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ABSTRACT 

 The early Cambrian Mount Clark Formation of the Northwest Territories 

comprises marginal marine to marine siliciclastic sediments deposited in an incipient rift 

basin on the margin of Laurentia. Within core and outcrop datasets the preserved 

record of sedimentation represents complex and highly variable lateral to vertical 

architecture. As a result of recording early Cambrian (Series 2, Stage 3: Bonnia-

Olenellus trilobites) the Mount Clark Formation represents a rare opportunity to study 

marine biological interactions at the very onset of the Cambrian Explosion. To achieve 

this objective, high resolution sedimentological ichnological data was recorded from a 

six core database within the Colville Hills in addition to the field description of 8 outcrops 

in the Mackenzie Mountains over the course of two field seasons. Eight distinct 

lithofacies (F1-F8) were identified in the Colville Hills recording offshore to continental 

deposition along a strongly storm-influence shoreface succession. Three distinct facies 

associations (FA1-3) were identified within the Mackenzie Mountains recording 

shoreface (FA1), deltaic (FA2), and tidal embayment (FA3) sedimentation. Shoreface 

sedimentation (FA1) ranged from strongly storm-influenced to storm-affected lower 

shoreface to foreshore environments and were identified on the presence of robust and 

diverse trace fossil assemblages. Deltaic sedimentation (FA2) ranged from strongly 

storm-influenced to storm-affected prodelta to upper delta-front environments and were 

identified on the basis of stressed trace fossil assemblages recording decreasing 

ichnofossil size, diversity, and abundance in collaboration with more immature 

lithologies. Tidal compound dune sedimentation (FA3) ranged from embayment margin 

to the core of a compound dune field. Shoreface trace fossil assemblages within both 

study areas were found to have higher degrees of diversity, abundance, and complexity 

than previously identified early Cambrian trace fossil assemblages. It is interpreted that 

the Mount Clark Formation represents the earliest known radiation into these 

characteristic ethologies predating the famous and complex body fossils within the 

Burgess Shale. This body of work seeks to highlight a poorly understood region of 

Canada’s north, recording deposition at a time when complex life was first inhabiting 

Earth’s primordial oceans.  
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PREFACE 

 This thesis represents the original work of David Herbers. Chapter 2 of this thesis 

has been submitted for publication as: David Herbers, Robert MacNaughton, Eric 

Timmer, and Murray Gingras, “Sedimentology and Ichnology of an Early-Middle 

Cambrian Storm-Influenced Barred Shoreface Succession, Colville Hills, Northwest 

Territories, Canada” in the Bulletin of Canadian Petroleum Geology (CSPG). This 

manuscript has been accepted for publication. Chapter 3 will be submitted to the 

Canadian Journal of Earth Sciences as David Herbers, Eric Timmer, and Murray 

Gingras, “Mixed Deltaic, Shoreface, and Tidal Embayment Sedimentation Along a 

Storm-Influenced Early Cambrian Shoreline”. Chapter 4 has been submitted to 

GEOLOGY for review as David Herbers, Matthew Sommers, Kurt Konhauser, and 

Murray Gingras, “An Early Cambrian Radiation into Characteristic Ethological Niches”. 

These manuscripts are part of a larger Northwest Territories northern initiative 

organized by Dr. Murray Gingras and myself.  I performed the data collection, 

interpretations and manuscript composition with the supervision and guidance of Dr. 

Murray Gingras. Chapter 1 (literature review) and 5 (conclusions) are my own work.   
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“Oh, Andy loved geology. I imagine it appealed to his meticulous nature. An ice age 

here, million years of mountain building there. Geology is the study of pressure and 

time. That's all it takes really, pressure, and time.” 

- Red 
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CHAPTER 1: INTRODUCTION 

The early Cambrian Mount Clark Formation of the Northwest Territories is the 

primary host of significant and conventional gas, condensate, and oil discoveries within 

the mainland of the Canadian Arctic. Reserves have been postulated to represent as 

much as one billion barrels of oil and 10.7 TCF of gas within the interior plains of the 

Northwest Territories (Hannigan et al., 2011). Despite this obvious economic 

importance, the stratigraphic architecture is poorly understood with no detailed 

sedimentary and ichnological work published. Previous studies have focused on the 

Mount Clark Formation within a regional mapping context through Geological Survey of 

Canada (GSC) (Hamblin, 1990; Dixon and Stasiuk, 1998; MacLean, 2011; 

MacNaughton et al., 2013). This is a result of the study area being located in a remote 

part of Canada along with the demise of the Mackenzie Valley Pipeline project that 

would have served to access to massive stranded gas reserves in Canada’s north. The 

first published research on the Mount Clark Formation was done by Williams (1922, 

1923) that first defined the formation at the type section located at Mount Clark. He 

defined the Mount Clark as Cambrian quartz dominated bioturbated sandstone. This 

definition is broadly applicable but was initiated in a lithostratigraphic framework that 

leaves little room for an interpretative framework taking into account distal to proximal 

deposition. Subsequent work ramped up in the late 1960s as a result of the GSC’s 

historic Operation Norman that sought to map out the Mackenzie Mountains. This was 

summarized in Aitken et al (1973) that published several maps and measured sections 

of Cambrian strata. Subsequent work followed up with trilobite work and 

lithostratigraphic mapping (Serie et al., 2009; MacNaughton et al., 2013). 

Accurately identifying and charactering ancient environments is greatly enhanced 

through the integrated approach of using physical sedimentology (grain size, sorting, 

sedimentary structures) and ichnology (trace fossil assemblages, size, and diversity) 

(MacEachern et al, 2010). Ichnology has been shown to be an invaluable tool in 

interpretation through illuminating physical and chemical stresses during deposition.  

This allows for high resolution paleoenvironmental reconstruction (Seilacher, 1978; 

Pemberton et al., 1982; Frey, 1990; Bann et al., 2004; Gingras et al., 2011).  
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Data collection comes from two main Cambrian depocenters in the Northwest 

Territories Mainland; 1) Good Hope Depocenter containing the subsurface drill core of 

the Colville Hills, and 2) the Mackenzie Depocenter in which outcrop belts were 

described (Fig. 1). These depocenters are a result of late Proterozoic and early 

Cambrian rifting dividing the region into low-relief uplift (domes and arches) and 

depocenters (Dixon and Stasiuk, 1998). 

This study was undertaken in order to enhance the understanding of the 

architecture, sedimentology, and paleo-ecology of the Mount Clark Formation. Detailed 

analyses of four subsurface drill cores with complimentary petrophysical wireline logs 

within the Colville Hills region were completed. Lithology, sedimentology, and 

ichnological characteristics were documented. This work led to the identification of 8 

discrete facies (F1-11) representing a storm-influenced barred shoreface succession 

(F1-F7) and continental deposition (F8). 

Chapter 2 focuses on the outcrop dataset that represents a more complex 

shoreline environment punctuated by storm-dominated deltaic and shoreface 

environments in conjunction with protected tidal embayments. Due to the variety and 

complexity of deposition facies associations were developed instead of individual facies. 

Three unique facies associations were identified and include shoreface (FA1), wave 

dominated deltaic complexes (FA2), and protected tidal embayments (FA3). Storm 

influence was visible in all three environments in ranging from slight to dominated. 

Outcrops are represented by Carcajou Canyon, Two Lakes, and Waterfall Ridge. 

Deltaic influence was found to have a strong influence on trace fossil assemblages with 

a reduction in trace fossil size and suspension feeding forms.  

Chapter 3 consists of a paleoecology study of trace fossil assemblages present 

within the core and outcrop datasets. In addition to economic considerations the Mount 

Clark Formation contains well-preserved trace fossil assemblages that allow an insight 

into early Cambrian seas in which complex metazoan life was just evolving and 

colonizing shallow marine environments. Trace fossil assemblages show that 

predictable ichnofacies existed 20 million years before the existential Burgess Shale 

2



fauna. Animal behaviors within shoreface environments have changed very little over 

the last 520 m.y., a remarkable feat to animal evolution.  

In summary, this thesis seeks to address three issues; 1) identifying the 

stratigraphic architecture and sedimentary systems in place; 2) presenting the Mount 

Clark Formation within an allostratigraphic framework; and 3) characterizing the biota of 

early Cambrian shallow seas and how animal behaviors have evolved through time.  
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Figure 1.1: Map showing the study areas within the mainland Northwest Territories, 

Canada. Modified from Google Earth Pro.  
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CHAPTER 2: SEDIMENTOLOGY AND ICHNOLOGY OF AN EARLY CAMBRIAN 

STORM-INFLUENCED BARRED SHOREFACE SUCCESSION, COLVILLE HILLS, 

NORTHWEST TERRITORIES, CANADA 

 

INTRODUCTION 

The Cambrian-aged Mount Clark Formation (Williams, 1922, 1923) is a known 

reservoir containing oil, natural gas, and condensate in the Colville Hills area of the 

Northwest Territories [NWT] (Hamblin, 1990; Dixon and Stasiuk, 1998; Janicki, 2004; 

Price and Enachescu, 2009). A recent resource assessment by Hannigan et al. (2011) 

calculated that the "Cambrian clastics play", which incorporates the Mount Clark 

Formation beneath the interior plains of the NWT, potentially contains as much as one 

billion barrels of oil and 10.7 TCF of natural gas. The Mount Clark Formation extends in 

the subsurface from outcrops in the eastern Mackenzie Mountains (Serie et al., 2009; 

MacNaughton et al., 2013), eastward beneath the Interior Plains (Dixon and Stasiuk, 

1998), and outcrops again along the eastern limit of the northern mainland sedimentary 

basin.  Oil and gas have been found in the Mount Clark Formation exclusively beneath 

the Colville Hills to date, although the unit may be an exploration target in other parts of 

the basin (Hannigan et al., 2011; MacLean, 2011). As noted by MacLean (2011), clear 

understanding of the depositional environments of Cambrian reservoir strata will be 

crucial to hydrocarbon exploration success in the region.  
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Despite numerous significant hydrocarbon discoveries and subsequent 

Significant Discovery Licences (SDLs) given out for the Colville Hills area, no literature 

exists on the detailed sedimentary and ichnological character of reservoir units from the 

area. Drill cores from four exploration wells in the Colville Hills (Tweed Lake A-67, 

Tweed Lake M-47, Tweed Lake C-12, and Bele O-35) provide an opportunity to 

document the lithofacies, ichnology, and depositional environments of the Mount Clark 

Formation. Details on the four wells are provided in Appendix 1. All wells are within the 

northwest part of the Good Hope depocentre (Fig. 1), as defined by Dixon and Stasiuk 

(1998) and refined by MacLean (2011). This report is the first detailed and integrated 

account of the subsurface lithofacies, sedimentology, and ichnology of the Mount Clark 

Formation. 

 

Our work suggests that the Mount Clark Formation of the Colville Hills 

subsurface is characterized by predictable shoreface stacking patterns from offshore to 

upper shoreface. This should aid the in the identification of undiscovered sand bodies in 

potential undiscovered stratigraphic traps. These shoreface successions are punctuated 

by repeated progradation and transgression resulting in porous and permeable 

sandstone bodies encased in mudstone seals underlying the Mount Cap Fm source 

shales. 
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GEOLOGICAL SETTING 

 

Cambrian strata of the Interior Plains lie unconformably upon Proterozoic strata 

of the Mackenzie Mountains Supergroup and Shaler Supergroup (the "M/S 

Assemblage" of Cook and MacLean, 2004). The eroded Proterozoic surface was 

divided into regions of low-relief uplift (domes and arches) and depocentres (Dixon and 

Stasiuk, 1998) that formed in response to latest Proterozoic and early Cambrian 

tectonic extension (Williams, 1987; MacLean, 2011) (Fig. 2). The basal Cambrian 

sandstone of Mount Clark Formation is patchily preserved throughout the region and is 

best developed in the depocentres (Pugh, 1983; Dixon and Stasiuk, 1998; MacLean, 

2011), particularly adjacent to the paleohighs (MacLean, 2011; MacNaughton et al., 

2013). In the Good Hope depocentre, the preserved Mount Clark Formation thickness 

reaches at least 88 m (Dixon and Stasiuk, 1998). The Mount Clark Formation is now 

considered to also include Cambrian sandstone units formerly assigned to the Old Fort 

Island Formation defined by Norris (1965); see Dixon and Stasiuk (1998) for discussion. 

Mount Clark Formation strata thus record the initial (Sauk) transgression of the latest 

Proterozoic peneplain, and contain sand-rich facies deposited in a range of shallow- to 

marginal-marine environments (Hamblin, 1990; Dixon and Stasiuk, 1998; this work).  

Subsequent transgression established deeper-marine environmental conditions that led 

to the deposition of the regionally extensive Mount Cap Formation, a shale-dominated 

succession with lesser carbonate and sandstone (Aitken et al., 1973; Dixon and 

Stasiuk, 1998). The Mount Cap Formation is overlain unconformably by the Saline River 
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Formation, a thick package of shale, evaporites, and lesser carbonates that records 

deposition in a restricted basin (Aitken et al., 1973; Dixon and Stasiuk, 1998). The 

Mount Clark Formation and the Mount Cap Formation thus jointly comprise an 

unconformity-bounded sequence at the base of the Sauk Supersequence (Sloss, 

1963).  

 

Age constraints for the Mount Clark Formation are limited. The presence of 

intense bioturbation throughout the unit is consistent with its inferred Early Cambrian 

age. Mount Cap Formation strata are better age-constrained with trilobite faunas, which 

place the unit in the Bonnia-Olenellus to Glossopleura zones (Kobayashi, 1936; Fritz, 

1970, 1971, 1977; Aitken et al., 1973; Serié et al., 2009). The Mount Clark Formation 

and the Mount Cap Formation are in facies contact and the suggestion of Dixon and 

Stasiuk (1998) that the contact is diachronous has been confirmed based on faunal 

evidence from outcrops. Depending on locality, the basal beds of the Mount Cap 

Formation may contain a Bonnia-Olenellus Zone or a (younger) Albertella Zone trilobite 

fauna (MacNaughton et al., 2013). In the subsurface, the basal part of the Mount Cap 

Formation in the British Petroleum et al. Losh Lake G-22 well (latitude 65° 51’ 29”; 

longitude 123° 19’ 45”; NAD27) has yielded trilobites that belong to the upper part of the 

Bonnia-Olenellus Zone (Fritz, 1977). 
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PREVIOUS WORK 

 

Following an initial description by Williams (1922, 1923), the Mount Clark 

Formation received little attention until the late 1960s. Since then, it has been included 

in several regional stratigraphic studies, focused both on outcrop belts (Aitken et al., 

1973; Serie et al., 2009; Pyle and Gal, 2009) and the subsurface (Tassonyi, 1969; 

Pugh, 1983; Dixon, 1997; Dixon and Stasiuk, 1998; MacLean, 2011). The Mount Clark 

Formation has also been discussed from the perspective of its petroleum potential 

(Snowdon and Williams, 1986; Hamblin, 1990; Dixon and Stasiuk, 1998; Hannigan et 

al., 2011). Published sedimentological interpretations on the Mount Clark Formation are 

sparse, and are limited to preliminary studies based on selected drill cores (Hamblin, 

1990; Dixon and Stasiuk, 1998) or outcrop data (Aitken et al., 1973; MacNaughton et 

al., 2013). MacNaughton and Fallas (2014) identified a new Cambrian map unit named 

the Nainlin Formation that conformably overlies the Mount Cap Formation and is 

interpreted to represent the more proximal expression of Saline River Formation 

deposition. To date this unit has only been identified within the Mackenzie Mountains 

but may also be found within the Colville Hills.  

 

Early hydrocarbon discoveries were centered on the Tedji Lake K-24 well 

recovering 124,000m3 of gas in a thin Mount Clark sandstone sheet covering 

Proterozoic basement. Exploration activities were most active in the mid-1980s, in 

which exploration licenses were held by Chevron, Petro-Canada, Dome, and Esso (now 
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Imperial). Significant discovery licences (SDLs) include Tweed Lake A-67 (gas), Tweed 

Lake M-47 (gas and condensate), and Bele O-35 (Gas and Condensate) (Hamblin, 

1990; Janicki, 2004). Drilling and exploration saw a resurgence in the early 2000s as a 

result of the proposed Mackenzie Valley Pipeline that would serve to access massive 

stranded gas reserves in Canada’s North. During this time, Apache’s Lac Maunoir C-34 

well was given an SDL based on recoverable oil, condensate, and gas reserves present 

(Hannigan et al, 2011). 

