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Abstract

Many problems in digital image processing and analysis can be interpreted as labeling problems,

which aim to find the optimal mapping from a set of sites to a set of labels. A site represents a

certain primitive, such as a pixel, while a label represents a certain quantity, such as disparity in

stereo correspondence. Considering this labeling interpretation, instead of solving different prob-

lems individually, we propose a series of unified frameworks in the random walks (RW) context for

labeling problems with regular sites and discrete labels. The first framework, which we term as the

generalized random walks (GRW) framework, converts a discrete labeling problem into the calcu-

lation of steady-state probabilities of random walkers transiting on a graph. The performance of

GRW is validated through experiments on stereo correspondence and multi-exposure fusion, which

we formulate as labeling problems in the RW context. By incorporating hierarchical and multiscale

schemes, the performance of GRW is further improved. This leads to two enhanced frameworks: the

hierarchical random walks (HRW) framework, which reduces the computational cost of GRW but

produces good approximations; and the multiscale random walks (MRW) framework, which pro-

duces robust solutions utilizing both inter- and intra-scale information. The performance of HRW

is validated through perception-guided multi-exposure fusion, where we also introduce advanced

perceptual metrics into multi-exposure fusion; the performance of MRW is verified through vol-

umetric medical image fusion, where we also introduce a cross-scale fusion rule based on MRW.

Furthermore, a multivariate Gaussian conditional random field model and its hierarchical version

are proposed for more general multi-label problems, and their relationships with GRW and HRW

are analyzed.
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Chapter 1

Introduction

Human eyes and brains have been capturing and processing visual information for millennia, long

before any special apparatus or algorithm was introduced. Yet during this time, people have never

stopped the efforts to decipher human perception, to invent tools and methods to mimic, facili-

tate, or enhance human perception, to create informative and/or appealing visual data, and to de-

velop techniques and devices to extract meaningful information from visual data. More specifically,

various directions have been explored by researchers from different disciplines (including physi-

ology, computing science, engineering, and physics) in order to solve different problems in visual

information processing, from studying human perception [118, 158, 182] to building optical de-

vices [2, 126], and from developing processing algorithms/software [3, 148] to constructing special-

ized hardware [84, 164]. Working in the diverse field of research into visual information processing,

we focus on digital image processing and analysis. With the rapid advancement of digital image

acquisition technology and computer hardware, digital image processing and analysis has gained

significant popularity with a wide range of applications in medicine, astronomy, geography, etc.,

since its debut in the 1960s [65]. Despite its popularity, different problems in digital image process-

ing and analysis are usually treated separately with more emphasis on their distinct attributes than

their common characteristics. While recognizing the former helps to construct problem-specific

solution paradigms, respecting the latter helps to derive general frameworks, which can lead to a

more systematic analysis of a given problem. A general framework also helps to better identify the

unique attributes of a given problem and then more efficiently incorporate them into the design of a

problem-specific algorithm, which is an instantiation of the general framework. Hence, in this the-

sis, we focus on designing a series of general frameworks for digital image processing and analysis

exploiting a common characteristic and deriving specific algorithms for particular problems, which

produce enhanced images or extract useful information from input images.
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1.1 Motivation

Many seemingly different problems in digital image processing and analysis share a common char-

acteristic, i.e., they all need to assign a certain quantity to each given primitive (e.g., a pixel). The

following are several representative examples:

1. Foreground/background segmentation [68, 88]: Given an image, the goal is to distinguish the

set of pixels that belong to the foreground from those belonging to the background. In other

words, foreground/background segmentation aims to assign either foreground or background

to each pixel of a given image.

2. Stereo correspondence [90, 177]: Given an image pair, the goal is to determine corresponding

pixels between them, where only horizontal displacement is present. We can consider an

alternative interpretation: Given an image pair where one image is taken as the reference

image, the goal is to determine the displacement of each pixel of the reference image in

the other image. Based on this interpretation, stereo correspondence amounts to assigning a

displacement to each pixel of the reference image.

3. Optical flow [12, 104]: Given two consecutive frames, the goal is to estimate the motion for

each pixel, i.e., to assign a displacement vector for each pixel of the earlier frame. This prob-

lem is similar to stereo correspondence, except that both horizontal and vertical displacements

are considered.

4. Image restoration [14, 55]: Given a degraded image, the goal is to recover the original pixel

values (i.e., intensities or colors), which means to assign a meaningful value to each corrupted

pixel.

Considering this common characteristic, we can apply a general framework to such digital image

processing and analysis problems. This unified modeling scheme allows us to tackle these problems

at a higher level; and once a specific problem is appropriately formulated under this framework,

an optimal solution can be quickly obtained. However, in the meanwhile, we have to acknowledge

that these problems also possess distinct attributes. Therefore, after modeling the problems under

this general framework, we need to utilize proper distance metrics to accommodate these attributes.

Mathematically, a distance metric is a function that calculates the distance between two or more

entities, such as the difference between the colors of two pixels. However, here, we consider distance

metrics in a broader sense, in which perceptual metrics are also included. For instance, a distance

metric can be a metric that evaluates how an image feature is perceived by a human observer (e.g.,

the distance between a presented image feature and the ideal feature that can capture a high degree

of attention). With these considerations, we attempt to develop a set of effective and efficient general

frameworks and apply them to practical digital image processing and analysis problems in this thesis.
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1.2 Problem Statement

The relationship between problems in digital image processing and analysis and labeling problems

was closely studied in [110, 111]. A labeling problem can be defined as finding an optimal mapping

f∗ from D = {d1, d2, . . . , dN}, a set of sites, to L, a set of labels, among the set F of all feasible

mappings, subject to some constraint(s):

f∗ : D → L. (1.1)

Let X denote a set of random variables defined on D, where each x ∈ X is associated with a site

d ∈ D and takes a label l ∈ L. Let xi denote the variable associated with di. A mapping f ∈ F,

i.e., a realization of X = {x1 = f1, x2 = f2, . . . , xN = fN} = f , is called a (label) configuration,

assignment or labeling, where fi ∈ L denotes the label assigned to the variable xi. If L is discrete,

i.e., L = {l1, l2, . . . , lK}, then the set F of all configurations can be defined as:

F = LN . (1.2)

Normally, F = F.

A site takes different forms in different problems: it can be a pixel, a region, a feature, etc.

Similarly, a label also takes different meanings in different problems: it can be an intensity value, a

disparity, an object class, etc. A set of sites can be spatially regular/homogeneous (e.g., a lattice) or

irregular/inhomogeneous. A set of labels can be either continuous (e.g., a real interval) or discrete

(e.g., a finite set). Based on the spatial regularity of the sites and the continuity of the labels, labeling

problems in digital image processing and analysis can be classified into four categories [110, 111]:

regular sites with continuous labels (LP1); regular sites with discrete labels (LP2); irregular sites

with discrete labels (LP3); and irregular sites with continuous labels (LP4). Restoration of im-

ages containing continuous pixel values is an LP1, where the sites are a lattice of pixels. Stereo

correspondence with discrete disparities and image segmentation are LP2s. Feature-based object

detection and recognition can be considered as LP3s, where the sites are extracted image features

and the labels are discrete object classes. Region-based continuous optical flow can be considered

as an LP4.

1.3 Scope and Significance

The focus of this thesis is on the design and application of probabilistic methods in discrete labeling

problems in digital image processing and analysis, with a main focus on pixel labeling (LP2). The

major contributions are:

1. Proposing a generalized random walks (GRW) framework for solving discrete labeling prob-

lems (Section 3.1); proposing the multivariate Gaussian conditional random field (MGCRF)

and interpreting GRW from the perspective of MGCRF (Section 3.4).
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2. Formulating stereo correspondence (Section 3.2) and multi-exposure fusion (Section 3.3) in

the GRW framework, and proposing effective algorithms.

3. Proposing a hierarchical random walks framework reducing the temporal and spatial complex-

ity of GRW (Section 4.1) and appling it to image fusion, where we also introduce perception-

based metrics (Section 4.2); proposing the hierarchical MGCRF (HMGCRF)) and interpreting

HRW from the perspective of HMGCRF (Section 4.3).

4. Proposing a multiscale random walks framework incorporating multiscale analysis into GRW

(Section 5.1) and applying it to volumetric medical image fusion (Section 5.2).

1.4 Organization

The remainder of this thesis is organized as follows. Chapter 2 discusses some popular graph-

based probabilistic methods for discrete labeling problems in digital image processing and analysis.

More specifically, we review the Markov random field model, belief propagation, graph cuts, and

the random walks model.

The major contributions of this thesis are presented in three subsequent chapters. In Chap-

ter 3, we propose a generalized random walks framework, which transforms a labeling problem into

steady-state probability calculation in the random walks context. The application of GRW in two

LP2 problems, stereo correspondence and multi-exposure fusion, is introduced. Using basic metrics

and disparity refinement schemes, we show that our GRW-based stereo correspondence algorithm

has achieved promising performance on standard test images. Using a GRW-based formulation of

multi-exposure fusion, we show that our algorithm is able to achieve a good balance between detail

reproduction and color fidelity preservation. We also propose a multivariate Gaussian conditional

random field model and investigate the relationship between GRW and MGCRF.

In Chapter 4, we propose a hierarchical random walks framework, which reduces the compu-

tational complexity of GRW by computing the solution in a coarse-to-fine manner. The improved

performance of HRW compared with GRW is validated through multi-exposure fusion. In addition,

an enhanced multi-exposure fusion algorithm is proposed by introducing new perceptual factors.

The possibility of applying this enhanced algorithm to other fusion problems is also investigated. In

addition, we propose a hierarchical MGCRF model and analyze the relationship between HRW and

HMGCRF.

In Chapter 5, we propose a multiscale random walks framework, which combines GRW with

multiscale analysis. A cross-scale fusion rule is proposed under the MRW framework that guarantees

intra- and inter-scale consistencies. This fusion rule is validated through volumetric medical image

fusion. In addition, an efficient color fusion scheme is also proposed.

Finally, conclusions and possible future research directions are presented in Chapter 6.
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Chapter 2

Background and Related Work

This section discusses some popular graph-based probabilistic methods for discrete labeling prob-

lems in digital image processing and analysis. Two probabilistic models are reviewed: the Markov

random field (MRF) model and the random walks model. One widely-used inference algorithm that

works on MRFs, called belief propagation, is discussed. One representative optimization algorithm

that works for MRF posterior energy minimization, called graph cuts (GC), is also discussed. There

also exist other optimization methods that can be applied to minimize an MRF posterior energy, such

as simulated annealing [86] and relaxation labeling [112], but they are either inefficient or ineffective

in finding the global minimum (or a high-quality approximation to the global minimum). Compared

with these methods, GC has gained popularity in many digital image processing and analysis appli-

cations due to its effectiveness and efficiency. Therefore, we choose GC as a representative MRF

posterior energy minimization method to be discussed in this chapter.

2.1 Markov and Conditional Random Fields

The main focus of this section is to provide a brief introduction to Markov random fields and maxi-

mum a posteriori labeling on MRFs, which are widely used in digital image processing and analysis

problems. The descriptions in this section are mainly based on [111, 160].

2.1.1 Graphs and Graphical Models

To solve a labeling problem, it is convenient to represent the problem on a graph. A graph is a pair

G = (V, E), where V = X is the set of all the nodes and E ⊆ V × V is the set of all the edges. An

image is usually represented as a finite lattice as shown in Figure 2.1, because such representation

facilitates both the encoding of the scene structure and the subsequent computation. In digital image

processing and analysis problems, each scene node xi ∈ X is normally associated with an observed

quantity (e.g., a pixel) di ∈ D at location i. An edge connecting two scene nodes xi and xj is denoted

by eij = (xi, xj) ∈ E . A weighted graph has a value assigned to each edge. Let wij denote the

weight associated with eij . This graph can be either undirected where wij = wji or directed. When
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xi xj
eij

Figure 2.1: A finite lattice.

the probability theory is combined with a graph, where nodes represent random variables and edges

represent dependency assumptions, this graph becomes a (probabilistic) graphical model [132]. A

graphical model, like a graph, can be either undirected or directed. An MRF is an undirected graph

that can take a cyclic form, in which each edge represents symmetric dependencies, as opposed to

a Bayesian network, which is a directed acyclic graph, in which each edge represents the causal

influence. While Bayesian networks are good at representing induced dependencies, MRFs are

capable of representing cyclic dependencies. Because the associations of adjacent nodes are usually

considered as correlational rather than causal [174], cyclic dependency representation is preferable

in many digital image processing and analysis problems.

2.1.2 Markov Random Fields

MRFs were first applied to digital image processing and analysis problems by Geman and Ge-

man [63] for image restoration. X = {x1, x2, . . . , xN}, a set of random variables, is said to be an

MRF with respect to a neighboring system N if and only if it satisfies the positivity property:

P (X = f) > 0, ∀f ∈ F , (2.1)

and the Markov property:

P (xi = fi|{xj}xj∈X\xi) = P (xi = fi|{xj}xj∈Ni),∀xi ∈ X , (2.2)

where P (X = f) , P (x1 = f1, x2 = f2, . . . , xN = fN ) denotes the joint probability that each

variable takes a certain value; X\xi , X − {xi}; and Ni denotes the neighborhood around xi. It

is not necessary for a neighbor xj ∈ Ni of xi to be the immediate neighbor of xi, but their distance

should be less than a specified threshold δ:

Ni = {xj ||xi − xj | ≤ δ, ∀xj ∈ X\xi}. (2.3)

For a two-dimensional (2D) image, the distance is usually computed as the Euclidean distance, and

δ is usually taken as δ = 1, i.e., 4-neighbor connectivity is assumed. A neighboring system N is

defined as the union of all Ni’s:

N = {Ni|∀xi ∈ X}. (2.4)
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When continuous labels are considered (i.e., for an LP1 or LP4), the probabilities are replaced as

probability densities.

2.1.3 Label Configurations on MRFs

According to the categorization of inference problems on graphical models (e.g., MRFs) in [194],

the configuration for a labeling problem can be a maximum a posteriori (MAP) configuration or a

maximum posterior marginal (MPM) configuration1.

2.1.3.1 Maximum A Posteriori Configuration

A labeling problem can be interpreted as a search for the most probable configuration f∗ for all the

unobserved variables X based on the observed data D. Such a configuration f∗ is called the MAP

configuration and defined as:

f∗ , arg max
f∈F

P (f |D), (2.5)

where P (f |D) , P (X = f |D) denotes the probability that configuration f is assigned based on D.

It is sometimes difficult to directly calculate this posterior probability. Therefore, using the Bayes’

theorem, P (f |D) can be computed as:

P (f |D) =
P (D|f)P (f)

P (D)
, (2.6)

where P (D|f) , (D|X = f) is the likelihood probability; P (f) , P (X = f) is the prior

probability of X = f ; and P (D) is the marginal probability of D:

P (D) =
∑

f∈F

P (D|f)P (f). (2.7)

Since P (D) normally does not affect the results, it is usually treated as a constant. In general, finding

the MAP configuration for an MRF is NP hard [169].

2.1.3.2 Maximum Posterior Marginal Configuration

A labeling problem can also be interpreted as a search for the configuration f∗ that maximizes the

posterior marginal probabilities of each unobserved variable x ∈ X given the observed dataD. Such

a configuration f∗ is called the MPM configuration and defined as:

f∗ , {f∗i |f∗i = arg max
fi∈L

P (fi|D), i = 1 . . . N}, (2.8)

where P (fi|D) , P (xi = fi|D).

1In [194], the MPM configuration is termed as maximum marginal configuration. Here, we add the word posterior as
in [97, 111] to avoid the ambiguity with the normal use of marginal probability.
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2.1.4 MAP-MRF Labeling

Many digital image processing and analysis problems [12, 55, 177] have been formulated as the

MAP estimation on MRFs. Finding the MAP solution to a labeling problem on an MRF is equivalent

to finding the minimum-energy solution of the following objective/energy function2:

E(f) = Edata(f) + Esmooth(f), (2.9)

This energy function is viewed as the log likelihood of the posterior distribution of an MRF. The

data energy Edata(f) and the smoothness energy Esmooth(f) are derived from the negative log

likelihoods of the likelihood P (D|f) and the prior P (f), respectively. In the MAP-MRF model, the

prior distribution is formulated as an MRF, and the likelihood is due to the observation model [111].

Based on the equivalence of MRFs and Gibbs distributions [63], P (f |D) can be expressed as

follows:

P (f |D) = βP (f,D) =
β

Z
exp(−E(f)/T ), (2.10)

where β and Z are normalizing constants, and T is a constant called temperature. Assuming all

probabilities are above zero, the Hammersley-Clifford theorem [16, 76] guarantees that the proba-

bility distribution will factorize into a product of functions of the maximal cliques C of the graph.

Therefore, for a pairwise MRF model (e.g., Figure 2.1) where a maximal clique consists of two con-

nected nodes3, the joint probability P (f,D) can be factorized as a function defined on single-site

cliques and pair-site cliques:

P (f,D) =
1

Z

∏

{xi,xj}∈C

Ψij(fi, fj)
∏

xi∈X
Ψii(fi), (2.11)

where Ψij(fi, fj) , Ψij(xi = fi, xj = fj) and Ψii(fi) , Ψii(xi = fi, di) are called potential

functions. By substituting Equation (2.10) into Equation (2.11) and assuming T = 1, E(f) can be

expressed as:

E(f) =
∑

xi∈X
Di(fi) +

∑

{xi,xj}∈C

Vij(fi, fj), (2.12)

where Di(fi) = − log(Ψii(fi)) and Vij(fi, fj) = − log(Ψij(fi, fj)). Edata(f) and Esmooth(f)

are then represented as follows:

Edata(f) =
∑

xi∈X
Di(fi). (2.13)

Esmooth(f) =
∑

{xi,xj}∈C

Vij(fi, fj). (2.14)

This formulation of energies indicates that the interaction between the scene nodes X and the data

nodes D constitutes the data energy Edata, while the interaction among the scene nodes X con-

stitutes the smoothness energy Esmooth. For pixel labeling problems, Edata(f) is the sum of a
2Another form of the energy function used in practice is one that adds a weighting coefficient λ to the second term due

to the individual modeling of the two energy terms. However, this variant does not make any fundamental difference to our
discussion here.

3In this thesis, we do not distinguish between a scene node and a variable for conciseness, i.e., the i-th scene node and the
i-th variable are both denoted by xi, unless otherwise mentioned.
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set of per-pixel data costs, and Esmooth(f) is the sum of spatially varying horizontal and vertical

nearest neighbor smoothness costs (if 4-neighbor connectivity is assumed) [179]. In [206], Di(fi)

and Vij(fi, fj) are referred to as compatibility functions that model the dependency between the

observed data d ∈ D and the scene nodes x ∈ X , and the resemblance of a scene node xi with its

neighboring nodes xj’s, respectively. For different applications, the compatibility functions can take

different forms.

2.1.4.1 MAP Estimation on Gaussian MRFs

A special case of the MRF is the Gaussian MRF (GMRF) [160]. Let x be the vector form of X ,

i.e., x = (x1, x2, . . . , xN )T , where ·T represents the transpose operator. A GMRF is an MRF

under the assumption that the random vector x follows a multivariate Gaussian distribution with the

probability density function (PDF) defined as4:

p(x) =
1

(2π)N/2|Σ|1/2
exp(−1

2
(x− µ)TΣ−1(x− µ)), (2.15)

where µ is the mean vector; Σ is the covariance matrix, which is symmetric positive definite; the

determinant of Σ is denoted by |Σ|; and the inverse of Σ, denoted by Σ−1, is called the precision

matrix. To simplify the notation, we use Q , Σ−1 to denote the precision matrix. Normally, Q is a

sparse matrix. Then, Equation (2.15) can be rewritten as:

p(x) = (2π)−N/2|Q|1/2 exp(−1

2
(x− µ)TQ(x− µ)). (2.16)

This density function can be further reformatted in the canonical form:

p(x) ∝ exp(−1

2
xTQx + bTx), (2.17)

where b = Qµ. This form facilitates computation by not requiring us to explicitly compute the

mean. Like the MAP-MRF model, the GMRF model only assumes that the prior distribution follows

Gaussian, and there is no restriction on the likelihood distribution. Therefore, the MAP configuration

is:

f∗ = arg min
f
E(f) = arg min

f
Edata(f) +

1

2
fTQf − bT f , (2.18)

where f is the vector form of f . To simplify computation in practical cases, it is normally assumed

(either explicitly or implicitly) that µ = 0 (e.g., [23, 178]), which results in a quadratic smoothness

energy. An alternative construction assuming piecewise smooth or piecewise constant [160], which

also results in a quadratic smoothness energy, does not impose this zero-mean assumption, and we

will discuss this later in Section 2.4.4. If the likelihood is also modeled as a Gaussian distribution as

in [178], the MAP estimation can be efficiently obtained via quadratic energy minimization.

4For a GMRF, the variables are normally supposed to take continuous values, i.e., the label set L is a real interval.
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2.1.5 Conditional Random Fields

A conditional random field (CRF) [97, 99] models the posterior probability P (f |D) directly as an

MRF without explicit modeling of the prior and likelihood probabilities5. While an MRF is defined

on the variable setX , a CRF is defined on bothX and the observed dataD [97]. MRF is a generative

model and independent of the observed data, while CRF is a discriminative model and dependent

of the observed data. (X ,D) is called a CRF when X conditioned on D obeys the positivity and

Markov properties. Therefore, the posterior probability P (f |D) takes the following form for a

pairwise CRF:

P (f |D) ∝ exp(−
∑

xi∈X
Di(fi|D)−

∑

{xi,xj}∈C

Vij(fi, fj |D)). (2.19)

There are two major differences between the CRF model and the MRF model: 1) in the CRF model,

the unary potential, which corresponds to the data compatibility in MRF, is defined on all the ob-

served data D and xi, while it is only defined on di and xi in the MRF model; 2) in a CRF, the

pairwise potential, which corresponds to the neighborhood compatibility in MRF, is dependent of

the observed dataD, while it is independent onD in an MRF. The CRF model is useful when explicit

modeling of the likelihood is intractable and/or when interaction between the scene nodes is data-

dependent. Like a GMRF, a CRF (X ,D) is called a Gaussian CRF (GCRF) when X conditioned on

D follows a Gaussian distribution [181].

2.2 Belief Propagation

Belief propagation (BP) solves inference problems on belief networks (e.g., MRFs and Bayesian

networks), which encode relevances as neighboring nodes in a graph. Labeling problems can be

solved using BP through local message passing, which at equilibrium produces a globally optimal

(or near optimal) solution. A higher-level labeling problem (such as texture classification [183])

may need a formulation on Bayesian networks, while a lower-level labeling problem (such as image

segmentation [63]) may prefer a formulation on MRFs. In this section, we focus on BP algorithms

for the MRF formulation of the labeling problems. Please refer to Appendix A for more details on

BP algorithms for Bayesian networks.

Two belief propagation algorithms were originally proposed by Pearl [140] for Bayesian net-

works based on message passing between neighboring nodes. The first algorithm is called belief

update, a.k.a. sum-product belief propagation (BP-S). When iterative message updating reaches

equilibrium in BP-S, an MPM solution is found. The second algorithm, which is for producing

the MAP configuration, is called belief revision, a.k.a. max-product belief propagation (BP-M). The

correctness of the two algorithms is guaranteed for singly connected networks.

5In [97], a special case of a CRF, called discriminative random field, is proposed, but here we treat them under the same
term.
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Weiss [194] extended BP-S and BP-M to MRFs and proved the correctness of the MAP configu-

ration using BP-M in networks with a single loop, although the numerical values of the beliefs were

shown to be incorrect. Though BP-M produces good approximations at convergence, it converges

less frequently than BP-S. However, the correctness of the MPM configuration using BP-S in net-

works with single or multiple loops is not guaranteed. Weiss and Freeman [196] further extended

the BP-M algorithm to graphs of arbitrary topologies. Any Bayesian network can be converted into

an MRF by adding a cluster node for every node that has multiple parents in the original graph. An

MRF with loops can be unwrapped into a computation tree. It has been proved that for an arbitrary

graphical model with arbitrary topology, when BP-M converges it assigns the MAP configuration to

all nodes within a large region, i.e., the single loops and trees neighborhood of those nodes. How-

ever, ties may arise, i.e., bi(fi) = bi(fj), which results in the MAP configuration not being unique.

In this case, extra criteria are needed to determine the most appropriate configuration. These criteria

can be applied after convergence; therefore, the message updating procedure can remain the same.

The message updating procedures of BP-S and BP-M for pairwise MRFs are described in the fol-

lowing sections. Without loss of generality, it is assumed that each variable xi ∈ X has a data node

di ∈ D (which is observed) associated with it.

2.2.1 Sum-Product Belief Propagation

The derivation of the relationship between beliefs and messages is not provided in [194, 196]. Here

we first give a brief derivation based on the derivation for BP on Baysian networks [140] and then

summarize the belief updating rules. In BP-S, a belief bi(fi) represents the probability that xi = fi

given all the information D:

bi(fi) , P (fi|D) ∝ P (fi,D). (2.20)

Using the Markov property and the Hammersley-Clifford theorem, bi(fi) can be factorized into the

product of a set of functions defined on neighboring nodes:

bi(fi) ∝ P (fi,Di) ∝ Ψii(fi)
∏

xk∈Ni

[
∑

fk∈L

P (fi, fk,Dk\i)], (2.21)

where Ψii(fi) ∝ P (fi, di); Di denotes all the information received through node xi; and Dk\i
denotes all the information received through node xk except that from node xi. A message mki(fi)

represents the probability that xi = fi given the information Dk\i:

mki(fi) , P (fi|Dk\i) ∝ P (fi,Dk\i) =
∑

fk∈L

P (fi, fk,Dk\i). (2.22)

Using the Markov property and the Hammersley-Clifford theorem,mki(fi) can be further factorized

as:

mki(fi) ∝
∑

fk

[Ψki(fk, fi)P (fk,Dk\i)]

=
∑

fk

{Ψki(fk, fi)Ψkk(fk)
∏

xj∈Nk\xi

[
∑

fj∈L

P (fk, fj ,Dj\k)]}, (2.23)
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where Ψki(fk, fi) ∝ P (fk, fi). It is also possible to let Ψii(fi) and Ψki(fk, fi) represent condi-

tional probabilities (e.g., [60, 206]) instead of the joint probabilities used here. This formulation

normally makes an implicit assumption that P (fk|fi) = P (fi|fk), ∀{xi, xk} ∈ C to simplify the

computation. Using the formulation of bi(fi) andmki(fi) from Equations (2.20) to (2.23), the poste-

rior probabilities P (fi|D)’s can be approximated through iterative local message passing. When this

procedure reaches equilibrium (i.e., bi(fi)’s make no more or negligibly little changes), P (fi|D)’s

can be considered as precise over a large neighborhood. Let mt
ij(fj) denote the message sent from

node xi to node xj at time t given xj = fj . The BP-S updating rules for pairwise MRFs are:

mt
ij(fj)← α

∑

fi∈L

[Ψij(fi, fj)Ψii(fi)
∏

xk∈Ni\xj

mt−1
ki (fi)]. (2.24)

bti(fi)← αΨii(fi)
∏

xk∈Ni

mt−1
ki (fi). (2.25)

This procedure starts with all messages initialized as 1. α is a normalizing constant rendering
∑
fi∈L b

t
i(fi) = 1. A belief vector bi = (bi(l1), . . . , bi(lK))T is stored for each node xi to repre-

sent the beliefs of that node taking different labels. Then, the MPM labeling problem expressed in

Equation (2.8) is equivalent to finding the label with the highest belief for each variable:

f∗i = arg max
fi∈L

bi(fi). (2.26)

2.2.2 Max-Product Belief Propagation

In BP-M, a belief b̂i(fi) represents the maximum value that the posterior probability P (f |D) can

take when xi = fi is fixed. Unlike BP-S, in BP-M, the probabilities of the other unobserved nodes

need to be maximized other than summed in order to get the MAP configuration. Therefore, the

belief b̂i(fi) at node xi is defined as:

b̂i(fi) , P̂ (fi|D) ∝ max
f\fi

P (fi, f\fi,D). (2.27)

Then, the MAP labeling problem expressed in Equation (2.5) is equivalent to finding the label with

the highest belief for each variable:

f∗i = arg max
fi∈L

b̂i(fi). (2.28)

Unlike BP-S, b̂i(fi) may not sum to unity over fi in BP-M. A message m̂ki(fi) represents the

maximum probability that xi = fi given Dk\i:

m̂ki(fi) , P̂ (fi|Dk\i) ∝ max
fk∈L

P (fi, fk,Dk\i). (2.29)

With beliefs and messages defined in this way, the BP-M updating rules can be derived following

the similar pattern used for BP-S:

m̂t
ij(fj)← αmax

fi∈L
[Ψij(fi, fj)Ψii(fi)

∏

xk∈Ni\xj

m̂t−1
ki (fi)]. (2.30)
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b̂ti(fi)← αΨii(fi)
∏

xk∈Ni

m̂t−1
ki (fi). (2.31)

The initialization is the same as that of BP-S, and α is still a normalizing constant. The only dif-

ference is that the summation operator used in Equation (2.24) is replaced by the maximization

operator.

In practice, the probabilities are often manipulated in the log domain; therefore if taking the

negative log of the posterior probabilities, BP-M actually estimates the minimum-energy solution

(MAP configuration) for Equation (2.12). BP-S does not directly search for a minimum-energy

solution as BP-M does, but it computes the posterior marginal probability distribution for each node

in the graph, which results in the MPM configuration.

2.2.3 Hierarchical Belief Propagation

To accelerate BP-M, an efficient hierarchical BP-M was proposed by Felzenszwalb and Hutten-

locher [54, 55]. This algorithm works in the negative log domain of the probabilities, and the energy

function used takes the same form as in Equation (2.12). In each iteration, the messages are updated

as:

mt
ij(fj)← min

fi∈L
[Vij(fi, fj) +Di(fi) +

∑

xk∈Ni\xj

mt−1
ki (fi)]. (2.32)

All messages are initialized to 0. The updating of the beliefs in the iterative message-passing proce-

dure is not necessary and the beliefs are only computed at the convergence of the algorithm after T

iterations.

bi(fi)← Di(fi) +
∑

xk∈Ni

mT
ki(fi). (2.33)

When the energy function in Equation (2.12) is defined following the Potts model [200], i.e., the

compatibility function Vij(fi, fj) has the following form:

Vij(fi, fj) = min(s|fi − fj |q, θ), (2.34)

where q ∈ {1, 2} and s is the rate of increase in the cost and θ is a positive thresholding constant, the

computational efficiency of updating a single message between adjacent nodes is enhanced by re-

formatting the minimization problem as the computation of a lower envelope. The message mt
ij(fj)

can be computed as:

mt
ij(fj) = min(ĥ(fj),min

fi
h(fi) + θ), (2.35)

where h(fi) = Di(fi) +
∑
xk∈Ni\xj m

t−1
ki (fi) and ĥ(fj) is computed on h(fi) following a two-

pass process (one forward pass and one backward pass). This acceleration technique, which is

also referred to as distance transform, reduces the complexity of message updating from O(K2) to

O(K). However, the limitation of the distance transform acceleration is that it is only applicable

when the smoothness energy is of a particular form as given in Equation (2.34).
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Figure 2.2: A lattice is a bipartite graph. Nodes with the same color belong to the same set.

For a grid (lattice) graph and any bipartite graph, it has been shown that the messages for each of

the two sets of nodes can be updated alternately. LetX1 andX2 denote the two sets, withX1∩X2 = ø

and X1 ∪ X2 = X . If xi ∈ X1, then Ni ⊆ X2. Following this rule, a lattice can be converted to a

bipartite graph. As shown in Figure 2.2, nodes with the same color belong to the same set. At time t

only messages sent to nodes in X1 from nodes in X2 are updated, while at time t+ 1 only messages

from X1 to X2 are updated. This alternate message-updating scheme not only yields speedup but

also reduces memory usage. In addition, the input images are organized in pyramidal structures, and

the beliefs are propagated in a coarse-to-fine fashion. This structure accelerates the message passing

over a long range. The message updating procedure runs for a constant number of iterations at each

level, and the resulting messages are used to initialize the message updating procedure in the lower

(next finer) level. With all the acceleration techniques applied, the overall computational complexity

of BP-M is reduced to O(NK) from O(NK2T ).

