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Abstract 

Rising interest in the transition to renewable energy, materials, and chemicals ushers 

biorefining strategies that effectively utilize all components of lignocellulosic biomass feedstocks. 

Concurrently, more frequent and severe drought brought on by accelerating climate change pose 

questions regarding the reliability of biomass feedstocks. Lignin is a phenolic branched copolymer 

deposited mainly in the secondary plant cell wall of some plant cells providing strength, rigidity, 

and pathogen resistance to most terrestrial plants. Lignin also accounts for ~15-30% of 

lignocellulosic biomass composition and up to 40% of its energy content. Lignin has been 

correlated with drought stress response mechanisms of plants due to the various properties it 

confers to the plant cell wall. Lignin has also become a center-point of contemporary biorefining 

schemes due to its impact on biomass processing chemistry and inherent potential for various high-

value products as the most abundant renewable aromatic carbon source.  

One of the most ecologically and economically important conifers in North America 

known for its large size, high lignin content, and drought resistance; Douglas-fir, is a promising 

feedstock for contemporary biorefineries. This thesis has investigated the impact of drought 

induced stress on the composition of Douglas-fir lignin to assess to what degree lignin may play a 

role in its drought stress tolerance mechanisms. In particular, this work has looked at lignin content 

and structural composition which may be useful indicators for assessing biomass feedstock quality.  

Wood from the outer rings of stems of Douglas-fir [Pseudotsuga menziesii var. menziesii 

(Mirb.) Franco] seedlings grown in either severe drought or under normal conditions for one year 

have been harvested for analysis. Lignin has been extracted from the wood samples using a mild 

organic solvent extraction approach for more detailed analysis of its structural features. Wood and 
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lignin samples were analysed with wet chemical approaches, attenuated total reflectance Fourier 

transform infrared spectroscopy, pyrolysis-gas chromatography – mass spectrometry, quantitative 

phosphorus-31 nuclear magnetic resonance spectroscopy and quantitative solid-state multiple-

cross polarization carbon-13 nuclear magnetic resonance spectroscopy. While wet chemical 

analysis did not discern differences in lignin content, quantitative solid-state carbon-13 nuclear 

magnetic resonance spectroscopy of wood revealed a 5% higher lignin content in the drought 

stressed wood compared to the control. This result provides some evidence to suggest lignin 

biosynthesis may be associated with the drought stress response mechanism in Douglas-fir. 

Furthermore, quantitative phosphorus-31 and solid-state carbon-13 nuclear magnetic resonance 

spectroscopy of the isolated lignin indicated slight variations in concentration of distinct hydroxyl 

group functionalities and other structural features between the samples. Altogether, while this 

thesis has provided encouraging evidence for associating lignin content and composition with the 

drought stress response of Douglas-fir, further investigation will be necessary to better understand 

this mechanism. The findings of this thesis have aided in identifying promising pathways for more 

comprehensive and sophisticated investigations. The limitations of the current work and new 

directions for future studies have been discussed in detail.   

The first five chapters of this document provide a detailed background of the key areas 

related to the investigation carried out for this the thesis while chapter 6 describes the experimental 

work. Chapter 1 provides an introduction and background to the subject along with characterizing 

the status of the field, defining challenges to be addressed, and presenting a hypothesis for this 

thesis. Chapter 2 reviews the literature regarding the association between plant drought stress 

tolerance and lignin, discussing the approaches, current understandings, challenges and 

limitations. Chapter 3 provides an overview of lignocellulosic biomass fractionation strategies, 
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covering both the industrial approaches as well as laboratory methods. Chapter 4 reviews lignin 

characterization and the analytical tools for elucidating structural features. In chapter 5, a review 

of chemometric approaches applied for lignocellulosic biomass and lignin characterization is 

presented including a detailed background on chemometrics and an organized assessment of 

approaches applied to different analytical challenges in the field. Chapter 6 describes and discusses 

the experimental work performed for this investigation, including an analysis of the results and the 

conclusions regarding the effects of drought stress on the composition of Douglas-fir wood 

observed in this work. Finally, chapter 7 summarizes the work done for this thesis, presents key 

findings, limitations, and prospects for future work. 
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Chapter 1: Introduction 

1.1 Background 

Growing concerns of anthropogenic contributions to climate change have prompted 

increased research into energy, materials, and chemicals that would reduce emissions and sustain 

the global demand for resources. To this end, lignocellulosic biomass has emerged as a promising 

candidate as a renewable and sustainable feedstock. Derived from organic plant matter, 

lignocellulosic biomass is primarily composed of three biopolymers: cellulose, hemicellulose, and 

lignin. Plants consume carbon dioxide and water and convert light energy from the sun into 

chemical bonds that build up its structure. The energy stored within these chemical bonds and the 

naturally synthesized biopolymers within plants can be accessed and exploited and therefore 

present a unique opportunity as widely available renewable feedstocks.  

There are a variety of renewable resources that have the potential to meet the growing 

demand, all with unique challenges. Renewable energy technologies, such as solar and wind, have 

become well known and increasingly advanced. However, they face challenges with integration 

into existing electrical grid distribution and consumption schemes based on their intermittent 

nature [1]. Biomass has the potential to address some concerns faced by other common renewables 

such as intermittency but has its own challenges as well. The challenges to using biomass as a 

renewable energy source include carbon emissions, environmental concerns during the refining 

process and cost-effective utilization at scale. Of the various renewable resources available, plant 

biomass is the only renewable carbon source in nature, providing it with a unique capability for 

production of value-added products [2]. Around 40% of a plant’s dry matter is carbon, making 

lignocellulosic biomass not only a potential renewable source of energy but also a renewable 

source of carbon [3].  

Due to the renewable nature of lignocellulosic biomass along with its wide accessibility 

and diverse utility, some have proposed that our conventional fossil-fuel dominated society could 

be replaced with a bio-based economy established upon the principals of green chemistry. There 

are several environmental, social, technical, logistical, and economic considerations that need to 

be addressed before there is a large-scale transition from conventional resources to lignocellulosic 
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biomass. Such considerations include variations in biomass availability, harvesting and 

consolidation, high production costs (pre-treatment being among the most costly steps [4]), 

existing technical limitations (conversion), and complex and costly fuel and supply chain logistics 

[5]. There are a number of techno-economic and life cycle analyses of lignocellulosic biomass as 

a renewable resource available in literature that touch on many of these considerations. These 

studies are highly dependent on geographical location, feedstock used, and the end products, 

among other considerations, and therefore pose a challenge for accurate assessments [6]. 

Generally, there is agreement that with continued research and development efforts, lignocellulosic 

biomass is a promising resource.  

The Department of Natural Resources Canada (NRCan; French: Ministère des Ressources 

Naturelles Canada; RNCan), responsible for natural resources for the federal government of 

Canada, defines renewable energy as the energy derived from natural processes that are 

replenished at a rate equal to or faster than the rate at which they are consumed [7]. Canada, a large 

landmass with diverse geography, has an abundant supply of renewable resources which include 

moving water, wind, biomass, solar, geothermal, and ocean energy. Behind hydro and wind, 

biomass is the third largest in renewable electricity generation. Canada has a unique potential to 

utilize biomass as a renewable energy source because of its large landmass and active forest and 

agricultural industries [7]. Despite the fact that bioenergy is still in its development stages, Canada 

produces more than 400 petajoules of bioenergy every year in the industrial sector, over half of 

which is derived from the pulp and paper industry [7]. Within this context, since 2014 the 

Government of Canada has several measures and mandates (see Table 1) in place to support the 

production and use of renewable fuels. These measures include renewable fuels regulations, $200 

million over four years to support farmer participation in the industry, $1.5 billion over nine years 

to support domestic production through an operating incentive program, and a $500 million 

NextGen Biofuels FundTM to support the next-generation technologies for biofuels from non-

conventional feedstocks [7].  
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Table 1. Provincial Renewable Fuel Mandates, 2014 [7]. 

  
Renewable Alternatives 

to Gasoline 

Renewable Alternatives to 

Diesel 

Federal 5% 2% 

Provincial    

 British Columbia 5% 4% 

 Alberta 5% 2% 

 Saskatchewan 7.5% 2% 

 Manitoba 8.5% 2% 

 Ontario 5% 2% 

 Quebec 5% (target only) -- 

 

In 2009, the Forest Products Association of Canada and its partners, including 

FPInnovations and the Canadian Forest Service of Natural Resources Canada, have initiated the 

Bio-pathways Project [8]. The project has involved over 65 experts from a variety of sectors which 

include finance, biotechnology, and energy development to assess Canada’s forest industries 

position for entering the future of biomass production for energy and value-added projects [8]. 

They have identified six lines of inquiry to pursue and assess opportunities based on financial, 

socio-economic, and environmental perspectives [8]. So far, the project has shown promising 

findings for the integration of the Canadian forest industry and the next generation bioeconomy. It 

must be noted that the findings indicated the valorization of biomass to bioproducts in addition to 

bioenergy would be essential for sustaining the industry in the long term [8]. 

Traditionally, it has been proposed that separating lignocellulosic biomass to its individual 

components would be ideal for further processing into their respective products and there have 

been significant efforts to this objective. In particular, the separation of lignin from the 

polysaccharides is an important element of this approach. This is because lignin is considered the 

main contributor to the recalcitrant nature of the plant cell wall. In this context, we consider 

recalcitrance as the term often used to describe the state of the plant cell wall being resistant to 

fractionation/processing into its isolated components. The primary challenge of utilizing 

lignocellulosic biomass has long been considered the recalcitrant nature of the plant cell walls, 
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preventing conversion into valuable products at a cost that is competitive with that of the 

equivalent petroleum-based alternatives. Since lignin is ascribed most of the fault for this 

inconvenient property of plants, it has been the subject of extensive research in the past few 

decades. In-fact, one could perhaps depict it as its own entire field of research, encompassing a 

variety of approaches and extending over a range of disciplines. A vast volume of literature has 

been developed in this field of research surrounding lignin covering a variety of approaches and 

perspectives. These efforts, along with growing emphasis on adhering to the principles of green 

chemistry have transformed the perceptions regarding biomass utilization. More complete and 

effective utilization of lignocellulosic biomass is now considered a necessity for contemporary 

refineries. This shift in approach and advancements in applications has stimulated a great deal of 

interest in what are termed contemporary biorefinery strategies. There is no strict definition for the 

term biorefinery, and perceptions also vary geographically. Here, we consider biorefineries to be 

any integrated industrial process that utilizes biomass feedstock(s) to produce bio-based fuels, 

chemicals, or materials [9]. The vision of a contemporary biorefinery is that which efficiently 

utilizes all the main components of lignocellulosic biomass, including lignin, for value-added 

applications. Based on our definition, this could include pulp and paper industries or bioethanol 

refineries that that effectively utilize their lignin streams for value-added applications.  

While both effective isolation methods and value-added applications of lignin were once 

limited, there are now many developing approaches and opportunities. There are a wide range of 

treatments and well studied pathways to valuable products. Lignin currently has a wealth of 

proposed applications including fuels, chemicals, and advanced materials. For example, as a 

renewable aromatic, lignin offers potential for producing biomass-derived jet turbine fuels, for 

transformation into conventionally petroleum derived benzene, toluene, and xylenes (BTX) which 

are widely used as industrial solvents and feedstocks in many industries, and even for advanced 

materials application such as high-value carbon fibres [10] [11].  

Since lignin is a major component of lignocellulosic biomass, the effective utilization of 

the resource is a prerequisite of any modern biorefinery. Currently, lignin is underutilized, with 

industries such as pulp and paper producing large quantities (50-70 million US tonnes world-wide 

annually [11]) and burning as much as 98% of the extracted lignin as low value fuel [12]. The most 

abundant aromatic polymer in nature, accounting for 10-35% by weight, 40% by energy of 
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biomass, will likely prove to be a key piece in the development of modern biorefineries [2]. Zhang 

et al. [4] have provided an economic analysis based on lignocellulose intermediates and the 

potential revenues from the final products. These authors calculate the value of the lignocellulose 

intermediates based on three categories of utilization: simple, partial, and complete. The simple 

utilization is defined as all sugars being glucose and lignin is burned as fuel. The partial utilization 

is defined as all sugars being glucose, half of the lignin is burned as fuel and half is sold as 

materials, with acetic acid as a commodity. The complete utilization is defined as each sugar sold 

at its high price, all lignin utilized as polymeric materials and acetic acid as a commodity. The 

authors estimate the final revenues of the simple, partial, and complete utilizations of 

lignocellulosic biomass components to be $121, $254, and $628 per ton respectively [4]. These 

projections clearly communicate the economic importance of the valorization of all lignocellulosic 

components, particularly lignin. Key to the acceleration of lignin valorization is understanding its 

chemical structure and interactions with other components within the plant cell wall.  

1.2 The plant cell wall  

 Despite lignocellulosic biomass having a great potential as a renewable resource, there are 

challenges to the efficient conversion of raw material to refined products. To understand these 

challenges, scientists are focusing on understanding the biochemistry of the plant cell wall. Plants 

are composed of around 40 cell types with distinct and dynamic cell walls that play a major role 

in determining the growth and overall configuration of the plants [13]. These cell walls determine 

the shape of the cells and provide many functions ranging from structural support and protection 

to transport and communication [14]. Plant cell walls can be further divided into two main layers, 

the primary and secondary plant cell walls, which are distinct in composition, developmental 

timeline, and position.  

 Primary cell walls which are ubiquitous to plant cells are composed primarily of cellulose, 

hemicellulose, and pectin. The cellulose polymer chains stack and aggregate into stable 

microfibrils with high axial stiffness [15] [16]. Hemicelluloses are a class of polysaccharides 

which coat cellulose microfibrils and link these together forming a network [17]. Pectins are 

another class of polysaccharides that mainly include homogalacturonan and rhamnogalacturonan-

I and -II [18]. Pectin is also found in the middle lamella where it plays a key role in binding 
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adjacent cells together. Primary cell walls are thin, flexible, and well hydrated [13]. After the 

primary cell wall is fully developed, some plant cells develop secondary cell walls between the 

primary cell wall and the plasma membrane. The secondary cell wall has some structural 

similarities to the primary cell wall with some important differences. The secondary plant cell wall 

is mainly composed of cellulose, hemicellulose, and lignin, with minor components being proteins, 

lipids, soluble sugars, and minerals [19]. The key distinguishing feature that sets the secondary 

plant cell wall apart from the primary plant cell wall is the presence of lignin [17]. Other 

distinctions include differences in hemicellulose composition and the absence of pectin present in 

the secondary plant cell walls [14]. Lignins are complex, amorphous, aromatic heteropolymers 

consisting of phenylpropanoid monomer units. The distinct compositional differences of the 

secondary plant cell wall provide the plant with increased strength and rigidity. Additionally, the 

properties of lignin such as hydrophobicity and resistance to degradation provide improved water 

transport and pathogen protection. Thus, plants with highly lignified plant cell walls have distinct 

properties as compared to those without. In-fact, it is believed that the development of lignin 

biosynthesis was a key factor in plant adaptations to terrestrial ecosystems around 400 million 

years ago [20]. 

 While there have been increasing developments in our understanding of the plant cell walls 

– largely as a result of advancements in technology – the plant cell wall is still the least understood 

cellular structure in plants [21]. While there are still many unanswered questions, the current 

understanding of the secondary plant cell wall architecture proposes that the cellulose microfibrils 

are organized in a matrix with hemicellulose hydrogen bonding to the microfibril surfaces as well 

as covalently bonding to other hemicellulose and lignin [19]. The covalent bonds between 

hemicellulose and lignin are known as lignin-carbohydrate complexes (LCC) and are proposed to 

be another important contributor to the difficulties in the isolation and extraction of lignin from 

lignocellulosic biomass because of their enzyme impenetrable cross-links [22] [19].  

1.3 Plant cell wall biopolymers 

 Cellulose is a linear homopolymer composed of D-glucopyranose units linked via the 

𝛽(1 → 4) glycosidic bonds. These glucan chains assemble into sheets via edge-to-edge hydrogen 

bonds and stack into crystalline structures known as cellulose microfibrils [23]. Cellulose 
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microfibrils have regions of highly ordered crystalline structures as well as disordered amorphous 

regions [16]. These long and rigid microfibrils form a structural network acting as a load-bearing 

scaffold in the cell wall [13]. Branched polysaccharides (hemicellulose/pectin) cross-link the 

cellulose microfibrils. Hemicellulose is an amorphous branched copolymer composed of pentoses 

(D-xylose, D-arabinose), hexoses (D-mannose, D-glucose, D-galactose) and occasionally uronic 

acids and acetyl moieties as side chain groups [24] [25]. Lignin is a branched and cross-linked 

aromatic copolymer composed primarily of three canonical 4-hydroxyphenylpropanoids which 

differ by the number of methoxy units on the 3rd and 5th position on the phenyl ring. These are 

known as p-coumaryl (4-hydroxycinnamyl), coniferyl (3-methoxy-4-hydroxycinnamyl), and 

sinapyl (3,5-dimethoxy-4-hydroxycinnamyl) alcohol, or as p-hydroxyphenyl (H), guaiacyl (G), 

and syringyl (S) units, respectively, in the context of the lignin polymer (See Figure 1). Lignin fills 

the gaps in the cell wall polysaccharide structures and can also covalently link with hemicelluloses 

or cellulose.  
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Figure 1. The three main lignin monomer unit precursors (top) and their respective units in the 

context of the lignin polymer (bottom). 

Years of rigorous research efforts to elucidate lignins structure has provided a good basis 

for understanding its composition. Yet, the complexity of the heterogenous lignin polymer, the 

limitations of studying it in situ, and its high variability have proven significant challenges and 

there are still many open areas of debate. Currently the most detailed analytical investigations can 

provide information on lignin monomer composition, interunit linkages, functional groups, 

molecular weight, interactions with carbohydrates and more. These features can be used to 

generate models of lignins structures. Despite this, the lignin structure is still subject to debate. 

Historically, lignin has been widely accepted to be a branched polymer; however, this has been 
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called into question. Crestini et al. [26] have found that milled wood lignin, which is a product of 

a common pre-treatment method and considered one of the closer representations of that of native 

lignin, is a (mostly) linear oligomer. This has been a controversial finding because it is not 

consistent with the classical understanding of lignins structure. Additionally, in a 2019 review of 

the lignin structure Ralph et al. [27] have noted that there is currently no structural evidence for 

branching. They state that the commonly assumed notion of a highly condensed 3D lignin structure 

is now in question. More recently, the findings of Crestini et al. [26]  have been reviewed by 

Balakshin et al. [28], who have found strong evidence that spruce milled wood lignin has a high 

degree of branching/crosslinking. The conflicting opinions on such a crucial and basic structural 

feature of lignin underline the fact that the true structure of lignin is still unknown. As research 

methods become more advanced, it is likely that new developments will be made in the near future. 

Certainly, more research on the lignin structure will be critical for the work of scientists and 

engineers developing advanced lignin valorization strategies.  

 The lignin structure is extrapolated from the relative proportions of the main monomer 

units, inter-unit linkages, structural moieties, functional groups, and degree of branching among 

other features. Common structures and inter-unit linkages are illustrated in Figure 2. Among the 

various linkages, the 𝛽 − 𝑂 − 4 ether linkage is the most frequent and the weakest of the covalent 

linkages, making it the easiest to cleave during extraction/isolation and thus a target of many 

fractionation approaches [22]. 
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Figure 2. Illustrations of the main lignin bonding patterns including structures and inter-unit 

linkages a) 𝛽 −arylether (𝛽 − 𝑂 − 4) b) Biphenyl (5 − 5′) c) Biphenyl ether (4 − 𝑂 − 5) d) 

Phenylcoumaran (𝛽 − 5, 𝛼 − 𝑂 − 5) e) Resinol (𝛽 − 𝛽′, 𝛼 − 𝑂 − 𝛾) f) Dibenzodioxocin (5 −

5′, 𝛽 − 𝑂 − 4, 𝛼 − 𝑂 − 4) g) Spirodienone h) Diarylpropane (𝛽 − 1). Where 𝑅1 = 𝑅2 = 𝐻 in p-

hydroxyphenyl units; 𝑅1 = O𝐶𝐻3, 𝑅2 = 𝐻 in guaiacyl units, 𝑅1 = 𝑅2 = O𝐶𝐻3 in syringyl units. 

Adapted from Lapierre [29]. 
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1.4 Sub-topic introduction and content guide 

The main objective of this thesis was to assess the impact of drought-induced stress on the 

content and composition of Douglas-fir lignin to better understand if and how plant lignin 

biosynthesis mechanisms play a role in drought stress tolerance. Furthermore, a major focal point 

was to concentrate on understanding to what degree these potential changes affect the value of 

Douglas-fir for wood as a feedstock for contemporary biorefining approaches. I hypothesised that 

drought-induced stress would result in altered composition of Douglas-fir wood, specifically 

involving an increase in lignin content as a defense mechanism providing increased water retention 

and conferring extra strength and support to the tree in its vulnerable state. In addition to altered 

lignin content, it could be readily anticipated the spatio-temporal regulation of lignin biosynthesis 

and deposition could be altered in response to metabolic adjustments as the plant responds to 

drought stress conditions. The consequences could include altered proportions of monomer units, 

including non-conventional units, or bonding patterns which would result in modified frequency 

of certain inter-unit linkages. Variations in lignin content and composition resulting from drought 

would have important bi-directional implications for both selective breeding for feedstock 

improvement and for refining strategies to value-added products.  

This thesis comprises seven chapters and three appendices covering a variety of sub-topics 

related to the field of lignocellulosic biomass with a focus on lignin valorization. Many of the 

chapters in this thesis provide a detailed supporting background of the multifaceted investigation 

that has been undertaken. Chapter 1 provides an introduction and overview of the chemistry of 

lignocellulosic biomass concentrating on the three main components of the plant cell wall and in 

particular the chemical structure of lignin. Once the basics of the plant cell wall chemistry have 

been discussed, Chapter 2 will provide a literature review focusing on the relationship between 

drought stress tolerance and plant cell wall lignin biosynthesis. Chapter 3 will then review 

lignocellulosic biomass fractionation strategies, including both commercial pretreatment and 

laboratory isolation approaches. Chapter 4 will review analytical chemistry approaches for lignin 

characterization. Chapter 5 presents a review paper titled “Chemometrics and Lignocellulosic 

Biomass – Advanced Strategies for the Accelerated Analysis and Valorization of Lignin” which 

provides a detailed introductory background of chemometrics and subsequently systematically 

reviews their applications to the field of lignocellulosic biomass, highlighting accomplishments 
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and opportunities. Chapter 6 presents a research paper “Assessing the impact of drought stress on 

the composition of Douglas-fir wood and the structure of softwood lignin for valorization” which 

describes and discusses the experimental work done for this thesis project. Chapter 7 provides a 

summary of the work performed for this thesis, key findings and limitations, and discussed 

prospects and strategies for future work.  
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Chapter 2: Drought response and plant cell wall 

lignification  

2.1 Introduction 

Drought is responsible for more annual loss in crop yield than all other pathogens combined 

and hence is one of the most important factors concerning feedstock reliability for biorefineries 

and many other agricultural and food industries [30]. Drought conditions are expected to become 

more frequent and severe due to climate change, disproportionately affecting northern latitudes 

[31]. Drought conditions have a major impact on plant development both in terms of growth and 

composition. Plants have developed a variety of adaptations that allow them to survive in different 

environments and phenotypic plasticity can allow them to adjust to changing environments [32]. 

These adaptation mechanisms are sophisticated and can include physiological and biochemical 

responses. Strategies for coping with drought stress are termed broadly as drought resistance, 

which can be further categorized into three mechanisms: escape, avoidance, and tolerance [33]. 

Drought escape refers to the acceleration of the life cycle to completion prior to the effects of 

drought. Drought avoidance refers to mechanisms that help plants to maintain water content. 

Drought tolerance is the term for mechanisms that support plants in enduring the condition of 

reduced tissue water content.   

It is known that lignin biosynthesis is the product of a complex genetic and transcriptional 

network in which both biotic and abiotic stressors can influence and regulate the production and 

deposition of lignin [34]. While the lignin biosynthesis pathway is well studied, it is not so well 

understood how environmental stressors influence this process. It is suspected lignin biosynthesis 

is involved in drought stress response mechanisms. For example, it is proposed that plants may 

increase lignin content in response to drought stress, reducing the permeability of its tissues to 

restrict moisture loss and strengthening the cell walls preventing cavitation. However, there is no 

firm consensus on the effects of drought on lignin biosynthesis and efforts to understand these 

mechanisms have accelerated in recent years. This is due to the increasing interest in 

lignocellulosic feedstocks as important feedstocks for contemporary biorefineries. With the 

growing interest in lignins role in biomass processing in parallel with rising concerns of climate 
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change and the resulting impacts such as drought, it is clear that connecting lignin biosynthesis 

with drought stress response mechanisms is an important objective. It is interesting to note that 

many selective breeding and bioengineering approaches have focused on producing trees with 

reduced lignin content to increase processing efficiency and gain access to the polysaccharide 

components such as cellulose. However, this type of approach could produce plants that are 

vulnerable to drought stress, thus reducing the reliability of the feedstock. Future approaches may 

look to tailor lignocellulosic feedstocks for drought resistance and optimized composition for 

industrial processing.   

 Efforts to understand the relationship between lignin biosynthesis and drought stress 

response mechanisms have increased in recent years. In addition, the approaches to probe these 

mechanisms have become progressively sophisticated. While early studies were limited to 

evaluating just lignin content, composition, or distribution, more recent approaches have focused 

on connecting drought stress response at the transcriptional level with the phenotypic traits such 

as lignin content and more recently to lignin composition. Such examples would include 

performing drought trials on genetically modified plants with selectively over/under expressed 

transcription factors which regulate the expression of specific genes. In this section, the literature 

from the last twenty or so years related to understanding the mechanisms of plant drought stress 

response and its relationship with lignin biosynthesis is reviewed. Studies were summarized to 

provide a full picture of the objectives, approach, methods, and findings. The section concludes 

with a discussion on the overall findings from the evaluation of the literature. A summary table of 

the studies identified in this review along with their key findings related to lignin and drought 

stress can be found in Appendix A.  

2.2 Literature Review 

Donaldson [35] investigated Pinus radiata logs harvested from a forest located on coastal 

sanddunes with shallow sand over a hard iron pan subsoil – an environment likely to subject the 

trees to periodic severe drought conditions. Confocal fluorescence microscopy using acriflavine 

(stains the lignified cell walls green and non-lignified red) indicated a severely abnormal lignin 

distribution in terms of quantity and distribution in the tracheids in the outer part of the stem 

compared to normal wood. Transmission electron microscopy provided additional support to the 

https://brill.com/view/journals/iawa/23/2/article-p161_4.xml
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results of the confocal fluorescence microscopy with more detail and higher resolution. The results 

of the study showed that under drought stress, Pinus radiata logs have tracheids with concentric 

layers of abnormal lignification within the secondary cell wall and reduced lignification in the 

middle lamella.  

Interested in the prospect of water deficit causing locally altered cell wall composition in 

the basal region of the root elongation zone, Fan et al. [36] investigated the changes in metabolism 

and accumulation of cell wall phenolic substances in maize (Zea mays) seedling primary roots. A 

candidate gene approach with semiquantitative reverse transcription polymerase chain reaction 

(RT-PCR) and northern blots was used to look at the potential expression of transcripts of lignin 

synthesis genes as well as the time scale effects of water deficit in the maize root elongation zone. 

FT-IR spectroscopy was also used to evaluate cell wall compositional changes and UV-

fluorescence microscopy for visualizing lignin in the cross sections from equivalent root regions. 

They found pieces of interrelated evidence supporting the hypothesis that wall extensibility and 

root growth are inhibited by water deficit through alterations of phenolics in the cell wall in the 

root elongation zone. Transcripts of two cinnamoyl-CoA reductase (CCR) genes involved in lignin 

biosynthesis were detected in the elongation zone of both well-watered and stressed roots. CCR 

transcript levels were found to have increased after just 1 hour of water deficit, and prior to 

reductions in cell wall extensibility, indicating a potential causal association. Progressive increases 

in IR absorbance and UV fluorescence were indicative of increased cell wall phenolics from 3 to 

9 mm behind the tops of water deficit-treated roots and colocalized with the progressive inhibition 

of wall extensibility and growth. Water deficit was observed to induce increases in UV 

fluorescence and lignin staining in the cell walls of inner tissues of the stele, which seemed to 

specifically limit root growth rates.  

Lee et al. [37] tested the hypothesis that enzymes related to lignification responsible for 

stress tolerance mechanisms would activate at different rates in relation to the degree of drought 

stress, by investigating the activity of enzymes, growth, and stress associated parameters in 

drought stressed white clover leaves. They found that physiological parameters and lignification 

related enzymes responded to leaf water potential under water-deficit. They also identified two 

distinct phases of drought stress which begins with a “mild endurance period” in which ascorbate 

peroxidase (APX) and phenylalanine ammonia-lyase (PAL) are activated providing antioxidant 
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protection, and a “severe injury period” in which lignifying peroxidases guaiacol peroxidase, 

CPOX, and syringaldazine peroxidase are enhanced, and lignin and lipid peroxidation is increased, 

restricting growth.  

Hu et al. [38] focused on identifying expression changes in maize leaf proteins under 

drought stress and investigated their physiological functions in drought tolerance. They identified 

the expression of many drought-induced proteins including three involved in lignin biosynthesis. 

Leaf lignin content was determined and found to increase significantly under severe and moderate 

drought treatments. They also observed significant differences in leaf lignification between 

drought-tolerant and drought-sensitive inbred lines. The authors conclude that the results indicate 

gene selection based on molecular markers for breeding drought tolerant maize could be a 

promising approach.  

Moura-Sobczak et al. [39] sought to determine if drought stress caused changes in the 

quantity and composition of lignin in the basal and apical regions of the stems of Eucalyptus 

globulus Labill and in the hybrids E. urograndis (E. urophylla x E. grandis) and E. uroglobulus 

(E. globulus x E. urograndis). Total lignin was determined using thioglycolic acid and GC-MS 

were used to determine lignin monomeric composition. There was not a consistent theme in regard 

to lignin content and the plants displayed varying responses to drought stress in terms of lignin 

content. However, it was found that the adjustment of total lignin resulted in an increased S/G 

ratio, either by increasing the amount of lignin S units or by the reduction of lignin G units. 

Li et al. [40] sought to study drought tolerance and post-drought recovery for two different 

genotypes of white clover (Trifolium repens L., a drought-tolerant small-leafed white clover and a 

drought-sensitive large-leafed white clover) associated with antioxidative enzyme and lignin 

metabolism. The activity of lignin related enzymes polyphenol oxidase and cinnamyl alcohol 

dehydrogenase (CAD) were found to vary between small and large leafed clovers but the enzyme 

activities were observed to increase under drought stress and decrease after re-watering for both 

clovers. The lignin content of the small-leafed clover was found to significantly increase under 

drought stress; however, the large-leafed clover did not display the same trend. Additionally, root 

lignin content of both materials increased significantly under drought stress and returned to a 

uniform increase of lignin content after rewatering. Their results indicated that lignin metabolism 

https://link.springer.com/article/10.1007/BF03195675
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and/or the cell wall lignification response is more sensitive in roots than leaves. They suggest that 

based on their findings that lignification decreases cell wall plasticity, inhibits cell wall growth, 

and assists with water retention. Hence, lignin metabolism likely played an important role in 

drought stress response and post-drought recovery for white clovers.  

Leaf rolling is likely an evolve trait of plants in response to drought stress as a mechanism 

that reduces the surface area of its leaves reached by light which as a result reduces transpiration 

and leaf dehydration. Terzi et al. [41] investigated the role of lignification in the leaf rolling 

mechanism of Ctenanthe setosa plants in response to long-term drought stress. They studied the 

enzymes associated with lignification in the unrolled leaves as control and at two different leaf 

rolling indices at days 35 and 47 of the drought period. They found increases in activity of various 

lignification-related enzymes in response to drought stress along with a positive correlation 

between leaf rolling and lignin content. Overall based on the results of their study, the authors 

proposed that drought stress could stimulate lignification in leaves of Ctenanthe setosa as the leaf-

rolling process and the increased lignification were positively correlated. Increased lignification 

in the leaves may also play a role as an independent defense mechanism in response to drought 

stress.  

dos Santos et al. [42] studied the effects of water deficit on lignin metabolism in the stem 

of two commercial sugar cane (Saccharum spp.) genotypes. Expression patterns of various genes 

related to lignin biosynthesis were observed to be induced under water deficit and varied based on 

developmental phase of the stem, internodes, tissue type, and water regime. They found that severe 

water stress effected lignin deposition in the stem internodes in both genotypes. Compared to the 

respective control plants, the water stress plants featured significant accumulation of lignin. 

Additionally, it was observed that lignification was dependant on internode maturation (immature 

or mature) and the tissue region in the stem (rind or pith). The mature internodes exhibited more 

lignification than immature internodes, and the rind more lignified than the pith. The authors 

postulated that increased lignification in the rind may be a genetic trait functioning to enhance 

xylem vessel resistance and reduce water loss to manage the higher tension under water deficit. 

They also note that differences in study methodologies, tissue type, age, genotype variation and 

other factors could account for differences in lignin content reported in literature regarding 

sugarcane. Curiously, in mature internodes an overall reduction in lignin related enzymes but a 
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30% increase in lignin content in the mature rind in one of the genotypes was observed under 

drought stress as compared to control plants. The authors defer to the high complexity of the 

genomes of modern sugarcane cultivars, suggesting that functional redundancy in genes may 

explain the observed inverse correlation between lignin biosynthesis gene expression and lignin 

content observed in this study.   

Srivastava et al. [43] mimicked drought and salinity stress conditions (often 

interconnected) by treating developing seedlings of Leucaena leucocephala (Vernacular name: 

Subabul, White popinac) with 1 % mannitol and 200 mM NaCl. They monitored enzyme linked 

immunosorbant assay (ELISA) based expression pattern of CCR protein, stained transverse 

sections of seedlings using Phlorogucinol/HCL for lignin, and qualitatively analysed structural 

features of Klason lignin using FT-IR spectroscopy to study lignin deposition in response to stress. 

Since CCR is considered a key gene for regulating lignin biosynthesis, comparing the abundance 

of this gene with lignin deposition in the stem and root tissues under drought stress may enable the 

linking of genotypes and phenotypes. While they observed no clear effect of drought stress on the 

developing root, they did observe a positive effect of drought stress conditions on lignin deposition 

and CCR expression in developing stems. FT-IR spectroscopy of Klason lignin was not able to 

identify differences in type/composition of the lignin deposited as a result of drought stress 

conditions; however, they note that the technique may have limited their ability to resolve these 

potential differences. In addition to being primarily a qualitative method, FT-IR spectroscopy is 

quite low resolution compared to other techniques such as NMR spectroscopy. Another important 

concern is the nature of the lignin studied. As will be discussed in Chapter 3, Klason lignin is 

known to be a relatively severe technique that is more often used for quantitative determination of 

total lignin in a biomass sample, rather than as a research grade lignin for which to make 

conclusions on the native lignin structure as it resides in the plant cell wall. The authors concluded 

that CCR accumulation, immune-cytolocalization of CCR protein and lignin deposition pattern of 

both root and stem tissues of treated and control samples further substantiated the suggestion that 

CCR is important for vascular tissue development under drought stress conditions in developing 

seedlings of Leucaena.  

Xu et al. [44] investigated the transcriptional factors PtoMYB170 and its duplicate 

PtoMYB216 in Chinese white poplar (Populus tomentosa) for its functions in lignin deposition 
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and drought tolerance. They used gene cloning and sequence analysis, quantitative RT-PCR, 

histochemical staining, a scanning electron microscope, chemical analysis of the secondary cell 

wall components, and more, to reveal insights into these drought response mechanisms. Results 

showed increased lignification and thicker secondary cell wall in xylem in transgenic poplar plants 

with overexpressed PtoMYB170 as compared to wild type. In contrast, clustered regularly 

interspaced short palindromic repeats (CRISPR)/Cas9-generated mutation of PtoMYB170 showed 

reduced lignin deposition and resulted in more flexible and collapsed xylem phenotypes. Drought 

tolerance by reduced water loss through augmented stomata closure resulting from heterologous 

expression of PtoMYB170 in Arabidosis was also observed. The authors concluded that 

PtoMYB170 increases lignin deposition during wood formation in poplar by triggering lignin 

biosynthetic gene expression as well as promoting dark-induced stomata closure and thus drought 

tolerance in comparison to its divergent homologous PtoMYB216 gene.   

Miscanthus is a perennial biomass crop with good potential as a renewable feedstock for 

biofuels (in particular cellulosic ethanol) because of its fast growth, low moisture, and high cell 

wall carbohydrate contents compared to other plants. Since drought is one of the most common 

abiotic stresses and can affect plant growth, physiological processes, and cell wall biosynthesis, 

Van der Weijde et al. [45] looked to investigate the compositional changes that occur as a result 

of drought stress and their impact on biomass quality for the production of biofuels. They 

investigated plant growth and compositional quality of the stem and leaf material of 50 different 

miscanthus genotypes which included Miscanthus sinensis, Miscanthus sacchariflorus, and 

interspecific hybrids under drought and control conditions. They used NDF/ADF and ADL method 

of Goering and Van Soest to determine the cellulose, hemicellulose, and lignin content of the 

biomass samples. Saccharification efficiency was evaluated through the conversion of cellulose 

into glucose with a mild alkaline pretreatment and enzymatic saccharification reactions. They also 

used near-infrared (NIR) spectroscopy and chemometric techniques to develop rapid prediction 

models of biomass properties. They obtained NIR absorbance spectra of 130 samples and 

processed the spectra with weighted multiplicated scatter correction and mathematical 

derivatization and smoothing treatments. A modified partial least-squares regression analysis was 

developed with a calibration set of 110 randomly selected samples (1:1 leaf to stem ratio) and the 

20 remaining samples were used as an external model validation set. The models were used to 
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predict the cell wall cellulose, hemicelluloses, lignin contents, and cellulose conversion rate of the 

leaf and stem samples. Drought treatment was found to significantly impact almost all evaluated 

traits, and the different genotypes also showed significant differences in performance in response 

to drought conditions. Reductions in plant weight up to 70% and on average 45% compared to the 

control plants was observed. The authors also note that reduction plant weight under drought 

conditions varied significantly between genotypes, which indicates that there may be large 

variation in genotypic drought stress response mechanisms. While significant differences in most 

biomass quality traits were observed as a result of drought conditions, including a decrease in 

average cellulose content in the stem from 51% to 46%, and an increase in hemicellulose content 

in the stem from 42% to 47%, lignin content was only mildly affected in the stem with no 

significant effect on the lignin in the leaf tissue. This might be because lignin content is relatively 

low in grasses as compared to other biomass types (<10% lignin content in stem and leaf tissues), 

and therefore, may not play as significant of a role in drought tolerance for Miscanthus. The authors 

note that the minor effect of drought on cell wall lignin content and large effect on cellulose content 

was observed consistently over a diverse set of genotypes and three different miscanthus species.   

The authors observed significant genotypic variation in terms of cell wall composition and 

cellulose conversion, with drought-treated plants displaying more genotypic variation in terms of 

cell wall composition than control plants. Evaluation of saccharification efficiency revealed 

significant differences between drought and control treatments with plants under drought-

conditions displaying higher cellulose conversion efficiencies. They conclude that based on the 

absence of strong correlations among drought tolerance and compositional characteristics, biomass 

quality characteristics are likely under independent genetic control and thus it may be possible to 

select for both drought tolerance and biomass quality traits using calculated breeding strategies.  

Wildhagen et al. [46] used three Pupulus nigra L. genotypes from habitats of differing 

water availability to study the associations between wood anatomy, lignin content, and 

saccharification efficiency, as well as identify genes and co-expressed gene clusters linked with 

genotype and drought-induced variation in wood traits and saccharification potential. Their initial 

hypothesis was that drought would increase lignification and as a result decrease saccharification 

potential, genotypes originating from different environments will have different lignin content and 

thus will also have different saccharification potential, and that drought and genotype effects on 
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saccharification potential are supported by differences in wood anatomical traits and transcript 

abundances of genes involved in wood formation and cell wall metabolism, particularly lignin 

biosynthesis. In contrast with their initial hypothesis, their results showed that glucose release was 

in-fact moderately improved from drought conditions with a significant increase in 

saccharification potential under drought across all genotypes. Additionally, lignin content was not 

affected by drought stress – thus suggesting there may be a different mechanism of cell wall 

development for drought tolerance. Their investigation of transcriptional regulation of 

biosynthesis genes reveled that hemicelluloses and modifications of pectins were negatively 

correlated with saccharification potential, thus appearing as potential future targets of investigation 

for understanding drought stress and saccharification potential in Populus nigra L. Based on their 

work and discussion of several other previous studies, they suggested that lignin may not be a good 

predictor of saccharification potential.  

After developing several engineered Arabidopsis plants for desired biofuel traits (altered 

galactan, xylan, lignin and/or acetylated xylan) in previous studies, Yan et al. [47] investigated the 

phenotypic traits of these plants in response to drought stress to better understand how they would 

perform in field conditions. Most of their engineered plants showed significantly better survival 

than wild type plants with the low xylan, low lignin, and low acetyl substitution degree of xylan 

plants demonstrating reduced levels of water loss and better drought tolerance than wild-type 

plants. They then investigated the dependency of the plant’s drought tolerance to abscisic acid 

(ABA), which is an important mediator for triggering plant responses to common abiotic stresses 

including drought. The results suggested a dependency between the drought tolerance of the plants 

with low lignin and ABA; however, drought tolerance of plants with low xylan or low acetylation 

did not appear to be ABA dependant. Additionally, compared to wild type plants, engineered plants 

with low lignin content had stomata closures more responsive to ABA, which reduces water loss 

and could be key for conferring drought tolerance. Examination of the expression of drought-

responsive genes in the plants also indicated that the plants engineered for low xylan, low lignin, 

and acetyl substitution of xylan have increased induction of stress-responsive genes, potentially 

accounting for their superior drought tolerance. The authors conclude that their study demonstrates 

potential for engineering plants with improved cell wall composition for processing objectives 

without compromising resiliency to environmental stressors.  
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Lima et al. [48] investigated the relationship between lignin, embolism resistance, and leaf 

life span in 22 tree species in a seasonally dry tropical ecosystem in north-eastern Brazil. They 

hypothesised that drought resistance would be determined by lignin content and composition. They 

used a thioglycolic acid and spectrophotometer method for determining the total lignin content of 

the samples and thioacidolysis with GC-MS for determining relative proportion of lignin monomer 

units. Their results showed that lignin monomer composition of the trees from their study was 

related to dry-season leaf life span and xylem embolism resistance. However, total lignin content 

was found to not to be correlated with any variable in their study, including wood density, which 

was also uncorrelated with lignin monomer composition. They propose two main lines of trait 

variation for drought tolerance based on their results, one for keeping their leaves around longer 

by increasing the S/G ratio, and the other for leafless trees to retain more water in the stem and to 

shed leaves to keep higher step water potential. They conclude that the two lines are related and 

that the mechanisms that link S/G ratio with xylem embolisms vulnerability requires further 

investigation. 

Bang et al. [49] created overexpression and knockdown transgenic lines of OsTF1L, a rice 

homeodomain-leucine zipper transcription factor gene, to further investigate their function in 

drought tolerance mechanisms. They observed that overexpression of OsTF1L improved drought 

tolerance and grain yield of rice, with the overexpressed plants displaying reduced and delayed 

drought-induced damage, decreased water loss, normal photosynthetic efficiency under drought 

conditions, and recovered more rapidly after rehydration in comparison to the control plants. They 

found that overexpression of OsTF1L increased shoot lignification in the typically lignified tissues, 

with no ectopic lignification throughout the plant. These results were consistent with ribonucleic 

acid sequencing (RNA-seq) and real-time quantitative reverse transcription (qRT-PCR) analysis 

of lignin biosynthetic genes. Overexpression of OsTF1L also resulted in up-regulation of stomatal 

movement genes and higher ratio of stomata closure under drought conditions, thus reducing water 

loss. This indicates that OsTF1L could increase drought tolerance through multiple molecular 

mechanisms such as stomatal movement and lignin biosynthesis.  

In the interest of understanding and improving drought tolerance of grapevine for the 

horticultural industry, Tu et al. [50] investigated lignins role and significance in drought resistance 

in grapevine. They generated VlbZIP30-overexpressed transgenic grapevine plants and analyzed 
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the plants response to drought treatment relative to control plants. qRT-PCR analysis allowed for 

the assessment of expression of VlbZIP30 in transgenic lines. Lignin content and monomer 

composition was determined using the acetyl bromide and thioacidolysis method, respectively. 

RNA-seq analysis was used to link the impacts of overexpression of VlbZIP30 and lignin 

biosynthesis. They found that the transgenic plants from their study with overexpression of 

VlbZIP30 displayed improved drought tolerance, demonstrated by the increased leaf relative water 

content, tuning of photosynthesis rate, and increased lignin content in the leaves. Increased leaf 

lignin content was also found to be primarily guaiacyl units. Consistent with those results, they 

found that VlbZIP30 regulates the expression of lignin biosynthetic (VvPRX N1, VvPRX4, and 

VvPRX72) and drought responsive (VvNAC17) genes, supporting lignin biosynthesis and 

improving drought resistance in grapevine, However, they also found that overexpressing 

VlbZIP30 in Arabidopsis thaliana did not result in the same regulation of lignin biosynthesis as in 

grapevine, which the authors speculate could be due to the difference in herbaceous versus woody 

biosynthesis mechanisms. Additionally, they found differences in lignin biosynthesis pathway 

regulation between stem and leaves, indicating that lignin biosynthesis may be regulated 

differently in certain tissues. The authors emphasize this is the first report of a bZIP transcriptional 

factor being directly involved in lignin biosynthesis and enhancing drought resistance in plants, 

which should support future molecular breeding strategies.  

Liu et al. [51] investigated the roles of important enzymes for lignin synthesis and lignins 

function in drought tolerance by overexpressing CmCAD1, 2, and 3 in Arabidopsis cadc cadd 

double mutant and collectively and differentially silencing CmCAD1, 2, and 3 in melon seedlings. 

They found that all three genes participate in lignification and that CmCAD2 and 3 contribute more 

significantly to drought tolerance through their function’s lignin synthesis. Additionally, CmCAD2 

and 3 positively recovered lignification in both floral stem and root development of Arabidopsis 

cadc cadd double mutant and speculated that this could reduce lateral water loss and increase water 

absorption thereby enhancing drought tolerance. Silencing of CmCAD2 and/or 3 in melon 

seedlings significantly reduced drought tolerance of the melon plants which displayed less 

lignified but still tight and dense secondary walls. This is somewhat in contrast to the cadc cadd 

which were less dense, loose, and had disorganized secondary cell walls, suggesting differences 

in the lignification process between the two species. The authors conclude that lignification is 
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important for both melon and Arabidopsis in tolerating drought stress, and in particular CmCAD2 

and 3 are key to this mechanism.   

Foxtail millet (Setaria italica) is a particularly drought resistance rice crop that may be a 

useful candidate for probing drought resistance mechanisms in plants on the molecular scale. Xu 

et al. [52] explored this mechanism by identifying a drought-induced R2R3-MYB transcriptional 

factor SiMYB56 in foxtail millet, and then comparing wild-type to transgenic plants with 

overexpressed SiMYB56 in normal and under drought stress conditions. They found that 

SiMYB56 can respond to abiotic stress in foxtail millet and that it had transcription repression 

activity. Drought stress tolerance analysis of SiMYB56 functions did not reveal any apparent 

growth performance difference between the transgenic and wild-type controls; however, there was 

significantly higher survival rate in the transgenic lines (50-80%) as compared to the wild-type 

rice (10%) under drought conditions. This indicated that SiMYB56 confers drought tolerance to 

the foxtail millet rice. In order to further explore the mechanism by which SiMYB56 confers 

drought tolerance, they simulated drought stress on the plants using 10% PEG6000. They found 

significantly higher lignin content in the transgenic rice as compared to the wild-type plants in this 

simulated drought condition, which the authors suggest may indicate that SiMYB56 confers 

drought tolerance in the transgenic rice by increasing lignin biosynthesis. Quantitative real-time 

PCR was used to measure the expression of several lignin biosynthesis related genes including 

PAL, 4-coumarate-CoA ligase (4CL), C4H, CCR, CAD, and F5H, which indicated that SiMYB56 

overexpression can increase lignin content through the activation of lignin biosynthesis enzymes. 

Two years of field trails confirmed that the transgenic plants had improved drought tolerance 

compared to the wild-type controls with higher total grain weight in both years. Overall, the study 

showed that SiMYB56 may confer drought resistance in Foxtail millet by stimulating lignin 

biosynthesis under drought conditions.  

Li et al. [53] investigated the functional mechanisms of the DREB gene, DcDREB1A, 

cloned from carrots (Daucus carota L.), in response to drought stress in transgenic DcDREB1A 

overexpressed Arabidopsis thaliana. Their results indicated that DcDREB1A is a nuclear protein 

involved in the regulation of plant drought stress tolerance. Isolation of DcDREB1A showed a 

significant increase in expression of the transcriptional factor gene under drought treatment. In 

response to drought treatment, transgenic Arabidopsis thaliana with overexpressed DcDREB1A 
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had decreased stomata opening and density, increased expression levels of lignin biosynthesis 

genes, increased lignin accumulation in the stem and leaves, and increased reactive oxygen species 

(ROS) -scavenging enzymes superoxide dismutase (SOD) and peroxidase (POD). These results 

indicate that DcDREB1A is involved in plant drought tolerance by reducing water loss through 

stomata regulation and lignin deposition, decreasing oxidative lipid damage from ROS by 

increasing SOD and POD activities, and increasing the expression of other stress-responsive genes 

in plants.   

Sharma et al. [54] looked at lignin deposition in the legume crop chickpea (Cicer arietinum 

L.) in response to drought stress. They focused on the root xylem as roots can be the first organs 

to interact with environmental changes that cause stress. Drought treated plants showed an increase 

in both primary root length and total lignin content of ~25% as compared to the control samples. 

Of which the increased lignin deposition primarily occurred in the xylem tissue. Laccases are 

multicopper oxidases that play a role in lignin biosynthesis via oxidative coupling of monolignols. 

Analysis of the expression of six laccase genes (which are linked with lignin biosynthesis) after 

drought treatment and relative to the control plants showed alterations in the expressions of some 

laccase genes. The authors concluded that chickpea root length and lignin content may be increased 

under drought conditions and that the laccase gene family may play a role in this stress response 

mechanism.  

Gu et al. [55] used tandem mass tag and liquid chromatography-tandem mass spectrometry 

to study the proteomic profiles of stress proteins in tea plants under drought stress, specifically 

how they impact lignin, flavonoids, and fatty acids. Of the 4789 proteins identified, 11 were up- 

and 100 were downregulated, respectively. These included many proteins related to lignin 

biosynthesis. This was contrasted by the contents of lignin in the plants showing an increase under 

drought stress, indicating that tea plants respond to drought stress by inhibiting the accumulation 

of enzymes that catalyse lignin biosynthesis, while still promoting the accumulation of lignin, 

potentially through encouraging the activity of these enzymes.  

Li et al. [56] performed a genome-wide analysis of laccase genes in moso bamboo using a 

bioinformatic approach. They identified 23 PeLACs in moso bamboo and then narrowed their 

focus on PeLAC10 as it was estimated to be the most relevant candidate to study its relation to 
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lignin. Their results positively correlated the expression of PeLAC10 with lignification in bamboo. 

They then used PeLAC10 overexpressed transgenic Arabidopsis to further investigate the function 

of PeLAC10. Histochemical staining and qualitative analysis of lignin content in the stems 

indicated that PeLAC10 may be associated with lignification as shown by increased lignin content 

in the transgenic plants. Different stress treatments also showed that the transgenic plants were 

more resistant to phenolic acid stress and had normal growth compared to the control plants under 

drought stress treatment. The transgenic plants had better survivability, relatively normal growth, 

and reduced malondialdehyde (MDA) content (MDA concentration is an indicator of membrane 

damage from ROS) compared to the control plants. These traits might be related to the higher level 

of lignification in the transgenic plants as a result of the overexpression of PeLAC10. The authors 

conclude that they provided information on laccase family members in bamboo and demonstrated 

that overexpression of PeLAC10 could be a promising strategy for molecular breeding of bamboo 

with improved stress tolerance.  

Hori et al. [57] studied the cell walls of a model woody biomass, poplar (Populus 

trichocarpa), and their response to drought and high-salt stress conditions using both analytical 

chemistry and transcriptomic analysis. They looked at the young shoot and mature stem (xylem). 

Lignin content was determined with the thioglycolic acid method. The results showed that for both 

the young shoots and xylem, abiotic stress influenced cell wall polysaccharide content but not total 

lignin content. More detailed structural analysis of the plant cell wall lignin was investigated using 

solution-state 2D heteronuclear single-quantum coherence (HSQC) NMR spectroscopy. They 

found that lignin composition in the young shoot was significantly altered as shown by a decrease 

in S and increase in G lignin monomer units under both drought and salt stress conditions. They 

did not observe the same change in the xylem tissues. Transcriptional analysis revealed significant 

alterations in the expression of cell-wall related genes in young shoots in response to abiotic stress 

conditions. In addition, genes involved in cellulose, hemicellulose, and the core lignin biosynthesis 

pathway genes (F5H and COMT) were significantly decreased. The authors note that since the 

down regulation of F5H and COMT has been observed in rice under salt and osmotic stress 

conditions, it may be a common abiotic stress response among plants. The authors have 

demonstrated here that lignin composition can be altered in response to drought stress without 

influencing lignin content, indicating it may be a strategy in drought response. They propose that 
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decreasing the S/G ratio could decrease cell wall damage and increase hydrophobicity of the plant 

cell wall. They have also identified some promising targets of molecular engineering strategies for 

tailored lignocellulosic breeding and feedstock traits.  

Cao et al. [58] investigated the role of lignin in cell physiology during plant growth and 

drought stress tolerance by generating transgenic Populus with cell-specific downregulation of the 

4CL gene to supress lignin biosynthesis in vessels and normal fibres. Transgenic plants with 

reduced lignin content in the vessels but not fibres had significant reduction in sap flow and 

hydraulic conductance in the xylem transportation system compared to wild type plants. These 

transgenic plants were also more vulnerable to drought, displaying dwarfism, low survival rate, 

and reduction of aboveground biomass yield. In contrast, transgenic plants with reduced lignin in 

the fibres instead of the vessels did not exhibit significantly reduced performance of xylem 

transportation system or vulnerability to drought stress, although they did show more significant 

reduced mechanical strength. These results underscore the importance of lignin for water transport 

and mechanical strength in plants and in particular highlights that lignin may play various 

physiological functions depending on tissue and cell type. These results suggest that discussions 

of lignin’s role in drought stress response mechanisms must be discussed in a tissue specific 

context.   

