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Abstract

As the rapid development of modern industry, data based fault detection and diagnosis for

industrial processes have become increasingly critical to ensure process safety and product

quality. To effectively make use of underlying features of process data, multiple data based

fault detection and diagnosis algorithms have been developed, among which the multivari-

ate statistical process monitoring (MSPM) algorithms and the probabilistic graphical model

based algorithms have been widely used. Through unsupervised training, the conventional

MSPM algorithms have the advantage of simplicity but do not use the labeled fault infor-

mation in the training phase. On the other hand, the probabilistic discriminative classifiers

are supervised models and trained with label information. This thesis starts from solving a

practical industrial fault detection and diagnosis problem based on the unsupervised MSPM

approaches. Then to fully make use of both process observations and fault information, a

supervised probabilistic discriminative framework, namely conditional random field (CRF)

model, is introduced and then extended to deal with various practical scenarios and chal-

lenges.

Specifically, as a practical study on real-time fault detection and diagnosis, an early flare

event prediction for a refinery process is first considered. Different operating conditions and

production requirements from different process units result in hybrid data characteristics,

therefore a single fault detection and diagnosis algorithm is not sufficient to deal with the

problem. In this sense, a hierarchically distributed framework is designed to solve this

problem, with two integrated and interactive monitoring layers to detect faults and track the
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root causes. Based on this layout, the majority of flare events can be successfully predicted

with limited false positives.

Additionally, when fault label is available, supervised probabilistic classifiers are further

explored. As a discriminative counterpart of the widely used hidden Markov models (HMMs),

the linear-chain CRF (LCCRF) is introduced with demonstrated superior fault diagnosis

performance to the HMMs. Then three practical challenges are addressed by extending

the conventional LCCRF frameworks to variants of CRFs. First, to deal with the missing

data problem, a marginalized CRF model is developed with a proposed efficient inference

strategy. Second, to solve the feature selection and online adaption problem for operating

mode diagnosis, a two-stage hidden CRF (HCRF) structure is proposed by combining the

max-margin trained HCRF and LCCRF into a hierarchical framework. Third, to address

the fault detection and diagnosis problem for processes with multiple operating conditions,

a switching CRF model is proposed to deal with the variations of the process conditions, by

extending unitary LCCRF to multiple LCCRFs.

This thesis aims to provide improved solutions to the fault detection and diagnosis prob-

lems in practical processes. As shown through multiple case studies of different chapters,

the effectiveness of the proposed algorithms is demonstrated.
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Chapter 1

Introduction

1.1 Motivation

Modern industries are composed of large-scale facilities and involve highly complicated net-

works, with thousands of control loops and process variables (PVs). To ensure smooth

process operations, increase production safety and minimize maintenance costs, employing

effective and accurate process monitoring techniques is essential and has inspired many rele-

vant academic and practical researches over the last decades. Generally, process monitoring

techniques are utilized to detect, diagnose and remove faults occurring in the processes [1],

where a fault is defined as an unpermitted deviation of at least one characteristic property

or variable of the system [2].

Typically, process monitoring is composed of four components, namely, fault detection,

fault identification, fault diagnosis and fault recovery [1]. Fault detection aims to determine

whether a process has a fault. Early fault detection can be used to generate anticipated

warnings for process operators to take preventive actions. Fault identification is to identify

the PVs most relevant to diagnosing the fault, which can also be treated as a preliminary

procedure of fault diagnosis. Fault diagnosis is to diagnose the causes of the fault. Finally,

based on the above fault analysis results, interventions can be performed to eliminate the
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fault, called fault recovery [3]. This thesis mainly focuses on the fault detection and diagnosis

problems.

A complete fault diagnosis system can be considered as a mapping from process mea-

surements to fault classes, with intermediate transformations from the measurement space

to the feature space, and then the feature space to the fault class space [4]. Compared with

the raw measurement space, the transformed feature space has enhanced discriminative ca-

pacity and therefore is normally able to improve fault diagnosis performance. According

to the available process information and process characteristics, there have emerged various

algorithms to perform feature transformation from process knowledge, based on which the

transformation between feature space and fault class space can be established. Fig. 1.1

summarizes the categories of the main stream fault detection and diagnosis algorithms. As

shown in Fig 1.1, the existing approaches may be classified into three different categories,

namely, knowledge-based, analytic-based and data-based algorithms [1]. Knowledge-based

approaches are established based on qualitative models, such as causal analysis or expert

systems, and analytic-based algorithms usually employ mathematical models built from first

principles, while the data-based algorithms are directly constructed from the process mea-

surements [1]. However, considering practical industrial processes, the complicated mecha-

nisms and interactions among all the existing PVs make the first principle modeling diffi-

cult, and the lack of a complete understanding of a process also degrades the performance

of knowledge-based models. On the other hand, owing to the availability of a large amount

of stored process data, data-based approaches offer a potential effective alternative solution

to the other two types of approaches.

Among the existing data based fault detection and diagnosis approaches, multivariate

statistical process monitoring (MSPM) approaches play an important role due to their capa-

bility to handle high dimensional process observations, by compressing the high dimensional

raw measurements into lower dimensional latent features. However, the effectiveness of the

MSPM algorithms can be achieved only when the corresponding assumptions are satisfied.
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Figure1.1:Overviewofthefaultdetectionanddiagnosisalgorithmsdiscussedinthisthesis,
asdenotedintheshadednodes

GenericassumptionsofmostMSPMalgorithmsincludetheunimodal,time-invariantand

stationarycharacteristicsofindustrialprocess.Inpractice,processesaremorecomplicated

thantheassumptionsoftheMSPMalgorithms,andsuchprocessescanexhibithybridand

time-varyingcharacteristics.Inmostcases,asingle MSPMalgorithmisnotalwaysable

toachieveeffectivefaultdetectionanddiagnosisperformance.Thisthesisstartsfromsolv-

ingarealindustrialfaultdetectionanddiagnosisproblem,namely,toprovideearlyflare

eventdetectionforarefineryprocessusingMSPMapproaches.Therefineryprocessunder

considerationhasalargescaleandiscomposedofdifferentunitswithalargeamountof

processobservationsbutwithlimitedprocessknowledge.Thecharacteristicsofthisprocess,

suchashighdimensionality,time-varying,non-stationaryandinconsistency,maketheearly

detectionproblemmorechallenging.VariousMSPMalgorithmsareexploredandcompared,

andasystematichierarchicalframeworkisproposedtointegratedifferentMSPMalgorithms
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to extract informative signatures to predict the faulty events.

Most of the existing MSPM algorithms are restricted to process monitoring when the

process is operated under a single operating mode. However, a process can have multiple op-

erating modes switching among each other. The statistical properties of different operating

modes can vary significantly, so that the conventional MSPM algorithms may not be able to

deal with them. To address the multimodal problem, extensions have been made based on

the conventional MSPM approach. One straightforward solution is to use multiple MSPM

models to describe more than one operating mode. However, such extension might not be

able to well model the process dynamic and uncertainty brought by the operating mode

switching. As a result, the probabilistic models are considered as a more expressive mathe-

matical tool for multiple operating mode modeling in this thesis. Meanwhile, for continuous

processes, temporal correlations are naturally encoded in the collected process datasets. Such

temporal correlations need to be considered when building a model for process monitoring.

In recent decades, the hidden Markov models (HMMs) have been widely employed to solve

fault detection and diagnosis problems for processes with temporal correlations and mul-

tiple operating modes [5]. However, HMMs have two inherent independence assumptions,

namely, (i) in first order HMMs, the current state is assumed to be only dependent on the

state immediately prior to it and independent of all the other previous information; (ii) the

current observation is only dependent on the current state and independent of all the other

previous information. Here, the state of HMMs is equivalent to the operating mode. These

independence assumptions will degrade the performance of HMMs when they are violated.

In this sense, under the probabilistic framework, while preserving the advantages of HMMs,

a more flexible modeling structure is deployed to enhance the fault detection and diagnosis

performance for complicated processes.

To reduce the restriction of HMMs and facilitate the feature extraction, conditional

random field (CRF) model is introduced to solve the fault detection and diagnosis problems

for processes with multiple operating modes and complicated temporal correlations. The
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fault detection and diagnosis performance of CRFs has been demonstrated to be superior

to HMMs, and extensions based on the conventional CRF models are proposed to solve the

missing data, variable selection and multiple operating condition problems. This forms the

second part of this thesis.

1.2 Literature Review

As illustrated in Fig. 1.1, based on the available process information that can be utilized for

process monitoring, there are three categories of monitoring strategies, including knowledge-

based, analytic-based and data-based algorithms. Data-based algorithms are flourishing over

decades and have become a promising means to deal with complicated process monitoring

problems without the need to know complete process knowledge. As the core problem for

data-based process monitoring is to extract discriminative features from the raw process

observations, numerous algorithms have been developed to address different process data

characteristics, among which the conventional MSPM and probabilistic graphical models

have shown promising potentials and attracted increasing attentions from researchers. In this

section, the data-based fault detection and diagnosis algorithms are first reviewed, and then

the conventional MSPM and probabilistic graphical model based algorithms are revisited

and summarized subsequently.

1.2.1 Process Data Based Fault Detection and Diagnosis

Data based fault detection and diagnosis algorithms are developed on the basis of process

historical data, without the requirement of prior process knowledge. According to differ-

ent mathematical techniques utilized, the existing data based fault detection and diagnosis

approaches can be generally classified into statistical and non-statistical categories [6]. In

the statistical category, random disturbances are considered and the process is treated as a

stochastic process. The normal process operations are considered to follow particular statis-
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tical assumptions and modeled by selected probabilistic distributions, where the unknown

parameters are identified by historical data. During online monitoring, once a fault occurs,

process observations will experience unexpected changes and deviate from the predefined

distributions of normal operations. Such deviations can also be used for fault diagnosis. By

expanding the existing works, the following statistical process monitoring (SPM) algorithms

are explained.

Univariate Statistical Process Monitoring

As one type of the earliest SPM strategies, the univariate control charts are proposed to

monitor process production performance online, so that timely correction measures can be

done to bring the process back to normal. Shewhart control charts [7] and the cumulative

sums charts [8] are two typical examples.

However, limited by the univariate property, such control charts can hardly accommo-

date the correlations of multidimensional PVs, resulting in misleading monitoring results.

Therefore, the MSPM techniques are proposed.

Multivariate Statistical Process Monitoring

Multivariate statistical approaches have the capability to excavate the latent information

underlying the high dimensional PVs. The main objective is to transform a number of cor-

related PVs into a smaller set of uncorrelated components, which are monitored to detect

process abnormalities. As typical examples, the principal component analysis (PCA) [9] and

partial least squares (PLS) [10] approaches have been first proposed to perform dimension

reduction, and then some statistical metrics, such as Hotelling’s T 2 statistic [11] and squared

prediction error, are computed for real-time process monitoring. However, the traditional

MSPM algorithms have inherent statistic assumptions, such as unimode, Gaussian distri-

butions and linearity, etc.. For example, the traditional PCA algorithm assumes that the

analyzed data are collected from a linear process under a stationary operating condition [12].

As improvements, various extended works [13, 14, 15] have been proposed.
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Statistical Classifiers

Essentially, fault diagnosis can be treated as a classification problem, where the classical

statistical pattern recognition framework is adopted as potential solutions [6]. Meanwhile, in

order to deal with process uncertainty, the probability theory is introduced. The probabilistic

framework provides sufficient flexibility to model the data characteristics under multiple

operating modes, and it is also able to model the process dynamics and temporal correlations

in the process observations. Gaussian mixture models [16] and HMMs [17] are two typical

examples.

Moreover, conventional MSPM strategies have been extended to probabilistic counter-

parts, such as probabilistic PCA [18]. In this way, by integrating with the above multimodal

modeling, probabilistic counterparts of conventional MSPM approaches can be used to solve

process monitoring problems in multiple operating modes. Among all the existing probabilis-

tic frameworks, probabilistic graphical models have the simplicity of modeling, generalization

and interpretation, and demonstrated effectiveness in process monitoring. Therefore, it is

becoming a promising research subject in recent decades. The details of probabilistic graphic

model based fault detection and diagnosis will be explained in the following sections.

Non-statistical Classifiers

Different from statistical fault detection and diagnosis algorithms, the non-statistical ap-

proaches do not rely on statistical assumptions of process observations. More straightfor-

wardly, parameterized classifiers are established, where a typical example is neural network

[6]. Various network architectures are developed to solve different fault diagnosis problems,

in both supervised and unsupervised manners. The non-statistical algorithms mainly de-

pend on parameterized models to describe multiple operation conditions, and some feature

extraction algorithms, for instance, wavelet analysis, are used for data pre-processing.
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1.2.2 Conventional MSPM Approaches Based Fault Detection and

Diagnosis

The conventional MSPM algorithms are developed based on statistical theory to extract

latent information from process observations with reduced dimensions. In practice, apart

from high dimensionality, the collected data from industrial processes usually have multiple

characteristics, for example, non-Gaussian distribution, nonlinear correlation, randomness,

multimodal and dynamic characteristics, etc.. To address this problem, different MSPM

approaches need to be established for accurate discriminative feature extractions.

Due to the limitation of standard PCA with inherent assumptions, several improved al-

gorithms have been proposed. For instance, to address process dynamics, dynamic PCA has

been proposed by introducing lags into the observations [19]. Kernel PCA was proposed

[20] by introducing a kernel function to make the nonlinear observations tractable with lin-

ear approach. For non-Gaussian process observations, the independent component analysis

(ICA) algorithm was developed to generate appropriate latent components for further pro-

cess monitoring [21, 22]. These improvements are motivated by modeling the characteristics

of process observations.

Another way of improvement is to adjust criteria of feature extraction for more accurate

fault detection and diagnosis. For example, the standard PCA performs dimension reduction

while preserving significant variability in the extracted features. Unlike standard PCA, the

linear discriminant analysis achieves dimensionality reduction while preserving maximum

discriminative information for fault classification [1]. By introducing dynamic autocorrela-

tions into the latent variables during modeling, the slow feature analysis (SFA) approach is

formulated as a state space model and then the latent variables are extracted and sorted by

the varying velocity [23]. By using SFA model, normal operating condition deviations can

be differentiated from the actual faults with dynamic anomalies. Similar works can be found

in [24].

Even though there exist lots of MSPM algorithms, it is not possible to find one MSPM
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approach that is effective to all process monitoring problems. The process complexity and

time-varying properties make fault detection and diagnosis problems even more difficult,

therefore the development of efficient hybrid process monitoring systems becomes an attrac-

tive research subject [6].

1.2.3 Probabilistic Graphical Model Based Fault Detection and

Diagnosis

Probabilistic graphical models are formulated by integrating graph theory and probability

theory into a unified modeling framework [25]. A probabilistic graphical model can be spec-

ified by the model graphical structure and a set of local functions [26]. The graphical model

structure qualitatively depicts the correlations among the selected random variables, and

the local functions are designed to quantitatively describe the random variable dependences.

Effective probabilistic inference and learning strategies can be employed to obtain insights

of the process operating status.

Probabilistic graphical models can be classified into diversified categories from different

perspectives [26]. From modeling perspectives, probabilistic graphical models can be sepa-

rated into generative and discriminative models [27]. Considering temporal correlations in

a process, probabilistic graphical models can be classified into static and dynamic models.

Extending static probabilistic graphical models to a linear chain or more complicated struc-

tures is one way to develop dynamic probabilistic graphical models. In this way, process

uncertainty, temporal correlations and multimodal operating situations can be formulated

in a unified model for fault detection and diagnosis.

Probabilistic Generative Model Based Fault Diagnosis

Probabilistic generative models formulate the joint probability of selected random variables

and encode the correlations among random variables into the obtained models. Based on

the learned model, inference can be performed to estimate latent variables from historical
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process observations, where latent variables can be discrete operating modes or continuous

latent features. Bayesian networks include a wide range of probabilistic generative models

and have been employed to solve many fault diagnosis problems in complicated industrial

processes [28].

Bayesian networks start from modeling the joint probabilistic distributions of random

variables and rely on certain independence assumptions to simplify the joint probability.

Static Bayesian networks, for example, Bayesian classifiers and probabilistic mixture models,

assume samples from different sampling instants independent with each other, which are

used to solve multimodal process monitoring problems. Specifically, finite Gaussian mixture

models [29, 30], mixture probabilistic PCA models [31] and mixture Bayesian regularization

based probabilistic PCA models [32] have been proposed to describe the process multimodal

property by formulating the process observations with different probabilistic distributions.

However, such mixture models do not concern about process dynamics, such as oper-

ational mode transitions, and most of them commonly assume that process data follow a

Gaussian distribution in one operating mode. As an improvement, dynamic Bayesian net-

works are proposed by introducing temporal correlations into random variables. In this way,

linear Gaussian state-space model is obtained by formulating autocorrelations in the latent

variables of probabilistic PCA model [33]. Autoregressive dynamic latent variable models

have been proposed to capture static and dynamic correlations in raw data simultaneously

for process monitoring [34]. The dynamics of continuous latent features are generally repre-

sented in a state space form, and the dynamics introduced into the discrete latent variables

are usually formulated as a Markov process, such as operating mode transitions.

By such a formulation, a series of switching models have been proposed. For example,

multiple autoregressive dynamic latent variable models have been integrated in a switching

framework to monitor processes with multiple operating modes [35]. Similarly, the static

mixture probabilistic PCA model can also be extended into a dynamic form with switch-

ing mechanism among the subcomponents [36]. More generally, these formulations can be
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assorted into HMM frameworks.

HMM is a probabilistic sequence model for estimating the joint probability distribution

of hidden states and observations, where states correspond to different operating modes.

HMMs have the advantages of simplicity and extensibility, and perform well at modeling

state transitions. Considering the industrial data quality, various feature extraction algo-

rithms are combined with HMMs to achieve a satisfactory process monitoring performance,

as mentioned above. Moreover, in dynamic process monitoring, HMMs are effective methods

to deal with missing data, outlier issues and time-varying transitions [17, 37]. However, prob-

abilistic generative modeling makes it necessary for HMMs to require explicit probabilistic

distributions to model the observations, and to simplify the factorization, two independence

assumptions need to be satisfied in HMMs [27]. Even though many extended HMMs are

proposed to relax the inherent assumptions of the conventional HMMs, for example, autore-

gressive HMMs [38] and higher-order HMMs [39], etc., such extensions bring up increased

computational loads and make the modeling, training and inference of HMMs more complex.

Moreover, even with the extended HMMs, one still needs to find appropriate probabilistic

distributions to model process observations, which might degrade the fault diagnosis accu-

racy once the proposed probabilistic model is not accurate.

As a result, probabilistic discriminative models are proposed to compensate the potential

drawbacks of generative models. Instead of modeling the joint probability, probabilistic

discriminative models directly formulate and optimize conditional probability. In this sense,

no explicit probabilistic distributions are required to model the process observations, and

the independence assumptions for joint probability factorization can also be relaxed.

Probabilistic Discriminative Model Based Fault Diagnosis

Compared with probabilistic generative models, there are fewer existing works on the

probabilistic discriminative model based fault diagnosis. Similar to Bayesian networks, prob-

abilistic discriminative models can also be classified into static and dynamic categories. A
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typical static probabilistic discriminative model is logistic regression model, which has been

employed to solve the rolling element bearing fault diagnosis problem and shows superior per-

formances compared with artificial neural networks and support vector machine (SVM) based

algorithms [40]. On the basis of the logistic regression model, a statistical feature selection

approach has been proposed to aid fault diagnosis in the presence of massive historical data

[41]. By incorporating temporal correlations, dynamic probabilistic discriminative models

are proposed, for example, CRFs. CRFs are a type of probabilistic discriminative counter-

part of HMMs, and have demonstrated better performance than HMMs in many application

fields, such as natural language processing, image processing and speech recognition, etc.

[42, 43, 44]. In bearing fault classification problem, the CRF scheme has a better fault clas-

sification performance than HMMs [45]. A neighbourhood hidden CRF (HCRF) model is

utilized to address the condition monitoring problem of large scale wireless sensor networks

[46] with a demonstrated superior performance to HMMs. However, unlike HMMs, CRFs

have been seldom used in the process monitoring domain. This fact motivates the works of

this thesis. In the following section, contributions of this thesis will be explained.

1.3 Thesis Outline

In Chapter 2, the main mathematical backgrounds and techniques used in this thesis are

illustrated and explained in details. As a major component of this thesis, before the in-

depth discussions of the CRFs based fault detection and diagnosis approaches, the model-

ing, learning and inference procedures of CRFs are formulated. Subsequently, in parallel

with the traditional maximum likelihood estimation (MLE), the expectation maximization

(EM) and variational Bayesian (VB) strategies are explained as two alternative parameter

estimation approaches when latent variables are introduced into CRF models. Both EM

and VB algorithms have the capability to handle latent variables, with the unknown model

parameters and the posterior probabilities of the latent variables calculated iteratively un-
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til convergence. However, EM and VB algorithms have different properties and perform

differently when dealing with different problems. Therefore, as preliminaries, EM and VB

algorithms will be compared.

In Chapter 3, a hierarchically distributed MSPM approach is proposed and an early

flare event prediction and diagnosis problem from a real refinery process with large scale

plantwide settings is analyzed and solved. The limited access to process knowledge and

availability of large amount process historical data make this practical problem a good real

world template to develop and evaluate data based process monitoring strategies. In this

work, the challenges of the early flare prediction problem and characteristics of the refinery

process are first presented. Furthermore, the performance and limitations of the existing

MSPM algorithms are analyzed. Finally, a hierarchical monitoring framework is designed

and multiple conventional MSPM algorithms are integrated into this proposed framework for

early fault detection and diagnosis. For application purposes, an adaptive online strategy is

developed to improve the flare prediction accuracy and reduce the false positives. The early

flare event prediction performance of the proposed algorithm is demonstrated through this

real industrial application, and fault diagnosis is developed under a hierarchical monitoring

structure. Because the flare event prediction problem has a limited number of faulty events

available, the proposed unsupervised process monitoring approaches are appropriate solu-

tions. However, in other cases, fault labels are accessible as references, and supervised process

monitoring approaches can learn the relationship between the process observations and fault

labels directly, potentially contributing to a more efficient fault diagnosis. Therefore, the

supervised process monitoring algorithms are further explored in the following chapters.

In Chapter 4, a supervised process monitoring algorithm based on CRF is first proposed

with consideration of missing observations. To begin with, CRFs and HMMs are compared,

in which the inherent independence assumptions of HMMs are illustrated. Being a discrim-

inative modeling approach, it is proven that CRFs are reduced to HMMs in special cases.

Second, by extending from fault diagnosis to mode diagnosis, a LCCRF based process op-
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erating mode diagnosis algorithm is proposed. Third, the standard LCCRF structure is

extended to solve process monitoring problems in presence of missing observations. The ex-

pressive strength of CRFs comes from their ability to extract more complicated features, and

in return, such advantage also increases the challenges. Therefore, an efficient training and

inference algorithm of the proposed CRF model is developed. The solution is established on

the basis of MLE, aiming to directly maximize the conditional probability of the proposed

CRF model. Finally, a numerical case study and a pilot scale experiment are conducted to

demonstrate performance of the proposed algorithm.

In Chapter 5, information redundancy along with a large amount of PVs in industrial

processes is taken into consideration. An outstanding advantage of LCCRF is that it has the

capability to model complicated and correlated features without the need to specify their

probabilistic distributions. However, fault-irrelevant variables may also be used and treated

equivalently to the fault-relevant variables during the CRF modeling. As a result, undesired

disturbances captured by the redundant features may have undesired impacts on the final

fault diagnosis performance. To solve this problem, a two-stage HCRF model is developed.

In the first-stage of HCRF, the max-margin training strategy is employed to discriminate

multiple operating modes, and by recursively eliminating fault-irrelevant variables, the most

relevant variables can be selected during the first-stage training process. The second-stage

HCRF is then followed by adapting the monitor to the dynamic changes of the process with

time-varying model structure. Therefore, switchings among process operating modes can be

captured timely. To demonstrate the performance of the proposed algorithm, a simulation

study is conducted with comparisons to the conventional algorithms and is demonstrated

superior performance.

In Chapter 6, the monitor is extended from the process with single operating condition to

that with multiple operating conditions. Considering the fact that multiple operating modes

can exist at any specific operating condition, single CRF model is not sufficient to handle

such more complex scenario. Therefore, an extension from a single CRF to multiple CRFs
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based monitoring framework is proposed, with one CRF model designed for each operating

condition. As operating conditions switch between each other in a continuous process, CRF

models switch alongside with switching of the corresponding operating conditions. Second,

based on the proposed switching CRF (SCRF) model, an effective training algorithm is

developed by using the EM algorithm introduced in Chapter 2. The presence of the unknown

operating conditions introduces latent variables in a conditional probabilistic framework and

makes the training process more complicated. As a result, a simplified SCRF parameter

estimation strategy is developed by introducing another indicative latent variable. Third,

for online implementation, an online inference approach based on the proposed SCRF model

is formulated. The performance of the developed SCRF framework is evaluated through a

simulated continuous stirred tank reactor (CSTR) process and a hybrid tank experimental

setup.

In Chapter 7, the entire thesis is summarized and future works are presented based on

the complete works and the practical needs for further improvements.

1.4 Main Contributions

As a brief summary, the main contributions of this thesis are listed below:

1. Developed a hierarchically distributed process monitoring framework and solved a prac-

tical early flare event prediction and diagnosis problem;

2. Performed a systematic analysis and comparison between the widely used HMMs and

CRFs, then proposed a CRF based process monitoring framework as a fundamental

structure of this thesis. Extended the standard CRF to a marginalized CRF structure

to handle missing observations;

3. By making use of the discriminative modeling advantages of CRFs, proposed a two-

stage CRF structure considering both variable selection and time-varying adaptation

to process dynamics;

15



4. Developed a switching CRF model based on the standard CRFs to address the moni-

toring issues in a process with multiple operating conditions.
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Chapter 2

Mathematical Foundations

In this chapter, the main mathematical techniques employed throughout this thesis will be

introduced. Starting from the discriminative model formulation, CRFs are explained. Then,

the EM and VB algorithms are formulated in details, and finally comparisons between these

two algorithms are made.

2.1 Conditional Random Fields

In general, CRFs belong to probabilistic model category that is created to interpret depen-

dencies among different random variables. CRFs are first proposed by Lafferty et al. [43]

in 2001 for the purpose of sequence labeling and segmentation. CRFs are a type of proba-

bilistic discriminative models with variable dependencies embedded into a graphic structure.

On the basis of CRF formulation, various applications can be performed, such as speech

recognition, image segmentation and information extraction from an article, etc.. Owing

to the discriminative formulation, CRFs have the capability to model complicated depen-

dencies among variables. At the expense of increasing model complexity, efficient training

and inference algorithms are necessary to make CRFs tractable. To develop a CRF based

algorithm, establishing the graphical model, training and inference are three basic problems

to solve, which will be reviewed in the following section.
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2.1.1 Formulation of CRFs

As a probabilistic graphical model, a CRF can be specified by two components, namely,

a graphic structure G(V , E) that qualitatively defines the variable dependencies and a set

of local functions that quantify the variable correlations [26]. Here, V and E denote the

vertex and edge sets of graph G, respectively. More specifically, as shown in Fig. 2.1, let

Q and O denote two sets of random variables, where Q represents a finite label sequence

and O represents observations. In the graphical structure G(V , E), vertex set V is composed

by the label space Q = (Qv)v∈V , and E represents the edges, including all the connections

among Q and O. Then a CRF (Q,O) is formulated as a conditional distribution of Q given

observation O as follows [27]:

P (Q|O; Θ) =
1

Z(O)
exp{F (Q,O; Θ)} (2.1)

where F (Q,O; Θ) is composed by the feature functions of CRF, and Z(O) is an observation-

dependent normalization term, known as the partition function, with the following formula-

tion:

Z(O) =
∑
Q′

exp{F (Q′,O; Θ)} (2.2)

For different applications, the conditional probability in Equation (2.1) can be interpreted

in different ways. Considering a practical industrial example of flare gas composition infer-

ence from the flare images, the flare gas composition can be first labelled to finite number of

classes, namely, q ∈ {1, 2, · · · , P}, and different flare gas compositions can generate different

types of flares. Due to the change of process, the compositions of flare gas could vary along

with time, which can be identified from the flare image sequence. Here,Q = [Q1, Q2, · · · , QN ]

is a finite sequence of composition labels, and O denotes the pixel data from the flare images.

Without explicit probabilistic distribution modeling, the conditional probability of the com-

position label sequence given all the flare images are formulated directly as a CRF model,

which can be used to predict the composition label sequence given a new set of flare images
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bymaximizingtheconditionalprobabilityP(Q|O).

Asoneofthesolutions,alinear-chaingraphicstructureG(V,E)showninFig.2.1can

beusedtodescribethevariabledependenciesinthisproblem.Inthelinear-chainstructure,

thefirst-orderMarkovdependenciesareassignedtothetagsequenceQwhichenablesthe

adjacentconnectionsbetweenQiandQi−1

……….……….

…...……

Q1 Q2 Q3 Qi QN

O1 ON-1OiO2 O3 ONOi-1

.

Figure2.1:ALCCRFstructuretosolvetheflaregascompositionclassificationproblem

ThegraphicalstructureGofaCRFmodelcanbeconstructedfrompriorknowledgeand

isproblemdependent.Inthisproblem,itisassumedthattheflaregascompositionchanges

overtimeandfollowsthefirst-order Markovproperty,thereforeitcanbemodelledbya

linear-chainstructuredCRFmodel.AfterfixingthegraphicstructureGofaCRFmodel,a

setoflocalfunctionsneedtobedefinedtoquantifythecorrelationscorrespondingtoeach

edgeinE,whicharecalledfeaturefunctions.Specifically,inthisexample,threetypesof

featurefunctionsaredefinedasfollows:

fk1(Qi,Qi−1)=






1ifQi=q1 andQi−1=q2

0 otherwise
(2.3)

fk2(Qi,Oi)=






f(Oi)ifQi=q1

0 otherwise
(2.4)
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fk3(Qi, Oi−1) =

 f(Oi−1) if Qi = q1

0 otherwise
(2.5)

where f(·) represents user selected functions, for example, in linear or quadratic forms.

The first feature function fk1(Qi, Qi−1) describes the transitions among different flare gas

compositions. Since Qi = q ∈ {1, 2, · · · , P}, the total number of fk1(Qi, Qi−1) should be P 2

and all the possible transitions are considered. Correspondingly, each fk1(Qi, Qi−1) has a

weighting factor θk1 to model the strength of correlation between Qi and Qi−1. Similarly,

the second and third feature functions describe the correlations between the current flare gas

composition Qi and the flare image pixel data [Oi, Oi−1]. The previous observations Oi−1 is

employed to enhance the classification accuracy of current flare gas composition Qi.

