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Abstract 

The use of statistical mechanics to explain thermodynamics and fluid mechanics as a 

result of the underlying microscopic interactions is one of the active research areas in 

chemical engineering. In this thesis, the application of two such statistical mechanical 

models, namely Statistical Rate Theory and Lattice Boltzmann model is presented. Pre­

viously existing ideal Statistical Rate Theory is extended to incorporate nonideal fluid 

behavior to develop a generic equation-of-state based model for predicting evaporation 

rates. This model is free from any fitting parameters and hence can be incorporated into 

a thermodynamic simulator. Also, in this thesis, a fluid mechanical problem of oscillating 

incompressible flows in rectangular ducts is studied using Lattice Boltzmann simulations 

and analytically in annular ducts. Stress analysis of duct walls is done to identify high-

stress regions, an understanding of which is very useful in the study of critical medical 

conditions like hypertension and dialysis. 
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Chapter 1 

Introduction 

1.1 Motivation 

Modeling of fluids is an active area of research in chemical engineering, driven by it's 

necessity in understanding industrial phenomena. Conventional continuum fluid models 

were developed to describe the macroscopic properties of a fluid, building on the concepts 

of classical physics. Numerical methods have been used in the past to solve complex 

differential equations for simple systems which model the fluid without using the infor­

mation that it is made of atoms. But, as the need to improve on the understanding 

of fluid phenomena and solutions for unsolved and partly solved complex flow problems 

were realized, attempts were made to explain the behavior of macroscopic systems from 

a microscopic or a molecular point of view. This led to the use of statistical mechanics in 

developing models to explain and predict macroscopic phenomena of moving fluids from 

the properties of the individual atoms making up the system; thereby, explaining fluid 

mechanics and thermodynamics as a natural result of statistics, quantum and classical 
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1. Introduction 

mechanics. 

The techniques of statistical mechanics have been applied extensively to chemical, 

physical and biological systems including: gases, liquids, electrolytic solutions, colloids, 

interfaces, complex fluids, polymers and biopolymers, helix-coil transition of DNA, cell 

membrane transport phenomena etc. There are four main techniques to use statisti­

cal information to compute transport properties of fluids: Molecular' dynamics (MD), 

Monte-Carlo (MC) techniques, Statistical Rate Theory (SRT) and Lattice Boltzmann 

(LB) models. 

Molecular dynamics (MD) follows the time evolution of particles by integrating their 

equations of motion. Molecular dynamics simulations calculate the net force on the par­

ticles by considering the interaction forces among the particles and the external forces to 

determine the acceleration of the particle as a function of time. Integrating the equations 

of motion generates information at the microscopic level including spatial positions and 

velocities of the particles making up the system as functions of time. Using this informa­

tion, the state of the system can be predicted at any time in the future, and macroscopic 

properties like pressure, energy, volume, heat capacity etc. can be calculated. However, 

molecular dynamics simulations are time consuming and computationally expensive as 

they track the spatial and velocity coordinates of all the molecules making up the system 

at time intervals of the order of a femtosecond. Molecular dynamics has been applied in 

the past to processes ranging from adsorption of hydrogen in carbonaceous micro-porous 

materials [1] to determination of structures from x-ray crystallography [2] to biochemical 

processes like conformational changes in proteins [3, 4] and nucleic acids [5]. 

Statistical Rate Theory (SRT) was first proposed in 1977 [6] with its more complete 

form in 1982 [7, 8, 9, 10] and since then, has been used to predict rates of various kinetic 

processes like gas absorption at liquid-gas interfaces, electron transfer reactions between 

ionic isotopes, gas adsorption on solid substrates, thermal desorption of CO from Ni ( l l l ) 

2 



1. Introduction 

and liquid evaporation. Unlike other classical kinetic theory models like Absolute Rate 

Theory, which are based on the concept of precursor states or sticking probability, SRT is 

based on a first order perturbation analysis of the Schrodinger equation between quantum 

mechanical energy states. Statistical Rate Theory solves for the rate of kinetic processes by 

assuming them to be mainly consisting of single-molecular events. Thus, the Schrodinger 

equation for the system is solved before and after the transition of a molecule from one 

phase to the other, and using the two solutions of the Schrodinger equation, the net 

transition probability of the molecule is determined. Upon integrating over time and 

particle numbers, one can determine the net rate of the thermodynamic process being 

studied. Since the final rate expression obtained in the SRT formulation is free from any 

fitting parameters, SRT is a very powerful technique and computationally inexpensive. 

However, in all the applications of the Statistical Rate Theory, the gaseous phase has 

been assumed to be ideal and the liquid and the solid phases to be incompressible. No 

attempts until now, have been made to incorporate nonidealities into the SRT formulation. 

The objective of this study is to develop a method to include nonideal effects in the 

Statistical Rate Theory (SRT) formulation to develop a generic equation-of-state based 

SRT model for predicting the kinetic rate processes. Evaporation is taken as an example 

to study the nonideal SRT model that has been developed. 

The Lattice Boltzmann (LB) equation based model is a relatively new fluid-dynamics 

simulation technique for complex fluid systems. Unlike the traditional CFD methods, 

which solve the conservation equations of macroscopic properties (i.e., mass, momentum, 

and energy) numerically, LB models are based on statistical mechanics and allow the 

particles to move on a discrete lattice. Local collisions conserve mass and momentum; 

however, it was found that the hydrodynamic solutions are very noisy and on a macroscopic 

scale, some additional force terms are seen in the Navier-Stokes equation which is derived 

by integrating the microscopic scale collision equations to a macroscopic scale. It was later 

realized that instead of fluid particles, a local density distribution should be allowed to 

advect, thereby eliminating the noise and the additional terms in Navier-Stokes equations. 

3 



1. Introduction 

There on, this model has been successfully applied to applications including turbulence 

[11, 12] , multi-component flows [13], and multi-phase systems [14, 15], to name a few. 

Due to their particulate nature and local dynamics, LB models have several advantages 

over conventional computational fluid dynamics (CFD) methods, especially in dealing with 

complex boundaries, incorporating of microscopic interactions, and parallelization of the 

algorithm. LB models are at least as robust, accurate and computationally efficient as 

traditional methods of computation. In the last decade, LB models have been extensively 

used to investigate problems like crystallization, magnetohydrodynamics, etc. However, 

there is a need to study oscillating flows which are very fundamental to biochemical flow 

phenomena using LB methods. In biochemical flow problems like arterial-capillary flows 

and blood flow in kidney-dialysis bags, oscillating flows are present in micro-sized tubules; 

therefore macroscopic hydrodynamic flow equations yield inaccurate results giving rise to a 

need to examine them using microscopic models like LB and MD. There is a conspicuous 

lack of information on how stress behaves as the oscillating frequency changes. Stress 

analysis of oscillating flows is very useful for designing medical apparatuses like peristaltic 

pumps, kidney-dialysis bags, and to study medical conditions like hypertension. The 

objective of this work is to study velocity and stress behavior as functions of the oscillating 

frequency of the pressure gradient in a 3-D rectangular duct. Velocity and stress behavior 

in different parts of the channel will be followed until the asymptotic profiles are achieved 

to understand the development of various trends in the profiles as the oscillating frequency 

is increased. 

The primary objective of this thesis is to understand the theory of two of these new 

computational methods (LB method and SRT) based on statistical mechanics to compre­

hend the effects of microscopic constituents and interactions on the macroscopic transport 

properties of a fluid. Evaporation rate prediction and pulsating incompressible flow in a 

rectangular duct were studied to understand the use of these statistical methods in a 

thermodynamic and a fluid-mechanical process respectively. 
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1. Introduction 

1.2 Thesis outline 

Evaporation is a very fundamental process in the chemical industry and is widely seen in 

applications ranging from separation processes [16] to handling. Until now, evaporation 

has been studied mainly from a fluid-mechanical point of view where the rate of evapora­

tion is dictated by correlation studies including mass-transfer coefficients. The purpose of 

this study is to develop an expression for the rate of evaporation from a thermodynamic 

point of view using equations of state. Chapter 2 of the thesis reviews the Statistical Rate 

Theory (SRT) formulation for evaporation and extends it by incorporating nonidealities 

into the previously existing ideal SRT expression. A generic equation-of-state based SRT 

model is developed which can be used in all ranges of temperature and pressure and is 

written only in terms of thermodynamic variables which can be measured experimentally 

or calculated from the equations of state. 

Chapter 3 of the thesis presents the Lattice Boltzmann (LB) simulation theory for pul­

sating incompressible flow in a finite length channel. Pulsating flows play an important 

role in many engineering applications including medical science and biological engineering 

[17, 18]. Periodic flows appear in various medical apparatuses which are used for fluid de­

livery and testing like peristaltic pumps, heart-lung machines, suction therapy equipment, 

and extra-corporeal circulation. Pulsating flows have applications for blood flow in fiber 

membranes used for dialysis in the artificial kidney. Understanding stress variations in pul­

sating flows due to periodic pressure gradients is fundamentally significant for the design 

and optimization of such medical apparatuses. The oscillating flow of an incompressible 

viscous fluid in long channels has been investigated in detail for different geometries both 

experimentally and analytically. However, there is a conspicuous lack of information on 

the velocity and stress behavior of pulsating flows. In chapter 3, the velocity and stress 

behavior of pulsating flows have been investigated as a function of the oscillating frequency 

of the periodic pressure gradient using Lattice Boltzmann simulations. 
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1. Introduction 

In the literature, analytical solutions for laminar, fully developed, oscillating flow 

in rectangular ducts have been studied previously in great, detail. A large number of 

investigations have been focused on analyzing Newtonian viscous and incompressible flows 

in straight ducts with both permeable and impermeable walls. However, since most of 

the mechanical systems involving pulsating flows are cylindrical or annular in nature, 

for example in medical apparatuses, understanding cell transport process dynamics, and 

artificial dialysis bags; there is a need to develop exact solutions of the hydrodynamic 

equations in cylindrical coordinates. In chapter 4, we develop an exact solution of the 

Navier-Stokes equations for the incompressible flow in an annulus with porous walls, when 

an oscillating circumferential pressure gradient is applied. 

Finally, a conclusion of all these theories and formulations is summarized in chapter 5 

of the thesis. Some future work possibilities and ideas have also been presented. 
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Chapter 2 

A nonideal Statistical Rate Theory 

formulation to predict evaporation 

rates from equations of state 

2.1 Introduction 

Recent experimental measurements have found that the temperature on the vapor side 

of an evaporating liquid is higher than the temperature on the liquid side. Temperature 

jumps of 5-8 K have been observed [1]. This can not be explained by models based on 

classical kinetic theory [2] which predict liquid evaporation only if the vapor temperature 

is less than the temperature on the liquid side. This is because all of these models 

1 This chapter is reproduced with permission from A. Kapoor and J. A. W. Elliott, "A nonideal 

Statistical Rate Theory formulation to predict evaporation rates from equations of s tate", Journal of 

Physical Chemistry, in press. Unpublished work copyright 2008 American Chemical Society. 
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2. A nonideal Statistical Rate Theory formulation to predict evaporation 
rates from equations of state 

assume the boundary condition of the temperature of the molecules evaporating to be the 

temperature of the liquid and thus the solutions generated are opposite to the experimental 

observations. 

Since classical kinetic theory models were shown to fail, quantum mechanical models 

of isolated thermodynamic systems were developed to explain the observations. A new 

model called Statistical Rate Theory (SRT) [3, 4, 5], based on the concept of transition 

probability was used to investigate the observations. This model uses the Boltzmann 

definition of entropy and the equilibrium exchange rate to obtain the SRT expression for 

predicting kinetic rates of various processes in terms of measurable molecular and mate­

rial variables. Statistical Rate Theory assumes the transport processes to be primarily 

single-molecular events and is then developed using a first-order perturbation analysis of 

the Schrodinger equation. To date, over 75 papers have been published on this theory. 

Statistical Rate Theory has been used in the past to predict rates for various processes 

ranging from gas absorption at liquid-gas interfaces [6], gas adsorption on solid substrates 

[4, 5, 7, 8, 9, 10], electron transfer between ions in solution [4, 11], migration of CO across 

a stepped P t ( l l l ) surface [12], crystal growth from solution [13] and transport across cell 

membranes [14, 15]. Ward and Fang [16, 17] used the SRT model to predict the evapo­

ration rates of water and hydrocarbons and explained the unexpected temperature jump 

across the interface. 

However, in all these applications, the SRT model has always been implemented by 

assuming ideality of gaseous phases and the incompressibility of solid/ liquid phases. 