 

FACIES DESCRIPTIONS AND INTERPRETATIONS 

Facies are described in the order of interpreted distal to proximal environments. 

Facies 1 and 2 represent a Glossifungites firm-ground suite and a transgressive lag 

respectively. These facies are not controlled by distal or proximal trends and hence are 

described first.   Based on the facies descriptions and interpretations below, facies 3-7 

represent a shoreface facies model and Facies 8 represents continental illuviation. 

Tweed Lake-67 is the only core that contains the entire Mount Clark Fm Succession. 

Bioturbation intensity is quantified with bioturbation index (BI) sensu Reineck (1967), 

Taylor and Goldring (1993). Grain size was classified according to the International ISO 

14699-1:2002 scale. Mineralogy was determined through thin sections provided by the 

GSC. These thin sections were stained with a blue porosity dye. 
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FACIES 1: GLOSSIFUNGITES-DEMARCATED OMISSION SURFACE 

A pervasively penetrative burrow boxwork occurs within three substrate types: 1) 

green mudstone; 2) red mudstone; or 3) fine grained sandstones (Fig. 4A, B, C). 

Burrows are large, averaging 1-1.5cm in diameter. Burrow morphologies range from 

branching to simple vertical traces reaching 10 to 20 cm below the inferred sediment-

water interface. Trace fossils observed include Skolithos and Diplocraterion. Burrow fills 

comprise lower medium-grained sandstone or highly glauconitic (>90% glauconite) 

lower medium-grained sandstone.  The surfaces from which the burrows descend are 

sharp, undulatory, and are directly overlain by a pebble lag. The burrow fill lithologies 

resemble overlying bed lithologies.  

INTERPRETATION: 

This facies represents the erosional exposure of a sedimentary firmground that 

was subsequently colonized by burrowing animals (Pemberton and Frey, 1985; 

MacEachern et al., 1990, 1991, 1992; Savrda, 1991). The sharp, undulatory nature of 

the contact and the presence of a lag are consistent with erosion due to waves. And, 

the abrupt upward transition from sandstone to clayey siltstone at the contact suggests 

that the surface represents a transgressive surface of erosion (MacEachern, 1992). This 

facies likely represents an early major transgression within the Good Hope Depocentre. 

The dramatic shift in lithology from argillaceous mudstone into medium-grained 

sandstone corresponds to an increase in depositional energy, most likely due to wave 
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influence. Sedimentary structures such as flaser bedding, tubular tidalites, and tidal 

rhythmites, which reflect tidal deposition, were not encountered. 

FACIES 2: MODERATELY SORTED MEDIUM- TO COARSE-GRAINED SANDSTONE 

Facies 2 comprises poorly sorted medium- and coarse-grained sandstone that is 

typically observed overlying Facies 1 (Glossifungites). Pebble- to granule-sized clasts 

are common (Fig. 4E, F). Bedding is crudely defined and is often not observable. BI 

ranges from 0-4. Facies 2 is locally capped by an irregular 4 cm thick bioturbated 

glauconitic sandstone bed (Fig. 4D). When present, bioturbation consists of a low 

diversity suite comprising Palaeophycus and Teichichnus. The stratigraphic context for 

Facies 2 is best demonstrated with strip logs (i.e. Fig. 3, Tweed Lake A-67 1298.5 m 

and 1288.4; PCI C-12, 1319.5m).. The thickness of facies 2 averages less than 15 cm.  

INTERPRETATION: 

Based on the abrupt upward shift in grain size from coarse/pebbly sandstone to 

silt/clay and a lack of evidence for shallow wave action, this facies is interpreted as a 

pebbly transgressive lag that was deposited and reworked by waves during 

transgression. This transgressive lag, which demarcates a flooding surface, lies at the 

base of coarsening upward parasequences. Pebbles and granules were likely sourced 

from eroded shoreface sediment and subsequently redistributed across the shoreface 

13



during transgression (Riemersma and Chan, 1991; Raychaudhuri et al., 1992; Cattaneo 

and Steel; 2003). 

 

FACIES 3: INTERBEDDED MUDSTONE, SILTSTONE AND SANDSTONE  

 

Facies 3 consists of interbedded green to grey mudstone and siltstone with 

interbedded sharp-based sandstone beds that display varying degrees of biogenic 

reworking (Fig. 4G, I, J). Sharp based sandstone beds are upper fine-grained and are 

characterized by oscillation-ripple and wavy-parallel lamination. Remnant sandstone 

beds with sparse (BI 0-1) to intense bioturbation (BI 3-4) grade upwards into siltstone. 

Bioturbation intensity within beds increases upwards; trace fossils include 

Palaeophycus, ?Asterosoma Chondrites, Skolithos, Teichichnus, and Planolites. 

Sandstone lithologies show alternating horizons of laminated to burrowed fabrics. 

Equilibrichnia structures, interpreted to be fugichnia, are present in the bioturbated beds 

or are truncated at intra-stratal scours (Fig. 4I, J). Micro hummocky cross-stratification is 

well developed within some of the sandstone beds (Fig. 4I). Locally, bioturbation 

completely destroys the primary fabric of sandstone beds resulting in a homogenized 

appearance (Fig. 4G). Sharp based decimeter-scale massive mudstone beds are 

randomly distributed and are entirely composed of laminated grey to black mudstone 

without any apparent bioturbation or sand content (Fig. 4H). Bed thicknesses range 

from the centimeter to decimeter scale.  
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INTERPRETATION:  

The trace fossil assemblage of facies 3 comprises carnivorous (eg. 

Palaeophycus) and deposit-feeding ethologies and represents an expression of the 

Cruziana Ichnofacies (Howard and Frey, 1984; MacEachern and Pemberton, 1992; 

MacEachern and Bann, 2008; Ekdale et al., 2012). The thoroughly bioturbated intervals 

reflect depositional periods dominated by fair-weather processes (Vossler and 

Pemberton, 1988b). The Cruziana Ichnofacies may further indicate that settling and 

subsequent embedding of organic matter in the seafloor occurred during fair-weather 

conditions. Episodic storms increased turbulence and generated erosional features, 

high-energy depositional (Micro HCS) structures, while redistributing organic detritus 

(Seilacher, 1982a). This resulted in a tripartite zonation within tempestite sandstone 

beds: 1) a set of bioturbated interbedded sandstone and siltstone deposited during fair-

weather; 2) a sharp based erosional sandstone bed with undulatory to hummocky 

cross-stratification grading into a burrowed “scrambled” top; and 3) a return to ambient, 

thoroughly bioturbated, fair-weather shoreface conditions (Seilacher, 1982). Fugichnia 

are observed within the tempestite beds, illustrating likely unsuccessful organism 

escapes from rapid sedimentation events. Laminated grey to black mudstone likely 

indicates fair weather sedimentation in which the sandier intervals are a result of 

offshore directed storm currents that carried and deposited sediment further offshore. 

Facies 3 was deposited in the proximal offshore to offshore transition where fair-

weather processes cease to influence sedimentation and offshore processes dominate 

sedimentation (Reinson, 1984) (Fig. 7A). 
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FACIES 4: INTERBEDDED CROSS-STRATIFIED TO THOROUGHLY BIOTURBATED SILTY MUDDY 

SANDSTONE 

 

Facies 4 is a mixture of intensely to moderately bioturbated sandstone, siltstone, 

and shale. Intensely bioturbated strata are characterized by Rosselia, Asterosoma, 

Rhizocorallium, Cylindrichnus, Arenicolites, Chondrites, Teichichnus, Palaeophycus, 

and equilibrichnia (Fig. 5A) Punctuated occurrences of green ?glauconitic shale laminae 

contain Palaeophycus and Chondrites (Fig. 5C). Sandstone intervals are generally fine 

to lower medium in grain size and thoroughly bioturbated. Current rippled sharp-based 

sandstones are commonly intercalated with intensely bioturbated strata (Fig. 5B,C). 

Alternating horizons of undulatory to planar laminated sandstone are interbedded with 

bioturbated intervals containing abundant fugichnia.   (Fig. 5D). The tops of laminated 

sandstone beds are sporadically burrowed and contain Skolithos and Cylindrichnus.  

 

INTERPRETATION: 

 

Thoroughly bioturbated strata containing large robust traces indicate fair-weather 

shoreface conditions in which both deposit and suspension feeding organisms thrived 

(MacEachern and Pemberton, 1992; Uchman and Krenmayr, 1995). Trace fossil 

assemblages of facies 4 are an archetypal example of the Cruziana Ichnofacies, which 

is characteristic of fully marine water, and oxygen- and benthic-food-rich conditions 
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(MacEachern and Pemberton 1992). The deposit feeding behaviours of Cruziana 

Ichnofacies reflect ambient wave energy, strong enough to disperse organic matter into 

the proximal offshore (MacEachern and Pemberton, 1992). In contrast, storm-weather 

conditions are preserved as sharp-based, cross-stratified sandstone beds. The “Lam-

Scram” pattern of alternating undulatory laminae and bioturbated horizons (sensu 

Howard, 1978; MacEachern and Pemberton, 1992). Undulatory laminae indicate storm 

onset and burrowed beds indicate storm. During storms, wave base is lowered, which 

causes reworking of the fair-weather substrate. Fugichnia are present within these 

tempestite beds, reflecting the rapid and sudden onset of sedimentation. Truncated 

trace fossils and fugichnia further demonstrate the erosional nature of storm processes. 

Only the deepest penetrative trace fossils are preserved. Nonbioturbated cross-stratified 

beds indicate rapid storm deposition; following the storm, tempestite bed recolonization 

is initiated by opportunistic animals that generated Skolithos and Cylindrichnus trace 

fossils (Pemberton and MacEachern, 1997). Skolithos and Cylindrichnus are commonly 

associated with r-selected metazoans that are capable of adapting to agitated and 

rapidly changing environments (Vossler and Pemberton, 1988b). Facies 4 is interpreted 

to record fair-weather and storm-weather lower shoreface sedimentation over the zone 

of shoaling where the initial breaking of waves occurred (Reinson, 1984). 
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FACIES 5: LOW-ANGLE CROSS-STRATIFIED SANDSTONE WITH THIN BIOTURBATED HORIZONS 

 

Facies 5 comprises upper fine- to lower medium-grained well-sorted sandstone 

characterized by low-angle cross-stratified to hummocky cross-stratified beds (Fig. 5E, 

G). The amplitude of HCS is generally approximately 15 cm. Hummocky cross-

stratification is recognized using the following criteria: 1) erosional lower bounding 

surfaces that commonly slope at angles less than 15 degrees; 2) laminae above these 

surfaces are parallel to sub-parallel; 3) laminae can thicken or thin laterally within a set 

resulting in a fan-like geometry on a vertical surface; 4) the dip directions of the 

erosional set boundaries and of the overlying laminae are scattered (Harms et al., 

1975). Bioturbated intervals are thin (3-4cm thick) and contain simple mud-lined traces 

such as Skolithos, Cylindrichnus, and Palaeophycus (Fig. 5F). Amalgamated sandstone 

beds with sharp erosional bases are prevalent, and preserve alternating horizons of 

laminated to burrowed sandstones. Mudstone is limited to thin laminae (Fig. 5F). 

Intraformational mudstone rip-up clasts are observed within the HCS beds (Fig. 5E). 

Sandstone bed thickness is on the dm scale on average.  

 

INTERPRETATION: 

 

The paucity of highly bioturbated and diverse trace fossil assemblages and the 

dominance of high-energy sedimentary structures of oscillatory origin are interpreted to 

represent persistent storm influence and deposition.  Rip-up clasts within HCS beds are 
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interpreted to be the result of strong storm surge currents transporting more proximal 

material basinward.  The rare occurrence of bioturbation within these beds is interpreted 

to represent either sufficiently pervasive storm activity to preclude bioturbation or the 

removal of fair-weather bioturbated suites. Preserved trace fossils are interpreted to 

represent opportunistic post-colonization suites by r-selected metazoans (Vossler and 

Pemberton, 1988). These trace fossil suites record a departure from the complex 

deposit feeding traces seen in Facies 3 and 4, to simple suspension feeding forms. This 

shift in trace fossil ethology in association with larger more pervasive storm-induced 

bed-forms is interpreted to represent shoaling upward into the middle shoreface 

(Walker, 1984; Leckie and Krystinik, 1989; Duke, 1990; Duke et al., 1992). Facies 5 is 

interpreted to have accumulated within the middle shoreface as evident from pervasive 

and amalgamated HCS storm deposits along with a lack of Cruziana deposit feeding 

behaviors (Buatois et al., 1999; MacEachern and Pemberton, 1992) (Fig. 7). 

 

FACIES 6: LOW TO HIGH ANGLE CROSS STRATIFIED SANDSTONE  

 

Facies 6 consists of upper medium-grained sandstone characterized by trough 

cross-stratification (TCS) (Fig. 6A), planar-tabular bedding (Fig. 6B), and HCS (Fig. 6D). 

Planar-tabular bedding commonly occurs as 8-20 cm thick beds whereas low-angle 

cross-stratified beds are typically ~75cm thick. Micro-faulting and convolute bedding is 

present (Fig. 6C). Bioturbation is absent. 
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INTERPRETATION: 

 

Facies 5 is distinguishable by its multidirectional trough cross-stratification, which 

occurs in 15-45cm thick sets manifested as low-angle cross stratification (Howard, 

1971; Elliot, 1986; MacEachern and Pemberton, 1992) and is interpreted to result from 

the migration of low-relief 2D and 3D dunes. Hummocky cross-stratification is generated 

by oscillatory flow that caused by storm-waves (Walker, 1984; Leckie and Krystinik, 

1989; Duke, 1990; Duke et al., 1992). The absence of bioturbation is interpreted to 

reflect environmental conditions dominated by abundant sediment supply and rapidly 

migrating bedforms (Reineck, 1977). Micro-faulting and convolute bedding resulted from 

soft-sediment deformation possibly associated with wave-induced liquefaction (Clifton, 

1971; Pratt, 2002). The presence of HCS, persistent dune migration, and the absence 

of bioturbation suggest that Facies 6 was deposited within the upper shoreface of a 

shoreline (Fig. 7). The upper shoreface environment is situated in the high-energy surf 

zone landward of the breaker zone (Clifton, 1971; Barwais, 1976; Reineck and Singh, 

1980; MacEachern and Pemberton, 1992).  This zone is characterized by wave driven 

currents that flow parallel to the shoreline seaward of the subaqueous bar (i.e. 

longshore drift), and by currents generated by translatory flow associated with plunging 

waves that generate multidirectional 2-D and 3-D dunes (Clifton, 1971; Davies et al., 

1971; MacEachern and Pemberton, 1992).  

 

 

20



FACIES 7: “PIPEROCK” SANDSTONE  

 

Facies 7 consists of lower to upper medium-grained occasionally glauconitic 

arenite dominated by a Skolithos and Lingulichnus “piperock” assemblage (Fig. 6F-I). 

Bioturbation is intense and sometimes results in the homogenization of the sediment. 

Skolithos and Lingulichnus burrow diameters range from 3 to 14 mm and burrow 

lengths range from 10 to 15 cm. Oil staining is prevalent and concentrated within 

Skolithos and Lingulichnus burrows (Fig. 6G). Lingulichnus displays well developed 

equilibrium adjustments (Fig. 6F). Sandstone units are well sorted and comprise the 

coarsest bed scale (>5 cm) grain sizes observed in this study. One core, Tweed Lake A-

67, contains a relatively thin interval of planar-tabular cross bedding at 1279.7m depth 

(Fig. 6E). This planar tabular bedding is 20cm thick and is observed within an intensely 

bioturbated piperock succession.             