Explicitly, with the feature functions defined in Equations (2.3) - (2.5), the CRF model

in Equation (2.1) can be re-formulated as

P (Q|O; Θ) =
1

Z(O)
exp{

N∑
i=1

[
∑
k1

θk1fk1(Qi, Qi−1)+
∑
k2

θk2fk2(Qi, Oi)+
∑
k3

θk3fk3(Qi, Oi−1)]}

(2.6)

where the normalization term Z(O) has the following form:

Z(O) =
∑
Q′1:N

exp{
N∑
i=1

[
∑
k1

θk1fk1(Q
′
i, Q

′
i−1) +

∑
k2

θk2fk2(Q
′
i, Oi) +

∑
k3

θk3fk3(Q
′
i, Oi−1)]} (2.7)

Comparing with Equations (2.1) - (2.2), the explicit formulation of function F (Q,O; Θ)

is a linear combination of feature functions, shown as follows:

F (Q,O; Θ) =
N∑
i=1

[
∑
k1

θk1fk1(Qi, Qi−1) +
∑
k2

θk2fk2(Qi, Oi) +
∑
k3

θk3fk3(Qi, Oi−1)] (2.8)

With such formulation, the numerator of P (Q|O; Θ) can be factorized into a series of

exponential functions. The positivity and monotonicity of the exponential functions pro-

vide higher probability to the features with higher significance to classification. Meanwhile,
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theexponentialformulationalsofacilitatestheloglikelihoodcomputationduringtheCRF

trainingprocess.Inthiscase,unliketheprobabilisticgenerativemodels,onedoesnotneed

tofindexplicitprobabilisticdistributionstomodeltheevidenceOgivenlabelsequenceQ.

VariousCRFshavebeenproposedbyextendingthegraphicstructureGasshowninFig.

2.2.SuchvariantshavemorecomplicateddependenciesamongtheverticesV

General CRFsSkip chain CRFs

…

…

…

…

Q1 Q3

OiO3

Q2 Qi Qi+1

O1 O2 Oi+1

Q1 Q3

O3

Q2

O1 O2

andresult

inincreasedcomputationalloads,whichisacostpaidforbettermodelingandexpressive

capability. Asaresult,efficienttrainingandinferencestrategiesneedtobedevelopedfor

thedesignedCRFmodels.

Figure2.2:TwovariantsofCRFs[27]

2.1.2 TrainingofCRFs

Insection2.1.1,thebasicformulationsofCRFshavebeenintroduced.Inthissection,by

takingtheLCCRFinEquation(2.6)asanexample,thetrainingprocedureswillbeexplained.

ForthevariantsofCRFmodels,similarideahasbeenemployedformodeltraining.

InCRFmodeling,theconditionalprobabilityP(Q1:N|O1:N;Θ)isformulatedinEquation

(2.6)whenprovidedwithfullylabeledtrainingdataset{Q1:N,O1:N}.Theunknownweighting

factorsΘneedtobeestimatedbasedonthetrainingdataset{Q1:N,O1:N}.Theobjective

functionistheloglikelihoodoftheconditionalprobabilityP(Q1:N|O1:N;Θ).Bymaximizing

theloglikelihood,theoptimalestimationofΘcanbeobtained,whichiscalledMLE.On
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the basis of the CRF formulated in Equation (2.6), the objective function for parameter

estimation is formulated as below:

l(Θ) =
N∑
i=1

[
∑
k1

θk1fk1(Qi, Qi−1)+
∑
k2

θk2fk2(Qi, Oi)+
∑
k3

θk3fk3(Qi, Oi−1)]− logZ(O)− ||Θ||
2
2

2σ2

(2.9)

where σ is a regularization parameter in the penalty term to avoid overfitting.

In Equation (2.9), it can be observed that the first three terms of the objective function are

a simple summation of weighted feature functions, and the entire computational complexity

of the CRFs arises from the log normalization term logZ(O), which also makes the closed-

form solution of Θ unavailable. Therefore, the numerical optimization algorithms, such as

quasi-Newton algorithms, are employed to get the solution. Taking the unknown parameter

θk1 as an example, the corresponding gradient is derived as

∂l(Θ)

∂θk1
=

N∑
i=1

∂
∑

k1
θk1fk1(Qi, Qi−1)

∂θk1
− 1

Z(O)
· ∂Z(O)

∂θk1
− θk1
σ2

=
N∑
i=1

fk1(Qi, Qi−1)− 1

Z(O)

∑
Q′1:N

N∑
i=1

{fk1(Q′i, Q′i−1) · exp{
N∑
i′=1

[
∑
k1

θk1fk1(Q
′
i′ , Q

′
i′−1)+

∑
k2

θk2fk2(Q
′
i′ , Oi′) +

∑
k3

θk3fk3(Q
′
i′ , Oi′−1)]}} − θk1

σ2

=
N∑
i=1

fk1(Qi, Qi−1)−
∑
Q′1:N

N∑
i=1

{fk1(Q′i, Q′i−1) · P (Q′1:N |O1:N)} − θk1
σ2

=
N∑
i=1

fk1(Qi, Qi−1)−
N∑
i=1

∑
Q′i,Q

′
i−1

P (Q′i, Q
′
i−1|O1:N) · fk1(Q′i, Q′i−1)− θk1

σ2

(2.10)
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Similarly, the gradients of other unknown parameters are computed as follows [27]:

∂l(Θ)

∂θk2
=

N∑
i=1

fk2(Qi, Oi)−
N∑
i=1

∑
Q′i

P (Q′i|O1:N) · fk2(Q′i, Oi)−
θk2
σ2

∂l(Θ)

∂θk3
=

N∑
i=1

fk3(Qi, Oi−1)−
N∑
i=1

∑
Q′i

P (Q′i|O1:N) · fk3(Q′i, Oi−1)− θk3
σ2

(2.11)

The above gradients can be interpreted as the subtraction between the actual activated

feature function values and the expectation of the activated feature function values. When

the gradients are equal to zero, this means that the marginal probabilities of actual labels

are equal to one with the estimated model parameters. Following this search direction,

the optimal parameter estimation can be achieved. The convexity of the objective function

makes the global solution of optimization achievable [27].

In the above gradient calculation, the most complicated part is to derive the marginal

probabilities P (Q′i, Q
′
i−1|O1:N) and P (Q′i|O1:N). As the increase of CRF model complexity,

the computations of the marginal probabilities get harder. As a result, efficient inference

strategies of CRF models need to be further explored.

2.1.3 Inference of CRFs

In CRFs, two common inference problems should be considered, namely, the marginal prob-

ability calculation in the training process and the most likely label sequence estimation when

given new observations [27]. The optimal solutions of both inference problems need to be

searched from an exponential number of possible combinations. Therefore, efficient infer-

ence algorithms are proposed to find out the solutions. Still based on the LCCRF defined

in Equation (2.6), a forward-backward propagation strategy can be employed to obtain the

exact solutions of the inference problems.

The calculation of the marginal probability P (Qi, Qi−1|O1:N) is conducted from the fol-
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lowing formulation:

P (Qi, Qi−1|O1:N) =
1∑

Q1:N
expF (Q1:N , O1:N ; Θ)

· {
∑
Q1:i−2

expF (Q1:i−1, O1:N ; Θ)}·

expF (Qi−1:i, O1:N ; Θ) · {
∑
Qi+1:N

expF (Qi:N , O1:N ; Θ)}
(2.12)

where the enumeration of all the possible label sequences Q1:N is integrated, which can be

solved by forward and backward propagations.

Take the LCCRF defined in Equation (2.6) for example, the forward propagation can be

separated into three procedures.

1. Initialization

For initialization, an initial term is created as α1(Q1) = exp{
∑

k2
θk2fk2(Q1, O1)}

2. Propagation

For propagation, the linear-chain structure enables the updated feature functions in-

cluded into the intermediate forward variable α(i)(Qi, Qi−1) as the chain length increas-

ing from i = 1 to i = 2 as below:

α(2)(Q2, Q1) = α1(Q1)·exp{
∑
k1

θk1fk1(Q2, Q1)+
∑
k2

θk2fk2(Q2, O2)+
∑
k3

θk3fk3(Q2, O1)}

(2.13)

which can be generalized to the cases i = 3, · · · , N , as follows:

α(i)(Qi, Qi−1) = αi−1(Qi−1) · exp{
∑
k1

θk1fk1(Qi, Qi−1) +
∑
k2

θk2fk2(Qi, Oi) +
∑
k3

θk3

· fk3(Qi, Oi−1)}

(2.14)

where the variable αi−1(Qi−1) is derived from the previous integration result.

3. Integration
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For integration, the intermediate forward variable α(2)(Q2, Q1) will be marginalized as

below:

α2(Q2) =
∑
Q1

α(2)(Q2, Q1) (2.15)

which can also be generalized to the cases with i = 3, · · · , N as

αi(Qi) =
∑
Qi−1

α(i)(Qi, Qi−1) (2.16)

The above propagation and integration procedures will be performed iteratively with i

alongside the linear chain.

The forward propagation is able to generate a sequence of forward variables {αi(Qi)}Ni=1

with the following formulation:

αi(Qi) =
∑
Q1:i−1

exp{
i∑

i′=1

[
∑
k1

θk1fk1(Qi′ , Qi′−1) +
∑
k2

θk2fk2(Qi′ , Oi′) +
∑
k3

θk3fk3(Qi′ , Oi′−1)]}

(2.17)

which can be used to compute the denominator and the first summation of the numerator

exponential term in Equation (2.12).

The backward propagation has similar procedures to the forward propagation, but with

a reversed direction. The backward propagation procedures have been summarized as below.

1. Initialization

The backward propagation initialization starts from the end of the sequence, formu-

lated as βN(QN) = 1.

2. Propagation

Starting from the end of the sequence, the feature functions are propagated backwards

to the beginning of the sequence. With i = N − 1 to i = 1, the backward intermediate

variables β(i)(Qi+1, Qi) are computed as
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β(i)(Qi+1, Qi) = βi+1(Qi+1) · exp{
∑
k1

θk1fk1(Qi+1, Qi) +
∑
k2

θk2fk2(Qi+1, Oi+1)+

∑
k3

θk3fk3(Qi+1, Oi)}

(2.18)

3. Integration

After information propagation, the intermediate backward variable β(i)(Qi+1, Qi) will

be marginalized as below:

βi(Qi) =
∑
Qi+1

β(i)(Qi+1, Qi) (2.19)

Similar to the forward propagation, for i = N,N − 1, · · · , 1, the backward propagation

enables a marginal sequence as

βi(Qi) =
∑
Qi+1:N

exp{
N∑
i′=i

[
∑
k1

θk1fk1(Qi′ , Qi′−1) +
∑
k2

θk2fk2(Qi′ , Oi′) +
∑
k3

θk3fk3(Qi′ , Oi′−1)]}

(2.20)

which can be used to compute the third exponential summation term of the numerator in

Equation (2.12).

As a result, the first inference problem of CRFs can be solved by making use of the

forward-backward propagation results as below:

P (Qi, Qi−1|O1:N) =
αi−1(Qi−1) · expF (Qi−1:i, O1:N ; Θ) · βi(Qi)∑

QN
αN(QN)

P (Qi|O1:N) =
αi(Qi) · βi(Qi)∑

QN
αN(QN)

(2.21)

The second inference problem of CRFs can be represented to estimate the most likely

label sequence, namely, Q∗ = argmaxQ P (Q|Onew; Θ). To solve this problem, Viterbi decod-

ing algorithm will be employed by following similar patterns to the backward propagation
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procedures [27].

In summary, the most fundamental exact inference algorithms of the LCCRFs have been

formulated in this section as the preliminary of this thesis. The extended CRF based ap-

proaches proposed in the subsequent chapters will need their specifically designed inference

algorithms to get the solutions, which are based on the basic forward-backward algorithms.

2.2 Expectation Maximization (EM) and Variational

Bayesian (VB) Algorithms

The basic problem of MLE is to search for the optimal solution of the unknown parameters

in a probabilistic model, which can maximize the likelihood of the observations. When the

variables in the established probabilistic model are all known, the standard MLE algorithms

work well. However, when there exist latent variables, such as hidden operating modes,

unknown distribution of the parameters or incomplete observations, the application of the

standard MLE algorithms turns out to be difficult. In this situation, the EM and VB

algorithms are proposed to efficiently solve the MLE problem in an iterative way by involving

the latent variables into the solution with reduced computational load. This section briefly

introduces the mathematical background of the EM and VB algorithms, and then discusses

the consistency and difference between the EM and VB approaches.

2.2.1 EM Algorithm

The EM algorithm is composed of two steps, the expectation step (E-step) and maximization

step (M-step), which are performed iteratively until convergence. In the E-step, the posterior

distribution of latent variables are estimated by the posterior probabilities calculated with

the observed variables and the current estimate of model parameters. In the M-step, with

the estimated posterior distribution of latent variables in the E-step, the model parameters

are updated to maximize the likelihood function [47].
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Assume a complete dataset Dc consists of the observed dataset Do and the latent dataset

Dm, i.e., Dc = {Do, Dm}. The probabilistic distribution of Dc is parameterized by an

unknown parameter set Θ. An optimal estimation of Θ that maximizes P (Do|Θ) is known

as an MLE solution. However, in presence of the latent variables Dm, instead of directly

maximizing P (Do|Θ), the lower bound of the actual log likelihood, known as Q-function, is

maximized in the following E-step and M-step [47].

• E-step: Calculate the posterior probability with respect to the latent variables and for-

mulate the Q-function

Q(Θ|Θ(k)) = Ep(Dm|Do;Θ(k)) log{P (Do, Dm|Θ)} (2.22)

where k indicates the current iteration.

• M-step: Find Θ(k+1) as any value of Θ ∈ Ω that maximizes the Q-function

Q(Θ(k+1)|Θ(k)) ≥ Q(Θ|Θ(k)) (2.23)

where Ω is the solution space of Θ.

For the EM algorithm, it is critical to prove that after each EM iteration, the likelihood

function of the observed dataset, i.e., logP (Do|Θ), does not decrease, which has been proven

in [48] and will be explained briefly as follows.

First, according to Bayes rule, the following relationship between Do and Dm holds:

p(Dc|Do; Θ) =
p(Dc; Θ)

p(Do; Θ)
(2.24)

where p(·) represents the probability density function of the target dataset.

Then the log likelihood of the observed dataset can be represented by

log p(Do; Θ) = log p(Dc; Θ)− log p(Dc|Do; Θ) (2.25)
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Taking expectations of both sides in the above equation with respect to the conditional

probability of Dm given Do parameterized with Θ(k), one can get

Ep(Dm|Do;Θ(k)){log p(Do; Θ)} = Ep(Dm|Do;Θ(k)){log p(Dc; Θ)} − Ep(Dm|Do;Θ(k)){log p(Dc|Do; Θ)}

= Q(Θ|Θ(k))−H(Θ|Θ(k))

(2.26)

Since the observed dataset Do has no correlation with Dm, the above equation can be

simplified as

log p(Do; Θ) = Q(Θ|Θ(k))−H(Θ|Θ(k)) (2.27)

Therefore, one can have that

log p(Do; Θ(k+1))− log p(Do; Θ(k)) = {Q(Θ(k+1)|Θ(k))−Q(Θ(k)|Θ(k))}−

{H(Θ(k+1)|Θ(k))−H(Θ(k)|Θ(k))}
(2.28)

The difference between H(Θ(k+1)|Θ(k)) and H(Θ(k)|Θ(k)) is calculated as

H(Θ(k+1)|Θ(k))−H(Θ(k)|Θ(k)) = Ep(Dm|Do;Θ(k)){log p(Dc|Do; Θ(k+1))− log p(Dc|Do; Θ(k))}

= Ep(Dm|Do;Θ(k)){log
p(Dc|Do; Θ(k+1))

p(Dc|Do; Θ(k))
}

(2.29)
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Applying Jensen’s inequality, the above equation turns out to be

H(Θ(k+1)|Θ(k))−H(Θ(k)|Θ(k)) ≤ logEp(Dm|Do;Θ(k))[
p(Dc|Do; Θ(k+1))

p(Dc|Do; Θ(k))
]

= log

∫
Dm

p(Dm|Do; Θ(k)) · p(Dm|Do; Θ(k+1))

p(Dm|Do; Θ(k))
dDm

= log

∫
Dm

p(Dm|Do; Θ(k+1)) dDm

= 0

(2.30)

Therefore, the second difference term in Equation (2.28) is proven to be non-positive.

Together with the first nonnegative difference term derived from M-step, one can conclude

log p(Do; Θ(k+1)) ≥ log p(Do; Θ(k)) after each EM iteration.

2.2.2 VB Algorithm

As an alternative to solve the MLE problem with latent variables, the VB algorithm is

proposed with more flexible formulation than the EM algorithm. In the following content,

the VB inference and VB-EM algorithms will be briefly reviewed.

VB Inference

Still considering a complete dataset Dc = {Do, Dm} following a particular distribution

parameterized by Θ, one might be interested in the posterior probability p(Dm|Do; Θ) which

may have no tractable solutions. Therefore, a predefined probability distribution q(Dm) is de-

termined to approximate the actual posterior. To measure the similarity between p(Dm|Do)

and q(Dm), the nonnegative Kullback-Leibler (KL) divergence is proposed as follows [49]:

DKL(q(Dm)||p(Dm|Do)) = −
∫
Dm

q(Dm) log
p(Dm|Do)

q(Dm)
dDm (2.31)

By using the Bayes rule p(Dm|Do) = p(Dm, Do)/p(Do) in Equation (2.31), the KL diver-
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gence can be further expanded as below:

DKL(q(Dm)||p(Dm|Do)) = −
∫
Dm

q(Dm) log
p(Dm, Do)

q(Dm)p(Do)
dDm

= −
∫
Dm

q(Dm) log
p(Dm, Do)

q(Dm)
dDm + log p(Do)

(2.32)

where the first integral term is known as variational lower bound, which can be denoted as

L(q(Dm)).

As a result, Equation (2.32) can be rearranged as

log p(Do) = DKL(q(Dm)||p(Dm|Do)) + L(q(Dm)) (2.33)

The left-hand side of Equation (2.33) is the log likelihood of the observed dataset, which is

independent of q(Dm), so the summation of the KL divergence and L(q(Dm)) can be treated

as a constant with respect to q(Dm). Since the KL divergence is nonnegative, by minimizing

the KL divergence, the lower bound L(q(Dm)) can be maximized. When the approximated

q(Dm) equals to the actual posterior, the lower bound is equal to the log likelihood of the

observations. The objective of VB inference is to compute the approximated q(Dm) by either

minimizing the KL divergence or maximizing the lower bound, which is equivalent to solving

an optimization problem.

VB-EM Algorithm

When taking the model parameter Θ into consideration, the VB inference combined with

EM idea becomes a solution to parameter estimation. Under the VB-EM framework, there

are also two steps performed iteratively [49].

• VB-E step: Calculate the approximate posterior q(Dm) by maximizing the lower bound

with fixed parameters

q̂(Dm) = argmax
q(Dm)

L(q(Dm),Θ(k)) (2.34)
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where k indicates the current iteration.

• VB-M step: Find out Θ by maximizing the lower bound with fixed q(Dm) derived from

E-step

Θ(k+1) = argmax
Θ

L(q̂(Dm),Θ) (2.35)

In summary, the VB-EM framework can be treated as a combination of the VB inference

and the standard EM algorithm. The VB-E step tries to make the lower bound as close

to log p(Do) as possible, and the VB-M step tries to maximize the lower bound, therefore

maximizing the target log likelihood log p(Do).

2.2.3 The Comparison between EM and VB Algorithms

As reviewed in the above two subsections, the main difference between the standard EM

and the VB-EM algorithms lies in the VB inference in the VB-E step. Instead of approx-

imating q(Dm), the exact posterior p(Dm|Do) is calculated in the E-step of the standard

EM algorithm, where the KL divergence naturally becomes zero. With the exact posterior

p(Dm|Do), the lower bound in the VB-M step turns out to be

L(Θ) =

∫
Dm

q(Dm) log
p(Dm, Do; Θ)

q(Dm)
dDm

=

∫
Dm

p(Dm|Do; Θ(k)) log
p(Dm, Do; Θ)

p(Dm|Do; Θ(k))
dDm

=

∫
Dm

p(Dm|Do; Θ(k)) log p(Dm, Do; Θ) dDm −
∫
Dm

p(Dm|Do; Θ(k))

· log p(Dm|Do; Θ(k)) dDm

= Q(Θ|Θ(k))− CΘ

(2.36)

where CΘ represents that the second term can be treated as a constant with respect to the

unknown parameter Θ.
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As a result, the standard EM algorithm is a special case of the VB-EM algorithm. When

the accuracy of p(Dm|Do) is higher than the approximate q(Dm), the standard EM algorithm

might achieve better performance than the VB-EM algorithm. On the other hand, owing to

the VB inference procedure, the VB-EM algorithm provides more flexible solutions than the

standard EM algorithm. The following two situations are raised as examples:

1. When dealing with certain complicated distributed Dm, the exact posterior p(Dm|Do)

calculation is intractable. Then the mean-field approximation [50] can be employed to

derive q(Dm).

2. In more general cases, Dm can not only represent the latent variables, but also the

unknown model parameters. Then the posterior distribution of the model parameters

q(Θ) can be included and estimated as solutions, rather than a point estimation solution

in the standard EM algorithm.

In summary, both EM and VB algorithms have the capability to efficiently deal with

unknown parameter estimation problem with incomplete dataset, which cannot be achieved

by the standard MLE approach. Compared with EM algorithm, VB algorithm has more

flexibility of modeling the posteriors of latent variables and therefore it is able to deal with

parameter estimation of more complicated models than the EM algorithm. Consequently,

the computational complexity of VB algorithm turns out to be higher than the EM algo-

rithm. On the other hand, the EM algorithm has a simpler formulation and tends to provide

solutions with reduced computational loads than the VB algorithm. However, when the

posteriors of latent variables are too complicated to be derived, the EM algorithm will lose

its effectiveness.
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Chapter 3

Hierarchically Distributed Monitoring

3.1 Introduction

Gas flaring is the controlled burning of waste gases that cannot be processed for sale or further

use due to various technical and logistical reasons [51]. Gas flaring also improves process

safety, because it protects vessels and pipelines from over-pressuring due to unplanned upsets,

thereby, avoiding accidental explosions [52]. However, gas flaring contributes to pollution,

and it is also an important source of greenhouse gas emissions [53]. Moreover, burning of the

flare gases results in waste of energy that can potentially be reused in industrial processes.

In order to reduce the undesired environmental and economic impacts of flaring, many

solutions have been developed, which include timely maintenance of flare systems, modifying

start-up and shut-down procedures, etc., and installation of new equipment to recover the

waste gases. Such a recovery process is known as a flare gas recovery system (FGRS) that

captures flare gases for reuse in the plant or for sale [54, 55]. However, the amount of

flare gases can sometimes exceed the capacity of the FGRS and eventually the excess waste

gases need to be burnt in the flare stack, resulting in a flare event. Such flare events are

undesirable due to their harmful impacts on the environment and the economical losses

1Part of this chapter has been published as Mengqi Fang, Fadi Ibrahim, Hariprasad Kodamana, Biao
Huang, Noel Bell, and Mark Nixon. Hierarchically distributed monitoring for the early prediction of gas
flare events. Industrial & Engineering Chemistry Research, 58(26):11352–11363, 2019.
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during plant operations. Hence, the flare event predictions are useful as the operators can

proactively intervene and reduce the chance of a flare event.

To the best of the authors’ knowledge, currently, there are no monitoring strategies

reported in the literature that provide early warning of a potential flare event. The case

studied in this chapter is based on real refinery process data. The major impediment in the

current case is a very limited knowledge of the underlying process. Thus it is a typical case

suitable for application of data analytics. While historical process data are usually available,

they are highly autocorrelated, high dimensional, and contain outliers and missing data.

Preliminary study proposed by Noel and Mark [56] as well as the traditional centralized

PCA approach have been attempted. However, both approaches can only predict a small

fraction of the flare events. Therefore, in this chapter, we propose a systematic methodology

for early flare prediction by making full use of the available process data. The by-product of

this study is to create a tool that can help industries to better predict thus reduce the flare

events.

Benefiting from the large body of MSPM strategies proposed in literature, there are var-

ious solutions available for fault detection and diagnosis of complicated industrial processes,

for instance, PCA [57], PLS [58], and dynamic PCA [59], among others. As the process com-

plexity increasing, distributed monitoring strategies emerged and attracted wide attentions

from researches. In contrast to centralized monitoring, distributed monitoring is conducted

by dividing a large-scale process into several sub-blocks and then monitoring the variations

in each sub-block and further the entire process. Several multiblock methods have been

developed [60, 61] and employed as part of distributed monitoring strategies [62, 63, 64, 65].

From a probabilistic perspective, a unified probabilistic framework for process monitoring

has also been proposed [66]. Recently, SFA was proposed for dynamic process monitoring by

separating the temporal correlations from the steady-state process information [67]. Further,

frequency domain analysis methods such as the fast Fourier transform (FFT) [68] and the

wavelet transform (WT) [69] have also been employed as alternative ways of feature extrac-
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tion that can be used for MSPM [70]. In this work, motivated by the success of multiblock

process monitoring approaches, such as hierarchical PCA [71], we propose a distributed and

hierarchical monitoring framework for real-time early warnings of potential flare events by

analyzing real-time plant data.

The contributions of this chapter can be summarized from both practical and theoretical

perspectives, as follows: (i) The dataset under research is from a real refinery process, and

this chapter is the first which focuses on and successfully solved the early flare event pre-

diction problem in refinery by performing the plant-wide process monitoring. The problem

is challenging. Multiple data analytic strategies have been attempted but the unique signa-

tures of early flare events are very difficult to extract. To this end, the hierarchical structure

designed in this work achieves the optimal prediction performance, which will be beneficial

to related industries for a more environmental friendly operation. (ii) There are very few

existing works on the distributed SFA and frequency-domain approaches. This chapter pro-

poses the use of SFA for distributed process monitoring. Both frequency and time-domain

methods are analyzed and compared in this work under the distributed framework.

The remainder of this chapter is organized as follows: In the process description section,

the refinery process and FGRS are reviewed. In the problem statement section, details of the

refinery dataset used in this work, challenges of this problem, and two preliminary studies are

explained. In the next section, the proposed hierarchically distributed monitoring framework

is presented, including both time and frequency domain techniques. Further, we apply the

proposed approach to the refinery dataset used in this work. Finally, conclusions are drawn

in the last section.

3.2 Process Description

A refinery process is composed of several units designed for crude oil processing, such as a

crude desalter, heat exchangers, reaction related units, and separation units. When one or
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more process units undergo upsets due to abnormal events, such as power blips, equipment

failures, or crude composition changes, the resulting excess gases are directed to a FGRS. The

flare events will occur when FGRS is not able to recover the excess gases. Fig. 3.1 illustrates a

typical FGRS, which is essentially composed of a flare header, flare gas recovery components,

and a flare stack. During low volume flare periods, the flare gas flowrate does not exceed the

FGRS capacity, and the waste gas recovery process, which includes the flare gas compression

and separation, is activated. Finally, the compressed waste gases are recycled, usually as

fuel gas. However, during abnormal operational scenarios, the flare gas flowrate in the flare

header might exceed the processing capacity of the FGRS, and consequently the excess flare

gases will pass through the liquid seal to the flare stack, where the gases will be burnt. Once

the flare gas flowrate increases rapidly and passes the liquid seal, the pressure in the flare

stack is also increased. The ratio of pressure and liquid level in the flare stack, called flare

ratio, is an indicator of a flare event, once it surpasses a pre-determined tolerant value. Flare

ratio is defined as:

Flare ratio =
Pl
Ll

(3.1)

where Pl and Ll represent the pressure and liquid level in unit 1 of the refinery dataset used

in this work, respectively. Generally, the operational range of the flare ratio during flare

events is around 0.85− 0.97.

The work presented here attempts to predict these flare events at an early stage by

identifying the signatures that are latent in the routine operational data. Specifically, an

early prediction can be defined as at least 15 minute early warning before the actual flare

event occurrence.

3.3 Problem Statement

In this section, the refinery process under consideration and the challenges involved in solving

this problem are presented. The available dataset is for a one year period and contains data
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Figure3.1:AgeneralschematicoftheFGRS[55]

fromtherefinery’sunitsthatareconnectedtotheFGRS.Salientpropertiesofthedataset

aresummarizedinTable3.1and3.2,wheretagnamesandunitidentitiesofPVsareknown,

butnofurtherprocessknowledgeisprovided.

Table3.1:Detailsregardingtherefineryprocessdataset

NumberofPVs Numberof Sampling Numberof

Pressure Flowrate Temperature Level Others availableunits timeinterval samples

113 9 4 1 5 18 1minute 502498

Table3.2:Availablerefineryunits’names,identitiesandtheirrelatedPVnumbers

Unitnumber Unitdescription PVnumber Unitnumber Unitdescription PVnumber

1 Flaresystem#1 4 10 Aromaticsunit#1 10
2 Flaregasrecoveryunit 13 11 Aromaticsunit#2 6
3 Flaresystem#2 1 12 Alkylationunit#1 6
4 Hydrocrackingunit 12 13 Alkylationunit#2 2
5 Saturatedgasunit#1 10 14 Amineregenunit 21
6 Saturatedgasunit#2 10 15 Naphthaunit 2
7 Crudeunit#1 9 16 Utilities 4
8 Crudeunit#2 10 17 SRU#1 4
9 Hydrogendesulfurization 4 18 SRU#2 4

Therewere14flareeventsintotalthroughouttheoneyearperiod,duringwhichtheflare

ratioincreasedabove0.85.ThedurationsoftheflareeventsvariedwidelyasshowninTable
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3.3.

Table 3.3: The durations of all the 14 flare events

Flare event number 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Duration (min) 93 128 4 52 2 1 79 256 35 5 8 6 8 114

Moreover, within the one year investigation period, the entire process operation status

is time-varying and shows non-stationary characteristics. As an example, a tag of unit

14 is shown in Fig. 3.2. The operating conditions change over time and changes are not

consistent from unit to unit. In the absence of process knowledge, such changes are difficult

to capture based on experience. Because the available dataset contains only 14 flare events,

the abnormal data are too few to conduct supervised learning. Additionally, the abnormal

patterns of the 14 flare events vary from one to the other, because they are not all caused

by the same process upset.
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Figure 3.2: An illustration of one pressure tag in unit 14 showing process variability within
one year investigation period

The challenges in solving this problem are summarized as follows: (1) limited process

knowledge; (2) high dimensionality of the dataset with 132 tags from 18 different units;

(3) non-stationarity and time-varying process; (4) various patterns of different PVs from

different units; (5) high correlations among PVs; (6) small number of flare event samples;

(7) non-universal signatures associated with the flare occurrences.
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A preliminary method proposed by Noel and Mark [56] has been attempted, wherein four

available flowrates of units 3, 4 and 8 are employed in a moving window FFT framework to

extract features, which is further utilized to develop a PCA model for early flare monitoring.

