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Abstract

Solid state drives (SSDs) are becoming more common with their main advantage of

faster reads compared to hard disk drives (HDDs). However, writes are relatively

slower, indeed asymmetric with respect to reads, unlike in HDDs where read and

write are comparable. Current indexing structures were designed for HDDs and

aim at reducing the number of reads at query time. In SSDs, index writes may

impact the overall query performance in the presence of updates. Thus, we focus

on minimizing the number of writes during index update, considering the R-tree in

particular, given that it is an ubiquitous and update-expensive indexing structure.

We propose the FAR-tree (for Flash Aware R-tree) which aims at avoiding node

splits by building a chain of nodes on leaf nodes. Our experiments using real and

synthetic datasets show that the FAR-tree can yield a more update-efficient index at

the cost of some overhead at query time.
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Chapter 1

Introduction

1.1 Motivation

Many books come with an index section in their end to help readers navigate the

book. The book index is a collection of headings and associated page number(s)

where information about the heading can be found. The headings are typically

titles, concepts, or subjects in the book and are usually categorized or alphabetically

sorted. Readers can quickly locate their interested topics in a given book directed

by the index.

Generally, an index is a data structure built on data to improve the performance

of search queries. It provides efficient data retrieval of both sequential access and

random lookups. An index is key to a database management system (DBMS) to

enhance performance. For example the B-tree index, which is commonly used in

relational databases. A B-Tree search starts from the root node and chooses the

subtree by comparing the search value and the separation value in the node. A

query on a number of n objects takes O(log n) with a B-Tree index, compared with

a sequential scan without using an index that takes O(n). A B-Tree example is

showed in Figure 1.1. If we look for 17 from the numbers, without an index, we

need to traverse each of the numbers until we meet 17; So in the given example

we need 16 reads. With the index, we start from the root and descend to the right

subtree since 17 is larger than 10, then we descend to the right subtree of 14 since 17

is between 14 and 18, and finally we find 17 on the leaf node; during this process,

we find 17 after only 4 reads.
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Figure 1.1: B-Tree index for data: 2, 14, 10, 5, 1, 4, 6, 11, 13, 19, 7, 20, 18, 9, 12,
17, 15

A spatial index is used to quickly locate and retrieve objects in space based on

their locations. Over the past decades, intense researches have been done on spatial

indexing to pursue a more efficient maintenance and usage of the spatial data. The

most popular index structures is the R-Tree [4] and the many variants based on

it [2] [6]. It is the most commonly used spatial structure and has been implemented

in database products such as Oracle, MySQL, and PostgreSQL [3].

The R-Tree and its variants are mostly designed for the hard-disk drives (HDDs).

Nowadays, solid-state drives (SSDs) are a new storage media for both personal

computers and commercial servers, with its featured advantages of faster perfor-

mance and lower power consumption than the HDDs [15]. Generally, there are

three factors that affect the performance of a magnetic disk: the seek time, the rota-

tional latency, and the data transfer time. For the SSD, however, besides a superior

transfer rate [7], it does not need time to seek for tracks and there is no mechanical

latency. A key component of an SSD is the flash memory. Most SSDs are built with

NAND flash memory. Flash memory is an electronic memory and is composed of

flash cells, which catches or insulates electrons to charge the voltage on the flash

cells, and the flash memory then stores the information using arrays containing

cells’ voltage. Unlike HDDs, which require magnetic heads to access data on the

rotating platters, the flash memory does not have to pay for the expensive disk seeks

when doing random read access. Reading on SSDs thus costs less than on HDDs.

Furthermore, without using the rotating platters, the SSDs do not consume power

as much as the HDDs.

The advantageous features make SSDs an appropriate alternative to HDDs for

storing and indexing data. At the same time, it is realistic nowadays considering
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Figure 1.2: A general SSD architecture

the affordable price and the increasingly available storage space of the SSDs [3].

Also, sharing the same I/O interface with traditional HDDs, the SDDs are easy to be

employed on existing systems from the hardware aspect. A general architecture of

an SSD is displayed in Figure 1.2. The Flash Translation Layer (FTL) maintains the

disk’s operation. The LBA-to-PBA mapper maps every logical page to a physical

one; the page allocator find free pages to write data; the garbage collector does the

flash disk garbage collection and the wear leveling is to swap blocks for longer disk

life span, which will be explained in the next three paragraphs.

However, due to different mechanisms of the hardware implementation, the

flash-based SSDs differ from the conventional magnetic-based HDDs on the I/O

performance. A major difference is the SSDs’ I/O asymmetry. By contrast, HDDs

spend the same amount of time for reading and writing data, as both operations

are performed by first moving the heads to the target location on the disk and then

respectively read or write data. The access time for SSDs is typically faster than

HDDs when reading data from the disks, while writing could be slower.

In an SSD, the flash chips are divided into blocks, and each block contains pages

3



(a) A fresh block containing 8 pages.

(b) Writing A, B, C to Block1.

(c) Writing D to Block1, and update A, B, C to A’,
B’, C’.

(d) Updating D to D’.

(e) Valid contents are moved to Block2 after garbage
collecting.

Figure 1.3: Examples of SSDs’ operations
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where the data is stored. Typically, a page is 4 - 8 KB in size and a a block consists

of 32 - 128 pages. An example of a flash block is showed in Figure 1.3a where

there are 8 blank pages contained in Block1. Operations on the disks includes read,

program, and erase: read is to read a page from the disk, program means first-time

writing on a fresh page, and erase is to clear up all existing contents within a block.

So the SSD reads and programs in pages while erases in blocks. The SSD page

cannot be over-written. Thus, to update a page within a block, the flash memory

will mark the old page as invalid and then look for a new fresh page to program the

updated value. For example, we are to write data A, B, and C to the flash block in

Figure 1.3a. Since all pages are fresh in this block, the data will be programmed to

the first three pages, as showed in Figure 1.3b. Next we are to write D and update

A, B, and C to A’, B’, and C’. On the disk, D is programmed to the next free page.

However, for the reason that the flash pages cannot be over-written, to update A, B,

and C, pages containing the old values will be marked as invalid, and the updated

value A’, B’ and C’ will be programmed to the next three free pages, as resulted in

Figure 1.3c. Similarly when we update the data D, we need to first invalidate the

page of D and program the new value D’ on the last free page in this Block1, as

showed in Figure 1.3d. Moreover, the SSDs will reclaim a block when the number

of invalid pages is large enough; this reclaiming process is called garbage collec-

tion. During the garbage collection, the remaining valid pages of that block, if any,

will be moved to a new block and the old block will be erased as a whole to be back

to fresh. A whole block has to be erased even though it is partially dirty. Assume

a block will be garbage collected when half of its pages are invalid in Figure 1.3d.

To garbage collect Block1, the SSD will find a new fresh block named Block2 and

move A’, B’, C’, and D’ to the Block2; afterwards, everything on Block1 will be

erased and Block 1 is back to fresh as was in Figure 1.3a. Another strategy called

wear leveling swaps intensely-used blocks with rarely-used ones. A flash block

would wear out if programmed and erased a large number of times. By swapping

blocks, as the writes are distributed such that every block can have their maximum

utilization, the disk’s life is extended. However, both the garbage collection and the

wear leveling cause extra writes on disks. The amount of actual physical writes on
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flash disks is larger than the amount of logical commands from disk manager. This

phenomenon is called write amplification.

In summary, the I/O asymmetry and the garbage collection lead to the fact that

writing, especially randomly, on SSDs is slow and expensive. The SSDs’ I/O asym-

metry is due to the page-based write and block-based erase of flash chips. Garbage

collection and wear leveling cause write amplification, which brings more disk

writes.

In this thesis, we focus on a particular index, the R-Tree, and how it can benefit

from the SSDs architecture.

An R-tree is a dynamically constructed and maintained spatial index structure.

Operations on the R-Tree requires large amounts of reads and writes. Like other

tree structures, R-Tree is made up of nodes, which are composed of the Minimum

Bounding Rectangles (MBRs) of spatial objects as the entries of a node. We will

explain the R-Tree in detail in Section 2.2. For an R-Tree, usually a node is stored

as a single page. According to the SSDs’ characteristics, each time we update a

node or randomly insert entries to a node, all the information on this node has to

be firstly invalidated and the updated node will be programmed on a fresh page

afterwards. Thus, continuously updating nodes will increase the number of invalid

pages within blocks. The garbage collection process will reclaim a block when

invalid pages within it exceed some threshold. Furthermore, an insertion of a data

item into the R-Tree can trigger node splits. One node split needs at least three

writes: two on the split nodes and one on their parent node. One node split could

further cascade onto upper levels and result in multiple node splits until reach the

root; this will introduce even more writes on the disk.

When implementing the R-Tree spatial index on the SSDs, it becomes important

to consider the index updates, as that may impact the overall query response time

in the presence of updates. Therefore, to leverage the faster reads over the slow

random writes of SSDs, modifications are needed on the original indexing scheme,

with the goal being to reduce the expensive writes.
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1.2 Contributions

In this thesis, we adapted the existing R-Tree index for SSDs. We investigated and

designed an indexing approach, which was initially proposed in [11] for an efficient

spatial indexing on the SSDs. It reduces the random writes of index updates so as

to avoid the drawbacks of the SSDs. Although it introduces some extra reads on

queries, it works well for a comparatively update-intensive spatial system, consid-

ering the cheap read costs of the SSDs. Also, it does not need special care for buffer

management.

The contributions of this thesis are summarized as follows:

1. We analyzed the impacts on the R-Tree brought by the flash-based SSDs. Ap-

plying the characteristics of the flash storage, we conducted a detailed anal-

ysis for major operations on the R-Tree of their costs of disk I/Os, compared

with those on the magnetic storage.

2. We designed the FAR-Tree, a flash-aware spatial index grounded on the R-

Tree. Based on an imbalanced indexing idea in [11], we investigated to design

and develop the FAR-Tree indexing approach, which reduces a large number

of random writes by avoiding the R-Tree node splits.

3. We conducted a performance analysis of the FAR-Tree, for both insertions

and queries. The analysis provides a theoretical comparison between the R-

Tree and the FAR-Tree on their I/O costs.

4. We presented quantitative performance analysis of the FAR-Tree. We applied

the index on real-world spatial data, as well as synthetic data with various

attributes such as distributions and size of objects. We also tested the impact

of bulk-loading the base R-Tree.

5. We measured the disk access time on a real SSD, besides simulations mea-

sured in logical I/Os.
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1.3 Organization

The rest of this thesis is organized as follows. Chapter 2 reviews previous solutions

of indexing for both regular and spatial databases on the SSDs. It also explains

the R-Tree principles and performances when applied on the SSDs instead of the

HDDs. Chapter 3 describes the details of our FAR-Tree structures and algorithms.

It gives a cost analysis for the FAR-Tree, with a comparison to the R-Tree. Chap-

ter 4 presents the experimental evaluation and analysis result of our approach, on

both real-world data and synthetic data, with both logical I/Os and real disk time

measurements. Chapter 5 summarizes the paper and discusses the future work.
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Chapter 2

Related Work

This chapter gives an overview of existing studies leveraging the SSD characteris-

tics on database storage and indexing, some of which are applicable or designed for

the spatial data. Then it introduces the R-Tree spatial index and how the R-Tree

operates on SSDs.

2.1 Databases on Flash Storage

Various approaches has been proposed to adapt database systems on SSDs. The

approaches can be generally categorized into:

• system architecture design

• buffer management

• indexing algorithm adaption

A review on data management over flash memory can be found in [10].

2.1.1 System Architecture Design

SSDs enjoy fast reads but have slow writes. In a database system, SSDs provide

benefits for rapid data queries but still not enough to directly replace the HDDs,

due to its slow updates. In this case, the systems are designed to have both the

SSDs and the HDDs at the same time and synthesize their respective strengths. So

for the system design approaches, it is not only focused on the database application,

but more generally on the system storage level.

9



HDDs and SSDs at the same storage level

One alternative of the design is to have HDDs and SSDs at the same level in the

storage hierarchy [9]. SSDs and HDDs are both used as persistent storage. Whether

to place incoming data on the SSD or on the HDD is determined by the workload

on the data. The system will identify the workload to place a page at the right

disk; read-intensive data will be placed on the SSD and write-intensive data will be

placed on the HDD. Also, the system will monitor reads and writes operations on

the data pages. If the workload changes, pages might migrate between disks, for

example, a page will be moved from the SSD to the HDD if its workload changes

from read-intensive to write-intensive.