2.3 Graph Cuts

The graph cuts (GC) method solves the min-cut/max-flow problem on a graph, a fundamental prob-

lem in combinatorial optimization [138]. More specifically, GC solves the problem of finding the

maximum flow from a source to a sink, which is equivalent to finding the cut with the minimum

capacity/cost. The structure of the graph used by GC for a two-label case is illustrated in Figure 2.3.

Let Gαβ = (Vαβ , Eαβ) denote this weighted graph. The structure of Gαβ is similar to the lattice

graph shown in Figure 2.1 except that two terminals are added to V and their incident edges are

added to E . The terminals represent the set of labels L, and the two terminals in this graph represent

the two labels α and β, respectively. α can be considered as the source, and β as the sink. Each

scene node xi is connected to both the α and β terminals by edges tαi and tβi , respectively. Such

edges are called t-links (terminal links). The edges eij’s connecting two scene nodes are called n-

links (neighbor links). A cut C is defined as the set of edges without which all of the terminals are

completely separated from each other. The cost of the cut C, denoted by |C|, equals the sum of its

edge weights. If more than two terminals are present, the minimum cut problem is referred to as

the multiway cut problem or multiterminal cut problem [42, 43]. A cut C is actually equivalent to a
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Figure 2.3: The structure of the graph used by GC. Yellow nodes represent unobserved variables; the
orange and green nodes represent the labels α and β, respectively. Blue segments represent n-links
and grey segments represent t-links.

labeling fC with |C| = E(fC) + ε, where ε is a constant [27]. Then, finding the minimum cut C∗

is equivalent to finding the MAP configuration f∗.

Just like BP-M, GC can be considered as an MAP approximation algorithm for MRFs by min-

imizing the energy function in Equation (2.12). The weight of a t-link and the weight of an n-link

corresponds to the data compatibility function Di(·) and the neighborhood compatibility function

Vij(·, ·), respectively. As an MAP estimation technique, GC was first introduced into digital image

processing and analysis by Greig et al. [74] for binary image restoration, in which only two labels

are considered. In [74], the capacity of a cut was defined as a cost/energy function based on the Ising

model, a special case of the Potts model. It was shown that given only two labels, the exact MAP

configuration can be obtained using GC. For an energy function of a more general form as given

in Equation (2.12), it was proved in [81] that the exact MAP configuration can be obtained via GC

given that the neighborhood compatibility function V (·, ·), which defines the priors, is convex for a

linearly ordered label set.

For an arbitrary finite set of labels L, finding the minimum multiway cut is NP hard [42, 43].

However, Boykov et al. [26, 27] proposed two fast approximation algorithms. These algorithms

iteratively execute large moves to obtain a strong local minimum at convergence when no further

moves can produce a lower energy. A move refers to a change of the labels of a set of nodes.

Two categories of the interaction penalty function (neighborhood compatibility function) Vij are

considered: metric and semimetric. Vij is called a metric on L if for any α, β, γ ∈ L it satisfies the

following three conditions6:

Vij(α, β) = 0 ⇔ α = β, (2.36)

Vij(α, β) = Vij(α, β) ≥ 0, (2.37)

Vij(α, β) ≤ Vij(α, γ) + Vij(γ, β). (2.38)
6The requirement of Vij(α, β) = Vij(α, β) can be relaxed for directed graphs [27].
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If Vij only satisfies the first two conditions, it is called a semimetric. The two GC algorithms are

known as the swap algorithm (GC-S), which is based on the α-β-swap moves, and the expansion

algorithm (GC-E), which is based on the α-expansion moves. An α-β swap is a move in which

nodes with label α or β can change their labels to the other one, and nodes with other labels remain

the same. An α-expansion is a move in which any node can change its label to α and nodes already

with label α remain the same. GC-S is applied to cases where Vij is a semimetric, while GC-E is

applied to cases where Vij is a metric. These conditions are relaxed in [92] and the only requirement

is that Vij be submodular. Thus, the constraint for GC-S on binary labeling problems becomes:

Vij(α, α) + Vij(β, β) ≤ Vij(α, β) + Vij(β, α),∀α, β ∈ L. (2.39)

And the constraint for multi-label problems and GC-E becomes:

Vij(α, α) + Vij(β, γ) ≤ Vij(β, α) + Vij(α, γ),∀α, β, γ ∈ L. (2.40)

In a later review paper [89], Kolmogorov and Rother showed that GC may also produce satisfactory

results when Vij is modeled by non-submodular functions. Please note that the constraints discussed

above are all on the neighborhood compatibility function Vij(·, ·), and there is no constraint on the

form of the data compatibility function Di(·). In the following four sections, we briefly review the

GC-S and GC-E algorithms.

2.3.1 Swap Algorithm

Let Pαβ denote a partition that consists of all the nodes with label α or β, i.e., Pαβ = {xi|fi =

α} ∪ {xi|fi = β}. The α-β swap algorithm works on a graph constructed on Pαβ and on the two

labels with a structure similar to the one shown in Figure 2.3. With an arbitrary initial configuration

f0, in each iteration t, GC-S finds the configuration f t = arg minfαβ E(fαβ) among all fαβ’s that

are within one α-β swap of f t−1. If E(fT ) = E(fT−1) after T iterations, the iteration terminates

and the optimal configuration f∗ is set to fT . The structure of the graph changes dynamically after

each iteration. The configuration f t after each iteration is determined from the cut Ct as follows: if

tαi ∈ Ct, then xi is assigned label α; if tβi ∈ Ct, then xi is assigned label β; for any xi 6∈ Ptαβ , its

label remains unchanged.

2.3.2 Expansion Algorithm

The expansion algorithm works in a similar fashion to GC-S. It works on a graph constructed on

X , label α and label β = L − {α}. With an arbitrary initial configuration f0, in each iteration t,

the algorithm finds the configuration f t = arg minfα E(fα) among all fα’s that are within one α

expansion of f t−1. If E(fT ) = E(fT−1) after T iterations, the iteration terminates and the optimal

configuration f∗ is set to fT . As in the case of GC-S, the structure of the graph changes dynamically

after each iteration. The configuration f t after each iteration is determined as follows: if tαi ∈ Ct,

then xi is assigned label α; for any other node, its label remains unchanged.
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2.3.3 Max-Flow Computation

The max-flow algorithm proposed by Boykov and Kolmogorov [25] can be used to find the minimum

cut in each iteration for GC-S and GC-E, and the minimum cut is actually a binary labeling. Two

non-overlapping search trees S and T are built from the source s and the sink t, respectively. In S

the direction of the flow is from a parent to its children, while in T the direction is reversed. The

algorithm iteratively repeats three stages: growth stage, augmentation stage, and adoption stage. In

the growth stage, S and T expand by acquiring neighboring free nodes, which are connected to the

search trees via immediate edges. If an edge has residual capacity (i.e., the edge is nonsaturated), the

free node incident on that edge is added to the search tree as a child, whose parent is the other node

incident on that edge. The growth stage terminates until S and T touch each other, in which case

an s → t path is found. In the augmentation stage, the maximum flow allowed by the path s → t

pushes through. The nodes incident on the saturated edges, including all the subtrees rooted in them,

are removed from S and T . These removed nodes, not including their subtrees, are called orphans.

This stage splits S and T into forests. At the adoption stage, a search in the neighborhood of each

orphan is performed, in an effort to find it a new parent. A valid parent should belong to the same

tree, which has its root at s or t, as the orphan, and its incident edge should have residual capacity.

If this procedure fails, that orphan becomes a free node and all its children become orphans. The

stage terminates when there is no orphan left. The whole algorithm terminates when both S and T

cannot grow and they are separated by saturated edges. Then the minimum cut is obtained as:

C =

{
{(u, v) ∈ E|u ∈ S, v ∈ T}, no free nodes;
{(u, v) ∈ E|u ∈ S, v ∈ V − S}, otherwise. (2.41)

When there are isolated free nodes, the costs of the cuts determined from {S,V−S} and {T,V−T}

are equal. The worst-case complexity is O(|E|N2|C|), where |E| denotes the number of edges; N

is the number of nodes; and |C| is the cost of the cut C.

2.3.4 Multiway Cuts

For a multiway cut problem, both GC-S and GC-E compute the minimum cut by repeatedly solving

the binary labeling problem [26, 27]. In each cycle of iterations, GC-S finds a minimum cut Cαβ

for every distinct pair of labels (α, β). Therefore, |L|2 iterations are required in each cycle. A

labeling f for the whole set of scene nodes is determined by combining all the minimum cuts. The

algorithm terminates when the labeling obtained at the current iteration gives the same energy as

in the previous iteration, i.e., E(fT ) = E(fT−1). The only difference in GC-E is that it finds a

minimum cut Cα for every label against all other labels in each cycle of iterations. Therefore, |L|

iterations are required in each cycle.
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2.4 Random Walks

A random walk (RW) on a graph is a finite Markov chain that is time-reversible [119]. Suppose a

random walker is at node xi of a graph G at time t, then its position on G at time t+1 depends solely

on the probability distribution associated with xi at time t. In addition, the overall probability of a

random walker moving from xi to xj is the same as the probability of it moving from xj to xi. Early

studies of RW mainly focused on such questions as whether a random walker returns to its origin

with probability 1 and when the first return occurs (e.g., [53]). RW was first introduced into digital

image processing and analysis by Wechsler and Kidode [192] for texture discrimination. An image

is divided into square patches, and the probability distribution of a random walker within a patch

hitting its boundary is determined from simulation. These hitting distributions are used as features

for the classification of different textures.

2.4.1 Random Walks for Labeling Problems: A Simple Example

x1 x2 x3 x4

l2l1

w12 w23 w34

P21 P23

P34P32

0

0

Figure 2.4: RW in a 1D case. Yellow nodes represent uninstantiated variables, while red nodes
represent instantiated variables.

In this section, let us examine a simple example of applying RW to a binary labeling problem,

as illustrated in Figure 2.4. In this one-dimensional (1D) case, we have four variables (represented

as scene nodes), x1 to x4, and two labels, l1 and l2. Each variable is to take one and only one of the

labels. The weight for an edge (blue segment) connecting two scene nodes xi and xj is denoted by

wij . wij is usually determined based on the observed data associated with xi and xj . Let us assume

x1 and x4 are pre-assigned the labels l1 and l2, respectively. Now, the problem is to determine

the most probable configuration for x2 and x3 given x1 = l1, x4 = l2, and some observed data

D. The solution may be considered analogous to the MPM configuration of the labeling problem

formulated in the MRF model; therefore, we denote this configuration as MPM∗. This (discrete)

labeling problem can be formulated in RW as: which labeled node is a random walker starting from

an unlabeled node most likely to visit first?

To solve this problem, let us start by defining some concepts. The degree of a node xi is defined

as:

di ,
∑

xk∈Ni

wik. (2.42)

The transition probability Pij is defined as the probability that a random walker at node xi moves to

node xj in a single move, which is determined by the weights of the edges incident on xi:

Pij =
wij∑

xk∈Ni wik
=
wij
di
, (2.43)
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where Ni denotes the immediate neighborhood of xi. Since the transition probabilities of leaving

node x1 or x4 are both 0, a random walker that arrives at either of them will conclude its walk.

Therefore, nodes like x1 and x4 are called boundary nodes, absorbing barriers, or traps. Let Si,k

denote the set of all the possible paths that the random walker starting from node xi can take to

reach a node with label lk before reaching a node with a different label. For the graph in Fig-

ure 2.4, S2,1 = {{x2, {x3, x2}n, x1} : n = 0, . . . ,+∞}. Then, the steady-state probability of

a random walker starting at x2 and reaching the node x1 with label l1 (i.e., the probability that

the random walker has attempted any of the paths in S2,1), is P2,1 , P (x2 = l1|x1 = l1, x4 =

l2,D) = P21

∑+∞
n=0(P23P32)n = P21/(1 − P23P32). Similarly, P2,2, P3,1, P3,2 can be calcu-

lated. After that, the configuration with the highest probability is selected, i.e., f∗ = {f∗i |f∗i =

arg maxlk:k=1,2 Pi,k, i = 2, 3}. For this simple graph, it is possible to calculate the probabilities

this way. However, for a more complicated graph, such as a large finite lattice (which is usually

used to represent an image), this brute-force approach will not be computationally tractable. In the

following section, we will review an effective solution from the perspective of the Dirichlet problem.

2.4.2 Random Walks as Dirichlet Problem

It was established in [48] that the probability that a random walker starting from an unlabeled node

first reaches a labeled node is equivalent to the solution of the Dirichlet problem with boundary con-

ditions at the labeled nodes. Let XL ⊂ X denote the set of boundary nodes (instantiated variables)

and XU = X − XL the set of interior nodes (uninstantiated variables). A function g(·) is called

harmonic on XU if for any node xi ∈ XU it satisfies:

g(xi) =
1

di

∑

xk∈Ni

wikg(xk). (2.44)

Equation (2.44) means that the value of g(·) at any unlabeled node is the weighted average of g(·)

at its neighboring nodes. The problem of finding a harmonic function given its boundary values

(conditions) is called the Dirichlet problem. Given the same boundary values, the harmonic func-

tion defined on the same set of interior nodes is unique. This is called the uniqueness principle. A

harmonic function always attains its maximum and minimum on the boundary. This is called the

maximum principle. Using Equation (2.43) and the law of total probability, it is obvious that a prob-

ability mass function (PMF) Pk(xi) , P (xi = lk|D), which represents the steady-state probability,

is a harmonic function. In addition,
∑
lk∈L Pk(xi) = 1 for any xi ∈ X .

Based on this connection, Grady and Funka-Lea [71, 69] proposed an effective RW model for

finding the MPM∗ configuration given labeled nodes and observed data, and they applied the model

to image segmentation. Let the Dirichlet integral for a region X and a field g defined on X be

formulated as:

D[g] =
1

2

∫

X
|Og(x)|2dx, (2.45)
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where O denotes the gradient operator. Following this definition, a harmonic function g(·) is a

function that satisfies the Laplace equation:

O2g(x) = 0. (2.46)

A harmonic function satisfying its boundary conditions minimizes the Dirichlet integral in Equa-

tion (2.45). For an image represented as a graph G = (X , E), the harmonic function g(·) and the

Dirichlet integral D[·] become discrete. Let each entry Lij of the combinatorial Laplacian matrix L

be defined as:

Lij =





di, i = j;
−wij , xi and xj are adjacent nodes;
0, otherwise.

(2.47)

Let g = (g(x1), . . . , g(xN ))T , the combinatorial Dirichlet integral can then be formulated as:

D[g] =
1

2
gTLg =

1

2

∑

eij∈E
wij(g(xi)− g(xj))

2. (2.48)

For a labeling problem, Pk(·) is substituted for g(·).

The nodes in the graph G can be divided into two disjoint sets: XL, which is composed of all

the labeled nodes (boundary nodes), and XU , which is composed of all the unlabeled nodes (interior

nodes). Then the Laplacian matrix L can be arranged in such a way that the submatrix at the upper

left corner relies solely on the labeled nodes and the submatrix at the lower right corner relies solely

on the unlabeled nodes, as given in the following equation:

L =

(
LLL LLU
LUL LUU

)
. (2.49)

Since L is symmetric, LLU is just the transpose of LUL, i.e., LLU = LUL
T . LLL represents the

interaction within XL, LUU the interaction within XU , and LLU the interaction between XL and

XU . Then the Dirichlet integral in Equation (2.48) can be rewritten with respect to lk as:

D[Pk] =

(
PL,k

PU,k

)T (
LLL LUL

T

LUL LUU

)(
PL,k

PU,k

)
, (2.50)

where PL,k and PU,k are column vectors representing PL,k(·) and PU,k(·), the PMFs defined on

XL and XU , respectively. For a given label lk, the value of PL,k is known, and PL,k(·) is a binary

function:

PL,k(x) =

{
1, x = lk;
0, x 6= lk. (2.51)

Therefore, PU,k can be calculated by first differentiatingD[Pk] with respect to PU,k and then finding

the critical points:

LUUPU,k = −LULPL,k. (2.52)

The above formulation requires some of the variables to be instantiated. This requirement is relaxed

in [68] by incorporating label priors and approaching the problem from a Bayesian perspective,
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which results in a similar linear system to Equation (2.52). (Please refer to Appendix B for more

details.)7

To solve this large sparse linear system in Equation (2.52), many efficient methods are available:

direct solvers, such as CHOLMOD8 [38], which is based on supernodal Cholesky factorization [44];

and iterative solvers, such as conjugate gradient [161], algebraic multigrid [50, 204], and Gaussian

belief propagation [18, 195]. Among these algorithms, the supernodal Cholesky factorization and

the algebraic multigrid can achieve near-optimal performance, i.e., O(|XU |), where | · | denotes

cardinality.

An algorithm closely related to RW is diffusion maps [51], but it focuses on computing the

t-step transition probabilities instead of the steady-state probabilities. Another type of methods,

called spectral clustering, may also involve the construction of the Laplacian matrix of a graph. An

RW interpretation of one representative spectral clustering algorithm, the normalized cuts (NCut)

algorithm [168], was given in [128]. Four major differences between this RW interpretation and

the RW model discussed in this thesis are: 1) in the RW interpretation, the goal of NCut is to

minimize the sum of the clusters’ escaping probabilities (the probabilities that random walkers leave

a cluster), but the goal of the RW model is to compute the steady-state probabilities that random

walkers starting from interior nodes reach boundary nodes/absorbing barriers (nodes with escaping

probabilities equivalent to zero); 2) the minimization of the objective function in NCut is NP hard,

but the exact minimum solution of the objective function in the RW model can be computed in

linear time; 3) the graph in the RW interpretation contains no absorbing barriers, but the graph in

the RW model contains them, which form the boundary conditions; 4) in the RW interpretation, the

eigenvectors of a transformed Laplacian matrix are computed and their elements are grouped into

clusters, which correspond to clusters of the nodes in the graph, based on a criterion of piecewise

constancy, but in the RW model, the minimum solution (i.e., the steady-state probabilities) to an

energy function defined using a Laplacian matrix is computed.

2.4.3 Connection with Electrical Networks

The relationship between the RW model discussed in the previous section and electrical networks

was closely studied in [48]9. Given a graph G = (X , E), the underlying electrical network is the

network obtained by replacing the edges with electrical resistors [48]. Let rij denote the resistance

associated with edge eij ∈ E . Then the conductance of eij is wij = 1/rij .

According to Ohm’s law, the current/flow iij from node xi to node xj through a resistor eij is

determined by the voltages/potentials at xi and xj and the resistance rij :

iij =
ui − uj
rij

= wij(ui − uj), (2.53)

7Please note that the derivation in [68] is different from the Bayesian inference on MRFs.
8CHOLMOD has been included in all recent versions of Matlab, beginning with 7.2.
9This connection was also briefly discussed in [69].
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where ui denotes the voltage at xi. If connecting a battery voltage U to node xa ∈ X and connecting

node xb ∈ X to ground, i.e., ua = U, ub = 0, Kirchhoff’s current law requires that the sum of

currents flowing into any other xi ∈ X is 0:

∑

xj∈Ni

iij =
∑

xj∈Ni

wij(ui − uj) = 0. (2.54)

Equation (2.54) is equivalent to the following equation:

ui =
1

di

∑

xj∈Ni

wijuj . (2.55)

Just like the PMF Pk(·) in Section 2.4.2, the voltage ui is harmonic at any node except xa and xb.

For a resistor eij , the energy dissipation is calculated as:

Eij = i2ijrij = wij(ui − uj)2. (2.56)

Therefore, for an electrical network G, the total energy dissipation is:

E =
1

2

∑

eij∈E
Eij =

1

2

∑

eij∈E
wij(ui − uj)2. (2.57)

The factor 1/2 is used to remove the energy caused by duplicated counting of edges (i.e., eij = eji).

The minimization of Equation (2.57) is achieved when ui satisfying Equation (2.55) for each node

xi is found. When U = 1, the obtained ui’s are equivalent to PU,k in Section 2.4.2 with XL =

{xa, xb}.

2.4.4 Connection with Gaussian Random Fields

The RW model can be interpreted from the perspective of the Gaussian random fields (GaRFs) [160].

Given a set of continuous variables X , let x = (x1, . . . , xN )T be the vector form of X and let

xi ∈ X represent a certain quantity. For the ease of exposition, let us call this quantity a potential

and X a potential field. X and its internal interactions are represented as a graph G = (X , E), where

only interacting variable pairs have edges connecting them. With the assumption that X is piecewise

smooth/constant, the local increment follows a Gaussian distribution with zero mean:

∆ij , xi − xj ∼ N(0,
1

κwij
),∀eij ∈ E , (2.58)

where wij is a positive and symmetric weight (wij = wji) assigned to the edge eij connecting xi

and xj ; and κ is a constant. Now the joint probability density expressed in Equation (2.16) becomes:

p(x) ∝ κ(N−1)/2 exp[−κ
2

(
1

2

∑

eij∈E
wij(∆ij)

2)]

= κ(N−1)/2 exp[−κ
2

(
1

2

∑

eij∈E
wij(xi − xj)2)]

= κ(N−1)/2 exp(−1

2
xTQx), (2.59)
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where each entry Qij of the precision matrix Q is:

Qij = κ





di, i = j;
−wij , xi and xj are adjacent nodes;
0, otherwise

(2.60)

where di =
∑
xj∈Ni wij is the degree of node xi. From this precision matrix, it can be derived that

a variable xi has the following Gaussian distribution:

xi ∼ N(

∑
xj∈Ni wijxj

di
,

1

κdi
). (2.61)

Note the resemblance of the precision matrix to the Laplacian matrix L defined in Equation (2.47).

When κ = 1, Q is equivalent to L. If some of the variables are instantiated/observed, we can

estimate the posterior distribution given these observations. Let xL and xU denote the observed

and unobserved variables, respectively. Then, the MAP estimation/configuration f∗U is obtained via

quadratic energy minimization:

f∗U = arg min
fU

Edata(fU ) + Esmooth(fU )

= arg min
fU

fU
TQULfL +

1

2
fU
TQUU fU , (2.62)

where QUL and QUU are equivalent to their corresponding submatrices in L in Equation (2.49)

except the parameter κ. Minimizing the above energy is equivalent to solving the following linear

system:

QUU f∗U = −QULfL. (2.63)

If the edge weights wij’s are data-independent, then X is a GMRF10; otherwise, (X ,D) is a GCRF.

In [181], a GCRF was used for grayscale image restoration, where a globally constant mean for all

variables was assumed. This is a much more strict constraint than the one mentioned here (Equa-

tion (2.58)), which only imposes local constancy/smoothness. In [212], a GaRF, which is actually a

GCRF with κ = 1, was employed for semi-supervised learning. Though not explicitly mentioned,

local smoothness was assumed. The implicit local smoothness constraint, together with κ = 1,

makes the labeling framework in [212] equivalent to the RW model discussed in Section 2.4.2,

except that alternative further processing schemes on the obtained steady-state probabilities were

proposed in [212].

Despite the resemblance of the equations in this section to those in Section 2.4.2, there are major

differences between this GaRF interpretation and the RW model. First, the MAP-GaRF labeling

problem is a continuous labeling problem, while the labeling problem that RW deals with is discrete

in nature. Second, in this GaRF interpretation, the variables are not steady-state probabilities (though

they can be considered as so if the instantiated variables are binary-valued, i.e., either 0 or 1), but

some locally smooth potentials. Third, in the MAP-GaRF labeling problem, the estimated potential

field is the configuration, while the estimated probabilities in RW are further processed to get the

configuration.
10Strictly speaking, it should be called an intrinsic GMRF, because the precision matrix Q is not of full rank [160].
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2.5 Discussion

The methods discussed in this chapter were initially proposed for different purposes: MRF (or CRF)

for modeling inference problems, BP for solving inference problems formulated in belief networks

(e.g., MRFs), GC for max-flow/min-cut optimization, and RW for modeling stochastic behaviors.

However, they can be and have been widely applied to solving labeling problems. When solving

(discrete) labeling problems, the problem formulation (e.g., MRF, RW) and the solution derivation

(e.g., GC, BP, linear system solvers) are both important11.

For the MAP-MRF model, BP-M and GC solve the formulated energy minimization problem.

GC estimates the MAP solution by solving the min-cut/max-flow problem. No numerical values

that indicate partial belongingness of each site to different labels are explicitly computed12. BP-

M estimates the MAP solution through local message passing. When applied to MRFs of loops,

BP-M provides good approximation at convergence, although it converges less often than BP-S and

produces the incorrect numerical values of the beliefs [194]. However, BP-M and GC can only

efficiently minimize Potts model-like energy functions [179]. As pointed out in [27], an energy

minimization algorithm may fail to solve a problem due to either a poorly defined energy function

or a poor approximation of the global minimum. These two causes are difficult to distinguish, ex-

cept in some special cases where the true global minima can be computed efficiently. For binary

image restoration, the exact MAP configuration was computed using GC in [74]. However, due

to the simple construction of the energy function following the Ising model, the quality of the re-

stored images was poorer than that of those restored using the iterated conditional modes [17], a

local greedy energy minimization method. The performance of BP-M, GC and some other energy

minimization algorithms were compared in [179]. When these algorithms were evaluated using the

Middlebury stereo benchmarks [162], it was revealed that BP-M and GC produce energies lower

than the ground-truth energies. This suggests the limitation of the Potts model-like energy function

(Equation (2.34)) in addressing the stereo correspondence problem.

Like BP-M, BP-S can also work on MRFs, but it does so in order to approximate the MPM

configuration. Although BP-M has been largely applied to stereo disparity estimation, it is shown

in [180] that BP-S outperforms BP-M at sub-pixel accuracy. However, the distance transform accel-

eration, which provides the most speedup in hierarchical BP-M [54, 55], is not applicable to BP-S;

and the correctness of BP-S cannot be guaranteed for loopy networks [194].

RW converts a discrete labeling problem into a continuous quadratic energy minimization prob-

lem. Compared to the MRF modeling scheme for discrete labeling problems, the main advantage

11When solving a particular labeling problem, the distance metric definition also plays an important role. However, since
our discussion in this chapter focuses on general frameworks, we will postpone the distance metric factor to the next two
chapters where we discuss the multi-exposure fusion problem.

12A continuous max-flow algorithm for foreground/background segmentation was proposed in [10], where the potentials
at each site can be considered as partial belongingness; however, this algorithm is for sites in a continuous space instead of
the discrete space discussed in this thesis, and it only applies to binary labeling problems instead of the general multi-label
problems discussed in this thesis.
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of RW is the transformation of discrete problems to the continuous convex domain, where they can

be solved efficiently and accurately. As analyzed in [69], a foreground/background segmentation

algorithm using the RW energy with MPM∗ configuration performs better on weak edges than using

the Potts model energy with MAP configuration13. In this thesis, we mainly focus on developing,

applying, and validating a set of RW-based frameworks for discrete labeling problems.

13Some attempts [41, 172, 171] have been made to unify the Potts model energy used in [24], where GC was applied to
obtain the exact minimum energy solution, and the RW energy used in [69], where a direct linear system solver was applied
to obtain the exact minimum energy solution, for the background/foreground image segmentation problem. However, energy
form-dependent solvers are still required.
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Chapter 3

The Generalized Random Walks
Framework and Its Applications

3.1 Generalized Random Walks

In order to provide a general framework for labeling problems in digital image processing and anal-

ysis, we propose the generalized random walks (GRW) framework based on the RW model [68, 69]

(see Section 2.4.2) and the relationship between RW and electrical networks [48] (see Section 2.4.3).

3.1.1 Image Representation

YjK

Wijxi xj

lK... ...l1

Figure 3.1: The graph used in GRW. The yellow nodes are scene nodes and the orange nodes are
label nodes.

As shown in Figure 3.1, the variable set X and the label set L are represented in a weighted

undirected graph similar to [68]. Each variable is associated with a pixel location in our case, and

each label is associated with a certain quantity. The graph G = (V, E) is constructed as V = L ∪ X

and E = V × V including edges both within X and between X and L. The yellow nodes are

scene nodes and the orange nodes are label nodes. For a scene node x ∈ X , edges EX are drawn

between it and each of its immediate neighbors in X (4-connectivity is assumed in our case). In

addition, edges EL are drawn between a scene node and each label node. Wij , W (xi, xj) is a

function, W : EX → R≥0, which models the compatibility/similarity between nodes xi and xj ;
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Yik , Y (xi, lk) is a function, Y : EL → R≥0, which models the compatibility between xi and lk1.

3.1.2 Dirichlet Problem

Let V be arranged in a way that the firstK nodes are label nodes, i.e., {v1, . . . , vK} = L, and the rest

N nodes are scene nodes, i.e., {vK+1, . . . , vK+N} = X . With two positive coefficients γ1 and γ2

introduced to balance the weights between Y (·, ·) and W (·, ·)2, we can define a node compatibility

function C(·, ·) on E with the following form:

Cij , C(vi, vj) =

{
γ1Yi−K,j , (vi, vj) ∈ EL ∧ vj ∈ L;
γ2Wi−K,j−K , (vi, vj) ∈ EX . (3.1)

Because the graph is undirected, we have Cij = Cji. Let U(vi) denote the potential associated with

vi. Based on the description in Section 2.4.3, the total energy of the system given in Figure 3.1 is:

E =
1

2

∑

(vi,vj)∈E

Cij(U(vi)− U(vj))
2. (3.2)

Our goal is to find a function U(·) defined on X that minimizes this quadratic energy with boundary

values U(·) defined on L. If U(·) satisfies O2U = 0, then it is called harmonic, and the harmonic

function is guaranteed to minimize such quadratic energy E [69]. The problem of finding this

harmonic function is called the Dirichlet problem.

The harmonic function U(·) can be computed efficiently using matrix operations. As in [69],

a Laplacian matrix L can be constructed following Equation (3.3); however, in contrast with the

procedure in [69], L here contains both the label nodes and the scene nodes and becomes a (K +

N)× (K +N) matrix:

Lij =





Di, i = j;
−Cij , (vi, vj) ∈ E ;
0, otherwise

(3.3)

where Di =
∑
vj∈Ni Cij is the degree of the node vi defined on its immediate neighborhood Ni.

Without loss of generality, we assume Di > 0,∀vi. Then, Equation (3.2) can be rewritten in matrix

form as:

E =

(
UL
UX

)T
L

(
UL
UX

)

=

(
UL
UX

)T (
LLL LLX
LXL LXX

)(
UL
UX

)
(3.4)

where UL = (U(l1), . . . , U(lK))T and UX = (U(x1), . . . , U(xN ))T ; LLL is the upper leftK×K

submatrix of L that encodes the interactions within L; LXX is the lower right N × N submatrix

that encodes the interactions within X ; and LLX = LXL
T is the upper right K ×N submatrix that

1Here, we have borrowed the term compatibility function from the MRF/CRF model; however, one should note that the
compatibility functions in the MRF/CRF model contain the variables, but here they do not.

2In Section 3.4.2, when we introduce the multivariate Gaussian conditional random fields, we will reinterpret the meanings
of these parameters.
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encodes the interactions between L and X . Hence, the minimum energy solution can be obtained

by setting OE = 0 with respect to uX , i.e., solving the following equation:

LXXUX = −LXLUL. (3.5)

In some cases, part of X may be already labeled. These pre-labeled nodes can also be represented

naturally in the current framework without altering the structure of the graph. Suppose xi is one of

the pre-labeled nodes and is assigned label lk. Then, we can simply assign a sufficiently large value

to Yik and solve the same Equation (3.5) for the unlabeled scene nodes.

3.1.3 Probability Calculation

Let Pk(vi) , P (vi = lk|D) denote the probability that a node vi is assigned the kth label lk given

all the observed data D. The probability Pi,k , Pk(xi) can be considered as the probability that

a random walker starting at a scene node xi ∈ X first reaches the label node lk ∈ L on the graph

G. Let P t(lk|xi,D) denote the t-step transition probability determined based on observed data D

that a random walker starting from location xi reaches the label node lk by the t-th step. The goal

is to calculate the steady-state probability Pi,k = limt→∞ P t(lk|xi,D) for all xi ∈ X and all

lk ∈ L. Thus, Pi,k can be computed for each pair of (xi, lk) by solving K Dirichlet problems in K

iterations. Note that the probabilities here are used in the context of RW, which is different from the

log-probabilities used in MAP-MRF energy minimization [111].

