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ABSTRACT

The early Cambrian Mount Clark Formation of the Northwest Territories
comprises marginal marine to marine siliciclastic sediments deposited in an incipient rift
basin on the margin of Laurentia. Within core and outcrop datasets the preserved
record of sedimentation represents complex and highly variable lateral to vertical
architecture. As a result of recording early Cambrian (Series 2, Stage 3: Bonnia-
Olenellus trilobites) the Mount Clark Formation represents a rare opportunity to study
marine biological interactions at the very onset of the Cambrian Explosion. To achieve
this objective, high resolution sedimentological ichnological data was recorded from a
six core database within the Colville Hills in addition to the field description of 8 outcrops
in the Mackenzie Mountains over the course of two field seasons. Eight distinct
lithofacies (F1-F8) were identified in the Colville Hills recording offshore to continental
deposition along a strongly storm-influence shoreface succession. Three distinct facies
associations (FA1-3) were identified within the Mackenzie Mountains recording
shoreface (FA1), deltaic (FA2), and tidal embayment (FA3) sedimentation. Shoreface
sedimentation (FA1) ranged from strongly storm-influenced to storm-affected lower
shoreface to foreshore environments and were identified on the presence of robust and
diverse trace fossil assemblages. Deltaic sedimentation (FA2) ranged from strongly
storm-influenced to storm-affected prodelta to upper delta-front environments and were
identified on the basis of stressed trace fossil assemblages recording decreasing
ichnofossil size, diversity, and abundance in collaboration with more immature
lithologies. Tidal compound dune sedimentation (FA3) ranged from embayment margin
to the core of a compound dune field. Shoreface trace fossil assemblages within both
study areas were found to have higher degrees of diversity, abundance, and complexity
than previously identified early Cambrian trace fossil assemblages. It is interpreted that
the Mount Clark Formation represents the earliest known radiation into these
characteristic ethologies predating the famous and complex body fossils within the
Burgess Shale. This body of work seeks to highlight a poorly understood region of
Canada’s north, recording deposition at a time when complex life was first inhabiting

Earth’s primordial oceans.
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PREFACE

This thesis represents the original work of David Herbers. Chapter 2 of this thesis
has been submitted for publication as: David Herbers, Robert MacNaughton, Eric
Timmer, and Murray Gingras, “Sedimentology and Ichnology of an Early-Middle
Cambrian Storm-Influenced Barred Shoreface Succession, Colville Hills, Northwest
Territories, Canada” in the Bulletin of Canadian Petroleum Geology (CSPG). This
manuscript has been accepted for publication. Chapter 3 will be submitted to the
Canadian Journal of Earth Sciences as David Herbers, Eric Timmer, and Murray
Gingras, “Mixed Deltaic, Shoreface, and Tidal Embayment Sedimentation Along a
Storm-Influenced Early Cambrian Shoreline”. Chapter 4 has been submitted to
GEOLOGY for review as David Herbers, Matthew Sommers, Kurt Konhauser, and
Murray Gingras, “An Early Cambrian Radiation into Characteristic Ethological Niches”.
These manuscripts are part of a larger Northwest Territories northern initiative
organized by Dr. Murray Gingras and myself. | performed the data collection,
interpretations and manuscript composition with the supervision and guidance of Dr.

Murray Gingras. Chapter 1 (literature review) and 5 (conclusions) are my own work.
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“Oh, Andy loved geology. | imagine it appealed to his meticulous nature. An ice age
here, million years of mountain building there. Geology is the study of pressure and

time. That's all it takes really, pressure, and time.”

- Red
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CHAPTER 1: INTRODUCTION

The early Cambrian Mount Clark Formation of the Northwest Territories is the
primary host of significant and conventional gas, condensate, and oil discoveries within
the mainland of the Canadian Arctic. Reserves have been postulated to represent as
much as one billion barrels of oil and 10.7 TCF of gas within the interior plains of the
Northwest Territories (Hannigan et al., 2011). Despite this obvious economic
importance, the stratigraphic architecture is poorly understood with no detailed
sedimentary and ichnological work published. Previous studies have focused on the
Mount Clark Formation within a regional mapping context through Geological Survey of
Canada (GSC) (Hamblin, 1990; Dixon and Stasiuk, 1998; MacLean, 2011;
MacNaughton et al., 2013). This is a result of the study area being located in a remote
part of Canada along with the demise of the Mackenzie Valley Pipeline project that
would have served to access to massive stranded gas reserves in Canada’s north. The
first published research on the Mount Clark Formation was done by Williams (1922,
1923) that first defined the formation at the type section located at Mount Clark. He
defined the Mount Clark as Cambrian quartz dominated bioturbated sandstone. This
definition is broadly applicable but was initiated in a lithostratigraphic framework that
leaves little room for an interpretative framework taking into account distal to proximal
deposition. Subsequent work ramped up in the late 1960s as a result of the GSC’s
historic Operation Norman that sought to map out the Mackenzie Mountains. This was
summarized in Aitken et al (1973) that published several maps and measured sections
of Cambrian strata. Subsequent work followed up with trilobite work and
lithostratigraphic mapping (Serie et al., 2009; MacNaughton et al., 2013).

Accurately identifying and charactering ancient environments is greatly enhanced
through the integrated approach of using physical sedimentology (grain size, sorting,
sedimentary structures) and ichnology (trace fossil assemblages, size, and diversity)
(MacEachern et al, 2010). Ichnology has been shown to be an invaluable tool in
interpretation through illuminating physical and chemical stresses during deposition.
This allows for high resolution paleoenvironmental reconstruction (Seilacher, 1978;
Pemberton et al., 1982; Frey, 1990; Bann et al., 2004; Gingras et al., 2011).



Data collection comes from two main Cambrian depocenters in the Northwest
Territories Mainland; 1) Good Hope Depocenter containing the subsurface drill core of
the Colville Hills, and 2) the Mackenzie Depocenter in which outcrop belts were
described (Fig. 1). These depocenters are a result of late Proterozoic and early
Cambirian rifting dividing the region into low-relief uplift (domes and arches) and

depocenters (Dixon and Stasiuk, 1998).

This study was undertaken in order to enhance the understanding of the
architecture, sedimentology, and paleo-ecology of the Mount Clark Formation. Detailed
analyses of four subsurface drill cores with complimentary petrophysical wireline logs
within the Colville Hills region were completed. Lithology, sedimentology, and
ichnological characteristics were documented. This work led to the identification of 8
discrete facies (F1-11) representing a storm-influenced barred shoreface succession
(F1-F7) and continental deposition (F8).

Chapter 2 focuses on the outcrop dataset that represents a more complex
shoreline environment punctuated by storm-dominated deltaic and shoreface
environments in conjunction with protected tidal embayments. Due to the variety and
complexity of deposition facies associations were developed instead of individual facies.
Three unique facies associations were identified and include shoreface (FA1), wave
dominated deltaic complexes (FA2), and protected tidal embayments (FA3). Storm
influence was visible in all three environments in ranging from slight to dominated.
Outcrops are represented by Carcajou Canyon, Two Lakes, and Waterfall Ridge.
Deltaic influence was found to have a strong influence on trace fossil assemblages with

a reduction in trace fossil size and suspension feeding forms.

Chapter 3 consists of a paleoecology study of trace fossil assemblages present
within the core and outcrop datasets. In addition to economic considerations the Mount
Clark Formation contains well-preserved trace fossil assemblages that allow an insight
into early Cambrian seas in which complex metazoan life was just evolving and
colonizing shallow marine environments. Trace fossil assemblages show that

predictable ichnofacies existed 20 million years before the existential Burgess Shale



fauna. Animal behaviors within shoreface environments have changed very little over

the last 520 m.y., a remarkable feat to animal evolution.

In summary, this thesis seeks to address three issues; 1) identifying the
stratigraphic architecture and sedimentary systems in place; 2) presenting the Mount
Clark Formation within an allostratigraphic framework; and 3) characterizing the biota of

early Cambrian shallow seas and how animal behaviors have evolved through time.
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Figure 1.1: Map showing the study areas within the mainland Northwest Territories,
Canada. Modified from Google Earth Pro.



CHAPTER 2: SEDIMENTOLOGY AND ICHNOLOGY OF AN EARLY CAMBRIAN
STORM-INFLUENCED BARRED SHOREFACE SUCCESSION, COLVILLE HILLS,

NORTHWEST TERRITORIES, CANADA

INTRODUCTION

The Cambrian-aged Mount Clark Formation (Williams, 1922, 1923) is a known
reservoir containing oil, natural gas, and condensate in the Colville Hills area of the
Northwest Territories [NWT] (Hamblin, 1990; Dixon and Stasiuk, 1998; Janicki, 2004;
Price and Enachescu, 2009). A recent resource assessment by Hannigan et al. (2011)
calculated that the "Cambrian clastics play", which incorporates the Mount Clark
Formation beneath the interior plains of the NWT, potentially contains as much as one
billion barrels of oil and 10.7 TCF of natural gas. The Mount Clark Formation extends in
the subsurface from outcrops in the eastern Mackenzie Mountains (Serie et al., 2009;
MacNaughton et al., 2013), eastward beneath the Interior Plains (Dixon and Stasiuk,
1998), and outcrops again along the eastern limit of the northern mainland sedimentary
basin. Oil and gas have been found in the Mount Clark Formation exclusively beneath
the Colville Hills to date, although the unit may be an exploration target in other parts of
the basin (Hannigan et al., 2011; MacLean, 2011). As noted by MacLean (2011), clear
understanding of the depositional environments of Cambrian reservoir strata will be

crucial to hydrocarbon exploration success in the region.



Despite numerous significant hydrocarbon discoveries and subsequent
Significant Discovery Licences (SDLs) given out for the Colville Hills area, no literature
exists on the detailed sedimentary and ichnological character of reservoir units from the
area. Drill cores from four exploration wells in the Colville Hills (Tweed Lake A-67,
Tweed Lake M-47, Tweed Lake C-12, and Bele O-35) provide an opportunity to
document the lithofacies, ichnology, and depositional environments of the Mount Clark
Formation. Details on the four wells are provided in Appendix 1. All wells are within the
northwest part of the Good Hope depocentre (Fig. 1), as defined by Dixon and Stasiuk
(1998) and refined by MacLean (2011). This report is the first detailed and integrated
account of the subsurface lithofacies, sedimentology, and ichnology of the Mount Clark

Formation.

Our work suggests that the Mount Clark Formation of the Colville Hills
subsurface is characterized by predictable shoreface stacking patterns from offshore to
upper shoreface. This should aid the in the identification of undiscovered sand bodies in
potential undiscovered stratigraphic traps. These shoreface successions are punctuated
by repeated progradation and transgression resulting in porous and permeable
sandstone bodies encased in mudstone seals underlying the Mount Cap Fm source

shales.



GEOLOGICAL SETTING

Cambrian strata of the Interior Plains lie unconformably upon Proterozoic strata
of the Mackenzie Mountains Supergroup and Shaler Supergroup (the "M/S
Assemblage" of Cook and MacLean, 2004). The eroded Proterozoic surface was
divided into regions of low-relief uplift (domes and arches) and depocentres (Dixon and
Stasiuk, 1998) that formed in response to latest Proterozoic and early Cambrian
tectonic extension (Williams, 1987; MacLean, 2011) (Fig. 2). The basal Cambrian
sandstone of Mount Clark Formation is patchily preserved throughout the region and is
best developed in the depocentres (Pugh, 1983; Dixon and Stasiuk, 1998; MacLean,
2011), particularly adjacent to the paleohighs (MacLean, 2011; MacNaughton et al.,
2013). In the Good Hope depocentre, the preserved Mount Clark Formation thickness
reaches at least 88 m (Dixon and Stasiuk, 1998). The Mount Clark Formation is now
considered to also include Cambrian sandstone units formerly assigned to the Old Fort
Island Formation defined by Norris (1965); see Dixon and Stasiuk (1998) for discussion.
Mount Clark Formation strata thus record the initial (Sauk) transgression of the latest
Proterozoic peneplain, and contain sand-rich facies deposited in a range of shallow- to
marginal-marine environments (Hamblin, 1990; Dixon and Stasiuk, 1998; this work).
Subsequent transgression established deeper-marine environmental conditions that led
to the deposition of the regionally extensive Mount Cap Formation, a shale-dominated
succession with lesser carbonate and sandstone (Aitken et al., 1973; Dixon and

Stasiuk, 1998). The Mount Cap Formation is overlain unconformably by the Saline River



Formation, a thick package of shale, evaporites, and lesser carbonates that records
deposition in a restricted basin (Aitken et al., 1973; Dixon and Stasiuk, 1998). The
Mount Clark Formation and the Mount Cap Formation thus jointly comprise an
unconformity-bounded sequence at the base of the Sauk Supersequence (Sloss,

1963).

Age constraints for the Mount Clark Formation are limited. The presence of
intense bioturbation throughout the unit is consistent with its inferred Early Cambrian
age. Mount Cap Formation strata are better age-constrained with trilobite faunas, which
place the unit in the Bonnia-Olenellus to Glossopleura zones (Kobayashi, 1936; Fritz,
1970, 1971, 1977; Aitken et al., 1973; Serié et al., 2009). The Mount Clark Formation
and the Mount Cap Formation are in facies contact and the suggestion of Dixon and
Stasiuk (1998) that the contact is diachronous has been confirmed based on faunal
evidence from outcrops. Depending on locality, the basal beds of the Mount Cap
Formation may contain a Bonnia-Olenellus Zone or a (younger) Albertella Zone trilobite
fauna (MacNaughton et al., 2013). In the subsurface, the basal part of the Mount Cap
Formation in the British Petroleum et al. Losh Lake G-22 well (latitude 65° 51’ 29”;
longitude 123° 19’ 45”; NADZ27) has yielded trilobites that belong to the upper part of the

Bonnia-Olenellus Zone (Fritz, 1977).



PREVIOUS WORK

Following an initial description by Williams (1922, 1923), the Mount Clark
Formation received little attention until the late 1960s. Since then, it has been included
in several regional stratigraphic studies, focused both on outcrop belts (Aitken et al.,
1973; Serie et al., 2009; Pyle and Gal, 2009) and the subsurface (Tassonyi, 1969;
Pugh, 1983; Dixon, 1997; Dixon and Stasiuk, 1998; MacLean, 2011). The Mount Clark
Formation has also been discussed from the perspective of its petroleum potential
(Snowdon and Williams, 1986; Hamblin, 1990; Dixon and Stasiuk, 1998; Hannigan et
al., 2011). Published sedimentological interpretations on the Mount Clark Formation are
sparse, and are limited to preliminary studies based on selected drill cores (Hamblin,
1990; Dixon and Stasiuk, 1998) or outcrop data (Aitken et al., 1973; MacNaughton et
al., 2013). MacNaughton and Fallas (2014) identified a new Cambrian map unit named
the Nainlin Formation that conformably overlies the Mount Cap Formation and is
interpreted to represent the more proximal expression of Saline River Formation
deposition. To date this unit has only been identified within the Mackenzie Mountains

but may also be found within the Colville Hills.

Early hydrocarbon discoveries were centered on the Tedji Lake K-24 well
recovering 124,000m? of gas in a thin Mount Clark sandstone sheet covering
Proterozoic basement. Exploration activities were most active in the mid-1980s, in

which exploration licenses were held by Chevron, Petro-Canada, Dome, and Esso (how
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Imperial). Significant discovery licences (SDLs) include Tweed Lake A-67 (gas), Tweed
Lake M-47 (gas and condensate), and Bele O-35 (Gas and Condensate) (Hamblin,
1990; Janicki, 2004). Drilling and exploration saw a resurgence in the early 2000s as a
result of the proposed Mackenzie Valley Pipeline that would serve to access massive
stranded gas reserves in Canada’s North. During this time, Apache’s Lac Maunoir C-34
well was given an SDL based on recoverable oil, condensate, and gas reserves present

(Hannigan et al, 2011).