Even the experiments measuring the temperature jump [1] across the interface have been 

at sufficiently low temperatures and pressures that the ideal SRT model was in close 

agreement with the experimental results. This is because the nonideal and compressibility 

effects could be accurately neglected and so no attempt was made to incorporate fluid 

bulk-phase nonidealities in the SRT expressions. 
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2. A nonideal Statistical Rate Theory formulation to predict evaporation 
rates from equations of state 

In this chapter, a method to incorporate nonidealities using equations of state in 

the SRT model is presented and a general expression for any equation of state is given. 

Further, the Peng-Robinson equation of state (fairly accurate for hydrocarbons) has been 

taken as an example and predictions have been made using both the Peng-Robinson SRT 

model and the ideal SRT model to identify the region where the two models differ. The 

rest of the chapter is organized as follows: In Section 2.2, a review of the Statistical Rate 

Theory approach for predicting evaporation rates. In Section 2.3, the ideal assumptions 

made by Ward and Fang [16, 17] to predict evaporation rates are presented. In Section 

2.4, an equation of state in the SRT model is introduced and a generic evaporation rate 

expression is developed. In Section 2.5, results are presented and further predictions are 

made to identify the range where nonideal effects are expected. Finally, in Section 2.6 

concluding remarks are presented. 

2.2 Statistical Rate Theory for evaporation - A review 

In this section, a review of the development of Statistical Rate Theory [3, 4] and specifically 

SRT applied to evaporation [16, 17] is presented. 

2.2.1 Evaporation rate expression 

Consider an isolated C-component thermodynamic system containing a liquid bulk phase 

and a vapor bulk phase with a liquid-vapor interface in between. Using the Gibbs Dividing 

Surface approximation for the interface, it is assumed that a molecule can only be in the 

liquid or the vapor phase. Suppose that the system is not in equilibrium i.e. the number of 

molecules in the vapor and the liquid are different from their equilibrium values. Consider 

an isolated element of the system obtained by dividing the system into small but finite 
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Vapor 

Interface 

Liquid 

A sub-volume of the 
evaporating system 

Figure 2.1: Schematic of a steady-state evaporation system (adapted from Figure 1 in 

Ref. [16]). Assume that the macroscopic curvature only affects the pressure difference 

across the interface; however, in a sub-volume, Gibbs Dividing Surface approximation has 

been applied. 

sub-volumes as shown in Figure 2.1. Let a and 0 denote the liquid and the vapor phases 

in the sub-volume, respectively. Let, at any instant t, the molecular configuration of the 

system, Xj be given as 

Kj (Na, Ng) : (Ni, Nl N*,..., AQ, ...iVf), (jyl, JVf, A% ..., Nj, ...N$) 

where A^ and Ng are the number of molecules of component i in the liquid and the 

vapor phase, respectively. Statistical Rate Theory predicts the rate at which component 

7 is transfered from the liquid phase to the vapor phase. 

13 
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Let Ho and H denote the Hamiltonian operator for the system when molecules are in 

the state Xj, i.e. confined in their sub-volume phases (unperturbed state), and when the 

molecules are free to move across the interface between the sub-volume phases (perturbed 

state), respectively. A potential operator V = H — HQ can be defined, which allows the 

molecules to interact with their actual potential. The Schrodinger equation for the system 

when the molecules are allowed to move freely across the interface becomes: 

h d'tp 

l~dt 
(HQ + V) i> (2.1) 

where 4' is the wave function for the liquid-vapor system. To apply perturbation 

theory, it is assumed that , * , is very small; however, this assumption is different from 
\"0 W\ 

saying that V is zero, because in that case the molecules would stay in their confined 

state, thereby making the transition probability zero. Considering the energy uncertainty 

principle, eigenfunctions XQ corresponding to the unperturbed Hamiltonian within an 

energy uncertainty AE can be determined from 

H0x
r
0 = F%xr

0 (2.2) 

where EQ is the energy eigenvalue. These energy eigenvalues are highly degenerate. 

Corresponding to a molecular distribution Xj, there are f^(Aj) quantum mechanical states. 

Thus, there are Q(Xj) wave functions which correspond to the same molecular distribution 

and so the wave function of the unperturbed liquid-vapor system can be written as a linear 

14 
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combination of all the possible Q(Xj) wave functions as 

9.(Xj) 

/> = JT Crs5exp(y250
rt) (2.3) 

where the Cr are linear coefficients. The system may be in any of the Q(\j) quantum 

mechanical states. In writing this, it is assumed that the system is equally likely to be in 

any of the quantum mechanical states within an energy uncertainty, AE, an assumption 

similar to Gibbs "principle of equal a priori probabilities" in statistical thermodynamics, 

however, here applied to a thermodynamic system not in equilibrium. At this instant, the 

system has a transition probability to move to a molecular configuration resulted by the 

transfer of one molecule (of component 7) from the liquid phase a to the vapor phase 3. 

Assume at this point that the number of molecules in other sub-volumes does not change 

during this transition. This configuration Afc will be given as: 

A, (Na - 1 , ^ + 1 ) : (Ni Nl Nl.... J\£ - 1, ...N%) , 

If the number of quantum mechanical states corresponding to this molecular distribu­

tion is given by fl(Xk), then according to the standard perturbation analysis, the proba­

bility of a transition from molecular distribution A, to X^ is given as 

•(Xj^Xk) = K{Xj,Xk)^^ (2.4) 
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where 

/f(Aj,Afc) = y u ; i | V m n | 2 (2.5) 

where u>j and Vmn are the microscopic state density of molecular configuration Xj and 

matrix elements of the operator V, respectively. 

At the same instant, there is a possibility of a single molecular transition in the opposite 

sense, to the molecular configuration, Xp. 

Xp(Na + hN0-l) : (NlNlNl...,N2 + l,...N%), 

(NININ},...,N;-I,...NC) 

The transition probability from Xj to the configuration Xp is given as 

r(Xj^Xp) = K(Xj,\p)^^ (2.6) 

where 

K(X3,Xp)^~u>j\Vms\
2 (2.7) 

where u)j and Vms are the microscopic state density of molecular configuration Xj and 

matrix elements of the operator V, respectively. 

16 



2. A nonideal Statistical Rate Theory formulation to predict evaporation 
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Combining Equations 2.4 and 2.6, the net rate of the forward process (evaporation) 

can be written as 

I -K(\ X ) n { X k ) KiX l l " W 
Ja/3 = A (Aj , Xk) 7T7T-T - & \Xj, Xp) n(A,o il(Xj) 

(2.8) 

Introducing the Boltzmann definition of entropy, S(Xd) — klafl(Xd), where k is the 

Boltzmann constant, the numbers of microstates in Equation 2.8 can be replaced by the 

entropy of the states, yielding the final expression for the rate of molecular transfer from 

phase a to ,8 [3, 4]: 

Ja3 = K(Xj,Xk)exp 
S(Xk) - SjXj) 

k 
K (Aj, Ap)exp 

k 
(2.9) 

2.2.2 Entropy change calculation 

Since entropy is an extensive quantity, the additive property of entropy can be used to 

write the total entropy change during the transition as the sum of entropy changes for the 

liquid (a), vapor (8) and the reservoir (R): 

S{Xk)-S(Xj)= J2 iS'i^-S'iXj)} (2.10) 
i=a„3,R 
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Using Euler relations [18], the entropy change in Equation 2.10 may be written as [16]: 

s ,v) _ s(Aj) _ ( «£t) - S^d) + ( ^ 1 _ f̂iM 
r° (2.11) 

Ta Ta 

where // , T and \x are the enthalpy, temperature and the chemical potential of the phase, 

respectively. It has been assumed that intensive thermodynamic variables remain un­

changed as a result of a single molecular event. Since an isolated system is considered, 

there is no net energy change during the molecular transition event. Thus, the energy 

balance equation for the isolated system can be written as: 

[Ha(Xk) - Ha{\-)\ + \H3{Xk) ~~ H?(X,)} + [HR(Xk) - HR(X,)} = 0 (2.12) 

Substituting Equation 2.12 in Equation 2.11 yields 

5 ( A f c ) - 5 ( A j ) = U -J-O: J1/? 
1 

T0 
_1_ 

II0(Xk) - II^X, (2.13) 

The enthalpy per molecule h is now introduced by using //* = hlN% to replace 

[H^(Xk) - Hs(Xj)] in Equation 2.13 by hsANl3 = h@ (the transition causes a change 

of one molecule, so AN& = 1) to obtain the final expression for entropy change as [16] 

SM-SM=($-£)+he(^-±) (2.14) 
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Since the entropy change in the reverse process (from configuration Xj to Ap) is simply 

the negative of the entropy change in Equation 2.14, 

S(AP) - S(Xj) = - [S(Afc) - SiX,)} (2.15) 

2.2.3 Equi l ibr ium molecular e x c h a n g e rate 

To develop thermodynamic expressions for the K's, consider the system in the limit of 

equilibrium when the entropy difference between the states before and after the transition 

approaches zero. Thus, the rate in Equation 2.9 becomes 

J0p = K{\e,Xf)-K{Xe,Xb) (2.16) 

where Ae is the equilibrium molecular configuration, and Ay and Xf, are molecular 

configurations on either side of the equilibrium configuration. At equilibrium, although 

the system is subject to these fluctuations in the molecular configuration, the net rate Jap 

should be zero. Thus, from Equation 2.16, 

K (Ae, Ay) = K (Ae, A6) = Ke (2.17) 

This means that K (Ae, Ay) is independent of the direction of the transition and does 

not depend on the molecular configurations. Since, for molecular distributions near equi-
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librium, K {Xj,Xk) is independent of the distributions Xj and A .̂, this property of K to 

all near-equilibrium molecular transitions [3, 4] can be generalized, i.e. 

K {K.+s, K+s-\) = K (Ae+a-i, Ae+S_2) = •••• = K (Ae+i, Ae) = K (Ae, Ae_i) 

= K (Ae-i, Ae_2) = .... = K (Xe-h, Xe-h-i) = Ke 
(2.18) 

where Ke is the equilibrium value. Since the A"s are independent of the initial and 

final states, they represent the reversible part in the rate expression in Equation 2.9 and 

the entropy terms in the rate expression can be considered to give rise to irreversibility. 

Since at equilibrium, the uni-directional rate of molecular transport from phase a to 

phase j3 is Jap = Ke and from phase ft to phase a is .Jga — A'e, it follows that Ke is the 

uni-directional equilibrium molecular exchange rate between the two phases. Thus, Ke is 

a function of the equilibrium properties of the system. 

Thus, substituting Equations 2.14, 2.15 and 2.18 into Equation 2.9 gives the final 

expression for the rate for evaporation as [16]: 

Ja,3 = Ke { exp 

exp 

kT° 

kT( + kT? 

hd f 1 

_h?_ 
k 

1 

1 
J^o 

(2.19) 
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2.3 Ideal SRT 

In section 2.3, a review of the ideal treatment of the fluid phases in the previous application 

of Statistical Rate Theory to evaporation [16] is presented. 

2.3.1 Ideal gas approx imat ion 

To evaluate the expression for the net rate of evaporation obtained in the previous section 

(Equation 2.19), expressions for the equilibrium molecular exchange rate (Ke), chemical 

potentials and specific enthalpies are needed. Considering Boltzmann statistics and the 

Born-Oppenheimer approximation, translational, vibrational, rotational and electronic 

partition functions of an ideal gas can be written as [19, 20] 

(2irrn,kT\'A/'\r V ,n N 

Qtrans = ( ^ F " J V = ^ ^ 

«*» " IJ l-exp(-VT) (2-21) 

(2kT\3/2 (nl)1/2 

""* = [-w) ~ir (2-22) 
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Qelec = 9e e x p 
kT 

(2.23) 

where m is the molecular mass, V is the total volume of the ideal gas, A is the de Broglie 

wavelength of the ideal gas particle; ge and De are the degeneracy of the energy state and 

the reference minimum potential for the electronic partition function qeiec, respectively; 0[ 

and Nv are the characteristic vibrational temperature and number of vibrational degrees 

of freedom of the particle, respectively; and / and as are the moment of inertia and the 

symmetry number of the ideal gas molecule representing the number of indistinguishable 

orientations of the molecule, respectively. 

Since the total energy of the molecule can be written as the sum of translational, 

vibrational, rotational and electronic energies, the overall partition function, Q can be 

written as the product of individual partition functions [19, 20]: 

V — Qtrans Qvib (lrot Qelec (2.24) 

Thus, the chemical potential and specific enthalpy can be evaluated as [16, 19] 

kT 

dhiQ 

dN 
v;r 

In 
/ rn \ 
V 2TT/?,2 / 

3/2 (fcT)5/2 

P 
h i (qvib Qrot Qelec) (2.25) 

and 

hid = T fdluQ 
kT \ r)T V,N kT kT 

01 
+ £^+£ 

i=i 

Oi/T 

2T ^expWi/T)-! 
(2.26) 
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where v is the molecular volume, and the subscript 'id' indicates that the expressions 

are valid only when ideal gas assumptions are appropriate. 