Zhao et al. [59] isolated the full-length cDNA of a caffeoyl-CoA O-methyltransferase gene 

(CCoAOMT) from P. ostii which is an important enzyme for lignin biosynthesis and is suggested 

to play a role in abiotic stress tolerance. They studied its expression patterns in P. ostia and its 

subcellular localization in tobacco leaves. They also used CCoAOMT overexpressed transgenic 

tobacco plants to study the drought stress response mechanism associated with this enzyme. Using 

transcriptome sequencing data of P. ostii under drought stress and bioinformatic techniques, they 

determined a protein PoCCoAOMT of which they then studied the expression pattern under 

drought stress. Under drought treatment, the expression levels of PoCCoAOMT in P. ostii was 

found to be overexpressed as compared to the control plants. The PoCCoAOMT overexpressed 

transgenic tobacco plants were then used to further understand its role in drought stress response. 

The results showed that the transgenic lines had significantly increased drought tolerance 

compared to the wildtype tobacco plants as demonstrated by the better growth rate, higher relative 

leaf water content, decreased relative electrical conductivity, and decreased accumulation of 
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reactive oxygen species 𝑂2
.− and 𝐻2𝑂2. In connection with the decreased accumulation of ROS, 

the activity of antioxidant enzymes SOD and POD were found to be significantly higher in 

transgenic plants while APX was found to be significantly lower. Curiously, the degree of stomata 

opening under drought stress in the transgenic tobacco plants was found to be higher than the 

wildtype. Stomata closure is a common drought stress response adaptation that allows plants to 

regulate their transpiration/𝐶𝑂2 uptake through their leaves which is known to be induced by ABA. 

Here, the transgenic lines that were more drought tolerant had greater stomata opening, indicating 

that the drought response mechanism in transgenic plants with overexpressed PoCCoAOMT 

allowed for the larger stomata opening, encouraging better overall photosynthetic activity for the 

plant. To further understand this mechanism, they looked to investigate the role that lignin may 

play by determining the expression of lignin biosynthesis genes, lignin content and lignin 

monomeric composition in the plant’s roots, stem, and leaves. In the transgenic lines they found 

PoCCoAOMT was expressed in all three tissues, however, the roots showed the highest expression 

level. Consistent with this finding, lignin content was significantly higher in the roots, stem, and 

leaves than in the wildtype plants, and highest in the roots. Four genes involved in lignin 

biosynthesis PAL, CAD gene, 4CL and caffeic acid-O-methyltransferase gene (COMT) were 

found to have increased expression in the transgenic lines compared to the wildtype lines in all 

tissues, although inconsistently. Quantitative analysis of lignin monomer content revealed that 

guaiacyl and syringyl units were the predominant components of the plant’s lignin, and the 

transgenic lines had increased levels of both monomer units, with a larger increase guaiacyl units. 

Thus, they speculated that drought stress tolerance could be specifically associated with higher 

levels of guaiacyl lignin units. The authors conclude by proposing that a potential basis for 

improving drought stress tolerance in P. ostia could involve exploiting the expression of 

PoCCoAOMT to promote lignin synthesis and ROS scavenging activity.  

Yan et al. [60] investigated the molecular mechanism of drought resistance in Cassava 

(Manihot esculenta), a woody shrub important for both food and energy. Specifically, they looked 

at the role of Related to ABI/VP1 (RAV) which is an important subfamily of the 

APETALA2/Ethylene responsive factor (AP2/ERF) transcription factor family, in drought 

response. They found that silencing the drought stress-responsive transcriptional factor RAV5 

significantly reduced drought stress resistance in Cassava, with both control and drought plants 
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showing higher 𝐻2𝑂2 and lower lignin content, but to a greater extent in the RAV5-silenced plants. 

Additionally, they showed MeRAV5 physically interacted with MePOD and lignin-related CAD 

15 (MeCAD15), promoting their activities to influence 𝐻2𝑂2 and lignin content. To further explore 

this relation, they developed MeCAD15 and/or MeRAV5 co-silenced cassava lines and discovered 

that these silenced lines showed lower lignin content as well as a drought-sensitive phenotype. 

However, treatment of these lines with external alkali lignin improved drought resistance, 

indicating that MeRAV5- mediated CAD activity and resultant increased lignin content could be 

responsible for the enhanced drought resistance conferred through MeRAV5. They conclude by 

proposing a model for the molecular mechanism of MeRAV5, MePOD and MeCAD15 action in 

modulating plant drought resistance, whereby drought stress induces the expression of these 

transcriptional factors, with MeRAV5 interacting with both MePOD and MeCAD15, promoting 

their activities and influencing the accumulation of 𝐻2𝑂2 and lignin, conferring drought resistance 

to the plant.  

Wen et al. [61] isolated a transcriptional factor gene, MsWRKY11, generally considered 

to be stress-inducible, and investigated its potential mechanism in drought tolerance in alfalfa. 

Transgenic alfalfa with overexpressed MsWRKY11 or dominantly repressed MsWRKY11 in 

seedlings or hairy roots were used to probe this mechanism. They found that the MsWRKY11-

overexpression lines were more resistant to drought stress than the wildtype under drought 

treatment, with a significant increase in stomatal density (14-20%). To understand how 

MsWRKY11 may affect lignin biosynthesis in alfalfa under normal and drought conditions, the 

lignin content of the stem, leaves, and hairy roots were determined. Additionally, the lignin 

composition in the stem in terms of its relative abundance of monomer units were analysed using 

the TA followed by GC-MS. After identifying the transcription factor MsWRKY22 as potentially 

binding to promoter sequence of MsWRKY11 under various abiotic stresses, transgenic planted 

with altered expression of MsWRKY22 were generated. They found that the MsWRKY11 or 

MsWRKY22 overexpressed transgenic lines had increased lignin content in the stems, while the 

MsWRKY11 or MsWRKY22 dominantly repressed transgenic lines had decreased lignin contents 

in the hair roots, indicating that MsWRKY11 positively regulates lignin biosynthesis in stems and 

roots of alfalfa. The MsWRKY11 overexpressed lines had increased levels of all three main 

monomer units in the stem, with the greatest increase found in the syringyl monomer units. Overall, 
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the authors showed that MsWRKY11, positively activated by MsWRKY22, increases stomatal 

density and lignin accumulation, conferring drought tolerance to alfalfa.  

Liu et al. [62] investigated the transcriptional regulatory network involved in wood 

formation by screening for interacting transcription factors as well as for transcription factor DNA 

interaction. In particular, they focused on the transcription factor PtrMYB074, previously 

identified as key for regulating wood formation. After identifying PtrWRKY19 as the most highly 

expressed xylem-specific interactor, transcription factor-gene analysis of PtrMYB074 and 

PtrWRKY19 revealed that these two transcription factors co-target a set of genes, most notably 

PtrbHLH186. Genetic analysis demonstrated that overexpression of PtrbHLH186 resulted in 

abnormal lignification, enhanced vessel cell development and altered wood composition, in 

particular, early and increased lignification, increased total lignin, increased guaiacyl units, 

decreased polysaccharides, and more drought-tolerant phenotypes.   

2.3 Summary and findings 

 Work to elucidate lignin’s role in drought stress response mechanisms of plants has 

intensified in the last few years as reflected in both the number of studies and increasing 

sophistication of the approaches. Many of the recent studies have focused on the transcriptional 

regulatory networks, which have been made more accessible by advances in “omics”, 

bioinformatics, and new techniques such as RNA-seq which allows quantification of gene 

expression levels [63]. These findings can be connected with phenotypic observations to develop 

qualitative models of drought stress response mechanisms. Thus, very recently more elaborate 

information has been published regarding lignin’s role in drought stress tolerance mechanisms, 

expanding our understanding and offering new directions for investigations. While there have been 

major advancements in our knowledge, this has also revealed the complexity of these drought 

response mechanisms, demonstrating the substantial work still to be undertaken in this area. 

Section 2.2 has provided an overview of the literature regarding lignin its relationship to drought 

stress response. This section will aim to summarize the findings and offer perspectives based on 

the summation of the literature. First, the general conclusions regarding lignin’s content and 

structure changes in response to drought stress will be reviewed. Subsequently, the effect of 

drought stress on lignin biosynthesis at the metabolic level will be discussed. Next, proposals 



31 

 

concerning the function of lignin in drought stress tolerance will be explored.  The section will 

conclude with a discussion of limitations, general comments, and future opportunities.   

 Regarding lignin and drought stress tolerance of plants, this section considers four main 

questions: Is lignin content and/or composition altered in response to drought stress conditions? 

Does lignin content, composition, or the metabolic intermediates involved in its biosynthesis, 

acting either alone or in combination, impact drought stress tolerance in plants? If lignin is 

associated with drought stress response, is this the result of the properties it confers to the plant 

cell wall or rather the by-product of a greater drought stress response mechanism. If lignin is 

associated with drought stress response, what is the spatio-temporal nature? For example, which 

plants, which tissues/cells, what stage of development, and what are the kinetics and mechanism 

of the response. A challenge with making broad conclusions regarding lignin’s role in drought 

stress tolerance is the immense genetic variation among plants. Results may be heavily dependent 

on the plant in question, the tissue and cell types being assessed, the drought treatment, and the 

techniques used for analysis. Despite there being some conflicting evidence, in general it appears 

that more often than not, studies have found a positive association with lignin content and drought 

stress. This finding has been observed in a variety of tissues, including those in the roots, stem and 

leaves, and has been shown to be dependent on tissue maturity [42].  

Research regarding lignin composition and drought tolerance has lagged compared to that 

of lignin content; however, more recently lignin composition has been increasingly considered. 

These efforts have mainly been limited to evaluating lignin monomer composition, a detailed 

assessment of lignin structure has not been observed. In response to drought stress, some studies 

have found an increase in syringyl over guaiacyl units [39] [48] [61], and an increase in guaiacyl 

over syringyl units [57] [59] [62]. The conflicting evidence here may suggest that the relationship 

regarding drought stress tolerance and lignin composition is complex. More work will be required 

to further understand this matter. The findings may have key implications for biomass processing 

as S/G ratio is commonly associated with processing efficiency and the manipulation of monomer 

units could be the target of breeding strategies for improved feedstock properties.  

Many studies have noted the increased expression of lignin biosynthesis related genes and 

transcription factors under drought stress and have connected them with lignin deposition and other 
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observations such as leaf rolling, stomata closure, defenses to reactive oxygen species and more 

[41] [41] [43] [44] [49] [53]. These results clearly affirm lignins involvement in the stress response 

mechanism of many plants. It is interesting to note that there have been multiple observations of 

increases in tissue lignification despite decreases in lignin related enzymes [42] [55]. Functional 

redundancy in genes has been proposed as a potential explanation for this observation [42], but the 

observation is a good reminder of the complexity of these mechanisms. Lignin has been linked 

with reducing membrane damage via the regulation of ROS [56] [59] [60]. Studies have also found 

that overexpression of genes found to induce drought tolerance in one plant species may have little 

or no effect on drought tolerance in another, indicating differences in drought tolerance 

mechanisms or lignin biosynthesis pathways between plant species [50][51]. Additionally, 

differences in lignin biosynthesis pathway regulation among various tissues have been observed, 

indicating that lignin biosynthesis may be regulated differently in certain tissues [50]. Transgenic 

plants with tissue specific gene regulation have demonstrated the importance of lignin for water 

transport and mechanical strength in plants and in particular highlights that lignin may play various 

physiological functions depending on tissue and cell type [58]. More recently, the importance of 

interacting transcription factors regarding lignin formation and drought tolerance has been 

demonstrated [64][62].  

There are a variety of proposed mechanisms by which lignin may confer drought tolerance 

to plants; yet, due to the great complexity of plant cells and the high evolutionary variability among 

plants, there is no consensus on its function in drought tolerance. It is frequently proposed that 

more lignified plant cell walls increase hydrophobicity and thus acts as a barrier against the 

evaporation of water to the environment, which may be extremely valuable for both productivity 

and survival during severe drought. Additionally, the increased strength conferred to the plant cell 

walls via lignification is also proposed to protect vulnerable plants under drought stress. Increased 

cell wall strength may also prevent cavitation resulting from hydrostatic pressure imbalances 

during drought. Increased lignification could be the result of alternative mechanisms for the 

regulation of ROS that are produced during drought stress and cause toxic oxidative stress. 

Changes in lignin composition, in particular changes in monomer unit concentrations will 

influence cell wall properties such as hydrophobicity and rigidity, and thus could impact drought 

stress tolerance of plants. Thus, plants may be adapted to alter lignin composition in response to 
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drought, either in addition to lignin content or irrespective of lignin content, altering the properties 

of the cell wall to confer drought tolerance. In particular, guaiacyl units have been related to the 

activity of water transport and could be selectively promoted as a drought tolerance mechanism, 

but the evidence is not strong in this regard [57]. While most studies that considered lignin 

composition in relation to drought stress have focused on the relative proportion of monomer units, 

other structural features such as inter-unit linkages, molecular weight, and degree of branching 

should also be considered.  

Given the compiling evidence, it appears increasingly likely that lignin plays a role in the 

drought stress response of many plants. As work continues in this area, the nature of this 

mechanism will be gradually revealed. It is likely that lignins role in drought tolerance varies 

among different plants, tissues, cell type, stage of development, and severity of drought. Future 

studies should consider strategies to cover this variability in their approach. In addition, it is 

important to connect physical characteristics with molecular level responses to consider the results 

in full context. Larger scale investigations can use data-based approaches considering a wide range 

of variables to more comprehensively examine these mechanisms, including identifying various 

interacting variables. This approach may also provide clues for more focused research in the area. 

The field of bioinformatics already takes this approach for efficiently narrowing down key areas 

of interest given large and complex data sets. Given the extreme complexity and variability of 

plants, data-based approaches will likely be necessary as we look to further understand these 

multiscale problems. Chemometric approaches, which are described in detail in Chapter 5, may 

play a key role in this regard as they involved the application of mathematical and statistical tools 

to chemistry and are very suitable for problems that involve large data sets.   
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Chapter 3: Lignocellulosic biomass fractionation 

3.1 Introduction 

Efficient fractionation of lignocellulosic feedstocks into its respective components is a top 

priority for the subsequent conversion to energy, materials, and chemicals. In this thesis, the term 

fractionation is used generically to describe the approaches, typically occurring as one of the first 

processing steps, used to: separate lignocellulosic feedstock into their main components, to isolate 

a desired component, or to remove structural and composition impediments enabling further 

processing into value-added products. Thus, fractionation is used in a similar sense as the also 

common term “pretreatment” but is preferred for its generality. The exception to this definition 

would be when the term fractionation is applied to lignin specifically, in which case fractionation 

would indicate the breakdown of lignin macromolecules into smaller lignin fractions or monomer 

units. Lignocellulosic biomass fractionation is well studied and there are a wide range of methods 

due to the economic significance of this step in any commercial lignocellulosic industry. The 

fractionation step is typically one of the first steps in most biomass processing strategies and often 

considered the costliest step [65]. Additionally, the fractionation approach will have significant 

implications for the subsequent processing or analysis and thus is a particularly important area of 

research.  

The complex and recalcitrant assembly of the lignified plant cell walls poses significant 

challenges for accessing the components and conversion into valuable products. There are a wide 

variety of methods that have been developed to breakdown the plant cell wall matrix and access 

the components. Fractionation strategies use physical/mechanical, chemical and biological 

treatments, alone, in sequence, or in combination. Physical treatments could include milling or the 

manipulation of variables such as temperature, and pressure. Chemical treatments use chemicals 

to target both covalent and non-covalent bonds to selectively breakdown the plant cell wall matrix 

while biological treatments employ microorganisms to selectively breakdown the plant cell wall. 

Different combinations of these approaches can be favourable for tuning the fractionation 

processes and the vast majority of fractionation strategies are physiochemical treatments. All these 

methods offer certain advantages and limitations depending on the mechanism by which they 

fractionate the plant cell wall matrix. Lignin is also degraded to some extent during lignocellulosic 
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fractionation, primarily through cleavage of its most common linkage type (𝛽 − 𝑂 − 4) along with 

other more accessible and vulnerable bonds. In addition, lignin often participates in inconvenient 

condensation reactions during treatment which involves lignin fragments forming strong carbon-

carbon bonds with itself, reducing its reactivity, and rendering the end product less desirable for 

further processing. 

In this section, the main lignocellulosic biomass fractionation strategies will be reviewed 

with a focus on the impact of the treatment on the chemical structure of lignin. As interest in lignins 

role in contemporary biorefineries increases, more focus will be placed on the impact of these 

fractionation strategies on the composition of the lignin stream. In order to provide a structured 

overview of fractionation strategies, the methods discussed in this section will be categorized 

based on their primary application. Based on this, there will be two broad categories: commercial 

processes and laboratory methods. Commercial processes include the fractionation approaches 

intended for larger industrial processing while laboratory methods include the methods that are 

used to isolate lignin for further analysis. Laboratory methods typically focus on preserving lignins 

structure from its native state during the extraction process which contrasts with commercial 

methods that are more concerned with processing objectives.  

3.2 Commercial fractionation 

Commercial fractionation can be further sub-divided into two main categories: 

conventional processes and emerging methods. Conventional processes are those processes that 

are used in commercial pulping mills and bioethanol approaches. Emerging methods include the 

less developed methods that have been proposed as promising alternatives for conventional 

biomass fractionation approaches. 

3.2.1 Conventional processes 

3.2.1.1 Pulp and Paper 

 The three main industrial pulping processes include the kraft, soda, and sulphite processes. 

These processes generally operate via the dissolution of lignin at high temperature and pressure 

with wet chemicals [66]. The typical objective of pulping processes is to remove as much lignin 

as possible without reducing the strength of the fibres; however, not all lignin is removed with 

about 3-10% by weight remaining in the pulp [67] [68]. The kraft process is the most common 
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process for paper pulp production in the world, accounting for 80% of the total chemical pulping 

industry [22] [69]. The kraft process employs a Na2S/NaOH mixed solution (white liquor) to treat 

biomass material at temperatures of 155-175℃  over several hours [22]. In a conventional kraft 

process the white liquor and wood chips would be reacted in a large heated pressure vessel referred 

to as the digester [70]. This process degrades the lignin-polysaccharide linkages and leaves lignin 

fragments dissolved in solvent forming a lignin-rich fluid referred to as black liquor [71] [22]. The 

soda process is very similar to that of the kraft process, with the difference being that the lignins 

separated from the black liquor with 𝑁𝑎2𝐶𝑂3 and 𝑁𝑎2𝑆𝑂4 are named soda and kraft lignin, 

respectively [71]. Therefore, the soda process offers a sulphur-free alternative to the kraft process. 

Using sulphur in the treatment procedure is sometimes also used as a criterion for the classification 

of extraction processes. After extraction, the lignin is then burned in the recovery boiler producing 

steam for the process of recovering some inorganic chemicals [72]. It is suggested that this 

inefficient usage of lignin in the kraft process may change as the market value of lignin increases 

and valorization techniques develop [70]. 

Sulphite lignin is recovered by the sulphite pulping of biomass material (see Figure 3). The 

sulphite process utilizes an aqueous solution of 𝑆𝑂2 and a sulphate salt to cleave the lignin-

polysaccharide linkages at temperatures of 140-170℃ [22]. Lignosulphonates can then be formed 

using a variety of bases, which are different for various pulping processes [71]. A comparison of 

the production pathways for kraft and sulphite lignin is shown in Figure 3. The resulting 

lignosulphonates are isolated by precipitation using alcohol, dialysis and a variety of other methods 

[71]. The harsh conditions used in these three main pulp and paper industrial processes produce 

extracted lignin that is severely degraded from its native structure. Soda lignin processes are 

typically used on annual fibre feedstocks, while kraft and sulphite lignin processes are mostly used 

on wood [22]. The increased development of the kraft process has led to a significant decrease in 

the sulphite lignin production because of the versatility of the kraft process [73]. Additionally, the 

efficiency of the sulphite process is dependent on the absence of bark and the type of raw material 

[74]. This has influenced the versatility of the sulphite process and thus contributed to the 

dominance of the kraft process.  
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Figure 3. Production pathways for kraft (left) and lignosulphonate (right) lignin including selected 

modified pathways. Adapted from Lora [75]. 

 The pulp and paper industry has processed lignocellulosic biomass at scale for many years. 

Therefore, there is opportunity to use the principles and infrastructure applied in the current pulp 

and paper industry to modern biorefinery designs. However, the harsh nature of the pulping 

processes may limit their application in future biorefineries. Additionally, the kraft and sulphite 

pulping processes release sulphur gases into the atmosphere, as a result some suggest that 

alternative extraction processes such as the organosolv process could be more beneficial in the 
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long term [76]. Table 2 summarizes the three main industrial pulping processes along with features 

of their lignin products. 

Table 2. Summary of industrial pulping processes and their respective lignin products. Adapted 

from Luo et al. [77]. 

 Kraft Pulping Sulphite Pulping Soda Pulping 

Generic Definition Aqueous solution of sodium 

hydroxide and sodium sulphide 

(white liquor) reacted with wood 

chips in large pressure vessel 

called a digester [70]. 

Dissolution of lignin and 

release of cellulose fibres 

using bisulphite ions such as 

calcium, potassium sodium, 

magnesium, or ammonium 

[78]. 

Aqueous solution of sodium 

hydroxide (leaving out sodium 

sulphide used in kraft pulping) 

reacted with non-wood fibres 

[78]. 

Lignin Product Kraft lignin Lignosulphonate Soda lignin 

Lignin purity High Low-medium High 

Lignin Sulphur content (%) 1-3 3-8 0 

Solubility Water, Alkali Water Alkali 

Separation techniques Precipitation (pH change) Ultrafiltration Precipitation (pH change) 

 

3.2.1.2 Bioethanol production 

 Bioethanol is a promising renewable energy source produced from feedstocks rich in 

carbohydrates such as sugars, starch, lignocellulosic biomass and algae, with lignocellulosic 

biomass being one of the most abundant and promising candidates [79]. Lignocellulosic biofuels 

are produced via fractionation of the cell walls into their three main components (cellulose, 

hemicellulose, and lignin), the subsequent hydrolysis of cellulose and hemicellulose into soluble 

sugars, and the fermentation of these sugars to ethanol. A schematic diagram of the general process 

for converting lignocellulosic biomass to ethanol is provided in Figure 4. The 

fractionation/pretreatment of the slurry is the main step for removing lignin from the fermentable 

sugars. There are a variety of different physical, chemical, physiochemical and biological 

approaches for the fractionation step in bioethanol production, many of which will be discussed in 

more detail in the emerging methods section. However, these approaches applied to bioethanol 

production should meet the processing objectives focusing on the yield of soluble sugars and 

would be less concerned regarding the quality of the residual lignin stream. Contemporary 

bioethanol production strategies may seek to balance the yield of soluble sugars with higher-

quality lignin streams for value-added applications.  
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Figure 4. Schematic diagram overviewing the major steps in the conversion of lignocellulosic 

biomass into ethanol adapted from Zabed et al. [80].  

3.2.2 Emerging methods 

 While there are many mature fractionation processes developed in the pulp and paper 

industry, there are a wide range of emerging methods under development that offer advantages 

compared to the conventional methods. Conventional fractionation approaches have concentrated 

https://pdf.sciencedirectassets.com/271969/1-s2.0-S1364032116X0010X/1-s2.0-S1364032116304695/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEHgaCXVzLWVhc3QtMSJHMEUCIQD5YpFunFHCHX17Zdz55AO%2FgPJCk%2B0MmsVL5pAzg9iTXgIgJ4lnZRwl8HrqhA0CeCVrSgUofIRGq%2F100lxM%2FjeX1FYq2wQIwf%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FARAFGgwwNTkwMDM1NDY4NjUiDD9NPxeYBE2KYebwciqvBLaMv9DOynpbID%2FZp8GwEFlHBmdHeAYuRWVxQmezW6tzCZ3ofCNP3IUyHPI%2BVr%2BpCD77kz3zI4f%2FZyeIoVzpn%2B%2B7nKeT7nUcKC8F4kNb284JQJ7GUKf57l7myUCtL57daorNHvxOXWQNcq1NvZZaAr%2F2MLu%2Fo%2By1iBB9JOT9EY9CVTGgnwPOk1Wars8no6NJ0dWEnOzfKx%2FcdEuVR3rN0cXW%2BLHtJ%2Fk%2BgMWtubAxU%2BbwShHsCU1FtB6NpvFpVq%2FLX0nOK2QrEHcDH8ja52YjnEt41Xe4lyuIg7uxmYY7L1Fhp%2BEzzSlf32M4A%2Bd73cjhUwsYyQf%2Bdst5f7kBUwci%2BAJ%2FEzOhjz3DrMOZ9XdvYZeulmQTCQZ6aql1imxT3d70jFJtqHKAH5PSOzcrO5gwTfXf5A4zozhV%2F3%2FByQ4CYkfQW4u2%2BexQ4xrLQlWK0YvY7PU0kKjv7F%2BoeeDEKS3ZnZ897fNOnjNOCxXi7%2B55sPfcjcDfdI62Zz1DKkbGodvDkOwIHtbdN1m1HsyMnnmmHODM9WJMmzlRrU0lApXgOOFJQFafoS21uibUgVHoPzLv44W6MfpNoqDNnLK7ygO5sJfC4pgIbnCf816v2OR8gFsX2Xr0lygIs6nOUS%2BprJoK2sgwRN5YK8dEa%2Bezb6Wi%2BK%2BoiobkU5BTJi5lkqi39wFXXjC1yWldnUm6MTIq5SptgS2eOwynrmK1RKco0Jl7Nmpb1NyC4Q3R9Lj6MaYzR84wv6CAlwY6qQEjAvZkAS2VGACmDNAiJwtLAfbyjmKCY60995D%2FdUuxS9k3RUjTDeB%2FEO6FOrc5NrFonBURRcclZW3LFey7D%2Fbek1y3hmfnkjgNn0Rc5AyXRUXwUZcZA1G5vMxATh0rm8koXm9C%2BZoL3r1BehUatkmtUoLo%2FoBVLjBFGbFwp7QuJrSL4vzKfjZULpQG6MFHcxQi0OAueWSjzbjjXxcVGyvNMs3ub%2BoAQ6jR&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20220726T173259Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTY7PX256AS%2F20220726%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=503927d96dd8321a720f333c869b57d042b45b80b9903c6fc9d28b13d0d876fb&hash=a07d4c9d04267056db2a2a33568de08f5cd06892570dfe819a32b12d94d5f78b&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S1364032116304695&tid=spdf-658a4b09-663c-47d0-a047-39d158fdd2ef&sid=b24cbc603cc453451a18f5a06c20dfa5fc55gxrqa&type=client&ua=4d57540b0b570058065a&rr=730ee0b9d8597d64
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primarily on the value of the carbohydrate components, leaving residual lignin severely degraded 

and irreversibly altered, greatly reducing its potential for further upgrading into valuable products. 

Many of the emerging methods are modifying their fractionation strategies to avoid using sulphur 

and to realize higher value from all lignocellulosic components. There are a diverse range of 

emerging approaches with different advantages and limitations. Here we will highlight some of 

the main emerging fractionation strategies. 

 From the point of view of process chemistry and the resulting lignin product, most 

fractionation approaches can be generally classified as either acid- or alkali-based processes [81]. 

Hydrolysis is the process in which water is used to cleave chemical bonds [82]. Acid-Hydrolysis 

(AH) is a well-known approach for fractionating lignocellulosic biomass typically involving the 

use of a dilute acid to disturb the crystalline cellulose structure and hydrolyse lignin and 

polysaccharides into smaller fractions [83]. In particular, acidic treatment attacks hemicelluloses 

enabling the enzymatic hydrolysis of cellulose [84]. Acid hydrolysis of lignin primarily degrades 

the 𝛽 − 𝑂 − 4 linkages producing so-called Hibbert ketones, the resulting lignin possesses high 

relative contents of carbonyl groups and saturated aliphatic structures [81]. In contrast to acid, 

alkali-based fractionation uses various alkaline compounds (commonly NaOH/ammonia) to 

disrupt the lignin structure making the carbohydrate fractions more accessible [85]. Alkali 

pretreatment is generally performed under less severe conditions and is more effective with lower 

lignin content [86]. 

 Steam explosion (SE) is a developing fractionation method that uses steam (150-230℃) 

and high pressure (1.38-3.50 MPa) for short periods (1-20 minutes) and then a sudden release of 

pressure to produce a water-insoluble lignin extracted from biomass [22] [87]. It is the most 

extensively studied physiochemical method of biomass pre-treatment and is sometimes referred to 

as “autohydrolysis” as a more accurate description of the chemical changes that occur during the 

steam explosion pre-treatment method [85]. It is reported that the most significant change to the 

supramolecular biomass complex resulting from steam explosion is related to the separation of 

hemicellulose and allowing the access of enzymes to the cellulose fibrils [65]. Typically, a small 

fraction of lignin will remain in the soluble phase and will require alkaline delignification for 

complete fractionation [73].  
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 Liquid hot water (LHW) is a fractionation method akin to SE except is employs liquid 

water (pH 4-7) at high temperatures (106-230℃) and pressure (up to 5 MPa) instead of steam [88] 

[89] [90]. The treatment dissolves hemicelluloses into oligosaccharides and partially dissolves 

lignin enabling enzymatic access to cellulose [89]. LHW fractionation operates at a controlled pH 

to reduce the formation of monosaccharides which can degrade into toxic by-products. LHW 

treatment does not require a release of pressure like SE, it does not need a catalyst or chemicals, 

and toxic by-products are low, however, the large amount of hot water makes the process highly 

energy intensive [90].  

 Ammonia fibre explosion/expansion (AFEX) [91] fractionation uses high temperature (60-

120℃) and pressure (up to 11 MPa) and ammonia to disrupt the cell wall structure by reducing 

cellulose crystallinity, partially degrading hemicellulose, targeting acetyl groups, and some lignin 

bonds to support the access of enzymes to the cellulose for digestion [92]. Similar SE, AFEX 

utilizes a rapid release of pressure. AFEX has been shown to target lignin-carbohydrate linkages 

while preserving lignins structure [93]. AFEX is more appropriate for lignocellulosic feedstocks 

with lower lignin content [90]. Ammonia must be recovered and reused for the process to be 

practical.  

 Ionic liquid (IL) fractionation can isolate lignin from biomass in a selective and 

environmentally friendly way; however, the procedure is still in development and can come at high 

costs with some challenges in the separation of products after pre-treatment [22]. Ionic liquids are 

organic salts with melting points under 100℃ composed entirely of organic cations and organic or 

inorganic anions with desirable properties negligible vapor pressure, non-flammability, and 

thermal stability among other characteristics [94] [95]. While IL extraction is still in its 

development stages, it is proposed that a possible mechanism for their degradation of biomass is 

related to the weakening of intra-molecular hydrogen bonds of the cellulose causing dissolution 

[95]. It is reported that lignin recovered from IL extraction have similar properties to that of 

organosolv lignin (described later in this section) and therefore IL extracted lignin might be 

suitable for similar applications [73]. 

 Deep eutectic solvents (DES) have emerged as an environmentally friendly alternative to 

IL’s with many shared properties. DES are eutectic mixtures of Lewis or Brønsted acid and bases 
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containing a range of anionic and/or cationic species while IL form from systems of primarily one 

type of discrete anion and cation [96]. Research on DES is still in its early stages and the exact 

mechanism of fractionation is still not fully understood; however, DES are of particular interest 

for lignin valorisation strategies due to the high solubility of lignin in DES. DES are easily 

synthesised, and their low cost, low toxicity, and biodegradable properties are favorable for the 

‘green’ fractionation of lignocellulosic biomass. Challenges such as thermal instability and 

susceptibility to contaminants have limited DES in practice [97].  

 Derived from the principles employed by the pulp and paper industry, the organosolv 

extraction process is based on extracting lignin and hemicellulose from biomass using organic 

solvents [73]. Aqueous organic solvents along with some additives or catalysts at temperatures of 

around 140-220℃ break down the aryl ether linkages of lignin by hydrolytic cleavage and leave 

the fragments dissolved in the solvent [22]. The benefits of the organosolv method include its 

environmentally friendly conditions (sulphur free) and its high-purity product with a lower severity 

compared to traditional pulping methods, making it likely to have less chemical/structural 

alterations [22] [98]. These benefits have made it a promising candidate for biomass utilization, 

however, at the current stage of development the high uncertainty in capital investments [99] [100] 

[73] required to implement the organosolv process at an industrial scale have prevented the process 

from reaching commercial application and it currently remains in at the pilot/demo scale [98].  

3.3 Laboratory fractionation 

The previous sections concerning lignocellulosic biomass fractionation have focused on 

methods used for commercial purposes. These strategies are aimed at the efficient processing of 

lignocellulosic components to meet various downstream processing objectives. In this section, 

lignocellulosic fractionation methods used in the laboratory settings will be reviewed. In particular, 

methods aimed at quantification and analysis of lignin will be considered. These approaches can 

be essentially divided into two distinct categories based on their research objective: quantitation 

of lignocellulosic components as determined via the isolation of the components and evaluation of 

the fractions, or the strategic isolation of the components for further analysis. While the former 

approach is focused on effective fractionation of the components, the latter approach is more 

concerned with the mechanism of fractionation and the preservation of the lignin structure. This is 
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because the lignin structure can be significantly altered during extraction from the plant cell wall 

matrix depending on the mechanism and severity of the fractionation method. Thus, laboratory 

methods for quantifying lignin are generally quite severe to ensure effective separation of 

components, while laboratory methods for further lignin analysis are generally quite mild.   

3.3.1 Quantitative analysis of lignin content 

 There is an assortment of methods and variations for the quantitative analysis of lignin 

content by fractionation, but the three main techniques include the Klason/acid-insoluble lignin, 

Van Soest, and acetyl bromide methods. These methods do not produce lignin suitable for further 

analysis because of the harsh nature of fractionation that severely alters the lignin structure. It is 

also important to note that while these methods are often used as the primary means of assessing 

lignin content of lignocellulosic samples, they all have various issues and limitations which include 

requiring toxic chemicals, relatively large sample amounts (300 mg), very laborious procedures, 

and mechanistic differences leading to varying results [101]. Thus, often the lignin content 

determined using these techniques is better understood as a relative measure. Consequently, lignin 

content is better reported as prefixed by the method of analysis.  

 The Klason method is considered as the standard for determining lignin content and is the 

most well-known lab-scale method [22] [102]. Biomass is treated with 72% 𝐻2𝑆𝑂4, followed by 

dilute 𝐻2𝑆𝑂4, leaving lignin as an insoluble residue after the hydrolysis of cellulose and 

hemicellulose [102]. This residue is dried, weighed and reported as lignin content. Limitations of 

the procedure result from the potential for alternative components such as proteins condensing and 

ending up in the ‘lignin’ residue, covalently linked lignin and carbohydrates ending up in the wrong 

fraction, and some acid-soluble lignins remaining in solution [103]. Acid-soluble lignins can be 

corrected for using spectroscopic techniques applied to the filtrate from the second stage of the 

Klason process by relating the intensity of the spectrum at a characteristic lignin wavelength to 

lignin concentration via Beer’s law [104]. Klason lignin is highly condensed and altered, therefore 

deemed unsuitable for chemical characterization [66]. The Klason-type procedures can also 

estimate cellulose and hemicellulose components from the difference, as lignin and ash 

components are removed. Ryan et al.  have compared two Klason-like techniques for determining 

the approximate carbon fractions of the three main components of biomass - forage fibre 
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techniques [105] [106] and forest products (see Figure 5) techniques [107]. Ryan et al. credit Van 

Soest [105], and Goering and Van Soest with the development of the forage fibre analysis [106], 

and TAPPI and Effland with the forest products techniques [108]. Ryan et al. broadly divide the 

organic compounds from biomass into three categories: extractives which include nonpolar 

compounds such as fatty acids and lipids and polar compounds such as sugars and phenolics, 

polymer carbohydrates or holocellulose (cellulose and hemicellulose), and acid-insoluble aromatic 

compounds (lignin) [107]. The forage fibre analysis and forest products techniques work by 

separating the biomass components into different categories. In the case of the forage fibre analysis 

an estimate of the ash free (acid – detergent) lignin is found and other extractives such as cellulose 

and hemicellulose are determined by the difference [107]. The forest products technique is similar 

in method but is more complicated. Goering and Van Soest describe the neutral-detergent fibre 

(NDF) and acid-detergent fibre (ADF) analytical procedures for estimating the lignin, cellulose, 

and hemicellulose contents in plant material. The NDF procedure for cell-wall constituents is a 

fast method for analysing total fibre in vegetable feeds, while the ADF procedure can provide a 

rapid determination of lignin and cellulose in feeds. Taking the difference between the ADF and 

NDF allows the estimate hemicellulose content [106].  
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Figure 5. Flow diagram for the forage fibre and forest products determination of proximate carbon 

fractions, where the cationic surfactant cetyltrimethylammonium bromide solution is labelled as 

CTAB. Adapted from Ryan et al. [107]. 

 While not necessarily a fractionation method, the acetyl bromide method is one of the most 

common approaches for quantitatively assessing lignin content from lignocellulosic material and 

thus will be described here. The acetyl bromide method is the most popular of a number of 

spectroscopic-based methods for quantitative lignin content analysis. It works via the dissolution 

of a sample in a solvent and subsequent measuring the absorbance of the solution at a distinct 

wavelength characteristic of lignin of which a previously developed calibration curve can be used 

to estimate the lignin concentration in the solution and thus the lignin content of the sample [104]. 

The acetyl bromide method has the advantage of rapid analysis time compared to its laborious 

counter parts (e.g., Klason, Van Soest), it requires only milligrams of sample, and should in theory 



46 

 

account for all the lignin present in the sample, including the acid-soluble lignin. However, since 

the procedure relies on a calibration curve it is an in-direct measure.  

3.3.2 Lignin extraction for analysis 

In contrast to the methods described in the previous section with the objectives of 

accurately determining the lignin content of lignocellulosic materials, this section will discuss the 

methods used to isolate research grade lignin. Detailed investigations of lignins structure require 

pure and unaltered lignin to be extracted from the other lignocellulosic components of which it is 

entangled with inside the plant cell walls. Various techniques have been developed for this 

purpose; however, it is not so clear to what degree these approaches truly preserve the lignin 

structure. Thus, like the quantitative lignin content determination methods, often the structural 

analysis performed on isolated lignin is considered relative to the isolation procedure. Yet, 

inferences regarding the structure of native lignin are often extrapolated from the analysis of 

isolated lignin, despite there being some degree of alteration from extraction. The terms “in situ 

lignin”, “native lignin”, “protolignin” and “technical lignin” are widely used in the lignin 

extraction literature. In situ, proto- and native lignin refer to unextracted lignin that is inside the 

plant cell wall, as found in nature. Technical lignins are those that have been obtained as a result 

of lignocellulosic biomass processing, and therefore, technical lignins are prepared from natural 

lignin [22]. Note that it is also common for technical lignins to be named after the extraction 

process used to derive them (MWL, kraft lignin, organosolv lignin, etc.). 

 The most common laboratory technique for isolating lignin from wood is done via the 

classical Bjӧrkman method, which uses extensive grinding, followed by solvent extraction (see 

Figure 6) [109] [102] [110]. The product of this procedure is called a milled wood lignin (MWL). 

If a larger amount of solubilized lignin is preferred, the Bjӧrkman process can be modified either 

by treating the finely ground wood with hydrolytic enzymes for the removal of associated 

polysaccharides prior to solvent extraction or by treating the insoluble material from the first 

dioxane extraction with the enzymes to remove carbohydrates and subsequently solubilizing the 

material in dioxane [111]. The products of the altered Bjӧrkman method are referred to as 

cellulolytic enzyme lignin (CEL) [110]. The altered Bjӧrkman method yields increased lignin and 

therefore the yield of CEL is greater than that of MWL. This increased yield is considered to be 
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lignin associated with carbohydrates that may be participants in LCC’s. The additional step in the 

CEL process is able to release more of the lignin associated with carbohydrates. The CEL has been 

shown to be preferred over MWL, as the lignin yield is higher and the chemical degradation is 

decreased [112]. However, the altered Bjӧrkman method that produces CEL is more tedious than 

the classical Bjӧrkman method that produces MWL, as it adds an additional step and time to the 

procedure [113]. Refining the CEL process and including a mild acidolysis step can yield another 

modified product called enzymatic/mild acidolysis lignin (EMAL) [22] [114]. In the EMAL 

process, the mild acidolysis step is used to cleave the remaining lignin-carbohydrate bonds to 

produce high yield and purity lignin [114].  

The Brauns’ lignin isolation process extracts lignin with organic solvents (EtOH/dioxane) 

which are then removed by evaporation [113]. The Brauns’ procedure is suggested to cause such 

slight chemical structure changes to the sample that the product is referred to as native lignin, 

however, yields of 2-10% and contamination by extractives can make this method undesirable for 

certain applications [104] [113].  
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Figure 6. The MWL and CEL isolation procedures. Adapted from Brunow et al. [115] and Holtman 

et al. [116].  

 Hydrolysis is the process in which water is used to cleave chemical bonds [82]. Hydrolytic 

lignin extraction can take many forms; however, typically hydrolysis extraction methods utilize an 

acid, base, or enzyme to dissolve the cellulose and hemicellulose components leaving lignin as an 

undissolved residue [117] [22]. Since hydrolytic lignin is a broad category that can refer to multiple 

extraction techniques, the term is somewhat loosely used in literature which can lead to confusion. 

Hydrolytic lignin extracted from residues of the cellulosic ethanol production is commonly known 

as enzymatic hydrolysis lignin (EHL) and is usually used as a low value fuel to generate steam or 
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electricity [71]. The EHL can have minimal structural changes, however, EHL typically contains 

5-15% carbohydrate impurities [118]. While these impurities can cause problems for analytical 

procedures, NMR methods have been reported to overcome these challenges [118]. Prior milling 

of samples, which significantly degrades the polysaccharides along with some breakdown of the 

lignin macromolecule, is a requirement of enzymatic hydrolysis of wood [118]. It is also important 

to note that enzymatic hydrolysis can also be used to investigate LCC linkages [118].  

 While there may be altered procedures depending on application, Lundquist [119] defines 

acidolysis as specifically referring to treating lignocellulose or lignin with 0.2 M HCl in dioxane-

water (9:1, v/v) at reflux or heating at 100℃ [119]. The procedure has initially been applied in the 

field of lignin chemistry by Pepper et al. [120] to isolate lignin from plant materials [119]. The 

acidolysis procedure can also be applied as a tool for the characterization of lignin and its 

components [121].  It is reported that acidolysis lignin has only minor carbohydrate impurities and 

less severe chemical degradation of the native lignin than other methods [22]. Thioacidolysis (TA), 

where ethanethiol is used as a solvent instead of water, is proposed to provide a more effective 

degradation and an increased yield of lignin [22]. The TA procedure has been used to estimate 

lignin monomer composition [122]. 
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Chapter 4: Lignin characterization 

4.1 Introduction 

Challenges to the efficient conversion and utilization of lignocellulosic biomass have 

motivated researchers to investigate the chemical structure of lignin. It is proposed that a greater 

understanding of the lignin structure will assist in the utilization of lignin as an abundant renewable 

resource. Moreover, elucidating the mechanism of interaction of lignin within the plant cell wall 

will provide insight into the degradation of raw lignocellulosic biomass into its main components. 

Lignin monomer composition and S/G lignin ratios have been demonstrated as important criteria 

for predicting recalcitrance of lignocellulosic biomass [101]. However, there is still some 

conflicting data on this topic with some literature suggesting higher S/G ratios are correlated with 

reduced recalcitrance [123] [124], and others suggesting higher S/G ratios are correlated with 

increased recalcitrance [125] [126].  In addition, the S/G ratio is not relevant for all lignocellulosic 

feedstocks, for example, softwood lignins are primarily composed of guaiacyl units and have only 

very minor concentrations of p-hydroxyphenol and syringyl units.  

While many advanced methods for characterization of lignin exist today, much is still 

unknown about its structure. As described in the last section, lignin can only be studied after some 

mild extraction from the plant cell wall. Therefore, analytical procedures can only provide 

information on the extracted technical lignin, leaving the native lignin structure a key point of 

debate. The detailed description of lignin structure requires multiple pieces of information, 

including elemental composition, relative proportion of monomer units, linkages, functional 

groups, molecular weight distribution, and degree of branching of the macromolecular structures. 

As a result of this complexity, multiple analytical methods are required to obtain a detailed 

description of the structure of lignin. The chemical structure of lignin is dependent on a multitude 

of factors including the type of biomass material, part of the plant, location of tissue, cell type, age, 

and growth conditions [22]. Further, structural characteristics of technical lignin are influenced by 

the degradation process, extraction technique, and sometimes the analytical method used [22]. This 

section provides an overview of the main analytical methods used for the structural 

characterization of lignin.   
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4.2 Wet Chemical analysis 

Wet chemistry is a type of analytical chemistry approaches that use observation, typically 

in the liquid phase, for chemical analysis. Wet chemical approaches have been vital in supporting 

our current understanding of lignins structure today. They have been used to detect functional 

groups such as carbonyl, carboxyl, aliphatic hydroxyl, phenolic hydroxyl, methoxy, condensed 

units, free phenolic groups as well as the main lignin monomer units [101]. Functional group 

analysis and degradation techniques allow the precise determination of lignin features but can be 

indirect, time-consuming, error prone, and too specific [127]. In-fact, wet chemical approaches in 

general are time-consuming, tedious, often require toxic reagents. Thus, while these conventional 

approaches have been fundamental, high throughput spectroscopic analysis in becoming 

increasingly preferred.  

Wet chemical methods such as nitrobenzene oxidation (NBO), TA, permanganate 

oxidation (PO), and derivatization followed by reductive cleavage (DFRC) are well-established 

techniques and have been used extensively in literature [22]. NBO has been used for years as a 

procedure for examining the structure of lignins since its introduction in 1939 [128] [129]. In the 

NBO process, the non-condensed p-hydroxyphenol, guaiacyl, and syringyl units in lignin are 

oxidatively cleaved forming aromatic carbonyl compounds, such as phenolic aldehydes and 

phenolic acids [130] [131] (Figure 7). Lapierre [29] reports that NBO has a high uncertainty 

(standard deviation of 20 to 30%) on the yield of monomeric products and speculates that this low 

interlaboratory reproducibility arises from variation in reaction duration, temperature, and 

analytical complications [132]. The S/G ratio determined by NBO achieves a higher 

interlaboratory reproducibility (standard deviation 4 to 8%) but predicts a higher S/G ratio than is 

thought to be accurate, with this characteristic being attributed to the syringyl units being less 

involved in condensed inter-unit bonds as compared to the guaiacyl units [29]. The NBO method 

is reported to be less complex comparatively to PO in terms of taking less time and requiring fewer 

steps [129]. The PO method has provided significant contribution to the field of lignin chemistry 

[133]. The PO reaction selectively degrades aliphatic side chains attached to the aromatic moieties 

of lignin; a mixture of aromatic carboxylic acid structures remains as the product [133]. 

Information on the absolute phenolic group content of and relative proportions of individual lignin 

substructures can be derived from the identity of the resulting acids, providing information on the 
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structure of a lignin sample [133]. A major drawback of PO is that only around 10-20% of the 

lignin units in native wood can be identified. This is because only phenolic groups that are initially 

free and then become methylated can be analyzed [133]. If the lignin aromatic alcohol groups on 

the C4 carbon are initially etherified, they would not be analyzed [29]. There are methods that can 

improve the yield of PO but these add additional steps to an already long and complex process 

[134]. Overall, despite its contribution to lignin research, PO is less commonly used recently 

because of its low throughput and complicated multi-step procedure [29]. An adaptation from 

acidolysis (described at the end of Chapter 4), TA is defined as solvolysis in dioxane-ethanethiol 

with boron trifluoride etherate [135]. It is an acid-catalyzed reaction that targets the 𝛽 − 𝑂 − 4 

inter-unit linkages to depolymerize lignin enabling the determination of functional groups, 

interunit linkages, and information regarding the parent polymer [29]. In particular, TA can 

provide information on the type and quantity of lignin units involved in 𝛽 − 𝑂 − 4 bonds. Similar 

to TA, DFRC is an analytical procedure for lignin characterization that selectively cleaves the 𝛽 −

𝑂 − 4 linkages in lignin, producing monomers and dimers for analysis via GC or GC-MS [136]. 

The approach operates via three steps which include the acetyl bromide treatment, reductive 

cleavage of 𝜷 − 𝑶 − 𝟒 using zinc in an acidic medium, and acetylation of monomers followed by 

GC quantification of the monomers [137]. It has not only been used as a stand-alone procedure but 

also modified or combined with other techniques to provide additional structural information about 

lignin [138]. 
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syringic acid 

Figure 7. The major products of nitrobenzene oxidation of lignin adapted from Jiang et al. [131].  

The NBO method provides the information of the monomeric composition and the condensation 

degree of lignin. 

While wet chemical techniques can be precise in determining specific functional groups 

and structural moieties, each technique has its own limitations and does not provide a complete 

picture of the entire lignin structure [127]. Degradative wet chemical methods are indirect and 

would be best suited to provide information on the relative amounts of lignin and its monomer 

units. This is because the mechanism behind each wet chemical method may produce altered 

results compared to the values in native lignin, such as in the example of NBO discussed above 

where S/G ratio is overestimated because of the difference in inter-unit bonds between S and G 

monomer units. [101] Therefore, if more representative quantitative results are required, it is 

recommended to use multiple complimentary wet chemical and/or other methods [118]. The 

comparison and summation of information produced from these different methods would allow 

for a more informed determination of lignin structural features. 

4.3 Vibrational spectroscopy 

Spectroscopic methods (e.g., FT-IR, Raman, or near-infrared (NIR)) are useful for the 

analysis of the whole lignin structure (functional groups, linkage types, energy states of atoms) 

[139] and to identify lignin moieties essentially directly as compared to the wet chemical methods 

that require chemical modifications [22]. FT-IR spectroscopy is a non-destructive, rapid analytical 

technique applicable for both solid and liquid samples and is the most widely used technique for 
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the qualitative determination of functional groups [22]. In lignin sample analysis, FT-IR 

spectroscopy is challenged by strong bands of residual non-lignin compounds overlapping the 

characteristic lignin bands [22]. FT-IR spectroscopy can efficiently analyze lignin without sample 

pre-treatment [22] and enables the determination of lignin monomer composition, methoxy and 

carbonyl groups, and the calculation of the ratio of phenolic to aliphatic groups [140] [141]. For 

quantitative work, typically some variation of calibration is required. Different chemical groups 

may have shared absorption coefficients in the FT-IR measurement making the composition 

determination not absolute. Other advantages of FT-IR include its high signal-to-noise ratio and 

high optical throughput, which results in a high dynamic range of linearity, making it very apt for 

quantitative work [141]. 

Raman spectroscopy shares some spectral assignments of absorption bands of FT-IR 

spectroscopy but can provide complimentary information [22]. Raman spectroscopy had not been 

applied to lignin or lignocellulosic material until 1984, despite being a known technique for a long 

time prior [142]. This is likely the result of challenges with laser-induced fluorescence (LIF) which 

is a background signal that interferes with weaker signals in the Raman spectrum [142]. A central 

problem with LIF is the separation of the Rayleigh scattered exciting radiation of air molecules 

from the fluorescence signal. To suppress the scattered excitation radiation, excitation is conducted 

at higher energy levels than those of fluorescence, the detected wavelengths are shifted and can 

then be separated from the excitation wavelength using wavelength filters. However, since the 

development of near-IR FT-Raman spectroscopy – which has allowed the avoidance (for the most 

part) of LIF and significantly reduced time requirements – Raman has become a more common 

technique for lignin and lignocellulosic biomass characterization [142]. It can be used to determine 

lignin S/G ratios both directly and indirectly using multivariate analysis [101]. Perera et al. [143] 

have introduced a new Raman micro-spectroscopic method for analyzing the structure of native 

lignin. The authors recovered lignin spectra of poplar, Arabidopsis, and Miscanthus and detected 

structural differences using chemometrics (a field of techniques which will be discussed in more 

detail in Chapter 6.). 

4.4 Nuclear Magnetic Resonance spectroscopy  

The NMR spectroscopy provides unparalleled structural detail and is routinely used by 

researchers for lignin monomer analysis and S/G ratio determination [101]. It also provides a way 
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to accurately study the chemical structures and nature of chemical bonds in the lignin 

macromolecule, including determination of the S/G ratio [140]. NMR is a significantly less 

sensitive technique than the other typical spectroscopic methods because the relatively small 

difference between energy levels essentially makes the ground state and excited energy levels 

equally populated [144]. This lower energy characteristic of NMR and small/fast transition 

between ground and excited state reduces the potential for large conformational changes and 

prevents physical or chemical change to the molecules (or at least prevents visible changes) and 

thus provides it with a major advantage compared to other spectroscopic techniques [144]. 

Compared to what the structure would look like if it were not being observed, the NMR would see 

a slightly less perturbed structures in comparison to other spectroscopic methods [144]. Another 

factor influencing the sensitivity of NMR is the availability of the interrogated atom. If the relative 

abundance of a particular atom of interest is low, this can reduce the already low sensitivity of the 

technique. Despite the poor relative sensitivity of NMR, it can acquire a lot of information, often 

fully identifying compounds and resolving structure and bonding patterns even in complex 

molecules [144]. There are a large number of solid and solution state NMR techniques used for 

investigating specific structural information. When selecting a method suitable for a particular 

application, one will have to consider the information that they are expecting to gather from the 

experiment in order to select an appropriate NMR technique.  

A remarkable example of one NMR technique in lignin research is the determination of 

hydroxyl groups by phoshorous-31 nuclear magnetic resonance (31P NMR) spectroscopy [145] 

[146] [147]. The 31P NMR spectroscopy enables the quantification of different types of hydroxyl 

groups, such as aliphatic, phenolic and carboxyl hydroxyl groups. These functional groups belong 

to the main lignin functionalities and therefore their quantification is important for the structural 

analysis of lignin. Since hydroxyl groups in lignin cannot themselves be detected by 31P NMR 

(due lack of phosphorus atoms), they must be converted to the corresponding phosphites. In short, 

a common procedure for this analysis requires that the lignin be dissolved in a mixture of 

dichloromethane (DCM) and pyridine, in the presence of the internal standard triphenyl 

phosphorus oxide (TPPO) and a relaxant chromium (III) acetylacetonate (Cr(acac)3), and then 

phosphitylated using a mixture of a derivatization regent (i.e. 2-chloro-4,4,5,5-tetramethyl-1,3,2-

dioxaphospholane (TMDP)) and deuterated chloroform. The reaction of lignin hydroxyl groups 
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with TMDP replaces hydroxyl protons with a phosphorus-containing moiety, which are detected 

by 31P NMR (as illustrated in Figure 8). The integration of signal response over different regions 

of the 31P NMR spectrum allows for determination of phosphitylated hydroxyl concentration by 

group type (e.g., aliphatic, phenolic or carboxylic).  