HDDs and SSDs at different storage level

Another alternative is to put the disks at different storage hierarchy level: one works

as persistent primary storage and another works as cache.

Using the SSD as primary storage, the authors of [20] add the HDD as a “write

cache” to improve write throughput and reduce writes on the SSD. Incoming write

operations will be firstly logged onto the HDD cache. When the cache is full, the

logged changes will be merged and written to the SSD. The number of writes on

the SSD is reduced, since multiple writes could be merged into one. Also, HDDs’

latency and rotational delay are diminished since the log is a sequential write to the

disk.

On the other hand, SSDs are adopted as read cache when the HDD is acting as

the primary storage, considering the fast read of SSDs [13]. With efficient reading

and larger capacity than the RAM, the SSD acts as an adequate tier between the

buffer and the disk for reading. In this approach, part of the SSD cache also acts

in logging writes, taking advantage that flash memory is good for large sequential

writes.

2.1.2 Buffer Management Approaches

When only using SSDs as the storage, instead of hybridizing with magnetic disks,

one key point is to manage the buffer to reduce the writes on the SSD. Buffer man-

10



agement approaches are proposed either with smart eviction algorithms or to aggre-

gate random writes in the buffer and flush them in bulk, both are to avoid expensive

writes as much as possible.

Eviction algorithms

The idea of smart eviction algorithms is to choose proper victim pages/blocks to

minimize the disk writes in total. A clean first LRU (CFLRU) [17] approach di-

vides the buffer pool into working regions and clean-first region; the clean pages

in the clean-first region are always evicted before the dirty pages. Compared with

the normal LRU, pages could stay in the buffer longer, and this reduces writes from

evicting dirty pages. A cost-based buffer approach [9] estimates the costs on evic-

tion of each pages. Similar to the CFLRU, evicting dirty pages leads to write costs

while evicting clean pages does not. This approach has a cost region in the buffer

pool where the LRUs are queued by their eviction costs; units in the cost region

with least eviction costs will be the victim.

Aggregating random writes

On the other hand, aggregating random writes alleviates the SSD write costs, con-

sidering the comparably faster sequential writes to the random writes on SSDs. The

block padding LRU (BPLRU) approach [8] buffers only write operations; reads are

directly requested from the flash disk at the fast read rate. Also, blocks for the LRU

or the MRU are queued, moved, and evicted in the buffer, where the blocks are in

equal size with the blocks of the SSD. If a data block is not full on eviction, it will

read the missing part to fill the block so that the eviction writing will be sequential

in a whole block; updates will be performed by the disk erase unit on the flash disk,

which diminishes the overhead from random page updates. The append and pack

approach [21] create a layer between the DBMS buffer manager and the physical

disk. On eviction, it groups dirty pages in multiples of the SSD’s erase block size,

so that it writes dirty pages to the disk in blocks sequentially.

11



2.1.3 Indexing Algorithm Adaption

Besides the system and the memory level adaption, research has been done on di-

rectly designing or modifying the database indexes. As database indexes need to be

kept updated upon changes of the underlying data, but maintaining the index causes

lots of expensive writes, when implemented on SSDs, the index should be designed

to reduce the number of writes caused by index updates. Most index designs are

combined with correlated flash-aware buffer management.

Logging

The methods in [25] and [19] allocate a space in memory for each tree node to store

a list of update operations on that node. There is a mapping table between the tree

nodes and the updates. Query on a node will be done by combining the original

node information with the update list. Based on this, the approach in [25] will

compact the update list when there are too many items in a list. The design in [19]

keeps log of all operations in case of system crash. The update lists are adopted in

the FlashDB design as well, but not for all nodes [16]. A node in the FlashDB is

determined either in disk mode or in log mode, by the workload on the node. A

disk node is stored the same as a normal index node; a log node is composed of a

linked list of update logs for that node. Update-intensive nodes will be in log mode

so that the writes are amortized. Furthermore, the FlashDB is a self-tuning index

that each node can switch its mode to cater for dynamic workload.

Transforming random writes to sequential

Other approaches reduce write costs on flash disks by transforming random writes

into sequential writes, an idea similar to the buffer management approaches. The

LA-Tree divides a tree into subtrees and attaches buffers to each of the subtrees [1].

The buffer batches the updates to be performed on nodes of that subtree all at once.

This reduces the number of writes on the disk and transforms the random writes

into sequential ones. The FD-Tree has multiple levels in the index and when upper

levels get full to merge with lower levels, writes are transformed from random to

sequential [14].

12



In summary, the system architecture and buffer management approaches can be

generally applied with all tree index structures in databases, or even for the file sys-

tems. Various indexes can observe similar performance. For the indexing algorithm

adaption approaches, they are more specific and mostly focused on one certain in-

dex structure. For example, among the designs mentioned above, the approaches

in [16] and [14] are designed for B+-Tree, the approach in [25] is for R-Tree,

while the approaches in [1] and [19] can be generally applied with multiple index

structures.

2.2 The R-Tree

The R-Tree is the most commonly used spatial structure. Similar to the B-Tree, the

R-Tree is a balanced tree structure, but designed for spatial objects [4].

2.2.1 The R-Tree Index Structure

In the R-Tree, spatial objects are represented by their minimal bounding rectangles

(MBRs), with a unique identifier for each. With a structure similar to the B-Tree,

the R-Tree has both internal nodes and leaf nodes. An R-Tree example is shown in

Figure 2.1. Each node consists of entries to spatial objects or pointers to nodes in

the lower level; the leaf node entries store pointers to the real object data; the index

node entries store the address of nodes in its lower level. Entries in the leaf node

are stored in the form of:

(Object’s Identifier, Object’s MBR),

and entries in the internal node are stored as:

(Child Node’s Identifier, MBR of Child Node).

Nodes are stored corresponding to disk pages. Each node consists of the node

head and the node content. The node head stores the profile information of the

current node, such as the node ID and the node level; the node content refers to

entries stored in the node. The MBR of a node is the combining MBR of all entries

stored in it. Moreover, same as the B-Tree, each node can contain a maximum

number of entries, which is called the node capacity, and a minimum number of
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Figure 2.1: A spatial example and the R-Tree built on the distribution.

entries is enforced as well.

2.2.2 The R-Tree Operations

A spatial distribution example and its R-Tree index are shown in Figure 2.1. There

are 9 objects in the space area, represented by their MBRs. When constructing an

R-Tree, neighboring objects are grouped in one node upon their insertions; the R-

Tree insertion will be explained later. An R-Tree index constructed for the spatial

distribution in Figure 2.1 is shown on its right. We assume the node capacity is 3 in

this example. In the R-Tree, there are three leaf nodes; the internal node, which is

also the root node in this case, will hold the three leaf nodes as its entries.

As a balanced tree index structure, the R-Tree has basic operations of searching,

insertion, deletion and updating. With the example in Figure 2.1, we now explain

the R-Tree operations in detail.

1. The insertion will firstly find a leaf node to place the new object, with a

chooseLeaf function. The chooseLeaf will recursively traverse the tree from

the root node and descend by choosing the subtree with least MBR enlarge-

ment to include the new object. After inserting the object, the tree will adjust

itself, that changes on the leaf node will be propagated upward to the root.

If the leaf node is full before the insertion, the leaf node will split into two
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Figure 2.2: Insert object 10 to the spatial example in 2.1.

nodes and a new entry will be added into their parent node as a pointer to

the new split node; again, the parent node will split if it does not have space

for the entry to be added. Exhaustive algorithm, quadratic-cost algorithm and

linear-cost algorithm are provided for the node splitting. In this thesis, we

adopt the quadratic split.

2. The searching algorithm of R-Tree is similar to other tree structures. The R-

Tree search starts from the root node. For an intersection query, it examines

the query rectangle against each of the entry’s MBR in the node to see if they

intersect, so as to determine which subtree(s) to search inside. Recursively

the searching descends until the leaf node(s). When reach a leaf node, the

query rectangle will be examined against each of the entries in the leaf node

for intersection, and the query results will be returned.

3. The deletion is similar to the insertion. It firstly finds the leaf node where

the targeting node to be deleted is located. After deleting the node, the tree

will be condensed that changes on the leaf node propagated upwards. The

updating is operated by deleting the old value and re-inserting the updated

one.

Fore more details about the R-Tree operations, refer to [4].
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For the example in Figure 2.1, we are to insert an object 10 into this spatial

area, as shown in Figure 2.2 on the left. The choosesubtree function determines to

place the entry 10 in node B because B’s MBR enlarges the least to include the new

entry, compared with A or C. However, since the leaf node B is full, B needs to split

before inserting the entry 10. Splitting the node B further leads to the split of the

root node (which is the parent of node B) since the root node is full as well. In this

case, the tree is formed into the structure on the right of Figure 2.2 according to the

R-Tree insertion algorithm. The leaf node B is split into two leaf nodes B and B’,

each contains two object entries; the root node is also split into two internal nodes

with each contains two leaf nodes; a new root node is created and the tree height is

increased by one.

For a tree structure, the insertion and searching are more important. We will not

focus on the deletion and the updating in this thesis.

2.2.3 Bulk-loading R-Tree

To provide efficient query on the R-Tree, the key point is to minimize the empty

space covered by nodes’ MBRs and the nodes’ overlap. The more concise the

MBRs, the fewer subtrees a query will need to process so that fewer reads are

needed.

When constructing an R-Tree, the original idea was to insert one object at a

time. The insertion algorithm chooses the leaf node with least MBR enlargement

to put the new object; the choice is locally optimal. Thus, constructing an R-Tree

by inserting, there are disadvantages of sub-optimal space utilization, which may

reduce the query performance. The R-Tree structure is thus highly influenced by

the order that the entries are inserted.

Solutions have been proposed to optimize the structure of an R-Tree when it

is built: one is to perform changes to the insertion algorithm and another is bulk-

loading the R-Tree. R*-Tree is one of the examples modifying the insertion algo-

rithm. It forces a re-insertion on node overflow [2]. When inserting an entry to a

node which is full, its entries are firstly removed from the node and then re-inserted

into the tree. Entries may be placed at a more proper place than their original lo-

16



cation so that entries in a node are better clustered with less node MBR coverage.

The general idea of bulk-loading is to firstly sort the spatial objects based on their

locations and then pack and distribute them in nodes according to the sorting re-

sults to build the tree. The objective is also to have objects within one node closer.

Various packing algorithms have been proposed for bulk-loading the R-Tree, such

as the Nearest-X [18], the Hilbert Sort [5], and the STR [12]. However, none of the

algorithms is optimal for all kinds of datasets. Thus, in this thesis, for fairness of

comparison, we do not focus on the R-Tree bulk loading; although we will mention

the bulk-loading about its influence on our FAR-Tree approach.

2.2.4 Disk Write of R-Tree Insertion

As a dynamic balanced tree, the R-Tree updates itself upon insertions, which leads

to write operations on the disk. When implementing the R-Tree on SSDs, we care

much about the write costs brought by the R-Tree’s construction and maintenance.

According to the insertion algorithm, inserting an entry to a full leaf node leads

to the node to split. Whenever a node is split, at least three nodes are updated:

the split node, the new created node, and their parent node. Moreover, if the split

is propagated, more node updates will be needed. As the example in Figure 2.1

and Figure 2.2, the leaf node splits and the split is propagated upwards, the MBRs

are adjusted and the updates ascend to upper levels. Inserting object 10 costs five

node writes: two for splitting B into B and B’, two for splitting the root node, and

one for creating a new root node. In the case when the tree is large enough with a

lot more levels, the cost of disk writes brought by tree adjustment during insertion

will be considerable. We will have a detailed disk access analysis for the insertion

when comparing with the FAR-Tree in Chapter 3. A model for the R-Tree query

performance on disk access is presented in [22], which is an analysis generally

applicable for SSDs as well.
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Chapter 3

The FAR-Tree

The FAR-Tree is a flash-aware variant of the R-Tree spatial index. It is designed to

reduce the expensive disk writes on SSDs caused by the R-Tree index updates. In

this chapter, we will introduce the idea and explain the detailed implementation of

the FAR-Tree approach.