 

INTERPRETATION: 

 

Based on the presence of large robust Skolithos and Lingulichnus, a lack of 

sedimentary structures, and a relative increase in grain size (compared to other facies 

observed), we place this facies in the proximal upper shoreface and foreshore. The 

upper shoreface to foreshore environment landward of the sub-aqueous bar is 

characterized by shifting sandy substrates in shallow waters (Reineck and Singh, 1980) 

(Fig. 7). Suspension-feeding animals likely depended on food suspended in the water 
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column. The foreshore to proximal upper shoreface is typified by the appearance of the 

Skolithos Ichnofacies of which piperock is archetypal (Droser, 1991; Howard, 1971; 

MacEachern and Pemberton, 1992). Observed equilibrium traces indicate an 

environment characterized by sporadic sedimentation events, that were not substantive 

enough to kill the original tracemakers, allowing them to adjust and move upward 

(Zonneveld and Pemberton, 2010). These re-equilibrium movements likely indicate post 

storm re-establishment (MacEachern and Pemberton, 1992; Nara; 1995, 1997). The 

high bioturbation intensity (BI 4-5) suggests that during fair-weather, biogenic reworking 

rates exceeded hydraulic reworking rates. As such, the shoreface profile is inferred to 

have been dissipative to intermediate, shielded by sub-aqueous bars in the upper 

shoreface (e.g. Hunter et al., 1979; Leckie and Walker, 1982) (Fig. 7). These bars act 

as a barrier against large hydraulic energies, resulting in abundant populations of 

suspension feeding ichnogenera, forming piperock assemblages within the trough 

positioned landward of the longshore bar. Large storms are capable of breaching this 

barrier, depositing the characteristic nonbioturbated washover fan deposits (Fig. 6E) 

(Reinson, 1984).   

 

FACIES 8: NONBIOTURBATED MASSIVE RED MUDSTONE 

 

Homogeneous massive-appearing, red mudstone that contain no recognizable 

sedimentary structures, trace fossils, or primary depositional fabric (Fig. 6J). Facies 8 is 
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found at the base of the Tweed Lake A-67 core where it is 1.5m thick. No caliche 

nodules were observed in the interval.  

 

INTERPRETATION: 

The lack of bioturbation and distinctive red colouring is interpreted to reflect 

continental processes (Basu, 1981). Iron-rich clay minerals were exposed to continental 

weathering causing the red colouration (Krynine, 1949; Driese et al., 1995; Retallack et 

al., 1988).  As a result of the lack of bioturbation, red colouration, and fine grained 

lithology Facies 8 is interpreted to represent a windblown regolith/loess (Fig. 7). This 

regolith is eventually transgressed, resulting in the formation of a firm-ground substrate 

that hosts the Glossifungites assemblage seen in F1.  

 

 

FACIES MODEL AND DISCUSSION 

 

DEPOSITIONAL SETTING 

The Mount Clark Formation in the Colville Hills area represents a progradational 

shoreface complex. Constituent parasequences coarsen upwards from offshore mud 

deposition to shallow-water piperock of the upper shoreface/foreshore (Fig. 7). In this 

study, large-scale hummocks (Fig. 6E), an absence of bioturbation in the middle 

shoreface (Fig. 5E, G), and the presence of tempestites into the proximal offshore (Fig. 

4 I, J) suggest that storm waves shaped the shoreface. Numerous authors have 
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illustrated the relationship of HCS to storm induced sedimentation (e.g., Walker, 1984; 

Duke, 1985; Walker and Plint, 1992). Tempestite beds are characterized by the 

following ichnological and sedimentological characteristics: 1) a fair-weather trace fossil 

assemblage; 2) a sharp erosional basal contact; 3) subparallel to parallel laminae 

interpreted to be hummocky or swaley cross-stratification; 4) fugichnia (escape 

structures); 5) post-storm colonization trace fossil suite emplaced in the newly deposited 

sand bed; 6) a return to fair-weather trace fossil assemblages (Pemberton and 

MacEachern, 1997).  

 

Storm influence within the Cambrian was likely due to summer hurricane 

seasons as Laurentia was situated near the equator (Duke, 1995) (Fig. 8). Hurricanes 

are particularly effective in generating HCS because of their ineffective coupling of the 

water column (stratified water column) resulting in powerful oscillatory currents (Duke, 

1985).  

 

In the studied strata, wave energy likely erosively stripped fair-weather strata of 

the middle shoreface as result of storm-induced intensive oscillatory currents (Wetzel 

and Aigner, 1986). The presence of sub-aqueous longshore bars and the progressive 

waning of wave energy into an intermediate or dissipative upper shoreface and 

foreshore enabled suspension-feeding animals to successfully colonize the substrate 

(Fig. 7). However, within a strongly storm-influenced shoreface succession that records 

frequent storm influence even in the offshore, the question is raised as to how 
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suspension feeding organisms could thrive in very shallow water in a coastal setting 

routinely ravaged by storms. The presence of a sub-aqueous longshore bar provided a 

barrier to intense wave activity, absorbing wave action, which enabled suspension 

feeders to successfully thrive and colonize the substrate (Fig. 7). A modern analogue for 

this type of system is provided by the Oregon coastline. This type of bar and trough 

system is characteristic of an intermediate shoreface profile reflecting a balance 

between dissipative and reflective shoreface profiles (Short, 1999; Woodruffe, 2003). 

Suspension-feeding animals are able to thrive in the 2-4m deep, protected trough, 

where wave action is strong enough to ensure necessary benthic-food supply and 

shifting sandy substrates, but sufficiently attenuated to spare the burrowing animals 

from routine exhumation. Bioturbation extends to the foreshore where energy dissipates 

(Clifton, 1971). 

 

SIGNIFICANCE OF PIPEROCK 

Various workers (McIlroy and Logan, 1999; McIlroy and Garton, 2004; Desjardins 

et al., 2010 a, b; 2012) have studied early to middle Cambrian successions and have 

ascribed probable piperock depositional environments. These studies interpret piperock 

to form in shallow-water, proximal sub-tidal tide-dominated sand sheets that are 

dominated by compound dunes and sand ridges. The Mount Clark, in comparison, lacks 

evidence for tidal sedimentary features (e.g. bi-directional current structures, grain 

striping, flaser bedding, double-mud drapes, sigmoidal bedding, or tubular tidalites). In 

this study, the distributions of trough cross-stratification and hummocky cross-
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stratification strongly support wave-dominated sedimentary environment interpretations 

characterized by persistent storm influence, which erosively removed the record of fair-

weather sedimentation, resulting in the preservation of far stronger than average storm 

events (Wetzel and Aigner, 1986).  

 

The piperock, documented in the present study contains abundant Skolithos and 

Lingulichnus (F7). In contrast, previously documented occurrences of piperock report 

Skolithos, Diplocraterion, Monocraterion, and Rosselia as the principle trace fossils 

(Hallam and Swett, 1966, Häntzschel, 1975, Miller and Byers, 1984; Droser, 1991; 

McIlroy and Logan, 1999; McIlroy and Garton, 2004; Desjardins et al., 2010; McIlroy et 

al., 2010). Importantly Lingulichnus within the Mount Clark Formation also displays well-

developed equilibrium adjustments not seen in other localities (Fig. 6F).  

 

Compared to other studies, piperock within the Mount Clark Formation of the 

Colville Hills most closely corresponds to Skolithos Ichnofabric 2 within the Early 

Cambrian Gog Group of Western Canada reported by Desjardins et al. (2010a). 

Ichnofabric 2 can be summarized as follows: fine- to medium-grained sandstone; 

moderate to intense bioturbation; Skolithos and Diplocraterion; and massive to flaser to 

TCS bedding. Desjardin et al. (2010a) attributed deposition to moderately strong tidal 

currents coupled with moderate sedimentation rates and minor scouring, thereby 

allowing multiple colonization events. It is these colonization windows, caused by a drop 

in current velocity or sediment supply that stall the migration of bedforms that host 
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piperock. In wave-dominated settings, colonization events are limited to areas sheltered 

from fair-weather wave energy and zones below fair-weather wave base. Lingulichnus 

is an ideal behaviour for surviving in storm-influenced shoreface succession (Zonneveld 

and Pemberton, 20010; Zonneveld and Greene, 2010). Lingulide brachiopods, the 

primary tracemaker for Lingulichnus, are excellent storm survivors as a result of deep 

infaunal lifestyles that develop during early growth stages (Zonneveld and Pemberton, 

2003). Furthermore, their ability to re-burrow and rapidly equilibrate allows them to 

survive storm induced erosional exhumation and transport (Zonneveld and Pemberton, 

2010).     

 The piperock reported herein better corresponds to ichnofossil distribution in 

Mesozoic and Cenozoic shorefaces, as the energy-sheltered uppermost shoreface and 

foreshore zones likely host substantial infaunal biomass. In Cretaceous to modern 

examples, this niche is associated with the presence of Macaronichnus and more rarely 

Thalassinoides or Ophiomorpha (MacEachern and Pemberton, 1992; Pollard et al., 

1993). However, the upper shoreface and foreshore zones are colonized for similar 

reasons (1) that the somewhat lower hydraulic energies permit larvae to settle and 

colonize the substrate; (2) similarly, the dissipative part of the shoreface is where 

marine organics can accumulate; and (3) more stable (i.e. non-shifting) substrate are 

amenable to long-term colonization (Pemberton and Frey, 1984). Droser (1991) noted 

piperock was indicative of shallow water marine sedimentation with planar, trough, and 

hummocky cross-stratified commonly hosting well-developed piperock assemblages. 

This is interpreted to represent the availability of multiple or extended colonization 
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periods during which a decrease in sediment supply and/or hydraulic currents allowed 

metazoans to successfully inhabit and reproduce within the substrate. It is interesting to 

note that the Mount Clark Fm does not contain this style of piperock, where bedforms 

such as HCS and TCS are colonized and where piperock is limited geo-spatially to the 

foreshore. 

 

SUMMARY 

A facies model for an early Cambrian wave-dominated storm-influenced 

shoreface succession is herein presented based on detailed sedimentological and 

ichnological analyses of subsurface drill core from the Colville Hills region of the 

Northwest Territories. The facies model presented illustrates a predictable shoreface 

stacking pattern composed of eight distinct lithofacies representing an overall offshore 

to upper shoreface succession. Flooding surfaces are demarcated by pebbly poorly 

sorted transgressive lags separating shallow and distal facies and by Glossifungites-

demarcated omission firm-ground suites. The presence of a bar shelter is predicated on 

the presence of large robust suspension feeding traces comprising Skolithos and 

Lingulichnus in an otherwise high-energy storm-influenced succession. This work 

establishes a predictive framework for subsurface Mount Clark Formation reservoirs in 

the Colville Hills. Future work can apply this framework towards a comprehensive 

sequence stratigraphic model.  
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Figure 2.1: Location map showing study area and core locations within the Colville 
Hills. Modified after MacLean (2011). Air photo provided by Google Earth Pro.  
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Figure 2.2: Stratigraphic column showing the relationship of the Mount Clark, Mount 
Cap, and Saline River Formations. Chief focus on this study is the Mount Clark 
Formation within the Colville area. Modified from MacLean (2011) with information from 
MacNaughton and Fallas (2014).  
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Figure 2.3: Logged cores with annotated environments of deposition. Four cores were 
logged with special attention paid towards sedimentologic and ichnologic 
characteristics. Only one core (A-67) captured the entire Mount Clark succession, from 
the basal unconformity to the overlying mixed carbonate-clastic Mount Cap Fm. Mount 
Cap Formation is recognized by the first appearance of carbonate rich lithologies, often 
hyolithid rich rocks. Core logging was done through AppleCore© software. 
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Figure 2.4: Facies Plate I (Facies 1, 2, and 3)  

A) Facies 1; Glossifungites demarcated omission surface, sand filled burrows in a red 

mudstone, Tweed Lake A-67. 

B) Facies 1; Bedding plane view of Skolithos (Sk) Glossifungites firm-ground suite 

within a green mudstone substrate. Bele O-35. 

C) Facies 1; Glossifungites firm-ground suite with a large Diplocraterion (Di), green 

colour is a result of glauconite. Bele O-35. 

D) Facies 2; Bioturbated glauconitic upper fine sandstone with granule to pebble sized 

clasts (A). Palaeophycus (Pa), Teichichnus (Te). Tweed Lake A-67. 

E) Facies 2; Transgressive lag manifested as a coarse grained sandstone with pebble 

to granule sized clasts. Tweed Lake A-67. 

F) Facies 2; Transgressive lag overlying a Glossifungites surface, large clast (A) within 

burrow. Tweed Lake A-67. 

G) Facies 3; Offshore sandy mudstones intensely bioturbated with Teichichnus (Te) 

Planolites (Pl). Tweed Lake A-67. 

H) Facies 3; Offshore nonbioturbated massive black mudstones. PCI C-12. 

I) Facies 3; Distal biogenically reworked sandy tempestite bed within offshore 

mudstones. Depositional hydraulic currents great enough to produce Micro Hummock 

Cross-Stratification (HCS). Note upper portion of tempestite bed has been biogenically 

reworked from the original bed resulting in bed disintegration; Fugichnia (Fu), 

?Asterosoma (?As), Chondrites (Ch), Palaeophycus (Pa). Tweed Lake M-47 

J) Facies 3; Multiple intensely biogenically reworked distal sandy tempestite within 

offshore mudstones. Lamination seen in sand bed that has been disrupted through 

bioturbation. Trace fossils consist of Fugichnia (Fu), Asterosoma (As), Palaeophycus 

(Pa), Teichichnus (Te), Rosselia (Ro), Planolites (Pl). Diastasis cracks also seen (Dia). 

Tweed Lake A-67 
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Figure 2.5: Facies Plate II (Facies 4 and 5) 

A) Facies 4; Lower shoreface intensely bioturbated muddy sandstones with a diverse 

fair-weather trace fossil assemblage. Rosselia (Ro), Asterosoma (As),, Cylindrichnus 

(Cy), Skolithos   (Sk), Chondrites (Ch, Teichichnus (Te), Palaeophycus (Pa), 

Equilibrichnia (Eq). Typical of the Cruziana Ichnofacies. PCI C-12. 

B) Facies 4; An nonbioturbated tempestite bed (white quartz rich sands) of the lower 

shoreface deposited within extremely glauconitic (>90%) sandstone.  Bele O-35.3 

C) Facies 4; Lower shoreface interbedded bioturbated and cross-stratified strata. 

Bioturbated intervals contain Palaeophycus and Chondrites. Non-bioturbated strata 

interpreted to be tempestite deposits. Tweed Lake A-67.  

D) Facies 4; Lower shoreface deposits featuring biogenically reworked amalgamated 

tempestite beds featuring Lam-Scram indicating frequent storm activity. Frequent 

fugichnia (Fu) indicate rapid sedimentation rates in which a burrowing organism moved 

upward through the substrate. Tweed Lake M-47. 

E) Facies 5; Hummocky Cross-Stratification of the middle shoreface with rip up clasts. 

PCI C-12. 

F) Facies 5; Amalgamated tempestite beds of the middle shoreface, nicely developed 

lam scram fabric seen in the bottom half. Post-storm colonization suite consists of a 

multitude of lined burrows, ?Cylindrichnus (?Cy), and ?Skolithos (?Sk). Red line 

denotes the erosional truncation and emplacement of second storm event. Tweed Lake 

A-67. 

G) Facies 5; Low angle Cross-Stratification with shifting dip angle that is consistent with 

HCS of the middle shoreface. Tweed Lake A-67. 
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Figure 2.6: Facies Plate III Facies (6 and 7). 

A) Facies 6; High angle cross-stratified upper medium grained sandstone. Tweed Lake 

A-67.  

B) Facies 6; Decimeter scale bed sets of trough cross-stratified sands interpreted to be 

the result of large sub-aqueous dune migration. Tweed Lake A-67. 

C) Facies 6; Soft sediment deformation in the form of micro-faulting within trough cross 

stratified sandstone. Tweed Lake A-67. 

D) Facies 6; Hummocky cross-stratified sandstones. 

E) Facies 6; Trough cross-stratified sandstones of a washover fan deposit.  Tweed Lake 

A-67. 

F) Facies 7; Lingulichnus (Li) traces showing equilibrium adjustments. Tweed Lake A-

67. 

G) Facies 7; Large oil stained Skolithos (Sk) in upper medium sandstone. Tweed Lake 

A-67. 

H) Facies 7: 12 cm long Skolithos (Sk). PCI C-12 

I) Facies 7; Bedding plane view of Skolithos piperock assemblage. Tweed Lake A-67. 

J) Facies 6: Core view of the massive homogenous red regolith mudstone. Tweed Lake 

A-67. 
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Figure 2.7: Depositional model for the Colville Hills Cambrian Mount Clark Formation. 

Modified from Short (1999) and Deutsch (1992). 

A) Facies are placed on the upper block diagram in green filled circles. 