2.3.2 Incompress ib le l iquid t r e a t m e n t 

The liquid phase is considered to be incompressible and an expression for its chemical 

potential can be found in terms of a reference state. If the saturation condition is chosen 

as its reference state, then 

M ° (T a , P°) = n[T", PooCT01)] + v^[P° Poo(TQ)} (2-27) 

where v^ is the specific volume of the saturated liquid. The saturated state is also 

approximated as an ideal gas (just like the vapor phase) and its chemical potential is 

described by Equation 2.25. 

Applying classical kinetic theory for the equilibrium state, the equilibrium exchange 

rate is determined as the rate at which molecules from the vapor phase collide with the 

liquid-vapor interface assuming that all vapor molecules that collide with the interface 

successfully transfer to the liquid phase. Thus, at equilibrium conditions, the equilibrium 

exchange rate can be written as [3, 16]: 

\/2irrnkTe 

where Pe and Te are the equilibrium pressure and temperature of the system. 
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2 .3 .3 Ideal S R T express ion 

Substituting Equations 2.25 to 2.28 in Equation 2.19, the evaporation rate is evaluated in 

terms of known thermodynamic quantities as [16, 17]: 

AS 

y/2irmkTa V ^ \ k exp 
-AS 

(2.29) 

•'here 

AS 
= ln + ln 

<lvib(Ta) 

Tp TaJL,\2
 f e. 

+ fcT' 
: (F Q - Poo e n ) 

exp(0,JTP) U+4(1^) 

(2.30) 

and where P e is the vapor phase pressure when the liquid-vapor system is in equilib­

rium. Since at equilibrium the temperature of the isolated sub-volume (and actually the 

entire system) will be the temperature of the liquid reservoir, T@ = Ta, the temperature 

appearing as Te in Equation 2.28 will be Ta. 

P e can be evaluated by using the fact that chemical potentials of the liquid and vapor 

phase become equal at equilibrium. The chemical potential of the liquid phase is described 

by Equation 2.27 and considering the vapor to be an ideal gas, its chemical potential can 
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be written as 

^(Ta,P>3) = fx[T0',Poo(T
a)] + kTa In (^- J (2.31) 

Equating Equation 2.31 to Equation 2.27, Pe is written as 

P! = P o o i n e x p ( J ^ P * ~ Poo(Ta)}^j (2-32) 

In the experiments conducted and analyzed by Ward and Fang [1, 16, 17], evaporation 

flux was measured for different pressures in the vapor phase. The liquid temperature was 

fixed and the pressure in the liquid phase was determined by the Laplace equation: 

?a = p0 + h_ (2.33) 
lie 

where 7 is the interfacial tension and Rc is the measured interface curvature. Thus, 

using Equation 2.33 in Equations 2.30 and 2.32, the dependence of evaporation flux on 

liquid pressure is removed and so Equations 2.29 and 2.30, which are now in terms of 

experimentally measurable, or otherwise known, quantities only, can be used to predict 

vapor pressure for a particular flux to compare with the measured value of vapor pressure 

[16, 17]. 

25 



2. A nonideal Statistical Rate Theory formulation to predict evaporation 
rates from equations of state 

2.4 Statistical Rate Theory - Nonideal corrections 

Until now, Statistical Rate Theory for evaporation has only been implemented using ideal 

approximations. Ward and Fang [16, 17] showed that Equation 2.29 with Equation 2.30 is 

in good agreement with the experimental results for water and octane when evaluated at 

pressures below 1 kPa and temperatures below room temperature. However, deviations 

from the experimental results are expected if this expression is used for high temperatures 

and high pressures where ideal gas approximations are no longer valid. The nonideality 

of gases at high temperatures and pressures can be quite significant. The objective of 

this chapter is to develop an expression for the Statistical Rate Theory evaporation rate 

allowing for nonideality using equations of state. 

2.4.1 D e p a r t u r e funct ions for chemical potent ia l a n d en tha lpy 

For an equation of state, 

Pv = ZkT (2.34) 

with dimensionless compressibility Z = Z(T,p), where p is the molar density, depar­

ture functions for chemical potential and enthalpy can be derived by taking the difference 

between the real fluid and the ideal gas property and integrating from the infinite volume 

condition (where the real fluid and the ideal gas are the same) to the actual volume of 

the system. Chemical potential and enthalpy departures can be written as [21]: 

ILim = I" (£zildp + (Z - 1) - InZ (2.35) 
kl Jo P 
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Adding Equations 2.35 and 2.36 appropriately to Equations 2.25 and 2.26, the real 

enthalpy per molecule and chemical potential expressions is obtained based on the equation 

of state being obeyed in the range of temperature and pressure being considered. If the 

equation of state is valid for both vapor and liquid phases in this temperature and pressure 

range, then these chemical potential and enthalpy relations can be used for both the 

phases. 

2.4.2 N o n i d e a l correct ions t o t h e equi l ibr ium molecular e x c h a n g e ra te 

The equilibrium exchange rate, Ke, is the rate at which molecules from the vapor phase 

collide with the liquid vapor interface when the system is in equilibrium. To evaluate Ke 

in terms of equilibrium thermodynamic variables, there is a need to develop an expression 

for the number of molecules which collide with the interface at given thermodynamic 

conditions. 

Consider a very large hypothetical box of volume V containing N molecules. Consider 

a hypothetical surface, S (area A) somewhere deep in the interior of the box. The objective 

is to find the number of molecules crossing the surface S per unit time. Next, consider 

a differential element dx (big enough to assume a number density N/V), at a distance 

x from the surface S in the negative x-direction, as shown in Figure 2.2. In one second, 

only those molecules will strike or cross the surface S, which have a velocity vx > x. In 

a non-rarified gas, the molecules may collide with one another before striking the surface 

S. Since half of these molecule-molecule collisions will enhance the surface collisions, and 

half will reduce the surface collisions, without loss of generality, the impact of molecule-
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dx 

Figure 2.2: Schematic diagram of a hypothetical surface. 

molecule collisions can be neglected. Considering a Maxwell-Boltzmann distribution of 

velocities, the probability of observing a molecule with a velocity vx is given as [22] 

p(vx 
m 

2itkl — exp 2kT 

21 

(2.37) 

and so the probability of vx > x is equal to 

P(V,; > X °=r m 
2nkT exp 

-mi1?! 

2k,T 
dvx (2.38) 

Considering the number density and the volume of the differential element, the total 

number of molecules in this differential element which may strike or cross the surface S 
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can be written as 

K, dV N 
— (Adx)p(vx > x) (2.39) 

Substituting Equation 2.38 into Equation 2.39, and integrating over all possible dis­

tances from the surface, A, the total number of molecules striking or passing through the 

surface S per unit area per unit time is obtained as: 

Ke n m 
00 N_ 

V V 2wkT exp 
— mi's 

2kT 
dvxdx (2.40) 

Changing the order of integration (and appropriately adjusting the limits of integra­

tion), the above expression can be rewritten as: 

„2~ 

dxdvx (2.41) K - l I v m 
2nkT exp 

~~mvx 

2kT 

Performing the integration, 

V Ke 
kT 

2mn, 
(2.42) 

which is a well known result [16, 17] but it should be noted that it is equally valid for 

the nonideal case. Considering a general equation of state, N/V can be replaced with 

P/ZkT from Equation 2.34 to get the final expression for Ke in terms of pressure and 

temperature as 

Ke 

1 P, 

Ze y/2rcmkTe 

(2.43) 
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Thus, the equilibrium molecular exchange rate is obtained in terms of equilibrium 

temperature, pressure and compressibility of the gas, the latter of which can be evaluated 

for a particular equation of state. 

Since Equation 2.43 was derived for a Maxwell-Boltzmann distribution in the gas, 

Ze will be the compressibility of the gas phase (Z^(Pe , T'e )) and as before Tc = Ta. 

Therefore, expression 2.19 can be evaluated for high temperatures and pressures by using 

the nonideal corrections to chemical potential (Equation 2.35), enthalpy (Equation 2.36) 

and the equilibrium exchange rate (Equation 2.43) in Equation 2.19 to yield: 

J 
P;! AS -AS 

„ , , exp — exp • 
Zt \/2jmikTa V k k 

(2.44) 

where 

AS 
= ln 

T0s4 
Poc(Ta) 

p0 

i 

In Qvib 

<lvib{Ta) 

+ [T0 T«J<L(v2
 + 

^ ( P a - P„o(I-)) 

e x p ^ / r ^ - 1 
4 1 -

ya 

"p" (Za - 1) 
V — -'-d(f* + {Za-l)-]nZa 

Uo P 
8 

I 
Jo 

W-V.J, 
p 

p" - 'dZp\ dp? _Tfi 

fj d/f + iZ" -tf-InZ" 

rn0 

dT$jp[i p 
+ Z? - 1 1 

y a 

(2.45) 
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2.4.3 An example - The Peng-Robinson equation of state 

Since most hydrocarbons are well described using the Peng-Robinson equation of state, 

the Peng-Robinson equation of state is taken as an example to predict evaporation rates 

for hydrocarbons. The Peng-Robinson equation of state is given by [23] 

P = ^L ™ f 2 4 6 ) 
v-b v2 + 2bv~b2 { ' 

0.45724ft2T2 

a = -
Pr 

0.07780 RTC 

Pc 

a = (1 + (0.37464 + 1.54226w - 0.26992w2) (l - Tr
0-5))2 

where v is the molar volume, UJ is the acentric factor and Tr is the reduced temperature, 

Tr = TJT. In terms of compressibility denned by Equation 2.34, Equation 2.46 can be 

rearranged to give [24] 

Z 3 - (1 - B)Z2 + (A- 3B2 - 2B)Z - (AB - B2 - B3) = 0 (2.47) 
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aaP bP where A = J f ^ and B = j ^ . The integrals in Equations 2.35 and 2.36 can be 

evaluated for the Peng-Robinson equation of state to give [25]: 

V ~ Hid 

kT 
Z - l - In (Z - B) 

A , (Z+(1 + V2)B 
: In ' By/8 \Z+(l-y/2)B 

(2.48) 

h - hid 

kT \BVS bRs/8 J \Z+(l-y/5)B 
(2.49) 

Thus, our final expression for the evaporation flux according to the Peng-Robinson 

equation of state is: 

1 P? AS 

z^V2^k^\exp{~TJ~~exp\~T-J 
-AS\ 

(2.50) 

32 



2. A nonideal Statistical Rate Theory formulation to predict evaporation 
rates from equations of state 

where 

AS 

Zi: 

In 

+ 

Tf>\ Poo{Ta) 

J1** I pd 

1 1 \ 3 

In 

"• + 

Qvib(TiJ)\ ih 

qvih(T<*)J kT 

Za - 1 - In (Za - Ba 

:(p
a pun) 

T0\ 
4 1 -

Ta 

Z* 

A? 

1 - l n (V - B0) 

Aa fZa+(l + V2)Ba 

P«v/8 n\Za+ (1 y/2) Ba
t 

A'3 , fz^ + (l + V2)B^ 
:ln 

B3V8 \ZV+{1-W2)B0 

ac (da/dT) \ . (z? + (l + y/2) Bf: 

In 
S'?\/8 bR\/8 J I Z 8 + (1 - \/2) BP TaJ 

(2.51) 

Pe can be evaluated by using the fact that chemical potentials of the liquid and 

vapor phase become equal at equilibrium (/x°(T a ,P") = fia(Ta,Pe )). These chemical 

potentials can be obtained using the Peng-Robinson equation of state for both the phases 

to evaluate Pe . However, this adds computational complexity to the iterative calculation 

of equilibrium vapor pressure that corresponds to a particular evaporation flux. Therefore, 

Equation 2.32 is used again to evaluate Pe , while the compressibility of the vapor phase 

and the saturation pressure (which appears in Equation 2.32) used, is evaluated using 

the Peng-Robinson equation of state. It must be noted that the need to evaluate Pi as 

different from the saturation pressure arises only because of the curvature of the interface 

but Equations 2.50 and 2.51 are equally valid for flat interfaces. In the case of fiat 

interfaces, Pe is equal to the saturation pressure at the liquid temperature and can be 

evaluated using the Peng-Robinson equation of state. 

Since the characteristic temperatures of vibration which appear in the vibrational 

partition function are not available for hydrocarbons, both the ideal SRT and Peng-
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Robinson based SRT expression are evaluated neglecting the vibrational terms in the final 

rate expressions. 