Even though the selected PVs are highly informative, only 5 out of 14 flare events get early

predictions. The traditional centralized PCA method has also been attempted using all the

available PVs, with the prediction results and false rate shown in Table 3.4. The false rate

here is calculated as the percentage of false alarms during the entire year, as follows:

False rate =
Total number of false alarms

Total number of sampling points
(3.2)

Table 3.4: Early flare event prediction performance of traditional PCA approach on all the
PVs

T 2 statistic

Potential predictions False rate

Traditional PCA approach 5/14 4.10%

We can see that the above early attempts predicted less than half of the total flares

that occurred. To improve the flare prediction performance, a hierarchically distributed

monitoring framework with an online adaptive strategy is proposed in this work and will be

presented in the next section.

3.4 Hierarchically Distributed Monitoring Approaches

for Early Flare Event Prediction

In this section, we present a systematic monitoring methodology based on the available PV

dataset for the early flare event predictions when there is limited knowledge of the underlying

process. Two realistic assumptions are made before proceeding to the data analysis: (1) The

PVs within the same unit have higher correlations with each other compared to the PVs
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fromotherunits;(2)Oneormoreunitsmaycontributetotheflareevents.Onthebasisof

theaboveassumptions,alltheavailablePVsaregroupedbasedontheircorrespondingunits

andmultivariatefeatureextractionmethodsareappliedtoeachgroup.Therationalebehind

groupingPVsbyunitisthatprocesschangesordriftsinaparticularunitwouldaffectthe

PVsinthatunitinamoreconsistentfashion.Thisallowsustoextractthemostmeaningful

informationfromeveryunit.Then,integratingthisunit-wiserepresentativeinformationby

employingahierarchicallayercanbettercapturethesignatureslatentinthewholeplantin

contrasttothecasewhenwetreatthePVsinthewholeplantasonegroup.

TheschematicoftheproposedstrategyispresentedinFig.3.3,whereintwomonitoring

layersareconstructedhierarchicallyatunit-wiseandplant-widelevels,respectively.Afew

dominantfeaturesareselectedfromPVdatatorepresentthecharacteristicsofaunitinthe

lowerlayer,whicharethenpassedontotheupperprocessmonitoringlayertosynthesize

monitoringstatistics.

Figure3.3:Schematicdiagramoftheproposedhierarchicallydistributedprocessmonitoring
frameworkforearlyflareeventprediction

ItisexpectedthatprocessabnormalitiesarereflectedaschangesinthePVbehaviours

eitherintheirtimeseriesevolutionand/orintheirfrequencyevolution. Therefore,the

proposedhierarchicallydistributedmonitoringstrategyisappliedinbothtime-domainand

frequency-domaintofullycapturethehiddensignatures.Twohierarchicalmonitoringap-

proachesareproposedinthiswork:
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(1) The hierarchical time-domain approach, using PCA for unit-wise feature extraction

and SFA for overall process monitoring;

(2) The hierarchical frequency-domain approach, using WT for unit-wise feature extraction

and PCA for overall process monitoring.

In the proposed hierarchical time-domain approach, PCA is first employed at the unit-

wise level and then SFA is used in the plant-wide level. Such a configuration is capable

of extracting both slower and faster changing features of PVs in an individual unit using

PCA, which are then fed to the SFA-based hierarchical layer for overall process monitoring.

In the proposed frequency-domain method, the WT approach is first employed in the unit-

wise layer to extract frequency features from raw PVs, subsequent to that PCA is employed

for hierarchical monitoring. Since in the frequency domain approach, the frequency scales

selection have been conducted in the unit-wise level, the slower and faster changing variables

do not need to be separately monitored again. Therefore, in the hierarchical frequency

domain approach, PCA is sufficient for overall monitoring.

3.4.1 The Time-domain Hierarchical Monitoring Approach

In this section, the hierarchical PCA-SFA approach and online model update strategy will

be illustrated and explained.

3.4.1.1 PCA Process Monitoring Approach

Suppose that the PVs are grouped according to the unit as {X1, · · ·, Xn, · · ·, XN}, where

N represents the total number of the analyzed units. Given a PV group Xn ∈ <T×mn with

T data samples and mn PVs, the following PCA model is developed by decomposing each

Xn matrix into a principal component (PC) space and a residual space [72]:

Xn = SnP
T
n +En (3.3)
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where Sn ∈ <T×kn is the score matrix, Pn ∈ <mn×kn is the loading matrix with kn PCs, and

En denotes the residual matrix.

For the purpose of process monitoring, when a new sample xn of the nth unit’s PV group

appears, it is projected on the PC space to predict the scores online as follows:

sn = P T
n xn (3.4)

where sn ∈ <kn indicates the extracted PCs from xn. Furthermore, by means of the estab-

lished PCA model, two classical monitoring statistics, namely, Hotelling’s T 2 and Q statistic

are constructed to monitor the PC and residual spaces respectively, as below [59]:

T 2
n = sTnΛ−1

n sn

Q =‖ (I − PnP T
n )xn ‖2

(3.5)

where the diagonal matrix Λn is composed by the first kn leading eigenvalues of the sample

covariance matrix
1

T − 1
XT

nXn.

Further, by integrating all the selected PCs from units, an integrated PC matrix is

formulated as YPC = [S1, · · · ,SN ] ∈ <T×K , which will be analyzed and monitored by the

hierarchical layer.

3.4.1.2 The Hierarchical PCA-SFA Monitoring Approach

The extracted latent features of SFA reflect the slowness of the process and therefore are

referred to as slow features which are sorted from the slowest to the fastest. In real processes,

some abnormal situations are reflected in the slower changing PVs and some are reflected in

the faster ones. Therefore, for better monitoring performance, the slower and faster features

are monitored separately in the hierarchical layer. Here, the PCA method is employed first

to ensure that the extracted features of each unit could preserve the information reflecting

both slower and faster process changes, so that the slower and faster process changes can be

43



monitored by SFA [73] at the hierarchical layer for a complete analysis. Otherwise, some of

the process change information related to potential flare events might get lost in the unit-wise

analysis.

Given the integrated PC matrix YPC , the slow features can be obtained by the following

mapping relation:

V = YPCW
T (3.6)

where V = [v1, · · · ,vK ] ∈ <T×K is the slow feature matrix, andW = [w1, · · · ,wK ]T denotes

the coefficient matrix obtained by conducting the following decomposition [67]:

AW = BWΩ (3.7)

In Equation (3.7), A and B denote the covariance matrices of the first order derivative

of YPC and raw input YPC , respectively, and Ω = diag{ω1, · · · , ωK} is a diagonal matrix

composed of the slowness of individual slow features, where ω1:K are sorted in an increasing

order. Such a decomposition ensures that the individual slow feature has zero mean and

unit variance, while being uncorrelated with each other.

For process monitoring, based on the slowness ω1:K , the extracted latent features can be

clustered into slower and faster changing groups, respectively. Given a new sample y, slower

and faster feature components can be calculated as below:

vs = Wsy

vf = Wfy

(3.8)

where Ws and Wf are the corresponding rows of coefficient matrix W governing slower and

faster dynamics, respectively. Then, the Hotelling’s T 2 statistics are computed for the two

feature groups as shown in Equation (3.9).
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T 2
s = vs

Tvs

T 2
f = vf

Tvf

(3.9)

This enables us to monitor the features with higher and lower velocities, separately.

3.4.1.3 Online Model Update Strategy for PCA-SFA Approach

In the time-domain monitoring approach, to get adapted to the normal process drifts, both

PCA and SFA models need to be updated during online monitoring process. In normal

operating period, all the units are running in a relatively stable status without drastic oscil-

lations. The latter is a potential indication of flares. Therefore, the model update strategy

is designed to adapt to the process drifts within a normal range.

For a reliable model update, instead of using the most recent data, a lag is selected

between the data used for model update and the current time instant. Then the historical

data in a specified window length are extracted to determine if the update is necessary.

3.4.2 The Frequency-domain Hierarchical Monitoring Approach

In this section, the second proposed approach, namely hierarchical frequency-domain pro-

cess monitoring approach, will be introduced. Variability in a multivariate dataset obtained

from complex processes is expected to change not only in time domain but also in frequency

domain. Such processes are multi-scale processes and in order to detect changes in such

processes, it is important to analyze them in both time and frequency domains [74]. To

extract frequency information from a signal, the Fourier transform (FT) is usually used to

decompose the signal into its frequency constituents over the entire time period. However,

FT does not provide any indication when the changes in frequencies occur with time. Al-

ternatively, the WT can be used as a tool for providing the time-frequency multi-resolution

information of a signal [75] in such cases.
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The frequency information provided by WT is referred to as scales and has the advantages

of being decorrelated compared with the original time-domain signals that are auto-correlated

[76]. Consequently, PCA can be applied on the non-auto-correlated scales for the purposes

of process monitoring. This is another advantage of using scales in SPM in addition to the

time localization property.

For online application, a moving window approach is employed first to extract frequency

information, i.e., scales, from the PVs at every sampling instant. Subsequently, an adap-

tive PCA model is then built based on the scales and is used to predict the monitoring

statistics, namely, T 2 and the Q statistic. The proposed approach is referred to as moving

window multi-scale adaptive PCA (MWMSAPCA) and the details of each component in this

approach are presented next.

3.4.2.1 Wavelet Transform

WT is a spectral decomposition method of a time-dependent signal that provides a set of

frequency bands known as scales that represent time-dependent frequencies [75]. Given the

original signal X(t) and an analyzing function φa,b(t), the scales are computed as follows:

Scales(a, b) =

∫ +∞

−∞
X(t)φa,b(t)dt (3.10)

The analyzing function φa,b(t) represents a family of wavelets scaled by a parameter b

and translated by another parameter a as follows:

φa,b(t) = b−
1
2φ(

t− a
b

) (3.11)

As a result, the original time-domain signal X(t) is transferred to a multi-resolution

frequency-time scale denoted by Scales(a, b). The obtained scales are ranked from the small-

est to the largest, where the smaller scales represent the evolution of high frequency signals

with time, while the larger scales represent the evolution of low frequency signals with time.
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3.4.2.2 Moving Window Wavelet Transform for Online Application

For online applications, WT is applied on a selected group of PVs over a moving window

of length M to extract online frequency features, i.e., the scales, at every sampling instant.

Analyzing a window of PVs with dimension l ×M at every sampling instant t results in

wavelet scales of dimension (ls× l)×M as shown in Equation (3.12), where ls is the number

of scales obtained from each PV.

Scales(t−M : t) = WT (PV s(t−M : t)) (3.12)

where the function WT represents the wavelet transfer analysis on the selected PVs, and

Scales(t−M : t) ∈ <(ls×l)×M denote the obtained scales over the moving window of length

M at the sampling instant t.

The maximum value of every moving window scale, i.e., max(Scales(t − M : t)), is

considered as the representative frequency feature at the current time t of the moving window

PVs, i.e., PV s(t − M : t), and is denoted by Scalesmax(t) ∈ <(ls×l)×1. The reason for

selecting the maximum point of scales, other than the middle or the end point from the

moving window, is that it results in clearer and more persistent features related to flare

events.

3.4.2.3 Online Adaptive PCA Based Process Monitoring Using Frequency Do-

main Information

After using moving windows of PV s(t − M : t) to obtain a sequence of wavelet features

Scalesmax(t) up to the current time t, a PCA model is trained on these scales and is used

to monitor the process at time t+ 1 by using PV s(t−M + 1 : t+ 1) as a new sample. The

relevant statistics, thus computed, will be integrated later in a hierarchical layer.

To avoid any potential issue arising due to the non-stationary behaviour of the data, we

also propose a model update strategy as presented below.
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The update rules can be derived based on the variability of the process, that is, if the

variability is considered as within a pre-determined tolerance level, a model update is calcu-

lated. If the variability is beyond a threshold, it may indicate the beginning of a potential

flare event, and therefore the model update needs to be avoided.

In this work, the process variability is quantified by the difference between two successive

maxima of standard deviations of two successive scales, as shown in Algorithm 1.

Algorithm 1 The PCA model update strategy

1: if max(std(Scales(t−M : t)))−max(std(Scales(t−M − 1 : t− 1))) < thr then
2: Update the PC model
3: else
4: Keep using the previous PC model
5: end if

The model updating threshold thr, the moving window length M , and the update rate

are tuning parameters and can be selected empirically. For hierarchical monitoring, an

additional layer of moving window adaptive PCA is added to integrate the monitoring of the

selected PCs as shown in Fig. 3.4, to obtain a single monitoring Qstat for overall decision

making.

3.4.3 Fault Isolation under the Hierarchically Distributed Frame-

work

Having proposed both time-domain and frequency-domain hierarchical approaches, we turn

to isolation problem in this section. Under the proposed hierarchically distributed frame-

work, fault isolation can be conducted to pinpoint the affected units. The most affected

units can be first determined based on the decomposed input variable contributions to the

overall monitoring statistics. Then the decomposed input variable contribution to each af-

fected unit’s monitoring statistics can be used to isolate the responsible PVs. From various

existing fault isolation indexes that are reported in literature [77], the reconstruction-based

contribution (RBC) index has been selected for this purpose because of the demonstrated
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Table3.5:rRBCforfaultisolation[77,73]

rRBC SFA PCA

T2s T2f Qstatistic

rRBCi=
(ξTiMx)

2

ξTiMDMξi
M =W T

sWs M =W T
fWf M =I−PPT

D=
1

T−1
YTPCYPC D=

1

T−1
PCTPC

Hereξi=[0,···,1,···,0]
Trepresentstheactivationoftheithevaluatedvariable.
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3.5 Application: Early Gas Flare Event Prediction in

A Refinery

In this section, the performance of both hierarchical monitoring approaches are evaluated

for their ability to predict flare events before they happen. The hierarchical time-domain

approach is first employed for flare prediction, followed by the hierarchical frequency-domain

approach. Then the flare prediction performances are summarized. Finally, by taking the

first flare event as an example, the fault isolation performance is illustrated based on the

rRBC index, and the most likely source unit is identified.

3.5.1 Hierarchical Time-domain Early Flare Event Prediction

In the time-domain hierarchical monitoring approach, the PCA algorithm is used for pre-

liminary feature extraction in the bottom layer. For obtaining a trade-off between useful

information and noise, only the first two dominant PCs of each unit are aggregated for over-

all monitoring decision making. For each unit, the first five days data are selected to build

the initial model and the first 10 days PCs collected from the bottom layer are employed

for top layer model building. To make this approach adapt effectively to the process vari-

ations throughout the entire year, all the models are checked and updated online everyday

if the mean of standard deviation is within the normal range. In this work, the slower

and faster features in the SFA model are grouped by inspecting the increment between two

adjacent slowness values of the extracted slow features. The transition between slower and

faster feature groups is triggered when the increment of two adjacent slowness values changes

significantly and consistently. In this case, the control limits on both slower and faster mon-

itoring statistics updated once the statistical monitoring models are updated. To achieve a

more reliable fault detection performance, the control limit is selected at the 99% confidence

level.

Furthermore, in order to avoid false positives caused by random jumps of the monitor-
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ing statistics with small magnitudes, a comprehensive alarm invoking strategy is proposed.

Instead of activating alarms simply based on the currently generated monitoring statics, a

sequence of most recent monitoring statistics is investigated comprehensively to invoke the

alarms. Here, based on the deviations of the monitoring statistic and the calculated con-

trol limit, two levels of alarms are defined. Low alarms are generated when the analyzed

monitoring statistic jumps over the control limit but no larger than twice the control limit,

and lasts for 300 minutes. High alarms are generated when the analyzed statistics are larger

than twice the control limits, with a duration of 200 minutes.
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Figure 3.5: The hierarchical PCA-SFA slower feature group monitoring result of all the flare
events

The overall monitoring and alarming results of the slower and faster clusters are listed in

Fig. 3.5 and 3.6, respectively. By evaluating low and high alarm percentages over the entire

year period, the results of the early flare prediction performance are reported in Table 3.6.
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Figure 3.6: The hierarchical PCA-SFA faster feature group monitoring result of all the flare
events

Table 3.6: Alarm evaluation of PCA-SFA.

T 2
s T 2

f

Potential predictions False rate Potential predictions False rate

High alarm 7/14 4.508% 8/14 4.229%

Low alarm 0/14 0.404% 1/14 1.029%

3.5.2 Hierarchical Frequency-domain Early Flare Event Predic-

tion

The hierarchical frequency-domain approach is applied on the process data from the bottom

layer to the top layer. We have used the embedded continuous wavelet transform function

(cwt) to obtain the wavelet scales, and the analytic Morse wavelet is selected by using the

WAVELET toolbox in MATLAB. The minimum and maximum scale numbers are deter-

mined automatically based on the energy spread of the wavelet in frequency and time. The

length of the moving window M in Equation (3.12) is selected to be two weeks. The unit-
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wise model update frequency is tuned to be six hours as long as the process behaviour is

classified as normal. The model updating threshold thr described in Algorithm 1 is tuned

to obtain optimal results across all the units. For the hierarchical modeling, the first three

PCs are selected from each unit and passed on to the hierarchical layer, and the model

update frequency and threshold thr are kept the same as those for unit-wise monitoring.

The control limit is selected based on the training dataset at the 95% confidence level. The

extracted frequency features show smoothly changing patterns during normal operation and

there are few occasionally occurred small spikes, so oscillations in the frequency features are

more likely to be correlated with flare events and should be paid much attention to. There-

fore, compared with the time-domain approach, in the frequency-domain approach, more

PCs from each unit can be selected to include more information without introducing too

much noise, and the control limit is selected at 95% confidence level to increase detection

sensitivity owing to relative smoothness of the monitoring statistics. The low alarms are

flagged when the Q statistic jumps beyond the control limit but with magnitude less than

twice the control limit, and the high alarms are flagged when the Q statistic magnitude is

larger than twice the control limit. The hierarchical monitoring performance results can be

found in Fig. 3.7, where the Q statistic and the corresponding alarms are presented in the

first and second subfigures, respectively.

Based on the frequency-domain hierarchical monitoring performance, the potential flare

predictions and false alarm rate are calculated and summarized in Table 3.7.

Table 3.7: Alarm evaluation of hierarchical MWMSAPCA

Q statistic

Potential predictions False rate

High alarm 5/14 4.37%

Low alarm 7/14 8.65%
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Figure 3.7: The hierarchical MWMSAPCA monitoring result of all the flare events

3.5.3 Discussion on the Early Flare Event Prediction Performance

In this section, we zoom into the results of the early flare predictions considering both the

frequency and time-domain monitoring approaches, and also compare with the traditional

centralized PCA method.

In the traditional PCA approach, all the available PVs are utilized and a PCA model is

trained by using first five days data. The control limit at the 99% confidence level is selected

for an optimal trade-off between flare predictions and false positives, and this follows the same

alarm logic strategy as in hierarchical time-domain approach. The prediction performance

can be found in Fig. 3.8, where the first subfigure shows the T 2 statistic of the PCA model

and the second subfigure represents alarms generated according to the control limit.

Here, the flares 1, 4, 6, 9, 10 can be clearly detected by this method, but 9 out of 14

flares did not get detected. The traditional centralized PCA approach treat all the PVs as

one group, and as a result some useful information in some PVs might be overwhelmed by

the dominant variations reflected by a majority of the PVs. On the other hand, from the

hierarchical monitoring performance as shown before, some of the flares can be predicted by
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Figure 3.8: The early flare prediction performance of the traditional PCA approach

both of the time and frequency-domain approaches, while some can be predicted by only one

of the two approaches, indicating that the two proposed approaches can complement to each

other. In Table 3.8, all the flare prediction results are compiled for comparative evaluation.

Table 3.8: Predicted flares by all the available approaches

Predicted approaches Traditional PCA approach MWMSAPCA H-PCA-SFA

Identity of predicted flare 1, 4, 6, 9, 10
1, 4, 8, 9
10, 12, 14

1, 3, 4, 6, 7, 8
9, 10, 13, 14

Total number 5 7 10

Compared with the traditional PCA approach, the hierarchical frequency-domain ap-

proach provides three extra early predictions, i.e., flares 8, 12 and 14. The hierarchical

time-domain approach has five more early predictions. However, compared with the time-

domain approach, the frequency-domain approach is able to predict flare 12 clearly, while

it is missed by the time-domain method. The time-domain approach is able to provide

early flare predictions of flare 3, 6, 7 and 13, which are missed by the frequency-domain

method. A total of 11 out of 14 flare events could be predicted by our proposed approaches,

if both of the proposed hierarchical time-domain and frequency-domain approaches are used
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simultaneously.

Therefore, two proposed approaches can be used to support each other for a better

prediction performance, resulting in an obvious improvement compared with the traditional

PCA based monitoring as well as the existing approach attempted [56]. The reasons for

missed detections from both approaches could be various. For instance, from the data

inspection it was clear that some sensors were bad during the period of flare 5, resulting

in missing data. Moreover, the available data had only a limited number of units from the

refinery, and a limited number of PVs for each unit. Hence, addition of data from other

units and PVs could be worthwhile for gaining more information related to the missed flare

prediction.

Additionally, the false rates of all the employed approaches have been calculated and

compared, which are all restricted in a small range. As time-domain monitoring algorithms,

the false rates of both traditional PCA and hierarchical PCA-SFA approaches are listed in

Table 3.4 and 3.6, from which one can conclude that the T 2 statistics of PCA and PCA-SFA

provide comparable false rates within the investigation time. By observing Figure 3.5 and

3.6, the alarms from T 2
s and T 2

f in PCA-SFA approach are visualized and most of the false

rates of the two metrics are overlapped, so the final false rates of PCA-SFA approach is less

than the addition of the false rates from T 2
s and T 2

f . As a comparison, Figure 3.8 shows the

false rate of PCA, which is sparse but meanwhile PCA approach lost effective predictions

of majority flare events. Therefore, during actual online implementation, if one treats every

alarm seriously, the PCA-SFA approach will provide more effective alarming information

than the traditional PCA approach.

3.5.4 Faulty Unit Isolation at the Hierarchical Level

In this section, the fault isolation at the hierarchical layer will be investigated. The faulty

units can be tracked through the top layer by evaluating the contribution of each PC when

an alarm occurred. Taking the first flare event for instance, the rRBC plots corresponding to
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thetimeandfrequencydomainapproachesarepresentedinFig.3.9and3.10,respectively.

Figure3.9:Theunitcontributionstothefirstflarepredictionofthetime-domainPCA-SFA
approach.ThelefttwosubfiguresindicatetheT2sstatisticandthecorrespondingunit-wise
contribution,respectively,andtherighttwosubfiguresrepresenttheT2fstatisticandthe
correspondingunit-wisecontribution,respectively

Theabovefiguresindicatethecontributionsofdifferentunitsindifferentapproaches

alongwithtimewhenthefirstflareeventoccurred. Thecolorindicatesthemagnitudeof

therRBCindex,wheretheredcolorindicateshighcontributionsofindividualunits.From

theabovefigure,onecanseethattheslowerandfasterfeaturegroupsindicatethatthe

units3,4,6and8arethemostlikelysourceunitscontributingtotheflareeventsbased

ontime-domainanalysis.Fromthefrequencydomainanalysisresult,theunits4,5and10

shouldbeconsideredaspossiblecauses.Basedontheanalysisoffaultyunitisolationover

alltheflareevents,ithasbecomeevidentthattheunit4,i.e.,hydrocrackingunit,isthe

maincontributorofmultipleflareevents.

Furthermore,therobustnessofrRBCtonoiseandoutliersisevaluatedinthiswork.

SincethecalculationofrRBCindexisbasedontheMSPMmodels,namely,SFAandPCA,

therobustnessofrRBCtonoiseandoutliersiscloselyrelatedtoitscorrespondingMSPM

algorithms.InSFA,thenoiseisabsorbedbythefastfeaturesandinPCA,thenoiseis
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Figure3.10: Theunitcontributionstothefirstflarepredictionofthefrequency-domain
MWMSAPCAapproach.ThefirstandsecondsubfiguresaretheQ-statisticofPCAandthe
correspondingunitcontributionplot,respectively

absorbedbytheminorPCs. Therefore,theslowfeaturesormainPCsarenotsensitive

tonoises.Sinceatthebottomlayerofthehierarchicalstructure,thefirstfewmainPCs

ofindividualunitareselectedforfurtheranalysis,thenoisedoesnotprovideasignificant

impactontheextractedfeaturesandtherRBCindices.Intermsofoutliers,eventhoughthe

conventionalSFAandPCAapproachesarenotspecificallydesignedtoresisttheoutliers,by

makinguseofthehierarchicalstructure,theinfluenceofoutlierscanalsogetreduced.In

addition,datapreprocessingbeforeapplyingthemonitoringalgorithmsalsopreventoutliers

frominfluencingthefinaldetectionresults.InordertoevaluatethesensitivityofrRBC

indextotheoutliersinageneralcase,differentpercentagesoftheoutliersaresimulatedand

directlyaddedontotheextractedfeatures,andtherRBCindicesofslowerfeaturegroup

aroundthefirstflareeventaretakenasanexampletoperformtheinvestigation. Wehave

simulatedvariouspercentagesofoutliers(1%,2%and5%)totesttheireffectsasshown
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in the following figure. As it can be seen that the algorithm can indeed resist the outliers.

Particularly the dominant contribution plot is quite robust to the outliers.
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Figure 3.11: The comparison of the rRBC indices of PCs with different percentage outlier
contaminations, with respect to the first flare event in the slower feature group

As a result, the proposed hierarchical structure can reduce the impact of noise and

outliers. But if there exist a large portion of outliers on the extracted features, to get more

accurate fault detection and isolation results, the outlier removal procedures can be used in

the preprocessing stage.
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3.6 Conclusions

In this chapter, we have proposed various strategies for early flare event prediction and tested

them successfully on a set of industrial refinery data. A hierarchically distributed process

monitoring framework was developed as an effective solution for flare prediction, even though

we had limited access to process information. Based on this framework, the available PVs

were first grouped according to their respective process units, and the features extracted

from the units were integrated in a hierarchical layer for overall monitoring and decision

making. Two hierarchical approaches, namely, hierarchical PCA-SFA and the hierarchical

MWMSAPCA approaches, were developed for the early flare event predictions. The results

show that 11 out of 14 flare events could be predicted in advance by the two approaches with

an acceptable rate of false positives, and 10 out of 14 flare events could also be predicted

based only on the single hierarchical time-domain approach. Finally, similar to the other

unsupervised process monitoring algorithms, the proposed algorithm is also restricted from

not using any fault information. To make full use of both process data and the fault infor-

mation, the supervised process monitoring approaches are worth to be attempted. Given

the potential advantages of the supervised approaches, this thesis goes on to explore and

develop novel supervised approaches.
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Chapter 4

A Novel Approach to Process

Operating Mode Diagnosis Using

Conditional Random Fields in the

Presence of Missing Data

4.1 Introduction

In industrial processes, the two most critical requirements are the safety and consistently

high product quality. The adoption of flexible process designs and operational strategies in

process industries demands for advanced process monitoring approaches in order to reduce

operational risks and potential safety hazards. The task of process monitoring includes

operating mode diagnosis, detection and diagnosis of faults [79, 64], and determination of

their root causes. The existing process monitoring algorithms can be classified into methods

that employ empirical knowledge, first principles based models [80] and data based models

2Part of this chapter has been published as Mengqi Fang, Hariprasad Kodamana, Biao Huang, and Nima
Sammaknejad. A novel approach to process operating mode diagnosis using conditional random fields in the
presence of missing data. Computers & Chemical Engineering, 111:149–163, 2018.
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[81]. As models based on first principles are complex under most of the industrial scenarios,

it is difficult to obtain comprehensive physical and mathematical process models. As a result,

data based models have emerged as effective alternatives to the first-principles models [12],

among which some simplified state-space models [82, 83] and statistical models [84] have

been employed for process monitoring.

Owing to external environmental fluctuations and process uncertainties, industrial pro-

cess data usually exhibit various characteristics such as nonlinearity, non-Gaussianity, mul-

timode [85] and temporal correlations [86]. Even though many MSPM approaches such as

PCA, PLS and ICA, etc. [87] have been developed to deal with various challenges mentioned

above, an inherent assumption for most of them is the unimodality of the data which is not

easily satisfied in reality. As a result, the HMM has become a popular framework and has

been widely employed for the diagnosis of the multimodal dynamic processes owing to its

ability to model operating mode transitions. Sammaknejad et al. [88] proposed an HMM

based adaptive monitoring strategy for fault detection of the primary separation unit, a

key process unit in the oil sands extraction process in Northern Canada. Also, there were

several studies to combine the unimodal MSPM techniques with HMM for online process

monitoring, such as the PCA based HMM approach proposed in [89], the adaptive ICA

based blended HMM approach developed in [90], HMM based statistics pattern analysis

algorithm proposed in [91], and the references therein. Although the HMM approach mod-

els the switching mechanism of process operating modes [92], it is limited by two inherent

conditional independence assumptions, namely, (i) in first order HMMs, the current state

is considered to be dependent on the state immediately prior to it and independent of all

other previous information given the state prior to it, (ii) the current observation is only

dependent on the current state and independent of the other past states given the current

state.

As a probabilistic generative model, the HMM framework employs the above mentioned

conditional independent probability assumptions to factorize the joint distribution of sequen-
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tial observations. The diagnosis performance could be adversely affected if these assumptions

are broken down by reality. In order to address this lacunae, we propose to employ the CRF,

a probabilistic discriminative model, initially proposed by [43]. While retaining the proper-

ties of HMMs that enable state transition descriptions, CRFs avoid intricate computation

of the prior distribution of observations and have a more flexible framework to comprehen-

sively describe the temporal autocorrelations among the observations [93]. CRFs use feature

functions to model the dependency relations among the variables. By choosing appropriate

feature functions as a special case, the CRF model has been proven to be equivalent to the

HMM [94]. Moreover, unlike HMMs, the training of CRFs involves only the convex objec-

tive functions, which helps to obtain global optimal parameter estimation [27]. Recently, the

CRF framework has been used extensively in the fields of natural language processing, im-

age processing and speech recognition, etc., and has shown to perform superiorly to HMMs

[95, 96, 97]. Even so, CRFs have not been employed for the online process monitoring of

industrial processes where the data shows complex temporal dependencies. Employment of

CRFs in online process monitoring is expected to solve some outstanding issues which cannot

be effectively solved by HMMs.