B) Lower figure a modern example of an intermediate barred shoreface profile; a shore 

parallel longshore bar separated by a wide deep longshore trough, Oregon Coast, 

United States. Air photo from Google Earth Pro. 
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Figure 2.8: Simplified palaeogeographic map recording hurricane influence on 

Cambrian deposition within Laurentia. Modified from Scotese et al. (1979). 
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CHAPTER 3: MIXED DELTAIC, SHOREFACE, AND TIDAL EMBAYMENT 
SEDIMENTATION ALONG A STORM-INFLUENCED EARLY CAMBRIAN 

SHORELINE; OUTCROPS WITHIN THE EASTERN MACKENZIE MOUNTAINS, 
NORTHWEST TERRITORIES, CANADA 

 

INTRODUCTION 

 During the Lower Cambrian, the absence of land plants resulted in the 

development of extensive aeolian dune fields and braided fluvial systems (Rainbird et 

al., 1997; Long and Yip., 2009). These braided fluvial systems delivered large amount of 

sediment to the shoreline which was subsequently reworked by wave and storm action. 

Early Cambrian paralic environments have been ascribed to transgressive 

environments wherein large volumes of these compositionally mature sands 

accumulated (Dalrymple and Rhodes., 1995; Cant and Hein, 1986; Simpson and 

Eriksson, 1990; MacNaughton et al., 1997; Desjardins et al., 2010, 2012a,b). These 

environments were commonly manifested as widespread, tidally reworked sand shelves 

on passive margins (Bond et al., 1984; Dalrymple and Rhodes., 1995; Cant and Hein, 

1986; Simpson and Eriksson, 1990; MacNaughton et al., 1997; Desjardins et al., 2010, 

2012a,b).  

 Here we present a detailed study of the sedimentology and ichnology of the 

Mount Clark Formation exposed within the Mackenzie Mountains of the Northwest 

Territories. This paper provides detailed sedimentological and ichnological data and 

interpretations meant to complement earlier regional work that was focused on the 

Mount Clark Fm (Aitken et al., 1973; MacLean, 2011; Fallas and MacNaughton, 2012).  

And, this paper has the fundamental aim of expanding our view of Cambrian shoreline 

associated facies models for comparison and application elsewhere. In comparison to 

previous Cambrian work within Western Canada and Arctic Canada that identified tidally 

dominated environments (Hein, 1987, Pemberton and Magwood, 1990; Desjardins et 

al., 2010, 2012; Durbano et al., 2015) we report strongly storm influenced shoreface 

deposition with wave-dominated deltaic intervals. Tidal influence on sedimentation is 

interpreted to be minimal outside of one outcrop locality.   
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PREVIOUS WORK 

 The Mount Clark Formation (Fig. 1) was defined by Williams (1922; 1923). In the 

subsurface and in outcrop belts of the Mackenzie Mountains the Mount Clark Formation 

is dominated by cross-bedded or bioturbated quartz-rich sandstone. The overlying 

Mount Cap Formation was also defined by Williams (1922; 1923) as an interbedded 

black shale and carbonate unit. The Mount Clark Formation is now considered to 

include strata of the Old Fort Island of Norris (1965). 

 Previous geologic research on the Mackenzie Mountains were broad regional 

studies operated by Geological Survey of Canada (GSC) mapping programs. Aitkens et 

al. (1973) initially delineated and described the Cambrian strata of the Mackenzie 

Mountains during the course of Project Norman in the late 1960s and early 1970s. 

Since then, work has focused on refining the trilobite stratigraphy of the Cambrian 

interval and on higher resolution mapping (Fallas and MacNaughton, 2012; 

MacNaughton et al., 2013). MacLean (2011) conducted an in depth study of the 

regional extent of Cambrian strata throughout the Northwest Territories Mainland using 

available seismic data. His work helped to delineate the depocentres and arches 

present during Cambrian deposition.  In the 2000’s the GSC and industrial stakeholders 

sought after potential reservoir extensions of the proven reserves found in the Colville 

Hills. This work was summarized in the Serie et al. (2009) open file report that contained 

descriptions of Cambrian successions within the Mackenzie Mountains. 

 

GEOLOGIC SETTING 

 Cambrian strata of the Northwest Territories Interior Mainland lies unconformably 

on Proterozoic strata of the Katherine and Little Dal Group (Aitken et al., 1973). This 

unconformity translates into an angular unconformity in some areas. Cambrian strata 

are punctuated by several depocentres and arches (Dixon and Stasiuk, 1998). The 

outcrops that form the basis of this study are flanked by the Mackenzie and Mahony 

arches to the West and East respectively (Dixon and Stasiuk, 1998) (Fig. 2). Hamblin 
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(1990) and Dixon and Stasiuk (1998) suggested that the Mount Clark and Cap 

formations represented the sedimentological response to the marine transgression of 

the Sauk sequence (Hamblin, 1990; Dixon and Stasiuk, 1998).. The overall trend of 

transgression finally resulted in a shift to the carbonate/shale dominated Mount Cap 

Formation.  

There are several inconsistencies regarding the nomenclature of the Mount 

Clark-Mount Cap transition. Previous work focused on the lithostratigraphic framework 

of these units, which presents difficulties with basin wide depositional systems and 

sequence stratigraphic correlations. The Mount Cap Formation was defined on the 

basis of a heterolithic, shale-dominated succession at the type locality of Mount Cap by 

Williams (1922). The type section is approximately 250 km from the outcrops presented 

in this study, and lie within a different depocenter. For the purposes of this study, we 

identify the Mount Clark-Cap Fm transition as the shift from siliciclastic sandstone 

dominated to interbedded shale and carbonate intervals. 

Biostratigraphic age constraints of the Mount Clark Formation are based on 

trilobite zones. However, many of the sandstone dominated parts of the Clark Formation 

are devoid of trilobites. The Dodo Canyon section is an important locality because the 

entire Cambrian Succession along with the Proterozoic unconformity is persevered 

(Aitken et al., 1973). In the area: three trilobite zonations have been established and are 

(from oldest to youngest): 1) Bonnia-Olenellus; 2) Albertella; and 3) Glossopleura (Fig. 

3a). Albertella zone trilobites were recorded from the base of the Mount Cap Fm interval 

at Carcajou Canyon (Fallas and MacNaughton, 2012) (Fig. 3b). At the Dodo Canyon 

section, Albertella and Glossopleura trilobites were found in the organic-rich shale in the 

upper half of the section along with Bonnia-Olenellus specimens in the lower sandier 

heterolithic interval (Fritz, 1970; Aitken et al., 1973; MacNaughton et al., 2013). This 

suggests that the lower heterolithic, mixed carbonate-clastics of Dodo Canyon are 

coeval with the quartz dominated Mount Clark Fm at Carcajou Canyon. The Mount 

Clark Fm is assigned an approximate age of 520-514 m.y. based on presence of the 

Bonnia-Olenellus zone trilobites. For this study the allostratigraphic Mount Clark Fm is 

assigned as lying below Albertella containing interbedded carbonates and shales of the 
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Mount Cap Fm. This surface is sharp and is interpreted to record a flooding surface 

separating the Bonnia-Olenellus Mount Clark Fm from the Albertella to Glossopleura 

Mount Cap Fm.  

 

METHODS 

 Three outcrop localities were studied (Fig. 2). Carcajou Canyon, Waterfall Ridge, 

and Two Lakes were chosen due to the quality of outcrop exposure, proximity to fresh 

water sources, and helicopter accessibility. Outcrops were measured using a 1.5 m 

Jacobs Staff. Lithology, mineralogy, the nature of bedding contacts, body and trace 

fossils, and overall bioturbation intensity were recorded. For select outcrops (Carcajou 

Canyon, Dodo Canyon), high resolution 3-D photo mosaics with a 4K Camera equipped 

Unmanned Aerial Vehicle (UAV or “drone”) were compiled. Photos taken from the drone 

were merged together using Agisoft PhotoScan©. Using outcrop, hand sample, and thin 

section observations, detailed lithologs were generated in AppleCore©. 

Sedimentological and ichnological features of selected sections are illustrated in Fig. 4. 

Ichnological data in the form of trace fossil size, diversity, and intensity was plotted 

against these logs (Fig. 5). 

 

FACIES ASSOCIATIONS 

Three facies associations are reported based on field observations (Table 1): 1) 

shoreface; 2) wave-dominated deltas; and, 3) tidal compound dune fields. Outcrop 

mosaics are presented in Fig. 6. Due to the great number and high degree of variability, 

facies associations have been summarized in Table 1 to keep prose succinct.  

 

FACIES OVERVIEW 

Lower shoreface deposits (FA1a,b) were characterized by a high trace fossil 

diversity, large trace fossils and intense bioturbation. Paleo-storm conditions ranged 

from strongly storm-influenced (Fa1a) to storm-affected (FA1b) deposition. Strong 
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storm-influence was evidenced by the presence of amalgamated HCS beds interpreted 

to record powerful oscillatory currents. More quiescent storm-affected conditions were 

identified on the presence of thinly laminated sharp based sandstone beds interpreted 

to record storm-derived sediment suspension settling. Upper shoreface environments 

(FA1c) were associated to pervasive intervals of nonbioturbated TCS sandstone 

interpreted to record rapidly migrating subaqueous dunes in a unidirectional current. 

Foreshore deposits (FA1d) contained low angle bedding and herringbone cross-

stratification, which was interpreted to record bi-directional currents.  

Wave-dominated deltaic deposits were composed of strata associated with lower 

delta front to prodelta settings. Delta front deposits were displayed moderate to intense 

bioturbation corresponding to a stressed Cruziana Ichnofacies. Trace fossil size and 

diversity was reduced in comparison to fully marine lower shoreface assemblages. 

Suspension feeding behaviors were also significantly suppressed. Storm influence 

varied from strongly storm-influenced (FA2a) recording amalgamated HCS beds to 

storm-affected (FA2b) recording interference ripples. Prodeltaic intervals (FA2c) 

comprised immature, silty very-fine grained sandstone, containing an impoverished 

Cruziana Ichnofacies assemblage. Biogenically reworked sandier laminae were 

interpreted to record tempestite deposition.  

Tidal compound dune field deposits were identified recording core (FA3a), front 

(FA3b), and margin (FA3c) environments. The core of the dune field (FA3a) was 

identified by low angle bedsets of TCS with varying foreset directions. Bioturbation was 

limited with rare only Diplocraterion and Arenicolites observed. The front of the dune 

field (FA3b) was identified by sigmoidal TCS beds with sharp erosive bed boundaries 

truncating bioturbated lithosomes. Reactivation surfaces and herringbone cross-

stratification are common and interpreted to record tidal currents. Bioturbated 

lithosomes are interpreted to represent an ecological niche in between migrating dune 

bedforms that are erosively truncated. The margin of the dune field (FA3c) was 

identified on the presence of intensely bioturbated sandstone lithologies with thin sharp 

cross-stratified horizons. Bioturbated horizons recorded the Cruziana Ichnofacies with 

Rusophycus and Cruziana observed. Sharp based cross-stratified horizons are 
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interpreted to record an increase in sediment supply and/or hydraulic energy. The 

dominance of ichnofossils linked to deposit feeding suggests that FA3c was deposited 

at the margin of the compound dune field due to its relative isolation from actively 

migrating dune forms.  

 

OUTCROP SUMMARY AND DESCRIPTION 

Regionally, the Mount Clark Formation represents progradational and 

retrogradational paralic deposits that include storm-influenced shorefaces, wave-

dominated deltas, tidally-dominated subtidal dune fields, and proximal offshore 

sediments. Integrated sedimentological and ichnological striplogs of wave-dominated 

deltas and shorefaces are presented in Figure 15.    

 

WATERFALL RIDGE OUTCROP 

 The most notable observations at Waterfall Ridge are a paucity of HCS bedding, 

and the presence of 2D and 3D sparsely burrowed compound dunes intercalated with 

intensely bioturbated media (Fig.4; Fig. 6c). The absence of HCS indicates that 

powerful storm generated long-wavelength sea-waves did not influence sedimentation 

at this locale (Dumas and Arnott, 2006; Plint, 2010). Storm influence is, however, 

manifested by thin (~5cm) crudely cross-bedded pebbly intervals that are interpreted to 

represent storm surges that transported shoreline-associated clastics seawards (i.e. 

FA3b Table 1; Fig. 11h).  

The 3D and 2D compound dunes that locally contain sparse Skolithos, 

Arenicolites and fugichnia are ascribed to tidal sedimentation. This is based on the 

observation of abundant herringbone cross-stratification and reactivation surfaces 

observed within dunes (Fig. 11c,e). These features share similarities with the Cambrian 

(Gog Group) (Desjardins et al., 2010, 2012). Intensely bioturbated horizons 

characterized by the Cruziana Ichnofacies represent inter-dune deposition in an 

embayment setting (Fig. 14). Intense bioturbation within tidally dominated coastal 
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settings is indicative of abundant food resources and overall low sedimentation rates 

(Gingras et al., 2012). The bioturbated beds are erosionally truncated by overlaying 2D 

and 3D dunes. Previous work within tide dominated Cambrian siliciclastic intervals 

identified sediment supply and bedform migration as the main controls on trace fossil 

distributions (Desjardins et al., 2010, 2012). We interpret these relationships to 

represent a compound dune field and not a subtidal sand-sheet complex. Due to their 

slower rates of migration and prolonged abandonment phases, sub-tidal sand sheet 

fronts are characterized by abundant piperock (Desjardins et al., 2010). 

In summary, Waterfall Ridge is interpreted to have been situated within a shallow 

marine embayment protected from open marine storm influences. Embayment 

morphology is interpreted to promote tidal currents, which were the dominant 

sedimentary transport mechanism in the wave-sheltered bay. These conditions allow a 

greater chance of preservation for tidal deposits than elsewhere on an exposed 

coastline (Davis and Hayes, 1984; Dalrymple, 2010). Overall, Waterfall Ridge likely 

contains one transgressive sequence marked by a shift from dune field front to dune 

field margin This is interpreted on the strong decrease in physical sedimentary 

structures and increase in bioturbation intensity when moving up section. Overlying the 

Proterozoic unconformity we see sparsely bioturbated compound dune deposits (FA3a) 

that grade into interbedded compound dunes and intensely bioturbated horizons 

(FA3b). The succession is capped off by the gradational shift into intensely bioturbated 

horizons with thin episodic planar to trough-cross-stratified biogenically reworked sharp 

based sandstone beds (FA3c). The transition from FA3a-FA3c could be interpreted as 

one large transgressive cycle, however autogenic factors such as sediment supply and 

budget could also explain the transition. Waterfall Ridge may represent sediment supply 

changes oriented along depositional strike. Bathymetrically FA3a-c may be deposited 

along strike within a similar water depth with FA3a recording deposition associated with 

a large sediment budget while FA3c may be sediment starved with FA3b recording 

deposition somewhere in between. 
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CARCAJOU CANYON OUTCROP 

Carcajou Canyon records highly variable sedimentation in which shoreface, 

deltaic, and tidal environments are preserved (Fig. 4; Fig. 6a). Storm influence is 

variable with strong to weak storm conditions observed.  

 Highly storm-influenced lower shoreface (LSF) deposits (FA1a) are seen within 

the lower half of the section (~6m). These deposits are characterized by interbedded 

sharp-based HCS and bioturbated horizons (Table 1; Fig. 7a). Bioturbated intervals 

record robust, diverse, and intense (BI 5) trace fossil assemblages with pervasive 

deeply tiered deposit feeding behaviours such as Asterosoma (Fig. 7f). Thoroughly 

bioturbated strata containing large robust traces correspond to fully marine fair-weather 

shoreface conditions in which both deposit and suspension feeding organisms thrived 

(MacEachern and Pemberton, 1992; Uchman and Krenmayr, 1995). Large HCS beds 

with accompanied graded rhythmites record storm-weather conditions (Fig. 7e) (Aigner 

and Reineck, 1982). Stronger storm conditions are recorded through amalgamated HCS 

intervals interpreted to represent more sustained storm activity. Bioturbation within HCS 

beds is rare apart from occasional burrow mottling at bed tops (Fig. 7e). This is 

interpreted to reflect storm-waning and subsequent colonization resulting in a “Lam-

Scram” pattern (sensu Howard, 1978; MacEachern and Pemberton, 1992). 

