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Abstract

As the rapid development of modern industry, data based fault detection and diagnosis for
industrial processes have become increasingly critical to ensure process safety and product
quality. To effectively make use of underlying features of process data, multiple data based
fault detection and diagnosis algorithms have been developed, among which the multivari-
ate statistical process monitoring (MSPM) algorithms and the probabilistic graphical model
based algorithms have been widely used. Through unsupervised training, the conventional
MSPM algorithms have the advantage of simplicity but do not use the labeled fault infor-
mation in the training phase. On the other hand, the probabilistic discriminative classifiers
are supervised models and trained with label information. This thesis starts from solving a
practical industrial fault detection and diagnosis problem based on the unsupervised MSPM
approaches. Then to fully make use of both process observations and fault information, a
supervised probabilistic discriminative framework, namely conditional random field (CRF)
model, is introduced and then extended to deal with various practical scenarios and chal-
lenges.

Specifically, as a practical study on real-time fault detection and diagnosis, an early flare
event prediction for a refinery process is first considered. Different operating conditions and
production requirements from different process units result in hybrid data characteristics,
therefore a single fault detection and diagnosis algorithm is not sufficient to deal with the
problem. In this sense, a hierarchically distributed framework is designed to solve this

problem, with two integrated and interactive monitoring layers to detect faults and track the
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root causes. Based on this layout, the majority of flare events can be successfully predicted
with limited false positives.

Additionally, when fault label is available, supervised probabilistic classifiers are further
explored. As a discriminative counterpart of the widely used hidden Markov models (HMMs),
the linear-chain CRF (LCCRF) is introduced with demonstrated superior fault diagnosis
performance to the HMMs. Then three practical challenges are addressed by extending
the conventional LCCRF frameworks to variants of CRFs. First, to deal with the missing
data problem, a marginalized CRF model is developed with a proposed efficient inference
strategy. Second, to solve the feature selection and online adaption problem for operating
mode diagnosis, a two-stage hidden CRF (HCRF) structure is proposed by combining the
max-margin trained HCRF and LCCRF into a hierarchical framework. Third, to address
the fault detection and diagnosis problem for processes with multiple operating conditions,
a switching CRF model is proposed to deal with the variations of the process conditions, by
extending unitary LCCRF to multiple LCCRFs.

This thesis aims to provide improved solutions to the fault detection and diagnosis prob-
lems in practical processes. As shown through multiple case studies of different chapters,

the effectiveness of the proposed algorithms is demonstrated.

il



Preface

This thesis is an original work by Mengqi Fang under the supervision of Dr. Biao Huang
and is funded in part by Natural Sciences and Engineering Research Council (NSERC) of
Canada. Most of materials have been published by the author in peer-reviewed journals or

conference proceeding, listed below:

1. Mengqi Fang, Fadi Ibrahim, Hariprasad Kodamana, Biao Huang, Noel Bell, and Mark
Nixon. Hierarchically distributed monitoring for the early prediction of gas flare events.

Industrial & Engineering Chemistry Research, 58(26):11352-11363, 2019. (Chapter 3)

2. Mengqi Fang, Hariprasad Kodamana, Biao Huang, and Nima Sammaknejad. A novel
approach to process operating mode diagnosis using conditional random fields in the
presence of missing data. Computers & Chemical Engineering, 111:149-163, 2018.
(Chapter 4)

3. Mengqi Fang, Hariprasad Kodamana, and Biao Huang. Real-time mode diagnosis
for processes with multiple operating conditions using switching conditional random
fields. IEEE Transactions on Industrial Electronics, 67(6):5060-5070, 2020. (Chapter

6 - Complete version)

4. Mengqi Fang, Hariprasad Kodamana, and Biao Huang. Switching conditional random
field approach to process operating mode diagnosis for multi-modal processes. In 2018
IEEE Conference on Decision and Control (CDC), pages 5146-5151. IEEE, 2018.

(Chapter 6 - Short version)

v



Acknowledgements

First of all, I am bringing tons of gratitude to thank my supervisor, Prof. Biao Huang, for
all his supervisions and guidance during my entire Ph.D. life. As an excellent professor,
he is always being an example to me for not only his rigorous attitudes and intelligence
in researches but also his encouraging and positive views to life and challenges. I would
like to show my sincere acknowledgement to his patience when explaining the concepts and
ideas that I do not understand completely, and his inspirations and trust when I am lack of
confidence and even good progresses. All of these bring me consistent encouragements and
make me always keep passion and curiosity to explore and extend my understanding to the
fields that I am working on. Frankly, Ph.D. journey is indeed a tough and long journey, and
I am so fortunate to be shaped and equipped with the help from my supervisor to be more
mature to the future life.

I would like to thank our industrial partners, especially Emerson, Suncor Energy and
Spartan Controls Automation Centre, for their highly supports to the process data, process
knowledge, site experiences and the feedbacks on all the proposed algorithms. I greatly
appreciate Noel Bell and Mark Nixon for their contributions to the flare event prediction
problem solution and the revisions of the manuscripts.

I would like to especially thank my former and current group members Dr. Hariprasad
Kodamana, Dr. Nima Sammaknejad and Dr. Fadi Ibrahim for their academic supports to
make me grow and learn faster and more from almost blank. And I also want to acknowledge

my wonderful colleagues and friends in the CPC group to make my Ph.D. life vivid and full



of hope. Additionally, many thanks to the students during my teaching assistant period and
the co-op students I have ever worked with, I learned a lot from the interactions with them
and their expectations.

I would like to thank the Alberta Innovates and National Science and Engineering Re-
search Council of Canada for the financial supports and the University of Alberta to provide
great opportunity for my Ph.D. experiences.

Last but not least, I would like to gratefully thank my beloved parents. I know what
they sacrificed are much more than that I perceived. The protections and devotions from
them are silent but influential, regardless of the distance. Finally, I would like to thank my
lovely husband, Xin Zhao, for his selfless and infinite supports, endless tolerances and love,

which make me fearless to face all the upcoming unknowns.

vi



Contents

1 Introduction
1.1 Motivation . . . . . . ...
1.2 Literature Review . . . . . . . . . . .
1.2.1 Process Data Based Fault Detection and Diagnosis . . . . . .. . ..
1.2.2  Conventional MSPM Approaches Based Fault Detection and Diagnosis
1.2.3 Probabilistic Graphical Model Based Fault Detection and Diagnosis .
1.3 Thesis Outline . . . . . . . . . . . .

1.4 Main Contributions . . . . . . . . . .

2 Mathematical Foundations
2.1 Conditional Random Fields . . . . . ... .. ... ... ... .. ......
2.1.1 Formulation of CRFs . . . . .. .. .. ... ...
2.1.2 Trainingof CRFs . . . . . . . .. ...
2.1.3 Inferenceof CRFs. . . . . . .. .. . .
2.2  Expectation Maximization (EM) and Variational Bayesian (VB) Algorithms
2.2.1 EM Algorithm . . . . . . .. ..
2.2.2 VB Algorithm . . . . . . ... ..
2.2.3 The Comparison between EM and VB Algorithms . . . . . . . .. ..

3 Hierarchically Distributed Monitoring

3.1 Introduction . . . . . . . . .

vil

oo

12
15

17
17
18
21
23
27
27
30
32

34



3.2 Process Description . . . . . . .. ..o Lo 36

3.3 Problem Statement . . . . . .. ... 37
3.4 Hierarchically Distributed Monitoring Approaches for Early Flare Event Pre-

diction . . . . . .. 40

3.4.1 The Time-domain Hierarchical Monitoring Approach . . . . . . . .. 42

3.4.1.1 PCA Process Monitoring Approach . . . . . ... ... ... 42

3.4.1.2  The Hierarchical PCA-SFA Monitoring Approach . . . . . . 43

3.4.1.3  Online Model Update Strategy for PCA-SFA Approach . . . 45

3.4.2 The Frequency-domain Hierarchical Monitoring Approach . . . . . . 45

3.4.2.1 Wavelet Transform . . . . . .. ... ... ... ... .... 46

3.4.2.2 Moving Window Wavelet Transform for Online Application A7

3.4.2.3 Online Adaptive PCA Based Process Monitoring Using Fre-

quency Domain Information . . . . . . ... ... ..

3.4.3 Fault Isolation under the Hierarchically Distributed Framework
3.5 Application: Early Gas Flare Event Prediction in A Refinery . . . . .
3.5.1 Hierarchical Time-domain Early Flare Event Prediction . . . .
3.5.2 Hierarchical Frequency-domain Early Flare Event Prediction .
3.5.3 Discussion on the Early Flare Event Prediction Performance .
3.5.4 Faulty Unit Isolation at the Hierarchical Level . . . . . . . ..

3.6 Conclusions . . . . . . . . .

A Novel Approach to Process Operating Mode Diagnosis Using

tional Random Fields in the Presence of Missing Data

4.1 Introduction . . . . . . . ...

4.2 LCCRF Model for Process Operating Mode Diagnosis . . . . . . . ..
4.2.1 Preliminaries . . . . . . . .. ..o

4.2.2  Operating Mode Diagnosis Using LCCRFs . . . . . ... ...

viii



4.3 Operating Mode Diagnosis Using Marginalized CRF's in the Presence of Miss-
ing Measurements . . . . . . . . ..o
4.3.1 Problem Formulation . . . . . . .. ... ... ... ... ..
4.3.2 Parameter Estimation: A Maximum Likelihood Approach . . . . ..
4.3.3 Inference of CRF with Missing Measurements . . . . . ... .. ...

4.3.3.1 Propagation Algorithm . . . . . . ... .. ... ... ....
4.3.3.2 Marginal Probability Derivation . . . . . . ... ... .. ..
4.3.3.3  Online Operating Mode Diagnosis. . . . . . . .. ... ...

4.4 Case Studies . . . . . . ..
4.4.1 Continuous Stirred Tank Reactor System . . . . . . .. ... .. ...

4.4.1.1 Process Description. . . . . ... ... ... L.
4.4.1.2 Discrete Feature Extraction . . . . .. .. ... ... ... .
4.4.1.3 Process Operating Mode Diagnosis Performance . . . . . . .
4.4.2 An Experimental Validation on Hybrid Tank System . . . . ... ..
4.4.2.1 Process Description. . . . . ... ... L.
4.4.2.2 Discrete Feature Extraction . . . . . ... .. ... ... ..
4.4.2.3 Process Operating Mode Diagnosis Performance . . . . . . .

4.5 Conclusions . . . . . . . .

Two-stage Time-varying Hidden Conditional Random Fields with Variable

Selection for Process Operating Mode Diagnosis

5.1 Introduction . . . . . . . . . .

5.2 Preliminary and Introduction of the Proposed Two-stage HCRF Model . . .
5.2.1 Preliminaries of HCRFs and LCCRFs . . . . . .. ... ... ... ..
5.2.2  Two-stage HCRF Model for Process Operating Mode Diagnosis

5.3 First-stage HCRF with Process Variable Selection . . . . . .. .. ... ...
5.3.1 Problem Formulation . . . . . ... .. ... ... ... ... ...

5.3.2  Training of the First-stage HCRF and Variable Selection . . . . . . .

X



5.4 Second-stage Time-varying HCRF for Process Operating Mode Diagnosis . . 108
5.4.1 The Connection between the First-stage and the Second-stage HCRF 108

5.4.2 Formulation and Parameter Estimation of the Second-stage HCRF . 109

5.5 Online Implementation . . . . . . . . . . ... .. ... ... 116
5.6 Case Study . . . . . . . 117

5.6.1 Simulation . . . . . .. ... 118
5.7 Conclusions . . . . . . . . . 122

Real-time Mode Diagnosis for Processes with Multiple Operating Condi-

tions Using Switching Conditional Random Fields 124
6.1 Introduction . . . . . . . . . . 124
6.2 Preliminaries of LCCRFs for Process Mode Diagnosis . . . . .. .. .. ... 127
6.3 SCREF for Process Mode Diagnosis in Multiple Operating Conditions . . . . . 128
6.3.1 Problem Statement . . . . . . . ... ..o 128
6.3.2 SCRF Model Formulation . . . ... ... ... ... ......... 130
6.3.3 Parameter Estimation Using EM Algorithm . . . . . . ... ... .. 132
6.3.3.1 E-step . . . ... 133

6.3.3.2 M-step. . . . . .. 136

6.3.4 Simplified SCRF Parameter Estimation . . . . . .. ... ... .... 137

6.3.5 Simplified Online Process Mode Diagnosis Based on the SCRF Model 141

6.4 Validations . . . . . . . .. 141
6.4.1 Simulation: Two CSTRs in Series . . . . . . . . ... ... ... ... 142
6.4.2 Experimental Study through Hybrid Tank System . . . . . . .. . .. 145

6.5 Conclusions . . . . . . . .. 149

Concluding Remarks and Future Works 150

7.1 Concluding Remarks . . . . . . . .. ... 150

7.2 Future Works . . . .. ..o 153



7.2.1 Feature Dimension Reduction in Probabilistic Discriminative Models 153
7.2.2 Transfer Learning of the CRFs. . . . . . . . .. ... ... ... ... 154

7.2.3 Probabilistic Graphical Model Based Fault-tolerant Control Strategy 154

7.2.4 Survival Analysis for Remaining Useful Life Prediction . . . . . . .. 155

A Proof of the Equivalence of HMM and LCCRF Model [93] 173
B Detailed Derivations and Pseudocodes of Chapter 4 175
B.1 Detailed Steps of Forward and Backward Propagation . . . . . . . . ... .. 175
B.2 The Pseudocodes of the Marginalized CRFs . . . . . . ... ... ... ... 177

C Detailed Derivations and Pseudocode of Chapter 5 181
C.1 The Pseudocode of Variable Selection in the First-stage HCRF . . . . . . .. 181
C.2 The Variational Parameter Estimation of the Dirichlet Distribution . . . . . 182

x1



List of Tables

3.1
3.2
3.3
3.4

3.5
3.6
3.7
3.8

4.1
4.2
4.3

4.4
4.5

5.1
5.2

6.1

Details regarding the refinery process dataset . . . . . . . . ... ... .... 38
Available refinery units’ names, identities and their related PV numbers . . . 38
The durations of all the 14 flare events . . . . . . . . . . . . ... ... ... 39

Early flare event prediction performance of traditional PCA approach on all

the PVs . . o o o 40
rRBC for fault isolation [77, 73] . . . . . . ... ... 49
Alarm evaluation of PCA-SFA. . . . . . . . . .. ... .. ... .. ..., 52
Alarm evaluation of hierarchical MWMSAPCA . . . . ... ... ... ... 53
Predicted flares by all the available approaches . . . . . . . .. ... ... .. 55
Look-up table of triangular discretization . . . . . . . . .. ... ... . ... 84
CSTR process operating mode diagnosis accuracy with complete dataset . . 85

CSTR process operating mode diagnosis accuracy in the presence of different
missing percentages . . . . . . .. .o e 86
Hybrid tank system operating mode diagnosis accuracy with complete dataset 90
Hybrid tank system operating mode diagnosis accuracy in the presence of

different missing percentages . . . . . . . .. ..o 92

Basis distributions and autoregressive formulations for different operating modes118

Process operating mode diagnosis performance comparison . . . . . . . . .. 122

Parameters of the simulated CSTR system . . . . . .. ... ... ... ... 143

xil



6.2 Parameters of the experimental hybrid tank system

xiil



List of Figures

1.1

2.1
2.2

3.1
3.2

3.3

3.4

3.5

3.6

3.7
3.8

Overview of the fault detection and diagnosis algorithms discussed in this

thesis, as denoted in the shaded nodes . . . . . . . . .. ... ... .....

A LCCREF structure to solve the flare gas composition classification problem

Two variants of CRFs [27] . . . . . . . . . ...

A general schematic of the FGRS [55] . . . . . . . . ... ... ... ...
An illustration of one pressure tag in unit 14 showing process variability within
one year investigation period . . . . . . ... ..o
Schematic diagram of the proposed hierarchically distributed process moni-
toring framework for early flare event prediction . . . . . . . . .. ... ...
Refinery data are grouped by unit, and the MWMSAPCA strategy is applied
on every unit for monitoring. All the obtained PCs are then integrated into
a moving window adaptive PCA modeling strategy to yield a composite Qg
index that monitors the whole process for early flare event prediction

The hierarchical PCA-SFA slower feature group monitoring result of all the
flare events . . . . . . L
The hierarchical PCA-SFA faster feature group monitoring result of all the
flare events . . . . .. L
The hierarchical MWMSAPCA monitoring result of all the flare events

The early flare prediction performance of the traditional PCA approach . . .

Xiv

19
21

38

39

41

49

ol

52

54
25



3.9

3.10

3.11

4.1
4.2
4.3
4.4

4.5
4.6
4.7

4.8

The unit contributions to the first flare prediction of the time-domain PCA-
SFA approach. The left two subfigures indicate the T2 statistic and the cor-
responding unit-wise contribution, respectively, and the right two subfigures
represent the Tf2 statistic and the corresponding unit-wise contribution, re-
spectively . . . Lo 57
The unit contributions to the first flare prediction of the frequency-domain
MWMSAPCA approach. The first and second subfigures are the )-statistic
of PCA and the corresponding unit contribution plot, respectively . . . . . . 58
The comparison of the rRBC indices of PCs with different percentage outlier

contaminations, with respect to the first flare event in the slower feature group 59

The general graphical structure of LCCRFs [103] . . . . . ... .. ... .. 65
The general graphical structure of HMMs [104] . . . . . . .. .. ... .. .. 66
The LCCRF structure designed for process operating mode diagnosis problem 67
The figure illustrates the correlated interactions at time point ¢ by the miss-
ing measurement O; and the corresponding operating mode sequence. The

shaded nodes denote the operating mode sequence which is affected by miss-

ing measurement O; . . . . ... 74
The schematic of CSTR in series [108] . . . . . . .. .. .. ... ... ... 80
The illustration of triangular representation [113] . . . . . . .. .. ... .. 82

The observation changing trends for different operating modes of closed-loop
CSTR system in the validation dataset. The upper and lower subfigures
indicate the temperature and concentration of the second tank, respectively . 82
The triangular discretization result of the CSTR validation dataset. Temper-
ature and product concentration of the second tank have been discretized in
the left and right figures, respectively. The black, red and blue lines indicate

the normal, impulse and ramp abnormal cases, respectively . . . . . . . . .. 83

XV



4.9

4.10

4.11

4.12
4.13

4.14

Probability of CSTR process operating modes estimated by the CRF (d = 2),
HMM and BPNN based algorithms and the corresponding operating mode
diagnosis performances. The operating mode numbers 1, 2 and 3 represent
normal, impulse and ramp disturbance contaminated cases, respectively . . .
The operating mode diagnosis performance comparison between marginalized
and regular CRFs in the presence of 12% missing measurements. The operat-
ing mode numbers 1, 2 and 3 represent normal, impulse and ramp disturbance
contaminated cases, respectively . . . . . ..o
The operating mode diagnosis performances compared among marginalized
CRF, HMM and BPNN in the presence of 12% missing measurements. The
operating mode numbers 1, 2 and 3 represent normal, impulse and ramp
disturbance contaminated cases, respectively. The operating mode diagnosis
accuracies of the marginalized CRF, HMM and BPNN approaches in this
particular case are 96.47%, 79.45% and 73.29%, correspondingly . . . . . . .
The configuration and diagram of the experimental hybrid tank system . . .
The triangular discretization results of observations /; and l,. The left and
right figures illustrate the continuous and discretized results of tank levels [y
and [y, respectively. In the left figure, the actual operating mode sequence
can be found in the third subfigure, where number 1 to 3 denote the Normal,
Abnormal 1 and Abnormal 2 modes, separately. In the right figure, the black,
red and blue lines correspond to the Normal, Abnormal 1 and Abnormal 2
cases, respectively . . . . ..o
Probability of hybrid tank system operating modes estimated by the CRF (d
= 10), HMM and BPNN algorithms and the corresponding operating mode
diagnosis performances. Here, the operating mode numbers 1, 2 and 3 indicate

the Normal, Abnormal 1 and Abnormal 2 operating modes, respectively . .

XVl

84

90



4.15

4.16

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

The hybrid tank system operating mode diagnosis performance comparison
between marginalized and regular CRFs with 12% missing measurements.
Here, the operating mode numbers 1, 2 and 3 indicate the Normal, Abnormal 1
and Abnormal 2 operating modes, respectively . . . . . .. ... ... ... 91
The hybrid tank system operating mode diagnosis performances compared
among marginalized CRF, HMM and BPNN with 12% missing measure-
ments. Here, the operating mode numbers 1, 2 and 3 indicate the Normal,
Abnormal 1 and Abnormal 2 operating modes, respectively. The operating
mode diagnosis accuracies of the marginalized CRF, HMM and BPNN ap-

proaches in this particular case are 89.58%, 79.17% and 79.17%, correspondingly 92

The HCRF with linear-chain structure among the latent variables [126], where
the shaded nodes represent the observed variables . . . . . ... .. ... .. 98
The graphical structure of the conventional LCCRF, with the shaded nodes
representing the observed variables . . . . . . ... ... 00000 98
The graphical illustration of the process dynamics and moving window strategy 100
The graphical illustration of transient periods removal . . . . . . . .. .. .. 101
The graphical structure of the first-stage HCRF at time t and ¢ + 1 in one
operating mode, which is the simplest form with D = 1. The shaded nodes
represent the observed variables . . . . . . . ... ... ... 102

The graphical structure of the first-stage HCRF at time ¢ and ¢ + 1 in one

operating mode. The shaded nodes represent the observed variables . . . . . 102
The illustrative diagram of the first-stage HCRF at time t and ¢t +1 . . . . . 105
The illustration of the MMHCREF training, where the true label is A . . . . 105

The illustration of the two stage connection during the second-stage HCRF
training period . . . . .. oL 109

The illustration of y;.7 labeling . . . . . . . . . ... ... .. ... ... .. 110

xXvii



5.11

5.12

5.13
5.14

5.15

5.16

5.17
5.18

6.1

6.2

6.3

6.4
6.5

6.6

6.7
6.8

The illustration of the second-stage HCRF with shaded nodes representing
the observed variables . . . . . . . ..o 111
An illustrative example of the first-stage HCRF discriminative capacity eval-
uation . ... 112
The rank of the eight PVs, with smaller rank indicating higher importance . 119
The confusion matrix with selected variables of the first-stage HCRF for the
numerical case study . . . . .. ... 119
The distributions of L; with respect toy, =2and y, =1 . . . . .. ... .. 120
The operating mode switching period detections of the proposed algorithm . 120
The validation dataset illustration . . . . . . . . .. ... ... ... .. ... 121
The process operating mode diagnosis performance comparison of the numer-

ical case . . . . L 122

An illustration of the relation between the operating conditions and process

A graphical illustration of the proposed SCRF model. In this case, Iy # I3,

i.e., it is assumed that there is no transition between ho and hg, and between
hyand hs, etc. . . . . o 131
An illustration of the stationary and transition periods indicated by the schedul-

ing variable . . . .. ..o 138
The schematic of CSTR in series [108] . . . . . . . .. ... ... ... ... 142
The changing profiles of the scheduling variable g. (L/min) and the process

data Cyy (mol/L) and Cyy (mol/L) in the validation dataset . . . . . . . .. 144
The process mode diagnosis performance comparison among the SCRF, the
LCCRF and multiple HMMs algorithms in the simulated CSTR process. . . 145
The schematic of the experimental hybrid tank system . . . . ... ... .. 146
The changing profiles of the selected scheduling variable and the tank levels

(%) for validation in the hybrid tank experiment . . . . . . . . . . ... ... 147

Xviil



6.9 The process mode diagnosis performances of the proposed SCRF, the LCCRF

and the multiple HMMs approaches. . . . . . . . . .. ... ... ......