 

Figure 8. The scheme of the phosphitylation reaction of hydroxyls groups in lignin (top) along 

with the 31P NMR spectrum of lignin derivatized with TMDP with identified regions (and 

structures) belonging to aliphatic, phenolic and carboxylic hydroxyl groups (bottom). Adapted 

from Meng et al. [145]. 

It is important to note that NMR cannot always provide quantitative information and so it 

is typically partnered with one or more quantitative methods. Compared to other spectroscopic 

methods, NMR has much higher resolution, allowing it to provide detailed information [127].  

Depending on the technique employed, the sensitivity of NMR varies. To summarize, despite its 

insensitive nature, with sufficient sample quantities (around 10-100 mg) relatively detailed 

characterization of the structure of lignin can be derived using NMR [144].  

4.5 Mass spectrometry  

Mass spectrometry is an analytical tool that can determine exact molecular weights of 

sample components. Gas chromatography-mass spectrometry (GC-MS) is the most common 
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analytical approach for the determination and quantification of organic compounds in mixtures 

[148].  It is an extremely useful and highly accurate technique for confirming the identity and 

elucidating the structure of unidentified components in lignocellulosic biomass [149]. A 

conceptual illustration of the major components of the GC-MS system is shown in Figure 9. 

 

Figure 9. Flow diagram for the GC-MS system and its major components which include the Gas 

chromatograph, ion source, m/z analyzer, ion detector and the data acquisition system. Not shown 

are inlets to GC column (injectors, gas sampling valves, probe), the carrier gas phase, the CI 

reagent gas (chemical ionization gas), and direct inlet/direct insert probes for the ion source. Some 

elements of this figure are subject to changes based on certain procedural variables such as the 

type of mass spectral ionization. Adapted from Sparkman et al. [149]. 

As one would expect, the GC-MS system is comprised of a gas chromatograph, a mass 

spectrometer, and a computer data acquisition system [149].  The sample is volatilized, and gas 

chromatograph separates components using a selective stationary phase [150]. The separated 

compounds are ionized and then analyzed in the mass spectrometer [150] [151]. The mass 

spectrometer separates ions according to their mass-to-charge ratio (m/z) and the data produced 

from the GC-MS analysis are referred to as mass spectra [151]. These mass spectra of molecular 

ions and fragment ion peaks are used to determine the molecular weight and structural makeup of 

the corresponding compound [152] [153]. In cases of weak signals, complex mixtures, and or 
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strong background signals, before analysis, the mass spectra must be retrieved from the computer 

system and corrected by subtracting background spectra. Mass spectra are then used to identify 

components by matching with known spectra stored in computer systems [149]. It is important to 

note that the resulting structural assignments from GC-MS may require verification depending on 

the level of match and ionization method used [149]. Verification may include confirmation with 

the use of a standard of the compound using the same instrument employed in the complex sample 

analysis, or confirmation using an ancillary analytical method (e.g., IR, UV, and NMR) [149] 

[152]. Using the data collected from GC-MS it is possible to propose a potential macromolecular 

structure, as demonstrated by Lu et al. [154]. Analyzing the low molecular weight products from 

the pyrolysis of a complex polymer, such as lignin using GC-MS requires dealing with large 

volumes of raw data that requires both editing and interpretation [144]. Manual editing, 

identification, and assessment of mass spectra from GC-MS can be an extremely tedious task even 

for an individual experienced in the procedure [152]. Therefore, researchers are turning to 

mathematical algorithms and computer programs to assist with the analysis of large volumes of 

data [155] [156]. 

Gas chromatography (GC) is a very useful tool that concentrates on separating the organic 

species with lower polarity and lower boiling point, and has been used extensively in the 

characterization of lignin-related complex samples [22]. Recently, Py-GC/MS has become a 

common technique for lignin analysis, and can provide information on lignin content, molecular 

weight distribution, monomer composition, oligomer composition, frequency of linkages, and 

thermodynamic behaviors [22]. Using the Py-GC/MS method, a possible macromolecular 

structure for lignin can be proposed [154] [22]. Pyrolysis, separation and measurement occur 

within a single system, minimizing sample loss. Separated products can be identified using their 

mass spectra and insight can be gained into the initial macromolecular structure [157]. Figure 10 

presents a schematic diagram of the analytical Py-GC/MS system including illustration of the 

sample probe where the lignin sample is located and pyrolyzed.  
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Figure 10. Schematic diagram of the pyrolyzer GC-MS system. Reproduced from Heshka et al. 

[157]. 

Py-GC/MS can provide a reliable technique for the analysis of lignin monomers, and more 

specifically the determination of S/G ratio. Pyrolysis lignin utilizes heat in the absence of oxygen 

to transform non-volatile compounds into volatile mixtures [158]. The mechanism of lignin 

pyrolysis is not understood because the violent conditions lead to multiple and parallel reaction 

mechanisms that have not been characterized [22]. However, lignin content and structure in 

lignocellulosic biomass have been evaluated by analytical pyrolysis. When conducting Py-GC/MS 

on lignocellulosic biomass samples, the degradation products of polysaccharides and lignin are 

separated by gas chromatography before being identified by the mass spectrometer. The mass 

spectrum of lignin is distinct and recognizable, even when analyzed in combination with 

carbohydrates, and therefore no pre-treatment/removal of carbohydrates is required before the 

analysis [158]. Fast analysis time and requirement of modest sample size makes this method 

favourable in structure investigations [113]. Other benefits include minimal sample preparation 

and no requirement of fractionation/pre-treatment [158].  

Analytical pyrolysis techniques can be briefly described as: rapid heating (e.g. 0.1 to 20 

°C/ms) the sample under inert atmosphere to an optimum temperature (700 °C) which results in 
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breaking up the complex, heterogeneous solid into smaller molecules that are characterized and 

measured (as demonstrated in typical pyrogram in Figure 11) [158]. Scholze and Meier [159] have 

compared five methods to elucidate the composition of pyrolytic lignin using Py-GC/MS, various 

wet chemical techniques, and FT-IR, and concluded that pyrolysis lignin have similarities to milled 

wood lignin. However, pyrolysis lignin does not require the same sample preparation requirement.  

 

 

Figure 11. An example of Py-GC/MS pyrogram of softwood lignin along with identified pyrolysis 

products [160]. 

4.6 Size Exclusion Chromatography 

Molecular weight is a key parameter of polymers with significant implications on their 

mechanical and thermodynamic properties. Molecular weight is often reported in terms of various 

average molecular weights in terms of arithmetic means of molecular weight distribution (MWD) 

because it is easier than characterizing the whole MWD of a sample. In size exclusion 

chromatography (SEC), a polymer sample is dissolved in a suitable solvent and injected into a 

column full of stationary porous particles. A mobile phase, which is typically the same solvent 

used to dissolve the polymer, carries the sample through the column. Higher molecular weight 

macromolecules in a polymer sample will exhibit larger hydrodynamic volumes and will be unable 

to access some of the volume inside the porous particles and thus will exit the column more quickly 

relative to the smaller particles which undergo more convoluted paths before they reach the end of 

the column. It is by this mechanism that SEC separates a polymer sample based on hydrodynamic 
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volume. Molecules will exit the column at different retention volumes based on their 

hydrodynamic volume. The profile of the separated components exiting the SEC can describe the 

molecular weight distribution of the sample. A schematic representation of the SEC mechanism is 

shown in Figure 12. 

 

Figure 12. Schematic of SEC separation of a polymer sample. A dilute polymer sample is injected 

into the column filled with stationary porous particles and a mobile phase. Smaller molecules will 

pass through the porous particles and extend their pathlength. Larger molecules which cannot 

penetrate the smaller pores within the packing will find their way through the column faster. This 

figure is intended provide a qualitative visualization of SEC and is not to scale by any measure. 

SEC is a valuable tool for determining molecular weight averages and distributions of 

polymers by separating molecules based on hydrodynamic size. Using SEC for the determination 

of molecular weights of complex branched polymers such as lignin adds additional complexity 

and requires special considerations to achieve precise and accurate results. The increased number 

of functional and end groups resulting from its variable structure and degree of branching pose 

challenges to its solubility and increase the potential for undesirable interactions with the stationary 

phase. Additionally, the structural heterogeneity, non-uniform degrees of branching, and even 



62 

 

conformational variations between macromolecules increases the uncertainty in the translation of 

hydrodynamic volume to molecular weight. Two lignin macromolecules of truly equal molecular 

weight could potentially assume large variation in hydrodynamic volume given that one is linear, 

and the other is highly branched and/or crosslinked. This concept is demonstrated in Figure 13. 

 

Figure 13. Visualization of branched and linear macromolecules with similar hydrodynamic 

volumes eluting in the same retention volume. The molecular weight of the branched 

macromolecule is higher than that of the linear macromolecule, however, they exhibit the same 

hydrodynamic volume. Here 𝑉ℎ is hydrodynamic volume and MW is molecular weight.  

At the current state of the field, researchers seeking to determining the molecular weights 

of lignin using SEC should first identify suitable mobile and stationary phases to reduce axial 

dispersion resulting from undesirable interactions from lignin. Then, based on their desired 

information and application, they can review the detectors and or combination of detectors 

available that is most suited to reducing uncertainty in the results. It would be valuable to abide by 

the available standards that seek to reduce interlaboratory variation in the technique so that the 

results would be comparable and relative to literature. While reducing uncertainty is always 

desirable, sometimes achieving consistent and comparable results could be more advantageous, 

depending on the application. All experimental techniques have an associated uncertainty, and 

although this section focused on the complications that challenge the application of this technique 

of SEC, this technique is used routinely for relative determination of lignin molecular weight. SEC 
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dominates the industry for molecular weight determination and has done its part in advancing our 

understanding of lignin and countless other polymers. 

4.7 Summary 

Much like lignin extraction, there is no single perfect technique for lignin analysis. These 

approaches have improved significantly with the developments of new instruments, techniques 

and procedures. While there are many methods available when attempting to analyze lignin 

structure it is also important to consider the research objective, nature of sample, samples 

availability. When selecting the experimental method, consideration of method accuracy might be 

just as important as the sample availability/number or time requirement. If the number of samples 

is large, faster methods such as vibrational spectroscopy or Py-GC/MS that rapidly characterize 

large amounts of data would be useful. If more specific information is required, one can consider 

partnering methods to offer a more comprehensive image of the lignin sample. Additionally, a 

more comprehensive method, such as high-resolution NMR, can be employed with smaller sample 

quantities (40-70 mg) [118]. If properly planned, samples sizes of just 100-200 mg of wood (20-

30 mg of lignin) and a few days of experimental work is all that is needed for the isolation and 

NMR analysis of lignin [118]. It is also worth noting that differences in data from multiple analysis 

methods and extraction techniques could be used to make comments on the native lignin structure 

[118]. 
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Chapter 5: Chemometrics and lignocellulosic biomass 

– Advanced strategies for the accelerated analysis and 

valorization of lignin 

5.1 Introduction 

Fossil fuels are a major contributor to anthropogenic climate change, which has become a 

primary global interest. Growing concerns about the effects of climate change are incentivizing 

scientists to find new means for energy and materials production that could reduce emissions. 

There are many challenges to finding and implementing an alternative to fossil fuels that can 

renewably and sustainably provide a source of both energy and materials. Lignocellulosic biomass 

provides a unique and promising opportunity to fill this void as it holds the potential as a renewable 

source of both fuels and carbon-based materials and chemicals [25] [161] [162]. 

Lignocellulosic biomass is derived from organic plant matter and primarily composed of 

three main biopolymers: cellulose, hemicellulose, and lignin [163]. Cellulose is a semicrystalline 

linear polymer solely composed of D-glucopyranose (glucose) units linked via β-1,4-glycosidic 

bonds [24]. Hemicellulose is an amorphous branched polymer composed of pentoses (D-xylose, 

D-arabinose), hexoses (D-mannose, D-glucose, D-galactose), and occasionally uronic acids and 

acetyl moieties as side-chain groups [24] [25]. Lignin is a complex amorphous polymer composed 

predominantly of three 4-hydroxyphenylpropanoids distinct in their number of methoxy groups on 

the 3 and 5 positions on their phenyl ring [164]. These are known as p-coumaryl  (4-

hydroxycinnamyl), coniferyl (3-methoxy-4-hydroxycinnamyl), and sinapyl (3,5-dimethoxy-4-

hydroxycinnamyl) alcohol, or as p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) units, 

respectively, in the context of the lignin polymer [164] [165]. The organization, structure, and 

interactions of cellulose, hemicellulose, and lignin in the plant cell wall pose challenges to the 

efficient conversion of lignocellulosic biomass to refined products [166] [167]. As a result, 

scientists are focusing on understanding the biochemistry of the plant cell wall and its components 

especially lignin composition and chemical structure [168]. Lignin’s native structure is 

fundamentally unknown because of the inherent challenges in studying it in situ [169]. However, 

it is thought that a more developed understanding of lignin’s molecular structure and interactions 
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with other plant cell wall components will be fundamental for efficiently processing and refining 

the resource [170]. 

 A modern-day biorefinery must efficiently utilize lignocellulosic biomass from all main 

plant cell wall components, including lignin, for economic viability [171]. It may be useful to note 

that there are slightly inconsistent and indistinct definitions of the term “biorefinery”. The 

European concept is somewhat broad and includes both biofuel processes and pulp and paper 

processes as biorefineries. In contrast, the North American concept does not always recognize 

current pulp and paper processes as biorefineries [162]. We consider a biorefinery to mean any 

integrated industrial process that utilizes biomass feedstock(s) to produce bio-based fuels, 

chemicals, or materials [9]. The carbohydrate polymers are often considered valuable biomass 

components, and biorefineries concepts have primarily focused on carbohydrate-based biofuels. 

Historically, lignin has been treated as a waste stream rather than a marketable product, largely 

due to economic considerations and the inherent challenges in its processing. Yet, lignin has the 

potential as a feedstock for a wide variety of materials, including thermoplastic and thermoset 

composites, carbon nanofibres, lignin reinforced rubbers, foaming materials, and aerogels (3D 

solid nanoporous polymeric network materials) [172]. Lignin based micro- and nanoparticles are 

one of the most promising new materials for the application in biomedicine [173], including their 

use as a drug delivery agents [174] [175] [176]. Lignin presents many opportunities for use in 

polymeric materials, resulting from a variety of properties relating to its environmentally friendly 

nature, universal availability, antioxidant, antimicrobial and biodegradable properties. Recently, a 

review of forty-two peer-reviewed life cycle assessments concerning lignin and its derived 

products found that lignin-based products offer improved environmental performance compared 

to their fossil fuel-derived counterparts, most notably concerning their impact on climate change 

[177]. While this is important, to compete with conventional petroleum-based feedstocks and 

synthetic polymeric materials, understanding lignin’s structure and organization within the plant 

cell wall is required to synthesize value-added lignin-based materials. For lignin products to be of 

high value, they have to exhibit properties for specific applications; therefore, lignin valorization 

pathways will be vital for the success of these strategies. Recently, it has been demonstrated that 

technical lignin, containing considerable quantities of residual crystalline cellulose, exhibits 

enhanced performance in comparison to high-purity lignin for some applications, therefore leaving 
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opportunities for less complex and less costly lignin valorization strategies [162]. This is a more 

recent vision of the second-generation biorefineries, which may reduce costs and environmental 

impact by employing processing strategies with lower complexity and higher-value products. 

Regardless of the specific valorization pathway, it is estimated that if lignin is fully utilized for 

high-value applications at the industrial scale, the revenue from the lignin stream would be greater 

than that of the other components, which would transform our understanding of biomass utilization 

[162].          

 Isolating the main biomass components is critical for the efficiency of current and future 

industrial biomass operations [178]. There are a range of chemical/biochemical/thermal/physical 

processing approaches for isolating lignin from the plant cell wall. Often the recovered lignin is 

termed after its respective isolation treatment. For example, lignin isolated using the kraft process 

is termed kraft lignin, while lignin isolated using organic solvents is term organosolv lignin.  

Challenges with the effective isolation of these components from their native state within plant 

biomass are commonly associated with two main variables: lignin content and structural 

composition [179]. Recalcitrance is often associated with a higher lignin content and a lower ratio 

of syringyl to guaiacyl lignin monomer units (S/G ratio), which is a metric for communicating the 

relative proportions of its two most abundant monomer units. Linkage types, functional groups, 

branch density, and interaction with other plant cell wall components are also factors that could 

play a role in biomass recalcitrance. The plant cell wall is amorphous and heterogeneous, and its 

composition is dependent on numerous factors, such as plant type, age, location, and environment 

[180]. Furthermore, studying biomass components is challenging because of their resistance to 

degradation and the complex supramolecular organization of its three main components [181]. The 

nature of lignin and its interactions make research efforts to understand the plant cell wall, as well 

as industry efforts to efficiently isolate and refine its main components, face similar challenges. 

Figure 14 shows the three main components of lignocellulosic biomass and the known lignin-

lignin linkages. Lignin’s variable and complex structure makes it difficult to characterize its 

polymeric architecture and properties compared to other more uniform materials. In fact, lignin’s 

structure, both in situ and in isolated states, is somewhat controversial, with long-time experts in 

the field holding different opinions on the extent of branching of the lignin polymer [27] [28].  
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Figure 14. The three main components of lignocellulosic biomass, p-coumaryl alcohol, coniferyl 

alcohol, and sinapyl alcohol, as well as their known lignin-lignin linkages. The linkages are 

highlighted in the model lignin polymer where the carbon – carbon linkages 𝛽 − 5, 5 − 5′, and 

𝛽 − 𝛽′ correspond to orange, light blue, and dark blue, respectively, and the carbon – oxygen 

linkages 𝛽 − 𝑂 − 4, 4 − 𝑂 − 5, and 𝛼 − 𝑂 − 4 correspond to green, purple, and red, respectively.  

Rapid and accurate techniques to study and analyze lignocellulosic samples and feedstocks 

are desired at both the research and development and industrial scales. Lupoi et al. have provided 

an in-depth review of the innovations in analytical methods for the qualitative and quantitative 

assessment of lignin [101]. They discuss the different analytical tools based on their use in the 

https://www.sciencedirect.com/science/article/pii/S1364032115003615


68 

 

analysis of lignin structure, lignin-carbohydrate and lignin-lignin linkages, lignin molecular 

weight, total lignin content, and lignin monomer composition. A wide variety of analytical 

techniques assist in the characterization of biomass, including spectroscopic methods, wet 

chemical methods, chromatographic methods, and microscopy. Wet chemical analysis approaches 

have been relied upon heavily to determine lignocellulosic biomass features, such as the relative 

contents of cellulose, hemicellulose, and lignin; however, wet chemical analysis can be extremely 

laborious, costly, and time-consuming. Spectroscopic analytical techniques are an alternative 

approach, providing powerful tools to generate specific molecular-scale information at 

significantly reduced time and cost. They offer both rapid qualitative and quantitative structural 

information on lignin and biomass with routine techniques [182]. While spectroscopic approaches 

can provide detailed information, the complexity of lignocellulosic material can convolute the 

results, making their interpretation complicated. Moreover, while spectroscopic techniques can 

rapidly analyze samples, they produce large amounts of complex data, especially when 

characterizing complicated natural organic materials such as lignocellulosic biomass. No single 

technique can provide all the desired information, and often a combination of techniques is 

employed for thorough characterization and structural validation.  While researchers have focused 

a lot of their efforts on understanding the details of lignin’s structure, more application-based 

investigations may instead focus on lignin’s properties. In a recent review, Balakshin et al.  suggest 

that although conventional lignin structural analysis is actually relatively effective and reliable, the 

real bottleneck for lignin engineering is related to the evaluation of lignin’s performance for 

specific applications [162]. Correlation between lignin structure and properties may be essential 

for accelerated screening of lignin performance, which may help speed up the current process at 

the multiple scales of commercial application.       

 Chemometrics is a research discipline concerned with methods that can extract useful 

information from raw chemical data sets and was initially defined by Kowalski and Wold as the 

application of mathematical and statistical tools to chemistry [183]. Historical perspectives of 

chemometrics from some of the pioneers of the field can be found elsewhere [184] [185]. 

Chemometrics originated in analytical chemistry and are involved in the analysis and interpretation 

of experimental data. In particular, many chemometric techniques have developed around 

spectroscopy because of its rapid analysis that generates large amounts of data [186]. The 

https://www.researchgate.net/profile/Mikhail-Balakshin/publication/347412827_New_Opportunities_in_the_Valorization_of_Technical_Lignins/links/5ff77f26a6fdccdcb83b4bdc/New-Opportunities-in-the-Valorization-of-Technical-Lignins.pdf
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discipline of chemometrics is broad and mature with various tools and approaches that are all 

essentially means to support the statistical design of experiments and multivariate data analysis. 

Most real-world systems are multivariate and stochastic; thus, scientists turn to statistical 

approaches for interpretation. While chemometrics focuses on multivariate data in chemistry, 

many other scientific disciplines face similar challenges with large multivariate datasets (e.g., 

econometrics, psychometrics). These related fields may share the same tools used in 

chemometrics, and many chemometric techniques are not necessarily limited to chemistry 

applications. Regardless of their field of application, these approaches rapidly evaluate large data 

sets with intricate internal relationships that would otherwise be difficult to interpret.  

Recognizable under multiple definitions and syntax – chemoinformatics (or 

cheminformatics/chemiinformatics) – is a broad term for a broad discipline that encompasses 

numerous different areas of chemistry [187]. The broadest definition for chemoinformatics may 

be that of Gasteiger and Engel: Chemoinformatics is the use of informatics (computer science) 

methods to solve chemical problems [188]. Since most of the mathematical and statistical tools 

applied in analytical chemistry today utilize computers, it is clear that there is a considerable 

overlap between the fields of chemoinformatics and chemometrics. In fact, it is common to see 

chemometrics classified as a subfield of chemoinformatics [189] [190] [191] and perhaps equally 

as common to see chemoinformatics classified as a subfield of chemometrics [192] [193]. 

Cheminformatics generally focuses on the efficient extraction of knowledge from data, storing and 

evaluating this information in chemical databases, and making predictions [194]. We see the value 

of chemoinformatics as aiding in knowledge handling and synthesis for researchers and providing 

advanced pathways for molecular modeling applications, providing key insights into the complex 

material. While chemometrics provides an analytical chemist with a variety of tools for 

interpreting and dealing with large complex data sets, it also facilitates a connection between 

experimental methods and computational chemistry. Data organization into matrices, 

preprocessing steps that can assist with the interpretation of data, and models that accelerate 

sample characterization are some advantages for the transfer of information to the computational 

space. Chemoinformatic approaches for storing, transforming, and analyzing this data in 

computers are the next steps for enabling the smooth transfer of this information for computational 

investigations.  
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 Research on lignocellulosic biomass has increased in recent years as the modern 

lignocellulosic biorefinery edges closer to real commercial implementation. Lignin valorization 

efforts will likely be central to the success of these ventures. There is already a great deal of 

attention on lignin engineering, but application-based research efforts for the cost-effective 

transformation of the raw material into valuable products with desired properties will become 

critical [162]. The technical challenges for lignocellulosic biorefineries are multiscale and 

interdependent. Understanding the variable nature of lignocellulosic feedstocks, the effects of 

different unit process operations and conditions, as well as the varying chemical structures and 

properties is a challenging task. These problems need to be understood in a multivariate context, 

and chemometrics offer tools for this purpose. They can identify subtle patterns in large complex 

data sets or reveal interdependence among variables. Advanced regression modeling strategies can 

rapidly predict the physical and chemical properties of lignocellulosic materials with high-

throughput analytical techniques. These techniques also have potential to directly correlate the 

structural features of lignin with performance characteristics.  This review highlights a wide range 

of problems that can be tackled using chemometric approaches. A conceptual illustration of using 

chemometrics strategies for analyzing lignocellulosic feedstocks is presented in Figure 15. 

Chemometrics have often been applied for solving problems in research and development, but are 

also promising for implementation into industrial settings. With the advancement of chemometrics 

concurrently with computational efficiency, chemometric techniques can be integrated into 

computer process control schemes for online monitoring of a lignocellulosic biorefinery.  

 

 



71 

 

 

Figure 15. Conceptual illustration of using chemometrics strategies for analyzing lignocellulosic 

feedstocks. Biomass properties determined using laborious chemical analysis can be used to 

develop multivariate models. These multivariate models can then be used for future cases to 

rapidly predict biomass properties using higher throughput analysis methods, in this way, future 

cases can bypass the laborious chemical analysis. Here, the X matrix may represent any measured 

or observed variables, which are used as the independent variables, while the Y matrix represents 

the dependent variables.  
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Categorizing the applications based on analytical technique and including tables (found in 

the Appendix B) that summarize the papers and their multivariate techniques used will provide 

inspiration and identify gaps in innovation. Despite a large number of resources applying 

chemometrics available today, the ability to perform chemometric techniques does not guarantee 

that the outcome or interpretation of the results will be valuable [195]. Therefore, we provide a 

general introduction to the main techniques to encourage more understanding of these techniques 

prior to application. It may be tempting to carelessly navigate in chemometric software packages 

when analyzing data; however, this can lead to misunderstandings or misuses of these techniques. 

A review of common misunderstandings in chemometrics may guide where and why these 

mistakes can occur [196].  

This review introduces the most popular chemometric techniques for interpreting data in 

the literature and discuses their applications to lignocellulosic biomass research, focusing on lignin 

valorization. We provide a comprehensive and contemporary overview of this area, demonstrating 

the field’s growth, achievements, and trends. This paper will suit a general audience, ranging from 

scientists/engineers experienced in these techniques but looking for areas of opportunity, to a 

novice looking for a straightforward but detailed introduction.  

5.2 Experimental Design 

 Experimental design is an important area of chemometrics that supports efficient 

acquisition of data sets containing desired information at lower cost [197]. Intuitively, the quality 

of the information being attained from an experiment depends heavily on the quality of the data 

used for analysis. Approaches for experimental design screen out irrelevant factors, optimize 

experiments using systematic methods, save time, and promote optimal quantitative modeling 

[198]. Experimental design can be turned into a mathematical or statistical problem where the 

optimal number of runs and the type of experiments can be determined efficiently [199]. 

Multivariate calibration, which will be covered in more detail in subsequent sections, can 

encounter major problems if the calibration strategy is poorly designed. Undesired correlation in 

data sets can invalidate a calibration model, but experiments can be designed so that components 

are uncorrelated or orthogonal to each other. Standard techniques for this application include 

multilevel fractional factorials, Plackett-Burman and Taguchi designs [198]. While the 
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experimental design is an important element of chemometrics, it is often omitted in the literature 

related to lignocellulosic biomass. Not all chemometric data sets are available in a formal 

statistically designed form, yet, this does not invalidate all of these data sets. Information can still 

be attained, but one should be conscious of the implications on the conclusiveness of their findings. 

There are many books and reviews [198] [200] [201] that cover experimental design techniques in 

more detail, as well as examples of experimental design in the literature on biomass analysis [202] 

if one seeks to explore this area further.  

5.3 Basic Raw Data Preprocessing 

Data preprocessing plays a pivotal role in chemometric data analysis and therefore must be 

covered in this review [203]. Analytical techniques, such as spectroscopic/chromatographic 

analysis, are influenced by uncontrollable factors that can affect the resulting data set. A proper 

data preprocessing approach can typically improve the performance of chemometric techniques 

by reducing the impact of these factors [204]. There are a variety of preprocessing techniques used 

to “clean up” the data by removing undesired variation, and to simplify subsequent multivariate 

data analysis methods;  however, the method of selecting the optimal preprocessing technique for 

a specific application is subjective which can have major implications on the subsequent data 

analysis [205] [206]. It is common for data preprocessing techniques to be chosen using a trial-

and-error approach, if there is no widely accepted technique for a specific situation [207]. 

However, this does not mean that these operations should be performed without understanding the 

fundamental effect on the data structure [208]. More recently, a complementary fusion of 

preprocessing techniques and their combinations has been an emerging approach [209].  

Chemical data is almost always multivariate, therefore it is commonly represented using 

matrices. The rows and columns of these matrices correspond to the objects (e.g., samples) and 

features (e.g., variables measured on samples), respectively [189] [210]. For this reason, it can be 

useful to categorize data preprocessing steps as either “column-wise” or “row-wise” methods, 

where row-wise methods are applied sample by sample and column-wise methods require all 

samples to perform the preprocessing (Figure 16) [200]. Sometimes preprocessing is applied to 

individual elements rather than row-wise or column-wise. These preprocessing steps can be called 

the transformation of individual elements and are commonly used to achieve better data symmetry, 
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which is sometimes useful for skewed data [189]. Common approaches include logarithmic, 

power, and box-box transformations; however, these types of data preprocessing techniques are 

not so commonly used in chemometrics. This is because multivariate data sets often have distinct 

distributions among variables [211]. There are also dimensionality reduction/variable selection 

methods that could be considered preprocessing approaches but do not necessarily fit within the 

main categories. Such approaches include Orthogonal Signal Correction (OSC), Orthogonal 

Projections to Latent Structures (O-PLS), and Genetic Algortithms (GA). These are broader 

approaches acting on the data set to remove the unimportant data and select for valuable data. Brief 

descriptions of the main chemometric data preprocessing techniques can be found in Appendix B. 

  

Figure 16. Overview of the two main classes of data preprocessing methods applied to a raw data 

matrix. 

5.4 Multivariate Data Analysis – Pattern Recognition and Calibration 

 A major element of chemometrics is data analysis using multivariate statistical approaches. 

In contrast to univariate statistics, which relate a single independent variable x to a single 

dependant variable y, chemical data is often multivariate in nature and thus requires analysis that 

can consider many variables [189]. This section briefly describes the two leading families of 

multivariate techniques: pattern recognition and calibration. The term pattern recognition is self-

explanatory; however, there are three main groups of methods for pattern recognition in 

chemometrics: exploratory data analysis, unsupervised pattern recognition, and supervised pattern 

recognition. All these approaches share the goal of recognizing or identifying patterns in data; 
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however, each approach takes a different methodology or has different objectives. On one hand, 

exploratory data analysis methods focus on the key characteristics to be analyzed and identified 

without any bias toward a particular outcome; on the other hand, unsupervised pattern recognition 

(e.g., cluster analysis) is used to discover patterns and identify similarities between data sets [198]. 

That being said, exploratory data analysis and unsupervised pattern recognition are sometimes 

used synonymously in the literature as a distinct category in contrast to supervised pattern 

recognition techniques. Supervised pattern recognition differs from unsupervised pattern 

recognition as it is mainly intended for classification, and therefore require training or calibration 

to allow for the classification of future samples [198]. In this way, supervised pattern recognition 

is related to calibration, and one could perhaps classify calibration as a subsection of supervised 

pattern recognition. Calibration, which will be introduced in more detail in the ensuing sections, 

involves the development of a mathematical model between measured properties and a property 

of interest.  

5.4.1 Exploratory Data Analysis 

5.4.1.1 Principal Components Analysis (PCA) 

 Perhaps the most fundamental multivariate exploratory data analysis method in 

chemometrics is PCA [198]. The PCA method essentially transforms a data set containing several 

interrelated variables to a new set of uncorrelated variables called principal components (PCs), 

where the first few PCs capture most of the variation from the original variables [212] [213] [214]. 

These PCs are determined through linear combinations of the original variables so the variance of 

these components is maximized [215]. In this way, PCA reduces the dimensionality of a data set, 

allowing for the interpretation of all variables simultaneously [216]. As PCA is commonly used to 

create graphical representations of the data that provide easy-to-understand visual insight in two 

or three dimensions, it can be considered an exploratory first step toward multivariate analysis 

[217]. Score and loading plots may be used to visualize the PCA results, often the scores relate to 

the objects or samples and the loadings relate to the measured variables [198]. The PCA method 

can be used for a variety of objectives such as outlier detection, dimensionality reduction, and 

graphical clustering with different varieties and extensions of the technique for these purposes 

[216]. Wold et al. describe the primary scope of PCA for multivariate data analysis in chemistry 

as getting an overview of the dominant “patterns” in the data tables, which represent the 
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relationships among objects and/or variables [218]. Note that different algorithms are available for 

performing PCA, including Jacobi rotation, nonlinear iterative partial least-squares (NIPALS), and 

singular value decomposition (SVD), the most commonly used algorithm in software packages 

[189].  

5.4.1.2 Other Bilinear Decomposition Methods 

Expressing an original data matrix as a product of two matrices is termed bilinear 

decomposition [203]. The PCA method also takes this form and thus falls under bilinear 

decomposition along with the related methods such as independent component analysis (ICA) and 

multivariate curve resolution (MCR) [219]. Instead of finding components that maximize the 

explained variance as done in PCA, ICA finds statistically independent components [220]. Both 

methods are often used in an exploratory context; however, ICA is much less popular than PCA. 

The MCR [221] is a family of methods that can resolve a data matrix of a complex mixture into 

pure physical/chemical profiles of its components [222] [223]. These methods are based on the 

concept that a measured data set of a mixture of components can be accurately modeled as an 

additive bilinear model of the individual components using only the information from the original 

measurement of the mixture [224]. While not all data sets follow a bilinear model, MCR can still 

be used as an exploratory tool for identifying patterns or variations in a data set [225]. The MCR 

methods are distinct from PCA and ICA in that their objective is to recover the solutions reflecting 

the true components' contribution to the data, as opposed to abstract solutions that represent 

sources of variation within the data. In this way, MCR helps provide valuable insights into the 

underlying nature of chemical systems. 

5.4.2 Unsupervised Pattern Recognition (Clustering) 

 Clustering allows samples to be organized or grouped based on their measured properties 

without prior grouping information [198] [189]. There are a variety of cluster methods and 

algorithms available such as partitioning, hierarchical, fuzzy, model-based, PCA, factor analysis, 

Kohonen mapping, Sammon’s mapping, and Chernoff faces [189]. Particularly, hierarchical 

cluster analysis (HCA) and k-means clustering were frequently applied in the literature regarding 

lignocellulosic biomass. The k-means clustering is the most widely known partitioning algorithm 

of cluster analysis, and it works by assigning each object to one of k different clusters [189]. In 
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contrast, hierarchical clustering methods generate a set of cluster solutions by hierarchically 

ordering k = 1, …, n clusters, where n is the number of objects [189]. A dendrogram is used to 

visually present the results of hierarchical clustering. A more in-depth description of cluster 

analysis in the context of chemometrics can be found here [189]. 

5.4.3 Supervised Pattern Recognition (Classification)  

 Supervised pattern recognition requires training to classify an object or sample. 

Classification methods include linear discriminant analysis (LDA) [226], k-nearest neighbor (k-

NN) algorithms [227], soft independent modeling of class analogy (SIMCA) [228], artificial neural 

networks (ANN) [229], and support vector machines (SVM) [230], among others.  

5.4.4 Multivariate Calibration 

 In chemometrics, calibration can be defined as mathematically relating, correlating, or 

modeling a measured response based on the amounts, concentrations, or other physical or chemical 

properties of a set of analytes [231] [232] [233]. Martens and Naes simply define multivariate 

calibration as the means for determining how to use measured variables (e.g., 𝑥1, 𝑥2, ⋯ 𝑥𝑛) 

simultaneously for quantifying the target variable(s) (e.g., 𝑦) [234]. The wide application and 

popularity of calibration can be attributed to its tangible advantages, such as reducing sample 

preparation requirements, removing systematic errors due to interferences in measured data, and 

rapidly providing desired information for a system [235]. A schematic of multivariate calibration 

is shown in Figure 17, where a matrix X corresponding to a data set of observed variables on a set 

of objects is mathematically related to a Y matrix corresponding to another set of known properties. 

Typically, once a model from calibration/regression is developed, it requires proper validation to 

ensure that it has good performance and predictability power. If the model is not accurate enough, 

it may require more training with more samples, a different type of model, or it may be found that 

there is not a relationship between the data obtained for the X and Y matrices, and therefore 

modeling is not a suitable approach. Model validation and optimization will be discussed in more 

detail in section 5.  
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Figure 17. Visual representation of the calibration process. A predictor matrix (X) and a response 

matrix (Y) are used to develop a calibration model. The model can then be applied to a new data 

set to predict the properties of a new matrix based on the relationships found among the original 

data sets. Note here that preprocessing and validation may be key elements of this process but are 

not illustrated in this figure.  

5.4.4.1 Multiple Linear Regression (MLR)  

 Linear regression relates two variables or vectors in the form of a straight-line equation 

(e.g., 𝑦 = 𝑚𝑥 + 𝑏) by adjusting the values of m and b to provide the best prediction of the response 

variable y given x. The MLR method is an extension of the simple linear regression; however; it 

aims to establish a relationship between a single response variable (y-variable) and multiple 

predictor variables (x-variables) by fitting a linear equation to the data. Multivariate regression 

should not be confused with multiple regression since it refers to situations with more than one 

dependant variable [236]. MLR is the simplest approach for multivariate modelling and is a 

fundamental regression technique that is widely used [237]. 

5.4.4.2 Principal Components Regression (PCR) 

 Principal components were briefly introduced in Section 5.4.1.1 for PCA; however, PCs 

have also been used extensively in regression analysis [214]. The PCR method is a combination 
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of both PCA and MLR developed by replacing original regressor variables with their principal 

components, simplifying the computation, and adding stability with new orthogonal variables that 

are statistically independent [238] [239] [240]. While multivariate regression models are typically 

designed to minimize the sum of squares, PCR relates the concept of principle components with 

regression models to solve for multicollinearity, a situation where two variables/predictors are 

highly linearly related [215].  

5.4.4.3 Partial Least Squares Regression (PLS/PLSR) 

 Originally developed by Herman Wold [241] in 1975 for modeling complicated data sets 

in terms of chains of matrices but introduced to the field of chemometrics by his son Svante Wold, 

among others, partial least squares regression (PLS/PLSR) is an approach for modeling 

relationships between observed variables [189] [242]. The process of PLS is similar to that of PCR 

in that the original data is transformed to new variables that are subsequently used for regression; 

however, as opposed to PCR, which derives the new variables exclusively from the predictor 

variables, PLS uses maximum covariance criteria for this transformation based on information 

from both the predictive and target variables [189]. This approach is useful because maximizing 

covariance merges the high variance in the predictor variables and the high correlation with the 

target property(s) [189]. The PLS is a simple approach to relate two data matrices with a linear 

multivariate model, and it is also reportedly [189] the most widely used method for multivariate 

calibration in chemometrics [242]. There are multiple algorithms for PLS and some important 

terminology to note. For example, PLS1 and PLS2 are distinct in that they refer to the situation 

where the response variable is a vector and matrix, respectively [189]. Therefore, PLS1 has only 

one response variable, whereas PLS2 has multiple.  

5.4.4.4 Artificial Neural Networks (ANN)  

 Artificial neural networks are an exciting artificial intelligence tool for developing non-

linear relationships between input and output variables based on the concept of emulating the 

function of the human brain [243]. ANN’s are networks of artificial neurons that are nonlinear, 

parameterized, bounded functions [244]. A neurons output is calculated from a function called an 

activation function that takes inputs (𝑥𝑖) and parameters that are assigned to the inputs as weights 

(𝑤𝑖) [229].  Typically, an ANN model is organized in a three-layer configuration: the input layer, 

hidden layer(s), and an output layer. The ANN can be highly sophisticated approaches of modeling 
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complex systems and therefore may be useful for complex data produced from lignocellulosic 

biomass. The application of ANN include mapping, regression, modeling, clustering, and 

classification, and they are especially useful in non-linear problems that are challenging for more 

traditional statistical methods [229]. Additionally, while chemometric techniques are generally 

useful for large data sets, there can be a point where the traditional techniques, such as MLR, PLS 

or PCR, become less effective with too much information; in contrast, more information is 

generally favourable for ANN methods [245]. Some limitations of ANN include potential issues 

with overfitting if limited samples are available in practical applications, as well as time-

consuming computation, the requirement to optimize many parameters, and difficulties with the 

interpretation of ANN models [246]. 

5.5 Model Validation, Optimization, Performance Criteria, and 

Testing  

 While chemometric models have great potential to provide insights and make predictions, 

they are inductive in nature and only useful to the degree that they can accurately represent the 

phenomena they are employed to describe. So how then could one derive confidence that the model 

they have developed based on their current observations will provide them with reliable predictions 

of future observations? This is a very important question, and the answer is that we can establish 

a level of confidence in a model by optimizing, testing, and evaluating it using performance 

criteria. Model validation approaches use specific criteria to measure the performance of a model. 

For regression models, this is generally based on observations that have not been used in the 

development of the model to determine residuals (i.e., the actual/observed values less the predicted 

value). Model validation can be classified as either external or internal, with test sets and cross-

validation, respectively, being the most common techniques.  

A major component of model validation is data splitting.  If sufficient data were available, 

the best practice would be to split the data set into distinct subsets referred to as 

‘training/calibration’, ‘validation/optimization’, and ‘test/prediction’ sets [247]. A distinction 

should be made between the terms model optimization and validation [248]. Optimization allows 

the determination of the optimum model, while validation determines how well a model fits the 

data; these are separate although related procedures. With that said, optimal models are selected 
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through the evaluation of how well the models fit the data and this is why validation and 

optimization are often combined into one subset. A general principle of modeling is parsimony, 

meaning that the best model is that which has the best prediction ability with the least complexity 

[249]. This can be accomplished using optimization. Figure 18 shows a conceptual illustration for 

taking a data set, splitting it into subsets, and then a flowchart strategy for using these subsets to 

build a reliable regression model.  
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Figure 18. Illustration of data splitting and a flowchart strategy for building reliable regression 

models. Adapted from Xu et al. (Figure 3) [250]. 

5.5.1 Model Optimization and Validation 

In test set validation, which is considered the most reliable form of model assessment, 

model performance is evaluated using an external data set, independent of the data used to develop 

the model. If a proper test set were always available, there would be no need for any other forms 

of validation; however, in real-world applications, there are often limited observations available 

and sufficient data to form both a representative model and a test set that can adequately assess the 

model are not obtainable. Cross-validation (CV) is another model validation approach based on 

resampling. It is essentially an iterative procedure where part of the data is left out and 

subsequently predicted using a model developed from the remaining data. In this process, all 

objects are used at some point to build the model and to test the model, yet never simultaneously. 

There are many variations of CV, as well a variety of objectives for the technique, such as 

determining the suitable number of components for a PCA model or regression model optimization 

https://www.sciencedirect.com/science/article/pii/S0306261912009014
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[251]. The CV is somewhat controversial in the chemometric literature, particularly as it applies 

as an alternative to test set validation. Esbensen and Geladi described CV approaches as sub-

optimal simulations of test set validations and heavily criticized the technique [252]. Despite this 

criticism, CV is very popular and defended as being useful for various purposes, such as when the 

number of objects is very limited, when the purpose of the model is to understand the inherent data 

structure of the system and not primarily for prediction or classification, or when the objects in the 

dataset could be grouped based on contextual information about the samples [253]. A rule of thumb 

that has been proposed is to apply CV if the number of samples is smaller than 40 [253]. 

5.5.2 Performance Criteria 

 Performance criteria are typically based on residuals (𝑒𝑖) obtained by subtracting the 

predicted value from its true value. Performance criteria are derived from the residuals but use 

different mathematical strategies to define distinct criteria. These criteria can be used for different 

objectives, for example, they could be used to select the best model by adjusting its parameters to 

reduce the magnitude of the residuals, as well as to assess a model by determining its expected 

error for new cases. There are a variety of abbreviations used for communicating performance 

criteria which can be confusing; however, they are relatively straightforward once they are clearly 

outlined. For a more detailed overview of these performance criteria, Varmuza and Filzmoser 

provided a clear introduction, here we will provide a brief summary [189]. We also provide the 

equations for performance criteria in the Appendix B. The standard deviation of prediction errors, 

known as the standard error of prediction (SEP), provides an estimate of the spread of the error 

distribution. If the predicted values are from the calibration set, it is sometimes referred to as the 

standard error of calibration. While the acronym SEC is often used for the standard error of 

calibration, here we do not use it to avoid confusion with size exclusion chromatography (SEC). 

Alternatively, one can indicate which data set the SEP is calculated from using an index, for 

example, 𝑆𝐸𝑃𝑇𝑒𝑠𝑡 or 𝑆𝐸𝑃𝐶𝑎𝑙, which would refer to the standard error of prediction for a test set or 

a calibration set, respectively. Another performance criteria commonly used is the mean squared 

error (MSE) which is the arithmetic mean of the squared errors. Taking the square of the MSE 

provides root mean squared error (RMSE) which is almost the same as the SEP if bias can be 

neglected. The RMSE criteria are preferred for practical applications because their units match the 

original data, however, the non-squared MSE are useful for model optimization purposes [200]. 

https://www.taylorfrancis.com/books/mono/10.1201/9781420059496/introduction-multivariate-statistical-analysis-chemometrics-kurt-varmuza-peter-filzmoser
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Similar to MSE is the predicted residual error sum of squares (PRESS). Like the SEP, either 

indexing or altering the acronym are common approaches to specify the data set used to calculate 

the performance criteria. Sometimes 𝑅2, the coefficient of determination is used to represent the 

spread of the predictions.  

5.6 Overview of Chemometric Applications to Lignocellulosic 

Biomass  

 To date, there have been no reviews fully dedicated to the application of chemometrics to 

lignocellulosic biomass and only five papers that partially cover the topic [254] [255] [256] [257] 

[258]. Thus, this work will be the most recent and comprehensive overview of this field. Krasznai 

et al. provide a good historical context of biomass characterization and discuss new opportunities 

for chemometrics and spectroscopy for lignocellulose characterization [254]. They discuss many 

of the key data preprocessing techniques and present recent applications of chemometrics in 

lignocellulosic biomass research. Moreover, they outline several key points of improvement for 

future work, including the mindful selection and clear reporting of data preprocessing, modeling, 

and validation parameters, surrogate mixtures which emulate properties of materials to improve 

the model building, and the development of databases that could facilitate both more 

comprehensive models and or more collaboration in this field. The authors conclude that these 

chemometric techniques are expected to become routine for analysing lignocellulosic material in 

both research and industrial settings.  

Alzagameem et al. have reviewed the availability and composition of different plant 

biomass as potential feedstocks for second-generation biorefineries and dedicated the second 

portion of their review to the potential of multivariate data processing for biomass analysis and 

quality control [255]. They discuss chemometrics for spectroscopic data processing, 

lignocellulosic feedstock specification, and aspects for future applications in quality control. As 

pointed out, the number of studies using chemometric methods in biomass analysis compared to 

the total number on biomass analysis is very small, therefore potentially suggesting that 

chemometric analysis is still in its early stages. They comment that mostly classical chemometric 

techniques for modeling primarily FT-IR data have been employed in the field, leaving gaps for 

new advanced algorithms and more chemometric applications to different analytical techniques. 

https://www.tandfonline.com/doi/pdf/10.1080/07388551.2017.1331336?needAccess=true
https://www.tandfonline.com/doi/pdf/10.1080/07388551.2017.1331336?needAccess=true
https://www.mdpi.com/2076-3417/9/11/2252
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Additionally, they note that there are no examples of multivariate techniques for resolving 

overlapping peaks in 1D and 2D NMR profiling or multivariate modeling of specific 31P and 13C 

NMR profiles. Based on our review, most of these points still stand; however, it is worth noting 

that in the more recent papers, we have seen the application of more advanced chemometric 

techniques, especially for near-infrared (NIR) and Raman datasets.  

Rump et al. have dedicated a short section of a book chapter on lignin and its 

characterization techniques to chemometrics and computational chemistry used in lignin analysis 

[258]. Based on their literature survey, IR techniques are the primary technique used with 

multivariate data analysis, an observation they attributed to the simplicity, low cost, and 

convoluted nature of NIR spectra. In parallel with Alzagameem et al., they note that methods with 

more complex data sets, such as the 2D NMR methods heteronuclear single quantum coherence 

(HSQC), heteronuclear multiple bond correlation (HMBC), diffusion-ordered spectroscopy 

(DOSY), have not been extensively explored using chemometric approaches, this indeed is an area 

with a high potential for innovation [255]. Data-based approaches for analyzing complex data sets, 

such as those derived from the methods listed above have the potential to greatly expedite the 

analysis time and lower the barrier of entry for new users of these techniques.  

Lupoi et al. reviewed spectroscopic techniques for biomass characterization with a focus 

on high-throughput spectroscopic techniques [256]. They provide an informative overview of 

recent spectroscopic approaches for studying lignocellulosic biomass and discuss many examples 

where chemometrics are utilized. They concluded that these high-throughput approaches can 

reliably predict biomass characteristics and would be essential for second-generation biorefinery 

feedstock screening. Xiao et al. have reviewed NIR and pyrolysis-molecular beam mass 

spectrometry (Py-MBMS) methods coupled with multivariate data analysis for high-throughput 

biomass characterization [257].  They present a guide for the effective data analysis of NIR and 

Py-MBMS of biomass by summarizing the important structures measured by using these 

techniques and introducing, comparing, and evaluating the conventional and multivariate data 

analysis methods. They concluded that the high-throughput analytical techniques NIR and Py-

MBMS in combination with chemometrics are efficient tools for exploring the features of biomass 

data sets, characterizing the cell wall chemistry, and predicting chemical, physical, mechanical, 

and fuel properties.  

https://www.sciencedirect.com/book/9780128203033/lignin-based-materials-for-biomedical-applications
https://www.mdpi.com/2076-3417/9/11/2252
https://www.sciencedirect.com/science/article/pii/S1364032115003615
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4124520/pdf/fpls-05-00388.pdf
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This section will present an overview of chemometric techniques applied within 

lignocellulosic biomass research. Although this paper is focused on reviewing the chemometric 

applications rather than the analytical techniques, this section was organized based on analytical 

techniques to showcase the environment and trends of application of chemometrics in the field of 

biomass analysis. Each subsection will have a brief introduction to the analytical technique and 

then a discussion of some of the key findings and applications. Detailed summary tables listing all 

the chemometric papers identified that fall under the respective subsection category can be found 

in Appendix B. Using this approach, we aim to identify gaps in the field that can be addressed in 

future studies.  

5.6.1 Vibrational Spectroscopy  

 Vibrational spectroscopy is the study of the interaction between electromagnetic radiation 

and matter. Vibrational spectral data can contain detailed qualitative information on the structure, 

properties, and environment of molecules, even in complex systems [259]. Yet, complex 

multicomponent systems, such as lignocellulosic materials, limit the effectiveness of this 

approach; consequently, chemometric approaches have been employed to deal with such 

multivariate datasets both quantitatively and qualitatively. Several vibrational spectroscopic 

techniques can be used to analyze complex systems, including lignocellulosic biomass and its 

components. The most common being the near-infrared (NIR), mid-infrared (MIR), and Raman 

spectroscopies. These techniques are known to provide fast, non-destructive, qualitative, and 

quantitative analyses of lignocellulosic biomass and lignin [260]. Vibrational spectroscopy is one 

of the fundamental analytical chemistry techniques, which chemometrics has formed around, and 

thus there is a solid background of chemometric approaches for vibrational spectroscopic data. 

This is reflected in a large number of chemometric applications to NIR, MIR, and Raman 

spectroscopy of lignocellulosic materials identified in this review. Morais et al. have provided a 

detailed tutorial on multivariate classification for the vibrational spectroscopy of biological 

samples [261]. 

Infrared spectroscopy has been used in lignin chemistry since the early 1950s [141]. The 

IR spectrum can be divided into the near (12500 𝑐𝑚−1 (𝜆 = 800 nm) – 4000 𝑐𝑚−1 (2.5 𝜇𝑚)), mid 

(4000 𝑐𝑚−1 (2.5 𝜇𝑚) – 400 𝑐𝑚−1 (25 𝜇𝑚)), and far (400 𝑐𝑚−1 (25 𝜇𝑚) –  10 𝑐𝑚−1 (1 𝑚𝑚)) IR 

https://www.nature.com/articles/s41596-020-0322-8.pdf
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spectral regions [262]. In IR spectroscopy, a sample absorbs electromagnetic radiation due to 

molecular vibrations and the absorption of IR energy produces IR absorption bands, which can be 

observed [263] [262]. The IR spectrum, which represents the number of IR absorption bands, their 

intensities, and their shapes, provides information on the molecular structure of a sample [262].  

There are several protocols for IR spectroscopy in biochemistry [264] [265], including that of 

Baker et al., who have brought together several leaders in the field of IR spectroscopy to develop 

a consensus on the spectral preprocessing and data analysis of both traditional vibrational spectra 

and spectral images [266]. Xu et al. have provided a mini-review of qualitative and quantitative 

analysis of lignocellulosic biomass using IR techniques [250]. 

In contrast to IR spectroscopy where vibrational spectral information is collected based on the 

absorption of IR photons, in Raman spectroscopy vibrational spectra are produced from light 

scattering via the Raman effect [267]. Like the IR spectrum, the Raman spectrum includes the 

number of bands, their intensities, and their shapes, which are also directly related to the molecular 

structure of the sample [262]. The IR and Raman spectroscopies each provide complementary 

information of molecular vibrations based on the excitation of anti-symmetric vibrations, causing 

changes in dipole moment (vector quantity), and symmetric vibrations that change the polarization 

(tensor quantity), respectively [268] [262]. Therefore, IR spectroscopy is often used for the 

detection of functional groups of molecules, while Raman spectroscopy is often used for the 

detection of skeletal structures [268]. While IR and Raman spectra provide information on 

chemical bonds in the form of spectra, compositional information is not always clearly resolved in 

multicomponent systems. Chemometric multivariate analysis approaches are valuable for both 

building relationships between spectral features and their corresponding chemical 

components/bonds, as well as for relating the information on chemical components/bonds to 

biomass properties [250].   

