

# **MINT 709**

Project Report on

Smart home devices and their security vulnerabilities

Submitted By:

Himank Sarna

In partial fulfilment for the award of the degree Master of Science in Internetworking (From University of Alberta) Under the guidance of Professor Leonard Rogers

### Acknowledgement

I would like to express my sincere gratitude to Professor Leonard Rogers for his mentorship and untiring efforts in guiding and helping me understand and overcome problems that would otherwise have stopped me midway. Along with this, I thank him for always being approachable and guiding me through constant comments and suggestions on the project.

I would also take this opportunity to thank Dr. Mike MacGregor for approving the project so that I can work on it.

Last but not least, I would like to express my heartfelt gratitude to my parents for their support and encouragement at every step.

Finally, I'd like to thank all unnamed people who have willingly helped me out with their abilities.

### Abstract

In recent years, the popularity of IoT devices has been rising and find their application in every industry and homes. It is estimated that there will be over 30 billion IoT devices by the year 2020. With the increased popularity of IoT devices, it has led to many security compromises making devices prone to hacking and exposing sensitive data.

The primary purpose of this project is to make IoT devices more secure by connecting them with an advanced pfSense firewall.

Generally, the IoT devices are connected with the same network as the other devices, and they become a potential attack point. In this project, the IoT devices are connected to a dedicated wireless network which restricts the traffic coming from other networks.

pfSense maintains a stateful firewall with rules to allow and block traffic coming into the network from unknown sources and hosts, maintaining a log of incoming malicious packets.

The static ARP entry allows trusted devices to connect to the network and blocks unknown devices that attempt to establish a connection. NAT features port forwarding so that any incoming connection is redirected to a specific IP address so that other devices in the network do not get compromised.

pfSense features an IDS/IPS that increases the security level of the network. It monitors traffic, detects and blocks malicious packets from the internet to enter into the network.

UUID is a Universally Unique Identifier which identifies any device on the internet. Finally, in this project, python code is programmed which fetches the IP address, MAC address and UUID of the device, and could be implemented with pfSense, adding UUID as a new connection parameter, and further securing the connection.

## Index

| 1. | In   | troduction1             |
|----|------|-------------------------|
| 2. | Co   | nfiguring pfSense       |
|    | 2.1. | Change in Architecture  |
|    | 2.2. | Hardware Specifications |
|    | 2.3. | WebGUI                  |
| 3. | Wi   | reless Configuration    |
| 4. | VL   | ANs and DHCP9           |
|    | 4.1. | Setting up VLANs        |
|    | 4.1. | DHCP Pool               |
| 5. | NA   | T                       |
|    | 5.1. | Port Forwarding11       |
| 6. | Fir  | rewall                  |
|    | 6.1. | Stateful Firewall       |
|    | 6.2. | Firewall Rules          |
|    | 6.1. | Firewall Aliases        |
|    | 6.2. | mDNS                    |
|    | 6.3. | pfBlockerNG 16          |
|    | 6.1. | Squid19                 |
|    | 6.1  | .1. Light Squid         |
|    | 6.1  | .2. SquidGuard          |
| 7. | IPS  | 5/IDS                   |
|    | 7.1. | Configuring Snort       |
| 8. | UU   | JID                     |

| 8   | 8.1. | UUID Version 1                                 | 28 |
|-----|------|------------------------------------------------|----|
| 8   | 8.2. | Program                                        | 29 |
| 9.  | Co   | nclusion                                       | 33 |
| 10. | A    | Appendix A: List of Figures                    | 34 |
| 11. | A    | Appendix B: List of Acronyms and Abbreviations | 36 |
| 12. | A    | Appendix C: References                         | 37 |

### 1. Introduction

pfSense is a trusted open source network security software which can be installed on any physical computer to make a dedicated firewall for a network. Generally, all the devices are connected to the gateway router, which exposes devices within the network to external attacks, like UPnP protocol is enabled on internet facing ports that allow outsiders to access network inside; and, man-in-the-middle attack. The implementation of the pfSense firewall/ router is divided into several sections.

The first section refers to the configuration of pfSense on bare metal CPU with AMD architecture. pfSense image is installed on the CPU which makes it boot into pfSense console every time the CPU restarts.

The second section explains the wireless interface for connecting IoT devices with the firewall/ router. By default, pfSense has two wired interfaces for LAN and WAN. pfSense can be made wireless compatible either by connecting a wireless network card or a hotspot.

VLAN and DHCP section talks about separating the main network into different networks so that IoT devices can connect to their own wireless network. Creating VLANs also secure the network by not allowing the data from other networks. DHCP provides the IP address to the devices connecting to the network, and by reducing the network subnet mask, unauthorized devices do not get an IP address, and the connection gets refused.

pfSense maintains rule-based advanced NAT table, blocking random sessions initiated by unknown devices. It also scrambles the source port adding another security feature. NAT section explains about rules in LAN and WAN and configuring port forwarding to enable an RDP session into the network.

A firewall monitors incoming and outgoing traffic and permits or blocks packets based on the assigned rules. The firewall section talks about configuring firewall rules and firewall aliases. It also gives details about firewall packages such as pfBlockerNG and Squid that extend the pfSense firewall's capabilities based on certain known blacklisted domains and setting up ACLs.

IPS and IDS are integral from a security standpoint. IDS is the process of monitoring the events in the network, detecting and identifying log violations so that IPS can act on the malicious packets detected and stop them from entering into the network. The IPS/IDS section highlights an open source IDS and IPS Snort which detects and suppresses exploits and malware through rulesets.

Finally, the last section talks about UUID, which stands for Universally Unique Identifiers. It is a 128-bit long hexadecimal string of characters which is unique for every device over the internet. A python program is used to find the IP and MAC address of the device, and UUID as a new connection parameter. This program with additional pfSense libraries can be incorporated with the pfSense firewall to establish a connection with a device based on its UUID.



Figure 1 pfSense firewall block diagram

The above figure is the block diagram of pfSense firewall router implementation, in which all the IoT devices get connected wirelessly to the UniFi access point, that is connected to the pfSense firewall.

The web GUI is accessed through a PC on the local LAN.

Any device can be connected to pfSense through wired or wireless on the basis of permit and deny firewall rules, and a log is created every time a connection is made.

The WAN interface of pfSense is connected with the gateway router which provides the internet connection to all the devices on different networks at LAN side.

### 2. Configuring pfSense

pfSense is an open source firewall/router software distribution based on FreeBSD. It is a free, customized software which can be installed on any device with AMD architecture. pfSense is very flexible and adaptable with numerous applications which can be accessed using a web GUI. It provides a lot of features like firewall, routing, IDS, IPS, proxy and content filtering, system security, reporting and monitoring, and many more.

#### 2.1. Change in Architecture

The proposal stated the implementation of pfSense on Raspberry Pi. However, pfsense extends its compatibility only with Netgate ARM-based devices. These devices are already installed with the factory version of pfSense software. On researching more about pfSense's compatibility with ARM-based architecture, it came into light that BSD kernel was not stable with ARM. Raspberry Pi does support FreeBSD (the platform same as pfSense) but running pfSense seemed incompatible. Hence, for implementation of the pfSense firewall router, AMD64 architecture has been used.

#### 2.2. Hardware Specifications

pfSense version 2.4.4 release patch-1 has is installed on a bare metal device with AMD64 architecture. It is a prerequisite for AMD64 device to have two ethernet ports for enabling functionality of LAN and WAN. Several network adapters can be added to support the functioning of pfSense as a wireless Access Point for deploying wireless connectivity. After the pfSense is installed on the hard drive of the system, it boots up with a series of configuration steps in which the interfaces, i.e., WAN, LAN, and OPT are configured with IP address. After assigning the IP address to respective interfaces, it boots up in shell menu with some options.



Figure 2 pfSense shell menu

#### 2.3. WebGUI

The LAN interface gives access to web GUI which opens a pfsense web interface through IP address 192.168.1.1.



Figure 3 pfSense shell menu

Logging into this web GUI generates a log on the console menu stating the IP address with date and time of login. 192.168.1.100 is the IP address of the device connected on the network through LAN ethernet.

| WAN (wan                                                                                                         |                                                                                                         |                                                                                                   |                                                                        | 1 (amd64) on pfSense ***                                                                                                                                                                                                                                                                                       |  |  |
|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| LAN (1ar                                                                                                         |                                                                                                         | em0<br>re0                                                                                        | V6/D                                                                   | HCP4: 192.168.0.14/24<br>HCP6: fd00:9050:ca34:5c42:fab1:56ff:fec4:ffad/64<br>192.168.1.1/24                                                                                                                                                                                                                    |  |  |
| 1) Assig<br>2) Set i<br>3) Reset<br>4) Reset                                                                     | webConfig<br>to factor<br>system<br>system<br>host                                                      | y)<br>es<br>) IP addres<br> urator pass<br>y defaults                                             | word                                                                   | 9) pfTop<br>10) Filter Logs<br>11) Restart webConfigurator<br>12) PHP shell + pfSense tools<br>13) Update from console<br>14) Enable Secure Shell (sshd)<br>15) Restart PHP-FPH<br>16) Restart PHP-FPH                                                                                                         |  |  |
| Enter an<br>Message 1<br>pfSense p<br>ase)                                                                       | option:<br>from syslog<br>ohp-fpm[341                                                                   | dØpfSense a<br>]: /index.pl                                                                       | t Feb 22<br>hp: Succ                                                   | 17:24:24<br>essful login for user 'admin' from: 192.168.1.100 (Local Datab                                                                                                                                                                                                                                     |  |  |
|                                                                                                                  |                                                                                                         | Figu                                                                                              | re 4 ]                                                                 | Log creation at login                                                                                                                                                                                                                                                                                          |  |  |
| \Users\H                                                                                                         | imank Sa                                                                                                | rna>trace                                                                                         | rt goo                                                                 | gle.com                                                                                                                                                                                                                                                                                                        |  |  |
| racing route to google.com [172.217.3.174]                                                                       |                                                                                                         |                                                                                                   |                                                                        |                                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                                  |                                                                                                         |                                                                                                   | [172.                                                                  | 217.3.174]                                                                                                                                                                                                                                                                                                     |  |  |
| acing ro<br>er a max                                                                                             |                                                                                                         |                                                                                                   | [172.                                                                  | 217.3.174]                                                                                                                                                                                                                                                                                                     |  |  |
|                                                                                                                  | imum of 🤇                                                                                               | 30 hops:                                                                                          |                                                                        | 217.3.174]<br>apstone-Pfsense.localdomain [192.168.1.1]                                                                                                                                                                                                                                                        |  |  |
| era max:<br>1 <1 m<br>2 3 m                                                                                      | imum of 3<br>ms <1<br>ms 2                                                                              | 30 hops:<br>ms <1<br>ms 1                                                                         | ms C<br>ms 1                                                           | apstone-Pfsense.localdomain [192.168.1.1]<br>92.168.0.1                                                                                                                                                                                                                                                        |  |  |
| era max:<br>1 <1 1<br>2 3 1<br>3 *                                                                               | imum of 3<br>ms <1<br>ms 2<br>*                                                                         | 30 hops:<br>ms <1<br>ms 1<br>*                                                                    | ms C<br>ms 1<br>R                                                      | apstone-Pfsense.localdomain [192.168.1.1]<br>92.168.0.1<br>equest timed out.                                                                                                                                                                                                                                   |  |  |
| er a max:<br>1 <1 r<br>2 3 r<br>3 *<br>4 14 r                                                                    | imum of 3<br>ms <1<br>ms 2<br>*<br>ms 12                                                                | 30 hops:<br>ms <1<br>ms 1<br>*<br>ms 11                                                           | ms C<br>ms 1<br>R<br>ms r                                              | apstone-Pfsense.localdomain [192.168.1.1]<br>92.168.0.1<br>equest timed out.<br>c3ar-be114-1.ed.shawcable.net [64.59.186.121]                                                                                                                                                                                  |  |  |
| er a max<br>1 <1 1<br>2 3 1<br>3 *<br>4 14 1<br>5 15 1                                                           | imum of 3<br>ms <1<br>ms 2<br>*<br>ms 12<br>ms 90                                                       | 30 hops:<br>ms <1<br>ms 1<br>*<br>ms 11<br>ms 29                                                  | ms C<br>ms 1<br>ms r<br>ms r<br>ms 6                                   | apstone-Pfsense.localdomain [192.168.1.1]<br>92.168.0.1<br>equest timed out.<br>c3ar-be114-1.ed.shawcable.net [64.59.186.121]<br>6.163.70.129                                                                                                                                                                  |  |  |
| er a max<br>1 <1 1<br>2 3 1<br>3 *<br>4 14 1<br>5 15 1<br>6 38 1                                                 | imum of 3<br>ms <1<br>ms 2<br>*<br>ms 12<br>ms 90<br>ms 17                                              | 30 hops:<br>ms <1<br>ms 1<br>ms 11<br>ms 29<br>ms 15                                              | ms C<br>ms 1<br>ms r<br>ms 6<br>ms r                                   | apstone-Pfsense.localdomain [192.168.1.1]<br>92.168.0.1<br>equest timed out.<br>c3ar-bell4-1.ed.shawcable.net [64.59.186.121]<br>6.163.70.129<br>c3no-be6.cg.shawcable.net [66.163.64.69]                                                                                                                      |  |  |
| er a max<br>1 <1 1<br>2 3 1<br>3 *<br>4 14 1<br>5 15 1<br>6 38 1<br>7 34 1                                       | imum of 3<br>ms <1<br>ms 2<br>ms 12<br>ms 90<br>ms 17<br>ms 31                                          | 30 hops:<br>ms <1<br>ms 1<br>ms 11<br>ms 29<br>ms 15<br>ms 29                                     | ms C<br>ms 1<br>ms 1<br>ms r<br>ms 6<br>ms r<br>ms r<br>ms r           | apstone-Pfsense.localdomain [192.168.1.1]<br>92.168.0.1<br>equest timed out.<br>c3ar-be114-1.ed.shawcable.net [64.59.186.121]<br>6.163.70.129<br>c3no-be6.cg.shawcable.net [66.163.64.69]<br>c2wt-be100.wa.shawcable.net [66.163.75.233]                                                                       |  |  |
| er a max.<br>1 <1 1<br>2 3 1<br>3 *<br>4 14 1<br>5 15 1<br>6 38 1<br>7 34 1<br>8 30 1                            | imum of 3<br>ms <1<br>ms 2<br>ms 12<br>ms 90<br>ms 17<br>ms 31<br>ms 42                                 | 30 hops:<br>ms <1<br>ms 1<br>ms 11<br>ms 29<br>ms 15<br>ms 29<br>ms 49                            | ms C<br>ms 1<br>ms r<br>ms r<br>ms 6<br>ms r<br>ms r<br>ms 7           | apstone-Pfsense.localdomain [192.168.1.1]<br>92.168.0.1<br>equest timed out.<br>c3ar-be114-1.ed.shawcable.net [64.59.186.121]<br>6.163.70.129<br>c3no-be6.cg.shawcable.net [66.163.64.69]<br>c2wt-be100.wa.shawcable.net [66.163.75.233]<br>2.14.242.90                                                        |  |  |
| er a max<br>1 <1 1<br>2 3 1<br>3 *<br>4 14 1<br>5 15 1<br>5 38 1<br>7 34 1<br>8 30 1<br>9 *                      | imum of 3<br>ms <1<br>ms 2<br>ms 12<br>ms 90<br>ms 17<br>ms 31<br>ms 31<br>ms 42<br>*                   | 30 hops:<br>ms <1<br>ms 1<br>ms 11<br>ms 29<br>ms 15<br>ms 29<br>ms 49<br>ms 49<br>*              | ms C<br>ms 1<br>ms r<br>ms 6<br>ms r<br>ms r<br>ms r<br>ms 7<br>R      | apstone-Pfsense.localdomain [192.168.1.1]<br>92.168.0.1<br>equest timed out.<br>c3ar-be114-1.ed.shawcable.net [64.59.186.121]<br>6.163.70.129<br>c3no-be6.cg.shawcable.net [66.163.64.69]<br>c2wt-be100.wa.shawcable.net [66.163.75.233]<br>2.14.242.90<br>equest timed out.                                   |  |  |
| er a max<br>1 <1 1<br>2 3 1<br>3 *<br>4 14 1<br>5 15 1<br>6 38 1<br>7 34 1<br>8 30 1<br>9 *<br>0 38 1            | imum of 3<br>ms <1<br>ms 2<br>ms 12<br>ms 90<br>ms 17<br>ms 31<br>ms 31<br>ms 42<br>*<br>ms 34          | 30 hops:<br>ms <1<br>ms 1<br>ms 11<br>ms 29<br>ms 15<br>ms 29<br>ms 29<br>ms 49<br>ms 32          | ms C<br>ms 1<br>ms 1<br>ms r<br>ms 7<br>ms 7<br>ms 7<br>ms 7<br>ms 7   | apstone-Pfsense.localdomain [192.168.1.1]<br>92.168.0.1<br>equest timed out.<br>c3ar-be114-1.ed.shawcable.net [64.59.186.121]<br>6.163.70.129<br>c3no-be6.cg.shawcable.net [66.163.64.69]<br>c2wt-be100.wa.shawcable.net [66.163.75.233]<br>2.14.242.90<br>equest timed out.<br>4.125.253.60                   |  |  |
| er a max.<br>1 <1 1<br>2 3 1<br>3 *<br>4 14 1<br>5 15 1<br>6 38 1<br>7 34 1<br>8 30 1<br>9 *<br>0 38 1<br>1 30 1 | imum of 3<br>ms <1<br>ms 2<br>ms 12<br>ms 90<br>ms 17<br>ms 31<br>ms 42<br>*<br>ms 34<br>ms 34<br>ms 31 | 30 hops:<br>ms <1<br>ms 1<br>ms 11<br>ms 29<br>ms 15<br>ms 29<br>ms 29<br>ms 49<br>ms 32<br>ms 31 | ms C<br>ms 1<br>R<br>ms r<br>ms 6<br>ms r<br>ms 7<br>R<br>ms 7<br>ms 1 | apstone-Pfsense.localdomain [192.168.1.1]<br>92.168.0.1<br>equest timed out.<br>c3ar-be114-1.ed.shawcable.net [64.59.186.121]<br>6.163.70.129<br>c3no-be6.cg.shawcable.net [66.163.64.69]<br>c2wt-be100.wa.shawcable.net [66.163.75.233]<br>2.14.242.90<br>equest timed out.<br>4.125.253.60<br>08.170.233.157 |  |  |
| er a max<br>1 <1 1<br>2 3 1<br>3 *<br>4 14 1<br>5 15 1<br>6 38 1<br>7 34 1<br>8 30 1<br>9 *<br>0 38 1            | imum of 3<br>ms <1<br>ms 2<br>ms 12<br>ms 90<br>ms 17<br>ms 31<br>ms 42<br>*<br>ms 34<br>ms 34<br>ms 31 | 30 hops:<br>ms <1<br>ms 1<br>ms 11<br>ms 29<br>ms 15<br>ms 29<br>ms 29<br>ms 49<br>ms 32<br>ms 31 | ms C<br>ms 1<br>R<br>ms r<br>ms 6<br>ms r<br>ms 7<br>R<br>ms 7<br>ms 1 | apstone-Pfsense.localdomain [192.168.1.1]<br>92.168.0.1<br>equest timed out.<br>c3ar-be114-1.ed.shawcable.net [64.59.186.121]<br>6.163.70.129<br>c3no-be6.cg.shawcable.net [66.163.64.69]<br>c2wt-be100.wa.shawcable.net [66.163.75.233]<br>2.14.242.90<br>equest timed out.<br>4.125.253.60                   |  |  |