Xix



List of Abbreviations and Notations

Abbreviations

BPNN Back propagation neural network
CMLE Conditional maximum likelihood estimation
CRF Conditional random field

CSTR Continuous stirred tank reactor
cwt Continuous wavelet transform
EM Expectation maximization
E-step Expectation step

FFT Fast Fourier transform

FGRS Flare gas recovery system

FT Fourier transform

HCRF Hidden conditional random field
HMM Hidden Markov model

ICA Independent component analysis
KL divergence Kullback-Leibler divergence

XX



L-BFGS
LCCRF
MLE
MMHCRF
M-step
MSPM
MWMSAPCA
pPC

PCA

PLS

PV

QP

RBC

RFE
rRBC
SCRF

SFA

SPM

SVM

VB

WT

Limited memory BFGS

Linear-chain CRF

Maximum likelihood estimation
Max-margin HCRF

Maximization step

Multivariate statistical process monitoring
Moving window multi-scale adaptive PCA
Principal component

Principal component analysis

Partial least squares

Process variable

Quadratic programming
Reconstruction-based contribution
Recursive feature elimination

Relative reconstruction-based contribution
Switching conditional random field

Slow feature analysis

Statistical process monitoring

Support vector machine

Variational Bayesian

Wavelet transform

Xx1



Notations

Q@ Forward variable

Q. h Weights in the dual function

I5; Backward variable

Vi Intermediate effect variable for Oﬁm"s)

&n Slack variable in max-margin training

& Intermediate forward variable containing O,Em“)

G Support variable in Dirichlet distribution

Nt Intermediate effect variable for all possible missing observations at time ¢
Ny, Concentration parameters of Dirichlet distribution

A, Eigenvalue matrix of the n'"* unit

Ak Weighting factor of the transition feature function

I Mean value of the transition duration

L Weighting factor of the emission feature function

o4 Standard deviation of the transition duration

o; Validity width of the ith scheduling variable

Tx (old) Posterior probability of the variable X in the previous EM iteration
S} Unknown parameters

Dap Basis function for wavelet transform

R Intermediate feature function at time ¢

Q Slowness matrix in SFA

xxii



Omis

Oobs

Oy

b

Slowness of the k" slow feature
Complete data

KL divergence

Missing data

Observed data

[ sample

Small moving window length of the
Transition duration

Emission feature function in CRF
Residual matrix of the n'* unit
Operating mode at time ¢
Operating condition at time ¢
Lower bound

Liquid level of the liquid seal unit
Moving window length at time ¢
Log likelihood

Length of the sgh) stationary period
Half length of the ™ transition period
Missing components in discrete observations
Observed components in discrete observations

Observation at time ¢

Pressure of the liquid seal unit

xx1il



P, Loading matrix of the n'* unit

Q) () function

Q () statistic

Q; Label of the i** instance

q(+) Variational posteriors

Qin The weighted log likelihood of forward variable at time ¢
R, The summation of the weighted log likelihood up to time ¢
S; The " fixed operating point

S, Score matrix of the n unit

St Scheduling variable at time ¢

Sy Extracted PC from new sample of the n* unit

T? Hotelling’s 7% statistic

T} Hotelling’s T? statistic of the faster features

Ty Transition feature function in CRF

T? Hotelling’s T statistic of the slower features

\4 Slow feature matrix

v Faster features in SFA

vy Slower features in SFA

w Coeflicient matrix in SFA

W(a) Evaluation criterion for variable selection

Wy Faster feature governing matrix

XX1V



Slower feature governing matrix

Process variables of the n'® unit

First-stage HCRF output features at time ¢
New sample of the n'® unit

Integrated PC matrix of the bottom layer
Observation sequence used in CRF at time ¢
Missing components in Y;

Observed components in Y;

Auxiliary labels of the two-stage CRF

Partition function of CRFs

XXV



Chapter 1

Introduction

1.1 Motivation

Modern industries are composed of large-scale facilities and involve highly complicated net-
works, with thousands of control loops and process variables (PVs). To ensure smooth
process operations, increase production safety and minimize maintenance costs, employing
effective and accurate process monitoring techniques is essential and has inspired many rele-
vant academic and practical researches over the last decades. Generally, process monitoring
techniques are utilized to detect, diagnose and remove faults occurring in the processes [1],
where a fault is defined as an unpermitted deviation of at least one characteristic property
or variable of the system [2].

Typically, process monitoring is composed of four components, namely, fault detection,
fault identification, fault diagnosis and fault recovery [1]. Fault detection aims to determine
whether a process has a fault. Early fault detection can be used to generate anticipated
warnings for process operators to take preventive actions. Fault identification is to identify
the PVs most relevant to diagnosing the fault, which can also be treated as a preliminary
procedure of fault diagnosis. Fault diagnosis is to diagnose the causes of the fault. Finally,

based on the above fault analysis results, interventions can be performed to eliminate the



fault, called fault recovery [3]. This thesis mainly focuses on the fault detection and diagnosis
problems.

A complete fault diagnosis system can be considered as a mapping from process mea-
surements to fault classes, with intermediate transformations from the measurement space
to the feature space, and then the feature space to the fault class space [4]. Compared with
the raw measurement space, the transformed feature space has enhanced discriminative ca-
pacity and therefore is normally able to improve fault diagnosis performance. According
to the available process information and process characteristics, there have emerged various
algorithms to perform feature transformation from process knowledge, based on which the
transformation between feature space and fault class space can be established. Fig. 1.1
summarizes the categories of the main stream fault detection and diagnosis algorithms. As
shown in Fig 1.1, the existing approaches may be classified into three different categories,
namely, knowledge-based, analytic-based and data-based algorithms [1]. Knowledge-based
approaches are established based on qualitative models, such as causal analysis or expert
systems, and analytic-based algorithms usually employ mathematical models built from first
principles, while the data-based algorithms are directly constructed from the process mea-
surements [1]. However, considering practical industrial processes, the complicated mecha-
nisms and interactions among all the existing PVs make the first principle modeling diffi-
cult, and the lack of a complete understanding of a process also degrades the performance
of knowledge-based models. On the other hand, owing to the availability of a large amount
of stored process data, data-based approaches offer a potential effective alternative solution
to the other two types of approaches.

Among the existing data based fault detection and diagnosis approaches, multivariate
statistical process monitoring (MSPM) approaches play an important role due to their capa-
bility to handle high dimensional process observations, by compressing the high dimensional
raw measurements into lower dimensional latent features. However, the effectiveness of the

MSPM algorithms can be achieved only when the corresponding assumptions are satisfied.
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Figure 1.1: Overview of the fault detection and diagnosis algorithms discussed in this thesis,
as denoted in the shaded nodes
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Generic assumptions of most MSPM algorithms include the unimodal, time-invariant and
stationary characteristics of industrial process. In practice, processes are more complicated
than the assumptions of the MSPM algorithms, and such processes can exhibit hybrid and
time-varying characteristics. In most cases, a single MSPM algorithm is not always able
to achieve effective fault detection and diagnosis performance. This thesis starts from solv-
ing a real industrial fault detection and diagnosis problem, namely, to provide early flare
event detection for a refinery process using MSPM approaches. The refinery process under
consideration has a large scale and is composed of different units with a large amount of
process observations but with limited process knowledge. The characteristics of this process,
such as high dimensionality, time-varying, non-stationary and inconsistency, make the early
detection problem more challenging. Various MSPM algorithms are explored and compared,

and a systematic hierarchical framework is proposed to integrate different MSPM algorithms



to extract informative signatures to predict the faulty events.

Most of the existing MSPM algorithms are restricted to process monitoring when the
process is operated under a single operating mode. However, a process can have multiple op-
erating modes switching among each other. The statistical properties of different operating
modes can vary significantly, so that the conventional MSPM algorithms may not be able to
deal with them. To address the multimodal problem, extensions have been made based on
the conventional MSPM approach. One straightforward solution is to use multiple MSPM
models to describe more than one operating mode. However, such extension might not be
able to well model the process dynamic and uncertainty brought by the operating mode
switching. As a result, the probabilistic models are considered as a more expressive mathe-
matical tool for multiple operating mode modeling in this thesis. Meanwhile, for continuous
processes, temporal correlations are naturally encoded in the collected process datasets. Such
temporal correlations need to be considered when building a model for process monitoring.
In recent decades, the hidden Markov models (HMMs) have been widely employed to solve
fault detection and diagnosis problems for processes with temporal correlations and mul-
tiple operating modes [5]. However, HMMs have two inherent independence assumptions,
namely, (i) in first order HMMs, the current state is assumed to be only dependent on the
state immediately prior to it and independent of all the other previous information; (ii) the
current observation is only dependent on the current state and independent of all the other
previous information. Here, the state of HMMs is equivalent to the operating mode. These
independence assumptions will degrade the performance of HMMs when they are violated.
In this sense, under the probabilistic framework, while preserving the advantages of HMMs,
a more flexible modeling structure is deployed to enhance the fault detection and diagnosis
performance for complicated processes.

To reduce the restriction of HMMs and facilitate the feature extraction, conditional
random field (CRF) model is introduced to solve the fault detection and diagnosis problems

for processes with multiple operating modes and complicated temporal correlations. The



fault detection and diagnosis performance of CRFs has been demonstrated to be superior
to HMMs, and extensions based on the conventional CRF models are proposed to solve the
missing data, variable selection and multiple operating condition problems. This forms the

second part of this thesis.

1.2 Literature Review

As illustrated in Fig. 1.1, based on the available process information that can be utilized for
process monitoring, there are three categories of monitoring strategies, including knowledge-
based, analytic-based and data-based algorithms. Data-based algorithms are flourishing over
decades and have become a promising means to deal with complicated process monitoring
problems without the need to know complete process knowledge. As the core problem for
data-based process monitoring is to extract discriminative features from the raw process
observations, numerous algorithms have been developed to address different process data
characteristics, among which the conventional MSPM and probabilistic graphical models
have shown promising potentials and attracted increasing attentions from researchers. In this
section, the data-based fault detection and diagnosis algorithms are first reviewed, and then
the conventional MSPM and probabilistic graphical model based algorithms are revisited

and summarized subsequently.

1.2.1 Process Data Based Fault Detection and Diagnosis

Data based fault detection and diagnosis algorithms are developed on the basis of process
historical data, without the requirement of prior process knowledge. According to differ-
ent mathematical techniques utilized, the existing data based fault detection and diagnosis
approaches can be generally classified into statistical and non-statistical categories [6]. In
the statistical category, random disturbances are considered and the process is treated as a

stochastic process. The normal process operations are considered to follow particular statis-



tical assumptions and modeled by selected probabilistic distributions, where the unknown
parameters are identified by historical data. During online monitoring, once a fault occurs,
process observations will experience unexpected changes and deviate from the predefined
distributions of normal operations. Such deviations can also be used for fault diagnosis. By
expanding the existing works, the following statistical process monitoring (SPM) algorithms

are explained.

Univariate Statistical Process Monitoring
As one type of the earliest SPM strategies, the univariate control charts are proposed to
monitor process production performance online, so that timely correction measures can be
done to bring the process back to normal. Shewhart control charts [7] and the cumulative
sums charts [8] are two typical examples.
However, limited by the univariate property, such control charts can hardly accommo-
date the correlations of multidimensional PVs, resulting in misleading monitoring results.

Therefore, the MSPM techniques are proposed.

Multivariate Statistical Process Monitoring

Multivariate statistical approaches have the capability to excavate the latent information
underlying the high dimensional PVs. The main objective is to transform a number of cor-
related PVs into a smaller set of uncorrelated components, which are monitored to detect
process abnormalities. As typical examples, the principal component analysis (PCA) [9] and
partial least squares (PLS) [10] approaches have been first proposed to perform dimension
reduction, and then some statistical metrics, such as Hotelling’s T2 statistic [11] and squared
prediction error, are computed for real-time process monitoring. However, the traditional
MSPM algorithms have inherent statistic assumptions, such as unimode, Gaussian distri-
butions and linearity, etc.. For example, the traditional PCA algorithm assumes that the
analyzed data are collected from a linear process under a stationary operating condition [12].

As improvements, various extended works [13, 14, 15] have been proposed.



Statistical Classifiers

Essentially, fault diagnosis can be treated as a classification problem, where the classical
statistical pattern recognition framework is adopted as potential solutions [6]. Meanwhile, in
order to deal with process uncertainty, the probability theory is introduced. The probabilistic
framework provides sufficient flexibility to model the data characteristics under multiple
operating modes, and it is also able to model the process dynamics and temporal correlations
in the process observations. Gaussian mixture models [16] and HMMs [17] are two typical
examples.

Moreover, conventional MSPM strategies have been extended to probabilistic counter-
parts, such as probabilistic PCA [18]. In this way, by integrating with the above multimodal
modeling, probabilistic counterparts of conventional MSPM approaches can be used to solve
process monitoring problems in multiple operating modes. Among all the existing probabilis-
tic frameworks, probabilistic graphical models have the simplicity of modeling, generalization
and interpretation, and demonstrated effectiveness in process monitoring. Therefore, it is
becoming a promising research subject in recent decades. The details of probabilistic graphic

model based fault detection and diagnosis will be explained in the following sections.

Non-statistical Classifiers

Different from statistical fault detection and diagnosis algorithms, the non-statistical ap-
proaches do not rely on statistical assumptions of process observations. More straightfor-
wardly, parameterized classifiers are established, where a typical example is neural network
[6]. Various network architectures are developed to solve different fault diagnosis problems,
in both supervised and unsupervised manners. The non-statistical algorithms mainly de-
pend on parameterized models to describe multiple operation conditions, and some feature

extraction algorithms, for instance, wavelet analysis, are used for data pre-processing.



1.2.2 Conventional MSPM Approaches Based Fault Detection and
Diagnosis

The conventional MSPM algorithms are developed based on statistical theory to extract
latent information from process observations with reduced dimensions. In practice, apart
from high dimensionality, the collected data from industrial processes usually have multiple
characteristics, for example, non-Gaussian distribution, nonlinear correlation, randomness,
multimodal and dynamic characteristics, etc.. To address this problem, different MSPM
approaches need to be established for accurate discriminative feature extractions.

Due to the limitation of standard PCA with inherent assumptions, several improved al-
gorithms have been proposed. For instance, to address process dynamics, dynamic PCA has
been proposed by introducing lags into the observations [19]. Kernel PCA was proposed
[20] by introducing a kernel function to make the nonlinear observations tractable with lin-
ear approach. For non-Gaussian process observations, the independent component analysis
(ICA) algorithm was developed to generate appropriate latent components for further pro-
cess monitoring [21, 22]. These improvements are motivated by modeling the characteristics
of process observations.

Another way of improvement is to adjust criteria of feature extraction for more accurate
fault detection and diagnosis. For example, the standard PCA performs dimension reduction
while preserving significant variability in the extracted features. Unlike standard PCA, the
linear discriminant analysis achieves dimensionality reduction while preserving maximum
discriminative information for fault classification [1]. By introducing dynamic autocorrela-
tions into the latent variables during modeling, the slow feature analysis (SFA) approach is
formulated as a state space model and then the latent variables are extracted and sorted by
the varying velocity [23]. By using SFA model, normal operating condition deviations can
be differentiated from the actual faults with dynamic anomalies. Similar works can be found
in [24].

Even though there exist lots of MSPM algorithms, it is not possible to find one MSPM



approach that is effective to all process monitoring problems. The process complexity and
time-varying properties make fault detection and diagnosis problems even more difficult,
therefore the development of efficient hybrid process monitoring systems becomes an attrac-

tive research subject [6].

1.2.3 Probabilistic Graphical Model Based Fault Detection and
Diagnosis

Probabilistic graphical models are formulated by integrating graph theory and probability
theory into a unified modeling framework [25]. A probabilistic graphical model can be spec-
ified by the model graphical structure and a set of local functions [26]. The graphical model
structure qualitatively depicts the correlations among the selected random variables, and
the local functions are designed to quantitatively describe the random variable dependences.
Effective probabilistic inference and learning strategies can be employed to obtain insights
of the process operating status.

Probabilistic graphical models can be classified into diversified categories from different
perspectives [26]. From modeling perspectives, probabilistic graphical models can be sepa-
rated into generative and discriminative models [27]. Considering temporal correlations in
a process, probabilistic graphical models can be classified into static and dynamic models.
Extending static probabilistic graphical models to a linear chain or more complicated struc-
tures is one way to develop dynamic probabilistic graphical models. In this way, process
uncertainty, temporal correlations and multimodal operating situations can be formulated

in a unified model for fault detection and diagnosis.

Probabilistic Generative Model Based Fault Diagnosis
Probabilistic generative models formulate the joint probability of selected random variables
and encode the correlations among random variables into the obtained models. Based on

the learned model, inference can be performed to estimate latent variables from historical



process observations, where latent variables can be discrete operating modes or continuous
latent features. Bayesian networks include a wide range of probabilistic generative models
and have been employed to solve many fault diagnosis problems in complicated industrial
processes [28].

Bayesian networks start from modeling the joint probabilistic distributions of random
variables and rely on certain independence assumptions to simplify the joint probability.
Static Bayesian networks, for example, Bayesian classifiers and probabilistic mixture models,
assume samples from different sampling instants independent with each other, which are
used to solve multimodal process monitoring problems. Specifically, finite Gaussian mixture
models [29, 30], mixture probabilistic PCA models [31] and mixture Bayesian regularization
based probabilistic PCA models [32] have been proposed to describe the process multimodal
property by formulating the process observations with different probabilistic distributions.

However, such mixture models do not concern about process dynamics, such as oper-
ational mode transitions, and most of them commonly assume that process data follow a
Gaussian distribution in one operating mode. As an improvement, dynamic Bayesian net-
works are proposed by introducing temporal correlations into random variables. In this way,
linear Gaussian state-space model is obtained by formulating autocorrelations in the latent
variables of probabilistic PCA model [33]. Autoregressive dynamic latent variable models
have been proposed to capture static and dynamic correlations in raw data simultaneously
for process monitoring [34]. The dynamics of continuous latent features are generally repre-
sented in a state space form, and the dynamics introduced into the discrete latent variables
are usually formulated as a Markov process, such as operating mode transitions.

By such a formulation, a series of switching models have been proposed. For example,
multiple autoregressive dynamic latent variable models have been integrated in a switching
framework to monitor processes with multiple operating modes [35]. Similarly, the static
mixture probabilistic PCA model can also be extended into a dynamic form with switch-

ing mechanism among the subcomponents [36]. More generally, these formulations can be
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assorted into HMM frameworks.

HMM is a probabilistic sequence model for estimating the joint probability distribution
of hidden states and observations, where states correspond to different operating modes.
HMDMs have the advantages of simplicity and extensibility, and perform well at modeling
state transitions. Considering the industrial data quality, various feature extraction algo-
rithms are combined with HMMs to achieve a satisfactory process monitoring performance,
as mentioned above. Moreover, in dynamic process monitoring, HMMs are effective methods
to deal with missing data, outlier issues and time-varying transitions [17, 37]. However, prob-
abilistic generative modeling makes it necessary for HMMs to require explicit probabilistic
distributions to model the observations, and to simplify the factorization, two independence
assumptions need to be satisfied in HMMs [27]. Even though many extended HMMs are
proposed to relax the inherent assumptions of the conventional HMMs, for example, autore-
gressive HMMs [38] and higher-order HMMs [39], etc., such extensions bring up increased
computational loads and make the modeling, training and inference of HMMs more complex.
Moreover, even with the extended HMMs, one still needs to find appropriate probabilistic
distributions to model process observations, which might degrade the fault diagnosis accu-
racy once the proposed probabilistic model is not accurate.

As a result, probabilistic discriminative models are proposed to compensate the potential
drawbacks of generative models. Instead of modeling the joint probability, probabilistic
discriminative models directly formulate and optimize conditional probability. In this sense,
no explicit probabilistic distributions are required to model the process observations, and

the independence assumptions for joint probability factorization can also be relaxed.

Probabilistic Discriminative Model Based Fault Diagnosis
Compared with probabilistic generative models, there are fewer existing works on the
probabilistic discriminative model based fault diagnosis. Similar to Bayesian networks, prob-

abilistic discriminative models can also be classified into static and dynamic categories. A
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typical static probabilistic discriminative model is logistic regression model, which has been
employed to solve the rolling element bearing fault diagnosis problem and shows superior per-
formances compared with artificial neural networks and support vector machine (SVM) based
algorithms [40]. On the basis of the logistic regression model, a statistical feature selection
approach has been proposed to aid fault diagnosis in the presence of massive historical data
[41]. By incorporating temporal correlations, dynamic probabilistic discriminative models
are proposed, for example, CRFs. CRFs are a type of probabilistic discriminative counter-
part of HMMs, and have demonstrated better performance than HMMs in many application
fields, such as natural language processing, image processing and speech recognition, etc.
[42, 43, 44]. In bearing fault classification problem, the CRF scheme has a better fault clas-
sification performance than HMMs [45]. A neighbourhood hidden CRF (HCRF) model is
utilized to address the condition monitoring problem of large scale wireless sensor networks
[46] with a demonstrated superior performance to HMMs. However, unlike HMMs, CRFs
have been seldom used in the process monitoring domain. This fact motivates the works of

this thesis. In the following section, contributions of this thesis will be explained.

1.3 Thesis Outline

In Chapter 2, the main mathematical backgrounds and techniques used in this thesis are
illustrated and explained in details. As a major component of this thesis, before the in-
depth discussions of the CRFs based fault detection and diagnosis approaches, the model-
ing, learning and inference procedures of CRFs are formulated. Subsequently, in parallel
with the traditional maximum likelihood estimation (MLE), the expectation maximization
(EM) and variational Bayesian (VB) strategies are explained as two alternative parameter
estimation approaches when latent variables are introduced into CRF models. Both EM
and VB algorithms have the capability to handle latent variables, with the unknown model

parameters and the posterior probabilities of the latent variables calculated iteratively un-
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til convergence. However, EM and VB algorithms have different properties and perform
differently when dealing with different problems. Therefore, as preliminaries, EM and VB
algorithms will be compared.

In Chapter 3, a hierarchically distributed MSPM approach is proposed and an early
flare event prediction and diagnosis problem from a real refinery process with large scale
plantwide settings is analyzed and solved. The limited access to process knowledge and
availability of large amount process historical data make this practical problem a good real
world template to develop and evaluate data based process monitoring strategies. In this
work, the challenges of the early flare prediction problem and characteristics of the refinery
process are first presented. Furthermore, the performance and limitations of the existing
MSPM algorithms are analyzed. Finally, a hierarchical monitoring framework is designed
and multiple conventional MSPM algorithms are integrated into this proposed framework for
early fault detection and diagnosis. For application purposes, an adaptive online strategy is
developed to improve the flare prediction accuracy and reduce the false positives. The early
flare event prediction performance of the proposed algorithm is demonstrated through this
real industrial application, and fault diagnosis is developed under a hierarchical monitoring
structure. Because the flare event prediction problem has a limited number of faulty events
available, the proposed unsupervised process monitoring approaches are appropriate solu-
tions. However, in other cases, fault labels are accessible as references, and supervised process
monitoring approaches can learn the relationship between the process observations and fault
labels directly, potentially contributing to a more efficient fault diagnosis. Therefore, the
supervised process monitoring algorithms are further explored in the following chapters.

In Chapter 4, a supervised process monitoring algorithm based on CRF is first proposed
with consideration of missing observations. To begin with, CRFs and HMMs are compared,
in which the inherent independence assumptions of HMMSs are illustrated. Being a discrim-
inative modeling approach, it is proven that CRFs are reduced to HMMs in special cases.

Second, by extending from fault diagnosis to mode diagnosis, a LCCRF based process op-
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erating mode diagnosis algorithm is proposed. Third, the standard LCCRF structure is
extended to solve process monitoring problems in presence of missing observations. The ex-
pressive strength of CRF's comes from their ability to extract more complicated features, and
in return, such advantage also increases the challenges. Therefore, an efficient training and
inference algorithm of the proposed CRF model is developed. The solution is established on
the basis of MLE, aiming to directly maximize the conditional probability of the proposed
CRF model. Finally, a numerical case study and a pilot scale experiment are conducted to
demonstrate performance of the proposed algorithm.

In Chapter 5, information redundancy along with a large amount of PVs in industrial
processes is taken into consideration. An outstanding advantage of LCCRF is that it has the
capability to model complicated and correlated features without the need to specify their
probabilistic distributions. However, fault-irrelevant variables may also be used and treated
equivalently to the fault-relevant variables during the CRF modeling. As a result, undesired
disturbances captured by the redundant features may have undesired impacts on the final
fault diagnosis performance. To solve this problem, a two-stage HCRF model is developed.
In the first-stage of HCRF, the max-margin training strategy is employed to discriminate
multiple operating modes, and by recursively eliminating fault-irrelevant variables, the most
relevant variables can be selected during the first-stage training process. The second-stage
HCREF is then followed by adapting the monitor to the dynamic changes of the process with
time-varying model structure. Therefore, switchings among process operating modes can be
captured timely. To demonstrate the performance of the proposed algorithm, a simulation
study is conducted with comparisons to the conventional algorithms and is demonstrated
superior performance.

In Chapter 6, the monitor is extended from the process with single operating condition to
that with multiple operating conditions. Considering the fact that multiple operating modes
can exist at any specific operating condition, single CRF model is not sufficient to handle

such more complex scenario. Therefore, an extension from a single CRF to multiple CRF's
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based monitoring framework is proposed, with one CRF model designed for each operating
condition. As operating conditions switch between each other in a continuous process, CRF
models switch alongside with switching of the corresponding operating conditions. Second,
based on the proposed switching CRF (SCRF) model, an effective training algorithm is
developed by using the EM algorithm introduced in Chapter 2. The presence of the unknown
operating conditions introduces latent variables in a conditional probabilistic framework and
makes the training process more complicated. As a result, a simplified SCRF parameter
estimation strategy is developed by introducing another indicative latent variable. Third,
for online implementation, an online inference approach based on the proposed SCRF model
is formulated. The performance of the developed SCRF framework is evaluated through a
simulated continuous stirred tank reactor (CSTR) process and a hybrid tank experimental
setup.

In Chapter 7, the entire thesis is summarized and future works are presented based on

the complete works and the practical needs for further improvements.