Sharply overlying FA1a of Carcajou Canyon lie intensely bioturbated (BI 4-5) silty 

muddy very fine grained prodeltaic sandstone of FA2c (Table 1; Fig. 9f). In contrast to 

the robust deposit and suspension feeding trace fossil assemblages observed in the 

underlying LSF deposits of FA1a, FA2c comprises trace fossil assemblages limited to 

diminutive Teichichnus, Rhizocorallium, and Asterosoma (Fig. 9g). These trace fossils 

correspond to a stressed Cruziana Ichnofacies with a paucity of suspension feeding 

forms (McIlroy, 2008). Trace fossils are diminutive in comparison to the fully marine 

shoreface strata of FA1a interpreted to record salinity stresses (Pemberton and 

Wightman, 1992). The absence of suspension feeding behaviors is interpreted to record 

turbidity stress (MacEachern et al., 2005). Mineralogies within FA2c are more immature 

when compared with the quartz rich lithologies of FA1a as lithics, chert, micas, clays, 

feldspars are common (Fig. 9h). MacNaughton et al (1997) noted offshore deposits of 
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Cambrian shorelines contained greater amounts of silt than later Palaeozoic 

successions and attributed this to the aeolian transport of fines offshore. The presence 

of salinity and turbidity stressed trace fossil assemblages and more immature 

mineralogy is interpreted to reflect deltaic sedimentation on a wave-dominated prodelta 

(Bann and Fielding, 2004). Wave energy attenuated deltaic stresses such as 

hypopycnal plumes and freshwater salinities. This is contrasted with fluvially dominated 

river systems typically record sparse to nonbioturbated prodeltaic deposits 

(MacEachern et al., 2005).  

Storm influenced lower delta front deposits (FA2b) sharply overlie prodeltaic 

deposits of FA2c (Table 1). These delta front deposit comprise interbedded heavily 

bioturbated (BI 4-5) horizons with nonbioturbated planar-tabular cross stratified 2-D 

dunes (Fig. 9b&e). Boundaries between the lithosomes are sharp and with trace fossils 

erosively truncated (Fig. 9d). Bedding plane exposures depict interference ripples 

overlying 2-D dune horizons (Fig. 9a). Slabbed hand samples contain mm scale mud 

drapes (Fig. 9c). Erosive planar tabular sandstone beds are interpreted to reflect 

periodic storm influence. Storm-generated currents mobilize sediment and allow for 

bedform migration that truncates fair-weather bioturbated horizons (Swift et al., 1979; Li 

and King, 2007). Asymmetrical interference ripples are formed through oscillatory 

currents that is common in nearshore settings (Clifton, 1971; Li and King, 2007). 

Deformed trace fossil assemblages within bioturbated horizons comprise Teichichnus, 

Asterosoma, Chondrites, Rhizocorallium, Cylindrichnus, Gyrolithes, and Palaeophycus 

(Fig. 9c). Chondrites is concentrated within mud laminae. These trace fossil 

assemblages correspond to the Cruziana Ichnofacies indicating sufficient food stored in 

the substrate (MacEachern et al., 2007). The paucity of suspension feeding forms is 

interpreted to record turbidity induced stress (Moslow and Pemberton, 1988) while the 

deformed burrow morphologies are interpreted to represent heightened sedimentation 

rates (Gingras et al., 2011). Facies association 2b at Carcajou Canyon records storm-

influence within the lower wave-dominated front. Fair-weather sedimentation is recorded 

by thoroughly bioturbated lithosomes dominated by the Cruziana Ichnofacies. Deltaic 

influence is interpreted on the paucity of suspension feeding forms and deformed 

burrow morphologies resulting from increased water turbidity and sediment supply.    
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Storm-influence is visible via erosionally based interference ripples and 2-D dunes that 

truncate bioturbated fair-weather horizons. 

Lying further upstream lying coeval with FA2b are tidal compound dune deposits 

of FA3a. These deposits were only observed using a UAV allowed a high resolution 

aerial photomosaic of the interval (Fig. 10a; Fig. 16). This observation is noted due to 

distinctive LSF deposits of FA1b that erosionally overlie the two. A change in thickness 

in FA1b when walking from the falls up section and river towards the compound dune 

interval seen at river’s edge was recorded. FA1b decreases in thickness from 1.90m to 

1.30m (Fig. 19). This is interpreted to represent a shift in overall accommodation due to 

either shoreline profile or fault blocks dropping out. The compound dune facies are 

more proximal than the delta front deposits of FA2b. This is aided by their 

sedimentologic and ichnologic characteristics: 1) abundant high energy bi-directional 

sedimentary structures; and 2) suspension feeding Skolithos traces (Fig. 10b,c). The 

transgressive surface directly above is also an indicator of paleo water depth as the 

compound dune has been erosively transgressed resulting in large scour marks (Fig. 

9a). FA1d has no such scour marks and the only indication of transgression is the 

vertical disparity in interpreted environments with FA2b being shallower. 

 A flooding surface (MRS) overlies FA2b corresponding to transgression and 

subsequent deposition of storm-affected lower shoreface deposits of FA1b. These lower 

shoreface deposits comprise intensely bioturbated (BI 6) lower fine sandstones with 

thinly laminated quartzose interbeds (Fig. 7j). Quartzose interbeds are sharply based 

with Glossifungites firm-ground suites observed (Fig. 7k). These thin quartzose 

interbeds are interpreted as thin tempestites recording storm deposition. Glossifungites 

surfaces underlying tempestites ascribed to low sedimentation rates (Hubbard and 

Shultz, 2008). In comparison to the strongly oscillatory HCS bedforms observed in FA1a 

these thin tempestite beds likely represent deposition from suspension fall out (Aigner 

and Reineck, 1982). Storm influence is interpreted to be significantly reduced in 

comparison to the amalgamated HCS beds observed in FA1a. Trace fossil 

assemblages are robust and diverse with Rhizocorallium, Asterosoma, Teichichnus, 

Rosselia, Palaeophycus, Chondrites, Planolites, Skolithos, Diplocraterion, and 
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Rusophycus (Fig 7l&m). These trace fossil assemblages correspond to the Cruziana 

Ichnofacies with a combination of suspension and deposit feeding behaviors within fully 

marine physico-chemical conditions (MacEachern and Pemberton, 1992). Due to the 

presence of diverse and robust trace fossil assemblages comprising deposit and 

suspension feeding behaviors in conjunction with thinly bedded tempestites FA1b is 

interpreted to record deposition within a storm-affected lower shoreface.     

Directly overlying lower shoreface deposits of FA1b lies a well-developed 

Glossifungites demarcated omission surface (Fig. 13). Taenidium burrows contain a 

celadonite, a brilliant blue-green mineral in association with large manganese cemented 

lithoclasts (Fig. 13b-d). This surface is interpreted to represent a regressive surface of 

erosion as a result of FA1d that lies above the Glossifungites surface (explained below).  

Mount Clark Fm deposition terminates at Carcajou Canyon with FA1d recording 

foreshore deposition. Lithologies comprise lower medium grained celadonitic 

sandstones with alternating horizons of cross-stratified and bioturbated horizons (Fig. 

8d&e). Cross-stratified horizons are represented by herringbone cross-stratification and 

current ripples. These cross-stratified horizons impart sharp and erosive contacts on 

bioturbated intervals comprising of robust and intense (BI 4-5) assemblages of 

Chondrites. The large size of these traces is interpreted to record well-oxygenated 

sediment with healthy amounts of nutrients within the substrate (Bromley and Ekdale, 

1984). Herringbone cross-stratification is interpreted to record bi-directional currents 

through tidal currents and/or wave swash (Reineck and Singh, 1980). Facies 

association 1b is interpreted to record deposition within the foreshore environment due 

to the presence of bi-directional current sedimentary structures and robust Chondrites 

assemblages indicating well-oxygenated sediment. Subsequent transgression 

continued into the Mount Cap Formation resulting in deposition of interbedded 

carbonate and black shale lithologies (Fig. 13a). 

In summary, Carcajou Canyon is interpreted to have been situated within open 

marine to embayed shoreline. Open marine lower shoreface conditions are represented 

by FA1a&b consisting of robust marine trace fossil assemblages. Storm influence is 

interpreted on the presence of tempestite beds ranging from amalgamated HCS (FA1a) 
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to thinly laminated beds (FA1b). This shift in storm influence may have resulted from a 

shift in shoreline orientation in which FA records more shielded sedimentation away 

from the brunt of storm influence. FA1a likely records more open conditions facing the 

brunt of storm activity resulting in amalgamated HCS deposition. Wave-dominated 

deltaic sedimentation is recorded in delta front (FA2b) and prodelta (FA2c) deposits. 

These deposits depict a marked decrease in trace fossil diversity and suspension 

feeding behaviors interpreted to record fluvially induced turbidity and salinity stresses 

(Fig. 5) (MacEachern et al., 2005). Storm influence is visible in thin biogenically 

reworked very fine sand intervals and storm-activated 2-D dunes. Coeval to the delta 

front deposits are tidal compound dune deposits observed by the river’s edge. This shift 

to tidal sedimentation may record shallow water deposition in which tidal forces control 

sedimentation. This scenario would require protection from open marine waves that 

overwhelm tidal currents (Davis and Hayes, 1984). Shoreline orientation may have 

shifted resulting in the creation of a protective embayment promoting tidal 

sedimentation. 

 

TWO LAKES OUTCROP 

 Two Lakes records strongly storm-influenced shoreface and wave dominated 

deltaic sedimentation represented by the resistant sandstone cliffs seen in Figure 6b. 

 The most notable observations at Two Lakes are an abundance of HCS bedding 

interbedded with impoverished (FA2a; Fig. 8f-h)) to diverse bioturbated (FA1a; Fig. 7g-i) 

horizons. Nonbioturbated lithologies are characterized by trough to planar cross-

stratified sandstones (FA1c; Fig. 8a-c). The presence of HCS indicates that Two Lakes 

was situated within an open marine environment subjected to storm activity (Walker and 

Plint, 1992). The presence of two opposing trace fossil assemblages is interpreted to 

represent varying physico-chemical conditions (Pemberton et al., 1982; Gingras et al., 

2011). Bioturbated are interpreted to record fair-weather sedimentation while HCS is 

interpreted to record storm-weather sedimentation. 
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 Sparsely to bioturbated lithologies interbedded with sharp based HCS beds are 

ascribed to storm-influenced wave-dominated delta front sedimentation. This is based 

on impoverished trace fossil assemblages comprising Chondrites, Palaeophycus, 

Cylindrichnus, and Asterosoma. with diminished suspension feeding behaviors (Gingras 

et al., 1998; Coates and MacEachern, 2007). These impoverished trace fossil 

assemblages are starkly contrasted with the robust, diverse, and intense bioturbate 

fabrics of FA1a,b within the lower shoreface (Fig. 7g-i). Deltaic-induced salinity and 

turbidity stresses in the form of mud flumes and freshwater influx are interpreted to be 

the cause of these impoverished trace fossil assemblages (MacEachern et al., 2005). 

Although these physico-chemical stresses had an appreciable effect on trace fossil 

assemblages it should be noted that wave energy attenuated these stresses resulting 

more hospitable conditions than a fluvially dominated delta (Bann and Fielding 2004).  

Sharply overlying delta front deposits of FA2a lie nonbioturbated multi-directional 

TCS and planar-tabular lithologies of FA1c. The nonbioturbated nature of these units is 

interpreted to reflect rapidly migrating bedforms under strong unidirectional currents 

(Reineck, 1977). We interpret this interval to record deposition on the upper shoreface 

or upper delta-front. Distinguishing between the two is difficult as both environments 

show identical sedimentologic and ichnologic characteristics. The erosive surface that 

separates lower delta-front (FA2a) and upper shoreface/delta front (FA1c) deposits is 

interpreted to represent a surface of forced regression (Fig. 6b). We interpret that FA1c 

was deposited during a relative sea-level fall creating a surface of forced regression 

(Hart and Plint, 1995).  

 Directly overlying the upper shoreface/delta front deposits of FA1c lies strongly 

storm-influenced lower shoreface deposits of FA1a separated by a flooding surface 

(MRS; Fig. 6b). In stark contrast to the underlying deltaic deposits of FA2a, FA1a 

records diverse, robust, and intensive trace fossil assemblages. Whereas FA2a 

displayed a paucity of suspension feeders FA1a contains robust Diplocraterion and 

Skolithos in association with deeply tiered deposit feeding traces such as Asterosoma. 

Hummocky cross-stratification is pervasive throughout with well developed post-storm 

colonization suites of Diplocraterion and Cylindrichnus (Fig. 7c). These suites are 
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interpreted to be the result of r-selected organisms rapidly inhabiting the newly 

deposited sandy substrate (Vossler and Pemberton, 1988). Transgression of FA1c and 

subsequent deposition of FA1a is interpreted to be the result of an auto-cyclic deltaic 

lobe switch in which sediment supply can no longer keep pace with sea level and 

transgression occurs (Bhattacharya and Walker, 1991). This explains the contrasting 

trace fossil assemblages seen in the lower delta front and overlying lower shoreface 

deposits. Alternatively, this flooding event could also represent an allo-cyclic sea level 

rise and the contrasting trace fossil assemblages could be a result of along strike 

variation in physico-chemical water conditions in relationship to proximity to a delta 

distributary channel. Distinguishing between the two scenarios would require greater 

outcrop control that was unavailable.   

 In summary, Two Lakes is interpreted to have been situated within open marine 

shoreline. Open marine lower shoreface conditions are represented by FA1a comprising 

robust marine trace fossil assemblages. Strong storm influence is interpreted on the 

presence of amalgamated HCS tempestite beds (FA1a, FA2a). Wave-dominated deltaic 

sedimentation is recorded in delta front (FA2a) deposits. These deposits depict a 

marked decrease in trace fossil diversity and suspension feeding behaviors interpreted 

to record fluvially induced turbidity and salinity stresses (MacEachern et al., 2005). 

Delta front/upper shoreface deposits are characterized by nonbioturbated 

multidirectional trough and planar-tabular cross-stratification (FA1c) formed through 

unidirectional currents. The transgression (MRS) following deposition of FA1c is 

interpreted to record a delta lobe switch in which sediment supply was unable to keep 

up with sea level rise (Bhattacharya and Walker, 1991). Evidence for this is observed in 

the overlying lower shoreface deposits of FA1a that comprise diverse and robust trace 

fossil assemblages.  

 

ICHNOLOGY OF CAMBRIAN WAVE-DOMINATED DELTAS 

 The ichnological and sedimentological expressions of Cambrian tidally 

dominated sand sheets have been well studied (Desjardins et al., 2010, 2012; Durbano 
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et al., 2015; Mangano and Buatois; 1999, 2004a,b; Schafer, 1972). This discussion will 

therefore focus on the comparison of Cambrian shoreface and wave dominated deltaic 

complexes.  

Early Cambrian shoreface deposits from the Mount Clark Formation in the 

Northwest Territories contain ichnological signatures marked by moderate to intense 

bioturbation, high diversity (12 ichnospecies), and a remarkable number of specialized 

feeding behaviours (Table 2). The relative decrease in diversity when compared with 

well-studied Cretaceous shorelines is an evolutionary phenomenon as decapod 

crustaceans and bloodworms responsible for Ophiomorpha/Thalassinoides and 

Macaronichnus did not radiate until the Mesozoic (Carmona et al., 2005). Diverse 

assemblages are composed of the robust burrows of deposit and detritus feeders mixed 

in with a well-developed array of vertical traces that represent the burrowing activities of 

carnivores, scavengers, and suspension feeders. These complex assemblages are 

interpreted to represent a diverse proximal expression of the Cruziana Ichnofacies 

mixed with major elements of the Skolithos Ichnofacies. This suite reflects a fully marine 

well-oxygenated environment with abundant suspended and buried nutrients in which 

mature metazoan communities were able to thrive. Ichnological responses to storm 

sedimentation were observed in impoverished Skolithos style colonization suites within 

HCS beds composed of Diplocraterion, Skolithos, and Cylindrichnus. These suites were 

developed as result of a storm induced shift in nutrient distribution favoring r-selected 

organisms (Pemberton and MacEachern, 1997).  

 In contrast, the ichnological signature of early Cambrian deltaic deposits is 

characterized by a significant reduction in trace fossil size and diversity along with the 

absence of robust suspension feeding forms. Bioturbation is comprised of 3-4 

ichnospecies and is sporadically distributed with reduced intensity. These assemblages 

correspond to a stressed expression of the Cruziana Ichnofacies. Rare examples of 

Cylindrichnus and Skolithos were observed within the delta front lithologies of FA2a,b 

indicating a suppressed element of the Skolithos Ichnofacies. 
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 Integrated ichnological and sedimentological logs are illustrated in Figure 17 

contrasting the differences between Cambrian shoreface and deltaic deposits. In 

prodeltaic intervals primary lamination has been disrupted by intense bioturbation 

consisting of abundant Teichichnus and Asterosoma with rare Rhizocorallium. The size 

of trace fossils is significantly smaller in comparison to the fully marine assemblages 

(Fig. 17). Thin, lighter coloured and coarser grained laminae (tempestites) have been 

largely reworked (BI 5) by biogenic activity. Facies association 2C has been completely 

homogenized during fair-weather conditions through deposit feeding organisms. 