Vapor Pressure Predictions 
for Water 

0 0.25 0.5 0.75 1 

Experimental Pressure in the Vapor(kPa) 

Figure 2.3: Using the experimentally measured values of the radius of curvature and the 

temperatures on both sides of the interface for water (from Tables I and II in R,ef. [16]), 

vapor pressures have been predicted using the ideal [16] and the Peng-Robinson based SRT 

model that would result in the experimentally measured evaporation flux. The predicted 

values of the vapor pressure for both models have been plotted on the ordinate, against 

the experimentally measured vapor pressure values on the abscissa. The points will lie on 

the 45° line, if they are in perfect agreement. 
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2.5 Results 

2.5.1 C o m p a r i s o n w i t h prev ious e x p e r i m e n t s 

As was indicated during the sensitivity analysis in Refs. [16] and [17], SRT calculations 

should be done to predict the vapor pressure for a particular evaporation flux rather 

than predicting evaporation rates for a particular vapor pressure. This is done because 

it was noted that evaporation flux can be predicted accurately only if the vapor pressure 

of hydrocarbons is measured to within 0.002 Pa (an un-achievable accuracy). During 

the evaluation, the liquid-vapor interface was assumed to be spherical, resulting in a 

pressure difference (liquid pressure higher than the vapor pressure) of 2j/Rc, where 7 is 

the interfacial tension and Rc is the radius of curvature. 

As is evident from Figure 2.3, measurements and predictions based on both the ideal 

and the Peng-Robinson based SRT model, are in excellent agreement with each other 

for evaporation of water at low pressures (below 1 kPa) and temperatures (below room 

temperature). At such experimental conditions, the nonideal additional terms in the Peng-

Robinson based SRT model (Equation 2.50 with Equation 2.51) are negligible. Measure­

ments and predictions for octane (shown in Figure 2.4) are also observed to be in close 

agreement and again predictions based on the ideal model are very close to the predictions 

based on the Peng-Robinson based SRT model. 

2.5.2 Further pred ic t ions b a s e d on P e n g - R o b i n s o n S R T 

In order to identify the range where fluid nonidealities become significant and where the 

Peng-Robinson based SRT model would yield better results than the ideal SRT model, 
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Vapor Pressure Predictions 
for Octane 
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Figure 2.4: Using the experimentally measured values of the radius of curvature and the 

temperatures on both sides of the interface for octane (from Table I in Ref. [17]), vapor 

pressures have been predicted using the ideal [17] and the Peng-Robinson based SRT 

model that would result in the experimentally measured evaporation flux. The predicted 

values of the vapor pressure for both models have been plotted on the ordinate, against 

the experimentally measured vapor pressure values on the abscissa. The points will lie on 

the 45° line, if they are in perfect agreement. 

predictions are made for the evaporation flux at temperatures near the critical tempera­

tures. Ethane (Tc = 32.28°C) and butane (Tc = 152.05°C) have been chosen because their 

critical temperature values are low compared to other hydrocarbons and so experiments 

could be done easily. 

As was indicated in Refs. [1], [16] and [17], the temperature jump across the interface 

decreases with an increase in the vapor pressure, it can be concluded that the temperature 

jump across the interface can be neglected while predicting evaporation flux at very high 
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Vapor Pressure Predictions for Ethane at 
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Figure 2.5: Predictions for ethane at T = 25°C and T = 30°C made using both the ideal 

and the Peng-Robinson based SRT model after assuming a zero temperature jump at 

the interface, have been shown. The predicted values of the vapor pressure for both the 

models have been plotted on the ordinate, against the evaporation flux on the abscissa. 

Deviations can bo seen for high flux values. 

pressures and temperatures (in the near-critical region). Since the liquid vapor surface 

almost disappears, the surface tension is low and there is not much of a pressure difference; 

however, the pressure difference was still taken to be 2-)/Rc with a value of R,c — 5 mm 

for all the calculations. Surface tension values were taken from Hysis (v3.1, Hyprotech 

Ltd.) (ethane: 7 = 0.12406 dyne/cm at 30°C, 0.51307dyne/cm, at 25°C, butane: 7 = 

1.6548 dyne/cm at 4O0K)). Predictions were made at two different temperatures, T — 

25°C and T = 30°C for ethane with both the ideal and the Peng-Robinson based SRT 

models. The vapor pressure predictions from both the models have been plotted against 

evaporation flux in Figure 2.5. It can be observed that the vapor pressure decreases 

(almost linearly) with the evaporation flux, and the deviation between the predictions 

from both the models increases with evaporation flux. 

Similar results were also obtained for butane at 400 K and the vapor pressure pre-
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dictions have been plotted against the evaporation flux in Figure 2.6. In all cases it was 

found that the Peng-Robinson based SRT model predicted a higher vapor pressure than 

the ideal SRT model for the same evaporation flux. 

Vapor Pressure Predictions for Butane at 
T = 400K 
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Figure 2.6: Predictions for butane at T = 4QQK made using both the ideal and the Peng-

Robinson based SRT models after assuming a zero temperature jump at the interface, 

have been shown. The predicted values of the vapor pressure for both the models have 

been plotted on the ordinate, against the evaporation flux on the abscissa. Deviations can 

be seen for high flux values. 

As there is no way to 'a priori' predict the temperature jump (it was a measured 

quantity in Refs. [1], [16] and [17]), and as the temperature jump was found to decrease 

with the evaporation flux, no temperature jump was assumed in the above calculations. 

Further, a sensitivity analysis of the evaporation flux with the temperature jump across 

the interface was done by assuming a temperature difference of 2 K for butane, with the 

vapor side temperature higher than the liquid side temperature and the results are shown 

in Figure 2.7. It can be inferred that a minor temperature difference across the interface 
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does not affect the predictions on vapor pressures and so, plots of vapor pressures vs. 

evaporation flux would look similar to the plots for zero temperature jumps. Thus, a 

minor temperature difference across the interface would make no significant difference in 

the predictions, or our conclusions. 

Vapor Pressure Predictions for Butane at 
T = 400K 

fj £ 2515 
w o 
<U I ' 
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flj « 

2440 2465 2490 2515 

Predicted Vapor Pressure 
(Temp. Difference = 2 K) 

Figure 2.7: The Peng-Robinson based SRT model was used to predict the vapor pressure 

for a liquid temperature of 400K for butane assuming temperature jumps of 0 and 2A' 

across the interface. The predicted values of the vapor pressure for zero temperature 

difference across the interface are plotted on the ordinate, against the predicted vapor 

pressure values for a temperature jump of 2K across the interface, on the abscissa. If 

they were in perfect agreement, they lie on the 45° line. 
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2.6 Conclusions 

A Statistical Rate Theory formulation incorporating fluid nonidealities using equations 

of state was presented to develop a generic equation-of-state based SRT model for liquid 

evaporation. The Peng-Robinson equation-of-state based SRT model was found to predict 

evaporation rates as accurately as the ideal SRT model at low temperatures (below room 

temperature) and pressures (below 1 kPa) and was found to differ from the ideal model at 

sufficiently higher temperatures and pressures (near the critical temperature). The Peng-

Robinson based SRT model predicted higher vapor pressures than the ideal SRT model 

irrespective of the temperature jump across the interface. Experiments should be done 

in the near-critical region (temperatures higher than 0.8TC) to investigate the predictions 

that have been made. 
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Chapter 3 

Lattice Boltzmann simulations for 

asymptotic incompressible flow 

profiles with a periodic pressure 

gradient 

3.1 Introduction 

The oscillating flow of an incompressible viscous fluid in long channels has been investi­

gated in detail for different geometries both experimentally and analytically. Pulsating 

viscous flow of an incompressible fluid due to an oscillating pressure gradient in a long 

'This chapter has been submitted with slight modifications for publication authored by A. Kapoor 

and Phillip Y.K. Choi. 
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channel with a circular cross section has been considered experimentally by Richard­

son and Tyler [1]. They also conducted experiments for a long channel with a square 

cross-section and discovered annular effects in the flow. Analytical solutions for laminar, 

developed, oscillating flows between parallel [2] impermeable plates due to an applied os­

cillating pressure gradient have been reported in literature. Wang [3] treated pulsating 

flow in a porous channel between parallel plates theoretically. Tsangaris and Vlachakis [4] 

derived the analytical solution for pulsating flow in a rectangular duct with porous walls 

with a constant cross-sectional velocity. Sexl [5] treated the oscillating flow in a circular 

cross-section theoretically to get annular effects in the flow as discovered experimentally 

by Richardson and Tyler [1]. Uchida [6] analyzed pulsating viscous flow superposed on 

the steady laminar motion of incompressible fluid in a circular pipe. 

Dean [7] and Goldstein [8] studied the laminar steady flow in a cylindrical annulus, due 

to a constant circumferentially acting pressure gradient using the narrow gap and finite 

gap approximations. Tsangaris and Vlachakis [9] analyzed the pulsating flow in a cylin­

drical annulus using the finite gap approximation. Khamrui [10] solved the Navier-Stokes 

equations for the fully developed laminar oscillating flow in a long channel with elliptic 

cross-section. Tsangaris and Vlachakis [11] derived the exact solution of the Navier-Stokes 

equations for the oscillating flow in a duct with a cross-section of a right-angled isosceles 

triangle. Drake [12] considered the oscillating flow due to an applied periodic pressure 

gradient in a rectangular duct and derived asymptotic forms of velocity and stress (skin-

friction) which are valid for high frequencies. There is a conspicuous lack of information 

on how the stress behaves as the frequency of oscillation is changed. This information is 

very necessary for stress analysis of systems where periodic flows are involved including 

arterial flow of blood during hypertension conditions (artery wall rupture analysis) and 

blood flow in kidney-dialysis bags. The scope of this study is to numerically compute 

the oscillating flow characteristics in a channel of rectangular cross-section and follow the 

trends in the velocity and stress profiles as frequency is increased from low to moderate 

and high frequencies. A Lattice Boltzmann equation model has been used to simulate 

the incompressible pulsating flow in a long channel with a rectangular section due to an 
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imposed oscillating pressure gradient. 

The Lattice Boltzmann (LB) method has been used as a relatively new and promising 

method for simulating viscous fluid flows for over a decade now. In recent years, there has 

been a significant advancement in the application of this technique to complex problems 

including turbulent single-phase flows, multi-phase flows like particle suspensions in fluid, 

and multi-component flows like in porous media. Lattice Boltzmann models are found 

to be at least as robust, stable, accurate and computationally efficient as other tradi­

tional methods of computation. In the last decade, various LB models have been applied 

successfully to hydrodynamic problems where traditional computational methods like fi­

nite difference or finite element method yield inaccurate results including problems like 

crystallization [13], magnetohydrodynamics [14, 15], and chemically reactive flows [16]. 

In this chapter, a 3-D Lattice Boltzmann model is used to simulate the pulsating 

flows in a rectangular duct due to low, moderate and high periodic pressure gradients 

and the results are compared with the analytical solutions of Drake [12]. The rest of the 

chapter is organized as follows: In Section 3.2, the LB method used for the simulation 

is introduced, followed by the computational issues with LB models in section 3.3. The 

analytical solution of oscillating flows in a rectangular duct is presented in Section 3.4. In 

Section 3.5, the numerical simulation results for low and high frequencies for velocity and 

stress is presented. Finally, in Section 3.6 concluding remarks are presented. 
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3.2 The Lattice Boltzmann equation - A review 

3.2 .1 T h e B o l t z m a n n equat ion 

Historically, the Lattice Boltzmann (LB) equation model was first developed empirically 

from its predecessor, the lattice gas automaton (LGA), but unlike LGA and other molec­

ular dynamics (MD) approaches, the LB method follows the time evolution of a discrete 

particle-velocity distribution function instead of tracking single particles. Theoretically, 

the Boltzmann equation can be derived from classical statistical mechanics, considering 

its evolution from the Liouville equation. The Liouville equation is the most fundamental 

equation of classical statistical mechanics. In a classical dynamical state of a system of 

N particles, 6N variables (3N momentum, pi and 3N spatial coordinates, rj) are required 

to completely describe one point in a phase space. However, one never knows all these 

6N coordinates in a macroscopic system but a few macroscopic properties of the system, 

such as energy, pressure, mean velocity, density etc. are known. Since there are an enor­

mously large number of points in phase space which are compatible with these few known 

macroscopic quantities, a phase space density or a distribution function, //y is defined 

as the fraction of phase points in the volume dr\dr2—dpzN i-e- the fraction of phase 

points which corresponds to a state of the system where particle 1 is spatially in between 

' 'i: r2> r3 a n ( l r\ + dr\,T2 + dv2,r% + dr$ and has a momentum in between pi,p2,P3 and 

pi + dpi,p2 + dp2,p-.i + dps, and so on for other particles. The Liouville equation (Equa­

tion 3.1) is the equation of motion that this phase space distribution function must satisfy 

during its trajectory in time and is equivalent to the 6N Hamilton equations of motion 

for the N-particle system. 