3.1 The FAR-Tree Design

The original R-Tree index is a balanced tree structure with dynamic node insertions,

deletions, and updates. As discussed in Chapter 1, when implementing the R-Tree

on SSDs, problems come up due to the read-write asymmetry of the flash storage.

Inspired by [11], the idea of the FAR-Tree is to improve the disk access efficiency

for the R-Tree index maintenance. When inserting data into an R-Tree, instead of

splitting nodes to accommodate new inserting data, the FAR-Tree appends data to

the overflowing leaf nodes. This results in an imbalanced tree structure but reduces

the number of node writes.

3.1.1 The FAR-Tree Structure With A Running Example

A FAR-Tree example is shown in Figure 3.1. There are three types of nodes in the

FAR-Tree: the internal node, the leaf node, and the chain node. The internal node

and the leaf node are as defined in the R-Tree; the chain node are nodes attached on

a leaf node. Entries in the leaf node and the chain node represent real spatial objects

and entries in the internal node point to the corresponding children nodes. Besides,
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Figure 3.1: Insert object 10 with the FAR-Tree insertion algorithm to the spatial
example in Figure 2.1.

every leaf node has two pointers to the first and the last chain node attached on it,

and every chain node has a pointer to its following chain node on the same chain;

for all of them, the pointer is set to NULL if no node is attached.

The basic idea of the FAR-Tree for saving disk writes is that there is no node

split when inserting new objects. The FAR-Tree insertion will firstly look for a

proper leaf node to place the new object. If the leaf node has space to include the

object, an entry representing the object will be inserted into the leaf node. However,

if the chosen leaf node is full, unlike the R-Tree where we split the leaf node, we

will create a chain node to place the new entry and append the chain node to that

leaf node. All subsequent objects to be inserted on this leaf node’s branch will be

put into the chain node; furthermore, when the chain node is full, a new chain node

will be created and appended on the previous one in the same way.

This appending insertion method leads to an imbalanced structure of the in-

dex. Accordingly, an alternative query approach is enforced on this imbalanced

index structure. A query in the FAR-Tree starts from the root node and descends

to subtrees. When the query arrives at a leaf node, entries in the leaf node will be

traversed sequentially. Furthermore, if there are any chain node(s) appended on this

leaf node, the query will keep traversing entries in the chain node(s) sequentially.

Query results are returned while traversing entries of both the leaf node and the
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chain node(s).

The detailed algorithms for the FAR-Tree operations will be explained in Sec-

tion 3.1.3, while here we give an overview of the the FAR-Tree operations with an

example of the same scenario we used for explaining the R-Tree in Chapter 2. In the

example, we are to add a new object 10 to the spatial area shown in Figure 2.1. With

the R-Tree insertion, the node B will split as it has no room for the new entry. With

the FAR-Tree method, instead, a chain node is created and appended to node B, in

which we place the entry 10. The FAR-Tree index is constructed in Figure 3.1, as a

comparison with the R-Tree in Figure 2.2. At the same time, the leaf node’s MBR

will be updated to include all chain nodes appended. The internal nodes’ MBR on

that path will be adjusted as well for any enlargement. In this example, the MBR of

node B is updated after the insertion of entry 10 while the root node does not need

to be updated, as shown in Figure 3.1. Without any node splits in the FAR-Tree,

during the insertion of entry 10, there are two node writes in total: one for creating

the chain node, and one for updating the MBR of node B. Compared to the 5 writes

by using the R-Tree insertion, we save 3 writes.

Overall, the number of writes saved offsets the additional reads at query time.

With the imbalance structure of the FAR-Tree, we may need to read more nodes

for a query. Query on chain nodes is executed sequentially. After traversing all

entries in the leaf node, we also need to traverse entries in the chain nodes. For

example when we are searching for the object 10 in Figure 3.1, we start from the

root node, descend to the leaf node B, and after traversing entries 4, 5, and 6, we

traverse the chain node and find the entry 10 inside; so we spend 3 node reads. In

this example, there is only one chain node attached. However, when more objects

have been inserted such that the chains are getting long, we will need to traverse

more chain nodes for one query. With the growing chains, the extra reads for chain

nodes traversal increase, and the savings gained from insertions may be offset by the

queries. Therefore we propose a re-balancing for the FAR-Tree. The re-balancing

re-organizes the FAR-Tree to a balanced status. It re-inserts all entries from the

chain nodes to the R-Tree index using the R-Tree insertion algorithm. After the re-

balancing, all chain nodes’ entries are inserted back to the R-Tree and a balanced
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Figure 3.2: The In-memory table T for the FAR-Tree in Figure 3.1. The MBR is rep-
resented by coordinate pairs of all dimensions; a coordinate pair (di[low], di[high])
specifies the minimum and the maximum coordinates of the ith dimension. The
hasChain label is a boolean stamp.

R-Tree index is constructed. Queries thereafter are on a balanced R-Tree index,

until some subsequent insertions were to cause an overflow.

3.1.2 An In-memory Stamp Table

Every time we insert a new entry to a chain node, its corresponding leaf node’s MBR

needs to be updated if the new inserted entry enlarges the leaf node’s bounding

rectangle. The updates will propagate upwards until the root node for any internal

nodes’ MBR changes. The adjustment can take lots of node writes, as the MBRs

are recalculated and written back to the nodes.

To eliminate the node writes caused by adjustment for chain nodes insertions,

we set up a table T in memory storing the latest MBRs for leaf nodes and internal

nodes. Adjustments caused by inserting to the original leaf nodes are executed on

the tree index. For insertions to the chain node, we do not update MBRs in disk;

all MBR changes will be reflected in the table. The table T is structured as in

Figure 3.2, which corresponds to the FAR-Tree in Figure 3.1. In the table, each

record represents a leaf node or an internal node, containing their latest MBR and

a label for whether there is a chain attached. The MBR is represented in space

coordinates and the hasChain label is a boolean stamp. We define that: (1) a leaf

node L has a chain when there is at least one chain node attached to L and (2) an

internal node I has a chain when any of the leaf nodes under this I has a chain

attached. That is, for a leaf node, if it has at least one chain node attached, the

“hasChain” label will be 1, and 0 otherwise; for an internal node, if any of the leaf
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nodes as its direct or indirect children has a chain, the “hasChain” label will be

marked 1, and 0 otherwise. Initially, the table T is constructed from the existing

base R-Tree; all nodes are marked 0 for their “hasChain” label and the MBRs are

equal to those of the existing base R-Tree nodes. When any insertion creates a chain

onto a leaf node, all nodes on the path from the leaf node to the root node will be

marked 1 for “hasChain” and the nodes’ MBR along the path will be updated as

needed in the table T. As the table shows in Figure 3.2, by attaching a chain node

to the node B, both B and B’s parent node, the Root, are marked 1 for “hasChain”.

When a query wants to get the MBR of a node, it will refer to the table T for the

latest MBR if the node is marked 1 for “hasChain”, otherwise the query will refer

to the index node on the disk directly. Upon the FAR-Tree re-balancing, the table T

will be refreshed and rebuilt based on the MBRs of the re-constructed R-Tree. With

this table, adjustments for chain nodes’ insertions are done in memory and thus we

eliminate the disk writes.

The space taken by the table T is acceptable. Each record contains an integer for

the node ID, four double for the MBR coordinates, and a boolean for the “hasChain”

label. In addition, we only keep the leaf nodes and the internal nodes in the table;

in real applications, the node capacity is usually large, which makes the number of

nodes much smaller than the number of spatial objects. For example, the table for

an index built on 1 million data objects takes less than 1 Megabyte.

3.1.3 The FAR-Tree Algorithms

Below we list the key algorithms for the FAR-Tree implementation. Our method

modifies the insertion and the query. For the query, we focus on the intersection

query.

Insertion

Algorithm 1 gives the pseudo code for the FAR-Tree insertion. The spatial object

to be inserted is represented as an entry, which is a structure storing the object’s

property information such as its unique ID and its coordinates in the space area. The

insertion is processed in three steps. The first step is to choose a leaf node to place
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the inserting entry; the chosen leaf node is the one with least MBR enlargement to

include the new entry. The second step is to insert the entry to either the chosen leaf

node or the appended chain node; if the leaf node has space, the entry will be placed

in the leaf node, otherwise it will call the overflowNode function in Algorithm 2 to

insert the entry to the chain node. The third step is to adjust the leaf node and the

internal nodes for any MBR enlargement.

Algorithm 1 Insert an object to the FAR-Tree
1: function INSERT(Entry E)
2: CHOOSELEAF(E, Root); . Select a leaf node L in which to place E. Input

the root node as a start.
3: INSERTDATA(E, L); . Insert E to L.
4: end function
5:
6: /* Choose the leaf node to place a new entry E. */
7: function CHOOSELEAF(E, R)
8: N← root node;
9: if N is a leaf node then

10: Return N;
11: else
12: Find the entry F in N whose rectangle needs least enlargement to include

E, resolve ties by choosing the entry with the rectangle of smallest area;
13: N← the child node pointed to by F;
14: CHOOSELEAF(E, N); . Descend recursively until reach a leaf node.
15: end if
16: end function
17:
18: /* Insert a new entry E to the chosen leaf L. */
19: function INSERTDATA(E, L)
20: if L has room for E then
21: Put E into L;
22: Adjust the the MBRs of upper level(s) if needed;
23: if the MBR of any nodes changed then
24: Update its MBR record in T;
25: end if
26: else
27: OVERFLOWNODE(E, L); . When L is full.
28: end if
29: end function

Algorithm 2 deals with the leaf node overflow, that the chosen leaf node does

not have space for a new inserting entry. In the case when the leaf node’s pointer
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Algorithm 2 Node Overflow
1: /* Deal with the case when a leaf node is overflow, where the number of entries

is larger than the node capacity. */
2: function OVERFLOWNODE(E, L)
3: if L.next is NULL then . When there exists no chain node attached to L.
4: Create a new chain node S;
5: Put E into S;
6: L.next← S;
7: Update the “hasChain” label in the table T for all nodes on the path
8: else
9: C← the last chain node C on L;

10: if C is full then
11: Create a new chain node S;
12: Put E into S;
13: C.next← S;
14: else
15: Put E into C;
16: end if
17: end if
18: UPDATEPATH(L, C, L.pathBuffer) . update the MBRs on the path from the

leaf node up to the root in table T
19: end function
20:
21: /* update MBR of all nodes along the path from the leaf node up to the root;

input is the leaf node L, the chain Node C, and the pathBuffer of L. pathBuffer
is a stack of the parent nodes on upper levels from L to the root. */

22: function UPDATEPATH(L, C, pathBuffer)
23: Read from the table T to get the MBR of L . Update leaf node’s MBR;
24: Combine the MBR of C and L;
25: Update the MBR of L in table T;
26: while pathBuffer is not empty do . Update internal nodes’ MBR
27: P← Pop from pathBuffer to get the parent node;
28: Read from the table T to get the MBR of P;
29: Combine the MBR of P and L;
30: Update the MBR of P in table T;
31: end while
32: end function
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is NULL, which means there is no chain node attached on it, a chain node will be

created and the pointer will be set to the newly created chain node. When there

already exist one or more chain nodes attached, the new entry will be put to the last

chain node; similarly, if the last chain node is full, a new chain node will be created

and appended at the last place on that chain to accommodate the inserting entry.

Finally, the updatePath function is to adjust the information in the table T.

Query

Algorithm 3 explains how an intersection query is executed in a FAR-Tree. The

search area is represented using its space coordinates, which is in the same format

as an MBR.