FACIES DESCRIPTIONS AND INTERPRETATIONS

Facies are described in the order of interpreted distal to proximal environments.
Facies 1 and 2 represent a Glossifungites firm-ground suite and a transgressive lag
respectively. These facies are not controlled by distal or proximal trends and hence are
described first. Based on the facies descriptions and interpretations below, facies 3-7
represent a shoreface facies model and Facies 8 represents continental illuviation.
Tweed Lake-67 is the only core that contains the entire Mount Clark Fm Succession.
Bioturbation intensity is quantified with bioturbation index (Bl) sensu Reineck (1967),
Taylor and Goldring (1993). Grain size was classified according to the International ISO
14699-1:2002 scale. Mineralogy was determined through thin sections provided by the

GSC. These thin sections were stained with a blue porosity dye.
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FACIES 1: GLOSSIFUNGITES-DEMARCATED OMISSION SURFACE

A pervasively penetrative burrow boxwork occurs within three substrate types: 1)
green mudstone; 2) red mudstone; or 3) fine grained sandstones (Fig. 4A, B, C).
Burrows are large, averaging 1-1.5cm in diameter. Burrow morphologies range from
branching to simple vertical traces reaching 10 to 20 cm below the inferred sediment-
water interface. Trace fossils observed include Skolithos and Diplocraterion. Burrow fills
comprise lower medium-grained sandstone or highly glauconitic (>90% glauconite)
lower medium-grained sandstone. The surfaces from which the burrows descend are
sharp, undulatory, and are directly overlain by a pebble lag. The burrow fill lithologies

resemble overlying bed lithologies.

INTERPRETATION:

This facies represents the erosional exposure of a sedimentary firmground that
was subsequently colonized by burrowing animals (Pemberton and Frey, 1985;
MacEachern et al., 1990, 1991, 1992; Savrda, 1991). The sharp, undulatory nature of
the contact and the presence of a lag are consistent with erosion due to waves. And,
the abrupt upward transition from sandstone to clayey siltstone at the contact suggests
that the surface represents a transgressive surface of erosion (MacEachern, 1992). This
facies likely represents an early major transgression within the Good Hope Depocentre.
The dramatic shift in lithology from argillaceous mudstone into medium-grained

sandstone corresponds to an increase in depositional energy, most likely due to wave
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influence. Sedimentary structures such as flaser bedding, tubular tidalites, and tidal

rhythmites, which reflect tidal deposition, were not encountered.

FACIES 2: MODERATELY SORTED MEDIUM- TO COARSE-GRAINED SANDSTONE

Facies 2 comprises poorly sorted medium- and coarse-grained sandstone that is
typically observed overlying Facies 1 (Glossifungites). Pebble- to granule-sized clasts
are common (Fig. 4E, F). Bedding is crudely defined and is often not observable. Bl
ranges from 0-4. Facies 2 is locally capped by an irregular 4 cm thick bioturbated
glauconitic sandstone bed (Fig. 4D). When present, bioturbation consists of a low
diversity suite comprising Palaeophycus and Teichichnus. The stratigraphic context for
Facies 2 is best demonstrated with strip logs (i.e. Fig. 3, Tweed Lake A-67 1298.5 m

and 1288.4; PCI C-12, 1319.5m).. The thickness of facies 2 averages less than 15 cm.

INTERPRETATION:

Based on the abrupt upward shift in grain size from coarse/pebbly sandstone to
silt/clay and a lack of evidence for shallow wave action, this facies is interpreted as a
pebbly transgressive lag that was deposited and reworked by waves during
transgression. This transgressive lag, which demarcates a flooding surface, lies at the
base of coarsening upward parasequences. Pebbles and granules were likely sourced

from eroded shoreface sediment and subsequently redistributed across the shoreface
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during transgression (Riemersma and Chan, 1991; Raychaudhuri et al., 1992; Cattaneo

and Steel; 2003).

FACIES 3: INTERBEDDED MUDSTONE, SILTSTONE AND SANDSTONE

Facies 3 consists of interbedded green to grey mudstone and siltstone with
interbedded sharp-based sandstone beds that display varying degrees of biogenic
reworking (Fig. 4G, |, J). Sharp based sandstone beds are upper fine-grained and are
characterized by oscillation-ripple and wavy-parallel lamination. Remnant sandstone
beds with sparse (Bl 0-1) to intense bioturbation (Bl 3-4) grade upwards into siltstone.
Bioturbation intensity within beds increases upwards; trace fossils include
Palaeophycus, ?Asterosoma Chondrites, Skolithos, Teichichnus, and Planolites.
Sandstone lithologies show alternating horizons of laminated to burrowed fabrics.
Equilibrichnia structures, interpreted to be fugichnia, are present in the bioturbated beds
or are truncated at intra-stratal scours (Fig. 41, J). Micro hummocky cross-stratification is
well developed within some of the sandstone beds (Fig. 4l). Locally, bioturbation
completely destroys the primary fabric of sandstone beds resulting in a homogenized
appearance (Fig. 4G). Sharp based decimeter-scale massive mudstone beds are
randomly distributed and are entirely composed of laminated grey to black mudstone
without any apparent bioturbation or sand content (Fig. 4H). Bed thicknesses range

from the centimeter to decimeter scale.
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INTERPRETATION:

The trace fossil assemblage of facies 3 comprises carnivorous (eg.
Palaeophycus) and deposit-feeding ethologies and represents an expression of the
Cruziana Ichnofacies (Howard and Frey, 1984; MacEachern and Pemberton, 1992;
MacEachern and Bann, 2008; Ekdale et al., 2012). The thoroughly bioturbated intervals
reflect depositional periods dominated by fair-weather processes (Vossler and
Pemberton, 1988b). The Cruziana Ichnofacies may further indicate that settling and
subsequent embedding of organic matter in the seafloor occurred during fair-weather
conditions. Episodic storms increased turbulence and generated erosional features,
high-energy depositional (Micro HCS) structures, while redistributing organic detritus
(Seilacher, 1982a). This resulted in a tripartite zonation within tempestite sandstone
beds: 1) a set of bioturbated interbedded sandstone and siltstone deposited during fair-
weather; 2) a sharp based erosional sandstone bed with undulatory to hummocky
cross-stratification grading into a burrowed “scrambled” top; and 3) a return to ambient,
thoroughly bioturbated, fair-weather shoreface conditions (Seilacher, 1982). Fugichnia
are observed within the tempestite beds, illustrating likely unsuccessful organism
escapes from rapid sedimentation events. Laminated grey to black mudstone likely
indicates fair weather sedimentation in which the sandier intervals are a result of
offshore directed storm currents that carried and deposited sediment further offshore.
Facies 3 was deposited in the proximal offshore to offshore transition where fair-
weather processes cease to influence sedimentation and offshore processes dominate

sedimentation (Reinson, 1984) (Fig. 7A).
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FACIES 4: INTERBEDDED CROSS-STRATIFIED TO THOROUGHLY BIOTURBATED SILTY MUDDY

SANDSTONE

Facies 4 is a mixture of intensely to moderately bioturbated sandstone, siltstone,
and shale. Intensely bioturbated strata are characterized by Rosselia, Asterosoma,
Rhizocorallium, Cylindrichnus, Arenicolites, Chondrites, Teichichnus, Palaeophycus,
and equilibrichnia (Fig. 5A) Punctuated occurrences of green ?glauconitic shale laminae
contain Palaeophycus and Chondrites (Fig. 5C). Sandstone intervals are generally fine
to lower medium in grain size and thoroughly bioturbated. Current rippled sharp-based
sandstones are commonly intercalated with intensely bioturbated strata (Fig. 5B,C).
Alternating horizons of undulatory to planar laminated sandstone are interbedded with
bioturbated intervals containing abundant fugichnia. (Fig. 5D). The tops of laminated

sandstone beds are sporadically burrowed and contain Skolithos and Cylindrichnus.

INTERPRETATION:

Thoroughly bioturbated strata containing large robust traces indicate fair-weather
shoreface conditions in which both deposit and suspension feeding organisms thrived
(MacEachern and Pemberton, 1992; Uchman and Krenmayr, 1995). Trace fossil
assemblages of facies 4 are an archetypal example of the Cruziana Ichnofacies, which

is characteristic of fully marine water, and oxygen- and benthic-food-rich conditions
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(MacEachern and Pemberton 1992). The deposit feeding behaviours of Cruziana
Ichnofacies reflect ambient wave energy, strong enough to disperse organic matter into
the proximal offshore (MacEachern and Pemberton, 1992). In contrast, storm-weather
conditions are preserved as sharp-based, cross-stratified sandstone beds. The “Lam-
Scram” pattern of alternating undulatory laminae and bioturbated horizons (sensu
Howard, 1978; MacEachern and Pemberton, 1992). Undulatory laminae indicate storm
onset and burrowed beds indicate storm. During storms, wave base is lowered, which
causes reworking of the fair-weather substrate. Fugichnia are present within these
tempestite beds, reflecting the rapid and sudden onset of sedimentation. Truncated
trace fossils and fugichnia further demonstrate the erosional nature of storm processes.
Only the deepest penetrative trace fossils are preserved. Nonbioturbated cross-stratified
beds indicate rapid storm deposition; following the storm, tempestite bed recolonization
is initiated by opportunistic animals that generated Skolithos and Cylindrichnus trace
fossils (Pemberton and MacEachern, 1997). Skolithos and Cylindrichnus are commonly
associated with r-selected metazoans that are capable of adapting to agitated and
rapidly changing environments (Vossler and Pemberton, 1988b). Facies 4 is interpreted
to record fair-weather and storm-weather lower shoreface sedimentation over the zone

of shoaling where the initial breaking of waves occurred (Reinson, 1984).
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FACIES 5: LOwW-ANGLE CROSS-STRATIFIED SANDSTONE WITH THIN BIOTURBATED HORIZONS

Facies 5 comprises upper fine- to lower medium-grained well-sorted sandstone
characterized by low-angle cross-stratified to hummocky cross-stratified beds (Fig. 5E,
G). The amplitude of HCS is generally approximately 15 cm. Hummocky cross-
stratification is recognized using the following criteria: 1) erosional lower bounding
surfaces that commonly slope at angles less than 15 degrees; 2) laminae above these
surfaces are parallel to sub-parallel; 3) laminae can thicken or thin laterally within a set
resulting in a fan-like geometry on a vertical surface; 4) the dip directions of the
erosional set boundaries and of the overlying laminae are scattered (Harms et al.,
1975). Bioturbated intervals are thin (3-4cm thick) and contain simple mud-lined traces
such as Skolithos, Cylindrichnus, and Palaeophycus (Fig. 5F). Amalgamated sandstone
beds with sharp erosional bases are prevalent, and preserve alternating horizons of
laminated to burrowed sandstones. Mudstone is limited to thin laminae (Fig. 5F).
Intraformational mudstone rip-up clasts are observed within the HCS beds (Fig. S5E).

Sandstone bed thickness is on the dm scale on average.

INTERPRETATION:

The paucity of highly bioturbated and diverse trace fossil assemblages and the

dominance of high-energy sedimentary structures of oscillatory origin are interpreted to

represent persistent storm influence and deposition. Rip-up clasts within HCS beds are
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interpreted to be the result of strong storm surge currents transporting more proximal
material basinward. The rare occurrence of bioturbation within these beds is interpreted
to represent either sufficiently pervasive storm activity to preclude bioturbation or the
removal of fair-weather bioturbated suites. Preserved trace fossils are interpreted to
represent opportunistic post-colonization suites by r-selected metazoans (Vossler and
Pemberton, 1988). These trace fossil suites record a departure from the complex
deposit feeding traces seen in Facies 3 and 4, to simple suspension feeding forms. This
shift in trace fossil ethology in association with larger more pervasive storm-induced
bed-forms is interpreted to represent shoaling upward into the middle shoreface
(Walker, 1984; Leckie and Krystinik, 1989; Duke, 1990; Duke et al., 1992). Facies 5 is
interpreted to have accumulated within the middle shoreface as evident from pervasive
and amalgamated HCS storm deposits along with a lack of Cruziana deposit feeding

behaviors (Buatois et al., 1999; MacEachern and Pemberton, 1992) (Fig. 7).

FAcIES 6: Low TO HIGH ANGLE CROSS STRATIFIED SANDSTONE

Facies 6 consists of upper medium-grained sandstone characterized by trough
cross-stratification (TCS) (Fig. 6A), planar-tabular bedding (Fig. 6B), and HCS (Fig. 6D).
Planar-tabular bedding commonly occurs as 8-20 cm thick beds whereas low-angle
cross-stratified beds are typically ~75cm thick. Micro-faulting and convolute bedding is

present (Fig. 6C). Bioturbation is absent.
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INTERPRETATION:

Facies 5 is distinguishable by its multidirectional trough cross-stratification, which
occurs in 15-45¢cm thick sets manifested as low-angle cross stratification (Howard,
1971; Elliot, 1986; MacEachern and Pemberton, 1992) and is interpreted to result from
the migration of low-relief 2D and 3D dunes. Hummocky cross-stratification is generated
by oscillatory flow that caused by storm-waves (Walker, 1984; Leckie and Krystinik,
1989; Duke, 1990; Duke et al., 1992). The absence of bioturbation is interpreted to
reflect environmental conditions dominated by abundant sediment supply and rapidly
migrating bedforms (Reineck, 1977). Micro-faulting and convolute bedding resulted from
soft-sediment deformation possibly associated with wave-induced liquefaction (Clifton,
1971; Pratt, 2002). The presence of HCS, persistent dune migration, and the absence
of bioturbation suggest that Facies 6 was deposited within the upper shoreface of a
shoreline (Fig. 7). The upper shoreface environment is situated in the high-energy surf
zone landward of the breaker zone (Clifton, 1971; Barwais, 1976; Reineck and Singh,
1980; MacEachern and Pemberton, 1992). This zone is characterized by wave driven
currents that flow parallel to the shoreline seaward of the subaqueous bar (i.e.
longshore drift), and by currents generated by translatory flow associated with plunging
waves that generate multidirectional 2-D and 3-D dunes (Clifton, 1971; Davies et al.,

1971; MacEachern and Pemberton, 1992).
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FACIES 7: “PIPEROCK” SANDSTONE

Facies 7 consists of lower to upper medium-grained occasionally glauconitic
arenite dominated by a Skolithos and Lingulichnus “piperock” assemblage (Fig. 6F-I).
Bioturbation is intense and sometimes results in the homogenization of the sediment.
Skolithos and Lingulichnus burrow diameters range from 3 to 14 mm and burrow
lengths range from 10 to 15 cm. Qil staining is prevalent and concentrated within
Skolithos and Lingulichnus burrows (Fig. 6G). Lingulichnus displays well developed
equilibrium adjustments (Fig. 6F). Sandstone units are well sorted and comprise the
coarsest bed scale (>5 cm) grain sizes observed in this study. One core, Tweed Lake A-
67, contains a relatively thin interval of planar-tabular cross bedding at 1279.7m depth
(Fig. 6E). This planar tabular bedding is 20cm thick and is observed within an intensely

bioturbated piperock succession.

INTERPRETATION:

Based on the presence of large robust Skolithos and Lingulichnus, a lack of
sedimentary structures, and a relative increase in grain size (compared to other facies
observed), we place this facies in the proximal upper shoreface and foreshore. The
upper shoreface to foreshore environment landward of the sub-aqueous bar is
characterized by shifting sandy substrates in shallow waters (Reineck and Singh, 1980)

(Fig. 7). Suspension-feeding animals likely depended on food suspended in the water
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column. The foreshore to proximal upper shoreface is typified by the appearance of the
Skolithos Ichnofacies of which piperock is archetypal (Droser, 1991; Howard, 1971;
MacEachern and Pemberton, 1992). Observed equilibrium traces indicate an
environment characterized by sporadic sedimentation events, that were not substantive
enough to kill the original tracemakers, allowing them to adjust and move upward
(Zonneveld and Pemberton, 2010). These re-equilibrium movements likely indicate post
storm re-establishment (MacEachern and Pemberton, 1992; Nara; 1995, 1997). The
high bioturbation intensity (Bl 4-5) suggests that during fair-weather, biogenic reworking
rates exceeded hydraulic reworking rates. As such, the shoreface profile is inferred to
have been dissipative to intermediate, shielded by sub-aqueous bars in the upper
shoreface (e.g. Hunter et al., 1979; Leckie and Walker, 1982) (Fig. 7). These bars act
as a barrier against large hydraulic energies, resulting in abundant populations of
suspension feeding ichnogenera, forming piperock assemblages within the trough
positioned landward of the longshore bar. Large storms are capable of breaching this
barrier, depositing the characteristic nonbioturbated washover fan deposits (Fig. 6E)

(Reinson, 1984).