I f N r, N 
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where nij is the mass of j t h particle, V r • and V p . denote the gradient with respect to 

the spatial and momentum variables respectively in /,v; and F j is the net force on the jtfl 

particle. On introduction of reduced distribution functions in the Liouville equation [17], 

the BBGKY (Bogoliubov, Born, Green, Kirkwood, Yvon) hierarchy can be derived as 

a An) n n- n 

n n ,, ,. 

J2 Fy • Vp(/
(n) + E / / Fj,n+i-Vp./(n+1)drn+1dp„+1 - 0 

(3.2) 

!J = 1 j = l 

where f(-n} is the n"1 reduced distribution function given as 

in) 'V f f 
/A' (r i ,r 2 , . . . , r n ,p 1 , . . . ,p n , i ) = ,NJny / - / fN(ri,-,PN,t) 

drn+i...drNdpn+l...dpN 

Reduced distribution functions are defined because for all general purposes of interest, 

only / W and / ' 2 ' are necessary as they represent the two-body and three-body interactions 

respectively. The BBGKY (Equation 3.2) hierarchy is applicable to systems with any 

density. However, the major problem in the application of this equation is the coupling 

of a distribution function with the next higher order distribution function. No successful 

method to decouple the BBGKY hierarchy has yet been devised. For systems where a 

dilute gas approximation can be made, molecules interact weakly with other molecules and 

hence only two-body interactions are important. Thus, only f^1', the singlet distribution 

function is relevant. This singlet distribution function, also called the particle-velocity 

distribution function encompasses all the statistical information related to the position 

and momentum of the particles in the system. Boltzmann derived an equation for / 
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(superscript (1) dropped from here on), using collision theory as: 

^ + v;/ • Vrfj + ^-X7- • \/Vjf, =2«J2J fifif'i ~ fifj}9ijbdb dvi (3.3) 

where subscripts i and j represent the two molecules which approach each other for 

a collision, primes denote their post-collisional distribution functions and the right hand 

side collision term takes into account all molecules lost or entered into the position range 

(r, r + dr) and the velocity range (v, v + rfv) by summing over all possible collisions of 

molecule j . 

Equation 3.3, the Boltzmann equation, is the fundamental equation of the rigorous 

kinetic theory of gases. This is a non-linear integrodifferential equation and thus solving 

it is very complicated even for simple systems. Various models have been proposed to 

approximate the right-hand side integral expression (collision term) in Equation 3.3 in 

order to solve the Boltzmann equation for fluid-mechanical systems. 

3.2.2 T h e Lat t i ce B o l t z m a n n e q u a t i o n 

Due to the integral right hand side term in the Boltzmann equation, it is very complex 

to discretize the equation and solve it for fluid flow phenomena. Various LB models have 

been proposed to approximate the collision term in terms of deviation variables from 

equilibrium. Among these different LB models, the BGK (Bhatnagar, Gross, Krook) 

model [18] with a single relaxation time approximation is the most widely accepted model 

as it assumes that the main effect of the collision term is to bring the particle-velocity 
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distribution function closer to the equilibrium distribution. 

d,f + Z.Vf = -\\f-f{eq)] (3-4) 

where f ^ is the Maxwell-Boltzmann equilibrium distribution function, A is the re­

laxation time due to collision and £ is the velocity space vector. 

Figure 3.1: Schematic of atypical 2-dimensional 9-discrete lattice velocity (D2Q9) lattice 

in a 2D Lattice Boltzmann calculation. Each lattice node contains 9 cells, each of which 

stores a particle distribution function corresponding to the particular lattice velocity as­

signed to the cell. 

A general lattice for a LB calculation thus looks like the schematic shown in Figure 

3.1. Although, there is a probability for particles to achieve any velocity in the range 

(—oo, +oo) and in any direction, for computational purposes, only certain velocity direc­

tions are allowed. Hence, Equation 3.4 can be discretized in velocity space [19, 20] by 
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using a set of velocities resulting in the discrete velocity model of the LBGK Equation as: 

0,/„+£«.V/« = - ! [ /„ - .#«>] (3.5) 

where fa is the distribution function corresponding to the a th discrete velocity £a and 

fa is the corresponding equilibrium function. Depending on the dimensionality of the 

problem, various models have been proposed to discretize the velocity space. The most 

popular ones are, D2Q9 for 2-D flows and D3Q15 or D3Q19 [21] (Figure 3.2) for three-

dimensional (3-D) flows. Equation 3.5 can further be discretized in space and time such 

that 5x — ea5t is always the displacement vector from the lattice site to its neighboring 

sites. 
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Figure 3.2: Lattice velocities of the D2Q9 (left) and D3Q19 (right) models. 

fQ (Xi + ea5t, t + St)- fa(xi, t) = — \fa(xi, t) - fWfat) (3.6) 

where r = X/St is the non-dimensional relaxation time. The equilibrium distribution 
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function can be obtained using a Taylor series expansion of velocity up to second order 

and can be expressed as [21]: 

ftq = wap[l + ^ ( e a . u ) + ^ 4 (e«-u)2 - ^ u 2 ] (3.7) 

where p is the local density of the node, e t t is the lattice velocity, c = Sx/6t and wa is 

the weighting factor (for D3Q19) given by 

1/3 a = 0, 

wa = < 1/18 a = 1 to 6, 

(1/36 a = 7 to 18. 

The pressure is given by p = pc% (ideal gas equation of state) where the speed of sound 

is given by c, = c/\ /3 [21] and v = (2r — l ) /6 , is the kinematic viscosity. 

For D3Q19, the lattice velocities are denned as : 

{0 a: = 0, 

(±1,0 ,0) , (0 ,±1,0) , (0 ,0 ,±1) a = l t o 6 , (3-8) 

(±1, ±1,0), (±1,0, ±1), (0, ± 1 , ±1) a = 7 to 18 
The density and momentum fluxes can be evaluated in terms of the distribution func-
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tion by considering the moment integration of the distribution functions as 

N N 

p = Y,f° = Jlf° and (3-9) 
a=0 Q = 0 

N 

pu = Y/faea = Y,f?e° (3-10) 
a=0 Q = 0 

The Chapman-Enskog expansion [22] can be employed to obtain the Navier-Stokes 

equations from the LB equation. It is a multi-scale expansion [23] with rescaling of time 

and space as 

t\ = et, t-2 = e"t, x\ = ex, 

d_ __ _d_ 2 d d __ d (3-11) 
dt dt\ dt'z' dx ' dx\ 

The particle-velocity distribution function in Equation 3.6 can be expanded as 

f^fP+efP+ffP+ <)(<?) (3.12) 
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to recover the Navier-Stokes equations in the incompressible limit as [21] 

<9u 
+ (u • V)u pF + /xV2u (3.13) 

with pF = - V P . 

3.3 Computational issues 

Figure 3.3: A schematic showing the collision time step (left) followed by a streaming time 

step (right) in a D2Q9 lattice model. Black (left) and red (right) color nodes represent 

that the pre-collision and post-collision values of the distribution function respectively. 

Computationally, Equation 3.6 is applied in two steps, a relaxation (collision) time 

step and a streaming time step [24]: 
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The relaxation (collision) time step (as shown in Figure 3.3) is described by: 

fa{xi,t + St) = Ufat) - i [ / a (x i , t ) - / ^ ( x j , * ) ] (3.14) 

and the streaming time step by: 

/<v(xi + ea6t. t + 6t) = fa(xi, t + 51) (3.15) 

where /„ is the post collision distribution function. This two-step division makes the 

solution procedure explicit, easy to implement and parallelize. This also helps saving 

computational space and time as, in the relaxation time step, post-collision distribu­

tion function values overwrite the pre-collision values and then in the streaming step get 

streamed to their next lattice points. 

3.3.1 Boundary conditions 

In a typical LB flow computation, two kinds of boundaries are encountered: a solid wall 

boundary and an open boundary. The no-slip boundary condition is applied at the solid 

wall while periodic conditions are applied at the open boundaries. Open boundaries in­

clude lines of symmetry, inlets and outlets, where macroscopic variables like velocity and 

pressure are known instead of the particle distribution function. However, periodic bound­

ary conditions can be employed at these open boundaries without ambiguity. However, 

at solid walls, the no-slip boundary condition (zero fluid velocity at stationary walls), 
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SoHtf Waft 
(no nodes) 

•> y "> 

Figure 3.4: A schematic showing the importance of boundary conditions for the D2Q9 

model. For near-wall nodes, the collision step is incomplete as there are no fluid nodes 

in the wall and so post-collision distribution function values can not be updated for the 

near-wall nodes. 

can only be satisfied approximately through solving / a ' s . The problem, also shown in 

Figure 3.4, is that right after the collision step, there are no /Q.'s which can stream from 

the wall to the lattice node right next to the walls. Various models have been proposed 

to approximate these / a ' s . A popular implementation of the no-slip boundary condition 

is to employ the bounce-back scheme [25, 26] in which the momentum of the incoming 

particle is exactly reversed in the opposite direction by the collision with the wall. Var­

ious improvements to this scheme have also been proposed. Zou and He [27] proposed 

an extension of the bounce-back scheme considering the reversal of the non-equilibrium 

part of the distribution function only. Inamuro et al. [28] used a counter-slip velocity to 

nullify the slip effects induced by the bounce-back scheme. Ladd [29, 30] showed that if 

the wall is placed exactly in the middle of the lattice nodes, the bounce back scheme is 

second order accurate in predicting zero velocity at the wall. 
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3.3.2 Force evaluation 

Stress evaluation in a fluid-flow problem is crucial to the stud}' of fluid mechanics. Various 

stress evaluation techniques including surface stress integration [31, 32] and the momen­

tum exchange method [33, 29, 30] have been proposed. He and Doolen [34] used the stress 

integration approach to evaluate the stress on a cylinder in the flow field by integrating 

the stress on the surface. This integration involves accurate computation of Vu. Since 

u is not the primary variable in the simulation, evaluating Vu degrades the accuracy. 

Ladd [30] proposed the momentum exchange method using the bounce back boundary 

condition by considering the momentum exchange of the particles with the wall per unit 

time. Since this scheme is based on the simple bounce back scheme, it is also second-order 

accurate if applied to cases where the wall is placed in the middle of the lattice nodes. 

3.4 Pulsating flow in a duct - The problem 

Incompressible flow in a long cylindrical channel due to a. periodic pressure gradient has 

been studied experimentally by Richardson and Tyler [1]. They also conducted experi­

ments for the flow in a channel with a square duct cross section. Drake [12] considered 

the incompressible flow in a, long channel of rectangular cross-section due to a periodic 

pressure gradient theoretically by solving the Navier-Stokes equation. This section re­

views the analytical series solution obtained by Drake for the oscillating flow in a 3-D 

duct. Consider an incompressible flow in a rectangular duct driven by a periodic pressure 

gradient as shown in Figure 3.5. 

The governing equation of incompressible flow driven by a periodic pressure gradient 

is: 
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dv3! fd2vx d2vx\ (3.16) 

with 

where dP/dx = Re[—K p exp(iut)] is the periodic pressure gradient in the direction 

of the flow and v is the kinematic viscosity. Using separation of variables, the periodic 

velocity can be obtained as a series solution: 

'•>x(y,z,t) = Re[F(y,z).exp(iut)] 

Figure 3.5: Schematic of a rectangular duct across which a pulsating pressure drop is 

applied. 
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where 

„ . , 4Kb2 ^ ( -1 )" / cosh(py/a)'\ ((2n + 1) \ ,„ . 

The solution behaves differently for different frequencies of oscillation of the periodic 

pressure gradient. At low frequencies, the solution behaves as a quasi-steady one, while 

at higher frequencies, complex phenomena in the velocity flow profiles are seen. 

3.5 Results 

In the LB simulation, a simple geometry of a square duct is considered to be meshed into 

a resolution of 60 (flow direction) x 20 x 20. A periodic pressure gradient (AP/Ax) of 

-0.01 cos wt (in lattice units) is applied across the channel. It is applied as a density 

difference among the lattice nodes in the flow direction. The average density of the fluid 

is chosen to be 1.5 (in lattice units) and ui = | ? is the frequency of oscillation and Tp 

represents the time period of the oscillation of the periodic pressure gradient. Tp is varied 

from 1.536 to 48 time periods to study the effect of frequency of oscillation on the flow 

phenomena. 
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Figure 3.6: 3-D cross-sectional (resolution 20 x 20) velocity profiles at four different 

times for low frequency velocity solution with 1536 time steps. The velocity profile is 

of parabolic type and the centre-most point achieves the maximum amplitude during a 

period. 