Algorithm 3 Query
1: /* Find all spatial objects whose rectangle intersect with a search rectangle S,

input the root node as a start. */
2: function QUERY(S, R)
3: N← R;
4: Check “hasChain” label of N from table T ;
5: if N has chain then
6: Read from table T to get the MBR of N;
7: else
8: Read the MBR of N from the index itself;
9: end if

10: if N does not intersect in shape with S then
11: Return;
12: end if
13: if N is not a leaf then
14: Check each entry E in N to determine if intersecting with S;
15: QUERY(S, the child node pointed to by E); . Descend recursively with

the intersecting node as input
16: else
17: Traverse all entries in N and check whether they intersect with S;
18: Traverse all entries in the chain attached to N and check whether they

intersect with S;
19: Return those entries intersecting with S;
20: end if
21: end function

A query starts from the root node and recursively descends to subtree(s) inter-

secting with the search area. When reading the entry’s MBR to determine an in-
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tersection, if the corresponding node is labeled 1 for “hasChain”, the MBR will be

read from the table T and otherwise from the index node. When the query reaches

a leaf node, all entries in the leaf node and the attached chain nodes will be tra-

versed for intersecting objects. Moreover, in one query, more than one subtree may

intersect with the search area so the query may search more than one leaf nodes.

Re-balancing

Algorithm 4 gives the pseudo code for re-balancing the FAR-Tree. At the start, it

retrieves all the entries from the chain nodes chain by chain. At the same time, the

node pointer of all the leaf nodes will be set to NULL, which means there is no

chain node attached on them. All the entries will then be inserted back to the tree

using the balanced R-Tree insertion function balancedInsertData [4]. The last step

is to refresh the table T based on the new constructed R-Tree.

Algorithm 4 Re-balancing
1: /* Re-insert all the chain nodes’ entries to the R-Tree part and reconstruct a

balanced R-Tree */
2: function REBALANCE( )
3: LS← a list of all leaf nodes of the tree
4: while LS is not empty do
5: Read one leaf node L from LS ;
6: L.next← NULL;
7: for all Chain node C attached on L do
8: for all Entry E in C do BALANCEDINSERTDATA(E); .

Insert each chain entries attached to L. The balancedInsertData is the insertion
approach of the original R-Tree.

9: end for
10: end for
11: end while
12: Reconstruct table T based on the newly constructed tree;
13: end function

We may recall the re-insertion of the R*-Tree [2] from the FAR-Tree re-balancing,

as both of them insert entries for a second time. As a variant of R-Tree, the R*-Tree

forces to re-insert entries during the insertion routine when a node overflows. En-

tries of the overflowing node are sorted according to their locations and re-inserted

in order. Remind that different sequences of insertions will result in different trees.
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It is evidenced in the R*-Tree that the re-insertion improves the query performance

as it decreases the nodes overlap. Similar to the R*-Tree, in the FAR-Tree re-

balancing, entries are inserted chain by chain so they can be generally regarded as

locationally sorted. Their difference is that the R*-Tree re-insertion sorts entries

locally, i.e., within the overflowing node; while the FAR-Tree re-balancing sorts

entries globally, i.e., over the entire tree. With the sorted re-inserting, we can ex-

pect that the resulting tree of the FAR-Tree re-balancing has smaller overlap and

hence yields a slightly better query performance than the corresponding normally

constructed R-Tree.

3.2 The FAR-Tree Disk Analysis

In this section, we analyze the costs on disk access for the FAR-Tree. The analysis

is conducted with a comparison against the R-Tree. We discuss about the costs for

both the insertion and the query. For the insertion, we show how the FAR-Tree saves

costs compared to the R-Tree based on the insertion algorithms. For the query, we

give a cost prediction model based on an existing model for the R-Tree [22].

3.2.1 The Insertion Cost Analysis

Applicable to both R-Tree and FAR-Tree, the insertion is composed of the following

processes:

• Choosing a leaf node

• Adding an entry

• Adjusting the tree

• Dealing with node overflow

We will analyze the insertion cost through each of the process.

We list the notations in Table 3.1 for our analysis.

In the following analysis, the R-Tree and the FAR-Tree are inserting the same

number of objects NI to the same base R-Tree containing B objects; the base R-Tree

is the initial R-Tree that we will do insertions and queries and we call it the base

tree in the following explanation. We have NI = NIFAR1 + NIFAR2 = NIR1 + NIR2.
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Symbols Definitions
B Number of entries in the base tree
M Maximum node capacity
NI Number of entries to be inserted in total
h Height of the R-Tree
NIFAR1 Number of entries inserted to the leaf nodes of the base tree (in the

FAR-Tree)
NIFAR2 Number of entries inserted to the chain nodes when the leaf nodes over-

flow (in the FAR-Tree)
NIR1 Number of entries inserted before the tree height increase (in the R-

Tree)
NIR2 Number of entries inserted after the tree height increase (in the R-Tree)
Ci Read cost for choosing leaf node on a tree of height i, per node insertion
avg Average cost of MBR adjustment per each node insertion (quantified

by the number of node adjusted)
f average node capacity

Table 3.1: Notations for the insertion analysis

Choosing A Leaf Node

All disk accesses for choosing a leaf node are disk reads. Choosing a leaf node for

insertion is to find a single leaf node with the least MBR enlargement to include

the new inserting entry. Starting from the root node to the leaf node, with a tree of

height h, the chooseLeaf will spend h disk reads. For the FAR-Tree, the base tree

will never change its height unless a re-balance happens. For the R-Tree, however,

with the node splits and adjustments, the structure and the height of the tree may

change. For the reason that different sequences of insertions will build up different

trees, we cannot determine at which point the height may increase in the R-Tree

and thus we cannot decide whether NIR1 is smaller or larger than NIFAR1; more

explanations will be given in the following discussion.

When NIR1 ≥ NIFAR1, the proportion of NI is shown in Figure 3.3. An example

for this case is given in Figure 3.4. In this example, we are to insert object 5 to

10 to the base tree shown on the top; assume the objects are inserted to node C

according to their locations. In the R-Tree, as shown in Figure 3.4a, during the

insertion of object 5 to 8, node C is split into C and D but the height does not

change; the resulting tree for these operations is shown in the middle. Then we
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Figure 3.3: NIR1 ≥ NIFAR1

(a) R-Tree: NIR1 = 5, NIR2 = 1 (b) FAR-Tree: NIFAR1 = 1, NIFAR2 = 5

Figure 3.4: An example when NIR1 ≥ NIFAR1

insert object 9 to node D, and this increases the tree height, as the resulting tree

shown at the bottom in Figure 3.4a. So five nodes are inserted before the tree height

increase. Afterwards, the insertion of object 10 is to the tree with increased height.

By contrast, in the FAR-Tree, as shown in Figure 3.4b, the object 5 is inserted to

the original leaf node C while all other insertions are to the chain nodes. So for this

example, NIR1 = 5, NIR2 = 1, NIFAR1 = 1, NIFAR2 = 5.

In this case, the tree height will not increase if we insert a number of NIFAR1 ob-

jects to an R-Tree with the R-Tree insertion; the R-Tree and the FAR-Tree have the

same height and thus the costs for choosing a leaf during this number of insertions

are the same. Then when we insert the NIFAR2 objects using the R-Tree insertion,

NIR1 − NIFAR1 are inserted to the tree with the original height h, while NIR2 are in-

serted to the grown tree with height h+x, where x is a positive integer representing

the increment of the tree height. By contrast, with the FAR-Tree insertion, all the NI

objects are inserted with the base tree being of height h. However, NIFAR2 insertions

are to the chain nodes in the FAR-Tree and each insertion needs one more read of

the last chain node to place the inserting object.
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Figure 3.5: NIR1 < NIFAR1

(a) R-Tree: NIR1 = 1, NIR2 = 4 (b) FAR-Tree: NIFAR1 = 4, NIFAR2 = 1

Figure 3.6: An example when NIR1 < NIFAR1

So, comparing the disk reads of choosing leaf node for insertions, for the NIFAR1

objects, the R-Tree and the FAR-Tree cost the same; for the NIR1 − NIFAR1 objects,

the FAR-Tree costs 1 more read than the R-Tree per insertion; and for the NIR2

objects, the FAR-Tree cost x-1 less read than the R-Tree per insertion.

When NIR1 < NIFAR1, the proportion of NI is shown in Figure 3.5. A corre-

sponding example is given in Figure 3.6. In this example, we are to insert object 6

to 9 to the base tree shown at the top of the figure; assume the insertions are to the

node B by their locations. In the R-Tree, as shown in Figure 3.6a, inserting object

6 triggers the node B to split; the split propagates upwards and causes the tree hight

increase. So insertions of the objects 7 to 9 afterwards are to the tree with increased

height (in this example, assume objects 7 to 9 are inserted to node C and D by their

locations). In the FAR-Tree, by contrast, as shown in Figure 3.6b, the object 6 is

inserted to the chain node, which does not change the tree height; objects 7 to 9 are

inserted to the original leaf node C and D. So for this example, NIR1 = 1, NIR2 = 4,

NIFAR1 = 4, NIFAR2 = 1.

In this case, using the R-Tree insertion, the height of the tree will increase at

some point during the insertion of NIFAR1 objects; NIR1 are inserted before the height

changes and NIFAR1 − NIR1 are inserted after the height changes. Then, for the
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NIFAR2 objects, when using the R-Tree insertion, all are inserted to the tree with

height increased. Using the FAR-Tree insertion, the tree height keeps unchanged,

but inserting to a chain node needs one more read of the chain tail.

So, comparing the disk reads of choosing leaf node for insertions, for the NIR1

objects, the R-Tree and the FAR-Tree cost the same; for the NIFAR1 − NIR1 objects,

the FAR-Tree costs x less reads than the R-Tree per insertion; and for the NIFAR2

objects, the FAR-Tree costs x-1 less reads than the R-Tree.

In summary, in the process of choosing a leaf node, when NIR1 ≥ NIFAR1, the

R-Tree costs:

R = NIFAR1 · Ch + (NIR1 − NIFAR1) · Ch + NIR2 · Ch + x

= NIFAR1 · h + (NIR1 − NIFAR1) · h + NIR2 · (h + x)

The FAR-Tree costs:

FAR = NIFAR1 · Ch + (NIR1 − NIFAR1) · (Ch + 1) + NIR2 · Ch + 1

= NIFAR1 · h + (NIR1 − NIFAR1) · (h + 1) + NIR2 · (h + 1)

To compare the R-Tree and the FAR-Tree, we have:

R - FAR = NIFAR1 − NIR1 + NIR2 · (x− 1)

When NIR1 < NIFAR1, the R-Tree costs:

R = NIR1 · Ch + (NIFAR1 − NIR1) · Ch + x + NIFAR2 · Ch + x

= NIR1 · h + (NIFAR1 − NIR1) · (h + x) + NIFAR2 · (h + x)

The FAR-Tree costs:

FAR = NIFAR1 · Ch + NIFAR2 · (Ch + 1)

= NIFAR1 · h + NIFAR2 · (h + 1)

To compare the R-Tree and the FAR-Tree:

R - FAR = x · (NIFAR2 + NIFAR1 − NIR1)− NIFAR2

= NIR2 · x− NIFAR2
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For the case when NIR1 ≥ NIFAR1, we cannot determine whether R - FAR is larger

or smaller than 0, with NIR2 ·(x−1) ≥ 0 but NIFAR1−NIR1 ≤ 0. However, if inserting

large amount of objects such that the height of the R-Tree increases a lot, i.e., x is

large, R-FAR would be positive, which means the FAR-Tree costs less than the R-

Tree. Even when R-FAR < 0, the cost difference is within NIR1 − NIFAR1 reads; the

costs for this process are read access, which is cheap for SSDs. The excessive reads

of the FAR-Tree in this case may be easily set off by write savings. For the case

when NIR1 < NIFAR1, since NIFAR2 < NIR2 and x ≥ 1, the FAR-Tree always costs

less than the R-Tree.

Adding An Entry

After choosing a node, the selected node is in memory, so there is no disk access

for adding an entry to the node. The costs for the FAR-Tree and the R-Tree are the

same for this process.

Adjusting Tree

The adjustment requires node updates, which includes both disk reads and disk

writes. On the FAR-Tree, NIFAR1 objects are inserted into the original leaf nodes of

the base tree. The adjustment for this part of insertions is performed the same as

the R-Tree, which updates the MBRs of internal nodes in disk. For the remaining

NIFAR2 objects, which are inserted to the chain nodes, all MBR changes are reflected

on the in-memory table, so there is no disk access for this part. On the R-Tree, by

contrast, all the NI insertions may cause disk access for adjustments.

We thus denote avgFAR as the average number of disk access for adjustment

per insertion in the FAR-Tree (avgFAR is only applicable to the objects inserted to

the leaf nodes of the base tree, because the NIFAR2 adjustments are using the in-

memory table T and do not interact with the disk), and avgR as the average costs for

adjustment per insertion in the R-Tree.