1.4 Main Contributions

As a brief summary, the main contributions of this thesis are listed below:

1. Developed a hierarchically distributed process monitoring framework and solved a prac-

tical early flare event prediction and diagnosis problem;

2. Performed a systematic analysis and comparison between the widely used HMMs and
CRFs, then proposed a CRF based process monitoring framework as a fundamental
structure of this thesis. Extended the standard CRF to a marginalized CRF structure

to handle missing observations;

3. By making use of the discriminative modeling advantages of CRFs, proposed a two-
stage CRF structure considering both variable selection and time-varying adaptation

to process dynamics;
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4. Developed a switching CRF model based on the standard CRFs to address the moni-

toring issues in a process with multiple operating conditions.
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Chapter 2

Mathematical Foundations

In this chapter, the main mathematical techniques employed throughout this thesis will be
introduced. Starting from the discriminative model formulation, CRF's are explained. Then,
the EM and VB algorithms are formulated in details, and finally comparisons between these

two algorithms are made.

2.1 Conditional Random Fields

In general, CRF's belong to probabilistic model category that is created to interpret depen-
dencies among different random variables. CRFs are first proposed by Lafferty et al. [43]
in 2001 for the purpose of sequence labeling and segmentation. CRFs are a type of proba-
bilistic discriminative models with variable dependencies embedded into a graphic structure.
On the basis of CRF formulation, various applications can be performed, such as speech
recognition, image segmentation and information extraction from an article, etc.. Owing
to the discriminative formulation, CRFs have the capability to model complicated depen-
dencies among variables. At the expense of increasing model complexity, efficient training
and inference algorithms are necessary to make CRF's tractable. To develop a CRF based
algorithm, establishing the graphical model, training and inference are three basic problems

to solve, which will be reviewed in the following section.
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2.1.1 Formulation of CRFs

As a probabilistic graphical model, a CRF can be specified by two components, namely,
a graphic structure G(V, E) that qualitatively defines the variable dependencies and a set
of local functions that quantify the variable correlations [26]. Here, V and £ denote the
vertex and edge sets of graph G, respectively. More specifically, as shown in Fig. 2.1, let
Q and O denote two sets of random variables, where ) represents a finite label sequence
and O represents observations. In the graphical structure G(V, £), vertex set )V is composed
by the label space Q@ = (Q,),cy, and & represents the edges, including all the connections
among @ and O. Then a CRF (Q, O) is formulated as a conditional distribution of @ given

observation O as follows [27]:

P(Q|0O;0) = exp{F(Q,0;0)} (2.1)

Z(0)

where F(Q, O; ©) is composed by the feature functions of CRF, and Z(O) is an observation-
dependent normalization term, known as the partition function, with the following formula-
tion:

Z(0) = exp{F(Q',0:0)} (2.2)
T

For different applications, the conditional probability in Equation (2.1) can be interpreted
in different ways. Considering a practical industrial example of flare gas composition infer-
ence from the flare images, the flare gas composition can be first labelled to finite number of
classes, namely, ¢ € {1,2,---, P}, and different flare gas compositions can generate different
types of flares. Due to the change of process, the compositions of flare gas could vary along
with time, which can be identified from the flare image sequence. Here, @ = [Q1, @2, - -, Qn]
is a finite sequence of composition labels, and O denotes the pixel data from the flare images.
Without explicit probabilistic distribution modeling, the conditional probability of the com-
position label sequence given all the flare images are formulated directly as a CRF model,

which can be used to predict the composition label sequence given a new set of flare images
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by maximizing the conditional probability P(Q|O).

As one of the solutions; a linear-chain graphic structure G(V, £) shown in Fig. 2.1 can
be used to describe the variable dependencies in this problem. In the linear-chain structure,
the first-order Markov dependencies are assigned to the tag sequence @ which enables the

adjacent connections between (); and Q;_;.

Figure 2.1: A LCCREF structure to solve the flare gas composition classification problem

The graphical structure G of a CRF model can be constructed from prior knowledge and
is problem dependent. In this problem, it is assumed that the flare gas composition changes
over time and follows the first-order Markov property, therefore it can be modelled by a
linear-chain structured CRF model. After fixing the graphic structure G of a CRF model, a
set of local functions need to be defined to quantify the correlations corresponding to each
edge in &€, which are called feature functions. Specifically, in this example, three types of
feature functions are defined as follows:

]_ lf ,;zland i—1 — (g2
Fir (Q, Qiy) = Q=4 Q=4 (2.3)

0 otherwise

O.,; lf i — 1
fa(Qy 0y = 11O =1 (2.4)

0 otherwise
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O;—1) Q=
fis(Qi, Oim1) = f10i) HQi=a (2.5)

0 otherwise

where f(-) represents user selected functions, for example, in linear or quadratic forms.
The first feature function fy, (Q;, Q;—1) describes the transitions among different flare gas
compositions. Since Q; = q € {1,2,---, P}, the total number of fi (Q;, Q;_1) should be P?
and all the possible transitions are considered. Correspondingly, each fi, (Q;, Q;—1) has a
weighting factor 6, to model the strength of correlation between @Q); and @Q);_;. Similarly,
the second and third feature functions describe the correlations between the current flare gas
composition @); and the flare image pixel data [O;, O;_1]. The previous observations O;_; is
employed to enhance the classification accuracy of current flare gas composition @);.
Explicitly, with the feature functions defined in Equations (2.3) - (2.5), the CRF model

in Equation (2.1) can be re-formulated as

i=1 k1 kQ

(2.6)

where the normalization term Z(O) has the following form:

Z(O) = Z eXp{Z[Z 9k1 fkl (Qiu C2;71) + Z esz’w (in Ol) + Z eksfks (in Olfl)]} (27)

i=1 K

Comparing with Equations (2.1) - (2.2), the explicit formulation of function F(Q, O; O)

is a linear combination of feature functions, shown as follows:

N
F(Q0:0)=> > 0 fr,(Qi Qict) + D 01y fro (@i, 01) + Y 01 1, (Qi, Oia)] - (2.8)
i=1 k ko ks

With such formulation, the numerator of P(Q|O;©) can be factorized into a series of
exponential functions. The positivity and monotonicity of the exponential functions pro-

vide higher probability to the features with higher significance to classification. Meanwhile,
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the exponential formulation also facilitates the log likelihood computation during the CRF
training process. In this case, unlike the probabilistic generative models, one does not need
to find explicit probabilistic distributions to model the evidence O given label sequence Q.

Various CRF's have been proposed by extending the graphic structure G as shown in Fig.
2.2. Such variants have more complicated dependencies among the vertices V and result
in increased computational loads, which is a cost paid for better modeling and expressive
capability. As a result, efficient training and inference strategies need to be developed for

the designed CRF models.

Skip chain CRFs General CRFs

Figure 2.2: Two variants of CRFs [27]

2.1.2 Training of CRF's

In section 2.1.1, the basic formulations of CRFs have been introduced. In this section, by
taking the LCCRF in Equation (2.6) as an example, the training procedures will be explained.
For the variants of CRF models, similar idea has been employed for model training.

In CRF modeling, the conditional probability P(Q:.n|O1.n; ©) is formulated in Equation
(2.6) when provided with fully labeled training dataset {Q1:n, O1.n}. The unknown weighting
factors © need to be estimated based on the training dataset {Qi.x,O1.n}. The objective
function is the log likelihood of the conditional probability P(Q;.n|O1.x; ©). By maximizing

the log likelihood, the optimal estimation of © can be obtained, which is called MLE. On
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the basis of the CRF formulated in Equation (2.6), the objective function for parameter

estimation is formulated as below:

. 2

[(®) = Z[Z Oy fr (Qi; Qi1) +Z Ors fro (Qi, O5) +Z Oks [ (Qi, Oi—1)] —log Z(O) — ||2@0|2|2
=1k ko k3

(2.9)

where o is a regularization parameter in the penalty term to avoid overfitting.

In Equation (2.9), it can be observed that the first three terms of the objective function are
a simple summation of weighted feature functions, and the entire computational complexity
of the CRFs arises from the log normalization term log Z(O), which also makes the closed-
form solution of © unavailable. Therefore, the numerical optimization algorithms, such as
quasi-Newton algorithms, are employed to get the solution. Taking the unknown parameter

0, as an example, the corresponding gradient is derived as

8l(@) _ i 0 Zkl le fkl (QZ’ Qi—l) 1 aZ(O) ekl

by, 00, Z(O) 00, o2
_kal Qi Qi1) ZZ{fh Q. Qi) eXp{Z 1> b (@ Q)+
I =1 k
Zekgf;m Q.. O) +Z€k3fk3 QL. 0v DIV} — ‘i’g
0

:;flﬂ(QhQil) — Z ;{fkl(QQ, Q._1) - P(QL.x01N)} — ;21

- 0
:kal (Q'L:Qz 1 Z Z Qsz—l‘Ol N) fkl (Q;’Q;_l) — %

=1 i=1 Q/ /

(2.10)
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Similarly, the gradients of other unknown parameters are computed as follows [27]:

N N
) = 3 @00 = Y Y P@UI0ww) - @100 — 22
2 i=1 i=1 Q
aO) < . 6 =
86k - Z fk3<Qi7 Oifl) - Z Z P(Q;‘OlN) ’ f@(@;? Oifl) - 0__5
3 i=1 =1 Q]

The above gradients can be interpreted as the subtraction between the actual activated
feature function values and the expectation of the activated feature function values. When
the gradients are equal to zero, this means that the marginal probabilities of actual labels
are equal to one with the estimated model parameters. Following this search direction,
the optimal parameter estimation can be achieved. The convexity of the objective function
makes the global solution of optimization achievable [27].

In the above gradient calculation, the most complicated part is to derive the marginal
probabilities P(Q}, Q}_;|01.y) and P(Q%|O1.n). As the increase of CRF model complexity,
the computations of the marginal probabilities get harder. As a result, efficient inference

strategies of CRF models need to be further explored.

2.1.3 Inference of CRFs

In CRFs, two common inference problems should be considered, namely, the marginal prob-
ability calculation in the training process and the most likely label sequence estimation when
given new observations [27]. The optimal solutions of both inference problems need to be
searched from an exponential number of possible combinations. Therefore, efficient infer-
ence algorithms are proposed to find out the solutions. Still based on the LCCRF defined
in Equation (2.6), a forward-backward propagation strategy can be employed to obtain the
exact solutions of the inference problems.

The calculation of the marginal probability P(Q;, Q;_1|O1.x) is conducted from the fol-
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lowing formulation:

1

P(Qw Qi—l |01:N) - ZQLN exp F(Q11N7 Ol!N;

0) { Z exp F'(Q1:i-1, O1.n; ©) }-
Qrii—2

€xXp F(Qi—l:i7 Ol:N; @) . { Z exXp F(Qi:N7 Ol:N; @)}

Q'H—I:N

(2.12)

where the enumeration of all the possible label sequences 1.y is integrated, which can be
solved by forward and backward propagations.
Take the LCCRF defined in Equation (2.6) for example, the forward propagation can be

separated into three procedures.

1. Initialization

For initialization, an initial term is created as a1 (Q1) = exp{>_,, Ok, fr, (@1, 01)}

2. Propagation
For propagation, the linear-chain structure enables the updated feature functions in-
cluded into the intermediate forward variable o”(Q;, Q;—1) as the chain length increas-

ing from ¢ = 1 to ¢ = 2 as below:

a®(Q2, Q1) = ar(Q1)-exp{D O, [, (Q2, Q)+ Ok frs(Q2, 02)+ Y _ Oy fry (Q2,01)}
k1 ko k3
(2.13)

which can be generalized to the cases ¢ = 3,---, N, as follows:

o (Qi, Qic1) = i1 (Qic1) - exp{ D> Ok, f, (Qi Qict) + > Ok fis(Q1, 01) + > b,
k1 k2 k3

’ fk3 (Qz; Oi—l)}
(2.14)

where the variable o;_1(Q;_1) is derived from the previous integration result.

3. Integration
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For integration, the intermediate forward variable o'®(Q,, Q1) will be marginalized as

below:

Za Qz; Ql (2-15)

which can also be generalized to the cases with ¢ = 3,---, N as

= Z a(i)(Qi, Qi-1) (2.16)

Qi1

The above propagation and integration procedures will be performed iteratively with ¢
alongside the linear chain.

LN

The forward propagation is able to generate a sequence of forward variables {a;(Q;)}:

with the following formulation:

Q) =) exp{Z > Ok fi Qi Q1) + D Oy [ (Qir, Oir) + > Oy [y (Qir, O 1)1}
Ql i—1 =1 k'l kz k‘g
(2.17)
which can be used to compute the denominator and the first summation of the numerator
exponential term in Equation (2.12).
The backward propagation has similar procedures to the forward propagation, but with

a reversed direction. The backward propagation procedures have been summarized as below.

1. Imitialization

The backward propagation initialization starts from the end of the sequence, formu-

lated as Sy (Qn) = 1.

2. Propagation
Starting from the end of the sequence, the feature functions are propagated backwards
to the beginning of the sequence. With ¢ = N — 1 to ¢ = 1, the backward intermediate

variables 37 (Q;,1,Q;) are computed as
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BNQis1, Qi) = Bis1 (Qis1) - exp{D_ Oy fi, (Qis1, Qi) + Y Oy fro Qi1 Oir) +
k1 k2

Z Ok s (Qit1,0i)}
k3
(2.18)

3. Integration
After information propagation, the intermediate backward variable 833 (Q;41, Q;) will

be marginalized as below:

Bi(Qi) =D BY(Qir, Q) (2.19)

Qi+1
Similar to the forward propagation, for ¢ = NN — 1,.-- 1, the backward propagation

enables a marginal sequence as

N
Bi@) = > exp{D > O fr(Qir, Q1) + Y Ok fro(Qirs Or) + > Oty fra(Qir, O1)]}
ks

Qit1:N =i k1 ko
(2.20)
which can be used to compute the third exponential summation term of the numerator in
Equation (2.12).
As a result, the first inference problem of CRFs can be solved by making use of the

forward-backward propagation results as below:

@i—1(Qi-1) - exp F(Qi—1., O1:n; ©) - Bi(Qs)
ZQN an(@n)
_ (@) - Bi(@)
ZQN an(@n)

P(Qu Qi—1|01:N) -
(2.21)

P(Q;]O1:n)

The second inference problem of CRFs can be represented to estimate the most likely
label sequence, namely, Q* = argmaxg P(Q[Oycw; ©). To solve this problem, Viterbi decod-

ing algorithm will be employed by following similar patterns to the backward propagation
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procedures [27].

In summary, the most fundamental exact inference algorithms of the LCCRF's have been
formulated in this section as the preliminary of this thesis. The extended CRF based ap-
proaches proposed in the subsequent chapters will need their specifically designed inference

algorithms to get the solutions, which are based on the basic forward-backward algorithms.

2.2 Expectation Maximization (EM) and Variational
Bayesian (VB) Algorithms

The basic problem of MLE is to search for the optimal solution of the unknown parameters
in a probabilistic model, which can maximize the likelihood of the observations. When the
variables in the established probabilistic model are all known, the standard MLE algorithms
work well. However, when there exist latent variables, such as hidden operating modes,
unknown distribution of the parameters or incomplete observations, the application of the
standard MLE algorithms turns out to be difficult. In this situation, the EM and VB
algorithms are proposed to efficiently solve the MLE problem in an iterative way by involving
the latent variables into the solution with reduced computational load. This section briefly
introduces the mathematical background of the EM and VB algorithms, and then discusses

the consistency and difference between the EM and VB approaches.

2.2.1 EM Algorithm

The EM algorithm is composed of two steps, the expectation step (E-step) and maximization
step (M-step), which are performed iteratively until convergence. In the E-step, the posterior
distribution of latent variables are estimated by the posterior probabilities calculated with
the observed variables and the current estimate of model parameters. In the M-step, with
the estimated posterior distribution of latent variables in the E-step, the model parameters

are updated to maximize the likelihood function [47].
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Assume a complete dataset D, consists of the observed dataset D, and the latent dataset
Dy, ie., D. = {D,,D,}. The probabilistic distribution of D, is parameterized by an
unknown parameter set ©. An optimal estimation of © that maximizes P(D,|0) is known
as an MLE solution. However, in presence of the latent variables D,,, instead of directly
maximizing P(D,|©), the lower bound of the actual log likelihood, known as Q-function, is

maximized in the following E-step and M-step [47].

e F-step: Calculate the posterior probability with respect to the latent variables and for-

mulate the Q-function

Q(@|@(k)) = Ep(Dm|Do;®(k)) log{P(Do, Dm’@)} (222)
where k indicates the current iteration.

o M-step: Find ©%+Y as any value of © € Q that mazimizes the Q-function

Q" eM) > g(ele™) (2.23)
where (2 is the solution space of ©.

For the EM algorithm, it is critical to prove that after each EM iteration, the likelihood
function of the observed dataset, i.e., log P(D,|©), does not decrease, which has been proven
in [48] and will be explained briefly as follows.

First, according to Bayes rule, the following relationship between D, and D,, holds:

_ p(De;0)

p(D¢|Dy; ©) = ————= 2.24
DD = D, 6) .
where p(-) represents the probability density function of the target dataset.
Then the log likelihood of the observed dataset can be represented by
logp(Do;@) = logp(Dm@) —lng(DC|DO; @) (225)
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Taking expectations of both sides in the above equation with respect to the conditional

probability of D,, given D, parameterized with ©®), one can get

Ep(Dm|Do;@(k>){10gp(Do§ 0)} = Ep(Dm\DO;G(k)){logp(Dc; )} — Ep(Dm|DO;®(k)){logp(Dcho; 0)}
= Q(ele™) — H(ele™)
(2.26)

Since the observed dataset D, has no correlation with D,,, the above equation can be

simplified as

logp(Dy; ©) = Q(016W) — H(B]6®) (2.27)
Therefore, one can have that

log p(D,; ©% ) —log p(D,; ©W) = {Q(O* TV |0®) — Q(OW|e™)} - 2.28)
2.28

{H(@(k+1)|@(k)) _ H(@(k)|@(k))}
The difference between H(O*+1)|©*)) and H(O©®|0®) is calculated as

H(@(k+1)|®(k)> - H(@(k)lg(k)) = Ep(Dm\DO;@(k)){logp(Dcu)o; 9<k+1)) - logp(Dc|Do; @(k)>}

p(De|Dy; O D)
= Ey(D,pos0m) {108 »(D.|D,; 6®)

(2.29)
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Applying Jensen’s inequality, the above equation turns out to be
p(De| Do; ©4F1)
P(De|Do; ©W)

p(Dm|Do; @(’Hl))
= log / p(Dyn|D,; ©F)) . dD,,
Dnm (D ) p(Dm|Do; ©W) (2.30)

~ log / p(Don| Do OV dD,,

H(©" o) — HOeW|eW) <log E,p, p,em)

=0

Therefore, the second difference term in Equation (2.28) is proven to be non-positive.
Together with the first nonnegative difference term derived from M-step, one can conclude

log p(D,; ©%+D) > log p(D,; ©*)) after each EM iteration.

2.2.2 VB Algorithm

As an alternative to solve the MLE problem with latent variables, the VB algorithm is
proposed with more flexible formulation than the EM algorithm. In the following content,

the VB inference and VB-EM algorithms will be briefly reviewed.

VB Inference

Still considering a complete dataset D. = {D,, D,,} following a particular distribution
parameterized by ©, one might be interested in the posterior probability p(D,,|D,; ©) which
may have no tractable solutions. Therefore, a predefined probability distribution ¢(D,,) is de-
termined to approximate the actual posterior. To measure the similarity between p(D,,|D,)

and ¢(D,,), the nonnegative Kullback-Leibler (KL) divergence is proposed as follows [49]:

p(Dm|D,)

D) dD,, (2.31)

Dici (Do) [p(Dn| D)) = — / 4(D,y) log

m

By using the Bayes rule p(D,,|D,) = p(Dy,, D,)/p(D,) in Equation (2.31), the KL diver-
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gence can be further expanded as below:

(D, D,)
¢(Dm)p(Do)

:_/m (D) log ((T) ))dDmHogp(D)

Dict(a(D) [p(D| D)) = — / 4(Dy)log iD,,

(2.32)

where the first integral term is known as variational lower bound, which can be denoted as

L(q(Dy))-

As a result, Equation (2.32) can be rearranged as

log p(D,) = Dk r(q(Dm)|[p(Dim|Do)) + L(q(Drm)) (2.33)

The left-hand side of Equation (2.33) is the log likelihood of the observed dataset, which is
independent of ¢(D,,), so the summation of the KL divergence and L(q(D,,)) can be treated
as a constant with respect to q(D,,). Since the KL divergence is nonnegative, by minimizing
the KL divergence, the lower bound L(q(D,,)) can be maximized. When the approximated
q(D,,) equals to the actual posterior, the lower bound is equal to the log likelihood of the
observations. The objective of VB inference is to compute the approximated ¢(D,,) by either
minimizing the KL divergence or maximizing the lower bound, which is equivalent to solving

an optimization problem.

VB-EM Algorithm
When taking the model parameter © into consideration, the VB inference combined with
EM idea becomes a solution to parameter estimation. Under the VB-EM framework, there

are also two steps performed iteratively [49].

o VB-E step: Calculate the approzimate posterior q(D,,) by mazimizing the lower bound

with fixed parameters

4(D,,) = argmax L(q(D,,), 0")) (2.34)
a(Dm)
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where k indicates the current iteration.

o VB-M step: Find out © by mazimizing the lower bound with fized q(D,,) derived from

E-step

0%+ = argmax L(G(Dy,), ©) (2.35)
o

In summary, the VB-EM framework can be treated as a combination of the VB inference
and the standard EM algorithm. The VB-E step tries to make the lower bound as close
to log p(D,) as possible, and the VB-M step tries to maximize the lower bound, therefore

maximizing the target log likelihood log p(D,).

2.2.3 The Comparison between EM and VB Algorithms

As reviewed in the above two subsections, the main difference between the standard EM
and the VB-EM algorithms lies in the VB inference in the VB-E step. Instead of approx-
imating ¢(D,,), the exact posterior p(D,,|D,) is calculated in the E-step of the standard
EM algorithm, where the KL divergence naturally becomes zero. With the exact posterior
p(Dp|D,), the lower bound in the VB-M step turns out to be

P(Dm, Do; ©)

(D)

=/ P(Din| Do; ©) log

L(©) =/ (D) log dD,,

(D, Dy; ©)

D
p(Dpn|D,; OW) A

m

:/ p(Dp|Dy; ©8) log p(Dyn, Dy; ©) dDm—/ p(Dy|Dy; ©F) (2.36)

m m

-1log p(Dy|Dy; ©%)) dD,,

= Q(e1e%) - Co

where Cg represents that the second term can be treated as a constant with respect to the

unknown parameter ©.
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As a result, the standard EM algorithm is a special case of the VB-EM algorithm. When
the accuracy of p(D,,|D,) is higher than the approximate ¢(D,,), the standard EM algorithm
might achieve better performance than the VB-EM algorithm. On the other hand, owing to
the VB inference procedure, the VB-EM algorithm provides more flexible solutions than the

standard EM algorithm. The following two situations are raised as examples:

1. When dealing with certain complicated distributed D,,, the exact posterior p(D,,|D,)
calculation is intractable. Then the mean-field approximation [50] can be employed to

derive q(D,,).

2. In more general cases, D,, can not only represent the latent variables, but also the
unknown model parameters. Then the posterior distribution of the model parameters
¢(©) can be included and estimated as solutions, rather than a point estimation solution

in the standard EM algorithm.

In summary, both EM and VB algorithms have the capability to efficiently deal with
unknown parameter estimation problem with incomplete dataset, which cannot be achieved
by the standard MLE approach. Compared with EM algorithm, VB algorithm has more
flexibility of modeling the posteriors of latent variables and therefore it is able to deal with
parameter estimation of more complicated models than the EM algorithm. Consequently,
the computational complexity of VB algorithm turns out to be higher than the EM algo-
rithm. On the other hand, the EM algorithm has a simpler formulation and tends to provide
solutions with reduced computational loads than the VB algorithm. However, when the
posteriors of latent variables are too complicated to be derived, the EM algorithm will lose

its effectiveness.
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Chapter 3

Hierarchically Distributed Monitoring

3.1 Introduction

Gas flaring is the controlled burning of waste gases that cannot be processed for sale or further
use due to various technical and logistical reasons [51]. Gas flaring also improves process
safety, because it protects vessels and pipelines from over-pressuring due to unplanned upsets,
thereby, avoiding accidental explosions [52]. However, gas flaring contributes to pollution,
and it is also an important source of greenhouse gas emissions [53]. Moreover, burning of the
flare gases results in waste of energy that can potentially be reused in industrial processes.
In order to reduce the undesired environmental and economic impacts of flaring, many
solutions have been developed, which include timely maintenance of flare systems, modifying
start-up and shut-down procedures, etc., and installation of new equipment to recover the
waste gases. Such a recovery process is known as a flare gas recovery system (FGRS) that
captures flare gases for reuse in the plant or for sale [54, 55]. However, the amount of
flare gases can sometimes exceed the capacity of the FGRS and eventually the excess waste
gases need to be burnt in the flare stack, resulting in a flare event. Such flare events are

undesirable due to their harmful impacts on the environment and the economical losses

'Part of this chapter has been published as Mengqi Fang, Fadi Ibrahim, Hariprasad Kodamana, Biao
Huang, Noel Bell, and Mark Nixon. Hierarchically distributed monitoring for the early prediction of gas
flare events. Industrial & Engineering Chemistry Research, 58(26):11352-11363, 2019.
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during plant operations. Hence, the flare event predictions are useful as the operators can
proactively intervene and reduce the chance of a flare event.