 It is also important to draw attention to spatially resolved vibrational spectroscopy 

techniques which are known as vibrational microspectroscopy [269]. These techniques combine 

the principles of vibrational spectroscopy and microscopy to reveal chemical changes over 

microscopic dimensions. In principle, they can be used to probe the chemical microstructure of 

plant cell walls in their native state. These techniques create large 3D datasets called hyperspectral 

data cubes that require data analysis approaches for interpretation. The data preprocessing and 

https://www.nature.com/articles/nprot.2014.110.pdf?origin=ppub
https://pdf.sciencedirectassets.com/271429/1-s2.0-S0306261912X00138/1-s2.0-S0306261912009014/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjENX%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJHMEUCIEmfEKu7%2FMlase2rR0gpJMNmOu2SlHce9fTowFetw4rDAiEAvBmvsi7p3owmPSDUMFb7QaM9q1oSNe35HSO3B9UpENMqgwQIrv%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FARAEGgwwNTkwMDM1NDY4NjUiDJ8el8nrgCDhtYF4yirXA%2ByQQ41xzKJWHYs9UCzG4%2F4yjPY9lDsvIM2ekuICZxUqEvHA7ePJwabOfojzjiQiDWLglFCaL%2Bh%2Fl2Eqm8VztBlgtdcCH46IMOHuwHoSQsVYkwxRhF6chVf4k8p%2FmVuLJiEamKgwywHgLu6VKt0monf75kNaWB%2BFfMw7Ag8ObFP14od1Iv5yZov4z8kFdBf4DyAVlUMCW4MT1sDgpepKC2MmwZbfAu%2FNQ7Cjww4imBn3SPNdbNdnVXtQE6xHIBT7Aof1Nck84DNHgGQGOdkQ6fWDYlXkhFMG%2BOUEaOLx76%2FbDjGKAnh%2BdEQpaSk%2BZRGpVd5DVwVo7d9Jh41ts1AfVddyAdVxP13pQsxMUl9U0Q2JJjlLes9syqJtwSlEndXqjtXEHANJwShGkca%2FOhzYbvkN1RDf3qMWxpPVRVEQ4aiPOsbWEjKiGHXl0QMbkttjg0mYsAV%2FlDVaEZbXs3xdDjIbLG1SAydZBkMJoAQ%2FA6U0MlCnPXxcoJK1YBP9E4a3VPWO5X%2FZUbaKGEIECrprFcf4hnxX9GROQ5wkxh%2FRWKDAhIv3g7h7rwihetg%2BVwet%2F%2BBQNJ7D4IhhTOiMBfNcy1GRi0sQtuCLQ9Lcfz94RAj1CAFpyeYKQTDYp%2FOGBjqlAVNP2YjGYZuswPXrz6fHLQztm76s1SSVafPUSZnjOkHDChZ2fvbtl%2FupRn0NwbIRUybOoaI%2Bg5ywuXC7BS2%2B2MEeU289pW7ANpfO3W8oeFw6I8Xow5Vp19oGYdxwsK83j2%2Fm6ZacH%2BtIRR5MOQjmeXhR80%2Fu6OXwqMxeYmnWOmZKXL86a2hqNlRZV225kHKVs%2B3fSyESvBtj7HFKo0MFj4DGl3hSug%3D%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20210630T204616Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTYYCC3TW6A%2F20210630%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=0fb776f53128f577be36105b1a129f621888bcfffb9a741785d9084d73ed6bf4&hash=0d37368ce2501feca3358cea2e91fdf796bce6afc8e361dd6827fc5027377555&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S0306261912009014&tid=spdf-ea63f611-fa66-4638-a5da-3c888d6575ec&sid=b28bb71c89e5484a3d397cb928b269b35552gxrqa&type=client
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analysis of microspectroscopy data has been reviewed [270, 271] and Gierlinger has reviewed the 

vibrational microspectroscopy of plant cell walls [272]. They also discuss multivariate data 

analysis for vibrational microspectroscopy and focus on the promising methods of cluster analysis, 

vertex component analysis (VCA), and non-negative matrix factorization (NMF). Vibrational 

microspectroscopy has been demonstrated to provide insights into the plant cell wall structure and 

composition, facilitated by multivariate data analysis [273].  

5.6.1.1 Near-Infrared Spectroscopy (NIR) 

 The NIR region is mainly composed of overtones and combination bands (stretching and 

deformation) of fundamental molecular vibrations which are more subtle, with lower intensity than 

the fundamental vibrational modes seen in MIR or Raman, and therefore require deconvolution, 

which typically is performed using chemometrics [141] [274] [275] [256]. Despite this, the NIR 

region has multiple advantages over the other IR regions which include the rapid analysis times, 

the ability to generate spectra for a variety of materials without complicated sample preparation, 

and good reproducibility [274]. Based on these advantages, specifically its speed and simplicity, 

NIR is very suitable for process control applications using online monitoring [274].  The broad 

and overlapping bands that convolute the data pose a major challenge for NIR interpretation, 

making it difficult to accurately assign the structural features of a sample based on its spectral 

features [276]. While the nature of the MIR spectrum allows for easy qualitative identification of 

organic compounds, it is also susceptible to instrumentation and sample preparation, therefore, 

NIR is more suited for quantitative analysis [277]. Thus, with the introduction of multivariate data 

analysis methods that could reduce overlapping signals or deconvolute spectral data, NIR has 

emerged as a useful quantitative tool. NIR applications to wood science and technology have been 

reviewed [278], and a tutorial for assessing trees, wood, and derived products with NIR has been 

made available [279]. A list of the papers identified in this review that use NIR and chemometrics 

to study lignocellulosic biomass or lignin along with the preprocessing methods and multivariate 

techniques employed can be found in Appendix B. 

 An early study by Wallbacks et al. compared Carbon-13 Nuclear Magnetic Resonance 

Spectroscopy Cross-Polarization Magic Angle Spinning (13C NMR CP/MAS), MIR, and NIR 

combined with multivariate data analysis for the prediction of changes in pulping chemical 

composition during birch kraft pulping [280]. They used PLS to model the relationship between 

https://www.tandfonline.com/doi/full/10.1080/05704928.2017.1363052
https://imisrise.tappi.org/TAPPI/Products/91/OCT/91OCT201.aspx
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the three spectroscopic data sets, and the wet chemical analysis of Klason lignin, glucose, xylose, 

arabinose, mannose, and galactose contents. They found that all PLS models were able to predict 

the changes in the main constituents Klason lignin, glucose, and xylose; however, the remaining 

sugars that were present in too small of amounts (<1% each) were not described properly. In their 

opinion, the model was insufficient to describe low-content sugars because of limited sensitivity 

of both the spectroscopic and chemical analysis. Of the three techniques, they found that NIR gave 

the best model in terms of predictability. In addition, they suggested that combining the data from 

the different spectroscopic techniques may provide a more complete picture of the changes 

occurring in the kraft pulping process than using a single technique. To test this hypothesis, they 

combined principal components from each spectroscopic data matrix into a single X matrix, scaled 

it, and then performed PLS using the chemical constituents as the Y matrix. This approach did not 

improve the standard error of prediction for any constituents compared to the NIR model. They 

then tested another approach using 19 original NIR variables and three principal components, each 

from both NMR and MIR. The PLS method was applied to the dataset, and a standard error of 

prediction for all three main constituents was reduced. The authors concluded that any of the three 

spectroscopic methods (13C NMR CP/MAS, MIR, and NIR) could be used to describe the 

compositional changes (Klason lignin, glucose, xylose content) occurring during the kraft pulping 

of birch.  

Poke et al. assessed the use of NIR in combination with PLS as an alternative to the costly 

and time-consuming wet chemical methods to predict lignin and extractives contents in wood as a 

measure of pulping quality [281]. A good agreement between model prediction and laboratory 

determined contents was observed. They concluded that NIR analysis was a reliable predictor of 

extractive and lignin content in Eucalyptus globulus. Stackpole et al. studied the natural genetic 

variation in monomer composition (S/G ratio), lignin, cellulose, and extractives contents using a 

16-years-old field trial of an Australian tree species, Eucalyptus globolus [282]. They employed 

the model developed by Poke et al. to predict Klason lignin and extractives contents and developed 

additional models to predict cellulose and pulp yield, and S/G ratio [281]. Significant genetic 

correlations among wood chemical traits at population and additive genetic levels were observed. 

Particularly, the population differentiation in the S/G ratio of lignin was positively correlated with 

latitude, which may result from chemical adaptation to climate or associated biotic factors.  

https://www.tandfonline.com/doi/full/10.1081/WCT-120035944?casa_token=1O37vjW4ZOUAAAAA%3A5TeKYAtDgTVd0qu2h5rU5rN6yulolcpjprCao0ix_rWp29d0V5dvkDYr4Xaz_Nht7gTsVEgrjUrS
https://academic.oup.com/g3journal/article/1/2/151/5986437?login=true
https://www.tandfonline.com/doi/full/10.1081/WCT-120035944?casa_token=1O37vjW4ZOUAAAAA%3A5TeKYAtDgTVd0qu2h5rU5rN6yulolcpjprCao0ix_rWp29d0V5dvkDYr4Xaz_Nht7gTsVEgrjUrS
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Alves et al. combined chemometrics techniques, such as PCA and PLS, with NIR 

spectroscopy and various reference methods to investigate lignocellulose materials and modeling 

their properties. They developed PLS models for H/G ratios from the analytical pyrolysis of 

pinewood [283], Kappa number of Pinus pinaster [284], S/G ratio of Eucalyptus globulus [285], 

wood extractives of Eucalyptus globulus [286], and wood density based on X-ray micro density 

data of Pinus pinaster and Larix x eurolepis [287]. Different preprocessing strategies were also 

investigated to develop refined models. Overall, the results confirmed that NIR and chemometrics 

could provide accurate predictions, demonstrating the versatility of the approach for a variety of 

important properties for biomass processing.  

Schwanninger et al. used wet-chemical methods to determine the total lignin content of 

200 Norway spruce wood samples and analysed the same samples with NIR [288] [289]. The PLS 

regression was then used to develop a mathematical correlation between the wet-chemical data 

and NIR spectra. The authors aimed to create a simple PLS model with lower error of prediction 

than those already published. A variety of preprocessing steps were tested, which included MSC 

and first and second derivative with the Savitzky-Golay algorithm. Additionally, different 

wavenumber ranges were explored. The authors were able to develop several good models with a 

low error of prediction. Yet, since there were many models with similar performance 

characteristics, the authors introduced an “evaluation step” to determine the model with the highest 

predictability over the most spectral variations. The evaluation step involved the use NIR spectra 

of 366 additional wood samples and was necessary to evaluate the pre-selected combinations of 

wavenumber ranges and preprocessing methods. 

Horikawa et al. developed a model between NIR spectra and wet chemical analysis 

determined properties of pretreated rice straw [290]. They treated rice samples with alkaline, acid, 

and hydrothermal treatments. The resulting samples were then subjected to wet chemical analysis, 

enzymatic hydrolysis, and NIR spectroscopy to determine biomass composition, saccharification 

efficiency, and obtain NIR spectra, respectively. The PLS regression was used to develop a 

quantitative model between the Savitzky–Golay second derivative NIR spectra and the 

saccharification ratio and compositional properties of the pretreated samples. A schematic 

illustration of the calibration procedure can be found in Figure 19. The results showed acceptable 

predictions of saccharification ratio and some major structural components. In a later study, 

https://journals.sagepub.com/doi/abs/10.1255/jnirs.944
https://link.springer.com/article/10.1007%2Fs12010-010-9127-5
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Horikawa et al. applied a similar methodology using PCA and PLS to predict the saccharification 

efficiency and wet chemical properties of chemically pretreated Erianthus [291]. They were able 

to interpret the regression coefficients of their PLS model to correlate compositional variables with 

saccharification efficiency. These correlations were corroborated by the wet chemical data. Once 

again, they were able to develop an acceptable quantitative calibration model.  

 

Figure 19. Schematic illustration of the procedure to construct the calibration model between the 

wet chemical and spectral data. HPLC is high-performance liquid chromatography. Reproduced 

from Figure 1 of Horikawa et al. [290]. 

Via et al. investigated NIR spectroscopy coupled with PLS and PCR in the applied to wood 

chemistry [292]. They focused specifically on the precision in factor loadings determination for 

PLS and PCR. The loadings from these models were used to interpret the relationship between the 

wood chemistry and/or functional groups and some key traits [293] [294] [295]. The authors 

objective was to determine if PLS introduced additional error in the loading plot as compared to 

PCR, because of the shifts in the loading peaks occurring during the process of optimization of the 

covariance between the X and Y data matrices. They developed PCR and PLS models on both the 

https://link.springer.com/article/10.1007/s12010-011-9460-3
https://link.springer.com/article/10.1007%2Fs12010-010-9127-5
https://www.mdpi.com/1424-8220/14/8/13532
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raw spectral data and first derivative with the Savitzky-Golay smoothing to predict cellulose, 

hemicellulose, lignin, and extractives. It was concluded that the PLS model was superior for 

prediction while PCR was better for model interpretation and wavenumber selection. This study 

highlights the need for clear objectives when selecting a chemometric method for analysis because 

prediction and interpretation may differ among the techniques. 

Krongtaew et al. monitored the changes in lignin, hemicelluloses, and amorphous, semi-

crystalline, and crystalline regions of cellulose moieties of straw subjected to acid and alkaline 

pretreatments partly in combination with hydrogen peroxide [296]. Their goal was to reduce lignin 

content in order to increase the accessibility of enzymes to polysaccharides for digestion. The NIR 

spectra were processed with PCA to analyse the changes occurring during the pretreatment. The 

contributions of the second, third, and fourth PCs were used to generate a score plot (Figure 20). 

The first PC did not explain a significant distinction among all groups and was excluded from 

interpretation. The authors concluded that key properties of biomass influencing enzymatic 

hydrolysis were identifiable using NIR and could be discriminated qualitatively and explained 

using PCA.  

 

 

https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_05_4_2063_Krongtaew_MTF_Pt1_Char_Param_Lignocell_Conver_Qual_FTIR/699
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Figure 20. Clustering of untreated wheat straw samples (●; 4 samples) and samples treated with 

acid (▼; 4 samples), alkali (♦; 20 samples), acid/H2O2 (■; 68 samples), and alkali/H2O2 (▲; 68 

samples). The spheres indicate the supreme spectral distances from the average spectra of straw 

samples from each cluster represented as the coordinate origins. Reproduced from Figure 6 of 

Krongtaew et al. [296]. 

 Modern lignocellulosic biorefineries require feedstocks with predictable and desirable 

properties to compete in global markets with petroleum-based products. Drought is one of the most 

common plant stress agents and can severely alter the productivity and composition of biomass 

feedstocks. Understanding the impacts of drought on these feedstocks will be a high-priority 

variable for future biorefineries, particularly as climate change is predicted to accelerate. 

Moreover, while understanding the role lignin plays in the properties and value of lignocellulosic 

feedstocks is already a technical challenge in the field, lignin has also been associated with drought 

stress tolerance in some lignocellulosic feedstocks [48] [50] [59] [61]. Thus, drought tolerance 

adaptations that promote altered lignin content/composition must be considered for both upstream 

selective breeding and downstream feedstock engineering strategies. Van der Weijde et al. have 

utilized chemometrics to probe the influence of drought on Miscanthus and its use as a biomass 

feedstock for biofuel production [45]. They subject 50 diverse Miscanthus genotypes to drought 

conditions and monitor their biomass properties. Wet chemical analysis and saccharification 

reactions are used to determine biomass properties, such as cell wall, cellulose, hemicellulose, 

https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_05_4_2063_Krongtaew_MTF_Pt1_Char_Param_Lignocell_Conver_Qual_FTIR/699
https://onlinelibrary.wiley.com/doi/full/10.1111/gcbb.12382
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lignin content, and cellulose conversion, respectively. The NIR spectra of the samples are then 

acquired and subject to multivariate data analysis. Prior to the development of these regression 

models, the data was preprocessed using MSC, first and second derivatives, and smoothing 

treatments. Modified PLS regression models are then generated from a randomly selected 

calibration set (110 samples out of the 400 available) to predict cell wall, cellulose, hemicellulose, 

lignin content, and cellulose conversion from the NIR spectra. An external validation set of 20 

samples is used to evaluate the prediction quality of the models. The study has shown that drought 

stress has a considerable effect on biomass quality for biofuel production, in particular significant 

reductions in the cell wall and cellulose content and a significant increase in hemicellulose. 

However, lignin content is not significantly affected, which according to the authors contributes 

to the inconsistency among various studies regarding lignin content in different species and tissues 

under drought stress. In addition to the observed changes in biomass content, drought has been 

found to significantly increase cellulose conversion, suggesting drought may enhance the 

efficiency of biorefineries. This is found to hold true even for the tolerant genotypes that 

maintained good yields despite drought conditions.  

More recently, Liang et al. have coupled NIR with PLS to predict the holocellulose and 

lignin contents of multiple wood species, including poplars, eucalyptus, and acacias as a rapid non-

destructive analysis technique for the pulp and paper industry [297]. A comparison of variable 

selection methods for NIR spectral variables optimization is performed with competitive adaptive 

reweighted sampling, Monte-Carlo uninformative variable elimination (MC-UVE), successive 

projections algorithm, and GA. Data preprocessing steps include MSC, first and second 

derivatives. It has been found that MSC and second derivative preprocessing efficiently resolve 

undesirable scatter effect and overlapping peaks in the raw NIR spectra. The authors have also 

observed that variable selection methods based on regression coefficients rather than collinearity 

minimization or heuristic population search are more reliable and efficient. Particularly, the 

competitive adaptive reweighted sampling method is significantly more accurate and robust 

compared to the other models.  

Yang et al. investigated a portable NIR spectrometer combined with chemometrics as a 

rapid tool to determine holocellulose and lignin contents in pulp wood [298]. They evaluated four 

preprocessing methods for removing noise and irrelevant information in the raw spectra, which 

https://www.sciencedirect.com/science/article/pii/S1386142519309059?casa_token=iL4OF3u3nuAAAAAA:0MjbElwEUuLrCH479fKOgcqGAOGUJFJumiKESGFeItRbjGSKAZxqGegS5py0ajEAm_vAViw2zA
https://www.tandfonline.com/doi/full/10.1080/00032719.2019.1700267?casa_token=xjSFKcLQAuYAAAAA%3AzHQfDt1Hp8_L7Xwbs7QsWq81u1VUCr78jXKki9pXnGpsNrwB14L1Aivec1micNoVJWxI-bIZdGbD
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included first derivative, moving average filtering, MSC, and SNV. They also compared four 

modeling approaches, including PLS regression, least-squares SVM, back-propagation neural 

network, and kernel extreme learning machine. The PCA method was used for dimensionality 

reduction prior to calibration of the last three modeling approaches. Additionally, a particle swarm 

optimization algorithm was used to optimize the regularization parameter and kernel function 

parameter of the least square SVM and the kernel extreme learning machine. The authors found 

that the EMSC successfully reduced the noise and other irrelevant information from the data and 

that the kernel extreme learning machine was the best predictive model compared to other 

approaches. They concluded that their method had a great potential for the rapid and accurate 

assessment of pulp wood using a portable NIR spectrometer. Wolfrum et al. compared the 

performance of small, low-cost portable NIR spectrometer prototypes (a Texas Instruments 

NIRSCAN Nano evaluation model and an InnoSpectra NIR-M-R2 spectrometer) to a conventional 

laboratory spectrometer for the rapid assessment of biomass composition [299]. They analysed 

270 well-characterized herbaceous biomass samples and developed calibration models using the 

PLS-2 algorithm to predict glucan, xylan, lignin, extractives, and ash content from the NIR spectra. 

Their results showed that although the portable spectrometers had smaller wavelength ranges (900-

1700 nm) than the conventional laboratory NIR spectrometer (400-2500 nm), there was no 

statistically significant difference in the model within the comparable wavelength ranges between 

the portable spectrometers and the conventional one. They concluded that these results were 

encouraging, but challenges remain for these low-cost portable spectrometers. Some of these 

challenges include the need for a software “ecosystem” for data collection and model application, 

calibration transfer (transfer of models between instruments), and robust methods of sample 

preparation. The authors also noted that more advanced machine learning algorithms could be 

implemented to potentially improve the generated models.  

Two recent studies combine NIR and chemometrics to determine lignin content in Korla 

fragrant pears [300] and ‘Snow’ pears. Wu et al.  investigate different variable selection techniques 

combined with NIR for determining lignin content in ‘Snow’ pears, a popular fruit in China, 

because of lignin’s unfavorable impact on the flavor and quality of the fruit [301]. As discussed 

above, a large number of spectral data acquired from NIR could contain collinearity issues and 

reduce the performance of a PLS regression model. Therefore, the authors propose a variable 

https://www.proquest.com/docview/2471684752?pq-origsite=gscholar&fromopenview=true
https://onlinelibrary.wiley.com/doi/full/10.1002/fes3.289
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selection method to identify influential variables before the PLS regression model is established, 

in order to improve the model performance. Their method is a bootstrapping soft shrinkage 

combined with the frequency and regression coefficient of variables (FRCBOSS) approach. In 

their work, the authors evaluate multiple data preprocessing steps, which include Savitzky-Golay 

smoothing, normalization, SNV, MSC, and first derivative both independently and in combination. 

They also compare five variable selection methods, including synergy interval partial least squares, 

competitive adaptive reweighted sampling, successive projections algorithm, bootstrapping soft 

shrinkage, and their own proposed FRCBOSS approach, both independently and in combination. 

The PLS regression models are employed predict lignin content in ‘Snow’ pears and are compared. 

The authors find that the synergy interval partial least squares-FRCBOSS method performed the 

best for prediction. It is concluded that their method is useful and accurate for the rapid 

determination of pear lignin contents.   

Elle et al. investigated the use of NIR and chemometrics to predict lignin content in fine 

root as lignin is a key player in root decomposition, which is a basic element of the terrestrial 

carbon cycle and relevant for understanding global ecology and climate [302]. They used PLS to 

establish a calibration between NIR spectra and acetyl bromide determined lignin content in the 

fine root of 60 grassland species. The authors also combined PLS with the spectral variable 

selection method competitive adaptive reweighted sampling to identify and select the most 

relevant wavelengths for root lignin prediction. A schematic outlining their workflow for chemical 

analysis is shown in Figure 21. The PLS method combined with this variable selection approach 

resulted in a significant increase in model validation accuracies for all measures of model accuracy. 

They noted that these findings on PLS models with competitive adaptive reweighted sampling for 

variable selection were in agreement with other relevant studies. The authors concluded that NIR 

combined with chemometrics had a great potential for predicting lignin content in fine root and 

could be particularly useful for ecological studies with large sample sizes but limited sample 

amounts.  

https://www.nature.com/articles/s41598-019-42837-z.pdf
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Figure 21. Schematic depiction of the workflow of chemical analysis from Elle et al. [302] (left 

box with steps 1–4 indicated in square brackets), spectral analysis (outlined in black boxes and 

step 5) and statistical analysis. The latter is subdivided in spectral pre-processing (block 1 with 

steps 6–9) and final analysis (block 2 with steps 10–12). Reproduced from Figure 1 of Elle et al. 

[302]. 

5.6.1.2 Mid-infrared Spectroscopy (MIR/FT-IR) 

 The MIR region consists of fundamental molecular vibrations and related structures [250]. 

MIR is comprised of sharper absorption bands that are highly distinctive to a specific compound. 

This high degree of spectral resolution leads to a more straightforward correlation between a 

sample IR spectrum and its inherent structural features [303]. For quantitative analysis, however, 

MIR is not as useful as NIR because of its high degree of sensitivity to instrumentation and sample 

preparation [277]. There are three most widespread MIR techniques which include attenuated total 

reflectance (ATR), photoacoustic, and diffuse reflectance FT-IR spectroscopy. A recent 

https://www.nature.com/articles/s41598-019-42837-z.pdf
https://www.nature.com/articles/s41598-019-42837-z.pdf
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comparison of these three methods for different bio-organic samples have been discussed [304].  

A list of the papers identified in this review that use MIR and chemometrics to study lignocellulosic 

biomass or lignin along with the preprocessing methods and multivariate techniques employed can 

be found in Appendix B. 

One of the early applications of chemometrics to FT-IR analysis of lignocellulose was done 

by Schultz et al. [305]. They studied the feasibility of the FT-IR procedure combined with stepwise 

variable elimination regression to accurately determine the cellulose, hemicellulose, and lignin 

content of lignocellulose samples as a rapid alternative to the conventional procedure which was 

lengthy and included many steps with considerable error. This methodology for reducing analysis 

time using regression modeling and chemical data sets has since grown in popularity and 

complexity.  

Chen et al. employed FT-IR spectroscopy in combination with multivariate data analysis 

techniques to expedite the chemical composition analysis of wood [306]. They used the first 

derivative of the FT-IR spectra of the wood samples as the X matrix and the chemical 

determinations of the contents of the various components (i.e., lignin, cellulose, hemicellulose) as 

the Y matrix. Preprocessing steps prior to PLS regression also included mean-centering the X 

matrix and autoscaling the Y matrix. The PCA and HCA methods were used to qualitatively 

identify differences between samples, and the PLS model was used to simultaneously predict the 

three main components of wood (cellulose, hemicellulose, and lignin). It was concluded that PCA 

and HCA were useful tools for the discrimination of wood types (e.g., hardwoods versus 

softwoods) based on FT-IR spectra. Additionally, the PLS regression model was used to determine 

wood composition successfully. The authors note that this multivariate calibration model for FT-

IR required 15 minutes per sample, which is efficient compared to the 3-4 days for the Van Soest 

[105] [307] analysis method.  

Boeriu et al. evaluated FT-IR as an analytical technique to estimate the chemical 

composition and functional properties of lignin [308]. They used PCA on the IR-fingerprint spectra 

to classify lignins according to their origin and processing conditions by finding information on 

the dissimilarity between lignin samples and identifying which variables contributed the most to 

this difference. They also used a PLS model to predict the major components’ concentrations and 

https://pubs.acs.org/doi/pdf/10.1021/ac00291a027?casa_token=07Uq_grz80YAAAAA:orRgFiHaa_STo2eT1UYG0K-zB1VIOYy04o3zkcMsIioznOv5mxFWx7SdgiR-4gZONhXbAUtokSpU7jg
https://www.sciencedirect.com/science/article/pii/S0144861710004509?casa_token=7aIn8N8E6yMAAAAA:Y2_UGwLTggPjazTrqZVpcYrLN9D-3y2xab_ioN4iVbwqx13xtkCojGQpT7vUER-dq-ISsopQuA
https://www.sciencedirect.com/science/article/pii/S0926669004000731?casa_token=UYQzxey60AEAAAAA:efkvoQlQjpQvUWxXeIQeOhBUXjXXb-x0a1ZqB8DCuIsdflgYnOScRKOOXloL3GY-ijP_Gt53dA
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radical scavenging activity. Their work showed that FT-IR spectra could provide a useful 

qualitative and quantitative characterization of the chemical structure and properties of lignins. In 

addition, they demonstrated that PCA is effective for the classification of lignin materials and PLS 

can be applied to accurately model lignin concentration and antioxidant and emulsion-stabilizing 

properties of lignin-based materials. The authors concluded that FT-IR combined with 

chemometric methods can fast and reliably characterize lignin, which could be especially useful 

as a non-destructive technique for the quality control of lignin-derived materials.  

As lignin's structure varies, it has been difficult to predict its polymer properties like 

molecular weight and polydispersity, yet these characteristics have been fundamental for 

engineering lignins for targeted applications. Lancefield et al. proposed a chemometric approach 

to accelerate the characterization of lignin [309]. The authors demonstrated the use of ATR-FT-IR 

analysis combined with PCA and PLS modeling for the quantitative prediction of structural 

features of technical lignins that would normally require the use of SEC and 2D HSQC nuclear 

magnetic resonance (NMR). Calibration was performed by analyzing 54 different technical lignin 

samples covering kraft, soda, and organosolv processes with traditional SEC and NMR and 

correlating with their ATR-FT-IR spectra. The PLS models were used to correlate the ATR-FT-

IR spectra with the SEC and NMR measurements. The authors concluded that their method could 

predict valuable structural information on lignin samples accurately.   

Building on this finding, Khalili et al. have sought to demonstrate if the ATR-IR approach 

could be applied to the on-line monitoring of a lignin depolymerization reaction, which could be 

a useful strategy in a prospective biorefinery [310]. They use the off-line SEC measurements of 

weight average molecular weight (𝑀𝑤) along with the operando ATR-IR spectra of the 

depolymerization of kraft lignin reaction to build a chemometric model for predicting future 𝑀𝑤 

and polydispersity values. Despite the many analytical challenges of acquiring the ATR-IR spectra 

of an operando depolymerization reaction (e.g., interferences from solvent, temperature, baseline 

shift, and light scattering from particles), they have been able to correct the spectra and develop a 

reasonable predictive model using an approach developed previously by the same team. In this 

previous work, Khalili et al. have demonstrated an operando ATR-IR spectroscopic method to 

monitor the aqueous  phase  reforming of Kraft lignin at 225°C and 30 bar over a 𝑃𝑡/𝐴𝑙2𝑂3 catalyst 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6563701/pdf/CSSC-12-1139.pdf
https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/cssc.202101853
https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/cmtd.202100041
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[311]. They use PCA to overcome water vapour and 𝐶𝑂2 gases interferences in the spectra, and 

PLS to correct for the differences in the heating rate of solvent and the reactions. Thus, using the 

aforementioned approach, Khalili et al. have been able to acquire higher-quality spectra to build 

their predictive model for molecular weight [310]. In addition to the spectral correction from the 

previous work, MSC is applied to account for any additive or multiplicative scaling effects. 

Subsequently, PCA is used for the exploratory analysis of ATR-IR spectra. The score plot from 

PCA distinguishes not only trends in 𝑀𝑤 and polydispersity, but also information on saturated 

structures (Figure 22). Next, three quantitative multivariate regression models are built to predict 

the 𝑀𝑤 of the continuous system using PLS and evaluated to select the optimum model for future 

predictions. The authors note that further model optimization could be possible with other 

chemometric techniques, such as variable selection and/or different preprocessing strategies. This 

would generate a large number of models, and thus it is suggested that this process should be 

automated. This work is an excellent demonstration of the power of chemometric approaches and 

their immediate potential benefits for speeding up the characterization of lignocellulosic materials.  

 

Figure 22. a) Score plot of PC2 versus PC1 of operando ATR-IR spectra corresponding to 19 

samples acquired during aqueous phase reforming reaction. The dotted arrows show the direction 

of the trends in the data. The score plot explains 95.82% of the spectral variance. b) Scores 

contribution plot. Reproduced from Figure 7 of Khalili et al. [310]. 

 Derkacheva and Sukhov  applied chemometric techniques for resolving the spectral bands 

of isolated softwood lignins [312]. They used FT-IR spectroscopy to analyse mill wood lignin 

(MWL) and technical kraft lignins. A non-linear least-squares fitting of the FT-IR lignin spectra 

https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/cssc.202101853
https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/cssc.202101853
https://onlinelibrary.wiley.com/doi/abs/10.1002/masy.200850507?casa_token=3GW-khyG8xYAAAAA:-VSRwSqn3nalBP9c9z_BGyBeDdud3F4bmiScOiUID41JFFnxQPSyeWAqtfNhjje3qBSePr0GO8FSTQ
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was performed by the optimization of band parameters for a simulated spectrum of observed bands. 

Prior to the fitting procedure, the number of elemental bands was determined using Fourier self-

deconvolution spectra of studied lignins and second derivative spectra. Their computer program 

optimized the elementary band parameters of the simulated lignin spectra until there was 

agreement with the experimental curve under the specified spectral range. Therefore, each studied 

lignin would have a simulated spectrum with a set of elementary spectral bands (Figure 23) which 

can be attributed to distinct molecular vibrations of lignin molecular units. From this, subtle 

structural changes of softwood lignins could be revealed. The authors report that the influence of 

isolation procedure on the lignin structures was observed. 

 

Figure 23. FT-IR absorption spectrum of Bjorkman’s lignin (thick line) and its band model 

components (thin lines). Reproduced from Figure 3 of Derkacheva and Sukhov [312]. 

Kline et al. used PCA as a tool to assist in understanding the major and minor differences 

in the FT-IR spectra of different isolated lignin samples [313]. Preliminary PCA results identified 

significant structural differences between lignins isolated via hydrolytic and alkali methods and 

the other lignin standards isolated via the organosolv method. Thus, it was concluded that the 

chemical composition and structure of the lignin are strongly dependent on the choice of the 

isolation treatment. The authors then only selected the organosolv lignins for further PCA analysis, 

and produced score/loading plots (Figure 24). The score plot of the five organosolv lignin 

standards showed three distinct clusters of grass, hardwood, and softwood lignins. The loading 

https://onlinelibrary.wiley.com/doi/abs/10.1002/masy.200850507?casa_token=3GW-khyG8xYAAAAA:-VSRwSqn3nalBP9c9z_BGyBeDdud3F4bmiScOiUID41JFFnxQPSyeWAqtfNhjje3qBSePr0GO8FSTQ
https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_05_3_1366_Kline_HWL_Simpl_Deter_Lignin_Biomass_Dis_ILs/644


101 

 

plot indicated the key differences responsible for grouping the samples along PC1, which were the 

higher S content for hardwood, the lower concentration of ester units in grass lignins compared to 

softwood, and the higher concentration of G units in softwood. In addition to the PCA of FT-IR 

data, Kline et al. also used PLS to determine the optimal wavelength for the lignin quantification 

using UV-Vis spectra [313]. 

 

Figure 24. Results from the PCA of FT-IR spectra of 5 lignin standards isolated using the 

organosolv method: (a) Score plot as a function of the first and second principal components, PC1 

and PC2. (b) loadings for PC1 and PC2. Reproduced from Figure 2 of Kline et al. [313]. 

 Recently, Herrera-Diaz et al. have explored the structural changes occurring in precipitated 

kraft lignin with different oxidative enzymatic treatments to facilitate subsequent catalytic 

depolymerization for biorefining purposes [314]. Their main objective has been to select the most 

https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_05_3_1366_Kline_HWL_Simpl_Deter_Lignin_Biomass_Dis_ILs/644
https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_05_3_1366_Kline_HWL_Simpl_Deter_Lignin_Biomass_Dis_ILs/644
https://onlinelibrary.wiley.com/doi/abs/10.1002/bbb.2093?casa_token=tOsNj1h8RPcAAAAA:dz5TBzDz-VPtPZ-AmhE6wbBXWLDXYmrylQPfBvqOKQ3WX0pSSU5tsJDFFvfvEJa41jvDNbnVG2lP_w
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suitable enzymatic dosage for achieving higher monomeric yields after the alkaline 

depolymerization process. They study the changes occurring in the lignin with pyrolysis gas 

chromatography-mass spectrometry (Py-GC/MS), high-performance size exclusion 

chromatography (HPSEC), and FT-IR. Despite confirming structural changes in the lignin samples 

from the enzymatic treatment with the different analysis techniques, no conclusive pattern could 

be identified and therefore it has not been possible to select the most useful pretreatment. To assist 

in their analysis, they employed chemometric techniques to the FT-IR spectral data to determine 

the most significant differences between the treatments. Data preprocessing steps that included 

filtering of raw signals using the Savitzky-Golay algorithm, scattering corrections, mean offset 

removal, smoothing, transformation, and centering, are applied. The PCA method is used to 

segregate the useful information in the data set. The HCA method enables the production of 

dendrograms to identify the most significant differences among treatments. The authors conclude 

that the combination of IR spectroscopy with chemometrics is a useful tool for discrimination 

among structural features and chemical properties, and could potentially be employed as a 

procedure for selecting the most appropriate chemoenzymatic treatment or kraft lignin 

valorization. The examples reviewed thus far illustrate the practicality of applying PCA and other 

chemometric techniques for providing effective insight into the chemical structure and 

composition of samples from complex MIR multivariate data sets.   

5.6.1.3 Raman Spectroscopy 

 As a result of a significant laser-induced fluorescence from lignin, Raman spectroscopy 

has not been as widely applied to lignocellulosic materials as it might otherwise have been [142] 

[315]. However, the introduction of confocal Raman microscopy and later the 1064 nm NIR laser 

for sample excitation has mostly removed the issues with fluorescence in lignocellulosic material 

except for some technical lignins which can still produce significant fluorescent interference [315]. 

Recently, the NIR FT Raman approach has seen success in analysing lignocellulose samples with 

reduced time requirements and is likely to see more use in the lignocellulosic biomass field [316] 

[317]. Raman spectroscopy has been inaccurately interpreted to provide only the same information 

as IR techniques, but in fact it can provide complementary information. The tandem use of Raman 

and IR spectroscopy can enable the more comprehensive structural evaluations of lignin and 

biomass [260]. The Raman spectra of plant cells is somewhat limited by broad and overlapping 
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bands; however, multivariate data analysis approaches can help overcome this [318]. Raman 

microspectroscopy for Raman imaging has proven to be a powerful tool for probing biological 

materials [319] [320], and a large portion of the Raman papers identified in this review were micro-

spectral studies. A list of the papers identified in this review that use Raman and chemometrics to 

study lignocellulosic biomass or lignin along with the preprocessing methods and multivariate 

techniques employed can be found in Appendix B. 

Ona et al.  tested the feasibility of FT-Raman spectroscopy for the rapid non-destructive 

determination of lignin S/G ratio in Eucalyptus camaldulensis and E. globulus of a variety of ages 

and colors [321]. They used second derivative after MSC prior to PLS regression to develop a 

model between S/G ratios determined by a modified thioacidolysis method and the Raman spectra 

of the samples. Based on a highly significant correlation between the wet chemical and Raman 

predicted values, they concluded that FT-Raman is valid for determining the lignin S/G ratio for 

Eucalyptus native wood meal samples, regardless of their age or color. A few years later, Ona et 

al. once again evaluated the feasibility of FT-Raman for the non-destructive quantification of wood 

constituents and wood anatomy [322]. The examined wood constituents were holocellulose, α-

cellulose, hemicellulose, lignin, extractives, lignin S/G ratio, and hemicellulosic neutral sugar. The 

examined wood anatomy features included the proportion of cell types, cell length, cell wall ratio, 

cell width, as well as wall thickness of vessels and fibres. Similar to their previous work, they 

utilized both first and second derivative transformations after MSC prior to PLS regression. They 

observed a highly significant correlation between the predictions and conventional measurements, 

except for rhamnose and vessels ratio. It was concluded that FT-Raman was valid for assessing 

kraft pulp properties of Eucalyptus trees for both wood constituents and anatomy features.  

Saariaho et al. used ultraviolet resonance Raman (UVRR) spectroscopy to define the 

characteristic vibration bands of model lignin compounds of H, G, and S lignin structures at three 

excitation wavelengths (229, 244, and 257 nm) [323]. Their results indicated that UVRR 

spectroscopy could be applied to determine chemical structures in lignin. They also concluded that 

the detection of the characteristic vibrational bands might be more challenging in pulps due to the 

altered lignin structures during processing, and that multivariate data analysis methods such as 

PCA and PLS could be useful in these cases. In a later study, Saariaho et al.  [324] followed up on 

this conclusion by investigating if multivariate data analysis could assist in the interpretation of 

https://www.tandfonline.com/doi/pdf/10.1080/02773819809350124?casa_token=a0sNozmoUvUAAAAA:7u8wutmOsdTqF6W9QvQA9laEk4HOyT_WMIChT_ahHqDJ3AdNC86zw1KQd0xUui3ndwKkDZxs1oCp
http://lib3.dss.go.th/fulltext/Journal/JPPS/2003%20no.1/2003v29n1p6-10.pdf
http://lib3.dss.go.th/fulltext/Journal/JPPS/2003%20no.1/2003v29n1p6-10.pdf
https://journals.sagepub.com/doi/10.1366/000370203321165214
https://www.sciencedirect.com/science/article/abs/pii/S092420310400092X
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the UVRR spectra of lignin model compounds, including the three main monomer units, C5 

condensed and conjugated structures. They also sought to determine characteristic wavenumbers 

of different lignin structures with a PLS model. The complexity of the lignin model compounds 

made it difficult for the PCA model to detect all compound groups and their characteristic Raman 

bands. A PLS model between the Y values, which contained the quantity of the lignin structures, 

and the X variables, which were the measured spectrum variables, was constructed using the sub-

structures of model compounds, quantified arbitrarily. Even though a single PLS model could 

theoretically predict all sub-structures in the compounds, their results indicated that simpler models 

are characterized by better predictions. They concluded that multivariate data analysis approaches 

could be instrumental in characterizing the chemical structure of a lignin sample. The authors also 

stated that quantifying additional lignin structures could be possible with the further development 

of PLS models. 

Meyer, Lupoi, and Smith. used a home-built 1064 nm dispersive multichannel Raman 

instrumentation to show that Raman spectroscopy could be used to measure lignin composition 

[325]. Model lignin monomers and first derivative spectra or PLS analysis were used to determine 

sugarcane lignin monomer composition. Background subtraction was performed with a blank 

containing all matrix components except the analyte. The PLS analysis was used to predict the 

score coordinates for randomly selected monomer mixtures as a means of testing the model and 

quantitatively determine the monomer composition of the lignin. They concluded that using 

Raman spectroscopy, lignin monomer composition can be assessed qualitatively using first 

derivative spectra, and quantitatively using chemometrics, with PLS allowing for the 

determination of multiple monomer components simultaneously.  

Lupoi and Smith et al. used Raman spectroscopy to characterize lignin content in different 

biomass feedstocks and validated their interpretations with CP-MAS 13C-NMR [326]. They also 

quantified and compared lignin monomer composition measured with Raman spectroscopy to that 

of a modified thioacidolysis technique. Qualitative PCA accurately classified all but one feedstock, 

which had a unique lignin composition compared to the other sources. A PCR model was 

developed using the G and S lignin units determined by thioacidolysis followed by GC-MS and 

the Raman spectra. Overall, the PCR model was accurate in predicting G and S percentage; 

however, inaccurate results for two feedstock types indicated that PCR was not suitable for 

https://www-sciencedirect-com.login.ezproxy.library.ualberta.ca/science/article/pii/S0003267011011305?casa_token=Yep-uKe_XykAAAAA:-YSBoXOxan5Y83hYuTvbTtN36wOhLVEogGxLCA4vtmt6zloEm_nmuR2ejwlYXup4c_aqHrUYpA
https://journals.sagepub.com/doi/pdf/10.1366/12-06621?casa_token=wAF_sB0UwjwAAAAA:6GVyv8xWDnSxpXi5af5xkoZ6b03bM3Tf6HnoWIcanzw_a8JwXkyO65ZX0C_N9DLulYC7zS-_fvGi
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biomass with a significant composition of extractable compounds. The authors noted that another 

PCR model could be developed for these samples with high extractables. In a later study, Lupoi et 

al. assessed and compared the three main vibrational spectroscopic techniques, MIR, NIR, and 

Raman spectroscopy combined with multivariate analysis to predict S/G ratios as determined using 

Py-MB/MS from 245 different eucalyptus and acacia trees across 17 species [260]. Different 

combinations of spectral preprocessing were tested to determine the most robust predictive model 

which included first and second derivative transformations with the Savitzky-Golay algorithm, 

smoothing, SNV, MSC, and EMSC. The reference set of wood samples for Py-MB/MS was 

selected using PCA that classified samples based on similarity. In this way, the PLS model could 

be developed to capture the variance likely to occur in future samples. The PLS model was 

developed from the spectral data determined using the vibrational spectroscopic techniques as the 

X matrix, and the S/G ratios determined using Py-MB/MS, as the Y matrix. It was observed that 

models constructed from the MIR and Raman spectra were more accurate at predicting S/G ratios, 

as compared to NIR. The authors concluded that the use of multivariate modeling with vibrational 

spectroscopy could reduce time and expenses with the accurate prediction of S/G ratios in a variety 

of feedstocks. Lupoi et al. also demonstrated the use of PLS to model acacia and eucalyptus lignin 

S/G ratios determined from Py-MB/MS and FT-Raman spectral data as a high-throughput and 

efficient biomass feedstock screening technique for the production of bio-based renewable fuels, 

chemicals, and materials [327]. They used first derivative Raman spectra and EMSC as 

preprocessing techniques based on the findings from their previous study [260]. However, as 

compared to the previous study, their goal in this analysis was to conduct a complete evaluation 

of the multivariate models for predicting S/G ratios using Raman spectra on a large unknown data 

set of acacia and eucalyptus samples in order to determine the practicality of the model for the 

assessment of future samples. The predicted S/G ratios were found to agree with those determined 

with Py-MB/MS, based on the mean values of each method within the 95% confidence interval.  

Raman imaging and chemometrics have been used extensively to determine the distribution 

of lignin and other components in the plant cell walls [318] [328, 329, 330, 331, 332, 333]. Perera 

et al.  [143] introduced a novel method for analyzing the structure of native lignin using Raman 

microspectroscopy and chemometrics. The data analysis involved data preprocessing, PCA, 

cluster analysis, and a deconvolution step to estimate the spectra of pure components. Wavelet 

https://link.springer.com/article/10.1186/1754-6834-7-93
https://link.springer.com/article/10.1186/1754-6834-7-93
https://link.springer.com/article/10.1007/s12155-015-9578-1
https://link.springer.com/article/10.1007/s00216-011-5518-x
https://link.springer.com/article/10.1007/s00216-011-5518-x
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decomposition and second derivative transformations were used to reduce noise and fluorescent 

interference, respectively. The PCA technique was used for dimensionality reduction prior to k-

means clustering to detect and classify compositional differences among samples. Average 

spectral identities were calculated for each cluster using a linear combination of the spectra pure 

components of the cell wall. A deconvolution methodology for estimating the spectra of pure 

components was done using a spectral entropy minimization [334] and simulated annealing 

optimization [335]. Lignin and carbohydrate spectral features were separated using this 

chemometric approach, which allowed for the recovery of information on different monolignol 

units that would be typically undetectable with routine data processing techniques due to signal 

overlap with cellulose and hemicellulose. Colares et al.  [330] used the MCR-ALS to recover 

characteristic signals of cellulose and hemicellulose from the Raman spectra of mahogany and 

eucalyptus. The PCA method was used as a filtering approach prior to the MCR. The recovered 

characteristic Raman signals were used to estimate cellulose and lignin concentration distribution 

at the microscopic level, and represented as concentration maps (Figure 25). Their method 

successfully described the distribution of lignin and cellulose in two different wood species in a 

reasonable agreement with values obtained via the reference methods, high performance liquid 

chromatography and gravimetric wet chemistry. Recently, Zhang  quantitatively visualized lignin 

in various plant cell wall layers during delignification using micro-Raman spectroscopy [333]. A 

sampling of the poplar tissues at varying periods during the delignification process and subsequent 

analysis with micro-Raman spectroscopy revealed unique insights into the mechanisms occurring 

in the plant cell wall during delignification process. This novel methodology could be employed 

in future studies that seek to further understand the changes occurring during delignification. Prats-

Mateu et al.  [318] investigated VCA, non-negative matrix factorization (NMF), and MCR-ALS 

for unsupervised spectral unmixing of Raman spectra of different plant tissues and two different 

species to compare the different algorithms, preprocessing steps, and other algorithm related input 

parameters. Raman spectra from a confocal Raman microscope were preprocessed by cosmic ray 

removal and background subtraction prior to multivariate data analysis. Background subtraction 

and the number of end members were assessed, and the analysis revealed that the multivariate data 

analysis was dependent on these factors; therefore, the careful selection of these strategies was 

required for every algorithm. The authors conclude that Raman spectroscopic imaging in 

https://www.scielo.br/j/jbchs/a/LPM8PpH3nR5Fmnt4qgLYRHn/?format=html
https://pubs.rsc.org/en/content/articlehtml/2021/ra/d1ra01825f
https://plantmethods.biomedcentral.com/track/pdf/10.1186/s13007-018-0320-9.pdf
https://plantmethods.biomedcentral.com/track/pdf/10.1186/s13007-018-0320-9.pdf
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combination with multivariate data analysis could provide useful insights into the plant cell wall 

design.  

 

Figure 25. Schematic representation of bilinear matrix decomposition of a hyperspectral image 

using the MCR-ALS method. The MCR-ALS method is based on the bilinear model, 𝐷 = 𝐶𝑆′ +

𝐸, where D is the raw data matrix, C is the matrix of relative intensity profiles, 𝑆′ is the estimated 

pure spectra, and E accounts for the experimental error contained in the raw data. Reproduced 

from Figure 2 of Colares et al. [330]. 

 Recently, Gao et al. have used chemometrics and FT-Raman spectroscopy to investigate 

lignocellulose materials [336, 337, 338].  Gao et al.  [336] have collected Raman spectra excited 

using a 1064 nm laser to avoid the impact of water and auto-fluorescence, and employed a 

chemometric approach to assess the lignin content of poplar in large-scale breeding and genetic 

engineering programs. The rapid and non-invasive technique is valuable due to the high variation 

in lignin content among different poplar genotypes. Two different baseline correction strategies, 

two different data types based on scattering peaks intensity and area, and four different models are 

constructed using different algorithms, including PCR, PLS, ridge regression, and least absolute 

shrinkage and selection operator (LASSO) regressions to predict the lignin content of 

lignocellulosic materials. They found that the ridge and LASSO regressions were more suitable 

for predicting lignin content than PCR and PLS. It is concluded that the models are effective for 

https://www.scielo.br/j/jbchs/a/LPM8PpH3nR5Fmnt4qgLYRHn/?format=html
https://pubs.acs.org/doi/abs/10.1021/acsomega.1c00400
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predicting the lignin content of poplar genotypes based on their Raman spectra. The authors 

highlight this approach as promising for large-scale breeding and genetic engineering programs. 

In an ensuing paper, Gao et al.  [337] have proposed a novel strategy for quantitatively predicting 

holocellulose content using chemometric methods. Prior to model development, Savitzky-Golay 

smoothing, adaptive iteratively reweighted penalized least squares are performed for 

preprocessing. The authors evaluate a variety of algorithms (PCR, PLS, ridge regression, LASSO 

regression, elastic net regression) and 12 datasets to develop 60 different models. It was 

determined that FT-Raman spectroscopy and regularization algorithms, such as ridge regression, 

lasso regression, and elastic net regressions are successful in quantitatively predicting poplar 

holocellulose content. The PCR and PLS method are found to be insufficient for the prediction of 

poplar holocellulose content, which the authors propose could be the result of multicollinearity. 

Gao et al.  [338] have also recently proposed a strategy to predict the Kappa number of bleached 

Eucalyptus globulus kraft pulps using FT-Raman spectroscopy and chemometrics. 

5.6.2 Nuclear Magnetic Resonance 

 The NMR spectroscopy has been used extensively for characterizing lignocellulosic 

biomass samples and has greatly assisted in our understanding of the lignin structure [339] [340] 

[341]. Compared to other spectroscopic techniques used for characterizing lignocellulosic biomass 

and lignin, NMR has a much higher resolution and, therefore, can offer more information than the 

other techniques [127]. Specifically, 2D NMR methods are the most powerful method for 

analysing lignin, due to the advantages of the 2D spectra in allowing for the assignment of very 

complex lignin signals [162]. There are multiple solid and liquid state NMR techniques that offer 

different advantages and challenges. Common techniques include Proton (1H) NMR, Carbon-13 

(13C) NMR, Phosphorus-31 (31P NMR), 2D 1H-13C HSQC, and CP/MAS NMR [342]. A recent 

comparison of the NMR techniques for the determination of lignin S/G ratios has been published 

[343].  

While NMR has the advantage of producing very detailed structural information, it also 

presents problems for data interpretation because of its large and complex data sets resulting from 

overlapping resonances and thousands of data points [344] [345]. Consequently, chemometrics 

approaches have the potential to be integrated into the analysis of NMR data to assist in identifying 

https://www.sciencedirect.com/science/article/pii/S0144861721011802?casa_token=jhkmZxSV-38AAAAA:118HhXyYbXUHVeJq0CkKqA04C2gvRLFeO3QKTrtyvaigWCWlzEqE16F1j_c8n_1aSIxeQeHyKLo
https://link.springer.com/article/10.1007/s10570-021-04333-4
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underlying patterns in the data. Reviews of chemometrics applied to NMR spectroscopy can be 

found here [222] [345] [346] [347]. It is also interesting to note that quantitative NMR without 

chemometrics has been critiqued because oversimplified data analysis of such complex data sets 

can result in confirmation bias [222]. While NMR has been used extensively to characterize 

lignocellulosic biomass and its derivatives, the number of publications related to applying 

multivariate analysis to NMR data of biomass or lignin is noticeably lesser compared to the other 

popular analytical techniques such as vibrational spectroscopic methods or mass spectrometry 

(MS). We speculate that this may be due to the costly and time-consuming nature of the NMR 

technique as compared to vibrational spectroscopy, making it less suitable for rapid or high-

throughput applications. Many of the chemometric approaches we have discussed focus on 

developing fast and robust calibration models for the rapid characterization of biomass such that 

they could be implemented for online processes monitoring or even in a portable instrument. This 

is currently less feasible for an instrument like NMR; however, it does not mean that chemometric 

approaches are not helpful for interpreting NMR data, in fact, the opposite appears to be the case.  

It has been pointed out recently [255] that there are no examples of using multivariate techniques 

for resolving overlapping peaks in 1D and 2D NMR profiling of lignocellulosic feedstocks, or 

multivariate modeling of specific 31P and 13C NMR profiles. From what we have been able to 

ascertain, this still holds. That being said, 2D NMR PCA loading spectra can facilitate 

interpretation of structural/compositional differences that may be undetectable by traditional peak 

picking approaches, and in that sense, these multivariate techniques have been used for resolving 

NMR peaks [348]. A list of the papers identified in this review that use NMR and chemometrics 

to study lignocellulosic biomass or lignin along with the preprocessing methods and multivariate 

techniques employed can be found in Appendix B. 

Hedenström et al.  [348] demonstrated how multivariate chemometric data analysis 

techniques could be utilized to gain more compositional information from the 2D NMR spectra of 

dissolved cell wall samples than could be attained with traditional spectral analysis (Figure 26). 

They showed that molecular level changes among sample types occurring in both lignin and 

polysaccharides could be visualized as high-resolution 2D NMR loading spectra. Two examples 

were investigated to evaluate the method, the first being a comparison of Populus tension wood to 

normal wood and the second being genetically modified Populus wood compared to wild-type 

https://www.sciencedirect.com/science/article/pii/S1674205214607097
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trees. Data preprocessing strategies, such as scaling and mean centring, were evaluated. In the first 

example, following preprocessing, the data was subjected to PCA to evaluate the variance among 

spectra and consequently differences in wood composition. It is important to note that the PCA of 

the entire spectral range could not deduce the compositional changes of lignin because of the 

relative decrease in total lignin amount. However, an isolated spectral region containing the 

aromatic peaks could be modeled separately for information on lignin compositional differences, 

which include the S/G ratio and degree of acetylation by p-hydroxybenzoate. In the second 

example, the authors utilized both PCA and orthogonal partial least-squares-discriminant analysis 

(OPLS-DA) for sample discrimination. The authors concluded that their approach was effective 

and reliable for revealing structural/compositional differences in all plant cell wall components 

caused by environmental or genetic modifications. They indicated that the multivariate approach 

allowed a significant advantage for the interpretation of structural/compositional differences 

among samples using the 2D NMR loading spectra.  
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Figure 26. Illustration of the procedure for using multivariate analysis on 2D NMR data where (i) 

each of N spectrums with R rows and C columns are converted to a row vector and placed in a 

new data matrix X. Data points with intensity below a set threshold were considered noise and 

removed from the matrix.  (ii) Scores and loadings resulting from multivariate analysis of matrix 

X are analyzed to detect latent structures in the data. The first and second principal components, 

𝑡1 and 𝑡2, respectively, are the axis in the score plot. (iii) The loadings, initially represented as line 

plots of length K (number of columns in X), are converted to 2D loading spectra by reversing the 

unfolding procedure described in (i). Reproduced from Figure 2 of Hedenström et al. [348].  