 Cambrian shoreface and delta front deposits differ in significant ways from an 

ichnological perspective (Fig. 17). Lower shoreface deposits comprise a diverse fair-

weather assemblage that represents a proximal expression of the Cruziana ichnofacies 

reflecting sustained periods of abundant nutrients and healthy marine conditions. 

Tempestites occasionally contain a relatively impoverished distal expression of the 

Skolithos ichnofacies in the uppermost 10cm of HCS beds. This suggests that r-

selected organisms were able to colonize the substrate after storm deposition. In 

contrast, the delta front is characterized by stressed infaunal community marked by 

diminutive, opportunistic deposit feeding organisms. Vertical suspension feeding forms 

such as Skolithos and Diplocraterion are very rare.  

 The overall paucity of robust suspension feeders in deltaic deposits may reflect 

elevated water turbidity. High levels of suspended sediment within the water column 

render colonization and survival difficult for suspension feeding organisms by plugging 

filter-feeding apparati and reducing the efficiency of feeding (Moslow and Pemberton, 

1988; Gingras et al., 1998; Bann and Fielding, 2004; MacEachern et al., 2005). Large 

increases in suspended fine-grained sediment are typically associated with heightened 

precipitation and subsequent increased fluvial discharge into the basin (Coates and 

MacEachern, 2007). A large fluvial sediment supply can be inferred based on the 

presence of large braided river systems that avulsed regularly due to the lack of any 

stabilizing land vegetation in the Cambrian (MacNaughton et al., 1997). In the absence 

of land plants aeolian transport of fine sediment may have been prolific resulting in 

windblown sediment blown offshore (Dalrymple et al., 1985). Braided rivers were likely 
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bedload dominated with unstable banks and high width:depth ratios bringing large 

amounts of sediment to the shoreline (Schumm, 1968; Cotter, 1978). As a result, 

suspended sediment load may have been greater than what may have occurred in well 

studied Permian and Mesozoic deltaic successions (Bann and Fielding, 2004; McIlroy, 

2004; Coates and MacEachern, 2007).  

 Organic rich mudstone drapes covering tempestite beds are a relatively common 

observation in late Paleozoic and Mesozoic deltaic successions (Saunders et al., 1994; 

Coates and MacEachern, 1999; Bann and Fielding, 2004). These mud drapes have 

been interpreted to cause rapid oxidation and oxygen depletion inhibiting opportunistic 

storm suites colonizing the storm bed (Coates and MacEachern, 2007) However, these 

organic rich mud drapes are absent in the Cambrian Mount Clark Fm and a likely result 

from having no land plants in the Cambrian. Cambrian transport of silt and clay sized 

fractions is thought to be dominantly aeolian resulting in a tradewind dominated fine-

grained sedimentation (Dalrymple et al., 1985). This dominantly aeolian transport of 

fines results in clay and silt poor Cambrian marine successions. Internal erosion 

surfaces and rip-up clasts provide evidence that storm activity was pervasive and 

frequent enough to remove previously established colonization communities.  

 Broadly speaking, stressed, low-diversity, diminutive trace fossil assemblages 

recorded from the Early Cambrian deltaic deposits of the Mount Clark Fm reflect less 

hospitable living conditions than those in fully marine shoreface environments. Most 

inhabitants are opportunistic species that flourish in unpredictable conditions with 

respect to water salinity and turbidity. The highly variable and interfingering nature of 

these deltaic and shoreface deposits is a testament to the highly variable braided fluvial 

drainage patterns on barren Cambrian cratons (MacNaughton et al., 1997). 

  

CONCLUSIONS 

 The early Cambrian Mount Clark Fm at the outcrop localities of Waterfall Ridge, 

Carcajou Canyon, and Two Lakes records deposition of inter-fingered shoreface, 

deltaic, and tidal dune field deposits. The highly variably nature of these deposits is 

61



attributed to large braided river systems delivering large amounts of sediment to the 

shoreline on a barren Cambrian craton. Due to no stabilizing land vegetation, these 

rivers are inferred to have frequently avulsed creating mixed shoreface and deltaic 

successions seen at Two Lakes and Carcajou Canyon. Tidal forces are interpreted to 

be minimal outside of shielded marine embayments that amplified tidal activity while 

shielding sedimentation from storm and wave influence resulting in the deposition of 

tidal dune fields. Integrated sedimentological and trace fossil analysis through 

bioturbation intensity, trace fossil size, and diversity has shown to be a robust 

methodology for delineating tidal and wave/storm influences through identifying physico-

chemical stresses. These ichnological responses are very similar to well-studied late 

Paleozoic and Mesozoic deltaic successions.  

1) The Mount Clark Formation represents a complex depositional environment 

punctuated by wave, storm, and tidal influences in shoreface, deltaic, and tidal 

settings.  

2) Outcrops listed in order of increasing wave/storm influence are as follows: 1) 

Waterfall Ridge; 2) Carcajou Canyon; and 3) Two Lakes.  

3) Wave-dominated deltaic deposition is marked by strong decrease in trace fossil 

size and diversity along with a reduction in suspension feeding behaviours. This 

is interpreted to represent salinity and turbidity stresses from fluvial influx.   

4) More immature mineralogies consisting of an increase in feldspar, lithics, chert, 

and mica fragments accompany these deltaic ichnological suites. 

5) Deltaic influence punctuates the basin and is a likely cause for base-level falls, 

due to lobe abandonment and subsequent switching. Cambrian river systems 

may have shifted more rapidly due to no stabilizing vegetation.  

6) Fair-weather shoreface deposits show the most diverse and intense bioturbate 

fabrics with uniformly high bioturbation intensities (averaging BI 5). 

7) Storm-weather HCS deposition punctuates shoreface and deltaic sedimentation 

with rare post-storm Skolithos style colonization suites.   

8) Tidally-dominated dune deposits show the most ichnologically variable 

conditions. Compound dune forms are characterized by highly stressed 

conditions with limited and sparse bioturbation trends (BI 0-2). This stress is a 
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likely result of high sediment supply, continuously shifting substrates, and salinity 

fluctuations associated with tidal periodicities. In turn the heavily bioturbated (BI 

6) horizons are representative of a quiescent stable niche that occupies the 

trough in between migrating compound dunes (Fig. 14).  
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Table 3.1: Summary of facies associations and depositional environments of the Mount 

Clark Formation within the Mackenzie Mountains. 
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Table 3.2: Shoreface Associated Ethologies of Mesozoic and Cambrian Shorefaces. 

Trace fossil behaviours documented from the Early Cambrian (EC) Mount Clark 

Formation and a range Cretaceous (K) strata (Leckie and Walker, 1982; Saunders and 

Pemberton, 1990; MacEachern and Pemberton, 1992;). Behaviours are adapted from 

MacEachern et al. (2007). 
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Figure 3.1: Stratigraphic column for the Cambrian System within the Northwest 

Territories, Canada. The chief focus of this study is the Mount Clark Formation within 

the Mackenzie Plain area. Modified from MacLean (2011). 
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Figure 3.2: Basemap of the study area showing the outcrop locations within the 

Mackenzie Depocenter. Map modified from MacLean (2011). Air photo from Google 

Earth.  
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Figure 3.3: Biostratigraphic framework of the Mount Clark Formation using trilobite 

zonations. 

A) Photomosaic of the Dodo Canyon section of the Mount Clark Formation. 

Allostratigraphic Mount Clark and Cap Formations are indicated by the orange and red 

arrows respectively. Trilobite faunas represented by the blue, pink, and green stars.  

B) UAV acquired overview photograph of the Carcajou Canyon locality illustrating the 

typical Mount Clark quartz dominated sandstones overlain by the dolostone and black 

shale of the Mount Cap Formation. The blue arrow indicates the Mount Clark/Cap Fm 

boundary. Note the pink star indicating Albertella zone trilobites placing the quartz 

dominated sandstones as older than Albertella.  
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Figure 3.4: Striplogs of the outcrop sections logged. 

Red lines indicate flooding surfaces (maximum regressive surfaces) while green 

squiggly lines represent a Glossifungites surface. Surface of forced regression outlined 

in blue at Two Lakes. The depositional environments are indicated by coloured shading 

in the left margin of each log. Digitized logs were done through AppleCore© software. 
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Figure 3.5: Carcajou Canyon and Two Lakes striplogs with trace fossil size, diversity, 

and intensity plotted. Deltaic signatures (translucent green) become manifested through 

trace fossil size and diversity reductions. 

81



A

3 
m

B C

82



Figure 3.6: Overview photomosaics of the three outcrop localities studied. 

A) Carcajou Canyon 

B) Two Lakes. Resistant sandstone cliffs mark the Mount Clark Formation. Inset photo 

of two significant surfaces. Blue arrow indicates surface of forced regression. Red 

squiggly line indicates maximum regressive surface (MRS) separating upper 

shoreface/delta front deposits from lower shoreface deposited above.   

C) Waterfall Ridge. Red squiggly line marks the Proterozoic-Cambrian unconformity. 

Blue line marks the top of the Mount Clark Formation, base of the Mount Cap 

Formation.  
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Figure 3.7: FA1a (Storm-Influenced Lower Shoreface) and FA1b (Storm-Affected 

Lower Shoreface) Photo Plate. 

A) UAV acquired aerial shot of river washed HCS beds. FA1a, represents storm-

weather conditions. Carcajou Canyon. 

B) Amalgamated HCS beds indicating pervasive and intense storm weather conditions 

and deposition, note sharp lower erosive boundary cutting unto heavily bioturbated 

fair-weather conditions. Two Lakes, FA1a. 

C) HCS storm bed colonization suite with abundant mud-lined burrows and 

Diplocraterion (Di). Two Lakes, FA1a. 

D) Ball and pillow structures or “pseudo-nodules” indicated by black arrows underlying 

HCS bed. Carcajou Canyon, FA1a. 

E) Distal expression of HCS, graded rhythmite. Carcajou Canyon, FA1a. 

F) Robust Asterosoma (As). Carcajou Canyon, FA1a. 

G) Robust bedding plane expressions of Diplocraterion (Di). Two Lakes, FA1a. 

H) Cross-sectional view of Asterosoma (As). Two Lakes, FA1a. 

I) Bedding plane expressions of Rosselia (Ro). Two Lakes, FA1a. 

J) Overview photo of FA1b, intensely bioturbated lower shoreface fair-weather deposits 

with thin white quartzose tempestites. Carcajou Canyon, Fa1b. 

K) Biogenically reworked quartzose tempestite with auto-cyclic Glossifungites firm-

ground developed underneath, Planolites (Pl) and Skolithos (Sk). Carcajou Canyon, 

FA1b. Red Jacobs staff is 1.5 m in length. 

L) Intensely bioturbated fair-weather deposits of the lower shoreface containing cross-

sectional views of Asterosoma (As), Teichichnus (Te), and Rhizocorallium (Rz). 

Carcajou Canyon, FA1b. 

M) Bedding plane expressions of Intensely bioturbated (BI 6) fair-weather trace fossil      

assemblages of FA1d; Palaeophycus (Pa), Cylindrichnus (Cy), Diplocraterion (Di), 

Skolithos (Sk), and Rusophycus (Ru). 
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Figure 3.8: FA1c (Upper Shoreface/Upper Delta Front), FA1d (Foreshore), and FA2a 

(Storm-Influenced Lower Delta Front) Photo Plate. 

A) Planar-tabular bedding of FA1c. Two Lakes, 10cm increments on red pogo staff.  

B) Trough cross-stratification of FA1c. Two Lakes. 

C) Planar-tabular bedding of FA1c. Two Lakes. 

D) Mono-specific assemblages of Chondrites (Ch) within celadonitic sands of FA1d. 

Carcajou Canyon.  

E) Herringbone cross-stratification of FA1d. Carcajou Canyon.  

F) Large scale HCS bedding (storm-weather) and intensely bioturbated (fair-

weather) horizons. 1.5 m red Jacobs staff for scale. Two Lakes, FA2a. 

G-H) Slabbed and polished hand samples from fair-weather bioturbated horizons of 

FA2a. Diminutive and impoverished Cruziana ichnofacies consisting of 

Asterosoma (As), Cylindrichnus (Cy), Chondrites (Ch), and Palaeophycus (Pa). 

Two Lakes. 
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Figure 3.9: FA2b (Storm-Influenced Wave-Dominated Lower Delta Front) and FA2c 

(Wave-Dominated Prodelta) Photo Plate. 

A) Oscillatory interference ripples observed on the bedding plane of FA2b, rough 
orientation provided by green lines. Blue box provides a more detailed inset image. 
Carcajou Canyon. 

B) 2-D dune manifested as planar-tabular cross-stratification. Pencil approximately 12 
cm in length. Carcajou Canyon, FA2b. 

C) Cross-sectional view of a slabbed hand sample of FA2b showing muddy sandstone 
with Gyrolithes (Gy), Cylindrichnus (Cy), Palaeophycus (Pa), Chondrites (Ch), and 
Rhizocorallium (Rz). Carcajou Canyon, FA2b. 

D) Teichichnus (Te) erosionally truncated by 2-D dune. Carcajou Canyon, FA2b. 

E)  Outcrop cross-sectional close-up of FA2b showing an intensely (BI 5) bioturbated 
muddy sandstone fabric with Palaeophycus (Pa), Chondrites (Ch), Asterosoma (As), 
Teichichnus (Te), and Rhizocorallium (Rz). Carcajou Canyon, FA2b. 

F)   Shaley black appearance and recessive weathering of FA2c at Carcajou Canyon.  

G) Slabbed hand sample of FA2c showing an impoverished Cruziana Ichnofacies 
containing Teichichnus (Te), Asterosoma (As), and Rhizocorallium (Rh). 

H) Thin-section photograph of FA2c indicating plagioclase and potassium feldspars (red 
arrows), muscovite (pink arrow), zircon (yellow arrow), clay minerals (orange arrow), 
lithics (purple arrow), and chert (green arrow). 
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Figure 3.10: FA3a (Compound Dune Field Core) Photo Plate. 

A) UAV acquired photomosaic of section near the rivers’ edge showing FA1d (fair-

weather lower shoreface) and FA4a (compound dune field core) in the yellow and 

red arrows. Orange arrow shows erosive scouring cutting into FA4a. The purple box 

provides the inset for B. Carcajou Canyon. 

B) Colonization suite consisting of Skolithos and Arenicolites burrows within FA3a. 

Diagnostic of the Skolithos ichnofacies with BI of 3. Carcajou Canyon.  

C) Trough cross-stratification indicated by the translucent green lines. Note opposing 

foreset dip angles. Carcajou Canyon, FA3a. 

D) Compound dunes overlying the Proterozoic unconformity (red squiggly line). Yellow 

lines are interpreted to represent compound dune geometries. Waterfall Ridge, 

FA3a.  

E) Sigmoidal trough cross-stratification of FA3a. Waterfall Ridge. 

F) Zoomed image of (D) showing high to low angle cross bedding of trough cross-

stratification. Translucent black lines show cross-bedding. Waterfall Ridge, FA3a.  

G) Slabbed and polished hand sample containing mudstone rip up clasts (red arrows. 

Waterfall Ridge, FA3a.  
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Figure 3.11: FA3b (Compound Dune Field) Photo Plate. 

A) Overview photo of FA3b depicting sigmoidal dune forms and sharp erosional 

contacts with underlying bioturbated horizons (red line). Waterfall Ridge. 

B) Flame structures riding up into overlying 3-D dune indicated by red arrows showing 

a soupy soft unconsolidated bioturbated substrate from FA3b. Waterfall Ridge. 

C) Herringbone cross-stratification interpreted to represent bi-directional tidal currents. 

Waterfall Ridge, FA3b.  

D) 3-D dune erosionally truncating heavily bioturbated (BI 5-6) horizons. Waterfall 

Ridge, FA3b. 

E) Sigmoidal dune migrating up a previously deposited dune creating a reactivation 

surface, herringbone cross-stratification in the lower beds traced in translucent blue 

lines. Waterfall Ridge, FA3b. 

F) Large scale convolute bedding, scale bar is 3cm. Waterfall Ridge, FA3b. 