FAcCIES 8: NONBIOTURBATED MASSIVE RED MUDSTONE

Homogeneous massive-appearing, red mudstone that contain no recognizable

sedimentary structures, trace fossils, or primary depositional fabric (Fig. 6J). Facies 8 is
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found at the base of the Tweed Lake A-67 core where it is 1.5m thick. No caliche

nodules were observed in the interval.

INTERPRETATION:

The lack of bioturbation and distinctive red colouring is interpreted to reflect
continental processes (Basu, 1981). lIron-rich clay minerals were exposed to continental
weathering causing the red colouration (Krynine, 1949; Driese et al., 1995; Retallack et
al., 1988). As a result of the lack of bioturbation, red colouration, and fine grained
lithology Facies 8 is interpreted to represent a windblown regolith/loess (Fig. 7). This
regolith is eventually transgressed, resulting in the formation of a firm-ground substrate

that hosts the Glossifungites assemblage seen in F1.

FAcies MoODEL AND DISCUSSION

DEPOSITIONAL SETTING

The Mount Clark Formation in the Colville Hills area represents a progradational
shoreface complex. Constituent parasequences coarsen upwards from offshore mud
deposition to shallow-water piperock of the upper shoreface/foreshore (Fig. 7). In this
study, large-scale hummocks (Fig. 6E), an absence of bioturbation in the middle
shoreface (Fig. 5E, G), and the presence of tempestites into the proximal offshore (Fig.

4 1, J) suggest that storm waves shaped the shoreface. Numerous authors have
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illustrated the relationship of HCS to storm induced sedimentation (e.g., Walker, 1984;
Duke, 1985; Walker and Plint, 1992). Tempestite beds are characterized by the
following ichnological and sedimentological characteristics: 1) a fair-weather trace fossil
assemblage; 2) a sharp erosional basal contact; 3) subparallel to parallel laminae
interpreted to be hummocky or swaley cross-stratification; 4) fugichnia (escape
structures); 5) post-storm colonization trace fossil suite emplaced in the newly deposited
sand bed; 6) a return to fair-weather trace fossil assemblages (Pemberton and

MacEachern, 1997).

Storm influence within the Cambrian was likely due to summer hurricane
seasons as Laurentia was situated near the equator (Duke, 1995) (Fig. 8). Hurricanes
are particularly effective in generating HCS because of their ineffective coupling of the
water column (stratified water column) resulting in powerful oscillatory currents (Duke,

1985).

In the studied strata, wave energy likely erosively stripped fair-weather strata of
the middle shoreface as result of storm-induced intensive oscillatory currents (Wetzel
and Aigner, 1986). The presence of sub-aqueous longshore bars and the progressive
waning of wave energy into an intermediate or dissipative upper shoreface and
foreshore enabled suspension-feeding animals to successfully colonize the substrate
(Fig. 7). However, within a strongly storm-influenced shoreface succession that records

frequent storm influence even in the offshore, the question is raised as to how
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suspension feeding organisms could thrive in very shallow water in a coastal setting
routinely ravaged by storms. The presence of a sub-aqueous longshore bar provided a
barrier to intense wave activity, absorbing wave action, which enabled suspension
feeders to successfully thrive and colonize the substrate (Fig. 7). A modern analogue for
this type of system is provided by the Oregon coastline. This type of bar and trough
system is characteristic of an intermediate shoreface profile reflecting a balance
between dissipative and reflective shoreface profiles (Short, 1999; Woodruffe, 2003).
Suspension-feeding animals are able to thrive in the 2-4m deep, protected trough,
where wave action is strong enough to ensure necessary benthic-food supply and
shifting sandy substrates, but sufficiently attenuated to spare the burrowing animals
from routine exhumation. Bioturbation extends to the foreshore where energy dissipates

(Clifton, 1971).

SIGNIFICANCE OF PIPEROCK

Various workers (Mcllroy and Logan, 1999; Mcllroy and Garton, 2004; Desjardins
et al., 2010 a, b; 2012) have studied early to middle Cambrian successions and have
ascribed probable piperock depositional environments. These studies interpret piperock
to form in shallow-water, proximal sub-tidal tide-dominated sand sheets that are
dominated by compound dunes and sand ridges. The Mount Clark, in comparison, lacks
evidence for tidal sedimentary features (e.g. bi-directional current structures, grain
striping, flaser bedding, double-mud drapes, sigmoidal bedding, or tubular tidalites). In

this study, the distributions of trough cross-stratification and hummocky cross-
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stratification strongly support wave-dominated sedimentary environment interpretations
characterized by persistent storm influence, which erosively removed the record of fair-
weather sedimentation, resulting in the preservation of far stronger than average storm

events (Wetzel and Aigner, 1986).

The piperock, documented in the present study contains abundant Skolithos and
Lingulichnus (F7). In contrast, previously documented occurrences of piperock report
Skolithos, Diplocraterion, Monocraterion, and Rosselia as the principle trace fossils
(Hallam and Swett, 1966, Hantzschel, 1975, Miller and Byers, 1984; Droser, 1991;
Mcllroy and Logan, 1999; Mcllroy and Garton, 2004; Desjardins et al., 2010; Mcllroy et
al., 2010). Importantly Lingulichnus within the Mount Clark Formation also displays well-

developed equilibrium adjustments not seen in other localities (Fig. 6F).

Compared to other studies, piperock within the Mount Clark Formation of the
Colville Hills most closely corresponds to Skolithos Ichnofabric 2 within the Early
Cambrian Gog Group of Western Canada reported by Desjardins et al. (2010a).
Ichnofabric 2 can be summarized as follows: fine- to medium-grained sandstone;
moderate to intense bioturbation; Skolithos and Diplocraterion; and massive to flaser to
TCS bedding. Desjardin et al. (2010a) attributed deposition to moderately strong tidal
currents coupled with moderate sedimentation rates and minor scouring, thereby
allowing multiple colonization events. It is these colonization windows, caused by a drop

in current velocity or sediment supply that stall the migration of bedforms that host
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piperock. In wave-dominated settings, colonization events are limited to areas sheltered
from fair-weather wave energy and zones below fair-weather wave base. Lingulichnus
is an ideal behaviour for surviving in storm-influenced shoreface succession (Zonneveld
and Pemberton, 20010; Zonneveld and Greene, 2010). Lingulide brachiopods, the
primary tracemaker for Lingulichnus, are excellent storm survivors as a result of deep
infaunal lifestyles that develop during early growth stages (Zonneveld and Pemberton,
2003). Furthermore, their ability to re-burrow and rapidly equilibrate allows them to
survive storm induced erosional exhumation and transport (Zonneveld and Pemberton,
2010).

The piperock reported herein better corresponds to ichnofossil distribution in
Mesozoic and Cenozoic shorefaces, as the energy-sheltered uppermost shoreface and
foreshore zones likely host substantial infaunal biomass. In Cretaceous to modern
examples, this niche is associated with the presence of Macaronichnus and more rarely
Thalassinoides or Ophiomorpha (MacEachern and Pemberton, 1992; Pollard et al.,
1993). However, the upper shoreface and foreshore zones are colonized for similar
reasons (1) that the somewhat lower hydraulic energies permit larvae to settle and
colonize the substrate; (2) similarly, the dissipative part of the shoreface is where
marine organics can accumulate; and (3) more stable (i.e. non-shifting) substrate are
amenable to long-term colonization (Pemberton and Frey, 1984). Droser (1991) noted
piperock was indicative of shallow water marine sedimentation with planar, trough, and
hummocky cross-stratified commonly hosting well-developed piperock assemblages.

This is interpreted to represent the availability of multiple or extended colonization
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periods during which a decrease in sediment supply and/or hydraulic currents allowed
metazoans to successfully inhabit and reproduce within the substrate. It is interesting to
note that the Mount Clark Fm does not contain this style of piperock, where bedforms
such as HCS and TCS are colonized and where piperock is limited geo-spatially to the

foreshore.

SUMMARY

A facies model for an early Cambrian wave-dominated storm-influenced
shoreface succession is herein presented based on detailed sedimentological and
ichnological analyses of subsurface drill core from the Colville Hills region of the
Northwest Territories. The facies model presented illustrates a predictable shoreface
stacking pattern composed of eight distinct lithofacies representing an overall offshore
to upper shoreface succession. Flooding surfaces are demarcated by pebbly poorly
sorted transgressive lags separating shallow and distal facies and by Glossifungites-
demarcated omission firm-ground suites. The presence of a bar shelter is predicated on
the presence of large robust suspension feeding traces comprising Skolithos and
Lingulichnus in an otherwise high-energy storm-influenced succession. This work
establishes a predictive framework for subsurface Mount Clark Formation reservoirs in
the Colville Hills. Future work can apply this framework towards a comprehensive

sequence stratigraphic model.
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Figure 2.1: Location map showing study area and core locations within the Colville
Hills. Modified after MacLean (2011). Air photo provided by Google Earth Pro.
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Figure 2.2: Stratigraphic column showing the relationship of the Mount Clark, Mount
Cap, and Saline River Formations. Chief focus on this study is the Mount Clark
Formation within the Colville area. Modified from MacLean (2011) with information from
MacNaughton and Fallas (2014).
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Figure 2.3: Logged cores with annotated environments of deposition. Four cores were
logged with special attention paid towards sedimentologic and ichnologic
characteristics. Only one core (A-67) captured the entire Mount Clark succession, from
the basal unconformity to the overlying mixed carbonate-clastic Mount Cap Fm. Mount
Cap Formation is recognized by the first appearance of carbonate rich lithologies, often
hyolithid rich rocks. Core logging was done through AppleCore®© software.
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Figure 2.4: Facies Plate | (Facies 1, 2, and 3)

A) Facies 1; Glossifungites demarcated omission surface, sand filled burrows in a red

mudstone, Tweed Lake A-67.

B) Facies 1; Bedding plane view of Skolithos (Sk) Glossifungites firm-ground suite

within a green mudstone substrate. Bele O-35.

C) Facies 1; Glossifungites firm-ground suite with a large Diplocraterion (Di), green

colour is a result of glauconite. Bele O-35.

D) Facies 2; Bioturbated glauconitic upper fine sandstone with granule to pebble sized
clasts (A). Palaeophycus (Pa), Teichichnus (Te). Tweed Lake A-67.

E) Facies 2; Transgressive lag manifested as a coarse grained sandstone with pebble

to granule sized clasts. Tweed Lake A-67.

F) Facies 2; Transgressive lag overlying a Glossifungites surface, large clast (A) within
burrow. Tweed Lake A-67.

G) Facies 3; Offshore sandy mudstones intensely bioturbated with Teichichnus (Te)
Planolites (Pl). Tweed Lake A-67.

H) Facies 3; Offshore nonbioturbated massive black mudstones. PCl C-12.

I) Facies 3; Distal biogenically reworked sandy tempestite bed within offshore
mudstones. Depositional hydraulic currents great enough to produce Micro Hummock
Cross-Stratification (HCS). Note upper portion of tempestite bed has been biogenically
reworked from the original bed resulting in bed disintegration; Fugichnia (Fu),
?Asterosoma (?As), Chondrites (Ch), Palaeophycus (Pa). Tweed Lake M-47

J) Facies 3; Multiple intensely biogenically reworked distal sandy tempestite within
offshore mudstones. Lamination seen in sand bed that has been disrupted through
bioturbation. Trace fossils consist of Fugichnia (Fu), Asterosoma (As), Palaeophycus
(Pa), Teichichnus (Te), Rosselia (Ro), Planolites (Pl). Diastasis cracks also seen (Dia).
Tweed Lake A-67
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Figure 2.5: Facies Plate Il (Facies 4 and 5)

A) Facies 4; Lower shoreface intensely bioturbated muddy sandstones with a diverse
fair-weather trace fossil assemblage. Rosselia (Ro), Asterosoma (As),, Cylindrichnus
(Cy), Skolithos (Sk), Chondrites (Ch, Teichichnus (Te), Palaeophycus (Pa),
Equilibrichnia (Eq). Typical of the Cruziana Ichnofacies. PCl C-12.

B) Facies 4; An nonbioturbated tempestite bed (white quartz rich sands) of the lower

shoreface deposited within extremely glauconitic (>90%) sandstone. Bele O-35.3

C) Facies 4; Lower shoreface interbedded bioturbated and cross-stratified strata.
Bioturbated intervals contain Palaeophycus and Chondrites. Non-bioturbated strata

interpreted to be tempestite deposits. Tweed Lake A-67.

D) Facies 4; Lower shoreface deposits featuring biogenically reworked amalgamated
tempestite beds featuring Lam-Scram indicating frequent storm activity. Frequent
fugichnia (Fu) indicate rapid sedimentation rates in which a burrowing organism moved

upward through the substrate. Tweed Lake M-47.

E) Facies 5; Hummocky Cross-Stratification of the middle shoreface with rip up clasts.
PCI C-12.

F) Facies 5; Amalgamated tempestite beds of the middle shoreface, nicely developed
lam scram fabric seen in the bottom half. Post-storm colonization suite consists of a
multitude of lined burrows, ?Cylindrichnus (?Cy), and ?Skolithos (?Sk). Red line
denotes the erosional truncation and emplacement of second storm event. Tweed Lake
A-67.

G) Facies 5; Low angle Cross-Stratification with shifting dip angle that is consistent with
HCS of the middle shoreface. Tweed Lake A-67.
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Figure 2.6: Facies Plate Ill Facies (6 and 7).

A) Facies 6; High angle cross-stratified upper medium grained sandstone. Tweed Lake
A-67.

B) Facies 6; Decimeter scale bed sets of trough cross-stratified sands interpreted to be

the result of large sub-aqueous dune migration. Tweed Lake A-67.

C) Facies 6; Soft sediment deformation in the form of micro-faulting within trough cross

stratified sandstone. Tweed Lake A-67.
D) Facies 6; Hummocky cross-stratified sandstones.

E) Facies 6; Trough cross-stratified sandstones of a washover fan deposit. Tweed Lake
A-67.

F) Facies 7; Lingulichnus (Li) traces showing equilibrium adjustments. Tweed Lake A-
67.

G) Facies 7; Large oil stained Skolithos (Sk) in upper medium sandstone. Tweed Lake
A-67.

H) Facies 7: 12 cm long Skolithos (Sk). PCI C-12
I) Facies 7; Bedding plane view of Skolithos piperock assemblage. Tweed Lake A-67.

J) Facies 6: Core view of the massive homogenous red regolith mudstone. Tweed Lake
A-67.
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Figure 2.7: Depositional model for the Colville Hills Cambrian Mount Clark Formation.
Modified from Short (1999) and Deutsch (1992).

A) Facies are placed on the upper block diagram in green filled circles.

B) Lower figure a modern example of an intermediate barred shoreface profile; a shore
parallel longshore bar separated by a wide deep longshore trough, Oregon Coast,

United States. Air photo from Google Earth Pro.
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Figure 2.8: Simplified palaeogeographic map recording hurricane influence on

Cambrian deposition within Laurentia. Modified from Scotese et al. (1979).
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CHAPTER 3: MIXED DELTAIC, SHOREFACE, AND TIDAL EMBAYMENT
SEDIMENTATION ALONG A STORM-INFLUENCED EARLY CAMBRIAN
SHORELINE; OUTCROPS WITHIN THE EASTERN MACKENZIE MOUNTAINS,
NORTHWEST TERRITORIES, CANADA

INTRODUCTION

During the Lower Cambrian, the absence of land plants resulted in the
development of extensive aeolian dune fields and braided fluvial systems (Rainbird et
al., 1997, Long and Yip., 2009). These braided fluvial systems delivered large amount of
sediment to the shoreline which was subsequently reworked by wave and storm action.
Early Cambrian paralic environments have been ascribed to transgressive
environments wherein large volumes of these compositionally mature sands
accumulated (Dalrymple and Rhodes., 1995; Cant and Hein, 1986; Simpson and
Eriksson, 1990; MacNaughton et al., 1997; Desjardins et al., 2010, 2012a,b). These
environments were commonly manifested as widespread, tidally reworked sand shelves
on passive margins (Bond et al., 1984; Dalrymple and Rhodes., 1995; Cant and Hein,
1986; Simpson and Eriksson, 1990; MacNaughton et al., 1997; Desjardins et al., 2010,
2012a,b).