Another significant issue while dealing with industrial data is missing measurements.

The missing measurement problem is usually due to different sources such as sensor failures

and other data collection errors. In order to deal with operating mode diagnosis problems

that include missing measurements, an HMM based approach was proposed [37] based on

the EM algorithm. Similarly, Zhang et al. [98] also proposed an EM approach to fault

diagnosis with missing data. Moreover, Koushanfar et al. [99] designed a semi-Markov

model to estimate the statistical patterns of missing measurements for fault detection and

diagnosis. Even though issues such as missing labels in the context of CRFs have been studied

previously [100], hardly any of the published work is concerned with the implications of

missing measurements in the modeling of CRFs. In a related work, Dietterich et al. [101] used

an imputation based approach to fill missing measurements with non-missing measurements
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in CRF modeling. However, this might lead to a biased estimation of parameters. In order to

solve these problems, in our proposed work, an enumeration based approach to account for

all possible missing measurement combinations is considered and included in the CRF model,

and the relative importance of different possible combinations of missing measurements is

attributed by means of the weights of CRF. Moreover, to reduce the large computational

load occurring due to these steps, an efficient propagation algorithm will be developed for

this marginalization framework.

The remainder of this chapter is organized as follows: Section 2 briefly reviews the general

formulation of LCCRF and the corresponding framework for industrial process operating

mode diagnosis. In section 3, a new marginalized CRF framework is proposed for process

operating mode diagnosis when there exist missing measurements; based on this framework,

a new propagation algorithm is developed to reduce the computational load. In section 4, the

simulated CSTR system and the experimental hybrid tank system are employed for process

monitoring performance validation. Finally, conclusions of the study are presented in section

5.

4.2 LCCRF Model for Process Operating Mode Diag-

nosis

4.2.1 Preliminaries

In this subsection, a general formulation of the LCCRF model will be illustrated. As shown

in Fig. 4.1, the general LCCRF model is an undirected graphic model that describes the

connections among a set of labels h, which are the operating modes in our case, and a set of

observations O. Let the observation sequence be O = {O1, O2, ..., OT} and the system mode

sequence be h = {h1, h2, ..., hT}. Then, CRF models the conditional probability P (h|O) as
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follows[27]:

P(h|O)=
1

Z(O)
exp

T

t=1

{
K

k=1

λkTk(ht,ht−1)+
M

m=1

µmEm(ht,Yt)} (4.1)

whereYt⊆{O1,O2,...,OT}isavectorcontainingalltheobservationsthatareneededto

modelP(h|O)attimet,andTrepresentsallthetimeinstancesconsidered.Z(O)isan

instance-specificnormalizationfactorobtainedbymarginalizingthenumeratorofEquation

(4.1)overallpossiblelabels,asgivenbyEquation(4.2)below:

Z(O)=
h

exp
T

t=1

{
K

k=1

λkTk(ht,ht−1)+
M

m=1

µmEm(ht,Yt)} (4.2)

Here,thenotationhdenotesallpossiblecombinationsofthelabels.Thefunctionsets

{Tk(ht,ht−1)}
K
k=1and{Em(ht,Yt)}

M
m=1arebinaryorreal-valuedfunctions,calledasfeature

functions,andaretypicallyselectedbasedonthenatureoftheproblem[102].Thenumber

offeaturefunctions,KandM,needtobechosenadequatelytomodelthedynamicsand

areproblemspecificparameters.TheparametervectorsΛ={λk}
K
k=1andM ={µm}

M
m=1

……….

O

h1 h2 h3 hT

containthecorrespondingweightfactorsofthefeaturefunctions,whichareusedtodifferen-

tiatetheimportanceofindividualfeaturefunctionsandneedtobeestimatedforaspecific

observeddataset.

Figure4.1:ThegeneralgraphicalstructureofLCCRFs[103]

ComparedtothefirstorderHMMsillustratedinFig. 4.2,theLCCRFmodelsuse
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……….h1 h2 hT

O1 O2 OT

h3

O3

multipleobservationstomodelthelabelataspecifictimepoint,andtherefore,arebetter

suitedtomodelrichandcomplicatedlycorrelateddataattributes,thusresultinginamore

generalmodelingformalism[93].

Figure4.2:ThegeneralgraphicalstructureofHMMs[104]

Remark1 BychoosingYt={Ot}andappropriatefeaturefunctions,theHMMand

LCCRFcanbeshowntobeequivalentfromamodelingperspective.IncontrasttoHMM,

sincetheweightparametersofCRFhavenoprobabilisticinterpretation,theirsummationis

notrequiredtobeequaltounity.DetailsregardingthesamecanbefoundintheAppendix

A.

NowthatwehaveintroducedLCCRFs,wepresentourstrategyforoperatingmode

diagnosisusingCRFs.

4.2.2 Operating ModeDiagnosisUsingLCCRFs

Inliterature,therearefewreferencesrelatedtoLCCRFbasedprocessmonitoring. Even

thoughWangetal. [45]proposedaLCCRFbasedfaultclassificationframeworkona

bearingsystem,thedecodingalgorithmtheyusedstillrestrictstheextensiontoonline

processmonitoring.Thisproblemisaddressedinthiswork.

Fortheprocessoperatingmodediagnosisproblem,weassumethattheprocesssystem

operatesinvariousoperatingmodessuchasNormal,Abnormal,Faulty,etc..Ateachtime

pointt,lettheoperatingmodeberepresentedasht=i∈{1,2,...,N},whereNisthetotal
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numberofpossibleprocessoperatingmodes.Inthiswork,weassumethatboththemodes

handobservationsOarediscrete.SinceTsamplesofobservationsareconsideredforthe

analysis,theobservationsequencebecomesO={O1,O2,...,OT},andourobjectiveisto

extracttheoperatingmodesequenceh,giventheobservationsequenceO

……….

1O 2O

……….

tO TO…3O 1dtO… …… 1dTO

h1 h2 hTh3 ht

.

Consideringthepredictabilityoftheprocessoperatingmodes,thereexistseveralcon-

straintsontheoperatingmodeconditionsandtheselectedobservations.Forapurelydata-

basedoperatingmodediagnosisproblemasinourcase,theprocessoperatingmodesare

assumedtobeobservablefromtheprocessmeasurements,whichisaninherentpremiseto

solvethisproblem.Forexample,ifsomeoftheabnormaloperatingmodesarenotobserv-

ablefromtheavailableprocessdata,thenhighlylikelythat,itisnotpossibletodetectsuch

abnormalityfromtheobservations.Inordertohaveaccurateandtimelyoperatingmode

diagnosis,thePVshavetobeselectedinsuchawaythatitwouldhaverelativelyquick

anddistinctivesignaturesofdifferentoperatingmodesandmodechangesaremanifested

throughtheselectedcandidatevariables’observations.IfthePVsarechosenimproperly

orhaphazardly,forexamplevariablesthatbearwithahugereactiondelayoruncorrelated

response,itmayeventuallyresultinincorrectdiagnosisresults.

Figure4.3:TheLCCRFstructuredesignedforprocessoperatingmodediagnosisproblem

AsshowninFig.4.3,weassumethattheoperatingmodeatsamplingtimet,i.e.ht,

isdependentonboththeoperatingmodeatprevioussamplingtimeht−1andasequenceof

observations,i.e.Yt={Ot,Ot−1,...,Ot−d+1}. ComparedwiththeHMMs,thisframework
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allows us to model the state transitions with the Markov property, and meanwhile, it is more

flexible and therefore can model the observation autocorrelations which are introduced by

factors that have no explicit relationship with the states, such as those out of the external

environment change.

The feature functions for this problem need to be defined as next. We define two sets of

feature functions: (i) a function that relates the operating modes ht and ht−1, i.e. Tk(ht, ht−1),

and (ii) a function that relates the operating mode ht and a sequence of observations Yt =

{Ot, Ot−1, ..., Ot−d+1}, i.e. Em(ht,Yt). Since the sets h and O contain a finite number

of elements which are discrete, the feature functions can be selected as Boolean functions

[27]. Since the relative significance of each feature can be reflected by its corresponding

weight factor, a unit valued feature function is sufficient to represent features. Hence, for

convenience, we choose binary valued feature functions to model mode transition as given

below [43]:

Tk(ht, ht−1) =

 1 if ht−1 = i and ht = j

0 otherwise
(4.3)

where i, j = 1, 2, ..., N and k = 1, 2, ..., K. K indicates all possible scenarios of mode

transitions, which is equal to N2 in this case. The corresponding weight factor λk has the

same role as the transition probability in HMM and needs to be estimated under the CRF

framework. Each observation belongs to the finite observation set B, and the dependency of

the observation sequence Yt on the current mode ht is formulated using the following feature

function:

Em(ht,Yt) = Em(ht, Ot, Ot−1, ..., Ot−d+1) =



Em1(ht, Ot)

Em2(ht, Ot−1)

...

Emd(ht, Ot−d+1)


(4.4)

Here, m = 1, 2, ...,M , where M is the total number of feature functions that relate

observations to the current operating mode. The elements in the above equation are all
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assumed to be indicator functions with the following form:

Eml(ht, Ot−l+1) =

 1 if ht = i and Ot−l+1 ∈ B

0 otherwise
(4.5)

where l = 1, 2, ..., d, i = 1, 2, ..., N and the corresponding weight factors µm = [µm1 µm2 ... µmd ]

form a vector, which has the same role as an emission probability matrix under the HMM

scheme.

As a result, in the CRF model, the unknown parameters are the weight factors of all

the feature functions, i.e., Λ = {λk}Kk=1 and M = {µm}Mm=1, which can be calculated

using the conditional maximum likelihood estimation (CMLE). By setting the gradient of

the conditional maximum likelihood function to zero, we obtain a set of coupled nonlinear

equations. Since there are no explicit analytic solutions to this problem, numerical algorithms

have been employed in literature for parameter estimation. In this work, the limited memory

BFGS(L-BFGS) algorithm [105] has been used to solve the CMLE problem. After training,

we employ the maximal posterior probability assessment [93] for process operating mode

diagnosis.

4.3 Operating Mode Diagnosis Using Marginalized CRFs

in the Presence of Missing Measurements

In this section, we propose a novel marginalized CRF framework for operating mode diag-

nosis in the presence of missing measurements. The modeling, parameter estimation, and

related inference problems of this marginalized CRF are illustrated in detail in the following

subsections.
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4.3.1 Problem Formulation

In this case, the observation dataset O is assumed to be partially observed and can be

partitioned as O = {Oobs,Omis}. Here, Oobs and Omis represent the observed and missing

components, respectively. For the missing component Omis, simply ignoring it will cause

loss of information, and directly replacing it with a known value will cause bias in some

cases [106]. As a result, we consider the marginalization over all missing components over

all possible combinations of the missing measurements, to provide an overall estimation of

current operating mode by accounting missing components. As given below, the conventional

LCCRF model in Equation (4.1) is marginalized over the missing measurements:

P (h|Oobs) =

Z(h,Oobs)︷ ︸︸ ︷∑
Omis

exp
T∑
t=1

{
K∑
k=1

λkTk(ht, ht−1) +
M∑
m=1

µmEm(ht,Y
(obs)
t ,Y

(mis)
t )}

∑
h
′

∑
Omis

exp
T∑
t=1

{
K∑
k=1

λkTk(h
′

t, h
′

t−1) +
M∑
m=1

µmEm(h
′

t,Y
(obs)
t ,Y

(mis)
t )}︸ ︷︷ ︸

Z(Oobs)

(4.6)

which can be compactly represented as P (h|Oobs) =
Z(h,Oobs)

Z(Oobs)
. Here, the notations Y

(obs)
t

and Y
(mis)
t represent the observed and missing components in Yt, respectively.

Since the missing measurements occur randomly and have an impact on a certain range

of operating modes, it is not possible to directly perform the marginalization of the Equation

(4.6) by a simple local summation at each missing measurement instance. Hence, in order

to solve this problem, some efficient algorithms need to be sought as explained below.

4.3.2 Parameter Estimation: A Maximum Likelihood Approach

Based on the modeling framework in Equation (4.6), in the model training stage, the un-

known parameters will be estimated by maximizing the following log likelihood function,
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considering all possibilities of missing measurements:

l(Θ) = logP (h|Oobs)−
‖Θ‖2

2

2σ2
= logZ(h,Oobs)− logZ(Oobs)−

‖Θ‖2
2

2σ2
(4.7)

where the notation ′log′ means the natural logarithm operation. By denoting the missing

dataset as Omis = [Om1 , Om2 , ..., Omα ], the first logarithmic term of Equation (4.7) can be

factorized by individual missing measurements as shown in the following equation:

logZ(h,Oobs) = log
∑
Omis

exp
T∑
t=1

{
K∑
k=1

λkTk(ht, ht−1) +
M∑
m=1

µmEm(ht,Y
(obs)
t ,Y

(mis)
t )}

= log{exp
T∑
t=1

K∑
k=1

λkTk(ht, ht−1) · exp
T∑
t=1

M∑
m=1

µmEm(ht,Y
(obs)
t )·

∑
Om1

exp
T∑
t=1

M∑
m=1

µmEm(ht, Om1) · · ·
∑
Omα

exp
T∑
t=1

M∑
m=1

µmEm(ht, Omα)}

=
T∑
t=1

K∑
k=1

λkTk(ht, ht−1) +
T∑
t=1

M∑
m=1

µmEm(ht,Y
(obs)
t ) +

α∑
i=1

log{

∑
Omi

exp
T∑
t=1

M∑
m=1

µmEm(ht, Omi)}

(4.8)

Here, considering the observation sequence Yt, Y
(obs)
t and Omi , the feature function Em

is calculated as in Equation (4.4), by assigning the elements correlated with the observation

as ones while treating the rest as zeros. For example, considering the observation sequence

Yt = {Ot, Ot−1, Ot−2}, the feature functions Em(ht,Yt) and Em(ht, Ot−1) can be calculated
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as follows:

Em(ht,Yt) = Em(ht, Ot, Ot−1, Ot−2) =


Em1(ht, Ot)

Em2(ht, Ot−1)

Em3(ht, Ot−2)



Em(ht, Ot−1) =


0

Em2(ht, Ot−1)

0


(4.9)

In Equation (4.8), for the terms with observed components, the solution is obtained

in the same way as the regular CRF, where the term “regular CRF” represents the CRF

framework derived with complete measurements. For the terms with missing components, all

possible missing values are enumerated. The relative effect of different missing measurement

combinations on the operating modes are determined through the corresponding weight

factors.

The second logarithmic term logZ(Oobs) in Equation (4.7) is computed by the summation

over both state sequence h′ and missing measurements Omis as given below:

logZ(Oobs) = log
∑
h′1:T

∑
Omis

exp
T∑
t=1

{
K∑
k=1

λkTk(h
′
t, h
′
t−1) +

M∑
m=1

µmEm(h′t,Y
(obs)
t ,Y

(mis)
t )}

(4.10)

Due to the complex interplay between operating modes and missing measurements, Equa-

tion (4.10) needs to be solved in an efficient way. Based on the forward-backward algorithm,

a propagation scheme is proposed and illustrated in detail in the next subsection.

After marginalization, the loss function l(Θ) may no longer be convex and therefore

might lead to local optima, so the numerical optimization algorithms need to be employed

for calculating the parameters. Below, we provide the gradients of l(Θ) with respect to the

unknown parameters for calculating the parameter values:

∂l(Θ)

∂λk
=

T∑
t=1

Tk(ht, ht−1)−
T∑
t=1

∑
h′t,h

′
t−1

P (h′t, h
′
t−1|Oobs)Tk(h

′
t, h
′
t−1)− λk

σ2
= 0 (4.11)
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∂l(Θ)

∂µml
=

T∑
t=1

Eml(ht, O
(obs)
t−l+1) +

T∑
t=1

∑
O

(mis)
t−l+1

w(O
(mis)
t−l+1)Eml(ht, O

(mis)
t−l+1)

−
T∑
t=1

∑
h′t

∑
O

(mis)
t−l+1

P (h′t, O
(mis)
t−l+1|Oobs)Eml(h

′
t, Ot−l+1)− µml

σ2
= 0

(4.12)

where O
(obs)
t−l+1 and O

(mis)
t−l+1 represent the cases when the measurement Ot−l+1 is observed or

missed, respectively, and

w(Omi) =
exp

∑T
t=1

∑M
m=1 µmEm(ht, Omi)∑

Omi
exp

∑T
t=1

∑M
m=1 µmEm(ht, Omi)

(4.13)

Similar to logZ(Oobs), the marginalized probabilities P (h′t, h
′
t−1|Oobs) and P (h′t, O

(mis)
t−l+1|Oobs)

in Equation (4.12) need to be calculated through propagations.

4.3.3 Inference of CRF with Missing Measurements

In this subsection, we solve two inference problems, namely, the marginal probability com-

putation and the optimal mode estimation, while performing offline training and online

validation, respectively. This is generally practiced using the forward-backward algorithm.

However, due to the high correlations between the observations and operating modes, as

well as the presence of missing measurements, the ordinary forward-backward propagation

algorithm is unsuitable for our application. As a result, we propose a new propagation algo-

rithm by suitably modifying the existing forward-backward algorithm to solve the inference

problem in an efficient way. The details are illustrated in the following subsections.

4.3.3.1 Propagation Algorithm

The forward-backward algorithm is a dynamic programming algorithm which has important

applications in both HMM and CRF problems [107]. It is used to simplify the enumeration
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Figure4.4:Thefigureillustratesthecorrelatedinteractionsattimepointtbythemissing
measurementOtandthecorrespondingoperatingmodesequence.Theshadednodesdenote
theoperatingmodesequencewhichisaffectedbymissingmeasurementOt

First,forthesakeofsimplicity,wedefinethefollowingintermediatetermsforourprop-

agationalgorithm:

ϕt(ht,ht−1,Y
(obs)
t )

def
=exp{

K

k=1

λkTk(ht,ht−1)+

M

m=1

µmEm(ht,Y
(obs)
t )}

ϕt(ht,Ot−l)
def
=exp{

M

m=1

µmEm(ht,Ot−l)}

(4.14)

Inordertocounttheeffectofamissingmeasurementonasmanyasdadjacentoperating

modelabels,weformulateanintermediatevariablebelow:

γt(ht,ht+1,...,ht+d−1,O
(mis)
t )

def
=






d−1
j=0ϕt+j(ht+j,O

(mis)
t ) ifOtismissing

1 otherwise
(4.15)
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where O
(mis)
t indicates the missing measurements at time point t. In this formulation, the

contribution of an individual missing value to process operating mode transitions is modeled.

By integrating all the possible values of O
(mis)
t , the effect of O

(mis)
t can be transferred into

the transitions among ht:t−d+1. Hereafter, we define a variable η by integrating Equation

(4.15) as follows:

ηt(ht, ht+1, ..., ht+d−1) =


∑

O
(mis)
t

γt(ht, ht+1, ..., ht+d−1, O
(mis)
t ) if Ot is missing

1 otherwise
(4.16)

However, in reality, since a missing measurement generally affects more on the operating

modes closer to it, for computational tractability, one can always approximate Equation

(4.16) by choosing the length of the missing measurement to be ds, where ds < d.

Based on the definitions listed above, a set of intermediate variables αt is defined by

considering the enumerations over operating mode sequence h1:t−1 and all the missing mea-

surements by time point t for forward propagation:

αt(ht,h
(f)
t,mis)

def
=

∑
h1:t−1

∑
O

(mis)
1:t

t∏
t′=1

ϕt′(ht′ , ht′−1,Y
(obs)

t′
) · γt′(ht′ , ht′+1, ..., ht′+d−1, O

(mis)
t′ ) (4.17)

where h
(f)
t,mis represents the operating mode sequence impacted by the missing measurements

before time point t. If there are no missing measurements from Ot−d+2 to Ot, then h
(f)
t,mis

will be ∅. If Ot is missing, then O
(mis)
t will denote the missing variable; otherwise Ot will be

included in Y
(obs)
t and its corresponding γt term will be computed as in Equation (4.15).

As a result, αt can be calculated iteratively as below:

αt+1(ht+1,h
(f)
t+1,mis) =

∑
ht

ϕt+1(ht+1, ht,Y
(obs)
t+1 )ηt+1(ht+1, ..., ht+d) · αt(ht,h(f)

t,mis) (4.18)

Similarly, for the propagation from backward direction, a set of intermediate variables βt
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is defined as below:

βt(ht+d−2,h
(b)
t,mis)

def
=

∑
O

(mis)
t:T

∑
ht+d−1:T

T∏
t′=t

γt′(ht′ , ..., ht′+d−1, O
(mis)
t′ )

T∏
t′=t+d−1

ϕt′(ht′ , ht′−1,Y
(obs)
t′ )

(4.19)

where h
(b)
t,mis represents the operating mode sequence affected by the potential missing mea-

surements before time point t, which is the subset of ht:t+d−3. If there is no missing data

from Ot to Ot+d−3, then h
(b)
t,mis will be ∅. By means of recursion, the intermediate variables

β for backward propagation can be calculated iteratively as follows:

βt−1(ht+d−3,h
(b)
t−1,mis) =

∑
ht+d−2

ϕt+d−2(ht+d−2, ht+d−3,Y
(obs)
t+d−2)

ηt−1(ht−1, ..., ht+d−2)βt(ht+d−2,h
(b)
t,mis)

(4.20)

The steps detailing the proposed forward-backward propagation algorithm can be found

in B.1. After the forward propagation, the normalization term Z(Oobs) in Equation (4.10)

can be computed by means of the derived results:

Z(Oobs) =
∑
h1:T

∑
O

(mis)
1:T

T∏
t=1

ϕt(ht, ht−1,Y
(obs)
t ) · γt(ht, ..., ht+d−1, O

(mis)
t ) =

∑
hT

αT (hT ) (4.21)

The marginal probabilities in equations (4.11) and (4.12) can be derived by the interme-

diate terms α and β, which will be illustrated in the next subsection.

4.3.3.2 Marginal Probability Derivation

In Equations (4.11) - (4.12), the gradient calculation is based on the marginal distribu-

tions P (ht, ht−1|Oobs) and P (ht, O
(mis)
t−l+1|Oobs). Using the definition of ϕt(ht, ht−1,Y

(obs)
t ), we
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marginalize the relevant terms to obtain P (ht, ht−1|Oobs) as follows:

P (ht, ht−1|Oobs) =
1

Z(Oobs)

∑
h1:t−2,ht+1:T

∑
O

(mis)
1:T

T∏
t′=1

ϕt′(ht′ , ht′−1,Y
(obs)
t′ )γt′(ht′ , ..., ht′+d−1, O

(mis)
t′ )

=
1

Z(Oobs)
ϕt(ht, ht−1,Y

(obs)
t )

∑
ht+1:t+d−2

{
∑
h1:t−2

∑
O

(mis)
1:t−1

t−1∏
t′=1

ϕt′(ht′ , ht′−1,Y
(obs)
t′ )

γt′(ht′ , ..., ht′+d−1, O
(mis)
t′ )}{

∑
ht+d−1:T

∑
O

(mis)
t:T

T∏
t′=t+1

γt′(ht′ , ..., ht′+d−1, O
(mis)
t′ )

T∏
t′=t+d−1

ϕt′(ht′ , ht′−1,Y
(obs)
t′ )}

t+d−2∏
t′=t+1

ϕt′(ht′ , ht′−1,Y
(obs)
t′ )

=
1

Z(Oobs)
ϕt(ht, ht−1,Y

(obs)
t )

∑
ht+1:t+d−2

αt−1(ht−1,h
(f)
t−1,mis)βt(ht+d−2,h

(b)
t,mis)

t+d−2∏
t′=t+1

ϕt′(ht′ , ht′−1,Y
(obs)
t′ )

(4.22)

where the operating mode sequences h
(f)
t−1,mis and h

(b)
t,mis are the subsets of {ht+1, · · · , ht+d−2},

and the summation over ht+1:t+d−2 is calculated by similar forward propagation as illustrated

in the previous subsection.

When Ot−l+1 is missing, by defining αt(ht,h
(f)
t,mis, O

(mis)
t−l+1) as below, the marginal proba-

bility P (ht, O
(mis)
t−l+1|Oobs) will be obtained as shown in Equation (4.24).

αt(ht,h
(f)
t,mis, O

(mis)
t−l+1)

def
=

∑
h1:t−1

∑
O

(mis)
1:t \O(mis)

t−l+1

t∏
t′=1

ϕt′(ht′ , ht′−1,Y
(obs)
t′ )·

γt′(ht′ , ht′+1, ..., ht′+d−1, O
(mis)
t′ )

(4.23)
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P (ht, O
(mis)
t−l+1|Oobs) =

1

Z(Oobs)

∑
h1:t−1,ht+1:T

∑
O

(mis)
1:T \O(mis)

t−l+1

T∏
t′=1

ϕt′(ht′ , ht′−1,Y
(obs)
t′ )

γt′(ht′ , ..., ht′+d−1, O
(mis)
t′ )

=
1

Z(Oobs)

∑
ht+1:t+d−1

{
∑
h1:t−1

∑
O

(mis)
1:t \O(mis)

t−l+1

t∏
t′=1

ϕt′(ht′ , ht′−1,Y
(obs)
t′ )

γt′(ht′ , ..., ht′+d−1, O
(mis)
t′ )}{

∑
O

(mis)
t+1:T

∑
ht+d:T

T∏
t′=t+1

γt′(ht′ , ..., ht′+d−1, O
(mis)
t′ )

T∏
t′=t+d

ϕt′ (ht′ , ht′−1,Y
(obs)
t′ )

t+d−1∏
t′=t+1

ϕt′(ht′ , ht′−1,Y
(obs)
t′ )

=
1

Z(Oobs)

∑
ht+1:t+d−1

αt(ht,h
(f)
t,mis, O

(mis)
t−l+1) · βt+1(ht+d−1,h

(b)
t+1,mis)

t+d−1∏
t′=t+1

ϕt′(ht′ , ht′−1,Y
(obs)
t′ )

(4.24)

Here, the operating mode sequences h
(f)
t−1,mis and h

(b)
t+1,mis are also the subsets of {ht+1, ...,

ht+d−1}, and the summation over ht+1:t+d−1 is computed iteratively.

4.3.3.3 Online Operating Mode Diagnosis

Once the offline parameter estimation step is completed, in order to identify the optimal

operating mode sequence online, the probability of the current operating mode given all the

previous observations is calculated as:

h∗t = argmax
ht

P (ht|O(obs)
1 , ..., O

(obs)
t ) (4.25)

Solving the above problem is equivalent to a CRF based filtering problem for selecting

optimal operating modes. In order to estimate the current optimal operating mode in the
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presence of previously missing measurements, we define a set of intermediate variables ξt as

follows:

ξt(ht)
def
=

∑
ht−d+1:t−1

∑
O

(mis)
t−d+2:t

t∏
t′=t−d+2

ϕt′(ht′ , ht′−1,Y
(obs)
t′ ) · γt′(ht′ , ..., ht, O(mis)

t′ )·

αt−d+1(ht−d+1,h
(f)
t−d+1,mis)

(4.26)

Here, the forward propagation structure can be employed to deal with the d step ahead

calculation from αt−d+1 to ξt, and the conditional probability P (ht|O(obs)
1 , ..., O

(obs)
t ) in Equa-

tion (4.25) is derived by means of the intermediate variables ξt, as below:

P (ht|O(obs)
1 , ..., O

(obs)
t ) =

ξt(ht)∑
ht
ξt(ht)

(4.27)

As a summary, the main components of this proposed marginalized CRFs include of-

fline parameter estimation, related inference problems and the proposed forward-backward

propagation. The pseudocodes for the same are presented in B.2.

4.4 Case Studies

In this section, the proposed approach for operating mode diagnosis is tested on two case

studies, (i) CSTR simulation system, and (ii) hybrid tank experimental system. We consider

both the complete observations and missing measurement scenarios for evaluating the process

monitoring performance on these two systems.

4.4.1 Continuous Stirred Tank Reactor System

4.4.1.1 Process Description

In this study, the CSTR system containing two reactors in series [108] is considered and the

schematic of the system is illustrated in Fig. 4.5. This process comprises of two irreversible
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exothermic reactions occurring in both tanks simultaneously, and product of the first tank

acts as the feed to the second reactor. The coolant qc flows through both reactors and can be

treated as the input of the whole system, and the feed flow-rate qf is the disturbance. During

the simulation, the CSTR operates under the closed-loop condition and the control objective

is to keep the effluent concentration CA2 at a certain reference value by manipulating the

coolant flow-rate qc consistently. In order to obtain an instant and direct operating mode

diagnosis result, the product concentration CA2 and temperature T2 in the second reactor

are chosen as observation variables for process operating mode diagnosis.

, ,Af f fC T q

,c cfq T

1 1
,AC T

2 2
,AC T

cq

Figure 4.5: The schematic of CSTR in series [108]

For the CSTR system, the setpoint of CA2 is set as 0.0075mol/L and a PI controller is

designed for closed loop control with parameters Kc = 350L2/mol ·min and τI = 0.25min

as shown in [109]. For other process parameters, the readers are referred to the above

mentioned reference. Here, the feed flow-rate qf is contaminated by a white noise disturbance

with variance 0.3 under normal operating condition. For simulating the abnormal operating

scenarios, a random impulse signal with mean 10L/min and variance 3, and a random ramp

disturbance with maximum output value 2.5L/min and variance 1, are introduced in the

simulation.

After data collection, some feature extraction algorithms are employed for data pre-
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processing, and the proposed algorithm is then used to conduct model training and online

process operating mode diagnosis.

4.4.1.2 Discrete Feature Extraction

For many practical applications, in order to make the patterns more recognizable as well

as more robust in the presence of noises, the original observed variables are generally pre-

processed and transformed into new features, which is called feature extraction [110]. In this

case, the wavelet analysis technique [111] is first used to reduce the impact of noise, and then

triangular representation is employed to convert the continuous signal to a discrete symbolic

sequence based on a finite number of triangles, which captures the trend of observations

and also reduces the sensitivity to noise [88]. Details of triangular representation can be

found elsewhere [112] and is omitted here for brevity. Further, it brings in the robustness to

the proposed algorithm against missing measurements, since a lower percentage of missing

measurements may not impact the overall process trend.