Hydroxyl groups are key functionalities of technical lignins that influence their properties 

and reactivity. Lignin hydroxyl group content could be an essential process parameter governing 

the efficiency of biorefining operations and impacting the properties of the resulting products 

[164]. Quantitative 31P NMR spectroscopy is a promising technique employed for the specific 

determination of different lignin hydroxyl groups in lignin samples. The technique involves the 

phosphitlylation of lignin hydroxyl groups followed by quantitative 31P NMR spectroscopy 

analysis [145].  

Boeriu et al. [349] studied the fractionation of multiple different technical lignins (kraft, 

soda, organosolv) extracted from softwood, hardwood, and grass feedstocks using a selective 

extraction in a variety of “green” solvents and multivariate analysis methods. Unfractionated 

https://www.sciencedirect.com/science/article/pii/S1674205214607097
https://www.sciencedirect.com/science/article/pii/S0926669014005640?casa_token=F7huLAApIAIAAAAA:MD3R7eYGPJEyZQguYKLA372-7msBprm-yMVCbiQGJW30lNRf-qIsXHuby52pAG7cyxb2rjUO2g
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starting technical lignin as well as the soluble and insoluble portions after selective solvent 

extraction were characterized and compared in terms of extraction yield, lignin Hildebrand 

solubility parameter, molecular weight distribution, and functional group comparison. Analytical 

techniques included quantitative 31P NMR, FT-IR spectroscopy, and alkaline SEC. The 31P NMR 

data were subjected to PCA in order to determine the difference in hydroxyl group composition 

among lignin fractions. The PCA results revealed a high heterogeneity of technical lignins and 

provided insights into changes in functional group content from extraction. The PLS was used to 

correlate FT-IR spectroscopic data with the chemical composition of lignin fractions determined 

by 31P NMR. A calibration model was developed to predict the various chemical features of lignin, 

which included aliphatic and aromatic hydroxyl content (i.e., Alkyl-OH, condensed-OH, S, G, and 

H), carboxyl content (COOH), total aromatic hydroxyl (Aryl-OH), and S/G ratio, based on 

significant FT-IR spectral regions. The PLS models accurately predicted S lignin content, 

aliphatic-OH content, and S/G ratio. The authors concluded that their approach was simple, fast, 

and accurate for predicting structural and chemical information on lignin using FT-IR and 

chemometrics.  

Aguilera-Saez et al.  [350] used multivariate data analysis to predict lignin, cellulose, and 

hemicellulose content in greenhouse crop residues. The 1H NMR spectra were subjected to PCA 

in order to visualize the variation in the large data sets. The HCA based on Euclidian distance 

coupled with Ward’s minimum variance method was applied to provide information on the 

proximity between species, which PCA could not provide. To improve discrimination among 

species and select the most discriminant variables for regression, partial least square discriminant 

analysis (PLS-DA) was performed. The PLS-DA model enabled the rapid differentiation of all 

crop residues in their study. Linear models based on the 59 discriminant spectral buckets (the value 

of each bucket represents the total area within the respective spectral region) determined from 

PLS-DA were then developed to predict lignin, cellulose, and hemicellulose contents. The authors 

concluded that their prediction models were robust, and their method provided a rapid tool for the 

determination of the cell wall biomass composition of greenhouse crop residues.  

Jalali-Heravi et al.  [351] investigated the ability of a PCA-ANN method to calculate the 

13C chemical shifts of lignin model compounds and predict the chemical shifts of unknown 

compounds, in order to facilitate the future verification of molecular structures. Theoretical models 

https://www.sciencedirect.com/science/article/pii/S0031942218305181?casa_token=JxdruAtZrmAAAAAA:zDno2PnKLUrYyIN6p-8FhH7T1mD9EzAqcYlCAld7rC2dESILBCtpzxamW3PfS4RVX3DjlJ8n6A
https://www.sciencedirect.com/science/article/abs/pii/S1090780704002526
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were constructed by relating atom-based structural descriptors to 13C NMR chemical shifts. One 

hundred unique carbon atom types were identified, of which 73 were used as the 

calibration/training set, 20 for the test set to optimize the model, and 7 for the control set to evaluate 

the predictive ability of the model. A computer program was used to calculate the geometric, 

electronic, and topological descriptors of each carbon atom. The PCA method was employed as a 

feature selection method for determining the best descriptors for the model. An ANN model was 

then developed to predict 13C chemical shifts using PCA’s selected descriptors as inputs. From a 

data set that included 15 monomeric lignin model compounds, the authors found an accurate 

relationship between the experimentally determined and calculated 13C NMR chemical shifts. 

They concluded that based on the accurate simulation of chemical shifts, researchers might be able 

to learn more about the structure of lignin compounds.  

 Burger et al. [352] used 1H and DOSY NMR and chemometrics to predict the molecular 

weight properties (weight and number average molecular weight, and polydispersity) of 

organosolv lignin. A PLS regression model was developed using reference data on SEC-based 

molecular weights of lignin and 1H and DOSY NMR spectra. For the DOSY NMR data, MLR was 

also used to develop a model. They found that while the 1H NMR PLS model outperformed models 

generated from the DOSY NMR data, the MLR model outperformed the PLS model in DOSY 

NMR data. The authors also found that their 1H NMR PLS model showed comparable prediction 

results to the work of Lancefield et al.  [309],  who predicted the molecular weight of lignins using 

ATR FT-IR spectroscopy (discussed previously in section 6.1.1). The results ultimately showed 

that 1H and DOSY NMR combined with chemometrics were suitable for the accurate, high-

throughput prediction of the molecular weight of lignins. The authors noted that acquiring a 1H 

NMR spectrum takes two minutes, which is a significant improvement compared to the fifty 

minutes required for a SEC chromatogram. The researchers also indicated that they would be 

investigating multivariate data analysis methods, such as data fusion (e.g., NMR and IR data) to 

improve their high-throughput molecular weight predictions.  

 Calibration transfer is essentially the approach used to apply a data set and corresponding 

calibration model to two or more instruments, while retaining a desired model performance [353]. 

Chemometric models are often limited to the instrument and sample type that they have been 

developed with. Slight differences in instrumentation, changes in instrument performance over 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6563701/pdf/CSSC-12-1139.pdf
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time, as well as variation in sample batches are among the concerns regarding the transfer of 

models [354]. Calibration models provide rapid analysis after they have been generated, but 

developing a proper calibration model requires the use of the time-consuming analysis that the 

model itself seeks to help avoid. Additionally, these calibration models often require mindful 

planning from the design stage, sufficiently large sample quantities, and sufficient sample variation 

for its application. Thus, calibration transfer is an important topic for chemometricians, as it is 

desirable for models to retain their performance over time and in response to variation. Calibration 

transfer and practices have been relatively recently reviewed [353]. Recently, calibration transfer 

of multivariate calibration models between high- and low-field NMR instruments for predicting 

the weight average molecular weight of lignin has been demonstrated for the first time [355]. Low-

field benchtop NMR instruments lower the barrier of entry for NMR analysis. While they have 

reduced resolution compared to high-field instruments, they are much less expensive to purchase 

and operate. This is important because it establishes the plausibility for high-throughput NMR 

analysis of lignin using low-field bench top NMR instruments. In their work, Lindner et al.  [355] 

have found little difference in calibration errors for the prediction of lignin molecular weight, 

despite the large difference in resolution between their two NMR instruments (high-field 600MHz, 

low-field 43 and 60 MHz). Burger et al.  [356] have since compared the performance of the high- 

and low-field NMR instruments for predicting the weight average and number average molecular 

weight and polydispersity index of lignin using chemometrics without calibration transfer. To their 

own surprise, the authors found no significant difference in performance between the high- and 

low-field devices. The approaches described here may facilitate a growth in the applications of 

chemometrics to NMR analysis of lignin and biomass by demonstrating that NMR approaches are 

more accessible than previously thought.    

5.6.3 Mass Spectrometry  

 Mass spectrometry (MS) is an analytical technique in which an ion source is used to 

fragmentize compounds into ions, which are separated based on their mass-to-charge ratio (m/z), 

and detected in a mass analyzer [357]. The relative abundance of fragmented ions with a specific 

m/z are represented on a mass spectrum, which can be qualitatively and quantitatively evaluated 

to determine information on the original compounds molecular structure [358]. The MS is 

commonly coupled to other instruments when used for analysis of lignocellulose or its derivatives. 

https://pubs.acs.org/doi/pdf/10.1021/acs.analchem.1c05125
https://www.sciencedirect.com/science/article/pii/S073170852200070X?via%3Dihub


115 

 

A disadvantage of MS techniques compared to some vibrational spectroscopic or NMR techniques 

is their destructive nature, which can be a concern if limited sample sizes are available. Some MS 

techniques such as Py-GC/MS do not require lignin extraction prior to analysis and therefore are 

sometimes considered to provide in situ structural information such as native lignin S/G ratios. 

However, the structural mechanisms taking place during biomass/lignin pyrolysis are not fully 

understood and therefore the assumption that the information from Py-GC/MS is representative of 

native lignin is an approximation. Recently, Zhang et al.  [359] have published a review on 

characterizing lignin compounds using MS which covers analysis and raw data processing. A list 

of the papers identified in this review that use MS and chemometrics to study lignocellulosic 

biomass or lignin along with the preprocessing methods and multivariate techniques employed can 

be found in Appendix B.   

 One of the early applications of using an MS based technique and multivariate data analysis 

for analysing biomass was presented by Kleen et al. [360]. They employed Py-GC/MS to collect 

compositional data on softwood pulp fibres induced by kraft pulping and PCA to assist in the 

interpretation of the data set. It was clear from PCA that there were chemical changes occurring in 

the pulp fibres during the delignification process. A PLS analysis was then used to correlate the 

information determined from the Py-GC/MS data to the properties determined from more 

conventional wet chemical methods. Their models had a good prediction of lignin, glucose, xylose, 

and mannose contents; however, the models were less accurate in predicting the contents of the 

minor constituents, arabinose and galactose, as compared to the values determined by wet-

chemical approaches. They noted that the difference in prediction of the minor contents were still 

in the same order of magnitude of experimental error for the wet chemical reference method. They 

concluded that the quantification of lignin and carbohydrates using their method was advantageous 

based on accurate results for the main constituents and good reproducibility for the minor 

constituents. 

 A number of publications from 1994 to 2017, all with connections to the National 

Renewable Energy Laboratory, USA reported the use of Py-MBMS and multivariate data analysis 

to analyze lignocellulosic materials [361, 362, 363, 364, 365, 366, 367, 368, 369, 370] [371]. The 

PCA and PLS were the most commonly used multivariate techniques in these publications which 

covered a variety of biomass types and properties, including bark source, acid concentration, and 

https://pdf.sciencedirectassets.com/271391/1-s2.0-S0165237000X01088/1-s2.0-016523709380041W/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEF4aCXVzLWVhc3QtMSJGMEQCIHNGmpQEYS95oQkCrY44oIuiunU6vv76AFg3xoQvJPRuAiA22ro54BCrtYpqG3SmV7bGEONROQL4i%2BeA1R2mDYcyOSr6AwgXEAQaDDA1OTAwMzU0Njg2NSIMVEQoTPnBUZZEH3QTKtcD91YH%2FkH08%2BvRTfUg4czY9pNGb5OQkod%2B6UpBsZFQMFQIAhxHrEDG1DAZL8Irkna4jPe5plpLlGOCCBvjzgcVOg2s8JDH5sqQq6sBUVvwTNg8AbClNVgygKJgTsKFNvlWVH7KbQgZY%2BuNj76WFPYn%2BavXum5WVbyQInEwo1CiAI1uJTE3HyvVVlLbys3LgZMOPx3l%2Bx1mW3SV4k1a3X9vl6398QxIHWmfg76qxKMZLZXWXsW9mlZLy4dd3iYGG6P9oskI%2BfBDqay2E33LdOrvHorD36RNpDWANu8%2Bs0pSQ%2BEvMdoZ8ZrDzXYsx%2FscYXqlUjoYcQDKOh3KTp9qrA0tI55qw%2F0gouaqRTEFsUTcJco2StSIegdGPtvd2lR9HZgQqbhUcBohMFPkukenzqKouMiaqw4BObooVgKFYiPxpi8bUxhJfVN9IE5kydutcyny2PJt7iTsbr6Y5nsLC9%2FtKBNR28xkDp4b17lOHSatcQSoGT0AEuvW9NcD5Jgadb4R4y0JEs5j1geR67JHWIiwzfWT6FKSqPeX1rBZIFdkhm%2FVye1xZIEeAXgX068uiCfS1MCswlzPmMQk8FpFst9y4g7k8scK0pg6p0fF6FjtRJOsbUT4gV3LMLTi6IUGOqYBMMZ6NFIpjFLEodCKVFMdEt%2BbxX3JV2K2yDZUQsvYCMqv%2BfrQZb%2FNcPzPJPieKBx0mBuYtPmqLOcOUKhHL0aqPrnwB4nJEnOXG2ei9wgqDflaGSuglmkqxYzGZW4EO9afX%2Bh7FJIb0JFkrUz2LKsxhpkntH8CAgg8gVMCyGV5OYooSvfGlTUjlDZyHZRgbD%2B2dOMxxeRUpBAB6nA1VvnocX1q%2FlLMTg%3D%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20210604T150356Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTYZXA6434H%2F20210604%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=f55b28775de5d213b938503aed61dbb7adc17f85f5f706f1a99fd446250325a9&hash=9bc921ab6dd2cb8483ab60ddb2e1363a28b3100755935b72359055d8f8eeb34f&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=016523709380041W&tid=spdf-ad33c823-3081-4242-b4c5-2e6d58d6b978&sid=19a5268c8f971845db3be2c4c7e647831c74gxrqa&type=client
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phenolysis temperature [363], weight loss during brown-rot biodegradation of spruce wood, [362] 

lignin, glucose, xylose, mannose, galactose, arabinose, rhamnose contents [364], and distance from 

bark to pith [365]. These studies provided useful examples of the use of both PCA for gaining 

valuable insights into complex data sets, as well as PLS for quantitative and qualitative modeling, 

and prediction with generally positive conclusions about the use of multivariate data analysis and 

Py-MBMS for characterizing lignocellulosic materials. Decker et al. [370] reported on the 

development and deployment of high-throughput sugar release and Py-MBMS pipelines at the 

National Renewable Energy Laboratory.  Additionally, Decker et al. [372] published a review on 

high-throughput screening techniques for biomass characterization.  

 Gerber et al.  [373] introduced a data processing pipeline (Figure 27) for Py-GC/MS 

towards the high-throughput characterization of lignocellulosic materials. They highlighted 

sequential data processing that was common for typical Py-GC/MS data software as inadequate 

for automatic high-throughput applications and emphasized that the manual curation of peak lists 

with molecular identifications was a major hold-up for the technique. Their method included MCR 

by alternate regression and automated peak assignment and was evaluated using aspen and Norway 

spruce wood samples. The approach allowed for the accurate and fast estimates of relative amounts 

of lignin monomer units and carbohydrate polymers. The authors concluded that the integration of 

MCR-AR to the data processing pipeline provided a workaround of sequential data processing and 

the tedious manual analysis, enabling the application of the technique to larger data sets than 

previously feasible. They also noted that up to date (published in 2012), FT-IR spectroscopy or 

Py-MBMS instruments were typically selected for this type of application; however, Py-GC/MS 

had the advantage of the additional chromatographic separation and exhibits higher sample 

throughput compared to the aforementioned techniques. It might be noteworthy that based on our 

observation of literature after this publication, Py-GC/MS seemed to be more prominent for these 

types of applications.  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4692608/
https://www.frontiersin.org/articles/10.3389/fenrg.2018.00120/full
https://pdf.sciencedirectassets.com/271391/1-s2.0-S0165237012X00032/1-s2.0-S0165237012000137/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEDIaCXVzLWVhc3QtMSJHMEUCIQD9kT%2FkbCxkV4unhUEgxlIF5altwGhqlKx%2BYSMum3G%2BnAIgS8iFXRm%2FAC%2BKBLmEt2fkdBVIasNZXPtb7%2FxozKKmsB0qgwQI2%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FARAEGgwwNTkwMDM1NDY4NjUiDN9qHpzvLx9izjLo9irXAwkWZhoCY1GpIxMN8vV4ViEkFPHI0VzRqD1qHvNgwRDQ4mnzv0iq6GPNWhI1DXE%2FBvnnm50UM8GBmh00KwlMXMwUh90mdi2ZShnVld5K4ipGV0xp6g3FTbGmFpJODsGB0rQeWTxTal1ZyJeHdwITRTCp4LJ7EKlcCBiv2UXZhxjDHNksA2AOdSeieVQMF1J5kdUN4OJm7uMgVCZMfd8TWm0e3XkvqWelQAp2l31FaTtOUCWVgGUElWCdfrMFrVKvgxpnVLi%2BGLhVmDMA5gir%2FW2qoVEjK4mG6QcE0l%2FBmHS0%2B7jDlS49pjGX8fBCeXNr2JwSYBo8gnlLsmAmTm%2FViEJ0kLq9grHmmCernZtco41GiqbqxpCYhOiw85BP8AHcr%2B%2BWASsLobwXMTqTD6HizqbMKdEiSz4im9O%2FZoJ5%2B4aoh%2BWp4tgX3p6gJe44w7KjOorgcKs84bD28olqsF%2Ftzwx%2BQ6Fl2owOE5ogHs9FZ68DWFG%2Banloh8BWgulAESZXJX5onQNOocjWlFTS04J%2FpEvTCWgo2LvRAmfTOmugCCVw4IX6AX%2FM7XARWcO104BF%2FfW8HLWnnu3WS7MUpWnfF68CYwk4YuIi94Dv%2BNcjPAEF3RetbqGOWzCxh9%2BFBjqlAbQ0CGekVHXrwGb2zhBbIorb5Cz2T2CtY5al0GQmGZEDclBFM%2FRVPwwgsdlEO8spnjDenNwDW7wWU1lNtYtnCpx2%2BTwEPZFsFrnije7dv7XSQp2JnUjpykk6%2BP1smDqtzcSk%2Fp76tMJKQbxJNrq6iAxFTSCGIeeLQor4eoh8KxyIZsO98dmJGwPDnD%2F6j5RzxwbTqpXlrPHYeJjKc1CLT92OynnQrQ%3D%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20210602T190611Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTYY6NDUB5Z%2F20210602%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=2511c28cc19a14acd3f6bc815c428ab9cfca002330030d12feb61c49f7c13903&hash=9341ed255ca24186fabff4996ad273a0443bbbc6c01a45a11f025adbdd261035&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S0165237012000137&tid=spdf-5b445402-37c8-458b-8f0a-bfa0d7d6e5ad&sid=058fa89a3f3bd742e30a19c-d288abe62048gxrqa&type=client
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Figure 27. Flow diagram of the data processing pipeline for high-throughput Py-GC/MS analysis. 

The steps within the bracket were performed with a Matlab script. Data analysis, mainly peak 

identification and calculation of figures of merit was done in R. NetCDF is Network Common 

Data Form. Reproduced from Figure 1 of Gerber et al. [373]. 

Galetta et al.  [374] used Py-GC/MS and multivariate data analysis to study the wood 

composition of Eucalyptus species relevant for pulping in Uruguay. Discriminant analysis with 

backward variable selection was used to simplify the models and successfully classify the wood 

groups. The PCA method was used for the unsupervised classification of wood samples and the 

identification of pyrolysis compounds characteristic to specific samples. The importance of 

pyrolysis products to predict pulping efficiency (alkali loading) was evaluated using simple, 

multiple, and PLS regression models. Their simple regression models based on individual 

compounds showed weak correlation with alkali activity, which suggested that the delignifcation 

efficacy is a multivariate interdependent property rather than a specific wood property. The PLS 

method was then used to predict pulping efficiency using 90 pyrolytic variables from the Py-

GC/MS data. The PLS models confirmed the previous results from classification using 

https://doi.org/10.1016/j.jaap.2012.01.011
https://www.sciencedirect.com/science/article/pii/S016523701400179X?casa_token=8uAw0dNOKocAAAAA:7qvVL5e0E1ORevR2RXQO-rWLOo5QxLyunji6V13RveTUp1DBF-R3-mAaAiC0khN-9P1N8lHMjg
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discriminant analysis with backward variable selection, in that reducing the data set to lignin-

derived methoxyphenols with no carbohydrate-derived product improved performance. Multiple 

regression was employed with the same variable set determined from the previous analysis and 

confirmed the importance of these selected variables for describing the alkali efficiency. It was 

concluded that the most successful strategy for the regression models applied to pyrolytic data was 

data reduction, which facilitated the prediction of technical pulping parameters.  

A series of papers from Ghent University in Belgium investigated genetically engineering 

poplars with Py-GC/MS and multivariate data analysis [375, 376, 377].  Toraman et al.  [375] used 

PCA combined with k-means clustering to help understand the variation in the bio-oils produced 

from wild-type and genetically modified poplars. They demonstrated that significant differences 

could be achieved through genetic modification of genes involved in the phenylpropanoid and 

monolignol biosynthetic pathways, and specifically the contents of G and S lignin-derived 

phenolic compounds present in bio-oils could be modified. In a subsequent study, Toraman et al.  

[376] could not identify the minor compositional differences of lignin resulting from genetic 

modification of poplars using PCA. Therefore, they employed a multiway model PARAFAC2 

(Figure 28) and PLS-DA. These techniques allowed for the accurate classification of poplars and 

could identify subtle information in large and complex data sets. SriBala et al.  [377] aimed to 

evaluate the effects of downregulation of three enzymes on bio-oil composition using PCA. The 

PCA and k-means clustering compared with TA experiments showed that the multivariate models 

were able to interpret G and S lignin composition relatively accurately, which facilitated 

conclusions on the potential of the genetic modification for favourable compositional changes.  

 

https://pdf.sciencedirectassets.com/271433/1-s2.0-S0960852416X00053/1-s2.0-S0960852416301481/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEDkaCXVzLWVhc3QtMSJHMEUCIQDOoKIGSh2pptETaTE3gK4jKzPUxBjzEDrfNEJIUfRSSAIgAJ7oTQDp0JHwGyqGIFHMFibxEtL9aTXgQ6l6IL%2B0oeIqgwQI8v%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FARAEGgwwNTkwMDM1NDY4NjUiDDpSMmTkgzVEs7sT1irXA9%2BuD5l6PpSmQuQZqyWyB7c0qWZ2li1Fea9AA%2FskRmpY0mgLsldioE5zECWnGR8gnouLJYwMx3YprrrY%2FoqArRWeYGd6Yj29TqbZgvpW%2BRAWON6U6dBgO35K4S5QUC7kSE4GmzHrXKE0jkiKsUmMTczPR6ZwHTz5EL5XAPyG3vXZnLAdTb2RUFpJbGtGOPOe9CsHLm8GNnZrbutRgIRRwD%2BXNbgUN1N0itnJWRI6EslEH05dq6%2Bp5YCMjcw%2Bnust5UyMQuu18c2VqjEj1u53NwB3ilV9st9pmQkyQz5XC9rmwzCna9KEewrUo%2FAY%2FyOLofnOnsY8HCyh53W3WNfNlS8H15p4i5WyCefMP8nonFtDaXfO6lytiIhQkOWQhMEDPfrvb7%2FHrnbm%2BgouINbexVfnqo1VWqRBw87m0%2FvPxKw5XWPb6RG3fY2%2BNdvglbpof6YmK0eVt1rraFsWJn9plAA1mULuHKNFjBBgZtGS0%2BLgrNUvvXYGobsiljKsRHKQIbOQ%2BL4SgjKOqOm9wJLTHJsM7c%2FHzeDHSPOD0Gx0Vb%2Fyes%2BN3KBNpfqPrCpmcPXaNnoBMC0Ow1P81tb9erKXwvhVu%2BDceiu8dLZEhaAhKz5n70gNOwHapDD65ZiGBjqlARTaJJaGelGCJokPDZvB9%2Fi6HHBDSYizYir%2BORAd8WgPW7YamIgrQrrZeS7dCstfrcYxwtH7%2Fg9HQTpor2I6KTXthJhsNPDqnsCBtPTcDoaDfJRTFFGqMIPW1pTtu8fT2XmV%2BMsf93EEWHGItBBD59vc1nKgSSnVSGsPQrA%2FvpClQEpTDNYQLdJI1UyE5dCUrg44PYtAtOyyS3YaGueB%2BOWA6ybyXQ%3D%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20210613T170344Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTYSIFP2WZV%2F20210613%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=0d447a1856952aecafeb5e37fa8b62684addfd958ed8318078b7ac70ff8f8453&hash=c48607c66585af3603881fd944d39b346e6cfd2139936e98d4f6107171123b89&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S0960852416301481&tid=spdf-ed58b64f-d594-412c-b28e-804a8cdb36cd&sid=b92765546b4a6749070a0302b2a6b8d6cbbbgxrqa&type=client
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Figure 28. Flow-chart of PARAFAC2 methodology for GC-MS data analysis. X represents a three-

way array of all overlaid chromatograms including mass channels, A is a matrix with the resolved 

mass spectra of the F analytes, C is the sample mode loading matrix with the relative concentration 

of each chemical compound in the sample, and Bk is a matrix with the estimated elution profiles 

for each of the F factors. Reproduced from Figure 3 of Toraman et al. [376].  

We want to highlight a useful tool for expediting Py-GC/MS analysis of biomass used by 

Toraman et al. [376]. Py-GC/MS is a rapid method for identifying compounds and comparing their 

concentrations among and within samples; however, the complexity of Py-GC/MS data sets makes 

analysis challenging and time-consuming. Manual analysis can be tedious, error prone, and often 

requires a heuristics approach to learning. A total ion current (TIC) chromatogram can contain 

hundreds of peaks a number of which may suffer from co-elution (overlapping/embedded peaks), 

low signal to noise ratio, shifted retention times between samples/runs, and baselines. Thus, 

chemometric approaches have been used to automate the analysis process. An automated approach 

for processing raw GC-MS data within a MATLAB based graphical user interface has been 

developed and made freely available. The approach is called the PARAllel factor analysis 2 based 

Deconvolution and Identification System (PARADISe) and allows for the integrated multi-way 

modelling for processing of raw GC-MS data from several samples simultaneously [378]. GC-MS 

data can be arranged in a two-way matrix for each sample where the columns representing the 

length, 𝐼, mass spectra for each of the 𝐽 elution times (rows). When a GC-MS data set contains 

more than one sample it becomes a three-way structure with K samples. Often when GC-MS is 

employed for studies there are many samples available and thus multi-way modelling has been 

proposed as a means for taking advantage of this three-way data structure [379]. The method has 

been demonstrated to be robust in peak quantification with many advantages compared to similar 

https://pdf.sciencedirectassets.com/271391/1-s2.0-S0165237018X00023/1-s2.0-S0165237017306988/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEEwaCXVzLWVhc3QtMSJHMEUCIDxqivX7%2BVSzFlUzVOY0V7VT%2FFuQwsrgwIA7aJrhwl8qAiEA4PJ0V%2FKD7XYWoFCj2riDgI%2F%2FX3%2BXksOHywhf%2FY%2FKe8MqgwQI9f%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FARAEGgwwNTkwMDM1NDY4NjUiDEeJs61J%2BUwqZA3GIyrXAzGHxag5KeZXvUMFs6wM2KxR9uiqtVUOVY4wGRDzwam%2BeT%2Brvysl9TfSBm99SmxcAQhq8XR1AwtiOCG00qfZuikP9qdhNXde7orDEDaflVYhopNMa8vOjYV0R1X5yBw9MxeGB2fs8zXYMPQgh2Hf6VaqGX9eszLLGEtCpD%2F%2FbbNYN95UZnBAJpoDgSoPwR%2BwvyETkz0mZXuDAbDOtye7ptEa%2FZOi0vEaw%2FtZG8smzIN%2BGwgI977Xrz5TbnnbH3S6NZV7FQJhs2WSd40ChAzmId6PsORPiau21O6OvN8eWJ6vXkUS08SgSOhbeaQjM1YHsQDWByVa0vz3Kj4gcCSSPEMAI9tfGSwuNiAxCZpi%2Bjcd9M1EFz6R3sWHYeUamZdWY3qq65LujcHV1Rerggt3%2Fg%2FALAFJ8lZf8lRUk3a6R39Tv37gMehTKHaoE7l1JDXWy3bnJmrYx9zhtycNacDU0upzPqakVYK%2BlPF5G0EAvvLmQPIa0PImnMdga22JEK0Kc8zx3j92H2YdXzz747hMAZ8jr%2FByfoPJLpwzaTkgJ7mU5hy1%2BQBr7ZqFZpvC07JMEWbPvuAonZpsS9Kb4PUF61bPD7gF8iGkF7hK9L8v5fV4lIapvvoNGzCm2eSFBjqlAamHMA3iG6KunnLZaLqDzK9DOTIKGyGTw%2FbJMhZ9%2Ba9tw7AqYN3RtnPBqmdY8kDh%2BKxLou2ObmUv44DJlEYd9FulKwX1Jv7yzqS1gguNK5InNKH1FFU4WP5wKb3jJEqAilTn2OG%2FraET820A7D%2B4fsw%2FC43tleFoxWBYu%2BCQaWO3ivrkfbWbvcJ81rytp9Nz%2FIlfpyAS5pcKg8x%2B%2Fi%2FXJP3uigl%2F%2FQ%3D%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20210603T204127Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTYSIA3DNUU%2F20210603%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=a6493c3c973fb0941ad78f95823f40541c17ba3ab273f834e4e8bf0778d8c40f&hash=05b623649e346f3bfbcf091189938f63998c7127c00a5cea8bde31bbd9491e3c&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S0165237017306988&tid=spdf-4e9a8ada-ebfc-4bb0-a984-70974be6ad65&sid=d419ba1046102247be8b06b773d8298f7f6agxrqa&type=client
https://pdf.sciencedirectassets.com/271391/1-s2.0-S0165237018X00023/1-s2.0-S0165237017306988/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEEwaCXVzLWVhc3QtMSJHMEUCIDxqivX7%2BVSzFlUzVOY0V7VT%2FFuQwsrgwIA7aJrhwl8qAiEA4PJ0V%2FKD7XYWoFCj2riDgI%2F%2FX3%2BXksOHywhf%2FY%2FKe8MqgwQI9f%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FARAEGgwwNTkwMDM1NDY4NjUiDEeJs61J%2BUwqZA3GIyrXAzGHxag5KeZXvUMFs6wM2KxR9uiqtVUOVY4wGRDzwam%2BeT%2Brvysl9TfSBm99SmxcAQhq8XR1AwtiOCG00qfZuikP9qdhNXde7orDEDaflVYhopNMa8vOjYV0R1X5yBw9MxeGB2fs8zXYMPQgh2Hf6VaqGX9eszLLGEtCpD%2F%2FbbNYN95UZnBAJpoDgSoPwR%2BwvyETkz0mZXuDAbDOtye7ptEa%2FZOi0vEaw%2FtZG8smzIN%2BGwgI977Xrz5TbnnbH3S6NZV7FQJhs2WSd40ChAzmId6PsORPiau21O6OvN8eWJ6vXkUS08SgSOhbeaQjM1YHsQDWByVa0vz3Kj4gcCSSPEMAI9tfGSwuNiAxCZpi%2Bjcd9M1EFz6R3sWHYeUamZdWY3qq65LujcHV1Rerggt3%2Fg%2FALAFJ8lZf8lRUk3a6R39Tv37gMehTKHaoE7l1JDXWy3bnJmrYx9zhtycNacDU0upzPqakVYK%2BlPF5G0EAvvLmQPIa0PImnMdga22JEK0Kc8zx3j92H2YdXzz747hMAZ8jr%2FByfoPJLpwzaTkgJ7mU5hy1%2BQBr7ZqFZpvC07JMEWbPvuAonZpsS9Kb4PUF61bPD7gF8iGkF7hK9L8v5fV4lIapvvoNGzCm2eSFBjqlAamHMA3iG6KunnLZaLqDzK9DOTIKGyGTw%2FbJMhZ9%2Ba9tw7AqYN3RtnPBqmdY8kDh%2BKxLou2ObmUv44DJlEYd9FulKwX1Jv7yzqS1gguNK5InNKH1FFU4WP5wKb3jJEqAilTn2OG%2FraET820A7D%2B4fsw%2FC43tleFoxWBYu%2BCQaWO3ivrkfbWbvcJ81rytp9Nz%2FIlfpyAS5pcKg8x%2B%2Fi%2FXJP3uigl%2F%2FQ%3D%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20210603T204127Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTYSIA3DNUU%2F20210603%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=a6493c3c973fb0941ad78f95823f40541c17ba3ab273f834e4e8bf0778d8c40f&hash=05b623649e346f3bfbcf091189938f63998c7127c00a5cea8bde31bbd9491e3c&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S0165237017306988&tid=spdf-4e9a8ada-ebfc-4bb0-a984-70974be6ad65&sid=d419ba1046102247be8b06b773d8298f7f6agxrqa&type=client
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commercial GC-MS software’s such as AMDIS. More recently, the software was further updated 

to fully automate the approach, increasing analysis time and reducing user-interaction which can 

introduce bias and inconsistency [380]. This resource greatly lowers the barrier of entry for Py-

GC/MS studies and is particularly suitable for biomass studies.   

Reyes-Rivera et al.  [381] used Py-GC/MS and chemometrics to characterize the 15 species 

of Cactaceae, classify the species, and identify compositional differences with taxonomic value. It 

was determined that Py-GC/MS combined with PCA, HCA, and hierarchical clustering on 

principal components with k-means partition were useful for the analysis of identity and chemical 

composition of materials (Figure 29). In addition, they noted that identified differences of certain 

lignin derivatives in different species, organs, or tissues can help observe and understand gene 

networks that determine the lignin composition of biomass.  

 

Figure 29. Hierarchical clustering on principal components with k-means partition plots obtained 

from the PCA reduced data sets considering all the derivatives from Py-GC/MS of the spines for 

one system. Reproduced from Figure 4 of Reyes-Rivera et al. [381].  

https://reader.elsevier.com/reader/sd/pii/S0165237019307776?token=B96FAAC300FA119539D7CC8B09A4F4AD9F886579E4C728BFEB68B7EEB373A66E31F6BC4F8F59376F8AD162607F5B81F7&originRegion=us-east-1&originCreation=20210602203033
https://reader.elsevier.com/reader/sd/pii/S0165237019307776?token=B96FAAC300FA119539D7CC8B09A4F4AD9F886579E4C728BFEB68B7EEB373A66E31F6BC4F8F59376F8AD162607F5B81F7&originRegion=us-east-1&originCreation=20210602203033
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5.6.4 Alternative Chemometric Approaches Applied to Lignocellulosic 

Biomass 

 This section covers chemometric approaches to study lignocellulosic biomass that do not 

fit into the main categories outlined so far in this review. This includes less common analytical 

techniques, molecular modeling applications, or approaches that use models with various input 

parameters. A list of these papers along with the preprocessing methods and multivariate 

techniques employed can be found in Appendix B.   

 Biomass pyrolysis is the thermal deconstruction of biomass without oxygen, leaving a 

hydrocarbon-rich gas mixture, an oil-like liquid, and a carbon-rich solid residue [382]. Pyrolysis 

is considered a promising potential treatment for the conversion of lignocellulosic biomass to 

biofuels or biochemicals. Understanding the reaction mechanisms of biomass pyrolysis is key for 

the success of this treatment [383]. The heterogeneous nature of biomass and its components 

makes the mechanisms of biomass pyrolysis extremely complex; therefore, there are major 

challenges to understanding the thermal deconstruction reaction pathways [384].  The TGA 

method has become attractive to study the pyrolysis kinetics of lignocellulosic biomass because of 

its high precision in weight loss recording, which makes it a method of choice the estimation of 

pyrolysis kinetic parameters and mechanistic investigations [385]. An approach for the kinetic 

analysis of complex processes with overlapping reactions is implemented with a peak 

deconvolution methodology using statistical functions that allow for the calculation of kinetic 

parameters from the separated peaks [386]. In a comparative study looking at deconvolution 

functions for fitting diverse kinetic pyrolysis models, Perejon et al. [386] have found conventional 

functions, such as Lorentzian and Gaussian, to be inadequate because of asymmetry. They revealed 

that the Fraser-Suzuki algorithm can accommodate asymmetric functions and fit kinetic curves for 

both ideal and non-ideal reactions. Therefore, the authors proposed the deconvolution of complex 

reactions into its individual processes using the Fraser-Suzuki function, followed by a combined 

kinetic analysis of the individual processes. The Fraser-Suzuki exponential function was originally 

developed for the resolution of overlapping bands and is commonly used for signal processing and 

data analysis in chromatography [387] [388] [389]. Since then, it has been utilized as an approach 

for separating lignocellulosic biomass pyrolysis into separate parallel reactions that model the 

decomposition of hemicellulose, cellulose, and lignin. This approach is useful because it has been 

https://pubs.acs.org/doi/abs/10.1021/jp110895z
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suggested that pyrolysis of biomass can be modelled as a weighted sum of the pyrolysis of these 

three main components [389].  

 Recently, the Fraser-Suzuki function has been applied in combination with other 

chemometric techniques and TGA to understand biomass pyrolysis [390] [391]. The high 

variability in the physical and chemical properties of biomass feedstocks can cause issues with 

meeting conversion specifications for the production of biofuels; however, the preprocessing of 

biomass prior to pyrolysis to produce more uniform properties can benefit thermochemical 

conversion [392]. Castro et al.  [390] have compared two chemometric strategies for gauging the 

influence of chemical pretreatment prior to biomass pyrolysis. They use TGA and derivative 

thermogravimetric (DTG) analysis, combined with kinetic analysis using the Fraser-Suzuki 

deconvolution, Friedman isoconversional method [393], and modified Criado method [394] [395] 

to study the pyrolysis kinetics of pretreated peels of Nephelium lappaceum L. The two 

chemometric strategies are a supervised SVM learning algorithm and an unsupervised artificial 

neural network Kohonen self-organizing map (SOM). The authors note that the Fraser-Suzuki 

function is crucial for analysing the influence of chemical pretreatment. The SOM reveals that the 

similar structures of the pseudo-hemicellulose and pseudo-cellulose components promoted similar 

orders of thermal decomposition. The SVM model proves to be more effective in the prediction of 

chemical treatment based on kinetic parameters in their study, but both models show that the wide 

decomposition temperature range of lignin interferes with the precision of the algorithms. Virgens 

and Castro [391] evaluate pyrolysis routes for maximum biofuel production from Syzygium 

malaccense seeds using TGA-DTG, Fraser-Suzuki deconvolution, self-organizing maps (SOM), 

k-means clustering, and heat maps. Sixteen pyrolysis routes are investigated, which cover three 

chemical treatments (sodium hydroxide, sulfuric acid, and phosphoric acid) with no pretreatment 

and a variation in heating rate to evaluate their effects on biomass pyrolysis for the production of 

biofuels. The multivariate data analysis tools are employed to scan the data for groups with 

beneficial properties for biofuel production. A flowchart that illustrates their chemometric 

approach can be found in Figure 30. Before the multivariate data analysis could be implemented, 

the Fraser-Suzuki deconvolution has been applied to the DTG curve to separate each biomass 

component and the resulting data is normalized. Heat map analysis of all the pyrolysis routes 

allows the authors to identify two routes that show high levels of cellulose, hemicellulose, and 

https://pdf.sciencedirectassets.com/271391/1-s2.0-S0165237020X00040/1-s2.0-S0165237019309015/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEDgaCXVzLWVhc3QtMSJGMEQCIEvMHuA5dbIDpnllvXQLpZI%2F66jbrEmSnAH7MHbn5DSuAiBbKlUnXa2FCYczuqYvh11jdO6aBItBNUdhZ56EfoKOVyr6AwgxEAQaDDA1OTAwMzU0Njg2NSIMVO0eQI5bJ1%2BLqRLZKtcDZUtZBq1MdT8s9K2aXG1SyPklKlMTv5xyUG299XjG1%2ByuKAP0tZFtuUimyLXdIbyPY87GyD4CTwLJeJqRuH1gys0KQ%2FFksvnEtyXrg5QZsS61zY9RU3VeB8v75HOPDDDRJZzxAB79A%2BIA1HyLutg%2Blv28a5hzC8sPxACh4Hsqaa%2BDp9NihNShjNiYxQYnieNFS0%2BnnttzRh23G6PXUx4sLrgLXXcAOgioqQSHKcXRRrUZOffMWHmepu0C3HXh4M6qN05BZ4jS5cN3IfT1%2B2UstBZtA4OjG8%2BSRajdte2Rppjb6MtjeJStA9GzRJ3%2FVIxKYpsCOi%2BDf6rbo0fXiNemXKWIW2PsLem12JvspZ%2BjOrszis0ywqIJZyIxWABPtzFeM8LA76DDa7nVx7H16DVoWhPTWes%2BTL%2BVgfGP5fessUjuIKTaKMl%2Bbou7sMOM0cERmUcnSvU0PuGfn874IgTD7r6AH3vqcqLwHUSdEBsKr1UhOu53m%2BvLLP1OP9zHGuFnWbqDs6kBG0VfmiCs0nQxyQbvwmsWwjCMaGjZRXk8ZXQHW2%2FygWl0e%2BiLT5OK7eRBguJv%2BNQ6DqLSsGuYxQVk%2BGov9Y8N4A0Szf0mb8z31YIgYN4iWzGxMJm0wYcGOqYBhFiIxfRVQVd2lrhwgM9ttwKzkek%2FX6zJWyRxrMWoak1Gu6gA9gxDrV%2BhF86AYeZ4KWVtErF7I5E85IoNVAc96Ew5zqXuoExAYyeG0%2FaoGXitPjCB9BYEfQgdZErJ8XBz0kImQ74akASYt1aKyA%2FIZhq%2BinevMGU69%2FH%2FrB13EN6iqKzl3MqO5xmFWPXR%2FVbADczLhWxa5kLPncF1jgbHJ%2BhcPWxChw%3D%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20210715T170501Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTYQHDEDMZP%2F20210715%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=4628ed67684c5621bb0f61d8bba8de03b8db837bd9c51c7f06da977fcba2552f&hash=52a4b1bff59501626db0b0e28b19b8e1c97ae875b8ee55f769bf244b3736d069&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S0165237019309015&tid=spdf-d67c3c42-8002-4a7d-9075-0daa5751012a&sid=df393dc6164f524df45a8959a7705309bafegxrqa&type=client
https://link.springer.com/content/pdf/10.1007/s10973-021-10601-z.pdf
https://link.springer.com/content/pdf/10.1007/s10973-021-10601-z.pdf
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volatile compounds, and low levels of lignin content, which they consider promising features for 

biofuel production. Further chemometric tools corroborate their initial findings. The authors 

conclude that their chemometric approach is successful in screening pyrolysis routes for maximum 

gasification and the production of quality biofuels.   

 

Figure 30. Flowchart for the chemometric approach for evaluating pyrolysis routes for maximum 

biofuel production. SOM are self-organizing maps. Reproduced from Figure 1 of Virgens and 

Castro [391]. 

Khaliliyan et al.  [396] introduced a method for quantifying total lignin content by high-

performance thin layer chromatography-densitometry combined with multivariate calibration. 

Their method was motivated by the challenges of the selectivity and robustness of analytical 

techniques for measuring lignin content. Selectivity refers to the capacity to discern lignin from 

the other components or impurities present in the sample. Robustness is related to reliable and 

reproducible results from an analytical instrument. The aim was to study their new method to 

determine the total lignin content of kraft and lignosulphate industrial liquor samples. Their 

method, which is based on multivariate calibration using PLS, determined lignin content but with 

some variation from the “correct” values. The authors noted that their method would be valuable 

if time was preferred over the accuracy, with analysis times of only a few minutes per sample, 

significantly shorter compared to the several days required for gravimetric analysis (i.e., Klason 

method). 

 Myrvold and Pavlov  [397] used PCA to analyze correlations between the parameters of 

battery expanders and lignin properties. The PCA method allowed for the simultaneous analysis 

of the chemical composition of the lignin, the physical properties of the expanders, and the battery 

https://link.springer.com/content/pdf/10.1007/s10973-021-10601-z.pdf
https://link.springer.com/content/pdf/10.1007/s10973-021-10601-z.pdf
https://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.0c03950
https://www.sciencedirect.com/science/article/pii/S0378775399003870?casa_token=z5PcKGrdNI4AAAAA:X_twFnGmZ5pxoKHoRCJGj0UoMOWDK9R81NwTahzPRBgd_YX35OU8r9QFTX5vHwtZwY7BR8iapg
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performance parameters. It was concluded that the type of lignin was an essential factor, with few 

correlations occurring in multiple lignin types. Additionally, they found that a decrease in lignin 

solubility led to an increase in the battery life cycle.  

Huang et al.  [398] investigated the effects of the physicochemical properties of pretreated 

lignocellulose on their enzymatic digestibility using a combination of experimental methods and 

multivariate analysis. They evaluated the lignin content, accessible interior and exterior surface 

areas, removal of hydrogen bonds, and changes in crystallinity index of corn cobs after various 

pretreatments using wet chemical analysis, solute exclusion in a packed column, particle size 

analysis, FT-IR, solid-state 13C NMR, and X-ray diffraction. The authors used PLS to assess the 

significance of different physicochemical characteristics in enzymatic digestibility. The PLS 

analysis determined that the extent of cellulose digestion depended primarily on the accessible 

interior surface area, lignin content, and the destruction of hydrogen bonds. Their results further 

substantiated the theory that accessible interior surface area and lignin content were important 

factors for cellulose hydrolysis. Additionally, they highlighted the utility of PLS for estimating the 

contributions of explanatory variables to target variables. 

Lima et al. [48] investigated the relationship of lignin content and composition with 

embolism resistance and leaf lifespan in 22 tree species in a seasonally dry tropical ecosystem in 

North-eastern Brazil. They hypothesized that drought resistance would be determined based on 

lignin content and composition. The authors used PCA to visualize all the relationships between 

species and the different variables in order to see if species with different leaf lifespan would make 

distinct groups. They performed two PCAs, one with 22 trees using the variables total lignin 

content, S lignin content, S/G ratio, wood density, stem water potential in the dry season, and leaf 

life span, and the other with 15 trees using xylem vulnerability in addition to the previous variables. 

Their results indicated that dry-season leaf life span and resistance to xylem embolism were related 

to the monomeric composition rather than the total lignin content. Additionally, lignin content and 

S/G ratio were not found to be related or wood density and dry-season stem water potential. This 

is a good example of utilizing PCA to find relationships among large complicated data sets, and 

sets the stage for future biochemical studies regarding lignin chemistry, plant hydraulic traits and 

drought tolerance.  

https://aiche.onlinelibrary.wiley.com/doi/pdf/10.1002/btpr.324?casa_token=UqrTpnpN6bkAAAAA:TER_4r2m8KZRAC_la41OdhaPdxAUENLV-69QIIeqkq7KzF0jJNNHIWVqw5OBe7FnbmUCnTEyCJpyyw
https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.15211
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To better understand the feedstock variability of agricultural biomass,  Ray et al.  [399] 

evaluated the variability of corn stover of Zea mays at multiple scales from four counties in a high-

yield region in Iowa. They focused on feedstock properties that could influence biomass 

processing using unsupervised machine learning algorithms to identify patterns. They used NIR 

spectroscopy to predict compositional characteristics, MLR and multinomial regression of red-

green-blue image analysis to predict quality and composition, and k-means clustering based on the 

percentages of glucan, xylan, lignin, extractives, ash, and a variety of inorganic features to identify 

pattern variations. The organic features were predicted using NIR spectroscopy, demonstrating the 

applicability of multivariate calibration for supporting researchers with the high-throughput 

characterization of lignocellulosic materials. However, the NIR model was not able to predict the 

properties of all samples and highlighted the need to account for a wide range of variability. The 

multinomial regression of red-green-blue images was able to classify the material at 76.2% 

accuracy, showing promise but indicating the need for further improvement. The results of the k-

means clustering of the biomass variables indicated that the major variability was based on region.  

A key challenge in lignocellulosic biomass processing is the extraction or isolation of lignin 

from the other main components. There have been a variety of mechanical, chemical, biological, 

and thermal strategies for this purpose. Often these approaches are referred to as biomass 

pretreatment because they fractionate the material for further processing. Biomass pretreatments 

are complex processes with many variables and potentially inter-related interactions among these 

variables prompting the use of multivariate analysis. For example, Li et al.  [400]  have used PCA 

and PLS to investigate the relationships of key variables in alkaline sulfite pulping for the 

pretreatment of corn stover. They have conducted 28 lab scale pretreatment experiments on 

enzymatic saccharification by varying total alkali charge, liquid to solid ratio, temperature, 

cooking duration at the maximum temperature, and sodium sulfite/sodium hydroxide 

(Na2SO3/NaOH) ratio. The resulting biomass is analyzed for composition and enzymatic 

hydrolysis sugar yield, and the entire data set is used for PCA modeling. The PLS method is 

employed to model the relationship between pretreatment process parameters and the 

compositional variables of pretreated biomass (X variables) and the pretreatment effectiveness (Y 

variables). They found multivariate approaches useful for correlating variables in complex 

pretreatment data sets and provide tools for optimizing pretreatment conditions. More recently, Xu 

https://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.9b06763
https://bioresources.cnr.ncsu.edu/BioRes_09/Unsecured_BioRes_09/BioRes_09_2_2757_Li_Multivariate_Analysis_Impact_Key_Process_Parameters_5256.pdf
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et al.  [401] [402] [403] have used chemometric approaches for investigating various biomass 

pretreatment strategies. Xu et al.  [401] have studied 22 process parameters of sodium hydroxide 

assisted by mechanical refining pretreatment of corn stover. They use PCA to identify correlations 

among variables and PLS to study the inter-relations of pretreatment conditions and efficiency. 

Their results indicate that crystallinity of lignocellulosic biomass is negatively correlated with 

enzymatic efficiency demonstrating that multivariate analysis is useful for analysing inter-relations 

among variables in pretreatment and enzymatic hydrolysis.  

Ionic liquids are another promising pretreatment solvent for lignocellulosic materials to 

decrystallise cellulose and dismantle lignin and hemicellulose networks, among other encouraging 

properties [404]. However, ionic liquids are non-environmentally friendly and have prompted the 

investigation of deep eutectic solvents as low-cost green alternatives [405]. Xu et al.  [402] [403] 

have continued to investigate important parameters in the pretreatment of lignocellulosic biomass 

with deep eutectic solvents using chemometrics. Xu et al.  [402] have applied chemometrics on 54 

important variables of the choline chloride based deep eutectic solvent pretreatment of different 

lignocellulosic biomass materials. The PCA and PLS methods revealed that pretreatment 

temperature, polarity, molecular weight, boiling point, mass transfer capacity, hydroxyl group 

content, acidity, and hydrogen bond strength were the most important variables. These are strongly 

positively correlated with the removal of lignin and the recovery of glucan. Xu et al.  [403] have 

also used chemometrics to investigate deep eutectic solvent pretreatment, this time with the 

hydrogen bond donors of different lignocellulosic biomass materials under different reaction 

conditions. They evaluate 42 key process factors and their relationships using PCA and PLS. The 

results indicate that hydrophilic ability, polarity, acidity, and ability to form hydrogen bonds with 

hydrogen bond donors are the most important variables for the removal of lignin in the deep 

eutectic solvent pretreatment of lignocellulosic biomass.  

 To compete with petroleum-based biorefineries with years of development and 

implementation, prospective lignocellulosic biorefineries must aim to optimize all aspects of their 

operations. To this end, Karlsson et al. have employed a chemometric experimental design strategy 

to investigate the dependence of lignin properties on the factors of their novel biorefinery strategy 

previously reported [202] [406]. Lignin properties are determined with HSQC, 31P NMR and 13C 

NMR spectroscopies, SEC, differential scanning calorimetry, X-ray diffraction, and wet chemical 

https://www.sciencedirect.com/science/article/abs/pii/S096085241831767X?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S092666902030279X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0960852420314838
https://pubs.rsc.org/en/content/articlehtml/2021/gc/d1gc04171a
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analysis. They use a DoE approach based on the Box-Behnken design [407] to explore the potential 

for tuning lignin properties for valorization. The MLR method is used to generate models that 

include linear, quadratic and interaction effects for the experimental data of the lignin properties 

(Figure 31). Their approach makes it possible to identify the exact conditions required for targeted 

lignin properties, allowing for selecting priority inter-unit linkages in the lignin product. This result 

demonstrates the functionality and power of chemometric experimental design approaches for 

biorefinery research and development. 

 

Figure 31. Schematic representation of the chemometric study setup using experimental design to 

create a multivariate model for a novel biorefinery strategy to identify the optimal conditions for 

targeted lignin properties. Reproduced from Scheme 2 of Karlsson et al. [202]. 

Computational studies allow for insights into systems that are out of reach of the current 

field of analytical chemistry at numerous length and time scales. Computational chemistry can 

assist in the prediction of the molecular structure and interactions occurring within the plant cell 

wall, or in the different stages of processing for valorization. It enables the identification and/or 

prediction of structure-property relationships, potentially providing key insights into the 

valorization process. It is critical to keep in mind that while computational chemistry and/or 

molecular modeling studies can provide valuable information on real systems, they are based on 

https://pubs.rsc.org/en/content/articlehtml/2021/gc/d1gc04171a
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models and the results are heavily dependent on how these models are generated. Basing models 

on experimentally determined data is important for coming to valid conclusions using a modeling 

approach. Combining chemometrics, chemoinformatics, and molecular modeling can facilitate the 

rapid and accurate production of structural models that represent real systems. As these methods 

and their integration progresses, we are likely to see accelerated advancements in our 

understanding of complex materials like lignocellulosic biomass.  