γ1Yik/Di can be considered as the initial probability that the scene node xi is assigned label lk

given data Di associated with xi and data Dk associated with lk, i.e., the probability that a random

walker transits from xi to lk in a single move:

γ1Yik
Di

= P (xi = lk|Di,Dk) = P 1(lk|xi,Di,Dk). (3.6)

γ2Wij/Di can be considered as the probability that the scene nodes xi and xj are assigned the same

label given Di and Dj , i.e., the probability that a random walker transits from xi to xj in a single

move:
γ2Wij

Di
= P (xi = xj |Di,Dj) = P 1(xj |xi,Di,Dj). (3.7)

Yik’s and Wij’s are initialized at the beginning of the algorithm and remain the same in each itera-

tion.

Let Uk(vi) be the potential associated with node vi in the kth iteration, which we define to be

proportional to Pk(vi):

Uk(vi) = γ3Pk(vi), (3.8)

where γ3 is a positive constant. Since Pk : V → [0, 1], Uk : V → [0, γ3]. Uk(·) is a binary function

on L: Uk(l) = γ3, when l = lk; otherwise, Uk(l) = 0. For any xi ∈ X ,
∑K
k=1 Uk(xi) = γ3. Once

Yik’s and Wij’s are defined, the probabilities Pi,k’s can then be determined from Equations (3.5)

and (3.8). The whole algorithm is summarized in Algorithm 3.1.
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Algorithm 3.1 Basic steps of the generalized random walks framework.
1: Construct problem-dependent functions Y (·, ·) and W (·, ·)
2: Construct function C(·, ·) from Equation (3.1)
3: Construct L from Equation (3.3)
4: for k = 1 to K do
5: Calculate Uk(·) (Pk(·)) for all xi ∈ X by solving Equation (3.5)
6: end for
7: Find the appropriate configuration from Pk(xi)’s using problem-dependent criteria

The RW model [69] requires some variables to be instantiated, i.e., some scene nodes to be

pre-labeled. This requirement is relaxed in GRW. The RW model with label priors (RWLP) [68] is

proposed for image segmentation and derives a linear system similar to that of Equation (3.5) from

a Bayesian point of view. When setting γ2 = γ3 in GRW, we can get a linear system in the same

format as derived in [68]3. The label priors in [68], which correspond to our compatibility function

Y (·, ·), need to be defined following a probability expression. Although it is mentioned in [68] that

the solution of RWLP is equivalent to that of the original RW [69] on an augmented graph with the

label nodes as extra pre-labeled nodes, the requirement on the format of the label priors limits the

choice of Y (·, ·). This requirement is relaxed in GRW, where we formulate the problem from the

original RW point of view [48], where probabilities are considered to be transition probabilities of

a random walker moving between nodes. The edge weighting function in [68], which corresponds

to our compatibility function W (·, ·), serves as a regularization term. In GRW, Y (·, ·) and W (·, ·)

are not probability quantities; instead, they represent compatibility/similarity and are used to define

transition probabilities. In GRW, we have relaxed the extra requirements in [68, 69] and provided a

more flexible framework, where the compatibility functions (and potential function) may be defined

in any form according to the need of a particular problem. For example, for the multi-exposure

fusion problem, the form of the compatibility functions is presented in Section 3.3.5. The proposed

GRW can be applied to many different problems that can be formulated as estimating the probability

of a site (e.g., a pixel) being assigned a label given known information.

3.2 Application in Stereo Correspondence

3.2.1 Introduction

Stereo vision is the focus of very active research within the field of computer vision. One crucial

and traditional task in stereo vision is stereo correspondence/stereo matching, the goal of which is to

determine the disparities (differences of pixel locations) of corresponding pixels in a pair of stereo

images. The disparity of a pixel is inversely proportional to the depth of the 3D point that is projected

onto that pixel’s location. Therefore, with the disparities calculated for the image pair, the 3D scene

can be reconstructed digitally [100] or a virtual viewpoint can be generated [213]. Although several

3Some equations in [68] are inaccurate. Please refer to Appendix B or Grady’s personal webpage (http://cns.bu.edu/
∼lgrady/publications.html) for the corrected version.
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other techniques were proposed for recovering the depth information from a single lens utilizing

artifacts that are intentionally introduced by the capture devices, such as color shifting [13] and fo-

cus/defocus [78], one major limitation of these techniques is the requirement of large apertures. For

cameras with small apertures, e.g., a commodity webcam, disparity is more reliable for extracting

the depth information. Many algorithms have been proposed to solve this stereo correspondence

problem. According to the comprehensive survey by Scharstein and Szeliski [162], the existing

algorithms can be classified into two categories: local (window-based) algorithms that compute dis-

parities within a finite window, and global algorithms that find the best disparity configuration by

minimizing a global energy function. Compared with local methods, global methods normally pro-

duce more accurate results by formulating the problem in terms of finding the MAP configuration

of a labeling problem. The MAP estimation is performed in the negative log domain; therefore it

becomes a discrete energy minimization problem. Previously, researchers have solved this energy

minimization problem using graph cuts (GC) [27] or belief propagation (BP) [177]. Here, we formu-

late and solve the stereo correspondence problem in the GRW framework. Experiments show that

the proposed method produces more accurate results than many GC-based and BP-based MAP-MRF

methods.

3.2.2 Preliminaries

P

pl.x pr.x
z

f

B

f
pl pr

OrOl

Figure 3.2: The parallel camera configuration.

Given a pair of stereo images D = {Il, Ir}, where Il is the left image (also serving as the

reference image in the discussion here) and Ir is the right image, the goal of stereo correspondence

is to find the corresponding pixel in Ir for each pixel in Il. The difference between the coordinates

of the corresponding pixels is called disparity. It is assumed that the images are captured under

the parallel stereo configuration, as shown in Figure 3.2. Images captured under general stereo

configurations can be converted to such parallel pairs using rectification techniques [61, 77]. The

pinhole camera model is used. Ol and Or are the camera centers (i.e., optical centers) for the left

and right cameras, respectively. pl and pr are the images of the 3D point P in Il and Ir, respectively.

The focal lengths of the left and right cameras are assumed to be equal. The images are vertically

aligned and only horizontal disparities are considered. The disparity d between pl and pr is defined
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as the difference between their x-coordinates, i.e., d = pl.x − pr.x. Let B denote the length of the

baseline, f the focal length and z the depth of P (perpendicular distance from P to the baseline).

The disparity d and the depth z are related as follows using stereo triangulation:

z =
fB

d
. (3.9)

3.2.3 Problem Formulation

Suppose there are K different disparities from 0 to K − 1. We can then define the set of labels L

with lk = k − 1. Let us define a set of variables X , where a variable xi ∈ X is associated with a

pixel pi ∈ Il and takes a label from L. Let fi denote the label that xi takes. Then, we can formulate

the stereo correspondence problem as finding the most probable label for every xi ∈ X given D:

f∗i = arg max
fi∈L

P (xi = fi|D). (3.10)

Then, the configuration for X is f∗ = {f∗1 , . . . , f∗N}, where N = |X |.

3.2.4 Direct Application of GRW in Stereo Correspondence

GRW can be directly applied to the stereo correspondence problem with properly defined node

compatibility functions. If we take the left image as the reference image, then the data compatibility

function Y (·, ·) and the neighborhood compatibility function W (·, ·) can be defined as follows. Let

pi,l denote the i-th pixel in Il and assume pj,r.x + lk = pi,l.x, then we can define Yik based on a

similarity measure between the two pixels:

Yik = exp(−σmin(Sik, κ)), (3.11)

where Sik , S(pi,l, lk) is the similarity measure, and a lower Sik denotes a higher similarity; κ sets

an upper bound to the dissimilarity between corresponding areas and we take it as κ = 0.05; and

σ is a weighting factor, which we take as σ = 100. A straightforward definition of Sik is the root

mean square deviation (RMSD) between corresponding local windows:

Sik =

√∑
pi,l∈Ωi

‖pi,l − pj,r‖2

|Ωi|
, (3.12)

where pj,r.x = pi,l.x − lk and Ωi denotes an area around pi,l, which we take as a 3 × 3 win-

dow. Please note that more advanced similarity measures, such as segment-based measures [87]

and mutual information-based measures [80], could be employed to enhance the performance. Our

focus here is to demonstrate the effectiveness of GRW in stereo correspondence even with a basic

similarity measure. Assuming pi,l and pj,l are adjacent pixels, we can then define Wij as:

Wij = exp(−βmin(‖pi,l − pj,l‖, τ)), (3.13)

where we take τ = 0.05 and β = 200. Here, Yik’s and Wij’s are calculated in the YCbCr color

space4, which provides better color discrimination than the RGB color space in our calculation. The
4The Y value is in the range [16/255, 235/255], and the Cb and Cr values are in the range [16/255, 240/255].
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Algorithm 3.2 Basic steps of the proposed stereo correspondence algorithm.
1: Construct function Y (·, ·) from Equation (3.11)
2: Construct function W (·, ·) from Equation (3.13)
3: Apply Algorithm 3.1
4: Compute the disparity map from Equation (3.10)

probabilities Pi,k’s are then calculated using Equations (3.1) to (3.5). Here, we fix γ3/γ2 = 1 and

only use the ratio γ = γ1/γ2 to determine the relative weight between Y (·, ·) and W (·, ·). We take

γ = 1e−4. This basic stereo correspondence algorithm using GRW is summarized in Algorithm 3.2.

3.2.5 GRW-Based Stereo Correspondence with Disparity Refinement

Input stereo pair Initial disparity
maps

After left-right
checking

After textureless
region handling

Final disparity
map

Figure 3.3: Processing procedure of the proposed algorithm.

The stereo correspondence algorithm proposed in the previous section can be further enhanced

by adding refinement steps, as illustrated in Figure 3.3. More specifically, Algorithm 3.2 is first

applied to both the left and right images to generate a pair of initial disparity maps. These maps

then go through a left-right checking step and a textureless region handling step to determine a

set of reliable matching pixels in the reference image (left image). Unreliable matching pixels are

indicated in blue. With these reliable matching pixels as pre-labeled nodes, the disparities of the

unreliable matching pixels are calculated using Algorithm 3.2, which results in the final disparity

map.

3.2.5.1 Left-Right Checking

A left-right checking technique similar to the one used in [103] is applied to extract a set XM of

pixels whose reliable matching are found. The remaining pixels are categorized into the unreliable

set XU . Since the left image Il is used as the reference image, this reliable set is only determined on

Il. In order to perform this left-right checking, an initial disparity map for the right image Ir is also

required, and it is obtained following the same procedure as in Algorithm 3.2. For two matching

pixels (pl, fl) ∈ Il and (pr,−fr) ∈ Ir in the two images (i.e., pr.x = pl.x − fl and pr.y = pl.y),

the reliability of (pl, fl) is determined by:

(pl, fl) ∈
{
XM , fl 6 fr;
XU , otherwise. (3.14)
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Algorithm 3.3 Basic steps of the proposed stereo correspondence algorithm with disparity refine-
ment.

1: Apply Algorithm 3.2 to the left image
2: Apply Algorithm 3.2 to the right image
3: Apply left-right checking using Equation (3.15)
4: Apply textureless region handling as in Section 3.2.5.2
5: Apply Algorithm 3.2 to the left image with reliable matching pixels as pre-labeled nodes
6: Compute the disparity map from Equation (3.10)

3.2.5.2 Textureless Region Handling

Textureless regions tend to cause inaccurate disparity estimation. Due to the high degree of similarity

of a pixel to its neighboring pixels, a small disparity is very likely to be assigned while the true

disparity may be much larger. Pixels in these regions are considered to be unreliable matching

pixels. A textureless region is considered to be a region within XM , where each pixel (pi, fi) has a

local variation no larger than a threshold θ1 and is assigned a disparity no larger than θ2:

(pi, fi) ∈
{
XU , ( 1

|Ωi|
∑
pj∈Ωi

‖pj − p̄j‖ 6 θ1) ∧ (fi 6 θ2);
XM , otherwise

(3.15)

where Ωi denotes a region centered at pi and p̄j the average pixel in Ωj . A larger θ1 or θ2 will

result in more pixels being classified as unreliable ones. In our current implementation, we take Ωi

as a 1 × 3 horizontal window, θ1 = 0.05, and θ2 = 0.15lK . This enhanced stereo correspondence

algorithm is summarized in Algorithm 3.3.

3.2.6 Experimental Results

The proposed algorithms were evaluated using the standard benchmarks from Middlebury5. A set

of constant parameters was used for all images. The accuracy of the algorithm was compared with

several BP-based and GC-based algorithms in Table 3.1. Each decimal entry from the second column

to the last column represents the percentage of bad pixels (absolute disparity error larger than 1.0) for

different regions. The abbreviation nocc stands for non-occluded regions; all stands for the whole

region of the image; and disc stands for regions near disparity discontinuities, which include the

boundaries of occluded regions. The last column shows the average percentage of bad pixels over

all the previous twelve columns, and the algorithms compared in the table are sorted by the values in

this column. A border of 10 pixels for Venus and 18 pixels for Tsukuba is ignored when computing

statistics. The disparity maps are shown against the ground truths in Figure 3.4, together with the

reference images and bad pixel maps. Bad pixels in non-occluded regions are marked in black, while

those in occluded regions are marked in gray. The reference images (from top to bottom) are from

the Tsukuba, Venus, Teddy and Cones stereo image pairs, respectively.

5http://vision.middlebury.edu/stereo/.
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Table 3.3: Evaluation results of the proposed algorithms using other datasets from Middlebury.

Algorithm 3.2 Algorithm 3.3
Image Pair Size Time Bad Pixels RMSE Time Bad Pixels RMSE

(unit: pixel) (unit: sec) (unit: %) (unit: pixel) (unit: sec) (unit: %) (unit: pixel)
Bull 433× 381× 2 2.12 0.82 0.3411 4.09 0.78 0.3403

Sawtooth 434× 380× 2 2.15 1.58 0.3906 4.17 1.38 0.3793
Poster 435× 383× 2 2.16 3.10 0.4603 4.14 2.48 0.4320
Barn 1 432× 381× 2 2.21 0.74 0.3287 4.04 0.69 0.3263
Barn 2 430× 381× 2 2.24 1.75 0.4267 4.24 1.25 0.4040

(a) (b) (c) (d) (e) (f)

Figure 3.5: Dense disparity maps for other stereo datasets from Middlebury. (a) Reference images.
(b) Ground truths. (c) Our results (Algorithm 3.2). (d) Bad pixels (Algorithm 3.2). (e) Our results
(Algorithm 3.3). (f) Bad pixels (Algorithm 3.3).

The proposed algorithms are currently implemented in Matlab. The computational time ranges

from 1.35 (Tsukuba) to 3.96 seconds (Teddy) by Algorithm 3.2 and from 2.51 (Tsukuba) to 6.99

seconds (Cones) by Algorithm 3.3 on a 2.53-GHz dual-core laptop with 4-GB memory, as shown in

Table 3.26. The size of each dataset and the root mean squared error (RMSE) between each disparity

map and its corresponding ground truth are also given in Table 3.2.

More disparity maps are shown in Figure 3.5 using other datasets from Middlebury. Bad pixels

6Unless otherwise noted, all of the proposed algorithms in this thesis were implemented in Matlab and the processing
times were recorded on a 2.53-GHz dual-core laptop with 4-GB memory.
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for all regions are indicated in black. The disparity ranges of all the image pairs are between [0, 19].

The size, computational time, percentage of bad pixels and RMSE for all regions of each data set

are given in Table 3.3 with the same order as in Figure 3.5.

3.3 Application in Multi-Exposure Fusion

3.3.1 Introduction

A natural scene often has a high dynamic range (HDR) that exceeds the capture range of common

digital cameras. Therefore, a single digital photo is often insufficient to provide all the details in a

scene due to under- or over-exposed regions. On the other hand, given an HDR image, current dis-

plays are capable of handling only a very limited dynamic range. Researchers have explored various

directions to resolve the contradiction between the HDR nature of real-world scenes and the low

dynamic range (LDR) limitation of current image acquisition and display technologies. Although

cameras with spatially varying pixel exposures [133], cameras that automatically adjust exposure

for different parts of a scene [126, 185], and displays that directly display HDR images [163] have

been developed by previous researchers, their technologies are only at a prototyping stage and are

unavailable to ordinary users.

Instead of employing specialized image sensors, an HDR image can be reconstructed digitally

using HDR reconstruction (HDR-R) techniques from a set of images of the same scene taken by a

conventional LDR camera [46] or a panoramic camera [4] under different exposure settings. While

the rich data contained in these reconstructed HDR images facilitate many tasks (e.g., scientific

visualization) [157], special treatment is required to adapt the HDR images for viewing on consumer

displays, which have limited dynamic ranges. Therefore, tone mapping (TM) operators [157] have

been developed to compress the dynamic range of an HDR image.7 This two-phase workflow, HDR-

R+TM (HDR-R and TM), has several advantages: no specialized hardware is required; various

operations, such as virtual exposure, can be performed on the HDR images; and user interactions

are allowed in the TM phase to generate a tone-mapped image with desired appearance. However,

this workflow is usually not as efficient as image fusion (IF, e.g., [67, 129]) in presenting the captured

scene for viewing on LDR displays, because IF directly generates a composite LDR image from a

source sequence without involving HDR-R, and minimal user intervention is required, as shown in

Figure 3.6. While the objective of TM is to preserve information from a single image during tone

manipulation, IF aims to combine information from multiple images. Since it skips the HDR-R step,

IF does not need the calibration of the camera response function, which is required in HDR-R if the

camera response function is not linear. IF is a preferred method of quickly generating a well-exposed

image from an input set of multi-exposure images, especially when the number of input images is

small and speed is crucial.

7TM was initially proposed in graphics for synthetic HDR images generated using rendering methods such as ray trac-
ing [186].
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HDR
reconstruction

Tone mapping

Multi-exposure LDR images

Single HDR image

Multi-exposure fusion

Single LDR image

Figure 3.6: Comparison between multi-exposure fusion and the HDR reconstruction and tone map-
ping workflow. (The Garage image sequence courtesy of Shree Nayar.)

Since its introduction in the 1980s, IF has been employed in various applications, such as

multi-sensor fusion [96, 211] (combining information from multi-modality sensors), multi-focus

fusion [108, 210] (extending depth-of-field from multi-focus images), and multi-exposure fusion

(MEF) [21, 129] (merging details of the same scene revealed under different exposures). Although

some general fusion approaches [147, 144] have been proposed by previous researchers, they are

not optimized for individual applications and have only been applied to grayscale images. Here, we

focus exclusively on MEF, proposing a novel fusion algorithm that is both efficient and effective.

Unlike previous MEF methods [67, 129], our algorithm is based on a probabilistic model and global

optimization taking neighborhood information into account. GRW is employed to calculate an opti-

mal set of probabilities subject to two quality measures: local variation and color consistency. The

local variation measure preserves details; the color consistency measure, which is not considered

by previous methods, includes both consistency in a neighborhood and consistency with the natural

scene. The proposed fusion algorithm produces a final fused LDR image with fine details and an

optimal balance between the two quality measures.

3.3.2 Related Work
3.3.2.1 Multi-Exposure Fusion

Image fusion methods combine information in different images into a single composite image. The

history of IF research dates back to 1984 when Burt [31] proposed Laplacian pyramid-based fusion

for binocular monochrome images. In 1993, Burt and Kolczynski [33] applied this method to the

fusion of multi-exposure monochrome images. For color images, a number of MEF methods have

been proposed over the last decade, and some representative methods are reviewed in this section.

Please refer to [19, 173] for discussions on IF methods in different applications. For multi-exposure

images, IF methods directly work on the input LDR images and focus on enhancing dynamic range

while preserving details. Goshtasby [67] partitioned the input images into uniform blocks and tried

to maximize the information in each block based on an entropy measure. However, the approach

may generate artifacts on object boundaries if the block is not sufficiently small. Instead of divid-
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ing images into blocks, Cheng and Basu [39] combined images in a column-by-column fashion.

This algorithm maximizes the contrast within a column by selecting pixels from different images.

However, since no neighborhood information is considered, it cannot preserve color consistency,

and artifacts may occur on object boundaries. Cho and Hong [40] focused on substituting the well-

exposed regions in one image for the under- or over-exposed regions in another image, which are

determined by a saturation mask. Region boundaries are blended by minimizing an energy function

defined in the gradient domain. Although this algorithm works better on object boundaries, it is only

applicable to two images. Our algorithm works at the pixel level and applies a global optimization

taking neighborhood information into account, which allows it to avoid boundary artifacts.

Image fusion can also be interpreted as an analogy to alpha blending. Raman and Chaud-

huri [153] generated the fused image by solving an unconstrained optimization problem. The weight

function for each pixel was modeled based on local variance in such a way that the fused image

tends to have uniform illumination or contrast. Raman and Chaudhuri [154] generated mattes for

each pixel in an image using the difference between the original pixel value and the pixel value after

bilateral filtering. This measure strengthens weak edges, but may not be sufficient to enhance the

overall contrast. Our algorithm defines two quality measures and finds the optimal balance between

them, i.e., enhancing local contrast while imposing color consistency.

Multi-resolution analysis based fusion has demonstrated good performance in enhancing main

image features. Bogoni and Hansen [21] proposed a pyramid-based pattern-selective fusion tech-

nique. Laplacian and Gaussian pyramids are constructed for the luminance and chrominance com-

ponents, respectively. However, the color scheme of the fused image may be very close to that of

the average image because pixels with saturation closest to the average saturation are selected for

blending. Mertens et al. [129] constructed Laplacian pyramids for the input images and Gaussian

pyramids for the weight maps. A weight for a pixel is determined by three quality measures: local

variation, saturation, and well-exposedness. The Laplacian and Gaussian pyramids are blended at

each level, and are then collapsed to form the final image. However, with only local calculation

involved and no measure to preserve color consistency, the fusion results may be unnatural. Our

algorithm also uses local variation as one quality measure, but another quality measure that we con-

sider is color consistency, which is not employed by [129]. Moreover, our algorithm does not use

pyramid decomposition but solves a linear system defined at the pixel level.

3.3.2.2 HDR Reconstruction and Tone Mapping

For multi-exposure images, unlike MEF, TM does not directly take an LDR sequence as input,

but works on the reconstructed HDR image. Although related, TM and MEF are fundamentally

different and were initially proposed for different purposes. As a branch of IF, MEF focuses on

combining and enhancing information from multiple sources (i.e., multi-exposure images), while

TM aims to preserve information from a single source (i.e., an HDR image) during its dynamic
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range reduction process. Although the HDR-R+TM workflow is usually used in different scenarios

than IF methods, we still give a brief discussion of those HDR-R and TM methods, which share

some similar features with our MEF algorithm, because the original input and the final output of this

workflow is the same as those of MEF. Please refer to [34, 157] for more detailed discussion of TM.

Given an input LDR sequence and exposure times associated with each image in the sequence, HDR-

R techniques [46] first recover the camera response function, which is a mapping from the exposure

at each pixel location to the pixel’s digital LDR value, and then use the camera response function to

reconstruct an HDR image via a weighting function. Debevec and Malik [46] recovered the camera

response function by minimizing a quadratic objective function defined on exposures, pixels’ LDR

values, and exposure times. Then, a hat-shaped weighting function is used to reconstruct the HDR

image. Granados et al. [73] assumed that the camera response function is linear and focused on the

development of an optimal weighting function using a compound-Gaussian noise model. Our MEF

algorithm also solves a quadratic objective function, but the function is defined on local features and

the solution leads to probability maps.

Given an HDR image, tone mapping methods [34] aim to reduce its dynamic range while pre-

serving details. The history of TM research in computer graphics can be traced back to 1993,

when Tumblin and Rushmeier [186] introduced a brightness sensation model-based operator for

synthetic monochrome HDR images.8 Depending on whether the mapping scheme between HDR

and LDR is spatially invariant or not, TM methods can be classified into global or local opera-

tors [102]. Global TM methods [101, 49], which apply spatially invariant mapping of luminance

values, usually have high speed, while local TM methods [93, 156, 113, 167], which apply spatially

varying mapping, usually produce images with better quality, especially when strong local contrast

is present [156, 167].

Reinhard et al. [156] proposed a global operator using log average luminance and a local operator

that implements a printing technique called dodging-and-burning. Automatic parameter estimation

for these two operators was introduced in [155]. Li et al. [113] decomposed the luminance channel

of the input HDR image into multiscale subbands and applied local gain control to the subbands.

Shan et al. [167] defined a linear system for each overlapping window in the HDR image, and the

solution of each linear system are two coefficients that map luminance values from HDR to LDR.

Although our MEF algorithm also defines a linear system, we define the linear system on pixels

from all of the original LDR images, and the solution is a set of probabilities that determine the

contributions from each pixel of each original LDR image to its corresponding pixel in the fused

image. Krawczyk et al. [93] segmented an HDR image into frameworks with consistent luminance

and computed the belongingness of each pixel to each framework using the framework’s centroid,

which resulted in a set of probability maps. Our MEF algorithm also generates probability maps,

but directly from the original LDR sequence with no HDR or segmentation involved. One typical

8An earlier TM method, which handles a relatively limited dynamic range, was introduced in the lighting community in
1984 [157].
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Compute
compatibilities Optimize Fuse

Input images Initial probability maps Final probability maps Fused image

Figure 3.7: Processing procedure of the proposed fusion algorithm. (The Window image sequence
courtesy of Shree Nayar.)

problem with some local TM methods is that halo artifacts are introduced as a result of contrast

reversals near high contrast edges [34, 102]. Our MEF algorithm balances between contrast and

consistency in a neighborhood, which can prevent contrast reversals. Another problem with some

TM methods is that color artifacts such as oversaturation may be introduced into the results, because

operations are usually performed in the luminance channel without involving chrominance [34].

This problem does not apply to our MEF algorithm, because every color channel is treated equally.

3.3.3 Algorithm Overview

Unlike most previous MEF methods, we consider image fusion as a probabilistic composition pro-

cess, as illustrated in Figure 3.79. The initial probability that a pixel in the fused image belongs

to each input image is estimated based on local features. Taking neighborhood information into

account, the final probabilities are obtained by global optimization using the generalized random

walks. These probability maps serve as weights in the linear fusion process to produce the fused

image. In a probability map, the brighter a pixel is, the higher the probability. These processes are

explained in detail below.

3.3.4 Problem Formulation

The fusion of a set of multi-exposure images can be formulated as a probabilistic composition pro-

cess. Let D = {I1, . . . IK} denote the set of input images and L = {l1, . . . , lK} the set of labels,

where a label lk ∈ L is associated with the kth input image Ik ∈ D. Ik’s are assumed to be already

registered and to be the same size with N pixels each. Normally, K � N . Let us define a set X

of variables such that an xi ∈ X is associated with the ith pixel p̄i in the fused image Ī and takes a

value from L. Then, each pixel in the fused image Ī can be represented as:

p̄i =
K∑

k=1

Pi,kpi,k, (3.16)

9The initial probability maps are normalized at each pixel.
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where pi,k denotes the ith pixel in Ik and Pi,k , P (xi = lk|D) the probability of pixel p̄i being

assigned label lk given D with
∑
k Pi,k = 1. This probabilistic formulation converts the fusion

problem to the calculation of marginal probabilities given the input images subject to some quality

measures and helps to achieve an optimal balance between different quality measures. If every pixel

is given equal probability, i.e., Pi,k = 1
K ,∀i, k, Ī is simply the average of Ik’s. Although it is also

possible to combine only the pixels with the highest probabilities instead of using Equation (3.16),

artifacts may appear at locations with significant brightness changes between different input images.

If Pi,k’s are simply viewed and calculated as local weights, after which some relatively sim-

ple smoothing filters, such as Gaussian filter and bilateral filter, are applied, two results may occur.

Artifacts (such as halos) may appear at object boundaries, or it may be difficult to determine the

termination criteria of the filtering. Therefore, the results are usually unsatisfactory [129]. An alter-

native is to use multi-resolution fusion techniques [21, 129], where the weights are blended at each

level to produce more satisfactory results. However, the weights at each level are still determined lo-

cally, which may not be optimal in a large neighborhood. In contrast to multi-resolution techniques,

we propose an efficient single-resolution fusion technique that involves formulating Pi,k’s in Equa-

tion (3.16) as probabilities in GRW. A set of optimal Pi,k’s that balances the influence of different

quality measures is computed based on global optimization in GRW. Experiments (Section 5.2.6)

show that the results of the proposed probabilistic fusion technique are comparable to the results of

multi-resolution techniques and the results of the HDR-R+TM workflow.

3.3.5 Compatibility Functions

The compatibility functions Y (·, ·) and W (·, ·) are defined to represent the two quality measures,

i.e., local variation and color consistency, respectively. Since image contrast is usually related to

variations in image luminance [34], in order to preserve local contrasts, the probability calculation

should be biased towards pixels from the images that provide more local variations in luminance. Let

Gi,k denote the second-order partial derivative computed in the luminance channel at the ith pixel in

image Ik. The higher the magnitude of Gi,k (denoted by ‖Gi,k‖) is, the more variations occur near

the pixel pi,k, which may indicate more local contrast. In [129], a Laplacian filter is used to calculate

the variations. Here both a Laplacian filter and a central difference in a 3 × 3 neighborhood were

tested. With all other settings the same, central difference produces slightly better visual quality in

the fused images. Therefore, central difference is used to approximate the second-order derivative.

However, if the frequency (i.e., number of occurrences) of a value ‖Gi,k‖ in Ik is very low, the

associated pixels may constitute noise, or may belong to unimportant features. Therefore, unlike

previous methods [129, 153], our variation measure is normalized by the frequencies of each ‖Gi,k‖.

In addition, Gi,k’s are modified using a sigmoid-shaped function to suppress the difference in high

contrast regions. Hence, taking into account both the magnitude and the frequency of Gi,k, the
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Algorithm 3.4 Basic steps of the proposed fusion algorithm.
1: Construct function Y (·, ·) from Equation (3.17)
2: Construct function W (·, ·) from Equation (3.18)
3: Apply Algorithm 3.1
4: Compute the fused image from Equation (3.16)

compatibility between a pixel and a label is computed as:

Yik = θik[erf(
‖Gi,k‖
σy

)]K , (3.17)

where θik represents the frequency of the value ‖Gi,k‖ in Ik; erf(·) is the Guass error function,

which is monotonically increasing and sigmoid shaped; the exponent K is equal to the number of

input images and controls the shape of erf(·) by placing less emphasis on the difference in high

contrast regions as the number of input images increases; and σy is a weighting coefficient, which

we take as the standard deviation of all Gi,k’s.

The other quality measure used in our algorithm is color consistency, which is not considered in

previous methods [67, 129]. Although Bogoni and Hansen [21] also suggested a color consistency

criterion by assuming that the hue component for all the input images is constant, this assumption

is not true if the images are not taken with close exposure times. In addition, they did not consider

consistency in a neighborhood. Our color consistency measure imposes not only color consistency

in a neighborhood but also consistency with the natural scene. If two adjacent pixels in most images

have similar colors, then it is very likely that they have similar colors in the fused image. Also, if the

colors at the same pixel location in different images under appropriate exposures (not under- or over-

exposed) are similar, they indicate the true color of the scene, and the fused color should not deviate

from these colors. Therefore, the following equation is used to evaluate the similarity/compatibility

between adjacent pixels in the input image set using all three channels in the RGB color space:

Wij =
∏

k

exp(−‖pi,k − pj,k‖
σw

) ≈ exp(−
‖pi − pj‖

σw
), (3.18)

where pi,k and pj,k are adjacent pixels in image Ik; exp(·) is the exponential function; ‖ · ‖ denotes

Euclidean distance; pi = 1
K

∑
k pi,k denotes the average pixel; and σw and σw = σw/K are free

parameters. Although the two quality measures are defined locally, a global optimization in GRW is

carried out to produce a fused image that maximizes contrast and details, as well as imposing color

consistency. Once Y (·, ·) andW (·, ·) are defined using Equations (3.17) and (3.18), the probabilities

Pi,k’s are calculated using Equations (3.1) to (3.5). Here, we fix γ3/γ1 = 1 and only use the ratio

γ = γ2/γ1 to determine the relative weight between Y (·, ·) and W (·, ·). The basic steps of our

algorithm are summarized in Algorithm 3.1.