Here we present a detailed study of the sedimentology and ichnology of the
Mount Clark Formation exposed within the Mackenzie Mountains of the Northwest
Territories. This paper provides detailed sedimentological and ichnological data and
interpretations meant to complement earlier regional work that was focused on the
Mount Clark Fm (Aitken et al., 1973; MacLean, 2011; Fallas and MacNaughton, 2012).
And, this paper has the fundamental aim of expanding our view of Cambrian shoreline
associated facies models for comparison and application elsewhere. In comparison to
previous Cambrian work within Western Canada and Arctic Canada that identified tidally
dominated environments (Hein, 1987, Pemberton and Magwood, 1990; Desjardins et
al., 2010, 2012; Durbano et al., 2015) we report strongly storm influenced shoreface
deposition with wave-dominated deltaic intervals. Tidal influence on sedimentation is

interpreted to be minimal outside of one outcrop locality.
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PREVIOUS WORK

The Mount Clark Formation (Fig. 1) was defined by Williams (1922; 1923). In the
subsurface and in outcrop belts of the Mackenzie Mountains the Mount Clark Formation
is dominated by cross-bedded or bioturbated quartz-rich sandstone. The overlying
Mount Cap Formation was also defined by Williams (1922; 1923) as an interbedded
black shale and carbonate unit. The Mount Clark Formation is now considered to
include strata of the Old Fort Island of Norris (1965).

Previous geologic research on the Mackenzie Mountains were broad regional
studies operated by Geological Survey of Canada (GSC) mapping programs. Aitkens et
al. (1973) initially delineated and described the Cambrian strata of the Mackenzie
Mountains during the course of Project Norman in the late 1960s and early 1970s.
Since then, work has focused on refining the trilobite stratigraphy of the Cambrian
interval and on higher resolution mapping (Fallas and MacNaughton, 2012;
MacNaughton et al., 2013). MacLean (2011) conducted an in depth study of the
regional extent of Cambrian strata throughout the Northwest Territories Mainland using
available seismic data. His work helped to delineate the depocentres and arches
present during Cambrian deposition. In the 2000’s the GSC and industrial stakeholders
sought after potential reservoir extensions of the proven reserves found in the Colville
Hills. This work was summarized in the Serie et al. (2009) open file report that contained

descriptions of Cambrian successions within the Mackenzie Mountains.

GEOLOGIC SETTING

Cambrian strata of the Northwest Territories Interior Mainland lies unconformably
on Proterozoic strata of the Katherine and Little Dal Group (Aitken et al., 1973). This
unconformity translates into an angular unconformity in some areas. Cambrian strata
are punctuated by several depocentres and arches (Dixon and Stasiuk, 1998). The
outcrops that form the basis of this study are flanked by the Mackenzie and Mahony

arches to the West and East respectively (Dixon and Stasiuk, 1998) (Fig. 2). Hamblin
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(1990) and Dixon and Stasiuk (1998) suggested that the Mount Clark and Cap
formations represented the sedimentological response to the marine transgression of
the Sauk sequence (Hamblin, 1990; Dixon and Stasiuk, 1998).. The overall trend of
transgression finally resulted in a shift to the carbonate/shale dominated Mount Cap

Formation.

There are several inconsistencies regarding the nomenclature of the Mount
Clark-Mount Cap transition. Previous work focused on the lithostratigraphic framework
of these units, which presents difficulties with basin wide depositional systems and
sequence stratigraphic correlations. The Mount Cap Formation was defined on the
basis of a heterolithic, shale-dominated succession at the type locality of Mount Cap by
Williams (1922). The type section is approximately 250 km from the outcrops presented
in this study, and lie within a different depocenter. For the purposes of this study, we
identify the Mount Clark-Cap Fm transition as the shift from siliciclastic sandstone

dominated to interbedded shale and carbonate intervals.

Biostratigraphic age constraints of the Mount Clark Formation are based on
trilobite zones. However, many of the sandstone dominated parts of the Clark Formation
are devoid of trilobites. The Dodo Canyon section is an important locality because the
entire Cambrian Succession along with the Proterozoic unconformity is persevered
(Aitken et al., 1973). In the area: three trilobite zonations have been established and are
(from oldest to youngest): 1) Bonnia-Olenellus; 2) Albertella; and 3) Glossopleura (Fig.
3a). Albertella zone trilobites were recorded from the base of the Mount Cap Fm interval
at Carcajou Canyon (Fallas and MacNaughton, 2012) (Fig. 3b). At the Dodo Canyon
section, Albertella and Glossopleura trilobites were found in the organic-rich shale in the
upper half of the section along with Bonnia-Olenellus specimens in the lower sandier
heterolithic interval (Fritz, 1970; Aitken et al., 1973; MacNaughton et al., 2013). This
suggests that the lower heterolithic, mixed carbonate-clastics of Dodo Canyon are
coeval with the quartz dominated Mount Clark Fm at Carcajou Canyon. The Mount
Clark Fm is assigned an approximate age of 520-514 m.y. based on presence of the
Bonnia-Olenellus zone trilobites. For this study the allostratigraphic Mount Clark Fm is

assigned as lying below Albertella containing interbedded carbonates and shales of the
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Mount Cap Fm. This surface is sharp and is interpreted to record a flooding surface
separating the Bonnia-Olenellus Mount Clark Fm from the Albertella to Glossopleura

Mount Cap Fm.

METHODS

Three outcrop localities were studied (Fig. 2). Carcajou Canyon, Waterfall Ridge,
and Two Lakes were chosen due to the quality of outcrop exposure, proximity to fresh
water sources, and helicopter accessibility. Outcrops were measured usinga 1.5 m
Jacobs Staff. Lithology, mineralogy, the nature of bedding contacts, body and trace
fossils, and overall bioturbation intensity were recorded. For select outcrops (Carcajou
Canyon, Dodo Canyon), high resolution 3-D photo mosaics with a 4K Camera equipped
Unmanned Aerial Vehicle (UAV or “drone”) were compiled. Photos taken from the drone
were merged together using Agisoft PhotoScan®©. Using outcrop, hand sample, and thin
section observations, detailed lithologs were generated in AppleCore®©.
Sedimentological and ichnological features of selected sections are illustrated in Fig. 4.
Ichnological data in the form of trace fossil size, diversity, and intensity was plotted

against these logs (Fig. 5).

FACIES ASSOCIATIONS

Three facies associations are reported based on field observations (Table 1): 1)
shoreface; 2) wave-dominated deltas; and, 3) tidal compound dune fields. Outcrop
mosaics are presented in Fig. 6. Due to the great number and high degree of variability,

facies associations have been summarized in Table 1 to keep prose succinct.

FACIES OVERVIEW

Lower shoreface deposits (FA1a,b) were characterized by a high trace fossil
diversity, large trace fossils and intense bioturbation. Paleo-storm conditions ranged

from strongly storm-influenced (Fa1a) to storm-affected (FA1b) deposition. Strong
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storm-influence was evidenced by the presence of amalgamated HCS beds interpreted
to record powerful oscillatory currents. More quiescent storm-affected conditions were
identified on the presence of thinly laminated sharp based sandstone beds interpreted
to record storm-derived sediment suspension settling. Upper shoreface environments
(FA1c) were associated to pervasive intervals of nonbioturbated TCS sandstone
interpreted to record rapidly migrating subaqueous dunes in a unidirectional current.
Foreshore deposits (FA1d) contained low angle bedding and herringbone cross-

stratification, which was interpreted to record bi-directional currents.

Wave-dominated deltaic deposits were composed of strata associated with lower
delta front to prodelta settings. Delta front deposits were displayed moderate to intense
bioturbation corresponding to a stressed Cruziana Ichnofacies. Trace fossil size and
diversity was reduced in comparison to fully marine lower shoreface assemblages.
Suspension feeding behaviors were also significantly suppressed. Storm influence
varied from strongly storm-influenced (FA2a) recording amalgamated HCS beds to
storm-affected (FA2b) recording interference ripples. Prodeltaic intervals (FA2c)
comprised immature, silty very-fine grained sandstone, containing an impoverished
Cruziana Ichnofacies assemblage. Biogenically reworked sandier laminae were

interpreted to record tempestite deposition.

Tidal compound dune field deposits were identified recording core (FA3a), front
(FA3b), and margin (FA3c) environments. The core of the dune field (FA3a) was
identified by low angle bedsets of TCS with varying foreset directions. Bioturbation was
limited with rare only Diplocraterion and Arenicolites observed. The front of the dune
field (FA3b) was identified by sigmoidal TCS beds with sharp erosive bed boundaries
truncating bioturbated lithosomes. Reactivation surfaces and herringbone cross-
stratification are common and interpreted to record tidal currents. Bioturbated
lithosomes are interpreted to represent an ecological niche in between migrating dune
bedforms that are erosively truncated. The margin of the dune field (FA3c) was
identified on the presence of intensely bioturbated sandstone lithologies with thin sharp
cross-stratified horizons. Bioturbated horizons recorded the Cruziana Ichnofacies with

Rusophycus and Cruziana observed. Sharp based cross-stratified horizons are

49



interpreted to record an increase in sediment supply and/or hydraulic energy. The
dominance of ichnofossils linked to deposit feeding suggests that FA3c was deposited
at the margin of the compound dune field due to its relative isolation from actively

migrating dune forms.

OUTCROP SUMMARY AND DESCRIPTION

Regionally, the Mount Clark Formation represents progradational and
retrogradational paralic deposits that include storm-influenced shorefaces, wave-
dominated deltas, tidally-dominated subtidal dune fields, and proximal offshore
sediments. Integrated sedimentological and ichnological striplogs of wave-dominated

deltas and shorefaces are presented in Figure 15.

WATERFALL RIDGE OUTCROP

The most notable observations at Waterfall Ridge are a paucity of HCS bedding,
and the presence of 2D and 3D sparsely burrowed compound dunes intercalated with
intensely bioturbated media (Fig.4; Fig. 6c). The absence of HCS indicates that
powerful storm generated long-wavelength sea-waves did not influence sedimentation
at this locale (Dumas and Arnott, 2006; Plint, 2010). Storm influence is, however,
manifested by thin (~5cm) crudely cross-bedded pebbly intervals that are interpreted to
represent storm surges that transported shoreline-associated clastics seawards (i.e.
FA3b Table 1; Fig. 11h).

The 3D and 2D compound dunes that locally contain sparse Skolithos,
Arenicolites and fugichnia are ascribed to tidal sedimentation. This is based on the
observation of abundant herringbone cross-stratification and reactivation surfaces
observed within dunes (Fig. 11c,e). These features share similarities with the Cambrian
(Gog Group) (Desjardins et al., 2010, 2012). Intensely bioturbated horizons
characterized by the Cruziana Ichnofacies represent inter-dune deposition in an

embayment setting (Fig. 14). Intense bioturbation within tidally dominated coastal
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settings is indicative of abundant food resources and overall low sedimentation rates
(Gingras et al., 2012). The bioturbated beds are erosionally truncated by overlaying 2D
and 3D dunes. Previous work within tide dominated Cambrian siliciclastic intervals
identified sediment supply and bedform migration as the main controls on trace fossil
distributions (Desjardins et al., 2010, 2012). We interpret these relationships to
represent a compound dune field and not a subtidal sand-sheet complex. Due to their
slower rates of migration and prolonged abandonment phases, sub-tidal sand sheet

fronts are characterized by abundant piperock (Desjardins et al., 2010).

In summary, Waterfall Ridge is interpreted to have been situated within a shallow
marine embayment protected from open marine storm influences. Embayment
morphology is interpreted to promote tidal currents, which were the dominant
sedimentary transport mechanism in the wave-sheltered bay. These conditions allow a
greater chance of preservation for tidal deposits than elsewhere on an exposed
coastline (Davis and Hayes, 1984; Dalrymple, 2010). Overall, Waterfall Ridge likely
contains one transgressive sequence marked by a shift from dune field front to dune
field margin This is interpreted on the strong decrease in physical sedimentary
structures and increase in bioturbation intensity when moving up section. Overlying the
Proterozoic unconformity we see sparsely bioturbated compound dune deposits (FA3a)
that grade into interbedded compound dunes and intensely bioturbated horizons
(FA3Db). The succession is capped off by the gradational shift into intensely bioturbated
horizons with thin episodic planar to trough-cross-stratified biogenically reworked sharp
based sandstone beds (FA3c). The transition from FA3a-FA3c could be interpreted as
one large transgressive cycle, however autogenic factors such as sediment supply and
budget could also explain the transition. Waterfall Ridge may represent sediment supply
changes oriented along depositional strike. Bathymetrically FA3a-c may be deposited
along strike within a similar water depth with FA3a recording deposition associated with
a large sediment budget while FA3c may be sediment starved with FA3b recording

deposition somewhere in between.
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CARCAJOU CANYON OUTCROP

Carcajou Canyon records highly variable sedimentation in which shoreface,
deltaic, and tidal environments are preserved (Fig. 4; Fig. 6a). Storm influence is

variable with strong to weak storm conditions observed.

Highly storm-influenced lower shoreface (LSF) deposits (FA1a) are seen within
the lower half of the section (~6m). These deposits are characterized by interbedded
sharp-based HCS and bioturbated horizons (Table 1; Fig. 7a). Bioturbated intervals
record robust, diverse, and intense (Bl 5) trace fossil assemblages with pervasive
deeply tiered deposit feeding behaviours such as Asterosoma (Fig. 7f). Thoroughly
bioturbated strata containing large robust traces correspond to fully marine fair-weather
shoreface conditions in which both deposit and suspension feeding organisms thrived
(MacEachern and Pemberton, 1992; Uchman and Krenmayr, 1995). Large HCS beds
with accompanied graded rhythmites record storm-weather conditions (Fig. 7e) (Aigner
and Reineck, 1982). Stronger storm conditions are recorded through amalgamated HCS
intervals interpreted to represent more sustained storm activity. Bioturbation within HCS
beds is rare apart from occasional burrow mottling at bed tops (Fig. 7e). This is
interpreted to reflect storm-waning and subsequent colonization resulting in a “Lam-

Scram” pattern (sensu Howard, 1978; MacEachern and Pemberton, 1992).

Sharply overlying FA1a of Carcajou Canyon lie intensely bioturbated (Bl 4-5) silty
muddy very fine grained prodeltaic sandstone of FA2c (Table 1; Fig. 9f). In contrast to
the robust deposit and suspension feeding trace fossil assemblages observed in the
underlying LSF deposits of FA1a, FA2c comprises trace fossil assemblages limited to
diminutive Teichichnus, Rhizocorallium, and Asterosoma (Fig. 99). These trace fossils
correspond to a stressed Cruziana Ichnofacies with a paucity of suspension feeding
forms (Mcliroy, 2008). Trace fossils are diminutive in comparison to the fully marine
shoreface strata of FA1a interpreted to record salinity stresses (Pemberton and
Wightman, 1992). The absence of suspension feeding behaviors is interpreted to record
turbidity stress (MacEachern et al., 2005). Mineralogies within FA2c are more immature
when compared with the quartz rich lithologies of FA1a as lithics, chert, micas, clays,

feldspars are common (Fig. 9h). MacNaughton et al (1997) noted offshore deposits of
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Cambrian shorelines contained greater amounts of silt than later Palaeozoic
successions and attributed this to the aeolian transport of fines offshore. The presence
of salinity and turbidity stressed trace fossil assemblages and more immature
mineralogy is interpreted to reflect deltaic sedimentation on a wave-dominated prodelta
(Bann and Fielding, 2004). Wave energy attenuated deltaic stresses such as
hypopycnal plumes and freshwater salinities. This is contrasted with fluvially dominated
river systems typically record sparse to nonbioturbated prodeltaic deposits
(MacEachern et al., 2005).