Li et al. used a chemometric/cheminformatic approach for building a database of complex 

lignin structures and the prediction of thermochemical properties of lignin pyrolysis. A database 

of 4100 lignin related molecules and radicals was developed using the automated Rule Input 

Network Generator (RING) [408] [409]. The simplified molecular-input line-entry system 

(SMILES) notation was used to decode unique molecular lignin species and then convert them to 

initial 3D coordinates within OpenBabel and RDKit. Force field optimization and density-

functional theory geometry optimizations were performed on specific low-energy molecules. After 

population of the database, PCA was employed for dimensionality reduction and to transform the 

groups into independent orthogonal PCA vectors using Scikit-learn, a machine learning toolkit 

[410]. The thermodynamic properties of the species were calculated using the Python Multiscale 

Thermochemistry Toolbox (pMuTT) [411]. A group additivity model following the Cohen and 

Benson’s scheme [412] was used, and the group information was analyzed in the Python group 

additivity (pGrAdd) software developed by their group. They also introduced weak interactions 

such as hydrogen bonds and local steric effects to the group additivity-principal component 

analysis model using the SMARTS description. Their work demonstrated a computational 

framework of multiple chemometric and chemoinformatic techniques, tools for building a database 

of complex lignin structures, and accurate prediction of thermochemical properties of lignin 

pyrolysis products (Figure 32). This powerful example of fusing chemometric and 

chemoinformatic techniques illustrates the broad functionality of combining methods for real-

world applications.   

https://pubs.acs.org/doi/abs/10.1021/acssuschemeng.0c08856?casa_token=DCBjz0_YFAUAAAAA:lPKYYOA4UVtxFMCNryUkjiH3KV92vFfTvY9-lHx4ANVg3ykKgttOE6BZYcUc1oBzus0ouOeYOooMeDQ
https://github.com/VlachosGroup/PythonGroupAdditivity
https://github.com/VlachosGroup/PythonGroupAdditivity
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Figure 32. Schematic of the cheminformatic approach of a computational framework for database 

generation and group additivity (GA) model training. G09 is Gaussian 09 software, G4 refers to 

the Gaussian-4 theory level, and PCA refers to principal component analysis. Reproduced from 

Figure 2 of Li et al. [409]. 

Sattari et al. [413] introduced a chemometric/cheminformatic approach for identifying the 

reaction networks of complex mixtures with convoluted reaction chemistry using model 

compounds. The authors have shown the practicality of their approach for the identification of 

pseudocomponents using self-modeling multivariate curve resolution (a nonnegative matrix 

factorization method) and Bayesian hierarchical clustering. After pseudocomponent identification, 

Bayesian networks were used to detect directed pathways between the components and thus 

produce a proposed reaction mechanism. To validate, the researchers used a hydrous pyrolysis 

process with cellulose and lignin model compounds as feeds to hypothetic reaction mechanisms 

that were consistent with the known chemistry of the feedstocks. They employed data 

preprocessing such as baseline and background correction, smoothing, and PCA, for additional 

noise removal. A unique aspect of their work was the use of data fusion (Figure 33) between FT-

IR and 1H NMR spectra, as the data source for their approach. Additional data preprocessing 

through normalizing and variable selection was required. This work validated their method for 

identifying the reaction networks of complex mixtures and showed that the fusion of spectroscopic 

data can lead to better estimates more consistent with the known chemistry. Their data-driven 

https://pubs.acs.org/doi/abs/10.1021/acssuschemeng.0c08856?casa_token=DCBjz0_YFAUAAAAA:lPKYYOA4UVtxFMCNryUkjiH3KV92vFfTvY9-lHx4ANVg3ykKgttOE6BZYcUc1oBzus0ouOeYOooMeDQ
https://pubs.acs.org/doi/pdf/10.1021/acs.iecr.0c01592
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approach lowered the barrier of entry for the development of reaction networks because less expert 

knowledge was required than is commonly the case in analytical characterization. The approach 

also offered potential for computer process control applications. It would be important to highlight 

the crossover and smooth synthesis of chemometric and chemoinformatic approaches in this paper, 

as we believe strategies like this would become more common in the years to come.  

 

Figure 33. Data fusion scheme of FT-IR and 1H NMR spectroscopic data using scaling and variable 

selection. Reproduced from Figure 3 of Sattari et al. [413]. 

In the context of polymer science, the glass transition is a temperature region where the 

mechanical properties of amorphous and semi-crystalline polymers are observed to change 

significantly [414]. Clearly, this is an important polymer property, yet this phenomenon is still not 

completely understood. The collective motion of many repeat units, known as segmental motion, 

is important for understanding the glass transition of polymers. Vural et al. have combined 

chemometrics and molecular dynamics simulations to investigate the segmental relaxation of 

lignin, which is the dynamical process that leads to glass transition [415]. They construct lignin 

models based on the 2D NMR spectra of vanilla stem lignin and use PCA of the collective motions 

of the molecules during the simulations to gain insights into the molecular mechanisms behind the 

glass transition. The results show that below the glass transition lignin has more internal and 

localized motions. In contrast, above the glass transition segmental motions of 3-5 monomers 

dominate, increasing chain mobility. Overall, the authors conclude that despite the high 

heterogeneity of lignin, the temperature dependence of lignin relaxation time is relatable to that of 

more simple polymers in terms of its Arrhenius behavior above and below glass transition. They 

https://pubs.acs.org/doi/pdf/10.1021/acs.iecr.0c01592
https://pubs.rsc.org/en/content/articlehtml/2018/cp/c8cp03144d
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propose that these insights could be valuable when considering approaches for processing biomass 

at lower temperatures and cost.  

5.7 Summary, Perspectives, and Future Outlook 

While modern biorefineries appear closer to realization, there is no shortage of challenges 

to overcome and no firm consensus on the most favorable valorization pathway. Despite this, it is 

universally agreed that faster means of characterizing and analyzing lignocellulosic biomass will 

only expedite the shift to a global sustainable bioeconomy. Chemometrics offers a diverse toolbox 

of approaches that have been comprehensively applied. In this paper, besides the general 

characteristics of lignocellulosic biomass, we have discussed the challenges surrounding the 

efficient utilization of biomass resources. In particular, we have focused on lignin, as its structure 

and interactions within the plant cell wall are considered the key obstacle to the efficient isolation 

of the three main components. Lignin’s complex, variable, and unresolved structure leaves many 

opportunities for innovation before the resource can be utilized efficiently. Much of our current 

understanding of lignocellulosic biomass and lignin has been determined through classical 

laborious wet chemistry approaches. Without diminishing the value that they have provided (and 

continue to provide), it can be said that these approaches are often costly, time-consuming, 

destructive and provide only specific/limited information. Many tedious classical techniques can 

be bypassed using high-throughput approaches combined with chemometrics, rapidly expanding 

the opportunities for larger scale investigations and screening of lignocellulosic material. Figure 

34 shows the percent of publications and patents related to lignin, chemometrics, and their 

combination, per year, relative to their respective total for last ~20 years. As one can see, 

chemometrics and lignin are an expanding field despite the minor reduction in lignin specific 

publications in the last two years.  Due to the broad relevance of chemometrics for a variety of 

problems, it is difficult to generically summarize the field. We will attempt to approach this task 

by categories below.  
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Figure 34. Relative number of scientific publication results on “lignin”, “chemometrics” and 

“lignin, chemometrics” to their total respective publications in the last 22 years according to 

Google Scholar, searched on August 4th, 2022.  

Experimental design is a major pillar of chemometrics, and these techniques should be kept 

in mind before one sets out to explore a hypothesis that requires large and complex data sets. 

Formal statistical design approaches can save time and reduce costs and should be especially useful 

for multivariate calibration approaches where high-quality models are desired. With that said, 

formal chemometric experimental design approaches have not been commonly observed in the 

literature explored in this review. While practical constraints such as limited time or sample size 

can be an obstacle, we encourage researchers to consider implementing these techniques where 

appropriate. While they add additional steps, they may end up saving time and/or increase the 

quality of the results, especially as the level of complexity of the application increases. 

Data preprocessing strategies can clean, edit, reduce, and transform raw data. These 

methods allow for a better interpretation of data for analytical chemists and facilitate multivariate 

data analysis methods, which are sometimes hindered or incompatible with untreated data. Data 

preprocessing of some form or another is almost always used for data analysis and there are a 

variety of approaches available. There is no single preprocessing method that will work for every 

scenario so it is key to evaluate the different options and, where possible, one can consider rules 

of thumb as guides. It could be tempting to just select a preprocessing step from a dropdown menu 
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in a chemometric software without consideration of the theory behind the technique; however, we 

urge that a proper grasp of a technique prior to implementation is essential in order to understand 

the implications that the preprocessing may have. The selection of these preprocessing methods 

will directly impact how the data is analysed and the accuracy and performance of any models 

developed from the pre-processed data. Therefore, these strategies should be carefully considered 

and evaluated for each application. Since there has been an extensive use and evaluation of 

preprocessing strategies demonstrated in the literature, as apparent in this review, a good start can 

be to refer to previous studies with similar systems/objectives to get a general idea of suitable 

preprocessing strategies. We hope that the summary tables provided in Appendix B offer a 

straightforward means to narrow down the relevant literature. The area of data preprocessing is 

fairly mature, and there is not likely going to be a revolution in techniques. However, it appears 

that data fusion approaches may be a new frontier of data preprocessing. The fusing of 

complementary data sets from multiple data types and/or processing strategies may yield improved 

performance.  

Multivariate data analysis techniques, which are the core of chemometrics offer both 

exploratory analysis and regression modeling. Lignocellulosic biomass is by nature information-

dense, with a variety of components, bonds, and supramolecular interactions. To make things more 

difficult, lignocellulosic materials are also highly variable with both abiotic and biotic factors 

impacting the molecular scale composition and structure of the material. Multivariate data analysis 

approaches are particularly suitable for this type of problem which could potentially involve 

enormous quantities of samples and variables. Figure 35 shows the relative frequency of the main 

chemometric multivariate data analysis approaches for each respective category as used in this 

review based on the roughly 180 studies identified. One can see that both PCA and PLS were used 

in roughly 54% of the studies, while all other chemometric approaches together were used in just 

61% of the studies, thus, demonstrating the ubiquity of these two fundamental chemometric tools 

in this field. In stark contrast to PLS, applications of PCR have lagged significantly.  
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Figure 35. Percentage of occurrences of chemometric methods applied in the studies identified in 

this review, respective to their category of application. Note that multiple chemometric methods 

may have been used for an individual study and thus the percentages do not equal one hundred. 

The “Other” techniques include but are not limited to any multivariate data analysis approaches 

such linear regression, MLR, MCR, cluster analysis, discriminant analysis, alternative algorithms 

and neural networks. Data preprocessing, experimental design and validation methods were not 

considered in these calculations.  

Exploratory analysis using multivariate techniques can support the identification and 

recognition of unknown patterns in large, complicated data sets. The PCA can provide an unbiased 

first look at data by simultaneously assessing all variables, allowing for the detection of unknown 

patterns, revealing subtle structural differences and reducing instances of confirmation bias. The 

graphical representations of data in the using PCA offers a human interpretation of the vast 

amounts of complex information.   

Regression modeling allows for the accelerated characterization of biomass by correlating 

objects and their observed features to object properties. A large portion of the literature regarding 

chemometrics applied to lignocellulosic biomass involves the calibration of models for making 
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predictions. This is likely because the tedious traditional analytical approaches, such as wet 

chemical analysis, can take hours to days for just a few samples, which is not a feasible means of 

screening such variable feedstocks as lignocellulosic biomass. Thus, building models that can 

rapidly predict chemical properties will be instrumental for managing the variable nature of 

lignocellulosic feedstocks. A note of caution here would be that calibration models often face 

challenges with prediction outside of the samples used for calibration. To account for this, robust 

models will have to be generated that can encompass the wide variability of these feedstocks. To 

meet this goal, more advanced regression models might be required. Figure 35 clearly 

demonstrates the prevalence of PLS for regression in the literature but we also see chemometric 

regression techniques shifting to more sophisticated machine learning algorithms, and this will 

likely improve prediction performance for modelling very complex systems. Yet, it is important 

to understand the objectives of an approach prior to application. For example, the more classical 

chemometric regression algorithms, such as PLS and PCR, can be favourable for interpretation 

because machine learning algorithms can be challenging to understand, especially as the 

complexity of the models increase. Additionally, a cornerstone of chemometric analysis is the 

concept of parsimonious modelling – keep in mind that the simplest model with the best 

performance is preferred. Another area for of interest for the rapid screening of feedstocks are 

portable instruments, such as portable IR spectroscopy. Handheld devices with internal algorithms 

can be used for the rapid prediction of feedstock properties, which could be a very useful 

development. On another note, there is a significant value of chemometrics for correlating complex 

genetic information with biomass properties to support plant breeding programs producing optimal 

feedstocks for biorefining purposes. Also, desired feedstock traits for efficient processing could 

be segregated at the forest level prior to their entrance to the biorefinery. 

The primary use of chemometrics for the studies of lignocellulosic biomass has been for 

vibrational spectroscopic data through multivariate modelling of spectral features and biomass 

properties, such as wet chemical data on lignin, cellulose, and hemicellulose content (Figure 36). 

The literature indicates these approaches are generally fairly successful in prediction accuracy and 

performance. Yet, these techniques sometimes have difficulty predicting some of the more minor 

components of biomass. Future efforts may look to develop models that can predict major and 

minor components with similar accuracy. When it comes to vibrational spectroscopy and 
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chemometrics, IR spectroscopy is the frontier of this area, but Raman is becoming increasingly 

popular. Both have seen success with chemometric approaches. Challenges with fluorescence, 

overlapping bands, and the misconception that it provides only equivalent information to IR 

spectra are responsible for the lagging applications of chemometrics and Raman spectroscopy for 

studying lignocellulosic biomass. Innovations in instrumentation of Raman in addition to 

improved data analysis approaches have changed this, and recently we have seen more examples 

of chemometrics techniques being applied. Additionally, vibrational microspectroscopy, which 

allows spatially resolved in situ characterization and imaging of lignocellulosic material over 

microscopic dimensions, has emerged as an approach well suited to chemometric analysis because 

of the large data sets produced in the form of hyperspectral datacubes. 

 

Figure 36. Distribution of methods used in combination with chemometrics in investigations 

related to lignocellulosic biomass based on the one hundred and eighty-three studies identified in 

this paper.  

NMR spectroscopy may be considered the most comprehensive lignin analytical technique 

with high resolution and unmatched detail. The detailed information that NMR provides also 

results in large complex data sets, which are known to be suitable for chemometric approaches. 

Despite this, our review of lignocellulosic biomass literature found that applications of 

chemometrics combined with NMR are trailing compared to other analytical techniques such as 
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vibrational spectroscopy or MS. It could be speculated that reduced observations of chemometric 

NMR studies is the result of the fact that NMR is more expensive and time consuming. Hence, 

NMR is not necessarily suitable for rapid characterization of samples in the same way that 

vibrational spectroscopic techniques are, and this may be why there are less chemometric 

approaches. Yet, recently approaches that utilize low-field benchtop NMR instruments may lower 

the barrier of entry for NMR analysis by reducing cost, maintenance, and analysis time. These 

approaches may change the nature of future NMR investigations and open up possibilities for high-

throughput NMR analysis. Other reviews including this one indicate a gap in chemometric 

applications to NMR analysis of lignocellulosic biomass but speculate that this disparity may be 

addressed in the near future. Given the excellent detail that NMR can provide on lignocellulosic 

samples, we aim to encourage more of these applications.  

The MS technique has had many successful applications of chemometric approaches to 

investigate lignocellulosic biomass. The Py-GC/MS is one of the main techniques and has been 

widely used to characterize biomass because of its rapid and sensitive nature with simple sample 

preparation and quality chemical fingerprints. When analysing large GC-MS data sets, however, 

the manual curation of peak lists and settlement of matches makes the data analysis process long 

and requires expert knowledge or a moderate level training [373]. Therefore, chemometric 

approaches for data processing pipelines may be key for the successful analysis of large complex 

lignocellulosic data sets. The PARADISe software for multiway modeling of GC-MS data sets or 

similar approaches could be quite practical for this type of application. Since Py-GC/MS can 

provide rapid, sensitive, and reproducible compositional analysis of lignocellulosic biomass, 

including the relative proportions of S/G/H lignin monomer units, it is particularly suitable for the 

analysis of biomass feedstocks. We expect to see more research and development of chemometric 

techniques for Py-GC/MS data analysis in the near future.  

Occasionally, chemometrics can be inaccurately described as techniques for analysing 

spectroscopic data, potentially suggesting that they are limited to this alone; however, they can be 

applied to a wide variety of data types. Chemometrics have recently been demonstrated to predict 

molecular weights (conventionally determined using SEC) using vibrational spectroscopy. 

Chemometrics have been used for optimizing pretreatment conditions for biomass processing, 

including to select for desired lignin inter-unit linkages in the resulting lignin product, which is of 
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great significance for producing lignins with targeted properties [202]. They have been combined 

with the kinetic analysis of thermogravimetric data to understand the impact of chemical 

pretreatments on the main components of biomass [416] [390]. Correlations between parameters 

of battery expanders and lignin properties have been analysed for electrical storage [397]. The 

feedstock variability of agricultural biomass has been investigated using a variety of parameters 

that influence biomass processing in order to maximize end use application [399]. The 

relationships among lignin content, composition, and other parameters have been investigated for 

their role in drought resistance [48]. The variety of examples listed here demonstrate the broad 

applicability of these techniques, which have endless potential.  

Computational chemistry and molecular modeling have become prominent disciplines for 

investigating the structure-property relationships of systems at multiple length and time scales 

[417]. Molecular modeling provides opportunities for the investigation of certain systems that are 

not yet (and may never be) possible under experimental conditions. It can be a rapid and cost-

effective technique for the testing of scientific hypotheses and drawing meaningful conclusions 

about real systems. Molecular modeling of lignocellulosic biomass has already proven its ability 

to assist in the understanding of lignin’s structure and interactions with the other plant cell wall 

components [418]. As the field grows, multiscale modeling is likely to play a key role in the 

research and development of lignocellulosic biomass. We would like to highlight the opportunity 

to see more combinations of computational chemistry approaches with chemometrics to solve real 

world problems. A few approaches of this nature have been identified in this review, such as the 

investigation of the glass transition temperature using molecular dynamics simulation and PCA, 

which reveals that lignin relaxation time is relatable to that of less complex polymers in terms of 

its Arrhenius behavior above and below glass transition [415]. Another work has investigated the 

thermochemistry of lignin structures on a molecular level using density function theory, 

chemometrics, and chemoinformatics [409].   

5.8 Conclusions 

 The transition from conventional energy and materials sources to more sustainable 

alternatives is considered a top priority. Nonetheless, despite the wide variety of renewable 

technologies that have been introduced, no single one has dominated markets to this point due to 
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the unique challenges that are faced by each technology. Lignocellulosic biomass has a distinctive 

position as a widely accessible feedstock that has been underutilized and undervalued for decades. 

Recently, lignocellulosic biomass has caught more interest as the attitude towards lignin has 

transitioned from a low-value waste stream to a valuable material whose chemistry and interactions 

affect the value of the entire feedstock, as well as its own value as a renewable source of carbon 

with potential for a wide range of value-added applications.  

Like many new technologies, lignocellulosic biomass faces many challenges that have 

hindered widespread utilization to date. Specifically, its complex chemistry and variability are 

barriers to its full potential. Research of lignocellulosic biomass and its components has 

traditionally relied on time-consuming, costly, and information limited laboratory techniques; 

however, the field is trending towards more advanced approaches. In particular, advancements in 

spectroscopic techniques have transformed the field with more detailed and higher volumes of 

information.  

Chemometric approaches offer sophisticated approaches for handling, interpreting, 

analyzing, and identifying patterns in data. These techniques have gained popularity as researchers 

have begun to identify the utility that they provide. Whether applied to analytical data on the 

research scale for key insights on a plant’s chemistry in relationship to its observed properties, or 

the industrial scale for rapid online process monitoring of physical/chemical properties of a 

biomass feedstock, chemometrics are very powerful tools for the future of the field. In addition to 

analytical approaches, a newer computational space has emerged for the tackling of chemistry 

problems, so-called chemoinformatics. Chemoinformatics expands the chemical space, provides 

platforms for knowledge storage, and offers tools and algorithms for a wide variety of chemical 

problems. Challenging problems require innovative solutions, and our understanding of 

lignocellulosic biomass will only continue to develop in parallel with chemometric and 

chemoinformatic methods. We hope that this review will stimulate enthusiasm on this topic 

leading to more efficient research and efficient utilization of the resource.   
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Chapter 6: Assessing the impact of drought stress on 

the composition of Douglas-fir wood and the structure 

of softwood lignin for valorization 

6.1 Introduction 

Rising concerns of anthropogenic contributions to climate change accompanied by 

mounting global demand for secure energy, materials, and chemical sources have placed pressure 

on researchers to evaluate contemporary alternatives to conventional petroleum-based feedstocks. 

Lignocellulosic feedstocks are widely available, renewable, and in theory sustainable, and 

therefore, have garnered interest as a promising fungible substitute.  

Lignocellulosic biomass can essentially be considered dry plant material composed 

primarily of three main biopolymers, cellulose (35-50%), hemicellulose (20-35%), and lignin (14-

26%), which are organized together in highly recalcitrant and complex 3D supramolecular 

structures in the plant cell wall (See Figure 37) [419][420]. Plant cell walls are generally 

categorized as either primary or secondary cell walls, where the former is established early on and 

provides basic support and protection while the later is formed later in development and confers 

strength to the walls [421]. At the microscopic scale, the secondary cell wall components form 

structures known as macrofibrils. The macrofibrils are ordered structures formed by groups of 

crystalline cellulose microfibrils coated with amorphous cellulose and hemicelluloses. Some lignin 

is closely associated with both hemicellulose and some cellulose, likely localized to the surface 

[422]. Lignin is a complex amorphous polymer composed predominantly of three 4-

hydroxyphenylpropanoids distinct in their number of methoxy groups on the 3 and 5 position on 

their phenyl ring [164]. These are known as p-coumaryl  (4-hydroxycinnamyl), coniferyl (3-

methoxy-4-hydroxycinnamyl), and sinapyl (3,5-dimethoxy-4-hydroxycinnamyl) alcohol, or as p-

hydroxyphenyl (H), guaiacyl (G), and syringyl (S) units, respectively, in the context of the lignin 

polymer. [164] [165] Lignin provides strength, rigidity, and hydrophobicity to the secondary plant 

cell walls [423] and is also commonly recognized as a main or the main contributor to the 

recalcitrant nature of lignocellulosic biomass to industrial processing [424]. As a result, an entire 

field of multidisciplinary research surrounding lignin has developed over many years, and in 
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particular, the field has shown rising momentum in the last 10-20 years as demonstrated by the 

increased number of lignin related academic research papers and patents [11] [425] [426] [81] 

[427]. The scope of this field is broad and encompasses multiple length and time scales ranging 

from understanding the genetic regulatory networks involved in lignin biosynthesis, molecular 

scale investigations of lignin’s polymeric structure and interactions within the plant cell wall, and 

targeted engineering of lignin-based products with desired properties for specific applications. A 

common goal of these efforts is to better understand lignin to more efficiently utilize 

lignocellulosic biomass. In recent years, the term biorefinery has gained some traction although 

not well defined [162]. Here, we consider a biorefinery to mean any integrated industrial 

biocomplex that utilizes any biomass feedstock(s) to produce products such as bio-based 

chemicals, materials, or fuels [9]. The concept of a biorefinery is not especially novel, however, 

the interpretation has shifted slightly in recent years. While previous definitions may not have 

included a focus on effectively utilizing lignin process streams, contemporary visions consider 

lignin valorization as vital for economic viability of the industry [161]. 
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Figure 37. A representation of the molecular architecture of the softwood macrofibrils based on a 

recently proposed model by Terrett et al. [422]. Where a) Cellulose is a semicrystalline linear 

polymer solely composed of D-glucopyranose (glucose) units linked via the 𝛽 − (1 →

4) −glycosidic bonds [24] [428]. b) Hemicellulose is an amorphous branched polymer composed 

of pentoses (D-xylose, D-arabinose), hexoses (D-mannose, D-glucose, D-galactose) and 

occasionally uronic acids and acetyl moieties as side chain groups [24] [25]. c) Lignin is a complex 

amorphous phenolic polymer composed predominantly of three 4-hydroxyphenylpropanoids 

which are distinct in their number of methoxy groups on the 3 and 5 position on their phenyl ring 

[164].  

An inherent challenge of lignin science and engineering relates to its natural variability in 

composition related to its low degree of order and high heterogeneity of structure [429]. A greater 

fundamental understanding of the nature of lignin will support the effective valorization of lignin 

and more efficient utilization of lignocellulosic biomass. The phenylpropanoid biosynthetic 

pathway responsible for producing lignin and other hydrophobic polymers in the plant cell wall 

determines the composition and structure of lignin [423]. Differences in lignin content and its 

composition, such as relative proportions of its three main monomer units, linkage types, or 

functional groups, may significantly impact the structure and interactions occurring in the plant 

cell wall. Consequently, the physical properties of plants are also determined by the synthesis and 
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deposition of lignin in the plant cell wall [423]. Thus, intensive research efforts have been 

dedicated to its biosynthesis, a detailed description of which can be found elsewhere [430] [431].  

A key interdisciplinary overlap occurs here as researchers explore and connect plant 

biology and its evolution with plant cell wall chemistry and the resulting implications for 

bioengineering strategies. A successful next generation bioeconomy will be best facilitated by a 

balance between selective breeding strategies for plants that are viable, productive, and tolerant, 

while also retaining desired compositional traits for processing into valuable products (See Figure 

38). Both selective breeding and genetic modification are currently being utilized and investigated 

for producing plants with desired traits. Efforts have traditionally aimed at reducing lignin content 

in order to decrease costly and environmentally harmful delignification for pulp and paper 

production, and to increase the efficiency of enzymatic conversion of biomass into fermentable 

sugars in biofuel production [432]. Recent efforts have included targeted modification of lignins 

structure by altered expression of lignin biosynthesis and transcription factor genes to produce 

lignins of altered composition, including encouraging the incorporation of alternative lignin 

monomers units into the polymeric structures [424].  
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Figure 38. Connecting selective breeding approaches and their value for producing tailored 

feedstocks for pulp and paper/modern biorefinery processes and some potential applications for 

biomass-based feedstocks. Figure inspiration from Figure 3 in [433]. 

 Of course, environmental conditions can have major implications for plant-based 

feedstocks. Drought is one of the most commonly occurring plant stress agents, causing more 

annual loss in crop yield than all pathogens combined [30]. Plants have developed a variety of 

complex, variable, and not well understood adaptations in response to drought stress. These 

adaptations include altering root architecture, leaf rolling, stomata closure, enhanced structural 

support, and tissue specific lignification. These physical changes are accomplished through 

complex and intermingling metabolic mechanisms such as gene regulation, transcription factor 

expression, and hormone and reactive oxygen species (ROS) signaling. Regulation of lignin 

biosynthesis appears to be associated with (or even a key component of) drought tolerance 

mechanisms in some plants [52]. Lignin’s capacity to provide mechanical strength and pathogen 

resistance may provide extra protection to vulnerable plants under drought stress, additionally, its 

hydrophobic properties are thought to reduce the permeability of the xylem, therefore aiding the 

plant with water and nutrient retention and transport [434] [435]. Further understanding the 

mechanisms of drought tolerance in lignocellulosic feedstocks can facilitate breeding strategies 
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that leverage these processes for a variety of objectives. In particular, lignin composition may be 

a major variable with bidirectional implications for both plant drought tolerance and industrial 

processing of lignocellulosic biomass.  

 It is generally understood that lignin accumulation is positively correlated with drought 

tolerance and many studies covering a variety of plant species have observed this [435] [432]. It 

must be noted that not all studies find agreement with this correlation, and this may be a 

consequence of the variety of species, tissues, treatment regimes and study methodologies within 

the literature [47]. To a lesser extent, lignin composition has been evaluated in response to drought 

stress to determine if there is a correlation between lignin structural features and drought response 

mechanisms [436] [39] [42]. Moura-Sobczak et al.  [39] found variation in S/G ratio in Eucalyptus 

globulus Labill and two hybrids under drought stress with contradictory changes in the apical stem 

versus the basal regions. dos Santos et al.  [42]  analysed soluble lignin oligomers in two sugarcane 

genotypes under water stress and found that the frequency of different oligomers was affected by 

water deficit. Lima et al. [48] related monomer contents of trees in a tropical semiarid climate to 

wood traits and embolism and found a positive correlation with S/G ratio and leaf life span. Tu et 

al.  [50] investigated lignin-mediated drought resistance in grapevines using transgenic plants with 

overexpression of a previously characterized bZIP gene, VlbZIP30, known to enhance osmotic 

stress resistance during the seedling stages. They found the transgenic plants had increased lignin 

accumulation, mainly guaiacyl monomer content, compared to wildtype plants, indicating that 

guaiacyl units may serve a particular function in enhancing drought tolerance as compared to the 

other monomer units. Zhao et al. [59] isolated the full-length cDNA of a caffeoyl-CoA O-

methyltransferase gene (CCoAOMT) from P. ostii, an important enzyme for lignin biosynthesis 

that may play a role in abiotic stress tolerance. They used CCoAOMT overexpressed transgenic 

tobacco plants to study the drought stress response mechanism associated with this enzyme and 

found increased lignin content in roots, stem, and leaves compared to wildtype controls. Similar 

to Tu et al.  [50] , the most dramatic change occurred in the content of guaiacyl units, thus, they 

speculated that the higher guaiacyl lignin was likely associated with drought stress tolerance. Wen 

et al. [61] isolated a transcriptional factor gene, MsWRKY11, generally considered to be stress-

inducible, and investigated its potential mechanism in drought tolerance in alfalfa using transgenic 

overexpressed MsWRKY11 or dominantly repressed MsWRKY11 plants. They found that the 
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MsWRKY11 overexpressed plants had enhanced water efficiency and drought tolerance, with 

increased lignin contents. In contrast with Tu et al. [50] and Zhao et al.  [59], Wen et al. found that 

syringyl monomer units showed the largest increase under drought conditions. While several 

studies considered lignin composition as it relates to drought response, most limited their scope to 

the determination of the relative proportion of lignin monomer units and did not consider more 

detailed structural features such as inter-unit linkages or functional groups, which may be key 

indicators for industrial processing. Additionally, to the best of our knowledge there are no 

previous studies that investigated changes lignin content and structure of Douglas-fir in response 

to drought stress conditions. 

Douglas-fir is one of the fastest growing conifers and one of the most frequently planted 

species in North America with a very broad latitudinal range [437] [438]. Additionally, it is 

reported to have one of the highest lignin contents in conifer species, which is sometimes credited 

with its medium to high height and good drought tolerance [439]. Softwoods have higher lignin 

content than hardwoods [440], and conveniently, structural differences between softwood lignins 

are reported to be minor as compared to different hardwood lignin’s [441]. Therefore, findings 

regarding altered lignin biosynthesis in response to drought stress for Douglas-fir may also provide 

a basis for future investigations of other softwood species. Herein, we sought to assess the impact 

of drought-induced abiotic stress on the composition of lignin of two years old Douglas-fir full 

siblings grown in drought and control conditions for one year.  

 The convoluted nature of the plant cell wall components accompanied with the innate 

complexity and heterogenous composition of lignin make the analysis of lignin challenging. Lignin 

analysis also must be understood contextually based on two distinct classes, native and technical 

lignin. This is because in situ lignin, which is lignin in its native state as it resides inside the plant 

cell wall, can be very different from technical lignin, which is lignin that has been extracted from 

the plant cell wall. A range of compositional changes can occur in the lignin structure during the 

extraction processes that depend on the mechanism and severity of the extraction process. 

Resulting from the challenges of analysing lignin in situ, features of technical lignin are often used 

to make inferences regarding the native lignin structure. If the extraction process used to isolate 

the corresponding technical lignin from the plant cell wall is mild enough and the chemical 

mechanism by which the lignin is released from the plant cell wall is taken into consideration, this 
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can be a practical approach. A variety of analytical approaches for the analysis of native and 

technical lignin are available, however, there is no single technique that can provide the complete 

structural picture of lignin. Thus, a range of techniques are employed to target different structural 

features or for different levels of resolution. Analytical characterization of lignin includes wet 

chemical approaches, chromatography, spectrometry and spectroscopy. Wet chemical analysis can 

be effective for quantifying important structural features but are often too specific, indirect, 

tedious, time-consuming, degradative, and requiring of larger sample amounts and/or hazardous 

and environmentally harmful chemicals. Thus, higher through-put techniques such as spectroscopy 

are becoming more popular. More recently, high throughput techniques have been combined with 

chemometrics – the field of applying mathematical and statistical tools to multivariate problems 

in chemistry – to develop models to support the rapid prediction of biomass composition [183]. 

Here we used a variety of analytical approaches to characterize the wood samples, focusing on 

lignins content and structure. Relative abundance of cellulose, hemicellulose, and lignin in the 

wood were determined gravimetrically using a detergent fibre method. Lignin was extracted using 

a mild modified organic solvent method and further analysed for compositional features. 

Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR FT-IR) was used for 

qualitative analysis of the wood and lignin samples. Pyrolysis Gas Chromatography-Mass 

Spectrometry (Py-GC/MS) of wood and lignin samples was used to detect compositional 

differences between samples. Quantitative 31P Nuclear Magnetic Resonance spectroscopy (31P 

NMR), a hybrid wet chemical and spectroscopy approach, was used for the quantitative 

determination of different lignin hydroxyl functional groups. Semi-quantitative Solid-state Cross 

Polarization/Magic Angle Spinning 13C Nuclear Magnetic Resonance spectroscopy (multiCP 

NMR) was used to estimate both lignin content in wood as well as quantify other structural features 

of the lignin.  

6.2 Methods 

6.2.1 Plant materials, growth conditions, and treatments 

Douglas-fir seed [Pseudotsuga menziesii var. menziesii (Mirb.) Franco] was germinated in 

January 2018. The seed originated from full-sibling families from the BC Ministry of Forests 

Douglas-fir breeding program. The seed was grown for one year in peat, vermiculite, and pearlite 
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at 4:1:1 mixture in 112-cell polystyrene foam blocks in a greenhouse with conditions between 0 

and 30oC, and watered with an overhead sprinkler as needed. In May 2019, 24-cell polystyrene 

foam blocks were set up to assess the amount of water needed and explore directions for wood and 

lignin analysis. The blocks were placed in a polycarbonate shadehouse with plastic roll up sides, 

and temperature was kept between 0 and 45℃. The study consisted of a random selection of trees 

taken from all the families in two water treatments of 30%, and 10% soil moisture. The polystyrene 

blocks had repeated watering triggered at the target weight corresponding to their 30%, and 10% 

soil moisture level. The target weight for each block was determined by the weights of dry soil 

and polystyrene block, plus the weight of the water to reach to 10% and 30% soil moisture targets. 

When the target weight was reached, water was pumped into each cell using a bottletop dispenser 

at 75 ml for the control trees, and 50 ml for drought trees. Five trees from both drought and control 

groups were randomly selected and sampled when the trees became dormant that year. The wood 

was sampled carefully shaving wood with a scalpel from the outer ring only (2019), and then the 

wood samples were combined within their respective treatment group to produce enough sample 

for further analysis. The stem sampling process is shown in Figure 39. Wood from a naturally 

regenerated western redcedar (Thuja plicata Donn) approximately 70 years old, sampled with a 12 

mm increment borer at 1.3 meters height, was also used along with the Douglas-fir control and 

drought samples.  
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Figure 39. Schematic of the procedure for sampling the outer-rings of Douglas-fir seedling stems.  
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6.2.2 Determination of cell wall contents 

The detergent fibre method is a sequential neutral detergent fibre (NDF) treatment, acid 

detergent fibre (ADF) treatment, and acid hydrolysis treatment with ashing in a muffle furnace of 

wood samples that facilitates the gravimetric determination of cellulose, hemicellulose, and lignin. 

The method was developed via the works of Goering and Van Soest and of which the full details 

can be found elsewhere [106] [442] [107]. The procedure used in this work are as follows. 0.5 g 

of milled wood dried to 70℃ for each sample was added to 100 ml glass tubes along with boiling 

stones. 100.0 ml of neutral detergent solution and 50 µl of α-amylase to the tubes and vortexed. 

The samples were brought to a boil and allowed to reflux gently for 60 minutes at 95-100℃ on a 

large block heater. After 30 minutes, another 50 µl of α-amylase was added to the tube, vortexed, 

and then returned to the block heater for another 30 minutes of boiling. Vacuum filtration was then 

used to filter the residue from the tubes into crucibles, the boiling stone and all plant material was 

rinsed from the tube with warm water. The residue was then rinsed with 100 ml of hot tap water, 

and then 100 ml of Milli-q water. The crucibles with the residue were then dried at 70℃ overnight 

and weighed. The samples were then transferred quantitatively from the crucible to 50 ml glass 

tubes using 50 ml of the acid detergent solution, ensuring to scrape all sample residue from the 

crucible. The samples were then brought to a slow boil to reflux gently for 60 minutes at 95-100℃ 

on a small block heater (tubes were vortexed at the 30-minute mark). Vacuum filtration was then 

used to filter the residue from the tubes into crucibles exactly as performed after the first reflux 

including the rinsing steps, overnight drying at 70℃ and weighing. The crucibles containing the 

samples were then placed in a disposable beaker and 5 ml of 72% 𝐻2𝑆𝑂4 was added to the crucible 

and allowed to drain for approximately 1 hour. This step was performed three times. After the third 

acid addition drained from the crucible, the crucible was then rinsed with 100 ml of hot tap water, 

and then 100 ml of Milli-q water. Once rinsed the crucible was dried at 70℃ overnight and 

weighed. Finally, the samples were ashed at 500℃ for 3 hours in a muffle furnace, allowed to cool 

in a desiccator, and weighed. Relative weight percent of cellulose, hemicellulose, and lignin were 

then calculated by difference gravimetrically.   
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6.2.3 Modified organosolv lignin extraction 

Lignin was extracted from the wood samples using a modified organosolv extraction 

technique under reflux conditions using the techniques described by da Rosa et al. [443] with the 

objective of obtaining a relatively less altered lignin structure isolated from the plant cell wall. A 

flowchart for the extraction procedure can be found in Figure 40. Around 5 grams of milled wood 

sample were weighed and added to a glass beaker followed by a scoopful of Henger boiling chips 

and 100 mL of hexanes. The beaker was placed in a Velp SER158 Solvent Autoextractor and a 

non-polar extractables method was run. The sample was refluxed in the hexane for five hours to 

remove non-polar extractables from the wood. After refluxing with the hexanes and cooling, the 

sample was vacuum filtered using a #4 filter paper on a Buchner funnel and flask. The filtrate was 

discarded, and the wood retained for further processing. The dried wood and boiling chips were 

then transferred to a 500 mL round bottom flask and 200 mL of a 75% ethanol / 3% sulphuric acid 

solution was added to the flask. The wood is then refluxed in the acid-catalysed solvent solution 

for 24 hours. After 24 hours, the solution was allowed to cool, and the sample was filtered using 

vacuum filtration using a #4 filter paper on a Buchner funnel and flask as done previously. A clear 

dark red lignin rich filtrate solution was retained, and the carbohydrate residue was discarded. The 

ethanol was then allowed to evaporate using a roto-evaporator until the solution is around one-

third its original volume. Chilled Milli-Q water was then added to the solution until it turned cloudy 

with a pinkish-red suspension (around 200-300 mL). The suspension was then filtered using 

vacuum filtration with a #42 filter paper to catch all of the solids. The accumulated solid was then 

washed with Milli-Q water to produce a dark burgundy-pink wet solid with a strong odor. The 

sample paper was then dried on the filter paper in the oven at 70℃ for a minimum if an hour. The 

dry solid light burgundy-pink solid was then gently scraped off the filter paper onto wax paper 

where it was weighed prior to storage.  
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Figure 40. Flowchart for the organic solvent extraction of lignin from wood samples. 

6.2.4 Fourier Transform – Infrared Spectroscopy 

Attenuated Total Reflectance Fourier Transformed Infrared Spectroscopy (ATR FT-IR) 

spectra of lignin samples were taken using a Nicolet 6700 spectrometer in triplicates with 32 scans 

in the mid-infrared range of 4000-650 cm-1 at a resolution of 4 cm-1. Samples were dried to 70℃ 

for 24 hours prior to spectra collection. Background spectrums were collected prior to each sample 

and subsequently subtracted from the next spectrum recorded. To scan samples, a small amount of 

sample was placed on the top plate, ensuring full coverage over the crystal. A pressure arm was 

used to apply uniform force to the samples to ensure better contact with the crystal, the pressure 

was kept consistent between samples.  

6.2.5 Pyrolysis Gas Chromatography – Mass Spectrometry 

 Py-GC/MS data was obtained with ACEM model 9300 system attached to a GC-MS 

system. Briefly, 1.5-2 mg of sample (milled wood/organosolv lignin) were inserted into the 

pyrolysis tubes covered on either end with wool and inserted into the pyrobe. The pyrolysis and 

GC-MS conditions are reported in Table 3 and Table 4, respectively. Both wood and lignin samples 
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were run at a final temperature of 600 and 800°C and in duplicates. A blank run was performed 

prior to the first run and after each sample type (cedar/drought/control).  

Table 3. Pyrolysis conditions. 

Interface Pyroprobe Trap 

Rest temperature 50°C Initial temperature 200°C Rest temperature 50°C 

Initial temperature 100°C Initial time 1 s Desorption 

temperature 

290°C 

Initial time 1 min Ramp rate 20°C /ms Desorption time 2 min 

Ramp rate 0°C /min Final temperature 600/800°C Reactant gas off 

Final temperature 200°C Final time 15 s   

Final time 1 min     

Transfer line temperature 290°C     

Valve oven temperature 290°C     

Table 4. GC-MS conditions.  

Equipment/Parameter Setting 

Column DB-1701 (60m x 0.250mm x 0.25um) 

Column flow He (1.1 mL/min) 

Split ratio 100:1 

Inlet temperature 300°C 

Oven 45°C (1 min) - 290°C (5 min) @ 7°C/min 

Electron impact ionization 70 eV 

Scanning mass range 40-700 m/z 

Transfer line temperature 305°C 

Ion source temperature 230°C 

Quadrupole temperature 150°C 

 

6.2.6 Quantitative 31P Nuclear Magnetic Resonance Spectroscopy 

 The 31P NMR spectra of all lignin samples were acquired in duplicates according to the 

procedures of Meng et al. [145]. Briefly, the procedure involves the solubilization of the substrate 

in an appropriate solvent, the preparation of an internal standard that does not overlap with the 
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signals of the lignin, the phosphitylation of hydroxyl groups via the addition of TMDP, followed 

by the NMR measurement of the sample and some subsequent data processing steps.  

6.2.7 Solid-state Cross Polarization Magic Angle Spinning Nuclear Magnetic 

Resonance Spectroscopy 

 Solid-state 13C NMR spectra [444] [445] were collected on a 9.39 T (nL (
1H) = 400.1 

MHz, nL (
13C) = 100.6 MHz) Bruker AVANCE HD spectrometer equipped with a 4 mm double 

resonance (H-X) magic-angle spinning (MAS) probe. The 13C{1H} multiple-cross polarization 

(mulitCP) experiments were performed using a 4.13 µs π/2 on 1H with a ramped Hartman-Hahn 

match on 13C with TPPM 1H decoupling (gB1/2p=61 kHz). Each sample was acquired using a 5 s 

recycle delay, 1024 co-added transients and a contact time of 1 ms. The number of CP loops used 

in the 13C{1H} multiCP experiments were set to a value of 8 loops with a 1 s repolarization period. 

The π-pulse (echo) performed at the end of the 13C sequence had a pulse length of 8 µs. Samples 

were placed into 4 mm o.d. zirconia rotors and sealed using Kel-F® drive caps. All 13C NMR 

spectra were referenced to the high frequency peak of adamantane at 38.56 ppm and a MAS 

frequency of 12 kHz was employed throughout. 

6.3 Results 

6.3.1 Wet chemical analysis  

The detailed results of the detergent fibre methods can be found in Appendix C. The 

simplified results of the detergent fibre method are shown in Figure 41. Lignin content determined 

using the detergent fibre method were consistent with known lignin content from literature (~24 −

29% for Douglas-fir and ~29 − 33% for western red cedar) [446]. The detergent fibre method for 

determination of wood samples revealed no observable difference in lignin content in drought 

sample (26%) as compared to control sample (26%), indicating that drought stress may not 

significantly alter acid-insoluble lignin content in Douglas-fir wood. The lignin and cellulose 

contents were the most unchanged of the different components evaluated, while the largest 

difference was that of the extractives and hemicellulose. Extractives are a solubility class 

encompassing a variety of chemical compounds; thus, extractives content will vary depending on 

the solvent used. Extractives include nonpolar compounds (e.g., fatty acids and lipids) and polar 

compounds (sugars and phenolics) and make up 5-25% of Douglas-fir tissues [107] [447].  
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The results here indicate that at least within the resolution of the detergent fibre method, 

there are no significant differences observed in the lignin content of the Douglas-fir samples. It 

should be noted that the detergent fibre method does not account for a minor fraction called the 

acid-soluble lignin which is dissolved with cellulose in the acid detergent fibre solution. Therefore, 

it is plausible that other methods could reveal lignin content differences or that the composition of 

lignin rather than the content of the lignin may be altered in response to drought stress. To explore 

this prospect further, the wood samples were analysed with quantitative solid-state 13C NMR to 

estimate lignin content and lignin has been extracted from the wood samples for compositional 

analysis, the details of which are discussed below.  

 

Figure 41. Relative content of extractives, cellulose, hemicellulose, and lignin in the wood samples 

as determined using the detergent fibre method. Not shown here is the ash components (~0.1 – 

1%).  

6.3.2 Organosolv lignin extraction 

The modified organosolv lignin extraction technique was selected as a low severity method 

for recovering technical lignin more representative of its native structure in the plant cell wall. 

Yields from the organosolv extraction can be found in Appendix C. The Douglas-fir wood samples 

recovered yields of only 14.3% and 18.8% relative recovery of the detergent fibre lignin in control 

and drought, respectively. This is equivalent to 3.7% and 4.9% recovery by total weight of the 
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wood sample. While the yield of the extraction was quite low as compared to the best yields of da 

Rosa et al., this is not unexpected as the method was originally designed for rice husk which has 

major compositional differences compared to softwoods. Additionally, the low yield of lignin may 

be the result of the relatively mild nature of the technique which may not cleave the more resistant 

bonds lignin shares within the plant cell wall. While a difference in detergent fibre determined 

lignin content was not observed between the drought and control samples, there was a difference 

in relative recovery of lignin from organosolv extraction. The drought samples yielded 4.6% by 

weight more of the lignin as compared to the control samples. This was well outside of the range 

of experimental error observed in the cedar test samples (0.9%) and may indicate that structural 

differences were responsible for the difference in lignin yield between the samples. Thus, structural 

analysis of the extracted lignin could provide more insights in this observation. 

6.3.3 Qualitative Fourier Transform – Infrared spectra of lignin 

FT-IR spectra of all wood and lignin samples can be found in the Appendix C. The FT-IR 

spectra of the wood samples matched the expected features of softwood from literature. The 

spectra of Douglas-fir samples matched up very closely and the cedar had only minor differences, 

particularly in intensity rather than peak position. However, the FT-IR spectra of wood was not 

well resolved, likely due to the compositional complexity of the untreated wood samples.  

FT-IR spectroscopy of the lignin samples in the spectral range of 2000 – 650 cm-1 are 

shown in Figure 42. The peaks observed in the spectra reported here matched up with the expected 

peaks reported in the literature for guaiacyl type lignin and are assigned in Table 5. Consistent 

with the FT-IR spectra of the wood samples, the lignin spectrums for all three samples were quite 

similar and lined up very closely throughout the entire spectral range. The cedar test sample 

exhibited some minor deviation from the Douglas-fir samples around 1650 – 1850 cm-1 which 

corresponds to the conjugated and unconjugated 𝐶 = 𝑂 stretching vibrations of ketones, carbonyls, 

and ester groups. The similarity between the Douglas-fir lignin spectra indicated no dramatic 

structural differences between the control and drought lignin were observable with the FT-IR 

technique. Slight variations in intensity of certain peaks here could indicate differences in 

abundance of certain structures; however, the differences observed are very minor and could be 

the product of unrelated factors.  
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Figure 42. ATR FT-IR of lignin samples and band assignments for the peaks with the largest 

differences. 
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Table 5. FT-IR band assignments for lignin spectra 

Band 

ID 

Band, 

cm-1 
Vibration Assignment Ref. 

1 812-817 𝛿𝑜𝑝 𝐴𝑟 C–H Positions 2, 5, and 6 of G units [141] 

2 853-856 𝛿𝑜𝑝 𝐴𝑟 C–H Positions 2, 5, and 6 of G units [448] 

3 966-990 𝛿𝑜𝑝  –HC=CH– Out of plane deformation (trans) [449] 

4 1029-1030 𝛿𝑖𝑝 Ar C–H, st C–O(H) 

& st C–O(C), st C=O 

Positions 2, 5, and 6 of G units, 

aliphatic primary alcohols and ether; 

C=O (unconj.) 

[141] [448] [450] 

5 1089-1091 st C–O C–O deformation in secondary 

alcohols and aliphatic ethers 

[451] 

6 1123-1125 𝛿𝑖𝑝 𝐴𝑟 𝐶 − 𝐻 Positions 2, 5, and 6 of G units [448] 

7 1214-1216 st C–C, st C–O(H), st 

C–O(Ar), st C=O 

Phenolic alcohol and ether, G 

condensed > G etherified 

[141] [448] [450] 

8 1265-1266 st C–O, st C=O G unit aromatic methoxy, G ring 

breathing C=O 

[141] [448] [450] 

9 1326 st C–O, st C=O S unit, G ring condensed (sub. position 

5) 

[141] [448] [450] 

10 1366-1370 𝛿𝑖𝑝 O–H, st C–H Phenolic OH, aliphatic 𝐶𝐻3 (not 

methoxy)  

[141] [448] 

11 1419-1422 st C–C, 𝛿𝑖𝑝 C–H Aromatic skeletal vibrations, asym. C–

H deform. in –O𝐶𝐻3 

[141] [448] [450] [451] 

12 1451-1453 𝛿𝐴𝑠𝑦𝑚𝑒𝑡𝑟𝑖𝑐  C–H C–H deformations; asym. in –𝐶𝐻3 and 

–𝐶𝐻2– 

[141] [448] [450] [451] 

13 1462-1463 𝛿𝐴𝑠𝑦𝑚𝑒𝑡𝑟𝑖𝑐  C–H C–H deformations; asym. in –𝐶𝐻3 and 

–𝐶𝐻2– 

[141] [448] [450] [451] 

14 1507-1510 st C–C C–C aromatic skeletal vibrations; G > 

S 

[141] [448] [450] [451] 

15 1592-1599 st C–C, st C=O C–C aromatic skeletal vibrations, C=O 

stretch; S > G; G condensed > G 

etherified 

[141] [448] [450] [451] 

16 1659-1673 st C=O Conjugated C=O [448] 

17 1710-1718 st C=O C=O stretch in unconjugated ketones, 

carbonyls and ester groups 

[141] [448] 

18 1767-1770 st C=O Conjugated C=O ketones [451] 

st: Stretching vibration, 𝛿𝑖𝑝: In-plane deformation vibration, 𝛿𝑜𝑝: Out-of-plane deformation vibration. 

6.3.4 Pyrolysis Gas – Chromatography / Mass Spectrometry of wood and lignin 

 Py-GC/MS was performed on both the untreated wood and isolated lignin samples to 

investigate compositional differences between samples. Py-GC/MS uses pyrolysis to thermally 

decompose samples at high temperatures in the absence of oxygen, gas chromatography to separate 

the volatile compounds in time, and a mass spectrometer that ionizes the compounds into 

fragments that can be used to identify the molecular formula parent compound. The pyrolysis 

decomposition mechanism of materials such as wood and lignin produce complex chromatograms 

with a wide variety of molecular product species. Thus, total ion current (TIC) chromatograms 
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(Figure 43), which plot the summation of signal intensities for all mass to charge ratios at a single 

retention time, can be populated with hundreds of peaks making manual interpretation and analysis 

extremely tedious and error prone.  

 

Figure 43. Schematic illustration of GC-MS data in matrix format (left) and a resulting TIC 

chromatogram (right). Each matrix entry of the GC-MS data contains the measured signal intensity 

for a specific m/z ratio at the recorded detection time. The TIC chromatogram is constructed via 

the summation of all signal intensities of all m/z for each time point.  

 Figure 44 shows an example of the TIC chromatograms for the lignin samples with a 

variety of compounds identified, each associated with a TIC peak demonstrating the complexity 

of the analysis process. Thus, automated approaches and multivariate data analysis have been 

proposed for rapid and more reliable analysis of GC-MS data. In particular, the PARAFAC2 based 

Deconvolution and Identification System (PARADISe) for processing raw GC-MS data is a 

promising approach that has been demonstrated to be useful for lignocellulosic biomass samples 

[378] [376]. The PARADISe software uses a chemometric multi-way modelling approach to 

resolve peaks, identify and quantify compounds from raw complex GC-MS data of many samples 

simultaneously. We sought to use the PARADISe software to automate the GC-MS analysis 

process of the wood and lignin samples in this investigation; however, we encountered a variety 

of technical challenges with the PARADISe software which is still in its development stages. Due 

to the technical challenges related to this approach and the time constraints of this project we are 

not yet able to report meaningful results from the Py-GC/MS analysis of the wood and lignin 

samples in this thesis. We intend on continuing with this approach either through the continued 
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application of the PARADISe software or the exploration of alternative GC-MS processing 

software’s. The background subtracted GC-MS of the wood and lignin samples are shown in 

Figure 45 and Figure 46, respectively.  

 

Figure 44. Example TIC chromatogram from Py-GC/MS of Douglas-fir lignin samples and the 

cedar control. Molecular compounds corresponding to different peaks are illustrated.  

 

Figure 45. The overlayed TIC chromatogram for the Py-GC/MS analysis of Douglas-fir wood.  
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Figure 46. The overlayed TIC chromatogram for the Py-GC/MS analysis of Douglas-fir lignin.  

 In future work the Py-GC/MS data will be analysed to identify and quantify various 

structural compounds with a focus on identifying differences between the control and drought 

samples, potentially supporting the findings of the other analytical approaches. Work has already 

been underway on a new sample set to further the investigation regarding drought and lignin in 

Douglas-fir. Over one-hundred trees from ten families in this new drought study have been 

sampled and are undergoing analysis. Most of these new samples have very limited sample 

quantities (~1 g). The large sample set, and very small sample masses make Py-GC/MS an 

important and effective analytical tool because of its minimal sample requirement, rapid analysis 

time and information-rich data. 