So the cost of adjustment on the FAR-Tree is:

FAR = NIFAR1 · avgFAR + NIFAR2 · 0 = NIFAR1 · avgFAR
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The cost of adjustment on the R-Tree is:

R = NI · avgR

For the avgFAR and the avgR, we cannot get a precise value for them, but as an

estimation, the avgFAR is no larger than the avgR. The maximum number of nodes to

be adjusted in an insertion equals to the height of the tree, in which case we assume

all nodes on the path from the leaf node toward the root node need to be updated.

The height of the R-Tree may increase with entries inserted, while the height of

the FAR-Tree keeps unchanged, so it is likely that the R-Tree needs to update more

nodes for adjustment. With the estimation that avgFAR ≤ avgR, and the fact that

NIFAR1 ≤ NI, the FAR-Tree costs no more disk writes than the R-Tree on adjusting

the tree. Furthermore, when most of the entries are inserted to the chain nodes, NI

would be far larger than NIFAR1, and in this case the FAR-Tree would yield more

savings for adjustment.

Node Overflow

When inserting an entry to a leaf node which is full, in the R-Tree the leaf node will

split and accordingly in the FAR-Tree a chain node will be created. The number of

node splits should be equal to the number of newly created nodes. Disk access for

splitting or creating nodes are about disk writes.

For better understanding, we analyze a single leaf node L as a start, considering

both the R-Tree and the FAR-Tree. We assume that there are originally a number

of a entries in L and we are to insert b entries. With the FAR-Tree insertion, M - a

entries are inserted to L itself and b - (M - a) entries are inserted to the newly created

chain nodes. With the R-Tree insertion, L will split into multiple leaf nodes. In the

FAR-Tree, the number of newly created chain nodes is d b - (M - a)
M e. In the R-Tree,

besides creating new leaf nodes upon splitting, the leaf node splitting may cause

the internal node to split. The number of leaf node splits is d a + b
M e − 1, which is

the number of leaf nodes minus one. The number of internal node splits is just the

number of all internal nodes created, that is d a + b
M2 e+ da + b

M3 e+ ...+ d a + b
Mn e, where n

represents the height after the insertions. The number of newly created nodes is the
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sum of these two parts: d a + b
M e−1+d a + b

M2 e+d a+b
M3 e+ ...+d a+b

Mn e. Although nodes in

the R-Tree are not always full, for simplicity of analysis, we conservatively assume

that all leaf nodes are full in the R-Tree after insertions, which is a worst case for

our comparison that the R-Tree insertions cause least number of node splits.

Based on the analysis for a single node above, we calculate the costs for the

whole tree. We assume the entries are inserted evenly: after all the insertions in

the FAR-Tree, the number of chain nodes attached to each leaf node tends to be

the same; and accordingly in the R-Tree, the number of entries inserted toward

each leaf node branch is generally the same. So for each leaf node, we will insert
NI
B
f
= NI·f

B entries, with B
f leaf nodes in the base tree.

The number of splits in the R-Tree is:

SR =
B
f
· (d

NI·f
B + f

M
e − 1 + d

NI·f
B + f

M2 e+ ...+ d
NI·f

B + f

Mn e)

The number of newly created chain nodes in the FAR-Tree is:

SFAR = dNIFAR2

M
e = dNI− NIFAR1

M
e = d

NI− (M− f) · B
f

M
e

Then, for the disk access, each split in the R-Tree costs 3 disk writes: one for

the split node, one for the newly created node, and one for their parent node. So the

cost for the R-Tree overflow is:

R = 3 · SR

Each overflow in the FAR-Tree costs 2 writes: one for creating the new chain

node and one for updating the pointer of the previous node. So the cost for the

FAR-Tree overflow is:

FAR = 2 · SFAR
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FAR - R = 2 ·
NI− (M− f) · B

f

M
− 3B

f
· (

NI·f
B + f

M
− 1 +

NI·f
B + f
M2 + ...+

NI·f
B + f
Mn )

= 2 ·
NI− (M− f) · B

f

M
− 3B

f
· (NI · f

B
+ f) · ( 1

M
+

1

M2 + ...+
1

Mn ) +
3B
f

=
3 · B ·M + 2NI · f− 2B · (M− f)

M · f
− 3(NI + B) ·

1
M(1−

1
Mn )

1− 1
M

(let
1

Mn ≈ 0)

=
B ·M + 2NI · f + 2B · f

M · f
− 3(NI + B)

M− 1

<
B ·M + 2NI · f + 2B · f

M · f
− 3(NI + B)

M

=
B ·M− B · f− NI · f

M · f

=
B ·M− B · f− NI

B
f
· B

M · f

=
B · (M− f− NI

B
f
)

M · f

For the inequation above, NI
B
f

is the number of entries inserted to each leaf node

of the base tree, as we assume that entries are inserted to the tree evenly. For both

the R-Tree and the FAR-Tree, when a node overflows, the number of existing entries

f in the node plus the inserted entries is larger than the node’s maximum capacity,

that is, NI
B
f
+ f > M; so we have

B·(M−f− NI
B
f
)

M·f < 0. Therefore, FAR − R < 0, which

means that the FAR-Tree costs less writes than the R-Tree for dealing with node

overflows.

Summarizing all the processes of insertions above, the FAR-Tree insertion costs

less than the R-Tree on the whole.

3.2.2 The Query Cost Analysis

A model for predicting the R-Tree query performance is given in [22]. Our FAR-

Tree query analysis is conducted based on that R-Tree model.

The notations used in analyzing the query performance are listed in Table 3.2.

As per the R-Tree model, the number of disk access for an R-Tree query is 1
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Symbols Definitions
B Number of entries in the base tree
NI Number of entries to be inserted
NIFAR1 For the FAR, number of entries inserted to the leaf nodes of

the base tree
N Amount of objects in the R-Tree to be queried
n Number of dimensions
D Density of a dataset
q = (q1, ...qn) Query window
M Maximum node capacity
f Average node capacity
h Height of the R-Tree
Nj Nunber of R-Tree nodes at level j
sj = (sj,1, ...sj,n) Average size of an R-Tree node at level j
DA Number of disk access for a query window q

Table 3.2: Notation for the query analysis

(one access for the root) plus the number of intersected nodes at every level j (j = 1,

..., h - 1). The root node is defined at level h and the leaf nodes is at level 1. With

an R-Tree in height h, the disk access to answer a query q = (q1, ..., qn) is expected

to be:

DA = 1 +
h−1∑
j=1

intersect(Nj, sj, q) (3.1)

where intersect(Nj, sj, q) is the number of intersected nodes at level j.

For the FAR-Tree, we can view it as two parts if dividing by the leaf level: the

upper part is in the same shape as the base tree (including the internal nodes and the

leaf nodes) and the lower part are the chains. The query cost for the FAR-Tree is

composed of the cost for searching on the base tree part and the cost for traversing

the chain nodes.

The cost for searching on the base tree index can be estimated with Equation 3.1.

For the chain nodes traversal, the number of chains needed to be traversed is equal

to the number of nodes at level 1 intersected by the query window q (the intersected

leaf nodes). Still, we assume the inserted entries are distributed evenly such that

the number of chain nodes attached to each leaf nodes are the same. So we will

insert NI
B
f
= NI·f

B number of entries for each leaf node. Then the average length of the
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chains is
⌈ NI·f

B +f

M − 1
⌉
=
⌈NI·f−B·M+B·f

B·M

⌉
.

Thus the expected number of disk access to answer a query q in the FAR-Tree

is:

DA = 1 +
h−1∑
j=1

intersect(Nj, sj, q) + intersect(N1, s1, q) · chainLength average

= 1 +
h−1∑
j=1

intersect(Nj, sj, q) + intersect(N1, s1, q) ·
⌈

NI · f− B ·M + B · f
B ·M

⌉
(3.2)

where intersect(N1, s1, q) is the number of intersected leaf nodes.

A detailed analysis is given in the R-Tree model [22]:

1. With a unit work space [0, 1)n, intersect(N, s, q) = intersect(N, s′, 0) = D(N, s′) =

N ·
∏n

i=1(s
′
i) where s′i = si+qi. The average number of intersection is equal to

the density of the nodes’ bounding rectangles inflated by qi at each direction.

intersect(N, s, q) = N ·
n∏

i=1

(si + qi) (3.3)

2. The height of an R-tree storing N objects with an average capacity is:

h = 1 +

⌈
logf

N
f

⌉
(3.4)

3. With every node containing f entries on average, we can assume that the

average number of leaves is N1 = N
f , based on which we get the average

number of nodes on the higher level is N2 = N1

f . Following this idea, the

average number of nodes at level j is

Nj =
N
f j (3.5)

4. Assuming that the node sides are equal (i.e., sj,1 = sj,2 = ... = sj,n,∀j), then

the density of nodes at level j (j = 1, , h-1) is:

Dj = Nj ·
n∏

i=1

sj,i =
N
f j (sj,i)

n ⇒ sj,i = (Dj ·
f j

N
)
1
n (3.6)
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5. Using Eq.3.3 through Eq.3.6, the disk access for an R-Tree is:

DA = 1 +
h−1∑
j=1

intersect(Nj, sj, q)

= 1 +

dlogf
N
f e∑

j=1

{N
f j ·

n∏
i=1

n

√
Dj ·

f j

N
+ qi}

(3.7)

In our analysis, for the R-Tree, we insert NI data to the base tree containing B

objects. So after the tree is constructed, the total amount of entries N is B + NI.

Therefore, the disk access for the R-Tree is:

DA = 1 +

dlogf
B + NI

f e∑
j=1

{B + NI
f j ·

n∏
i=1

n

√
Dj ·

f j

B + NI
+ qi} (3.8)

For the FAR-Tree, the number of data entries in the original index (internal

nodes and leaf nodes) is N = B + NIFAR1. So the disk access for the FAR-Tree is:

DA = 1 +

dlogf
B + NIFAR1

f e∑
j=1

{B + NIFAR1

f j ·
n∏

i=1

n

√
Dj ·

f j

B + NIFAR1
+ qi}+

B + NIFAR1

f
·

n∏
i=1

( n

√
D1 ·

f
B + NIFAR1

+ qi) ·
⌈

NI · f− B ·M + B · f
B ·M

⌉ (3.9)

The f value in the FAR-Tree should be larger than that in the R-Tree, because that

without node splits, the nodes in a FAR-Tree tends to be full, and thus the average

number of entries in each node should be larger than the R-Tree; the f value in the

FAR-Tree model is more closer to the M value.

In summary, based on the R-Tree performance prediction model, we now get a

model for the FAR-Tree query, which can be estimated by using only the dataset

properties N and D, the typical index parameter f and the query window q.
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Chapter 4

Experiment and Result

In this chapter, we discuss experimental results performed to test the I/O perfor-

mance for the FAR-Tree insertion, query, and re-balancing, with a comparison to

the R-Tree. We examine both the logical I/O and the real disk access time. Agree-

ing with the cost analysis in Chapter 3, we observe that the FAR-Tree costs less

for insertions while more for queries. Also, the cost for re-balancing is acceptable

as the memory is very well utilized in the FAR-Tree when re-inserting the chain

entries. Our experiments are conducted on both synthetic data and real data; us-

ing the synthetic data allows us to investigate several data properties, such as the

distribution and the size of the spatial object.

4.1 Experiment Setup

The FAR-Tree approach was implemented by modifying the R-Tree implementa-

tion by Marios Hadjieleftheriou in C++1 under Windows. We conduct the experi-

ments on our FAR-Tree against the R-Tree for comparison. Important parameters

of the experiment settings are listed in Table 4.1, and we will explain in detail about

the settings in the following.

4.1.1 Dataset

The synthetic datasets are generated using the Spatial Data Generator by Yannis

Theodoridis2. The datasets are in a 2-dimensional space area in size of 10,000 ×
1R-Tree implementation libspatialindex-1.7.1: http://libspatialindex.github.io/index.html
2Spatial Data Generator: http://www.chorochronos.org/?q=node/49
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Synthetic Dataset Distribution: Uniform, Gaussian, Zipf
Object Size: 0.01%, 0.1%, 1%

Real Dataset Germany, Greece
Page Size 4096 bytes

Node Capacity 40
Buffer Size (B) 10, 25, 50 pages

Logical Write/Read Ratio 7

Table 4.1: Parameters of the experiment settings

10,000. We have the following three distributions of centers of the rectangles:

• The Uniform distribution

• The Gaussian distribution. The mean µ is set to 5,000 and the variance σ is

set to 2,000.