Figure 5 Tracert output with pfSense

The web interface provides access to all the functionalities of pfSense which includes accessing interfaces, system information, firewall capabilities, traffic monitoring, IDS/IPS and other essential features. The dashboard provides easy access to all the functionality of pfSense displaying important log notifications, traffic monitor and status of connections.

|                       | System ▼ Interfaces ▼ Firewall ▼                                                                                                                     | Services - VPN    |                 | Diagnost | ics |                                                                               | <b>-</b>         |                     |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------|----------|-----|-------------------------------------------------------------------------------|------------------|---------------------|
| Status / Da           | shboard                                                                                                                                              |                   |                 |          |     |                                                                               |                  | + (                 |
| System Inform         | nation                                                                                                                                               | 0 ⊖ ۶             | Interfaces      |          |     |                                                                               |                  | ۶ <b>۵</b> ا        |
| Name                  | pfSense.localdomain                                                                                                                                  |                   | 📥 WAN           |          | ↑   |                                                                               | 192.168.0.14     |                     |
| User                  | admin@192.168.1.100 (Local Database)                                                                                                                 |                   |                 |          |     | <full-<br>duplex&gt;</full-<br>                                               | T000:9050:ca34:5 | c42:fab1:56ff:fec4: |
| System                | pfSense<br>Netgate Device ID: <b>c837d3939d73af78acc</b>                                                                                             | D                 | 📥 LAN           |          | ↑   | 100baseTX<br><full-< td=""><td>192.168.1.1</td><td></td></full-<>             | 192.168.1.1      |                     |
| BIOS                  | Vendor: <b>Dell Inc.</b><br>Version: <b>A16</b><br>Release Date: <b>Mon Sep 9 2013</b>                                                               |                   | HIOT_DEVICES    |          | ↑   | duplex><br>100baseTX<br><full-< td=""><td>192.168.10.1</td><td></td></full-<> | 192.168.10.1     |                     |
| Version               | 2.4.4-RELEASE-p1 (amd64)<br>built on Mon Nov 26 11:40:26 EST 2018<br>FreeBSD 11.2-RELEASE-p4                                                         |                   | GENERIC_CONNE   |          | ↑   | duplex><br>100baseTX<br><full-< td=""><td>192.168.11.1</td><td></td></full-<> | 192.168.11.1     |                     |
|                       | Version 2.4.4_2 is available. 🔕<br>Version information updated at Sun Feb 24                                                                         | 16:42:48 MST 2019 | GUEST_CONNEC    |          | ≁   | duplex><br>100baseTX<br><full-< td=""><td>192.168.12.1</td><td></td></full-<> | 192.168.12.1     |                     |
| СРИ Туре              | Intel(R) Core(TM) i5-3570 CPU @ 3.40GHz<br>Current: 3400 MHz, Max: 3401 MHz<br>4 CPUs: 1 package(s) x 4 core(s)<br>AES-NI CPU Crypto: Yes (inactive) |                   | ▲ Traffic Graph | ıs       |     | duplex>                                                                       | _                | ) 0 عر              |
| Kernel PTI            | Enabled                                                                                                                                              |                   | WAN             |          |     |                                                                               | 🔵 wan (in)       | 🔴 wan (out)         |
| Uptime                | 23 Hours 34 Minutes 53 Seconds                                                                                                                       |                   |                 |          |     |                                                                               |                  | 6.0                 |
| Current date/time     | Sun Feb 24 17:02:24 MST 2019                                                                                                                         |                   |                 |          |     |                                                                               |                  | 4.0                 |
| DNS server(s)         | <ul><li>127.0.0.1</li><li>192.168.0.1</li><li>8.8.8.8</li></ul>                                                                                      |                   |                 |          |     |                                                                               |                  | 2.0                 |
| Last config<br>change | Sun Feb 24 17:02:07 MST 2019                                                                                                                         |                   |                 |          |     |                                                                               |                  | 0.0                 |
| State table size      | 0% (176/393000) Show states                                                                                                                          |                   | 00:29 00:5      | 0        |     |                                                                               | 01:40            | 02:28               |
| MBUF Usage            | 0% (3550/1000000)                                                                                                                                    |                   | LAN             |          |     |                                                                               | lan (in)         | lan (out)           |
| Temperature           | 27.9°C                                                                                                                                               |                   |                 |          |     |                                                                               |                  |                     |
| Load average          | 0.46, 0.30, 0.23                                                                                                                                     |                   |                 |          |     |                                                                               |                  |                     |
| CPU usage             | 0%                                                                                                                                                   |                   |                 |          |     |                                                                               |                  | -4.                 |

Figure 6 pfSense web GUI dashboard

### 3. Wireless Configuration

pfSense supports wireless compatibility through the OPT interface. For IoT devices to connect wirelessly to the pfSense firewall router, it is necessary to configure the wireless interface. pfSense supports access point functionality with 802.11n and 802.11ac support. Using a wireless network adapter, IoT devices are connected wirelessly to the firewall hardware, providing firewall security with internet functionality at the same time. The list of physical compatible wireless network interfaces are as follows:



Figure 7 pfSense supported wireless drivers

Three network adapters: PEX300WN2X2 PCI Express Wireless N Card, USB-AC51 Dual-Band Wireless AC600 Network Adapter, USB 2.0 and TP-Link TL-WN881ND Wireless N300 with plug and play capabilities were tested but did not work. These network cards belonged to 'Atheros' having compatibility with pfsense.

The following is taken from the official Netgate website which states that the compatible network cards may not function with the hardware in some cases.

"Some care is needed when testing your hardware to see if this feature is supported. Some chips will fail to add the additional interface; others may panic and cause a reboot."

Unifi access point has been used to enable wireless connectivity of IoT devices with pfSense firewall. The Unifi access point plugged with an ethernet port of the pfSense device, creates a wireless network of different VLANs.



Figure 8 UniFi Dashboard

With access point enabled, wireless networks with VLAN tagging become functional. This access point enables the wireless accessibility of networks VLAN tags 10, 20, 30 and 40 created in pfSense.

| Wireless Networks |          |                 | WL   | AN Group Default 🗸 🖉 🗓 🕂 |
|-------------------|----------|-----------------|------|--------------------------|
| NAME 1            | SECURITY | GUEST NETWORK 1 | VLAN | ACTIONS                  |
| CELLULAR_DEVICES  | wpapsk   |                 |      | 🖉 EDIT 🗻 DELETE          |
| GENERAL TRAFFIC   | wpapsk   |                 |      |                          |
| GUEST NETWORK     | wpapsk   |                 |      |                          |
| IOT_DEVICES       | wpapsk   |                 |      |                          |

Figure 9 Networks with VLAN tagging

The wireless networks have WPA Enterprise security. Radius Server secures the connection with the access point and clients to a great extent. The client associates to the access point and radius server generates a random 256 bits PMK to encrypt data for the current session.

PMK is unique and session specific for each client, therefore if someone tries to break a PMK, only one session of that client is accessed.

Hiding the SSID of that network makes it less vulnerable for people trying to connect using wireless.

| EDIT WIRELESS NETWORK - IOT_DEVICES |                                                                     |  |  |  |  |  |
|-------------------------------------|---------------------------------------------------------------------|--|--|--|--|--|
| Name/SSID                           | IOT_DEVICES                                                         |  |  |  |  |  |
| Enabled                             | Enable this wireless network                                        |  |  |  |  |  |
| Security                            | Open WEP WPA Personal 💿 WPA Enterprise                              |  |  |  |  |  |
| RADIUS Profile (i)                  | IOT V Create new RADIUS profile                                     |  |  |  |  |  |
| Hotspot 2.0                         | Enable Hotspot 2.0 GEN2 REQUIRED                                    |  |  |  |  |  |
| Guest Policy                        | Apply guest policies (captive portal, guest authentication, access) |  |  |  |  |  |
| ADVANCED OPTIONS $\checkmark$       |                                                                     |  |  |  |  |  |
| Multicast and Broadcast Filtering   | Block LAN to WLAN Multicast and Broadcast Data ()                   |  |  |  |  |  |
| VLAN                                |                                                                     |  |  |  |  |  |
| Fast Roaming BETA                   | Enable fast roaming ()                                              |  |  |  |  |  |
| Hide SSID                           | Prevent this SSID from being broadcast                              |  |  |  |  |  |

Figure 10 IoT network with WPA Enterprise Security



Figure 11 List of available WiFi networks

For security measures, the IoT network can only allow devices to connect to it. DHCP range is starting with 192.168.10.4 to 192.168.10.6. 192.168.10.2 is the static IP address mapped to Google Home using static ARP. If a device connects to the network, a log is generated capturing its MAC address, and the connection request to the device is denied.

| ACTIVITY UP UF | IPTIME                                         |
|----------------|------------------------------------------------|
| 1.2 MB 13      | 3m 25s                                         |
| 263 KB 16      | .6m 8s                                         |
| 26.2 KB 6m     | m 10s                                          |
| 13.9 KB 3m     | im 34s                                         |
| 40.4 KB 48     | 8s                                             |
|                | 12 MB 12<br>263 KB 12<br>262 KB 6<br>13.9 KB 3 |

Figure 12 IoT network clients

MAC addresses are categorized into Whitelist and Blacklist. Whitelist MAC addresses are the known devices which connect to the network anytime; all the other devices are blacklisted by default and the connection is denied.

| MAC FILTER V  |                                                        |             |
|---------------|--------------------------------------------------------|-------------|
| Enabled       |                                                        |             |
| Policy        | <ul> <li>Whitelist ()</li> <li>Blacklist ()</li> </ul> |             |
| MAC Addresses | MAC ADDRESS                                            | NAME        |
|               | 30:fd:38:6f:68:b7                                      | Google-Home |
|               | Showing 1-1 of 1 records. Items per pa                 | ge: 10 🗸    |

Figure 13 Whitelisting MAC address

### 4. VLANs and DHCP

VLANs are a logical grouping of a network that divides the LAN into subnetworks. With the help of a VLAN, hosts on a specific network can be isolated from other networks. This provides an additional layer of security in the pfSense firewall as traffic from other networks gets denied. DHCP is a protocol which allows pfSense to dynamically allocate an IP address from a predefined pool of IP address. In DHCP, services like 'deny unknown clients'/static ARP' and multiple address pool further increase the security in case of unknown hosts.

#### 4.1. Setting up VLANs

pfSense provides the capacity to implement VLANs which are a great way to segment a network and isolate subnetworks. VLANs can be created on any interface providing features and benefits like:

- An additional layer of security by not permitting traffic from one VLAN into another.
- Creating separate networks for different devices to be connected to their network.

