniels, 2015). The copper (Cu) variable is a mass percentage. More information on

the JA extension copper‑molybdenum porphyry deposit and the geological setting is available in

Northcote (2019).This case study will focus on the copper variable. From the Location maps and

data spacing CDF, it is evident that the data spacing is fairly regular in the low‑grade areas and

densely sampled in the high‑grade areas. The drill holes have a composite length of 10m.

82



4. JA Extension Copper Porphyry Deposit Case Study

Figure 4.1: JA extension Copper Porphyry Deposit Location Map of Cu Data XY view, left, XZ, right

4.2 Modelling Parameters

Thedata is not evenly spaced andmust be de‑clustered before calculating reference statistics. Figure

4.2 is a de‑clusteredmean size vs cell size(left) and a probability density function of the data spacing

(right). The de‑clustered cell size is 250 units, the 95th percentile (Silva, 2018). The average data

spacing is 191m, 10.2% of the X direction and 15.8% of the Y direction.
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4. JA Extension Copper Porphyry Deposit Case Study

Figure 4.2: JA extensionCopper PorphyryDeposit Data Spacing Study. The 95th Percentile of theData Spacing
of the PDF Will be Used as the Declustering Cell Size

Figure 4.3 is the histogram from the Cu data. From the histogram, the de‑clustered mean of the

data is 0.176, with a standard deviation of 0.192. The distribution of the data is positively skewed

with a coefficient of variation (CV) is 0.9; at a CV of 2.5, it is recommended that the geological

domains of the high and low data be split (Rossi & Deutsch, 2016). Using one domain for modelling

this deposit is reasonable.
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4. JA Extension Copper Porphyry Deposit Case Study

Figure 4.3: JA extension Copper Porphyry Deposit De‑clustered Histogram of Cu Data

The major features of the deposit appear to have an azimuth 110◦ east of north dipping slightly

at −10◦. The experimental variogram points are calculated using a traditional semivariogram with

a 100 unit lag distance, the 5th percentile of data spacing, on the plane of greatest continuity (Silva,

2018). 90◦ to the plane of greatest continuity points are calculated based on the composite length.

Figure 4.4 shows the experimental variogram points and variogram models in three directions.

Equation 4.1 is the variogram model. In the short‑range, the variogram is modelled fairly isotropi‑

cally due to the nature of porphyry deposits. Both the minor and the direction perpendicular to the

dip have the same range. The major to minor variogram range is 1.12:1. More information on the

traditional semivariogram can be found in Rossi and Deutsch (2016).
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4. JA Extension Copper Porphyry Deposit Case Study

Figure 4.4: JA extension Copper Porphyry Deposit Cu Variograms

γ(h) = 0.01Nugget + 0.35γSph(h)
ahmax = 45

ahmin = 45

avert = 30

+ 0.64γSph(h)
ahmax = 380

ahmin = 340

avert = 340

(4.1)

Table 4.1 is the grid definition the estimate is made on.

Direction Origin Number of Blocks Block Size
Northing(Y) 27400 80 15
Easting(X) 34400 125 15
Elevation(Z) 600 40 15

Table 4.1: JA extension Copper Porphyry Deposit Modelling Grid Definition

The first method to consider is simple kriging. The kriging parameters include the variograms

modelled above, a minimum of 8 and a maximum of 100 data to consider for each estimate, an

unbiased mean from the k‑fold sets equal to 0.180, and a 1000m search ellipse. Each estimate has

a discretization of 5x5x5. The second method to consider is the ERBFN. X, Y, and Z are divided by

100 and used as the features and nodes ranging from 10 to 300 for the ensemble estimation. The

final estimate technique to considers is the ML+OICCK. The OICCK parameters are the same as

the SK parameter except the mean is not required, and the ML estimate is the collocated data with

correlation 0.72. All estimation parameters are determined; the next section explores the results of

each estimate.