• The Zipfian distribution. The exponent p is set to 1, which means a moderate

skew.

At the same time, for each distribution, we set different sizes for the spatial

objects. Measured in the percentage of the space area taken by a single object to

the entire space area on average, we have 0.01%, 0.1%, and 1%; corresponding to

the side length ranging between 1 to 100, 1 to 316, and 1 to 1,000.

For the real geographical data, we use the streets of Germany dataset3 and the

streets of Greece dataset4. The Germany dataset has 30,674 spatial objects in total

and the Greece dataset has 23,268 objects. Their spatial distribution are displayed in

Figure 4.1. Without loss of generality, we shuffled the data before we use, because

the original datasets are given sorted by location.

In the experiments, for all datasets, we use 5,000 objects to construct the base

tree. We will insert the remaining data to the base tree to examine the insertion. For

the query data, the synthetic query data has the same distribution and object size as

the data in the tree; the query data for the real dataset are randomly extracted from

the Germany dataset and the Greece dataset respectively.

3Germany Dataset: http://www.chorochronos.org/?q=node/54
4Greece Dataset: http://www.chorochronos.org/?q=node/55
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(a) The streets of Germany with
30,674 spatial objects

(b) The streets of Greece with
23,268 spatial objects

Figure 4.1: The real dataset distribution

4.1.2 Page Size and Buffer

A node is stored in one disk page and we choose the page size to be 4096 bytes,

since having a node in size corresponding to the size of a disk page makes good

performance [4] and the SSD we use in our experiments has a page size of 4096

bytes. Also, using larger page size leads to similar performances as for smaller

dataset, and vice versa, as the number of nodes should be the same.

In the implementation, a full node is composed of both the information about

itself and the information of all the entries contained in the node. The size of a

node is calculated as below, with the correlating data type in parenthesis (The Next

Pointer only exists in the leaf node and the chain node of FAR-Tree.):

Node =Node Type(int32) + Node Level(int32) + Next Pointer(int64)+

Number of Children(int32) + MBR + Capacity× (MBR+

Entry ID(int64) + Data Length(int32) + Data)

The MBR is represented in coordinates as:

MBR = Dimension× (High Coordinate(double) + Low Coordinate(double))

Adding up the size of data types used by each components, for a two-dimensional
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space area, we can calculate the size of one node in byte as:

Node = 52 + Capacity× (44 + Data)

The Data stores the location of each entry in bytes for disk stream reading and

writing. It has a variable length depending on the number of digits in the objects’

coordinates. In the Germany dataset and the synthetic datasets, it is 34 bytes on

average; in the Greece dataset, which comes with longer coordinates, it is 54 bytes

on average. So, a page in size of 4096 bytes can hold 42 objects for the Greece

dataset and 51 objects for the synthetic or the Germany datasets. For consistency,

we set the maximum node capacity as 40 for all nodes in our experiments.

Despite the experiment settings, one node can also be stored in multiple pages

when the node size is larger than the page size; the node will be divided into separate

pages in this case.

As for the buffer management, we simply adopt the random eviction strategy,

since our approach does not particularly manage the buffer. However, to investigate

the effects of the buffer size, we set buffer size (denoted as B) to 10 pages, 25 pages,

and 50 pages.

4.1.3 Other Experiment Parameters

When constructing the base tree, we set the node’s fill factor as 40%, because the

fill factor cannot be larger than 50% for linear and quadratic split method. As we

observe for all the datasets, the constructed base tree has a utilization around 70%,

which means the leaf nodes are 70% full on average. We adopt the quadratic split

method when doing the R-Tree insertion and we use the intersection query.

We measure both the logical I/Os and the real disk access time. Measuring the

logical I/Os eliminates the impact of different SSDs’ I/O performances. By the I/O

performances we mean the write/read ratio, which is the proportion of the speed of

writing to the speed of reading. In our experiments, we examine the number of disk

reads and writes. We regard the cost of one read as the cost unit, and the cost of

one write is multiple times the cost of a read since writing on SSD is slower than

reading. Assuming Cr and Cw are the number of disk reads and disk writes, then
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the total I/O cost is normalized into 1 × Cr + ratio × Cw, where the ratio is the

write/read ratio of some specific disk. Typically the write/read ratio of SSDs ranges

from 2 to 30, for example recent work for B+-Tree use the value 5 for the ratio [23].

We assume a ratio of 7 in ours, which means that write operation is 7 times more

expensive than read operation.

Also, we tested the real disk access time using a real SSD device5. Experiments

are conducted on the 64-bit Windows 7 Professional operating system. The pro-

cessor is Intel Core i7-3770 3.4GHz, the memory is 32GB, and the file system is

NTFS. The Process Monitor6 returns the duration of disk file access. We add up the

read and write durations as the total disk access time.

4.2 Results In Logical I/Os

4.2.1 Insertion Evaluation

To evaluate the insertion, we inserted data to the base tree and compare the costs of

the R-Tree and the FAR-Tree.

For the synthetic datasets, we insert 20,000 objects to the corresponding base

trees. For the Germany data, we insert 25,000 objects to the base tree, and for the

Greece dataset we insert 17,500 objects. Figure 4.2, Figure 4.3, and Figure 4.4

show the costs for the synthetic datasets. Figure 4.5 and Figure 4.6 show the costs

for the Germany dataset and the Greece dataset. For all the charts, the vertical axis

is the accumulated I/O costs for all insertions, represented in the normalized I/O, i.e.

1×Cr+ratio×Cw; the horizontal axis represents the round of operations. We divide

the insertions into several rounds, with each round containing 2,500 operations; in

the figures, we note the accumulated I/O costs after a corresponding round.

As an overview, we observe that the FAR-Tree insertion costs less than the R-

Tree insertion for all the testing datasets. This confirms with our insertion analysis

in Chapter 3.

Furthermore, by comparing the results among the synthetic datasets, we evalu-

ate the impact of the dataset property and the buffer size. Figure 4.2, Figure 4.3,

5SSD model: OCZ Vertex 3 VTX3-25SAT3-480G
6Windows Sysinternals: http://technet.microsoft.com/en-ca/sysinternals/bb896645
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Figure 4.2: Insertion evaluation in logical I/Os; average MBR size: 0.01%
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Figure 4.3: Insertion evaluation in logical I/Os; average MBR size: 0.1%

and Figure 4.4 are results for different object size, and within each of the figures

are results for different distributions and buffer sizes. Each row corresponds to one

kind of distribution; charts on the same row have the same distribution but different

buffer size.

For the impact of data distribution, we can observe that the more skewed the

dataset is, the more savings the FAR-Tree insertion is able to achieve. For example

in Figure 4.2 using B = 10, the FAR-Tree insertion costs 10% less than the R-Tree

on the Uniform dataset, on the Gaussian dataset it costs 15% less, and on the Zipf

dataset it costs 65% less. The reason is that, for more skewed datasets, the spatial

objects are more concentrated within a small area; correspondingly, insertions on

the tree index are focused on some few branches. In this case, most of the insertions

are done on chain nodes and the benefit of FAR-Tree insertion is the best. More

node splits are eliminated. Lots of disk updates are saved, since inserting entries

to the chain nodes does not cost disk access for adjusting internal nodes’ MBRs
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(adjustment operates on the in-memory table T). Also, with the insertions more

concentrated, the buffer can be better utilized. Successive insertions may target the

same node, which is mostly available in the buffer and hence no disk interaction

is needed. Corresponding to the results in Figure 4.2, after inserting the 20,000

objects, the longest chain in the FAR-Tree for the Uniform dataset is 14 in length,

the Gaussian has the longest chain with 20, and the Zipf has the longest chain with

178. As for the leaf node utilization, defined as the ratio of the sum of entries in

the leaf nodes to the sum of capacity of the leaf nodes, which express the fullness

of the leaf nodes, the Uniform has a utilization of 98%, the Gaussian is 92% and

the Zipf is 72%. Having long chains but small leaf node utilization is an evidence

that most of the entries are inserted to the chain nodes attached on few of the leaf

nodes and most leaf nodes does not have chains attached, for example the Zipf

distribution. Conversely, for the Uniform distribution, the leaf nodes are almost

full and the longest chain is only 20 in length, in which case insertions are evenly

distributed over the leaf nodes.

For the object size, we cannot observe an direct influence. The result is still

related to the locality of insertions. For example with the Zipf dataset, we compare

the results among Figure 4.2, Figure 4.3, and Figure 4.4. The dataset with object

size 0.01% has smaller costs than the 0.1% and the 1%, where costs for the 0.1%

and the 1% are similar. The FAR-Tree for the 0.01% has a utilization of 72% with

the longest chain in length of 178, the 0.1% has a utilization of 79% with a longest

chain in 120, and the 1% has a utilization of 74% with a longest chain in 107. We

can see that the insertion for the 0.01% is more concentrated and this explains its

smallest costs.

For the impact of buffer size, increasing the buffer size will decrease the costs

in general for both the R-Tree and the FAR-Tree. If we compare the three charts

of a same row, for all the cases, the costs for both the R-Tree and the FAR-Tree

decrease, which is a reasonable influence of a buffer in general. Moreover, the

savings by the FAR-Tree increase as the buffer grows and this is more obvious on

more the skewed data. The buffer is more important in the FAR-Tree because of the

chain nodes insertion. The skewed data better utilizes the buffer for its concentrated
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(g) Zipf, B=10
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Figure 4.4: Insertion evaluation in logical I/Os; average MBR size: 1%
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Figure 4.5: Insertion evaluation in logical I/Os on Germany dataset
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Figure 4.6: Insertion evaluation in logical I/Os on Greece dataset

insertions.

Moreover for the real datasets, the skewness of both the Germany dataset and the

Greece dataset should be between the Uniform and the Gaussian, though the Greece

is more skewed than the Germany. Accordingly, we can observe from Figure 4.5

and Figure 4.6 that they have similar trend as the Uniform and the Gaussian dataset,

as well as a similar susceptibility to the buffer size.

4.2.2 Query Evaluation

To evaluate the query, we search on the R-Tree and the FAR-Tree after inserting

data with the corresponding insertion approaches, and then compare their query

costs. We insert the same amount of data as in the insertion evaluation, and then we

do queries for the query performance. From this insertion-query workload, we may

think of applications where there are data coming all the time and we do queries at

the end of the day. In this scenario, we have streaming operations that we do in-

sertions and afterwards we do a bunch of queries; the insertion-query workload can

be regarded as a window of such streaming. Figure 4.7, Figure 4.8, and Figure 4.9

show the costs for synthetic datasets. Figure 4.10 and Figure 4.11 show the costs
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for the Germany dataset and the Greece dataset. Again, the vertical axis represents

the normalized accumulated I/O costs and the horizontal axis represents the round

of operations, with the insertions at first and the queries followed up. For both the

insertions and queries, we divide the operations into rounds, with each round con-

taining 2,500 operations; we note the accumulated I/O costs after a corresponding

round in the figures.

For all the cases in the result charts, we can observe a steeper slope for the FAR-

Tree query cost than the R-Tree, which means that the FAR-Tree costs more than

the R-Tree on doing queries. When doing the insertions, the FAR-Tree has saved

an amount of I/O compared to the R-Tree, however, such savings will be used up

by the queries at some point. The cross point in the result chart means that the

accumulated cost of the FAR-Tree becomes equal to that of the R-Tree at that time,

after which more queries will makes the FAR-Tree more expensive than the R-Tree.

The number noted by the cross point is the amount of queries the insertion savings

can afford. For example, in Figure 4.7a, the FAR-Tree can afford 5,115 queries

until it becomes less cost efficient than the R-Tree.