After triangular representation, the original continuous signal is represented by a dis-

crete sequence with finite possible values. The discretization rule used in this chapter can

be found in Fig. 4.6 and Table 4.1. Here, the whole duration or magnitude range is equally

divided into three segments, and the notations “small”, “medium” and “large” indicate the

data falling into the segments with lowest, middle and highest ranges, respectively. Based

on the continuous dataset illustrated in Fig. 4.7, a segment of the corresponding triangular

sequences of the observations are shown in Fig. 4.8. In Fig. 4.8, the three operating modes,

namely, Normal, Abnormal 1 (impulse) and Abnormal 2 (ramp), are converted into trian-

gular sequences and are demonstrated in black, red and blue colors, respectively. According

to the discretization rule, different operating modes will have different triangle patterns; for

example, in the normal data range, the number of triangles with indices corresponding to

small duration and small magnitude is more than those of the other two modes.
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(a) An illustration example for the triangular episode based 
process trend description.

(b) Four primitive types of triangles employed in this paper.
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Figure4.6:Theillustrationoftriangularrepresentation[113]

Figure4.7: Theobservationchangingtrendsfordifferentoperatingmodesofclosed-loop
CSTRsysteminthevalidationdataset.Theupperandlowersubfiguresindicatethetem-
peratureandconcentrationofthesecondtank,respectively
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Figure4.8:ThetriangulardiscretizationresultoftheCSTRvalidationdataset.Temperature
andproductconcentrationofthesecondtankhavebeendiscretizedintheleftandright
figures,respectively.Theblack,redandbluelinesindicatethenormal,impulseandramp
abnormalcases,respectively

4.4.1.3 ProcessOperating ModeDiagnosisPerformance

Inthissimulationstudy,sincetheCSTRoperatesundertheclosed-loopconditionandthe

observationsgenerallyexhibithighandcomplicatedcorrelations,theconditionalindepen-

denceassumptionsofHMMswillnotbethebestfit.Foracomparison,twootherprocess

operatingmodediagnosisalgorithmsarealsoconsideredinthiswork,i.e.,HMMandback

propagationneuralnetwork(BPNN).FortheBPNNalgorithm,anHMMisfirsttrained

foreachobservationvariable,andthentheprobabilitiesofdifferentoperatingmodesgiven

differentobservationsareemployedasinputtotheBPNNfortheoveralloperatingmode

estimation.ForthevalidationdatasetillustratedinFig.4.8,theprobabilityestimationsof

differentoperatingmodesprovidedbythreealgorithmsandtheonlinemonitoringperfor-

mancesareshowninFig.4.9.

IntheCRFdiagnosiscase,thewindowlengthdisselectedastwo.IntheBPNNcase,by

parametertuning,ahiddenlayerwithtennodesisdesignedforanoptimaloveralloperating
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Table4.1:Look-uptableoftriangulardiscretization

Trianglesize
Triangleshape Concavedownward Concaveupward

Monotonicincrease Monotonicdecrease Monotonicdecrease Monotonicincrease

Smallduration
Smallmagnitude 1 10 19 28
Mediummagnitude 2 11 20 29
Largemagnitude 3 12 21 30

Mediumduration
Smallmagnitude 4 13 22 31
Mediummagnitude 5 14 23 32
Largemagnitude 6 15 24 33

Largeduration
Smallmagnitude 7 16 25 34
Mediummagnitude 8 17 26 35
Largemagnitude 9 18 27 36

Figure4.9: ProbabilityofCSTRprocessoperatingmodesestimatedbytheCRF(d=
2),HMMandBPNNbasedalgorithmsandthecorrespondingoperatingmodediagnosis
performances.Theoperatingmodenumbers1,2and3representnormal,impulseandramp
disturbancecontaminatedcases,respectively

modedecision.Bymodelingthecorrelationsamongtheobservations,weobservethatthe

CRFgivesthehighestdiagnosisaccuracy,andtheHMMandBPNNbasedmonitoring

algorithmshavealowerdiagnosisaccuracywhenthetwoabnormaloperatingmodesoccur

sequentially. Moreover,duringthetimeoftheshortactingrampdisturbancearoundt=

840s,theCRFprovidesanexactdetection,whiletheothertwoalgorithmsarenotable

todetectthecorrespondingfault. Referringtotheoperatingmodeprobabilityestimation

result,theBPNNbasedalgorithmalwaysprovidesambiguousestimationsaround0.5,which
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is not reliable compared to the other algorithms.

Additionally, due to the convexity of the loss function in the CRF framework, the initial

value of CRF does not impact the training performance as much as the other two algorithms,

which is another important advantage of CRF. We also define a metric called diagnosis

accuracy, which represents the ratio of correct estimation over all the estimations, and the

comparison results using the same metric can be found in Table 4.2.

Table 4.2: CSTR process operating mode diagnosis accuracy with complete dataset

Algorithm CRF (d=4) CRF (d=3) CRF (d=2) CRF (d=1) HMM BPNN

Diagnosis accuracy (%) 94.75 94.30 95.21 92.82 86.30 70.62

Due to various practical reasons, missing data is common during an industrial process

operation. In order to validate the performance of the algorithm under missing data scenar-

ios, in this simulation, we consider 12 percent of process measurements as missing randomly

in the training dataset, and the corresponding discrete representation triangles are also con-

sidered to be missing if more than 20 percent of the data points are lost within one triangle.

Based on the incomplete training dataset, the marginalized CRF is used for operating mode

diagnosis. In order to assess the marginalization performance, the regular CRF is trained

with the same training dataset by simply ignoring the missing measurements and is used

as the initial guess of the marginalized CRF. The comparison result can be found in Fig.

4.10, which shows that the marginalized CRF exhibits better performance than the regular

version.

Additionally, to deal with the missing measurements, the marginalized HMM [114] is

employed for operating mode diagnosis. Similar to the complete data case study, the BPNN

is also combined with the marginalized HMM for comparison purposes. The comparison

results of marginalized CRF, HMM and BPNN methods can be found in Fig. 4.11. Evidently,

the performance of the marginalized CRF is much better than the other two. By increasing

the percentage of missing measurements, the robustness of all the algorithms to missing

measurements is tested. The corresponding diagnosis results are presented in Table 4.3,
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Figure4.10:Theoperatingmodediagnosisperformancecomparisonbetweenmarginalized
andregularCRFsinthepresenceof12% missing measurements. Theoperating mode
numbers1,2and3representnormal,impulseandrampdisturbancecontaminatedcases,
respectively

whichindicatesthatthemarginalizedCRFshowsnotonlytherobustnesstotheincreasing

percentageofmissingdata,butalsoprovidesthemostaccurateresultcomparedwiththe

othertwoalgorithms.

Table4.3: CSTRprocessoperatingmodediagnosisaccuracyinthepresenceofdifferent
missingpercentages

Datamissingpercentage 5% 10% 15%

MarginalizedCRFdiagnosisaccuracy(%) 93.16 92.36 91.79

MarginalizedHMMdiagnosisaccuracy(%) 79.79 79.11 76.37

MarginalizedBPNNdiagnosisaccuracy(%) 76.71 75.34 72.95
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Figure 4.11: The operating mode diagnosis performances compared among marginalized
CRF, HMM and BPNN in the presence of 12% missing measurements. The operating mode
numbers 1, 2 and 3 represent normal, impulse and ramp disturbance contaminated cases,
respectively. The operating mode diagnosis accuracies of the marginalized CRF, HMM and
BPNN approaches in this particular case are 96.47%, 79.45% and 73.29%, correspondingly

4.4.2 An Experimental Validation on Hybrid Tank System

4.4.2.1 Process Description

In order to validate practicality of the proposed algorithm on real data, a hybrid tank

experimental system is considered. The corresponding equipment schematic is presented in

Fig. 4.12. As shown in Fig. 4.12, the hybrid tank system is composed of three connected

horizontal tanks and the inlet water flow is pumped into the two tanks on both sides.

Manipulation of the on-off valves V1, V2, V3, V4 will increase the tank levels suddenly and

cause overflow. Consequently, closure of the two lower connecting valves V3 and V4 will lead

to two abnormal cases. In this experimental validation, when all of the connecting valves

V1, V2, V3, V4 are open, it is considered as Normal operating mode, while when V3 or V4 gets

closed, the system is considered to be operating under two different abnormal modes, named
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Figure4.12:Theconfigurationanddiagramoftheexperimentalhybridtanksystem

Abnormal1andAbnormal2.Toreflectthereal-timeoperatingconditionsandprovidea

reliablediagnosisresult,theleftandrighttanklevels,l1andl2,respectively,arechosenas

monitoringobservationsforoperatingmodediagnosis.ValvesV1,V2andV5−V9arekept

openduringtheentireexperiment. Weused80%ofthedatacollectedfromtheexperiment

fortrainingandtheremainingforvalidation.

4.4.2.2 DiscreteFeatureExtraction

SimilartotheCSTRprocessdescribedintheprevioussubsection,thetriangulardiscretiza-

tionalgorithmisusedforthegenerationofdiscretefeaturesinthisexperimentstudy.Once

oneofV3andV4isclosed,thetanklevelincreasesfaster,changingthenormaloperating

conditions.Asaresult,thedatatrendsaredifferentbetweennormalandabnormalsitua-

tions.Fig.4.13showsthetriangularrepresentationresultsforbothl1andl2underdifferent

operatingmodes.
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Figure4.13:Thetriangulardiscretizationresultsofobservationsl1andl2.Theleftandright
figuresillustratethecontinuousanddiscretizedresultsoftanklevelsl1andl2,respectively.
Intheleftfigure,theactualoperatingmodesequencecanbefoundinthethirdsubfigure,
wherenumber1to3denotetheNormal,Abnormal1andAbnormal2modes,separately.
Intherightfigure,theblack,redandbluelinescorrespondtotheNormal,Abnormal1and
Abnormal2cases,respectively

4.4.2.3 ProcessOperating ModeDiagnosisPerformance

Foroperatingmodediagnosis,theremaining20percentofdataexcludedfrommodeltraining

isusedasthevalidationdatasettotestthediagnosisperformance.Thecomparisonresults

ofoperatingmodediagnosisinFig. 4.14successfullydemonstratethattheCRFbased

algorithmshowsanobviousadvantageovertheHMMandBPNNones. Similartothe

simulatedCSTRcase,theHMMandBPNNbasedalgorithmsincorrectlydiagnosetwo

sequentialabnormalmodes,especiallywhenthetwoabnormalmodessharecertaincommon

features.Forexample,considerthelastmodeswitchingthatoccursaroundt=9600min,

wherealargejumpofl2indicatesthestartofmodeAbnormal2,whilethesteadystatesof

modesAbnormal1and2alsohavesomesimilarfeatures.Bychangingthewindowlengthd

oftheCRF,theCRFbasedalgorithmexhibitsdifferentdiagnosisaccuracylevelsasshown

inTable4.4.Fromthenumericalresultslisted,itisseenthatthewindowlengthdshould
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Triangular sequence

Figure4.14:ProbabilityofhybridtanksystemoperatingmodesestimatedbytheCRF(d
=10),HMMandBPNNalgorithmsandthecorrespondingoperatingmodediagnosisper-
formances.Here,theoperatingmodenumbers1,2and3indicatetheNormal,Abnormal1
andAbnormal2operatingmodes,respectively

beselectedproperlyforsatisfactorydiagnosisaccuracy. Asmallerdmightnotbeableto

fullydescribetheautocorrelationamongobservations,whilealargerdmightincorporate

toomuchpastinformationwhichhasnoimpactonthecurrentprocessbutincreasesthe

computation. Consequently,themovingwindowlengthdshouldbeinareasonablerange

forgooddiagnosisperformance.

Table4.4:Hybridtanksystemoperatingmodediagnosisaccuracywithcompletedataset

Algorithm CRF(d=12) CRF(d=10) CRF(d=3) CRF(d=1) HMM BPNN

Diagnosisaccuracy(%) 75.00 95.83 85.42 81.25 91.67 87.50

Inordertovalidatetheproposedalgorithminthemissingmeasurementscenario,itis

assumedthat12percentofdataismissingatrandominbothofthetanklevelmeasurements

l1andl2fromthetrainingdataset.Basedonthesametrainingandvalidationdatasets,the

proposedalgorithmisalsousedfordiagnosisperformanceevaluationandcomparedwiththe

regularCRF,marginalizedHMMandBPNNalgorithms.Theonlinemonitoringresultsare
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presentedinFig.4.15and4.16.Itcanbeseenthatcomparedtotheotheralgorithms,the

proposedmarginalizedCRFdemonstratesmoreaccuratediagnosisperformance.

Figure4.15:Thehybridtanksystemoperatingmodediagnosisperformancecomparisonbe-
tweenmarginalizedandregularCRFswith12%missingmeasurements.Here,theoperating
modenumbers1,2and3indicatetheNormal,Abnormal1andAbnormal2operating
modes,respectively
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Figure 4.16: The hybrid tank system operating mode diagnosis performances compared
among marginalized CRF, HMM and BPNN with 12% missing measurements. Here, the
operating mode numbers 1, 2 and 3 indicate the Normal, Abnormal 1 and Abnormal 2
operating modes, respectively. The operating mode diagnosis accuracies of the marginalized
CRF, HMM and BPNN approaches in this particular case are 89.58%, 79.17% and 79.17%,
correspondingly

Table 4.5: Hybrid tank system operating mode diagnosis accuracy in the presence of different
missing percentages

Data missing percentage 5 % 10 % 15 %

Marginalized CRF diagnosis accuracy (%) 93.75 85.42 83.33

Marginalized HMM diagnosis accuracy (%) 87.50 85.33 77.19

Marginalized BPNN diagnosis accuracy (%) 85.42 70.83 68.75

4.5 Conclusions

In this chapter, the CRF framework, a probabilistic discriminative model, was employed

for process operating mode diagnosis problem. Due to the relaxation from the inherent

assumptions of HMM, the CRF algorithm has shown to be more effective in describing

complex autocorrelations among the observations, thereby more accurately estimating the
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current operating modes. Moreover, to deal with the missing measurement problem, a new

marginalized CRF framework has been designed and corresponding inference algorithms are

also developed. Finally, the proposed approach has been tested by performing a simulation

study on the CSTR system and an experimental study on a hybrid tank system. The results

indicate that the CRF framework can lead to a better and more robust operating mode

diagnosis, and can be a potentially good tool to solve process monitoring problems with

temporally correlated data.
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Chapter 5

Two-stage Time-varying Hidden

Conditional Random Fields with

Variable Selection for Process

Operating Mode Diagnosis

5.1 Introduction

As the rapid development of modern industrial technologies, process production scales are

gaining increasingly large. In addition to ensuring production efficiency, process and op-

eration safety needs to be guaranteed during a large scale process operation. Owing to

the applications of distributed control system, a large volume of process data are available,

resulting in a rapid development of data-based process monitoring approaches in recent

decades [12]. Among the existing data-based process monitoring algorithms, the MSPM

approaches have been well developed, such as PCA [115], PLS method [58], etc.. However,

since industrial processes are often operated under multiple modes, the inherent assumptions

of the conventional MSPM approaches may be violated, causing degradation of monitoring
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performance. To compensate the weakness of MSPM methods, many multimodal process

monitoring strategies have been established, among which the HMMs based monitoring al-

gorithms are gaining wide attentions owing to their capability of modeling mode transitions

[37].

However, limited by certain independence assumptions of HMMs, the HMM based process

monitoring techniques can become unsatisfactory when the HMM independence assumptions

are violated [116]. To compensate such limitations, a probabilistic discriminative model,

namely CRF, has been proposed and employed to address both multimodal and dynamic

process monitoring problems, with demonstrated superior performances over the HMM based

approaches [117]. Moreover, owing to the probabilistic discriminative modeling structure of

CRFs, there is no requirement to explicitly model the observation with certain probabilistic

distributions, and in theory arbitrary features can be selected for process operating mode

diagnosis. Such advantage makes CRFs more flexible and expressive than the HMMs.

During CRF modeling, in order to reduce the computational load and increase the model-

ing accuracy, a combination of effective techniques is commonly seen when solving the CRF

related problems. Instead of using raw observations as CRF model inputs, some feature

extraction approaches are employed to pre-process the data at the first stage and then use

the extracted features to proceed with the subsequent conventional CRF modeling. More-

over, certain discriminative classifiers, such as logistic regression model and SVM, are also

used as the first-stage feature extractors by training a local classifier [118]. The proposed

two-stage CRF structure creates discriminative features in the first stage and models the

temporal-spatial correlations among the labels in the second stage, which has been demon-

strated to outperform the conventional single stage CRFs and provide similar accuracy to

more complicated approaches [119]. However, to the best of authors’ knowledge, in the ex-

isting related literatures of two-stage CRFs, the first-stage local classifiers are simply used

to generate discriminative features and no related works of feature selection have been done

in the first-stage classifier training.
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Since the quality of the data used to build the process monitoring models can have a

great impact on the final monitoring performance, using all the available features might not

achieve a satisfactory monitoring performance compared with using well selected features

[120]. As CRF models allow arbitrarily large number of features to be included, feature

selection is particularly important for the training of models due to potential redundancy

of PVs. To address the feature selection issue of CRFs, two types of algorithms, namely,

filtering and embedding, have been considered in the existing literatures [121]. For instance,

in the filtering category, multiple evaluation indices have been proposed to rank and prune

some features [122], and as a typical example of the embedding approach, an efficient feature

inducing algorithm is implemented by assessing and adding features that can improve the

training performance [123]. However, the main drawbacks of the filtering approaches are

that the selected features likely have no contributions to the final performance, and due

to the large number of features available, the embedding approaches tend to have high

computational cost, making the solution intractable.

Therefore, in this thesis, a novel two-stage HCRF model with feature selection is proposed

for real-time process operating mode diagnosis. In the first stage, on the basis of the max-

margin training strategy [124], the HCRF model is obtained as a local classifier, with features

ranked according to the fault relevance. In the second stage, to adapt to the dynamic

characteristic of the real processes, a time-varying structure is proposed on the basis of the

first-stage HCRF outputs. The innovations of the proposed approach can be summarized

as follows: (i) the relevant feature selection is first considered during the first-stage training

process of CRFs; (ii) with a time-varying model structure, the proposed algorithm is able to

adapt to the process changes in real time, effectively avoiding model performance degradation

compared with the existing approaches.

The remainder of this chapter is organized as follows: Section 5.2 summarizes prelim-

inaries and comparisons of the conventional HCRFs and LCCRFs, and then proposes the

two-stage HCRF model. In section 5.3, the first-stage HCRF model is formulated, and the
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second-stage HCRF model is illustrated in section 5.4. The online implementation procedures

are integrated in section 5.5. To demonstrate the performance of the proposed algorithm,

a numerical case study is performed and detailed in section 5.6. Finally, in section 5.7,

conclusions are presented.

5.2 Preliminary and Introduction of the Proposed Two-

stage HCRF Model

5.2.1 Preliminaries of HCRFs and LCCRFs

As a probabilistic discriminative model, CRFs directly model the conditional probability

between the labels and the observations. Different from the conventional LCCRFs, the con-

ventional HCRF has a conditional probabilistic formulation with latent variables, which can

be used to solve structured classification problems [125]. Under the probabilistic framework,

a mapping from process observations O = [O1, · · · , Ot, · · · , OT ], Ot ∈ <M , to class label

h ∈ H is established, where H is a set of all possible labels. In between process observations

O and label h, a set of latent variables d = [d1, · · · , dl, · · · , dL], dl ∈ D, are introduced for

more complicated dynamic modeling, where D is a finite set containing all the possible latent

states. The topology of the latent variables varies from problems to problems. For instance,

as illustrated in Fig. 5.1, the one dimensional linear-chain structure is applied on the latent

variables. Mathematically, a HCRF model can be represented in the following conditional

probabilistic form:

P (h,d|O; Θ) =
eF (h,d,O;Θ)∑

h′ ,d′ e
F (h′ ,d′ ,O;Θ)

(5.1)

where Θ denotes the unknown parameters of the HCRF model. F (h,d,O; Θ) ∈ < represents

the feature function parameterized by Θ, which is created to model correlations among O,

d and h.

In parallel, the conventional LCCRFs model the conditional probability between a se-
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Figure5.1:TheHCRFwithlinear-chainstructureamongthelatentvariables[126],where
theshadednodesrepresenttheobservedvariables

quenceoflabelh1:TandtheobservationsO1:TwithagraphicalstructureshowninFig.5.2.

TheformulationofLCCRFsisdefinedasfollows:

P(h1:T|O1:T;Λ)=
eG(h1:T,O1:T;Λ)

h1:T
eG(h1:T,O1:T;Λ)

Th

1:TO

3h2h1h th... ...

(5.2)

whereΛrepresentstheunknownparametersoftheLCCRFs,whichneedtobeestimatedin

thetrainingprocess.

Figure5.2: ThegraphicalstructureoftheconventionalLCCRF,withtheshadednodes
representingtheobservedvariables

ThemaindifferencesbetweenHCRFsandLCCRFslieintheexistenceofthelatentlayer

andtheprobabilisticmodelingofanindividuallabelhoralabelsequenceh1:T.Infact,their

differenceissimilartothedifferencebetweenclassicalstatespacemodelsandinput-output
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transfer functions. HCRF is analogous to the state space formulation where d is similar

to the state, while LCCRF is analogous to the transfer function formulation. Due to the

modeling characteristics, both HCRFs and LCCRFs have their own advantages. By adding

the latent layer, the HCRFs have higher modeling flexibility and are able to describe the

latent features of the process. By modeling the probability between the label sequence and

observations, the LCCRFs take the correlations among the labels into consideration. In this

work, a two-stage HCRF model is proposed by integrating the advantages of both HCRFs

and LCCRFs to solve the process operating mode diagnosis problem. Detailed explanation

will be provided in the next section.

5.2.2 Two-stage HCRF Model for Process Operating Mode Diag-

nosis

By making use of the CRF framework, the process operating mode diagnosis problem can be

solved as a sequential classification problem. In this work, the process under consideration

is assumed to have multiple operating modes, such as Normal, Abnormal and Faulty,

etc.. In different operating modes, the process can exhibit different dynamics or statistical

properties, meaning that from the process observations, the current process operating mode

may be recognized through dynamical or statistical analysis. The process operating mode at

the sampling instant t is represented by ht ∈ H, where H = {1, 2, · · · , P}, with P operating

modes in total. The objective is to find the most likely operating mode h∗t given all available

process observations O1:t.

By removing the data from the transit of switchings between different operating modes,

the observations are first separated according to their operating modes and the HCRF model

is trained as a local classifier. This formulates the first-stage of the proposed strategy to

discriminate different operating modes. In this stage, the max-margin training strategy is

employed and the most relevant variables are selected while maintaining the discriminative

capacity of the local classifier. In the second-stage of the proposed strategy, the first-stage
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outputsactastheinputstothesecondstageandthedynamiccorrelationsbetweenthe

operatingmodesareconsideredbyusingaLCCRFmodel. AsillustratedinFig.5.3,at

eachsamplinginstant,amovingwindowincludingitspreviousobservationsaretakenand

evaluatedbythefirst-stageHCRFclassifier.Alongermovingwindowisbeneficialtoclearly

discriminateoneoperatingmodefromothersintheinstantwherethereisnoswitching

occurs,asdenotedbythewindowLlinFig.5.3. However,towardswitchinginstant,a

shortermovingwindowisbetterincapturingthechangeoffeatures,asdenotedbythe

windowLs

Operating mode 1

t

Operating mode 2 Operating mode 3

Continuous real-time measurements

Ll Ls

inFig.5.3.Therefore,anautomaticselectionofthewindowlengthisdesirable

andthisisconductedinthesecondstageoftheproposedmethod.Inthesecond-stage

modeling,themovingwindowlengthisdeterminedwhichisadaptivetothemodeswitching.

Figure5.3:Thegraphicalillustrationoftheprocessdynamicsandmovingwindowstrategy

Thedetailedformulationandtrainingstrategiesofthetwo-stageHCRFmodelarepro-

videdinthesubsequentsections.

5.3 First-stageHCRFwithProcessVariableSelection

5.3.1 ProblemFormulation

Forthefirst-stageHCRFtraining,theobservationsfromthesameoperatingmodeareex-

tractedandintegratedintomultiplesequences.Eachsequencestartswithatransientperiod

whichisfollowedbyasteadyperiod.Toavoidtheimpactsoftransientperiodonthetraining
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performanceofthelocalclassifier,thefirstfewsamplingpointsofeachsequenceareremoved

fromtrainingdataset,whichisshowninFig.5.4.

Figure5.4:Thegraphicalillustrationoftransientperiodsremoval

Ineachoperatingmode,thefirst-stageHCRFclassifiertakesanobservationsequence

withafixedlengthLasinput,andthecorrespondingoperatingmodeasoutput.Thislocal

classifierhasaninternalgraphicalstructureshowninFig.5.5initssimplestform. To

increasemodelingflexibility,basedonFig.5.5,eachYtcanbeextendedtoincludeseveral

ofitspreviousobservationsasshowninFig.5.6,andeachYthasitscorrespondinglength

dl. Therefore,alatentvectord=[d1,···,dl,···,dL],dl∈{1,2,···,D}isintroducedas

showninFig.5.6,whichbreaksthelongchainintosmallerwindows. Withthislayout,the

observationsarere-arrangedwithreducednumberofmodelparameterscomparingwiththe

conventionalHCRF.ThedetailedexamplesofD=1andD=2willberepresentedlaterin

thissection. Duringtheofflinetrainingperiod,longerLismorebeneficialtodifferentiate

oneoperatingmodefromothers.Therefore,Linthefirststagemodeltrainingwillbechosen

muchlongerthanD.Theevolutionofd1:Lismodeledbyafirst-orderMarkovchain,where
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Figure5.6: Thegraphicalstructureofthefirst-stageHCRFattimetandt+1inone
operatingmode.Theshadednodesrepresenttheobservedvariables

Basedontheabovestructure,twotypesoffeaturefunctionsaredefinedasfollows:

(i)thefeaturefunctions modelingthetransitionsbetweendlanddl−1intheoperating

modeht,namely,fk1(ht,dl,dl−1);(ii)thefeaturefunctionsmodelingtheconnectionsbe-

tweentheoperatingmodehtandtheprocessobservations,i.e.,fk2(ht,dl,Onl:nl−D+1)and
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fk3(ht, dl, Onl:nl−D+1), with nl = t− L+ l.

The first type of transition feature function has the following binary indicator format:

fk1(ht, dl, dl−1) =

 1 if ht = p and dl = i and dl−1 = j

0 otherwise
(5.3)

where the process operating mode p ∈ {1, 2, · · · , P}, and i, j ∈ {1, 2, · · · , D}. The total

number of these transition feature functions is PD2, and the possibility of transition from

dl−1 = j to dl = i in the pth operating mode is evaluated by a weighting factor θk1 , which is

unknown and needs to be identified from the process data.

As to the second type of feature function, the detailed formulation is:

fk2(ht, dl, Onl:nl−D+1) =



fk21(ht, Onl)

fk22(ht, Onl−1)

...

fk2dl (ht, Onl−dl+1)


(5.4)

where each element fk2j(ht, Onl−j+1) ∈ <M can be written into the following form:

fk2j(ht, Onl−j+1) =

 Onl−j+1 if ht = p

0 otherwise
(5.5)

where a weighting vector θk2j ∈ <M is assigned to evaluate the above feature function.

The feature functions fk3(ht, dl, Onl:nl−D+1) are formulated similar to fk2(ht, dl, Onl:nl−D+1).

The only difference is that each element in fk3(ht, dl, Onl:nl−D+1) has a quadratic form as be-

low:

fk3j(ht, Onl−j+1) =

 Onl−j+1 �Onl−j+1 if ht = p

0 otherwise
(5.6)

where � represents the element-wise product between two matrices.
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The above feature functions also have their corresponding weighting factors θk3 , and the

maximal total number of θk2 and θk3 are 2MDP , which can be reduced according to the

optimal estimations of latent variables d.

Specifically, considering the cases with D = 1 in Fig. 5.5, for the operating mode ht = p,

fk2 and fk3 can be formulated as fk2 = fk21 = Onl and fk3 = fk31 = O2
nl

, with two unknown

weighting parameters θk21 and θk31 . When D increases to D = 2 as illustrated in Fig.

5.6, for the operating mode ht = p, fk2 and fk3 can be formulated as fk2 = [fk21 , fk22 ]
T =

[Onl , Onl−1]T and fk3 = [fk31 , fk32 ]
T = [O2

nl
, O2

nl−1]T , with four unknown weighting parameters

[θk21 , θk22 , θk31 , θk32 ].

By selecting both linear and quadratic feature functions fk2 and fk3 , it has been proven

that the statistics of a dataset following Gaussian distributions can be sufficiently described

[127], based on which more complicated data structure has been formulated in the HCRF

model. On the basis of the feature functions defined above, the function F (ht,d,O; Θ)

formulated in Equation (5.1) can be specified as below:

F (ht,d,O; Θ) =
L∑
l=1

{
∑
k1

θk1fk1(ht, dl, dl−1) +
∑
k2

θk2fk2(ht, dl, Onl:nl−D+1)+

∑
k3

θk3fk3(ht, dl, Onl:nl−D+1)}
(5.7)

In summary, the diagram of the first-stage HCRF classifier can be found in Fig. 5.7, with

specified input and output. The unknown parameters in the first-stage HCRF model are

estimated by the max-margin training strategy and during the training process, the relevant

PVs are selected to achieve a better classification performance. The details are introduced

in the subsequent section.

5.3.2 Training of the First-stage HCRF and Variable Selection

Instead of estimating the HCRF parameters through MLE approach, the max-margin train-

ing strategy is applied to find a parameter estimation solution by maximizing the margins
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Figure5.7:Theillustrativediagramofthefirst-stageHCRFattimetandt+1

betweenthetruelabelandtheotherlabels[124],asillustratedinFig.5.8. Bytraining

inthisway,theHCRFmodelisnamedmax-marginHCRF(MMHCRF)[124].Intheway

thatisdescribedintheabovesection,thetrainingdataset{h(n),O(n)}Nn=1arecollectedby

integratingtheobservationsfrommultipleoperatingmodes,whereh(n)andO(n)denote

theoperatingmodeidentityandthecorrespondingobservationswithlengthL

h = h(n)

h = h1

h = h2

( )

() () ()( , , )n

n n n

h
Fh d O

1

() ()
1(, , )n n

hFhd O

2

() ()
2(, , )n n

hFhd O

,respectively.