3.3.6 Acceleration

To accelerate the computation as well as reduce memory usage, the final probability maps are com-

puted at a lower resolution of the Laplacian matrix and then interpolated back to the original resolu-
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(a)

(b) (c) (d) (e)

Figure 3.8: Comparison of our method with EF, EntropyF, and VC using the Chairs image sequence.
The result of EF is comparable to ours. The result of EntropyF suffers some over-exposure. The
result of VC shows serious halo artifacts on object boundaries. (a) Source sequence (top) and final
probability maps (bottom). (b) Proposed. (c) EF. (d) EntropyF. (e) VC. (Source sequence courtesy
of Shree Nayar.)

tion before being used in Equation (3.16). The local variation Gi,k of each pixel is calculated at the

original resolution. Then, the images are divided into uniform blocks of size η × η. The average of

Gi,k’s in a block is used to calculate the compatibility Yik between that block and the label lk. The

compatibility between two adjacent blocks is computed asWij of the average pixel in one block and

the average pixel in the other block.

3.3.7 Experimental Results and Discussion
3.3.7.1 Comparison with Other Methods

Only three free parameters are used in our algorithm, and we take σw = 0.1, γ = 1.0, η = 4 in

all experiments unless otherwise stated. Figure 4.15 shows the comparison of our MEF algorithm

with three other MEF methods on the Chairs image sequence. The input image sequence and final

probability maps are given in Figure 4.15(a). Brighter pixels in a probability map stand for higher

probabilities. The result of entropy fusion (EntropyF) [67] was taken from its project webpage10.

The result of variational composition (VC) [153] was taken from its paper. The results of exposure

fusion (EF) [129] in all experiments were generated by the Matlab implementation provided by its

authors. Its default parameter setting was used in all experiments. The result of EF is comparable

to ours. The result of EntropyF suffers some over-exposure. The result of VC shows serious halo

artifacts on object boundaries.

Figures 3.9 and 3.10 give comparison of our MEF algorithm with EF and three TM methods

on two image sequences. In all experiments, the intermediate HDR images for photographic tone
10http://www.cs.wright.edu/∼agoshtas/hdr.html.
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(a)

(b) (c) (d) (e) (f)

Figure 3.9: Comparison of our algorithm with EF, PTR, SC and LW using the Belgium House
image sequence. The intermediate HDR image for PTR, SC and LW is generated by HDRShop.
The results of EF and PTR suffer over-exposure in the window regions. The results of SC and LW
show some color distortion (looking pink). (a) Source image sequence (top) and final probability
maps (bottom). (b) Proposed. (c) EF. (d) PTR. (e) SC. (f) LW. (Source sequence courtesy of Dani
Lischinski.)

(a)

(b) (c) (d) (e) (f)

Figure 3.10: Comparison of our algorithm with EF, PTR, SC and LW using the House image se-
quence. The intermediate HDR image for PTR, SC and LW is generated by HDRShop. EF intro-
duces color artifacts that assign different colors to the two chairs of the same type. The result of
PTR is slightly dark for the indoor scene. The result of SC looks somewhat pink and dark through
the entire image. The result of LW shows some color distortion. Our result reveals more detail than
EF, especially in the door lock region. (a) Source image sequence (left four) and final probability
maps (right four). (b) Proposed. (c) EF. (d) PTR. (e) SC. (f) LW. (Source sequence courtesy of Tom
Mertens.)

reproduction (PTR) [156], subband compression (SC) [113] and linear windowed (LW) [167] were

generated from the corresponding LDR sequences using HDRShop11, which employed the HDR-R

algorithm in [46]. The results of PTR were generated by an HDRShop plugin12. The results of SC

and LW were generated by the Matlab implementations provided by their respective authors. There

are no constant sets of parameters in their original papers, because TM methods usually depend on

11http://www.hdrshop.com/.
12http://www.gregdowning.com/HDRI/tonemap/Reinhard/.
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user-controlled parameters to generate desired tone-mapped images. However, in order to give a

relatively fair image quality comparison with our and other MEF methods where constant sets of

parameters were used throughout the experiments, we used the default parameter settings in their

programs in all experiments.

Figure 3.9 shows the experimental results on the Belgium House sequence. The last row gives a

closeup view of the window regions. Although the result of SC preserves as much detail as ours, it

looks a little pink due to color distortion. The results of EF and PTR suffer over-exposure in all the

window regions. The result of LW shows some color artifacts, e.g., color reversal of the blackboard.

Color artifacts in the results of TM methods are usually caused by operations carried out solely in

the luminance channel without involving chrominance [34]. Our method treats each color channel

equally and imposes color consistency, which helps to avoid color artifacts. Note that adjusting the

parameters in SC and LW may reduce color distortion and generate more pleasing images, which

is considered as a common user interaction in TM methods. However, we use constant sets of

parameters for both TM and MEF methods in our experiments in order to give a relatively fair

comparison of these two types of methods.

Figure 3.10 shows the results on the House sequence. The last row gives a closeup view of

the door lock region. The result of PTR is slightly dark for the indoor scene. The result of SC

reveals many details of the outdoor scene but looks somewhat pink and dark through the entire

image. The result of LW also reveals many details but shows some color distortion of the outdoor

scene. Although both our method and EF use local variations to indicate local contrasts, we use

a nonlinear function to modify the contrast indicators. This nonlinear mapping aims to reflect the

nonlinear human perception of contrast [197]. In addition, the well-exposedness measure in EF is

biased towards pixels with a specific luminance. Therefore, our result reveals more detail than EF,

especially in the door lock region. The two chairs in the original sequence have the same color, but

for EF the color difference between them is quite obvious. Our method keeps the colors consistent

while EF fails, because our method imposes consistency in large neighborhoods and consistency

with the natural scene via the color consistency measure.

3.3.7.2 Computational Complexity

In the initialization step, the input image sequence is converted to gray scale for calculating Yik’s,

and an average image is also computed for calculatingWij’s. The complexity of this step isO(NK),

where N is the number of pixels in an input image and K is the number of images in the input

sequence. Since the number of operations is proportional to the total number of input pixels, the

complexity for computing the compatibilities is also O(NK). We employ CHOLMOD [38], which

is based on supernodal Cholesky factorization, to solve the linear system in Equation (3.5). The

complexity of this direct solver is proportional to the number of the nonzero entries in LX , and in

our case it is O(Nη2 ). Since there are a total of K linear systems to be solved, the complexity of this
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Table 3.4: Computational times of the proposed algorithm and EF on the test image sequences.
Times are recorded in seconds.

Input sequence Size Proposed EF
Window 226× 341× 5 0.17 0.68
Chairs 343× 231× 5 0.17 0.68
Garage 348× 222× 6 0.20 0.80
Igloo 236× 341× 6 0.20 0.85
House 752× 500× 4 0.72 2.64

Memorial Church 512× 768× 16 2.18 9.82
Belgium House 1025× 769× 9 2.74 11.68
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Figure 3.11: Analysis of acceleration with different block width η. Error is defined as the relative
difference from the results generated with η = 1. Significant efficiency improvement is only ob-
served when η 6 5 and significant error increase only occurs when η 6 5. (a) Effectiveness of
acceleration. (b) Error introduced.

step is O(NKη2 ). With only linear operations involved, the complexity of the fusion step is O(NK).

Therefore, the total complexity of our algorithm is O(NK).

The computational times for seven image sequences are reported in Table 3.4, along with the

comparison with EF [129]. Both our and EF’s Matlab implementations were executed on the same

computer. Times for reading the input sequences and writing the output images were excluded. Our

algorithm took only 25% of the total time of EF on the average.

3.3.7.3 Analysis of Free Parameters

The effectiveness of acceleration is illustrated in Figure 3.11(a). All of the image sequences in

Table 3.4 were used in this and the following analyses. For illustration, we plotted three represen-

tative image sequences at different scales (i.e., Igloo, Memorial Church, and Belgium House) in the

graph. We fixed σw = 0.1, γ = 1.0 in this analysis. The horizontal axis represents the block width

η and the vertical axis represents the computational time in seconds. Time used in initialization

is excluded because the acceleration does not affect this step. Computational time decreases as η

increases. However, significant efficiency improvement is only observed when η 6 5.
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(a) (b) (c) (d) (e) (f)

Figure 3.12: Errors introduced by acceleration on the Belgium House image sequence. The result
generated with η = 1 is used as the reference image. The error increases when η increases, as shown
in the color-coded error maps (warmer colors indicate larger errors). However, the total error is still
below 9% even when η = 10. (a) η = 1. (b) η = 2. (c) η = 4. (d) η = 5. (e) η = 6. (f) η = 10.

Errors introduced by acceleration are shown against block width η in Figure 3.11(b). The error

in a pixel p∗i is calculated using Euclidean distance between a pixel in a resulting image with η > 1

and the corresponding pixel in the reference image with η = 1, i.e.,E(p∗i ) = ‖p∗i −p
ref
i ‖. The pixel

values are normalized between [0, 1]. The total error in a resulting image is measured using the root

mean square error (RMSE), i.e., E(I∗) =
√

1
N

∑
iE(p∗i )

2. The error increases as the block size η

increases. However, a significant error increase only occurs when η 6 5. Even when η = 10, the

total error is still below 9%. Some results on the Belgium House image sequence with different η’s

and their corresponding color-coded error maps are shown in Figure 3.12. In an error map, warmer

colors indicate larger errors. The error increases as η increases. In order to balance the speed and

error, we tested different values and found that using a block width η ∈ [2, 5] generates reasonably

good results.
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Figure 3.13: Sensitivity analysis of the free parameter σw. The error increases dramatically as σw
becomes too small. It increases slowly when σw > 0.4 and converges after σw = 1.0. (a) RMSE at
different σw values. (b) Changes of RMSE relative to σw.

In the analysis of σw, we fixed γ = 1.0, η = 4. The error is defined similarly as in the analysis

of η, and the results with σw = 0.1 are used as reference images. The analysis on three represen-

tative image sequences is plotted in Figure 3.13. Some results on the Igloo sequence with different
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(a) (b) (c) (d) (e)

Figure 3.14: Sensitivity analysis of the free parameter σw on the Igloo image sequence. The result
generated with σw = 0.1 is used as the reference image. When σw decreases, the image gets
brighter, and therefore more information is revealed in the under-exposed regions. However, if σw
becomes too small, adjacent pixels with large difference may be ignored, which produces artifacts
at object boundaries. (a) σw = 0.1. (b) σw = 0.01. (c) σw = 0.05. (d) σw = 0.5. (e) σw = 2.0.
(Source sequence courtesy of Shree Nayar.)

σw’s and their corresponding color-coded error maps are shown in Figure 3.14. The error increases

dramatically as σw becomes too small. It increases slowly when σw > 0.4 and converges after

σw = 1.0. When σw decreases, the image gets brighter, and more information is therefore revealed

in the under-exposed regions. However, if σw becomes too small, adjacent pixels with large dif-

ference may be ignored, which leads to artifacts at object boundaries. Therefore, we suggest using

σw ∈ [0.05, 0.4].

0 10 20 30 40 50
0

2

4

6

8

10

12

14



R
M

S
E

 (%
)

 

 

Igloo
Memorial Church
Belgium House

(a)

0 5 10 15 20 25 30 35 40 45 50
−4

−3

−2

−1

0

1

2

γ

3√
∂
R
M

S
E

∂
γ

 

 

Igloo
Memorial Church
Belgium House

(b)

Figure 3.15: Sensitivity analysis of the free parameter γ. The error increases dramatically as γ
becomes too small, but increases slowly when γ > 5.0. (a) RMSE at different γ values. (b) Changes
of RMSE relative to γ.

In the analysis of γ, we fix σw = 0.1, η = 4. The error is defined similarly as in the analysis of η

and the results with γ = 1.0 are used as reference images. The analysis on three representative image

sequences is plotted in Figure 3.15. Some results on the Memorial Church sequence with different
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(a) (b) (c) (d) (e)

Figure 3.16: Sensitivity analysis of the free parameter γ on the Memorial Church image sequence.
The result generated with γ = 1.0 is used as the reference image. When γ decreases, more detail
is revealed in the over-exposed regions. However, if γ is too small, artifacts may occur at object
boundaries. (a) γ = 1.0. (b) γ = 0.01. (c) γ = 0.2. (d) γ = 5.0. (e) γ = 10.0. (Source sequence
courtesy of Paul Debevec.)

(a) (b)

(c) (d) (e)

Figure 3.17: Analysis of our algorithm’s sensitivity to Gaussian white noise and comparison with
other algorithms using the House image sequence. A closeup view of regions near the window
is placed beside each image to give a clearer view of the effect of noise. As the Gaussian noise
variance increases, errors introduced by the noise become more obvious. Our algorithm, EF, and
PTR are all affected by the noise in the input image. (a) Original image (left) and its corresponding
color-coded probability map (right) calculated using the proposed method (warmer colors represent
higher probabilities). (b) Gaussian noise-corrupted image with 0 mean and 0.01 variance (left)
and its corresponding color-coded probability map (right) calculated using the proposed method. (c)
Fused image generated by the proposed method. (d) Fused image generated by EF. (e) Tone-mapped
image generated by PTR.

γ’s and their corresponding color-coded error maps are shown in Figure 3.16. The error increases

dramatically as γ becomes too small, but increases slowly when γ > 5.0. When γ decreases, more

detail is revealed in the over-exposed regions. However, if γ is too small, as in the analysis of σw,

artifacts may occur at object boundaries. Therefore, we suggest using γ ∈ [0.2, 5]. More objective

and subjective evaluations can be found in Section 4.2.8.
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(a) (b) (c)

Figure 3.18: Fusion result using our algorithm after adding a denoising step. The probability map
calculated for this denoised image and the fused image are close to the ones computed from the
clean input images. However, the object boundaries are a little blurred during the denoising process,
which also affects the fusion result. (a) Denoised image. (b) Color-coded probability map. (c) Fused
image.

3.3.7.4 Effect of Noise

One limitation of our algorithm is that it is sensitive to noise in the input image sequence. One

example is given in Figure 3.17. White Gaussian noise with 0 mean and variance from 0.001 to

0.01 with increments of 0.001 is added to one of the four input images (pixel values are scaled to

the range [0, 1]). For the sake of brevity, only the corrupted image with variance 0.01 is shown in

Figure 3.17, along with the original image. In our algorithm, the initial probabilities are determined

by local variation, which is sensitive to white Gaussian noise. Since a global optimization scheme

is used afterwards, the error caused by the noise tends to propagate to a larger neighborhood. The

color-coded probability maps are given in Figure 3.17(a)(b), where warmer colors represent higher

probabilities. Compared to the probability map generated for the original image, higher probabilities

are assigned to pixels in the corrupted image, especially in textureless regions such as the walls. Even

if we use the correctly computed probability maps, pixels from the noisy images still contribute

to the fused image when Equation (3.16) is used. Therefore, the noisy images have a significant

influence on the fused images, as shown in Figure 3.17(c). A closeup view of regions near the

window is placed beside each image to give a clearer view of the effect of noise. As the Gaussian

noise variance increases, errors introduced by the noise become more obvious. However, the results

by EF are also affected by the noise, as shown in Figure 3.17(d). In addition, the noise in an input

image also affects the HDR reconstruction process, which results in a noisy HDR image. The tone

mapping process fails to correct the noise in this HDR image and the noise remains in the tone-

mapped image. PTR [156], SC [113], and LW [167] generate similarly affected results. Therefore,

only the result of PTR is given in Figure 3.17(e).

One solution to this problem is to add a pre-processing step to reduce the noise in the input

images. One example is given in Figure 3.18. The input sequence is the House image sequence,

where one image is corrupted with white Gaussian noise with 0 mean and 0.01 variance, as shown

in Figure 3.17(b). Figure 3.18(a) gives the denoised image using the method proposed by Por-

tilla et al. [150]. The noisy image is first decomposed into subbands using the steerable pyramid

transform [170], and then Bayesian least square estimation and Gaussian scale mixture model are
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employed to denoise each subband. The probability map calculated for this denoised image and the

fused image are given in Figure 3.18(b) and Figure 3.18(c), respectively. They are close to the ones

computed from the clean input images (see Figure 3.17(a) and Figure 3.10(b)). However, the object

boundaries are a little blurred during the denoising process, which also affects the fusion result.

3.4 Multivariate Gaussian Conditional Random Fields

In this section, we introduce the (pairwise) multivariate Gaussian conditional random field (MGCRF)

model based on the multivariate GMRF [160] and analyze its relationship with GRW. MGCRF is

a more general model for multi-label problems than GRW, although more sophisticated (i.e., multi-

dimensional) distance metrics may be required and higher computational cost is expected.

3.4.1 Multivariate Gaussian Markov Random Fields

A multivariate GMRF (MGMRF) is a multivariate extension of a GMRF. Let X̃ = {x1,x2, . . . ,xN}

denote a set of variables, where xi = (xi,1, xi,2, . . . , xi,K)T is a random vector. Let x̃ be the vector

form of X̃ , i.e., x̃ = (x1
T ,x2

T , . . . ,xN
T )T . Then, according to [160], X̃ is called an MGMRF

with respect to a graph G = (X̃ , E) with mean µ̃ and precision matrix Q̃, if and only if its density

has the form:13

p(x̃) = (2π)−rk(Q̃)/2|Q̃|1/2 exp(−1

2
(x̃− µ̃)T Q̃(x̃− µ̃))

∝ exp[−1

2
(
N∑

i=1

(xi − µ̃i)T Q̃ii(xi − µ̃i) +
1

2

∑

eij∈E
(xi − µ̃i)T Q̃ij(xj − µ̃j))].

(3.19)

and

Q̃ij 6= 0⇔ eij ∈ E ,∀i 6= j, (3.20)

where rk(·) denotes the rank of a matrix, and each Q̃ij is a K ×K submatrix of Q̃. When K = 1,

an MGMRF degenerates to a GMRF.

3.4.2 Multivariate Gaussian Conditional Random Fields and GRW

Like an MGMRF, (X̃ ,D) is considered as an MGCRF with respect to a graph G = (X̃ , E), if the

conditional density p(x̃|D) satisfies Equations (3.19) and (3.20). Now, let us consider a graph of the

form in Figure 3.1. In addition to the variable set X̃ , there is a boundary set B̃ = {b1,b2, . . . ,bK},

where bk = (bk,1, bk,2, . . . , bk,K)T is a known vector. The boundary set B̃ defines theK-dimensional

(K-D) bounding box for the potentials. Let b̃ be the vector form of B̃, i.e., b̃ = (b1
T ,b2

T , . . . ,bK
T )T .

The graph G = (V, E) is constructed as V = X̃ ∪ B̃ and E = EX̃ ∪ EB̃, where EX̃ is the set of edges

within the variable set and EB̃ is the set of edges between the variable and the boundary sets. Let us

13In [160], it also requires Q̃ to be positive definite, but here we do not impose this requirement to distinguish between an
MGMRF and an intrinsic MGMRF, whose Q̃ is positive semi-definite.
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denote the maximum and minimum allowable potentials in the k-th dimension asUmax,k andUmin,k,

respectively. Then, bk = (Umin,1, . . . , Umax,k, . . . , Umin,K)T . We assume that the K-D potential

field X̃ is piecewise smooth and the local difference follows a multivariate Gaussian distribution

with zero mean and precision matrix S̃ij :

∆X̃ij , xi − xj ∼ N(0, S̃−1
ij ),∀eij ∈ EX̃ . (3.21)

We also assume the difference between a variable xi and a boundary potential bk follows a multi-

variate Gaussian distribution with zero mean and precision matrix T̃ik:

∆B̃ik , xi − bk ∼ N(0, T̃−1
ik ),∀ei,k ∈ EB̃. (3.22)

Given the above assumptions, the conditional density p(x̃|B̃,D) follows a multivariate Gaussian

distribution14:

p(x̃|B̃,D) ∝ exp(−1

2
(
K∑

k=1

N∑

i=1

∆B̃ik
T
T̃ik∆B̃ik +

1

2

∑

eij∈EX̃

∆X̃ij
T
S̃ij∆

X̃
ij))

∝ exp(−1

2
x̃T Z̃x̃− x̃T R̃b̃), (3.23)

where Z̃ is an NK ×NK matrix with each K ×K element defined as:

Z̃ij =





∑K
k=1 T̃ik +

∑
xm∈Ni S̃im, i = j;

−S̃ij , eij ∈ EX̃ ;
0, otherwise.

(3.24)

and R̃ is an NK ×KK matrix with each K ×K element defined as:

R̃ik = −T̃ik. (3.25)

Then, the MAP configuration f̃∗ is:

f̃∗ = arg max
f̃

exp(−1

2
f̃T Z̃f̃ − f̃T R̃b̃)

= arg min
f̃

1

2
f̃T Z̃f̃ + f̃T R̃b̃. (3.26)

This quadratic energy minimization problem is equivalent to solving the following linear system:

Z̃f̃∗ = −R̃b̃. (3.27)

Now, if we assume that S̃ij and T̃ik are diagonal matrices, which indicates that each dimension

is independent, then estimating the K-D potential field X̃ can be done in each dimension separately.

The (m,n)-th entry in S̃ij is defined as:

S̃ij,mn =

{
Wij,m, m = n;
0, otherwise. (3.28)

14Please refer to Appendix C for the detailed derivation of the following equation.
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The (m,n)-th entry in T̃ik is defined as:

T̃ik,mn =

{
Yik,m, m = n;
0, otherwise. (3.29)

In this case, Equation (3.27) can be rewritten as:

Zkxk = −Rkbk,∀k, (3.30)

where Zk is an N × N matrix; Rk is an N × K matrix; and xk = (x1,k, . . . , xN,k)T and bk =

(b1,k, . . . , bk,k, . . . , bK,k)T = (Umin,k, . . . , Umax,k, . . . , Umin,k)T are column vectors. The (i, j)-th

entry in Zk equals the (Ki−K + k,Kj −K + k)-th entry in Z̃, i.e.,

Zkij =





∑K
m=1 Yim,k +

∑
xm∈NiWim,k, i = j;

−Wij,k, eij ∈ EX̃ ;
0, otherwise.

(3.31)

The (i, j)-th entry in Rk equals the (Ki−K + k,Kj −K + k)-th entry in R̃, i.e.,

Rk
ij = −Yij,k. (3.32)

Now, let us consider a more restrictive case, where T̃ik and S̃ij are identity matrices subject to

individual scaling factors, γ1Yik and γ2Wij , i.e.,

T̃ik = γ1YikI, S̃ij = γ2WijI, (3.33)

where I represents a K×K identity matrix; γ1 and γ2 are data-independent scaling factors; and Yik

and Wij are data-dependent scaling factors. Then, Equation (3.30) becomes:

ZX = −RB. (3.34)

Here, Z is an N ×N symmetric positive definite matrix defined as:

Zij =





γ1

∑K
k=1 Yik + γ2

∑
xm∈NiWim, i = j;

−γ2Wij , eij ∈ EX̃ ;
0, otherwise.

(3.35)

R is an N ×K matrix defined as:

Rik = −Yik. (3.36)

X = (x1, . . . ,xN )T is an N ×K matrix, and B = (b1, . . . ,bK)T is a K ×K symmetric matrix:

Bij =





Umax,i, i = j;
Umin,j , i < j;
Umin,i, i > j.

(3.37)

When Umax,k = γ3,∀k and Umin,k = 0, ∀k, it is easy to see that an MGCRF under the constraint

in Equation (3.33) is equivalent to the GRW model (Section 3.1) in terms of steady-state probability

calculation.
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3.5 Summary

In this chapter, we proposed a generalized random walks framework, which converts a labeling prob-

lem into steady-state probability calculation in the random walks context. Two applications of GRW

were introduced: stereo correspondence and multi-exposure fusion. With basic similarity measure

and disparity refinement scheme, GRW is able to produce reasonable results on standard stereo

test images. Experiments also demonstrated the effectiveness of GRW in stereo correspondence

compared with other global stereo correspondence methods (i.e., BP-based and GC-based). A new

formulation of multi-exposure fusion in the random walks context as a probabilistic composition

process was also proposed. Two quality measures were considered: local variation and color consis-

tency. Unlike previous fusion methods, our algorithm achieves an optimal balance between the two

measures via GRW. Experimental results demonstrated that our probabilistic fusion produces good

results, in which contrast is enhanced and details are preserved with high computational efficiency.

Compared to other fusion methods and tone mapping methods, our algorithm produces images with

comparable or even better qualities. In addition, we introduced the multivariate Gaussian conditional

random field model and analyzed its relationship with GRW.
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Chapter 4

The Hierarchical Random Walks
Framework and Its Application

4.1 Hierarchical Random Walks

In GRW, the probability maps are calculated by directly solving the linear systems. However, a

direct solver is computationally expensive, which restricts GRW from being applied to images in

high resolution or data of higher dimensions. Therefore, in this section, we propose a hierarchical

random walks (HRW) model, which provides a good approximation to the solution obtained from

a direct solver in GRW but with improved efficiency and memory usage. Hierarchical methods

work on a pyramidal representation of the data and aim to solve the problem in a coarse-to-fine

fashion, which normally has lower temporal and spatial complexity. Because of their computational

efficiency, hierarchical methods have gained popularity in many applications [55, 70]. Although

hierarchical RW has been examined in other studies such as [45], their focus was on the behavior of

a random walker traveling in high dimensions, e.g., moving between several two-dimensional (2D)

planes. The HRW introduced here differs in that the hierarchy is used to facilitate the calculation

of the probabilities at the finest level and that a random walker does not transit between levels. The

basic idea of HRW is to use the solution obtained on a coarser-level graph to guide the probability

calculation on a finer-level graph.

The basic procedure of HRW is illustrated in Figure 4.1. For the sake of brevity, only a 1D

2-level case is depicted. Let Xn denote the variable set at level n, where n ∈ [0, Nh − 1], X 0 = X ,

and Xn = [Xn−1]↓2. A weighted undirected graph is built for each level from finest to coarsest

to represent the relationship within and between the variable set Xn (scene nodes) and the label set

L (label nodes). In Figure 4.1, yellow and orange nodes denote scene nodes at level 0 and level

1, respectively; and red nodes denote label nodes. xni ∈ Xn denotes the i-th scene node at level

n. Y nik denotes the data compatibility that measures the similarity between xni at level n and lk.

Wn
ij denotes the neighborhood compatibility between adjacent scene nodes xni and xnj at level n. A

random walker starting from any scene node transits freely within the graph until it reaches a label
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Figure 4.1: The basic procedure of HRW in a 1D 2-level case.

node, which concludes its walk. Let P t(lk|xni ,D) denote the t-step transition probability determined

based on observed data D that a random walker starting from location xni reaches the label node lk

by the t-th step. The goal is to calculate the steady-state probability P 0
i,k , limt→∞ P t(lk|x0

i ,D)

for all x0
i ∈ X 0 at level 0 and all lk ∈ L.

The data and neighborhood compatibilities, which are problem dependent, are defined at the

finest level. Then, they are progressively restricted to a coarser/higher level until the coarsest/highest

level is reached, where the linear systems are constructed following GRW1. These linear systems

have only a fraction of the amount of unknown variables at the finest level; therefore, the solution

can be computed exactly and efficiently using a direct solver. Finally, the solution from a coarser

level is prolongated/interpolated to a finer/lower level and then relaxed at the finer level until the

finest/lowest level is reached. Because a coarser-level solution serves as a good initialization for a

finer level, it requires less time to converge. These operations for the 2D case are described below.

4.1.1 Restriction

The restriction operators are defined in a way that preserves boundaries between nearby scene nodes

in order to avoid over-smoothed solutions. The restriction operator for data compatibilities is defined

similarly to the restriction operator for variables in [72]. Suppose xni at level n is the projection of

a higher-level node xn+1
s , and Nn

i is the first-order neighborhood of xni . Then, Y n+1
sk is determined

as a weighted average of the data compatibilities of Nn
i and xni , where the weights are defined

on the neighborhood compatibilities Wn
ij’s between xni and ∀xnj ∈ Nn

i . This operator in the 2D

case is illustrated in Figure 4.2. Four-connectivity is assumed. For any level n ∈ [0, Nh − 2],

we group the nodes according to their x- and y-coordinates. Let XnO , XnE , and XnB denote the

sets containing nodes with only odd coordinates (yellow nodes), only even coordinates (orange

1Here, we borrow the terms restriction and prolongation from multigrid.
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Figure 4.2: Restriction operator for data compatibilities.

nodes), and one odd and one even coordinate (red nodes), respectively. First, Y nik’s of all scene

nodes in XnB are updated with contributions from their respective neighboring scene nodes that are

in XnO . Then, Y nik’s of all scene nodes in XnE are updated with contributions from their respective

neighboring scene nodes, all of which are in XnB . Following our hierarchy construction scheme, we

have Xn+1 = [Xn]↓2 = XnE . Let xni denote the projection of xn+1
s at level n, andNn

i the first-order

neighborhood of xni . Mathematically, the restriction operator for data compatibilities can be defined

as in Equations (4.1) and (4.2), where the data compatibility of a scene node at a higher level is

determined as a weighted average of the data compatibilities of its corresponding nodes at a lower

level.

Y nik = Y nik +

∑
xnj ∈Nni ∩XnO

Wn
ijY

n
jk∑

xnj ∈Nni ∩XnO
Wn
ij

, ∀xni ∈ XnB (4.1)

Y n+1
sk = Y nik +

∑
xnj ∈Nni

Wn
ijY

n
jk∑

xnj ∈Nni
Wn
ij

, ∀xni ∈ XnE (4.2)

Let xn+1
s and xn+1

t denote two adjacent scene nodes at level n + 1, and xni and xnj their pro-

jections at level n. Then, the restriction operator for neighborhood compatibilities is defined as in

Equation (4.3), where Wn+1
st is calculated as the minimum of the neighborhood compatibilities at a

lower level that are defined in the common neighborhood Nn
i ∩Nn

j of xni and xnj .

Wn+1
st = min{Wn

ih,W
n
jh|xnh ∈ Nn

i ∩Nn
j }. (4.3)

4.1.2 Coarsest-Level Solution

The coarsest-level solution can be computed the same way as in GRW (Section 3.1) by minimizing

a quadratic energy function, which is equivalent to solving the following equation for PNh−1
k for

each label lk:

LNh−1
X PNh−1

k = YNh−1
k , (4.4)

where PNh−1
k = (PNh−1

1,k , . . . , PNh−1
Q,k )T and YNh−1

k = (Y Nh−1
1k , . . . , Y Nh−1

Qk )T . Here, ·T denotes

the transpose operator and Q is the number of coefficients at level n = Nh − 1. LNh−1
X is a Q×Q

matrix with the (i, j)-th entry defined as:

Lnij =





γ
∑
xnh∈N

n
i
Wn
ih +

∑
k Y

n
ik, i = j;

−γWn
ij , xnj ∈ Nn

i ;
0, otherwise.

(4.5)
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where γ is a weighting coefficient balancing the contributions from label nodes and neighboring

scene nodes. A larger γ places more emphasis on neighborhood consistency/smoothness. In GRW,

there are three weighting coefficients: γ1, γ2, γ3. Here, we take γ = γ2/γ1, and γ3 is not needed

because it appears on both sides of Equation (4.4)2.

4.1.3 Prolongation

The prolongation operator is defined as the inverse operation of restriction except that it is applied

to the probability maps instead of the data compatibilities. First, the coarser-level probability maps

Pn+1
k ’s are injected onto XnE at the finer level as in Equation (4.6). xni denotes the projection of

xn+1
s at level n. Then, as in Equation (4.7), Pni,k’s for every scene node in XnB are determined based

on contributions from their respective neighboring scene nodes that are in XnE . Finally, Pni,k’s for

every scene node in XnO are determined based on contributions from their respective neighboring

scene nodes, all of which are in XnB , as given in Equation (4.8).

Pni,k = Pn+1
s,k , ∀xni ∈ XnE (4.6)

Pni,k =

∑
xnj ∈Nni ∩XnE

Wn
ijP

n
j,k∑

xnj ∈Nni ∩XnE
Wn
ij

, ∀xni ∈ XnB (4.7)

Pni,k =

∑
xnj ∈Nni

Wn
ijP

n
j,k∑

xnj ∈Nni
Wn
ij

, ∀xni ∈ XnO (4.8)

4.1.4 Relaxation

We use the red-black Gauss-Seidel relaxation [29] to update the prolongated probability maps for

better approximations. Xn at level n forms a bipartite graph, in which every edge connects two

nodes from two different sets. One set is XnB , and the other is XnE ∪ XnO . In this relaxation step,

Equation (4.9) is alternately applied to the nodes in the two sets for a pre-defined number of itera-

tions. In our implementation, we set the number of iterations as n+ 1 for level n.