To the best of the authors’ knowledge, currently, there are no monitoring strategies
reported in the literature that provide early warning of a potential flare event. The case
studied in this chapter is based on real refinery process data. The major impediment in the
current case is a very limited knowledge of the underlying process. Thus it is a typical case
suitable for application of data analytics. While historical process data are usually available,
they are highly autocorrelated, high dimensional, and contain outliers and missing data.
Preliminary study proposed by Noel and Mark [56] as well as the traditional centralized
PCA approach have been attempted. However, both approaches can only predict a small
fraction of the flare events. Therefore, in this chapter, we propose a systematic methodology
for early flare prediction by making full use of the available process data. The by-product of
this study is to create a tool that can help industries to better predict thus reduce the flare
events.

Benefiting from the large body of MSPM strategies proposed in literature, there are var-
ious solutions available for fault detection and diagnosis of complicated industrial processes,
for instance, PCA [57], PLS [58], and dynamic PCA [59], among others. As the process com-
plexity increasing, distributed monitoring strategies emerged and attracted wide attentions
from researches. In contrast to centralized monitoring, distributed monitoring is conducted
by dividing a large-scale process into several sub-blocks and then monitoring the variations
in each sub-block and further the entire process. Several multiblock methods have been
developed [60, 61] and employed as part of distributed monitoring strategies [62, 63, 64, 65].
From a probabilistic perspective, a unified probabilistic framework for process monitoring
has also been proposed [66]. Recently, SFA was proposed for dynamic process monitoring by
separating the temporal correlations from the steady-state process information [67]. Further,
frequency domain analysis methods such as the fast Fourier transform (FFT) [68] and the

wavelet transform (WT) [69] have also been employed as alternative ways of feature extrac-
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tion that can be used for MSPM [70]. In this work, motivated by the success of multiblock
process monitoring approaches, such as hierarchical PCA [71], we propose a distributed and
hierarchical monitoring framework for real-time early warnings of potential flare events by
analyzing real-time plant data.

The contributions of this chapter can be summarized from both practical and theoretical
perspectives, as follows: (i) The dataset under research is from a real refinery process, and
this chapter is the first which focuses on and successfully solved the early flare event pre-
diction problem in refinery by performing the plant-wide process monitoring. The problem
is challenging. Multiple data analytic strategies have been attempted but the unique signa-
tures of early flare events are very difficult to extract. To this end, the hierarchical structure
designed in this work achieves the optimal prediction performance, which will be beneficial
to related industries for a more environmental friendly operation. (ii) There are very few
existing works on the distributed SFA and frequency-domain approaches. This chapter pro-
poses the use of SFA for distributed process monitoring. Both frequency and time-domain
methods are analyzed and compared in this work under the distributed framework.

The remainder of this chapter is organized as follows: In the process description section,
the refinery process and FGRS are reviewed. In the problem statement section, details of the
refinery dataset used in this work, challenges of this problem, and two preliminary studies are
explained. In the next section, the proposed hierarchically distributed monitoring framework
is presented, including both time and frequency domain techniques. Further, we apply the
proposed approach to the refinery dataset used in this work. Finally, conclusions are drawn

in the last section.

3.2 Process Description

A refinery process is composed of several units designed for crude oil processing, such as a

crude desalter, heat exchangers, reaction related units, and separation units. When one or

36



more process units undergo upsets due to abnormal events, such as power blips, equipment
failures, or crude composition changes, the resulting excess gases are directed to a FGRS. The
flare events will occur when FGRS is not able to recover the excess gases. Fig. 3.1 illustrates a
typical FGRS, which is essentially composed of a flare header, flare gas recovery components,
and a flare stack. During low volume flare periods, the flare gas flowrate does not exceed the
FGRS capacity, and the waste gas recovery process, which includes the flare gas compression
and separation, is activated. Finally, the compressed waste gases are recycled, usually as
fuel gas. However, during abnormal operational scenarios, the flare gas flowrate in the flare
header might exceed the processing capacity of the FGRS, and consequently the excess flare
gases will pass through the liquid seal to the flare stack, where the gases will be burnt. Once
the flare gas flowrate increases rapidly and passes the liquid seal, the pressure in the flare
stack is also increased. The ratio of pressure and liquid level in the flare stack, called flare
ratio, is an indicator of a flare event, once it surpasses a pre-determined tolerant value. Flare
ratio is defined as:

P,
Flare ratio = = (3.1)
L

where P, and L; represent the pressure and liquid level in unit 1 of the refinery dataset used
in this work, respectively. Generally, the operational range of the flare ratio during flare
events is around 0.85 — 0.97.

The work presented here attempts to predict these flare events at an early stage by
identifying the signatures that are latent in the routine operational data. Specifically, an
early prediction can be defined as at least 15 minute early warning before the actual flare

event occurrence.

3.3 Problem Statement

In this section, the refinery process under consideration and the challenges involved in solving

this problem are presented. The available dataset is for a one year period and contains data
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Figure 3.1: A general schematic of the FGRS [55]

from the refinery’s units that are connected to the FGRS. Salient properties of the dataset
are summarized in Table 3.1 and 3.2, where tag names and unit identities of PVs are known,
but no further process knowledge is provided.

Table 3.1: Details regarding the refinery process dataset

Number of PVs Number of Sampling Number of
Pressure | Flowrate | Temperature | Level | Others | available units | time interval samples
113 9 4 1 5 18 1 minute 502498

Table 3.2: Available refinery units’ names, identities and their related PV numbers

Unit number Unit description PV number Unit number Unit description PV number
1 Flare system # 1 4 10 Aromatics unit # 1 10
2 Flare gas recovery unit 13 11 Aromatics unit # 2 6
3 Flare system # 2 1 12 Alkylation unit # 1 6
4 Hydrocracking unit 12 13 Alkylation unit # 2 2
5 Saturated gas unit # 1 10 14 Amine regen unit 21
6 Saturated gas unit # 2 10 15 Naphtha unit 2
7 Crude unit # 1 9 16 Utilities 4
8 Crude unit # 2 10 17 SRU # 1 4
9 Hydrogen desulfurization 4 18 SRU # 2 4

There were 14 flare events in total throughout the one year period, during which the flare

ratio increased above 0.85. The durations of the flare events varied widely as shown in Table
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3.3.

Table 3.3: The durations of all the 14 flare events

Flare event number 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Duration (min) 93 128 4 52 2 1 79 256 35 5 8 6 8 114

Moreover, within the one year investigation period, the entire process operation status
is time-varying and shows non-stationary characteristics. As an example, a tag of unit
14 is shown in Fig. 3.2. The operating conditions change over time and changes are not
consistent from unit to unit. In the absence of process knowledge, such changes are difficult
to capture based on experience. Because the available dataset contains only 14 flare events,
the abnormal data are too few to conduct supervised learning. Additionally, the abnormal
patterns of the 14 flare events vary from one to the other, because they are not all caused

by the same process upset.

80 —

A PV of unit 14

20 I I I I I I
0 50 100 150 200 250 300 350

Time (day)

Figure 3.2: An illustration of one pressure tag in unit 14 showing process variability within
one year investigation period

The challenges in solving this problem are summarized as follows: (1) limited process
knowledge; (2) high dimensionality of the dataset with 132 tags from 18 different units;
(3) non-stationarity and time-varying process; (4) various patterns of different PVs from
different units; (5) high correlations among PVs; (6) small number of flare event samples;

(7) non-universal signatures associated with the flare occurrences.
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A preliminary method proposed by Noel and Mark [56] has been attempted, wherein four
available flowrates of units 3, 4 and 8 are employed in a moving window FFT framework to
extract features, which is further utilized to develop a PCA model for early flare monitoring.
Even though the selected PVs are highly informative, only 5 out of 14 flare events get early
predictions. The traditional centralized PCA method has also been attempted using all the
available PVs, with the prediction results and false rate shown in Table 3.4. The false rate

here is calculated as the percentage of false alarms during the entire year, as follows:

Total number of false alarms

(3.2)

False rate =
Total number of sampling points

Table 3.4: Early flare event prediction performance of traditional PCA approach on all the
PVs

T? statistic
Potential predictions False rate
Traditional PCA approach 5/14 4.10%

We can see that the above early attempts predicted less than half of the total flares
that occurred. To improve the flare prediction performance, a hierarchically distributed
monitoring framework with an online adaptive strategy is proposed in this work and will be

presented in the next section.

3.4 Hierarchically Distributed Monitoring Approaches
for Early Flare Event Prediction

In this section, we present a systematic monitoring methodology based on the available PV
dataset for the early flare event predictions when there is limited knowledge of the underlying
process. Two realistic assumptions are made before proceeding to the data analysis: (1) The

PVs within the same unit have higher correlations with each other compared to the PVs
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from other units; (2) One or more units may contribute to the flare events. On the basis of
the above assumptions, all the available PVs are grouped based on their corresponding units
and multivariate feature extraction methods are applied to each group. The rationale behind
grouping PVs by unit is that process changes or drifts in a particular unit would affect the
PVs in that unit in a more consistent fashion. This allows us to extract the most meaningful
information from every unit. Then, integrating this unit-wise representative information by
employing a hierarchical layer can better capture the signatures latent in the whole plant in
contrast to the case when we treat the PVs in the whole plant as one group.

The schematic of the proposed strategy is presented in Fig. 3.3, wherein two monitoring
layers are constructed hierarchically at unit-wise and plant-wide levels, respectively. A few
dominant features are selected from PV data to represent the characteristics of a unit in the
lower layer, which are then passed on to the upper process monitoring layer to synthesize

monitoring statistics.
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Figure 3.3: Schematic diagram of the proposed hierarchically distributed process monitoring
framework for early flare event prediction

It is expected that process abnormalities are reflected as changes in the PV behaviours
either in their time series evolution and/or in their frequency evolution. Therefore, the
proposed hierarchically distributed monitoring strategy is applied in both time-domain and
frequency-domain to fully capture the hidden signatures. Two hierarchical monitoring ap-

proaches are proposed in this work:
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(1) The hierarchical time-domain approach, using PCA for unit-wise feature extraction

and SFA for overall process monitoring;

(2) The hierarchical frequency-domain approach, using WT for unit-wise feature extraction

and PCA for overall process monitoring.

In the proposed hierarchical time-domain approach, PCA is first employed at the unit-
wise level and then SFA is used in the plant-wide level. Such a configuration is capable
of extracting both slower and faster changing features of PVs in an individual unit using
PCA, which are then fed to the SFA-based hierarchical layer for overall process monitoring.
In the proposed frequency-domain method, the WT approach is first employed in the unit-
wise layer to extract frequency features from raw PVs, subsequent to that PCA is employed
for hierarchical monitoring. Since in the frequency domain approach, the frequency scales
selection have been conducted in the unit-wise level, the slower and faster changing variables
do not need to be separately monitored again. Therefore, in the hierarchical frequency

domain approach, PCA is sufficient for overall monitoring.

3.4.1 The Time-domain Hierarchical Monitoring Approach

In this section, the hierarchical PCA-SFA approach and online model update strategy will
be illustrated and explained.

3.4.1.1 PCA Process Monitoring Approach

Suppose that the PVs are grouped according to the unit as {X;, ---, X,,, ---, Xy}, where
N represents the total number of the analyzed units. Given a PV group X,, € R7*™» with
T data samples and m,, PVs, the following PCA model is developed by decomposing each

X, matrix into a principal component (PC) space and a residual space [72]:

X,=S,PT+E, (3.3)
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where S, € R7** is the score matrix, P, € R™*# is the loading matrix with %, PCs, and
FE,, denotes the residual matrix.
For the purpose of process monitoring, when a new sample x,, of the n'* unit’s PV group

appears, it is projected on the PC space to predict the scores online as follows:

s, = Pz, (3.4)

where s,, € R**» indicates the extracted PCs from x,. Furthermore, by means of the estab-
lished PCA model, two classical monitoring statistics, namely, Hotelling’s 7% and Q statistic

are constructed to monitor the PC and residual spaces respectively, as below [59]:

T? = sTA s,
(3.5)
Q=ll (I-P.P)z, |’

where the diagonal matrix A,, is composed by the first k,, leading eigenvalues of the sample
1

T-1

Further, by integrating all the selected PCs from units, an integrated PC matrix is

covariance matrix Xr'x,.
formulated as Ypc = [S1, -+, Sn| € RT*E | which will be analyzed and monitored by the

hierarchical layer.

3.4.1.2 The Hierarchical PCA-SFA Monitoring Approach

The extracted latent features of SFA reflect the slowness of the process and therefore are
referred to as slow features which are sorted from the slowest to the fastest. In real processes,
some abnormal situations are reflected in the slower changing PVs and some are reflected in
the faster ones. Therefore, for better monitoring performance, the slower and faster features
are monitored separately in the hierarchical layer. Here, the PCA method is employed first
to ensure that the extracted features of each unit could preserve the information reflecting

both slower and faster process changes, so that the slower and faster process changes can be
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monitored by SFA [73] at the hierarchical layer for a complete analysis. Otherwise, some of
the process change information related to potential flare events might get lost in the unit-wise
analysis.

Given the integrated PC matrix Ype, the slow features can be obtained by the following
mapping relation:

V =YpcW?T (3.6)

where V = [v!, ... vE] € RT*K is the slow feature matrix, and W = [wy, - - -, wk]? denotes

the coefficient matrix obtained by conducting the following decomposition [67]:

AW = BWQ (3.7)

In Equation (3.7), A and B denote the covariance matrices of the first order derivative
of Ypc and raw input Ype, respectively, and Q = diag{wi, - -,wk} is a diagonal matrix
composed of the slowness of individual slow features, where wy.x are sorted in an increasing
order. Such a decomposition ensures that the individual slow feature has zero mean and
unit variance, while being uncorrelated with each other.

For process monitoring, based on the slowness wy.x, the extracted latent features can be
clustered into slower and faster changing groups, respectively. Given a new sample vy, slower
and faster feature components can be calculated as below:

Vs = Wsy
(3.8)

’Uf = ny

where W, and W; are the corresponding rows of coefficient matrix W governing slower and
faster dynamics, respectively. Then, the Hotelling’s T2 statistics are computed for the two

feature groups as shown in Equation (3.9).
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Tf = v, v,
(3.9)

2 T
Tf = Uy Uy
This enables us to monitor the features with higher and lower velocities, separately.

3.4.1.3 Online Model Update Strategy for PCA-SFA Approach

In the time-domain monitoring approach, to get adapted to the normal process drifts, both
PCA and SFA models need to be updated during online monitoring process. In normal
operating period, all the units are running in a relatively stable status without drastic oscil-
lations. The latter is a potential indication of flares. Therefore, the model update strategy
is designed to adapt to the process drifts within a normal range.

For a reliable model update, instead of using the most recent data, a lag is selected
between the data used for model update and the current time instant. Then the historical

data in a specified window length are extracted to determine if the update is necessary.

3.4.2 The Frequency-domain Hierarchical Monitoring Approach

In this section, the second proposed approach, namely hierarchical frequency-domain pro-
cess monitoring approach, will be introduced. Variability in a multivariate dataset obtained
from complex processes is expected to change not only in time domain but also in frequency
domain. Such processes are multi-scale processes and in order to detect changes in such
processes, it is important to analyze them in both time and frequency domains [74]. To
extract frequency information from a signal, the Fourier transform (FT) is usually used to
decompose the signal into its frequency constituents over the entire time period. However,
FT does not provide any indication when the changes in frequencies occur with time. Al-
ternatively, the WT can be used as a tool for providing the time-frequency multi-resolution

information of a signal [75] in such cases.
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The frequency information provided by WT is referred to as scales and has the advantages
of being decorrelated compared with the original time-domain signals that are auto-correlated
[76]. Consequently, PCA can be applied on the non-auto-correlated scales for the purposes
of process monitoring. This is another advantage of using scales in SPM in addition to the
time localization property.

For online application, a moving window approach is employed first to extract frequency
information, i.e., scales, from the PVs at every sampling instant. Subsequently, an adap-
tive PCA model is then built based on the scales and is used to predict the monitoring
statistics, namely, 72 and the Q statistic. The proposed approach is referred to as moving
window multi-scale adaptive PCA (MWMSAPCA) and the details of each component in this

approach are presented next.

3.4.2.1 Wavelet Transform

WT is a spectral decomposition method of a time-dependent signal that provides a set of
frequency bands known as scales that represent time-dependent frequencies [75]. Given the

original signal X (¢) and an analyzing function ¢,;(t), the scales are computed as follows:

Scales(a,b) = +OO X (t)pap(t)dt (3.10)

The analyzing function ¢,;(t) represents a family of wavelets scaled by a parameter b
and translated by another parameter a as follows:

1 t—a

Buslt) = b H0( ) (311)

As a result, the original time-domain signal X(t) is transferred to a multi-resolution
frequency-time scale denoted by Scales(a, b). The obtained scales are ranked from the small-
est to the largest, where the smaller scales represent the evolution of high frequency signals

with time, while the larger scales represent the evolution of low frequency signals with time.
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3.4.2.2 Moving Window Wavelet Transform for Online Application

For online applications, WT is applied on a selected group of PVs over a moving window
of length M to extract online frequency features, i.e., the scales, at every sampling instant.
Analyzing a window of PVs with dimension [ x M at every sampling instant ¢ results in
wavelet scales of dimension (s x 1) x M as shown in Equation (3.12), where [, is the number

of scales obtained from each PV.

Scales(t — M :t) = WT(PVs(t— M :t)) (3.12)

where the function WT represents the wavelet transfer analysis on the selected PVs, and
Scales(t — M : t) € RUs*D*M denote the obtained scales over the moving window of length
M at the sampling instant ¢.

The maximum value of every moving window scale, i.e., max(Scales(t — M : t)), is
considered as the representative frequency feature at the current time ¢ of the moving window
PVs, ie., PVs(t — M : t), and is denoted by Scales,q.(t) € RE*D*1 The reason for
selecting the maximum point of scales, other than the middle or the end point from the
moving window, is that it results in clearer and more persistent features related to flare

events.

3.4.2.3 Online Adaptive PCA Based Process Monitoring Using Frequency Do-

main Information

After using moving windows of PVs(t — M : t) to obtain a sequence of wavelet features
Scalesma:(t) up to the current time ¢, a PCA model is trained on these scales and is used
to monitor the process at time ¢ + 1 by using PVs(t — M +1: ¢+ 1) as a new sample. The
relevant statistics, thus computed, will be integrated later in a hierarchical layer.

To avoid any potential issue arising due to the non-stationary behaviour of the data, we

also propose a model update strategy as presented below.
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The update rules can be derived based on the variability of the process, that is, if the
variability is considered as within a pre-determined tolerance level, a model update is calcu-
lated. If the variability is beyond a threshold, it may indicate the beginning of a potential
flare event, and therefore the model update needs to be avoided.

In this work, the process variability is quantified by the difference between two successive

maxima of standard deviations of two successive scales, as shown in Algorithm 1.

Algorithm 1 The PCA model update strategy

1. if max(std(Scales(t — M : t))) — max(std(Scales(t — M —1:t —1))) < thr then
2: Update the PC model

3: else

4: Keep using the previous PC model

5. end if

The model updating threshold thr, the moving window length M, and the update rate
are tuning parameters and can be selected empirically. For hierarchical monitoring, an
additional layer of moving window adaptive PCA is added to integrate the monitoring of the
selected PCs as shown in Fig. 3.4, to obtain a single monitoring ()4, for overall decision

making.

3.4.3 Fault Isolation under the Hierarchically Distributed Frame-

work

Having proposed both time-domain and frequency-domain hierarchical approaches, we turn
to isolation problem in this section. Under the proposed hierarchically distributed frame-
work, fault isolation can be conducted to pinpoint the affected units. The most affected
units can be first determined based on the decomposed input variable contributions to the
overall monitoring statistics. Then the decomposed input variable contribution to each af-
fected unit’s monitoring statistics can be used to isolate the responsible PVs. From various
existing fault isolation indexes that are reported in literature [77], the reconstruction-based

contribution (RBC) index has been selected for this purpose because of the demonstrated
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process for early flare event prediction

diagnosability for various fault types [78]. And the relative RBC (rRBC) index is finally
selected for more accurate diagnosis results [77]. The rRBC calculations of PCA and SFA
approaches can be found in Table 3.5, where the matrices W,, W, and P can be selected by

referring Equation (3.4) and (3.8).

Table 3.5: rRBC for fault isolation [77, 73]

rRBC SFA PCA
T2 T} Q) statistic
T 2
rRBC, = S M2 yr_wrw, M= wiw, M =1- PP’
& MDME; 1 1
D=_—Y. Y, D=_—PC"PC
T_1 Fo°Fe T-1
Here & = [0,---,1,---,0]T represents the activation of the i*" evaluated variable.
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3.5 Application: Early Gas Flare Event Prediction in

A Refinery

In this section, the performance of both hierarchical monitoring approaches are evaluated
for their ability to predict flare events before they happen. The hierarchical time-domain
approach is first employed for flare prediction, followed by the hierarchical frequency-domain
approach. Then the flare prediction performances are summarized. Finally, by taking the
first flare event as an example, the fault isolation performance is illustrated based on the

rRBC index, and the most likely source unit is identified.

3.5.1 Hierarchical Time-domain Early Flare Event Prediction

In the time-domain hierarchical monitoring approach, the PCA algorithm is used for pre-
liminary feature extraction in the bottom layer. For obtaining a trade-off between useful
information and noise, only the first two dominant PCs of each unit are aggregated for over-
all monitoring decision making. For each unit, the first five days data are selected to build
the initial model and the first 10 days PCs collected from the bottom layer are employed
for top layer model building. To make this approach adapt effectively to the process vari-
ations throughout the entire year, all the models are checked and updated online everyday
if the mean of standard deviation is within the normal range. In this work, the slower
and faster features in the SFA model are grouped by inspecting the increment between two
adjacent slowness values of the extracted slow features. The transition between slower and
faster feature groups is triggered when the increment of two adjacent slowness values changes
significantly and consistently. In this case, the control limits on both slower and faster mon-
itoring statistics updated once the statistical monitoring models are updated. To achieve a
more reliable fault detection performance, the control limit is selected at the 99% confidence
level.

Furthermore, in order to avoid false positives caused by random jumps of the monitor-
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ing statistics with small magnitudes, a comprehensive alarm invoking strategy is proposed.
Instead of activating alarms simply based on the currently generated monitoring statics, a
sequence of most recent monitoring statistics is investigated comprehensively to invoke the
alarms. Here, based on the deviations of the monitoring statistic and the calculated con-
trol limit, two levels of alarms are defined. Low alarms are generated when the analyzed
monitoring statistic jumps over the control limit but no larger than twice the control limit,
and lasts for 300 minutes. High alarms are generated when the analyzed statistics are larger

than twice the control limits, with a duration of 200 minutes.
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Figure 3.5: The hierarchical PCA-SFA slower feature group monitoring result of all the flare
events

The overall monitoring and alarming results of the slower and faster clusters are listed in
Fig. 3.5 and 3.6, respectively. By evaluating low and high alarm percentages over the entire

year period, the results of the early flare prediction performance are reported in Table 3.6.
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Figure 3.6: The hierarchical PCA-SFA faster feature group monitoring result of all the flare
events

Table 3.6: Alarm evaluation of PCA-SFA.

T2 T2
s I
Potential predictions False rate Potential predictions False rate
High alarm 7/14 4.508% 8/14 4.229%
Low alarm 0/14 0.404% 1/14 1.029%

3.5.2 Hierarchical Frequency-domain Early Flare Event Predic-
tion

The hierarchical frequency-domain approach is applied on the process data from the bottom
layer to the top layer. We have used the embedded continuous wavelet transform function
(cwt) to obtain the wavelet scales, and the analytic Morse wavelet is selected by using the
WAVELET toolbox in MATLAB. The minimum and maximum scale numbers are deter-
mined automatically based on the energy spread of the wavelet in frequency and time. The

length of the moving window M in Equation (3.12) is selected to be two weeks. The unit-
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wise model update frequency is tuned to be six hours as long as the process behaviour is
classified as normal. The model updating threshold thr described in Algorithm 1 is tuned
to obtain optimal results across all the units. For the hierarchical modeling, the first three
PCs are selected from each unit and passed on to the hierarchical layer, and the model
update frequency and threshold thr are kept the same as those for unit-wise monitoring.
The control limit is selected based on the training dataset at the 95% confidence level. The
extracted frequency features show smoothly changing patterns during normal operation and
there are few occasionally occurred small spikes, so oscillations in the frequency features are
more likely to be correlated with flare events and should be paid much attention to. There-
fore, compared with the time-domain approach, in the frequency-domain approach, more
PCs from each unit can be selected to include more information without introducing too
much noise, and the control limit is selected at 95% confidence level to increase detection
sensitivity owing to relative smoothness of the monitoring statistics. The low alarms are
flagged when the Q statistic jumps beyond the control limit but with magnitude less than
twice the control limit, and the high alarms are flagged when the Q) statistic magnitude is
larger than twice the control limit. The hierarchical monitoring performance results can be
found in Fig. 3.7, where the Q statistic and the corresponding alarms are presented in the
first and second subfigures, respectively.