Withthisfullylabeledtrainingdataset,themax-margintrainingprocessofHCRFcanbe

performedbyiteratingbetweenthefollowingtwosteps[124]:

Figure5.8:TheillustrationoftheMMHCRFtraining,wherethetruelabelish(n)

(1)FixtheHCRFparametersΘ=[θ1:K1θ1:K2θ1:K3],andfindtheoptimallatentvariable
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d
(n)
h for each training sample {h(n),O(n)} with respect to all possible labels:

d
(n)
h = arg max

d
F (h,d,O(n); Θ) (5.8)

(2) Fix the optimal latent variable d
(n)
h derived from the first step for all the training

samples, then optimize the HCRF parameters by solving the following optimization

problem:

min
Θ,ξ

1

2
||Θ||2+C

N∑
n=1

ξn

s.t. F (h,d
(n)
h ,O(n); Θ)− F (h(n),d

(n)

h(n)
,O(n); Θ) 6 ξn − δ(h, h(n)), ∀n,∀h

(5.9)

where ξn is the slack variable of the nth training sample, and C is a regularization

factor. δ(h, h(n)) has the following form:

δ(h, h(n)) =

 1 if h 6= h(n)

0 otherwise
(5.10)

By comparing above equations with the illustration of Fig. 5.8, the first step is im-

plemented to maximize the score F (h,dh, O
(n)) for all the nodes with different labels by

searching for and fixing the optimal latent variable. Due to the linear-chain structure of

the latent variable in this model, the Viterbi algorithm [27] can be applied to obtain the

optimal latent variable. Then in the second step, with the selected latent variable fixed,

HCRF parameters are estimated by maximizing the margins between the node with true

label and the other nodes.

The optimization problem in Equation (5.9) can be solved by optimizing the following
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dual form through the quadratic programming (QP) strategy [128]:

max
α

∑
n

∑
h

αn,hδ(h, h
(n))− 1

2
||
∑
n

∑
h

αn,hψ(O(n), h)||2

s.t.
∑
h

αn,h = C, ∀n

αn,h > 0, ∀n, ∀h

(5.11)

where ψ(O(n), h) represents the feature difference between the node with predicted label h

and the node with true label h(n) in the form ψ(O(n), h) = f(h,d
(n)
h ,O(n))−f(h(n),d

(n)

h(n)
,O(n)),

and f(h,d
(n)
h , O(n)) is the concatenation of the HCRF feature functions.

Then, the unknown parameter Θ can be retrieved from the optimized dual variables α,

as follows:

Θ = −
N∑
n=1

∑
h

αn,hψ(O(n), h) (5.12)

The above max-margin training strategy is quite similar to the SVM training, therefore in

this case, the idea of recursive feature elimination (RFE) strategy in SVM [129] is employed to

perform variable selection. The goal of SVM-RFE is to search for a subset of variables among

all the available variables which can maximize the classification performance, by iteratively

eliminating the most irrelevant variables. For the first-stage HCRF, the evaluation criterion

is formulated as

W (α) =
N∑
i=1

N∑
j=1

∑
h

∑
h′

αi,hαj,h′ψ
T (O(i), h)ψ(O(j), h′) (5.13)

For each variable, removal is attempted and the following evaluation criterion is calcu-

lated:

W(−m)(α) =
N∑
i=1

N∑
j=1

∑
h

∑
h′

αi,hαj,h′ψ
T (O

(i)
(−m), h)ψ(O

(j)
(−m), h

′) (5.14)

where m means the mth variable and O
(i)
(−m) represents the observations after removing the

mth variable.
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From m = 1 to M , the difference ∆W(−m) = |W (α) −W(−m)(α)| is calculated and the

variable with the smallest ∆W(−m) is determined to be removed. The above procedures are

equivalent to removing the variables with the weighting factors [θk2 , θk3 ] closest to zero. The

pseudocode of variable selection can be found in Appendix C.1.

5.4 Second-stage Time-varying HCRF for Process Op-

erating Mode Diagnosis

5.4.1 The Connection between the First-stage and the Second-

stage HCRF

As shown in Fig. 5.9, the identified first-stage HCRF model with variable selection is used

as a local classifier. Based on the outputs of the local classifier, the correlations between

different operating modes are taken into consideration for sequential classification, known

as the second-stage HCRF modeling. In this sense, as shown in Fig. 5.3, a shorter moving

window length is desired to quickly capture the switching of process operating mode by

involving fewer observations from the previous operating mode. Therefore, an adaption of

L over time is motivated in the second-stage HCRF modeling.

As shown in Fig. 5.9, the input features of the second-stage HCRF are from the outputs

of the first-stage classifier. A softmax function is applied on the first-stage HCRF outputs at

each sampling instant to calculate the probability of each operating mode, namely Xt(Lt) =

[X1
t (Lt), · · · , Xp

t (Lt), · · · , XP
t (Lt)]

T . Each element Xp
t (Lt) is formulated as:

Xp
t (Lt) =

eF (ht=p,dp(Lt),O(t);Θ)∑P
h′t=1 e

F (h′t,dh′t
(Lt),O(t);Θ)

(5.15)

where Lt represents the length of the latent variable at time t, which is equivalent to the

moving window length at time t.
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Figure5.9: Theillustrationofthetwostageconnectionduringthesecond-stageHCRF
trainingperiod

5.4.2 FormulationandParameterEstimationoftheSecond-stage

HCRF

InordertomodeltheadaptionofmovingwindowlengthLt,anauxiliarylabelsequencey1:T

isintroducedandassignedaccordingtotheoperatingmode. AsshowninFig.5.10,the

firstLsamplesineachoperatingmodearelabeledwithy=2andtheothersamplesare

labeledwithy=1.Inthissense,y=2meansthattheprocesshasjustlefttheprevious

operatingmodeandswitchedtoanewoperatingmode,requiringareducedLttotrackthe

mostrecentprocessstatusmorequickly.

Withthisauxiliarylabel y1:T,thestructureofthesecond-stageHCRFmodelisillus-

tratedinFig.5.11,basedonwhichthefollowingconditionalprobabilityisformulatedand

factorized:

P(h1:T,y1:T|X1:T;Λ,R)=P(h1:T|y1:T,X1:T;Λ)·P(y1:T|X1:T;R)

=
e L1:T

G(h1:T,y1:T,L1:T,X1:T;Λ)

h1:T
e L1:T

G(h1:T,y1:T,L1:T,X1:T;Λ)
·

L1:T
eE(y1:T,L1:T,X1:T;R)

y1:T L1:T
eE(y1:T,L1:T,X1:T;R)

(5.16)

Theobjectiveofthesecond-stageHCRFistomaximizethefollowingconditionallog
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Figure5.10:Theillustrationofy1:Tlabeling

likelihoodfunction:

logP(h1:T,y1:T|X1:T;Λ,R)=logP(h1:T|y1:T,X1:T;Λ)+logP(y1:T|X1:T;R) (5.17)

Intheaboveequation,thefirsttermmodelstheconditionalprobabilityofactualprocess

operatingmodeswithinputfeaturesandtheauxiliarylabelsequencey1:T,andthesecond

termmodelsthecorrelationbetweentheauxiliarylabelsequenceandtheinputfeatures.

Withsuchformulation,duringonlineimplementation,theauxiliarylabelisfirstinferredfrom

thefirst-stageHCRFoutputs,andthentheactualoperatingmodeisestimatedbasedonthe

adjustedwindowlengthsuggestedbytheinferredauxiliarylabel.Thetwologlikelihoodsin

Equation(5.17)aretrainedseparately:logP(y1:T|X1:T)isfirstmaximizedbyusingtheVB

approach,andthenlogP(h1:T|y1:T,X1:T)isoptimizedbyusingtheCMLE.

AsshowninFig.5.11,P(y1:T|X1:T)hasasimplifiedHCRFstructure,withtwotypes

offeaturefunctionsdefinedas:(i)thefeaturefunctionsconnectingytandLt,namely,

eu1(yt,Lt);(ii)thefeaturefunctionsconnectingLtandXt,namely,eu2(Lt,Xt).Theupper

boundofLtisassumedtobeLandtheuncertaintyofLtismodeledbytwoDirichlet
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Figure5.11:Theillustrationofthesecond-stageHCRFwithshadednodesrepresentingthe
observedvariables

distributionswithrespecttodifferentyt,asfollows:

eu1(yt,Lt;ζyt)=P(Lt=l1,l2,···,L|yt;ζyt)=[ζ1,yt,ζ2,yt,···,ζL,yt]∼Dir(KL,ηyt) (5.18)

whereηytistheconcentrationparametersoftheDirichletdistributionandKListhetotal

numberofthepossiblevaluesofLt. Forthesakeofreducingthecomputationalload,

insteadoftakingallthevaluesfrom1toL,thepossiblevaluesofLtareselectedasasubset

L={l1,l2,···,L}⊆{1,2,···,L}.

Toevaluatethediscriminativecapacityofthefirst-stageHCRF,accordingtotheiden-

tifiedfirst-stageHCRFmodel,alltheLtvaluesaretestedateachsamplinginstantt,and

withinafixedlengthwindowL,thepercentagesofdifferentestimatedoperatingmodesare

computedasfollows:

wLt(p)=
#(H∗1:L−1(Lt)=p)

L−1
, p=1,2,···,P (5.19)

wheretheoperator #(·)countstheoccurrencetimesoftheeventsinthebracket,and

H∗l(Lt)=argmaxpX
p
t−l+1(Lt)representsthemostlikelyoperatingmodeestimatedfrom

theobservations.

AnillustrativeexampleoftheabovecalculationisshowninFig.5.12.Inthisexample,
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everyadjacenttwoobservationswithinawindowoflengthLisevaluatedbasedonthe

first-stageHCRFmodel. ThemostlikelyoperatingmodesequenceH∗1:5isinferredbased

oneverypairoftheadjacentobservations.Inthiscase,itisobservedthatwithsmaller

Lt,thepotentialswitchingfromoneoperatingmodetoanothercanbedetectedquicker.

UsingEquation(5.19),inthisexample,wLt=2(1)andwLt=2(2)arecalculatedas0.6and0.

Ot-5 Ot-4 Ot-3 Ot-1Ot-2 Ot

L = 6

*
5( 2) 1tH L  *

4( 2) 1tH L  *
3( 2) 1tH L 

*
2( 2) 2tH L  *

1( 2) 2tH L 

4,

respectively.

Figure5.12:Anillustrativeexampleofthefirst-stageHCRFdiscriminativecapacityevalu-
ation

Generally,withinthesameoperatingmode,bothlargerandsmallerLtcangiveconsistent

wLt(p),whilelongerLtcanprovidemorereliableclassificationresultthansmallerLt.If

wLt(p)decreasesfromarelativelyhighvaluetoalowvalue,thereisapossibilityofthe

operatingmodeswitching. Hence,thenegativechangingslopeofwLt(p)inafixedlength

shortperiodisinspectedandselectedasafeaturetoreflecttheswitchingatt,denotedas

VLt.Thenthefeaturefunctioneu2(Lt,Xt)canbedesignedas:

eu2(Lt,Xt)=






e
−
VLt

2

ε21 ifLt∈Ls

e
−
VLt

−Vlm
2

ε21 ifLt∈Ll

(5.20)

whereLsandLlrepresentthesubsetsofsmallerandlargerLt,respectively.lm denotesthe

medianvalueinLs.

Then,theconditionalloglikelihoodlogP(y1:T|X1:T;R)canbeoptimizedbyiteratively

performingthefollowingVB-EandVB-Msteps.
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In the VB-E step, the KL divergence DKL(q(L1:T )q(ζ)||P (L1:T , ζ|y1:T , X1:T )) is first min-

imized to obtain the variational posteriors q(Lt) and the variational parameters of q(ζ). The

factorization of DKL can be found as follows:

DKL(q(L1:T )q(ζ)||P (L1:T , ζ|y1:T , X1:T )) =

∫
ζ

∑
L1:T

q(L1:T )q(ζ) log
q(L1:T )q(ζ)

P (L1:T , ζ|y1:T , X1:T )
dζ

=

∫
ζ

q(ζ) log q(ζ)dζ +
∑
L1:T

q(L1:T ) log q(L1:T )−
∫
ζ

∑
L1:T

q(L1:T )q(ζ) logP (L1:T , ζ, y1:T , X1:T )dζ

+ Cq(L1:T )q(ζ)

=

∫
ζ

q(ζ) log q(ζ)dζ +
∑
L1:T

q(L1:T ) log q(L1:T )−
∫
ζ

∑
L1:T

q(L1:T )q(ζ) logP (L1:T , y1:T , X1:T |ζ)dζ

−
∫
ζ

q(ζ) logP (ζ|η)dζ + Cq(L1:T )q(ζ)

(5.21)

where ζ = [ζyt=1, ζyt=2], Cq(L1:T )q(ζ) incorporates the terms irrelevant to the variational

posteriors q(L1:T ) and q(ζ), and can be treated as a constant.

While minimizing DKL with respect to q(L1:T ), by substituting the complete log likeli-

hood logP (L1:T , y1:T , X1:T |ζ) and arranging all the irrelevant terms into constant Cq(L1:T ),
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Equation (5.21) can be rewritten as

DKL(q(L1:T )) =
∑
L1:T

q(L1:T ) log q(L1:T )−
∫
ζ

∑
L1:T

q(L1:T )q(ζ) logP (L1:T , y1:T , X1:T |ζ)dζ

+ Cq(L1:T )

=
∑
L1:T

q(L1:T ) log q(L1:T )−
∫
ζ

∑
L1:T

q(L1:T )q(ζ){
T∑
t=1

[
∑
u1

eu1(yt, Lt; ζ)+

∑
u2

γu2eu2(Lt, Xt)]}+ Cq(L1:T )

=
T∑
t=1

∑
Lt

q(Lt) log q(Lt)−
T∑
t=1

∑
Lt

q(Lt)〈
∑
u1

eu1(yt, Lt; ζ)〉q(ζ) −
T∑
t=1∑

Lt

q(Lt)(
∑
u2

γu2eu2(Lt, Xt)) + Cq(L1:T )

(5.22)

By taking derivative of the above equation with respect to q(Lt), the variational posterior

q(Lt) can be computed as below:

q(Lt) ∝ exp[〈
∑
u1

eu1(yt, Lt; ζ)〉q(ζ) +
∑
u2

γu2eu2(Lt, Xt)] (5.23)

Similarly, when minimizing DKL with respect to q(ζ), KL divergence is reformulated as

DKL(q(ζ)) =

∫
ζ

q(ζ) log q(ζ)dζ −
∫
ζ

∑
L1:T

q(L1:T )q(ζ) logP (L1:T , y1:T , X1:T |ζ)dζ

−
∫
ζ

q(ζ) logP (ζ|η)dζ + Cq(ζ)

(5.24)

Since ζ follows a Dirichlet distribution, assuming the variational posterior q(ζ) ∼ Dir(ν)

and substituting the complete log likelihood logP (L1:T , y1:T , X1:T |ζ) into the above equation,

then by minimizing DKL, the variational parameters are obtained in the following equation.
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The detailed derivations can be found in Appendix C.2.

νyt,l = ηyt,l +
T∑
t=1

q(Lt = l) (5.25)

In the VB-M step, the following log likelihood function is the objective function to be

optimized:

logP (y1:T |X1:T ; r) = log
∑
L1:T

eE(y1:T ,L1:T ,X1:T ;r) − log
∑
y′1:T

∑
L1:T

eE(y′1:T ,L1:T ,X1:T ;r)
(5.26)

From the VB-E step, the feature function eu1(yt, Lt) has been parameterized. Therefore

in the above objective function, we treat only γu2 as the unknown parameter to be identified.

By taking partial derivative of Equation (5.26) with respect to γu2 , the partial derivative can

be obtained as

∂ logP (y1:T |X1:T ; r)

∂γu2
=

T∑
t=1

∑
Lt

P (Lt|yt, Xt) · eu2(Lt, Xt)−
T∑
t=1

∑
y′t

∑
Lt

P (y′t, Lt|Xt) · eu2(Lt, Xt)

(5.27)

Then the quasi-Newton algorithms such as L-BFGS approach can be employed to solve

the above optimization problem for estimation of γu2 [105].

After optimizing the second term in Equations (5.16) and (5.17), the first term can

then be maximized as a conventional LCCRF. Similar to the first-stage HCRF, the feature

functions of logP (h1:T |y1:T , X1:T ; Λ) are formulated as follows:

gw1(ht, ht−1) =

 1 if ht = p1 and ht−1 = p2

0 otherwise
(5.28)

gw2(ht, yt, Xt(Lt)) =

 Xt(Lt) · P (Lt|yt) if ht = p1

0 otherwise
(5.29)

115



gw3(ht, yt, Xt(Lt)) =

 (Xt(Lt))
2 · P (Lt|yt) if ht = p1

0 otherwise
(5.30)

where the probability P (Lt|yt) is obtained from the feature function eu1(yt, Lt) in Equation

(5.18).

Corresponding to the feature functions shown in the above equations, a set of weight-

ing factors Λ = {{λw1}W1
w1=1, {λw2}W2

w2=1, {λw3}W3
w3=1} are treated as unknown parameters of

the CRF model, which can be estimated by maximizing the conditional log likelihood func-

tion logP (h1:T |y1:T , X1:T ; Λ), through the following partial derivatives with respect to the

unknown parameters:

∂ logP (h1:T |y1:T , X1:T ; Λ)

∂λw1

=
T∑
t=1

gw1(ht, ht−1)−
T∑
t=1

∑
h′t,h

′
t−1

P (h′t, h
′
t−1|y1:T , X1:T ) · gw1(h

′
t, h
′
t−1)

∂ logP (h1:T |y1:T , X1:T ; Λ)

∂λw2

=
T∑
t=1

gw2(ht, yt, Xt)−
T∑
t=1

∑
h′t

P (h′t|y1:T , X1:T ) · gw2(h
′
t, yt, Xt)

∂ logP (h1:T |y1:T , X1:T ; Λ)

∂λw3

=
T∑
t=1

gw3(ht, yt, Xt)−
T∑
t=1

∑
h′t

P (h′t|y1:T , X1:T ) · gw3(h
′
t, yt, Xt)

(5.31)

where the conditional probabilities P (h′t, h
′
t−1|y1:T , X1:T ) and P (h′t|y1:T , X1:T ) can be solved

by the forward-backward algorithm [27].

5.5 Online Implementation

After completing the training, the proposed two-stage HCRF algorithm is employed for

online operating mode diagnosis. From the first-stage HCRF, the variable selection is com-

pleted from the training and applied to the continuous online process observations, and then

the second stage HCRF is deployed for real-time process operating mode diagnosis. The

objective of the online operating mode diagnosis is to find the optimal current mode h∗t ,
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which maximizes the conditional probability P (ht|X1:t; Λ∗, R∗) conditioned on the estimated

model parameters and data.

As shown below, the marginal conditional probability can be derived following a two-step

inference procedure:

P (ht|y∗1:t, X1:t; Λ∗) =
∑
h1:t−1

P (h1:t|y∗1:t, X1:t; Λ∗)

=
αt(ht)∑
h′t
αt(h′t)

(5.32)

where αt(ht) =
∑

h1:t−1
e
∑
L1:t

G(h1:t,y∗1:t,L1:t,X1:t;Λ∗) is an intermediate variable which can be

solved recursively through αt(ht) =
∑

ht−1
αt−1(ht−1) · e

∑
Lt
G(ht:t−1,y∗t ,Lt,Xt;Λ

∗) from sampling

instant 1 to t.

The optimal y∗1:t is estimated as follows:

y∗1:t = arg max
y1:t

P (y1:t|X1:t;R
∗)

= arg max
y1:t

t∏
t′=1

P (yt′ |Xt′ ;R
∗)

(5.33)

Then the current operating mode can be estimated by h∗t = arg maxht P (ht|y∗1:t, X1:t; Λ∗).

5.6 Case Study

In this section, a simulation is conducted to validate the performance of the proposed two-

stage HCRF algorithm for process operating mode diagnosis. As comparisons, the con-

ventional LCCRF is employed to demonstrate the performances of the proposed two-stage

HCRF algorithm.
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5.6.1 Simulation

In this numerical study, a process with eight variables is simulated which operates in three

different operating modes 1 - 3. In different process operating modes, observations are

simulated to follow different statistical distributions and autocorrelations. As shown in Table

5.1, for each operating mode, a multivariate Gaussian distribution of five variables is first

designed as a base distribution. By taking the data generated from the base distributions as

inputs to a set of autoregressive models to generate intermediate variable o1:T , autocorrelated

data are generated. To make the monitoring problem more challenging, the final process

observations O1:T are simulated by summing up o1:T in a moving window as indicated in

Table 5.1. In addition to the above five PVs, another three PVs are simulated, which are

not related to the actual process operating modes, as redundant variables.

Table 5.1: Basis distributions and autoregressive formulations for different operating modes

Operating mode Operating mode 1 Operating mode 2 Operating mode 3

Basis distribution
parameters

µ1 = [6, 6, 3, 8, 10] µ2 = [5, 5, 4, 8, 10] µ3 = [5, 5, 3, 8, 11]

Σ1 =


3 0 0 0 0
0 3 0.2 0.2 0.2
0 0.2 3 0.5 0.5
0 0.2 0.5 10 0.1
0 0.2 0.5 0.1 5

 Σ2 =


2 0 0 0 0
0 2 0.2 0.2 0.2
0 0.2 3 0.5 0.5
0 0.2 0.5 10 0.1
0 0.2 0.5 0.1 5

 Σ3 =


2 0 0 0 0
0 2 0.2 0.2 0.2
0 0.2 3 0.5 0.5
0 0.2 0.5 3 0.1
0 0.2 0.5 0.1 5


s
(1:5)
1 ∼ N (µ1,Σ1) s

(1:5)
2 ∼ N (µ2,Σ2) s

(1:5)
3 ∼ N (µ3,Σ3)

Autoregressive
formulation

o(1)(t) = s(1)(t)

o(2)(t) = 0.5o(2)(t− 1)− 0.8o(2)(t− 2)− 0.3o(2)(t− 3) + 0.1o(2)(t− 4)− 0.1o(2)(t− 5) + s(2)(t)

o(3)(t) = 0.5o(3)(t− 1)− 0.1o(3)(t− 2) + s(3)(t)

o(4)(t) = 0.5o(4)(t− 1)− 0.1o(4)(t− 2)− 0.8o(4)(t− 3) + 0.25o(4)(t− 4) + s(4)(t)

o(5)(t) = 0.5o(5)(t− 1)− 0.6o(5)(t− 2) + 0.25o(5)(t− 3) + s(5)(t)

Moving summation
formulation

O(t) = o(t) + o(t− 1) + o(t− 2) + o(t− 3)

A training dataset with 9000 samples is then selected to estimate the parameters of the

proposed two-stage HCRF model and a validation dataset with 8000 samples is selected to

test the performance of the proposed algorithm. In the first-stage HCRF modeling, D and

L are selected as 6 and 50, respectively. From the first-stage HCRF training, importance

of variables is estimated and the importance rank of all the eight variables is depicted in

Fig. 5.13. As shown in Fig. 5.13, the first five PVs are ranked with higher importance
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than the last three variables, which is consistent to the data generation. By evaluating the

training and validation performances with different selection of variables among the first

five variables, the first four variables are selected from the first-stage HCRF training. To

evaluate the classification performance of using the selected PVs, the confusion matrix of

the test dataset is indicated in Fig. 5.14.
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Figure 5.13: The rank of the eight PVs, with smaller rank indicating higher importance
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Figure 5.14: The confusion matrix with selected variables of the first-stage HCRF for the
numerical case study

In order to take the operating mode switching dynamics into consideration, the second-

stage HCRF is deployed for online process operating mode diagnosis with time-varying Lt.
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From the training results of the Dirichlet distribution, the distributions of Lt with respect

to yt = 2 and yt = 1 are illustrated in Fig. 5.15. It indicates that in the operating mode

switching transient periods, smaller window length Lt is more reliable to identify the actual

operating mode, and in each steady operating mode, larger window length Lt can provide

more accuracy diagnosis result. The mode switching period detection results can be found

in Fig. 5.16.
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Figure 5.15: The distributions of Lt with respect to yt = 2 and yt = 1
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Figure 5.16: The operating mode switching period detections of the proposed algorithm

With variable selection, the proposed algorithm can effectively handle the changes on
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the fault-independent PVs and detection results are not being affected. For the simulation

purposes, two kinds of disturbances are introduced to the last two PVs, as shown in Fig.

5.17. Starting from the 4000th sampling instant, a randomly generated bias and a gradually

ramping disturbance are added onto the 7th and 8th variables, respectively. The operating

mode diagnosis performances of the conventional LCCRF and the proposed two-stage HCRF

algorithms are compared and illustrated in Fig. 5.18. Starting from the 4000th sampling

index, due to the disturbances acting on the last two PVs, the diagnosis performance of

the conventional LCCRF degrades and finally loses the diagnosis capability. In contrast,

as to the proposed algorithm, because the most relevant PVs are selected in the first-stage

training period, the subsequent disturbances on the fault-independent PVs do not cause the

loss of diagnosis capacity. Moreover, even before introducing the disturbance, the proposed

algorithm has slight better diagnosis performance than the LCCRF. For more details, the

diagnosis accuracy can be found in Table 5.2.
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Figure 5.17: The validation dataset illustration
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Figure 5.18: The process operating mode diagnosis performance comparison of the numerical
case

Table 5.2: Process operating mode diagnosis performance comparison

Diagnosis accuracy without disturbances Overall diagnosis accuracy

Proposed algorithm 89.30% 90.73%

LCCRF 86.00% 68.65%

5.7 Conclusions

In this chapter, a two-stage HCRF algorithm for real-time process operating mode diagnosis

is proposed and explained in details. Considering that the archived industrial PVs contain

both relevant and irrelevant information to the actual abnormalities, the first-stage HCRF

is designed to explore selection of PV subsets based on recursively eliminating the irrelevant

variables, which reduces the number of PVs used for modeling. Meanwhile, by taking the

dynamic characteristics of the actual processes into consideration, the second-stage HCRF
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is proposed by making use of the outputs of the first-stage HCRF. In the second-stage

HCRF, an effective algorithm is designed to detect operating mode switchings and adapt

the dynamics of switchings by adjusting the moving window length in real time. The VB

approach is employed for parameter estimation of the second-stage HCRF. To demonstrate

the performance of the proposed algorithm, a numerical simulation is studied and explained

in details, and superior operating mode diagnosis performance is achieved when comparing

with the conventional approaches. In conclusion, the proposed algorithm has the capability

to select the abnormality relevant PVs and track the process dynamic variations, which

contributes to a more reliable abnormality detection strategy.
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Chapter 6

Real-time Mode Diagnosis for

Processes with Multiple Operating

Conditions Using Switching

Conditional Random Fields

6.1 Introduction

In order to ensure process safety and the product quality, effective strategies for real-time

process monitoring are necessary. The primary objectives of process monitoring include

detection and diagnosis of abnormal modes during the process operation. By making use of

the available process information, both knowledge based and model based approaches [130]

have been developed to solve the process monitoring problem. As a result, some advanced

methods [131, 132] have also been developed as the foundation of more complicated process

monitoring solutions. On the other hand, in the recent decade, abundance of real industrial

3Part of this chapter has been published as Mengqi Fang, Hariprasad Kodamana, and Biao Huang. Real-
time mode diagnosis for processes with multiple operating conditions using switching conditional random
fields. IEEE Transactions on Industrial Electronics, 67(6):5060–5070, 2020.
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process data has resulted in wide spread popularity of data based approaches for monitoring,

for example, the MSPM. Recently, probabilistic counterparts of MSPM approaches are also

gaining wide attentions [133, 66]. On the other hand, HMM based strategies have also been

employed to deal with process mode diagnosis problems for dynamic systems, owing to its

capability to model temporal correlations and multi-modal dynamics [37, 134]. Even though

the application of HMMs in process monitoring has shown a lot of promising results, there are

some shortcomings. As a probabilistic generative model, HMM has two inherent conditional

independence assumptions. If those assumptions are not satisfied in reality, the modeling

capability of HMMs might not be sufficient to describe the real process [86]. Therefore, it

might fail or lead to degraded performance in process monitoring [117, 135].

To circumvent such limitations of HMMs, a probabilistic discriminative model, namely,

CRF, has been proposed [43]. To deal with particular problems, multiple types of CRF

models have been developed. For instance, a HCRF model has been designed to incorporate

latent information for better observation descriptions [125]. For more complicated scenario

modeling, the hierarchical CRF and dense CRF models are established [136, 137]. Addition-

ally, to improve the model training performance, some extended CRF model structures have

been implemented, such as Bayesian CRF [138] and max-margin CRF [124], etc.. However,

most of the existing CRF models are mainly designed to solve the computer science related

problems, such as natural language processing, image processing, etc. [42]. Owing to its

success in dealing with sophisticated classification problems, CRF has been considered as a

promising approach to solve process monitoring problems. Recently, a marginalized CRF

based approach for real-time process mode diagnosis, with incomplete measurements has

been developed and shown to outperform HMM in solving process mode diagnosis problems

[117].

Most of the process industries are operated under multiple operating conditions corre-

sponding to different operating requirements, product qualities and load levels [87]. Mean-

while, in such cases, the process data also exhibit multi-modal behaviors, which needs to be
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specifically addressed. For instance, a sparse modeling and dictionary learning approach has

been proposed recently to deal with this issue [139]. Furthermore, as indicated previously,

when the datasets are simultaneously multi-modal and dynamic, HMMs may still be used for

process diagnosis [140]. However, due to the previously indicated limitations of the HMMs,

process mode diagnosis based on multi-modal datasets with strong temporal correlations

will not be effective. To address this weakness, a SCRF based framework is proposed in this

work. Under this framework, a scheduling variable is utilized to infer the current operating

condition and subsequently to determine the status of the current process mode, such as

normal, abnormal and failure. The proposed SCRF framework is similar to the mixture of

CRF models [141] in that it uses a collection of CRF models to capture multi-modal scenar-

ios. However, the key difference is that, the proposed framework also models the switching

between operating conditions. For parameter estimation of SCRF, the EM algorithm is em-

ployed. Once a suitable SCRF model is developed, it is deployed for on-line process mode

diagnosis. As a result, the contributions of this proposed SCRF framework are summarized

as below: (i) from the theoretical perspective, the dynamic switching framework is firstly

proposed to improve the conventional CRF modeling capability to describe the industrial

processes with multiple operating conditions. Correspondingly, an innovative model param-

eter estimation approach has also been developed for the proposed SCRF model; (ii) from

the practical aspect, as a probabilistic discriminative model, the proposed SCRF framework

inherits the advantages from the conventional CRF models, and therefore it is able to com-

pensate the weakness of HMMs with a simple and flexible framework. Such framework can

make the informative process features easily involved into the SCRF model if they are useful.

This work is an extension of the conference paper by Fang et al. [142], and the additional

contributions with respect to [142] include: (i) development of a simplified SCRF parameter

estimation approach to improve computational efficiency, (ii) extended validations of the

SCRF approach through a CSTR process and an experimental hybrid tank system. With

respect to the simplified SCRF parameter estimation approach, the information retrieved
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from the scheduling variable has been fully used to help derive the SCRF model parameters,

by introducing a latent PV for operating condition segment location. Such enhancement

not only increases the computational efficiency during the model training process, but also

effectively decreases the undesired oscillations of diagnosed process modes from the real ones.