The costs of the FAR-Tree queries is decided by the length of the chains, as a

query needs to traverse all the chain nodes attached to a target leaf node. Compar-

ing the results on different distributions, we find that the skewed data costs more for

queries. For example in Figure 4.7, the slope for the query cost is getting steeper

row by row. Although this can be observed for both the R-Tree and the FAR-Tree,

the FAR-Tree shows a very obvious influence. For the instance with size of the

buffer being 10 in Figure 4.7, the FAR-Tree queries on the Gaussian dataset cost 2

times of the Uniform dataset, and queries on the Zipf data costs more than 30 times

of the Uniform data. In this case, the number of queries that the insertion savings

can afford decrease with the growing skewness of the data distribution, which can

be observed by comparing within columns (except for the Zipf distribution in Fig-

ure 4.9, as the R-Tree is too much influenced by the large overlap that diminishes

its performance). The reason is about the length of the chain resulted by different

distributions. As discussed in Section 4.2.1, a skewed dataset means concentrated

insertions, which will lead to long chains. Since our query data has the same dis-
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(e) Gaussian, B=25

0

5

10

15

20

25

30

0 2 4 6 8 10

N
o
rm

al
iz

ed
 C

o
st

 

(A
cc

u
m

u
la

te
d
 I

/O
s)

 
x

 1
0

0
0

0
 

1-8: Insertions, 9-10: Queries 

R-Tree

FAR-Tree

3585 

(f) Gaussian, B=50
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Figure 4.7: Query evaluation in logical I/Os; average MBR size: 0.01%
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(f) Gaussian, B=50
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Figure 4.8: Query evaluation in logical I/Os; average MBR size: 0.1%
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Figure 4.9: Query evaluation in logical I/Os; average MBR size: 1%
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(c) B=50

Figure 4.10: Query evaluation in logical I/Os on Germany dataset
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Figure 4.11: Query evaluation in logical I/Os on Greece dataset
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tribution as the indexed data, the queries are concentrated as well. In this case, for

the skewed data, queries will need to read long chains and thus costs large amount

of disk reads. With similar idea, if we change the base tree to a bulk-loaded one,

we will get less costs, and the reason is that the bulk-loaded base tree tends to have

more precisely and evenly distributed leaf nodes, which will result in the tree with

shorter chains. We will discuss about the effects of bulk-loading in Section 4.2.3.

If we compare among Figure 4.7, Figure 4.8, and Figure 4.9, we can see that the

query costs for both the R-Tree and the FAR-Tree increase as the object size grows.

At a glance, we can see that the range of the vertical axis grows from 300,000 to

500,000 and 450,000 for the Uniform and the Gaussian datasets and from 700,000

to 2,500,000 for the Zipf dataset. For the example of the Uniform dataset with B

= 10 as shown in Figure 4.7a, Figure 4.8a, and Figure 4.9a, the query costs for

doing 5,000 queries on the FAR-Tree of the 0.1% and the 1% object size are 2

and 7 times of the costs on the 0.01% and accordingly the costs for the R-Tree

grows to 2 and 8 times. The reason is that, with larger objects, the objects overlap

heavily; with more overlap, the query shape may intersect with more subtrees such

that more branches need to be searched to finish a query. With the same reason,

the costs difference between the R-Tree and the FAR-Tree becomes smaller with

increasing overlaps, as the R-Tree query’s overhead increases for querying multiple

branches. This phenomenon can be more obviously observed in the results of the

Zipf distribution.

Due to the influence of the buffer size, we can observe that the number of queries

that the insertion savings can afford grows with the increase of the buffer size in

general. The influence of buffer size is independent of dataset properties, as the

queries are distributed over all branches and the chances of nodes being caught in

memory are equal.

For the real datasets, we can observe that both of them have similar cost trends

and similar susceptibility to buffers in between the results of the Uniform and the

Gaussian dataset. With the Greece dataset being more skewed than the Germany

dataset, the FAR-Tree for the Greece dataset has longer chains and costs more on

queries and hence the insertion savings can afford less queries. For example, in the

53



case of buffer in size of 10, the Germany dataset can afford 5,357 queries while the

Greece dataset can only afford 3,221 queries.

4.2.3 Bulk-loading’s Effect On Insertion And Query

As introduced in Section 2.2.3, constructing an R-Tree by bulk-loading leads to a

better index arrangement globally with less overlap. The base trees we use in our

experiment are constructed by sequentially inserting the data; we call it the insert-

constructed tree. As a comparison, under the case of B = 10 with objects in size of

0.01% of the space area, we construct the base tree by bulk-loading with the same

data to see its effects on insertions and queries.

As shown in the results of our experiment, bulk-loading the base tree does not

have much influence for the R-Tree operations. In Figure 4.12, the costs for the

R-Tree and the R-Tree Bulk are almost the same. For the FAR-Tree, however, bulk-

loading the base tree leads to a different costs, which is especially obvious on the

more skewed data. Firstly, for the insertions, the FAR-Tree on bulk-loaded base tree

costs more than that on insert-constructed base tree. As observed in Figure 4.12,

the cost of the FAR-Tree Bulk is always higher than the FAR-Tree. Secondly, for

the queries, the FAR-Tree on bulk-loaded base tree costs less than the FAR-Tree on

insert-constructed base tree. In Figure 4.12, the slope of the FAR-Tree is sharper

than the FAR-Tree Bulk; also, the difference is more obvious on the more skewed

data.

The key reason is that, the FAR-Tree insertion will result in shorter chains on

the bulk-loaded base tree for that it is more precisely arranged. The length of the

longest chain in the FAR-Tree after the insertions are listed in Table 4.2. With the

bulk-loaded base tree, the FAR-Tree will have shorter chains, and the chain length

decrement is more obvious on the skewed data. With the decreased chain length,

the advantages of the FAR-Tree chain nodes insertion can not be well utilized, so

the insertion costs more than that on the insert-constructed base tree which makes

longer chains. On the other hand, the query costs decrease as a result of the shorter

chains, since there are fewer chain nodes to traverse.
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Figure 4.12: Bulk-loading’s effect on insertion and query
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Length of the longest chain Uniform Gaussian Zipf
Bulk-loaded base tree 10 7 83
Insert-constructed base tree 14 20 178

Table 4.2: The length of the longest chain in the FAR-Tree

4.2.4 Re-balancing Evaluation

To evaluate the re-balancing, we first insert data to the base tree with the R-Tree

and FAR-Tree insertion approaches, then we re-balance the FAR-Tree, and lastly

do queries on the R-Tree and the FAR-Tree respectively. For the first step, we

insert the same amount of data as in the insertion evaluation. After the FAR-Tree

re-balancing, we do 5,000 queries on both indexes.

Figure 4.13, Figure 4.14, and Figure 4.15 show the costs for synthetic datasets.

Figure 4.16 and Figure 4.17 show the costs for the Germany dataset and the Greece

dataset. As before, the vertical axis represents the normalized accumulated I/O costs

and the horizontal axis represents the number of operations, with the insertions at

first and a re-balancing performed before performing the queries. We do insertions

and queries in rounds, with each round containing 2,500 operations; in the figures,

we note the accumulated I/O costs after a corresponding round. In the charts, the

cost jump in the FAR-Tree is for the FAR-Tree re-balancing.

Essentially, the re-balancing is doing a set of R-tree insertions which re-insert

all the entries from the attached chain nodes back to the tree index, so the num-

ber of node updates for re-balancing should be almost the same as constructing the

corresponding R-Tree. However, as we can see from all the results, the FAR-Tree

re-balancing costs less than constructing the R-Tree. For example, in Figure 4.13a,

the re-balancing costs about 50,000 I/Os while constructing the R-Tree costs more

than 200,000 I/Os. A minor reason for this is that the number of objects re-inserted

is smaller than the number of objects inserted in the corresponding R-Tree, since the

objects inserted to the leaf nodes in the FAR-Tree does not need to be re-inserted

during the re-balancing. The major reason is that the buffer is better utilized be-

cause of the “ordered” insertion in the re-balancing. The re-balancing retrieves the

attached entries chain by chain. Entries within the same chain are located close to
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each other, and are close to the entries in their appending leaf nodes as well. For

this reason, when inserting these entries back to the tree, successive insertions are

usually on the same leaf node or adjacent leaf nodes. In this case, most insertions

are executed when the target nodes can be found inside buffer; the buffer hit in-

creases and therefore the number of disk access is reduced. If we set the buffer

size to 1 page to simulate the case that there is no buffer utilization for the case in

Figure 4.13a, we will find that the re-balancing cost is as large as the R-Tree con-

struction. The comparison is shown in Figure 4.18. The efficient buffer utilization

makes the re-balancing cost acceptable. We can observe from results of both the

synthetic datasets and the real datasets that, with the increasing buffer size, the cost

of re-balancing decreases evidently. The total costs of the FAR-Tree insertion plus

the re-balancing can be less than constructing the R-Tree with the same data. For all

cases in our experiment, the total cost of FAR-Tree is more than the R-Tree when

the buffer size is 10, but as the buffer size grows, the FAR-Tree costs less than the

R-Tree in total.

At the point just after a re-balancing, the FAR-Tree actually becomes a balanced

R-Tree index. The R-Tree built from the FAR-Tree re-balancing has similar shape

as the comparing R-Tree, although they may be slightly different as the order of

insertions matters when inserting data to construct an R-Tree. This explains why

the costs for the queries after re-balancing are almost parallel. On the other hand,

as discussed in Section 3.1.3, the sorted re-insertion results in a better structured R-

Tree with less MBR overlap. In this case, although not obviously observed, queries

on the re-balanced tree yields a better performance, for the results in Figure 4.13c

as an example. This phenomenon can be more obviously observed in the results

with real access time measurement in Section 4.3.

4.3 Results In Real Disk Access Time

For all the experiments above, we run them on a real SSD and measure their real

disk access time. This section lists all the corresponding results, and we can observe

that the results generally agree with the results measured in logical I/Os.
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Figure 4.13: Re-balancing evaluation in logical I/Os; average MBR size: 0.01%
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Figure 4.14: Re-balancing evaluation in logical I/Os; average MBR size: 0.1%
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Figure 4.15: Re-balancing evaluation in logical I/Os; average MBR size: 1%
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Figure 4.16: Re-balancing evaluation in logical I/Os on Germany dataset
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Figure 4.17: Re-balancing evaluation in logical I/Os on Greece dataset
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Figure 4.18: The result in Figure 4.13a with a 10-page buffer size is zoomed in on
the left. The corresponding result with a 1-page buffer size is shown on the right.

Figure 4.19, Figure 4.20, and Figure 4.21 show the costs of insertions and

queries for the synthetic datasets. Figure 4.22 and Figure 4.23 show the results for

the Germany dataset and the Greece dataset respectively. We display the insertions

and queries together for simplicity.

For the insertion, the FAR-Tree costs less than the R-Tree. The saving is more

obvious with more skewed distribution or larger buffer size. For the query, the

FAR-Tree costs more than the R-Tree because of the chain nodes traversal, so that

the savings from insertions are offset by the queries. The more skewed the dataset

distribution is, the more costs will be spent by the FAR-Tree queries. However,

an exception is shown in Figure 4.20 and Figure 4.21 that for the results of the

Zipf distribution, where the R-Tree query costs more than the FAR-Tree. This

is because that the R-Tree cannot work well with intense overlap on the datasets

with large objects. In the logical I/O measurement, the number of queries afforded

by the insertion savings also increases with the enlarging object size for the Zipf

distribution, although on the real disk it is more obvious.