Based on the frequency-domain hierarchical monitoring performance, the potential flare

predictions and false alarm rate are calculated and summarized in Table 3.7.

Table 3.7: Alarm evaluation of hierarchical MWMSAPCA

Q statistic
Potential predictions False rate
High alarm 5/14 4.37%
Low alarm 7/14 8.65%

53



3><105 1 2 3 4 5 6 7 89 1011 12 13 14
I I ] I T

Q statistic
== == =95% Control Limit

Q statistic

SN VRN N7 O N AU 131 Y I

0 50 100 150 200 250 300 350

| B
1 H [ -+ + H |- - - - H —
0
E
s
<
0.5 — —
- -+ AHHH-E . + + -t + 4+ - [ -H +H
0 | | | | | |
0 50 100 150 200 250 300 350
Time (day)

Figure 3.7: The hierarchical MWMSAPCA monitoring result of all the flare events

3.5.3 Discussion on the Early Flare Event Prediction Performance

In this section, we zoom into the results of the early flare predictions considering both the
frequency and time-domain monitoring approaches, and also compare with the traditional
centralized PCA method.

In the traditional PCA approach, all the available PVs are utilized and a PCA model is
trained by using first five days data. The control limit at the 99% confidence level is selected
for an optimal trade-off between flare predictions and false positives, and this follows the same
alarm logic strategy as in hierarchical time-domain approach. The prediction performance
can be found in Fig. 3.8, where the first subfigure shows the T2 statistic of the PCA model
and the second subfigure represents alarms generated according to the control limit.

Here, the flares 1, 4, 6, 9, 10 can be clearly detected by this method, but 9 out of 14
flares did not get detected. The traditional centralized PCA approach treat all the PVs as
one group, and as a result some useful information in some PVs might be overwhelmed by
the dominant variations reflected by a majority of the PVs. On the other hand, from the

hierarchical monitoring performance as shown before, some of the flares can be predicted by
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Figure 3.8: The early flare prediction performance of the traditional PCA approach

both of the time and frequency-domain approaches, while some can be predicted by only one
of the two approaches, indicating that the two proposed approaches can complement to each

other. In Table 3.8, all the flare prediction results are compiled for comparative evaluation.

Table 3.8: Predicted flares by all the available approaches

Predicted approaches Traditional PCA approach MWMSAPCA  H-PCA-SFA

. . 1,4,8,9 1,3,4,6,7, 8

Identity of predicted flare 1,4,6,9, 10 10, 12, 14 9,10, 13, 14
Total number 5 7 10

Compared with the traditional PCA approach, the hierarchical frequency-domain ap-
proach provides three extra early predictions, i.e., flares 8, 12 and 14. The hierarchical
time-domain approach has five more early predictions. However, compared with the time-
domain approach, the frequency-domain approach is able to predict flare 12 clearly, while
it is missed by the time-domain method. The time-domain approach is able to provide
early flare predictions of flare 3, 6, 7 and 13, which are missed by the frequency-domain
method. A total of 11 out of 14 flare events could be predicted by our proposed approaches,

if both of the proposed hierarchical time-domain and frequency-domain approaches are used
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simultaneously.

Therefore, two proposed approaches can be used to support each other for a better
prediction performance, resulting in an obvious improvement compared with the traditional
PCA based monitoring as well as the existing approach attempted [56]. The reasons for
missed detections from both approaches could be various. For instance, from the data
inspection it was clear that some sensors were bad during the period of flare 5, resulting
in missing data. Moreover, the available data had only a limited number of units from the
refinery, and a limited number of PVs for each unit. Hence, addition of data from other
units and PVs could be worthwhile for gaining more information related to the missed flare
prediction.

Additionally, the false rates of all the employed approaches have been calculated and
compared, which are all restricted in a small range. As time-domain monitoring algorithms,
the false rates of both traditional PCA and hierarchical PCA-SFA approaches are listed in
Table 3.4 and 3.6, from which one can conclude that the T2 statistics of PCA and PCA-SFA
provide comparable false rates within the investigation time. By observing Figure 3.5 and
3.6, the alarms from T and T7 in PCA-SFA approach are visualized and most of the false
rates of the two metrics are overlapped, so the final false rates of PCA-SFA approach is less
than the addition of the false rates from 7?2 and Tf2. As a comparison, Figure 3.8 shows the
false rate of PCA, which is sparse but meanwhile PCA approach lost effective predictions
of majority flare events. Therefore, during actual online implementation, if one treats every
alarm seriously, the PCA-SFA approach will provide more effective alarming information

than the traditional PCA approach.

3.5.4 Faulty Unit Isolation at the Hierarchical Level

In this section, the fault isolation at the hierarchical layer will be investigated. The faulty
units can be tracked through the top layer by evaluating the contribution of each PC when

an alarm occurred. Taking the first flare event for instance, the rRBC plots corresponding to
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the time and frequency domain approaches are presented in Fig. 3.9 and 3.10, respectively.
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Figure 3.9: The unit contributions to the first flare prediction of the time-domain PCA-SFA
approach. The left two subfigures indicate the 77 statistic and the corresponding unit-wise
contribution, respectively, and the right two subfigures represent the TJ? statistic and the
corresponding unit-wise contribution, respectively

The above figures indicate the contributions of different units in different approaches
along with time when the first flare event occurred. The color indicates the magnitude of
the rRBC index, where the red color indicates high contributions of individual units. From
the above figure, one can see that the slower and faster feature groups indicate that the
units 3, 4, 6 and 8 are the most likely source units contributing to the flare events based
on time-domain analysis. From the frequency domain analysis result, the units 4, 5 and 10
should be considered as possible causes. Based on the analysis of faulty unit isolation over
all the flare events, it has become evident that the unit 4, i.e., hydrocracking unit, is the
main contributor of multiple flare events.

Furthermore, the robustness of rRBC to noise and outliers is evaluated in this work.
Since the calculation of rRBC index is based on the MSPM models, namely, SFA and PCA,
the robustness of rRBC to noise and outliers is closely related to its corresponding MSPM

algorithms. In SFA, the noise is absorbed by the fast features and in PCA, the noise is
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Figure 3.10: The unit contributions to the first flare prediction of the frequency-domain
MWMSAPCA approach. The first and second subfigures are the (Q-statistic of PCA and the

corresponding unit contribution plot, respectively

absorbed by the minor PCs. Therefore, the slow features or main PCs are not sensitive
to noises. Since at the bottom layer of the hierarchical structure, the first few main PCs
of individual unit are selected for further analysis, the noise does not provide a significant
impact on the extracted features and the rRBC indices. In terms of outliers, even though the
conventional SFA and PCA approaches are not specifically designed to resist the outliers, by
making use of the hierarchical structure, the influence of outliers can also get reduced. In
addition, data preprocessing before applying the monitoring algorithms also prevent outliers
from influencing the final detection results. In order to evaluate the sensitivity of rRBC
index to the outliers in a general case, different percentages of the outliers are simulated and
directly added onto the extracted features, and the rRBC indices of slower feature group
around the first flare event are taken as an example to perform the investigation. We have

simulated various percentages of outliers (1%, 2% and 5%) to test their effects as shown



in the following figure. As it can be seen that the algorithm can indeed resist the outliers.

Particularly the dominant contribution plot is quite robust to the outliers.
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Figure 3.11: The comparison of the rRBC indices of PCs with different percentage outlier
contaminations, with respect to the first flare event in the slower feature group

As a result, the proposed hierarchical structure can reduce the impact of noise and
outliers. But if there exist a large portion of outliers on the extracted features, to get more
accurate fault detection and isolation results, the outlier removal procedures can be used in

the preprocessing stage.

59



3.6 Conclusions

In this chapter, we have proposed various strategies for early flare event prediction and tested
them successfully on a set of industrial refinery data. A hierarchically distributed process
monitoring framework was developed as an effective solution for flare prediction, even though
we had limited access to process information. Based on this framework, the available PVs
were first grouped according to their respective process units, and the features extracted
from the units were integrated in a hierarchical layer for overall monitoring and decision
making. Two hierarchical approaches, namely, hierarchical PCA-SFA and the hierarchical
MWMSAPCA approaches, were developed for the early flare event predictions. The results
show that 11 out of 14 flare events could be predicted in advance by the two approaches with
an acceptable rate of false positives, and 10 out of 14 flare events could also be predicted
based only on the single hierarchical time-domain approach. Finally, similar to the other
unsupervised process monitoring algorithms, the proposed algorithm is also restricted from
not using any fault information. To make full use of both process data and the fault infor-
mation, the supervised process monitoring approaches are worth to be attempted. Given
the potential advantages of the supervised approaches, this thesis goes on to explore and

develop novel supervised approaches.
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Chapter 4

A Novel Approach to Process
Operating Mode Diagnosis Using
Conditional Random Fields in the

Presence of Missing Data

4.1 Introduction

In industrial processes, the two most critical requirements are the safety and consistently
high product quality. The adoption of flexible process designs and operational strategies in
process industries demands for advanced process monitoring approaches in order to reduce
operational risks and potential safety hazards. The task of process monitoring includes
operating mode diagnosis, detection and diagnosis of faults [79, 64], and determination of
their root causes. The existing process monitoring algorithms can be classified into methods

that employ empirical knowledge, first principles based models [80] and data based models

2Part of this chapter has been published as Mengqi Fang, Hariprasad Kodamana, Biao Huang, and Nima
Sammaknejad. A novel approach to process operating mode diagnosis using conditional random fields in the
presence of missing data. Computers €/ Chemical Engineering, 111:149-163, 2018.
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[81]. As models based on first principles are complex under most of the industrial scenarios,
it is difficult to obtain comprehensive physical and mathematical process models. As a result,
data based models have emerged as effective alternatives to the first-principles models [12],
among which some simplified state-space models [82, 83] and statistical models [84] have
been employed for process monitoring.

Owing to external environmental fluctuations and process uncertainties, industrial pro-
cess data usually exhibit various characteristics such as nonlinearity, non-Gaussianity, mul-
timode [85] and temporal correlations [86]. Even though many MSPM approaches such as
PCA, PLS and ICA, etc. [87] have been developed to deal with various challenges mentioned
above, an inherent assumption for most of them is the unimodality of the data which is not
easily satisfied in reality. As a result, the HMM has become a popular framework and has
been widely employed for the diagnosis of the multimodal dynamic processes owing to its
ability to model operating mode transitions. Sammaknejad et al. [88] proposed an HMM
based adaptive monitoring strategy for fault detection of the primary separation unit, a
key process unit in the oil sands extraction process in Northern Canada. Also, there were
several studies to combine the unimodal MSPM techniques with HMM for online process
monitoring, such as the PCA based HMM approach proposed in [89], the adaptive ICA
based blended HMM approach developed in [90], HMM based statistics pattern analysis
algorithm proposed in [91], and the references therein. Although the HMM approach mod-
els the switching mechanism of process operating modes [92], it is limited by two inherent
conditional independence assumptions, namely, (i) in first order HMMs, the current state
is considered to be dependent on the state immediately prior to it and independent of all
other previous information given the state prior to it, (ii) the current observation is only
dependent on the current state and independent of the other past states given the current
state.

As a probabilistic generative model, the HMM framework employs the above mentioned

conditional independent probability assumptions to factorize the joint distribution of sequen-
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tial observations. The diagnosis performance could be adversely affected if these assumptions
are broken down by reality. In order to address this lacunae, we propose to employ the CRF,
a probabilistic discriminative model, initially proposed by [43]. While retaining the proper-
ties of HMMs that enable state transition descriptions, CRF's avoid intricate computation
of the prior distribution of observations and have a more flexible framework to comprehen-
sively describe the temporal autocorrelations among the observations [93]. CRF's use feature
functions to model the dependency relations among the variables. By choosing appropriate
feature functions as a special case, the CRF model has been proven to be equivalent to the
HMM [94]. Moreover, unlike HMMs; the training of CRFs involves only the convex objec-
tive functions, which helps to obtain global optimal parameter estimation [27]. Recently, the
CRF framework has been used extensively in the fields of natural language processing, im-
age processing and speech recognition, etc., and has shown to perform superiorly to HMMs
(95, 96, 97]. Even so, CRFs have not been employed for the online process monitoring of
industrial processes where the data shows complex temporal dependencies. Employment of
CRFs in online process monitoring is expected to solve some outstanding issues which cannot
be effectively solved by HMMs.

Another significant issue while dealing with industrial data is missing measurements.
The missing measurement problem is usually due to different sources such as sensor failures
and other data collection errors. In order to deal with operating mode diagnosis problems
that include missing measurements, an HMM based approach was proposed [37] based on
the EM algorithm. Similarly, Zhang et al. [98] also proposed an EM approach to fault
diagnosis with missing data. Moreover, Koushanfar et al. [99] designed a semi-Markov
model to estimate the statistical patterns of missing measurements for fault detection and
diagnosis. Even though issues such as missing labels in the context of CRF's have been studied
previously [100], hardly any of the published work is concerned with the implications of
missing measurements in the modeling of CRF's. In a related work, Dietterich et al. [101] used

an imputation based approach to fill missing measurements with non-missing measurements
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in CRF modeling. However, this might lead to a biased estimation of parameters. In order to
solve these problems, in our proposed work, an enumeration based approach to account for
all possible missing measurement combinations is considered and included in the CRF model,
and the relative importance of different possible combinations of missing measurements is
attributed by means of the weights of CRF. Moreover, to reduce the large computational
load occurring due to these steps, an efficient propagation algorithm will be developed for
this marginalization framework.

The remainder of this chapter is organized as follows: Section 2 briefly reviews the general
formulation of LCCRF and the corresponding framework for industrial process operating
mode diagnosis. In section 3, a new marginalized CRF framework is proposed for process
operating mode diagnosis when there exist missing measurements; based on this framework,
a new propagation algorithm is developed to reduce the computational load. In section 4, the
simulated CSTR system and the experimental hybrid tank system are employed for process

monitoring performance validation. Finally, conclusions of the study are presented in section

d.

4.2 LCCRF Model for Process Operating Mode Diag-

Nnosis

4.2.1 Preliminaries

In this subsection, a general formulation of the LCCRF model will be illustrated. As shown
in Fig. 4.1, the general LCCRF model is an undirected graphic model that describes the
connections among a set of labels h, which are the operating modes in our case, and a set of

observations O. Let the observation sequence be O = {O1, O,, ..., Or} and the system mode

sequence be h = {hq, hy, ..., hr}. Then, CRF models the conditional probability P(h|O) as
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follows [27]:

T K M
P(h|0) = (10) exp Y Y MTe(hishior) + > pmEn(he, Yo)} (4.1)

t=1 k=1

where Y; C {O;,0,,...,Or} is a vector containing all the observations that are needed to
model P(h|O) at time ¢, and T represents all the time instances considered. Z(O) is an
instance-specific normalization factor obtained by marginalizing the numerator of Equation

(4.1) over all possible labels, as given by Equation (4.2) below:

T K M
2(0) =Y exp S US MT(b i) + S (B, o)) (4.2)

h' t=1 k=1

Here, the notation h’ denotes all possible combinations of the labels. The function sets
{Te(he, he—1) Y, and {En(he, Y:)}M_, are binary or real-valued functions, called as feature
functions, and are typically selected based on the nature of the problem [102]. The number
of feature functions, K and M, need to be chosen adequately to model the dynamics and
are problem specific parameters. The parameter vectors A = {\}X , and M = {u,,}M_,
contain the corresponding weight factors of the feature functions, which are used to differen-
tiate the importance of individual feature functions and need to be estimated for a specific

observed dataset.

Figure 4.1: The general graphical structure of LCCRFs [103]

Compared to the first order HMMs illustrated in Fig. 4.2, the LCCRF models use
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multiple observations to model the label at a specific time point, and therefore, are better
suited to model rich and complicatedly correlated data attributes, thus resulting in a more

general modeling formalism [93].

() o I evenennnn (1)
() (o) e (i
f . -\I / ‘\ Ir/_ \
@) (0

Figure 4.2: The general graphical structure of HMMs [104]

Remark 1 By choosing Yy = {O;} and appropriate feature functions, the HMM and
LCCRF can be shown to be equivalent from a modeling perspective. In contrast to HMM,
since the weight parameters of CRF have no probabilistic interpretation, their summation is
not required to be equal to unity. Details regarding the same can be found in the Appendix
A.

Now that we have introduced LCCRFs, we present our strategy for operating mode

diagnosis using CRFs.

4.2.2 Operating Mode Diagnosis Using LCCRF's

In literature, there are few references related to LCCRF based process monitoring. Even
though Wang et al. [45] proposed a LCCRF based fault classification framework on a
bearing system, the decoding algorithm they used still restricts the extension to online
process monitoring. This problem is addressed in this work.

For the process operating mode diagnosis problem, we assume that the process system
operates in various operating modes such as Normal, Abnormal, Faulty, etc.. At each time

point ¢, let the operating mode be represented as h; =i € {1,2,..., N}, where N is the total
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number of possible process operating modes. In this work, we assume that both the modes
h and observations O are discrete. Since T' samples of observations are considered for the
analysis, the observation sequence becomes O = {01,005, ...,Or}, and our objective is to
extract the operating mode sequence h, given the observation sequence O.

Considering the predictability of the process operating modes, there exist several con-
straints on the operating mode conditions and the selected observations. For a purely data-
based operating mode diagnosis problem as in our case, the process operating modes are
assumed to be observable from the process measurements, which is an inherent premise to
solve this problem. For example, if some of the abnormal operating modes are not observ-
able from the available process data, then highly likely that, it is not possible to detect such
abnormality from the observations. In order to have accurate and timely operating mode
diagnosis, the PVs have to be selected in such a way that it would have relatively quick
and distinctive signatures of different operating modes and mode changes are manifested
through the selected candidate variables’ observations. If the PVs are chosen improperly
or haphazardly, for example variables that bear with a huge reaction delay or uncorrelated

response, it may eventually result in incorrect diagnosis results.

Figure 4.3: The LCCRF structure designed for process operating mode diagnosis problem

As shown in Fig. 4.3, we assume that the operating mode at sampling time ¢, i.e. hy,
is dependent on both the operating mode at previous sampling time h;_; and a sequence of

observations, i.e. Y; = {Oy,0;_1,...,0;_g4.1}. Compared with the HMMs;, this framework
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allows us to model the state transitions with the Markov property, and meanwhile, it is more
flexible and therefore can model the observation autocorrelations which are introduced by
factors that have no explicit relationship with the states, such as those out of the external
environment change.

The feature functions for this problem need to be defined as next. We define two sets of
feature functions: (i) a function that relates the operating modes h; and h;_1, i.e. Ti(hy, hy—1),
and (ii) a function that relates the operating mode h; and a sequence of observations Y; =
{04,041, ...;0¢_g11}, ie. En(hy,Y:). Since the sets h and O contain a finite number
of elements which are discrete, the feature functions can be selected as Boolean functions
[27]. Since the relative significance of each feature can be reflected by its corresponding
weight factor, a unit valued feature function is sufficient to represent features. Hence, for
convenience, we choose binary valued feature functions to model mode transition as given
below [43]:

1 ifhy =14 and h; =

Tk(ht; ht—l) — (43)
0 otherwise

where 7,7 = 1,2,..., N and k = 1,2,..., K. K indicates all possible scenarios of mode
transitions, which is equal to N? in this case. The corresponding weight factor )\, has the
same role as the transition probability in HMM and needs to be estimated under the CRF
framework. Each observation belongs to the finite observation set B, and the dependency of
the observation sequence Y; on the current mode h; is formulated using the following feature

function:
Em1 (ht ) Ot)

Emz(hta Ot—l)
Em(ht, K) - Em(ht, Ot7 Otfl, ceey Ot7d+1) - (44)

i By (bt Or—ay1) |
Here, m = 1,2,..., M, where M is the total number of feature functions that relate

observations to the current operating mode. The elements in the above equation are all
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assumed to be indicator functions with the following form:

1 if ht =14 and Ot—l+1 € B
Eml<ht7 Ot—l-i—l) — (45)

0 otherwise

wherel =1,2,....d,i = 1,2,..., N and the corresponding weight factors pi,, = [ftm, tms --- fim,]
form a vector, which has the same role as an emission probability matrix under the HMM
scheme.

As a result, in the CRF model, the unknown parameters are the weight factors of all
the feature functions, i.e., A = {\}E, and M = {u,,}¥_,, which can be calculated
using the conditional maximum likelihood estimation (CMLE). By setting the gradient of
the conditional maximum likelihood function to zero, we obtain a set of coupled nonlinear
equations. Since there are no explicit analytic solutions to this problem, numerical algorithms
have been employed in literature for parameter estimation. In this work, the limited memory
BFGS(L-BFGS) algorithm [105] has been used to solve the CMLE problem. After training,
we employ the maximal posterior probability assessment [93] for process operating mode

diagnosis.

4.3 Operating Mode Diagnosis Using Marginalized CRF's
in the Presence of Missing Measurements

In this section, we propose a novel marginalized CRF framework for operating mode diag-
nosis in the presence of missing measurements. The modeling, parameter estimation, and
related inference problems of this marginalized CRF are illustrated in detail in the following

subsections.
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4.3.1 Problem Formulation

In this case, the observation dataset O is assumed to be partially observed and can be
partitioned as O = {Ops, Opis}. Here, Oy and O,,;s represent the observed and missing
components, respectively. For the missing component O,,;s, simply ignoring it will cause
loss of information, and directly replacing it with a known value will cause bias in some
cases [106]. As a result, we consider the marginalization over all missing components over
all possible combinations of the missing measurements, to provide an overall estimation of
current operating mode by accounting missing components. As given below, the conventional

LCCRF model in Equation (4.1) is marginalized over the missing measurements:

Z(h’voobs)
l M .
Z €Xp Z{Z )\ka ht7ht 1) Z E (ht,Y (obs) Y(mzs))}
P(RIO) = —Ome 151 = »
SPIID 30) S TTHRES SR
h Omzs t=1 k=1 —1
Z(BZIJS)
Z(h700b3>

which can be compactly represented as P(h|O ;) = . Here, the notations Y,

. Z<Oobs)
and Y;(mw) represent the observed and missing components in Y;, respectively.

Since the missing measurements occur randomly and have an impact on a certain range
of operating modes, it is not possible to directly perform the marginalization of the Equation

(4.6) by a simple local summation at each missing measurement instance. Hence, in order

to solve this problem, some efficient algorithms need to be sought as explained below.

4.3.2 Parameter Estimation: A Maximum Likelihood Approach

Based on the modeling framework in Equation (4.6), in the model training stage, the un-

known parameters will be estimated by maximizing the following log likelihood function,
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considering all possibilities of missing measurements:

1el3

202

2
l(@)zlogP(h|Oobs)—”@H2 log Z(h, Oys) — log Z(Ops) —

o (4.7)

where the notation 'log’ means the natural logarithm operation. By denoting the missing
dataset as Opmis = [Omys Omy, -, Om, ], the first logarithmic term of Equation (4.7) can be

factorized by individual missing measurements as shown in the following equation:

log Z(h, Ous) = log Z exp Z{Z M Ty (hyy hy—1) + Z”m (h., Y, 0"5 Y(m“))}

t=1 k=1
_log{eXpZZAka hi, by 1) eXPZZMm ht7Y(Obs))
t=1 k=1 t=1 m=1

Z €exXp Z Z ,um ht7 Z €xp Z Z :um ht7 )} (48)

Om,q t=1 m=1 Omeg t=1 m=1

T K T M
=SS NTil i) 305 i B (he, V) +Zlog{

t=1 k=1 t=1 m=1

ZepoZMm (e, Om,) }

Om, t=1 m=1

Here, considering the observation sequence Y;, Y;(Obs) and O,,,, the feature function E,,
is calculated as in Equation (4.4), by assigning the elements correlated with the observation
as ones while treating the rest as zeros. For example, considering the observation sequence

Y: = {0, 0;_1,0; 5}, the feature functions E,,(hs,Y;) and E,,(h, O;_1) can be calculated

71



as follows:

E’n’L1 (ht7 Ot)
Em(htaift) = Em<ht70t70t—170t—2) - EmQ(ht,Otfl)
Emg(hta Ot—Z)
- - (4.9)
0
Em<ht,0t,1) = Emg(htyOt—l)

0

In Equation (4.8), for the terms with observed components, the solution is obtained
in the same way as the regular CRF, where the term “regular CRF” represents the CRF
framework derived with complete measurements. For the terms with missing components, all
possible missing values are enumerated. The relative effect of different missing measurement
combinations on the operating modes are determined through the corresponding weight
factors.

The second logarithmic term log Z(O,s) in Equation (4.7) is computed by the summation

over both state sequence h’ and missing measurements Q,,;, as given below:

M

IOg Z obs 108; Z Z exXp Z{Z )\ka ht’ ht 1 Z mEm(h;7 }ft("bs)’ }ft(mw))}

t=1 k=1 =1

(4.10)

Due to the complex interplay between operating modes and missing measurements, Equa-

tion (4.10) needs to be solved in an efficient way. Based on the forward-backward algorithm,
a propagation scheme is proposed and illustrated in detail in the next subsection.