4.3 Results and Analysis

Figure 4.5 shows one fold with the three different estimations results and Figure 4.6 shows the fi‑

nal estimate. From the k‑fold results, all estimation methods produce similar results with the ML

smoothest. For this fold the mean is overstimated in all three estimate types. Looking at Tables

4.2, 4.3, and 4.4 the kriged method overestimates the final results, whereas the ML andML+OICCK

methods do not. K‑folding the data results in a small mean bias increasing the mean of the data

slightly. Due to the distribution of the data, the random sampling for the k‑fold validation is likely
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4. JA Extension Copper Porphyry Deposit Case Study

to remove more data from the lower values. Due to the assumption of first‑order stationarity, krig‑

ing attempts to match k‑fold mean. In the final estimate and the k‑fold example, the histogram

reproduction looks best in ML and ML+OICCK. The final estimate is the average of all folds to‑

gether; hence, the data reproductionRMSE value is the error introduced into the estimatewhen the

known location was not apart of the estimate. There was less error introduced into the ML+OICCK

estimate than any of the other two estimations techniques with a RMSE of 0.091 and R2 of 0.832.

ML did the worst with aRMSE of 0.160 andR2 of 0.576. The kriged estimate is slightly worse than

the ML+OICCK with a RMSE of 0.100 and R2 of 0.832. There is evidence in all three estimates of

artifacts; this is likely due to the plotting limits.
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Figure 4.5: JA extension Copper Porphyry Deposit K‑Fold 2 Results
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Figure 4.6: JA extension Copper Porphyry Deposit Final Estimate Results
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Summary of the JA extension Copper Porphyry Deposit SK
Truth RMSE R2 Estimate

Fold Sigma Mean Sigma Mean
0‑Final Estimate 0.192 0.176 0.100 0.832 0.110 0.198

1 0.203 0.212 0.273 0.070 0.108 0.192
2 0.203 0.212 0.206 0.335 0.119 0.203
3 0.203 0.212 0.143 0.280 0.114 0.198
4 0.203 0.212 0.136 0.188 0.114 0.201

Table 4.2: JA extension Copper Porphyry Deposit SK Summary

Summary of the JA extension Copper Porphyry Deposit ML
Truth RMSE R2 Estimate

Fold Sigma Mean Sigma Mean
0‑Final Estimate 0.192 0.176 0.160 0.576 0.155 0.185

1 0.203 0.212 0.274 0.062 0.176 0.144
2 0.203 0.212 0.211 0.303 0.196 0.158
3 0.203 0.212 0.149 0.222 0.140 0.176
4 0.203 0.212 0.138 0.136 0.143 0.192

Table 4.3: JA extension Copper Porphyry Deposit ML Summary

Summary of the JA extension Copper Porphyry Deposit ML+OICCK
Truth RMSE R2 Estimate

Fold Sigma Mean Sigma Mean
0‑Final Estimate 0.192 0.176 0.091 0.862 0.150 0.183

1 0.203 0.212 0.277 0.040 0.149 0.173
2 0.203 0.212 0.203 0.354 0.166 0.190
3 0.203 0.212 0.146 0.249 0.151 0.178
4 0.203 0.212 0.134 0.205 0.150 0.192

Table 4.4: JA extension Copper Porphyry Deposit ML+OICCK Summary

Tables 4.5, 4.6, and 4.7 shows the total tonnage above a cut‑off grade ranging from 0.0−0.50%Cu.

A bulk density of 2.60t/m3 is used to calculate total tonnes similar to Graden (2013). From the tables,

theML andML+OICCK estimates show similar results; however, the kriging results hasmore lower

grade tonnes. The kriged estimate has 29% of the total tonnage above a cut‑off grade of 0.20%Cu;

whereas, the ML estimate and the hybrid estimate have 0.39% and 0.36% of the total tonnage above

a cut‑off grade of 0.20%Cu. The difference between the tonnages at a cut‑off grade of 0.20%Cu

is significant. This difference is likely due to modelling the high grade and low grade Cu zones

together.

The final estimation check is a swath plot. A swath plot looks at the average grade is a strip of

the domain. Figures 4.7, 4.8 and 4.9 are swath plots from all three estimation techniques compared

to the drill hole data. All three estimation methods appear to do reasonably and reproduce the

swaths accurately. The estimations are much smoother than the truth in the swath plot, as expected.