The wireless network has been created into four different networks through VLANs, separating traffic from IoT devices from others. Having a crucial need to isolate IoT devices' network, securing them becomes very important to prevent them from being compromised.

| Connection-specific DNS Suffix . : localdomain                            |
|---------------------------------------------------------------------------|
| Link-local IPv6 Address : <u>fe80::60e3:84f</u> 8:d1e:e272%13             |
| IPv4 Address                                                              |
| Subnet Mask                                                               |
| Default Gateway : fe80::1:1%13                                            |
| 192.168.1.1                                                               |
| C:\Users\Himank Sarna>ping 192.168.10.2 Google Home (IoT Devices Network) |
| Pinging 192.168.10.2 with 32 bytes of data:                               |
| Request timed out.                                                        |
| Ping statistics for 192.168.10.2:                                         |
| Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),                    |

Figure 14 Unsuccessful ping from LAN to IoT Devices network

| LAN Configuration |                                                                                    |
|-------------------|------------------------------------------------------------------------------------|
| Parent Interface  | re1 (00:13:3b:21:a9:b4) - opt1                                                     |
|                   | Only VLAN capable interfaces will be shown.                                        |
| VLAN Tag          | 10                                                                                 |
|                   | 802.1Q VLAN tag (between 1 and 4094).                                              |
| VLAN Priority     | 0                                                                                  |
|                   | 802.1Q VLAN Priority (between 0 and 7).                                            |
| Description       | IOT_Devices                                                                        |
|                   | A group description may be entered here for administrative reference (not parsed). |

Figure 15 IoT network VLAN configuration

| VLAN Interfaces |          |          |                              |         |  |
|-----------------|----------|----------|------------------------------|---------|--|
| Interface       | VLAN tag | Priority | Description                  | Actions |  |
| re1 (opt1)      | 10       |          | IOT_Devices                  | Ø 🛍     |  |
| re1 (opt1)      | 20       |          | Network for Cellular Devices | er 🛍    |  |
| re1 (opt1)      | 30       |          | General Traffic              | ø 🛍     |  |
| re1 (opt1)      | 40       |          | Guest Network                | e 🖉 🛍   |  |

#### Figure 16 VLAN networks

#### 4.1. DHCP Pool

pfSense router has a DHCP server for dynamically assigning an IP address to various devices in different networks. IoT devices connect to the router wirelessly which leaves them exposed to a rogue DHCP server. To secure the connection, the subnet mask of each network is limited to a certain number of devices, which has the capacity to being increased in the future. This limits the scope of unauthorised devices getting an IP address and hence the connection to that network is denied.

| LAN    | IOT_DEVICES        | CELLULAR_DEVICES                                                                                                 | GENERAL_TRAFFIC            | GUEST_NETWORK         |                    |  |  |  |
|--------|--------------------|------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------|--------------------|--|--|--|
| Genera | al Options         |                                                                                                                  |                            |                       |                    |  |  |  |
|        | Enable             | Enable DHCP server on IOT_DEVICES interface                                                                      |                            |                       |                    |  |  |  |
|        | BOOTP              | Ignore BOOTP queries                                                                                             | Ignore BOOTP queries       |                       |                    |  |  |  |
| Deny   | unknown clients    | Only the clients define                                                                                          | d below will get DHCP leas | ses from this server. |                    |  |  |  |
| Igno   | re denied clients  | This option is not compatible with failover and cannot be enabled when a Failover Peer IP address is configured. |                            |                       |                    |  |  |  |
| Ignore | client identifiers |                                                                                                                  |                            |                       |                    |  |  |  |
|        | Subnet             | 192.168.10.0                                                                                                     |                            |                       |                    |  |  |  |
|        | Subnet mask        | 255.255.255.248                                                                                                  |                            |                       |                    |  |  |  |
|        | Available range    | 192.168.10.1 - 192.168.10                                                                                        | 1.6                        |                       |                    |  |  |  |
|        | Range              | 192.168.10.4<br>From                                                                                             |                            |                       | 192.168.10.6<br>To |  |  |  |

Figure 17 DHCP Pool for IOT\_Devices network

'Deny unknown clients' feature provides an additional layer of security. With this feature checked, no clients will get DHCP lease if the client is not defined in 'static DHCP mapping' table. Any incoming request from unknown clients to get connected gets automatically blocked.

It also prevents the risk of MAC spoofing to a certain extent because if any other device is not being given access, it cannot register itself until has the physical access to the device. Advantages of creating static mapping entry:

- Static ARP entry.
- Mapping of IP address to specific MAC address.

### **5. NAT**

NAT is a process where the firewall assigns a public IP address to the devices inside a private network. NAT is categorised as outbound and inbound where a private IP address is mapped with a single public IP address and vice versa in case of inbound NAT. What makes it secure is that an outbound connection gets recorded into a translation table and the traffic replying back to that specific connection is allowed back. When a random session gets initiated from outside, it gets blocked.

Automatic outbound NAT translates any internal network subnet to an external WAN IP address.

| A | utomatic  | Rules:                                                                                                                |                |             |                     |                |   |                |                                 |
|---|-----------|-----------------------------------------------------------------------------------------------------------------------|----------------|-------------|---------------------|----------------|---|----------------|---------------------------------|
|   | Interface | Source                                                                                                                | Source<br>Port | Destination | Destination<br>Port | NAT<br>Address |   | Static<br>Port | Description                     |
| ~ | WAN       | 127.0.0.0/8 ::1/128 192.168.1.0/24 192.168.20.0/24 192.168.10.0/29<br>192.168.30.0/30 192.168.40.0/28 192.168.50.0/27 | *              | *           | 500                 | WAN<br>address | * | •              | Auto created rule<br>for ISAKMP |
| ~ | WAN       | 127.0.0.0/8 ::1/128 192.168.1.0/24 192.168.20.0/24 192.168.10.0/29<br>192.168.30.0/30 192.168.40.0/28 192.168.50.0/27 | *              | *           | *                   | WAN<br>address | * | 2¢             | Auto created rule               |

Figure 18 Automatic outbound NAT rules

| 0 |   | Interface | Source          | Source<br>Port | Destination | Destination<br>Port | NAT<br>Address | NAT<br>Port | Static<br>Port | Description                                              | Actions    |
|---|---|-----------|-----------------|----------------|-------------|---------------------|----------------|-------------|----------------|----------------------------------------------------------|------------|
|   | ~ | WAN       | 127.0.0.0/8     | *              | *           | 500<br>(ISAKMP)     | WAN<br>address | *           | ~              | Auto created rule for ISAKMP - localhost to WAN          | / 🗋<br>🗎   |
|   | ~ | WAN       | 127.0.0.0/8     | *              | *           | •                   | WAN<br>address | *           | 2¢             | Auto created rule - localhost to WAN                     |            |
|   | ~ | WAN       | ::1/128         | *              | *           | 500<br>(ISAKMP)     | WAN<br>address | *           | ~              | Auto created rule for ISAKMP - localhost to WAN          | ✓□         |
|   | ~ | WAN       | ::1/128         | *              | *           | *                   | WAN<br>address | *           | 2¢             | Auto created rule - localhost to WAN                     |            |
| 0 | ~ | WAN       | 192.168.1.0/24  | *              | *           | 500<br>(ISAKMP)     | WAN<br>address | *           | ~              | Auto created rule for ISAKMP - LAN to WAN                | /C         |
| 0 | ~ | WAN       | 192.168.1.0/24  | *              | *           | *                   | WAN<br>address | *           | 2¢             | Auto created rule - LAN to WAN                           | ✓ □        |
| 0 | ~ | WAN       | 192.168.20.0/24 | *              | *           | 500<br>(ISAKMP)     | WAN<br>address | *           | *              | Auto created rule for ISAKMP - WIRELESS to WAN           | /C         |
|   | ~ | WAN       | 192.168.20.0/24 | *              | *           | *                   | WAN<br>address | *           | <b>2¢</b>      | Auto created rule - WIRELESS to WAN                      | ✓ □        |
| 0 | ~ | WAN       | 192.168.10.0/29 | *              | *           | 500<br>(ISAKMP)     | WAN<br>address | *           | *              | Auto created rule for ISAKMP - IOT_DEVICES to WAN        | ✓ □        |
| 0 | ~ | WAN       | 192.168.10.0/29 | *              | *           | *                   | WAN<br>address | *           | 2¢             | Auto created rule - IOT_DEVICES to WAN                   | <b>/</b> C |
|   | ~ | WAN       | 192.168.30.0/30 | *              | *           | 500<br>(ISAKMP)     | WAN<br>address | *           | *              | Auto created rule for ISAKMP - CELLULAR_DEVICES to WAN   | /C         |
|   | ~ | WAN       | 192.168.30.0/30 | *              | *           | *                   | WAN<br>address | *           | )¢             | Auto created rule - CELLULAR_DEVICES to WAN              | <b>∕</b> ⊡ |
|   | ~ | WAN       | 192.168.40.0/28 | *              | *           | 500<br>(ISAKMP)     | WAN<br>address | *           | *              | Auto created rule for ISAKMP - GENERAL_TRAFFIC to<br>WAN |            |
|   | ~ | WAN       | 192.168.40.0/28 | *              | *           | *                   | WAN<br>address | *           | <b>x</b> ¢     | Auto created rule - GENERAL_TRAFFIC to WAN               |            |
|   | ~ | WAN       | 192.168.50.0/27 | *              | *           | 500<br>(ISAKMP)     | WAN            | *           | ~              | Auto created rule for ISAKMP - GUEST_NETWORK to<br>WAN   |            |

Figure 19 Manual outbound NAT rules

#### **5.1. Port Forwarding**

Port forwarding is used to allow a device from the outside network to access a PC having a reserved DHCP IP address remotely using RDP. It uses a TCP protocol with port number 3389.

The RDP connection coming from any address gets mapped to target IP address 192.168.0.100.

|           | Edia de at                   | Entre         |                                                                                | _                                                                              |                         |                          | _                     |                                               |          |  |  |
|-----------|------------------------------|---------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------|--------------------------|-----------------------|-----------------------------------------------|----------|--|--|
|           | Edit Redir                   | Disabled      | Disable this rule                                                              |                                                                                |                         |                          |                       |                                               |          |  |  |
|           |                              |               |                                                                                |                                                                                |                         |                          |                       |                                               |          |  |  |
|           | N                            | o RDR (NOT)   | Disable redirection f<br>This option is rarely need                            |                                                                                |                         | knowledge of the impli   | cations.              |                                               |          |  |  |
|           |                              |               |                                                                                |                                                                                |                         |                          |                       |                                               |          |  |  |
|           |                              | Interface     | WAN<br>Choose which interface                                                  | this rule appli                                                                | es to. In most cases 'V | VAN* is specified.       |                       |                                               |          |  |  |
|           |                              | Protocol      | TCP                                                                            |                                                                                |                         | Ŧ                        |                       |                                               |          |  |  |
|           |                              | rotocor       | Choose which protocol                                                          | this rule shoul                                                                | d match. In most case   |                          |                       |                                               |          |  |  |
|           |                              | Source        | C Hide Advanced                                                                |                                                                                |                         |                          |                       |                                               |          |  |  |
|           |                              | Source        | Invert match.                                                                  | Any                                                                            |                         |                          | •                     | 1                                             | Ŧ        |  |  |
|           |                              | Junce         | the second second                                                              | Туре                                                                           |                         |                          | Address/              | mask                                          |          |  |  |
|           | Source                       | e port range  | Any                                                                            | •                                                                              |                         | Any                      | T                     |                                               |          |  |  |
|           |                              | -             | From port                                                                      | Custor                                                                         | n                       | To port                  | Custom                |                                               |          |  |  |
|           |                              |               | Specify the source port<br>'any'). The 'to' field may                          |                                                                                |                         |                          | t never equal to the  | destination port range (and should usually b  | 90       |  |  |
|           |                              | Destination   | Invert match.                                                                  | WAN                                                                            | address                 |                          | Y                     | 1                                             | ۳        |  |  |
|           |                              |               |                                                                                | Туре                                                                           |                         |                          | Address/              | mask                                          |          |  |  |
|           | Destinatio                   | n port range  |                                                                                | •                                                                              |                         | MS RDP                   | T                     |                                               |          |  |  |
|           |                              |               | From port                                                                      | Custor                                                                         |                         | To port                  | Custom                |                                               |          |  |  |
|           |                              |               | Specify the port or port                                                       | range for the d                                                                | lestination of the pack | et for this mapping. The | 'to' field may be let | t empty if only mapping a single port.        |          |  |  |
|           | Redir                        | ect target IP | 192.168.0.100                                                                  | 2.168.0.100 r the internal IP address of the server on which to map the ports. |                         |                          |                       |                                               |          |  |  |
|           |                              |               | Enter the internal IP add<br>e.g.: 192.168.1.12                                | iress of the se                                                                | rver on which to map t  | he ports.                |                       |                                               |          |  |  |
|           | Redirec                      | t target port | MS RDP                                                                         |                                                                                |                         | Ŧ                        |                       |                                               |          |  |  |
|           |                              |               | Port                                                                           |                                                                                |                         | Custo                    | m                     |                                               |          |  |  |
|           |                              |               | Specify the port on the<br>calculated automatical<br>This is usually identical | y).                                                                            |                         | above. In case of a port | range, specify the    | beginning port of the range (the end port wil | lbe      |  |  |
|           |                              | Description   | Enabling RDP from an                                                           | outside netwo                                                                  | rk                      |                          |                       |                                               |          |  |  |
|           |                              |               | A description may be en                                                        | ntered here for                                                                | administrative referen  | ice (not parsed).        |                       |                                               |          |  |  |
|           |                              |               | Figure 2                                                                       | 20 Po                                                                          | ort forw                | varding                  | settin                | gs                                            |          |  |  |
| t Forwar  | rd 1:1 Ou                    | rtbound       | NPt                                                                            |                                                                                |                         |                          |                       |                                               |          |  |  |
|           |                              |               |                                                                                |                                                                                |                         |                          |                       |                                               |          |  |  |
|           |                              |               |                                                                                |                                                                                |                         |                          |                       |                                               | _        |  |  |
| es        |                              | Source        | Source                                                                         | Dest.                                                                          |                         |                          |                       |                                               |          |  |  |
| es        |                              |               | Ports                                                                          | Address                                                                        | Dest. Ports             | NAT IP                   | NAT Ports             | Description                                   | A        |  |  |
| es        | Interface Protoco            | Address       |                                                                                |                                                                                |                         |                          |                       |                                               |          |  |  |
| es<br>🗸 🔀 | Interface Protoco<br>WAN TCP | Address       | *                                                                              | WAN<br>address                                                                 | 3389 (MS<br>RDP)        | 192.168.0.100            | 3389 (MS<br>RDP)      | Enabling RDP from an outside<br>network       | <i>.</i> |  |  |

### Figure 21 Port forward rule

When a port forwarding rule gets created, it gets added into WAN rules automatically to enable a rule which allows port forwarding. By default, the priority of NAT rules is more than firewall rules.

| Firewall / Rules / WAN |                   |                       |                                     |      |               |                  |         |             |                                             |         |  |  |  |
|------------------------|-------------------|-----------------------|-------------------------------------|------|---------------|------------------|---------|-------------|---------------------------------------------|---------|--|--|--|
| Floati                 | _                 | _                     | N WIRELESS                          | IOT  | _DEVICES (    | CELLULAR_DEV     | ICES (  | GENERAL_TRA | FFIC GUEST_NETWORK                          |         |  |  |  |
| Rule                   | s (Drag<br>States | to Change<br>Protocol |                                     | Port | Destination   | Port             | Gateway | Queue Sche  | dule Description                            | Actions |  |  |  |
| ×                      | 0 /31<br>KiB      | *                     | RFC 1918 networks                   | *    | •             | *                | *       | •           | Block private networks                      | 0       |  |  |  |
| ×                      | 0 /19<br>KiB      | *                     | Reserved<br>Not assigned by<br>IANA | *    | *             | ×                | *       | *           | Block bogon networks                        | ٥       |  |  |  |
| •                      | 0 /0 B            | IPv4<br>TCP           | *                                   | *    | 192.168.0.100 | 3389 (MS<br>RDP) | *       | none        | NAT Enabling RDP from an outside<br>network | ±∥⊡0    |  |  |  |

Figure 22 WAN rules

### 6. Firewall

pfSense is a stateful firewall which features dynamic packet filtering, supports routing based on source IP, destination IP, port type and operating systems. It provides defence against spoofing exploitations by dynamically keeping track of connection information.