G) Fugichnia within 3-D dune. Waterfall Ridge, FA3b. 

H) Crudely cross-bedded recessive pebbly interval interpreted to record storm 

deposition. Waterfall Ridge, FA3b. 
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Figure 3.12: FA3c (Compound Dune Field Margin) Photo Plate. 

A) Overview outcrop shot showing FA3c, darker red beds indicate 2-D dunes. Waterfall 

Ridge. 

B) Two examples of 2-D dunes (darker red colour) in FA3c. The lower bed has been 

nearly obliterated due to biogenic reworking while the upper one shows significantly 

less biogenic reworking. Waterfall Ridge, FA3c. 

C) 2-D dunes with sharp erosional bases migrating overtop of bioturbated intervals. 

Waterfall Ridge, FA3c. 

D-E) Bedding plane traces of Rusophycus and Cruziana. Waterfall Ridge, FA3c.  

F) Biogenic deformation ichnofabric, complete homogenization of the sediment. 

Waterfall Ridge, FA3c.  
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Figure 3.13: Glossifungites Demarcated Omission Surface, Carcajou Canyon. 

A) Overview photo of the Mount Clark to Cap Formation interval. The yellow line 

indicates the Glossifungites surface. The pink arrow represents the relatively thin 

deposits if FA1d.  

B) Transgressive lag of Glossifungites surface. Red arrows point to large pebble sized 

clasts of ?manganese cemented sandstone. 

C) Taenidium (Ta) with brilliant blue/green celadonite infill.  

D) Cross-sectional outcrop expression of the Glossifungites surface. 
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Figure 3.14: Tidal Compound Dune Field of FA3. 

A) Geomorphic reconstruction of the subtidal compound dune field interpreted as the 

environment of deposition for FA3. Two inset images are shown distinguishing the 

different areas of deposition. Left image (FA3a) depicts the core of a compound 

dune noted by the absence of erosionally truncated bioturbated horizons and 

pervasive amalgamated dune bedforms. Right image (FA3b) shows the erosional 

truncation of Cruziana style bioturbated muddy sandstones within the “trough” due 

to compound dune migration across the substrate. 

B) Geomorphic reconstruction of the subtidal compound dune field margin interpreted 

as the environment of deposition for FA3c. Thinly bedded 2-D dunes migrate 

erosively across the Cruziana style bioturbated muddy sandstone substrate as a 

result of an increase in sediment budget and/or storm influence. Images below 

show the outcrop depiction. 
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Figure 3.15: Mount Clark Formation Depositional Framework for the Mackenzie 

Mountains. Numbers indicate outcrop localities where deposition could have occurred. 
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Figure 3.16: Carcajou Canyon Paleoenvironmental Juxtaposition. 

I) Google Earth image showing the Carcajou Canyon outcrop with the two section of 

interest noted by the pink arrows A and B.  

A) UAV image of the river side section that contains tidally dominated deposits of FA3a 

in comparison to the storm influenced shoreface and deltaic sections of Carcajou 

Canyon.  

B) UAV mosaic of the lower downstream falls section of Carcajou Canyon consisting of 

storm-influenced shoreface and deltaic deposits. AppleCore cross section below 

contrasts the overall rapid change in depositional environments from tidal compound 

dunes (A) to delta front deposits (B). Also seen is the increase in thickness of FA1d 

storm-influenced lower shoreface deposits when moving towards the falls. 
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Figure 3.17: Sedimentological and ichnological expressions of Cambrian shorefaces 

and wave-dominated deltas. Idealized composite strip logs based on outcrop data. Note 

the decreased trace fossil size, diversity, and bioturbation intensity associated with 

deltaic deposition. 
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CHAPTER 4: AN EARLY CAMBRIAN RADIATION INTO CHARACTERISTIC 
ETHOLOGICAL NICHES 

 

INTRODUCTION 

The colonization of marine environments by metazoans is one of the most 

significant events of Earth’s history. Trace fossils indicate a dramatic shift from the simple 

surface grazers of the Proterozoic Ediacaran Period and Fortunian Stage of the Cambrian 

(Seilacher, 1999; Jensen, 2003; Seilacher et al., 2003; 2005; Mangano and Buatois, 

2004; Tarhan and Droser, 2014; Tarhan et al., 2015) to more diverse feeding behaviours 

that characterise younger marine strata (MacEachern and Pemberton, 1992; Bann and 

Fielding, 2004). As a result of this shift, ichnological aspects of Ediacaran strata are 

readily discerned from those observed in Cambrian strata. 

 It has generally been presumed that ichnological diversity and morphological 

diversity are closely linked (Meysman et al., 2006). However, if that is the case, then it is 

inferred that ethology (behaviour) and animal morphology are related, a premise that is 

generally not substantiated by ichnological studies. In fact, ichnofacies argue against an 

ethological dependence on morphology as marine ichnofacies represent a community 

response to resource distribution and bottom-water conditions that reveal behavioural 

responses that are influenced by environmental conditions, not animal form.  

To better understand the relationship between animal behaviour and morphology, 

it is important to study Early Cambrian occurrences of then newly established ethological 

guilds of trace fossils (i.e. ichnofacies), and compare the timing of their establishment to 

what is known of the timing of the first Cambrian radiations. In this regard, we consider 

here the ichnological assemblages associated with the Early Cambrian Mt Clark 

Formation (Series 2, Stage 3), which predates fossil evidence of the Cambrian Explosion. 

Observed therein are very well developed trace-fossil assemblages that, based on their 

occurrence in well understood process sedimentological models of shoreface deposits, 

can be identified with very high certainty as filter-feeding and deposit-feeding centered 

assemblages. 
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MOUNT CLARK FORMATION 

This study draws from a robust dataset, which includes outcrop of the Mount Clark 

Fm outcrop in the Mackenzie Mountains, as well as subsurface core from the Colville Hills 

area of the Northwest Territories, Canada (Fig. 1). Core data includes five wells; Colville 

D-45, Tweed Lake A-67, Tweed Lake M-47, Bele O-35, and PCI C-12. Outcrops include; 

Two Lakes (64°58'34.00"N, 127°36'22.90"W) and Carcajou Canyon (64°40'16.90"N, 127° 

9'40.82"W), located in the eastern ranges of the Mackenzie Mountains west of Norman 

Wells, NT, Canada.  

 Previous studies of the Mount Clark Formation confirm that it was deposited within 

a shallow-marine shoreface setting (Hamblin, 1990; Dixon and Stasiuk, 1998). Owing to 

the presence of robust and diverse marine trace fossil assemblages and erosive storm 

beds manifested as Hummocky Cross-Stratification (HCS), (Fig. 2), the Mount Clark 

Formation is further interpreted to represent a storm-influenced marine shoreface to 

wave-dominated delta succession. Both the outcrop and core datasets contain trilobites 

belonging to the Bonnia-Olenellus Zone (Fritz, 1977; MacNaughton et al., 2013), which 

places the Mount Clark Formation within Series 2, Stage 3 of the early Cambrian, ca. 

521-514 Ma (ibid). 

In this study, we focus on the ichnological characteristics of the shoreface deposits 

summarized in Fig. 1 and Fig. 2. The key facies associations observed include: (1) 

bioturbated sandy siltstone with rare oscillation ripples and small-scale HCS beds 

interpreted to represent the proximal offshore (Table 1: A); (2) sandstone containing HCS, 

low angle cross stratification, and bioturbated silty sandstone interbeds that decrease in 

thickness and abundance upwards; these are interpreted as the lower shoreface (Table 

1: B); and (3) trough cross-stratified and HCS sandstone capped by sporadic occurrences 

of Lingulichnus and Skolithos piperock that are interpreted to represent middle and upper 

shoreface to foreshore settings (Table 1: C). 
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ICHNOLOGICAL ASSOCIATIONS 

Two characteristic ichnological associations are observed: (1) proximal to 

archetypal expressions of the Cruziana Ichnofacies associated with the lower shoreface 

to offshore, and (2) archetypal Skolithos Ichnofacies of the upper shoreface and foreshore 

(i.e. Piperock). The trace fossil associations documented herein display high degrees of 

bioturbation intensity, abundant trace fossils, and high ichnogenera diversity (Fig. 3). 

They also represent feeding ethologies that are emblematic of shoreface niches in 

younger Paleozoic and Mesozoic strata (Fig. 2 & 3). Importantly, the colonization of these 

early Cambrian shoreface subenvironments represents a very early establishment of 

archetypal Ichnofacies that precede geological evidence of the Cambrian Explosion (e.g. 

Burgess Shale) by 15 to 20 Ma. 

 

OFFSHORE TO LOWER SHOREFACE 

Lower shoreface trace fossil assemblages of the Mount Clark Formation are 

characterized by the proximal expression of the Cruziana Ichnofacies (sensu 

MacEachern and Pemberton, 1992; MacEachern and Bann, 2008). Ichnogenera 

observed include; deposit-feeding and mobile carnivore traces composed of shallowly 

tiered Rusophycus, Planolites, Palaeophycus and Teichichnus; intermediately tiered 

Cylindrichnus, Rhizocorallium, and Chondrites; Asterosoma (Fig. 3., Fig. 4: A-H). 

Subordinate numbers of semi-permanent, potentially filter-feeding domiciles are present, 

including Skolithos, Diplocraterion, and Arenicolites (Fig. 4: A-H). Trace fossils within the 

assemblage generally have large causative burrows, commonly exceeding 8 mm 

diameter. In addition, ichnofabrics extend more than 10 cm below the inferred water-

sediment interface and Bioturbation Index (BI) routinely approach 2 to 6 (Fig. 4: D,H). 

Tempestite beds display erosionally based hummocky or low angle cross-stratified sands 

with Skolithos, Cylindrichnus, and Diplocraterion occupying the upper portion of the bed 

(Fig. 4: F): fugichnia are common in the tempestite beds (Fig. 3: E). Storm bed tops are 

bioturbated (BI 2-3) to a depth of up to 10 cm (Fig. 4: F). 
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 The dominance of deposit-feeding behaviours with significant numbers of 

permanent dwelling structures and suspension-feeding structures suggests that although 

food resources were dominantly stored on, and within the sediment, persistent wave 

agitation above fair-weather wave base suspended food particles into the water column 

(MacEachern and Pemberton, 1992). This trace-fossil assemblage represents the 

ambient infaunal community that lived in the seafloor sediments between storm events. 

Tempestite bed colonization resulted from the settling of opportunistic organisms on 

storm-bed tops (Ekdale, 1985; Pemberton and MacEachern, 1997). As discussed below, 

the preserved ichnofabrics and the behaviors that are inferred for them are remarkably 

similar to shoreface-associated strata in much younger rocks.  

 

UPPER SHOREFACE TO FORESHORE 

Within the uppermost shoreface to foreshore, piperock composed of robust 

Skolithos and Lingulichnus (expressed by a Skolithos-Lingulichnus Ichnofabric) is 

observed (Fig. 4: J,K). These trace fossil assemblages correspond to the archetypal 

Skolithos Ichnofacies which represents dominantly suspension feeding behaviours in 

sandy shifting substrates (sensu MacEachern and Pemberton, 1992). Some Lingulichnus 

show equilibrichnia behaviors, such as spreite, which indicate vertical shifting of the 

tracemaker. Bioturbated intervals are commonly massive appearing, however, 

multidirectional trough cross-stratification, convolute bedding, dewatering structures and 

micro-faulting are also observed (Fig. 4: I).  

 Based on the presence of large Skolithos and Lingulichnus and locally complete 

mixing of the sediment, sedimentation rates are interpreted to have been low. The high 

degrees of bioturbation are coincident with a small increase in grain size, consistent with 

sedimentation and colonization of the proximal upper shoreface or foreshore (Fig. 3). The 

upper shoreface to foreshore environment landward of the sub-aqueous (i.e. breaker) bar 

is characterized by shifting sandy substrates in shallow waters (Reading and Collinson, 

1996). Suspension-feeding animals depended upon food held in the water column 

(Howard, 1971; MacEachern and Pemberton, 1992). Equilibrium traces observed indicate 

an environment characterized by sporadic sedimentation events (Fig. 4: J) and 
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subsequent post-storm re-establishment (MacEachern and Pemberton, 1992; Nara; 

1995, 1997). The high intensities of bioturbation suggest that during fair-weather, rates of 

biogenic reworking exceeded rates of hydraulic reworking. As such, the shoreface profile 

is inferred to have been dissipative to intermediate (e.g. Hunter et al., 1979; Leckie and 

Walker, 1982).  

DISCUSSION 

The concept of “Ichnofacies” was introduced decades ago (e.g., Seilacher, 1953, 

1964, 1967). All of the original Ichnofacies were based on recurring associations of trace 

fossils that could be related to different sedimentary environments and bathymetry. 

Today, it is understood that ethology and their resultant ichnofossils are controlled by 

factors including, substrate consistency, sediment grain size, energy conditions, food 

resource type and availability, water salinity, sedimentation rates, oxygenation, and 

temperature (summarized in MacEachern et al., 2012). Ichnofacies are unlike biozones 

in that they transcend large spans of geologic time. However, archetypal Ichnofacies do 

not appear until the Phanerozoic (MacEachern et al., 2007). Although it has been 

reasoned that the Cambrian Explosion was accompanied by the Agronomic Revolution 

(e.g. Seilacher and Pflüger, 1994; Seilacher, 1999; Mangano et al., 2013), it is not clear 

how rapidly characteristic behavioral strategies were deployed in environmental niches, 

and ultimately expressed as archetypal Ichnofacies. 

The Mount Clark Formation is an early example of the new divisions of labor that 

become prevalent later in the Phanerozoic (Fig. 3). Therein, bioturbate textures that result 

from characteristic resource exploitation — associated with the Cruziana Ichnofacies in 

the lower shoreface and Skolithos Ichnofacies in the foreshore — are observed. That 

these trace fossil assemblages lie within a shoreface succession is critical to their 

ethological interpretation. Unlike many other facies models, physical processes are highly 

inferable in shoreface deposits.  As such, the interpreted ethological responses to 

sedimentary process are comparable to identical niches in younger strata, and in this 

example present a vertical succession that is ethologically identical to shoreface deposits 

today. 
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As with Mesozoic and Cenozoic shoreface deposits, the Cambrian offshore to 

lower shoreface is characterized by diverse and abundant deposit- and subordinate 

suspension-feeding strategies within variable substrates. In the proximal offshore to lower 

shoreface the Lower Cambrian has trace fossils that commonly occur in Mesozoic 

shorefaces, including Arenicolites, Asterosoma, Chondrites, Cylindrichnus-Rosselia, 

Diplocraterion, Helminthopsis, Rhizocorallium, Palaeophycus, Phycodes and 

Teichichnus (Fig. 3 & 5). These trace fossils represent the range of behaviours observed 

today in offshore through lower shoreface settings including, domichnia, filter feeding, 

carnivory, interface deposit feeding, deep-tier deposit feeding and spatially optimized 

deposit feeding (MacEachern and Pemberton, 1992; MacEachern et al., 2007) (Fig. 1 & 

5).  

Trace fossil occurrences in the upper shoreface are variable as a result of 

heterogeneous energy distributions and the presence of unidirectional currents. However, 

the shallow, shifting sands of the uppermost shoreface and foreshore locally contain 

Lingulichnus, Skolithos and fugichnia. The primary uses of Lingulichnus and Skolithos 

are filter feeding and as domiciles. Later Mesozoic and Cenozoic (dissipative) foreshore 

settings can similarly contain Lingulichnus (Triassic, Zonneveld and Pemberton, 2003), 

analogous bivalve-associated Siphonichnus, and Skolithos. Cenozoic shoreface 

deposits, in particular, may also contain Macaronichnus or Ophiomorpha, both of which 

are normally used for deposit feeding. Although filter-feeding ethologies can be assigned 

to the Lower Cambrian examples, deposit feeding within the shifting sediments of the 

foreshore evidently evolved later (Fig. 5). 