Storm influenced lower delta front deposits (FA2b) sharply overlie prodeltaic
deposits of FA2c (Table 1). These delta front deposit comprise interbedded heavily
bioturbated (Bl 4-5) horizons with nonbioturbated planar-tabular cross stratified 2-D
dunes (Fig. 9b&e). Boundaries between the lithosomes are sharp and with trace fossils
erosively truncated (Fig. 9d). Bedding plane exposures depict interference ripples
overlying 2-D dune horizons (Fig. 9a). Slabbed hand samples contain mm scale mud
drapes (Fig. 9c). Erosive planar tabular sandstone beds are interpreted to reflect
periodic storm influence. Storm-generated currents mobilize sediment and allow for
bedform migration that truncates fair-weather bioturbated horizons (Swift et al., 1979; Li
and King, 2007). Asymmetrical interference ripples are formed through oscillatory
currents that is common in nearshore settings (Clifton, 1971; Li and King, 2007).
Deformed trace fossil assemblages within bioturbated horizons comprise Teichichnus,
Asterosoma, Chondrites, Rhizocorallium, Cylindrichnus, Gyrolithes, and Palaeophycus
(Fig. 9c). Chondrites is concentrated within mud laminae. These trace fossil
assemblages correspond to the Cruziana Ichnofacies indicating sufficient food stored in
the substrate (MacEachern et al., 2007). The paucity of suspension feeding forms is
interpreted to record turbidity induced stress (Moslow and Pemberton, 1988) while the
deformed burrow morphologies are interpreted to represent heightened sedimentation
rates (Gingras et al., 2011). Facies association 2b at Carcajou Canyon records storm-
influence within the lower wave-dominated front. Fair-weather sedimentation is recorded
by thoroughly bioturbated lithosomes dominated by the Cruziana Ichnofacies. Deltaic
influence is interpreted on the paucity of suspension feeding forms and deformed
burrow morphologies resulting from increased water turbidity and sediment supply.
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Storm-influence is visible via erosionally based interference ripples and 2-D dunes that

truncate bioturbated fair-weather horizons.

Lying further upstream lying coeval with FA2b are tidal compound dune deposits
of FA3a. These deposits were only observed using a UAV allowed a high resolution
aerial photomosaic of the interval (Fig. 10a; Fig. 16). This observation is noted due to
distinctive LSF deposits of FA1b that erosionally overlie the two. A change in thickness
in FA1b when walking from the falls up section and river towards the compound dune
interval seen at river's edge was recorded. FA1b decreases in thickness from 1.90m to
1.30m (Fig. 19). This is interpreted to represent a shift in overall accommodation due to
either shoreline profile or fault blocks dropping out. The compound dune facies are
more proximal than the delta front deposits of FA2b. This is aided by their
sedimentologic and ichnologic characteristics: 1) abundant high energy bi-directional
sedimentary structures; and 2) suspension feeding Skolithos traces (Fig. 10b,c). The
transgressive surface directly above is also an indicator of paleo water depth as the
compound dune has been erosively transgressed resulting in large scour marks (Fig.
9a). FA1d has no such scour marks and the only indication of transgression is the

vertical disparity in interpreted environments with FA2b being shallower.

A flooding surface (MRS) overlies FA2b corresponding to transgression and
subsequent deposition of storm-affected lower shoreface deposits of FA1b. These lower
shoreface deposits comprise intensely bioturbated (Bl 6) lower fine sandstones with
thinly laminated quartzose interbeds (Fig. 7j). Quartzose interbeds are sharply based
with Glossifungites firm-ground suites observed (Fig. 7k). These thin quartzose
interbeds are interpreted as thin tempestites recording storm deposition. Glossifungites
surfaces underlying tempestites ascribed to low sedimentation rates (Hubbard and
Shultz, 2008). In comparison to the strongly oscillatory HCS bedforms observed in FA1a
these thin tempestite beds likely represent deposition from suspension fall out (Aigner
and Reineck, 1982). Storm influence is interpreted to be significantly reduced in
comparison to the amalgamated HCS beds observed in FA1a. Trace fossil
assemblages are robust and diverse with Rhizocorallium, Asterosoma, Teichichnus,

Rosselia, Palaecophycus, Chondrites, Planolites, Skolithos, Diplocraterion, and
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Rusophycus (Fig 71&m). These trace fossil assemblages correspond to the Cruziana
Ichnofacies with a combination of suspension and deposit feeding behaviors within fully
marine physico-chemical conditions (MacEachern and Pemberton, 1992). Due to the
presence of diverse and robust trace fossil assemblages comprising deposit and
suspension feeding behaviors in conjunction with thinly bedded tempestites FA1b is

interpreted to record deposition within a storm-affected lower shoreface.

Directly overlying lower shoreface deposits of FA1b lies a well-developed
Glossifungites demarcated omission surface (Fig. 13). Taenidium burrows contain a
celadonite, a brilliant blue-green mineral in association with large manganese cemented
lithoclasts (Fig. 13b-d). This surface is interpreted to represent a regressive surface of
erosion as a result of FA1d that lies above the Glossifungites surface (explained below).

Mount Clark Fm deposition terminates at Carcajou Canyon with FA1d recording
foreshore deposition. Lithologies comprise lower medium grained celadonitic
sandstones with alternating horizons of cross-stratified and bioturbated horizons (Fig.
8d&e). Cross-stratified horizons are represented by herringbone cross-stratification and
current ripples. These cross-stratified horizons impart sharp and erosive contacts on
bioturbated intervals comprising of robust and intense (Bl 4-5) assemblages of
Chondrites. The large size of these traces is interpreted to record well-oxygenated
sediment with healthy amounts of nutrients within the substrate (Bromley and Ekdale,
1984). Herringbone cross-stratification is interpreted to record bi-directional currents
through tidal currents and/or wave swash (Reineck and Singh, 1980). Facies
association 1b is interpreted to record deposition within the foreshore environment due
to the presence of bi-directional current sedimentary structures and robust Chondrites
assemblages indicating well-oxygenated sediment. Subsequent transgression
continued into the Mount Cap Formation resulting in deposition of interbedded
carbonate and black shale lithologies (Fig. 13a).

In summary, Carcajou Canyon is interpreted to have been situated within open
marine to embayed shoreline. Open marine lower shoreface conditions are represented
by FA1a&b consisting of robust marine trace fossil assemblages. Storm influence is

interpreted on the presence of tempestite beds ranging from amalgamated HCS (FA1a)
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to thinly laminated beds (FA1b). This shift in storm influence may have resulted from a
shift in shoreline orientation in which FA records more shielded sedimentation away
from the brunt of storm influence. FA1a likely records more open conditions facing the
brunt of storm activity resulting in amalgamated HCS deposition. Wave-dominated
deltaic sedimentation is recorded in delta front (FA2b) and prodelta (FA2c) deposits.
These deposits depict a marked decrease in trace fossil diversity and suspension
feeding behaviors interpreted to record fluvially induced turbidity and salinity stresses
(Fig. 5) (MacEachern et al., 2005). Storm influence is visible in thin biogenically
reworked very fine sand intervals and storm-activated 2-D dunes. Coeval to the delta
front deposits are tidal compound dune deposits observed by the river's edge. This shift
to tidal sedimentation may record shallow water deposition in which tidal forces control
sedimentation. This scenario would require protection from open marine waves that
overwhelm tidal currents (Davis and Hayes, 1984). Shoreline orientation may have
shifted resulting in the creation of a protective embayment promoting tidal

sedimentation.

TWO LAKES OUTCROP

Two Lakes records strongly storm-influenced shoreface and wave dominated

deltaic sedimentation represented by the resistant sandstone cliffs seen in Figure 6b.

The most notable observations at Two Lakes are an abundance of HCS bedding
interbedded with impoverished (FA2a; Fig. 8f-h)) to diverse bioturbated (FA1a; Fig. 7g-i)
horizons. Nonbioturbated lithologies are characterized by trough to planar cross-
stratified sandstones (FA1c; Fig. 8a-c). The presence of HCS indicates that Two Lakes
was situated within an open marine environment subjected to storm activity (Walker and
Plint, 1992). The presence of two opposing trace fossil assemblages is interpreted to
represent varying physico-chemical conditions (Pemberton et al., 1982; Gingras et al.,
2011). Bioturbated are interpreted to record fair-weather sedimentation while HCS is

interpreted to record storm-weather sedimentation.
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Sparsely to bioturbated lithologies interbedded with sharp based HCS beds are
ascribed to storm-influenced wave-dominated delta front sedimentation. This is based
on impoverished trace fossil assemblages comprising Chondrites, Palaeophycus,
Cylindrichnus, and Asterosoma. with diminished suspension feeding behaviors (Gingras
et al., 1998; Coates and MacEachern, 2007). These impoverished trace fossil
assemblages are starkly contrasted with the robust, diverse, and intense bioturbate
fabrics of FA1a,b within the lower shoreface (Fig. 7g-i). Deltaic-induced salinity and
turbidity stresses in the form of mud flumes and freshwater influx are interpreted to be
the cause of these impoverished trace fossil assemblages (MacEachern et al., 2005).
Although these physico-chemical stresses had an appreciable effect on trace fossil
assemblages it should be noted that wave energy attenuated these stresses resulting
more hospitable conditions than a fluvially dominated delta (Bann and Fielding 2004).

Sharply overlying delta front deposits of FA2a lie nonbioturbated multi-directional
TCS and planar-tabular lithologies of FA1c. The nonbioturbated nature of these units is
interpreted to reflect rapidly migrating bedforms under strong unidirectional currents
(Reineck, 1977). We interpret this interval to record deposition on the upper shoreface
or upper delta-front. Distinguishing between the two is difficult as both environments
show identical sedimentologic and ichnologic characteristics. The erosive surface that
separates lower delta-front (FA2a) and upper shoreface/delta front (FA1c) deposits is
interpreted to represent a surface of forced regression (Fig. 6b). We interpret that FA1c
was deposited during a relative sea-level fall creating a surface of forced regression
(Hart and Plint, 1995).

Directly overlying the upper shoreface/delta front deposits of FA1c lies strongly
storm-influenced lower shoreface deposits of FA1a separated by a flooding surface
(MRS; Fig. 6b). In stark contrast to the underlying deltaic deposits of FA2a, FA1a
records diverse, robust, and intensive trace fossil assemblages. Whereas FA2a
displayed a paucity of suspension feeders FA1a contains robust Diplocraterion and
Skolithos in association with deeply tiered deposit feeding traces such as Asterosoma.
Hummocky cross-stratification is pervasive throughout with well developed post-storm

colonization suites of Diplocraterion and Cylindrichnus (Fig. 7c). These suites are
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interpreted to be the result of r-selected organisms rapidly inhabiting the newly
deposited sandy substrate (Vossler and Pemberton, 1988). Transgression of FA1c and
subsequent deposition of FA1a is interpreted to be the result of an auto-cyclic deltaic
lobe switch in which sediment supply can no longer keep pace with sea level and
transgression occurs (Bhattacharya and Walker, 1991). This explains the contrasting
trace fossil assemblages seen in the lower delta front and overlying lower shoreface
deposits. Alternatively, this flooding event could also represent an allo-cyclic sea level
rise and the contrasting trace fossil assemblages could be a result of along strike
variation in physico-chemical water conditions in relationship to proximity to a delta
distributary channel. Distinguishing between the two scenarios would require greater

outcrop control that was unavailable.

In summary, Two Lakes is interpreted to have been situated within open marine
shoreline. Open marine lower shoreface conditions are represented by FA1a comprising
robust marine trace fossil assemblages. Strong storm influence is interpreted on the
presence of amalgamated HCS tempestite beds (FA1a, FA2a). Wave-dominated deltaic
sedimentation is recorded in delta front (FA2a) deposits. These deposits depict a
marked decrease in trace fossil diversity and suspension feeding behaviors interpreted
to record fluvially induced turbidity and salinity stresses (MacEachern et al., 2005).
Delta front/upper shoreface deposits are characterized by nonbioturbated
multidirectional trough and planar-tabular cross-stratification (FA1c) formed through
unidirectional currents. The transgression (MRS) following deposition of FA1c is
interpreted to record a delta lobe switch in which sediment supply was unable to keep
up with sea level rise (Bhattacharya and Walker, 1991). Evidence for this is observed in
the overlying lower shoreface deposits of FA1a that comprise diverse and robust trace

fossil assemblages.

ICHNOLOGY OF CAMBRIAN WAVE-DOMINATED DELTAS

The ichnological and sedimentological expressions of Cambrian tidally
dominated sand sheets have been well studied (Desjardins et al., 2010, 2012; Durbano
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et al., 2015; Mangano and Buatois; 1999, 2004a,b; Schafer, 1972). This discussion will
therefore focus on the comparison of Cambrian shoreface and wave dominated deltaic

complexes.

Early Cambrian shoreface deposits from the Mount Clark Formation in the
Northwest Territories contain ichnological signatures marked by moderate to intense
bioturbation, high diversity (12 ichnospecies), and a remarkable number of specialized
feeding behaviours (Table 2). The relative decrease in diversity when compared with
well-studied Cretaceous shorelines is an evolutionary phenomenon as decapod
crustaceans and bloodworms responsible for Ophiomorphal Thalassinoides and
Macaronichnus did not radiate until the Mesozoic (Carmona et al., 2005). Diverse
assemblages are composed of the robust burrows of deposit and detritus feeders mixed
in with a well-developed array of vertical traces that represent the burrowing activities of
carnivores, scavengers, and suspension feeders. These complex assemblages are
interpreted to represent a diverse proximal expression of the Cruziana Ichnofacies
mixed with major elements of the Skolithos Ichnofacies. This suite reflects a fully marine
well-oxygenated environment with abundant suspended and buried nutrients in which
mature metazoan communities were able to thrive. Ichnological responses to storm
sedimentation were observed in impoverished Skolithos style colonization suites within
HCS beds composed of Diplocraterion, Skolithos, and Cylindrichnus. These suites were
developed as result of a storm induced shift in nutrient distribution favoring r-selected

organisms (Pemberton and MacEachern, 1997).

In contrast, the ichnological signature of early Cambrian deltaic deposits is
characterized by a significant reduction in trace fossil size and diversity along with the
absence of robust suspension feeding forms. Bioturbation is comprised of 3-4
ichnospecies and is sporadically distributed with reduced intensity. These assemblages
correspond to a stressed expression of the Cruziana Ichnofacies. Rare examples of
Cylindrichnus and Skolithos were observed within the delta front lithologies of FA2a,b

indicating a suppressed element of the Skolithos Ichnofacies.
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Integrated ichnological and sedimentological logs are illustrated in Figure 17
contrasting the differences between Cambrian shoreface and deltaic deposits. In
prodeltaic intervals primary lamination has been disrupted by intense bioturbation
consisting of abundant Teichichnus and Asterosoma with rare Rhizocorallium. The size
of trace fossils is significantly smaller in comparison to the fully marine assemblages
(Fig. 17). Thin, lighter coloured and coarser grained laminae (tempestites) have been
largely reworked (Bl 5) by biogenic activity. Facies association 2C has been completely
homogenized during fair-weather conditions through deposit feeding organisms.

Cambrian shoreface and delta front deposits differ in significant ways from an
ichnological perspective (Fig. 17). Lower shoreface deposits comprise a diverse fair-
weather assemblage that represents a proximal expression of the Cruziana ichnofacies
reflecting sustained periods of abundant nutrients and healthy marine conditions.
Tempestites occasionally contain a relatively impoverished distal expression of the
Skolithos ichnofacies in the uppermost 10cm of HCS beds. This suggests that r-
selected organisms were able to colonize the substrate after storm deposition. In
contrast, the delta front is characterized by stressed infaunal community marked by
diminutive, opportunistic deposit feeding organisms. Vertical suspension feeding forms

such as Skolithos and Diplocraterion are very rare.