In the Z direction swath plot, it appears as if the hybrid and ML estimates better reproduce the
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Cut‑off Grade K‑fold 0 Copper Porphyry Deposit Kriging
Cut‑off Grade % Total Tonnes Mean (%Cu) Millions of Tonnes Metal (Millions of Tonnes)

0.00 1.00 0.20 3,508 696.6
0.10 0.92 0.21 3,236 677.0
0.20 0.29 0.33 1,002 326.6
0.30 0.12 0.43 434.7 188.7
0.40 0.06 0.53 213.7 112.9
0.50 0.03 0.62 101.6 63.12

Table 4.5: JA Extension Copper Porphyry Deposit Kriging Cut‑off Grade K‑fold 0

Cut‑off Grade K‑fold 0 Copper Porphyry Deposit ML
Cut‑off Grade % Total Tonnes Mean (%Cu) Millions of Tonnes Metal (Millions of Tonnes)

0.00 1.00 0.19 3,510 650.1
0.10 0.64 0.26 2,252 593.8
0.20 0.39 0.34 1,356 463.7
0.30 0.20 0.43 690.1 297.4
0.40 0.09 0.53 326.8 173.1
0.50 0.05 0.62 163.4 100.5

Table 4.6: JA Extension Copper Porphyry Deposit ML Cut‑off Grade K‑fold 0

Cut‑off Grade K‑fold 0 Copper Porphyry Deposit ML+OICCK
Cut‑off Grade % Total Tonnes Mean (%Cu) Millions of Tonnes Metal (Millions of Tonnes)

0.00 1.00 0.18 3,510 642.7
0.10 0.64 0.25 2,259 573.9
0.20 0.36 0.34 1,276 432.0
0.30 0.17 0.44 597.9 265.1
0.40 0.09 0.54 299.6 162.9
0.50 0.05 0.63 160.6 101.0

Table 4.7: JA Extension Copper Porphyry Deposit ML+OICCK Cut‑off Grade K‑fold 0

average grade. Base on the k‑fold results and the final estimate, it appears as if the best estimation

technique is the ML+OICCK, it results in the minimum RMSE and the maximum R2 value. The

ML learning estimate behaves similar to the SK estimate and could be used as a variogram free

modelling tool by hard replacing the data values; however, the recommend modelling method is

the hybrid estimation technique.
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Figure 4.7: JA extension Copper Porphyry Deposit Cu Swath Plot X

Figure 4.8: JA extension Copper Porphyry Deposit Cu Swath Plot Y
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Figure 4.9: JA extension Copper Porphyry Deposit Cu Swath Plot Z
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CHAPTER 5

CONCLUSION
Making a spatial prediction for resource modelling is an important task. In current practice, when

making a prediction, the assumption of first and second‑order stationarity is required. The assump‑

tion of stationarity is subjective. Themachine learning algorithmpresented produces similar results

to kriging and does not require the assumptions of stationarity. The machine learning methodmin‑

imizes human interaction, perhaps minimizing error and bias. The hybrid algorithmleads to an

estimate that outperforms the traditional spatial estimations methods in scenarios complex with

geological domains. The benefits and downfalls of these estimation techniques are highlighted,

multiple simulated examples are explored, and a practical example is demonstrated.

5.1 Topics Covered and Contribution

Domain selection is subjective and traditionally requires expert knowledge. Poorly selected do‑

mains result in poor estimates. In some cases, domain selection is not always straight forward.

Chapter 2, is a simple summary kriging and machine learning. The estimation domain must be

determined, and variograms modelled while kriging. When done correctly, kriging is considered

the best unbiased linear estimate. Machine learning presents many techniques for estimation; how‑

ever, once the correct algorithm is selected, the assumption of stationarity is not required. The

type and availability of data determine the machine learning algorithm chosen. Neural networks

and k‑means are the machine learning algorithms explored. Hyperparameters for neural networks

include the number of hidden layers, activation functions, learning rates, and input features. For

k‑means, the main parameter is the number of nodes. The final estimation technique present in

Chapter 2 is ordinary intrinsic collocated cokriging. For OICCK, the parameter selection is simi‑

lar to simple kriging without the requirement of the mean. OICCK takes advantage of exhaustive

secondary data to make a better estimate.

In Chapter 3, two estimation techniques are proposed. Neural networks with different depths

and widths are explored and compared to kriging and found to be unsuccessful. The first suc‑

cessful ML estimate takes advantage of radial basis functions to generate a smooth spatial estimate

using coordinates as input features. By switching from Euclidean distance toMahalanobis distance,

the radial basis neural network estimate is improved. Considering the covariance with the Maha‑

lanobis distance better considers anisotropy. The radial basis nodes can now take an elliptical form.