The remainder of this chapter is organized as follows: Preliminaries of the LCCRF model

are presented in section 6.2. In section 6.3, the SCRF formulation, the EM algorithm

based parameter estimation of the proposed SCRF model and the corresponding on-line

process mode diagnosis strategy are illustrated in detail. Section 6.4 presents the validation

performances using a simulated CSTR example and an experimental hybrid tank system.

6.2 Preliminaries of LCCRFs for Process Mode Diag-

nosis

A LCCRF model is an undirected probabilistic graphical model that can be employed to

describe the relationships between observation data sequence O = [O1, · · · , OT ], where Ot ∈

<Q, and the process mode sequence h = [h1, · · · , hT ], where ht ∈ {1, 2, · · · , N}, as shown

below [27]:

P (h|O) =
1

Z(O)
exp

T∑
t=1

{
K∑
k=1

λkTk(ht, ht−1) +
M∑
m=1

µmEm(ht,Yt)} (6.1)

where N represents the total number of process modes, and Q and T represent the dimension

of data and total number of samples, respectively. Yt is composed of the data required for

modeling at time instant t. The normalization term Z(O) is obtained by marginalizing the

process mode sequence h1:T .

The function sets {Tk}Kk=1 and {Em}Mm=1 are called feature functions, which can be discrete

or continuous values. The selection of feature functions is generally based on the specific

nature of the problems [102]. For the purpose of process mode diagnosis, the related feature
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functions are normally selected as:

Tk(ht, ht−1) =

 1 if ht−1 = l1 and ht = l2

0 otherwise
(6.2)

where l1, l2 = 1, 2, ..., N represent the process mode identities of sampling instants t−1 and t,

respectively. When there exists a process mode transition from l1 to l2, the feature function

Tk will be set as 1 to represent the activation of such transition in CRF model. Also, for

modeling the sequential observation data dependency, the following feature functions are

commonly formulated:

Em(ht,Yt) = Em(ht, Ot, Ot−1, ..., Ot−dw+1) (6.3)

where Yt = [Ot, Ot−1, · · · , Ot−dw+1], with dw being a suitably chosen window length reflecting

strength of the observation dependency.

In summary, the unknown parameters are Λ = {λk}Kk=1 and M = {µm}Mm=1, which

can be calculated by maximizing the conditional likelihood function in Equation (6.1) [93].

For detail information regarding the application of CRF for process monitoring, readers are

referred to Fang et al. [117]. Once Equation (6.1) is determined, mode (h) diagnosis can be

performed based on the observed data (O).

6.3 SCRF for Process Mode Diagnosis in Multiple Op-

erating Conditions

6.3.1 Problem Statement

Chemical processes often operate under different process modes reflecting the process health

status, and the switching between the process modes can be modeled by certain rules with
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Process mode
Abnormal

Operating condition 1 Operating condition 2Transition
t1 t2 t3 t4

Process mode
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aprobability.Forexample,theprocessmodemaybeclassifiedasnormal,abnormaland

failurewhentheprocessissubjecttofaults. Whenaprocessisintheabnormalmode,it

canhaveacertainprobabilitytogofailuremodeaswellasacertainprobabilitytoreturn

tonormalmode. Theseprobabilitiesmaybedescribedbyaprobabilisticmodelsuchas

Markovchain. Meanwhile,theprocesscanalsooperateindifferentoperatingconditions,

suchas,lowthroughputandhighthroughput.Notethattwoconceptsusedinthischapter,

processmodeandoperatingcondition,aredistinctasexplained.Underdifferentoperating

conditions,theswitchingrulesbetweendifferentprocessmodescanbedifferent.Forexample,

theMarkovchainmodelformodeswitchingatlowthroughputcanbedifferentfromthat

athighthroughputasillustratedinFig. 6.1. Processmodediagnosisprobleminthis

casebecomesmoredifficultandconventionaldiagnosisapproachesmayresultinambiguous

inferences,astherearemultiplesourcesofswitchingrules.Thereforeamoresophisticated

modelstructureisneededunderthiscircumstance.Inthiswork,weemployaSCRFapproach

toaddressthisissue.

Figure6.1: Anillustrationoftherelationbetweentheoperatingconditionsandprocess
modes

ThewholeprocessisassumedtooperateinPdifferentoperatingconditions,i.e.,I=

[I1,I2,...,It,...,IT],whereIt∈{1,2,···P}.Soadatapointatthastwoattributes:(i)

itsprocessmodehtand(ii)itsoperatingconditionIt.Itisassumedthattheprocess

modeofthesystemataparticulartimeinstanttisassociatedwithaschedulingvariable
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S = [S1, S2, · · · , ST ], but with uncertainties. Mathematically, we are interested in modeling

P (h|O,S), namely, the probability of the process mode given the process data to determine

the process mode sequence h1:T , regardless of varying operating conditions.

6.3.2 SCRF Model Formulation

Building on the basis of the LCCRF, a graphical illustration of the proposed SCRF is given in

Fig. 6.2, where an additional operating condition layer is considered. The multiple LCCRF

models are allowed to switch between each other when the change of operating conditions

occurs. Further, we consider a scheduling variable St that reflects the operating condition

with uncertainties, modeled by the following equation:

P (It = i|St) =

exp[−(St − Si)2

2σ2
i

]

∑P
p=1 exp[−(St − Sp)2

2σ2
p

]

(6.4)

where Si denotes the ith fixed operating point and σi is the validity width of the scheduling

variable in the ith operating condition.

By referring to the system identification of linear parameter varying models [143], the

above probabilistic representation in Equation (6.4) is adopted. Here, the prior probability

of the current operating condition It is governed by the scheduling variable St. Industrial

processes typically operate at several fixed operating conditions with occasional transitions

between each other. Once the process deviates from its current operating condition, the ex-

ponential term in the numerator of Equation (6.4) becomes smaller and therefore the prior

probability that indicates the process staying in the same operating condition decreases.

While in the transition period between different operating conditions, by using the above

priors, the system will be represented by a mixture model with the characteristics of dif-

ferent operating conditions. Usually in application scenarios, the operating conditions are

determined beforehand to meet the desired product quality, hence, the fixed operating con-
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ditionvalues{Sp}
P
p=1areknowninadvance,whereasthevalidityvariables{σp}

P
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beestimatedfromthedata.

Figure6.2:AgraphicalillustrationoftheproposedSCRFmodel.Inthiscase,I2=I3,i.e.,
itisassumedthatthereisnotransitionbetweenh2andh3,andbetweenh4andh5,etc.

OnthebasisoftheSCRFstructure,P(h|O,I)hasthefollowingform:

P(h|O,I)=
1

Z(I,O)
exp

T

t=1

{
K

k=1

λkTk(ht,ht−1,It,It−1)+
M

m=1

µmEm(ht,Yt,It)} (6.5)

withthenormalizationtermZ(I,O)as:

Z(I,O)=

h1:T

exp
T

t=1

{
K

k=1

λkTk(ht,ht−1,It,It−1)+
M

m=1

µmEm(ht,Yt,It)} (6.6)

wheretheprocessmodesequenceh1:Tforenumerationisusedtodifferentiatefromthereal

processmodesequenceh1:T.

ComparedwiththefeaturefunctionsdefinedinEquations(6.2)-(6.3),thefeaturefunc-

tionsinSCRF modelareredefinedbyaddingconditionsIt= It−1= iandIt= ito
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Tk(ht, ht−1) and Em(ht,Yt), respectively, as follows:

Tk(ht, ht−1, It, It−1) =

 1 if ht−1 = l1, ht = l2, It = It−1 = i

0 otherwise

Em(ht,Yt, It = i) = [Em1,1 , Em1,2 , · · · , Emdw,1 , Emdw,2 ]
T

(6.7)

which means when It 6= It−1, no process mode switching is considered. The elements

Emτ,1(ht, Ot−τ+1, It) andEmτ,2(ht, Ot−τ+1, It) in Equation (6.7) are taken in linear and quadratic

forms, respectively, which can be employed to sufficiently describe the relevant statistics of a

normally distributed dataset [42, 94]. For simplicity, in the following contents, the notations

Tk and Em will be employed to denote the SCRF feature functions.

6.3.3 Parameter Estimation Using EM Algorithm

In this section, the parameters of the proposed SCRF model are estimated by means of the

EM algorithm, as the direct MLE to estimate the parameters is intractable due to existence

of hidden variables. The observed dataset is denoted as Do = {O1:T , S1:T , h1:T}, and the

latent dataset is represented as Dm = {I1:T}. In the E-step, the conditional expectation

of the joint log-likelihood function in presence of latent variable, known as Q-function, is

formulated, and the derived Q-function is maximized in the M-step. The E-step and M-step

are performed iteratively to ensure the increase of the log-likelihood function corresponding

to the complete data until convergence [144, 145].
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6.3.3.1 E-step

The Q-function, which is expected the log likelihood function with respect to the missing

data or hidden variables, is formulated as:

Q(Θ|Θ(old)) = EDm|(Do;Θ(old)){logP (Do, Dm|Θ)} (6.8)

where Θ represents all the unknown parameters, i.e., Θ = {Λ,M,Σ}, and Θ(old) represents

the estimated values of the unknown parameters from the previous iteration.

Based on the chain rule, the above Q-function can be further factorized. Moreover,

given the profile of the operating conditions I1:T , the conditional probability distribution of

h1:T is independent of the scheduling variable profile S1:T . Given the scheduling variable,

the conditional probability distribution of the operating conditions is independent of O1:T .

Therefore, the final expression of the Q-function is formulated as follows:

Q(Θ|Θ(old)) =
∑
I1:T

τ
(old)
I1:T

logP (h1:T |I1:T , O1:T ; Θ) +
T∑
t=1

∑
It

τ
(old)
It

logP (It|St; Θ)

= Q1(Λ,M) +Q2(Σ)

(6.9)

Here, the first log likelihood term has been defined in Equation (6.5), which can be

treated as an overall conditional probability of the SCRF model. For simplicity, the posterior

probabilities in the Q-function are defined as P (X|Do; Θ(old)) = τ
(old)
X , where X represents

any variable or sequence, whose posterior probability is to be determined.

While maximizing the Q-function, the most challenging problem is to calculate the first

log likelihood term, as it requires enumeration. As different combinations of I1:T could result

in different factorizations of the LCCRFs, a propagation algorithm is utilized in this work

for an efficient enumeration. In the proceeding contents, factorized formulation of the term

Q1 in Equation (6.9) is presented.

Based on the SCRF definition provided in Equation (6.5), the first term in Equation
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(6.9) can be expanded as below:

Q1(Λ,M) =
T∑
t=1

∑
It−1,It

τ
(old)
It−1,It

{
K∑
k=1

λkTk}+
T∑
t=1

∑
It

τ
(old)
It
{
M∑
m=1

µmEm}−

∑
I1:T

τ
(old)
I1:T

logZ(I,O; Θ)

(6.10)

To calculate
∑

I1:T
τ

(old)
I1:T

logZ(I,O; Θ), a forward propagation strategy is configured.

First, a series of intermediate functions are defined at the sampling instant t for simplic-

ity, as:

ϕt(ht, ht−1, It, It−1,Yt)
def
= exp{

K∑
k=1

λkTk +
M∑
m=1

µmEm} (6.11)

When It 6= It−1, the feature function Tk(ht, ht−1, It, It−1) will be evaluated to zero, making

the process mode sequence after time instant t independent of the previous time instants,

thereby facilitating the factorization of
∑

I1:T
τ

(old)
I1:T

logZ(I,O; Θ). Hence, at each sampling

instant t, a sequence of forward intermediate variables {αt,n}tn=2 are defined as:

{αt,n(ht, It)}tn=2

def
=

∑
ht−n+1:t−1

ϕ1(ht−n+1, It−n+1,Yt−n+1)
t∏

t′=t−n+2

ϕt′(ht′ , ht′−1, It′ , It′−1,Yt′)

(6.12)

where αt,1(ht, It) = ϕ1(ht, It,Yt) stands for the feature functions corresponding to the initial

process modes without any switching.

In the next sampling instant, if It = It+1, the forward intermediate variable {αt+1,n+1}tn=1

can be calculated via the following forward propagation rule:

αt+1,n+1(ht+1, It+1) =
∑
ht

ϕt+1(ht+1, ht, It+1, It,Yt+1) · αt,n(ht, It) (6.13)
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Based on the forward propagation results, the following function set is defined:

qt,n(It) = γ
(old)
It−n+1:t

log
∑
ht

αt,n(ht, It) (6.14)

where γ
(old)
It−n+1:t

can be derived as:

γ
(old)
It−n+1:t

=

∑P
j1=1,j1 6=i

∑P
j2=1,j2 6=i P (h1:T , It−n+1 =∑P

i=1

∑P
j1=1,j1 6=i

∑P
j2=1,j2 6=i P (h1:T , It−n+1 =

· · · = It = i, It−n = j1, It+1 = j2|O1:T , S1:T ; Θ(old))

· · · = It = i, It−n = j1, It+1 = j2|O1:T , S1:T ; Θ(old))

=

∑P
j1=1,j1 6=i

∑P
j2=1,j2 6=i P (ht−n:t+1|It−n+1:t = i,∑P

i=1

∑P
j1=1,j1 6=i

∑P
j2=1,j2 6=i P (ht−n:t+1|It−n+1:t = i,

It−n = j1, It+1 = j2,Yt−n:t+1; Θ(old)) · P (It−n+1:t = i,

It−n = j1, It+1 = j2,Yt−n:t+1; Θ(old)) · P (It−n+1:t = i,

It−n = j1, It+1 = j2|St−n:t+1; Θ(old))

It−n = j1, It+1 = j2|St−n:t+1; Θ(old))

(6.15)

Finally,
∑

I1:T
τ

(old)
I1:T

logZ(I,O; Θ) is derived like:

∑
I1:T

τ
(old)
I1:T

logZ(I,O; Θ) =
T∑
t=1

∑
It

Rt(It) (6.16)

with Rt(It) =
∑t

n=1 qt,n(It). Consequently, the Q-function in Equation (6.9) becomes:

Q(Θ|Θ(old)) =
T∑
t=1

{
∑
It−1,It

τ
(old)
It−1,It

K∑
k=1

λkTk +
∑
It

τ
(old)
It

M∑
m=1

µmEm −
∑
It

Rt(It) +
∑
It

τ
(old)
It

logP (It|St; Θ)}

(6.17)
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The posterior probability τ
(old)
It−1,It

in Equation (6.17) can be derived as:

τ
(old)
It−1,It

=
P (ht:t−1|It = i, It−1 = j,Yt:t−1; Θ(old))∑P

i=1

∑P
j=1 P (ht:t−1|It = i, It−1 = j,Yt:t−1; Θ(old))

·P (It = i|St; Θ(old)) · P (It−1 = j|St−1; Θ(old))

·P (It = i|St; Θ(old)) · P (It−1 = j|St−1; Θ(old))

(6.18)

where the conditional probability P (ht:t−1|It = i, It−1 = j,Yt:t−1; Θ(old)) is equivalent to a

local LCCRF model. The posterior probability τ
(old)
It

can be calculated in a similar way.

After the Q-function formulation in the E-step, the unknown parameters Θ will be esti-

mated in the M-step by maximizing the formulated Q-function.

6.3.3.2 M-step

This step is to determine the unknown parameters by maximizing the Q-function derived

early. In this work, the unknown weighting parameters of the SCRF model are computed

by the L-BFGS optimization algorithm [105]. In order to increase the computational effi-

ciency of the gradients, a backward propagation strategy is proposed. Similar to the forward

propagation strategy, at each time instant t, a series of backward intermediate variables

{βt,n}T−t+1
n=2 are introduced:

{βt,n(ht, It)}T−t+1
n=2

def
=

∑
ht+1:t+n−1

t+n−1∏
t′=t

ϕt′(ht′ , ht′−1, It′ , It′−1,Yt′) (6.19)

where βt,1(ht, It) is defined as ϕ1(ht, It,Yt).

Similar to the forward propagation strategy, an intermediate variable {βt−1,n+1}T−t+1
n=1

with It−1 = It is derived as shown below:

βt−1,n+1(ht−1, It−1) =
∑
ht

ϕt(ht, ht−1, It, It−1,Yt) · βt,n(ht, It) (6.20)

Gradient calculation of Q-function with respect to unknown parameters yields the fol-
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lowing terms:

∂Q(Θ|Θ(old))

∂λk
=

T∑
t=1

∑
It,It−1

τ
(old)
It,It−1

Tk −
T∑
t=1

∑
It

∂Rt(It)

∂λk

∂Q(Θ|Θ(old))

∂µm
=

T∑
t=1

∑
It

τ
(old)
It

Em −
T∑
t=1

∑
It

∂Rt(It)

∂µm

(6.21)

where the partial derivative terms in right hand side of Equation (6.21) are given as follows:

∂Rt(It)

∂λk
=

t∑
n=1

γ
(old)
It−n+1:t

t∑
t′=t−n+1

∑
h′
t′ ,h
′
t′−1

Tk ·
αt′−1,n−t+t′−1(h′t′−1, It′−1) · βt′,n−t+t′(h′t′ , It′)∑

h′t
αt,n(h′t, It)

(6.22)

∂Rt(It)

∂µm
=

t∑
n=1

γ
(old)
It−n+1:t

t∑
t′=t−n+1

∑
h′
t′

Em ·
αt′,n−t+t′(h

′
t′ , It′) · βt′,n−t+t′(h′t′ , It′)∑
h′t
αt,n(h′t, It)

(6.23)

Then the unknown parameters λk and µm can be updated by the L-BFGS approach. The

validity variables σi are estimated by performing the following optimization:

σ
(new)
i = argmax

σi

Q2(σi)

s.t. σi,min ≤ σi ≤ σi,max

(6.24)

where the two parameters σi,min and σi,max represent the lower and upper bounds of the

unknown parameter σi, respectively. Many existing nonlinear optimization algorithms can

be selected to solve this problem, for example, the sequential QP algorithm [128] and the

nonlinear interior point local optimization algorithm [37], etc..

6.3.4 Simplified SCRF Parameter Estimation

Throughout the entire steps of EM algorithm, enumeration of
∑

I1:T
τ

(old)
I1:T

logZ(I,O; Θ) de-

mands high computational complexity. Hence, a simplified algorithm is presented for pa-

rameter estimation considering the following facts: (i) the operating conditions can be re-
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trieved from the scheduling variable with uncertainties, and (ii) the operating conditions are

smoothly transferred between each other. Hence, for the sake of computational efficiency,

we can consider the stationary and transition periods of the operating conditions separately.

During a specific operating period, the system is naturally considered to operate in the same

operating condition, and while during transition periods between two adjacent operating

conditions, the system will transit from one operating condition to another. As illustrated

in Fig. 6.3, the entire time segment can be decomposed to two stationary operation periods,

namely, stationary periods 1 and 2, and one transition period between them. The transition

period can be further decomposed to two segments. It is assumed that the first segment

has similar properties as the stationary period 1, and the second segmentation has similar

properties as the stationary period 2. Let dtr be the duration of the first portion of the

trth transition period, which is not known and hence, can be considered as a latent variable.

In this case, the noises during the stationary periods and two half transition periods are

assumed to be independent of each other.

Stationary period 1

Stationary period 2Transition period 1
Scheduling variable

dtr

T1
s1

T1
s2 (T1

t1) T1
t2 (T2

s1) T2
s2

Figure 6.3: An illustration of the stationary and transition periods indicated by the schedul-
ing variable

As a result, the entire operating condition sequence can be decomposed into small seg-

ments based on the two stationary periods and two transition periods. Therefore, the pro-

posed SCRF framework can be simplified and the unknown parameters are estimated by the

EM algorithm, as presented in the following.
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For the transition segment decomposition, the latent variable dtr is considered to follow

a normal distribution, i.e., dtr ∼ N(µd, σ
2
d), with the unknown parameters µd and σd.

As a result, the unknown parameter set becomes Θ = {Λ,M,Σ, µd, σd}, and the objec-

tive Q-function in the EM algorithm can be rearranged into the following form:

Q(Θ|Θ(old)) =
∑
d1:Tr

∑
I1:T

τ
(old)
I1:T

P (d1:Tr|I1:T , h1:T , O1:T , S1:T ; Θ(old)) logP (h1:T |d1:Tr , I1:T , O1:T ; Θ)

+
T∑
t=1

∑
It

τ
(old)
It
· logP (It|St; Θ) +

Tr∑
tr=1

∑
dtr

τ
(old)
dtr

logP (dtr ; Θ)

= Q1(Λ,M) +Q2(Σ) +Q3(µd, σd)

(6.25)

where Tr represents the total number of transition periods.

Based on the scheduling variable, the prior probability of current operating conditions

can be estimated according to Equation (6.4). By calculating the prior probability P (It|St),

several probabilistic thresholds can be set to determine the segmentations of stationary

and transition periods. Assume there are Sd stationary periods and Tr transition periods

in total, and the time segments of stationary and transition periods are represented by

[T s1sd , T
s2
sd

], sd = 1, · · · , Sd and [T t1tr , T
t2
tr ], tr = 1, · · · , Tr, respectively. Therefore, Q1(Λ,M)
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can be derived as shown in the following:

Q1(Λ,M) =
T∑
t=1

∑
It

τ
(old)
It

M∑
m=1

µmEm +

Sd∑
sd=1

T
s2
sd∑

t=T
s1
sd

P∑
i=1

τ
(old)
I
T
s1
sd

:T
s2
sd

=i

·
K∑
k=1

λkTk +
Tr∑
tr=1

∑
dtr

{
T
t1
tr

+dtr∑
t=T

t1
tr

P∑
i=1

τ
(old)
I
T
t1
tr

:T
t1
tr

+dtr=i

P (dtr |I1:T , Cobs;

Θ(old))
K∑
k=1

λkTk +

T
t2
tr∑

t=T
t1
tr

+dtr

P∑
j=1,j 6=i

τ
(old)
I
T
t1
tr

+dtr :T
t2
tr

=jP (dtr |I1:T ,

Cobs; Θ(old))
K∑
k=1

λkTk} − {
Sd∑
sd=1

∑
I
T
s2
sd

qT s2sd ,nsd
(IT s2sd

) +
Tr∑
tr=1

∑
dtr

P (dtr |I1:T , Cobs; Θ(old))(
∑

I
T
t1
tr

+dtr

q
T
t1
tr

+dtr ,dtr
(I
T
t1
tr

+dtr
)

+
∑
I
T
t2
tr

q
T
t2
tr
,ntr

(I
T
t2
tr

))}

(6.26)

where nsd and ntr represent the lengths of the sthd stationary period and the second half of

the tthr transition period, respectively, which can be calculated as:

nsd = T s2sd − T
s1
sd

+ 1 ntr = T t2tr − T
t1
tr − dtr (6.27)

In the E-step, the posterior probability P (dtr |I1:T , Cobs; Θ(old)) needs to be calculated as

shown below:

P (dtr |I1:T , Cobs; Θ(old)) = P (dtr |Ia:b, ha:b, Oa:b, Sa:b; Θ(old))

=
P (ha:b|dtr , Ia:b, Oa:b; Θ(old))P (Ia:b|dtr , Sa:b; Θ(old))∑
dtr
P (ha:b|dtr , Ia:b, Oa:b; Θ(old))P (Ia:b|dtr , Sa:b; Θ(old))

·P (dtr ; Θ(old))

·P (dtr ; Θ(old))

(6.28)

where a and b represent the starting and ending points of the tthr transition period, namely
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T t1tr and T t2tr , respectively.

In the M-step, similar numerical optimization needs to be performed to determine the

parameters, as illustrated in section 6.3.3.2.

6.3.5 Simplified Online Process Mode Diagnosis Based on the

SCRF Model

In the proposed work, after training the SCRF model, the identified model will be employed

for the online application. Essentially, the objective is to find the mode that maximizes

the probability given all the past information, i.e., h∗t = argmaxht P (ht|O1:t, S1:t; Θ̂). As the

current process mode mainly depends on the most recent operating stationary or transition

periods rather than the entire operating sequence, P (ht|O1:t, S1:t; Θ̂) can be simplified as:

P (ht|O1:t, S1:t; Θ̂) = P (ht|OTs:t, STs:t; Θ̂)

=
P∑
i=1

P (ht, ITs:t = i|OTs:t, STs:t; Θ̂)

=
P∑
i=1

P (ht|ITs:t = i, OTs:t, STs:t; Θ̂) · P (ITs:t = i|STs:t; Θ̂)

=
P∑
i=1

αt,t−Ts+1(ht, i)∑N
h′t=1 αt,t−Ts+1(h′t, i)

·
t∏

t′=Ts

P (It′ = i|St′ ; Θ̂)

(6.29)

where Ts denotes the starting point of the most recent operating condition to which the

current time instant t belongs, which can be T s1sd , T t1tr or T t1tr + [µd] + 1, where [·] represents

the round off operator. Finally, the optimal estimation of the current process mode is the

one with the highest posterior probability P (ht|O1:t, S1:t; Θ̂).

6.4 Validations

In this section, two application scenarios are considered to validate the performance of the

proposed SCRF algorithm. For comparison purposes, the conventional LCCRF and multiple
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HMMs [146] are employed.

6.4.1 Simulation: Two CSTRs in Series

In this section, a simulated system containing two CSTRs in series proposed by Henson et

al. [108] is employed for performance evaluation of the proposed algorithm, whose schematic

is illustrated in Fig. 6.4. The notations q, CA and T represent the flowrate, concentration

and temperature, respectively. The coolant flows through both reactors to maintain an

appropriate reaction temperature. The whole system is operated in open loop condition and

the final product concentration in the second reactor, CA2, is the critical PV related to the

product quality. Since the feed flow has different concentrations CAf , the final product is

generated with concentrations attributing to different qualities. Therefore, it is desirable

to detect the concentration quality levels of the feed flow to meet the desired final product

requirements. The first principles model of the CSTR system and related parameter settings

can be found in Henson et al. [108].

, ,Af f fC T q

,c cfq T

1 1
,AC T

2 2
,AC T

cq

Figure 6.4: The schematic of CSTR in series [108]

As the coolant flowrate qc has a significant influence on the entire operation, it is selected

as the scheduling variable [147]. Three operating conditions, i.e., qc = 97L/min, 102L/min

and 107L/min, are considered. The feed flowrate qf is fixed as 100L/min, while the feed
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concentration CAf is manipulated to simulate various process modes, as its fluctuation results

in different final product concentrations, thus different products. It is assumed that the feed

concentration CAf has three levels, namely high (Mode 1), medium (Mode 2), and low

(Mode 3), and the switching between the process modes is simulated by following semi-

Markov properties [148]. The feed concentration CAf is simulated with Gaussian white

noise contamination in Modes 1 and 3. In Mode 2, CAf is corrupted with auto-correlated

Gaussian noise. All the related simulation parameters are summarized in Table 6.1, wherein

the variables TRi and duri represent the Markov switching matrix and the duration of each

simulated state under the ith operating condition, respectively.

Table 6.1: Parameters of the simulated CSTR system

Operating condition Operating condition 1 Operating condition 2 Operating condition 3

Semi-Markov
switching rule

TR1 =

 0.7 0.25 0.05
0.25 0.5 0.25
0.25 0.25 0.5

 TR2 =

 0.99 0.005 0.005
0.005 0.99 0.005
0.005 0.005 0.99

 TR3 =

0.6 0.1 0.3
0.3 0.6 0.1
0.3 0.2 0.5


dur1 = 90 dur2 = 120 dur3 = 60

Scheduling
variable

S1 = 97 S2 = 102 S3 = 107
σ1 = 0.6 σ2 = 0.3 σ3 = 0.5

Process mode Feed concentration CAf Feed concentration CAf Feed concentration CAf

Process mode 1
mean(CAf ) = 1.18 mean(CAf ) = 1.18 mean(CAf ) = 1.15

std(CAf ) = 0.01 std(CAf ) = 0.01 std(CAf ) = 0.01

Process mode 2
mean(CAf ) = 1.12 mean(CAf ) = 1.12 mean(CAf ) = 1.05

std(CAf ) = 0.008 std(CAf ) = 0.008 std(CAf ) = 0.008

Process mode 3
mean(CAf ) = 1.08 mean(CAf ) = 1.02 mean(CAf ) = 1.01

std(CAf ) = 0.005 std(CAf ) = 0.005 std(CAf ) = 0.005

A training dataset with 16600 samples is employed for model development, and a vali-

dation dataset with the same length is used for performance evaluation. The product con-

centrations CA1 and CA2 are selected as the monitored PVs. The profile of the scheduling

variable qc and the dataset for validation can be found in Fig. 6.5.

To evaluate the performance of the proposed SCRF strategy, LCCRF and the multi-

ple HMMs [146] approaches are compared. For the multiple HMMs strategy, under each

operating condition, an HMM model is employed to model the process mode transitions.

Comparison of the diagnosis results among the three algorithms is illustrated in Fig. 6.6.
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Figure 6.5: The changing profiles of the scheduling variable qc (L/min) and the process data
CA1 (mol/L) and CA2 (mol/L) in the validation dataset

Correspondingly, in order to quantify the diagnosis accuracy, we also compute the percentage

of correctly identified process modes over the complete data sequence. In this case study,

the diagnosis accuracies of the SCRF, the LCCRF and the multiple HMMs algorithms are

91.87%, 87.23% and 78.00%, respectively. From this comparison, the multiple HMMs can-

not provide better diagnosis results compared with two CRF based algorithms, because the

process observations have longer range dependency than that the HMMs can describe. From

Fig. 6.6, it can also be found that the diagnosis performance of HMMs gets severely degraded

under the operating conditions 1 and 2, where the process observations have relatively small

magnitudes and process mode transitions are harder to be detected. In contrast, by modeling

long range observation dependency, the CRF based algorithms exhibit better performances

than HMMs. Furthermore, from both qualitative and quantitative comparisons, the pro-

posed SCRF algorithm has achieved the best diagnosis performance. The conventional LC-

CRF can detect most process modes correctly, but it always provides delayed process mode

detections. Especially during the operating condition transition periods, the LCCRF model
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tends to provide wrong diagnosis results compared with the proposed SCRF, because only a

single CRF is not sufficient to model the process during the operating condition transition

periods. On the contrary, the proposed SCRF algorithm, that employs multiple LCCRF

models to differentiate the process modes under different operating conditions, provides the

most accurate process mode diagnosis results.

Figure 6.6: The process mode diagnosis performance comparison among the SCRF, the
LCCRF and multiple HMMs algorithms in the simulated CSTR process.