After marginalization, the loss function [(®) may no longer be convex and therefore

might lead to local optima, so the numerical optimization algorithms need to be employed

for calculating the parameters. Below, we provide the gradients of [(®) with respect to the

unknown parameters for calculating the parameter values:

A
h;7 h:t—1|00b5)Tk(h:ta h;fl) -2 = 0 (4'11)

o2

O) Tuthe hos) —

N

IIM’%

t=1
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N

(%(@) (obs) mis) mis
:ZEmz he, O t l+1 +Z Z Oi l+1 mz(htvOt l+)1)

8,uml t=1 t=1 O(,nlls)l
t—1+

T
mzs Mm
- ZZ Z (i, O~ l+1‘00bs) By (ht, Or-141) — 0'_2l =0

t=1 U (mis)
h Ot I+1

(4.12)

where O , and Ot ; +1 represent the cases when the measurement O;_;,; is observed or

tl+

missed, respectively, and

w(O ) — eXpZt 1Zm 1,umE (htaOm) (413)
Zomi exp Zt:l Zm:l fom Em (e, Om,)

Similar to log Z (O, ), the marginalized probabilities P(h}, i} _;|Ous) and P(h, Ot(m;jl |Oops)

in Equation (4.12) need to be calculated through propagations.

4.3.3 Inference of CRF with Missing Measurements

In this subsection, we solve two inference problems, namely, the marginal probability com-
putation and the optimal mode estimation, while performing offline training and online
validation, respectively. This is generally practiced using the forward-backward algorithm.
However, due to the high correlations between the observations and operating modes, as
well as the presence of missing measurements, the ordinary forward-backward propagation
algorithm is unsuitable for our application. As a result, we propose a new propagation algo-
rithm by suitably modifying the existing forward-backward algorithm to solve the inference

problem in an efficient way. The details are illustrated in the following subsections.

4.3.3.1 Propagation Algorithm

The forward-backward algorithm is a dynamic programming algorithm which has important

applications in both HMM and CRF problems [107]. It is used to simplify the enumeration
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over operating mode sequence for inference. However, in our case, not only the operating
mode sequence, but also the missing measurements need to be enumerated, which causes
correlated interactions between operating modes and missing measurements, as shown in
Fig. 4.4. Therefore, in order to solve this problem, a new propagation algorithm is developed
based on the forward-backward conception by performing a summation over the operating

modes and missing measurements.

Figure 4.4: The figure illustrates the correlated interactions at time point ¢ by the missing
measurement O; and the corresponding operating mode sequence. The shaded nodes denote
the operating mode sequence which is affected by missing measurement O

First, for the sake of simplicity, we define the following intermediate terms for our prop-

agation algorithm:

K M
pt(he, he1, Y, ) < exp{z MeTr(he, hee1) + Z fim B (he, Y, 9)}
k;fl " (4.14)
wi(hi, Oc—1) def exp{z fim B (e, O:1) }

m=1
In order to count the effect of a missing measurement on as many as d adjacent operating
mode labels, we formulate an intermediate variable below:

H?;é P45 (ht+s, O,Emis)) if Oy is missing

mis)y de
Yelhey hest ooy hesa—1, OF) =} (4.15)

1 otherwise
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where Ot(mis) indicates the missing measurements at time point ¢. In this formulation, the
contribution of an individual missing value to process operating mode transitions is modeled.
By integrating all the possible values of O™ the effect of O™ can be transferred into
the transitions among h;; 4.1. Hereafter, we define a variable n by integrating Equation

(4.15) as follows:

ZOgmis) Ye(hgs igrs ooy Pegat, O(mw)) if O, is missing

nt(hta ht-i—la ceey ht+d—1) == (416)

1 otherwise

However, in reality, since a missing measurement generally affects more on the operating
modes closer to it, for computational tractability, one can always approximate Equation
(4.16) by choosing the length of the missing measurement to be dg, where d, < d.

Based on the definitions listed above, a set of intermediate variables «; is defined by
considering the enumerations over operating mode sequence hq.;_; and all the missing mea-

surements by time point ¢ for forward propagation:

de obs) mis
Oét(ht, h’l(fj;)us f Z Z H (pt/ ht/ h ’ 17 Y( b ) ’)/tl (htl htlJrl, ceey ht/+d717 Ot(/ )) (417)

hi.t— 1Om15)t’ 1

where h\/ represents the operating mode sequence impacted by the missing measurements

t mzs

before time point ¢. If there are no missing measurements from O;_4;2 to Oy, then ht mis

mzs

will be @. If O, is missing, then O will denote the missing variable; otherwise O, will be

included in Yt(Obs) and its corresponding 7, term will be computed as in Equation (4.15).

As a result, oy can be calculated iteratively as below:

at+1(ht+1; hﬁil mzs Z P41 ht—l—l; hy, Ytﬁ)s )Ut+1(ht+17 ey ht—i—d) at(hta htj;)m) (4~18)

ht

Similarly, for the propagation from backward direction, a set of intermediate variables [,
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is defined as below:

de (mas) obs
ﬁt(hter*Q?hz(fbmzs f Z Z nyt/ ht/ ’ h‘turd 1’ H (Pt’ ht/ hy— 17}/75/( b ))

O(””S hiya—1.T7 t'= =t+d—1

(4.19)

where h(

1.mis Tepresents the operating mode sequence affected by the potential missing mea-

surements before time point ¢, which is the subset of h;;4_3. If there is no missing data
from O; to O¢4 43, then hg;gm will be @. By means of recursion, the intermediate variables

B for backward propagation can be calculated iteratively as follows:

Bt (heviazs By i) = Y @rra—a(Prra—z, hira—s, Y050
ht+d—2 (4. 20)

nt—l(ht—la ) ht+d—2)ﬁt(ht+d—27 hibmzs)

The steps detailing the proposed forward-backward propagation algorithm can be found
in B.1. After the forward propagation, the normalization term Z(Os) in Equation (4.10)

can be computed by means of the derived results:

Ops) Z Z H‘Pt hiyhi—1, Y, ObS)) Y (hey ooy higra—1, O (mis) ZOCT (hr) (4.21)

thomzs)t 1

The marginal probabilities in equations (4.11) and (4.12) can be derived by the interme-
diate terms a and 3, which will be illustrated in the next subsection.
4.3.3.2 Marginal Probability Derivation

In Equations (4.11) - (4.12), the gradient calculation is based on the marginal distribu-

tions P(hy, hy_1|Ops) and P(hy, tm;_f_1|00bs) Using the definition of o;(hy, hy_1, Y;(Obs)), we

76



marginalize the relevant terms to obtain P(hy, hy_1]|Oups) as follows:

T
1 o0s mzs
Pl hia|On) =75 3 3 [Twvlhonhes. Yl hias, O

hi:t—2,hit1:7 ngljs) =1

_1 obs =1 obs
AR ED DR DI DN | EICH R S

hit1it4d—2 hii—2 O(miS) t'=1

f)/t/(ht’a . ht’+d 17 (eee) }{ Z Z H 'Yt/ ht’ h’t/er 170(77”3))

hira—1.7 0,5.7;15) t'=t+1

t+d—2
H oo o1, YN T v s b, Vi)
=t+d—1 t'=t+1
_ 1 (obs) ) (®)
N Z(Oabs) 90t<ht7 ht_l? }ft ) Z Oét_l(ht_l’ ht—17mi8)ﬁt(h't+d—27 ht,mis)
hit1:t+d—2
t+d—2
H o (b, hy 1, Y;/(Obs))
t'=t+1
(4.22)
where the operating mode sequences ht | mis and h’tbr)ms are the subsets of {hyi1, -, Pura_a},

and the summation over h;;1.414_o is calculated by similar forward propagation as illustrated

in the previous subsection.

O(mzs)

When O;_;;; is missing, by defining ay(hy, h' i 1+1) as below, the marginal proba-

tmzs7

bility P(hy, O(mlsllOobs) will be obtained as shown in Equation (4.24).

(ht,ht mis) tmlz—f-)l ] Z Z H%Ot' Py, - laYt/ObS)

fa-1 oo, =1 (4.23)

Vt/(ht/a h’t/+17 ) ht'+d717 Ot(/TnZS))
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mis 1 obs)
(ht,Ot( l+)1|Oobs) :m Z Z H@t' (har, s — 17Y( )

hi:t—1,hi41.7 0<m”)\o£m;_‘5_1 ) t'=1

%'(ht’ . ht’—i—d 170(77“8))

Z {Z Z H@t' ht’ Py — 1>Yt/0bs))

hit1tra—1 hia— 1O(m”)\05"ﬁ>1 t'=1

Yer (B ooy Pyt g1, O o) JH Z Z H Yoo (hary ooy By g 1,0(””5))

O(mls) ht+d T t'=t+1

obs

t+d—1
obs obs
H (pt ht/ ht/ 15 t’ H QPt’ ht’ ht’ 1y t’ ))
—t+d t'=t+1
1 mis b
=— Z at<ht7h’tmzsvot( l+1> Bt—l—l(ht—‘rd lahﬁg-i-)lmzs)
Z(Oobs) h
t+1:t+d—1
t+d—1
obs
H SOt’(ht’ s — 1,Y( )>
t'=t+1

(4.24)

Here, the operating mode sequences h.’ and hglmis are also the subsets of {h¢41, ...,

t— 1mzs

hitq—1}, and the summation over hyy1.444-1 is computed iteratively.

4.3.3.3 Online Operating Mode Diagnosis

Once the offline parameter estimation step is completed, in order to identify the optimal
operating mode sequence online, the probability of the current operating mode given all the

previous observations is calculated as:
hi = argmax P(ht|O§Obs), o Ot(Obs)) (4.25)
ht

Solving the above problem is equivalent to a CRF based filtering problem for selecting

optimal operating modes. In order to estimate the current optimal operating mode in the
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presence of previously missing measurements, we define a set of intermediate variables &; as

follows:
def d ;
&) 2 N 3T T ewlhe b, Yi)  qu(her, oo e, OG-
(4.2
Qp—d+1 (ht7d+1> hgi)d+17mis>
Here, the forward propagation structure can be employed to deal with the d step ahead

calculation from oy_gy1 to &, and the conditional probability P(h:|O\, ..., O{"?) in Equa-

tion (4.25) is derived by means of the intermediate variables &, as below:

o0s o0s h
P(h O . O")) = _&lh) (4.27)

PIRAUD

As a summary, the main components of this proposed marginalized CRFs include of-
fline parameter estimation, related inference problems and the proposed forward-backward

propagation. The pseudocodes for the same are presented in B.2.

4.4 Case Studies

In this section, the proposed approach for operating mode diagnosis is tested on two case
studies, (i) CSTR simulation system, and (ii) hybrid tank experimental system. We consider
both the complete observations and missing measurement scenarios for evaluating the process

monitoring performance on these two systems.

4.4.1 Continuous Stirred Tank Reactor System
4.4.1.1 Process Description

In this study, the CSTR system containing two reactors in series [108] is considered and the

schematic of the system is illustrated in Fig. 4.5. This process comprises of two irreversible
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exothermic reactions occurring in both tanks simultaneously, and product of the first tank
acts as the feed to the second reactor. The coolant g. flows through both reactors and can be
treated as the input of the whole system, and the feed flow-rate gy is the disturbance. During
the simulation, the CSTR operates under the closed-loop condition and the control objective
is to keep the effluent concentration C4o at a certain reference value by manipulating the
coolant flow-rate ¢. consistently. In order to obtain an instant and direct operating mode
diagnosis result, the product concentration Cys and temperature T3 in the second reactor

are chosen as observation variables for process operating mode diagnosis.

Co- 114y

ey fl L1

Figure 4.5: The schematic of CSTR in series [108]

For the CSTR system, the setpoint of Cyy is set as 0.0075mol/L and a PI controller is
designed for closed loop control with parameters K, = 350L%/mol - min and 77 = 0.25min
as shown in [109]. For other process parameters, the readers are referred to the above
mentioned reference. Here, the feed flow-rate ¢; is contaminated by a white noise disturbance
with variance 0.3 under normal operating condition. For simulating the abnormal operating
scenarios, a random impulse signal with mean 10L/min and variance 3, and a random ramp
disturbance with maximum output value 2.5L/min and variance 1, are introduced in the
simulation.

After data collection, some feature extraction algorithms are employed for data pre-
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processing, and the proposed algorithm is then used to conduct model training and online

process operating mode diagnosis.

4.4.1.2 Discrete Feature Extraction

For many practical applications, in order to make the patterns more recognizable as well
as more robust in the presence of noises, the original observed variables are generally pre-
processed and transformed into new features, which is called feature extraction [110]. In this
case, the wavelet analysis technique [111] is first used to reduce the impact of noise, and then
triangular representation is employed to convert the continuous signal to a discrete symbolic
sequence based on a finite number of triangles, which captures the trend of observations
and also reduces the sensitivity to noise [88]. Details of triangular representation can be
found elsewhere [112] and is omitted here for brevity. Further, it brings in the robustness to
the proposed algorithm against missing measurements, since a lower percentage of missing
measurements may not impact the overall process trend.

After triangular representation, the original continuous signal is represented by a dis-
crete sequence with finite possible values. The discretization rule used in this chapter can
be found in Fig. 4.6 and Table 4.1. Here, the whole duration or magnitude range is equally
divided into three segments, and the notations “small”, “medium” and “large” indicate the
data falling into the segments with lowest, middle and highest ranges, respectively. Based
on the continuous dataset illustrated in Fig. 4.7, a segment of the corresponding triangular
sequences of the observations are shown in Fig. 4.8. In Fig. 4.8, the three operating modes,
namely, Normal, Abnormal 1 (impulse) and Abnormal 2 (ramp), are converted into trian-
gular sequences and are demonstrated in black, red and blue colors, respectively. According
to the discretization rule, different operating modes will have different triangle patterns; for
example, in the normal data range, the number of triangles with indices corresponding to

small duration and small magnitude is more than those of the other two modes.
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Figure 4.6: The illustration of triangular representation [113]

Observations in validation dataset
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Figure 4.7: The observation changing trends for different operating modes of closed-loop
CSTR system in the validation dataset. The upper and lower subfigures indicate the tem-
perature and concentration of the second tank, respectively
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Figure 4.8: The triangular discretization result of the CSTR validation dataset. Temperature
and product concentration of the second tank have been discretized in the left and right
figures, respectively. The black, red and blue lines indicate the normal, impulse and ramp
abnormal cases, respectively

4.4.1.3 Process Operating Mode Diagnosis Performance

In this simulation study, since the CSTR. operates under the closed-loop condition and the
observations generally exhibit high and complicated correlations, the conditional indepen-
dence assumptions of HMMs will not be the best fit. For a comparison, two other process
operating mode diagnosis algorithms are also considered in this work, i.e., HMM and back
propagation neural network (BPNN). For the BPNN algorithm, an HMM is first trained
for each observation variable, and then the probabilities of different operating modes given
different observations are employed as input to the BPNN for the overall operating mode
estimation. For the validation dataset illustrated in Fig. 4.8, the probability estimations of
different operating modes provided by three algorithms and the online monitoring perfor-
mances are shown in Fig. 4.9.

In the CRF diagnosis case, the window length d is selected as two. In the BPNN case, by

parameter tuning, a hidden layer with ten nodes is designed for an optimal overall operating
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Table 4.1: Look-up table of triangular discretization

Triangle shape Concave downward Concave upward
Triangle size Monotonic increase | Monotonic decrease | Monotonic decrease | Monotonic increase
Small magnitude 1 10 19 28
Small duration | Medium magnitude 2 11 20 29
Large magnitude 3 12 21 30
Small magnitude 4 13 22 31
Medium duration | Medium magnitude 5 14 23 32
Large magnitude 6 15 24 33
Small magnitude 7 16 25 34
Large duration | Medium magnitude 8 17 26 35
Large magnitude 9 18 27 36
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Figure 4.9: Probability of CSTR process operating modes estimated by the CRF (d =
2), HMM and BPNN based algorithms and the corresponding operating mode diagnosis
performances. The operating mode numbers 1, 2 and 3 represent normal, impulse and ramp
disturbance contaminated cases, respectively

mode decision. By modeling the correlations among the observations, we observe that the

CRF gives the highest diagnosis accuracy, and the HMM and BPNN based monitoring

algorithms have a lower diagnosis accuracy when the two abnormal operating modes occur

sequentially. Moreover, during the time of the short acting ramp disturbance around t =

840s, the CRF provides an exact detection, while the other two algorithms are not able

to detect the corresponding fault. Referring to the operating mode probability estimation

result, the BPNN based algorithm always provides ambiguous estimations around 0.5, which
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is not reliable compared to the other algorithms.

Additionally, due to the convexity of the loss function in the CRF framework, the initial
value of CRF does not impact the training performance as much as the other two algorithms,
which is another important advantage of CRF. We also define a metric called diagnosis
accuracy, which represents the ratio of correct estimation over all the estimations, and the

comparison results using the same metric can be found in Table 4.2.

Table 4.2: CSTR process operating mode diagnosis accuracy with complete dataset

Algorithm CRF (d=4) | CRF (d=3) | CRF (d=2) | CRF (d=1) | HMM | BPNN
Diagnosis accuracy (%) 94.75 94.30 95.21 92.82 86.30 | 70.62

Due to various practical reasons, missing data is common during an industrial process
operation. In order to validate the performance of the algorithm under missing data scenar-
ios, in this simulation, we consider 12 percent of process measurements as missing randomly
in the training dataset, and the corresponding discrete representation triangles are also con-
sidered to be missing if more than 20 percent of the data points are lost within one triangle.
Based on the incomplete training dataset, the marginalized CRF is used for operating mode
diagnosis. In order to assess the marginalization performance, the regular CRF is trained
with the same training dataset by simply ignoring the missing measurements and is used
as the initial guess of the marginalized CRF. The comparison result can be found in Fig.
4.10, which shows that the marginalized CRF exhibits better performance than the regular
version.

Additionally, to deal with the missing measurements, the marginalized HMM [114] is
employed for operating mode diagnosis. Similar to the complete data case study, the BPNN
is also combined with the marginalized HMM for comparison purposes. The comparison
results of marginalized CRF, HMM and BPNN methods can be found in Fig. 4.11. Evidently,
the performance of the marginalized CRF is much better than the other two. By increasing
the percentage of missing measurements, the robustness of all the algorithms to missing

measurements is tested. The corresponding diagnosis results are presented in Table 4.3,
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Figure 4.10: The operating mode diagnosis performance comparison between marginalized
and regular CRFs in the presence of 12% missing measurements. The operating mode
numbers 1, 2 and 3 represent normal, impulse and ramp disturbance contaminated cases,
respectively

which indicates that the marginalized CRF shows not only the robustness to the increasing
percentage of missing data, but also provides the most accurate result compared with the

other two algorithms.

Table 4.3: CSTR process operating mode diagnosis accuracy in the presence of different
missing percentages

Data missing percentage 5% | 10% | 15%
Marginalized CRF diagnosis accuracy (%) | 93.16 | 92.36 | 91.79
Marginalized HMM diagnosis accuracy (%) | 79.79 | 79.11 | 76.37
Marginalized BPNN diagnosis accuracy (%) | 76.71 | 75.34 | 72.95
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Figure 4.11: The operating mode diagnosis performances compared among marginalized
CRF, HMM and BPNN in the presence of 12% missing measurements. The operating mode
numbers 1, 2 and 3 represent normal, impulse and ramp disturbance contaminated cases,
respectively. The operating mode diagnosis accuracies of the marginalized CRF, HMM and
BPNN approaches in this particular case are 96.47%, 79.45% and 73.29%, correspondingly

4.4.2 An Experimental Validation on Hybrid Tank System
4.4.2.1 Process Description

In order to validate practicality of the proposed algorithm on real data, a hybrid tank
experimental system is considered. The corresponding equipment schematic is presented in
Fig. 4.12. As shown in Fig. 4.12, the hybrid tank system is composed of three connected
horizontal tanks and the inlet water flow is pumped into the two tanks on both sides.
Manipulation of the on-off valves Vi, V5, V3, V, will increase the tank levels suddenly and
cause overflow. Consequently, closure of the two lower connecting valves V3 and V; will lead
to two abnormal cases. In this experimental validation, when all of the connecting valves
Vi, V5, V3, Vy are open, it is considered as Normal operating mode, while when V3 or V, gets

closed, the system is considered to be operating under two different abnormal modes, named
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Figure 4.12: The configuration and diagram of the experimental hybrid tank system

Abnormal 1 and Abnormal 2. To reflect the real-time operating conditions and provide a
reliable diagnosis result, the left and right tank levels, [; and [5, respectively, are chosen as
monitoring observations for operating mode diagnosis. Valves V;, V5 and V5 — Vy are kept
open during the entire experiment. We used 80% of the data collected from the experiment

for training and the remaining for validation.

4.4.2.2 Discrete Feature Extraction

Similar to the CSTR process described in the previous subsection, the triangular discretiza-
tion algorithm is used for the generation of discrete features in this experiment study. Once
one of V3 and Vj is closed, the tank level increases faster, changing the normal operating
conditions. As a result, the data trends are different between normal and abnormal situa-
tions. Fig. 4.13 shows the triangular representation results for both /; and [, under different

operating modes.
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Figure 4.13: The triangular discretization results of observations [; and l,. The left and right
figures illustrate the continuous and discretized results of tank levels [; and [,, respectively.
In the left figure, the actual operating mode sequence can be found in the third subfigure,
where number 1 to 3 denote the Normal, Abnormal 1 and Abnormal 2 modes, separately.
In the right figure, the black, red and blue lines correspond to the Normal, Abnormal 1 and
Abnormal 2 cases, respectively

4.4.2.3 Process Operating Mode Diagnosis Performance

For operating mode diagnosis, the remaining 20 percent of data excluded from model training
is used as the validation dataset to test the diagnosis performance. The comparison results
of operating mode diagnosis in Fig. 4.14 successfully demonstrate that the CRF based
algorithm shows an obvious advantage over the HMM and BPNN ones. Similar to the
simulated CSTR case, the HMM and BPNN based algorithms incorrectly diagnose two
sequential abnormal modes, especially when the two abnormal modes share certain common
features. For example, consider the last mode switching that occurs around ¢t = 9600 min,
where a large jump of [, indicates the start of mode Abnormal 2, while the steady states of
modes Abnormal 1 and 2 also have some similar features. By changing the window length d
of the CRF, the CRF based algorithm exhibits different diagnosis accuracy levels as shown

in Table 4.4. From the numerical results listed, it is seen that the window length d should
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Figure 4.14: Probability of hybrid tank system operating modes estimated by the CRF' (d
= 10), HMM and BPNN algorithms and the corresponding operating mode diagnosis per-
formances. Here, the operating mode numbers 1, 2 and 3 indicate the Normal, Abnormal 1
and Abnormal 2 operating modes, respectively

be selected properly for satisfactory diagnosis accuracy. A smaller d might not be able to
fully describe the autocorrelation among observations, while a larger d might incorporate
too much past information which has no impact on the current process but increases the
computation. Consequently, the moving window length d should be in a reasonable range

for good diagnosis performance.

Table 4.4: Hybrid tank system operating mode diagnosis accuracy with complete dataset

Algorithm CRF (d=12) | CRF (d=10) | CRF (d=3) | CRF (d=1) | HMM | BPNN
Diagnosis accuracy (%) 75.00 95.83 85.42 81.25 91.67 | 87.50

In order to validate the proposed algorithm in the missing measurement scenario, it is
assumed that 12 percent of data is missing at random in both of the tank level measurements
[, and [ from the training dataset. Based on the same training and validation datasets, the
proposed algorithm is also used for diagnosis performance evaluation and compared with the

regular CRF, marginalized HMM and BPNN algorithms. The online monitoring results are
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presented in Fig. 4.15 and 4.16. It can be seen that compared to the other algorithms, the

proposed marginalized CRF demonstrates more accurate diagnosis performance.
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Figure 4.15: The hybrid tank system operating mode diagnosis performance comparison be-
tween marginalized and regular CRF's with 12% missing measurements. Here, the operating
mode numbers 1, 2 and 3 indicate the Normal, Abnormal 1 and Abnormal 2 operating
modes, respectively
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Figure 4.16: The hybrid tank system operating mode diagnosis performances compared
among marginalized CRF, HMM and BPNN with 12% missing measurements. Here, the
operating mode numbers 1, 2 and 3 indicate the Normal, Abnormal 1 and Abnormal 2
operating modes, respectively. The operating mode diagnosis accuracies of the marginalized
CRF, HMM and BPNN approaches in this particular case are 89.58%, 79.17% and 79.17%,
correspondingly

Table 4.5: Hybrid tank system operating mode diagnosis accuracy in the presence of different
missing percentages

Data missing percentage 5% [ 10% | 15 %
Marginalized CRF diagnosis accuracy (%) | 93.75 | 85.42 | 83.33
Marginalized HMM diagnosis accuracy (%) | 87.50 | 85.33 | 77.19
Marginalized BPNN diagnosis accuracy (%) | 85.42 | 70.83 | 68.75

4.5 Conclusions

In this chapter, the CRF framework, a probabilistic discriminative model, was employed
for process operating mode diagnosis problem. Due to the relaxation from the inherent
assumptions of HMM, the CRF algorithm has shown to be more effective in describing

complex autocorrelations among the observations, thereby more accurately estimating the
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current operating modes. Moreover, to deal with the missing measurement problem, a new
marginalized CRF framework has been designed and corresponding inference algorithms are
also developed. Finally, the proposed approach has been tested by performing a simulation
study on the CSTR system and an experimental study on a hybrid tank system. The results
indicate that the CRF framework can lead to a better and more robust operating mode
diagnosis, and can be a potentially good tool to solve process monitoring problems with

temporally correlated data.
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Chapter 5

Two-stage Time-varying Hidden
Conditional Random Fields with
Variable Selection for Process

Operating Mode Diagnosis

5.1 Introduction

As the rapid development of modern industrial technologies, process production scales are
gaining increasingly large. In addition to ensuring production efficiency, process and op-
eration safety needs to be guaranteed during a large scale process operation. Owing to
the applications of distributed control system, a large volume of process data are available,
resulting in a rapid development of data-based process monitoring approaches in recent
decades [12]. Among the existing data-based process monitoring algorithms, the MSPM
approaches have been well developed, such as PCA [115], PLS method [58], etc.. However,
since industrial processes are often operated under multiple modes, the inherent assumptions

of the conventional MSPM approaches may be violated, causing degradation of monitoring
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performance. To compensate the weakness of MSPM methods, many multimodal process
monitoring strategies have been established, among which the HMMs based monitoring al-
gorithms are gaining wide attentions owing to their capability of modeling mode transitions
[37].