Figure 4.24, Figure 4.25, and Figure 4.26 show the costs of re-balancing for

the synthetic data. Figure 4.27 and Figure 4.28 show the results for the Germany

dataset and the Greece dataset respectively. According to the results in logical I/Os,

the cost for re-balancing decreases with the growth of the buffer size, and the total

cost of insertions plus queries become less than constructing the comparing R-Tree

when the buffer is relatively large. In addition, we can observe that the query on

the re-balanced FAR-Tree costs less than the comparing R-Tree due to the benefits

61



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 2 4 6 8 10

R
ea

l 
D

is
k
 A

cc
es

s 
T

im
e 

(A
cc

u
m

u
la

te
d
 I

/O
s)

 

1-8: Insertions, 9-10: Queries 

R-Tree

FAR-Tree

(a) Uniform, B=10

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 2 4 6 8 10

R
ea

l 
D

is
k
 A

cc
es

s 
T

im
e 

(A
cc

u
m

u
la

te
d
 I

/O
s)

 

1-8: Insertions, 9-10: Queries 

R-Tree

FAR-Tree

(b) Uniform, B=25

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 2 4 6 8 10

R
ea

l 
D

is
k
 A

cc
es

s 
T

im
e 

(A
cc

u
m

u
la

te
d
 I

/O
s)

 

1-8: Insertions, 9-10: Queries 

R-Tree

FAR-Tree

(c) Uniform, B=50

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10

R
ea

l 
D

is
k
 A

cc
es

s 
T

im
e 

(A
cc

u
m

u
la

te
d
 I

/O
s)

 

1-8: Insertions, 9-10: Queries 

R-Tree

FAR-Tree

(d) Gaussian, B=10

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10
R

ea
l 

D
is

k
 A

cc
es

s 
T

im
e 

(A
cc

u
m

u
la

te
d
 I

/O
s)

 
1-8: Insertions, 9-10: Queries 

R-Tree

FAR-Tree

(e) Gaussian, B=25

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10

R
ea

l 
D

is
k
 A

cc
es

s 
T

im
e 

(A
cc

u
m

u
la

te
d
 I

/O
s)

 

1-8: Insertions, 9-10: Queries 

R-Tree

FAR-Tree

(f) Gaussian, B=50

0

0.5

1

1.5

2

2.5

0 2 4 6 8

R
ea

l 
D

is
k
 A

cc
es

s 
T

im
e 

(A
cc

u
m

u
la

te
d
 I

/O
s)

 

1-8: Insertions, 9: Queries 

R-Tree

FAR-Tree

(g) Zipf, B=10

0

0.5

1

1.5

2

2.5

0 2 4 6 8

R
ea

l 
D

is
k
 A

cc
es

s 
T

im
e 

(A
cc

u
m

u
la

te
d
 I

/O
s)

 

1-8: Insertions, 9: Queries 

R-Tree

FAR-Tree

(h) Zipf, B=25

0

0.5

1

1.5

2

2.5

0 2 4 6 8

R
ea

l 
D

is
k
 A

cc
es

s 
T

im
e 

(A
cc

u
m

u
la

te
d
 I

/O
s)

 

1-8: Insertions, 9: Queries 

R-Tree

FAR-Tree

(i) Zipf, B=50

Figure 4.19: Insertion and Query evaluation in real disk access time; average MBR
size: 0.01%

of sorted re-insertion. The results in the real disk access time is more obvious than

the logical number of I/Os. A possible explanation is that the re-balancing re-insert

the chain entries in a “ordered” sequence, such that adjacent nodes (adjacent leaf

nodes and nodes on the same branch) tend to be stored on the disk in sequence. In

the case when one query reads more than one branch, some reads can be sequential.

The rate of sequential read and the random read on SSDs are different. The SSD we

use has the sequential disk read in 500MB/s and the random read in 29,000IOPS

(115MB/s). The logical measurement cannot reveal this subtle difference.

62



0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10

R
ea

l 
D

is
k
 A

cc
es

s 
T

im
e 

(A
cc

u
m

u
la

te
d
 I

/O
s)

 

1-8: Insertions, 9-10: Queries 

R-Tree

FAR-Tree

(a) Uniform, B=10

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10

R
ea

l 
D

is
k
 A

cc
es

s 
T

im
e 

(A
cc

u
m

u
la

te
d
 I

/O
s)

 

1-8: Insertions, 9-10: Queries 

R-Tree

FAR-Tree

(b) Uniform, B=25

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10

R
ea

l 
D

is
k
 A

cc
es

s 
T

im
e 

(A
cc

u
m

u
la

te
d
 I

/O
s)

 

1-8: Insertions, 9-10: Queries 
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Figure 4.20: Insertion and Query evaluation in real disk access time; average MBR
size: 0.1%

63



0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10

R
ea

l 
D

is
k
 A

cc
es

s 
T

im
e 

(A
cc

u
m

u
la

te
d
 I

/O
s)

 

1-8: Insertions, 9-10: Queries 

R-Tree

FAR-Tree

(a) Uniform, B=10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10

R
ea

l 
D

is
k
 A

cc
es

s 
T

im
e 

(A
cc

u
m

u
la

te
d
 I

/O
s)

 

1-8: Insertions, 9-10: Queries 

R-Tree

FAR-Tree

(b) Uniform, B=25

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10

R
ea

l 
D

is
k
 A

cc
es

s 
T

im
e 

(A
cc

u
m

u
la

te
d
 I

/O
s)

 

1-8: Insertions, 9-10: Queries 

R-Tree

FAR-Tree

(c) Uniform, B=50

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8

R
ea

l 
D

is
k
 A

cc
es

s 
T

im
e 

(A
cc

u
m

u
la

te
d
 I

/O
s)

 

1-8: Insertions, 9: Queries 

R-Tree

FAR-Tree

(d) Gaussian, B=10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8

R
ea

l 
D

is
k
 A

cc
es

s 
T

im
e 

(A
cc

u
m

u
la

te
d
 I

/O
s)

 

1-8: Insertions, 9: Queries 

R-Tree

FAR-Tree

(e) Gaussian, B=25

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8

R
ea

l 
D

is
k
 A

cc
es

s 
T

im
e 

(A
cc

u
m

u
la

te
d
 I

/O
s)

 

1-8: Insertions, 9: Queries 

R-Tree

FAR-Tree

(f) Gaussian, B=50

0

1

2

3

4

5

6

7

8

9

10

0 5 10

R
ea

l 
D

is
k
 A

cc
es

s 
T

im
e 

(A
cc

u
m

u
la

te
d
 I

/O
s)

 

1-8: Insertions, 9-11: Queries 

R-Tree

FAR-Tree

(g) Zipf, B=10

0

1

2

3

4

5

6

7

8

9

10

0 5 10

R
ea

l 
D

is
k
 A

cc
es

s 
T

im
e 

(A
cc

u
m

u
la

te
d
 I

/O
s)

 

1-8: Insertions, 9-11: Queries 
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1-8: Insertions, 9-11: Queries 
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Figure 4.21: Insertion and Query evaluation in real disk access time; average MBR
size: 1%
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1-10: Insertions, 11-12: Queries 
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Figure 4.22: Insertion and Query evaluation in real disk access time on Germany
Dataset
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1-10: Insertions, 11-12: Queries 
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Figure 4.23: Insertion and Query evaluation in real disk access time on Greece
Dataset
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Figure 4.24: Re-balancing evaluation in real disk access time; average MBR size:
0.01%
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Figure 4.25: Re-balancing evaluation in real disk access time; average MBR size:
0.1%
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Figure 4.26: Re-balancing evaluation in real disk access time; average MBR size:
1%
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Figure 4.27: Re-balancing evaluation in real disk access time on Germany Dataset
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Figure 4.28: Re-balancing evaluation in real disk access time on Greece Dataset
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

As a new storage media, SSDs are featured with faster I/O performance and lower

power consumption. Considering the affordable price and the increasingly avail-

able storage space, SSDs now become a feasible alternative to HDDs for database

storage. In this research, we focused on the spatial data storage and presented a

flash aware R-Tree based solution for indexing spatial data on SSDs.

The R-Tree is a dynamically constructed and maintained index structure. It was

originally designed for HDDs. Generally, HDDs have the same rate for doing reads

and writes, and both are relatively slow because of the seek time and rotational la-

tency. SSDs are not well suited for implementing the R-Tree efficiently because of

the different hardware mechanisms compared to magnetic disks. SSDs act asym-

metrically on reading and writing; writing on SSDs is expensive because of the I/O

asymmetry, the garbage collection, and the wear leveling. When implementing an

R-Tree on SSDs, it becomes important to consider the index update, as it will lead

to large amount of expensive disk writes, and the overall index performance may

be impacted in the presence of updates.

In this thesis, we adapted the R-Tree to efficiently work for SSDs. The goal was

to minimize the number of disk writes during index update. Based on an unbal-

anced indexing idea in [10], we proposed our solution to append chains to the leaf

nodes and place the new inserting data into the chain nodes, instead of triggering

node splits as in a typical R-Tree. By avoiding the splits, we reduced a number
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of node writes. At the same time, an in-memory table was maintained for MBR

adjustment upon chain node insertions, such that the disk access for adjusting the

index was eliminated. Compared to the original R-Tree, the FAR-Tree saved I/Os

for inserting new objects to the index. On the other hand, the chains may result in

more disk reads when searching the index, as the chain nodes need to be traversed;

the reads increase as the chains get long. In this case, we proposed to re-balance the

FAR-Tree index. The re-balancing is to re-insert the attached entries to the upper

R-Tree index sequentially. The FAR-Tree re-balancing utilized the buffer well be-

cause of the “ordered” re-inserting, and therefore the overhead of re-balancing was

diminished.

We conducted a detailed cost analysis for the FAR-Tree insertions and queries

theoretically, with a comparison to the R-Tree. We then evaluated the FAR-Tree

performance by doing experiments on both the synthetic data with various prop-

erties and the real-world data. We measured the logical I/Os in our experiments,

which is the number of node reads and writes. The results conformed with our

cost analysis. Experiments showed that, the FAR-Tree insertions always cost less

than the R-Tree insertions. The FAR-Tree queries cost more than the R-Tree, and

thus the insertion savings were offset after doing a number of queries. For the re-

balancing, experiments showed that, with a proper buffer size, the total costs of

insertions plus re-balancing for the FAR-Tree can be smaller than constructing the

corresponding R-Tree, in which case the overhead for the FAR-Tree re-balancing

was acceptable. In addition, we ran our experiments on a real SSD and measured

the real disk access time. The results of real access time agreed with those of log-

ical measurement, which showed savings on inserting new data and an acceptable

re-balancing overhead, though more costs on queries.

In summary, the FAR-Tree was shown as an update-efficient index at the cost of

some overhead at query time. The re-balancing addressed the FAR-Tree’s problem

of having larger costs for doing queries, and the re-balancing overhead is accept-

able. When implemented on SSDs, compared to the R-Tree, the FAR-Tree improves

the I/O performance in the presence of index updates. For an intensely updating in-

dex, the FAR-Tree will yield a good performance. Moreover, compared to previous
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approaches for indexing data on SSDs, as we reviewed in Chapter 2, our approach

does not change the hardware configuration and does not require special care for

buffer management.

5.2 Future Work

The FAR-Tree approach gave an efficient solution for adapting the R-Tree spatial

index to work on SSDs. It improves the I/O performance when the R-Tree is rela-

tively update-intensive. However, there are still more questions to be answered for

the FAR-Tree.

In the FAR-Tree approach, we need to re-balance the tree when the chains get

long. In our experiments, we re-balanced the index after we inserted all the inser-

tion data, and thus the re-balancing happens in cases with various length of chains

(depending on the dataset distributions). The results for all cases yielded a small

cost for re-balancing when adopting a proper buffer size, such that the costs for

insertions plus re-balancing is smaller than the R-Tree. However, there may be a

optimal point to re-balance so that it will yield better savings. Especially when we

do queries and insertions together, it is important to know when to re-balance the

tree for a minimum overall cost. One could think about a dynamic strategy to find

a threshold for the chain length; when the length of the chains reach the threshold,

the tree will re-balance by itself. This could be done by tracking the costs history

of the index and statistically choosing a threshold with best performance.

In addition, a good cost estimation model can be an aid to determine the thresh-

old. We have given a detailed analysis for insertions and queries, however, a more

precise estimation model is expected so that we can estimate the best time for re-

balancing. Also, the costs for operations are expected to be estimated in advance

only by referring to the properties of the indexing data and the query data.

Moreover, the FAR-Tree approach did not consider the buffer management, as

in our experiments, we simply adopted the random eviction strategy. However, a

better eviction algorithm and buffer management could help to make more savings.

Another direction for the future work is to reduce the number of reads resulted
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from the chain node traversal when doing queries. To address this problem, a

smarter buffer manager can be adopted. On the other hand, a sub-index could be

constructed on the chains to avoid the sequential traversal. Based on the idea of the

VA-File [24], which calculates a compact binary approximations for spatial objects.

One could calculate approximations for the chain nodes’ locations and utilize the

approximations to filter out an amount of chain nodes instead of traversing them all.
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