6.3.5 Hydroxyl group content of lignin 

Figure 47 shows the 31P NMR spectrum along with the corresponding assignments based 

on Table 6. The 31P NMR spectra were consistent with that of literature with the peaks matching 

that of the expected functional groups for lignin [145]. As anticipated for softwood, the largest 

peaks corresponded to the aliphatic (~145.4 − 150.0 ppm) and guaiacyl (~139.0 − 140.2 ppm) 

functionalities. There was also a small sharp peak corresponding to syringyl monomer units 
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(~142.7 ppm) and a small broad peak that corresponded with p-hydroxyphenyl monomer units 

(~137.8 ppm) which indicated that small amounts of these two monomer units may also be present 

in the extracted lignin. In addition, there were some smaller peaks corresponding to lignin interunit 

linkages such as 𝛽 − 5 (~143.5 ppm), 4 − 𝑂 − 5 (~142.3 ppm), 5 − 5′ (~141.2 ppm), and 

carboxylic functional groups (~133.6 − 136.0 ppm). It is often recommended to combine the 

syringyl and different condensed 5-substituted units in the range ~140.0 − 144.5 ppm into the 

𝐶5-substituted phenolic OH due to signal overlap in this region, however, since softwoods are 

composed predominantly of guaiacyl units, there is not as much overlap in this region and the 

syringyl and 5-substituted units may be quantified.  

 

Figure 47. 31P NMR of lignin samples along with the corresponding structures contributing to the 

peaks. 
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Table 6. 31P Chemical shifts and corresponding functional groups [145]. 

Lignin functional group Chemical shift (p.p.m) 

Aliphatic OH ~145.4-150.0 

Phenolic OH ~137.6-144.0 

     C5 substituted ~140.0-144.5 

     5-5 ~141.2 

     4-O-5 ~142.3 

     Syringyl ~142.7 

     β-5 ~143.5 

     Guaiacyl ~139.0-140.2 

     p-hydroxyphenyl ~137.8 

Carboxylic acid OH ~133.6-136.0 
 

Figure 48 shows the quantitative results of the 31P NMR analysis of lignin samples 

organized by the three main unique hydroxyl groups: aliphatic, phenolic, and carboxylic. The 

results of the analysis are comparable in magnitude to those reported in the literature for softwood 

organosolv lignin [145]. Overall, the aliphatic hydroxyl groups were found to have the highest 

concentration in all samples, with phenolic hydroxyl groups having the next highest concentration, 

and carboxylic hydroxyl groups having the lowest concentration. Additionally, there were no large 

differences in concentrations of respective hydroxyl groups, with the one distinct exception being 

the cedar test sample which had a significantly higher concentration of phenolic hydroxyl groups 

compared to the Douglas-fir samples.  

When comparing the Douglas-fir samples, the results revealed a decrease in aliphatic 

hydroxyl groups and a comparable increase in phenolic hydroxyl groups in the drought treated 

sample as compared to the control. For the aliphatic hydroxyl groups, the difference of 0.13 

mmol/g between of the drought and control samples of Douglas-fir is comparable to that between 

Douglas-fir drought and cedar (0.12 mmol/g), which are different species. Moreover, the phenolic 

hydroxyl group content of the drought sample is larger by 0.15 mmol/g than that of the control. 

However, this difference due to drought is much smaller than the difference of 0.85 mmol/g 

between Douglas-fir control and cedar wood. The carboxylic hydroxyl groups remained at 

considerably lower concentration as compared to the other group types and did not vary much 

between the different samples. Lignin hydrophobicity, which is considered a major driving force 

of enzymatic hydrolysis-inhibitory lignin-enzyme interactions, generally increases with aromatic 

and decreases with aliphatic hydroxyl group content [168]. These results suggest drought stress 
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may alter the functionality of Douglas-fir lignin, increasing its hydrophobicity which could inhibit 

cellulose hydrolyzability. These results may suggest structural changes have occurred in the wood 

samples resulting from the drought treatment leading to the enhancement of lignin phenolic 

hydroxyl groups over aliphatic.  

 

Figure 48. Quantitative results of the 31P NMR analysis of lignin samples organized by the three 

main different hydroxyl groups, aliphatic, phenolic, and carboxylic.  

6.3.6 Characterization of wood and lignin using solid-state 13C Nuclear 

Magnetic Resonance Spectroscopy  

Compared to other methods NMR spectroscopy is an important tool that allows for high-

resolution, comprehensive, and quantitative structural characterization of organic material. There 

are a variety of different NMR techniques for this purpose including multidimensional approaches 

(1D, 2D, 3D…). The NMR techniques are often most generically categorized as either solution-

state or solid-state. Both solution-state and solid-state NMR have been used to study wood and 

lignin each offering certain advantages and limitations. Solution-state NMR provides high 

resolution but requires the solubilization of the samples under investigation, thus, limiting the 

investigations to soluble compounds and restricted sample concentrations, in addition to increasing 

undesired sample handling, introducing solvent effects, and rendering the sample invalid for future 

analysis [452].   
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In contrast, solid-state NMR is a non-destructive technique that can provide detailed 

compositional and structural information on the components of lignocellulosic materials in situ. 

Thus, solid-state NMR is a valuable tool for the analysis of lignocellulosic biomass and has been 

used extensively for this purpose. Applications of solid-state NMR for the analysis of 

lignocellulosic biomass and its derivatives have lagged compared to solution-state techniques in 

part due to the belief that solid-state NMR cannot provide high enough resolution for detailed 

structural analysis [453]. Techniques such as solid-state 13C NMR indeed suffer from broad and 

convoluted spectra making the peak assignments challenging. Yet, the development of new 

techniques and advancements in spectral editing approaches have supported more detailed 

investigations of lignocellulosic biomass [452]. Spectral editing techniques facilitate the selective 

acquisition of NMR signals, reducing spectral complexity and enabling the assignment of 

otherwise obscured peaks. In addition to resolving qualitative information from solid-state NMR 

spectra, producing quantitative spectra is also desired. For quantitative solid-state NMR spectra 

the 13C direct polarization / magic angle spinning (DP/MAS) is favoured over the more routine 13C 

cross polarization / magic angle spinning (CP/MAS) but is stifled due to significantly longer 

acquisition times [452]. More recently, the multiCP approach has been developed for high-

throughput quantitative solid-state MAS 13C NMR spectra of organic material [444]. This new 

method allows for the collection of quantitative spectra with good signal-to-noise ratio at a 

significantly reduced analysis time compared to other approaches. However, quantitative analysis 

of NMR spectra is performed by integrating spectral peaks which correspond to distinct chemical 

structures to determine their relative abundance. The chemical complexity of lignocellulosic 

material can convolute NMR spectrums; thus, assignment of peaks and determination of their 

integration boundaries is challenging and often arbitrary. As a result, multiCP spectra of 

lignocellulosic material may be better described as semi-quantitative.  

6.3.7.1 MultiCP NMR of wood 

Figure 49 provides an example of the 13C NMR spectrum of wood with the regions of 

interest delineated. Figure 50 shows the 13C NMR of wood samples from this study. Table 7 shows 

the chemical shifts and corresponding assignments for 13C NMR of wood from the literature. There 

are two main chemical shift regions associated with lignin in the NMR spectrum that are distinct 

from carbon atoms present in carbohydrates. These are the aromatic (~160 – 100 ppm) and 
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methoxy (~56 ppm) regions. The aromatic region is mostly distinct from the other plant cell wall 

components and may provide a direct correlation to the number of aromatic rings, and therefore 

also potentially correlate with the lignin content in the material. However, the region is full of 

broad, poorly resolved peaks and spectral overlap does occur at the upfield end of the aromatic 

region (120 – 90 ppm) between alkyl O-C-O and aromatic carbons [454]. Further upfield, the 

methoxy signals (~56 ppm) are stronger and sharper. Despite the methoxy peak sharing some of 

its left side with the C-6 carbohydrate atoms, it has been proposed that the area of the methoxy 

peak can be more accurately estimated by integrating the right side of the peak and multiplying by 

two [455]. While the methoxy peak is more resolved than the aromatic region, it corresponds to 

the methoxy groups on the phenyl ring which vary between the different lignin monomers. Thus, 

there may not be a direct correlation between the methoxy peak and the number of aromatic rings 

in the material. This adds uncertainty regarding the use of the methoxy peak for quantifying lignin, 

especially for lignocellulosics with more heterogenous lignin monomer content [455]. Previously, 

both the aromatic and the methoxy regions have been used to estimate lignin content in organic 

material. For quantitative solid-state NMR studies of lignin content, often a calibration curve is 

developed using lignin mixtures of different concentrations [456] [457] [339] [455]. 
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Figure 49. An illustrative example of the solid-state 13C NMR spectra of wood with carbohydrate 

and lignin regions distinguished. The green and blue fill indicate regions predominantly due lignin 

and carbohydrate signals, respectively. Key points of spectral overlap between the aromatic and 

carbohydrate regions are indicated. Relevant examples of different wood compounds and their 

carbons that contribute to the spectrum are overlayed on the figure. Regions labeled as 𝐼𝑎𝑐𝑒𝑡𝑦𝑙, 

𝐼𝑙𝑜𝑤, 𝐼ℎ𝑖𝑔ℎ, and 𝐼𝑚𝑒𝑡ℎ𝑦𝑙 correspond to the integration regions used in the methods described below. 

Note that the chemical structures within wood are complex and the compounds shown in this figure 

are examples of reduced complexity used to indicate the types of carbons that are contribute to the 

spectrum. 
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Figure 50. 13C solid-state NMR of the wood samples, where drought and control indicate the 

Douglas-fir samples and Cedar is the test sample.  
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Table 7. Chemical shift and corresponding assignments of 13C NMR wood spectrum 

Peak ID 

13C 

Chemical 

Shift, ppm 

Assignment Reference 

1 21.6 CH3 in acetyl groups of hemicelluloses [458] [459] 

2 56.2 Aryl methoxy carbons of lignin [458] [459] 

3 60-64 𝑂𝐶𝛾𝐻2 carbons of lignin  [458] [459] 

4 63 𝐶𝐻2𝑂𝐻 of carbohydrate (amorphous 𝐶6 of cellulose), 𝐶6 carbon of 

hemicelluloses 

[458] [459] 

5 65.3 𝐶𝐻2𝑂𝐻 of carbohydrate (crystalline 𝐶6 of cellulose) [458] [459] 

6 72.5 𝐶𝐻𝑂𝐻 of carbohydrates (𝐶2, 𝐶3, 𝐶5 of cellulose) [458] [459] 

7 72-76 𝑂𝐶𝛼𝐻2 carbons of lignin [458] [459] 

8 75 𝐶𝐻𝑂𝐻 of carbohydrates (𝐶2, 𝐶3, 𝐶5 of cellulose and hemicelluloses) [458] [459] 

9 82-83 𝑂𝐶𝛽𝐻2 of lignin  [458] [459] 

10 84 𝐶𝐻𝑂𝐻 of carbohydrates (amorphous 𝐶4 of cellulose and hemicelluloses) [458] [459] 

11 87 𝐶𝐻𝑂𝐻 of carbohydrates (crystalline 𝐶4 of cellulose) [458] 

12 89 𝐶𝐻𝑂𝐻 of carbohydrates (crystalline 𝐶4 of cellulose) [459] 

13 97-102 Shoulder of 𝐶1 carbon of hemicellulose [458] 

14 105 𝑂𝐶𝐻𝑂 of carbohydrates (𝐶1 of cellulose) [458] [459] 

15 112 Aromatic 𝐶 − 𝐻 (𝐺2 of lignin) [459] 

16 114.5 Aromatic 𝐶 − 𝐻 (𝐺5 of lignin) [459] 

17 118 Aromatic 𝐶 − 𝐻 (𝐺6 of lignin) [459] 

18 131.5 Aromatic 𝐶 − 𝐶 (𝐺1(𝑛𝑒) of lignin) [459] 

19 134 Aromatic 𝐶 − 𝐶 (𝐺1(𝑒) of lignin) [459] 

20 143-147 Aromatic 𝐶 − 𝑂 (𝐺4(𝑒) and 𝐺4(𝑛𝑒) of lignin) [459] 

21 147-153 Aromatic 𝐶 − 𝑂 (𝐺3(𝑒) and 𝐺3(𝑛𝑒) of lignin) [459] 

22 173 Acetyl ester 𝐶 = 𝑂 carbon hemicellulose [460] 

Clusters    

1 19-24 CH3 in acetyl groups of hemicelluloses  

2 54-57 Aryl methoxy carbons of lignin (some hemicellulose)  

3 57-110 Carbohydrates (Cellulose, hemicellulose, aliphatic lignin)   

4 102-160 Aromatic carbon (lignin)  

5 167-176 Acetyl ester 𝐶 = 𝑂 carbon hemicellulose (Other carboxyl groups)   

 

A procedure for determining the lignin contents of wood and pulps directly from integrated 

NMR signal intensities has been described previously [461] [462]. The procedure was originally 

developed for softwood and uses the integrated area of the low shielding aromatic region (160 – 

109 ppm) and the high shielding aliphatic region (109 – 50 ppm) along with some assumptions 

regarding the chemical formula lignin and carbohydrates to estimate wt% lignin of the sample 

from the NMR spectra. For this procedure, the following assumptions are required as described by 

Haw et al. [461]. Wood is composed primarily of cellulose, hemicellulose, and lignin. Softwood 

lignin is mainly derived from coniferyl alcohol (𝐶9𝐻9𝑂2(𝑂𝐶𝐻3)) monolignol precursors and hence 

the lignin polymer inside the plant cell wall is mainly composed of guaiacyl monomer units with 
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approximately 9.92 carbons, 3 oxygens and 10-12 hydrogens. The molecular formula for conifer 

lignin is 𝐶9𝐻7.15𝑂2(𝐻2𝑂)0.4 − (𝑂𝐶𝐻3)0.92 (𝑀𝑤 =  183 𝑔/𝑚𝑜𝑙) as previously reported [463]. 

Carbohydrate repeat units have an average empirical formula of 𝐶6𝐻10𝑂5 (𝑀𝑤 =  162 𝑔/𝑚𝑜𝑙). 

Acetate carbonyl and methyl carbon signals are neglected in the above assumption. With these 

assumptions established one can relate the low shielding integrated area, 𝐼160−109, which 

corresponds to the aromatic carbons of lignin to the total integrated 13C intensities due to all lignin 

carbons, 𝐼𝑙𝑖𝑔.  

𝐼𝑙𝑖𝑔 = (
9.92

6
) 𝐼160−109 

Where 9.92 is the average number of carbons in a guaiacyl lignin repeat unit and 6 is the number 

of carbons in a guaiacyl lignin repeat unit that contribute to the aromatic low shielding region. 

Likewise, the total integrated 13C intensities due to all carbohydrate carbons, 𝐼𝑐𝑎𝑟𝑏𝑠,  can be related 

to the high shielding integrated area, 𝐼109−50, which corresponds to the carbohydrate components 

as well as the aliphatic (𝐶 − 𝛼, 𝐶 − 𝛽, 𝐶 − 𝛾) and methoxy lignin carbons.  

𝐼𝑐𝑎𝑟𝑏𝑠 = 𝐼109−50 − (
3.92

6
) 𝐼160−109 

Where 3.92 and 6 are the number of aliphatic and aromatic carbons in a guaiacyl lignin repeat unit. 

Normalizing the total integrated 13C intensities  

𝐼′𝑙𝑖𝑔 =
𝐼𝑙𝑖𝑔

𝐼𝑐𝑎𝑟𝑏𝑠 + 𝐼𝑙𝑖𝑔
 

𝐼′𝑐𝑎𝑟𝑏𝑠 =
𝐼𝑐𝑎𝑟𝑏𝑠

𝐼𝑐𝑎𝑟𝑏𝑠 + 𝐼𝑙𝑖𝑔
 

we get the normalized signal intensity due to lignin and carbohydrates as 𝐼′𝑙𝑖𝑔 and 𝐼′𝑐𝑎𝑟𝑏𝑠, 

respectively. Finally, the dry-weight percent lignin for softwood can be estimated using the 

following equation. 

𝑤𝑡% 𝑙𝑖𝑔𝑛𝑖𝑛 =
(

183
9.92) 𝐼′𝑙𝑖𝑔

[(
183
9.92) 𝐼′𝑙𝑖𝑔 + (

162
6 ) 𝐼′𝑐𝑎𝑟𝑏𝑠]
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Where the coefficients on the normalized signal intensities are the molecular weight divided the 

number of carbon atoms in the respective average molecular weight formulas of the repeat units 

of lignin and carbohydrates.  

 Haw et al. [461] noted that while acetate carbonyl and methyl carbon signals are neglected 

in their method, they could be accounted for by altering the method to include contribution from 

esterified sugars in the average formula for the carbohydrate fraction. Here we expand on their 

approach and include the contribution from these spectral regions in an attempt to reduce the 

uncertainty in the lignin content estimate. For this we make a few more assumptions: the regions 

of 24 – 19 ppm and 177 – 165 ppm are purely due to methyl carbon in acetyl groups of 

hemicellulose and acetyl ester 𝐶 = 𝑂 carbon hemicellulose, respectively. We assume softwood 

hemicellulose as a D-mannopyranose with an O-acetyl group, 𝑀𝑤 =  206 𝑔/𝑚𝑜𝑙 with 8 carbons 

[464] [465]. Thus, we define 𝐼𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒  and 𝐼ℎ𝑒𝑚𝑖𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 as the total integrated 13C intensities due 

to the cellulose and hemicellulose carbons, respectively. Here we can roughly estimate a fraction 

of the intensity in the region 109 – 50 ppm is due to hemicelluloses with acetyl groups. We can 

estimate this fraction using the spectral intensity of the acetyl and methyl carbons.   

𝐼ℎ𝑒𝑚𝑖𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 = (
8

2
) [𝐼177−165 + 𝐼24−19] 

𝐼𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 = 𝐼109−50 − (
3.92

6
) 𝐼160−109 − (

6

2
) [𝐼177−165 + 𝐼24−19] 

Just as done previously, we normalize to the total integrated 13C intensities 

𝐼′𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 =
𝐼𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒

𝐼𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 + 𝐼ℎ𝑒𝑚𝑖𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 + 𝐼𝑙𝑖𝑔
 

𝐼′ℎ𝑒𝑚𝑖𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 =
𝐼ℎ𝑒𝑚𝑖𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒

𝐼𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 + 𝐼ℎ𝑒𝑚𝑖𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 + 𝐼𝑙𝑖𝑔
 

𝐼′𝑙𝑖𝑔 =
𝐼𝑙𝑖𝑔

𝐼𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 + 𝐼ℎ𝑒𝑚𝑖𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 + 𝐼𝑙𝑖𝑔
 

We can then estimate the lignin content of the samples in weight percent from the 13C spectra of 

wood as follows. 
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𝑤𝑡% 𝑙𝑖𝑔𝑛𝑖𝑛 =
(

183
9.92) 𝐼′𝑙𝑖𝑔

[(
162

6 ) 𝐼′𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 + (
206

8 ) 𝐼′ℎ𝑒𝑚𝑖𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 + (
183
9.92) 𝐼′𝑙𝑖𝑔]

 

We will term this new modified approach for determining lignin content as the ‘extended direct 

integration’ approach so as to differentiate it from the Haw et al. [461] approach.  

Table 8 shows the lignin content estimates from the 13C NMR spectra of wood using the 

Haw et al. [461], the extended direct integration approach, and the wet chemical detergent fibre 

method. We predicted that the NMR integration methods would predict high lignin content than 

the wet chemical approach because it can account for the entire lignin content of the samples 

including the so-called acid-soluble lignin that is unaccounted for in the detergent fibre method. 

In general, this has been the case as almost all lignin content values were predicted higher using 

direct integration with the exception of the extended direct integration method applied to the 

control sample which was slightly lower than the wet chemical determined lignin content (25%). 

As expected, the extended direct integration approach predicted lower lignin content for all 

samples compared to the less intricate Haw et al. [461] approach, reducing lignin content estimates 

by around 1%. Hence, it appears that the extended direct integration approach proposed here may 

provide slightly improved prediction compared to the Haw et al. [461] approach.  

Table 8. Lignin content dry weight estimates from 13C NMR spectrum of wood and comparison to 

wet chemical determination of lignin content.  

 Lignin Content 

(Dry weight percent) 

Sample 
Wet chemical  

Detergent fibre [106] 

Direct integration  

Haw et al. [461] 

Direct integration 

Extended direct integration 

Control 26 26 25 

Drought 26 31 30 

Cedar 31 38 37 

 

There may be a variety of reasons for the disparity between the detergent fibre and direct 

integration lignin content prediction. If we focus on the Douglas-fir samples, we can see that the 

predictions for the control were much closer than that of the drought sample. Direct integration for 

the control sample predicted ~25 – 26% lignin content which is consistent with the detergent fibre 
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method (26%).  Direct integration for the drought sample predicted ~30 – 31% lignin which is in 

conflict with the 26% lignin content determined using the detergent fibre method. It is not clear if 

there is a source of error in the direct integration method which could cause a much higher 

prediction in lignin content for the drought sample, or if there truly is a greater lignin content than 

is determined using the detergent fibre method. We know from the detergent fibre method that the 

drought wood sample had around 2% more extractives content and around 2% less hemicellulose 

content. Aromatic extractive compounds would not be distinguished from the lignin signals during 

the integration of the 13C NMR spectra and could be responsible for higher lignin content 

predictions in the drought sample. To counter this narrative, it should be noted that cedar wood 

had 3-7% less extractives content compared to Douglas-fir, and still had significantly higher lignin 

content predicted from integration of the 13C NMR spectra than the detergent fibre method.  

There are three important considerations to point out regarding the direct integration 

approach applied in this work. First, the Haw et al. [461] approach was originally applied to 

extractives free wood. We have not applied any prior treatment to the wood samples apart from 

milling. Based on the detergent fibre method, around 11-18% of the wood samples are extractives 

which include protein, starch, waxes, polar & non-polar extractables and an additional ~1% is ash. 

Second, the chemical formulas used for the lignin and carbohydrates are not accurate for all 

compounds in the samples. The molecular formula for the carbohydrates in the high-shield region 

is less correct for hemicellulose than cellulose and the molecular formula for lignin is based on the 

Freudenberg’s lignin and slightly different formulas have been proposed for conifer lignin. Finally, 

the boundaries chosen for the integration regions are somewhat arbitrary and there is considerable 

overlap between the aromatic carbon and the carbohydrates between 120 and 100 ppm. These 

points must be understood as we consider the reliability of the approach.  

Despite the uncertainty in the quantitative results from the direct integration of the NMR 

spectra, we can still consider the relative differences between the lignin content estimates. While 

the detergent fibre method does not reveal changes in lignin content, the direct integration results 

indicate there may be some increased lignification of stems of Douglas-fir resulting from drought 

stress. Although potentially some other factors such as extractives content could contribute to this 

difference, it cannot be confirmed based on the data available. For clarity on this, a larger sample 

size and potentially more techniques that can further support the results would be required.  
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6.3.7.2 MultiCP NMR of lignin 

Figure 51 provides an example of the multiCP 13C NMR spectrum of lignin with the seven 

main regions of interest delineated while Figure 52 shows the multiCP 13C NMR spectrum of 

lignin samples from this study. Table 9 shows the chemical shifts and corresponding assignments 

for 13C NMR of lignin from the literature. It has been pointed out that even just the extreme 

stereochemical complexity of the lignin polymer significantly broadens spectra from overlapping 

NMR signals, let alone its structural complexity and heterogeneity [466] [467]. As evident in 

Figure 51, the spectrum is not well resolved and there is considerable spectral overlap particularly 

in the aromatic region. Overall, the general features are as expected for a 13C NMR spectrum of 

softwood lignin, most notably the three broad peaks in the aromatic region ~162 – 102 ppm and 

the sharp methoxy peak ~56 ppm.  Two subtle but clear indicators provide assurance that the 

spectra is that of typical of softwood primarily composed of G lignin (as opposed to hardwood 

composed of G and S lignin), namely the reduced signal intensity around 105 ppm and the position 

of the aromatic oxygenated carbon peak occurring on the upfield side of 150 ppm (~148 ppm) 

which is distinct in comparison to hardwood lignin of which the peak appears on the downfield 

side of 150 ppm (~153 ppm) [468]. The lack of signals from 105 – 90 ppm supports the purity of 

the lignin sample as signals of C1 carbohydrates would be expected to be evident here if there 

were high levels of carbohydrate contamination [127]. This is consistent with expectations as 

organosolv lignins are typically of high purity. 

Comparing the three spectra in Figure 52, there are no glaring differences in the NMR 

spectrum of the lignin samples. Thus, to take a closer look at the changes that might be present in 

the spectra, we focus seven regions of interest corresponding to certain carbons or categories of 

carbons to quantify and compare their occurrence. As we can see in Figure 51, the seven main 

regions of interest, from downfield to upfield, include the aromatic oxygenated (𝐶 − 𝑂), aromatic 

carbon – carbon (𝐶 − 𝐶),  aromatic methine (𝐶 − 𝐻), Alkyl-O-Aryl (𝛽 − 𝑂 − 4, 𝛼 − 𝑂 − 4), 

hydroxyl (𝑂𝐻𝑝𝑟𝑖𝑚𝑎𝑟𝑦, 𝑂𝐻𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦, 𝛾 − 𝑂 − 𝐴𝑙𝑘), methoxy (𝑂𝐶𝐻3), and aliphatic (𝐶𝛼, 𝐶𝛽). These 

regions have been integrated to give quantitative estimates of these structural features. The integral 

region from 162 – 102 ppm was set as the reference based on the assumption that it includes six 

aromatic carbons and 0.12 vinylic carbons. Based on this assumption, one aromatic ring is 

equivalent to the integrated value for that region divided by 6.12 [469]. 
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Figure 51. An illustrative example of the 13C solid-state NMR of lignin with seven main regions 

of interest distinguished, from downfield to upfield: aromatic oxygenated (𝐶 − 𝑂), aromatic 

carbon – carbon (𝐶 − 𝐶),  aromatic methine (𝐶 − 𝐻), Alkyl-O-Aryl (𝛽 − 𝑂 − 4, 𝛼 − 𝑂 − 4), 

hydroxyl (𝑂𝐻𝑝𝑟𝑖𝑚𝑎𝑟𝑦, 𝑂𝐻𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦, 𝛾 − 𝑂 − 𝐴𝑙𝑘), methoxy (𝑂𝐶𝐻3), and aliphatic (𝐶𝛼, 𝐶𝛽). The 

regions filled with colour indicate regions used for integration. Relevant examples of different 

lignin compounds and their carbons that contribute to the spectrum are overlayed on the figure. 

Note that the chemical structures within lignin are complex and the compounds shown in this 

figure are examples of reduced complexity used to indicate the types of carbons that are contribute 

to the spectrum. 
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Figure 52. Solid-state multiCP 13C solid-state NMR of the wood samples, where drought and 

control indicate the Douglas-fir samples and Cedar is the test sample.  

Table 9. Chemical shift and corresponding assignments based on of 13C lignin spectrum. 

13C Chemical 

Shift, ppm 
Assignment Reference 

13-48 Aliphatic 𝐶𝛼 , 𝐶𝛽 [127] [470] 

54-57 𝑂𝐶𝐻3  [127] [470] 

58-73 𝑂𝐻𝑝𝑟𝑖𝑚𝑎𝑟𝑦 , 𝑂𝐻𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 , 𝛾 − 𝑂 − 𝐴𝑙𝑘 [127] [470] 

73-92 Alkyl-O-Aryl (𝛽 − 𝑂 − 4, 𝛼 − 𝑂 − 4) [127] [470] 

102-160 Aromatic carbon [127] [470] 

102-125 
Aromatic methine carbon 𝐶 − 𝐻 (𝐶2, 𝐶5, 𝐶6 𝐺 units / 𝐶2, 𝐶6 𝑆 units /
 𝐶2, 𝐶3, 𝐶5, 𝐶6 𝐻 units) 

[127] [470] 

125-142 
Aromatic condensed carbon 𝐶 − 𝐶 (𝐶1 𝐻/𝐺/
𝑆 plus guaiacyl cross linked 5 − 5′ or 𝛽 − 5′)  

[127] [470] 

142-162 
Aromatic oxygenated carbon 𝐶 − 𝑂 (𝐶3, 𝐶4 𝐺 units/ 𝐶3, 𝐶4, 𝐶5 𝑆 units/
 𝐶4 𝐻 units plus diphenyl ether structures) 

[127] [470] 

 

Figure 53 shows the results of the integrated NMR spectrums for the three lignin samples 

over the seven regions of interest previously described including several lignin comparisons from 

literature. Since the reference value for the aromatic region was set to 6.12 as discussed above, all 

quantitative values in Figure 53 can be interpreted as per one aromatic ring. Recently, solid-state 

NMR of different lignin preparations, lignin model compounds, and different polysaccharides was 
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explored and used to establish a strong linear correlation between alkyl-O-aryl inter-unit bonds 

and methoxy groups in lignin and the integral of the solid-state 13C NMR spectrum of lignin in the 

ranges 96 – 68 ppm and 58 – 54 ppm, respectively [471]. These findings provide supporting 

evidence for the reliability of the alkyl-O-aryl, and methoxy integration regions of the solid-state 

13C NMR spectrum of lignin for predicting the content of these structures. It is evident from Figure 

53 that the OH and aliphatic regions generally have the greatest disparity with the literature values. 

These regions may prove difficult to produce reliable information due to several issues which 

include overlap with carbohydrate impurities, low resolution, baselines, and overlap with the 

shoulders of the sharp lignin methoxy peak. Thus, although we have also integrated OH and 

aliphatic regions of the spectrum here, we will mainly consider the aromatic, alkyl-O-aryl, and 

methoxy regions, which are regarded as more reliable.  

Broadly, if we compare the results of our lignin samples to literature values, we see that 

the different carbon structures quantified are in reasonable agreement with literature reported 

previously (Figure 53). We expect to see some degree of variation in these structures between 

studied lignins due to its inherent variability, complexity, isolation procedure, and analytical 

approaches. However, since they are all softwood lignins, we should see indicators that are 

consistent with predominantly guaiacyl type lignin. If we assume a lignin structure with no 

bonding on the two, five, and six position on each phenyl ring, we would expect values of 2, 1, 

and 3 for the aromatic oxygenated (𝐶 − 𝑂), aromatic condensed (𝐶 − 𝐶), and aromatic methine 

(𝐶 − 𝐻) carbons, respectively. Of course, lignin has a variety of inter-unit linkages which can 

occur on these positions. Additionally, although in small amounts, softwood lignin can still also 

include different lignin monomers such as p-hydroxyphenyl or syringyl units. This was evident 

with signals of S and H units present in the 31P NMR spectrum. Thus, we anticipate deviation from 

the expected values of the aromatic carbon, which we do observe. In particular, known inter-unit 

linkages such as ether bonds on the 5 position of the phenyl ring (e.g., 4 − 𝑂 − 5) and condensed 

bonds (e.g., 5 − 5′) would result in greater than 2 aromatic oxygenated carbons and greater than 1 

for aromatic condensed per aromatic ring, respectively. The combined effect of these additional 

bonds on the phenyl ring would necessitate the reduction in aromatic methine carbon to less than 

3 per aromatic ring. Our results are consistent with this line of reasoning with the three samples 

having between 2.07 – 2.38, 1.71 – 1.81, and 2.03 – 2.24 carbons per aromatic ring for the aromatic 
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oxygenated, aromatic condensed, and aromatic methine carbons, respectively. These predictions 

are also observed in the relevant literature (See Figure 53).  

In addition to the aromatic carbons, methoxy carbons are also a useful indicator of 

softwood lignin. Lignin that is predominantly guaiacyl units should have around 1 methoxy group 

per aromatic carbon and this is corroborated with the literature values in Figure 53. This was 

roughly the case for the lignin samples in our study which ranged from 0.81 – 1.09 methoxy group 

per aromatic. We want to point out here that the values for methoxy groups from the solid-state 

13C NMR spectrum in this study were very sensitive to the integration regions chosen. Despite 

being the sharpest peak in the spectrum, shifting the integration region by 1 ppm either upfield or 

downfield had a substantial impact on the resulting integration value. Given that exact integration 

regions are considered to some extent arbitrary, the integration region was ‘optimized’ to more 

accurately represent methoxy content. In other words, the integration boundaries of the methoxy 

region were selected to fit the three lignins samples closer to the expected methoxy content of 1 

per aromatic ring (57 – 54 ppm). Prior knowledge of the composition of softwood lignin, the 31P 

NMR spectra, and analytical techniques used in this work support the expected methoxy content 

of 1 per aromatic ring.  

Moving on to the alkyl-O-aryl carbons, which represents the sum of the 𝛽 − 𝑂 − 4 and  

𝛼 − 𝑂 − 4 carbons, we found these to be present at a rate of 1.23 – 1.33 per aromatic ring. Here, 

there was a lack of comparable literature for comparison. It has been pointed out that this region 

is susceptible to carbohydrate contaminants which are present in all lignin samples to some degree. 

Thus, without corrections for these contaminants it should be noted that this rate for alkyl-O-aryl 

carbons would likely be an overestimate to some degree. It is well known that the 𝛽 − 𝑂 − 4 inter-

unit linkage is the most prevalent in the native lignin polymer and thus a key target of valorization 

strategies. These bonds are also the most readily cleaved during extraction and often creating new 

phenolic hydroxyl functionalities. Quantification of these units provides practical insights and thus 

should be a priority for structural studies.  

It is quite evident that for most structural features, the difference between the drought and 

control lignin samples is much less than the difference between the cedar test sample. Thus, this 

the solid-state 13C NMR analysis does not identify any major structural differences between the 
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lignin samples. Based on this it does no appear that drought stress has dramatically altered the 

lignin structure. While we do see some differences in structural features here, the limited sample 

size does not allow us to make definitive conclusions regarding the significance of the changes.  

 

Figure 53. Contents of different carbon structures present in the organosolv lignins. Aromatic C – 

O (160 – 142 ppm), aromatic C – C (142 – 125 ppm), aromatic C – H (125 – 102 ppm), alkyl – O 

– aryl (92 – 73 ppm), 𝛾 − 𝑂 − 𝐴𝑙𝑘 and primary and secondary OH (73 – 58 ppm), methoxy (57 – 

54 ppm), and aliphatic 𝐶𝛼, 𝐶𝛽 (48 – 13 ppm). Comparable lignin from literature includes Capanema 

et al. [127], Nakagame et al. [472] and Holtman et al. [459].  Note that Nakagame was the average 

of 3 steam pre-treatment technical lignins. 

6.4 Discussion 

Overall, this study has investigated the effects of abiotic drought stress on Douglas-fir 

wood, focusing on lignin content and composition. Wet chemical analysis using the detergent fibre 

methods demonstrated surprisingly limited differences in wood composition and found no 

difference in lignin content between control and drought treated samples. Yet, the results of the 

detergent fibre methods are known to not represent the entire lignin fraction and thus produce 

incomplete estimates of lignin content. A smaller lignin fraction, typically termed the ‘acid-soluble 

lignin’ which is not accounted for in the detergent fibre estimate, could reflect lignin content 
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differences between samples that was not observed here. Since the detergent fibre method could 

not account for the entire lignin fraction, we proposed that solid-state 13C NMR of the wood 

samples may provide a more complete estimate of lignin content. Direct integration of the NMR 

spectra predicted roughly 5% higher lignin content in drought (30 – 31%) compared to control (25 

– 26%) wood.  

In addition to assessing lignin content of the wood samples, we were also interested in the 

lignin composition. We isolated less harshly altered lignin from the wood samples using a mild 

organosolv extraction technique for further analysis. The approach produced low yield, but high 

purity lignin as later demonstrated by the solid-state NMR spectra. Drought treated samples 

yielded slightly higher lignin than control suggesting compositional differences such as more 

accessible or more cleavable bonds could account for the difference in yield.  

While we have encountered hurdles in our approach, we have identified Py-GC/MS as a 

very useful high-throughput, information rich technique that is particularly suitable for 

chemometric approaches due to its large and complex data sets. Its ability to rapidly analyse many 

samples with just micrograms of sample will be especially important for our future investigation 

where we examine a much larger sample set with very limited sample mass. Work with this 

technique will be continued for future investigations but has not been successful in this current 

work.  

The 31P NMR spectroscopy technique has enabled the quantitative determination of distinct 

hydroxyl groups in lignin samples. Differences in lignin hydroxyl group content were observed, 

most notably a 0.13 mmol/g decrease and a 0.15 mmol/g increase in aliphatic and phenolic 

hydroxyl groups, respectively, in the drought lignin compared to the control. Hydroxyl groups are 

very important functionalities for predicting biomass processing efficiency and defining the 

reactivity of lignin for future processing. Our results suggest drought stress alters the lignin 

structure producing a more hydrophobic lignin which is considered to promote lignin-enzyme 

interactions which inhibits the enzymatic hydrolysis of biomass. It remains to be determined if the 

observed difference is significant in a larger sample set.   

 Solid-state 13C NMR of the lignin samples was used to quantify detailed structural features 

of the lignin samples. Distinct aromatic carbons and methoxy groups are readily observed in the 
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NMR spectrum of lignin sample. Alkyl – O – aryl bonds, primary and secondary hydroxyl groups, 

and aliphatic carbons are also detected, although much less resolved. The features observed in the 

lignin NMR spectrums were consistent with softwood lignin and the absence of carbohydrate 

signals from 105 – 90 ppm supports the high purity of the lignin sample. Quantification of aromatic 

and methoxy carbon showed reasonable agreement with literature values however, the differences 

in the three aromatic carbons between the drought and control samples was minor compared to the 

difference between this study and the literature values. In addition, methoxy content was higher in 

the control than drought but was very sensitive to integration boundaries, thus, we are skeptical 

regarding the accuracy of the predicted methoxy content. Taken together, detailed structural 

analysis via solid-state 13C NMR of the lignin samples has not been able to identify substantial 

structural differences between the drought and control trees. Slight differences are apparent but 

cannot be confirmed as significant due to the small sample set. More samples would be required 

to confidently comment on the significance of these differences.  

6.5 Conclusions 

  The results of this study suggest that drought conditions may increase lignin content and 

alter lignin composition in the wood of Douglas-fir seedlings. Lignin biosynthesis is suggested to 

have high dynamic plasticity and increases in lignin content have been frequently associated with 

drought stress responses. Our results agree with this concept but requires more evidence to 

confidently settle on this finding. In addition, a mechanistic investigation on the function of lignin 

content in drought stress tolerance would provide more support to this notion. To support our 

investigation, we have expanded on a previous approach [461] to predict lignin content directly 

from the integration of solid-state NMR spectra of wood samples by accounting for more structures 

in the spectrum. The new approach adds minimal complexity to the calculations but produces a 

slight improvement in results. However, a more detailed and focused investigation would be 

required to confirm the accuracy of the approach. Despite this, the results appear promising, and 

the approach could be further refined in a variety of ways such as removing extractives prior to 

NMR analysis. In addition to changes in lignin content, differences in lignin composition were 

observed with a detailed investigation of lignins structure using quantitative 31P NMR 

spectroscopy and semi-quantitative 13C NMR spectroscopy. These differences, in particular 

differences in reactive hydroxyl groups are important indicators for processing objectives.  
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 It is well established that drought stress can cause major compositional changes to 

lignocellulosic feedstocks. Lignin content and composition has major implications for 

lignocellulosic biomass processing as almost all current industrial approaches require an intensive 

fractionation/pretreatment step to remove lignin from the other components. This study has 

identified evidence for an increase in lignin content and altered lignin composition between 

drought stressed and the control Douglas-fir seedlings. A more detailed investigation is required 

to further explore the extent of these changes. Future work is already underway with over 100 new 

samples from 10 Douglas-fir families from another drought experiment. The results of this study 

will guide future work enabling a more focused investigation. In addition, we intend on applying 

chemometric approaches for extracting more information from the larger data set in our next 

investigation.  
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Chapter 7: Summary, key findings, limitations and 

future work 

7.1 Summary 

The objective of this thesis was to assess the impact of drought stress on the composition 

of Douglas-fir lignin in the context of its implications for feedstock reliability and value for 

biorefining strategies. Due to the broad and interdisciplinary scope of this investigation, much of 

the writing in this thesis touches on different sub-fields that support the work that has been 

undertaken. This chapter summarizes the work in this thesis, presents key findings, limitations, 

and concludes with a discussion regarding future work. 

Chapter 1 provided a broad introduction to the field of lignocellulosic biomass research, 

defining its significance, the scope of work surrounding the field, and its components. It 

established the potential for lignocellulosic biomass as a renewable source of energy, materials, 

and chemicals and introduced contemporary visions for a sustainable bio-based economy 

established on the principles of green chemistry. Lignin has been identified as both a major 

obstacle to lignocellulosic biomass processing and as a great opportunity for the renewable 

production of value-added aromatic compounds. The high variability of lignocellulosic feedstocks 

combined with the complex chemistry and interactions in the plant cell wall has proven a major 

challenge for these approaches, but significant efforts are being undertaken to address these 

challenges. Regardless, it is becoming very clear that efficient utilization of all lignocellulosic 

components is essential for the economic viability of contemporary bioeconomy concepts. 

Chapter 2 reviewed the literature regarding drought stress response and plant cell wall 

lignification, summarizing the work that has been done and characterizing the current state of our 

understanding. Increasingly severe and frequent drought may be one of the largest concerns and 

challenges for a transition to a bio-based economy. High feedstock variability is already a great 

concern and drought could highly alter both the productivity and composition of lignocellulosic 

feedstocks. There have been a variety of efforts to improve lignocellulosic feedstocks with 

selective breeding strategies that reduce or alter lignin content. However, lignin biosynthesis and 

deposition mechanisms have had around 400 million years of evolution in vascular plants. Thus, 
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current plants may have developed distinct and highly sophisticated lignin related stress response 

mechanisms to adapt to various conditions such as drought. Lignin biosynthesis exhibits high 

plasticity and has been associated with stress response to a variety of biotic and abiotic factors. 

Lignin has been frequently associated with drought stress response in terms of distribution, 

content, composition, via interactions with the metabolic pathway, and more. It appears that these 

responses and mechanisms are likely highly tissue specific demonstrating the complexity of the 

topic. In general, more studies than not have observed either an increase in lignin content or an 

increase in the expression of lignin related pathway intermediates in response to drought stress. In 

addition, modified lignin composition such as altered abundance of certain monomer units has also 

been identified despite the limited studies that have considered this. Many molecular level 

response and functional defense mechanisms have been proposed but there is not yet a firm 

consensus in these related matters. 

Chapter 3 provided an introduction to fractionation/pretreatment and an overview the 

various approaches. Fractionation is one of the first, most expensive, and most important steps in 

lignocellulosic biomass processing as well as an essential means to study its components such as 

lignin. The main industrial scale approaches have developed in the pulp and paper industry or for 

bioethanol production schemes. Fractionation typically operates by either solubilizing the lignin 

fraction leaving a carbohydrate rich residue or solubilizing the carbohydrate fractions leaving a 

lignin rich residue. Many emerging approaches are available and more are being developed; 

however, the most promising approaches are those that effectively isolate the components while 

preventing undesired reactions such as the breakdown of carbohydrates into toxic compounds and 

the condensation of lignin structures, all while adhering to the principles of green chemistry. The 

best approach depends on a variety of factors and will have major implications for downstream 

processing. Fractionation in the laboratory context was also discussed and the approach varies 

depending on the application.  

Chapter 4 reviewed the main approaches for the characterization of lignin structure and 

discussed their functions and limitations. There are a variety of wet chemical techniques available, 

but researchers are shifting to higher-throughput and more comprehensive techniques. Vibrational 

spectroscopy methods (MIR, NIR, Raman) provide rapid information but are limited by 

overlapping signals and require multivariate approaches for quantification. GC-MS is becoming a 
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useful high-throughput tool, but interpretation requires time and experience. Applying 

chemometric approaches can expedite the analysis and alleviate many hurdles for GC-MS 

interpretation. NMR provides the most comprehensive analysis but still faces many limitations. 

New NMR techniques are emerging to address different limitations, such examples include higher 

dimensional methods, pulse sequences, spectral editing, and wet chemical hybrid methods. 

Molecular weight is a very important property influencing physical and chemical properties of 

lignins and SEC is the most common approach for the evaluation of molecular weight distribution 

of polymers. Complex branched polymers such lignin may not be adequately separated on the 

basis of hydrodynamic volume and thus SEC determination of lignin molecular weight should be 

preferably understood in a relative sense. There are still many challenges to lignin characterization 

due to complexity of plant cell wall and limitations of analytical tools. However, through the 

application of multiple methods a comprehensive picture of a lignin structure can be developed 

and validated.  

Chapter 5 provided an introduction to the field of chemometrics and subsequently 

presented an organized review of chemometric approaches applied to the field of lignocellulosic 

biomass research for lignin valorization. Experimental design was described, which is a 

fundamental area of chemometrics related to the statistical design of experiments to efficiently 

acquire high quality data sets. Data preprocessing was introduced and a structured summary of 

many of the main chemometric preprocessing techniques was developed. Multivariate data 

analysis was presented including the main approaches for exploratory data analysis supporting 

classification and clustering and multivariate calibration supporting prediction. A discussion of 

model optimization, validation, and performance criteria was also included. After introducing the 

main elements of chemometrics as described above, the application of chemometrics to the field 

of lignocellulosic biomass research for lignin valorization in categories based on analytical 

technique was reviewed. This review has established the state of this multidisciplinary sub-space, 

demonstrating the achievements, discussing trends, limitations, and gaps. Chemometrics is a 

mature field with a diverse range of effective approaches. While much of our understanding of 

lignin and lignocellulosic biomass has been established using wet chemical approaches, more 

efficient high-throughput techniques are becoming increasingly desirable. These rapid techniques 

require chemometric approaches to accommodate the large and complex data sets that accompany 
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them. This work highlighted the ubiquity of the most classic chemometric tools PCA and PLS, 

which have withstood the test of time, while also observing/predicting a shift to more sophisticated 

machine learning algorithms such as ANN’s in the near future. Key accomplishments such as the 

accurate prediction of molecular weights using FT-IR spectroscopy combined with chemometrics 

set a strong precedent for future approaches. Altogether, this chapter demonstrated the broad 

applicability and effectiveness of these tools in the context of their application to lignocellulosic 

biomass research.    

Chapter 6 described an investigation on the effects of drought-induced abiotic stress on the 

composition of Douglas-fir lignin. Wood was harvested from the outer rings of the stems of two 

groups of Douglas-fir seedlings, one group grown in severe drought and the other in normal 

conditions. Lignin was extracted from the wood using a mild organic solvent extraction approach 

and both the wood and lignin samples were characterized using the following techniques: wet 

chemical analysis, ATR FT-IR spectroscopy, Py-GC/MS, 31P NMR spectroscopy, solid-state 13C 

NMR spectroscopy. In addition, an approach for quantifying lignin content in wood via the direct 

integration of 13C NMR signals was applied and extended, indicating promising results with 

increased accuracy.  

7.2 Key Findings and limitations 

This investigation looked at identifying compositional differences between drought 

stressed and control Douglas-fir seedlings, focusing on the content and composition of lignin, 

which has been associated with drought response mechanisms in a variety of plant species and 

tissues. I hypothesised that drought stress would induce chemical changes to the Douglas-fir wood 

and more specifically I predicted an increase in lignin content and some degree of altered lignin 

composition. This work has revealed some evidence for an increase in lignin content in Douglas-

fir seedling wood of drought-treated plants as compared to the controls. Additionally, 

compositional differences in lignin hydroxyl content and lignin structural features such as aromatic 

carbon bonding patterns were observed. Hydroxyl groups are key functionalities of lignin which 

influence its processing and properties. The drought lignin sample appears to be potentially more 

hydrophobic than the control based on differences in distinct hydroxyl group contents, which 

would likely have negative implications for the enzymatic hydrolysis of biomass. These results 
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suggest that lignin content and composition are impacted by drought stress in Douglas-fir 

seedlings. However, these differences need further investigation and there are a variety of 

limitations that should be noted.  

Due to the small size of the young Douglas-fir seedling stems (just a few feet tall), 

harvesting of wood from the outer rings is tedious, susceptible to error, and low yield. Manual 

shaving of the wood from the stem using a sharp scalpel takes time and patients; moreover, it can 

be challenging to avoiding inadvertent cutting into the previous years ring. In this drought 

experiment, the drought treatment was only applied in the last year of growth, so contamination of 

the sample with the previous years wood will interfere with the results of the experiment. 

Additionally, each tree yields just around 1 g of sample and thus the wood from 5 trees was 

combined to produce enough wood for lignin extraction. Since the samples were combined, we 

must infer the results as a bulk effect and thus tree specific information is lost, potentially diluting 

the observable differences. To add to the challenge, the organic solvent extraction technique 

applied to the wood samples was of low yield (~3-5%), which raises two main concerns: the first 

is that there is not enough wood or lignin for analysis and the second is that the lignin extracted 

may not be representative of the total lignin. Regarding the first point, even with the combined 

trees, low yield of lignin greatly limited the analysis that could be performed. For example, the 

detergent fibre method for lignin content determination of the wood could not be performed in 

duplicates and limited lignin yield restricted opportunities for many wet chemical approaches. 

With respect to the second point, the low severity of the extraction technique may indicate that the 

recovered lignin is more representative of native lignin as it resides in the plant well walls; 

however, it is also possible, if not probable, that the lignin recovered represents the lignin with 

bonds more easily cleaved during the extraction process.  

While we found evidence for increased lignin content in the drought sample as compared 

to the control, we have to consider a few important concerns with the methods used to estimate 

lignin content in the wood samples. Two distinct methods were applied to estimate lignin content: 

the wet chemical detergent fibre method and a quantitative solid-state 13C NMR approach. The 

detergent fibre method was not able to identify differences in lignin content between the samples. 

This is in contradiction with the findings of the solid-state 13C NMR results which predicted higher 

lignin content in the drought sample. On one hand, while the detergent fibre is known to 
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underestimate lignin content, it is a robust procedure; on the other hand, solid-state 13C NMR may 

in theory provide a more representative account of lignin in the sample despite being limited to the 

natural abundance of the 13C isotope, quantification is hindered by convoluted spectra, and there 

are not yet well-established procedures for this approach.   

Analytical characterization of lignin provided evidence for subtle changes in lignin 

structure as a result of drought stress; yet there are limitations of the approaches used to assess 

these changes. FT-IR spectroscopy provides detailed bond-specific information but could not 

identify differences in the lignin samples. Py-GC/MS could also provide some valuable insight but 

is challenged by very difficult interpretation. When we consider the results of the quantitative 

determination of hydroxyl groups using 31P NMR, it is a robust and well-established procedure, 

performed in duplicates, and thus the results have a higher degree of confidence. While a difference 

in aliphatic and aromatic hydroxy groups was observed, they are not dramatic differences. A larger 

sample set would support a stronger conclusion in this regard, but the results are promising and 

suggest the continued use of the technique for future work. Quantitative solid-state 13C NMR of 

lignin samples can reveal detailed information regarding distinct lignin carbons and their 

environment. Despite the high resolution of technique, the extreme heterogeneity and 

stereochemistry of lignin convolutes the spectrum with broad and overlapping peaks which make 

assignment challenging and selection of integration bounds somewhat arbitrary. There are five 

main regions on the 13C NMR spectrum of lignin: aromatic, alkyl-O-aryl, hydroxyl, methoxy, and 

aliphatic. While the aromatic region is mostly distinct from other carbon types in lignin, internal 

overlap makes distinction between the types of aromatic carbons (e.g., 𝐴𝑟 − 𝑂, 𝐴𝑟 − 𝐶, 𝐴𝑟 − 𝐻) 

difficult. The methoxy peak is the sharpest in the spectrum and in theory should reflect a roughly 

1:1 ratio of methoxy groups per aromatic unit for guaiacyl rich softwood. However, the shoulders 

(particularly on the downfield side) overlap with the hydroxyl carbons and thus the predictions are 

highly sensitive to integration boundaries. The alkyl-O-aryl region of solid-state 13C NMR spectra 

has also recently been suggested to provide accurate estimates of 𝛽 − 𝑂 − 4 and 𝛼 − 𝑂 − 4 lignin 

inter-unit linkages; yet a lack of comparable literature and supporting evidence make validation of 

these results challenging. The hydroxyl and aliphatic regions are even less reliable. Altogether, 

while the quantitative solid-state 13C NMR technique provides detailed information and can be 
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useful for relative comparison, more supporting evidence is required to confirm the reliability of 

the technique.   

7.3 Future work 

 Despite the many challenges encountered during this project, these obstacles have provided 

a great opportunity to learn and grow. They support increasingly refined and focused future 

investigations and identify areas of improvement regarding the approaches applied. Our team is 

already underway on a follow up investigation with the intent to further explore the hypothesis of 

this thesis. In order to more comprehensively evaluate our hypothesis, we will be strongly 

considering implementing many of the following improvements as outlined below.  

 A key challenge with this investigation was the small sample set and hence the follow up 

investigation includes over one hundred trees from ten different Douglas-fir families. We intend 

to evaluate these trees on an individual level in order to identify both tree specific information as 

well as at the family level. In order to make this possible we will consider approaches for increasing 

the yield of the organic solvent extraction technique or shift to another approach that can provide 

research grade lignin with high enough yield to evaluate each tree as an individual sample. We 

may also consider a MWL extraction procedure as it is more commonly used to make inferences 

on native lignin and will be more useful for comparison with literature. A larger sample set will 

also provide a great opportunity for exploring the results using chemometric approaches. We hope 

that exploratory analysis techniques will be able to identify patterns in our data set or subtle 

correlations among variables that may go otherwise unnoticed. In addition, we will consider the 

potential to use multivariate calibration for predicting properties which could support more 

efficient future investigations. An example would be the prediction of lignin content of wood or 

the structural features of lignin such as hydroxyl group content using high-throughput approaches 

like vibrational spectroscopy or Py-GC/MS.  

 For the determination of lignin content, we may also look to use an alternative approach to 

the detergent fibre method because of the high sample requirement of the technique. An effective 

alternative could be the well-known acetyl bromide method which has a significantly reduced 

sample requirement and relies on the solubilization of lignin and the calibration of absorbance 

values at distinct wavelength for lignin. This method is gaining popularity and has been shown to 
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result in higher lignin recovery and thus may provide a more accurate assessment of total lignin 

content than other approaches. We also intend to more thoroughly evaluate the solid-state 13C 

NMR direct integration approach for the determination of lignin content as it could be a very 

promising alternative to the laborious wet chemical procedures. It will be interested to see if our 

extended method for direct integration will continue to out-perform the previous approach. We 

will also look to evaluate if the removal of extractives content prior to NMR analysis, calibration 

approaches, and spectral editing techniques could increase the accuracy of this approach.  