However, limited by certain independence assumptions of HMMs, the HMM based process
monitoring techniques can become unsatisfactory when the HMM independence assumptions
are violated [116]. To compensate such limitations, a probabilistic discriminative model,
namely CRF, has been proposed and employed to address both multimodal and dynamic
process monitoring problems, with demonstrated superior performances over the HMM based
approaches [117]. Moreover, owing to the probabilistic discriminative modeling structure of
CRFs, there is no requirement to explicitly model the observation with certain probabilistic
distributions, and in theory arbitrary features can be selected for process operating mode
diagnosis. Such advantage makes CRF's more flexible and expressive than the HMMs.

During CRF modeling, in order to reduce the computational load and increase the model-
ing accuracy, a combination of effective techniques is commonly seen when solving the CRF
related problems. Instead of using raw observations as CRF model inputs, some feature
extraction approaches are employed to pre-process the data at the first stage and then use
the extracted features to proceed with the subsequent conventional CRF modeling. More-
over, certain discriminative classifiers, such as logistic regression model and SVM, are also
used as the first-stage feature extractors by training a local classifier [118]. The proposed
two-stage CRF structure creates discriminative features in the first stage and models the
temporal-spatial correlations among the labels in the second stage, which has been demon-
strated to outperform the conventional single stage CRFs and provide similar accuracy to
more complicated approaches [119]. However, to the best of authors’ knowledge, in the ex-
isting related literatures of two-stage CRFs, the first-stage local classifiers are simply used
to generate discriminative features and no related works of feature selection have been done

in the first-stage classifier training.
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Since the quality of the data used to build the process monitoring models can have a
great impact on the final monitoring performance, using all the available features might not
achieve a satisfactory monitoring performance compared with using well selected features
[120]. As CRF models allow arbitrarily large number of features to be included, feature
selection is particularly important for the training of models due to potential redundancy
of PVs. To address the feature selection issue of CRFs, two types of algorithms, namely,
filtering and embedding, have been considered in the existing literatures [121]. For instance,
in the filtering category, multiple evaluation indices have been proposed to rank and prune
some features [122], and as a typical example of the embedding approach, an efficient feature
inducing algorithm is implemented by assessing and adding features that can improve the
training performance [123]. However, the main drawbacks of the filtering approaches are
that the selected features likely have no contributions to the final performance, and due
to the large number of features available, the embedding approaches tend to have high
computational cost, making the solution intractable.

Therefore, in this thesis, a novel two-stage HCRF model with feature selection is proposed
for real-time process operating mode diagnosis. In the first stage, on the basis of the max-
margin training strategy [124], the HCRF model is obtained as a local classifier, with features
ranked according to the fault relevance. In the second stage, to adapt to the dynamic
characteristic of the real processes, a time-varying structure is proposed on the basis of the
first-stage HCRF outputs. The innovations of the proposed approach can be summarized
as follows: (i) the relevant feature selection is first considered during the first-stage training
process of CRFs; (ii) with a time-varying model structure, the proposed algorithm is able to
adapt to the process changes in real time, effectively avoiding model performance degradation
compared with the existing approaches.

The remainder of this chapter is organized as follows: Section 5.2 summarizes prelim-
inaries and comparisons of the conventional HCRFs and LCCRF's, and then proposes the

two-stage HCRF model. In section 5.3, the first-stage HCRF model is formulated, and the
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second-stage HCRF model is illustrated in section 5.4. The online implementation procedures
are integrated in section 5.5. To demonstrate the performance of the proposed algorithm,
a numerical case study is performed and detailed in section 5.6. Finally, in section 5.7,

conclusions are presented.

5.2 Preliminary and Introduction of the Proposed Two-

stage HCRF Model

5.2.1 Preliminaries of HCRFs and LCCRF's

As a probabilistic discriminative model, CRFs directly model the conditional probability
between the labels and the observations. Different from the conventional LCCRFSs, the con-
ventional HCRF has a conditional probabilistic formulation with latent variables, which can
be used to solve structured classification problems [125]. Under the probabilistic framework,
a mapping from process observations O = [Oy,---,0;,--+,07], O; € R, to class label
h € H is established, where H is a set of all possible labels. In between process observations
O and label h, a set of latent variables d = [dy,---,d;,---,dL], d; € D, are introduced for
more complicated dynamic modeling, where D is a finite set containing all the possible latent
states. The topology of the latent variables varies from problems to problems. For instance,
as illustrated in Fig. 5.1, the one dimensional linear-chain structure is applied on the latent
variables. Mathematically, a HCRF model can be represented in the following conditional

probabilistic form:
oF(h,d,0:0)

P(h7 d|07 6) = Zh/ p eF(h/,d/,O;@)

(5.1)

where © denotes the unknown parameters of the HCRF model. F'(h,d, O;©) € R represents
the feature function parameterized by ©, which is created to model correlations among O,
d and h.

In parallel, the conventional LCCRFs model the conditional probability between a se-
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Figure 5.1: The HCRF with linear-chain structure among the latent variables [126], where
the shaded nodes represent the observed variables

quence of label h,.r and the observations O,.7 with a graphical structure shown in Fig. 5.2.

The formulation of LCCRF's is defined as follows:

eGh1.7,01.7:7)

P(hlITlolzT;A) = Eh; QG(hEIT,Ol:T;A-)
1:T

(5.2)

where A represents the unknown parameters of the LCCRFs, which need to be estimated in

the training process.

Figure 5.2: The graphical structure of the conventional LCCRF, with the shaded nodes
representing the observed variables

The main differences between HCRF's and LCCRF's lie in the existence of the latent layer
and the probabilistic modeling of an individual label h or a label sequence hy.7. In fact, their

difference is similar to the difference between classical state space models and input-output
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transfer functions. HCRF is analogous to the state space formulation where d is similar
to the state, while LCCRF is analogous to the transfer function formulation. Due to the
modeling characteristics, both HCRFs and LCCRFs have their own advantages. By adding
the latent layer, the HCRFs have higher modeling flexibility and are able to describe the
latent features of the process. By modeling the probability between the label sequence and
observations, the LCCRFs take the correlations among the labels into consideration. In this
work, a two-stage HCRF model is proposed by integrating the advantages of both HCRFs
and LCCRFs to solve the process operating mode diagnosis problem. Detailed explanation

will be provided in the next section.

5.2.2 Two-stage HCRF Model for Process Operating Mode Diag-

nosis

By making use of the CRF framework, the process operating mode diagnosis problem can be
solved as a sequential classification problem. In this work, the process under consideration
is assumed to have multiple operating modes, such as Normal, Abnormal and Faulty,
etc.. In different operating modes, the process can exhibit different dynamics or statistical
properties, meaning that from the process observations, the current process operating mode
may be recognized through dynamical or statistical analysis. The process operating mode at
the sampling instant ¢ is represented by h; € H, where H = {1,2,---, P}, with P operating
modes in total. The objective is to find the most likely operating mode h; given all available
process observations Oy .

By removing the data from the transit of switchings between different operating modes,
the observations are first separated according to their operating modes and the HCRF model
is trained as a local classifier. This formulates the first-stage of the proposed strategy to
discriminate different operating modes. In this stage, the max-margin training strategy is
employed and the most relevant variables are selected while maintaining the discriminative

capacity of the local classifier. In the second-stage of the proposed strategy, the first-stage
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outputs act as the inputs to the second stage and the dynamic correlations between the
operating modes are considered by using a LCCRF model. As illustrated in Fig. 5.3, at
each sampling instant, a moving window including its previous observations are taken and
evaluated by the first-stage HCRF classifier. A longer moving window is beneficial to clearly
discriminate one operating mode from others in the instant where there is no switching
occurs, as denoted by the window L; in Fig. 5.3. However, toward switching instant, a
shorter moving window is better in capturing the change of features, as denoted by the
window L in Fig. 5.3. Therefore, an automatic selection of the window length is desirable
and this is conducted in the second stage of the proposed method. In the second-stage

modeling, the moving window length is determined which is adaptive to the mode switching.

Continuous real-time measurements n

et 111 TVITITIR
A

Operating mode 1 Operating mode 2 Operating mode 3

-

Figure 5.3: The graphical illustration of the process dynamics and moving window strategy

The detailed formulation and training strategies of the two-stage HCRF model are pro-

vided in the subsequent sections.

5.3 First-stage HCRF with Process Variable Selection

5.3.1 Problem Formulation

For the first-stage HCRF training, the observations from the same operating mode are ex-
tracted and integrated into multiple sequences. Each sequence starts with a transient period

which is followed by a steady period. To avoid the impacts of transient period on the training
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performance of the local classifier, the first few sampling points of each sequence are removed

from training dataset, which is shown in Fig. 5.4.

Continuous real-time measurements
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Figure 5.4: The graphical illustration of transient periods removal

In each operating mode, the first-stage HCRF classifier takes an observation sequence
with a fixed length L as input, and the corresponding operating mode as output. This local
classifier has an internal graphical structure shown in Fig. 5.5 in its simplest form. To
increase modeling flexibility, based on Fig. 5.5, each Y; can be extended to include several
of its previous observations as shown in Fig. 5.6, and each Y; has its corresponding length
d;. Therefore, a latent vector d = [dy,---,d;,---,dL], d, € {1,2,---, D} is introduced as
shown in Fig. 5.6, which breaks the long chain into smaller windows. With this layout, the
observations are re-arranged with reduced number of model parameters comparing with the
conventional HCRF. The detailed examples of D = 1 and D = 2 will be represented later in
this section. During the offline training period, longer L is more beneficial to differentiate
one operating mode from others. Therefore, L in the first stage model training will be chosen

much longer than D. The evolution of d;.;, is modeled by a first-order Markov chain, where
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transition characteristics can be obtained from the process data. As indicated in Fig. 5.6,

same graphical structure will be repeated over time.

time instant t time instant t+1

Figure 5.5: The graphical structure of the first-stage HCRF at time ¢ and ¢ + 1 in one
operating mode, which is the simplest form with ) = 1. The shaded nodes represent the
observed variables

time instant t time instant t+1

Figure 5.6: The graphical structure of the first-stage HCRF at time ¢ and ¢ + 1 in one
operating mode. The shaded nodes represent the observed variables

Based on the above structure, two types of feature functions are defined as follows:
(i) the feature functions modeling the transitions between d; and d;_; in the operating
mode hg, namely, fi, (h:,d;,d;_1); (ii) the feature functions modeling the connections be-

tween the operating mode h; and the process observations, i.e., fi,(hs, d, Opn—p+1) and
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fk‘3(hta dl? Onz:nz—D—i—l)a with n, = t—L + l.

The first type of transition feature function has the following binary indicator format:

1 ifhy=p and d; =17 and d;_, =
fkl(ht)dhdl—l) = (53)
0 otherwise

where the process operating mode p € {1,2,---, P}, and i,j € {1,2,---,D}. The total
number of these transition feature functions is PD?, and the possibility of transition from
d;_1 = j to d; = i in the p'* operating mode is evaluated by a weighting factor 6y,, which is
unknown and needs to be identified from the process data.

As to the second type of feature function, the detailed formulation is:

fk21 (htv Onl)

szg(hta On —1)
ka (hta dlv Onl:nlfDJrl) - ] : (54)

_szd, (hb Onl*derl)_

where each element f, (hy, Op,—j11) € RM can be written into the following form:

On, - j+1 if hy = p
Fray (hay Opy—jin) = i (5.5)

0 otherwise

where a weighting vector 0,, € RM is assigned to evaluate the above feature function.
The feature functions fi, (ht, diy Opyiny—p+1) are formulated similar to fi, (he, diy Opyiny—ps1)-
The only difference is that each element in fy,(hs, di, Onyn,—p+1) has a quadratic form as be-

low:

On—j+1 ©Opi—jp1 ifhy=p
kaj (he, Om—j+1) = o o (5.6)
0 otherwise

where ® represents the element-wise product between two matrices.
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The above feature functions also have their corresponding weighting factors 60y,, and the
maximal total number of 6, and 60y, are 2M D P, which can be reduced according to the
optimal estimations of latent variables d.

Specifically, considering the cases with D = 1 in Fig. 5.5, for the operating mode h; = p,
fr, and fi, can be formulated as fr, = fi,, = O, and fi, = firs, = Oil, with two unknown
weighting parameters 0,, and 60i,,. When D increases to D = 2 as illustrated in Fig.
5.6, for the operating mode h; = p, fi, and fi, can be formulated as fr, = [fry, fre]’ =
[Onys Ony—1]" and froy = [frgrs fre)” = [03,, Oz, 1], with four unknown weighting parameters
Ok s Okns s Oy > Okiss |-

By selecting both linear and quadratic feature functions fi, and fy,, it has been proven
that the statistics of a dataset following Gaussian distributions can be sufficiently described
[127], based on which more complicated data structure has been formulated in the HCRF
model. On the basis of the feature functions defined above, the function F'(h;,d,O;0©)

formulated in Equation (5.1) can be specified as below:

L
F(hy,d,0:0) => > O, fr,(he.di,diy) + > Oy fry (hey diy Oppiny—p1) +
=1 ki ko (57)

Z 9k3fk3 (htJ dl7 Onl:nlfD+1)}

k3

In summary, the diagram of the first-stage HCRF classifier can be found in Fig. 5.7, with
specified input and output. The unknown parameters in the first-stage HCRF model are
estimated by the max-margin training strategy and during the training process, the relevant
PVs are selected to achieve a better classification performance. The details are introduced

in the subsequent section.

5.3.2 Training of the First-stage HCRF and Variable Selection

Instead of estimating the HCRF parameters through MLE approach, the max-margin train-

ing strategy is applied to find a parameter estimation solution by maximizing the margins

104



OUTPUT F(h.r * dl:!. ] Y:'J—L-rl) ouTPUT F(hﬁl’ dli ? Y.r+11-—[,+2)
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time instant t time instant t+1

Figure 5.7: The illustrative diagram of the first-stage HCRF at time ¢ and t + 1

between the true label and the other labels [124], as illustrated in Fig. 5.8. By training
in this way, the HCRF model is named max-margin HCRF (MMHCRF) [124]. In the way
that is described in the above section, the training dataset {h™, OM™})_, are collected by
integrating the observations from multiple operating modes, where A™ and O™ denote
the operating mode identity and the corresponding observations with length L, respectively.
With this fully labeled training dataset, the max-margin training process of HCRF can be

performed by iterating between the following two steps [124]:

F(h™.d3).0™)
h=h; O
F(hl,d;"’,O(")) — —

Q h=h;

Figure 5.8: The illustration of the MMHCRF training, where the true label is A(™

(1) Fix the HCRF parameters © = [0k, 01k, 61.k,], and find the optimal latent variable
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dg") for each training sample {h("), O(”)} with respect to all possible labels:

dfl") = argmax F(h,d,0"™; ©) (5.8)
d

(2) Fix the optimal latent variable dg”) derived from the first step for all the training
samples, then optimize the HCRF parameters by solving the following optimization

problem:

N
1
min 16| +0;§n 50

st. F(h,dy”,0™;0) — F(h",d) 0™;6) <&, —d(h,h™), ¥n,Vh

where &, is the slack variable of the n'* training sample, and C' is a regularization

factor. d(h, h(™) has the following form:

1 ifh#h™
5(h, h™) = 7 (5.10)

0 otherwise

By comparing above equations with the illustration of Fig. 5.8, the first step is im-
plemented to maximize the score F(h,d;, O™) for all the nodes with different labels by
searching for and fixing the optimal latent variable. Due to the linear-chain structure of
the latent variable in this model, the Viterbi algorithm [27] can be applied to obtain the
optimal latent variable. Then in the second step, with the selected latent variable fixed,

HCRF parameters are estimated by maximizing the margins between the node with true

label and the other nodes.

The optimization problem in Equation (5.9) can be solved by optimizing the following

106



dual form through the quadratic programming (QP) strategy [128]:

mgx Z Z an,h6(h7 h(n)) - %HZ Z an,hw(o(n)a h)||2
n h n h
> ann=C, ¥n (5.11)
h

anp =0, Vn, Vh

where (O™ h) represents the feature difference between the node with predicted label h

and the node with true label A in the form (O™, h) = f(h,d\”, O™)—f(h™,d"),

o),
and f(h, d;l"), O™) is the concatenation of the HCRF feature functions.
Then, the unknown parameter © can be retrieved from the optimized dual variables «,

as follows:

- i > annth (0™, h) (5.12)

n=1 h

The above max-margin training strategy is quite similar to the SVM training, therefore in
this case, the idea of recursive feature elimination (RFE) strategy in SVM [129] is employed to
perform variable selection. The goal of SVM-RFE is to search for a subset of variables among
all the available variables which can maximize the classification performance, by iteratively
eliminating the most irrelevant variables. For the first-stage HCRF, the evaluation criterion

is formulated as
Zza, e b (09 h)h(09) 1) (5.13)
i=1 j=1 h

For each variable, removal is attempted and the following evaluation criterion is calcu-

lated:

Wiem) (e Z Z SN a0, mwOP 1) (5.14)
h h'

where m means the m' variable and O((?m) represents the observations after removing the

m!" variable.

107



From m = 1 to M, the difference AW(_,,,y = |W(ax) — W_p)(e)] is calculated and the
variable with the smallest AW _,,) is determined to be removed. The above procedures are
equivalent to removing the variables with the weighting factors [0y,, 0k, closest to zero. The

pseudocode of variable selection can be found in Appendix C.1.

5.4 Second-stage Time-varying HCRF for Process Op-

erating Mode Diagnosis

5.4.1 The Connection between the First-stage and the Second-

stage HCRF

As shown in Fig. 5.9, the identified first-stage HCRF model with variable selection is used
as a local classifier. Based on the outputs of the local classifier, the correlations between
different operating modes are taken into consideration for sequential classification, known
as the second-stage HCRF modeling. In this sense, as shown in Fig. 5.3, a shorter moving
window length is desired to quickly capture the switching of process operating mode by
involving fewer observations from the previous operating mode. Therefore, an adaption of
L over time is motivated in the second-stage HCRF modeling.

As shown in Fig. 5.9, the input features of the second-stage HCRF are from the outputs
of the first-stage classifier. A softmax function is applied on the first-stage HCRF outputs at
each sampling instant to calculate the probability of each operating mode, namely X,;(L;) =

[(XNLy), -+, XP(Ly),- -+, XFP(L)]". Each element XP(L;) is formulated as:

eF(ht:p»dp(Li)vo(t)§@)

XP(L) = (5.15)

IS F(hf‘,vdh/ (Lt)vo(t>7®)
D h=1€ i
=

where L, represents the length of the latent variable at time ¢, which is equivalent to the

moving window length at time ¢.
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Figure 5.9: The illustration of the two stage connection during the second-stage HCRF
training period

5.4.2 Formulation and Parameter Estimation of the Second-stage

HCRF

In order to model the adaption of moving window length L;, an auxiliary label sequence y,;.7
is introduced and assigned according to the operating mode. As shown in Fig. 5.10, the
first L samples in each operating mode are labeled with y = 2 and the other samples are
labeled with y = 1. In this sense, ¥ = 2 means that the process has just left the previous
operating mode and switched to a new operating mode, requiring a reduced L; to track the
most recent process status more quickly.

With this auxiliary label y;.r, the structure of the second-stage HCRF model is illus-
trated in Fig. 5.11, based on which the following conditional probability is formulated and

factorized:

P(hl:T: yl:T|X1:T; A; R) - P(hl:T|y1:T: Xl:T; A) . P(y1:T|X1:T; R)

> G(hyry1:7,.Lir, X1.13A) E : E(yir.7.LiT.X1.T;R)
_ e~tur . Lir©
> i Gh oy, LT X1m3A) E(.¢.Lir.X1.T:R)
Zh;:-r € LT Zyi:T ZLI:T €

(5.16)

The objective of the second-stage HCRF' is to maximize the following conditional log
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Figure 5.10: The illustration of y;.7 labeling

likelihood function:

10g P(hl:T: yl:T|X1:T; A, R) = log P(hlleyl:T; Xlﬂ";A) + log; P(ylﬂ"|X1:T§ R) (5-17)

In the above equation, the first term models the conditional probability of actual process
operating modes with input features and the auxiliary label sequence y;.7, and the second
term models the correlation between the auxiliary label sequence and the input features.
With such formulation, during online implementation, the auxiliary label is first inferred from
the first-stage HCRF' outputs, and then the actual operating mode is estimated based on the
adjusted window length suggested by the inferred auxiliary label. The two log likelihoods in
Equation (5.17) are trained separately: log P(y,.7|X1.7) is first maximized by using the VB
approach, and then log P(hy.r|y1., X1.7) is optimized by using the CMLE.

As shown in Fig. 5.11, P(y;.r|X1.r) has a simplified HCRF structure, with two types
of feature functions defined as: (i) the feature functions connecting y, and L;, namely,
€u, (Yt, Lt); (ii) the feature functions connecting L; and X, namely, e,,(L;, X;). The upper

bound of L; is assumed to be L and the uncertainty of L; is modeled by two Dirichlet
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Figure 5.11: The illustration of the second-stage HCRF with shaded nodes representing the
observed variables

distributions with respect to different y;, as follows:

eul(yta Lt; Cy:) — P(Lt - El; EZ: Ty Llyt; Cy:) — [Cl,ymClym e :CL,yt] ~ Dir(KL;nyg) (518)

where 7,, is the concentration parameters of the Dirichlet distribution and Ky, is the total
number of the possible values of L;. For the sake of reducing the computational load,
instead of taking all the values from 1 to L, the possible values of L; are selected as a subset
L=A{lL,l,---,L} C{1,2,---,L}.

To evaluate the discriminative capacity of the first-stage HCRF', according to the iden-
tified first-stage HCRF model, all the L; values are tested at each sampling instant ¢, and
within a fixed length window L, the percentages of different estimated operating modes are
computed as follows:

(HY.p 1 (L) = p)

wL:(p):# I —1 3 p:1:2:"':P (519)

where the operator #(-) counts the occurrence times of the events in the bracket, and
H}(L;) = argmax, X}, ,(L;) represents the most likely operating mode estimated from
the observations.

An illustrative example of the above calculation is shown in Fig. 5.12. In this example,
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every adjacent two observations within a window of length L is evaluated based on the
first-stage HCRF model. The most likely operating mode sequence H;.; is inferred based
on every pair of the adjacent observations. In this case, it is observed that with smaller
L;, the potential switching from one operating mode to another can be detected quicker.
Using Equation (5.19), in this example, wy,_5(1) and wy,_5(2) are calculated as 0.6 and 0.4,

respectively.