Major types of attacks are:

- TCP SYN flooding
- Distributed Denial of Service attack (DDoS)
- DNS Spoofing (Malicious cache poisoning)

#### 6.1. Stateful Firewall

pfSense maintains a stateful firewall in contrary to DSL routers at home. The Internet is an untrusted network of devices, and it makes it very important to sustain stateful firewall which has important features like:

- Security policies
- Rules are stating which packet can pass through the firewall.
- Dynamically keep track of connection information.
- Maintains a state table made up of Source and Destination addresses, port numbers, sequencing and flag information.
- Provides defence against spoofing exploits.

#### 6.2. Firewall Rules

pfSense firewall has many advanced features like Stateful Packet Inspection (SPI), reverse proxy, inbound and outbound NAT mapping, DNS forwarding, anti-spoofing and many. These features make it stand out amongst other firewall and DSL home router.

The firewall rules can be implemented on any interface. Using firewall rules, many functions can be done, like, allowing and disallowing a specific host or network, protocol, OS fingerprinting, aliases and more.



Figure 23 Available networks for setting firewall rules

It is critical to set the action accordingly.

- Pass allows all the traffic to come into the firewall. It is usually used to allow a firewall rule to let certain traffic in and out of the firewall.
- Reject is usually not preferred because it sends a reply back to the program/host telling the 'packet was dropped'. This gives an outside attacker some knowledge that something is there.
- Block drops the packet, and nothing is sent back. Therefore, the attacker cannot know whether or not there is an IP address they are trying to reach.

| Edit Firewall Rule |                                                 |                                                                                                                                                 |                        |                     |                    |
|--------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------|--------------------|
| Action             | Block                                           |                                                                                                                                                 | Ŧ                      |                     |                    |
|                    | Hint: the difference betw                       | packets that match the criteria specified b<br>ween block and reject is that with reject, a p<br>packet is dropped silently. In either case, th | acket (TCP RST or ICMP |                     | ned to the sender, |
| Disabled           | Disable this rule<br>Set this option to disable | e this rule without removing it from the list.                                                                                                  |                        |                     |                    |
| Interface          | IOT_DEVICES                                     |                                                                                                                                                 | ¥                      |                     |                    |
|                    | Choose the interface fro                        | om which packets must come to match this                                                                                                        | rule.                  |                     |                    |
| Address Family     | IPv4                                            |                                                                                                                                                 | ¥                      |                     |                    |
|                    | Select the Internet Proto                       | ocol version this rule applies to.                                                                                                              |                        |                     |                    |
| Protocol           | Any                                             |                                                                                                                                                 | ٣                      |                     |                    |
|                    | Choose which IP protoc                          | ol this rule should match.                                                                                                                      |                        |                     |                    |
| Source             |                                                 |                                                                                                                                                 |                        |                     |                    |
| Source             | Invert match.                                   | Single host or alias                                                                                                                            | ٣                      | Traffic_not_allowed | / *                |
| Destination        |                                                 |                                                                                                                                                 |                        |                     |                    |
| Destination        | Invert match.                                   | IOT_DEVICES net                                                                                                                                 | *                      | Destination Address | / *                |

Figure 24 Implementing Block on Alias

| Source OS           | Windows               | • |
|---------------------|-----------------------|---|
|                     | SunOS                 |   |
|                     | SunOS 4.1             |   |
| Diffserv Code Point | SymbianOS             |   |
| Diffselv Code Folit | SymbianOS 6048        |   |
|                     | SymbianOS 6600        |   |
| Allow IP options    | SymbianOS 7           |   |
|                     | SymbianOS 9210        |   |
| Disable reply-to    | SymbianOS P800        |   |
| blouble reply to    | TOPS-20               |   |
| Tee                 | TOPS-20 7             |   |
| Tag                 | Tru64                 |   |
|                     | Tru64 4.0             |   |
|                     | Tru64 5.0             |   |
| Tagged              | Tru64 5.1             |   |
| laggea              | Tru64 5.1 noRFC1323   |   |
|                     | Tru64 5.1a            |   |
|                     | Tru64 5.1a JP4        |   |
| Max. states         |                       |   |
|                     | ULTRIX 4.5<br>Windows |   |

Figure 25 Blocking source on the basis of OS fingerprint

| Float | ting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | WAN     | LAN       | WIRELESS IO     | T_DEVICE | S CELLULAR_DE   | VICES GENE  | RAL_TRAFFI | C GI  | JEST_NETWO | IRK         |         |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|-----------------|----------|-----------------|-------------|------------|-------|------------|-------------|---------|
| Rule  | es (Dr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ag to C | hange Ord | er)             |          |                 |             |            |       |            |             |         |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | States  | Protocol  | Source          | Port     | Destination     | Port        | Gateway    | Queue | Schedule   | Description | Actions |
|       | × 📰                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 /0 B  | IPv4 *    | IOT_DEVICES net | *        | ! WAN net       | *           | *          | none  |            |             | ±/00    |
| •     | <ul> <li>Image: A second s</li></ul> | 0 /0 B  | IPv4 TCP  | *               | *        | IOT_DEVICES net | 443 (HTTPS) | *          | none  |            |             | ±∕©00   |
| •     | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 /0 B  | IPv4 TCP  | *               | *        | IOT_DEVICES net | 5671        | *          | none  |            |             | ±∕©0₫   |
| •     | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 /0 B  | IPv4 TCP  | *               | *        | IOT_DEVICES net | 8883        | *          | none  |            |             | ±∕©0₫   |

Figure 26 IoT devices network firewall rules

#### 6.1. Firewall Aliases

Alias is a group of networks or hosts IP addresses which are used in firewall rules such that it gets resolved according to the alias list, some changes to be made to a particular host or port can be minimized, and alias name is used in traffic shaper and traffic monitoring. It can incorporate multiple hosts inside a single alias, hence allows fewer firewall rules to be required and saves firewall processing.

| Properties         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name               | Secure_IOT_Network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                    | The name of the alias may only consist of the characters "a-z, A-Z, 0-9 and _".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Description        | Disabling traffic into IOT Network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                    | A description may be entered here for administrative reference (not parsed).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Туре               | Network(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Network(s)<br>Hint |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .,                 | Networks are specified in CIDR format. Select the CIDR mask that pertains to each entry. /32 specifies a single IPv4 host, /128 specifies a single IPv4 host, /128 specifies a single IPv4 host, /28 specifies a s |
| Hint               | host, /24 specifies 255.255.255.0, /64 specifies a normal IP6 network, etc. Hostnames (FQDNs) may also be specified, using a /32 mask for IP44 or<br>/128 (nr IP46, An IP range such as 192.168.1.1-192.168.1.254 may also be entered and a list of CIDR networks will be derived to fill the range.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Figure 27 Alias for rejecting traffic into IoT Network

By default, the firewall rules are implemented top to bottom. If there is no rule, no traffic is allowed to pass through that interface. Firewall rules are created so that:

- 'IoT Devices' network will block any traffic coming from 'General Traffic' and 'Guest Network'.
- Traffic allowed on 'IOT Devices network' is internet only and some specific devices on 'Cellular Devices' because some IoT devices (like Chromecast or Google Home) require talking to local devices in order to function entirely by using mDNS protocol.
- Only ports 443 (HTTPS), 5671(AMQP) and 8883(MQTT) are allowed over IOT networks which prevents vulnerability of attacks coming through open ports on the firewall. These are the protocols associated with IoT devices.

#### 6.2. mDNS

mDNS protocol resolves hostnames to IP addresses within a small network. When an mDNS client resolves a hostname, it requests an IP multicast to the host to identify itself.

Avahi protocol maintains the mDNS lookup. This service is only used for certain devices (e.g., Alexa or Chromecast) which need to interact with other devices for functioning. How mDNS functions with IoT devices are:

- The rules set in this case is, 'Cellular Network' has full access to the internet and devices in 'IOT Network.'
- Any device in 'Cellular Network' initiates a request to an IoT device and IOT device will only send back data based on the request. On the other hand, 'IOT Network' is unfamiliar about any other network and cannot initiate any request on its own.
- Firewall rules maintain the separation between devices in both the networks.
- Other IOT devices do not need mDNS lookup because they contact with their host server as a service.
- No traffic is being allowed over the two networks; a DNS list is published on both the network sides.

| <ul> <li>Enable the Avahi daemon</li> </ul>                    |                                 |
|----------------------------------------------------------------|---------------------------------|
| WIRELESS<br>IOT_DEVICES<br>CELLULAR_DEVICES<br>GENERAL TRAFFIC | Î                               |
|                                                                | IOT_DEVICES<br>CELLULAR_DEVICES |

Figure 28 mDNS allowed for selected networks

#### 6.3. pfBlockerNG

pfBlockerNG provides an additional layer of security by blocking external threats and reports malicious incoming connections by logging them. It integrates Pi Hole which prevents DNS requests for known tracking and advertising domains. pfBlockerNG allows the collection of IP address and domain names from a multitude of sources and varying formats and normalises the traffic flowing into the firewall.

This firewall rule precedes every other firewall rule, and it also allows to create aliases that block IP addresses and malicious URLs. Some aliases created are as follows:

- BinaryDefence: It is the collection of lists of known malicious IPs. These lists are from reputable sources and are updated every hour.
- CNCs and BOTnets: It is a collection of exit node lists which can be a distribution method of CNCs and botnets.

- Mail Spammers: It is a collection of mail specific IP list of known email spammers.
- Whitelist List: It is a trusted list of user-defined whitelisted IPs. These are manually added to the custom list. An auto-firewall rule will be created to permit outbound traffic to these IPs.

| General       | Update | Alerts | Reputation      | IPv4 | IPv6 | DNSBL    | GeolP  | Logs | Sync      |         |       |
|---------------|--------|--------|-----------------|------|------|----------|--------|------|-----------|---------|-------|
| Alias Name    |        |        | Alias Descripti | on   |      | Action   |        |      | Frequency | Logging |       |
| BinaryDefen   | se     |        | Known Bad IP    | s    |      | Deny_Bo  | th     |      | 01hour    | enabled | e 🗇 🛍 |
| Emerging_T    | hreats |        | Bad IPs         |      |      | Deny_Bo  | th     |      | Never     | enabled | e 🖉   |
| DNSBL FEED    | os     |        | DSNBL Feeds     |      |      | Permit_I | nbound |      | 01hour    | enabled | e 🖉   |
| Pihole_Defa   | ults   |        | Pihole Default  | s    |      | Deny_Bo  | th     |      | Weekly    | enabled | e 🖉   |
| CNCs and B    | OTnets |        | CNCs and Bot    | nets |      | Deny_Bo  | th     |      | EveryDay  | enabled | e 🖉 🕯 |
| Mail Spamn    | ners   |        | MAil Spamme     | rs   |      | Deny_Ini | bound  |      | 12hours   | enabled | e 🗇   |
| Whitelist Lis | t      |        |                 |      |      | Permit E | Both   |      | Never     | enabled | e 🗇   |

Figure 29 pfBlockerNG Custom Aliases

The rules from pfBlockerNG aliases are imported to LAN and WAN rules.

|            | States    | Protocol | Source                           | Port | Destination | Port | Gateway | Queue | Schedule | Description                    | Actions       |
|------------|-----------|----------|----------------------------------|------|-------------|------|---------|-------|----------|--------------------------------|---------------|
| ×          | 0 /1008 B | *        | RFC 1918 networks                | *    | *           | *    | *       | *     |          | Block private networks         | •             |
| ×          | 0 /656 B  | *        | Reserved<br>Not assigned by IANA | *    | *           | *    | *       | *     |          | Block bogon networks           | 0             |
| × 📰        | 0 /0 B    | IPv4*    | pfB_Africa_v4                    | *    | *           | *    | *       | none  |          | pfB_Africa_v4 auto rule        | ±≁⊡⊘∎         |
| ×=         | 0 /0 B    | IPv6*    | pfB_Africa_v6                    | *    | *           | *    | *       | none  |          | pfB_Africa_v6 auto rule        | ₺₡₢₡          |
| ×          | 0 /0 B    | IPv4*    | pfB_Asia_v4                      | *    | *           | *    | *       | none  |          | pfB_Asia_v4 auto rule          | ₺₡₢₡          |
| ×          | 0 /0 B    | IPv6*    | pfB_Asia_v6                      | *    | *           | *    | *       | none  |          | pfB_Asia_v6 auto rule          | ±∥⊡⊘∎         |
| ×=         | 0 /0 B    | IPv4*    | pfB_Europe_v4                    | *    | *           | *    | *       | none  |          | pfB_Europe_v4 auto rule        | ₺₡₸₡₶         |
| ×=         | 0 /0 B    | IPv6 *   | pfB_Europe_v6                    | *    | *           | *    | *       | none  |          | pfB_Europe_v6 auto rule        | ±/00          |
| ×          | 0 /0 B    | IPv4*    | pfB_NAmerica_v4                  | *    | *           | *    | *       | none  |          | pfB_NAmerica_v4 auto rule      | ₺₡₲₡₡         |
| ×          | 0 /0 B    | IPv6*    | pfB_NAmerica_v6                  | *    | *           | *    | *       | none  |          | pfB_NAmerica_v6 auto rule      | ±/00          |
| ×=         | 0 /0 B    | IPv4*    | pfB_Top_v4                       | *    | *           | *    | *       | none  |          | pfB_Top_v4 auto rule           | ₺₡₢₡          |
| ×=         | 0 /0 B    | IPv6*    | pfB_Top_v6                       | *    | *           | *    | *       | none  |          | pfB_Top_v6 auto rule           | <b>₺</b> ∦©0₫ |
| ×=         | 0 /0 B    | IPv4*    | pfB_BinaryDefense                | *    | *           | *    | *       | none  |          | pfB_BinaryDefense auto rule    | ±/©0          |
| ×=         | 0 /0 B    | IPv4*    | pfB_Emerging_Threats             | *    | *           | *    | *       | none  |          | pfB_Emerging_Threats auto rule | ₺₡₢₡          |
| ×          | 0 /0 B    | IPv4*    | pfB_Pihole_Defaults              | *    | *           | *    | *       | none  |          | pfB_Pihole_Defaults auto rule  | ₺₡₢₡          |
| ×=         | 0 /0 B    | IPv4*    | pfB_CNCsandBOTnets               | *    | *           | *    | *       | none  |          | pfB_CNCsandBOTnets auto rule   | ±/©0          |
| ×          | 0 /0 B    | IPv4*    | pfB_MailSpammers                 | *    | *           | *    | *       | none  |          | pfB_MailSpammers auto rule     | ±/00          |
| <b>~</b> 2 | 0 /0 B    | IPv4*    | pfB_DNSBLFEEDS                   | *    | *           | *    | *       | none  |          | pfB_DNSBLFEEDS auto rule       | ±.∕⊡0∎        |