The overall paucity of robust suspension feeders in deltaic deposits may reflect
elevated water turbidity. High levels of suspended sediment within the water column
render colonization and survival difficult for suspension feeding organisms by plugging
filter-feeding apparati and reducing the efficiency of feeding (Moslow and Pemberton,
1988; Gingras et al., 1998; Bann and Fielding, 2004; MacEachern et al., 2005). Large
increases in suspended fine-grained sediment are typically associated with heightened
precipitation and subsequent increased fluvial discharge into the basin (Coates and
MacEachern, 2007). A large fluvial sediment supply can be inferred based on the
presence of large braided river systems that avulsed regularly due to the lack of any
stabilizing land vegetation in the Cambrian (MacNaughton et al., 1997). In the absence
of land plants aeolian transport of fine sediment may have been prolific resulting in

windblown sediment blown offshore (Dalrymple et al., 1985). Braided rivers were likely
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bedload dominated with unstable banks and high width:depth ratios bringing large
amounts of sediment to the shoreline (Schumm, 1968; Cotter, 1978). As a result,
suspended sediment load may have been greater than what may have occurred in well
studied Permian and Mesozoic deltaic successions (Bann and Fielding, 2004; Mcliroy,
2004; Coates and MacEachern, 2007).

Organic rich mudstone drapes covering tempestite beds are a relatively common
observation in late Paleozoic and Mesozoic deltaic successions (Saunders et al., 1994;
Coates and MacEachern, 1999; Bann and Fielding, 2004). These mud drapes have
been interpreted to cause rapid oxidation and oxygen depletion inhibiting opportunistic
storm suites colonizing the storm bed (Coates and MacEachern, 2007) However, these
organic rich mud drapes are absent in the Cambrian Mount Clark Fm and a likely result
from having no land plants in the Cambrian. Cambrian transport of silt and clay sized
fractions is thought to be dominantly aeolian resulting in a tradewind dominated fine-
grained sedimentation (Dalrymple et al., 1985). This dominantly aeolian transport of
fines results in clay and silt poor Cambrian marine successions. Internal erosion
surfaces and rip-up clasts provide evidence that storm activity was pervasive and

frequent enough to remove previously established colonization communities.

Broadly speaking, stressed, low-diversity, diminutive trace fossil assemblages
recorded from the Early Cambrian deltaic deposits of the Mount Clark Fm reflect less
hospitable living conditions than those in fully marine shoreface environments. Most
inhabitants are opportunistic species that flourish in unpredictable conditions with
respect to water salinity and turbidity. The highly variable and interfingering nature of
these deltaic and shoreface deposits is a testament to the highly variable braided fluvial

drainage patterns on barren Cambrian cratons (MacNaughton et al., 1997).

CONCLUSIONS

The early Cambrian Mount Clark Fm at the outcrop localities of Waterfall Ridge,
Carcajou Canyon, and Two Lakes records deposition of inter-fingered shoreface,

deltaic, and tidal dune field deposits. The highly variably nature of these deposits is
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attributed to large braided river systems delivering large amounts of sediment to the
shoreline on a barren Cambrian craton. Due to no stabilizing land vegetation, these
rivers are inferred to have frequently avulsed creating mixed shoreface and deltaic
successions seen at Two Lakes and Carcajou Canyon. Tidal forces are interpreted to
be minimal outside of shielded marine embayments that amplified tidal activity while
shielding sedimentation from storm and wave influence resulting in the deposition of
tidal dune fields. Integrated sedimentological and trace fossil analysis through
bioturbation intensity, trace fossil size, and diversity has shown to be a robust
methodology for delineating tidal and wave/storm influences through identifying physico-
chemical stresses. These ichnological responses are very similar to well-studied late

Paleozoic and Mesozoic deltaic successions.

1) The Mount Clark Formation represents a complex depositional environment
punctuated by wave, storm, and tidal influences in shoreface, deltaic, and tidal
settings.

2) Outcrops listed in order of increasing wave/storm influence are as follows: 1)
Waterfall Ridge; 2) Carcajou Canyon; and 3) Two Lakes.

3) Wave-dominated deltaic deposition is marked by strong decrease in trace fossil
size and diversity along with a reduction in suspension feeding behaviours. This
is interpreted to represent salinity and turbidity stresses from fluvial influx.

4) More immature mineralogies consisting of an increase in feldspar, lithics, chert,
and mica fragments accompany these deltaic ichnological suites.

5) Deltaic influence punctuates the basin and is a likely cause for base-level falls,
due to lobe abandonment and subsequent switching. Cambrian river systems
may have shifted more rapidly due to no stabilizing vegetation.

6) Fair-weather shoreface deposits show the most diverse and intense bioturbate
fabrics with uniformly high bioturbation intensities (averaging Bl 5).

7) Storm-weather HCS deposition punctuates shoreface and deltaic sedimentation
with rare post-storm Skolithos style colonization suites.

8) Tidally-dominated dune deposits show the most ichnologically variable
conditions. Compound dune forms are characterized by highly stressed
conditions with limited and sparse bioturbation trends (Bl 0-2). This stress is a
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likely result of high sediment supply, continuously shifting substrates, and salinity
fluctuations associated with tidal periodicities. In turn the heavily bioturbated (Bl
6) horizons are representative of a quiescent stable niche that occupies the

trough in between migrating compound dunes (Fig. 14).
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Table 3.1: Summary of facies associations and depositional environments of the Mount

Clark Formation within the Mackenzie Mountains.
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Table 3.2: Shoreface Associated Ethologies of Mesozoic and Cambrian Shorefaces.
Trace fossil behaviours documented from the Early Cambrian (EC) Mount Clark
Formation and a range Cretaceous (K) strata (Leckie and Walker, 1982; Saunders and

Pemberton, 1990; MacEachern and Pemberton, 1992;). Behaviours are adapted from
MacEachern et al. (2007).
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Figure 3.1: Stratigraphic column for the Cambrian System within the Northwest
Territories, Canada. The chief focus of this study is the Mount Clark Formation within

the Mackenzie Plain area. Modified from MacLean (2011).
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Figure 3.2: Basemap of the study area showing the outcrop locations within the
Mackenzie Depocenter. Map modified from MacLean (2011). Air photo from Google
Earth.
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Figure 3.3: Biostratigraphic framework of the Mount Clark Formation using trilobite

zonations.

A) Photomosaic of the Dodo Canyon section of the Mount Clark Formation.
Allostratigraphic Mount Clark and Cap Formations are indicated by the orange and red

arrows respectively. Trilobite faunas represented by the blue, pink, and green stars.

B) UAV acquired overview photograph of the Carcajou Canyon locality illustrating the
typical Mount Clark quartz dominated sandstones overlain by the dolostone and black
shale of the Mount Cap Formation. The blue arrow indicates the Mount Clark/Cap Fm
boundary. Note the pink star indicating Albertella zone trilobites placing the quartz

dominated sandstones as older than Albertella.
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Figure 3.4: Striplogs of the outcrop sections logged.

Red lines indicate flooding surfaces (maximum regressive surfaces) while green
squiggly lines represent a Glossifungites surface. Surface of forced regression outlined
in blue at Two Lakes. The depositional environments are indicated by coloured shading

in the left margin of each log. Digitized logs were done through AppleCore®© software.
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Figure 3.5: Carcajou Canyon and Two Lakes striplogs with trace fossil size, diversity,
and intensity plotted. Deltaic signatures (translucent green) become manifested through

trace fossil size and diversity reductions.

81



82



Figure 3.6: Overview photomosaics of the three outcrop localities studied.

A) Carcajou Canyon

B) Two Lakes. Resistant sandstone cliffs mark the Mount Clark Formation. Inset photo
of two significant surfaces. Blue arrow indicates surface of forced regression. Red
squiggly line indicates maximum regressive surface (MRS) separating upper
shoreface/delta front deposits from lower shoreface deposited above.

C) Waterfall Ridge. Red squiggly line marks the Proterozoic-Cambrian unconformity.
Blue line marks the top of the Mount Clark Formation, base of the Mount Cap

Formation.
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Figure 3.7: FA1a (Storm-Influenced Lower Shoreface) and FA1b (Storm-Affected

Lower Shoreface) Photo Plate.

A) UAV acquired aerial shot of river washed HCS beds. FA1a, represents storm-
weather conditions. Carcajou Canyon.

B) Amalgamated HCS beds indicating pervasive and intense storm weather conditions
and deposition, note sharp lower erosive boundary cutting unto heavily bioturbated
fair-weather conditions. Two Lakes, FA1a.

C) HCS storm bed colonization suite with abundant mud-lined burrows and
Diplocraterion (Di). Two Lakes, FA1a.

D) Ball and pillow structures or “pseudo-nodules” indicated by black arrows underlying
HCS bed. Carcajou Canyon, FA1a.

E) Distal expression of HCS, graded rhythmite. Carcajou Canyon, FA1a.

F) Robust Asterosoma (As). Carcajou Canyon, FA1a.

G) Robust bedding plane expressions of Diplocraterion (Di). Two Lakes, FA1a.

H) Cross-sectional view of Asterosoma (As). Two Lakes, FA1a.

I) Bedding plane expressions of Rosselia (Ro). Two Lakes, FA1a.

J) Overview photo of FA1b, intensely bioturbated lower shoreface fair-weather deposits
with thin white quartzose tempestites. Carcajou Canyon, Fa1b.

K) Biogenically reworked quartzose tempestite with auto-cyclic Glossifungites firm-
ground developed underneath, Planolites (Pl) and Skolithos (Sk). Carcajou Canyon,
FA1b. Red Jacobs staff is 1.5 m in length.

L) Intensely bioturbated fair-weather deposits of the lower shoreface containing cross-
sectional views of Asterosoma (As), Teichichnus (Te), and Rhizocorallium (Rz).
Carcajou Canyon, FA1b.

M) Bedding plane expressions of Intensely bioturbated (Bl 6) fair-weather trace fossil
assemblages of FA1d; Palaeophycus (Pa), Cylindrichnus (Cy), Diplocraterion (Di),
Skolithos (Sk), and Rusophycus (Ru).
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Figure 3.8: FA1c (Upper Shoreface/Upper Delta Front), FA1d (Foreshore), and FA2a
(Storm-Influenced Lower Delta Front) Photo Plate.

A) Planar-tabular bedding of FA1c. Two Lakes, 10cm increments on red pogo staff.

B) Trough cross-stratification of FA1c. Two Lakes.

C) Planar-tabular bedding of FA1c. Two Lakes.

D) Mono-specific assemblages of Chondrites (Ch) within celadonitic sands of FA1d.
Carcajou Canyon.

E) Herringbone cross-stratification of FA1d. Carcajou Canyon.

F) Large scale HCS bedding (storm-weather) and intensely bioturbated (fair-
weather) horizons. 1.5 m red Jacobs staff for scale. Two Lakes, FA2a.

G-H) Slabbed and polished hand samples from fair-weather bioturbated horizons of
FA2a. Diminutive and impoverished Cruziana ichnofacies consisting of

Asterosoma (As), Cylindrichnus (Cy), Chondrites (Ch), and Palaeophycus (Pa).
Two Lakes.
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Figure 3.9: FA2b (Storm-Influenced Wave-Dominated Lower Delta Front) and FA2c
(Wave-Dominated Prodelta) Photo Plate.

A) Oscillatory interference ripples observed on the bedding plane of FA2b, rough
orientation provided by green lines. Blue box provides a more detailed inset image.
Carcajou Canyon.

B) 2-D dune manifested as planar-tabular cross-stratification. Pencil approximately 12
cm in length. Carcajou Canyon, FA2b.

C) Cross-sectional view of a slabbed hand sample of FA2b showing muddy sandstone
with Gyrolithes (Gy), Cylindrichnus (Cy), Palaeophycus (Pa), Chondrites (Ch), and
Rhizocorallium (Rz). Carcajou Canyon, FA2b.

D) Teichichnus (Te) erosionally truncated by 2-D dune. Carcajou Canyon, FA2b.

E) Outcrop cross-sectional close-up of FA2b showing an intensely (Bl 5) bioturbated
muddy sandstone fabric with Palaeophycus (Pa), Chondrites (Ch), Asterosoma (As),
Teichichnus (Te), and Rhizocorallium (Rz). Carcajou Canyon, FA2b.

F) Shaley black appearance and recessive weathering of FA2c at Carcajou Canyon.

G) Slabbed hand sample of FA2c showing an impoverished Cruziana Ichnofacies
containing Teichichnus (Te), Asterosoma (As), and Rhizocorallium (Rh).

H) Thin-section photograph of FA2c indicating plagioclase and potassium feldspars (red
arrows), muscovite (pink arrow), zircon (yellow arrow), clay minerals (orange arrow),
lithics (purple arrow), and chert (green arrow).
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Figure 3.10: FA3a (Compound Dune Field Core) Photo Plate.

A) UAV acquired photomosaic of section near the rivers’ edge showing FA1d (fair-
weather lower shoreface) and FA4a (compound dune field core) in the yellow and
red arrows. Orange arrow shows erosive scouring cutting into FA4a. The purple box
provides the inset for B. Carcajou Canyon.

B) Colonization suite consisting of Skolithos and Arenicolites burrows within FA3a.
Diagnostic of the Skolithos ichnofacies with Bl of 3. Carcajou Canyon.

C) Trough cross-stratification indicated by the translucent green lines. Note opposing
foreset dip angles. Carcajou Canyon, FA3a.

D) Compound dunes overlying the Proterozoic unconformity (red squiggly line). Yellow
lines are interpreted to represent compound dune geometries. Waterfall Ridge,
FA3a.

E) Sigmoidal trough cross-stratification of FA3a. Waterfall Ridge.

F) Zoomed image of (D) showing high to low angle cross bedding of trough cross-
stratification. Translucent black lines show cross-bedding. Waterfall Ridge, FA3a.

G) Slabbed and polished hand sample containing mudstone rip up clasts (red arrows.
Waterfall Ridge, FA3a.
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Figure 3.11: FA3b (Compound Dune Field) Photo Plate.

A) Overview photo of FA3b depicting sigmoidal dune forms and sharp erosional
contacts with underlying bioturbated horizons (red line). Waterfall Ridge.

B) Flame structures riding up into overlying 3-D dune indicated by red arrows showing
a soupy soft unconsolidated bioturbated substrate from FA3b. Waterfall Ridge.

C) Herringbone cross-stratification interpreted to represent bi-directional tidal currents.
Waterfall Ridge, FA3b.

D) 3-D dune erosionally truncating heavily bioturbated (Bl 5-6) horizons. Waterfall
Ridge, FA3Db.

E) Sigmoidal dune migrating up a previously deposited dune creating a reactivation
surface, herringbone cross-stratification in the lower beds traced in translucent blue
lines. Waterfall Ridge, FA3Db.

F) Large scale convolute bedding, scale bar is 3cm. Waterfall Ridge, FA3b.

G) Fugichnia within 3-D dune. Waterfall Ridge, FA3Db.

H) Crudely cross-bedded recessive pebbly interval interpreted to record storm
deposition. Waterfall Ridge, FA3b.

93



94



Figure 3.12: FA3c (Compound Dune Field Margin) Photo Plate.

A)Overview outcrop shot showing FA3c, darker red beds indicate 2-D dunes. Waterfall
Ridge.

B) Two examples of 2-D dunes (darker red colour) in FA3c. The lower bed has been
nearly obliterated due to biogenic reworking while the upper one shows significantly
less biogenic reworking. Waterfall Ridge, FA3c.

C)2-D dunes with sharp erosional bases migrating overtop of bioturbated intervals.
Waterfall Ridge, FA3c.

D-E) Bedding plane traces of Rusophycus and Cruziana. Waterfall Ridge, FA3c.

F) Biogenic deformation ichnofabric, complete homogenization of the sediment.
Waterfall Ridge, FA3c.
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Figure 3.13: Glossifungites Demarcated Omission Surface, Carcajou Canyon.

A) Overview photo of the Mount Clark to Cap Formation interval. The yellow line
indicates the Glossifungites surface. The pink arrow represents the relatively thin
deposits if FA1d.

B) Transgressive lag of Glossifungites surface. Red arrows point to large pebble sized
clasts of ?manganese cemented sandstone.

C) Taenidium (Ta) with brilliant blue/green celadonite infill.