The elliptical radial basis function network appears to outperform kriging in estimation scenarios

that demonstrate complex anisotropy. In more traditional spatial problems, the ML algorithm per‑
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forms slightly worse then SK; however, the ML algorithm does not require first and second‑order

stationary. The second estimation technique proposed is a hybrid geostatistical and machine learn‑

ing hybrid that takes advantage of OICCK. In the OICCK+ML hybrid estimate, the ML estimate is

used as the exhaustive secondary data and enforces the complex anisotropy in the estimate. The

hybrid estimate appears to outperform kriging in data that exhibit non‑stationary features such as

log normality, trends, and complex features. TheML and hybrid estimation techniques behave sim‑

ilarly to kriging in terms of data spacing. Using the hybrid algorithm enforces data reproduction

and allows for simulations.

Chapter 4 is a case study that explores the a copper porphyry deposit. The copper resources

are estimated with the two proposed estimate techniques and compared to kriging. From the pre‑

dictions maps, all estimates look similar.The ML estimate is the smoothest. In terms of histogram

reproduction andmean reproduction, the hybrid andML estimates perform better. The hybrid esti‑

mate outperforms SK in the k‑fold 0 data reproduction, and theML estimate performs theworst due

to the nature of regression algorithms. Inspecting the swath plot shows that all estimates perform

similarly in terms of average grade except in the Z direction the ML and hybrid estimate appear to

reproduce the mean in the swaths better.

The major contributions from this thesis include an ML method of stationary free estimation

that performs similarly to SK and a hybrid estimation technique that appears to outperforms the

SK in complex spatial problems. An integrated machine learning and geostatistical algorithm for

modelling spatial data the more effectively take into account complex anisotropy while minimizing

human interaction has been demonstrated and shown effective. The goals and topic set forward in

Chapter 1 have been addressed and accomplished.

5.2 Limitations and Future Work

Despite the developments made in this thesis, there are still several limitations with the machine

learning method and the hybrid method. Currently, the machine learning method does not repro‑

duce data at the known locations; although replacing the estimate at the known location is possible,

it can cause artifacts; furthermore, simulation is currently not possible with the proposed machine

learning technique. Simulation is an essential step in quantifying uncertainty in a geological es‑

timate. A less significant limitation in the ML algorithm is that the initial anisotropy cannot be

specified. Specifying the anisotropy would likely reduce the time required to train the algorithm.

Incorporating a learning stage to determine the optimal number of nodes would potentially speed

up the algorithm and produce a better estimate. If a node learning stage is implementing the need

to ensemble the estimate would be removed. In the realm of machine learning, a vast amount of

possibilities are available to explore when considering making mineral resource estimates. Further

investigation into ML estimation techniques is warranted as only neural networks, and k‑means
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are explored in this dissertation.

Using the hybrid estimation solves the issues with data reproduction and simulation; however,

it comes at the cost of assuming first and second‑order stationarity, and a variogram model is re‑

quired. Although using the hybrid estimation appears to produce better results than SK in complex

domains, further research into auto variogram modelling using machine learning is warranted. If

variograms are automodelled, theML+OICCK estimationmethod could be fully integrated, further

reducing the human iteration.

5.3 Recommendations

The goals of this dissertation have been discussed and implemented in theoretical terms, simu‑

lated examples, and practical examples. Two estimation methods are explored. The first method

explored is a machine learning method that produces similar results to simple kriging while not

assuming first and second‑order stationarity. The second method explored is a hybrid machine

learningmethod that takes advantage of amachine learning estimate to enforce complex anisotropy

and deal with complex datamore effectively. If a deterministic estimation is the goal andmodelling

variogram is difficult, the elliptical radial basis function network is recommended. If a single best es‑

timate is required or a stochastic model is desired, the ordinary intrinsic collocated cokrigingmodel

using the elliptical radial basis function network estimate as the secondary data is recommended

to evaluate a resource and quantify uncertainty.
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APPENDIX A

APPENDICES
All Notebooks used to generate these results are available in the github repository, Search: Mineral‑

Resource‑Estimates‑with‑Machine‑Learning‑and‑Geostatistics
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