6.4.2 Experimental Study through Hybrid Tank System

For further performance evaluations, a pilot-scale experimental study is conducted on a

hybrid tank system, whose schematic is illustrated in Fig. 6.7. The whole system is composed

of three cylindrical tanks connected in series through six valves, i.e., V1 - V4, V6 and V8.

Outlet valves are provided at the bottom of each tank, i.e., V5, V7 and V9 for tanks 1, 2 and

3, respectively. Water can be fed into the two side tanks via the two identical pumps driven

145



byDCmotors,andthefeedflowratescanbechangedbytheusers.Thethreetanklevels

aremeasuredfromtheinstalledlevelsensorsLT1-LT3,individually.

Figure6.7:Theschematicoftheexperimentalhybridtanksystem

Manipulationofthefeedflowratesoftanks1and3resultsintwodifferentoperatingcon-

ditions.Itisconsideredthatlow-leveloperatingcondition1occurswhenthefeedflowrates

oftanks1and3aresetaround4.75and5.15,respectively.Increasingthetwolateralfeed

flowratestothevaluesaround6.15and6.00resultsinhigh-leveloperatingcondition2.

Whenthehybridtanksystemworksinthehigh-leveloperatingcondition2,thetanks1and

3aremaintainedatalevelwhichishigherthanthelocationsofthejunctionvalvesV1and

V2.SinceV1andV2arekeptopenthroughoutthewholeexperimentprocess,oncethewater

levelsexceedthelevelsofV1andV2,weconsiderthatoperatingconditionhaschanged.For

thepurposeofsimulatingdifferentprocessmodes,statusofthetwolowerjunctionvalvesV3

andV4arechangedfromopentoclosed,simultaneously. WhenV3andV4becomeclosed,

thereisachancethatwatermightoverflowinbothlateraltanks,especiallyaroundthe

high-leveloperatingcondition2.Therefore,theabnormalprocessmodeisdefinedwhenV3

andV4areclosed,andtheprocessmodeisassumedtobenormalwhenV3andV4areopen.

Thelefttankfeedflowrateisselectedastheschedulingvariableinthiscase,andthewater

levelsofallthethreetanksformtheprocessoutputs. Theparametersettingsareshown
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Figure 6.8: The changing profiles of the selected scheduling variable and the tank levels (%)
for validation in the hybrid tank experiment

in Table 6.2. Here, the process modes 1 and 2 simulate the normal and abnormal process

modes, respectively.

Table 6.2: Parameters of the experimental hybrid tank system

Operating condition Operating condition 1 Operating condition 2

Semi-Markov
switching rule

TR1 =

[
0.8 0.2
0.2 0.8

]
TR2 =

[
0.75 0.25
0.2 0.8

]
dur1 = 40 dur2 = 20

Scheduling variable
left feed flowrate

S1 = 4.75 S2 = 6.15
σ1 = 0.2 σ2 = 0.16

Process mode Process mode 1 Process mode 2

Junction valve condition V3, V4 open V3, V4 closed

Experiment is conducted with sampling interval 1 second and the collected training and

validation datasets have a length of 7500 samples. Validation data are presented in Fig.

6.8, wherein the feed flowrate of tank 1, i.e, the scheduling variable, is shown in the first

subfigure, and the water levels of tanks 1, 3 and 2 are illustrated in the second to the fourth

subfigures, respectively.
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Figure 6.9: The process mode diagnosis performances of the proposed SCRF, the LCCRF
and the multiple HMMs approaches.

The proposed SCRF, the LCCRF and the multiple HMMs strategies have been imple-

mented on the validation data, and the real-time diagnosis results are displayed in Fig.

6.9. In this case, the process mode diagnosis accuracies of the SCRF, the LCCRF and the

multiple HMMs approaches are 94.56%, 92.33% and 67.19%, respectively, among which the

multiple HMMs get the lowest diagnosis accuracy and SCRF achieves the best performance.

Due to multiple process disturbances, the level measurements of the three tank system are

contaminated with noise, which increases the difficulty to differentiate the abnormal process

modes from the noise contaminated observations. By including more information from the

observations, the two CRF based algorithms achieve a better diagnosis performance than

the multiple HMMs algorithm. Considering the diagnosis performances of the SCRF and

LCCRF algorithms, both algorithms can detect the process modes accurately in the high-

level operating condition, since the abnormal process mode has more obvious effects on the

observations than in the low-level operating condition. However, in the low-level operating
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condition with smaller level measurements, the abnormal process mode is mixed with process

noise and it gets more difficult to be detected. Compared with the SCRF, the LCCRF has

delayed or even missing detections in this situation. By involving multiple CRF models, the

SCRF can sufficiently capture the process changing properties under multiple operating con-

ditions, therefore more accurate process mode diagnosis performance can be achieved. The

more complicated the process is, the more advantages of SCRF can be exhibited compared

with the existing approaches.

6.5 Conclusions

In this chapter, a novel SCRF model has been proposed to diagnose the process mode, i.e.,

normal and abnormal, in real time, regardless of the varying operating conditions. Under

the framework of SCRF approach, multiple LCCRF models are identified and switched

between each other for process monitoring. In order to increase the computational efficiency,

a simplified parameter estimation strategy is proposed for SCRF model identification. The

monitoring performance of the SCRF approach has been demonstrated by a CSTR simulation

and a hybrid tank system experiment.
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Chapter 7

Concluding Remarks and Future

Works

In this chapter, conclusions of the above chapters are summarized. The main idea of this

thesis is explained and connected to the previous chapters. Finally, the potential future

directions are introduced.

7.1 Concluding Remarks

The focus of this thesis is to solve fault detection and diagnosis problems based on both

unsupervised hierarchical MSPM approach and supervised CRF algorithm. A large number

of fault detection and diagnosis algorithms both unsupervised and supervised have been

developed to deal with different practical scenarios during process operation, with the aim

of fully excavating the features obtained from the process data.

In Chapter 2, the mathematical backgrounds are explained in details. The modeling,

training and inference of CRFs are presented. As alternative solutions to the MLE with

latent variables, EM and VB algorithms are introduced and compared to demonstrate their

advantages while solving problems with hidden variables.

Chapter 3 proposes an effective hierarchically distributed process monitoring scheme
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and applies it to solve the early flare event prediction problem for a refinery process, with

limited access to process knowledge but large amounts of process data. As a practical large-

scale process, there exist several challenges, such as high-dimensionality, nonstationarity,

time-varying characteristics, various process changing patterns, high correlations and small

number of faulty events, etc.. A hierarchically distributed monitoring framework is developed

with a two-layer structure. The bottom layer is composed by monitoring individual units and

the top layer is created to integrate the information from the bottom layer. The two layers

are embedded with both time-domain MSPM and frequency-domain approaches. Meanwhile,

the proposed algorithm is also efficient to solve fault isolation problems by tracing the fault

across different units. Both of the time-domain MSPM and the frequency-domain algorithms

are tested and compared, and finally the time-domain MSPM algorithm is proven to provide a

better solution. The unsupervised approach is appropriate for the problem of the considered

flare event prediction as there is essentially no sufficient faulty events available in the data

set. The limitation of the proposed approach, similar to all other unsupervised approaches,

is that no reference is used.

In the subsequent chapters, as supervised learning approaches, three main theoretical

contributions are made based on the LCCRF structure:

• The marginalized CRF. The first theoretical contribution based on the CRF model is

made in Chapter 4. As a probabilistic discriminative model, the LCCRF is first intro-

duced as a conditional probabilistic counterpart of the HMMs, with higher modeling

flexibility and improved process operating mode diagnosis performance. The equiva-

lent conditions of the LCCRFs and HMMs are derived to demonstrate the advantages

of LCCRFs. Furthermore, a marginalized CRF model to deal with the missing obser-

vation problems is proposed. Because the CRFs involve more complicated observations

such as the missing observations, it makes training and inference more complicated.

A new forward-backward algorithm is proposed to efficiently solve the training and

inference problems of the marginalized CRF model. The performance of the proposed

151



CRF algorithm has been tested on both simulated and experimental studies, and the

superior performance of CRFs over HMMs is demonstrated.

• The two-stage HCRF. The second theoretical contribution based on CRF model is made

in Chapter 5. In this work, aiming at the problems of feature selection and the online

adaption of process changes, a two-stage HCRF structure is proposed and implemented

by making full use of the available process measurements. The process observations

from different operating modes are first separated and analyzed by a MMHCRF model

to select the most relevant variables to detect operating mode changes, known as

the first-stage HCRF model. Then based on the outputs of the first-stage HCRF

model, the second-stage HCRF model is proposed by including the transitions among

different operating modes with a time-varying structure. With the prior knowledge of

the second-stage HCRF model, the VB algorithm is employed to solve the unknown

model parameters. Briefly, the first-stage HCRF model contributes to determining a

set of local classifiers to select most relevant variables, and the second-stage HCRF

model conducts an online operating mode diagnosis on the basis of the local classifiers

in the first-stage HCRF. The superior performance of the two-stage HCRFs over the

conventional algorithm is demonstrated on a numerical case study.

• The switching CRF. The third theoretical contribution based on the CRF model is

given in Chapter 6. In this work, the process operating mode diagnosis problem for

processes with multiple operating conditions is considered. Instead of using only one

CRF model for process operating mode diagnosis, a SCRF structure is created to ex-

tend unitary LCCRF into multiple LCCRFs, which can be switched between each other

according to the changes of the process operating conditions. The process operating

conditions are considered to be latent and a scheduling variable is included to infer

the potential changes of operating conditions. In this sense, the EM algorithm is used

to solve the training problem of the proposed SCRF model. The performances are
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validated through several case studies.

7.2 Future Works

In this section, potential future directions are summarized.

7.2.1 Feature Dimension Reduction in Probabilistic Discrimina-

tive Models

Owing to the direct modeling of the conditional probability, one of the outstanding advan-

tages of the probabilistic discriminative models is the capability to include any features into

modeling without need to formulate the explicit distributions of these features. In this way,

high dimensional features can be addressed in such a framework with the cost of increased

model parameters. However, when some of the features are likely to be correlated with each

other as in the MSPM algorithms, it is meaningful to combine the probabilistic counterparts

of the MSPM algorithms with the discriminative probabilistic modeling. In this way, the

correlations among the raw features can be more precisely addressed and the latent features

with lower dimensions can be extracted by the MSPM algorithms. Then in the probabilistic

discriminative framework, the latent features are used for further classification.

There are some challenges while dealing with this problem. First, the conditional prob-

ability modeling framework increases the modeling complexity and causes the integral of

both latent features and the unknown labels harder to address than the probabilistic gener-

ative models combined with MSPM algorithms. Second, because of introducing the latent

features, the alternatives of standard MLE algorithms, such as EM and VB, need to be

further extended for model training. The increased model complexity can make the pos-

terior probabilities of latent variables very difficult to derive. In this sense, more effective

inference strategies should be developed based on the designed probabilistic discriminative

model structure.
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7.2.2 Transfer Learning of the CRFs

In Chapter 6, a SCRF framework has been developed to solve the process operating mode di-

agnosis problem for the processes with multiple operating conditions. This work is developed

by extending a unitary LCCRF model suitable to a single operating condition to multiple

LCCRFs to adapt to different operating conditions. To track the change of the operating

conditions, a scheduling variable is selected that needs to be available in the SCRF struc-

ture. By taking considerations of the facts that some processes might not have a suitable

scheduling variable, and the same operating modes in different operating conditions might

have high similarity among each other, transfer learning technique is a good choice to make

the developed CRF model more general and effective for different operating conditions. The

knowledge that CRF learned from one operating condition may be transferred to the other

operating conditions, without creating a number of CRF models.

7.2.3 Probabilistic Graphical Model Based Fault-tolerant Control

Strategy

In general, fault-tolerant control can be treated as a system that integrates online fault

detection and diagnosis, automatic operating condition assessment and the remedial action

calculation to compensate the detected faults. In this thesis, the fault detection and diagnosis

problems solved by probabilistic graphical model have been discussed, but the actions after

fault diagnosis have not been considered. Moreover, not limited to calculating the posterior

probabilities, the probabilistic graphical models can also be employed for decision making,

such as influence diagrams and Markov decision processes [149], where the decisions are

obtained by certain strategies. The rewards of making a specific decision vary according to

the states and can be uncertain and model-free. This contributes to a unified fault-tolerant

probabilistic structure with advantages of both fault detection and diagnosis and decision

making.
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7.2.4 Survival Analysis for Remaining Useful Life Prediction

When solving fault detection and diagnosis problems, the conventional MSPM algorithms

are used as unsupervised learning algorithms. By selecting a portion of normal operating

data, the most suitable MSPM algorithm is employed to build a model, which can be used

to detect process abnormalities. However, when targeting on a permanent failure prediction

problem, such as motor pump failure, the abnormalities detected by the designed MSPM

model can be anything that is different from the normal operations, and might not be the

failures that are interested. Unless a unique signature to the final failure is given, otherwise

the MSPM algorithms will provide high false positives that are not directly related to the

final failure.

To solve this problem, the concept of the time-to-event distribution is introduced and

combined with the conventional MSPM algorithms. Survival analysis covers a series of

approaches to model the time-to-failure distribution and therefore creates a survival curve for

specific process or equipment under monitoring. The survival curve depicts the distribution

of survival life which is modeled by integrating the process features into a probabilistic

model. By making use of the latent features extracted by MSPM algorithms, the connection

between the process abnormalities and the process survival time is established, by which

the process remaining useful life can be predicted with the potential likelihood. Moreover,

since the individual survival analysis problem can be treated as a probabilistic multi-task

classification problem, the probabilistic discriminative models, for example, CRFs, can also

be involved for structural modeling for more complicated and correlated features. By this

means, more reliable permanent failure prediction algorithms can be developed.
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Appendix A

Proof of the Equivalence of HMM and

LCCRF Model [93]

Since it is a generative model, the HMM models the joint probability P (h,O), but the CRF

models the conditional probability P (h|O) and does not consider the joint distribution.

Given a set of discrete states {h1, h2, ..., hT}, where ht ∈ {1, 2, ..., N} and the corresponding

observations {O1, O2, ..., OT}, the joint probability P (h,O) can be derived under the HMM

framework as follows:

P (h,O) =P (h1, h2, ..., hT , O1, O2, ..., OT )

=P (OT |OT−1, ..., O1, hT , ..., h1) · P (hT |OT−1, ..., O1, hT−1, ..., h1)

· · ·P (O1|h1) · P (h1)

(A.1)

Following the two conditional independence assumptions of HMMs [150], i.e. P (ht|ht−1, ...,

h1) = P (ht|ht−1) and P (Ot|ht, ht−1, ..., h1) = P (Ot|ht), the above joint probability P (h,O)

can be simplified as follows:

P (h,O) =
T∏
t=1

P (Ot|ht) · P (ht|ht−1) (A.2)
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And the conditional probability P (h|O) can be formulated thereafter as below:

P (h|O) =
P (h,O)

P (O)
=

P (h,O)∑
h′ P (h′ ,O)

=

∏T
t=1 P (Ot|ht) · P (ht|ht−1)∑

h′
∏T

t=1 P (Ot|h′t) · P (h′t|h′t−1)

=
exp

∑T
t=1{logP (ht|ht−1) + logP (Ot|ht)}∑

h′ exp
∑T

t=1{logP (h′t|h′t−1) + logP (Ot|h′t)}

(A.3)

where P (ht|ht−1) and P (Ot|ht) are the transition and emission probabilities of HMM, re-

spectively, and the notation h′ represents all possible combinations of the states.

Now let us consider the conditional distribution P (h|O) under the CRF framework in

Equations (4.1) and (4.2) as below:

P (h|O) =
exp

∑T
t=1{

∑K
k=1 logP (ht|ht−1)Tk(ht, ht−1) +

∑M
m=1 logP (Ot|ht)Em(ht, Ot)}∑

h′ exp
∑T

t=1{
∑K

k=1 logP (h′t|h′t−1)Tk(h′t, h
′
t−1) +

∑M
m=1 logP (Ot|h′t)Em(h′t, Ot)}

=
exp

∑T
t=1{

∑K
k=1 λkTk(ht, ht−1) +

∑M
m=1 µmEm(ht, Ot)}∑

h′ exp
∑T

t=1{
∑K

k=1 λkTk(h
′
t, h
′
t−1) +

∑M
m=1 µmEm(h′t, Ot)}

(A.4)

Assuming the summations over weights λk and µm to be unity and by choosing feature

functions shown below, we can demonstrate that Equation (A.4) is equivalent to Equation

(A.3).

Tk(ht, ht−1) =

 1 if ht−1 = i and ht = j

0 otherwise
(A.5)

Em(ht, Ot) =

 1 if ht = i and Ot ∈ B

0 otherwise
(A.6)

where i, j ∈ {1, 2, ..., N} are the state values and B is the set of all possible observation

values.
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Appendix B

Detailed Derivations and Pseudocodes

of Chapter 4

B.1 Detailed Steps of Forward and Backward Propa-

gation

For the forward propagation, a set of intermediate variables α is proposed to increase the

computational efficiency for the normalization term Z(Oobs). Based on the definition of

αt(ht,h
(f)
t,mis), at the time point t + 1, the intermediate variable αt+1 can be formulated as

follows:

αt+1(ht+1,h
(f)
t+1,mis)

def
=

∑
h1:t

∑
O

(mis)
1:t+1

t+1∏
t′=1

ϕt′(ht′ , ht′−1,Y
(obs)

t
′ ) · γt′(ht′ , ht′+1, ..., ht′+d−1, O

(mis)

t
′ )

(B.1)

which can be calculated by the following recursion based on the result of αt.
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αt+1(ht+1,h
(f)
t+1,mis) =

∑
ht

∑
O

(mis)
t+1

ϕt+1(ht+1, ht,Y
(obs)
t+1 ) · γt+1(ht+1, ..., ht+d, O

(mis)
t+1 )

∑
h1:t−1

∑
O

(mis)
1:t

t∏
t′=1

ϕt′(ht′ , ht′−1,Y
(obs)
t′ ) · γt′(ht′ , ..., ht′+d−1, O

(mis)
t′ )

=
∑
ht

ϕt+1(ht+1, ht,Y
(obs)
t+1 ) · ηt+1(ht+1, ..., ht+d) · αt(ht,h(f)

t,mis)

(B.2)

where the lengths of operating mode sequences h
(f)
t,mis and h

(f)
t+1,mis depends on the missing

measurements within the time range t− d+ 2 to t+ 1.

After the forward propagation procedures, the normalization term Z(Oobs) can be calcu-

lated based on αT (hT ), which can be proved as below:

Z(Oobs) =
∑
h1:T

∑
O

(mis)
1:T

T∏
t=1

ϕt(ht, ht−1,Y
(obs)
t ) · γt(ht, ..., ht+d−1, O

(mis)
t )

=
∑
hT

∑
h1:T−1

∑
O

(mis)
1:T

T∏
t=1

ϕt(ht, ht−1,Y
(obs)
t ) · γt(ht, ..., ht+d−1, O

(mis)
t )

=
∑
hT

αT (hT )

(B.3)

Similarly, for backward propagation, a set of backward variables β is proposed with the

definition as below:

βt(ht+d−2,h
(b)
t,mis)

def
=

∑
O

(mis)
t:T

∑
ht+d−1:T

T∏
t′=t

γt′(ht′ , ..., ht′+d−1, O
(mis)
t′ )

T∏
t′=t+d−1

ϕt′(ht′ , ht′−1,Y
(obs)
t′ )

(B.4)

According to this definition, at the time point t − 1, the corresponding intermediate
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variable βt−1 can be computed as follows:

βt−1(ht+d−3,h
(b)
t−1,mis) =

∑
O

(mis)
t−1:T

∑
ht+d−2:T

T∏
t′=t−1

γt′(ht′ , ..., ht′+d−1, O
(mis)

t′
)

T∏
t′=t+d−2

ϕt′(ht′ , ht′−1,Y
(obs)

t′
)

=
∑
O

(mis)
t−1

∑
ht+d−2

γt−1(ht−1, ..., ht+d−2, O
(mis)
t−1 ) · ϕt+d−2(ht+d−2, ht+d−3,Y

(obs)
t+d−2)

∑
O

(mis)
t:T

∑
ht+d−1:T

T∏
t′=t

γt′(ht′ , ..., ht′+d−1, O
(mis)
t′ )

T∏
t′=t+d−1

ϕt′(ht′ , ht′−1,Y
(obs)

t′
)

=
∑
O

(mis)
t−1

∑
ht+d−2

γt−1(ht−1, ..., ht+d−2, O
(mis)
t−1 ) · ϕt+d−2(ht+d−2, ht+d−3,Y

(obs)
t+d−2)

βt(ht+d−2,h
(b)
t,mis)

(B.5)

where the lengths of operating mode sequences h
(b)
t,mis and h

(b)
t−1,mis depend on the missing

measurements within the time range t+ d− 3 to t− 1.

B.2 The Pseudocodes of the Marginalized CRFs
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Algorithm 2 Parameter Estimation

Require: The training dataset {h1, h2, ..., hT}, {O1, O2, ..., OT} and the tolerance ε as ter-
mination criteria;

Ensure: The estimated weighting parameters Θ = {λk, µm};
1: Initialization: assign the initial guess for Θ randomly and initial values for gradients;
2: while gradient > ε do
3: gradient(λk)← 0, gradient(µml)← 0
4: logZ(h,Oobs)← 0

5: logZ(Oobs), P (ht, ht−1|Oobs), P (ht, O
(mis)
t−l+1|Oobs)←MCRF Inference(O1:T , d,Θ)

6: for t = 1→ T do
7: logZ(h,Oobs)← logZ(h,Oobs) +

∑K
k=1 λkTk(ht, ht−1) +

∑M
m=1 µmEm(ht,Y

(obs)
t )

8: gradient(λk)← gradient(λk)+Tk(ht, ht−1)−
∑

h′t,h
′
t−1

P (h′t, h
′
t−1|Oobs)Tk(h

′
t, h
′
t−1)

9: if Ot is missing then
10: logZ(h,Oobs)← logZ(h,Oobs)+log{

∑
O

(mis)
t

exp
∑T

t′=t

∑M
m=1 µmEm(ht′ , O

(mis)
t )}

11: end if
12: if Ot−l+1 is missing then

13: gradient(µml)← gradient(µml) +
∑

O
(mis)
t−l+1

w(O
(mis)
t−l+1)Eml(ht, O

(mis)
t−l+1)−

14:
∑

h′t

∑
O

(mis)
t−l+1

P (h′t, O
(mis)
t−l+1|Oobs)Eml(h

′
t, O

(mis)
t−l+1)

15: else
16: gradient(µml)← gradient(µml) + Eml(ht, Ot−l+1)
17: −

∑
h′t
P (h′t|Oobs)Eml(h

′
t, Ot−l+1)

18: end if
19: end for
20: l(Θ)← logZ(h,Oobs) + logZ(Oobs)
21: Θ← L BFGS(l(Θ), gradient(Θ))
22: end while
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Algorithm 3 Inference of Marginalized CRFs

Require: The observations in training dataset {O1, O2, ..., OT}, impact factor d and the
estimated parameters Θ;

Ensure: The marginal probabilities P (ht, ht−1|Oobs), P (ht, O
(mis)
t−l+1|Oobs) and the normaliza-

tion term logZ(Oobs)
1: function MCRF Inference(O1:T , d,Θ)
2: α1:T , β1:T ← Forward Backward(O1:T , d,Θ)
3: // Normalization term calculation
4: logZ(Oobs)← log

∑
hT
αT (hT )

5: // Marginal probability calculation
6: for t = 2→ T do
7: ζt+d−2(ht−1, ..., ht+d−2)← αt−1(ht−1,h

(f)
t−1,mis) · βt(ht+d−2,h

(b)
t,mis)

8: νt+d−2(ht, ..., ht+d−2)←
∑

ht+d−1
αt(ht,h

(f)
t,mis, O

(mis)
t−l+1) · βt+1(ht+d−1,h

(b)
t+1,mis)

9: for i = d− 2→ 1 do
10: ζt+i−1(ht−1, ..., ht+i−1)←

∑
ht+i

ζi(ht−1, ..., ht+i) · ϕt+i(ht+i, ht+i−1,Y
(obs)
t+i )

11: νt+i−1(ht, ..., ht+i−1)←
∑

ht+i
νi(ht, ..., ht+i) · ϕt+i(ht+i, ht+i−1,Y

(obs)
t+i )

12: end for

13: P (ht, ht−1|Oobs)←
1

Z(Oobs)
· ϕt(ht, ht−1,Y

(obs)
t ) · ζt(ht−1, ht)

14: P (ht, O
(mis)
t−l+1|Oobs)←

1

Z(Oobs)
· νt(ht)

15: end for
16: return P (ht, ht−1|Oobs), P (ht, O

(mis)
t−l+1|Oobs) and logZ(Oobs)

17: end function
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Algorithm 4 Forward-backward Propagation for Marginalized CRFs

Require: The observations in training dataset {O1, O2, ..., OT}, impact factor d and the
estimated parameters Θ;

Ensure: The propagation intermediate variables α and β;
1: function Forward Backward(O1:T , d,Θ)
2: Initialization: α1(h1)← ϕ1(h1, h0, O1), βT (hT )← 1
3: // The forward propagation
4: for t = 1→ T do
5: αt+1(ht+1, ht,h

(f)
t,mis)← αt(ht,h

(f)
t,mis) · ϕt+1(ht+1, ht,Y

(obs)
t+1 )

6: αt+1(ht+1,h
(f)
t,mis)←

∑
ht
αt+1(ht+1, ht,h

(f)
t,mis)

7: if Ot+1 is missing then

8: αt+1(ht+1,h
(f)
t+1,mis)← αt+1(ht+1,h

(f)
t,mis) · ηt+1(ht+1, ..., ht+d)

9: else
10: αt+1(ht+1,h

(f)
t+1,mis)← αt+1(ht+1,h

(f)
t,mis)

11: end if
12: end for
13: // The backward propagation
14: for t = T → 1 do
15: βt−1(ht+d−2, ht+d−3,h

(b)
t,mis)← βt(ht+d−2,h

(b)
t,mis) · ϕt+d−2(ht+d−2, ht+d−3,Y

(obs)
t+d−2)

16: if Ot−1 is missing then

17: βt−1(ht+d−3,h
(b)
t−1,mis)←

∑
ht+d−2

βt−1(ht+d−2, ht+d−3,h
(b)
t,mis)ηt−1(ht−1, ..., ht+d−2)

18: else
19: βt−1(ht+d−3,h

(b)
t−1,mis)←

∑
ht+d−2

βt−1(ht+d−2, ht+d−3,h
(b)
t,mis)

20: end if
21: end for
22: return α1:T and β1:T

23: end function
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Appendix C

Detailed Derivations and Pseudocode

of Chapter 5

C.1 The Pseudocode of Variable Selection in the First-

stage HCRF

Algorithm 5 Variable selection for the first-stage HCRF

Require: The training dataset {h(n),O(n)}Nn=1, full variable set S and empty variable rank
set R;

Ensure: The ranked variables from the most irrelevant to the most relevant;
1: Initialization: use all the available variables for MMHCRF training and set varcount = M ;
2: while varcount > 1 do
3: train the first-stage HCRF model with variables in set S and obtain αvarcount
4: calculate W (αvarcount)
5: for m in S do
6: calculate W(−m)(αvarcount)
7: calculate ∆W(−m)

8: end for
9: rank ∆W(−m)

10: m∗ = arg minm ∆W(−m)

11: S ← S −m∗
12: R← R ∪m∗
13: varcount ← varcount − 1
14: end while
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C.2 The Variational Parameter Estimation of the Dirich-

let Distribution

By substituting q(ζ) ∼ Dir(ν) into logP (L1:T , y1:T , X1:T |ζ) of Equation (5.24), DKL is

derived as

DKL(ν) = 〈log q(ζ)〉q(ζ) − 〈logP (ζ|η)〉q(ζ) −
T∑
t=1

∫
ζ

∑
Lt

q(Lt)q(ζ)
∑
u1

eu1(yt, Lt; ζ)dζ + Cq(ζ)

= 〈log q(ζ)〉q(ζ) − 〈logP (ζ|η)〉q(ζ) −
T∑
t=1

〈
∑
u1

eu1(yt, Lt; ζ)〉q(Lt)q(ζ) + Cq(ζ)

(C.1)

With the characteristics of Dirichlet distribution, the first two terms can be easily ob-

tained as

〈log q(ζyt |νyt)〉q(ζyt ) = log Γ(
∑
l

νyt,l)−
∑
l

log Γ(νyt,l) +
∑
l

(νyt,l − 1)(Ψ(νyt,l)−Ψ(
∑
l′

νyt,l′))

〈logP (ζyt |ηyt)〉q(ζyt ) = log Γ(
∑
l

ηyt,l)−
∑
l

log Γ(ηyt,l) +
∑
l

(ηyt,l − 1)(Ψ(νyt,l)−Ψ(
∑
l′

νyt,l′))

(C.2)

where Γ(·) and Ψ(·) are the gamma function and digamma function, respectively, given as

Γ(νyt,l) =

∫ ∞
0

zνyt,l−1e−zdz

Ψ(νyt,l) =

∂Γ(νyt,l)

∂νyt,l

Γ(νyt,l)

(C.3)
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The third term of Equation (C.1) can be further derived as

〈
∑
u1

eu1(yt, Lt; ζ)〉q(Lt)q(ζ) = 〈logP (Lt|yt, ζ)〉q(Lt)q(ζ)

=
∑
l

q(Lt = l)〈log ζyt,l〉q(ζ)

=
∑
l

q(Lt = l)(Ψ(νyt,l)−Ψ(
∑
l′

νyt,l′))

(C.4)

By substituting the intermediate results in Equations (C.2) - (C.4), the KL divergence

in Equation (C.1) can be simplified as

DKL(νyt) =
∑
l

(νyt,l − ηyt,l −
T∑
t=1

q(Lt = l))(Ψ(νyt,l)−Ψ(
∑
l′

νyt,l′)) + log Γ(
∑
l

νyt,l)

−
∑
l

log Γ(νyt,l) + Cνyt

(C.5)

Taking derivative with respect to νyt,l, one can get

∂DKL(νyt,l)

∂νyt,l
= Ψ

′
(νyt,l)(νyt,l−ηyt,l−

T∑
t=1

q(Lt = l))−Ψ
′
(
∑
l′

νyt,l′)
∑
l′

(νyt,l′−ηyt,l′−
T∑
t=1

q(Lt = l′))

(C.6)

The final result can be obtained by setting Equation (C.6) to zero as

νyt,l = ηyt,l +
T∑
t=1

q(Lt = l) (C.7)

183