D) Cross-sectional outcrop expression of the Glossifungites surface.
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Figure 3.14: Tidal Compound Dune Field of FA3.

A)

Geomorphic reconstruction of the subtidal compound dune field interpreted as the
environment of deposition for FA3. Two inset images are shown distinguishing the
different areas of deposition. Left image (FA3a) depicts the core of a compound
dune noted by the absence of erosionally truncated bioturbated horizons and
pervasive amalgamated dune bedforms. Right image (FA3b) shows the erosional
truncation of Cruziana style bioturbated muddy sandstones within the “trough” due
to compound dune migration across the substrate.

Geomorphic reconstruction of the subtidal compound dune field margin interpreted
as the environment of deposition for FA3c. Thinly bedded 2-D dunes migrate
erosively across the Cruziana style bioturbated muddy sandstone substrate as a
result of an increase in sediment budget and/or storm influence. Images below

show the outcrop depiction.
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Figure 3.15: Mount Clark Formation Depositional Framework for the Mackenzie

Mountains. Numbers indicate outcrop localities where deposition could have occurred.
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Figure 3.16: Carcajou Canyon Paleoenvironmental Juxtaposition.

I) Google Earth image showing the Carcajou Canyon outcrop with the two section of
interest noted by the pink arrows A and B.

A) UAV image of the river side section that contains tidally dominated deposits of FA3a
in comparison to the storm influenced shoreface and deltaic sections of Carcajou
Canyon.

B) UAV mosaic of the lower downstream falls section of Carcajou Canyon consisting of
storm-influenced shoreface and deltaic deposits. AppleCore cross section below
contrasts the overall rapid change in depositional environments from tidal compound
dunes (A) to delta front deposits (B). Also seen is the increase in thickness of FA1d

storm-influenced lower shoreface deposits when moving towards the falls.
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Figure 3.17: Sedimentological and ichnological expressions of Cambrian shorefaces
and wave-dominated deltas. |dealized composite strip logs based on outcrop data. Note

the decreased trace fossil size, diversity, and bioturbation intensity associated with

deltaic deposition.
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CHAPTER 4: AN EARLY CAMBRIAN RADIATION INTO CHARACTERISTIC
ETHOLOGICAL NICHES

INTRODUCTION

The colonization of marine environments by metazoans is one of the most
significant events of Earth’s history. Trace fossils indicate a dramatic shift from the simple
surface grazers of the Proterozoic Ediacaran Period and Fortunian Stage of the Cambrian
(Seilacher, 1999; Jensen, 2003; Seilacher et al., 2003; 2005; Mangano and Buatois,
2004; Tarhan and Droser, 2014; Tarhan et al., 2015) to more diverse feeding behaviours
that characterise younger marine strata (MacEachern and Pemberton, 1992; Bann and
Fielding, 2004). As a result of this shift, ichnological aspects of Ediacaran strata are

readily discerned from those observed in Cambrian strata.

It has generally been presumed that ichnological diversity and morphological
diversity are closely linked (Meysman et al., 2006). However, if that is the case, then it is
inferred that ethology (behaviour) and animal morphology are related, a premise that is
generally not substantiated by ichnological studies. In fact, ichnofacies argue against an
ethological dependence on morphology as marine ichnofacies represent a community
response to resource distribution and bottom-water conditions that reveal behavioural

responses that are influenced by environmental conditions, not animal form.

To better understand the relationship between animal behaviour and morphology,
it is important to study Early Cambrian occurrences of then newly established ethological
guilds of trace fossils (i.e. ichnofacies), and compare the timing of their establishment to
what is known of the timing of the first Cambrian radiations. In this regard, we consider
here the ichnological assemblages associated with the Early Cambrian Mt Clark
Formation (Series 2, Stage 3), which predates fossil evidence of the Cambrian Explosion.
Observed therein are very well developed trace-fossil assemblages that, based on their
occurrence in well understood process sedimentological models of shoreface deposits,
can be identified with very high certainty as filter-feeding and deposit-feeding centered

assemblages.
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MOUNT CLARK FORMATION

This study draws from a robust dataset, which includes outcrop of the Mount Clark
Fm outcrop in the Mackenzie Mountains, as well as subsurface core from the Colville Hills
area of the Northwest Territories, Canada (Fig. 1). Core data includes five wells; Colville
D-45, Tweed Lake A-67, Tweed Lake M-47, Bele O-35, and PCI C-12. Outcrops include;
Two Lakes (64°58'34.00"N, 127°36'22.90"W) and Carcajou Canyon (64°40'16.90"N, 127°
9'40.82"W), located in the eastern ranges of the Mackenzie Mountains west of Norman
Wells, NT, Canada.

Previous studies of the Mount Clark Formation confirm that it was deposited within
a shallow-marine shoreface setting (Hamblin, 1990; Dixon and Stasiuk, 1998). Owing to
the presence of robust and diverse marine trace fossil assemblages and erosive storm
beds manifested as Hummocky Cross-Stratification (HCS), (Fig. 2), the Mount Clark
Formation is further interpreted to represent a storm-influenced marine shoreface to
wave-dominated delta succession. Both the outcrop and core datasets contain trilobites
belonging to the Bonnia-Olenellus Zone (Fritz, 1977; MacNaughton et al., 2013), which
places the Mount Clark Formation within Series 2, Stage 3 of the early Cambrian, ca.
521-514 Ma (ibid).

In this study, we focus on the ichnological characteristics of the shoreface deposits
summarized in Fig. 1 and Fig. 2. The key facies associations observed include: (1)
bioturbated sandy siltstone with rare oscillation ripples and small-scale HCS beds
interpreted to represent the proximal offshore (Table 1: A); (2) sandstone containing HCS,
low angle cross stratification, and bioturbated silty sandstone interbeds that decrease in
thickness and abundance upwards; these are interpreted as the lower shoreface (Table
1: B); and (3) trough cross-stratified and HCS sandstone capped by sporadic occurrences
of Lingulichnus and Skolithos piperock that are interpreted to represent middle and upper

shoreface to foreshore settings (Table 1: C).
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ICHNOLOGICAL ASSOCIATIONS

Two characteristic ichnological associations are observed: (1) proximal to
archetypal expressions of the Cruziana Ichnofacies associated with the lower shoreface
to offshore, and (2) archetypal Skolithos Ichnofacies of the upper shoreface and foreshore
(i.e. Piperock). The trace fossil associations documented herein display high degrees of
bioturbation intensity, abundant trace fossils, and high ichnogenera diversity (Fig. 3).
They also represent feeding ethologies that are emblematic of shoreface niches in
younger Paleozoic and Mesozoic strata (Fig. 2 & 3). Importantly, the colonization of these
early Cambrian shoreface subenvironments represents a very early establishment of
archetypal Ichnofacies that precede geological evidence of the Cambrian Explosion (e.g.
Burgess Shale) by 15 to 20 Ma.

OFFSHORE TO LOWER SHOREFACE

Lower shoreface trace fossil assemblages of the Mount Clark Formation are
characterized by the proximal expression of the Cruziana Ichnofacies (sensu
MacEachern and Pemberton, 1992; MacEachern and Bann, 2008). Ichnogenera
observed include; deposit-feeding and mobile carnivore traces composed of shallowly
tiered Rusophycus, Planolites, Palaeophycus and Teichichnus; intermediately tiered
Cylindrichnus, Rhizocorallium, and Chondrites; Asterosoma (Fig. 3., Fig. 4: A-H).
Subordinate numbers of semi-permanent, potentially filter-feeding domiciles are present,
including Skolithos, Diplocraterion, and Arenicolites (Fig. 4: A-H). Trace fossils within the
assemblage generally have large causative burrows, commonly exceeding 8 mm
diameter. In addition, ichnofabrics extend more than 10 cm below the inferred water-
sediment interface and Bioturbation Index (Bl) routinely approach 2 to 6 (Fig. 4: D,H).
Tempestite beds display erosionally based hummocky or low angle cross-stratified sands
with Skolithos, Cylindrichnus, and Diplocraterion occupying the upper portion of the bed
(Fig. 4: F): fugichnia are common in the tempestite beds (Fig. 3: E). Storm bed tops are
bioturbated (Bl 2-3) to a depth of up to 10 cm (Fig. 4: F).
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The dominance of deposit-feeding behaviours with significant numbers of
permanent dwelling structures and suspension-feeding structures suggests that although
food resources were dominantly stored on, and within the sediment, persistent wave
agitation above fair-weather wave base suspended food particles into the water column
(MacEachern and Pemberton, 1992). This trace-fossil assemblage represents the
ambient infaunal community that lived in the seafloor sediments between storm events.
Tempestite bed colonization resulted from the settling of opportunistic organisms on
storm-bed tops (Ekdale, 1985; Pemberton and MacEachern, 1997). As discussed below,
the preserved ichnofabrics and the behaviors that are inferred for them are remarkably

similar to shoreface-associated strata in much younger rocks.

UPPER SHOREFACE TO FORESHORE

Within the uppermost shoreface to foreshore, piperock composed of robust
Skolithos and Lingulichnus (expressed by a Skolithos-Lingulichnus Ichnofabric) is
observed (Fig. 4: J,K). These trace fossil assemblages correspond to the archetypal
Skolithos Ichnofacies which represents dominantly suspension feeding behaviours in
sandy shifting substrates (sensu MacEachern and Pemberton, 1992). Some Lingulichnus
show equilibrichnia behaviors, such as spreite, which indicate vertical shifting of the
tracemaker. Bioturbated intervals are commonly massive appearing, however,
multidirectional trough cross-stratification, convolute bedding, dewatering structures and

micro-faulting are also observed (Fig. 4: 1).

Based on the presence of large Skolithos and Lingulichnus and locally complete
mixing of the sediment, sedimentation rates are interpreted to have been low. The high
degrees of bioturbation are coincident with a small increase in grain size, consistent with
sedimentation and colonization of the proximal upper shoreface or foreshore (Fig. 3). The
upper shoreface to foreshore environment landward of the sub-aqueous (i.e. breaker) bar
is characterized by shifting sandy substrates in shallow waters (Reading and Collinson,
1996). Suspension-feeding animals depended upon food held in the water column
(Howard, 1971; MacEachern and Pemberton, 1992). Equilibrium traces observed indicate

an environment characterized by sporadic sedimentation events (Fig. 4: J) and
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subsequent post-storm re-establishment (MacEachern and Pemberton, 1992; Nara;
1995, 1997). The high intensities of bioturbation suggest that during fair-weather, rates of
biogenic reworking exceeded rates of hydraulic reworking. As such, the shoreface profile
is inferred to have been dissipative to intermediate (e.g. Hunter et al., 1979; Leckie and
Walker, 1982).

DISCUSSION

The concept of “Ichnofacies” was introduced decades ago (e.g., Seilacher, 1953,
1964, 1967). All of the original Ichnofacies were based on recurring associations of trace
fossils that could be related to different sedimentary environments and bathymetry.
Today, it is understood that ethology and their resultant ichnofossils are controlled by
factors including, substrate consistency, sediment grain size, energy conditions, food
resource type and availability, water salinity, sedimentation rates, oxygenation, and
temperature (summarized in MacEachern et al., 2012). Ichnofacies are unlike biozones
in that they transcend large spans of geologic time. However, archetypal Ichnofacies do
not appear until the Phanerozoic (MacEachern et al., 2007). Although it has been
reasoned that the Cambrian Explosion was accompanied by the Agronomic Revolution
(e.g. Seilacher and Pfliger, 1994; Seilacher, 1999; Mangano et al., 2013), it is not clear
how rapidly characteristic behavioral strategies were deployed in environmental niches,

and ultimately expressed as archetypal Ichnofacies.

The Mount Clark Formation is an early example of the new divisions of labor that
become prevalent later in the Phanerozoic (Fig. 3). Therein, bioturbate textures that result
from characteristic resource exploitation — associated with the Cruziana Ichnofacies in
the lower shoreface and Skolithos Ichnofacies in the foreshore — are observed. That
these trace fossil assemblages lie within a shoreface succession is critical to their
ethological interpretation. Unlike many other facies models, physical processes are highly
inferable in shoreface deposits. As such, the interpreted ethological responses to
sedimentary process are comparable to identical niches in younger strata, and in this
example present a vertical succession that is ethologically identical to shoreface deposits

today.
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As with Mesozoic and Cenozoic shoreface deposits, the Cambrian offshore to
lower shoreface is characterized by diverse and abundant deposit- and subordinate
suspension-feeding strategies within variable substrates. In the proximal offshore to lower
shoreface the Lower Cambrian has trace fossils that commonly occur in Mesozoic
shorefaces, including Arenicolites, Asterosoma, Chondrites, Cylindrichnus-Rosselia,
Diplocraterion, Helminthopsis, Rhizocorallium, Palaeophycus, Phycodes and
Teichichnus (Fig. 3 & 5). These trace fossils represent the range of behaviours observed
today in offshore through lower shoreface settings including, domichnia, filter feeding,
carnivory, interface deposit feeding, deep-tier deposit feeding and spatially optimized
deposit feeding (MacEachern and Pemberton, 1992; MacEachern et al., 2007) (Fig. 1 &
5).

Trace fossil occurrences in the upper shoreface are variable as a result of
heterogeneous energy distributions and the presence of unidirectional currents. However,
the shallow, shifting sands of the uppermost shoreface and foreshore locally contain
Lingulichnus, Skolithos and fugichnia. The primary uses of Lingulichnus and Skolithos
are filter feeding and as domiciles. Later Mesozoic and Cenozoic (dissipative) foreshore
settings can similarly contain Lingulichnus (Triassic, Zonneveld and Pemberton, 2003),
analogous bivalve-associated Siphonichnus, and Skolithos. Cenozoic shoreface
deposits, in particular, may also contain Macaronichnus or Ophiomorpha, both of which
are normally used for deposit feeding. Although filter-feeding ethologies can be assigned
to the Lower Cambrian examples, deposit feeding within the shifting sediments of the

foreshore evidently evolved later (Fig. 5).

The ichnological correspondence between this Cambrian shoreface and Cenozoic
examples is surprising considering that the Mount Clark Formation was deposited
perhaps as little as 25 Ma after the end of the Ediacaran Period. The early establishment
of characteristic behavioural niches illustrates that the rise of animals was exceedingly
rapid and that their ecological dominance in seafloor sediments perhaps preceded the
Cambrian Explosion. Similarly, Buatois and Mangano (2004) showed that Shallow-marine
ichnofaunas of the early Cambrian Puncoviscana Formation in northwest Argentina were

dominated by moderate- to large-sized, shallow grazing and feeding traces of deposit
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feeders. Those authors suggested that the Agronomic Revolution occurred at a faster
pace in shallow-water settings. Notably, bioturbated textures observed in the Mount Clark
Formation mix sediment much deeper than in the Puncoviscana Formation, wherein
grazing traces, such as Multina and Nereites, were emplace on or just below the
sediment-water interface and more deeply emplaced deposit-feeding traces, such as
Teichichnus, were absent. Early Cambrian strata of the Mackenzie Mountains in
northwest Canada, as reported by Carbone and Narbonne (2014), show similar
ichnological characteristics: an established but very shallowly emplaced deposit- and
filter-feeding community generally occupying only the horizontal plane dimensions of
ecological space. Interestingly, the shoreface-associated Moraine Lake Member of the
St. Piran Formation in Alberta (Desjardin et al., 2010) and Brador Formation in Labrador
(Hiscott et al., 1984) are similarly aged to the Mount Clark Formation, and although
putatively filter-feeding assemblages associated with Skolithos are present in both, the
lower shoreface-offshore assemblage is dominated by Cruziana, Rusophycus and

Bergauraria.