Pni,k =
1

Dn
i

(Y nik + γ
∑

xnj ∈Nni

Wn
ijP

n
j,k), (4.9)

where Dn
i = γ

∑
xnh∈N

n
i
Wn
ih +

∑
k Y

n
ik is the degree of node xni .

The basic procedure of HRW is summarized in Algorithm 4.1. The normalization in the last step

is applied because the quick approximation by HRW may cause
∑
k P

0
i,k 6= 1. P 0

i,k’s are normalized

for every pixel location as P 0
i,k = P 0

i,k/(
∑
k P

0
i,k).

Compared with GRW, HRW requires less time and memory to generate the probability maps but

with good accuracy. In Table 4.1, their performances are compared on the multi-exposure fusion

problem using four representative source sequences of increasing sizes. The time and memory

usage recorded in this table is only for the final probability calculation step, where GRW or HRW is

2The parameter γ can also be associated with Y n
ik in the equation, which assumes γ = γ1/γ2. However, this makes no

fundamental difference to our current setting.
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Algorithm 4.1 Basic steps of the hierarchical random walks framework.
1: Define problem-specific data and neighborhood compatibilities at original resolution (level 0)
2: for n = 1 to Nh − 1 do
3: Restrict data compatibilities from level n− 1 to n using Equations (4.1) and (4.2)
4: Restrict neighborhood compatibilities from level n− 1 to n using Equation (4.3)
5: end for
6: Obtain solution at level Nh − 1 using GRW (Algorithm 3.1)
7: for n = Nh − 2 to 0 do
8: Prolongate the probability maps from level n+ 1 to n using Equations (4.6) to (4.8)
9: Relax for n+ 1 iterations using Equation (4.9)

10: end for
11: Normalize the probability maps at level 0

Table 4.1: Comparison between HRW and GRW

Source sequence Size Time (sec) Memory (MB) RMSE (%)HRW GRW HRW GRW
House 752× 500× 4 1.176 2.998 43 245 1.297

Chateau 1500× 644× 5 3.995 8.418 152 955 1.108
Belgium House 1025× 769× 9 5.362 7.449 148 773 0.800

Lamp 1600× 1200× 15 23.08 130.7 757 2386 0.904

applied, and all other settings remain the same. Both HRW and GRW were applied to the original

resolution of the images. Five levels were used in HRW, i.e.,Nh = 5. On average, HRW takes about

44.081% of the time and 21.085% of the memory needed by GRW. The root mean squared error

(RMSE) between the probability maps generated by HRW and those by GRW for each sequence is

only around 1%, which indicates good approximations. The results on the Belgium House sequence

are given in Figure 4.3 for visual comparison. Figure 4.3(a) shows two of the nine source images.

The color-coded probability maps corresponding to the source image on the left are given on the

left in each row with the fused images on the right. HRW produces probability maps close to

those generated by GRW. Although there are subtle differences in the probability maps, there is no

noticeable difference between the fusion results.

A multigrid algorithm was proposed in [72] also for solving the linear system that arises in the

RW context. Later, a maximally connected neighbor coarsening operator was proposed in [70] for

more stable performance. The key idea behind multigrid is to recursively restrict the residual of the

current solution and the coefficient matrix to a coarser level and then use the correction obtained

at the coarser level to update the current solution. In contrast, the proposed HRW only restricts

the compatibilities to a coarser level and then prolongates the coarser-level solution to a finer level.

This is a more efficient scheme; and as shown in Table 4.1 and Figure 4.3, HRW provides a good

approximation to the exact solution obtained by a direct solver. In addition, while a general multigrid

algorithm [29] is capable of solving different types of linear systems, HRW is more flexible in terms

of solving a labeling problem. With different types of energy functions defined at the coarsest level,

our hierarchical scheme may be applied to other formulations of labeling problems as well, e.g.,
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(a)

(b)

(c)

Figure 4.3: Comparison of GRW and HRW on the Belgium House sequence. The color-coded final
probability maps corresponding to the source image on the left are given on the left in each row with
the fused images on the right. HRW produces probability maps close to those generated by GRW,
and there is no noticeable difference between the fusion results generated by these two algorithms.
(a) Low-exposure (left) and high-exposure (right) source images. (b) Probability map (left) and
fusion result (right) generated by GRW. (c) Probability map (left) and fusion result (right) generated
by HRW. (Source sequence courtesy of Dani Lischinski.)

MRF modeling.

A multiscale decomposition (MSD) based solver was proposed in [115] for solving a similar

linear system for image tone adjustment. The major differences between our HRW and this solver

are: 1) no MSD is performed on the input images in our method, but instead a coarser Laplacian

matrix is obtained by our restriction operator; 2) at each level other than the coarsest level in our

hierarchy, the initial solution is obtained by our prolongation operator that respects node boundaries,

which gives better initial approximation than upsampling in [115]; 3) at each level, relaxation is

applied to refine the prolongated solution, which requires much less computation than the residual

minimization performed in [115].
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4.2 Application of HRW in Perception-Guided Image Fusion

4.2.1 Introduction

Human perceptual factors have attracted a growing amount of attention within the research on visual

communication techniques [135, 114]. The rationale behind this trend is to appeal the human ob-

server with high visual quality images, videos, graphics and animations. Therefore, it is important

for researchers to take the human visual system [158] into consideration when designing image pro-

cessing algorithms and evaluation metrics. For example, a unified color space providing maximum

perceptual uniformity was developed for perception-based image processing [116]; visual stimulat-

ing factors for capturing human attention were employed for lossy compression of motion capture

data [57]; human color perception and orientation sensitivity were utilized for color and texture

feature extraction to achieve perceptually uniform image segmentation [37]; a quantitative metric

based on geometry and texture resolutions was developed to approximate the perceptual quality of

rendered images of three-dimensional (3D) objects [137]. Contrast and color are generally recog-

nized to be important parameters [30, 176] in image quality. Motivated by these research findings,

we study the visual impact of perceived local contrast and color saturation on fused images.

Multi-exposure fusion (MEF) is necessary because a conventional digital camera often produces

images with insufficient details of a natural scene due to the incompatibility of the camera’s lim-

ited/low dynamic range (LDR) and the high dynamic range (HDR) of the scene. As shown in

Figure 4.4(a), none of the source images, which are captured under different exposures, is able to

present all the details in the scene. The insets illustrate the loss of local details caused by under-

or over-exposure, although the individual images combined contain complementary high quality

details of the scene, as in Figure 4.4(b). This composition of local details can be achieved using

MEF techniques (e.g., [130]), which select different elements from separate source images to gener-

ate one single image based on certain quality computation. Differing from an alternative approach,

which needs to adapt reconstructed HDR images for viewing on consumer displays by applying tone

mapping (TM) methods to compress the high dynamic range [157], the MEF approach bypasses the

HDR generation process.

Although some interactive fusion tools (e.g., [3]) have been proposed, their focus is on interactive

image editing tasks such as selective composition and relighting, and no specialized algorithm for

MEF is incorporated. In this section, we propose a novel MEF method based on perceptual quality

measures that exploit both contrast and color information. A transducer function and a psychometric

function are applied to model the nonlinear human perception of local contrast. Such a perceptual

modeling scheme allows us to effectively identify properly exposed pixels and thus generate fusion

results of high visual quality. The contributions from the pixels of different source images to the

fused image are then efficiently evaluated based on these quality measures using HRW. A fusion

weighting function, which can be interactively controlled by the user, is introduced to generate
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(a) (b)

Figure 4.4: Details from multi-exposure images in the Lamp image sequence are combined into a
single image. Because of the high dynamic range of the scene, any single captured image suffers
either over-exposure or under-exposure in some regions (e.g., in the insets) and fails to present all of
the details. Using our image fusion technique, details from different regions in each source image are
transferred into one well-exposed image. (a) Four of the fifteen source images taken under different
exposures. (b) Fused image. (Source sequence courtesy of Martin Čadı́k.)

different appearances of the fused image based on these evaluated pixel contributions.

4.2.2 Related Work
4.2.2.1 GRW-Based Multi-Exposure Fusion

A probabilistic fusion method was proposed in Section 3.3, in which the fusion problem was formu-

lated as a labeling problem. A local variation measure, which was used to indicate local contrast,

and a color consistency measure were considered. Here, we introduce two perceptual quality mea-

sures (i.e., perceived local contrast and color saturation) instead of the local variation measure to

give a more accurate evaluation of the pixel contributions, which results in higher-quality fused im-

ages. The perceived contrast measure was not considered in previous MEF methods. In addition,

we propose a more flexible fusion model, where the fusion weights are defined as a function of the

probabilities of the pixels in the fused image coming from each source image, and a practical form

of this fusion weighting function is introduced.

4.2.2.2 Perception-Based Tone Mapping

Human perception has been exploited in some TM methods. Ferradans et al. [56] proposed a two-

stage TM method. In the first stage, a global operator that models perceived brightness is applied.

In the second stage, a local operator is applied to enhance local contrast and approximate color

constancy. Kuang et al. [94] proposed iCAM06, an image appearance model, for HDR image ren-

dering, which models perceived brightness and applies chromatic adaptation. Mantiuk et al. [127]

proposed a global operator that minimizes the distortion of perceived contrast, which is modeled by

a transducer function, between the original HDR image and the tone-mapped image under a specific

viewing condition. We also model human perception, but we do not model perceived brightness;

instead we consider perceived local contrasts and the probability of detecting such contrasts. We do

not use the perceived contrasts to minimize visual distortions, but to maximize the reproduction of
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Figure 4.5: Processing procedure of the proposed fusion algorithm.

local contrasts and details. Moreover, we apply a color saturation measure to reproduce the colors

of properly exposed objects. In addition, we impose color consistency over a neighborhood, rather

than imposing color constancy over an entire color channel, which may reduce the colorfulness of

the original scene.

4.2.3 Algorithm Overview

Figure 4.5 illustrates the basic steps in our fusion algorithm. Given a source image sequence, the ini-

tial probability that each pixel location in the fused image is assigned a label is determined from two

locally-defined quality measures, i.e., perceived local contrast (Section 4.2.4) and color saturation

(Section 4.2.5). Contrasts are calculated for each pixel in the luminance channel. To be in accor-

dance with the nonlinear human perception of contrast [62], these contrasts are then modified using

a transducer function followed by a psychometric function. Saturations are calculated for each pixel
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in the LHS (luminance, hue, and saturation) color space [176]. Contrasts and saturations are com-

bined to determine the initial probabilities without considering neighborhood information. Then,

the hierarchical random walks framework (Sections 4.1 and 4.2.7) is applied to efficiently calculate

the final probabilities based on these two quality measures while taking neighborhood consistency

into account. These probabilities are then used in a weighting function to generate the weight maps.

Finally, the fused image is produced by combining the source images based on the weight maps.

4.2.4 Perceived Local Contrast

Local contrast represents the perception of local luminance variations with respect to the surrounding

luminance [198]. Different measures of local contrast exist in the literature [198]. Simple definitions

like Weber contrast and Michelson contrast normally assume small targets on a large uniform back-

ground [141, 198]. In order to deal with complex images of natural scenes in multi-exposure fusion,

we modified the local band-limited contrast proposed by Peli [141], which defines local contrast as a

function of the spatial frequency band. Although there are other sophisticated definitions of contrast,

e.g., isotropic local contrast [198], they require a large computational cost. Peli’s contrast gives a

good balance between quality and complexity.

For a color image, we convert it to the LHS color space and perform a contrast calculation on the

luminance components.3 Luminance values are normalized between [0, 1] in our calculations. Peli’s

contrast Ci,k at the i-th pixel location in Ik is defined in the image’s luminance channel Lk as:

Ci,k =
[ψ ∗ Lk]i
[φ ∗ Lk]i

, (4.10)

where the operator ∗ denotes convolution; the subscript [·]i denotes the i-th pixel/coefficient; ψ is a

band-pass filter and φ is the corresponding low-pass filter.

Although Peli’s original definition works well for complex images by taking into account the

dependence of human contrast sensitivity on spatial frequency [141], it is biased towards pixels

with low-luminance neighborhoods. If we directly use Equation (4.10) to represent contrasts in

multi-exposure images, under-exposed regions, which are normally noisy, may produce stronger

responses than well-exposed regions. This will make under-exposed regions contribute more to the

fused image and reduce the overall brightness. As evaluated in [34], brightness has a strong impact

on the overall image quality. Therefore, if the local background luminance at a pixel is below a

threshold θ, we weight its contrast by the background luminance to suppress noise in the under-

exposed regions. When combined with the Gaussian pyramid representation of a luminance image,

we can construct a contrast pyramid. Let C̃ni,k denote the weighted contrast at the i-th pixel location

at level n of the Gaussian pyramid of Lk, where n ∈ [0, Nc − 1]. Then, C̃ni,k can be calculated as:

C̃ni,k =

{
Gni,k − [φ ∗Gn

k ]i, [φ ∗Gn
k ]i < θ;

(Gni,k − [φ ∗Gn
k ]i)/[φ ∗Gn

k ]i, otherwise. (4.11)

3Different luminance conversion methods (e.g., taking the L∗ component in the CIELAB space) slightly affect the fusion
results.
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(a)

(b)

(c)

(d)

Figure 4.6: Comparison of our weighted and Peli’s contrasts for multi-exposure fusion on the
Chateau sequence. In a color-coded contrast magnitude image, warmer color indicates higher mag-
nitude. Our weighted contrast places more emphasis on the high-exposure image, where more in-
door details are revealed. In contrast, Peli’s contrast produces noisy responses in the under-exposed
regions of the low-exposure image, which reduces the brightness of the fused image. (a) High-
exposure (left) and low-exposure (right) source images. (b) Magnitude of our weighted contrast.
(c) Magnitude of Peli’s contrast. (d) Results using our weighted (left) and Peli’s (right) contrasts.
(Source sequence courtesy of HDRsoft.com.)

where Gn
k denotes the n-th level of the Gaussian pyramid representation of Lk and Gni,k the i-

th coefficient in Gn
k . G0

k = Lk and Gn+1
k = [φ ∗ Gn

k ]↓2, where [·]↓2 denotes downsampling

by a factor of 2 in each dimension. In our implementation, we take φ as a 5 × 5 Gaussian filter

with variance 1. Figure 4.6 gives a comparison between our weighted and Peli’s contrasts. In this

comparison, the same transducer and psychometric functions are applied to the contrasts; and the

color saturation measure is not used. Two of the five source images are shown in Figure 4.6(a). Their

corresponding color-coded contrast magnitude images generated by the two contrast measures are

given in Figures 4.6(b)(c), where warmer color indicates higher magnitude. Our weighted contrast

places more emphasis on the high-exposure image, where more indoor details are revealed. In

contrast, Peli’s contrast produces noisy responses in the under-exposed regions of the low-exposure

image, which reduces the brightness of the fused image, as shown in Figure 4.6(d).

In order to impose inter-level consistency, we pass information from a lower level to a higher
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level by taking the maximum coefficient among corresponding coefficients in adjacent pyramid lev-

els as the contrast magnitude Ĉni,k at the higher level:

Ĉni,k = max{|C̃ni,k|, |[C̃n−1
k ]↓2i |}, (4.12)

where | · | denotes the absolute value operator or magnitude. The polarity of contrasts has little

effect on object detection in the human visual system, as long as the magnitudes are the same [193].

Therefore, we only consider contrast magnitude in our method. A contrast pyramid representation

for image fusion was also proposed by Toet [184], which is known as the ratio of low-pass (RoLP)

pyramid. However, no special treatment is applied in the RoLP pyramid to suppress noise in under-

exposed/low-luminance regions; and no information is passed between levels to ensure inter-level

consistency.

4.2.4.1 Transducer and Psychometric Functions

The nonlinearity of the human perception of contrast has been studied by many researchers [58, 62,

151, 197]. According to [58], contrast perception can be considered as a two-stage procedure. In

the first stage, referred to as the mechanism response stage, the stimulus contrast is mapped to the

internal/physiological response of the sensory system via a transducer function µ. In the second

stage, referred to as the decision stage, the probability of correctly discriminating a stimulus with a

certain contrast from the standard stimulus with a fixed contrast Cs is expressed by a psychometric

function Ψ. When Cs = 0, the discrimination task degenerates to the detection task. A formal rela-

tionship between the psychometric function Ψ and the transducer function µ was developed in [62],

where Ψ is determined by µ and the distribution of internal responses. It is assumed in [62] that the

stimulus contrast is between [0, 1]; thus, without loss of generality, Ĉni,k’s from Equation (4.12) are

normalized between [0, 1] before being used in µ.

Because information is passed from a lower level to a higher/coarser level in a contrast pyramid

as introduced in Section 4.2.4, the highest level (level Nc − 1) captures all of the important features

present in the lower levels. Hence, the transducer function and the psychometric function are only

applied to level Nc − 1 of the contrast pyramids. This also reduces the computational cost. We

adopted the transducer function proposed by Foley and Schwarz [58]:

µ(ĈNc−1
i,k ) =

(ĈNc−1
i,k SE)p

(ĈNc−1
i,k SI)q + Z

, (4.13)

where SE = 100 is a constant; SI , p, q, Z are four free parameters, which we set to the mean values

reported from the experiments in [58], i.e., SI = 75.70, p = 4.03, q = 3.59, Z = 24.87. Two other

forms of µ were also tested. A three-parameter transducer function defined on log contrast was

proposed in [62], but it does not produce satisfactory results for multi-exposure fusion, where over-

and under-exposures appear in the fusion results. Wilson’s [197] transducer function for threshold

and suprathreshold vision produces fusion results with a quality very close to those generated using

Equation (4.13).
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Because our goal is to preserve and enhance local contrasts/details in the fusion process, stimuli

at different locations in an image are equally important, and it is very likely that making one or

several stimuli highly discriminative from others (i.e., performing contrast discrimination) will cause

loss of details in some regions. Therefore, we adopted the psychometric function proposed in [62]

for contrast detection instead of contrast discrimination:

Ψ(ĈNc−1
i,k ) = 1/(1 + exp(−µ(ĈNc−1

i,k )/b)), (4.14)

where b is a scale parameter, which we take as b =
√

6/π as used in [62]; and Ψ(ĈNc−1
i,k ) ∈ [0.5, 1].

When used in HRW, Ψ(ĈNc−1
i,k ) is normalized to [0, 1].

4.2.5 Color Saturation

Since the perceived local contrast measure only works in the luminance channel, using it alone

may not produce satisfactory results for color images in some cases where high local contrasts are

achieved at the cost of low colorfulness/saturation. Objects captured at proper exposures normally

exhibit more saturated colors. For instance, as shown in Figure 4.4, the red book in one source

image presents more saturated red than in the others. Therefore, we employ color saturation as

another quality measure.

We incorporated the formula in the LHS color space [176] to measure the saturation S of a given

pixel:

S = 1− 3 · min(R,G,B)

R+G+B
, (4.15)

where S ∈ [0, 1] and R,G,B denote the red, green, and blue components in the RGB color space,

respectively. Other saturation measures also exist in the literature. Levkowitz and Herman [105]

showed that the LHS space, as well as other related models like HSV, is one special case of the gen-

eralized LHS model. Lübbe [121] measures saturation as the relationship of chroma to the complete

color sensation in the CIELAB space. Mertens et al. [129] measure saturation as the standard devia-

tion between the R, G, and B components. All of these definitions produce similar results under our

fusion scheme. However, Lübbe’s measure requires about 4 times more computation than the others

due to its relatively more complex color space conversion.

As in the case of creating the contrast pyramid introduced in Section 4.2.4, we can construct a

saturation pyramid for each source image by first building a Gaussian pyramid and then calculating

the saturation components at every level using Equation (4.15). To be consistent with the contrast

pyramid, this saturation pyramid also has Nc levels. We observe that saturation calculation per-

formed only at the highest pyramid level without information passing between levels is sufficient

to produce satisfactory fusion results with no noticeable difference. This is because: 1) Gaussian

smoothing has little influence on the objects/regions’ color information when the filter’s size and

variance parameters are small (we use the same Gaussian filter parameters as for local contrast, i.e.,

size 5 × 5 and variance 1); 2) Gaussian smoothing mainly affects object/region boundaries, where
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(a) GRW without the two proposed perceptual measures

(b) With perceived local contrast

(c) With both perceptual measures

Figure 4.7: Incorporation of the proposed quality measures in MEF models using the GRW model
as an example. With the perceived contrast measure, more local details are preserved, as shown in
the insets. With the saturation measure, the fused image exhibits more vivid colors, e.g., for the
trees and grass. (House sequence in top row courtesy of Tom Mertens, Mask sequence in bottom
row courtesy of HDRsoft.com.)

relatively large color and luminance changes occur after filtering, and these changes are captured by

the perceived local contrast measure.

4.2.6 Perceptual Impact of the Proposed Quality Measures

In order to illustrate the quality contribution of the proposed local contrast and color saturation

measures, we incorporate these two measures into the GRW model. The results from two test

sequences are provided in Figure 4.7. Instead of employing local variations in a non-linear function

to indicate contrasts, we believe modeling the probability of the human visual system to perceive

a given contrast will generate better perceptual quality, because this new modeling scheme offers

a more accurate estimation of the amount of visual stimuli delivered in each image region, which

leads to better detail preservation, as shown in the insets in Figure 4.7(b). With the color saturation

measure, Figure 4.7(c) (e.g., for the trees and grass of the House scene and for the sky of the Mask
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scene) shows that the fused image can exhibit more vivid colors.

4.2.7 Using Quality Measures in HRW for Fusion

The contrast pyramid (with transducer and psychometric functions applied) and the saturation pyra-

mid are combined at each level to form a single pyramid H representing the quality measures. As

discussed in Sections 4.2.4 and 4.2.5, the information at the highest level (level Nc− 1) is sufficient

to generate satisfactory fusion results. Hence, in our implementation, only the highest levels in the

two pyramids are actually combined, which also reduces computational cost. The coefficients at

level Nc − 1 ofH are taken as the data compatibilities at the finest level in HRW, i.e.,

Y Nc−1
ik = Ψ(ĈNc−1

i,k ) · SNc−1
i,k . (4.16)

The initial probability that a scene node xni takes a label lk is determined as Pi,k = Y nik/(
∑
k Y

n
ik).

These probabilities are then updated in HRW exploiting neighborhood information.

As in Section 3.3, we also employ the neighborhood consistency measure to impose consistency

both in a neighborhood and with the natural scene. The similarity between adjacent scene nodes at

level 0 ofH is evaluated based on pixel values in the source images:

W 0
ij =

K∏

k=1

W 0
ij,k =

K∏

k=1

exp(−‖pi,k − pj,k‖
σ

), (4.17)

where exp(·) is the exponential function; ‖ · ‖ denotes Euclidean distance; and σ is a free parameter.

For color images, the RGB color space is used for computing neighborhood similarity scores. These

scores are then restricted to level Nc − 1 using Equation (4.3) to be used as neighborhood compati-

bilities at the finest level in HRW. After the probability maps are obtained using HRW (Section 4.1)

for level Nc−1 ofH, they are interpolated to the original resolution (level 0) using the prolongation

operator in HRW. Because of this quick approximation, P 0
i,k’s may not sum up to 1 for a given xi.

Hence, P 0
i,k’s are normalized for every pixel location, i.e., P 0

i,k = P 0
i,k/(

∑
k P

0
i,k),∀i.

4.2.7.1 Fusion Weighting Function

In order to utilize the probabilities to guide the image composition process, we define a weighting

function Φ(·), which increases monotonically on the probabilities. The derived weights are then

used to combine the source images as follows:

p̄i =
K∑

k=1

Φ(P 0
i,k)pi,k, (4.18)

where p̄i and pi,k denotes the i-th pixel in the fused image Ī and the k-th source image Ik, respec-

tively.

One straightforward fusion weighting function is to directly take the probabilities as weights,

i.e.,

Φ(P 0
i,k) = P 0

i,k. (4.19)
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(a) (b) (c)

Figure 4.8: Effects of different parameter settings of the fusion weighting function. (a) α1 = 1, α2 =
0. (b) α1 = 1.3, α2 = 0.01. (c) α1 = 1.5, α2 = 0.

Algorithm 4.2 Basic steps of the perception-guided multi-exposure fusion algorithm.
1: Construct the contrast and saturation pyramids following the procedures in Sections 4.2.4

and 4.2.5
2: Combine the contrast and saturation measures at level Nc − 1 to form the data compatibilities

in HRW using Equation (4.16)
3: Compute the neighborhood similarity scores at level 0 using Equation (4.17)
4: for n = 1 to Nc − 1 do
5: Restrict the neighborhood similarity scores from level n− 1 to n using Equation (4.3)
6: end for
7: Take the neighborhood similarity scores at level Nc − 1 as the neighborhood compatibilities in

HRW
8: Obtain the probability maps for level Nc − 1 using Algorithm 4.1
9: for n = Nc − 2 to 0 do

10: Prolongate the probability maps from level n+ 1 to n using Equations (4.6) to (4.8)
11: end for
12: Generate weight maps using Equation (4.19) or (4.20)
13: Generate the fused image using Equation (4.18)

This weighting function ensures that all fused pixel values are within the valid range of [0, 1]. It

also preserves local details well. However, the fused image may not have enhanced global con-

trast/dynamic range. To achieve this, we take Φ(·) as a linear function of P 0
i,k:

Φ(P 0
i,k) = α1P

0
i,k − α2, (4.20)

where α1 and α2 are two free parameters. When α1 = 1, α2 = 0, Equation (4.20) becomes equiv-

alent to Equation (4.19). α1 is used to stretch or compress the weights, which results in higher

or lower global contrast in the fused image. Because this weighting function does not guarantee a

valid range of pixels, when the fused pixel values fall outside [0, 1], they are truncated. α2, together

with the truncation operator, is used to select the range of the weights, which results in a darker or

brighter fused image. We take truncation instead of normalization in our implementation because it

generally provides higher global contrast. The values of these two parameters can be pre-defined,

evaluated based on the source images, or interactively controlled by the user to adjust the appearance

of the fused image. An example is given in Figure 4.8. The whole fusion algorithm is summarized

in Table 4.2.
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4.2.8 Experimental Results

Seven free parameters, i.e., θ,Nc, Nh, σ, γ, α1, α2, are used in our algorithm. We take the lumi-

nance threshold for computing the weighted contrast in Equation (4.11) as θ = 0.3. The other

six parameters are computed as follows based on image information. The number of levels for the

quality measure pyramids (i.e., Nc) and the number of levels for the hierarchy in HRW (i.e., Nh)

are both determined based on the size of the source images, which are assumed to have the same

size. Let the image size be M ×N . Then, we compute Nc = min(2, dlog2(min(M,N)/κ)e + 1)

and Nh = dlog2(min(M,N)/κ)e − Nc + 2. Here, d·e is the ceiling function; and κ is maximum

number of nodes allowed along the shorter dimension of the coarsest-level graph, which we take as

κ = 32. For a source sequence D with K images, the parameter σ in Equation (4.17) is taken as

σ = 0.1K. The purpose here is to place less emphasis on the differences between adjacent scene

nodes, which helps to include contributions from larger neighborhoods, when the number of source

images is large. γ in Equation (4.5) is computed as γ = 0.2K
√
MN/κ. This is to impose con-

sistency over larger neighborhoods, when the number and/or size of source images is large. When

Equation (4.20) is used as the fusion weighting function, we compute α1 = 0.6 + exp(−L̄) and

α2 = 0.02 exp(−L̄), where L̄ ∈ [0, 1] is the average luminance of D. If L̄ is low, it may indicate

that the amount of under-exposed regions in D is large. Hence, a larger α1 is required to increase

the global contrast; and a larger α2 is required to select the middle portion of the stretched dynamic

range avoiding over- or under-exposure. The above parameter setting was used in all experiments

unless otherwise mentioned.

4.2.8.1 Comparison with Other Methods

The fusion results of our perception-guided algorithm were compared with two other multi-exposure

fusion methods, i.e., our probabilistic fusion (PF) (Section 3.3) and exposure fusion (EF) [130],

which have previously demonstrated better performance than many other methods. The default

parameter settings in PF and EF were used. In addition, two TM methods were also considered: the

photographic tone reproduction (PTR) method [156]4, which is one of the best-rated TM methods

in evaluations conducted by different researchers [34, 102], and iCAM06 [94], which demonstrated

even better performance than PTR for some scenes in different evaluations [94, 102]. The parameters

in PTR were estimated using the method in [155]. For iCAM06, the default parameter setting was

used. The HDR images for TM methods were generated using HDR reconstruction (HDR-R) [46].

The default or automatically generated parameter settings were used for all methods in our analysis,

because we aimed to achieve a relatively fair comparison with minimal personal manipulation/bias

from our side.

Figure 4.9 depicts the comparison on the National Cathedral sequence. The bottom row shows

closeup views of the upper window. The images in Figures 4.9(a)(b) are both generated by our

4Here, we refer to the local TM operator in [156].
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(a) (b) (c) (d) (e) (f)

Figure 4.9: Comparison of PGF and PGF-A with PF, EF, PTR, and iCAM06 on the National Cathe-
dral sequence. The HDR input for PTR and iCAM06 are generated using HDR-R. PGF and PGF-A
generate the best results, where details in all regions are preserved with high local contrasts and
saturated colors. iCAM06 preserves as many details as ours in the window regions but with less
vivid colors. (a) PGF. (b) PGF-A. (c) PF. (d) EF. (e) PTR. (f) iCAM06. (Source sequence courtesy
of Max Lyons.)

(a) (b) (c) (d) (e) (f)

Figure 4.10: Comparison of PGF and PGF-A with PF, EF, PTR, and iCAM06 on the Memorial
Church sequence. The HDR input for PTR and iCAM06 are generated using HDR-R. PGF and
PGF-A preserve more details than the others, especially in the window regions. PGF-A produces
higher global contrast than PGF, but may cause loss of subtle details, e.g., in the upper portion of the
left window in the closeup view. (a) PGF. (b) PGF-A. (c) PF. (d) EF. (e) PTR. (f) iCAM06. (Source
sequence courtesy of Paul Debevec.)

method, but with different fusion weighting functions. The image in Figure 4.9(a) is produced using

Equation (4.19), which is denoted as PGF; and the image in Figure 4.9(b) uses Equation (4.20),

which is denoted as PGF-A. Our methods (PGF and PGF-A) and iCAM06 produce better local

details in the window regions than the other three methods. However, the colors are not reproduced

well by iCAM06. Our methods produce the best images, where details are preserved with high local

contrasts and vivid colors.

Figure 4.10 gives the comparison on the Memorial Church sequence. The bottom row gives

closeup views of regions near the three windows. Our PGF-A produces higher global contrast than

our PGF, but some subtle details may be lost. For example, compared with Figure 4.10(a), the

upper portion of the left window in the closeup view in Figure 4.10(b) shows slight over-exposure.

However, both images contain more details than the results generated by other methods.
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4.2.8.2 Objective Evaluation

Table 4.2: Evaluation using the QAB/F metric.
Source sequence PGF PGF-A PF EF PTR iCAM06

House 0.715 0.739 0.715 0.732 0.515 0.578
Chateau 0.774 0.772 0.766 0.769 0.419 0.418

Memorial Church 0.665 0.658 0.661 0.662 0.628 0.495
Belgium House 0.609 0.617 0.621 0.609 0.568 0.560

National Cathedral 0.697 0.703 0.578 0.670 0.286 0.281
Lamp 0.564 0.583 0.552 0.571 0.365 0.478

Two objective evaluation metrics were employed to assess the fusion quality of our methods

(PGF and PGF-A). Xydeas and Petrović [202] proposed the QAB/F metric to measure edge infor-

mation correctly transferred from a set of input monochrome images to a fused image. Reproduction

of both edge strength and orientation is considered. This metric assumes that stronger edges attract

more visual attention, and therefore it also associates each edge with an importance coefficient de-

fined by the edge strength. This metric gives a performance score between [0, 1] for each test image,

where a higher score means better performance. This metric is widely used in the image fusion

literature [117, 109]. Because this metric works on monochrome images, we first converted both

source images and resulting images into gray-scale before performing the evaluation. The reported

metric parameter values from [202] were used in our experiment. Six standard test sequences were

used in this evaluation, and the performance scores are reported in Table 4.2. Although PTR and

iCAM06 are not MEF methods, they are included in the table for reference purposes only. All of the

compared MEF methods successfully transferred most of the edge information into the results. On

average, PGF-A had the best performance, followed by PGF, EF, and PF.