3.5.1 Low frequency flow 

For low values of ujb2 /v (also called Womersley Number [35]), the solution can be obtained 

as [12] 

. 1 6 i f 6 2 ^ (-1)" (, c o s h ^ ^ T r z A / ( 2 n + l ) \ 
Mv^t) = - p - . g ^ - - ^ [l - m s h ^ a ) xcos ( ^ - « j c o s . . (3.18) 
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The variation of the velocity profile with time looks very similar to the applied pressure 

gradient. It can be seen that there is no phase lag between the velocity of the fluid and 

the pressure gradient and at any particular time, the velocity solution behaves as that for 

a steady pressure gradient. -Kpcoswt. 

Figure 3.6 shows the streamline velocity (normalized by the maximum velocity during 

the period) at four different times during the period for Tp = 1536. It can be seen that 

the velocity profile is of parabolic type and the centreline velocity is larger than velocity 

near the walls of the duct at all times. The velocity profile seems to be in phase with the 

applied pressure gradient and a minor phase lag of 0.1 7TT was noted. It can be inferred that 

for small values of frequency, the flow behaves as a quasi-steady one. As the frequency of 

pressure oscillation is increased further, the flow becomes more complicated and the phase 

lag between the velocity and the applied pressure gradient keeps increasing and annular 

effects begin to develop. 

To study moderate frequency flows a time period of 576 time steps was chosen. Figure 

3.7 (right) shows the streamline velocity (normalized by the maximum velocity during 

the period) at four different times during the period for Tp — 576. It can be seen that 

unlike the low frequency case, the streamline velocity gets more complex as the annular 

effects start building up. For most of the time during the period, the velocity profile 

imitates the applied pressure gradient in terms of having a parabolic profile; however, at 

around >.vt = 3?r/4, it can be see that the velocity near the walls is almost constant with 

a high velocity region in the core. This happens right after the pressure difference across 

the channel becomes zero and the pressure reversal starts (back pressure becomes higher 

than the front pressure). Observing the plot (yst = 3TT/4) for points close to the wall, it 

can be seen that some minor dips in the velocity start building up due to the pressure 

reversal. As the frequency is increased further, these regions increase and the velocity 

distribution starts exhibiting Stokes layer character with high velocity gradients at the 

wall. The velocity increases in the direction of the applied pressure gradient sharply near 

the solid boundaries and then decreases to zero again, leaving the core which oscillates in 
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Figure 3.7: 3-D cross-sectional (resolution 20 x 20) velocity profiles at four different 

times for low frequency velocity solution with 576 time steps. The development of annular 

effects [12] can be seen in the second quadrant and the velocity profile starts exhibiting a 

Stokesian nature. 

direction opposite to that of the applied pressure gradient. Figure 3.8 shows the phase lag 

between the centreline velocity and the applied pressure gradient. It can be seen that the 

phase lag has increased from 0.177T (Tp = 1536) to 0.357T (Tp — 576). Also, unlike the case 

of low frequency flows, different regions have different phase lags due to annular effects. 
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Figure 8.8: Phase difference between velocity and pressure gradient for Top Left: Low 

frequency (1536 timesteps, phase difference: 0,177r), Top Right: Moderate frequency (768 

timesteps, phase difference: 0.287r), Bottom Left,: High frequency (576 timesteps, phase 

difference: 0.35zr) and Bottom Right: Very High frequency (96 timesteps, phase difference: 

0.5/r). 

3.5.2 H i g h f r equency flow 

Asymptotic forms for velocity were obtained by Drake for higher frequencies by employing 

integral representations to sum the infinite series in the solution (Equation 3.17) obtained 

from the method of separation of variables. Different regions in the duct have different 

forms of velocity profiles and thus a different pha.se lag from the pressure gradient. Consid­

ering the symmetry of the duct, two expressions are required, one for the midpoint of the 

wall (z ~ 0, y r- a or y ~ 0, z ~ b) and the other for the center of the duct. This leaves the 
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<at=xl4 

Figure 3.9: 3-D cross-sectional velocity profiles at four different times for high frequency 

velocity solution with 96 time steps. Annular effects and flattening effects are significant 

and the centre-most point no longer achieves the maximum velocity amolitude. 

region in the corner of the duct where the solution is quite complicated. This is expected 

because near the corner the boundary layers of the adjacent walls coalesce. However, this 

region diminishes in size as a and b increase. The asymptotic form of the velocity profile 

for the mid-wall where ui{b — z)2/v and toy2/v are large, has been approximated by Drake 

[12] as: 

Re{ — ( 1 — exp(—X(a~ y)) — exp(—A(6 — z))erf 
X2(a-y) 

2 5 ( 6 - ^ ) 5 
exp(iwi) } (3.19) 
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where A = (iu>/u) 2. 

At the center of the channel (regions of small y and small z), it can be easily shown 

from Equation 3.17 that velocity can be approximated as ^ sin u>t. Thus the centreline 

velocity lags behind the pressure gradient by a phase angle of ir/2. 

Figure 3.10: 3-D cross-sectional (resolution: 40 x 40) velocity profiles at four differ­

ent times for high frequency velocity solution with 48 time steps. Annular effects and 

flattening effects are significant and sharp velocity gradients develop near the wall. 

Two time periods, 96 and 48 time steps, were chosen to study highly oscillating flows. 

Figures 3.9 and 3.10 show the streamline velocity (normalized by the maximum velocity 

during the period) at four different times during the period for Tp = 96 and Tp = 48 

respectively. The resolution of the channel was increased to 60 x 40 x 40 to increase the 
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Womersley number and to check for any effects that, may be caused because of the mesh-

size. However, the solution was found to be similar with the increased resolution and it 

can be concluded that a resolution of 20 x 20 is almost as good as 40 x 40 resolution. It 

can be seen that for Tp = 96 (left) at u>t = TT/4, the center line velocity is less than the 

velocity at points near it. The parabolic profile of low and moderate frequency flow is lost 

and the velocity profiles develop sharply near the wall (Stokes layer character) and stay 

constant (flat profile, &s in inviscid flows) elsewhere in the duct. It can be inferred that 

the boundary layer does not diffuse much and the central region of the channel behaves 

as inviscid approaching the velocity profile of the inviscid oscillating flow. Figure 3.10 

shows that at ujt = TT/4 for Tp = 48 time steps, velocity near the walls is higher than 

the velocity in the center and as time increases during the period, the velocity amplitude 

of the fluid in the core of the duct is quite reduced as compared to low frequency cases. 

Figure 3.8 shows that the phase lag between the velocity and the pressure gradient has 

reached its asymptotic value of VT/2 for high frequency flows. This is in accordance to 

Drake's approximation of centreline velocity as (-jsinwi) for high frequency flows. The 

phase angle (lag) near the walls approaches a constant value of TT/4. These Stokesian 

velocity characteristics, also known as 'annular effects' are reported by Richardson and 

Tyler [1] experimentally. 

3.5.3 Stress at h igh frequencies 

Asymptotic velocity expressions (Equation 3.19) can further be employed to obtain ex­

pressions for the skin friction valid for points near the center of the wall of the duct. 

Drake derived the skin friction (TZ-I) on the wall as the sum of integrals which can be 

approximated for points near the center of the wall as 

T , = f c ~ A > ( ~ ) ^ o s ( ^ - - £ ) (3.20) 
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Figure 3.11: Normalized stress from the analytical solution (light points) by Drake [12] 

and from the LB simulation (dark triangles) have been plotted on the abscissa against the 

normalized distance on the ordinate. As is evident from the plot, that the LB simulation 

results are in close agreement with the analytical solution. 

Thus, stress at the center of the wall has a phase lag of TT/4 behind the pressure 

gradient. 

Drake's integrals for skin friction at points away from the center of the wall can be 

evaluated numerically. The numerical solution has been plotted as •^-,(~)2'TZ=I) against 

( ^ )2 (a ~-y) in Figure 3.11. LB simulation stress results (calculated from the momentum 

exchange method [33, 29, 30]) have also been plotted and it can be seen that the results 

are concordant. It can be seen that as y tends to a, i.e. on approaching near the corner 

of the duct, rz=b becomes 0. Also except for wt = x/2, Z-K/2, drz=},/dy is infinite at the 

corner. This is in agreement with the analytical solution for stress. Stress at the midpoint 
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Figure 3.12: Phase difference between stress and pressure gradient for Top Left: Low 

frequency (1536 timesteps, phase difference: 0.13TT), Top Right: Moderate frequency (768 

timesteps, phase difference: 0.197r), Bottom Left: High frequency (576 timesteps, phase 

difference: 0.227-) and Bottom Right: Very High frequency (96 timesteps, phase difference: 

0.25TT). 

of the wall (y •-- 0,z ~ b) was evaluated for different frequencies and has been plotted 

in Figure 3.12. It can be seen that the phase lag between stress and pressure gradient 

increases from 0.137T for Tv = 1536 to ir/4 for Tp = 96. Increasing the frequency further 

to 48 time periods does not affect the phase lag and it can be said that the phase lag has 

reached an asymptotic value of TT/4. This is in accordance with Drake's approximation 

of stress (Eq. 19). This can be explained by the fact that the velocity phase lag near 

the walls approaches an asymptotic value of TT/4 resulting in a similarly patterned strain 

phase lag and hence leading to the stress phase asymptotic value of 7r/4. 
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3.6 Conclusions 

Pulsating flow in a rectangular duct due to a periodic pressure gradient has been studied 

using a 3-D Lattice Boltzmann model. For low frequency flows, it is found that the velocity 

profiles are parabolic in nature and behave as that for a steady pressure gradient with 

minor phase lags behind the pressure gradient. As the frequency is increased from low to 

moderate, weak annular effects start building up and velocity profiles start lagging behind 

the pressure gradient. On further increase of frequency to very high values, annular effects 

become strong and both the amplitude and the phase angle are affected. The velocity 

amplitude reduces while the phase angle(lag) increases with the increase in the frequency. 

The velocity profiles exhibit a Stokes layer character and develop sharply near the wall 

to a maximum value and then decrease slightly to a value which remains constant for 

most of the duct. The central region of the duct behaves as an inviscid fluid approaching 

inviscid oscillating velocity profiles. The velocity phase lag behind the pressure gradient 

reaches its asymptotic value of ?r/2 in the central region and 7r/4 near the walls. Stress 

evaluations were done and the results were found to be in accordance with the analytical 

solutions. It was rioted that like the velocity profiles, stress phase lag behind the applied 

pressure gradient also reaches an asymptotic value of TT/4. It was also found that stress 

is maximum in the middle of the duct walls and decreases to zero towards the corners. 

This will help one in designing and optimizing medical apparatuses and understanding 

the medical flow phenomena. 
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Chapter 4 

Exact solution for 

circumferentially pulsating 

annular flow with a constant 

radial flux 

4.1 Introduction 

Understanding pulsating flows in a cylindrical annulus with porous walls is fundamen­

tally significant for the design and optimization of various medical apparatuses and for 

'Th i s work is an obvious extension of the previous work by S. Tsangaris and N. Vlachakis ("Appl ied 

M a t h e m a t i c a l Model l ing", 31(9), p. 1899-1906). However, at the same time when I carried out this 

research, Tsangaris et al. conducted similar research and published it as "International Journal of 

Eng ineer ing Science", 44(20), p . 1498-1509. 
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understanding biological phenomena. Oscillating flows appear in various medical appara­

tuses used for fluid delivery and testing like peristaltic pumps, heart-lung machines, and 

injection-suction therapy equipment. 

The Navier-Stokes equations are non-linear partial differential hydrodynamic equa­

tions of motion which can only be analytically solved for a few systems. Most of the 

systems which can be solved analytically, involve laminar or oscillating flows in rectan­

gular channels, in between parallel walls, in cylindrical pipes and pipes with annular 

cross-sections, both with impermeable and porous walls. Analytical solutions for laminar, 

fully developed, steady incompressible flow in rectangular channels, with parallel walls, 

straight ducts with constant cross-section, cylindrical pipes and annular cross-sections 

date back to the late 19''' century. 

Pulsating viscous flow of an incompressible fluid due to an oscillating pressure gradient 

in a long channel with a circular cross section has been considered experimentally by 

Richardson and Tyler [1]. They also conducted experiments for a long channel with a 

square cross-section and discovered annular effects in the flow. Analytical solutions for 

laminar, developed, oscillating flows between parallel [2] impermeable plates due to an 

applied oscillating pressure gradient have been reported in literature. 