Figure 30 Firewall rules: WAN

|          | States         | Protocol | Source  | Port | Destination          | Port      | Gateway | Queue | Schedule | Description                        | Actions |
|----------|----------------|----------|---------|------|----------------------|-----------|---------|-------|----------|------------------------------------|---------|
| <b>~</b> | 3 /23.18 MiB   | *        | *       | *    | LAN Address          | 443<br>80 | *       | *     |          | Anti-Lockout Rule                  | •       |
| 0=       | 0 /0 B         | IPv4 *   | *       | *    | pfB_BinaryDefense    | *         | *       | none  |          | pfB_BinaryDefense auto rule        | ±.∕⊂0t  |
|          | 0 /0 B         | IPv4 *   | *       | *    | pfB_Emerging_Threats | *         | *       | none  |          | pfB_Emerging_Threats auto rule     | ±∥⊡01   |
| 0        | 0 /0 B         | IPv4 *   | *       | *    | pfB_Pihole_Defaults  | *         | *       | none  |          | pfB_Pihole_Defaults auto rule      | ₺₡©01   |
| 0=       | 0 /0 B         | IPv4 *   | *       | *    | pfB_CNCsandBOTnets   | *         | *       | none  |          | pfB_CNCsandBOTnets auto rule       | ±∥⊡01   |
| <b>~</b> | 24 /575.03 MiB | IPv4 *   | LAN net | *    | *                    | *         | *       | none  |          | Default allow LAN to any rule      | ±∥⊡01   |
| <b>~</b> | 0 /0 B         | IPv6 *   | LAN net | *    | *                    | *         | *       | none  |          | Default allow LAN IPv6 to any rule | ±∥⊡01   |

#### Figure 31Firewall rules: LAN

The results of the implementation of pfBlockerNG, DNSBL and Pi-Hole have filtered the traffic from malicious IP address all over the world. Logs get generated whenever a spam

URL gets filtered in the firewall. The rules are written based on existing knowledge about lists which are used to track malware command and control, spyware, tor nodes and other sorts of malware.

|                     | Firewall Alias Firewall Rules Firewall Logs                                                                                      |     |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------|-----|
|                     |                                                                                                                                  |     |
| Log/File type:      | Log Files 🔻                                                                                                                      |     |
|                     | Choose which type of log/file you want to view.                                                                                  |     |
| Log/File selection: | dnsbl.log 🔻                                                                                                                      |     |
|                     | Choose which log/file you want to view.                                                                                          |     |
| /File Contents      |                                                                                                                                  |     |
|                     | File successfully loaded.                                                                                                        |     |
|                     | Log/File Path: /var/log/pfblockerng/dnsbl.log                                                                                    | C 🕹 |
|                     |                                                                                                                                  |     |
| 1                   |                                                                                                                                  |     |
|                     | DWSBE REJECT HITPS, FED 26 00:44:30, googleaus.g.uoubleclick.net                                                                 |     |
|                     | DNSBL Reject HTTPS, Feb 26 00:49:31, googleads.g.doubleclick.net                                                                 |     |
|                     | DNSBL Reject HTTPS,Feb 26 00:49:32,securepubads.g.doubleclick.net                                                                |     |
|                     | DWSBL Reject HTTPS,Feb 26 00:49:32,googleads.g.doubleclick.net<br>DNSBL Reject HTTPS,Feb 26 00:49:32,googleads.g.doubleclick.net |     |
|                     | DNSBL Reject HTTPS,Feb 26 00:49:32,googleads.g.doubleclick.net                                                                   |     |
|                     | DNSBL Reject HTTPS,Feb 26 00:49:34,static.doubleclick.net                                                                        |     |
|                     | DNSBL Reject HTTPS,Feb 26 00:49:34,www.googletagservices.com                                                                     |     |
|                     | DNSBL Reject HTTPS,Feb 26 00:49:36,googleads.g.doubleclick.net                                                                   |     |
|                     | DNSBL Reject HTTPS,Feb 26 00:49:36,googleads.g.doubleclick.net                                                                   |     |
|                     | DNSBL Reject HTTPS, Feb 26 00:49:38, googleads.g.doubleclick.net                                                                 |     |
|                     | DNSBL Reject HTTPS, Feb 26 00:49:38, tpc.googlesyndication.com                                                                   |     |
|                     | DNSBL Reject HTTPS, Feb 26 00:49:39, securepubads.g.doubleclick.net                                                              |     |
|                     | DNSBL Reject HTTPS,Feb 26 00:57:12,googleads.g.doubleclick.net                                                                   |     |
|                     | DNSBL Reject HTTPS,Feb 26 00:59:36,googleads.g.doubleclick.net                                                                   |     |
|                     | DNSBL Reject HTTPS,Feb 26 01:11:21,id.google.com                                                                                 |     |
|                     | DNSBL Reject HTTPS,Feb 26 01:11:41,www.google-analytics.com                                                                      |     |
|                     | DNSBL Reject HTTPS,Feb 26 01:11:41,collector.githubapp.com                                                                       |     |
|                     | DNSBL Reject HTTPS, Feb 26 01:13:34, id.google.com                                                                               |     |
|                     | DNSBL Reject HTTPS, Feb 26 01:13:43, www.google-analytics.com                                                                    |     |
|                     | DNSBL Reject HTTPS,Feb 26 01:13:43,collector.githubapp.com                                                                       |     |
|                     | DWSBL Reject HTTPS,Feb 26 01:15:16,watson.telemetry.microsoft.com<br>DNSBL Reject HTTPS,Feb 26 01:22:11,id.google.com            |     |
|                     | DNSBL Reject HTTPS,Feb 26 01:22:17,Uxg00gle.com<br>DNSBL Reject HTTPS,Feb 26 01:22:17,UxUV.google.analytics.com                  |     |
|                     | DNSBL Reject HTTPS,Feb 26 01:22:17,collector.githubapp.com                                                                       |     |
|                     | DNSBL Reject HTTPS,Feb 26 01:22:17,Collector.globubpp.com                                                                        |     |
|                     | DNSBL Reject HTTPS,Feb 26 01:26:44,settings-win.data.microsoft.com                                                               |     |
|                     | DNSBL Reject HTTPS, Feb 26 01:26:44, settings-win.data.microsoft.com                                                             |     |
|                     | DNSBL Reject HTTPS, Feb 26 01:26:44, settings-win.data.microsoft.com                                                             |     |
|                     | DNSBL Reject HTTPS, Feb 26 01:30:52, id.google.com                                                                               |     |

Figure 32 DSNBL Log

|                 | IF      | 0       |    | Develop /Deferrer UIDI Amont                                       | 1 let                     |
|-----------------|---------|---------|----|--------------------------------------------------------------------|---------------------------|
| Date            | 16      | Source  |    | Domain/Referer URI Agent                                           | List                      |
| Feb 26 01:55:02 | Unknown | Unknown | i+ | watson.telemetry.microsoft.com 🝳<br>Not available for HTTPS alerts | hpHosts<br>DNSBL_Blockers |
| Feb 26 01:53:55 | Unknown | Unknown | i+ | www.googletagservices.com 🝳<br>Not available for HTTPS alerts      | hpHosts<br>DNSBL_Blockers |
| Feb 26 01:53:55 | Unknown | Unknown | i+ | s7.addthis.com<br>Not available for HTTPS alerts                   | SWC<br>DNSBL_Blockers     |
| Feb 26 01:53:55 | Unknown | Unknown | i+ | www.google-analytics.com &<br>Not available for HTTPS alerts       | hpHosts<br>DNSBL_Blockers |
| Feb 26 01:53:54 | Unknown | Unknown | i+ | www.googletagservices.com &<br>Not available for HTTPS alerts      | hpHosts<br>DNSBL_Blockers |

Figure 33 DSBL Alerts

| 8 Deny:348890       | Permit:77 |         |                 | 0            |
|---------------------|-----------|---------|-----------------|--------------|
| Alias               | Count     | Packets | Updated         | ţţ           |
| pfB_Africa_v4       | 9356      | 0       | Feb 26 01:39    | <b>1</b> (1) |
| pfB_Africa_v6       | 1217      | 0       | Feb 26 01:39    | 1 (1)        |
| pfB_Asia_v4         | 50438     | 0       | Feb 26 01:39    | 1)           |
| pfB_Asia_v6         | 12765     | 0       | Feb 26 01:39    | 1)           |
| pfB_BinaryDefense   | 1078      | 0       | Feb 26 02:02    | <b>1</b> (2) |
| pfB_DNSBLFEEDS      | 5         | 0       | Feb 26 02:02    | <b>1</b> (1) |
| pfB_Europe_v4       | 152886    | 0       | Feb 26 01:39    | <b>1</b> (1) |
| pfB_Europe_v6       | 40065     | 0       | Feb 26 01:39    | <b>1</b> (1) |
| pfB_MailSpammers    | 1909      | 0       | Feb 26 02:02    | <b>1</b> (1) |
| pfB_NAmerica_v4     | 0         | 0       | Feb 26 02:01    | <b>1</b> (1) |
| pfB_NAmerica_v6     | 1957      | 0       | Feb 26 01:39    | <b>1</b> (1) |
| pfB_Top_v4          | 9532      | 0       | Feb 26 01:39    | <b>1</b> (1) |
| pfB_Top_v6          | 0         | 0       | Feb 26 02:01    | <b>1</b> (1) |
| pfB_Emerging_Threa  | ts        |         |                 | 1 (2)        |
| pfB_Pihole_Defaults |           |         |                 | <b>1</b> (2) |
| pfB_CNCsandBOTnet   | s         |         |                 | <b>1</b> (2) |
| DNSBL_EasyList      | 17945     | 0       | Feb 26 02:01:06 | t.           |
| DNSBL_Blockers      | 69849     | 119     | Feb 26 00:35:44 | t            |

Figure 34 Packet permit and deny status

#### 6.1. Squid

Squid is a web proxy server on the network to which other devices connect to, to connect to the internet. It is important from a security point of view as it sets up an ACL which say where the devices cannot connect. It can get stored in a text file, and it whitelists or blacklists the websites based on the URLs in ACL. Squid enables to force DNS IPV4 lookup first. A transparent mode is enabled which forwards all requests for destination port 80 (HTTP) to the proxy server, filtering out port 443 (HTTPS).

'X-forwarded for header' is a common procedure for identifying the source IP address of a client that connects to a web server through an HTTP proxy. By default, it is enabled and gives out the IP address when a connection to a web server establishes. Delete removes the IP address so that the source host remains anonymous.

It also displays the proxy host's hostname which is 'Capstone\_pfsense'.



Figure 36 X-Forwarded Header mode ON

#### YOU ARE USING A PROXY NOW!

| HTTP_X_FORWARDED_FOR  | EMPTY                               |
|-----------------------|-------------------------------------|
| HTTP_X_FORWARDED      | EMPTY                               |
| HTTP_FORWARDED_FOR    | EMPTY                               |
| HTTP_CLIENT_IP        | EMPTY                               |
| HTTP_VIA              | 1.1 Capstone_pfSense (squid/3.5.27) |
| HTTP_PROXY_CONNECTION | EMPTY                               |

#### Figure 37 X-Forwarded Header mode delete



Figure 38 Permission denied for HTTP access

Squid logs log entries in the system firewall status, generating alarms, reloading and starting scripts and also detailing about the squid's antivirus scan reports. It gives out detailed proxy reports about the running process and process ID (PID).

| Time           | Process             | PID   | Message                                                                                    |
|----------------|---------------------|-------|--------------------------------------------------------------------------------------------|
| Mar 4 13:21:37 | php-fpm             | 341   | /pkg_edit.php: [squid] Reloading for configuration sync                                    |
| Mar 4 13:21:37 | php-fpm             | 341   | /pkg_edit.php: [squid] Starting a proxy monitor script                                     |
| Mar 4 13:21:38 | check_reload_status |       | Reloading filter                                                                           |
| Mar 4 13:21:43 | rc.gateway_alarm    | 21552 | >>> Gateway alarm: WAN_DHCP (Addr:172.217.1.46 Alarm:1 RTT:53.949ms RTTsd:.593ms Loss:21%) |
| Mar 4 13:21:43 | check_reload_status |       | updating dyndns WAN_DHCP                                                                   |
| Mar 4 13:21:43 | check_reload_status |       | Restarting ipsec tunnels                                                                   |
| Mar 4 13:21:43 | check_reload_status |       | Restarting OpenVPN tunnels/interfaces                                                      |
| Mar 4 13:21:43 | check_reload_status |       | Reloading filter                                                                           |
| Mar 4 13:21:44 | php-fpm             | 340   | /rc.openvpn: Gateway, none 'available' for inet, use the first one configured. 'WAN_DHCP'  |
| Mar 4 13:21:44 | php-fpm             | 340   | /rc.openvpn: Gateway, none 'available' for inet6, use the first one configured. *          |
| Mar 4 13:21:58 | check_reload_status |       | Syncing firewall                                                                           |
| Mar 4 13:21:58 | check_reload_status |       | Reloading filter                                                                           |
| Mar 4 13:21:58 | php-fpm             | 340   | /pkg_edit.php: [squid] - squid_resync function call pr:1 bp: rpc:no                        |
| Mar 4 13:21:58 | php-fpm             | 340   | /pkg_edit.php: [squid] Adding cronjobs                                                     |
| Mar 4 13:21:58 | php-fpm             | 340   | /pkg_edit.php: [squid] Antivirus features disabled.                                        |
| Mar 4 13:21:58 | php-fpm             | 340   | /pkg_edit.php: [squid] Removing freshclam cronjob.                                         |
| Mar 4 13:21:58 | php-fpm             | 340   | /pkg_edit.php: [squid] Stopping any running proxy monitors                                 |
| Mar 4 13:21:59 | php-fpm             | 340   | /pkg_edit.php: [squid] Reloading for configuration sync                                    |
| Mar 4 13:21:59 | php-fpm             | 340   | /pkg_edit.php: [squid] Starting a proxy monitor script                                     |

Figure 39 Squid Logs

#### 6.1.1. Light Squid

Light Squid is a squid log analyser that parses through the proxy access logs and produces web-based reports detailing the URLs used by each user.