The other objective metric employed is the dynamic range independent visible difference pre-

dictor (DRIVDP) [11]. This metric evaluates visual local contrast distortions between a reference

image and a test image under a specific viewing condition. This metric is widely used in the TM

literature [56, 123]. Here, we use it to assess the visual distortions between a test image and each

source image. Three distortions are considered in DRIVDP: loss of visible contrast, amplification

of invisible contrast, and reversal of visible contrast. We assume that the images were viewed on

a typical LCD with a max luminance equivalent to 100cd/m2, a gamma value of 2.2, and a visual

resolution of 30 pixels per degree at a viewing distance of 0.5 meter, and that the peak contrast sen-

sitivity of the viewer is 0.25%. The evaluation result on the National Cathedral sequence is given

in Figure 4.11 (please refer to Figure 4.9 for visual comparison). The two source images with good

exposures respectively for the windows and the walls are given in Figure 4.11(a). The distortion

maps for each method are given in Figure 4.11(b)-(g). In a distortion map, green, blue, red, and gray

pixels indicate contrast loss, amplification, reversal, and no distortion, respectively. For the window

region (top row in Figure 4.11), PGF shows very little distortion; PGF-A, PF, and EF show various

74



(a) (b) (c) (d)

(e) (f) (g)

Figure 4.11: Comparison of PGF and PGF-A with PF, EF, PTR, and iCAM06 on the National
Cathedral sequence using DRIVDP. The two source images offers good clarity for the windows and
the wall, respectively. In a distortion map, green, blue, red, and gray pixels indicate contrast loss,
amplification, reversal, and no distortion, respectively. PGF performs best in preventing contrast
distortions, followed by PGF-A, PF, EF, PTR, and iCAM06. (a) Source sequence. (b) PGF. (c)
PGF-A. (d) PF. (e) EF. (f) PTR. (g) iCAM06.

degrees of contrast reversal; PTR and iCAM06 show strong contrast reversal and some contrast loss.

For the wall region (bottom row in Figure 4.11), PF shows very little distortion; PGF-A shows some

contrast amplification; PGF shows a slight loss of contrast; EF shows strong contrast loss for the

lower right region of the wall; PTR shows some contrast loss and amplification; and iCAM06 shows

strong contrast loss. Please note that although contrast amplification may be viewed as distortion in
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some applications, it is normally considered as one of the objectives and usually preferred in image

fusion [173].

4.2.8.3 Subjective Evaluation

Subjective evaluations, which can cover more aspects than objective evaluations, are widely con-

ducted in both the image fusion and TM communities to compare and validate algorithms [34, 142].

The objective evaluation in the previous section considers only characteristics in the luminance

channel, but does not consider other important aspects of image quality, e.g., colors. Thus, we also

conducted a subjective test to evaluate the performance of PGF, PGF-A, PF, EF, PTR, and iCAM06

on six different scenes. Thirteen subjects (8 males and 5 females) aged between 25 and 35 partici-

pated in this evaluation. All of the participating subjects had normal or corrected-to-normal vision

and were non-experts in the field of MEF or TM. The test was performed under normal lighting

conditions. For each scene, the results of different methods were anonymized and placed side by

side in different orders, along with the source sequence. No other reference image, either manu-

ally or automatically fused or tone-mapped, was provided to guide/influence a subject’s judgement.

Subjects were asked to rank the results on a scale of 5 (best) to 0 (worst) in four categories: global

contrast, details, colors, and overall appearance. These four criteria were also considered in [34].

The global contrast criterion measures the global luminance variations, where an image with a high

global contrast tends to span a large dynamic range. The details and the colors criteria measure

the local details and colors reproduced and/or enhanced from the source images, respectively. The

overall appearance criterion measures the overall impression of a fused or tone-mapped image.

The average ranking scores of different algorithms under the four criteria are reported in Fig-

ure 4.12. Our PGF-A (green lines) performed consistently well compared to the other methods. It

had the best performance under all of the four criteria on 5 out of 6 scenes, and performed similarly

to our PGF (red lines) on the National Cathedral sequence. PGF and EF (cyan lines) performed

similarly on average, followed by PF (blue lines), iCAM06 (black lines), and PTR (magenta lines).

Although some images may suffer from loss of subtle details due to the enhanced contrast (e.g.,

compare the insets in Figure 4.10(a)(b)), high contrast and good color scheme may compensate for

this in the visual impression in some cases, which results in higher ranking scores (see the plots on

MC in Figure 4.12). For some scenes, one may notice that higher overall appearance ratings seem

to be related to images with higher brightness or global contrast. However, these two factors do not

necessarily dominate the overall user preference. For the Cathedral scene (Figure 4.9), the results

generated by PGF-A, PF, EF, and PTR are all brighter than the result by PGF. However, PGF pre-

served the details and colors better for that scene, and it therefore received a higher rating under the

overall quality criterion. For the Memorial Church scene (Figure 4.10), both PF and EF had higher

global contrast ratings than PGF, but the three methods received very close overall appearance rat-

ings. In summary, there is no single factor that exclusively influenced users’ preferences, but rather
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MC: Memorial Church; NC: National Cathedral; H: House; C: Chateau; L: Lamp; BH: Belgium House

Figure 4.12: Average ranking scores of different algorithms in the subjective evaluation. Our PGF-A
has the best performance under all four criteria for 5 out of 6 scenes, and shows similar performance
to our PGF on the other scene. PGF and EF have similar performance on the average, followed by
PF, iCAM06, and PTR.

it is the combination of different factors (e.g., global contrast and details) that determines a user’s

choice.

Please note that the above experiments were not meant to formally evaluate TM operators. The

main purpose was to demonstrate that the proposed fusion method is capable of producing high-

quality fused images directly from the source sequences with qualities comparable to those of tone-

mapped images and images generated by other fusion methods, or even better qualities in some

cases. It is also worth mentioning that while our concern here is the production of a well-exposed

image from a set of multi-exposure images, the HDR images input into TM do not necessarily

come from a multi-exposure sequence. Please refer to [34, 95] for more formal evaluations of TM

operators. Because user interaction is normally exploited in TM, it is possible that PTR and iCAM06

may produce comparable results to ours from the reconstructed HDR images by manually fine-

tuning their parameters for individual scenes. In contrast, our method is capable of automatically

producing high-quality results directly from a source sequence without any user intervention. In

addition, if desired, a user can also adjust the parameters of our method to generate even more

appealing results based on his or her preferences for individual scenes, such as in Figure 4.8. More

evaluation results can be found in Appendix D.

4.2.8.4 Computational Complexity

In the quality measure calculation step, only linear operations are involved. Therefore, the complex-

ity of this step is O(KMN), where K denotes the number of images in the source sequence and
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each source image has M ×N pixels. In HRW, the compatibility calculation, restriction, prolonga-

tion, and relaxation are all linear operations. The coarsest-level solution is obtained as in GRW, the

complexity of which is O(KMN/(4Nc+Nh−2)). The operations in the final composition step are

linear. Therefore, the total complexity of our algorithm is O(KMN), which means the computa-

tional time is proportional to the number of pixels in the whole source sequence. The computational

times for the six source sequences used in previous experiments range from 1.504 seconds (House

sequence) to 28.373 seconds (Lamp sequence). Times for reading source sequences and writing

fused images are excluded.

4.2.9 Applications in Other Fusion Problems

Our fusion method can be applied to other fusion problems as well. This section gives two examples:

multi-focus fusion and ambient/flash fusion. Note that the two examples serve only to show some

possible future applications of our method. In order to fully adapt our MEF method to other fusion

problems, more specialized quality measures may need to be developed.

4.2.9.1 Multi-Focus Fusion

A 3D scene may contain a large depth of field (DOF), and different focal lengths of a camera are

required to clearly capture objects at various distances. The goal of multi-focus fusion [3, 210] is

to generate an all-in-focus image with extended DOF by combining in-focus objects from different

images. Figure 4.13 gives an example of applying our method to multi-focus fusion. The same

procedure as in Table 4.2 was used. The parameter setting was the same as in MEF except that

γ was computed as 0.01K
√
MN/κ. We also explored the possibility of applying two other MEF

methods, i.e., PF and EF, to this multi-focus fusion problem. The default parameter settings in PF

and EF were used. In the left image of Figure 4.13(a), the focus is set on the frog, and the beaver

and the R2-D2 at the back are blurred, while the situation is reversed in the right image. The in-

focus regions in individual images are combined into one all-in-focus image. Our perception-guided

methods (Figures 4.13(b)(e)) generated clearer images than our previous PF (Figure 4.13(c)) and EF

(Figure 4.13(d)), e.g., the boundary of the beaver’s teeth is sharper in our results.

4.2.9.2 Ambient/Flash Fusion

Without the use of a flash, it is difficult to clearly capture a scene under poor illumination. However,

a flash usually creates undesirable artifacts, such as highlights on reflective surfaces. Ambient/flash

fusion aims to remove artifacts in individual images by integrating information from an image pair,

where one image is captured under ambient lighting condition and the other is captured with a flash.

An example of removing highlights in a flash image is given in Figure 4.14. The ambient image

captures the pattern on the book cover, but the interior of Optimus Prime’s trailer is almost invisible.

In the flash image, the roller inside the trailer is clearly visible, but there are highlights on the book
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(a) (b)

(c) (d) (e)

Figure 4.13: Multi-focus fusion using PGF and PGF-A on the Frog sequence, in comparison with PF
and EF. The in-focus regions in individual source images are combined into one all-in-focus image.
PGF and PGF-A generate clearer images than PF and EF, e.g., the boundary of the beaver’s teeth is
sharper in results of PGF and PGF-A. (a) Source images with focuses on the frog (left) and on the
beaver (right). (b) PGF-A. (c) PF. (d) EF. (e) PGF.

cover. Compared with PF and EF, PGF and PGF-A generate better fused images (Figures 4.14(b)(e))

with improved appearance, where the highlights in the flash image are removed and details from

both images are combined. The same procedure in Table 4.2 was used except that the contrast

measure was not applied. This is because the clear boundaries around the highlights created by the

flash produce very high local contrasts, which will cause unnatural illumination changes near those

boundaries in the fused image when the contrast measure is used. The parameter setting is the same

as in MEF except that σ equals 0.5K and γ = 1.0K
√
MN/κ. Because our algorithm currently

estimates the fusion weights/probabilities in a way that maximizes local details, it is not suitable for

the removal of more complex artifacts, such as removing reflections in a flash image or noise in an

ambient image, which requires more specialized algorithms (e.g., [5, 145]).

4.2.10 Limitation

Although our method produces high-quality results, it requires the source images to be registered

and to contain minimal sensor noise, which are common requirements for multi-exposure fusion

methods. These requirements may restrict our method from being applied in some situations (e.g.,

camera not held in a static position) without pre-processing the captured images. Therefore, in-

corporating special treatment for imperfectly registered or noisy source images during the fusion

process would be a useful extension. Shrinkage of wavelet coefficients was used in [120] for noise
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(a) (b)

(c) (d) (e)

Figure 4.14: Ambient/flash fusion using PGF and PGF-A on the Book sequence, in comparison with
PF and EF. PGF and PGF-A generate better fused images with improved appearance, in which the
highlights in the flash image are removed and details from both images are integrated. (a) Source
image pair of an ambient image (left) and a flash image (right). (b) PGF-A. (c) PF. (d) EF. (e) PGF.

(a)

(b) (c) (d)

Figure 4.15: Comparison of our methods (PGF and PGF-A) with GDC on the Chairs sequence. The
result of GDC is taken from its project website. (a) Source sequence. (b) PGF. (c) PGF-A. (d) GDC.
(Source sequence courtesy of Shree Nayar.)

reduction during the fusion of multimodal images. This shrinkage function may be incorporated as

a quality measure in our method in order to handle noisy source images.

Another useful extension to our fusion scheme is to incorporate special treatment for dynamic

scenes, in which there are moving objects. A gradient-directed composition (GDC) method is pro-

posed in [208], where gradient orientation changes are used to identify dynamic objects in a multi-
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exposure sequence. Gradient magnitudes are used to measure the contributions from each source

pixel. Bilateral filtering is applied to get smooth weight maps and an MSD-based fusion scheme

is employed. Although this method is good at removing ghosting artifacts, our methods produce

better results for static scenes. An example is given in Figure 4.15. The contrasts and colors of

the well-exposed regions in the source sequence do not transfer well into the result of GDC, while

our results feature better contrasts and colors. In addition, GDC requires that for a given region,

the static background scene should not be occluded in most source images. When a multi-exposure

sequence is taken within a short time period, it is very likely that no noticeable movement of objects

is observed, and it is also possible that a portion of the background scene is constantly occluded by

a moving foreground object. In the former case, the source sequence can be treated as a static scene;

in the latter case, techniques such as image inpainting [85] may need to be incorporated in order to

infer the background. Since the change of gradient orientations was used in [208] for deghosting, it

may be also helpful in the treatment of slightly misaligned source images.

4.3 Hierarchical Multivariate Gaussian Conditional Random
Fields

Similar to HRW, we can also construct a hierarchical model of the multivariate Gaussian conditional

random fields. In this section, we introduce the hierarchical MGCRF model and analyze its relation-

ship with HRW. As in Section 3.4.2, we impose the piecewise-smooth assumption (Equations (3.21)

and (3.22)). We restrict our discussion here to lattice graphs with 4-connectivity assumed. The basic

idea is to efficiently calculate the MAP estimate of the K-D potential field X̃ given the boundary

set B̃ and the observed data D in a coarse-to-fine fashion. Given an MGCRF (X̃ ,D) at the original

resolution (i.e., level 0) with X̃ 0 = X̃ , we iteratively construct a coarser representation of it until a

pre-defined level (say, level N −1) is reached. At level N −1, X̃N−1 can be accurately and quickly

estimated by solving a linear system as in Section 3.4.2.

Level 1

Level 0

x1
s x1

t

x0
i x0

jx0
h

Figure 4.16: A two-level hierarchical multivariate Gaussian conditional random field.

A two-level HMGCRF is shown in Figure 4.16. The nodes at a finer level are divided into three

sets: X̃nO (nodes with only odd coordinates, i.e., yellow nodes in the figure), X̃nE (nodes with only
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even coordinates, i.e., orange nodes in the figure), and X̃nB (nodes with one even and one odd coordi-

nates, i.e., red nodes in the figure). The orange nodes at a finer level are the projections of the nodes

at a coarser level. The precision matrices associated with each of the nodes at a coarser level are

determined by the precision matrices associated with their projections and the projections’ neigh-

boring nodes at a finer level. In the following, we introduce the coarser-level MGCRF construction

scheme and the finer-level potential field approximation scheme.

4.3.1 Construction of Coarser-Level MGCRF

The construction of a coarser-level MGCRF is essentially deriving the coarser-level precision ma-

trices based on the precision matrices at the current level. Let xni at level n denote the projection of

xn+1
s at level n+1. The precision matrix T̃n+1

sk , which defines the probability density of xn+1
s −bk,

is derived as follows:

T̃n
ik = T̃n

ik + (
∑

xnj ∈Nni ∩X̃nO

S̃nij)
−1(

∑

xnj ∈Nni ∩X̃nO

S̃nijT̃
n
jk), ∀xni ∈ X̃nB (4.21)

T̃n+1
sk = T̃n

ik + (
∑

xnj ∈Nni

S̃nij)
−1(

∑

xnj ∈Nni

S̃nijT̃
n
jk), ∀xni ∈ X̃nE (4.22)

Let xni and xnj at level n denote the projections of two adjacent nodes xn+1
s and xn+1

t at level n+1.

The precision matrix S̃n+1
st , which defines the probability density of xn+1

s − xn+1
t , is derived as:

S̃n+1
st = arg min

S̃nhm

|S̃nhm|,∀xnh ∈ Nn
i ∩Nn

j ,∀xnm ∈ {xni ,xnj }, (4.23)

where | · | denotes determinant.

4.3.2 Approximation of Finer-Level Potential Field

Once the estimate of the potential field X̃n+1 at a coarser level is obtained, it is used to guide the

approximation at a finer level. First, the coarser-level potentials are injected to the finer level as

follows. These potentials spread from their projections X̃nE to their first-order neighborhood X̃nB and

then to their second-order neighborhood X̃nO .

xni = xn+1
s , ∀xni ∈ X̃nE (4.24)

xni = (
∑

xnj ∈Nni ∩X̃nE

S̃nij)
−1(

∑

xnj ∈Nni ∩X̃nE

S̃nijx
n
j ), ∀xni ∈ X̃nB (4.25)

xni = (
∑

xnj ∈Nni

S̃nij)
−1(

∑

xnj ∈Nni

S̃nijx
n
j ), ∀xni ∈ X̃nO (4.26)

Second, these injected potentials are updated iteratively using the following relaxation scheme:

xni = (
K∑

k=1

T̃n
ik +

∑

xj∈Ni

S̃nij)
−1(

K∑

k=1

T̃n
ikbk +

∑

xnj ∈Nni

S̃nijx
n
j ). (4.27)
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Because this is a quick approximation, when the original resolution is reached (i.e., n = 0), eachK-

D potential x0
i is normalized. The normalization takes three steps. First, element-wise normalization

of x0
i is performed, and we denote the vector after this normalization as yi with each element

calculated as:

yi,k =
x0
i,k − Umin,k

Umax,k − Umin,k
. (4.28)

Second, yi is normalized to render
∑
k yi,k = 1. Finally, element-wise scaling of yi is performed

to obtain the normalized x0
i :

x0
i,k = Umin,k + yi,k(Umax,k − Umin,k). (4.29)

4.3.3 Relationship with HRW

When the same assumption as in Equation (3.33) is made (i.e., identity matrices subject to individual

scaling factors) and Umax,k = γ3, Umin,k = 0, ∀k, the HMGCRF model degenerates to the HRW

model in terms of steady-state probability calculation. In the multi-exposure fusion application, this

leads to Equation (4.19), and setting Umax,k = α1, Umin,k = −α2,∀k leads to Equation (4.20).

4.4 Summary

In this chapter, a hierarchical random walks framework was proposed to reduce the computational

cost incurred in GRW. This improved performance was achieved by calculating the probabilities in

a coarse-to-fine manner with properly passed information between levels. A novel fusion algorithm

based on perceptual quality measures, i.e., perceived local contrast and color saturation, was also

proposed, where HRW was applied for efficient calculation of fusion weights. A transducer function

and a psychometric function were applied to model the nonlinear human perception of local contrast,

which helped us achieve maximum local detail preservation. Experiments demonstrated the superior

performance of our algorithm in multi-exposure fusion, compared with other state-of-the-art fusion

methods and some state-of-the-art tone mapping methods coupled with HDR reconstruction. Two

possible applications of our algorithm, i.e., multi-focus fusion and ambient/flash fusion, were also

demonstrated. In addition, we introduced the hierarchical multivariate Gaussian conditional random

field model and analyzed its relationship with HRW.
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Chapter 5

The Multiscale Random Walks
Framework and Its Application

5.1 Multiscale Random Walks

In this section, we propose a multiscale random walks (MRW) framework based on GRW and multi-

scale decomposition (MSD) schemes. Unlike HRW, MRW does not aim to provide an approximation

of GRW but rather to produce robust results utilizing both inter- and intra-scale information.

5.1.1 Multiscale Decomposition

The pyramid transform (PT) and the wavelet transform (WT) are the two categories of MSD schemes

that are most commonly employed in digital image processing and analysis tasks. Among different

PT schemes, Laplacian pyramid transform (LPT) [32, 31] is one of the most frequently used. A

Laplacian pyramid (LP) is constructed based on its corresponding Gaussian pyramid by subtracting

two adjacent levels. Thus, a detail level in the LP encodes the local variations at that scale. The ratio

of low-pass pyramid (RoLP) [184] is also constructed based on the Gaussian pyramid, but by taking

the ratio of two adjacent levels. When an RoLP is used in subsequent calculations, the local contrast

(i.e., local luminance variation with respect to the background [198]) at each coefficient location in

the RoLP is derived from the ratio. The gradient pyramid (either explicitly [33] or implicitly [144]

constructed) is another type of PT, which is built by applying gradient filters of different orientations

to each level of a Gaussian pyramid.

A standard WT technique is the discrete WT (DWT) [125], which decomposes a signal into

an MSR using scaling (low-pass filtering) and wavelet (high-pass filtering) functions. One draw-

back of DWT is shift variance, i.e., the wavelet coefficients are very sensitive to translations of the

original signal. The redundant DWT (RDWT) [59] is an over-complete WT that solves the shift

variance problem by dropping the subsampling operation in DWT. Selesnick et al. [165] proposed

the dual-tree complex WT (DT-CWT), which also provides shift invariance but via complex-valued

operations. In addition, DT-CWT provides increased directional selectivity over DWT and RDWT,
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Figure 5.1: The basic procedure of MRW in a 1D 2-level case.

and a more compact representation than RDWT.

5.1.2 The MRW Framework

Given an image, we can build a multiscale representation (MSR) of it by applying an MSD scheme.

Based on this MSR, a weighted graph can be constructed. The basic procedure of MRW is illus-

trated in Figure 5.1. For the sake of brevity, only a 1D 2-level case is depicted. For each level n

(n ∈ [0, N−1]), we can define a variable setXn, where xni ∈ Xn corresponds to the i-th coefficients

in all the subbands at that level. At any level n, the scene nodes xni ’s (yellow and orange nodes) are

connected with their immediate neighbors Nn
i . Let X = {Xn|n ∈ [0, N − 1]} denote the set of all

variables (scene nodes). Each scene node xni is also connected with all the label nodesL (red nodes).

WN−1
ij ,W (xN−1

i , xN−1
j ) is a function defined on the approximation level that models the neigh-

borhood compatibility/similarity between adjacent scene nodes xN−1
i and xN−1

j . Y nik , Y (xni , lk)

is a function defined on every decomposition level that models the data compatibility between each

scene node xni and each label node lk. Information, Pn
i ’s and Yn

i ’s, is transferred between corre-

sponding nodes at adjacent levels, where Pn
i = {Pni,1, . . . , Pni,K} and Yn

i = {Y ni1 , . . . , Y niK}. This

information-passing scheme is problem dependent. As in HRW, we let P t(lk|xni ,D) denote the t-

step transition probability determined based on observed data D that a random walker starting from

location xni reaches the label node lk by the t-th step. The goal here is to calculate the steady-state

probability Pni,k , limt→∞ P t(lk|xni ,D) for all xni ∈ X and all lk ∈ L.

In order to pass information upwards in the MSR, Y nik needs to be updated as follows:

Ỹ nik =

{
Y nik, n = 0;
g(Y nik, {Ỹ

n−1
jk |xn−1

j ∈ [xni ]↓}), n ∈ [1, N − 1], (5.1)

where g(·, ·) denotes a problem-dependent function to balance the contributions from its first and

second input terms and [xni ]↓ denotes the projection of xni at level n−1. At the approximation level,

PN−1
i,k ’s can be calculated using GRW. In order to pass information downwards in the MSR, Pni,k

needs to be updated as follows:

Pni,k =

{
Pni,k, n = N − 1;
h(Y nik, {P

n+1
j,k |x

n+1
j ∈ [xni ]↑}), n ∈ [0, N − 2], (5.2)

where h(·, ·) denotes a problem-dependent function to balance the contributions from its first and

second input terms and [xni ]↑ denotes the projection of xni at level n + 1. The basic procedure
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Algorithm 5.1 Basic steps of the multiscale random walks framework.
1: Apply MSD to the input data
2: Define problem-specific data compatibilities Y nik’s at each level of the MSR
3: Define problem-specific neighborhood compatibilities WN−1

ij ’s at level N − 1
4: for n = 1 to N − 1 do
5: Update data compatibilities at level n using Equation (5.1)
6: end for
7: Obtain solution at level N − 1 using GRW (Algorithm 3.1)
8: for n = N − 2 to 0 do
9: Update the probability maps at level n using Equation (5.2)

10: end for

of MRW is summarized in Algorithm 5.1. In the following section, we will introduce a specific

MRW-based algorithm for MSD-based medical image fusion.

5.2 Application of MRW in Volumetric Medical Image Fusion

5.2.1 Introduction

Medical imaging has become a vital component in routine clinical applications, such as diagnosis

and treatment planning [124]. However, because each imaging modality only provides information

in a limited domain, many studies prefer joint analysis of imaging data collected from the same

patient using different modalities [36]. This requirement of joint analysis led to the introduction

of image fusion into the medical field and the development of medical data-oriented fusion tech-

niques [36, 175, 139]. The goal of image fusion is to generate a single composite image, which

provides more accurate and reliable information than any individual source image and in which fea-

tures may be more distinguishable [20]. Such an enhanced image facilitates visual perception (e.g.,

by a radiologist) or further image processing (e.g., by a computer-aided detection/diagnosis system,

i.e., a CAD system) [20].

Due to its compact and enhanced representation of information, image fusion has been employed

in many medical applications. For instance, T1-weighted (T1W) and T2-weighted (T2W) magnetic

resonance imaging (MRI) scans were fused to segment white matter lesions [187] or cerebral iron de-

posits [188] and to guide neurosurgical resection of epileptogenic lesions [122]. Computed tomogra-

phy (CT) and MRI images were fused for neuronavigation in skull base tumor surgery [134]. Fusion

of positron emission tomography (PET) and MRI images has proven useful for hepatic metastasis

detection [47] and intracranial tumor diagnosis [22]. Single photon emission computed tomography

(SPECT) and MRI images were fused for abnormality localization in patients with tinnitus [52].

Multiple fetal cardiac ultrasound scans were fused to reduce imaging artifacts [66]. In addition, the

advantages of image fusion over side-by-side analysis of non-fused images have been demonstrated

in lesion detection and localization in patients with neuroendocrine tumors [8] and in patients with

pretreated brain tumors [9]. Even if image fusion is not performed explicitly, e.g., by a CAD sys-

tem, it is usually performed subconsciously by radiologists to compare images and better identify
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(a) (b) (c) (d)

Figure 5.2: Overlaying monochrome images using different color channels. Information is trans-
ferred from T1W and T2W MRI images into a single image at the cost of reduced image contrast.
(a) T1W MRI image; (b) T2W MRI image; (c) Overlaid image using the red and green channels as
in [187]; (d) Overlaid image using the yellow and blue channels as in [149].

abnormalities [82].

A straightforward multi-modal image fusion method is to overlay the source images by ma-

nipulating their transparency attributes [199, 64] or by assigning them to different color chan-

nels [187, 149]. This overlaying scheme is a fundamental approach in color fusion, a type of image

fusion that uses color to expand the amount of information conveyed in a single image [173], but

it does not necessarily enhance the image contrast or make image features more distinguishable.

An example is given in Figure 5.2. The overlaying schemes transfer information from T1W and

T2W MRI scans into a single image, but at the cost of reduced image contrast (e.g., in the temporal

lobe and cerebellum as indicated by the white circles). In this section, we propose a fusion rule

that blends the pixel values in the monochrome source images to combine information while pre-

serving or enhancing image contrast. In addition, we show how color fusion can benefit from the

monochrome fusion results.

Image fusion can be performed at three different levels, i.e., pixel/data level, feature/attribute

level, and symbol/decision level, each of which serves different purposes [146, 20, 173]. Pixel-level

fusion determines a pixel in the fused image from a set of pixels in the source images. Feature-level

fusion applies the extracted image features (e.g., segmented objects or edge maps) to guide the pixel

merging process or form a joint feature vector. Symbol-level fusion combines abstract represen-

tations of the source images extracted using such techniques as classification. Among these three

levels, pixel-level fusion and feature-level fusion are more closely related when both output a single

fused image, while the output of symbol-level fusion is always a certain decision. Pixel-level fusion

directly combines the original information in the source images and is computationally efficient, but

it is more sensitive to image noise compared to feature-level fusion [146]. However, the fusion qual-

ity of feature-level methods largely depends on the performance of the feature extraction technique

employed. In practice, a fusion task may also involve more than one level simultaneously [146].

According to whether MSD is used, pixel-level fusion methods can be classified as MSD-based

or non-MSD based. Compared to the latter, MSD-based methods have the advantage of extract-
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Figure 5.3: General procedure of MSD-based image fusion in a 2D case.

ing and combining salient features at different scales, and therefore normally produce images with

greater information content [173]. The general procedure of MSD-based fusion is illustrated in

Figure 5.3. First, the source images are transformed to multiscale representations (MSRs) using

MSD. An MSR is a pyramidal structure with successively reduced spatial resolution; it usually has

one approximation level storing low-pass coefficients and several detail levels storing high-pass or

band-pass coefficients. Then, a certain fusion rule is applied to merge coefficients at different scales.

Finally, an inverse MSD (IMSD) is applied to the fused MSR to generate the final image.

Two directions can be explored in MSD-based fusion to enhance the fusion quality: advanced

MSD schemes and effective fusion rules. Here, we focus on the latter and propose a novel cross-

scale (CS) fusion rule, where the belongingness/membership of each fused coefficient to each source

image is calculated. Although we focus on pixel-level fusion, this proposed fusion rule may be ex-

tended to feature-level or symbol-level fusion as well. Unlike previous methods, our fusion rule

calculates an optimal set of coefficients for each scale taking into account large neighborhood in-

formation, which guarantees intra- and inter-scale consistencies, so that coefficients with similar

characteristics are fused in a similar way and artifacts (such as aliasing artifacts at object bound-

aries) are avoided in the results. The effectiveness of this new fusion rule is validated through

experiments on 3D medical image fusion. Although it is possible to fuse individual 2D slices in

3D images/volumes separately, the results are not of the same quality as those of 3D fusion due to

the lack of between-slice information in the fusion process [7]. Here, therefore, we apply MSD and

our CS rule directly to the 3D volumes. An effective color fusion scheme utilizing the monochrome

fusion results is also proposed.

5.2.2 Related Work

This section focuses on reviewing key MSD-based image fusion techniques. Although theoretically

the decomposition of an image can be performed iteratively until there is only one pixel in each

dimension at the approximation level, this will result in serious bias and inaccuracy in the feature
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selection at low-resolution levels, which impairs the fusion quality [144]. Typically, only a few

decomposition levels are therefore used in practice, and some analyses on the number of decom-

position levels for different MSD schemes in some fusion tasks were conducted in [136, 109]. For

applications of image fusion in medicine and other fields, please refer to the overview articles by

Pattichis et al. [139] and by Hall and Llinas [75].

5.2.2.1 Fusion Rules

In addition to the MSD scheme, the other key factor affecting fusion results is the fusion rule.

According to [20], a fusion rule is the processing that determines the formation of the fused MSR

from the MSRs of the source images, and it normally consists of four key components, i.e., activity-

level measurement, coefficient grouping, coefficient combination, and consistency verification. In

this section, we give a brief review of some representative schemes in these four steps. Please

refer to [136, 20] for more detailed discussions and other types of fusion methods (e.g., estimation

theory-based method [203]).

Activity-Level Measurement The activity-level measurement reflects the salience of each coef-

ficient in an MSR [109], and it can be categorized into three classes, i.e., coefficient-based activity

(CBA), window-based activity (WBA), and region-based activity (RBA) [20]. A CBA measure eval-

uates each coefficient independently and normally describes the activity level of a coefficient using

its absolute value. A WBA measure uses the information within a window to evaluate the coefficient

at the window center. A popular choice is the rank filter-based WBA, where the maximum value

within a window is normally selected as in [107]. More sophisticated WBA measures also exist

in the literature, such as image statistics-based WBA [136]. The concept of RBA is similar to that

of WBA except that irregular-shaped regions are used instead of regular-shaped windows. RBA is

one way to achieve feature-level fusion; it requires segmentation on (the MSRs of) the source im-

ages [146, 106]. In our CS rule, the activity-level measure is used to determine the salience at each

coefficient and there is no restriction on the type of measures to be employed. The focus of our CS

rule is to provide a unified framework combining the other three key components in a fusion rule,

which were usually treated separately in previous methods.

Coefficient Grouping The coefficient grouping schemes can be roughly divided into three cat-

egories, i.e., no grouping (NG), single-scale grouping (SG), and multiscale grouping (MG) [20].