Wang [3] treated pulsating flow in a porous channel between parallel plates theoret­

ically. Tsangaris and Vlachakis [4] derived the analytical solution for pulsating flow in 

a rectangular duct with porous wails with a constant cross-sectional velocity. Sexl [5] 

treated the oscillating flow in a circular cross-section theoretically to get annular effects 

in the flow as discovered experimentally by Richardson and Tyler [1]. Uchida [6] analyzed 

pulsating viscous flow superposed on the steady laminar motion of incompressible fluid in 

a circular pipe. 

Dean [7] first studied the laminar steady flow in a cylindrical annulus due to an applied 
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circumferential pressure gradient, using the narrow-gap approximation. Goldstein [8] 

studied the finite gap Dean flow problem. Tsangaris and Vlachakis [9] extended the Dean 

flow solution to the periodic unsteady solution in a cylindrical annulus with impermeable 

walls by applying the oscillating, circumferentially acting, pressure gradient. Oscillating 

flow with solid walls has been studied for various other geometries including parallel 

plates [2], circular [1, 5, 6, 10], rectangular [11], elliptical [12] and triangular [13] cross-

sections. However, in the literature, very few analytical solutions exist for the case of 

porous walls. An exact solution for steady flow between parallel-porous walls has been 

studied by Bearman [14] and was extended further for the case of pulsating flow in the 

parallel-porous channel by C. Y. Wang [3]. Tsangaris and Vlachakis [4] derived the exact 

solution for the case of an oscillating flow in a rectangular duct with porous walls. However, 

since most of the mechanical systems involving pulsating flows are cylindrical or annular 

in nature e.g. flows in medical apparatuses, and cell transport dynamics; there is a need 

to develop exact solutions of the hydrodynamic equations in cylindrical coordinates. This 

chapter presents the exact solution of the Navier-Stokes equations for the incompressible 

flow in a cylindrical annulus with porous walls, when an oscillating circumferential pressure 

gradient is applied. The rest of the chapter is organized as follows: In section 4.2, the exact 

analytical solutions of the Navier-Stokes equations is presented for the incompressible flow 

in an annulus with porous/non-porous walls when an oscillating circumferential pressure 

gradient is applied. In Section 4.3, results are presented and velocity amplitudes and 

phase lags are discussed as a function of the oscillating frequency. Finally, a conclusion is 

given in Section 4.4. 

4.2 Method 

The present study focusses on solving the hydrodynamic equations of motion for the case 

of an unsteady, incompressible flow in a cylindrical annulus with porous walls (constant 

flux case). The Navier-Stokes equations along with the continuity equation have been 
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written in cylindrical coordinates (r, 6). ur and ug are the radial and the tangential 

velocity components, respectively. A circumferential oscillating pressure gradient (§f = 

—Kpexp (iu)t)) is imposed on the annulus with injection at radius R\ (inner wall) and 

suction at radius R2 (outer wall). A schematic representation of the problem is shown in 

Figure 4.1 . 

Figure 4.1: Schematic representation of a cylindrical annulus with porous walls (radial 

flux with injection at the inner wall (Ri) and suction at the outer wall (R-2)) and a 

circumferentially oscillating pressure gradient across the longitudinal direction. 

The steady fully developed Dean Flow solution has been extended to the unsteady 

solution produced by a periodic pressure gradient assuming a constant flux in the radial 

direction, thereby satisfying the continuity equation. 

r or r 

Using the fully developed flow condition and the continuity equation, the radial velocity 

component goes as 1/r, i.e. ur = A/r and the circumferential velocity component is a 
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function of the radial coordinate and time only, i.e. u$ = u(r, t). The parameter .A 

determines the amount of flux passing through the annulus as 2TTA = Q, where Q is the 

radial volumetric flux per unit length of the annulus. Assume that the spatial and size 

distribution of the pores in the porous walls does not affect the velocity solution in the 

flow regime and there is a constant volumetric flux (Q) through the annulus. The radial 

and the circumferential momentum balance equations can be written as: 

dur 

~~d7 
n 
r 

ldP 
p dr 

(4.2) 

dt 

du. 0 , Ur'UO 

dr r 

1_SP 

pr 80 

r«2 tru6 
dr2 

1 dug 

r Or 
ue_ 
r2 (4.3) 

The boundary conditions for u$ result from the no-slip boundary at the inner and the 

outer walls of the annulus: UQ = 0 at r — R\ and r = R2 at all times. 

4.2.1 Steady flow 

Impermeable wall 

For steady flow in a cylindrical annulus with impermeable walls, ur = 0 and the circumfer­

ential velocity becomes just a function of the radial coordinate, UQ = uo{r). Considering 
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a constant circumferential pressure gradient §§• = —Kp, Equation 4.3 can be reduced to 

d2ue + l^k_ue + l = Q ( 4 4 ) 

where the following dimensionless variables have been introduced: r = •£- and tin 
UfiV 

The solution can be obtained using the no-slip boundary equations at the inner and 

outer wall of the annulus, which is the same expression as obtained by Goldstein [8] 

1 1 A2 / 1 \ 
«fl = - - r l n f + - l n A ^ — y f f - ^ J (4.5) 

where A is the ratio of the outer to inner radius of the channel, A = -^. 

Porous wall 

For steady flow in a cylindrical annulus with porous walls, ur = A/r and the circumfer­

ential velocity becomes just a function of the radial coordinate, u$ = uo(r). Considering 

a constant circumferential pressure gradient ^ = —Kp, Equation 4.3 can be reduced to 

^ + ( l - / 9 ) i ^ - ( l + 0 ) 3 [ + U o (4.6) 
dr- r dr ri r 
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where the following dimensionless variables have been introduced: f = -£-, 0 = ^, 

ilg — -KJT and A = Rz/Ry. The solution can be obtained using the no-slip boundary 

equations at the inner and outer wall of the annulus as: 

U0 
(A2 _ f2) + f 2A2 (A3 - f0) - (X2+f} - f2+(j) 

2/?r(A2+'5 - 1) 
(4.7) 

4.2.2 Osci l la t ing flow 

Porous wall 

Substituting ur = — and -^ — — Re[Kpexp (iu>t)} in Equation 4.3, 

due K iu:t d2u0 {v - .4) due (" + A) 
-T- = —e + V-TTY H 7, o—ue 
at r orz r or rz 

(4.8) 

This partial differential equation can be reduced to an ordinary differential equation 

by employing ue = V(r) exp (iut) in Equation 4.8 to get 

SV_ (1_A\ldV_ 
dr2 V v I r dr 

A \ iojr 
1 + - + — 

v I v 

21 V K n 
-^ + — = 0 (4.9) 

.2 _ "«? Introducing the following dimensionless variables, r = ~-,az ~ —^, ft = •-, V = j$-
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and A = R2/R1 , the circumferential momentum equation in the reduced form can be 

written as: 

d2V „ ..ldV ,., , 
W + ̂ -Ph-zr-^ + P-df df 

?f2) ^ + 1 = 0 (4.10) 

where a is the reduced frequency of oscillation (also called Wornersley Number [10]) 

and 0 can be considered as the Reynolds number of the flow based on the radial velocity 

which may significantly affect the flow, if inertia] (convection) forces dominate over the 

viscous forces. Using the substitution, 

V(f) Vs(f) (4.11) 

the differential equation can be reduced to 

^ + (1 _ p) \^1 (1 + p + u^2} I = 0 
drz r dr rz 

(4.12) 

Making the substitution, Vh{f) = Vs(f).f 2, Equation 4.12 can be reduced to obtain 

the Bessel differential equation 

PVh . ldV, <rvh 
" W 2 + --dr2 f df 

ia2f2 + I 1 -r£=0 (4.13) 
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which has the general solution of the form 

3 3 
V)i — c\./2+a (-ivgr) + C2Y2+0 (-iigf) 

2 2 
(4.14) 

where J 2+0 (—i 2 erf) and Y2+P (—2 2 of) are Bessel functions of the first and second kinds 
2 2 

of -4p- order, respectively and c\ and c> are two constants which will be determined by 

the boundary conditions: V(l) = 0 and V(\) = 0. 

Substituting \'n back into Equation 4.11 and employing the boundary conditions, the 

solution for an oscillating flow with porous walls for the constant flux ((3 treated as a 

constant with time and position) 2 can be obtained as: 

ui) — Re —or + /"2 (C1J2+S.(-i?ar) + o2Y2+a (-12af)) > exp(?:wi) 
•iazr V 2 2 / I 

(4.15) 

where 

ci = —o 
taz 

' Y 2 + f l ( - i 2 - a ) - r W ( - ^ a A ) 

Y2-1-!) (—i2a\)J2+f) (—i2q) — F2+g ( — J 2 Q ) J 2 + , 3 ( —?'2QA) 
2 2 2 2 . 

(4.16) 

"The same solution (in slightly other mathematical form) has also been obtained by S. Tsangaris, D. 

Kondaxakis and N. Vlachakis who conducted a similar research independently at around the same time 

and published it in a paper titled "Exact solution of the Navier-Stokes equations for the pulsating Dean 

flow in a channel with porous walls" in the "International Journal of Engineer ing Science", 44(20), 

p. 1498-1509. 
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and 

la* 

A ( 2 )J2+is{~~i^a) -~ J-2+fi{-i2QiX) 
2 2 

Y2+13 (—•na\)J2+n (-i?a) — Y-2+p {—iMa)J2+t) (—i^aX) 
(4.17) 

Impermeable wall 

For the case of impermeable walls, the solution can be obtained by putting the radial 

Reynolds number (3 = 0 in the above expression to obtain the unsteady Dean solution. 

This form is another way of writing the solution obtained by Tsangaris and Vlachakis [9] 

v,0 = Re —yr + (ciJi(-uar) + c 2 y i ( - i 2 a f ) ) > exp(iut) 
iazr \ J J 

(4.18) 

where 

Cl = k? 
A - ^ i H s a ) - Yi( -i^aX) 

lY-i(-Ha\)Ji(-i^a) - Yi(-Ha)Ji(-i?a\) 
(4.19) 

and 

C2 
A"1 J, •2 \ -%2 a) •h( -i2 a\) 

l0c lYi(-uaX)J1{-r2a)-Yl(-i^a)J1(-V2aX) 
(4.20) 
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4. Exact solution for circumferentially pulsating annular flow with a constant 
radial flux 

Equation 4.15 is the master solution from which steady, unsteady solutions for both 

solid and porous walls can be obtained. In the limit (a, ft) —> 0, steady solution (Equation 

4.5) for a solid wall case can be obtained. The unsteady-periodic solution (Equation 4.18) 

for a solid wall case can be obtained in the limit ft —> 0 and the steady solution for porous 

walls (Equation 4.7) can be obtained in the limit a —> 0. 

4.3 Results and discussion 

,: / X «.: (.a \ 
/ \ 

y^:i:^ ...A ,. 

<£ - " J 

V . 
A ••••••••- : > 

Figure 4.2: Low Womersley number, low Reynolds number: Non-dimensional velocity 

amplitude tig (Top) and phase angle distributions <p (Bottom) for three different aspect 

ratios (A = 1.2,1.5,2) have been plotted for the low frequency oscillating flow solution 

(Womersley number, a = 0.1) for a solid walled annulus (Radial Reynolds number, ft = 0). 

For an applied circumferential pressure gradient of the form 

dP 
88 

= Kp cos (u)t) (4.21) 
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the resulting non-dimensional periodic velocity is 

uo = u&a cos (ut + <p) (4.22) 

where u$a and <j> are the velocity amplitude and the phase angle respectively, both 

functions of the radial coordinate, uoa and d> can be determined as 

uoa = (Vr + V?)2 , <P = arctan -J- (4.23) 

where Vr, V; are the real and imaginary parts of V (Equation 4.15). The general 

solution derived in the previous section can be reduced to the corresponding analytic 

solutions for non-porous walls given by Goldstein (steady, ,8 = 0 and a = 0, derived 

as Equation 4.5) and Tsangaris (oscillating, 0 — 0). The influence of the oscillation 

frequency and the amount of radial flux through the annulus on the velocity amplitude 

and phase angle distributions has been investigated by plotting Equation 4.15 for different 

combinations of the values of Womersley and Reynolds number. 

4.3.1 Low frequency flows 

Figure 4.2 (Top) shows the velocity amplitude for three different values of the aspect ratio 

(A) with a reduced frequency (Womersley number a) of 0.1. The velocity amplitude has a 

parabolic profile behaving as a quasi-steady one resembling the velocity profile for a steady 

pressure gradient with a magnitude of —Kpcoscut. The phase-shift angle distributions 
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Figure 4.3: Low Womersley number, high Reynolds number: Non-dimensional velocity 

amplitude u$ (Top) and phase angle distributions <p (Bottom) for three different aspect 

ratios (A = 1.2,1.5,2) have been plotted for the low frequency oscillating flow solution 

(Womersley number, a = 0.1) for a radially permeable annulus (Radial Reynolds number, 

/? = 30). 

have been plotted in Figure 4.2 (Bottom), and have values close to zero for the entire 

domain. The phase lag is symmetric over the flow region with minima near the walls. It 

can be inferred that viscous forces along with the inertial forces are quite significant in 

the flow region. 