Using port 7445 (default) opens a squid user access report dashboard which is password secured.

| Lightsquid Web Port     | 1/2445<br>Port the lighttpd web server for Lightsquid will listen on. (Default: 7445)             |
|-------------------------|---------------------------------------------------------------------------------------------------|
| Lightsquid Web SSL      | Use SSL for Lightsquid Web Access                                                                 |
|                         | This option configures the Lightsquid web server to use SSL and uses the WebGUI HTTPS certificate |
| Lightsquid Web User     | admin                                                                                             |
|                         | Username used to access lighttpd. (Default: admin)                                                |
| Lightsquid Web Password |                                                                                                   |
|                         | Password used to access lighttpd. (Default: pfsense)                                              |
| Links                   | Open Lightsquid     Open sqstat                                                                   |

Figure 40 Lightsquid web port

The 'squid user access report' dashboard allows viewing the reports of all traffic which have been allowed by through the proxy in an organised list.

|                    |                |       | access 1<br>od: Mar |              |         |       |
|--------------------|----------------|-------|---------------------|--------------|---------|-------|
|                    | Calendar       |       |                     |              |         |       |
|                    | <u>2019</u>    |       |                     |              |         |       |
| 01 02              | <u>03</u> 04 ( | 05 06 | 07 08 09            | 0 10 11      | 12      |       |
|                    |                |       |                     |              |         |       |
| Date               | Group          | Users | Oversize            | Bytes        | Average | Hit % |
| <u>06 Mar 2019</u> | grp            | 2     | 0                   | 55 517       | 27 758  | 0.00% |
| <u>05 Mar 2019</u> | gtp            | 1     | 0                   | 35 755       | 35 755  | 0.00% |
| <u>04 Mar 2019</u> | grp            | 1     | 0                   | 9.1 M        | 9.1 M   | 0.60% |
| Total/Average:     |                | 1     | 0                   | <u>9.2 M</u> | 3.1 M   | 0.20% |

LightSquid v1.8 (c) Sergey Erokhin AKA ESL

| Total |                                                                 |         | 9.1 M   |            |       |
|-------|-----------------------------------------------------------------|---------|---------|------------|-------|
| #     | Accessed site                                                   | Connect | Bytes   | Cumulative | %     |
| 1     | img-s-msn-com.akamaized.net                                     | 7       | 4.5 M   | 4.5 M      | 49.6% |
| 2     | www.shallalist.de                                               | 14      | 3.9 M   | 8.5 M      | 43.0% |
| 3     | <u>qurl.cloud.360safe.com</u>                                   | 90      | 218 049 | 8.7 M      | 2.2%  |
| 4     | a.optnmstr.com                                                  | 1       | 194 027 | 8.8 M      | 2.0%  |
| 5     | www.toolsvoid.com                                               | 13      | 53 538  | 8.9 M      | 0.5%  |
| 6     | http://capstone_pfsense:3128/squid-internal-static/icons/SN.png | 4       | 52 348  | 8.9 M      | 0.5%  |
| 7     | whatismyip.network                                              | 11      | 42 992  | 9.0 M      | 0.4%  |
| 8     | www.whatismyproxy.com                                           | 8       | 35 515  | 9.0 M      | 0.3%  |
| 9     | content.dellsupportcenter.com                                   | 8       | 27 244  | 9.0 M      | 0.2%  |
| 10    | amibehindaproxy.com                                             | 6       | 26 054  | 9.1 M      | 0.2%  |
| 11    | cdn.content.prod.cms.msn.com                                    | 4       | 12 181  | 9.1 M      | 0.1%  |
| 12    | ocsp.digicert.com                                               | 11      | 10 164  | 9.1 M      | 0.1%  |
| 13    | lagado.com                                                      | 2       | 8 584   | 9.1 M      | 0.0%  |
| 14    | iup.360safe.com                                                 | 1       | 8 143   | 9.1 M      | 0.0%  |
| 15    | ccleaner.tools.avcdn.net                                        | 2       | 2 608   | 9.1 M      | 0.0%  |
| 16    | sdup.update.360safe.com                                         | 1       | 1 598   | 9.1 M      | 0.0%  |
| 17    | tconf.cloud.360safe.com                                         | 1       | 974     | 9.1 M      | 0.0%  |
| 18    | <u>ip-info.ff.avast.com</u>                                     | 1       | 642     | 9.1 M      | 0.0%  |
| 19    | www.ebay.com                                                    | 1       | 625     | 9.1 M      | 0.0%  |
| 20    | 104.192.108.113                                                 | 1       | 548     | 9.1 M      | 0.0%  |
| 21    | emupdate.avcdn.net                                              | 1       | 356     | 9.1 M      | 0.0%  |
| Total |                                                                 |         | 9.1 M   |            |       |

Figure 42 Accessed URLs log

#### 6.1.2. SquidGuard

SquidGuard is a URL redirector software which is used to allow or deny access to specific URLs. It gives the flexibility to modify general categories which can then be allowed, whitelist or blacklist.

- Allow Lets the URL pass if it is not denied in other categories.
- Whitelist Lets the URL to be always passed.
- Blacklist Does not allow the URL to be accessed.

Target categories are group ACLs which have target rules list. It is categorized according to the user-specific domain whitelisting or blocking. Each value in the row of target category has allowed, deny or whitelist.

| Name            | Redirect | Description |       |
|-----------------|----------|-------------|-------|
| Blacklist_4_IOT |          |             | e 🗇 🛍 |
| Whitelist_4_IOT |          |             | er 🛍  |
| Blacklist       |          |             | e 🗇 🛍 |
|                 |          |             | + Add |

Figure 43 Custom target categories

Whitelist domain list contains the URLs which are secure, and the IoT devices will need to get updates from and visit frequently.



Figure 44 Whitelist for IoT devices network

Apart from custom target categories, there are several inbuilt categories which are listed and are allowed or denied according to the category they belong. As an example, blk\_BL\_drugs is a category which is denied.

Shallalist is a collection of URL lists grouped into several categories having reliable information of malicious websites and domains.



Figure 46 Test blacklist output

| [Blacklist_4_I07]             | access deny     |      |
|-------------------------------|-----------------|------|
| [Whitelist_4_IOT]             | access allow    |      |
| [Blacklist]                   | access deny     |      |
| [blk_BL_adv]                  | access deny     |      |
| [blk_BL_aggressive]           | access deny     |      |
| [blk_BL_alcohol]              | access deny     |      |
| [blk_BL_anonypn]              | access deny     |      |
| [blk_BL_automobile_bikes]     | access whitelis | st i |
| [blk_BL_automobile_boats]     | access whitelis | st i |
| [blk_BL_automobile_cars]      | access whitelis | a.   |
| [blk_BL_automobile_planes]    | access whitelis | st.  |
| [blk_BL_chat]                 | access deny     |      |
| [blk_BL_costtraps]            | access deny     |      |
| [blk_BL_dating]               | access deny     |      |
| [blk_BL_downloads]            | access deny     |      |
| [blk_BL_drugs]                | access deny     |      |
| [blk_BL_dynamic]              | access whitelis | at i |
| [blk_BL_education_schools]    | access allow    |      |
| [blk_BL_finance_banking]      | access allow    |      |
| [blk_BL_finance_insurance]    | access allow    |      |
| [blk_BL_finance_moneylending] | access allow    |      |
| [blk_BL_finance_other]        | access allow    |      |
| [blk_BL_finance_realestate]   | access deny     |      |
| [blk_BL_finance_trading]      | access deny     |      |
| [blk_BL_fortunetelling]       | access deny     |      |
| [blk_BL_forum]                | access deny     |      |
| [blk_BL_gamble]               | access deny     |      |
| [blk_BL_government]           | access allow    |      |
| [blk_BL_hacking]              | access deny     |      |
| [blk_BL_hobby_cooking]        | access allow    |      |
| [blk_BL_hobby_games-misc]     | access allow    |      |
| [blk_BL_hobby_games-online]   | access allow    |      |
| [blk_Blhobby_gardening]       | access allow    |      |
| [blk_BL_hobby_pets]           | access allow    |      |

Figure 47 ACLs with the whitelist, deny, allow

### 7. IPS/IDS

Intrusion Detection System is a network security tool which identifies, assess and reports unauthorised or unapproved network activity. An IDS detect and deal with insider attacks and external attacks. Network-based IDS uses packet sniffing techniques to pull data from TCP/IP packets and other protocols which are travelling along the network.

An IDS works by scanning for a known identity or a signature for each specific intrusion event. It does so by regularly receiving signature updates stored in a reliable database. It also monitors, logs and reports detected malicious activities.

Intrusion Prevention System is a network tool that is configured to block potential threats. It creates a security barrier behind the firewall and provides a complimentary layer of analysis that IDS detects. The functions of IPS are:

- Sending an alarm to the administrator when malicious packets get identified
- Dropping malicious packets
- Blocking traffic from the source address
- Resetting the connection

Snort is an open source IDS/IPS that makes identification and blocking by scanning predefined lists. It works by downloading definitions that it uses to inspect packets passing through the firewall. It then generates logs and alerts based on suspicious traffic.

#### 7.1. Configuring Snort

Snort is an open source IDS/IPS that perfroms real-time traffic analysis and packet logging on IP networks. It is capable of performing protocol analysis, content searching, and matching, and is used to detect attacks such as stealth port scans, CGI attacks, and SMB probes.

A snort oinkmaster code is required to initiate the snort configuration. This code is a unique key associated with the user account and acts as an API key for downloading rules from trusted URLs.

Snort Oinkmaster Code af28274c6937d2f296226776a61f83adb320f223
Obtain a snort.org Oinkmaster code and paste it here. (Paste the code only and not the URL!)
Figure 48 Oinkmaster Code

The intelligence of snort comes from having the rules to identify and apply the information to the traffic passing through the interface in order to detect and act upon the detected malicious traffic. Snort rules are designed such that it describes the following events accurately:

- The condition in which a user thinks that a network packet's identity is not authentic.
- Any violation of the security policies that might be a threat to the network and reveal valuable information.

| Rule Set Name/Publisher         | MD5 Signature Hash               | MD5 Signature Date               |
|---------------------------------|----------------------------------|----------------------------------|
| Snort Subscriber Ruleset        | 4bcea6824e783f391b3f07285434594b | Saturday, 02-Mar-19 20:43:49 MST |
| Snort GPLv2 Community Rules     | 33fae5a650fee8d67232bb1600d0b687 | Monday, 04-Mar-19 12:09:49 MST   |
| Emerging Threats Open Rules     | fb5b8b1ed75ced5a2f1cfdf60ac3c014 | Saturday, 02-Mar-19 20:43:49 MST |
| Snort OpenAppID Detectors       | b159dce201d9ec3aa676c493bc43050b | Saturday, 02-Mar-19 20:43:49 MST |
| Snort OpenAppID RULES Detectors | 2c26cb4f6a3bc03ab9c8e02befcf6fe1 | Monday, 04-Mar-19 12:09:49 MST   |

Figure 49 Snort rule set

Snort uses flowbits detection plugins that use flow preprocessor to track rule state during a transport protocol session. It allows rules to track the state of an application protocol generically.

|        | ÷     | Alert is not suppresse<br>Alert is suppressed<br>Note: Icons are only d | d<br>isplayed for flowbit rules v | vithout the noalert option.                            | Ketur                                                                                 |
|--------|-------|-------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------|
| SID    | Proto | Source                                                                  | Destination                       | Flowbits                                               | Message                                                                               |
| 2420   | top   | \$HOME_NET                                                              | \$EXTERNAL_NET                    | set,file.rmp; set,file.realplayer.playlist;<br>noalert | FILE-IDENTIFY RealNetworks Realplayer .rmp playlist f<br>download request             |
| 8445 🕀 | tcp   | SEXTERNAL_NET                                                           | SHOME_NET                         | set,file.rtf.embed                                     | FILE-OFFICE Microsoft Windows RTF file with embedd<br>object package download attempt |
| 13801  | tcp   | \$HOME_NET                                                              | SEXTERNAL_NET                     | set,file.rtf; noalert                                  | FILE-IDENTIFY RTF file download request                                               |
| 15013  | tcp   | \$HOME_NET                                                              | SEXTERNAL_NET                     | set,file.pdf; noalert                                  | FILE-IDENTIFY PDF file download request                                               |
| 15587  | tcp   | \$HOME_NET                                                              | \$EXTERNAL_NET                    | set,file.doc; set,file.rtf; noalert                    | FILE-IDENTIFY Microsoft Office Word file download<br>request                          |
| 16205  | tcp   | \$HOME_NET                                                              | \$EXTERNAL_NET                    | set,file.bmp; noalert                                  | FILE-IDENTIFY BMP file download request                                               |
| 16406  | tcp   | \$HOME_NET                                                              | \$EXTERNAL_NET                    | set,file.jpeg; noalert                                 | FILE-IDENTIFY JPEG file download request                                              |
| 16407  | tcp   | \$HOME_NET                                                              | SEXTERNAL_NET                     | set,file.jpeg; noalert                                 | FILE-IDENTIFY JPEG file download request                                              |
| 16474  | tcp   | \$EXTERNAL_NET                                                          | \$HOME_NET                        | set,file.ole; noalert                                  | FILE-IDENTIFY Microsoft Compound File Binary v3 file<br>magic detected                |
| 16529  | tcp   | \$HOME_NET                                                              | SEXTERNAL_NET                     | set,file.jpeg; noalert                                 | FILE-IDENTIFY JPEG file download request                                              |
| 17314  | tcp   | SEXTERNAL_NET                                                           | \$HOME_NET                        | set,file.ole; set,file.fpx; noalert                    | FILE-IDENTIFY OLE document file magic detected                                        |
| 17380  | tcp   | \$HOME_NET                                                              | \$EXTERNAL_NET                    | set,file.png; noalert                                  | FILE-IDENTIFY PNG file download request                                               |
| 17733  | tcp   | \$HOME_NET                                                              | \$EXTERNAL_NET                    | set,file.xml; noalert                                  | FILE-IDENTIFY XML file download request                                               |
| 19211  | tcp   | \$HOME_NET                                                              | SEXTERNAL_NET                     | set,file.zip; noalert                                  | FILE-IDENTIFY ZIP archive file download request                                       |
| 20463  | tcp   | \$EXTERNAL_NET                                                          | SHOME_NET                         | set,file.zip; set,file.jar; noalert                    | FILE-IDENTIFY JAR/ZIP file magic detected                                             |
| 20464  | tcp   | \$EXTERNAL_NET                                                          | SHOME_NET                         | set,file.zip; set,file.jar; noalert                    | FILE-IDENTIFY JAR/ZIP file magic detected                                             |
| 20465  | tcp   | \$EXTERNAL_NET                                                          | \$HOME_NET                        | set,file.zip; set,file.jar; noalert                    | FILE-IDENTIFY JAR/ZIP file magic detected                                             |
| 20466  | tcp   | \$EXTERNAL_NET                                                          | \$HOME_NET                        | set,file.zip; set,file.jar; noalert                    | FILE-IDENTIFY JAR/ZIP file magic detected                                             |
| 20467  | tcp   | \$EXTERNAL_NET                                                          | \$HOME_NET                        | set,file.zip; set,file.jar; noalert                    | FILE-IDENTIFY JAR/ZIP file magic detected                                             |
| 20468  | tcp   | \$EXTERNAL_NET                                                          | \$HOME_NET                        | set,file.zip; set,file.jar; noalert                    | FILE-IDENTIFY JAR/ZIP file magic detected                                             |
| 20469  | tcp   | \$EXTERNAL_NET                                                          | \$HOME_NET                        | set,file.zip; set,file.jar; noalert                    | FILE-IDENTIFY JAR/ZIP file magic detected                                             |
| 20478  | tcp   | \$EXTERNAL_NET                                                          | \$HOME_NET                        | set,file.png; noalert                                  | FILE-IDENTIFY PNG file magic detected                                                 |