NG means that each coefficient is fused independently; SG means that corresponding coefficients

between different subbands at the same decomposition level are fused in the same way; and MG is

more restrictive than SG because it also requires that corresponding coefficients between different

scales take the same fusion decision. A cross-band SG (CBSG) scheme was proposed in [143],

where the same fusion decision for every set of corresponding detail coefficients at the current scale

is made based on the sum of their activity levels and their corresponding coefficients at a higher
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scale. In [209], an MG scheme was proposed in which the fusion decision for every set of corre-

sponding coefficients across all scales in an MSR is made based on the weighted average of their

activity levels. Our CS rule performs similar to MG, but does not impose such a hard constraint on

the fusion decision. Instead, the influence on each coefficient from their corresponding coefficients

at adjacent scales is reflected in the membership calculation, and the fusion decision of a coeffi-

cient is determined based on its calculated membership. Please refer to Section 5.2.4 for a detailed

description of the membership calculation.

Coefficient Combination One common coefficient combination scheme for the detail levels is

the choose-max (CM) strategy, i.e., selecting the coefficient with the highest activity level at each

location from the MSRs of the source images as the coefficient at that location in the MSR of

the fused image [20]. A common combination scheme for the approximation level is taking the

average (AVG). Another popular scheme for the approximation level is the weighted average (WA)

strategy proposed in [33]. A linear weighting function is applied when the local correlation between

corresponding coefficients in a neighborhood in the MSRs of the source images is above a threshold.

Some more complicated combination schemes were also proposed by previous researchers; please

refer to [136] for more detailed discussions. Our CS rule does not apply combination schemes based

directly on coefficient activity levels, but combines coefficients based on their memberships, which

results in a more effective scheme utilizing inter- and intra-scale information.

Consistency Verification The consistency verification schemes ensure neighboring coefficients

are fused in a similar manner [20]. A majority filter was used in [107] to apply window-based

verification (WBV) at each individual scale. A cross-band verification (CBV) scheme was proposed

in [143], where the detail coefficients at the current level of the fused MSR are recalculated if their

corresponding coefficients at a lower level come from the MSR of a different source image. CBV

was designed to comply with CBSG. It is also possible that no verification (NV) is applied. Our CS

rule does not perform explicit verification, but embeds verification in the coefficient membership

calculation process.

5.2.2.2 Medical Image Fusion

The overlaying schemes were discussed in Section 5.2.1, and here we discuss some activity-level

measures and non-MSD-based methods proposed for medical image fusion. Please note that the

MSD-based fusion methods discussed in the previous sections can be applied directly to medical

image fusion; the DWT+CBA+NG+AVG+CM+NV method, for example, was used in [152] for

quality enhancement of real-time 3D echocardiography. A multi-channel pulse coupled neural net-

work was proposed in [190] for 2D medical image fusion. However, the fusion results suffered from

loss of local contrast, which made details less distinguishable. DWT+WBA+NG+CM+CM+WBV
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was applied to fuse 2D medical images in [205], where a visibility-based WBA and a local variance-

based WBA were proposed for APX and DETs, respectively. In contrast, our focus here is a novel

fusion rule rather than a specific activity-level measure.

In [7], a 3D shunting neural network was applied in order to achieve information decorrelation

between source images, and the shunted images were then assigned to different color planes to

achieve color fusion of 3D medical images. In our method, a more efficient scheme is proposed,

where color fusion of two images is achieved as a natural extension to monochrome fusion. In

addition, we emphasize both achromatic and chromatic color contrasts. In [189], the fused 3D

medical image was obtained by minimizing a quadratic objective function defined using a gradient-

based field. However, that method tends to cause artifacts in smooth image regions due to the form

of the objective function. Such artifacts are less likely to appear in our method, where consistencies

are emphasized.

5.2.3 Problem Formulation

The source images are assumed to be spatially registered, which is a common assumption in image

fusion [20]. Various techniques [124, 166] can be applied to medical image registration. We follow

the MSD-based fusion procedure, as illustrated in Figure 5.3. Let cnk,d,i and c̄nd,i denote the i-th

coefficients in the d-th subband at the n-th detail level of the MSR of the k-th source image and the

fused image, respectively, where n ∈ [0, N−1]. Let ak,d,i and ād,i denote the i-th coefficients in the

d-th subband at the approximation level of the MSR of the k-th source image and the fused image,

respectively. We assume that a subband at the approximation level has the same size as a subband at

theN -th detail level. For PT schemes where the approximation level is at a higher level, applying an

extra step of band-pass filtering can fulfill this assumption. Let M : {c̄nd,i, ād,i} × {cnk,d,i, ak,d,i} →

[0, 1] be a function representing the (partial) membership of c̄nd,i (or ād,i) to the MSR of the k-th

source image, i.e., the proportion of the contribution from cnk,d,i (or ak,d,i) to c̄nd,i (or ād,i) among

all corresponding coefficients {cnk,d,i|k = 1, . . . ,K} (or {ak,d,i|k = 1, . . . ,K}). The memberships

can be determined based on local and/or global information in the MSRs. To simplify notation, let

Mn
k,d,i and Mk,d,i denote the coefficient memberships at the n-th detail level and the approximation

level, respectively. We have
∑
kM

n
k,d,i = 1 and

∑
kMk,d,i = 1.

For each subband of a detail level, where the corresponding coefficients among different MSRs

are usually quite distinct from each other, a fused coefficient can be determined as the one with the

highest membership:

c̄nd,i = arg maxcnk,d,i,k:1...K Mn
k,d,i. (5.3)

For the approximation level, where the corresponding coefficients usually exhibit less diversity com-

pared to those at a detail level, a fused coefficient can be determined as a weighted average of all of
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its corresponding coefficients based on their memberships:

ād,i =
K∑

k=1

Mk,d,iak,d,i. (5.4)

5.2.4 Cross-Scale Coefficient Selection

The proposed cross-scale fusion rule based on MRW aims to pass information within and between

each decomposition level so that the fused image preserves the most details from the source images

while exhibiting minimal artifacts. The basic steps are: 1) pass salient information from a lower level

to a higher level in an MSR until the approximation level is reached; 2) calculate the memberships of

each fused coefficient at the approximation level using the salient information that has been passed

on; 3) use these memberships to guide the coefficient selection at the detail levels.

Let Ank,d,i denote the activity level of cnk,d,i. In order to impose inter-scale consistency, the

activity levels of coefficients at a lower decomposition level are passed to a higher level as follows:

Ãnk,d,i =

{
erf(Ank,d,i), n = 0;
max(erf(Ank,d,i), [Ã

n−1
k,d ]↓2i ), n ∈ [1, N − 1],

(5.5)

where Ãn
k,d denotes the vector containing all Ãnk,d,i’s in the d-th subband of the MSR of the k-th

source image; [·]↓2 denotes downsampling by a factor of 2 in each dimension; and the subscript [·]i
denotes the i-th coefficient. The maximum function is used as a way to ensure inter-scale consistency

by allowing the calculation at higher scales to access the most representative salient information at

lower scales, which we take as those with high activity levels. erf : R → [−1, 1] is called the

Gauss error function, a sigmoid-shaped function. The magnitudes of activity levels of coefficients

across different detail levels can vary significantly, which makes it difficult to compare the relative

importance of salient information across scales. This nonlinear function erf(·) compresses the activ-

ity levels into the same range [0, 1] for non-negative activity levels, which gives a more reasonable

comparison of salient information. In addition, it also depresses very high activity levels, which

sometimes may be caused by image noise.

At the approximation level, the passed salient information ÃN−1
k,d,i ’s and the approximation co-

efficients ak,d,i’s are used together to calculate the memberships Mk,d,i’s. One simple scheme is

to directly take normalized ÃN−1
k,d,i ’s as Mk,d,i’s. However, this scheme does not utilize the visual

information embedded in ak,d,i’s, which is crucial for producing locally smoothed solutions. GRW

(Section 3.1) is employed to calculate Mk,d,i’s, which we consider as the steady-state probabilities

in the random walks context, by minimizingK similarly-defined energy functions. Let Mk,d denote

the vector containing all Mk,d,i’s, i.e., memberships of all of the approximation coefficients in the

d-th subband of the fused MSR to the k-th source image. The solution to the k-th energy function is

given by:

LdMk,d = ÃN−1
k,d . (5.6)
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The matrix Ld encodes the interactions between adjacent coefficients. The entry in the i-th row and

j-th column of Ld is defined as:

Ld,ij =





∑
ād,s∈Nd,iWd,is +

∑
k Ã

N
k,d,i, i = j;

−Wd,ij , ād,j ∈ Nd,i;
0, otherwise,

(5.7)

whereNd,i is the first-order neighborhood of ād,i. Wd,ij represents the expected similarity between

ād,i and ād,j based on the observed approximation coefficients in the MSRs of the source images.

Wd,ij is defined as follows:

Wd,ij = γ
K∏

k=1

exp(−‖ak,d,i − ak,d,j‖
σ

), (5.8)

where γ and σ are weighting factors. Equation (5.8) assigns a higher penalty to a coefficient pair with

greater similarity. Therefore, similar coefficients are more likely to be assigned similar memberships

to ensure intra-scale consistency.

OnceMk,d,i’s are calculated for the approximation level (n = N ) using Equations (5.6) to (5.8),

they are passed down to guide the membership calculation at each detail level in order to impose

inter-scale consistency:

Mn
k,d,i =

{
Mk,d,i, n = N − 1;
1
α [φ ∗ (Ãn

k,d � [Mn+1
k,d ]↑2)]i, n ∈ [0, N − 2], (5.9)

where α is a normalization factor rendering
∑
kM

n
k,d,i = 1; [·]↑2 denotes upsampling by a factor of

2 in each dimension followed by interpolation; ∗ denotes convolution; � denotes component-wise

multiplication; and φ is a low-pass filter that helps to achieve intra-scale consistency. In our current

implementation, φ is taken as a 5× 5× 5 Gaussian filter for each decomposition level of a volume.

The filter is constructed using the separable generating kernel in [32] with parameter a = 0.3751.

In the following, we give two specific examples of applying our CS rule with two popular MSD

schemes, LPT and DWT. However, the concept may be extended to other MSD schemes as well,

such as RoLP and DT-CWT.

5.2.4.1 LPT+CS Based Fusion

In order to combine our CS rule with LPT, an extra step of band-pass filtering at the approximation

level is needed to produce a corresponding detail level. This detail level is only used in the coefficient

membership calculation and is not involved in IMSD. Please note that there is only one subband at

each decomposition level for LPT. The whole process of LPT+CS-based fusion is summarized in

Algorithm 5.2.

5.2.4.2 DWT+CS Based Fusion

Although it is possible to apply the same scheme for LPT-based fusion to DWT-based fusion, each

detail level for DWT contains D = 2S − 1 subbands (S is the number of dimensions of the signal),
1This roughly corresponds to a filter generated by a Gaussian kernel with a standard deviation of 1.05.
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Algorithm 5.2 Basic steps of the LPT+CS fusion scheme.
1: Apply N -level LPT to each source image
2: Apply band-pass filtering to the approximation levels
3: Compute Ãnk,1,i’s for detail level 0 to N − 1 using Equation (5.5)
4: Compute Mk,1,i’s at the approximation level using Equations (5.6) to (5.8)
5: Compute Mn

k,1,i’s for detail level N − 1 to 0 using Equation (5.9)
6: Select coefficients for the approximation level of the fused MSR using Equation (5.4)
7: Select coefficients for the detail levels of the fused MSR using Equation (5.3)
8: Apply inverse LPT to the fused MSR

Algorithm 5.3 Basic steps of the DWT+CS fusion scheme.
1: Apply N -level DWT to each source image
2: Compute Ãnk,1,i’s for detail level 0 to N − 1 using Equations (5.10) and (5.5)
3: Compute Mk,1,i’s at the approximation level using Equations (5.6) to (5.8)
4: Compute Mn

k,1,i’s for detail level N − 1 to 0 using Equation (5.9)
5: Assign Mn

k,1,i’s to their corresponding Mn
k,d,i’s

6: Select coefficients for the approximation level of the fused MSR using Equation (5.4)
7: Select coefficients for the detail levels of the fused MSR using Equation (5.3)
8: Apply inverse DWT to the fused MSR

which will result in significantly increased computational cost and poor consistency among sub-

bands. Therefore, corresponding coefficients in different subbands at the same scale are evaluated

together and the same membership is assigned to all of them. Hence, Ank,d,i used in Equation (5.5)

is substituted with the following:

Ânk,d,i = max(Ank,1,i, . . . , A
n
k,D,i). (5.10)

The whole process of DWT+CS-based fusion is summarized in Algorithm 5.3.

5.2.5 Color Fusion

In this section, we introduce an efficient color fusion scheme for the case of two monochrome source

images. The color fusion scheme, which utilizes the fusion result from the previous section to fur-

ther enhance image contrast, is inspired by the color opponency theory in physiology [79], which

states that human perception of achromatic and chromatic colors occurs in three independent dimen-

sions, i.e., black-white (luminance), red-green, and yellow-blue. Contrast sensitivity in these three

dimensions has been studied by many researchers [131, 159, 182]. The contrast sensitivity func-

tion of luminance shows band-pass characteristics, while the contrast sensitivity functions of both

red-green and yellow-blue show low-pass behavior. Therefore, luminance sensitivity is normally

higher than chromatic sensitivity except at low spatial frequencies. Hence, the fused monochrome

image, which provides combined information and good contrasts, should be assigned to the lumi-

nance channel to exploit luminance contrast. In addition, the color-fused image should also provide

good contrasts in the red-green and/or yellow-blue channels in order to fully exploit human color

perception. To achieve this, we can consider that red, green, yellow, and blue are arranged on a color

circle as in [79], where the red-green axis is orthogonal to the yellow-blue axis and color (actually
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its hue) transits smoothly from one to another in each quadrant. Then, in order to maximize color

contrast/dissimilarity between an object and its surroundings in the color-fused image, their hues

should come from two opposite quadrants, or at least from two orthogonal hues on the color circle.

With these considerations in mind, we have developed the following scheme.

Let I1 and I2 denote the two source images and Ī the monochrome fused image. Ī is considered

as the luminance image of the color-fused image Īc. Therefore, if we consider the YUV color

space, Ī is the Y component. Let Īcr, Īcg , and Īcb denote the red, green, and blue color planes of Īc,

respectively. The source images are assigned to the red and blue planes in the RGB color space (i.e.,

Īcr = I1, Ī
c
b = I2 or Īcr = I2, Ī

c
b = I1), and the green plane is derived by reversing the calculation of

the Y component from the RGB color space:

Īcg = (Ī− 0.299Īcr − 0.114Īcb)/0.587. (5.11)

This scheme provides more contrast enhancement than the overlaying schemes, because it fully

utilizes color opponency in human perception. A visual comparison of slices from two directions

is provided in Figure 5.4. An inset is given below each slice, which clearly shows the improved

contrast using our scheme, as indicated by the white arrows (i.e., the sarcolemma shown in the

T1W scan and the mastoid air cells shown in the T2W scan in the upper row, the orbital apex in

the T1W scan and the sulcus in the T2W scan in the lower row). Researchers [7, 191, 6] have

previously studied opponent-color fusion, which is essentially based on opponent processing. After

intermediate fused and/or enhanced grayscale images are generated by opponent processing, they

are either directly assigned to different color planes (in the case of two source images) or assigned in

a way that emphasizes chromatic color contrast (in the case of three or more source images) to form

the color-fused image. This is different from our scheme, which aims to maximize both achromatic

and chromatic color contrasts in the color-fused image.

5.2.6 Experimental Results and Discussion

The performance of the proposed cross-scale fusion rule was evaluated on volumetric image fusion

of T1W and T2W MRI scans using both synthetic and real data (Section 5.2.6.1). After this valida-

tion, we demonstrate the capability of our fusion rule to fuse other modalities (Section 5.2.6.3). In

addition, we have consulted a neurosurgeon and a radiologist. In their opinion, our method not only

provides enhanced representations of information, which is useful in such applications as diagnosis

and neuronavigation, but also offers them the flexibility of combining modalities of their choice,

which is important because the data types required are normally application-dependent.
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5.2.6.1 Validation of the Proposed Cross-Scale Fusion Rule

In our experiments, only CBA was employed as the activity-level measurement. This is because:

1) as evaluated in [136], CBA is one of the measures that give the best performance; 2) our CS

rule places no restriction on the activity level and employing the same activity-level measure in all

methods gives a fair comparison between our CS rule and existing fusion rules. Three grouping

schemes (NG, CBSG and MG) were considered, as were two combining schemes for APX (AVG

and WA). In addition, we considered one combining scheme for DETs (CM) and three verification

schemes (NV, WBV, and CBV). Please note that only CM can be used for the APX when MG is used

due to the nature of MG and that CBV can only be used with CBSG due to the nature of CBSG. For

WA and WBV, we took a 5×5×5 neighborhood/window. We used the suggested threshold value of

0.85 in WA [33]. The two suggested threshold values of 0.2 and 0.5 in [107] were used in CBV. Two

MSD schemes were considered: LPT and DWT. For DWT, we used the wavelet package provided

by [35] and employed the 2-band orthogonal near-symmetric filters with K = 2, L = 6 [1]. 5-level

decomposition was applied in LPT and 4-level decomposition was applied in DWT. Please note that

the APX in an N -level LPT has the same size as that in an (N − 1)-level DWT. All methods were

implemented in Matlab, run on the same computer, and applied directly to the 3D volumes rather

than 2D slices. Two free parameters (γ and σ) are in our CS rule. Taking γ = 10, σ = 1 produced

the best results in the experiments on the synthetic data; we therefore also used these values in the

experiments on real data.

Objective Evaluation Metric The objective metric QAB/F [202] was employed in evaluating the

fusion quality. This metric does not require an ideal composite image, which is difficult to get in

practical cases, as a reference image. QAB/F has been proven to correspond well with subjective

tests among different metrics [142] and is widely used to assess fusion quality [117, 109]. QAB/F

measures the amount of edge information correctly transferred from source images to the fused

image; a QAB/F score is within the range [0, 1], where a higher score indicates a better fusion

result.

Evaluation Using Synthetic Data Our CS rule was evaluated on two sets of realistic simulated

3D MRI brain images from BrainWeb [98], which were constructed based on real scans. The scans

in each set are spatially registered due to the nature of the simulation. Each scan has 181×217×181

voxels with 12-bit precision, and the size of each voxel is 1 mm3. One set contains images of a nor-

mal brain, and the other contains images of a brain with moderate multiple sclerosis lesions. The

objective evaluation results for LPT- and DWT-based fusion are summarized in Tables 5.1 and 5.2

(first two rows), respectively. Our CS rule has the best performance in transferring edge informa-

tion on both datasets, as indicated by the highest QAB/F scores. LPT performs better than DWT

for these datasets. When the other settings are the same, WBV performs better than NV and CBV;
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and AVG performs better than WA. Therefore, for the sake of brevity, only NG+AVG+CM+WBV,

CBSG+AVG+CM+WBV, and MG+CM+CM+WBV are visually compared with our CS rule on the

lesion dataset in Figure 5.5. Only one slice along the axial axis from each volume is displayed. These

slices are normalized to 8-bit precision only for the purpose of a visual comparison of fusion qual-

ities. Please note that when viewed using a medical image visualization software (e.g., VolView),

the voxel values are usually not normalized, but instead, the display range of the voxel values and

the image contrast can be interactively adjusted via the window/level setting. The formulation of

image fusion as membership calculation, together with the consistency constraints imposed in our

CS fusion rule, helps to ensure that associated coefficients are fused similarly in order to avoid fu-

sion artifacts, and to ensure that salient information (e.g., edge information) is correctly transferred

from the source images to the fused image. Therefore, compared to other fusion rules, our CS rule

not only correctly combined information with high consistency with the source images, but also

provided good local contrasts (e.g., between ventricles, grey matter and white matter). As shown

in the insets below each slice (refer to the scalp, diploë, grey matter, and white matter indicated by

the white arrows), our CS rule successfully eliminated the blocking artifacts shown in MG when

coupled with LPT, and it eliminated the aliasing artifacts in NG, CBSG, and MG when coupled with

DWT.

Evaluation Using Real Data We also tested our method on fifty real datasets of normal brains

randomly selected from the NIH Pediatric MRI Data Repository [28]. Each dataset contains stereo-

taxically registered MRI scans of the same subject. We used the T1W and T2W scans in each dataset

to evaluate the proposed fusion method. Each scan has 197×233×189 voxels with 32-bit precision,

and the size of each voxel is 1 mm3. The objective evaluation results on five representative datasets

for LPT- and DWT-based fusion are summarized in Tables 5.1 and 5.2 (last five rows), respectively.

According to the QAB/F scores, the fusion rules are ranked from 1 (best) to 13 (worst) for each

dataset. The average rankings on all the 50 datasets are presented in Table 5.3. Due to the various

image conditions in different datasets, a high QAB/F score in one dataset may be low in a different

dataset (e.g., compare the last two rows in Table 5.2). Therefore, in order to give a relatively fair

comparison of the average performance of all the 13 fusion rules on the 50 datasets, we used this av-

erage ranking method. Our CS rule has the best performance in transferring edge information on the

average. With the other settings the same, AVG and WA have very close performance for both LPT

and DWT; WBV has better performance than NV and CBV for LPT; NV and WBV have similar

performance for DWT+NG; WBV has better performance than NV and CBV for DWT+CBSG; and

NV has better performance than WBV for DWT+MG. The results on a representative case (dataset

#1002) are visually compared in Figure 5.6. For the sake of brevity, only NG+AVG+CM+WBV,

CBSG+AVG+CM+WBV, LPT+MG+CM+CM+WBV, and DWT+MG+CM+CM+NV are visually

compared with our CS rule. For the same reason as for Figure 5.5, the slices are normalized to 8-bit
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precision. As shown in the insets (refer to the cerebellum and the regions around the fourth ventricle

as indicated by the white arrow), our CS rule produced better consistencies at region boundaries

and gave better local details and contrasts. As Table 5.3 reveals, MG+CM+CM+NV performs, on

average, at a level close to that of our CS rule in DWT-based fusion, and MG performs slightly

better on some datasets as shown in Tables 5.1 and 5.2. However, this interpretation is based on the

QAB/F metric, which only considers edge information. Without correctly transferred neighborhood

information, the fusion results (even with higher QAB/F scores) tend to contain artifacts. These

artifacts will impair further analysis either by a radiologist or by image processing software. Our

CS rule effectively minimizes the occurrence of such artifacts. Figure 5.7 shows an example. Our

CS rule produced better neighborhood consistencies in the white matter.

5.2.6.2 Fusion Quality and the Number of Decomposition Levels

In this experiment, we analyzed the relationship between the fusion quality using our CS rule and the

number of decomposition levels (NDL). The seven datasets in Table 5.1 were used in this analysis,

and we considered four combinations: synthetic+LPT, synthetic+DWT, real+LPT, and real+DWT.

For LPT, 3- to 7-level decompositions were considered; for DWT, 2- to 6-level decompositions

were considered2. To better depict the relationship between fusion quality and NDL, for each MSD

scheme on each dataset, we used the QAB/F score obtained at the lowest NDL as the reference

and computed the ratio between the QAB/F score obtained at a higher NDL and the reference. A

ratio larger/less than 1 means an increase/decrease in the score. Figure 5.8(a) shows the average

ratios for each of the four combinations. On the horizontal axis, the size of the approximation level,

rather than the NDL, is used to normalize between LPT and DWT. On this axis, 1/M means that

the approximation level is 1/M of the original resolution in each dimension, which corresponds to

a (log2M + 1)-level LPT or a (log2M)-level DWT. The blue line denotes synthetic+LPT, red line

synthetic+DWT, green line real+LPT, and black line real+DWT. On average, the highest QAB/F

score is achieved when the approximation level size is 1/16, and the performance of our CS rule is

less affected by the NDL in LPT than in DWT. The average processing times (in seconds) of our CS

rule for each of the four combinations are compared in Figure 5.8(b). It can be concluded that when

the approximation level size is above 1/8, there is little improvement on the time performance. The

average MSD time of LPT on the seven datasets is about 3 seconds, while DWT takes about 11 sec-

onds. The IMSD time of LPT is about 39% of its MSD time, while the IMSD time of DWT is about

54% of its MSD time. Considering MSD time, fusion time, and IMSD time together, LPT+CS takes

only 36% of the time required by DWT+CS on the synthetic datasets, and 45% on the real datasets.

From this analysis and the evaluations in Section 5.2.6.1, it can be concluded that when combined

with the same fusion rule, LPT has better performance than DWT in terms of fusion quality and

time performance under our current implementation environment and experimental setup.

2For a very low NDL, a large linear system needs to be solved, which is intractable in practice for 3D medical data; hence,
these NDLs were selected.
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Figure 5.8: Analysis of the influence of the number of decomposition levels on the performance of
our CS fusion rule. (a) Influence on the QAB/F scores; (b) Influence on the processing times.

5.2.6.3 Application in Fusion of Other Imaging Modalities

Now that the performance of our cross-scale fusion rule has been validated, analyzed, and compared

with other fusion rules on T1W/T2W MRI fusion, we further demonstrate its effectiveness in the

fusion of other modalities. The registered 3D images used in the experiments in this section are

retrieved from [83]. LPT+CS was applied with the same parameter setting as in Section 5.2.6.1

unless otherwise mentioned.

Fusion of CT/MRI This dataset contains one CT scan and one T1W MRI scan of a patient with

cerebral toxoplasmosis. Each scan contains 256 × 256 × 24 voxels with 8-bit precision. Four

decomposition levels were applied because the depth of the third dimension is only 24 voxels. As

displayed in Figure 5.93, the calcification captured in the CT scan and the soft tissue structures

captured in the MRI scan are successfully transferred to the fused image. With our color fusion

scheme applied, different features stand out even better.

Fusion of SPECT/MRI This dataset contains one color-coded SPECT scan and one T2W MRI

scan of a patient with anaplastic astrocytoma. Each scan contains 256 × 256 × 56 voxels with

8-bit precision in the luminance channel. When one source image contains color (e.g., the color-

coded SPECT scan), a common procedure [201] is to fuse its luminance channel with the other

monochrome source image using a monochrome fusion method. As displayed in Figure 5.10, our

method combines the high Thallium uptake shown in the SPECT scan with the anatomical structures

shown in the MRI scan in the fused image in order to achieve better determination of the extent of

the tumor, while preserving high image contrast.

3Some blank pixels at the borders of the displayed images in Figures 5.9, 5.10, and 5.11 were clipped for more concise
presentations.

103



(a) (b) (c) (d)

Figure 5.9: Fusion of CT and T1W MRI images. (a) CT image; (b) T1W MRI image; (c) Fused; (d)
Color-fused.

(a) (b) (c) (d)

Figure 5.10: Fusion of SPECT and T2W MRI images. (a) SPECT image (color-coded); (b) T2W
MRI image; (c) Fused; (d) Fused (luminance channel).

Fusion of PET/MRI This dataset contains one color-coded PET scan and one T1W MRI scan of

a normal brain. Each scan contains 256 × 256 × 127 voxels with 8-bit precision in the luminance

channel. As demonstrated in Figure 5.11, the metabolic activity revealed in the PET scan and the

anatomical structures revealed in the MRI scan are combined in the fused image, providing better

spatial relationships.

5.2.6.4 Noise Sensitivity

Noise sensitivity is a common concern for many pixel-level fusion methods [146]. In order to

achieve robustness on noisy images such as ultrasound images, one could employ a denoising

activity-level measure [120] or a denoising pre-processing step as in Section 3.3.7.4.

104



(a) (b) (c) (d)

Figure 5.11: Fusion of PET and T1W MRI images. (a) PET image (color-coded); (b) T1W MRI
image; (c) Fused; (d) Fused (luminance channel).

5.3 Summary

In this chapter, we proposed the multiscale random walks framework to incorporate multiscale tech-

niques into the generalized random walks framework for robust performance based on both inter-

and intra-scale information. We proposed a cross-scale fusion rule built on MRW. Our fusion rule se-

lects an optimal set of coefficients for each decomposition level, and guarantees intra- and inter-scale

consistencies. Experiments on volumetric medical image fusion demonstrated the effectiveness and

versatility of our cross-scale fusion rule, which produced fused images with higher quality than ex-

isting rules. An efficient color fusion scheme effectively utilizing monochrome fusion results was

also introduced.

It is worth mentioning that it is possible to also extend MGCRF to incorporate multiscale rep-

resentations, which leads to a multiscale MGCRF model. However, the operators for constructing

MGCRFs at different scales and for passing information between scales need to be defined in ac-

cordance with the employed multiscale decomposition scheme. This is different from HMGCRF,

where a single set of operators can be defined.
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Chapter 6

Conclusions and Future Work

The primary goal of this thesis is to develop efficient and effective frameworks for solving discrete

pixel labeling problems in digital image processing and analysis. We focus on two representative

applications, i.e., stereo correspondence and image fusion (with a main focus on the latter), to verify

the performance of the frameworks. In the following, we first summarize the major contributions of

this thesis and then present several future research directions.

6.1 Contributions

Generalized Random Walks, Hierarchical Random Walks, and Multiscale Random Walks

We proposed a series of random walks based frameworks for discrete pixel labeling problems. The

generalized random walks framework converts a discrete labeling problem into steady-state proba-

bility calculation on a graph. The hierarchical random walks framework improves the computational

efficiency of GRW by performing the calculation in a coarse-to-fine fashion. The multiscale random

walks framework extends GRW to work with multiscale representations aiming for more robust

results taking into account both inter- and intra-scale information.

2D and 3D Image Fusion in the Random Walks Context We formulated image fusion as a

labeling problem in the random walks context. We applied GRW and HRW to 2D image fusion and

MRW to 3D image fusion. The derived fusion algorithms demonstrated better performance than

other state-of-the-art algorithms. In addition, we introduced perceptual metrics to multi-exposure

fusion, which further improved the fusion quality; and we also introduced an efficient color fusion

scheme based on color opponency theory.

Stereo Correspondence in the Random Walks Context We converted stereo correspondence to

a labeling problem in the random walks context and applied GRW to solve it. With basic distance

metrics, the derived algorithm demonstrated better performance than belief-propagation-based and

graph-cuts-based algorithms coupled with basic distance metrics. With basic disparity refinement
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schemes applied, the GRW-based stereo correspondence algorithm showed improved disparity esti-

mation.

Multivariate Gaussian Conditional Random Fields and Hierarchical MGCRFs We proposed

the multivariate Gaussian conditional random field model and the hierarchical MGCRF model for

more general multi-label problems. GRW and HRW can be considered special cases of MGCRF and

HMGCRF, respectively, in terms of steady-state probability calculation, when the pairwise precision

matrices are defined as identity matrices subject to one data-dependent and one data-independent

scaling factor.

6.2 Directions for Future Work

Effective and Compact Distance Metrics To date, we have been focusing primarily on the de-

velopment of frameworks/models for solving labeling problems in digital image processing and

analysis. As noted above, proper distance metrics are another important factor that affects the so-

lution quality. An example of this is the perceptual metrics that improved the image quality in

multi-exposure fusion. Therefore, developing effective and compact distance metrics is also cru-

cial for deriving high-quality solutions at a low computational cost. This is especially useful for

real-time applications and for applications where image acquisition conditions are not ideal.

Multi-Dimensional Distance Metrics In our current applications, each dimension of the MGCRF

or HMGCRF is assumed to be independent from the others, which results in diagonal precision

matrices for each variable pair. While this assumption simplifies the calculation (to the GRW or

HRW model) and leads to satisfactory results in stereo correspondence and image fusion, employing

non-diagonal precision matrices, i.e., exploring multi-dimensional distance metrics, may be useful

for more complicated labeling problems.

Generalization of HMGCRFs Although the MGCRF model that we introduced does not place

restrictions on the types of graphs or neighborhoods used, the HMGCRF model that we intro-

duced here considers only lattice graphs with first-order neighborhoods. This model can be gen-

eralized to graphs with arbitrary topologies and with higher-order neighborhoods using a properly-

defined node grouping/clustering scheme and a properly-defined distance metric for neighboring

node groups/clusters. This generalized HMGCRF model can be applied to labeling problems with

irregular sites (e.g., extracted features or segmented regions).