The ichnological correspondence between this Cambrian shoreface and Cenozoic 

examples is surprising considering that the Mount Clark Formation was deposited 

perhaps as little as 25 Ma after the end of the Ediacaran Period. The early establishment 

of characteristic behavioural niches illustrates that the rise of animals was exceedingly 

rapid and that their ecological dominance in seafloor sediments perhaps preceded the 

Cambrian Explosion. Similarly, Buatois and Mangano (2004) showed that Shallow-marine 

ichnofaunas of the early Cambrian Puncoviscana Formation in northwest Argentina were 

dominated by moderate- to large-sized, shallow grazing and feeding traces of deposit 
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feeders. Those authors suggested that the Agronomic Revolution occurred at a faster 

pace in shallow-water settings. Notably, bioturbated textures observed in the Mount Clark 

Formation mix sediment much deeper than in the Puncoviscana Formation, wherein 

grazing traces, such as Multina and Nereites, were emplace on or just below the 

sediment-water interface and more deeply emplaced deposit-feeding traces, such as 

Teichichnus, were absent. Early Cambrian strata of the Mackenzie Mountains in 

northwest Canada, as reported by Carbone and Narbonne (2014), show similar 

ichnological characteristics: an established but very shallowly emplaced deposit- and 

filter-feeding community generally occupying only the horizontal plane dimensions of 

ecological space. Interestingly, the shoreface-associated Moraine Lake Member of the 

St. Piran Formation in Alberta (Desjardin et al., 2010) and Brador Formation in Labrador 

(Hiscott et al., 1984) are similarly aged to the Mount Clark Formation, and although 

putatively filter-feeding assemblages associated with Skolithos are present in both, the 

lower shoreface-offshore assemblage is dominated by Cruziana, Rusophycus and 

Bergauraria. 

From early Cambrian strata, the most similar examples of comparable deposit-

feeding assemblages were reported from the Desejosa Formation (Dias Da Silva et al., 

2014), and the Mickwitzia sandstone (Jensen, 1997). Dis Da Silva et al. (2014) 

documented Rosselia and Teichichnus as constituents of the Cruziana Ichnofacies from 

a shallow-marine depositional environment. Although similar, this occurrence lacks the 

depth of mixing (generally less than 10 cm), the causative burrows within the trace fossils 

are smaller than 4 mm diameter, and the overall diversity of grazing animals is lower than 

in the Mount Clark Formation examples. The maximum depositional age of these 

measures is 549.6 ± 4.4 MMa (detrital zircons, Pereira et al., 2012) but otherwise the age 

of these strata are difficult to establish: Dias Da Silva et al. (2014) suggested Cambrian 

Age 3 on the basis of the occurrence of Rosselia. Jensen (1997) reported a diverse 

assemblage of trace fossils that represent Pascichnia, Repichnia, Cubichnia and 

Praedichnia. The ichnodiversity exceeds that of the Mount Clark Formation, but 

shoreface-associated parts of the Mickwitzia sandstone display far more limited 

ichnodiversity.   
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The ichnofabrics presented here provide a stark comparison to the shallowly 

tiered, two-dimensional bedding plane associated behaviors that typify Lower Cambrian 

ecosystems. In fact, recent efforts have suggested that deep sediment mixing (e.g. >4 

cm), dominated by complex and highly varied feeding and bulldozing behaviors that 

exemplify upper Paleozoic and Mesozoic Ichnofacies (Tarhan et al., 2015), do not 

become widespread until early Ordovician. The ichnological observations from the Mount 

Clark Formation, particularly the diversity of ichnofossils and the depth of bioturbation, 

are clearly at odds with that contention. However, Tarhan et al (2015) database focused 

dominantly on shelfal units where biomat stabilization or perhaps lower dissolved oxygen 

contents might have played an important role in mitigating animal colonization into the 

later Paleozoic. 

Mangano and Buatois (2014) have recently provided evidence that by Cambrian 

Stage 1, sediment bulldozing (i.e. rudimentary, shallow-tier grazing) in diffusion-

dominated benthic systems gave way to the suspension feeding patterns of advection-

dominated benthic systems associated with Cambrian Stage 2 and Stage 3. 

Subsequently, the suspension-dominated assemblages better irrigated bottom 

sediments, promoting the evolution of systematic deposit-feeding ethologies. Although 

some aspects of our research support this contention, we believe that the Mount Clark 

Formation trace-fossil assemblages show a clear demarcation between ethology and 

food-resource partitioning, suggesting that the behavioral styles evolved independently.  

 In general, we disagree that filter feeding prepared Cambrian sedimentary 

ecosystems for deposit feeding behaviors because of the slow rates of sediment 

advection ascribed to sessile filter feeding (<1 cm 3 / day) versus deposit feeding (<10 cm 
3 / day) (Gingras et al, 2008). Regarding the general concept of filter feeding resulting in 

oxygenation of the sediment in preparation for deposit feeding animals, the modern 

suggests that deposit feeding is a routine occurrence in suboxic sediments so long as 

animals can sporadically access O2 resources (Gingras et al., 2007).  

Earlier efforts (e.g. Butterfield, 2003; Meysman et al., 2006; Mangano and Buatois, 

2014) also suggest that trace-fossil data is coordinated with the Cambrian explosion, but 

we view this from another vantage. Based on the later occurrence in the rock record of 
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body fossils and the early occurrence of these very well-established niche-exploiting 

communities, it is more likely that behavioural diversification was a prerequisite condition 

for the rapid morphological changes associated with the Cambrian Explosion. In 

particular, the diversity of deposit-feeding behaviours, their spatial dominance and their 

size and depth of penetration, collectively point towards rapid ethological diversification 

resulting from early success in bulldozing and then systematic deposit feeding within rich 

and hitherto then, unexploited food resources. 

 

CONCLUSIONS 

This study provides strong evidence for the establishment of archetypal 

Ichnofacies / ethological assemblages in well-documented storm-dominated shoreface 

deposits of the early Cambrian Mount Clark Formation (521 m.y.- 514 m.y.). The reported 

trace fossil assemblages are ~30 m.y. older than otherwise known. The results show that 

early Cambrian ichnofaunas have greater potential for ethological adaptation than 

previously understood and by the early Cambrian behaviors radiated into energy 

partitioned feeding niches. Early Cambrian ichnofauna described herein were capable of 

significantly reworking tempestite beds, which leads us to contend with the assertion that 

early Cambrian deposit feeding behaviors were limited to shallow-tiers and unable to 

sufficiently mobilize rapidly deposited sediment. Taken as a whole, the Mount Clark 

Formation trace fossils show derived adaptations within characteristic shoreface niches 

that are ethologically identical to trace fossil assemblages observed in Upper Paleozoic, 

Mesozoic and Cenozoic shoreface deposits. This early establishment of two of the 

archetypal Ichnofacies presents two competing hypothesis: (1) morphological adaptation 

precedes established ages for the Cambrian explosion and reaches deeper in time than 

the Chengjiang biota (Zhang et al., 2008) and the Burgess Shale; or, (2) ethological 

diversification preceded morphological adaptation and the partitioning of animals into 

favoured feeding niches facilitated subsequent morphological radiations, laying the 

foundation for the Cambrian explosion. 
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Table 4.1: Integrated facies association table. Offshore to foreshore environments with 

characteristic photos, trace fossils, and sedimentary constituents. Scale bar = 3cm in all 

three photos.  
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Figure 4.1: Location map of the study areas. Location map showing the study area with 

the two datasets of Colville Hills and Mackenzie Mountains shaded. Latitude and 

longitude coordinates correspond to the map corners. Modified from Google Earth Pro. 
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Figure 4.2: Integrated ichnological and sedimentological characteristics of a 

wave/storm-dominated shoreface. Modified from Buatois and Mangano (2011) based on 

MacEachern et al. (1999). 
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Figure 4.3: Early Cambrian Composite Log illustrating ichnological and 

sedimentological aspects of Mount Clark Shoreface Deposition. Scale bar is 1cm in all 

photos. Modified AppleCore© logs with annotated depositional environments. 

A) Offshore lithologies consisting of heavily bioturbated (BI 5) sandy silty mudstones. 

Asterosoma (As) and Teichichnus (Te). Remnant sandstone lamination interpreted 

to represent distal tempestite deposition. Colville D-45. 

B) Bedding plane photograph of ?Asterosoma (As) in lower shoreface sandstone 

deposits at Carcajou Canyon.  

C) Bedding plane photograph of Rhizocorallium (Rh) in lower shoreface sandstone 

deposits at Carcajou Canyon.  

D) Bedding plane photograph of highly bioturbated (BI 5) lower shoreface deposits at 

Carcajou Canyon illustrating a high diversity and abundance of ichnofossils. 

Teichichnus (Te), Rosselia (Ro), Skolithos (Sk), Palaeophycus (Pa), and 

Diplocraterion (Di). 
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Figure 4.4: Representative facies plate of Cambrian shoreface deposition. Where 

present scale bars = 3 cm. 

A) Distal biogenically reworked sandy tempestite bed within offshore mudstones. 

Depositional hydraulic currents great enough to produce Micro Hummock Cross-

Stratification (HCS). Note upper portion of tempestite bed has been biogenically 

reworked from the original bed resulting in bed disintegration; fugichnia (fu), 

Asterosoma (As), Chondrites (Ch), Palaeophycus (Pa). Tweed Lake M-47.  

B) Multiple intensely biogenically reworked distal sandy tempestite within offshore 

mudstones. Lamination seen in sand bed that has been disrupted through 

bioturbation. Trace fossils consist of fugichnia (fu), Asterosoma (As), Palaeophycus 

(Pa), Teichichnus (Te), Rosselia (Ro), Planolites (Pl). Tweed Lake A-67. 

C) Offshore sandy mudstones intensely bioturbated with Teichichnus (Te) 

Palaeophycus (Pa), and Phycodes (Py). Tweed Lake A-67. 

D) Lower shoreface intensely bioturbated muddy sandstones with a diverse fair-

weather trace fossil assemblage. Rosselia (Ro), Asterosoma (As), Rhizocorallium 

(Rh), Cylindrichnus (Cy), Arenicolites (Ar), Chondrites (Ch), Teichichnus (Te), 

Palaeophycus (Pa). Typical of the Cruziana Ichnofacies. PCI C-12. 

E) Lower shoreface deposits featuring biogenically reworked amalgamated tempestite 

beds featuring Lam-Scram indicating frequent storm activity. Frequent equilibrichnia 

(eq) indicate rapid sedimentation rates in which a burrowing organism moved 

upward through the substrate. Red line illustrates the top of a lam-scram sequence. 

Tweed Lake M-47. 

F) Lower shoreface storm colonization trace fossil suite within an HCS bed. Blue inset 

looks at a penetrative Diplocraterion, an r-selected ichnotaxa. Two Lakes outcrop.  

G) Bedding plane photo of the intensely bioturbated (BI 5) lower shoreface fair-weather 

deposits. Inset images of a) Phoebichnus (Po) and b) Rhizocorallium (Rh). 

H) Intensely bioturbated (BI 6) Fair-weather trace fossil assemblages of FA 

Palaeophycus (Pa), Cylindrichnus (Cy), Diplocraterion (Di), Skolithos (Sk), 

Rusophycus (Ru). 
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I) Upper shoreface decimeter scale bed sets of trough cross-stratified sands 

interpreted to be the result of large sub-aqueous 3-D dune migration. Tweed Lake A-

67. 

J) Piperock of consisting of large Lingulichnus (Li) traces showing equilibrium 

adjustments. Tweed Lake A-67. 

K) Piperock consisting of large oil stained Skolithos (Sk) in upper medium sandstone. 

Tweed Lake A-67. 
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Figure 4.5: Cretaceous and Cambrian type shoreface profiles with typical ichnogenera, 

sedimentary structures, and annotated environments. Trace fossil size, diversity, and 

bioturbation intensity plotted alongside each log. Modified AppleCore© logs. 
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CHAPTER 5: SUMMARY AND CONCLUSIONS 

The early Cambrian (Bonnia-Olenellus trilobite zone, 520-514 m.y.) Mount Clark 

Formation within the Colville Hills and Mackenzie Mountains of the Northwest Territories 

(NWT) represents a variety of complex depositional systems punctuated by varying 

degrees of wave, tide, and storm influence. Difficulty in identifying these ancient 

environments is further compounded by a lack of integrated ichnological and 

sedimentological models for early Cambrian ecosystems. This thesis identifies the 

stratigraphic architecture and depositional systems of the poorly understood Mount 

Clark Formation within the Colville Hills and Mackenzie Depocenter. The paleo-

evolutionary aspects of the Cambrian Explosion are explored through exceptionally 

preserved trace fossil assemblages. 

 Chapter 2 focuses on a detailed facies analysis of the Mount Clark Fm 

subsurface core located within the Colville Hills, NWT. Data collected for this study 

includes four cores (Tweed Lake A-67 & M-47, PCI C-12, and Bele O-35) with 

supplementary wireline logs. The Mount Clark Fm is a proven hydrocarbon reservoir 

within the Colville Hills and this study seeks to give a detailed sedimentological analysis 

of reservoir geo-bodies. Detailed documentation consisted of: lithology, the nature of 

bed contacts, sedimentary structures, lithologic accessories, body fossils, grain-size, 

and hydrocarbon staining. Ichnological observations included individual trace fossils, 

distribution, trace fossil size, diversity, bioturbation intensity, trace fossil deformation, 

and trace fossil assemblages. In order to visualize bioturbation trends plots were 

constructed illustrating trace fossil size, diversity, and bioturbation intensity. 

Observations present a strongly storm-influenced wave dominated barred shoreface 

succession. Piperock assemblages of Skolithos and Lingulichnus are interpreted to 

represent shallow post-bar to foreshore environments, a documentation of piperock 

outside the tidally dominated sand sheets of previous piperock studies (Hallam and 

Swett, 1966; Droser, 1991; Desjardins et al., 2010).  

Chapter 3 contains an outcrop study of the Mount Clark Fm centered within the 

Mackenzie Mountains on the edge of the Mackenzie Depocenter. Three siliciclastic 

outcrops (Carcajou Canyon, Two Lakes, and Waterfall Ridge) were chosen along a 
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depositional strike of 65 km. Detailed documentation consisted of: lithology, the nature 

of bed contacts, sedimentary structures, lithologic accessories, body fossils, grain-size, 

and hydrocarbon staining. Ichnological observations included individual trace fossils, 

distribution, trace fossil size, diversity, bioturbation intensity, trace fossil deformation, 

and trace fossil assemblages. In order to visualize bioturbation trends plots were 

constructed illustrating trace fossil size, diversity, and bioturbation intensity. UAV 

acquired images allowed the creation of 3-D outcrop mosaics, allowing a better 

visualization and understanding of bed scale relationships. This results in a complex 

lateral distribution of depositional elements on a basin scale with three main 

depositional hierarchies observed: 1) waves/storm-dominated shorefaces; 2) wave-

dominated deltaic complexes; and 3) tidally dominated sand sheet embayments. This 

work illustrates integrated sedimentological and ichnological facies models for early 

Cambrian shoreface and deltaic successions illustrating the robustness of ichnofacies 

even dating back to the early Cambrian.   

Chapter 4 characterizes the trace fossil assemblages and subsequent behaviors 

that were present in the early Cambrian at the onset of the Cambrian Explosion. The 

early Cambrian represents a crucial and poorly understood time in earth’s history in 

which complex life was first evolving and colonizing shallow marine niches. This study 

provides strong evidence for the establishment of archetypal Ichnofacies / ethological 

assemblages in well-documented storm-dominated shoreface deposits of the early 

Cambrian Mount Clark Formation (521 m.y.- 514 m.y.). The reported trace fossil 

assemblages corresponding to archetypal vermiform dominated Cruziana and Skolithos 

Ichnofacies are ~30 m.y. older than otherwise known. The results show that early 

Cambrian ichnofaunas have greater potential for ethological adaptation than previously 

understood and by the early Cambrian behavioral radiation into energy partitioned 

feeding niches. Early Cambrian ichnofauna described here were capable of significantly 

reworking tempestite beds, which leads us to contend with the assertion that early 

Cambrian deposit feeding behaviors were limited to shallow-tiers and unable to 

sufficiently mobilize rapidly deposited sediment. Taken as a whole, the Mount Clark 

Formation trace fossils show derived adaptations within characteristic shoreface niches 
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that are ethologically identical to trace fossil assemblages observed in Upper Paleozoic, 

Mesozoic and Cenozoic shoreface deposits. 

In short this thesis represents an in-depth analysis of the poorly understood 

Mount Clark Formation of the mainland Northwest Territories, shedding light on an 

interval of academic and industry interest. The Mount Clark records a variety of 

depositional systems within the Colville Hills and Mackenzie Depocenter. Trace fossil 

assemblages comprise of complex, diverse, robust, and multi-tiered behaviors that were 

previously unknown in the early Cambrian and represent the earliest known occurrence 

of characteristic shoreface ethological niches.   
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