From early Cambrian strata, the most similar examples of comparable deposit-
feeding assemblages were reported from the Desejosa Formation (Dias Da Silva et al.,
2014), and the Mickwitzia sandstone (Jensen, 1997). Dis Da Silva et al. (2014)
documented Rosselia and Teichichnus as constituents of the Cruziana Ichnofacies from
a shallow-marine depositional environment. Although similar, this occurrence lacks the
depth of mixing (generally less than 10 cm), the causative burrows within the trace fossils
are smaller than 4 mm diameter, and the overall diversity of grazing animals is lower than
in the Mount Clark Formation examples. The maximum depositional age of these
measures is 549.6 + 4.4 MMa (detrital zircons, Pereira et al., 2012) but otherwise the age
of these strata are difficult to establish: Dias Da Silva et al. (2014) suggested Cambrian
Age 3 on the basis of the occurrence of Rosselia. Jensen (1997) reported a diverse
assemblage of trace fossils that represent Pascichnia, Repichnia, Cubichnia and
Praedichnia. The ichnodiversity exceeds that of the Mount Clark Formation, but
shoreface-associated parts of the Mickwitzia sandstone display far more limited

ichnodiversity.
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The ichnofabrics presented here provide a stark comparison to the shallowly
tiered, two-dimensional bedding plane associated behaviors that typify Lower Cambrian
ecosystems. In fact, recent efforts have suggested that deep sediment mixing (e.g. >4
cm), dominated by complex and highly varied feeding and bulldozing behaviors that
exemplify upper Paleozoic and Mesozoic Ichnofacies (Tarhan et al., 2015), do not
become widespread until early Ordovician. The ichnological observations from the Mount
Clark Formation, particularly the diversity of ichnofossils and the depth of bioturbation,
are clearly at odds with that contention. However, Tarhan et al (2015) database focused
dominantly on shelfal units where biomat stabilization or perhaps lower dissolved oxygen
contents might have played an important role in mitigating animal colonization into the

later Paleozoic.

Mangano and Buatois (2014) have recently provided evidence that by Cambrian
Stage 1, sediment bulldozing (i.e. rudimentary, shallow-tier grazing) in diffusion-
dominated benthic systems gave way to the suspension feeding patterns of advection-
dominated benthic systems associated with Cambrian Stage 2 and Stage 3.
Subsequently, the suspension-dominated assemblages better irrigated bottom
sediments, promoting the evolution of systematic deposit-feeding ethologies. Although
some aspects of our research support this contention, we believe that the Mount Clark
Formation trace-fossil assemblages show a clear demarcation between ethology and

food-resource partitioning, suggesting that the behavioral styles evolved independently.

In general, we disagree that filter feeding prepared Cambrian sedimentary
ecosystems for deposit feeding behaviors because of the slow rates of sediment
advection ascribed to sessile filter feeding (<1 cm 2/ day) versus deposit feeding (<10 cm
3 / day) (Gingras et al, 2008). Regarding the general concept of filter feeding resulting in
oxygenation of the sediment in preparation for deposit feeding animals, the modern
suggests that deposit feeding is a routine occurrence in suboxic sediments so long as
animals can sporadically access Oz resources (Gingras et al., 2007).

Earlier efforts (e.g. Butterfield, 2003; Meysman et al., 2006; Mangano and Buatois,
2014) also suggest that trace-fossil data is coordinated with the Cambrian explosion, but

we view this from another vantage. Based on the later occurrence in the rock record of
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body fossils and the early occurrence of these very well-established niche-exploiting
communities, it is more likely that behavioural diversification was a prerequisite condition
for the rapid morphological changes associated with the Cambrian Explosion. In
particular, the diversity of deposit-feeding behaviours, their spatial dominance and their
size and depth of penetration, collectively point towards rapid ethological diversification
resulting from early success in bulldozing and then systematic deposit feeding within rich

and hitherto then, unexploited food resources.

CONCLUSIONS

This study provides strong evidence for the establishment of archetypal
Ichnofacies / ethological assemblages in well-documented storm-dominated shoreface
deposits of the early Cambrian Mount Clark Formation (621 m.y.- 514 m.y.). The reported
trace fossil assemblages are ~30 m.y. older than otherwise known. The results show that
early Cambrian ichnofaunas have greater potential for ethological adaptation than
previously understood and by the early Cambrian behaviors radiated into energy
partitioned feeding niches. Early Cambrian ichnofauna described herein were capable of
significantly reworking tempestite beds, which leads us to contend with the assertion that
early Cambrian deposit feeding behaviors were limited to shallow-tiers and unable to
sufficiently mobilize rapidly deposited sediment. Taken as a whole, the Mount Clark
Formation trace fossils show derived adaptations within characteristic shoreface niches
that are ethologically identical to trace fossil assemblages observed in Upper Paleozoic,
Mesozoic and Cenozoic shoreface deposits. This early establishment of two of the
archetypal Ichnofacies presents two competing hypothesis: (1) morphological adaptation
precedes established ages for the Cambrian explosion and reaches deeper in time than
the Chengjiang biota (Zhang et al., 2008) and the Burgess Shale; or, (2) ethological
diversification preceded morphological adaptation and the partitioning of animals into
favoured feeding niches facilitated subsequent morphological radiations, laying the
foundation for the Cambrian explosion.
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Table 4.1: Integrated facies association table. Offshore to foreshore environments with
characteristic photos, trace fossils, and sedimentary constituents. Scale bar = 3cm in all

three photos.
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Figure 4.1: Location map of the study areas. Location map showing the study area with
the two datasets of Colville Hills and Mackenzie Mountains shaded. Latitude and

longitude coordinates correspond to the map corners. Modified from Google Earth Pro.
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Figure 4.2: Integrated ichnological and sedimentological characteristics of a
wave/storm-dominated shoreface. Modified from Buatois and Mangano (2011) based on
MacEachern et al. (1999).
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Figure 4.3: Early Cambrian Composite Log illustrating ichnological and
sedimentological aspects of Mount Clark Shoreface Deposition. Scale bar is 1cm in all

photos. Modified AppleCore®© logs with annotated depositional environments.

A) Offshore lithologies consisting of heavily bioturbated (Bl 5) sandy silty mudstones.
Asterosoma (As) and Teichichnus (Te). Remnant sandstone lamination interpreted
to represent distal tempestite deposition. Colville D-45.

B) Bedding plane photograph of ?Asterosoma (As) in lower shoreface sandstone
deposits at Carcajou Canyon.

C) Bedding plane photograph of Rhizocorallium (Rh) in lower shoreface sandstone
deposits at Carcajou Canyon.

D) Bedding plane photograph of highly bioturbated (Bl 5) lower shoreface deposits at
Carcajou Canyon illustrating a high diversity and abundance of ichnofossils.
Teichichnus (Te), Rosselia (Ro), Skolithos (Sk), Palaeophycus (Pa), and

Diplocraterion (Di).
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Figure 4.4: Representative facies plate of Cambrian shoreface deposition. Where

present scale bars = 3 cm.

A) Distal biogenically reworked sandy tempestite bed within offshore mudstones.
Depositional hydraulic currents great enough to produce Micro Hummock Cross-
Stratification (HCS). Note upper portion of tempestite bed has been biogenically
reworked from the original bed resulting in bed disintegration; fugichnia (fu),
Asterosoma (As), Chondrites (Ch), Palaeophycus (Pa). Tweed Lake M-47.

B) Multiple intensely biogenically reworked distal sandy tempestite within offshore
mudstones. Lamination seen in sand bed that has been disrupted through
bioturbation. Trace fossils consist of fugichnia (fu), Asterosoma (As), Palaeophycus
(Pa), Teichichnus (Te), Rosselia (Ro), Planolites (Pl). Tweed Lake A-67.

C) Offshore sandy mudstones intensely bioturbated with Teichichnus (Te)
Palaeophycus (Pa), and Phycodes (Py). Tweed Lake A-67.

D) Lower shoreface intensely bioturbated muddy sandstones with a diverse fair-
weather trace fossil assemblage. Rosselia (Ro), Asterosoma (As), Rhizocorallium
(Rh), Cylindrichnus (Cy), Arenicolites (Ar), Chondrites (Ch), Teichichnus (Te),
Palaeophycus (Pa). Typical of the Cruziana Ichnofacies. PCl C-12.

E) Lower shoreface deposits featuring biogenically reworked amalgamated tempestite
beds featuring Lam-Scram indicating frequent storm activity. Frequent equilibrichnia
(eq) indicate rapid sedimentation rates in which a burrowing organism moved
upward through the substrate. Red line illustrates the top of a lam-scram sequence.
Tweed Lake M-47.

F) Lower shoreface storm colonization trace fossil suite within an HCS bed. Blue inset
looks at a penetrative Diplocraterion, an r-selected ichnotaxa. Two Lakes outcrop.

G) Bedding plane photo of the intensely bioturbated (Bl 5) lower shoreface fair-weather
deposits. Inset images of a) Phoebichnus (Po) and b) Rhizocorallium (Rh).

H) Intensely bioturbated (Bl 6) Fair-weather trace fossil assemblages of FA
Palaeophycus (Pa), Cylindrichnus (Cy), Diplocraterion (Di), Skolithos (Sk),
Rusophycus (Ru).
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I) Upper shoreface decimeter scale bed sets of trough cross-stratified sands
interpreted to be the result of large sub-aqueous 3-D dune migration. Tweed Lake A-
67.

J) Piperock of consisting of large Lingulichnus (Li) traces showing equilibrium
adjustments. Tweed Lake A-67.

K) Piperock consisting of large oil stained Skolithos (Sk) in upper medium sandstone.
Tweed Lake A-G7.

125



Cretaceous Shoreface

METERS

GRAIN SIZE

I sand

cobble
pebble
granule
silt

r clay

BIOTURBATION INDEX
PHYSICAL STRUCTURES
ACCESSORIES
ICHNOFOSSILS

FOSSILS

==

00000000

0000000000

’.\\,»‘
(oo JENNN

i

(o))

=N WD Ul O

PN/A PN/A

Hummocky
cross-stratification

Trough
cross-stratification

Low angle
cross-stratification
Pebble lag

Shale laminae

Rip-up clasts

Soft sediment faulting

Soft sediment
deformation

Erosional surface

Cambrian Shoreface

GRAIN SIZE

cobble
pebble
granule

sand
vemfv

o

Fossil Obesrvered
BIOTURBATION INDEX
PHYSICAL STRUCTURES
ACCESSORIES
ICHNOFOSSILS

FOSSILS

Diameter of Largest Trace
METERS

Diversity of Trace
Fossil Assemblage
Diversity of Trace
Fossil Assemblage

—

@ &

I A = &4 8-8--------HEE Strength of Bioturbation

Glossifungites ichnofacies Lower shoreface

Offshore

Legend:
Sedimentary Structures
and Ichnofossils

«? Rhizocorallium  :i» Chondrites
i Teichichnus ¥ Fugichnia

Diplocraterion @ Rosselia
U Arenicolites Lingulichnus
@ Phycosiphon
&= Helminthopsis : Macaronichnus
§ |7 Skolithos == Palaeophycus
=\ Scolicia
/ Cvlindriennus —— Planolites
Thalassinoides
- Phycodes
& /A, Ophiomorpha
§Zoo hycos
Asterosoma phy

1w Glossifungites ichnofacies

126

Diameter of Largest Trace
Fossil Obesrvered

I - =-Ei---------- B Strength of Bioturbation

1§ TRCE TR ¥

Upper shoreface-Foreshore



Figure 4.5: Cretaceous and Cambrian type shoreface profiles with typical ichnogenera,
sedimentary structures, and annotated environments. Trace fossil size, diversity, and

bioturbation intensity plotted alongside each log. Modified AppleCore®© logs.
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CHAPTER 5: SUMMARY AND CONCLUSIONS

The early Cambrian (Bonnia-Olenellus trilobite zone, 520-514 m.y.) Mount Clark
Formation within the Colville Hills and Mackenzie Mountains of the Northwest Territories
(NWT) represents a variety of complex depositional systems punctuated by varying
degrees of wave, tide, and storm influence. Difficulty in identifying these ancient
environments is further compounded by a lack of integrated ichnological and
sedimentological models for early Cambrian ecosystems. This thesis identifies the
stratigraphic architecture and depositional systems of the poorly understood Mount
Clark Formation within the Colville Hills and Mackenzie Depocenter. The paleo-
evolutionary aspects of the Cambrian Explosion are explored through exceptionally
preserved trace fossil assemblages.

Chapter 2 focuses on a detailed facies analysis of the Mount Clark Fm
subsurface core located within the Colville Hills, NWT. Data collected for this study
includes four cores (Tweed Lake A-67 & M-47, PCI C-12, and Bele O-35) with
supplementary wireline logs. The Mount Clark Fm is a proven hydrocarbon reservoir
within the Colville Hills and this study seeks to give a detailed sedimentological analysis
of reservoir geo-bodies. Detailed documentation consisted of: lithology, the nature of
bed contacts, sedimentary structures, lithologic accessories, body fossils, grain-size,
and hydrocarbon staining. Ichnological observations included individual trace fossils,
distribution, trace fossil size, diversity, bioturbation intensity, trace fossil deformation,
and trace fossil assemblages. In order to visualize bioturbation trends plots were
constructed illustrating trace fossil size, diversity, and bioturbation intensity.
Observations present a strongly storm-influenced wave dominated barred shoreface
succession. Piperock assemblages of Skolithos and Lingulichnus are interpreted to
represent shallow post-bar to foreshore environments, a documentation of piperock
outside the tidally dominated sand sheets of previous piperock studies (Hallam and
Swett, 1966; Droser, 1991; Desjardins et al., 2010).

Chapter 3 contains an outcrop study of the Mount Clark Fm centered within the
Mackenzie Mountains on the edge of the Mackenzie Depocenter. Three siliciclastic

outcrops (Carcajou Canyon, Two Lakes, and Waterfall Ridge) were chosen along a
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depositional strike of 65 km. Detailed documentation consisted of: lithology, the nature
of bed contacts, sedimentary structures, lithologic accessories, body fossils, grain-size,
and hydrocarbon staining. Ichnological observations included individual trace fossils,
distribution, trace fossil size, diversity, bioturbation intensity, trace fossil deformation,
and trace fossil assemblages. In order to visualize bioturbation trends plots were
constructed illustrating trace fossil size, diversity, and bioturbation intensity. UAV
acquired images allowed the creation of 3-D outcrop mosaics, allowing a better
visualization and understanding of bed scale relationships. This results in a complex
lateral distribution of depositional elements on a basin scale with three main
depositional hierarchies observed: 1) waves/storm-dominated shorefaces; 2) wave-
dominated deltaic complexes; and 3) tidally dominated sand sheet embayments. This
work illustrates integrated sedimentological and ichnological facies models for early
Cambrian shoreface and deltaic successions illustrating the robustness of ichnofacies

even dating back to the early Cambrian.

Chapter 4 characterizes the trace fossil assemblages and subsequent behaviors
that were present in the early Cambrian at the onset of the Cambrian Explosion. The
early Cambrian represents a crucial and poorly understood time in earth’s history in
which complex life was first evolving and colonizing shallow marine niches. This study
provides strong evidence for the establishment of archetypal Ichnofacies / ethological
assemblages in well-documented storm-dominated shoreface deposits of the early
Cambrian Mount Clark Formation (521 m.y.- 514 m.y.). The reported trace fossil
assemblages corresponding to archetypal vermiform dominated Cruziana and Skolithos
Ichnofacies are ~30 m.y. older than otherwise known. The results show that early
Cambrian ichnofaunas have greater potential for ethological adaptation than previously
understood and by the early Cambrian behavioral radiation into energy partitioned
feeding niches. Early Cambrian ichnofauna described here were capable of significantly
reworking tempestite beds, which leads us to contend with the assertion that early
Cambrian deposit feeding behaviors were limited to shallow-tiers and unable to
sufficiently mobilize rapidly deposited sediment. Taken as a whole, the Mount Clark

Formation trace fossils show derived adaptations within characteristic shoreface niches

129



that are ethologically identical to trace fossil assemblages observed in Upper Paleozoic,

Mesozoic and Cenozoic shoreface deposits.

In short this thesis represents an in-depth analysis of the poorly understood
Mount Clark Formation of the mainland Northwest Territories, shedding light on an
interval of academic and industry interest. The Mount Clark records a variety of
depositional systems within the Colville Hills and Mackenzie Depocenter. Trace fossil
assemblages comprise of complex, diverse, robust, and multi-tiered behaviors that were
previously unknown in the early Cambrian and represent the earliest known occurrence

of characteristic shoreface ethological niches.
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