6.3 Publications

Refereed Publications Directly Arising from or Closely Related to Thesis Work
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[1] R. Shen, I. Cheng, and A. Basu. Cross-scale coefficient selection for volumetric medical

image fusion. IEEE Transactions on BioMedical Engineering, 2012.
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Appendix A

Belief Propagation for Bayesian
Networks

Pearl [140] proposed two belief propagation algorithms for Bayesian networks based on message

passing between neighboring nodes. The first algorithm is called belief update (also known as sum-

product belief propagation, or BP-S). When iterative message updating in belief update reaches

equilibrium, an MPM solution is found. The correctness of this algorithm is guaranteed for singly

connected networks. The belief (posterior probability) bi(fi) at node xi reflects the conditional

probability that the scene variable xi at location i takes label fi given all evidence e received so far:

bi(fi) , P (xi = fi|e) , P (fi|e), (A.1)

where e consists of all of the instantiated variables. A belief vector bi = (bi(l1), . . . , bi(lK))T is

stored for each node xi to represent the beliefs of that node taking different labels. Then, the MPM

labeling problem is equivalent to finding the label with the highest belief for each variable:

f∗i = arg max
fi∈L

bi(fi). (A.2)

Suppose node xi has n immediate parents U = {u1, u2, . . . , un} (i.e., there is a direct link from

each ui to xi in the network) and m immediate children Y = {y1, y2, . . . , ym} (i.e., there is a direct

link from xi to each yi in the network). Note that U ∪ Y = Ni. Then, e can be split into two

sets: eU, which represents the evidence provided through U, and eY, which represents the evidence

provided through Y, with e = eU ∪ eY and eU ∩ eY = ø. Therefore, using the Bayes’ theorem,

bi(fi) defined in Equation (A.1) can be expressed as:

bi(fi) = P (fi|eU, eY) = αP (eY|eU, fi)P (fi|eU) = αP (eY|fi)P (fi|eU), (A.3)

whereα = 1/P (eY|eU) serves as a normalizing constant rendering
∑K
i=1 bi(li) = 1. Letmujxi(fuj )

denote the message that xi receives from its parent uj given uj = fuj , and myjxi(fi) the message

that xi receives from its child yj given xi = fi. These messages are actually conditional probabili-

ties given the evidence provided through those nodes:

mujxi(fuj ) , P (uj = fuj |euj
),myjxi(fi) , P (eyj

|xi = fi). (A.4)
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Then, bi(fi) can be further factorized as:

bi(fi) = α[
m∏

j=1

myjxi(fi)]{
∑

fU∈Ln
[P (fi|fU)

n∏

j=1

mujxi(fuj )]}, (A.5)

where P (fi|fU) , P (xi = fi|U = fU) is one entry in the fixedK×Ln transition matrix P (xi|U),

which relates xi to its immediate parents U.

In the iterative message updating procedure, a node xi sends a message mt
xiuj (fi) to each of its

parents given uj = fuj and mt
xiyj (fi) to each of its children given xi = fi based on the received

messages from the previous iteration, and it updates the beliefs bi(fi). The three belief updating

rules are as follows:

mt
xiuj (fuj )← β

∑

fi∈L

{[
m∏

k=1

mt−1
ykxi

(fi)]{
∑

fU\uj

[P (fi|fU\uj )
∏

k 6=j

mt−1
ukxi

(fuk)]}}. (A.6)

mt
xiyj (fi)← α[

∏

k 6=j

mt−1
ykxi

(fi)]{
∑

fU

[P (fi|fU)
n∏

j=1

mt−1
ujxi(fuj )]}. (A.7)

bti(fi)← α[
m∏

j=1

mt−1
yjxi(fi)]{

∑

fU

[P (fi|fU)
n∏

j=1

mt−1
ujxi(fuj )]}. (A.8)

α and β are normalizing constants. The procedure is initialized with all messages set to 1. An

observed node sends out the same messages and does not receive messages. For singly connected

networks, the computed beliefs are guaranteed to be exact at convergence, and therefore the exact

MPM configuration can be found. However, the exact computation either of beliefs or of the MPM

configuration cannot be guaranteed for networks with loops.

The second BP algorithm proposed by Pearl [140] is called belief revision (also known as max-

product belief propagation, or BP-M), for producing the MAP configuration. It differs from BP-S in

that, in order to get the MAP configuration, the probabilities of the other unobserved nodes need to

be maximized rather than summed. Therefore, the belief b̂i(fi) at node xi is defined as:

b̂i(fi) , max
f

P (X = f |e) , max
f\fi

P (xi = fi,X\xi = f\fi|e). (A.9)

Then, the MAP labeling problem expressed in Equation 2.5 is equivalent to finding the label with

the highest belief for each variable:

f∗i = arg max
fi∈L

b̂i(fi). (A.10)

Differing from BP-S, b̂i(fi) may not sum to unity over fi in BP-M. Let m̂ujxi(fuj ) denote the mes-

sage that xi receives from its parent uj given ui = fuj , m̂yjxi(fi) the message that xi receives from

its child yj given xi = fi. These messages can be expressed as maximization over probabilities:

m̂ujxi(fuj ) , max
fU\uj

P (uj = fuj ,U\uj = fU\uj ), m̂yjxi(fi) , max
fyj

P (yj = fyj |xi = fi).

(A.11)
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Therefore, b̂i(fi) can be factorized as:

b̂i(fi) = αmax
fU

[
m∏

j=1

m̂yjxi(fi)P (fi|fU)
n∏

j=1

m̂ujxi(fuj )]. (A.12)

The belief updating rules for BP-M are similar to those in BP-S:

m̂t
xiuj (fuj )← max

fi,fU\uj

[
m∏

j=1

m̂t−1
yjxi(fi)P (fi|fU)

n∏

k 6=j

m̂t−1
ukxi

(fuk)]. (A.13)

m̂t
xiyj (fi)← αmax

fU
[
m∏

k 6=j

m̂t−1
ykxi

(fi)P (fi|fU)
n∏

j=1

m̂t−1
ujxi(fuj )]. (A.14)

b̂ti(fi)← αmax
fU

[
m∏

j=1

m̂t−1
yjxi(fi)P (fi|fU)

n∏

j=1

m̂t−1
ujxi(fuj )]. (A.15)

Like BP-S, the procedure is initialized with all messages set to 1, and an observed node only sends

out the same messages. For singly connected networks, the correct MAP configuration can be

found at convergence. However, the correctness of the MAP configuration cannot be guaranteed for

networks with loops.
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Appendix B

Random Walks with Label Priors

The algorithm reviewed in Section 2.4.2 requires some of the variables to be instantiated. This

requirement is relaxed in [68] by incorporating label priors and approaching the problem from a

Bayesian perspective1. Given the likelihood probability (referred to as label prior in [68]) λi,k ,

P (D|xi = lk) of observing D given node xi being assigned label lk, and assuming that the prior

probabilities P (xi = lk) of xi being assigned with different labels are equal, the posterior probabil-

ity Pk(xi) can be expressed as follows using the Bayes theorem:

Pk(xi) =
λi,k∑
lk∈L λi,k

. (B.1)

Let Λk denote the diagonal matrix whose i-th diagonal entry is λi,k. Equation (B.1) can then be

rewritten in a vector form:

(
∑

lk∈L

Λk)Pk = λk, (B.2)

where Pk is a column vector representing the PMF Pk(·) defined on X and λk is a column vector

whose i-th entry is λi,k. Pk satisfying Equation B.2 minimizes the following aspatial energy2:

Easpatial(Pk) = (1−Pk)TΛk(1−Pk) +
∑

m6=k

Pk
TΛmPk. (B.3)

Let the spatial energy be defined proportional to the Dirichlet integral (Equation 2.48):

Espatial(Pk) = Pk
TLPk. (B.4)

Then the total energy can be expressed as a combination of the spatial and aspatial energies via a

free parameter γ:

E(Pk) = Espatial(Pk) + γEaspatial(Pk), (B.5)

The minimization of E(Pk) is equivalent to solving the following linear system:

(L + γ
∑

lm∈L

Λm)Pk = γλk. (B.6)

1Please note: This derivation in [68] is different from the Bayesian inference on MRFs.
2The Equations (B.3), (B.6), and (B.7) mentioned here are corrected versions for those printed in [68]. The corrected

paper is available on Grady’s personal webpage: http://cns.bu.edu/∼lgrady/publications.html.
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If there are labeled nodes, then only PU,k needs to be calculated for each lk ∈ L. Therefore,

Equation B.6 becomes:

(LUU + γ
∑

lm∈L

ΛU,m)PU,k = γλU,k − LULPL,k. (B.7)
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Appendix C

Conditional Density Derivation in
MGCRFs

As introduced in Section 3.4.2, the conditional density p(x̃|B̃,D) follows a multivariate Gaussian

distribution:

p(x̃|B̃,D) ∝ exp(−(
1

2

K∑

k=1

N∑

i=1

∆B̃ik
T
T̃ik∆B̃ik +

1

4

∑

eij∈EX̃

∆X̃ij
T
S̃ij∆

X̃
ij)). (C.1)

Let us denote the first term (i.e., unary term) in the negative exponent of Equation (C.1) as Eunary

and the second term (i.e., pairwise term) as Epairwise. Now, we derive the two terms separately.

Eunary =
1

2

K∑

k=1

N∑

i=1

∆B̃ik
T
T̃ik∆B̃ik

=
1

2

K∑

k=1

N∑

i=1

(xi − bk)T T̃ik(xi − bk)

=
1

2

K∑

k=1

N∑

i=1

(
xi
bk

)T (
T̃ik −T̃ik

−T̃ik T̃ik

)(
xi
bk

)

=
1

2

K∑

k=1

(
x̃
bk

)T




T̃1k 0 0 0 −T̃1k

0 T̃2k 0 0 −T̃2k

0 0
. . . 0

...
0 0 0 T̃Nk −T̃Nk

−T̃1k −T̃2k · · · −T̃Nk

∑N
i=1 T̃ik




(
x̃
bk

)

=
1

2

(
x̃

b̃

)T




∑K
k=1 T̃1k 0 0 −T̃11 · · · −T̃1K

0
. . . 0

...
...

...
0 0

∑K
k=1 T̃Nk −T̃N1 · · · −T̃NK

−T̃11 · · · −T̃N1

∑N
i=1 T̃i1 0 0

...
...

... 0
. . . 0

−T̃1K · · · −T̃NK 0 0
∑N
i=1 T̃iK




(
x̃

b̃

)

=
1

2

(
x̃

b̃

)T (
T̃X̃ X̃ T̃X̃ B̃
T̃B̃X̃ T̃B̃B̃

)(
x̃

b̃

)

=
1

2
x̃T T̃X̃ X̃ x̃ + x̃T T̃X̃ B̃b̃ + ε, (C.2)
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where T̃X̃ X̃ is an N × N diagonal matrix; T̃X̃ B̃ = T̃T
B̃X̃ is an N × K matrix; T̃1

B̃B̃ is a K × K

matrix; and ε = 1
2 b̃T T̃B̃B̃b̃ is a constant.

Epairwise =
1

4

∑

eij∈EX̃

∆X̃ij
T
S̃ij∆

X̃
ij

=
1

4

∑

eij∈EX̃

(xi − xj)
T S̃ij(xi − xj)

=
1

2
x̃T P̃x̃, (C.3)

where each K ×K element of P̃ is defined as:

P̃ij =





∑
xj∈Ni S̃ij , i = j;

−S̃ij , eij ∈ EX̃ ;
0, otherwise.

(C.4)

If we substitute Equations (C.2) and (C.3) into Equation (C.1), we have:

p(x̃|B̃,D) ∝ exp(−Eunary − Epairwise)

= exp(−1

2
x̃T T̃X̃ X̃ x̃− x̃T T̃X̃ B̃b̃− ε−

1

2
x̃T P̃x̃)

∝ exp(−1

2
x̃T (T̃X̃ X̃ + P̃)x̃− x̃T T̃X̃ B̃b̃)

= exp(−1

2
x̃T Z̃x̃− x̃T R̃b̃), (C.5)

where Z̃ = T̃X̃ X̃ + P̃, i.e., each K ×K element of Z̃ is defined as:

Z̃ij =





∑K
k=1 T̃ik +

∑
xm∈Ni S̃im, i = j;

−S̃ij , eij ∈ EX̃ ;
0, otherwise.

(C.6)

and R̃ = T̃X̃ B̃, i.e., each K ×K element of R̃ is defined as:

R̃ik = −T̃ik. (C.7)
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Appendix D

Experimental Results of
Perception-Guided Multi-Exposure
Fusion

D.1 Comparison with Other Methods

Our perception-guided fusion method was compared with two state-of-the-art multi-exposure fusion

(MEF) methods and two state-of-the-art tone-mapping (TM) methods on six different scenes (Fig-

ures D.1 to D.6). PGF denotes our method that takes final probabilities directly as fusion weights.

PGF-A denotes our method that uses a linear fusion weighting function defined on the final probabil-

ities. PF denotes the probabilistic fusion method proposed in Section 3.3. EF denotes the exposure

fusion method proposed by Mertens et al. [130]. PTR denotes the photographic tone reproduction

TM operator proposed by Reinhard et al. [156]. iCAM06 denotes the TM operator proposed by

Kuang et al. [94]. The results of PF, EF, PTR, and iCAM06 were generated by the programs pro-

vided by their respective authors. PGF, PGF-A, PF, EF, and iCAM06 are Matlab implementations;

PTR is a C implementation. The same parameter setting introduced in Section 4.2.8 was used in

PGF and PGF-A for all experiments unless otherwise mentioned. The default parameter settings

in PF, EF, and iCAM06 were used. The parameters in PTR were generated using the estimation

technique in [155]. The high dynamic range (HDR) images for TM methods were generated using

HDR reconstruction [46] from the corresponding source sequences.

D.1.1 Objective Evaluation Using DRIVDP

The dynamic range independent visible difference predictor (DRIVDP) [11] was used to assess the

visual distortions between a test image and each source image. Three distortions were considered:

loss of visible contrast; amplification of invisible contrast; and reversal of visible contrast. These

distortions were reflected in a distortion map, where green, blue, red, and gray pixels indicated

contrast loss, amplification, reversal, and no distortion, respectively. We assumed that the images

were viewed on a typical LCD with a max luminance equivalent to 100cd/m2, a gamma value of
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2.2, and a visual resolution of 30 pixels per degree at a viewing distance of 0.5 meter, and that the

peak contrast sensitivity of the viewer was 0.25%.

The evaluation result using two images from the Memorial Church sequence is given in Fig-

ure D.7 (please refer to Figure D.1 for a visual comparison). The source image on the left offers

good clarity for the ceiling and wall that appear in the right portion of the image. The source im-

age on the right offers good clarity for the lower left window. For the ceiling and wall, PF, PGF,

and PGF-A show relatively less distortion, followed by EF, iCAM06, and PTR. For the lower left

window, iCAM06 shows the least distortion, followed by PGF, PGF-A, PTR, PF, and EF.

The evaluation result on the National Cathedral sequence is given in Figure D.8 (please refer

to Figure D.2 for a visual comparison). The two source images with good clarity respectively for

the windows and the walls are given in Figure D.8(a). The contrast distortion maps generated using

DRIVDP for each method are given in Figure D.8(b)-(g). PGF performs best in preventing contrast

distortions, followed by PGF-A, PF, EF, PTR, and iCAM06.

The evaluation result using two images from the House sequence is given in Figure D.9 (please

refer to Figure D.3 for a visual comparison). The source image at the top offers good clarity for the

outdoor scene, and the source image at the bottom offers good clarity for the bookshelf. For these

two source images, PGF-A and EF perform similarly and best, followed by PGF, PF, iCAM06, and

PTR.

The evaluation result using two images from the Chateau sequence is given in Figure D.10

(please refer to Figure D.4 for a visual comparison). The source image on the left offers good clarity

for the balcony and trees. For these regions, PGF, PGF-A, and iCAM06 perform similarly, followed

by PTR, PF, and EF. The source image on the right offers good clarity for the indoor scene. For the

indoor scene, PGF, PGF-A, PF, and EF perform similarly, followed by PTR and iCAM06.

The evaluation result using two images from the Lamp sequence is given in Figure D.11 (please

refer to Figure D.5 for a visual comparison). The two source images offer good clarity for the bulb

and the books, respectively. For the bulb, PGF-A shows the least distortion, followed by PGF, PTR,

PF, EF, and iCAM06. For the books, PGF-A shows the least distortion, followed by EF, PF, PGF,

iCAM06, and PTR.

The evaluation result using two images from the Belgium House sequence is given in Fig-

ure D.12 (please refer to Figure D.6 for a visual comparison). The two source images offer good

clarity for part of the outdoor scene and the indoor scene, respectively. For the outdoor scene,

iCAM06 shows the least distortion, followed by PGF-A, PGF, PF, EF, and PTR. For the indoor

scene, PGF-A and EF show the least distortion, followed by PGF, PF, PTR, and iCAM06.

On the average, for the twelve source images considered in this evaluation, the ranking of the

six methods are: PGF-A > PGF > EF ≈ PF > iCAM06 > PTR.

128



D.1.2 Subjective Evaluation

The four criteria in our evaluation, i.e., global contrast, details, colors, and overall appearance, are

a subset of those used by Čadı́k et al. [34]. The two criteria not used are brightness and artifacts.

The brightness criterion is not used because its impact already spreads into the other criteria and

therefore reveals itself indirectly [34]. The reason for not using the artifacts criterion is two-fold.

1) The subjects were non-experts with (almost) no prior experience in MEF or TM. Therefore, their

understanding of artifacts can vary from one individual to another. It is difficult for them to identify

artifacts solely based on their own judgement. 2) The methods selected for our experiment did not

produce major artifacts except some minor color distortion in some results, but this can be covered

under the colors criterion.

The subjective evaluation results are summarized in Figure 4.12. Our PGF-A received the high-

est average ranking scores for all four criteria on five scenes, and performs similarly to our PGF on

the National Cathedral sequence. Considering all six scenes, the ranking from high to low for the

six methods is: PGF-A > EF > PGF > PF > iCAM06 > PTR for the global contrast criterion;

PGF-A > PGF > EF > iCAM06 ≈ PF > PTR for the details criterion; PGF-A > EF > PGF >

PF > iCAM06 > PTR for the colors criterion; PGF-A > PGF ≈ EF > PF > iCAM06 > PTR for

the overall appearance criterion. On average, the ranking of the six methods on the six scenes from

high to low is: PGF-A > EF ≈ PGF > PF > iCAM06 > PTR.

The experimental results also suggest that there is no single factor that dominates the user pref-

erence, but rather that it is the combination of different factors (e.g., global contrast and details) that

determines a user’s choice. Below are two examples:

• Although some images may suffer some loss of subtle details due to the enhanced contrast,

high global contrast and good color scheme can compensate for that in the visual impression,

which results in higher ranking scores. For the Lamp scene (Figure D.5), PGF received higher

rating than EF under the details criterion, but EF received higher ratings under the global

contrast and the colors criteria. Under the overall appearance criterion, EF received a higher

rating than PGF.

• On the contrary, good detail reproduction may also compensate for low global contrast or less

vivid color scheme in the overall impression. For the Chateau scene (Figure D.4), EF received

higher ratings than PF under the global contrast and the colors criteria, but PF received a

slightly better details rating. Both methods received similar ratings under the overall appear-

ance criterion. Also for the Chateau scene, PGF received similar ratings with EF under the

global contrast and the colors criteria, but received a much higher rating under the details

criterion. Under the overall appearance criterion, PGF has higher rating than EF.

Because user interaction is usually exploited in TM to generate images of different appearances,

we also tested different parameter settings of iCAM06. In iCAM06, the parameter p controls the
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brightness of the tone-mapped image. The default value of p in the implementation of iCAM06

provided by the authors of [94] is 0.7, which is the value that we took in the above experiments. A

larger p results in darker image and a smaller p results in brighter image. The suggested range of

p in [94] is [0.6, 0.85]. We also tested p = 0.6 and p = 0.4 for the six test scenes. The results are

given in Figure D.13, along with comparisons with our PGF and PGF-A. For each scene, the results

by iCAM06 with p = 0.6, iCAM06 with p = 0.4, PGF, and PGF-A are given on the left most, left,

right, and far right, respectively. Our PGF and PGF-A produce better details, contrasts, and colors.

D.1.3 Comparison with Perception-Based Tone Mapping Methods

Our fusion methods (PGF and PGF-A) were compared with two state-of-the-art TM methods (PTR

and iCAM06) in the previous sections. Among the two TM methods, iCAM06 is perception-based.

To the best of our knowledge, our fusion scheme is the first one to introduce contrast perception into

MEF. Although MEF and TM have different workflows, our fusion methods are also perception-

based. Therefore, in this section, we compare our methods with two more perception-based TM

methods, the display adaptive TM (DATM) operator [127] and the two-stage TM (TSTM) opera-

tor [56]. The C implementations of these two operators are provided by their respective authors.

The input HDR images were generated using HDR reconstruction from their corresponding source

sequences.

For DATM, we used the parameter setting for a typical office LCD. The gamma value of the

display is 2.2; the peak luminance of the display is 100cd/m2; the black level of the display is

0.8cd/m2; the reflectivity of the display is 1%; and the ambient illumination is 400 lux. This

setting corresponds to the setting in our objective evaluation using DRIVDP. Figure D.14 gives the

comparison between DATM, EF and our PGF-A. For each scene, the results of DATM, EF, and

PGF-A are given on the left, middle, and right, respectively. DATM produces images with quality

close to EF on average. Our PGF-A produces better details, contrasts, and colors.

For TSTM, there are two free parameters in their program. We set the Gaussian kernel radius

parameter σ to the value reported in the paper, i.e., 30 percent of the number of pixels along the

longer dimension of the input HDR image. The other parameter ρ controls the brightness of the

tone-mapped image. A smaller ρ results in a brighter image. We tested the performance of TSTM

with the default ρ value of 0, and also with the setting ρ = −5. The results are given in Figure D.15,

along with a comparison to those of our PGF and PGF-A. A smaller ρ in TSTM helps to reveal more

details in five scenes except in National Cathedral, where over-exposure appears in the window

region. Our PGF and PGF-A produce better details, contrasts, and colors.

D.2 Evaluation of Different Transducer Functions

Our fusion method currently employs the transducer function proposed by Foley and Schwarz [58].

Different transducer functions were proposed by other researchers, e.g., [62, 197]. A comparison
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between different transducer functions is given in Figure D.16. With the exception of the transducer

function, all of other settings in our fusion algorithm were the same when generating the fusion

results. The parameters in the individual transducer functions were all set to the reported values

from their respective papers. Garcı́a-Pérez’s [62] transducer function does not produce satisfactory

results for multi-exposure fusion, where over- and under-exposures occur in the fusion results. Wil-

son’s [197] transducer function for threshold and suprathreshold vision produces fusion results with

quality very close to Foley’s [58].

D.3 Evaluation of Different Saturation Measures

Our fusion method currently employs the saturation measure defined in the LHS (luminance, hue,

and saturation) color space [176]. Other saturation measures, such as the saturation measure de-

fined in the HSV (hue, saturation, and value) color space, Lübbe’s [121] saturation measure, and

Mertens’ [130] saturation measure, generate similar results in our fusion scheme. A comparison

between different saturation measures is given in Figure D.17. With the exception of the saturation

calculation scheme, all of other settings in our fusion algorithm were the same when generating the

fusion results. The saturation measures in the LHS and HSV color spaces, and Lübbe’s saturation

measure, generate very similar fusion results. The fused images using Mertens’ saturation measure

show slight over-exposure when applied in PGF-A.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure D.1: Comparison of PGF and PGF-A with PF, EF, PTR, and iCAM06 on the Memorial
Church sequence. PGF and PGF-A preserve more details than the others, especially in the window
regions. PGF-A produces higher global contrast than PGF, but may cause the loss of subtle details,
e.g., in the window regions. Our PGF-A has the highest average ranking scores under all four criteria
on this sequence in the subjective evaluation. (a) Source sequence. (b) PGF. (c) PGF-A. (d) PF. (e)
EF. (f) PTR. (g) iCAM06.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure D.2: Comparison of PGF and PGF-A with PF, EF, PTR, and iCAM06 on the National Cathe-
dral sequence. PGF and PGF-A generate the best results, where details in all regions are preserved
with high local contrasts and saturated colors. iCAM06 preserves as many details as ours in the
window regions but with less vivid colors. Our PGF has the highest average ranking scores under
all four criteria on this sequence in the subjective evaluation, followed by our PGF-A. (a) Source
sequence. (b) PGF. (c) PGF-A. (d) PF. (e) EF. (f) PTR. (g) iCAM06.
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(a)

(b) (c)

(d) (e)

(f) (g)

Figure D.3: Comparison of PGF and PGF-A with PF, EF, PTR, and iCAM06 on the House se-
quence. Our PGF-A has the highest average ranking scores under all four criteria on this sequence
in the subjective evaluation. (a) Source sequence. (b) PGF. (c) PGF-A. (d) PF. (e) EF. (f) PTR. (g)
iCAM06.
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(a)

(b) (c)

(d) (e)

(f) (g)

Figure D.4: Comparison of PGF and PGF-A with PF, EF, PTR, and iCAM06 on the Chateau se-
quence. Our PGF-A has the highest average ranking scores under all four criteria on this sequence
in the subjective evaluation. (a) Source sequence. (b) PGF. (c) PGF-A. (d) PF. (e) EF. (f) PTR. (g)
iCAM06.
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(a)

(b) (c)

(d) (e)

(f) (g)

Figure D.5: Comparison of PGF and PGF-A with PF, EF, PTR, and iCAM06 on the Lamp se-
quence. Our PGF-A has the highest average ranking scores under all four criteria on this sequence
in the subjective evaluation. (a) Source sequence. (b) PGF. (c) PGF-A. (d) PF. (e) EF. (f) PTR. (g)
iCAM06.
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(a)

(b) (c)

(d) (e)

(f) (g)

Figure D.6: Comparison of PGF and PGF-A with PF, EF, PTR, and iCAM06 on the Belgium House
sequence. Our PGF-A has the highest average ranking scores under all four criteria on this sequence
in the subjective evaluation. (a) Source sequence. (b) PGF. (c) PGF-A. (d) PF. (e) EF. (f) PTR. (g)
iCAM06.
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(a)

(b) (c)

(d) (e)

(f) (g)

Figure D.7: Comparison of PGF and PGF-A with PF, EF, PTR, and iCAM06 on the Memorial
Church sequence using DRIVDP. The source image on the left offers good clarity for the ceiling
and wall, which appear in the right portion of the image. The source image on the right offers good
clarity for the lower left window. In a distortion map, green, blue, red, and gray pixels indicate
contrast loss, amplification, reversal, and no distortion, respectively. For the ceiling and wall, PF,
PGF, and PGF-A show relatively less distortion, followed by EF, iCAM06, and PTR. For the lower
left window, iCAM06 shows the least distortion, followed by PGF, PGF-A, PTR, PF, and EF. (a)
Source sequence. (b) PGF. (c) PGF-A. (d) PF. (e) EF. (f) PTR. (g) iCAM06.

138



(a)

(b) (c)

(d) (e)

(f) (g)

Figure D.8: Comparison of PGF and PGF-A with PF, EF, PTR, and iCAM06 on the National Cathe-
dral sequence using DRIVDP. The two source images offer good clarity for the windows and the
wall, respectively. PGF performs best in preventing contrast distortions, followed by PGF-A, PF,
EF, PTR, and iCAM06. (a) Source sequence. (b) PGF. (c) PGF-A. (d) PF. (e) EF. (f) PTR. (g)
iCAM06.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure D.9: Comparison of PGF and PGF-A with PF, EF, PTR, and iCAM06 on the House sequence
using DRIVDP. The two source images offer good clarity for the outdoor scene and the bookshelf,
respectively. For these two source images, PGF-A and EF performs similarly and best, followed by
PGF, PF, iCAM06, and PTR. (a) Source sequence. (b) PGF. (c) PGF-A. (d) PF. (e) EF. (f) PTR. (g)
iCAM06.
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(b)

(c)

(d)

(e)

(f)

(g)

Figure D.10: Comparison of PGF and PGF-A with PF, EF, PTR, and iCAM06 on the Chateau
sequence using DRIVDP. The source image on the left offers good clarity for the balcony and trees.
For these regions, PGF, PGF-A, and iCAM06 perform similarly and best, followed by PTR, PF, and
EF. The source image on the right offers good clarity for the indoor scene. For the indoor scene,
PGF, PGF-A, PF, and EF perform similarly and best, followed by PTR and iCAM06. (a) Source
sequence. (b) PGF. (c) PGF-A. (d) PF. (e) EF. (f) PTR. (g) iCAM06.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure D.11: Comparison of PGF and PGF-A with PF, EF, PTR, and iCAM06 on the Lamp sequence
using DRIVDP. The two source images offer good clarity for the bulb and the books, respectively.
For the bulb, PGF-A shows the least distortion, followed by PGF, PTR, PF, EF, and iCAM06. For the
books, PGF-A shows the least distortion, followed by EF, PF, PGF, iCAM06, and PTR. (a) Source
sequence. (b) PGF. (c) PGF-A. (d) PF. (e) EF. (f) PTR. (g) iCAM06.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure D.12: Comparison of PGF and PGF-A with PF, EF, PTR, and iCAM06 on the Belgium House
sequence using DRIVDP. The two source images offer good clarity for part of the outdoor scene and
the indoor scene, respectively. For the outdoor scene, iCAM06 shows the least distortion, followed
by PGF-A, PGF, PF, EF, and PTR. For the indoor scene, PGF-A and EF show the least distortion,
followed by PGF, PF, PTR, and iCAM06. (a) Source sequence. (b) PGF. (c) PGF-A. (d) PF. (e) EF.
(f) PTR. (g) iCAM06.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure D.13: Comparison of iCAM06 with p = 0.6, iCAM06 with p = 0.4, our PGF, and our
PGF-A. For each scene, the results by iCAM06 with p = 0.6, iCAM06 with p = 0.4, PGF, and
PGF-A are given at the left most, left, right, and right most, respectively. PGF and PGF-A produce
better details, contrasts, and colors. (a) Results on the Memorial Church sequence. (b) Results on
the National Cathedral sequence. (c) Results on the House sequence. (d) Results on the Chateau
sequence. (e) Results on the Lamp sequence. (f) Results on the Belgium House sequence.
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(b)
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(d)

(e)

(f)

Figure D.14: Comparison of DATM, EF and our PGF-A. For each scene, the results by DATM,
EF, and PGF-A are given at the left, middle, and right, respectively. DATM produces images with
quality close to EF on average. PGF-A produces better details, contrasts, and colors. (a) Results
on the Memorial Church sequence. (b) Results on the National Cathedral sequence. (c) Results on
the House sequence. (d) Results on the Chateau sequence. (e) Results on the Lamp sequence. (f)
Results on the Belgium House sequence.
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(b)

(c)
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(e)

(f)

Figure D.15: Comparison of TSTM with ρ = 0, TSTM with ρ = −5, our PGF, and our PGF-A. For
each scene, the results by TSTM with ρ = 0, TSTM with ρ = −5, PGF, and PGF-A are given at the
left most, left, right, and right most, respectively. A smaller ρ in TSTM helps to reveal more details
in five scenes, but not in National Cathedral, where over-exposure appears in the window region.
PGF and PGF-A produce better details, contrasts, and colors. (a) Results on the Memorial Church
sequence. (b) Results on the National Cathedral sequence. (c) Results on the House sequence. (d)
Results on the Chateau sequence. (e) Results on the Lamp sequence. (f) Results on the Belgium
House sequence.

146



(a) (b)

(c) (d)

(e) (f)

Figure D.16: Comparison of different transducer functions on the Lamp sequence. Garcı́a-Pérez’s
transducer function does not produce satisfactory results for multi-exposure fusion, where over- and
under-exposures appear in the fusion results. Wilson’s transducer function produces results very
close to those of Foley’s transducer function. (a) PGF with Foley’s transducer function. (b) PGF-
A with Foley’s transducer function. (c) PGF with Wilson’s transducer function. (d) PGF-A with
Wilson’s transducer function. (e) PGF with Garcı́a-Pérez’s transducer function. (f) PGF-A with
Garcı́a-Pérez’s transducer function.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure D.17: Comparison of different saturation measures on the Belgium House sequence. The
saturation measures in the LHS and HSV color spaces, and Lübbe’s saturation measure generate
very close fusion results. The fused images using Mertens’ saturation measure show a little over-
exposure when applied in PGF-A. Overall, these different measures generate similar results in our
fusion scheme. (a) PGF with saturation defined in the LHS color space. (b) PGF-A with saturation
defined in the LHS color space. (c) PGF with saturation defined in the HSV color space. (d) PGF-A
with saturation defined in the HSV color space. (e) PGF with Lübbe’s saturation measure. (f) PGF-
A with Lübbe’s saturation measure. (g) PGF with Mertens’ saturation measure. (h) PGF-A with
Mertens’ saturation measure.
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