Figure 50 Flowbit required rules

Snort uses predefined IPS policies to prevent the malicious detected packets from entering into the network. Policy selection 'Security' enables most of the rules and results in higher false positives.

| Use IPS Policy       | If checked, Snort will use rules from one of      | hree pre-defined IPS policies in the Snort Subscriber rules. Default is Not Checked.                                                                                                                                                                                                            |               |
|----------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|                      |                                                   | of Snort Subscriber categories in the list below, although Emerging Threats categories n<br>These will be added to the pre-defined Snort IPS policy rules from the Snort VRT.                                                                                                                   | ay still be   |
| IPS Policy Selection | Security                                          | *                                                                                                                                                                                                                                                                                               |               |
|                      | Snort IPS policies are: Connectivity, Balanced,   | ecurity or Max-Detect.                                                                                                                                                                                                                                                                          |               |
|                      | covers most threats of the day. It includes all r | v or no false positives. Balanced is a good starter policy, it is speedy, has good base cov<br>les in Connectivity. Security is a stringent policy. It contains everything in the first two plu<br>x-Delect is a policy created for testing network traffic through your device. This policy sh | s policy-type |

Figure 51 IPS policy Security

The members of Snort Integrators submit snort community rules. These rulesets are developed with intensive analysis of packet captures of the data.

| ege |     |       |       | ed by user 🚳 Auto-enabled<br>led by user 🙆 Auto-disabled |                 |                |              |                                                                                            |
|-----|-----|-------|-------|----------------------------------------------------------|-----------------|----------------|--------------|--------------------------------------------------------------------------------------------|
|     | GID | SID   | Proto | Source                                                   | SPort           | Destination    | DPort        | Message                                                                                    |
| 3   | 1   | 2420  | tcp   | \$HOME_NET                                               | any             | \$EXTERNAL_NET | \$HTTP_PORTS | FILE-IDENTIFY RealNetworks Realplayer<br>.rmp playlist file download request               |
| 9   | 1   | 8445  | tcp   | \$EXTERNAL_NET                                           | \$FILE_DATA_POR | \$HOME_NET     | any          | FILE-OFFICE Microsoft Windows RTF file<br>with embedded object package download<br>attempt |
| 3   | 1   | 13801 | tcp   | \$HOME_NET                                               | any             | \$EXTERNAL_NET | \$HTTP_PORTS | FILE-IDENTIFY RTF file download request                                                    |
| 3   | 1   | 15013 | tcp   | \$HOME_NET                                               | any             | \$EXTERNAL_NET | \$HTTP_PORTS | FILE-IDENTIFY PDF file download request                                                    |
| 3   | 1   | 15587 | tcp   | \$HOME_NET                                               | any             | \$EXTERNAL_NET | \$HTTP_PORTS | FILE-IDENTIFY Microsoft Office Word file<br>download request                               |
| 3   | 1   | 16205 | tcp   | \$HOME_NET                                               | any             | \$EXTERNAL_NET | \$HTTP_PORTS | FILE-IDENTIFY BMP file download request                                                    |
| 3   | 1   | 16406 | tcp   | \$HOME_NET                                               | any             | \$EXTERNAL_NET | \$HTTP_PORTS | FILE-IDENTIFY JPEG file download reques                                                    |
| 9   | 1   | 16407 | tcp   | \$HOME_NET                                               | any             | \$EXTERNAL_NET | \$HTTP_PORTS | FILE-IDENTIFY JPEG file download reques                                                    |
| 3   | 1   | 16474 | tcp   | \$EXTERNAL_NET                                           | \$FILE_DATA_POR | \$HOME_NET     | any          | FILE-IDENTIFY Microsoft Compound File<br>Binary v3 file magic detected                     |
| 9   | 1   | 16529 | tcp   | \$HOME_NET                                               | any             | \$EXTERNAL_NET | \$HTTP_PORTS | FILE-IDENTIFY JPEG file download reques                                                    |
| 3   | 1   | 17314 | tcp   | \$EXTERNAL_NET                                           | \$FILE_DATA_POR | \$HOME_NET     | any          | FILE-IDENTIFY OLE document file magic<br>detected                                          |
| 9   | 1   | 17380 | tcp   | \$HOME_NET                                               | any             | \$EXTERNAL_NET | \$HTTP_PORTS | FILE-IDENTIFY PNG file download request                                                    |
| 9   | 1   | 17733 | tcp   | \$HOME_NET                                               | any             | \$EXTERNAL_NET | \$HTTP_PORTS | FILE-IDENTIFY XML file download request                                                    |
| 0   | 1   | 19211 | tcp   | \$HOME_NET                                               | any             | \$EXTERNAL_NET | \$HTTP_PORTS | FILE-IDENTIFY ZIP archive file download<br>request                                         |
| ર   | 1   | 20463 | tcp   | \$EXTERNAL_NET                                           | \$FILE_DATA_POR | \$HOME_NET     | any          | FILE-IDENTIFY JAR/ZIP file magic detecte                                                   |

Figure 52 Snort Community Rules

Snort IDS detects all kinds of alerts by seeing activities that pass through the firewall. It identifies parameters like source and destination ports, IP and describes the kind of alert.

| Last 250               | Aler | t Log Ent | Class                     | Source IP                       | SPort | Destination IP                        | DPort | SID          | Description                                                                |
|------------------------|------|-----------|---------------------------|---------------------------------|-------|---------------------------------------|-------|--------------|----------------------------------------------------------------------------|
| 2019-03-04<br>01:50:21 |      | TCP       | Not Suspicious<br>Traffic | 192.168.0.14<br>Q ⊞             | 31029 | 147.75.70.44<br>Q ⊕ ×                 | 80    | 119:2        | (http_inspect) DOUBLE DECODING ATTACK                                      |
| 2019-03-04<br>01:48:26 | 3    | TCP       | Unknown Traffic           | 198.54.12.127<br><b>Q</b> 🕀 🗙   | 80    | 192.168.0.14<br><b>Q</b> ⊕            | 52068 | 120:3<br>🕀 🗙 | (http_inspect) NO CONTENT-LENGTH OR TRANSFER-<br>ENCODING IN HTTP RESPONSE |
| 2019-03-04<br>01:48:23 | 3    | TCP       | Unknown Traffic           | 23.36.177.106<br><b>Q</b> 🕀 🗙   | 80    | 192.168.0.14<br><b>Q</b> ⊞            | 3758  | 120:3        | (http_inspect) NO CONTENT-LENGTH OR TRANSFER-<br>ENCODING IN HTTP RESPONSE |
| 2019-03-02<br>21:46:33 | 3    | TCP       | Unknown Traffic           | 151.101.54.2<br>Q ⊕ 🗙           | 80    | 192.168.0.14<br><b>Q</b> ⊕            | 63647 | 120:3<br>🕀 🗙 | (http_inspect) NO CONTENT-LENGTH OR TRANSFER-<br>ENCODING IN HTTP RESPONSE |
| 2019-03-02<br>21:46:32 | 3    | TCP       | Unknown Traffic           | 151.139.237.35<br><b>Q ⊞ X</b>  | 80    | 192.168.0.14<br><b>Q</b> ⊞            | 22100 | 120:3<br>🕀 🗙 | (http_inspect) NO CONTENT-LENGTH OR TRANSFER-<br>ENCODING IN HTTP RESPONSE |
| 2019-03-02<br>21:46:32 | 3    | TCP       | Unknown Traffic           | 151.139.237.35<br><b>Q ⊞ X</b>  | 80    | 192.168.0.14<br><b>Q</b> ⊞            | 54866 | 120:3        | (http_inspect) NO CONTENT-LENGTH OR TRANSFER-<br>ENCODING IN HTTP RESPONSE |
| 2019-03-02<br>21:26:04 | 3    | TCP       | Unknown Traffic           | 104.192.108.80<br>Q ⊞ 🗙         | 80    | 192.168.0.14<br><b>Q</b> ⊞            | 17666 | 120:3<br>🕀 🗙 | (http_inspect) NO CONTENT-LENGTH OR TRANSFER-<br>ENCODING IN HTTP RESPONSE |
| 2019-03-02<br>21:21:34 | 3    | TCP       | Not Suspicious<br>Traffic | 192.168.0.14<br><b>Q</b> ⊞      | 17666 | 104.192.108.80<br><b>Q</b> ⊞ <b>X</b> | 80    | 119:4        | (http_inspect) BARE BYTE UNICODE ENCODING                                  |
| 2019-03-02<br>21:21:34 | 3    | TCP       | Unknown Traffic           | 104.192.108.80<br><b>Q 🕀 🗙</b>  | 80    | 192.168.0.14<br><b>Q</b> ⊞            | 17666 | 120:3        | (http_inspect) NO CONTENT-LENGTH OR TRANSFER-<br>ENCODING IN HTTP RESPONSE |
| 2019-03-02<br>21:16:25 | 3    | TCP       | Not Suspicious<br>Traffic | 192.168.0.14<br><b>Q</b> ⊞      | 26615 | 104.192.108.130<br>Q ⊕ <b>×</b>       | 80    | 119:4<br>🕀 🗙 | (http_inspect) BARE BYTE UNICODE ENCODING                                  |
| 2019-03-02<br>21:16:25 | 3    | TCP       | Unknown Traffic           | 104.192.108.130<br><b>Q 🕀 🗙</b> | 80    | 192.168.0.14<br><b>Q</b> ⊞            | 26615 | 120:3<br>🕀 🗙 | (http_inspect) NO CONTENT-LENGTH OR TRANSFER-<br>ENCODING IN HTTP RESPONSE |
| 2019-03-02<br>21:10:51 | 3    | TCP       | Not Suspicious<br>Traffic | 192.168.0.14<br><b>Q</b> ⊞      | 45664 | 104.192.108.78<br><b>Q ⊞ ≭</b>        | 80    | 119:4<br>🕀 🗙 | (http_inspect) BARE BYTE UNICODE ENCODING                                  |
| 2019-03-02<br>21:10:51 | 3    | TCP       | Unknown Traffic           | 104.192.108.78<br><b>Q</b> 🕀 🗙  | 80    | 192.168.0.14<br><b>Q</b> ⊕            | 45664 | 120:3<br>🕀 🗙 | (http_inspect) NO CONTENT-LENGTH OR TRANSFER-<br>ENCODING IN HTTP RESPONSE |
| 2019-03-02<br>21:05:56 | 3    | TCP       | Unknown Traffic           | 104.192.108.79<br>Q 🕀 🗙         | 80    | 192.168.0.14<br><b>Q</b> ⊞            | 48829 | 120:3        | (http_inspect) NO CONTENT-LENGTH OR TRANSFER-<br>ENCODING IN HTTP RESPONSE |

Figure 53 Snort alert log

Snort IDS detected an alert named Double decoding attack and IPS prevented it from passing through the firewall. This event is caused when double encoded characters are detected in web traffic. Such unusual behaviour indicates a possible attack against a vulnerable system. A possible scenario is that an attacker might double encode the request to the web server.

2019-03-04 3 TCP Not Suspicious 192.168.0.14 31029 147.75.70.44 80 119.2 (http://inspect) DOUBLE DECODING ATTACK 01:50:21 Traffic Q  $\oplus$  Q  $\oplus$  X  $\oplus$  X (http://inspect) DOUBLE DECODING ATTACK

Figure 54 Double decoding attack

### **8. UUID**

UUID is a 128 bits number used to identify a device connected over the internet. UUID guarantees uniqueness as it is a combination of the IP address or MAC address which is hard-wired on NIC of the host and current timestamp.



UUID has five versions:

- Version 1: Time based UUID, the timestamp is a 60-bit value with a combination of MAC address. It is represented by UTC (Coordinated Universal Time) as a count of 100 nanosecond interval. For the systems which do not have UTC, the local time is used.
- Version 2 is a date, time and MAC address with DCE security version.
- Version 3 and 5 are created by hashing and namespace identifier that uses MD5 and SHA1 respectively.
- Version 4 is a randomly generated UUID.

#### 8.1. UUID Version 1

To ensure the uniqueness of the identity of a device which connects wirelessly, and use it as a connection parameter, UUID has to be the same every time (except current date and time); hence version 1 is used. Version 1 UUID is generated by the computer's MAC address and current date and time. Therefore, a completely uniquely ID is generated every time such that it doesn't collide with any other device.

A python program for generating IP and MAC address and UUID is programmed such that it finds the above parameters and displays them.

pfSense has proposed to change most of its back-end language from php to python and using this program with compatible pfSense libraries; this program can autorun and save these parameters to its database when a new connection is made. With this database, the device can be recognized as a new or existing device connecting to the pfSense firewall. UUID is unique to every device and adds another layer of security, and 128-bit numbers make it impossible to guess. Without the physical access to a device, UUID cannot be spoofed which makes it a reliable connection parameter.

#### 8.2. Program

import socket

import re, uuid

```
def host_IP():
```

try:

```
hname = socket.gethostname()
hip = socket.gethostbyname(hname)
print("Hostname: ",hname)
print("IP Address: ",hip)
except:
```

print("Unable to get Hostname and IP")

host\_IP()

```
print ("MAC address: ", end="")
print (':'.join(re.findall('..', '%012x' % uuid.getnode())))
```

```
#Printing UUID and related parameters
UUID = uuid.uuid1()
print ("UUID: ", (UUID))
print("UUID Type: ",type(UUID))
#print('UUID.bytes :', UUID.bytes)
#print('UUID.bytes_le :', UUID.bytes_le)
#print('UUID.hex :', UUID.hex)
#print('UUID.int :', UUID.hex)
#print('UUID.urn :', UUID.urn)
#print('UUID.variant :', UUID.variant)
#print('UUID.version :', UUID.version)
#print('UUID.fields :', UUID.fields)
```

#print('UUID.time\_low : ', UUID.time\_low)
#print('UUID.time\_mid : ', UUID.time\_mid)
#print('UUID.time\_hi\_version : ', UUID.time\_hi\_version)
#print('UUID.clock\_seq\_hi\_variant: ', UUID.clock\_seq\_hi\_variant)
#print('UUID.clock\_seq\_low : ', UUID.clock\_seq\_low)
#print('UUID.node : ', UUID.node)
#print('UUID.time : ', UUID.time)
#print('UUID.clock\_seq : ', UUID.clock\_seq)
#print('UUID.SafeUUID : ', UUID.is\_safe)

#### key=input("Press any key to continue : ")

The python version 3.5 is used to write and compile the program in IDE 3.5. Socket, re and uuid are inbuilt python libraries which are called in the program; where socket establishes a socket connection, re extracts the information from the device in a human-friendly UUID format and UUID extracts the UUID information from the device based on which version is used.