 While FT-IR was unable to resolve differences between samples, the technique may be 

more promising with a larger data set. Vibrational spectroscopy has a well-established relationship 

with chemometric approaches and often chemometric techniques such as PCA have been proven 

to reveal key variables in large data sets. In particular, score plots that project the data onto 

principal components to more clearly represent the variation in the data may be able to distinguish 

differences between drought and control samples. The loadings plot could then demonstrate what 

variables contribute most to the variation in the data set. For vibrational spectra, these variables 

would be wavelengths corresponding to specific structural features. Further, ATR FT-IR 

spectroscopy and multivariate calibration has been shown to accurately predict molecular weight 

and specific lignin inter-unit linkages, demonstrating the incredible potential for these techniques. 

We would be very interested in similar approaches that could be applied to our future work which 

could then be used to facilitate rapid studies with significantly lower sample requirement.  

 Py-GC/MS is another technique with growing interest in the field of lignocellulosic 

biomass as a high throughput technique especially suitable for chemometric approaches. Py-

GC/MS can provide a wealth of information and the barrier of entry for applying the tool is 

increasingly being lowered through chemometric tools and software. Open-source, fully 

automated GC-MS analysis using tensor-based modelling and machine learning tools are among 

the exciting developments surrounding the approach. Despite there being some challenges with 

implementing these techniques encountered during this project, it is a very promising approach 

that we will look to exploit in future work. Arguably one of the most important benefits of the 

technique is the very modest sample requirement, which I see as a great advantage due to the 

challenges I encountered with limited sample quantities in this work. 



190 

 

     Quantitative solid-state 13C NMR of lignin samples provided detailed structural 

information including proportions of different aromatic carbons, alkyl-O-aryl bonds and methoxy 

carbons. The approach is fast and useful, but more validation is required to have more confidence 

in the findings. Additional NMR techniques with more robust procedures or some wet chemical 

analysis approaches could be useful for comparison. Furthermore, spectral editing techniques and 

deconvolution algorithms could also improve the resolution and reduce uncertainty of the results.  

 Another important aspect of future work that we hope to incorporate is the measurement 

of the effects of drought stress on the morphology of the trees and the physical and mechanical 

characteristics of the wood. Evaluation these characteristics will be useful to correlate chemical 

properties with their functions in drought stress tolerance. This could include factors such as 

height, diameter, strength of stem, survivability and more. It would also be interesting to evaluate 

the differences between different tissue or cell types. Many contemporary studies are also 

considering drought response on the transcriptional level, looking at the regulatory networks that 

control these responses. We also intend to explore these factors and have already extracted RNA 

for sequencing from the next sample set.   

 Altogether, lignocellulosic biomass is a complex matter with incredible potential and a 

broad range of challenges. Lignin makes up a substantial component of lignocellulosic biomass 

and is greatly underused despite its abundance and versatility. Thus, regardless of the challenges 

there are many opportunities in this area. New methods are being proposed and old methods are 

being improved facilitating more advanced and effective research. The work in this thesis has 

generated both encouraging results and promising pathways for future work. A final consideration 

would be the strong encouragement of more interdisciplinary collaboration. The field of 

lignocellulosic biomass research encompasses a broad range of multiscale and multifaceted 

challenges that necessitate the communication and interaction between different disciplines.  
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Appendix A 

Table A1. Summary of literature findings on the relationship lignin biosynthesis, content, and 

composition and drought stress response mechanisms. 

Findings regarding lignin Year Author Reference 

Drought stress leads to altered lignin content and location, reduced lignification in middle lamella.  2002 Donaldson [1] 

Wall extensibility and root growth are inhibited by water deficit through alterations of phenolics in the 

cell wall in the root elongation zone. 

2006 Fan et al. [2] 

Identified two distinct phases of drought stress which begins with a “mild endurance period” in which 

APOX and PAL are activated providing antioxidant protection, and a “severe injury period” in which 

lignifying peroxidases (GPOX, CPOX, and SPOX) are enhanced and lignin and lipid peroxidation is 

increased, restricting growth.  

2007 Lee et al. [3] 

Leaf lignin content increased significantly under severe and moderate drought treatments. Significant 

differences in leaf lignification between drought-tolerant and drought-sensitive inbred lines. 

2009 Hu et al. [4] 

Plants displayed varying responses to drought stress in terms of lignin content. Adjustment of total lignin 

resulted in an increased S/G ratio, either by increasing the amount of lignin S units or by the reduction of 

lignin G units. 

2011 Moura-Sobczak et al. [5] 

Lignification decreased cell wall plasticity, inhibited cell wall growth, and assisted water retention. Lignin 

metabolism likely plays an important role in drought stress response and post-drought recovery. 

2013 Li et al. [6] 

Increases in activity of various lignification-related enzymes in leaves in response to drought stress along 

with a positive correlation between leaf rolling and lignin content. 

2013 Terzi et al. [7] 

Water stress plants featured significant accumulation of lignin. Lignification was dependant on internode 

maturation (immature or mature) and the tissue region in the stem (rind or pith). The mature internodes 

exhibited more lignification than immature internodes, and the rind more lignified than the pith. 

2015 dos Santos et al. [8] 

Cinnamoyl CoA Reductase (CCR) accumulation, immune-cytolocalization of CCR protein and lignin 

deposition pattern of both root and stem tissues suggested that CCR is important for vascular tissue 

development under drought stress conditions in developing seedlings of Leucaen. 

2015 Srivastava et al. [9] 

PtoMYB170 increases lignin deposition during wood formation in poplar by triggering lignin 

biosynthetic gene expression as well as promoting dark-induced stomata closure and thus drought 

tolerance in comparison to its divergent homologous PtoMYB216 gene.   

2017 Xu et al. 2017  [10] 

Lignin content of Miscanthus under drought stress was only mildly affected in the stem with no significant 

effect on the lignin in the leaf tissue. 

2017 Van der Weijde et al. [11] 

Additionally, lignin content was not affected by drought stress – thus suggesting there may be a different 

mechanism of cell wall development for drought tolerance. 

2017 Wildhagen et al. [12] 

Investigated the phenotypic traits of several engineered Arabidopsis plants for desired biofuel traits. Low 

lignin plants demonstrated reduced levels of water loss and better drought tolerance than wild-type plants. 

Results suggested a dependency between the drought tolerance of the plants with low lignin and ABA. 

Engineered plants with low lignin content had stomata closures more responsive to ABA, which reduces 

water loss and could be key for conferring drought tolerance. Examination of the expression of drought-

responsive genes in the plants also indicated that the plants engineered for low lignin have increased 

induction of stress-responsive genes, potentially accounting for their superior drought tolerance. 

2018 Yan et al. [13] 

Lignin monomer composition of the trees from their study was related to dry-season leaf life span and 

xylem embolism resistance. Total lignin content was not correlated with any variable in their study. They 

propose two main lines of trait variation for drought tolerance based on their results, one for keeping 

leaves around longer by increasing the S:G ratio, and the other for leafless trees to retain more water in 

the stem and to shed leaves to keep higher step water potential. They conclude that two lines are related 

and that the mechanisms that link S:G ratio with xylem embolisms vulnerability requires further 

investigation. 

2018 Lima et al. [14] 

Created overexpression and knockdown transgenic lines of OsTF1L, a rice homeodomain-leucine zipper 

transcription factor gene, to further investigate their function in drought tolerance mechanisms. 

Overexpression of OsTF1L increased shoot lignification in the typically lignified tissues, with no ectopic 

lignification throughout the plant. Results indicated OsTF1L could increase drought tolerance through 

multiple molecular mechanisms such as stomatal movement and lignin biosynthesis.  

2019 Bang et al. [15] 

Generated VlbZIP30-overexpressed transgenic grapevine plants and analyzed the plants response to 

drought treatment relative to control plants. Transgenic plants with overexpression of VlbZIP30 displayed 

improved drought tolerance, demonstrated by increased leaf relative water content, tuning of 

photosynthesis rate, and increased lignin content in the leaves. Increased leaf lignin content found to be 

primarily G units. Consistent with those results, VlbZIP30 regulated the expression of lignin biosynthetic 

(VvPRX N1, VvPRX4, and VvPRX72) and drought responsive (VvNAC17) genes, supporting lignin 

biosynthesis and improving drought resistance in grapevine. Overexpressing VlbZIP30 in A. thaliana did 

not result in the same regulation of lignin biosynthesis as in grapevine, which the authors speculate could 

be due to the difference in herbaceous vs woody vine biosynthesis mechanisms. Additionally, they found 

differences in lignin biosynthesis pathway regulation between stem and leaves, indicating that lignin 

biosynthesis may be regulated differently in certain tissues. First report of a bZIP transcriptional factor 

being directly involved in lignin biosynthesis and enhancing drought resistance. 

2020 Tu et al. [16] 

Investigated the roles of important enzymes for lignin synthesis and lignins function in drought tolerance. 

Lignification is important for both melon and Arabidopsis in tolerating drought stress, and in particular 

CmCAD2 and 3 are key to this mechanism.   

2020 Liu et al. [17] 

Explored drought response mechanism of foxtail millet by identifying a drought-induced R2R3-MYB 

transcriptional factor SiMYB56, and then comparing wild-type to transgenic plants with overexpressed 

SiMYB56. SiMYB56 may confer drought resistance in Foxtail millet by stimulating lignin biosynthesis 

under drought conditions.  

2020 Xu et al. [18] 

Investigated the functional mechanisms of the DREB gene, DcDREB1A, cloned from carrots (Daucus 

carota L.), in response to drought stress in transgenic DcDREB1A overexpressed Arabidopsis thaliana. 

Results indicated that DcDREB1A is a nuclear protein involved in the regulation of plant drought stress 

tolerance by reducing water loss through stomata regulation and lignin deposition, decreasing oxidative 

lipid damage from ROS by increasing SOD and POD activities, and increasing the expression of other 

stress-responsive genes in plants.   

2020 Li et al. [19] 

Looked at lignin deposition in the legume crop chickpea (Cicer arietinum L.) in response to drought 

stress. The authors concluded that root length and lignin content may be increased under drought 

conditions and that the LACCASE gene family may play a role in this stress response mechanism. 

2020 Sharma et al. [20] 

https://academic.oup.com/treephys/article/37/12/1713/4049597?login=true
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Studied the proteomic profiles of stress proteins in tea plants under drought stress, specifically how they 

impact lignin. Tea plants respond to drought stress by inhibiting the accumulation of enzymes that 

catalyse lignin biosynthesis, while still promoting the accumulation of lignin, potentially through 

encouraging the activity of these enzymes.  

2020 Gu et al.  [21] 

Laccases are multicopper oxidases that play a role in lignin biosynthesis via oxidative coupling of 

monolignols. Positively correlated the expression of PeLAC10 with lignification in bamboo. PeLAC10 

may be associated with lignification as shown by increased lignin content in the transgenic plants.  

Transgenic plants with overexpression of PeLAC10 had higher lignification, better survivability, 

relatively normal growth, reduced MDA content (MDA concentration is an indicator of membrane 

damage from ROS) compared to the control plants. 

2020 Li et al. [22] 

Abiotic stress influenced cell wall polysaccharide content but not affect total lignin content. Lignin 

composition in the young shoot was significantly altered as shown by a decrease in S and increase in G 

lignin monomer units under both drought and salt stress conditions. They did not observe the same change 

in the xylem tissues. Transcriptional analysis revealed significant alterations in the expression of cell-

wall related genes in young shoots in response to abiotic stress conditions. Core lignin biosynthesis 

pathway genes (F5H and COMT) were significantly decreased. 

2020 Hori et al. [23] 

Transgenic plants with reduced lignin content in the vessels but not fibres had significant reduction in sap 

flow and hydraulic conductance in the xylem transportation system compared to wild type plants. These 

transgenic plants were also more vulnerable to drought, displaying dwarfism, low survival rate, and 

reduction of aboveground biomass yield. Transgenic plants with reduced lignin in the fibres instead of 

the vessels did not exhibit significantly reduced performance of xylem transportation system and 

vulnerability to drought stress, although they did show more significant reduced mechanical strength.  

2020 Cao et al. [24] 

Isolated the full-length cDNA of a caffeoyl-CoA O-methyltransferase gene (CCoAOMT) from P. ostii 

which is an important enzyme for lignin biosynthesis and is suggested to play a role in abiotic stress 

tolerance. Under drought treatment, the expression levels of PoCCoAOMT in P. ostii was found to be 

overexpressed as compared to the control plants. PoCCoAOMT overexpressed transgenic tobacco plants 

were then used to further understand its role in drought stress response. In the transgenic lines they found 

PoCCoAOMT was expressed the in all three tissues Lignin content was significantly higher in the roots, 

stem, and leaves than in the wildtype plants, and highest in the roots. Four genes involved in lignin 

biosynthesis Phenylalanine ammonia gene (PAL), cinnamyl alcohol dehydrogenase gene (CAD), 4-

coumarate: CoA ligase gene (4CL) and caffeic acid-O-methyltransferase gene (COMT) increased 

expression in the transgenic lines compared to the wildtype lines in all tissues, although inconsistently.  

Guaiacyl and syrignyl units were the predominant components of the plant’s lignin, and the transgenic 

lines had increased levels of both monomer units, with a larger increase guaiacyl units. Drought stress 

tolerance specifically associated with higher levels of guaiacyl lignin units.  

2021 Zhao et al. [25] 

Investigated the molecular mechanism of drought resistance in Cassava, a woody shrub important for 

both food and energy. Looked at the role of “Related to ABI/VP1” (RAV), an important subfamily of the 

APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) transcription factor family, in drought 

response. Proposing a model for the molecular mechanism of MeRAV5, MePOD and MeCAD15 action 

in modulating plant drought resistance, whereby drought stress induces the expression of these 

transcriptional factors, with MeRAV5 interacting with both MePOD and MeCAD15, promoting their 

activities and influencing the accumulation of 𝐻2𝑂2 and lignin, conferring drought resistance to the plant.  

2021 Yan et al. [26] 

Isolated a transcriptional factor gene, MsWRKY11, generally considered to be stress-inducible, and 

investigated its potential mechanism in drought tolerance in alfalfa. MsWRKY11 positively regulates 

lignin biosynthesis in stems and roots of alfalfa. The MsWRKY11 overexpressed lines had increased 

levels of all three main monomer units in the stem, with the greatest increase found in the S monomer 

units. MsWRKY11 is positively activated by MsWRKY22, increases stomatal density and lignin 

accumulation, conferring drought tolerance to alfalfa.  

2021 Wen et al. [27] 

Overexpression of PtrbHLH186 resulted in abnormal lignification, enhanced vessel cell development and 

altered wood composition, in particular, early and increased lignification, increased total lignin, increased 

G units, decreased polysaccharides, and more drought-tolerant phenotypes.   

2022 Liu et al. [28] 
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Appendix B 

B1 Preprocessing 

Table B1. Classical data preprocessing methods applicable to all types of multivariate data 

classified as column-wise methods. The most commonly used data preprocessing methods are 

mean centring and scaling. [29] Column scaling is typically used if the data variables are on 

different scales or are measured on different ranges leading to varying impacts on the analysis. 

[30] 

Method Brief Description 
Mean Centering Shifts the center of the data to the origin, mean-centered data will have a mean of 

zero which is better for visualization. 

Scaling Divides each variable by a number. This can make variables with different 

scales/units more comparable. When each variable is divided by its standard 

deviation, it is commonly referred to as unit variance scaling. Scaling should not 

be applied to spectroscopic data. [29] 

Autoscaling/Standardization Combining the mean centring and unit variance scaling is sometimes termed 

autoscaling or standardization. [31] Note that the term ‘normalization’ is also 

sometimes used in this context, but this has been recommended against because 

of its inconsistent use in the chemometric literature. [30] Autoscaling can 

sometimes amplify noise. [32]  

Pareto Scaling Pareto scaling is another form of column scaling that differs from autoscaling in 

that it uses the square root of the standard deviation as the scaling factor instead 

of just the standard deviation. [33] 
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Table B2. In contrast to the column-wise classical preprocessing methods described in Table B, 

signal correction methods are typically row-wise manipulations and are applied to reduce the 

impact of perturbations in the data while augmenting the useful information. [29] 

Method Brief Description 

Baseline Correction Continuous and low-frequency background signals independent of the sample under 

investigation in spectroscopic data are called baselines. [34] Baseline correction involves 

identifying the nature and magnitude of the baseline and removing it from the data leaving 

the baseline noise numerically centered about zero. [35] [36] Methods for baseline 

correction involve subtracting a constant value from the data or forming a line through two 

data points and subtracting the values of the line from its corresponding data points. [34] 

For chromatographic analysis, a “blank” chromatogram could also be subtracted from the 

sample runs to remove the baseline. [35] More complex techniques include the use of 

mathematical algorithms to identify and remove the baseline from the data; however, it is 

important to ensure that the variations in the data from the sample under investigation are 

not affected by the correction. [35] 

Smoothing Smoothing is the name generally used for data preprocessing that seeks to reduce the high-

frequency noise in the data unrelated to the sample under investigation without corrupting 

the desired information. [34] [37] [35] Similar to baseline correction, there are several 

different techniques for smoothing experimental data. A popular method for addressing 

noise is the Savitzky-Golay smoothing algorithm [37] [38] which is a moving average 

algorithm based on simple local least-squares polynomial approximation. [39] [40] 

Differentiation Derivatives can eliminate background signals, assist in determining peak positions, and 

improve the visual resolution of peaks. [41] Common algorithms for differentiation include 

the Savitzky-Golay and Norris-Williams [42] algorithms which are used to smooth the noise 

that is enhanced by differentiation. [29] Derivatives are a common preprocessing strategy; 

however, they should be used with caution as they can enhance noise. 

Row Scaling 

(Normalization) 

Row scaling is a data preprocessing strategy to make the data more comparable by scaling 

the rows of a data set to a constant total. [32] This row-wise scaling transformation can also 

be referred to as normalization. The term normalization sometimes implies scaling using the 

sum of squares; however, this is inconsistently applied in the literature. [32]  

Multiplicative 

Signal Correction 

(MSC)/Extended 

Multiplicative 

Signal Correction 

(EMSC) 

The EMSC is essentially a method that mathematically corrects for light scattering 

variations resulting from factors such as particle size, shape, and other physical variations 

of the sample by separating the physical light-scattering effects from the vibrational spectra 

recorded. [43] The EMSC is a powerful data preprocessing approach for vibrational spectra 

that can separate and quantify different types of variations in the spectra as well as provide 

basic baseline correction and normalization. [44] A more in-depth description and tutorial 

for the EMSC can be found elsewhere. [44] [43] 

Standard Normal 

Variate (SNV) 

A similar and linearly related technique to MSC, SNV, is used to process data prior to further 

analysis by correcting for physical variations in the sample such as particle effects. [45] The 

SNV is a mathematical transformation applied to individual spectra that can reduce 

multiplicative interferences of scattering and particle size. [46] An in-depth description and 

comparison of MSC and SNV found insufficient evidence to conclude one technique is 

superior to the other. [45] 
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Table B3. Dimensionality reduction/variable selection methods  

Method Brief Description 

Genetic Algorithms 

(GA) 

Genetic Algorithms are an optimization/variable selection approach based on the concept 

of evolution by natural selection. [47] There are several variants of GA based on the 

methodology of a population-based stochastic algorithm that produces ‘better’ 

populations. [31] More detailed descriptions and implications for chemometric 

applications can be found elsewhere. [48] [49] [50] 

Orthogonal Signal 

Correction (OSC) 

Any systematic variation in X that is unrelated to Y and included in the multivariate model 

could result in an imprecise model. The basis of the OSC technique is to remove the parts 

of the data in X that are completely unrelated to Y. OSC does this by only removing the 

parts of X that are mathematically orthogonal to Y (or very close to orthogonal). The OSC 

algorithm follows the same process as the PLS algorithm, except for the calculation of the 

weights. [51] 

Orthogonal 

Projections to Latent 

Structures (O-PLS) 

Orthogonal projections to latent structures is another method that maintains the same 

objective as OSC but with a different approach. [52] It is a way to remove systematic 

variation from an input data set X that is not correlated (orthogonal) to the response set Y. 

O-PLS removes the non-correlated systematic variation in X by analyzing the variation 

explained in each PLS component. Advantages of O-PLS include the improved 

interpretation of PLS models and their parameters scores, loadings, and residuals. 
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B2 Performance Criteria 

Performance criteria are based on residuals (𝑒𝑖) obtained by subtracting the predicted value 

(�̂�𝑖) (Equation 1) from its true value (𝑦𝑖).  

 𝑒𝑖 = 𝑦𝑖 − �̂�𝑖 (1) 

Performance criteria are derived from the residuals but use different mathematical strategies to 

define distinct criteria. For a more detailed overview of these performance criteria, Varmuza and 

Filzmoser provided a clear introduction. [31] Here a brief summary is provided. The standard 

deviation of the standard error of prediction (SEP) provides an estimate of the accuracy of 

predictions and is defined in Equation 2 

 𝑆𝐸𝑃 = √
1

𝑧−1
∑ (𝑦𝑖 − �̂�𝑖 − bias)2𝑧

𝑖=1  (2) 

where 𝑧 is the number of predictions, and the bias is the arithmetic mean of the prediction errors. 

Bias can occur from systematic errors and is defined in Equation 3. 

  𝑏𝑖𝑎𝑠 =
1

𝑧
∑ (𝑦𝑖 − �̂�𝑖)

𝑧
𝑖=1  (3) 

If the predicted values in Equation 2 are from the calibration set, it is sometimes referred to as the 

standard error of calibration. Another performance criteria commonly used is the mean squared 

error (MSE) (Equation 4) which is the arithmetic mean of the squared errors. 

 𝑀𝑆𝐸 =
1

𝑧
∑ (𝑦𝑖 − �̂�𝑖)

2𝑧
𝑖=1  (4) 

Taking the square of Equation 4 provides root mean squared error (RMSE) (Equation 5) which is 

almost the same as the SEP if bias can be neglected. The RMSE criteria are preferred for practical 

applications because their units match the original data, however, the non-squared MSE are useful 

for model optimization purposes. [29] 

 𝑅𝑀𝑆𝐸 = √
1

𝑧
∑ (𝑦𝑖 − �̂�𝑖)2𝑧

𝑖=1  (5) 

Similar to MSE is the predicted residual error sum of squares (PRESS) defined in Equation 6 

below. 

 𝑃𝑅𝐸𝑆𝑆 = ∑ (𝑦𝑖 − �̂�𝑖)
2𝑧

𝑖=1  (6) 

Like the SEP, either indexing or altering the acronym are common approaches to specify the data 

set used to calculate the performance criteria. Sometimes 𝑅2, the coefficient of determination 

(Equation 7) is used to represent the spread of the predictions.  

  𝑅2 = 1 −
𝑃𝑅𝐸𝑆𝑆

∑ (𝑦𝑖−�̅�𝑖)2𝑧
𝑖=1

 (7) 
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B3 Literature Summaries 

Table B4. Preprocessing methods, multivariate techniques, and data analyzed in papers that use 

NIR and chemometrics to study lignocellulosic biomass or lignin.1 

Data Preprocessing Multivariate Analysis 

X Matrix 

(Objects and Observed 

Features/Predictor 

Variables) 

Y Matrix 

(Properties of Objects/Response Variables) 

Year 

Published 
Reference 

MSC PCA, PLS 
NIR, 13C CP/MAS 

NMR, MIR spectra 

Klason lignin, glucose, xylose, galactose, arabinose, 

mannose 
1991 [53] 

Log transformation, scatter-correction 

using SNV-detrending 
Modified PLS NIR spectra Lignin and other biomass feedstock components 1996 [54] 

First derivative  PLS NIR spectra 

Acid insoluble and soluble lignin, Kappa number, 

relative viscosity, ISO brightness, degree of 

polymerization, glucan, xylan 

2002 [55] 

- PCA, PLS 
Py-MB/MS spectra, NIR 

spectra 

Weight loss during brown-rot biodegradation of 

spruce wood  
2002 [56] 

Mean centering, variance normalized PCA, PLS 
Py-MB/MS spectra, NIR 

spectra 

Lignin, glucose, xylose, mannose, galactose, 

arabinose, rhamnose 
2004 [57] 

Second derivative PLS NIR spectra 
Klason lignin, total lignin, acid-soluble lignin, 

extractives 
2004 [58] 

Second derivative  MLR, PLS NIR spectra Lignin content 2005 [59] 

First and second derivative Savitzky-

Golay algorithm 
PCA, PLS NIR spectra Klason lignin 2006 [60] 

Second derivative PLS NIR spectra 
Acid-soluble lignin, Klason lignin, total lignin, 

extractives, cellulose 
2006 [61] 

Second derivative PLS NIR spectra 
Klason lignin, thioacidolysis S/G ratio, cellulose 

content, xylose content 
2006 [62] 

First derivative MSC,  PLS NIR spectra H/G from analytical pyrolysis 2006 [63] 

MSC, first and second derivative, 

vector normalization, constant offset 
PLS NIR spectra Kappa number 2007 [64] 

Centering, autoscaling, Saunderson 

correction, MSC, square, square root, 

and Savitzky-Golay transformation and 

differentiation, OSC 

PLS 
MIR spectra, NIR 

spectra 

Lignin, arabinose, galactose, glucose, mannose, 

xylose, extractives 
2007 [65] 

Divided by background spectrum, Karl 

Norris derivative filter 
PLS NIR spectra 

Klason lignin, hemicellulose, cellulose, moisture, 

insoluble ash, total ash 
2007 [66] 

Baseline correction, normalization, 

Second derivative with Savitzky-Golay 

algorithm 

PLS NIR spectra Weight percentage gain due to acetylation 2008 [67] 

- 
Genetic inverse least 

squares 
NIR spectra Lignin and extractives 2009 [68] 

First derivative with Savitzk-Golay 

algorithm 
PLS NIR spectra H/G/S proportions from modified thioacidolysis 2009 [69] 

Second derivative with Savitzky-Golay 

algorithm, unit vector normalization 
PCA NIR spectra - 2010 [70] 

Savitzky–Golay second derivative PLS NIR spectra 
Saccharification ratio, glucose, xylose, arabinose, 

mannose, galactose, lignin, ash 
2011 [71] 

- PLS NIR spectra Klason lignin, extractives, cellulose, hemicellulose,  2011 [72] 

- 
Genetic inverse least 

squares 
NIR spectra Lignin and extractives 2011 [73] 

Constant offset elimination, straight 

line subtraction, normalization, MSC, 

first/second derivative with Savitzky-

Golay algorithm 

PLS NIR spectra Total lignin content 2011 [74] [75] 

First/second derivative with Savitzky-

Golay algorithm, normalization, MSC, 

straight line subtraction 

PLS NIR spectra S/G from analytical pyrolysis 2011 [76] 

Second derivative PLS NIR spectra 
Lignin content, monomer composition (S/G ratio), 

cellulose, extractives, mannose, galactose, xylose 
2011 [77] 

MSC, mean centering 

PCA, PLS, backwards 

interval partial least 

squares, HCA 

NIR spectra Enzymatic release of arabinose, xylose, glucose 2012 [78] 

Savitzky–Golay second derivative PCA, PLS NIR spectra 
Saccharification efficiency, cellulose, hemicellulose, 

lignin content 
2012 [79] 

Offset correction, MSC, vector 

normalization, derivatives, Savitzky-

Golay algorithm 

PLS NIR spectra Wood density from X-ray micro density data  2012 [80] 

First and Second derivative with 

Savitzky-Golay algorithm, MSC, 

straight line subtraction 

PCA, PLS NIR spectra Extractive’s content 2012 [81] 
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Constant offset elimination, MSC, 

first/second derivative, normalization, 

baseline correction 

PLS NIR spectra Lignin and extractives 2013 [82] 

SNV, first/second derivatives, OSC, 

EMSC  
PCA, PLS Visible-NIR spectra 

Klason lignin, acid soluble lignin, total lignin, 

extractives, moisture, ash, insoluble residue 
2013 [83] 

First derivative with Savitzky-Golay 

algorithm 
PLS, PCR NIR spectra Lignin, extractives, cellulose, hemicellulose 2014 [84] 

MSC, SNV, first/second derivative 

using Savitzky-Golay algorithm, mean 

centering 

PLS, variable importance 

for projection 
NIR spectra 

Total dietary fibre (soluble and insoluble non-starch 

polysaccharides which include cellulose, 

hemicellulose, pectin, b-glucans, gums, and lignin) 

2015 [85] 

Normalization, detrend, first and 

second derivative 
PCA, PLS NIR spectra 

H/S/G lignin, Klason lignin, Py-Lignin, Acid-soluble 

lignin, xylose, glucose, C5/C6, extractives 
2017 [86] 

GA, ordered predictors selection, 

interval PLS, Kennard and Stone 

algorithm 

PLS NIR spectra Klason lignin 2017 [87] 

MSC, derivatives and smoothing PLS NIR spectra 
Cellulose, hemicellulose, lignin, cellulose 

conversion, cell wall content 
2017 [88] 

First and second derivative,  

Savitzky-Golay  
PLS-1 NIR spectra 

Klason lignin, arabinose, galactose, glucose, 

mannose, xylose, 4-O-methylglucuronic acid, 

galacturonic acid. and glucuronic acid  

2018 [89] 

SNV, MSC, first/second derivative 

PLS, PLS and competitive 

adaptive reweighted 

sampling 

NIR spectra Acetyl bromide lignin content 2019 [90] 

First derivative, moving average 

filtering, MSC, SNV 

PLS, least square SVM, 

back-propagation neural 

network, kernel extreme 

learning machine, PCA, 

particle swarm 

optimization 

NIR spectra Acid insoluble lignin, holocellulose 2020 [91] 

MSC, first/second derivatives,  
PLS, Variable selection 

methods 
NIR spectra Lignin and holocellulose content 2020 [92] 

Moving average, baseline, SNV and 

MSC 

Backward interval partial 

least-squares, synergy 

interval partial least 

squares, uninformative 

variable elimination 

algorithms, 

NIR spectra Klason lignin 2020 [93] 

SNV, normalization, detrending, first 

and second derivative with Savitzky-

Golay smoothing 

PLS NIR spectra Glucan, xylan, lignin, extractives, and ash content 2020 [94] 

Savitzky-Golay smoothing, 

normalization, SNV, first derivative,  
PLS NIR spectra Lignin content 2021 [95] 

EMSC, SNV, mean centering PCA, PLS-DA NIR Spectra Acid insoluble-soluble lignin 2021 [96] 

Normalization, second derivative 

Savitzky-Golay smoothing 
PCA, PLS NIR spectra 

Carbonization characteristics (Carbon content wt%, 

Oxygen/Carbon ratio, hydrogen/carbon ratio) 
2021 [97] 

1When information is not available or non-applicable ‘-‘ is used as a placeholder 
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Table B5. Preprocessing methods, multivariate techniques, and data analyzed in papers that use 

MIR and chemometrics to study lignocellulosic biomass or lignin.1 

Data Preprocessing 
Multivariate 

Analysis 

X Matrix 

(Objects and Observed 

Features/Predictor 

Variables) 

Y Matrix 

(Known Properties of Objects/Response 

Variables) 

Year 

Published 
Reference 

Baseline correction MLR MIR spectra Lignin, cellulose, and hemicellulose content 1985 [98] 

MSC PCA, PLS 
NIR, 13C CP/MAS NMR, 

MIR spectra 

Klason lignin, glucose, xylose, galactose, 

arabinose, mannose 
1991 [53] 

Baseline correction, normalization PCR, PLS MIR spectra Phenolic OH Groups 1993 [99] 

Normalization PCA, SIMCA MIR spectra - 1999 [100] 

Baseline correction PLS MIR spectra 
Lignin, extractives, total carbohydrate, basic 

density 
1999 [101] 

Baseline correction, normalization, mean 

centering, variance normalization 
PCR, PLS MIR spectra Lignin and other wood component concentration 2000 [102] 

Normalization PLS, PCR MIR spectra Glucose, xylose, galactose, mannose 2001 [103] 

- PLS MIR spectra 

Glucan, mannan, galactan, xylan, and Klason and 

acid-soluble lignin compositions of pretreated 

softwood solid residues 

2001 [104] 

OSC PLS MIR spectra 
Kappa number (residual lignin content) and 

carbohydrate contents 
2002 [105] 

Baseline correction, centering, OSC PCA, PLS 
MIR spectra, 13C CPMAS 

NMR spectra 
Weight loss from decay using soft rot fungi 2003 [106] 

Baseline correction PCA, PLS MIR spectra 
Lignin content, carboxyl and phenolic OH groups, 

antioxidant and emulsifying properties of lignin  
2004 [107] 

Normalization, MSC PCA, PLS 
MIR spectra, Py-MB/MS 

spectra 
Distance from bark to pith 2005 [108] 

Centering, autoscaling, Saunderson correction, 

MSC, square, square root, and Savitzky-Golay 

transformation and differentiation, OSC 

PLS MIR spectra, NIR spectra 
Lignin, arabinose, galactose, glucose, mannose, 

xylose, extractives 
2007 [65] 

Baseline correction, moving average smoothing - MIR spectra - 2007 [109] 

Column centering, normalization, baseline 

correction,  
PLS MIR spectra Kappa number 2007 [110] 

Baseline correction, normalization, second 

derivative 

Non-linear least 

squares 
MIR spectra Mathematical model of deconvoluted lignin spectra 2008 [111] 

Mean normalization, MSC PLS 
MIR spectra, Py-MB/MS 

spectra 

Lignin content from UV-Vis and gravimetric 

analysis 
2009 [112] 

Baseline correction, normalization, first 

derivative, variance scaling 
PLS MIR spectra 

Contents of components (i.e., lignin, cellulose, and 

hemicellulose) 
2010 [113] 

Baseline correction, vector normalization, 

second derivative 
PCA MIR spectra - 2010 [114] 

Normalization, MSC  PCA MIR spectra - 2010 [115] 

First/Second derivative, SNV, MSC PLS MIR spectra Lignin content 2011 [116] 

First derivative, vector normalization, baseline 

correction (Rubber band method) 
PCA, PLS MIR spectra 

Lignin content Acetyl Bromide of extractive-free 

poplar, bomb calorimetry energy content 
2011 [117] 

Baseline correction 
Linear 

Regression 
MIR spectra S Ratio (S/(S+G)) 2012 [118] 

Smoothing, first derivative, second derivative, 

baseline correction, SNV, detrending, unit 

vector normalization, MSC, OSC 

PCA, PLS MIR spectra Surrogate mixtures of cellulose, xylan, and lignin 2012 [119] 

Baseline correction, normalization, first/second 

derivative with Savitzky-Golay smoothing 

Linear 

Regression 
MIR spectra Concentration of S and G units 2013 [120] 

Normalization, MSC  PCA, PLS MIR spectra 
Glass transition temperature of lignin from 

differential scanning calorimetry  
2013 [121] 

- PLS MIR spectra 
31P NMR determined alkyl-OH, condensed-OH, S, 

G, H, COOH, aryl-OH, S/G 
2014 [122] 

First derivative PLS, PCR MIR spectra 
Wood chemistry contents (i.e., lignin, cellulose, 

hemicellulose, extractives) 
2015 [123] 

Baseline correction, first derivative, mean 

centering 
PLS MIR spectra 

Lignin, Cellulose, Hemicelluloses, Extractives, 

thermal reactivity, energy content 
2016 [124] 

- 
PLS, Monte 

Carlo Sampling 
MIR spectra Cellulose, hemicellulose, lignin Van Soest 2018 [125] 

- 

PCA, 

Discriminant 

analysis 

MIR, Py-GC/MS - 2018 [126] 

SNV, mean centering PCA MIR spectra - 2018 [127] 

Baseline correction, normalization, mean 

centering, first/second derivative 
PCA, PLS MIR spectra 

GPC data (𝑀𝑛, 𝑀𝑤 ) 
and  

HSQC NMR data (inter-unit linkage abundance) 

in technical lignins 

2019 [128] 

Normalization 
PCA, linear 

regression 
MIR spectra Lignin content 2019 [129] 

Autoscaling PCA MIR spectra - 2019 [130] 

- PCA MIR spectra - 2020 [131] 

Filtered using Savitzky-Golay algorithm 

including scattering corrections and smoothing, 

derivatives, normalization 

PCA, HCA MIR spectra - 2020 [132] 

- PCA, HCA MIR spectra - 2020 [133] 

- PCA 
HSQC NMR spectra, MIR 

spectra 
- - [134] 

- PCA, PLS ATR-IR spectra Temperatures of aqueous solvent 2021 [135] 

MSC PCA, PLS ATR-IR spectra 
Weight average molecular weight and 

polydispersity 
2021 [136] 

Background subtraction, baseline correction, 

vector normalization, SNV 
PCA, HCA MIR spectra - 2022 [137] 
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1When information is not available or non-applicable ‘-‘ is used as a placeholder 

Table B6. Preprocessing methods, multivariate techniques, and data analyzed in papers that use 

Raman and chemometrics to study lignocellulosic biomass or lignin.1 

Data Preprocessing Multivariate Analysis 

X Matrix 

(Objects and Observed 

Features/Predictor 

Variables) 

Y Matrix 

(Properties of Objects/Response 

Variables) 

Year 

Published 
Reference 

Second derivative MSC PLS FT-Raman S/G ratio by thioacidolysis  1998 [138] 

MSC, first derivative PLS FT-Raman 
Lignin, S/G ratio, wood constituents, 

anatomy, and basic density 
2003 [139] 

- PCA, PLS 
UVRR model compound 

spectra 

Quantity of lignin model compound 

structures 

2003 

2005 

[140]  

[141] 

Smoothing, baseline correction Linear Regression FT-Raman spectra S/G ratio from Py-GC/MS 2011 [142] 

Baseline correction, normalization - FT-Raman spectra - 2011 [143] 

Background subtraction using blank, 

mean centering, first derivative 
PLS 

1064 nm dispersive 

multichannel Raman 

spectra 

Lignin monomer composition 2011 [144] 

Wavelet decomposition, second 

derivative, PCA,  

Spectral enthalpy minimization 

methodology [145] with stimulated 

annealing optimization algorithm 
[146], SVD 

Raman micro spectra - 2012 [147] 

Baseline correction, Savitzky-Golay 

smoothing, mean centering 
PCA, PCR 

1064 nm dispersive 

multichannel Raman 

spectra 

S and G from thioacidolysis,  2012 [148] 

First/second derivatives with Savitzky-

Golay algorithm, smoothing, SNV, 

MSC. EMSC 

PLS 
FT-Raman/NIR/MIR 

spectra 
S/G ratio from Py-MB/MS 2014 [149] 

Baseline correction PCA, cluster analysis, VCA Confocal Raman spectra - 2014 [527] 

PCA filtering using SVD MCR-ALS Raman spectra Soluble and insoluble lignin 2015 [151] 

First/second derivative, EMSC PLS FT-Raman spectra S/G ratio from Py-MB/MS 2015 [152] 

- MCR of hyperspectral images 
Stimulated Raman 

Scattering spectra 
- 2015 [153] 

Baseline correction, normalization VCA Confocal Raman spectra - 2016 [154] 

Cosmic ray removal, background 

subtraction 

VCA, NMF, MCR ALS, PCA 

filtering 

Confocal Raman 

microscopy spectra 
- 2018 [155] 

Normalization PCA, clustering analysis Micro-Raman spectra - 2021 [156] 

Savitzky-Golay Smoothing, second 

derivative baseline correction,  

PCR, PLS, LASSO regression, ridge 

regression 
FT-Raman spectra Klason lignin, acid-soluble lignin,  2021 [157] 

Asymmetrical least square smoothing, 

linear baseline correction, first 

derivatives, vector normalization, 

Savitzky-Golay algorithm 

PCA, HCA Raman micro spectra - 2021 [158] 

Savitzky-Golay smoothing, adaptive 

iteratively reweighted penalized least 

squares baseline correction 

PCR, PLS, ridge regression, LASSO 

regression, elastic net regression 
FT-Raman spectra Holocellulose content  2022 [159] 

Savitzky-Golay smoothing, adaptive 

iteratively reweighted penalized least 

squares baseline correction 

Linear regression FT-Raman spectra Kappa number 2022 [160] 

1When information is not available or non-applicable ‘-‘ is used as a placeholder 
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Table B7. Preprocessing methods, multivariate techniques, and data analyzed in papers that use 

NMR and chemometrics to study lignocellulosic biomass or lignin.1 

Data Preprocessing Multivariate Analysis 

X Matrix 

(Objects and Observed 

Features/Predictor 

Variables) 

Y Matrix 

(Properties of Objects/Response 

Variables) 

Year 

Published 
Reference 

Normalization PCA, PLS 
13C CP-MAS NMR 

spectra 
Klason lignin content 1989 [161] 

MSC PCA, PLS 
NIR, 13C CP/MAS 

NMR, MIR spectra 

Klason lignin, glucose, xylose, galactose, 

arabinose, mannose 
1991 [53] 

Unit variance scaling, mean centering PCA, PLS 

13C and 31P NMR 

spectra, SEC 

(𝑀𝑛, 𝑀𝑤, 𝑀𝑧) 

Combustion Parameters (Burning time and 

swelling of black liquor) 
1999 [162] 

Centering  PCA 
13C CP/MAS NMR 

spectra, FT-IR spectra 
- 2003 [106] 

Centering and normalization PCA-ANN 

Atom based features of 

lignin atoms 

(descriptors) 

13C NMR shifts 2004 [163] 

Baseline correction, normalization, 

scaling, mean centering, pareto scaling, 

scaling to unit variance 

PCA, OPLS-DA 
2D 13C-1H HSQC NMR 

spectra 
- 2009 [164] 

Mean centred, normalized to total 

spectral intensity, Pareto scaling 
PCA 13C NMR spectra - 2011 [165] 

Automatic phase correction, baseline 

correction 
PCA, PLS 1H NMR spectra 

HPLC Sugar concentrations (glucose, 

xylose, other minor sugars) in biomass 

hydrolysates 

2012 [166] 

- PCA 31P NMR spectra - 2014 [122] 

Baseline correction, normalization, 

Pareto scaling 

PCA, PLS-DA and linear models, 

HCA 
1H NMR spectra Lignin, cellulose, hemicellulose 2019 [167] 

- PCA 
HSQC NMR spectra, 

FT-IR spectra 
- - [134] 

Pareto scaling PCA 13C CP-MAS NMR - 2020 [168] 

Baseline correction PLS, MLR 
1H and DOSY NMR 

spectra 

Weight and number average molecular 

weight, polydispersity 
2021 [169] 

1When information is not available or non-applicable ‘-‘ is used as a placeholder 
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Table B8. Preprocessing methods, multivariate techniques, and data analyzed in papers that use 

MS and chemometrics to study lignocellulosic biomass or lignin.1 

Data Preprocessing Multivariate Analysis 

X Matrix 

(Objects and Observed 

Features/Predictor 

Variables) 

Y Matrix 

(Properties of Objects/Response 

Variables) 

Year 

Published 
Reference 

Baseline correction, normalization, 

scaling to unit variance 
PCA, PLS Py-GC/MS spectra 

Klason Lignin and carbohydrate content 

from acid hydrolysis/derivatization-GC 
1993 [170] 

Normalization Factor analysis Py-MBMS spectra - 1994 [171] 

Mean centering, variance normalized PCA, PLS Py-MBMS spectra 
Bark source, acid concentration, 

phenolysis temperature 
2002 [172] 

- PCA, PLS 
Py-MBMS spectra, NIR 

spectra 

Weight loss during brown-rot 

biodegradation of spruce wood 
2002 [56] 

Mean centering, variance normalized PCA, PLS 
Py-MBMS spectra, NIR 

spectra 

Lignin, glucose, xylose, mannose, 

galactose, arabinose, rhamnose 
2004 [57] 

Normalization, MSC PCA, PLS 
Py-MBMS spectra, FT-

IR spectra 
Distance from bark to pith 2005 [108] 

Normalization PCA Py-MBMS spectra - 2006 [173] 

Baseline correction, normalized to 
38Ar isotope of carrier gas 

PCA TG/MS spectra - 2007 [174] 

Centering, row normalization PCA Py-DE-MS - 2008 [175] 

Background subtraction, normalized 

to total ion content 
PCA Py-MBMS spectra - 2008 [176] 

Background subtraction, normalized 

to total ion content, PCA 
PCA Py-M/MS spectra - 2009 [177] 

Normalization, MSC PLS 
Py-MBMS spectra, FT-

IR spectra 

Lignin content from UV-Vis and 

gravimetric analysis 
2009 [112] 

Normalization PCA Py-MBMS spectra - 2009 [178] 

Chromatograph moving average 

smoothing and alignment, baseline 

correction 

MCR-AR Py-GC/MS spectra - 2012 [179] 

Normalization PCA Py-GC/MS spectra - 2013 [180] 

- 

PCA, Discriminant analysis with 

automatic backward variable 

selection, PLS, multiple 

regression 

Py-GC/MS spectra Active alkali (Kappa number) 2014 [181] 

Normalization 

Partial correlation analysis, 

multivariate correlated 

components regression 

Py-GC/MS spectra Antioxidant activity 2015 [182] 

- PCA Py-MBMS spectra - 2015 [183] 

Normalization PCA, k-means clustering Py-GC/MS spectra - 2016 [184] 

Baseline correction, peak alignment, 

normalization, 
PCA GC/MS spectra - 2016 [185] 

- PCA, Discriminant analysis 
Py-GC/MS spectra, FT-

IR spectra 
- 2018 [126] 

Autoscaling, normalization 
PCA, Parallel factor analysis 2, 

PLS-DA 
Py-GC/MS spectra Class of trees 2018 [186] 

Mean centering, scaling to unit 

variance 

PCA-quadratic discriminant 

analysis 

Ultra-high-performance 

liquid 

chromatography/high-

resolution multiple-

stage tandem MS 

- 2018 [187] 

Baseline correction, MCR-AR, 

normalization 
OPLS-DA Py-GC/MS 

Cellulose, hemicellulose, softwood lignin, 

wheat straw lignin 
2019 [188] 

Normalization, peak alignment PCA Py-GC/MS - 2019 [189] 

- PCA Py-GC/MS - 2019 [190] 

Spectral deconvolution, peak 

alignment, Savitzky-Golay filter 

smoothing, normalization 

PCA, HCA, hierarchical 

clustering on the principal 

components with k-means 

partition 

Py-GC/MS - 2020 [191] 

Normalization, power 

transformation, variable stability 

scaling 

 

PCA 

Pyrolysis direct 

insertion probe with 

atmospheric pressure 

chemical ionization and 

atmospheric pressure 

photoionization coupled 

to ultrahigh-resolution 

MS 

- 2020 [192] 

TIC-normalized 
PCA, Hierarchical clustering, k-

means clustering 
Py-MBMS - 2021 [193] 

- PCA Py-GC/MS - 2021 [194] 
1When information is not available or non-applicable ‘-‘ is used as a placeholder 
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Table B9. Preprocessing methods, multivariate techniques, and data analyzed in papers do not fall 

in any one of the major categories presented above or are not associated with a particular analytical 

technique.1 

Data Preprocessing Multivariate Analysis 

X Matrix 

(Objects and Observed 

Features/Predictor Variables) 

Y Matrix 

(Properties of 

Objects/Response Variables) 

Year 

Published 
Reference 

Mean centering PCA, PCR, PLS Visible spectra Kappa number 1998 [195] 

Mean centering, scaling to unit 

variance 
PCA, PCR, PLS Capillary zone electrophoresis data 

Total cooking yield, kappa 

number, iso brightness  
2000 [196] 

- PCA 
Parameters of battery expanders and 

lignin properties 
- 2000 [197] 

Baseline correction PCA TG/MS differential curve - 2007 [174] 

Standardization PLS 

Physicochemical characteristics 

(Accessible interior surface area, 

exterior surface area, amorphous 

fraction, absorbance ratio, 

destruction of hydrogen bonds) 

Enzymatic digestibility 2009 [198] 

Normalization PCA Quantified lignin characteristics - 2010 [199] 

- PCA, PLS 
Pretreatment process parameters and 

chemical composition variables 

Pretreatment effectiveness 

variables 
2014 [200] 

Mean centering and scaling to unit 

variance 
PCA 

Literature-based input data sets of 

the thermochemical conversion 

processes of various biomass 

- 2016 [201] 

Normalized to dry mass PCA, PCR, PLS TGA data 
Lignin, cellulose, ash, volatile 

matter, fixed carbon 
2017 [202] 

- PCA Single lignin molecules  - 2018 [203] 

- PCA 

Tree traits (lignin content, S unit 

content, S/G ratio, wood density, 

stem water potential in dry season, 

and leaf life span) 

- 2018 [204] 

- PCA 
Motion of atoms from molecular 

dynamics simulations 
- 2018 [203] 

- Multivariable linear estimation 

Lignin structural features (methoxy, 

oxygen, aliphatic OH, ether linkage 

content, weight average molecular 

weight) 

Conversion reactivity toward 

oxidative depolymerization to 

monomers 

2018 [205] 

- MLR, real valued genetic algorithm Lignin and extractives content Higher heating values 2018 [206] 

Fraser-Suzuki deconvolution PCA 
Energy-dispersive X-ray 

fluorescence (EDXRF)  
- 2019 [207] 

- PCA, PLS 

Pretreatment conditions, 
Composition of pretreated samples, 

morphological characterizations, 

Pretreatment evaluation 

Pretreatment conditions, 
Composition of pretreated 

samples, morphological 

characterizations, Pretreatment 

evaluation, Enzymatic effect 

evaluation 

2019 [208] 

Denoising using Savitzky-Golay 

algorithm, baseline correction, 

autoscaling  

PLS 
High performance thin layer 

chromatography-densitometry 
Lignin content 2020 [209] 

Friedmans method, Fraser-Suzuki 

deconvolution, modified criado method 

SOM neural network, SVM learning 

algorithm 
TGA-DTG - 2020 [210] 

- 
MLR, multinomial regression, k-

means clustering 

Red-Green-Blue Colour space 

images 

Quality assignments, chemical 

composition, inorganic 

speciation  

2020 [211] 

- PCA, PLS 
54 important variables of deep 

eutectic solvent pretreatment 

54 important variables of deep 

eutectic solvent pretreatment 
2020 [212] 

- PCA 

Properties of the feedstock to the 

RCF depolymerization yields (lignin 

content (S, G, H, coumarate, and 

ferulate), monomer selectivities, 

total monomer yields) 

- 2020 [213] 

Baseline correction and background 

correction, Savitzky-Golay smoothing 

PCA, self modeling MCR, Bayesian 

hierarchical clustering, data fusion 
FTIR and 1H NMR 

Identifying reaction networks of 

complex mixtures 
2020 [214] 

Normalization, Fraser-Suzuki 

deconvolution 

Heat map, k-means clustering, Self 

organizing map, ANN 
TGA differential curve - 2021 [215] 

Subtraction of dry mass, moving 

average smoothing, first derivative, 

mean centering 

PLS TGA differential curve Lignin content  2021 [216] 

- PCA, PLS 
42 important variables of deep 

eutectic solvent pretreatment 

Pretreatment evaluation 

parameters: Xylan, lignin, solid 

recovery rate, recovery rate of 

glucan, recovery rate of xylan, 

delignification rate 

2021 [217] 

- ANN 
Proximate analysis (fixed carbon, 

volatile matter, ash and moisture) 
Cellulose, hemicellulose, lignin 2021 [218] 
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- 
Group additivity model based on 

PCA 

Gas-phase density functional theory 

data of 4100 species at the M06-

2X/6-311++G(d,p) level 

- 2021 [219] 

- 
MLR, generalized additive models, 

random forests 

Fluorescence lifetime imaging 

microscopy parameters 

Wood cell wall or 

saccharification traits 
2021 [220] 

- 
Box–Behnken Experimental Design, 

MLR 

𝛽 − 𝑂 − 4 inter-unit linkages, 

hydroxyl functionalities, 𝑀𝑤, molar 

mass dispersity, lignin yield 

Temperature, acidity, 

ethanol/water ratio 
2022 [221] 

- Random forest regression 

Solvent, active metal/solvent ratio, 

temperature, solvent ethanol, active 

metal/lignin ratio, catalyst to solvent 

ratio, reaction time and more 

Bio-oil yield, char yield and 

reaction time in catalytic lignin 

depolymerization 

2022 [222] 

- PCA 

Variables of two lignin degradation 

methods (CuO-NaOH oxidation and 

tetramethyl ammonium hydroxide 

thermochemolysis) 

- 2022 [223] 

Locally weighted regression smoothing 
Linear regression, SVM, decision 

tree, ANN 

Material wt %, retention during 

cyclic charge/discharge 

Specific capacitance variation of 

a lignin-based supercapacitor 
2022 [224] 

1 When information is not available or non-applicable ‘-‘ is used as a placeholder  
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Appendix C 

C1 Wet chemistry 

Table C1. Lignin proximate analysis and modified organosolv extraction results.1 

Component Control Drought Cedar Test Sample 

 wt% wt% wt% 

   1 2 3 4 5 6 Average9 

NDF extractible2 15.6 17.6 11.7 11.3 10.6 12.0   11.4 ± 1.4 

NDF3 13.2 11.1 5.1 4.5 4.6 6.0   5.0 ± 1.5 

ADF4 44.7 44.7 51.9 52.8 52.6 51.4   52.2 ± 1.4 

ADF Lignin5 25.9 25.9 30.9 31.2 31.3 30.0   30.8 ± 1.2 

Ash6 0.6 0.8 0.5 0.1 1.0 0.6   0.6 ± 0.9 

Organosolv Lignin7 3.7 4.9     5.9 5.6 5.8 ± 0.3 

Relative Recovery8 14.3 18.8     19.1 18.2 18.7 ± 0.9 

1Results reported on a 70℃ oven dry basis. 
2Protein, starch, waxes, polar & non-polar extractable.  
3Hemicellulose 
4Cellulose + acid soluble lignin 
5Acid resistant lignin 
6Residue after ashing 
7Modified organic solvent lignin extraction 
8Lignin 
9Average of four test runs for sequential NDF, ADF, acid hydrolysis treatment, average of two test runs for organosolv extraction 
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C2 FT-IR Spectroscopy 

 

Figure C1. FT-IR spectra of wood and lignin samples in the spectral range 4000 – 650 cm-1. 

 

Figure C2. FT-IR spectra of wood samples in the spectral range 4000 – 650 cm-1. 
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Figure C3. FT-IR of lignin samples in the spectral range 4000 – 650 cm-1. 
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C3 Solid-state 13NMR spectra 

 

Figure C4. 13C NMR shift of wood and lignin samples. The three wood samples with thinner line 

width are clearly distinct from the lignin spectra because of their higher signal intensity, 

particularly in the carbohydrate region (~110 – 58 ppm).  
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