The velocity amplitude for the porous wall case with a high cross-flow Reynolds number 

(P = 30) and low oscillation frequency has been plotted in Figure 4.3 (Top). Comparing 

the velocity profile with the non-porous case, it can be deduced that the maximum velocity 

amplitude decreases with an increase in the cross-flow Reynolds number. It can be seen 

that the maximum in the velocity profile is shifted towards the suction wall, with a sharp 
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Figure 4.4: High Womersley number, low Reynolds number: Non-dimensional velocity 

amplitude ug (Top) and phase angle distributions <p (Bottom) for three different aspect 

ratios (A = 1.2,1.5,2) have been plotted for the high frequency oscillating flow solution 

(Womersley number, a = 15) for a solid walled annulus (Radial Reynolds number, (i = 0). 

gradient in the suction region. Near the injection wall, the velocity profile is linear in 

nature, indicating an inviscid flow domain. However, the flow still remains unaffected 

by the oscillating aspect of the pressure field. It can be inferred that the flow near the 

injection wall is convection dominated and viscous effects are suppressed. In a very thin 

region near the suction wall, viscous forces are quite significant. This viscous region gets 

thinner as the cross-flow Reynolds number is increased, quite analogous to the viscous 

boundary layer diminishing in turbulent flows in pipes as Re increases. The phase shift 

angle (Figure 4.3 (Bottom)) has reduced from the no mix case and is no longer symmetric. 

The phase lag is almost zero at the injection wall because of the suppression of viscous 

forces, keeps increasing (more negative) until the region of maximum velocity and then 

recovers (less negative) a little near the suction wall. 
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Figure 4.5: High Womersley number, high Reynolds number: Non-dimensional velocity 

amplitude u# (Top) and phase angle distributions <j> (Bottom) for an aspect ratio of A = 2 

have been plotted for a high frequency oscillating flow solution with a Womersley number 

a of 15. The radial Reynolds number based on the radial velocity 3 ranges from 0 to 100 

to study the convection effects in the flow region. 

4.3 .2 H i g h frequency flows 

Figure 4.4 shows the velocity amplitude and phase angle distributions for three different 

aspect ratios and a Womersley number of 15 for non-porous cylindrical annulus. The 

increase of oscillating frequency results in a reduction of the velocity amplitude and the 

velocity phase lags significantly from the applied pressure gradient. The velocity distribu­

tion exhibits a Stokesian character (very sharp gradients near the walls) and the annular 

effects (two local maxima in the velocity profile, maximum value close to the injection 

wall), also reported by Richardson and Tyler experimentally in [1], can be seen. The 
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phase angle in the central region tends to — w/2 and the fluid behaves as inviscid ap­

proaching the velocity profile of the inviscid pulsating flow, ug = -^smuit. Near the 

walls, the phase angle tends to —n/4 and so does the stress phase lag. 

The effect of cross-flow Reynolds number on high Womersley number (highly pulsating) 

flows can be seen in Figure 4.5 with the cross-flow Reynolds number (J3) ranging from 0 

to 100 with a reduced frequency (Womersley number, a) of 15. It can be seen that from 

the velocity profiles that as 8 increases the flattening effect of the velocity in the central 

region is reduced significantly and the maximum velocity shifts towards the suction wall. 

Annular effects disappear and the Stokesian nature of the velocity profile is diminished. 

The velocity amplitude first increases with 0 to a certain level and then falls off again 

as 0 increases beyond 50, where the flow is dominated by convection forces and viscous 

effects are suppressed. The phase angle increases (less negative, approaches zero) near 

the injection wall from the non-porous case and decreases (more negative than —n/2) in 

the central region recovering back (above —n/2) near the suction wall. This sinusoidal 

behavior of the phase lag is due to the new sinusoidal distribution in the velocity profile 

near the injection wall; however, on approaching towards the suction wall, this sinusoidal 

velocity region is suppressed by the viscous effects, bringing phase lag back to —n/2 and 

above. The flow near the injection wall can be approximated as unsteady convection-

dominated inviscid flow. 

From Equation 4.2 the radial pressure gradient can be determined as 

= _ L ^ l / _ y 4 + f L i 4.24) 
or rA r 

Using the non-dimensional variables, 

dP _rrfuja\!l , ___ ,„.., , 0 , „ , ( l \ 8(0 ~~ 1) 
If = H { 2f J [1 + C ° S ( 2 u j t + m + { H ) ^ ^ (425) 
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where P = P/Kp and / / = KRf/v2 is the ratio of pressure forces to the viscous 

forces. It can be seen that the radial pressure gradient oscillation frequency and the phase 

shift angle are double that of the corresponding frequency and phase angle of velocity 

oscillation. Also, an additional convective increment is superposed on the oscillating 

radial pressure gradient which further increments it towards the suction end. 

4.4 Conclusions 

The general solution for pulsating flow in an armulus with porous walls having a constant 

annular radial flux has been derived by solving the hydrodynamic equations assuming 

the finite gap approximation. Solutions for steady flow and oscillating flow with solid 

walls have been derived as limiting cases of the general solution. The solution for velocity 

amplitude and phase angle distribution has been plotted for low and high frequencies for 

variable flux conditions. 

It is seen that for the low frequency case with no radial flux, parabolic velocity pro­

files are seen with small phase lags from the applied pressure gradient but as radial flux 

increases, convective effects start to dominate near the injection wall suppressing the vis­

cous effects. The phase lag becomes unsymmetrical; starts from zero at the injection 

wall and decreases (more negative) towards the suction wall. In the high frequency case 

with no flux, annular effects are seen in the velocity profile which is Stokesian in nature 

and the phase lag decreases to a much larger extent than in the low frequency case with 

an asymptotic value of —n/2. With the increase of the radial flux, the annular effects 

disappear and the phase lag becomes unsymmetrical along the radial direction decreasing 

further beyond the asymptotic value. Convection effects are seen to dominate near the 

injection wall while viscous effects dominate near the suction wall. The solution will help 

in designing medical apparatuses with oscillating flows and oscillating mixing chambers. 
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Chapter 5 

Conclusion and Future Work 

5.1 Conclusion 

This thesis recommends the use of statistical mechanical models to understand macro­

scopic phenomena as a result of underlying interactions between the microscopic con­

stituents of any system. Taking into consideration the complexity of statistical mechan­

ical models, a thermodynamical application: evaporation of a liquid in a steady state 

system, and a fluid-mechanical application: pulsating flows in a rectangular duct, have 

been presented to give a more realistic assessment of physical systems. 

Chapter 2 of the thesis presents a nonideal Statistical Rate Theory formulation for the 

evaporation of a liquid in a steady state system. Fluid nonidealities were incorporated 

in the previously existing ideal SRT formulation [1, 2] using equations of state and a 

generic equation-of-state based SRT model for liquid evaporation was developed. The 

Peng-Robinson equation-of-state based SRT model was taken as an example as the Peng-
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Robinson equation of state is fairly accurate for hydrocarbons, and it was found that it 

predicted evaporation rates as accurately as the ideal SRT model at low temperatures 

(below room temperature) and pressures (below 1 kPa). The calculated evaporation rates 

from both the SRT models were also concordant with the experimental results. Predictions 

based on the Peng-Robinson based SRT model were found to differ from the ideal SRT 

model at sufficiently higher temperatures and pressures (near the critical temperature). 

Experiments should be done in the near-critical region (temperatures higher than Q.8TC) 

to investigate the predictions that have been made. The generic equation of state based 

SRT model can be included in a thermodynamical simulator to predict evaporation rates 

at any range of temperature and pressure as the final expression is entirely in terms of 

experimentally measurable thermodynamic variables or the parameters of the equation of 

state which can be evaluated. Thus, being free from any fitting parameters and correlation, 

this is a very powerful tool for predicting evaporation rates. 

Chapter 3 of the thesis presents the Lattice Boltzmann simulation details and results 

for pulsating flows in rectangular ducts due to a periodic pressure gradient using a 3-

D Lattice Boltzmann model. It was found that at low frequencies of oscillation of the 

periodic pressure gradient, the velocity profiles are parabolic in nature behaving as velocity 

profiles for a steady pressure gradient. As the frequency is increased, annular effects start 

building up and the velocity profiles exhibit Stokesian character with annular effects and 

develop sharply near the wall and the central region of the duct behaves as an inviscid 

fluid approaching inviscid oscillating velocity profiles. The velocity phase lag behind the 

pressure gradient reaches its asymptotic value of 7r/2 in the central region and TT/4 near 

the walls due to which stress lags by n/4 from the applied periodic pressure gradient. 

Stress was evaluated at different regions on the duct wall and it was found that stress 

is maximum in the middle of the duct walls and decrease to zero towards the corners. 

These results are concordant with the analytical solution derived by Drake. This leads 

us to a conclusion that LB models can be used to simulate pulsating flows in micro-sized 

ducts to analyze velocity and stress profiles in a duct. This information will be very 

useful for designing and optimizing medical apparatuses and to understand medical flow 
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phenomena, especially medical conditions like hypertension and dialysis. 

Chapter 4 of the thesis discusses the exact solution of a pulsating flow in an annulus 

with porous walls having a constant annular radial flux. The hydrodynamic equations 

have been derived to obtain solutions for steady and oscillating flow in a duct with solid 

and porous walls. It was seen that for the low frequency case with no radial flux, parabolic 

velocity profiles are seen with small phase lags from the applied pressure gradient but as 

radial flux increases, convective effects start to dominate near the injection wall suppress­

ing the viscous effects. In the high frequency case with no flux, annular effects are seen 

in the velocity profile which is Stokesian in nature but as radial flux increases, the annu­

lar effects disappear and the phase lag becomes unsymrnetrical along the radial direction 

decreasing further beyond the asymptotic value of —n/2. Convection effects are seen to 

dominate near the injection wall while viscous effects dominate near the suction wall. The 

solution will help in designing medical apparatuses with oscillating flows and oscillating 

mixing chambers better. 

5.2 Future work 

Statistical Rate Theory assumes the evaporation process to be mainly a single-molecular 

event and thus neglects the probability of two or more molecules making the transition 

at the same instant. However, we can relax this assumption and evaluate the probability 

of two or more molecules making the transition, thereby obtaining an even more generic 

SRT model for evaporation. If we are able to do so, the methodology can be applied to 

other kinetic processes as well, like adsorption, and absorption, to name a few. 

In the calculation of the equilibrium molecular exchange rate in the Statistical Rate 

Theory, it was assumed that classical kinetic theory can be used to obtain an expression for 
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the exchange rate. It was assumed that the number of collisions which increase or decrease 

the probability of a molecule to cross the interface are almost equal and so collisions do 

not affect the equilibrium molecular exchange rate. However, these assumptions can be 

relaxed. For example, we can use local density instead of global density while finding 

the probable number of molecules in a certain differential element which will cross the 

interface. This might involve the use of radial distribution functions and hence would be 

very complex to solve. Further, we can also define a collision operator very similar to 

the way it is defined in the Boltzmann equation, to correct for the collision effect on the 

equilibrium molecular exchange rate. 

Further, as we predicted the evaporation rates for ethane and butane at near critical 

temperatures, experiments should be done in the temperature range and the predictions 

can be investigated. Temperature jump across the interface should be measured and 

checked with our assumption of choosing the temperature jump to be less than 2 K. 

Lattice Boltzmann simulations for pulsating flow can be extended to curved geometries 

and grid refinement techniques can be used. For curved geometries, a different set of 

boundary conditions and stress evaluation techniques have been given in the literature 

[3, 4] and these can be used to investigate the asymptotic velocity profiles and to analyze 

stress at the curved geometry wall. 

Although molecular dynamics is time consuming and computationally expensive, it 

can be employed to study these processes and can be compared with the results obtained 

from SRT and LB models. For example, a molecular dynamics study of the equilibrium 

molecular exchange rate can be done to check the expression that we obtain from the 

classical kinetic theory or the expressions that we can derive if we relax the assumptions 

as discussed earlier. A molecular dynamics simulation of pulsating flow in a pressure 

gradient can be carried out and the results can be compared with the LB simulation 

results. 
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Further, the analytical solution for pulsating flow with a radial flux in a porous annulus 

that was obtained in chapter 4 of the thesis can be compared with the Lattice Boltzmaim 

simulation results of the problem. Again, curved geometry boundary conditions and grid 

refinements techniques would have to be used. 
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