The IP address is fetched from the system with the help of system hostname. Try and exception are used in case IP address and hostname are not fetched due to some reason.

Re.findall matches all the UUID parameters and displays the information in reference to the system's signature. All the commented outputs are UUID parameters which are matched by UUID library and only the most relevant are displayed.

| <pre>import socket import re, uuid</pre>                                                          |                                                                                                                 |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| <pre>def host_IP():     try:         hname = socket.gethostname()</pre>                           | 🐉 "Python 3.7.2 Shell" — 🗆                                                                                      |
| hip = socket.gethostbyname(hname)                                                                 | File Edit Shell Debug Options Window Help                                                                       |
| print("Hostname: ", hname)                                                                        | Python 3.7.2 (tags/v3.7.2:9a3ffc0492, Dec 23 2018, 22:20:52) [MSC v.1916 32 bi                                  |
| print("IP Address: ", hip)                                                                        | <pre>Python 3.7.2 (tags/v3.7.2:9a3rrc0492, Dec 23 2018, 22:20:52) [MSC v.1916 32 D1<br/>(Intel)] on win32</pre> |
| <pre>except:<br/>print("Unable to get Hostname and IP")</pre>                                     | Type "help", "copyright", "credits" or "license()" for more information.                                        |
| host IP()                                                                                         | ======================================                                                                          |
| print ("MAC address: ", end="")                                                                   | Hostname: DESKTOP-7IR3VTF                                                                                       |
| print (':'.join(re.findall('', '%012x' % uuid.getnode())))                                        | IP Address: 192.168.56.1                                                                                        |
|                                                                                                   | MAC address: 68:07:15:80:b1:4f                                                                                  |
| #Printing UUID and related parameters                                                             | UUID: 016370f4-42cc-11e9-8286-68071580b14f<br>UUID Type: <class 'uuid.uuid'=""></class>                         |
| UUID = uuid.uuid1()                                                                               | Press any key to continue :                                                                                     |
| print ("UUID: ", (UUID))<br>print("UUID Type: ",type(UUID))                                       | ricos any key to conclude .                                                                                     |
| <pre>print("UUID.bytes :', UUID.bytes)</pre>                                                      |                                                                                                                 |
| <pre>#print('UUID.bytes le :', UUID.bytes le)</pre>                                               |                                                                                                                 |
| <pre>#print('UUID.hex :', UUID.hex)</pre>                                                         |                                                                                                                 |
| <pre>#print('UUID.int :', UUID.int)</pre>                                                         |                                                                                                                 |
| <pre>#print('UUID.urn :', UUID.urn)</pre>                                                         |                                                                                                                 |
| <pre>#print('UUID.variant :', UUID.variant)</pre>                                                 |                                                                                                                 |
| <pre>\$print('UUID.version :', UUID.version) \$print('UUID.fields :', UUID.fields)</pre>          |                                                                                                                 |
|                                                                                                   |                                                                                                                 |
| <pre>#print('UUID.time_low : ', UUID.time_low) #print('UUID.time mid : ', UUID.time mid)</pre>    |                                                                                                                 |
| <pre>\$print('UUID.time hi version : ', UUID.time hi version)</pre>                               |                                                                                                                 |
| <pre>#print('UUID.clock_seq_hi_variant: ', UUID.clock_seq_hi_variant)</pre>                       |                                                                                                                 |
| <pre>#print('UUID.clock_seq_low : ', UUID.clock_seq_low)</pre>                                    |                                                                                                                 |
| <pre>#print('UUID.node : ', UUID.node)</pre>                                                      |                                                                                                                 |
| <pre>#print('UUID.time : ', UUID.time) #print('UUID.time)</pre>                                   |                                                                                                                 |
| <pre>\$print('UUID.clock_seq : ', UUID.clock_seq) \$print('UUID.SafeUUID : ', UUID.is safe)</pre> |                                                                                                                 |
| <pre>key=input("Fress any key to continue : ")</pre>                                              |                                                                                                                 |

Figure 56 Output in IDE

Pip is a python tool for installing and managing packages. With the help of autopytoexe package, pip converts a .py file to .exe.

| S:\Users\Himank Sarna\Desktop\auto-py-to-exe-master>pip install -r requirements.txt<br>Figure 57 Installing pip install for autopytoexe                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ClUsers/Himank Sarna\Desktop\auto-py-to-exe-master\output\new UUID.exe<br>Hostname: DESKTOP-7IR3VTF<br>IP Address: 192.168.56.1<br>MAC address: 28:f1:0e:41:76:32<br>UUID: 1a539688-4653-11e9-901d-28f10e417632<br>UUID Type: <class 'uuid.uuid'=""><br/>Press any key to continue :</class> |

Figure 58 Output in .exe

This program prints the IP address, MAC address and version 1 UUID of the device this program runs on. UUID library in python which enables functions uuid1(), uuid3(), uuid4(), uuid5() for generating respective UUID versions as specified in RFC 4122.

| Field                           | Meaning                       |
|---------------------------------|-------------------------------|
| time_low                        | the first 32 bits of the UUID |
| time_mid                        | the next 16 bits of the UUID  |
| time_hi_version                 | the next 16 bits of the UUID  |
| <pre>clock_seq_hi_variant</pre> | the next 8 bits of the UUID   |
| clock_seq_low                   | the next 8 bits of the UUID   |
| node                            | the last 48 bits of the UUID  |
| time                            | the 60-bit timestamp          |
| clock_seq                       | the 14-bit sequence<br>number |

Figure 59 UUID fields

Executing this program as an autorun executable in pfSense, it can save the UUID of a new device connecting to it in its database which will be mapped with a specific MAC address. When a different device with the same MAC address but a different UUID attempts to establish a connection with pfSense, the connection will be denied because the new identifiers will not match the existing saved parameters.

### 9. Conclusion

With the increasing popularity of IoT devices, securing the sensitive data is critical, and pfSense firewall router provides a complete security solution. pfSense is a highly configurable, full-featured solution which addresses security vulnerabilities of IoT and other devices in a network.

It provides great security by segmenting the network and isolating subnetworks, denying the traffic from one VLAN to another.

It restricts unknown hosts to connect to the network and limits the number of hosts connecting through DHCP by limiting the network's subnet mask.

pfSense firewall rules prevent malicious packets from entering the packets and generates alerts for the administrator. It provides control-based access on the basis of source and destination and blocks denied users from entering into the internal network. pfSense also secures the devices by blacklisting untrusted URLs.

Stateful NAT in pfSense rewrites source port on all outgoing packets which reduces IP spoofing. It also blocks all the open ports which lead to security vulnerabilities.

IDS/IPS continuously gather information about the network by identifying potential threats, logging information about them and deterring unauthorized packets to enter into the network.

Integrating UUID with IP and MAC address as a new connection parameter further improves the security of new devices that connect to the network.

Overall, pfSense is a highly reliable firewall router which secures the network and sensitive data from getting compromised. It is highly flexible, and new addon/packages are added with new features oftentimes, which makes it future-oriented and scalable.

# **10.** Appendix A: List of Figures

| Figure 1 pfSense firewall block diagram                     |
|-------------------------------------------------------------|
| Figure 2 pfSense shell menu                                 |
| Figure 3 pfSense shell menu                                 |
| Figure 4 Log creation at login                              |
| Figure 5 Tracert output with pfSense                        |
| Figure 6 pfSense web GUI dashboard                          |
| Figure 7 pfSense supported wireless drivers                 |
| Figure 8 UniFi Dashboard                                    |
| Figure 9 Networks with VLAN tagging7                        |
| Figure 10 IoT network with WPA Enterprise Security7         |
| Figure 11 List of available WiFi networks                   |
| Figure 12 IoT network clients                               |
| Figure 13 Whitelisting MAC address                          |
| Figure 14 Unsuccessful ping from LAN to IoT Devices network |
| Figure 15 IoT network VLAN configuration                    |
| Figure 16 VLAN networks 10                                  |
| Figure 17 DHCP Pool for IOT_Devices network                 |
| Figure 18 Automatic outbound NAT rules 11                   |
| Figure 19 Manual outbound NAT rules11                       |
| Figure 20 Port forwarding settings                          |
| Figure 21 Port forward rule                                 |
| Figure 22 WAN rules                                         |
| Figure 23 Available networks for setting firewall rules     |
| Figure 24 Implementing Block on Alias 14                    |
| Figure 25 Blocking source on the basis of OS fingerprint14  |
| Figure 26 IoT devices network firewall rules 15             |
| Figure 27 Alias for rejecting traffic into IoT Network15    |
| Figure 28 mDNS allowed for selected networks                |
| Figure 29 pfBlockerNG Custom Aliases 17                     |

| Figure 30 Firewall rules: WAN                    | . 17 |
|--------------------------------------------------|------|
| Figure 31Firewall rules: LAN                     | . 17 |
| Figure 32 DSNBL Log                              | . 18 |
| Figure 33 DSBL Alerts                            | . 18 |
| Figure 34 Packet permit and deny status          | . 19 |
| Figure 35 Transparent HTTP proxy                 | . 19 |
| Figure 36 X-Forwarded Header mode ON             | . 20 |
| Figure 37 X-Forwarded Header mode delete         | . 20 |
| Figure 38 Permission denied for HTTP access      | . 20 |
| Figure 39 Squid Logs                             | . 21 |
| Figure 40 Lightsquid web port                    | . 21 |
| Figure 41 Squid user access report dashboard     | . 22 |
| Figure 42 Accessed URLs log                      | . 22 |
| Figure 43 Custom target categories               | . 22 |
| Figure 44 Whitelist for IoT devices network      | . 23 |
| Figure 45 URL blacklist: Shallalist              | . 23 |
| Figure 46 Test blacklist output                  | . 23 |
| Figure 47 ACLs with the whitelist, deny, allow   | . 23 |
| Figure 48 Oinkmaster Code                        | . 24 |
| Figure 49 Snort rule set                         | . 25 |
| Figure 50 Flowbit required rules                 | . 25 |
| Figure 51 IPS policy Security                    | . 26 |
| Figure 52 Snort Community Rules                  | . 26 |
| Figure 53 Snort alert log                        | . 26 |
| Figure 54 Double decoding attack                 | . 27 |
| Figure 55 128-bit UUID format                    | . 28 |
| Figure 56 Output in IDE                          | . 31 |
| Figure 57 Installing pip install for autopytoexe | . 31 |
| Figure 58 Output in .exe                         | . 31 |
| Figure 59 UUID fields                            | . 31 |

| 11. Appendix D. List |                                                                                            |  |  |  |
|----------------------|--------------------------------------------------------------------------------------------|--|--|--|
| IP                   | Internet Protocol                                                                          |  |  |  |
| CGI                  | Common Gateway Interface                                                                   |  |  |  |
| IPS/IDS              | Intrusion Prevention System/ Intrusion Detection SystemDynamic Host Configuration Protocol |  |  |  |
| DHCP                 |                                                                                            |  |  |  |
| ARP                  | Address Resolution Protocol                                                                |  |  |  |
| TCP/IP               | Transmission Control Protocol/ Internet Protocol                                           |  |  |  |
| DNS                  | Domain Name System                                                                         |  |  |  |
| OS                   | Operating System                                                                           |  |  |  |
| SMB                  | Server Message Block                                                                       |  |  |  |
| URL                  | Uniform Resource Locator                                                                   |  |  |  |
| API                  | Application Program Interface                                                              |  |  |  |
| ACL                  | Access Control List                                                                        |  |  |  |
| НТТР                 | Hyper Text Transfer Protocol                                                               |  |  |  |
| HTTPS                | Hyper Text Transfer Protocol Secure                                                        |  |  |  |
| GUI                  | Graphical User Interface                                                                   |  |  |  |
| PID                  | Process Identifier                                                                         |  |  |  |
| SSID                 | Service Set Identifier                                                                     |  |  |  |
| DCE                  | Data Communications Equipment                                                              |  |  |  |
| AP                   | Access Point                                                                               |  |  |  |
| UUID                 | Universally Unique Identifier                                                              |  |  |  |
| MAC                  | Media Access Control                                                                       |  |  |  |
| SPI                  | Stateful Packet Inspection                                                                 |  |  |  |
| ΙΟΤ                  | Internet of Things                                                                         |  |  |  |
| OPT                  | Optional                                                                                   |  |  |  |
| РМК                  | Pairwise Master Key                                                                        |  |  |  |
| UPnP                 | Universal Plug and Play                                                                    |  |  |  |
|                      | 1                                                                                          |  |  |  |

# **11.** Appendix B: List of Acronyms and Abbreviations

## **12.** Appendix C: References

- https://en.wikipedia.org/wiki/Universally\_unique\_identifier
- https://tools.ietf.org/html/rfc4122
- https://stackoverflow.com/questions/292965/what-is-a-uuid
- https://docs.python.org/3/library/uuid.html
- https://www.netgate.com/solutions/pfsense/features.html
- https://www.youtube.com/watch?v=BwK2cal4SOQ
- https://www.reddit.com/r/PFSENSE/comments/7c2vrm/pfblockerng\_ip\_lists\_dnsbl\_feed
- https://forum.netgate.com/topic/102290/lists-forpfblockernghttps://www.tecmint.com/install-configure-pfblockerng-dns-black-listing-inpfsense/
- https://www.tecmint.com/install-configure-pfblockerng-dns-black-listing-in-pfsense/
- https://searchsecurity.techtarget.com/definition/intrusion-detection-system
- https://www.paloaltonetworks.com/cyberpedia/what-is-an-intrusion-prevention-systemips
- https://wpollock.com/AUnixSec/NIDS-snort.htm
- https://cqureacademy.com/blog/penetration-testing/smb-relay-attack
- https://networkdirection.net/articles/asa/firepowermanagementcentre/firepowerintrusiond etection/
- https://www.snort.org/faq/what-are-community-rules
- https://www.aldeid.com/wiki/Snort-alerts/http\_inspect-DOUBLE-DECODING-ATTACK
- https://www.snort.org/faq/readme-flowbits
- https://en.wikipedia.org/wiki/X-Forwarded-For
- https://turbofuture.com/computers/Introduction-to-pfSense-An-Open-Source-Firewalland-Router-Platform
- https://github.com/pfsense/pfsense/find/v2.4.4\_1
- https://www.youtube.com/watch?v=-FFGJGPzZJw&list=PLcuqiGkigdex\_2ytK5X-HptOJSJ7Mm9bU

- https://turbofuture.com/internet/How-to-Set-Up-an-Intrusion-Detection-System-Using-Snort-on-pfSense-20
- https://community.spiceworks.com/how\_to/126207-set-up-snort-on-pfsense-for-ids-ips
- https://docs.netgate.com/pfsense/en/latest/dhcp/dhcp-search-domains-on-windows-dhcp-clients.html
- https://en.wikipedia.org/wiki/List\_of\_HTTP\_header\_fields
- https://www.paloaltonetworks.com/cyberpedia/what-is-an-intrusion-prevention-systemips
- https://www.snort.org/faq/what-is-snort