L=6
(gf—j) u ’ w T
Hi(L,=2)=1 HyL=2=1 HL=2=1 H{=)=2 HZL=2)=2

Figure 5.12: An illustrative example of the first-stage HCRF discriminative capacity evalu-
ation

Generally, within the same operating mode, both larger and smaller L; can give consistent
wr,(p), while longer L, can provide more reliable classification result than smaller L;. If
wr,(p) decreases from a relatively high value to a low value, there is a possibility of the
operating mode switching. Hence, the negative changing slope of wr,(p) in a fixed length
short period is inspected and selected as a feature to reflect the switching at ¢, denoted as

VL,. Then the feature function e,,(L;, X;) can be designed as:

v, ®
e if L; € Lq
€ua(Le, Xe) = VL, Vi I2 (5.20)
€ 1 if Lt S Lg

where L, and L; represent the subsets of smaller and larger L, respectively. [,, denotes the
median value in Lg.
Then, the conditional log likelihood log P(y1.7|X1:7; R) can be optimized by iteratively

performing the following VB-E and VB-M steps.
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In the VB-E step, the KL divergence Dy (q(L1.7)q(¢)||P(Ly.z, ¢|y1.7, X1.7)) is first min-
imized to obtain the variational posteriors ¢(L;) and the variational parameters of ¢(¢). The

factorization of Dy can be found as follows:

Drr(q(Lir)g(OP(Lir, Clyrr, Xir)) = /ZQ(LLT)Q(O log P(LiiLzry)l?iciﬁ:T)dC

:/CQ(C) logQ(C>dC+ZQ(L1:T> log q(Ly.r) — /CZQ(LI:T>Q(C) log P(Ly.r, €, Y1, X1:1)dC

L.t Ly.m
+ CQ(LLT)Q(C)
:/CQ(C) 1OgQ(C)dC+ZQ(L1:T> log g(Ly.r) — /CZQ(LI:T)(](C) log P(Ly.r, yr:7, X1.7|€)dC
Li.r Li.1

— /CQ(C) log P(Cm)dc + Cq(Ll:T)Q(C)

(5.21)

where ¢ = [Cy,=1, Cy.=2], Cy(L1.0)q(¢) incorporates the terms irrelevant to the variational

posteriors ¢(L1.7) and ¢(¢), and can be treated as a constant.
While minimizing Dy, with respect to q(Lq.r), by substituting the complete log likeli-

hood log P(L1.7, y1.7, X1.7|¢) and arranging all the irrelevant terms into constant Cyr, ..,

113



Equation (5.21) can be rewritten as

DKL(Q(LI:T)) ZZ (LlT logq LIT /Z LIT IOgP(leT,yLT,XLTK)dC

L1 T C Ll T
—I— Cq(Ll:T)

= Z q(L1.r)log g(L1.r) — /Z (L1r)g {Z Z €u (Y, Lt; €)
Ly.r ¢ Lqi.7 t=1 wuy

Z Yz Cus (Lt7 Xt)]} + Cq(leT)

u2

T
_ZZ Lt logq Lt qu Lt Zem ytth7 >Q(C) - Z

t=1 Lz t=1 L t=1

Z Q(Lt)(z Vuz Cus (Lt, Xi)) + Cq(leT)

Lt u

(5.22)

By taking derivative of the above equation with respect to q(L;), the variational posterior

q(L;) can be computed as below:

Q(Lt) X eXpKZ Cup (yt7 Lt; C)>Q(C) + Z Vo Cus (Lt’ Xt)] (523)

uy u2

Similarly, when minimizing Dy with respect to ¢(¢), KL divergence is reformulated as

Dkr(q(€)) = / (€)logq(¢)d¢ — /Zq (L1.7)q(€) log P(Ly.r, y1.1, X1:7|€)dC
¢ L (5.24)

- /C 4(¢) log P(CIn)d¢ + Cyee)

Since ¢ follows a Dirichlet distribution, assuming the variational posterior ¢({) ~ Dir(v)
and substituting the complete log likelihood log P(Ly.7, y1.7, X1.7|¢) into the above equation,

then by minimizing Dy, the variational parameters are obtained in the following equation.
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The detailed derivations can be found in Appendix C.2.

Vyed = Nyea + Y a(Lr = 1) (5.25)

In the VB-M step, the following log likelihood function is the objective function to be

optimized:

log P(yr.r| Xirir) = log »  ePirlirXur) _jog N "N = ePlurr Lo Xiorir) (5.26)

L1 vy Lur

From the VB-E step, the feature function e,, (y;, L;) has been parameterized. Therefore
in the above objective function, we treat only ,, as the unknown parameter to be identified.
By taking partial derivative of Equation (5.26) with respect to 7,,, the partial derivative can

be obtained as

T

O0log P(y1.7|X1.1;7 d
BPWTIXTT) _SSSS P11y X)) - (LX)~ 3 S0 ST Pyl LX) - (L Xo)

Vus =1 L, t=1 y. Ly

(5.27)

Then the quasi-Newton algorithms such as L-BFGS approach can be employed to solve
the above optimization problem for estimation of ,, [105].

After optimizing the second term in Equations (5.16) and (5.17), the first term can
then be maximized as a conventional LCCRF. Similar to the first-stage HCRF, the feature

functions of log P(hy.7|y1.17, X1.7; A) are formulated as follows:

1 if ht =p1 and ht—l = P2
gw1<ht7 ht—l) = (5'28)
0 otherwise

Xt(Lt) ) P(Lt|yt) it hy = py
Guoa (s ye, Xo(Li)) = (5.29)
0 otherwise
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X (L)% P(Lyly) if hy = py
Gus (M, ye, Xi(Lt)) = (L))" P(Lelye) P (5.30)

0 otherwise

where the probability P(L:|y;) is obtained from the feature function e, (y;, L) in Equation
(5.18).

Corresponding to the feature functions shown in the above equations, a set of weight-
ing factors A = {{Aw, b iy, {0 bt {Aws ooy} are treated as unknown parameters of
the CRF model, which can be estimated by maximizing the conditional log likelihood func-
tion log P(hy.r|y1.r, X173 A), through the following partial derivatives with respect to the

unknown parameters:

P(hy, by |yir, Xvir) - Gu (R, hy_y)

log P(hyr|yir, Xirs A)
dlog P(hy.r|yr.r, X113 >:Zgwl ht, hi—1

Mq

8)\1111 — h/ ;71
dlog P(hyrlyrr, X T
g 1:g>\ylzT> 1r; A Zg’” heyye, Xi) — Z Z P(Wyrr, X11) * Gu (B, 42, X4)
2 t=1 n]

alOg P(h :T‘y :T7X T?A)
la)\:3 : = Zg’u)g(h‘t)yt)Xt

t=1 t=1

Mﬂ

P h ’ylzTaXlzT) : gwg(hga yt7Xt)

(5.31)

where the conditional probabilities P(h}, h, |y1.r, X1.7) and P(h}|y1.7, X1.7) can be solved

by the forward-backward algorithm [27].

5.5 Online Implementation

After completing the training, the proposed two-stage HCRF algorithm is employed for
online operating mode diagnosis. From the first-stage HCRF, the variable selection is com-
pleted from the training and applied to the continuous online process observations, and then
the second stage HCRF is deployed for real-time process operating mode diagnosis. The

objective of the online operating mode diagnosis is to find the optimal current mode h;,
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which maximizes the conditional probability P(h|X1..; A*, R*) conditioned on the estimated
model parameters and data.
As shown below, the marginal conditional probability can be derived following a two-step

inference procedure:

P(ht|yT:t7X1:t;A*) = Z P<h1:t‘y>1k:t7X1:t;A*)

hl:t;(ht) (5.32)

Zh; ay(hy)
where a;(h) = 32, 21 Oyl bie X0 ) oo intermediate variable which can be
solved recursively through ay(hy) = >,  ar1(hi1) - ety Ghu—19i Lo Xeh™) o sampling
instant 1 to ¢.
The optimal yj., is estimated as follows:

Y1 = argmax P(yr.| X1, RY)

Y1:¢

, (5.33)
= arg max H P(yp| Xv; RY)

Yi:t t'=1

Then the current operating mode can be estimated by h; = arg max;,, P(h:|yi.,, X1.4; A¥).

5.6 Case Study

In this section, a simulation is conducted to validate the performance of the proposed two-
stage HCRF algorithm for process operating mode diagnosis. As comparisons, the con-
ventional LCCRF is employed to demonstrate the performances of the proposed two-stage

HCRF algorithm.
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5.6.1 Simulation

In this numerical study, a process with eight variables is simulated which operates in three
different operating modes 1 - 3. In different process operating modes, observations are
simulated to follow different statistical distributions and autocorrelations. As shown in Table
5.1, for each operating mode, a multivariate Gaussian distribution of five variables is first
designed as a base distribution. By taking the data generated from the base distributions as
inputs to a set of autoregressive models to generate intermediate variable o1.7, autocorrelated
data are generated. To make the monitoring problem more challenging, the final process
observations Oy are simulated by summing up o;.7 in a moving window as indicated in
Table 5.1. In addition to the above five PVs, another three PVs are simulated, which are
not related to the actual process operating modes, as redundant variables.

Table 5.1: Basis distributions and autoregressive formulations for different operating modes

Operating mode Operating mode 1 Operating mode 2 Operating mode 3
p1 = [6,6,3,8, 10] pz = [5,5,4,8, 10] ps = [5,5,3,8,11]
3 0 0 0 0 2 0 0 0 0 2 0 0 0 0
0 3 02 02 02 0 2 02 02 02 0 2 02 02 02
Basis distribution ¥1=1]0 02 3 05 05 =10 02 3 05 05 3=1]0 02 3 05 05
parameters 0 02 05 10 0.1 0 02 05 10 0.1 0 02 05 3 0.1
0 02 05 01 5 0 02 05 01 5 0 02 05 01 5
s ~ N (1, 51) 557 ~ N (12, 52) 5§ ~ N (s, 53)

oM (t) = s(M(t)
0@ (t) = 0.50(2) (t — 1) — 0.80(2) (t — 2) — 0.30(2) (¢t — 3) 4 0.10(2) (¢t — 4) — 0.102) (¢t — 5) + s (t)
Autoregressive 0(3) (t) = 0.50(3>(t -1) - 0.10(3)(t —-2)+ s(3) ()
formulation o™ (t) = 0.50 (¢ — 1) — 0.10@ (t — 2) — 0.80() (¢ — 3) + 0.250() (t — 4) + (1) (¢)
0®)(t) = 0.505) (t — 1) — 0.6005) (£ — 2) + 0.250(3) (t — 3) + s(5) (¢)

Moving summation

formulation O(t) =o(t) +o(t —1) + o(t —2) + o(t — 3)

A training dataset with 9000 samples is then selected to estimate the parameters of the
proposed two-stage HCRF model and a validation dataset with 8000 samples is selected to
test the performance of the proposed algorithm. In the first-stage HCRF modeling, D and
L are selected as 6 and 50, respectively. From the first-stage HCRF' training, importance
of variables is estimated and the importance rank of all the eight variables is depicted in

Fig. 5.13. As shown in Fig. 5.13, the first five PVs are ranked with higher importance
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than the last three variables, which is consistent to the data generation. By evaluating the
training and validation performances with different selection of variables among the first
five variables, the first four variables are selected from the first-stage HCRF training. To

evaluate the classification performance of using the selected PVs, the confusion matrix of

the test dataset is indicated in Fig. 5.14.

Rank

1 2 3 4 5 6 7 8
Variable identity

Figure 5.13: The rank of the eight PVs, with smaller rank indicating higher importance

Normalized confusion matrix
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0.8
E 0.6
© .
o Operating mode 2
= 0.4
Operating mode 3 0.2
0.0
o e e
& S &
< < <
O O O
N N O
& & &
R R R

Predicted label

Figure 5.14: The confusion matrix with selected variables of the first-stage HCRF for the
numerical case study

In order to take the operating mode switching dynamics into consideration, the second-

stage HCRF is deployed for online process operating mode diagnosis with time-varying L.
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From the training results of the Dirichlet distribution, the distributions of L; with respect
to y; = 2 and y, = 1 are illustrated in Fig. 5.15. It indicates that in the operating mode
switching transient periods, smaller window length L; is more reliable to identify the actual
operating mode, and in each steady operating mode, larger window length L; can provide
more accuracy diagnosis result. The mode switching period detection results can be found

in Fig. 5.16.
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Figure 5.15: The distributions of L, with respect to 5, =2 and y; = 1
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Figure 5.16: The operating mode switching period detections of the proposed algorithm

With variable selection, the proposed algorithm can effectively handle the changes on
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the fault-independent PVs and detection results are not being affected. For the simulation
purposes, two kinds of disturbances are introduced to the last two PVs, as shown in Fig.
5.17. Starting from the 4000*" sampling instant, a randomly generated bias and a gradually
ramping disturbance are added onto the 7" and 8™ variables, respectively. The operating
mode diagnosis performances of the conventional LCCRF and the proposed two-stage HCRF
algorithms are compared and illustrated in Fig. 5.18. Starting from the 4000 sampling
index, due to the disturbances acting on the last two PVs, the diagnosis performance of
the conventional LCCRF degrades and finally loses the diagnosis capability. In contrast,
as to the proposed algorithm, because the most relevant PVs are selected in the first-stage
training period, the subsequent disturbances on the fault-independent PVs do not cause the
loss of diagnosis capacity. Moreover, even before introducing the disturbance, the proposed
algorithm has slight better diagnosis performance than the LCCRF. For more details, the

diagnosis accuracy can be found in Table 5.2.
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Figure 5.17: The validation dataset illustration
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Figure 5.18: The process operating mode diagnosis performance comparison of the numerical

case

Table 5.2: Process operating mode diagnosis performance comparison

Diagnosis accuracy without disturbances

Overall diagnosis accuracy

Proposed algorithm 89.30%
LCCRF 86.00%

90.73%
68.65%

5.7 Conclusions

In this chapter, a two-stage HCRF algorithm for real-time process operating mode diagnosis

is proposed and explained in details. Considering that the archived industrial PVs contain

both relevant and irrelevant information to the actual abnormalities, the first-stage HCRF

is designed to explore selection of PV subsets based on recursively eliminating the irrelevant

variables, which reduces the number of PVs used for modeling. Meanwhile, by taking the

dynamic characteristics of the actual processes into consideration, the second-stage HCRF
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is proposed by making use of the outputs of the first-stage HCRF. In the second-stage
HCRF, an effective algorithm is designed to detect operating mode switchings and adapt
the dynamics of switchings by adjusting the moving window length in real time. The VB
approach is employed for parameter estimation of the second-stage HCRF. To demonstrate
the performance of the proposed algorithm, a numerical simulation is studied and explained
in details, and superior operating mode diagnosis performance is achieved when comparing
with the conventional approaches. In conclusion, the proposed algorithm has the capability
to select the abnormality relevant PVs and track the process dynamic variations, which

contributes to a more reliable abnormality detection strategy.
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Chapter 6

Real-time Mode Diagnosis for
Processes with Multiple Operating
Conditions Using Switching

Conditional Random Fields

6.1 Introduction

In order to ensure process safety and the product quality, effective strategies for real-time
process monitoring are necessary. The primary objectives of process monitoring include
detection and diagnosis of abnormal modes during the process operation. By making use of
the available process information, both knowledge based and model based approaches [130]
have been developed to solve the process monitoring problem. As a result, some advanced
methods [131, 132] have also been developed as the foundation of more complicated process

monitoring solutions. On the other hand, in the recent decade, abundance of real industrial

3Part of this chapter has been published as Mengqi Fang, Hariprasad Kodamana, and Biao Huang. Real-
time mode diagnosis for processes with multiple operating conditions using switching conditional random
fields. IEEE Transactions on Industrial Electronics, 67(6):5060-5070, 2020.
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process data has resulted in wide spread popularity of data based approaches for monitoring,
for example, the MSPM. Recently, probabilistic counterparts of MSPM approaches are also
gaining wide attentions [133, 66]. On the other hand, HMM based strategies have also been
employed to deal with process mode diagnosis problems for dynamic systems, owing to its
capability to model temporal correlations and multi-modal dynamics [37, 134]. Even though
the application of HMMs in process monitoring has shown a lot of promising results, there are
some shortcomings. As a probabilistic generative model, HMM has two inherent conditional
independence assumptions. If those assumptions are not satisfied in reality, the modeling
capability of HMMs might not be sufficient to describe the real process [86]. Therefore, it
might fail or lead to degraded performance in process monitoring [117, 135].

To circumvent such limitations of HMMSs, a probabilistic discriminative model, namely,
CRF, has been proposed [43]. To deal with particular problems, multiple types of CRF
models have been developed. For instance, a HCRF model has been designed to incorporate
latent information for better observation descriptions [125]. For more complicated scenario
modeling, the hierarchical CRF and dense CRF models are established [136, 137]. Addition-
ally, to improve the model training performance, some extended CRF model structures have
been implemented, such as Bayesian CRF [138] and max-margin CRF [124], etc.. However,
most of the existing CRF models are mainly designed to solve the computer science related
problems; such as natural language processing, image processing, etc. [42]. Owing to its
success in dealing with sophisticated classification problems, CRF has been considered as a
promising approach to solve process monitoring problems. Recently, a marginalized CRF
based approach for real-time process mode diagnosis, with incomplete measurements has
been developed and shown to outperform HMM in solving process mode diagnosis problems
[117].

Most of the process industries are operated under multiple operating conditions corre-
sponding to different operating requirements, product qualities and load levels [87]. Mean-

while, in such cases, the process data also exhibit multi-modal behaviors, which needs to be
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specifically addressed. For instance, a sparse modeling and dictionary learning approach has
been proposed recently to deal with this issue [139]. Furthermore, as indicated previously,
when the datasets are simultaneously multi-modal and dynamic, HMMs may still be used for
process diagnosis [140]. However, due to the previously indicated limitations of the HMMs,
process mode diagnosis based on multi-modal datasets with strong temporal correlations
will not be effective. To address this weakness, a SCRF based framework is proposed in this
work. Under this framework, a scheduling variable is utilized to infer the current operating
condition and subsequently to determine the status of the current process mode, such as
normal, abnormal and failure. The proposed SCRF framework is similar to the mixture of
CRF models [141] in that it uses a collection of CRF models to capture multi-modal scenar-
ios. However, the key difference is that, the proposed framework also models the switching
between operating conditions. For parameter estimation of SCRF, the EM algorithm is em-
ployed. Once a suitable SCRF model is developed, it is deployed for on-line process mode
diagnosis. As a result, the contributions of this proposed SCRF framework are summarized
as below: (i) from the theoretical perspective, the dynamic switching framework is firstly
proposed to improve the conventional CRF modeling capability to describe the industrial
processes with multiple operating conditions. Correspondingly, an innovative model param-
eter estimation approach has also been developed for the proposed SCRF model; (ii) from
the practical aspect, as a probabilistic discriminative model, the proposed SCRF framework
inherits the advantages from the conventional CRF models, and therefore it is able to com-
pensate the weakness of HMMs with a simple and flexible framework. Such framework can
make the informative process features easily involved into the SCRF model if they are useful.

This work is an extension of the conference paper by Fang et al. [142], and the additional
contributions with respect to [142] include: (i) development of a simplified SCRF parameter
estimation approach to improve computational efficiency, (ii) extended validations of the
SCRF approach through a CSTR process and an experimental hybrid tank system. With

respect to the simplified SCRF parameter estimation approach, the information retrieved
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from the scheduling variable has been fully used to help derive the SCRF model parameters,
by introducing a latent PV for operating condition segment location. Such enhancement
not only increases the computational efficiency during the model training process, but also
effectively decreases the undesired oscillations of diagnosed process modes from the real ones.

The remainder of this chapter is organized as follows: Preliminaries of the LCCRF model
are presented in section 6.2. In section 6.3, the SCRF formulation, the EM algorithm
based parameter estimation of the proposed SCRF model and the corresponding on-line
process mode diagnosis strategy are illustrated in detail. Section 6.4 presents the validation

performances using a simulated CSTR example and an experimental hybrid tank system.

6.2 Preliminaries of LCCRF's for Process Mode Diag-
nosis

A LCCRF model is an undirected probabilistic graphical model that can be employed to
describe the relationships between observation data sequence O = [Oy, - -+, Or|, where O, €

R, and the process mode sequence h = [hy,- -, hy], where h; € {1,2,---, N}, as shown

below [27]:
P(h|O) = Z<10) exp 3 U NTilhes o) + 3 i (e, ¥} (6.1)
t=1 k=1 m=1

where N represents the total number of process modes, and ) and T represent the dimension
of data and total number of samples, respectively. Y; is composed of the data required for
modeling at time instant ¢. The normalization term Z(O) is obtained by marginalizing the
process mode sequence hj.r.

The function sets {7} }X_, and {E,,}_, are called feature functions, which can be discrete

or continuous values. The selection of feature functions is generally based on the specific

nature of the problems [102]. For the purpose of process mode diagnosis, the related feature
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functions are normally selected as:

1 if ht—l = ll and ht = ZQ
Tk(ht7h‘t—1) - (62)

0 otherwise
where [1,lo = 1,2, ..., N represent the process mode identities of sampling instants ¢ —1 and ¢,
respectively. When there exists a process mode transition from [; to Iy, the feature function
T, will be set as 1 to represent the activation of such transition in CRF model. Also, for
modeling the sequential observation data dependency, the following feature functions are

commonly formulated:

EM(hta Yi) = Em(hta Ot, Otfla ) Otfderl) (6'3)

where Y; =[Oy, Oy 1, -+, 0;_q, 1], with d,, being a suitably chosen window length reflecting
strength of the observation dependency.

In summary, the unknown parameters are A = {\}5, and M = {pu,,}M_,, which
can be calculated by maximizing the conditional likelihood function in Equation (6.1) [93].
For detail information regarding the application of CRF for process monitoring, readers are
referred to Fang et al. [117]. Once Equation (6.1) is determined, mode (h) diagnosis can be

performed based on the observed data (O).

6.3 SCRF for Process Mode Diagnosis in Multiple Op-

erating Conditions

6.3.1 Problem Statement

Chemical processes often operate under different process modes reflecting the process health

status, and the switching between the process modes can be modeled by certain rules with
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a probability. For example, the process mode may be classified as normal, abnormal and
failure when the process is subject to faults. When a process is in the abnormal mode, it
can have a certain probability to go failure mode as well as a certain probability to return
to normal mode. These probabilities may be described by a probabilistic model such as
Markov chain. Meanwhile, the process can also operate in different operating conditions,
such as, low throughput and high throughput. Note that two concepts used in this chapter,
process mode and operating condition, are distinct as explained. Under different operating
conditions, the switching rules between different process modes can be different. For example,
the Markov chain model for mode switching at low throughput can be different from that
at high throughput as illustrated in Fig. 6.1. Process mode diagnosis problem in this
case becomes more difficult and conventional diagnosis approaches may result in ambiguous
inferences, as there are multiple sources of switching rules. Therefore a more sophisticated
model structure is needed under this circumstance. In this work, we employ a SCRF approach

to address this issue.

| Process mode Process mode |
I Normal Abnormal

Abnormal

I

' |
| Process mode Process mode

I

Operating condition 1 Transition Operating condition 2

1 1 13 1y

Figure 6.1: An illustration of the relation between the operating conditions and process
modes

The whole process is assumed to operate in P different operating conditions, i.e., I =
[, Iy, ... Iy, ..., IT], where I; € {1,2,--- P}. So a data point at t has two attributes: (i)
its process mode h; and (ii) its operating condition I;. It is assumed that the process

mode of the system at a particular time instant t is associated with a scheduling variable
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S = [S1, 52, -+, S7], but with uncertainties. Mathematically, we are interested in modeling
P(R|O, S), namely, the probability of the process mode given the process data to determine

the process mode sequence hy.r, regardless of varying operating conditions.

6.3.2 SCRF Model Formulation

Building on the basis of the LCCRF, a graphical illustration of the proposed SCRF is given in
Fig. 6.2, where an additional operating condition layer is considered. The multiple LCCRF
models are allowed to switch between each other when the change of operating conditions
occurs. Further, we consider a scheduling variable S; that reflects the operating condition

with uncertainties, modeled by the following equation:

exp[_%]
P(It = Z|St) = Z_ D) (64)
7 expl- )

where S; denotes the i'* fixed operating point and o; is the validity width of the scheduling
variable in the i*" operating condition.

By referring to the system identification of linear parameter varying models [143], the
above probabilistic representation in Equation (6.4) is adopted. Here, the prior probability
of the current operating condition [; is governed by the scheduling variable S;. Industrial
processes typically operate at several fixed operating conditions with occasional transitions
between each other. Once the process deviates from its current operating condition, the ex-
ponential term in the numerator of Equation (6.4) becomes smaller and therefore the prior
probability that indicates the process staying in the same operating condition decreases.
While in the transition period between different operating conditions, by using the above
priors, the system will be represented by a mixture model with the characteristics of dif-
ferent operating conditions. Usually in application scenarios, the operating conditions are

determined beforehand to meet the desired product quality, hence, the fixed operating con-
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dition values {S,}!” | are known in advance, whereas the validity variables {o,}_; need to

be estimated from the data.

Figure 6.2: A graphical illustration of the proposed SCRF model. In this case, I> # I3, i.e.,
it is assumed that there is no transition between hs and hsz, and between h4 and hs, etc.

On the basis of the SCRF structure, P(h|O, I) has the following form:

P(h|O,I) = ( epo{Z MeTe (b, by, I, I 1)—1—me (h, Y, 1)} (6.5)

t=1 k=1
with the normalization term Z(I,O) as:

Z(I,0) :Zepo{Z MeTe(hyy by I, Iy 1)+Z,um En(h, Y, I,)}  (6.6)

[}
h‘l t=1 k=1

where the process mode sequence k). for enumeration is used to differentiate from the real
process mode sequence hj.r.
Compared with the feature functions defined in Equations (6.2) - (6.3), the feature func-

tions in SCRF model are redefined by adding conditions I; = I;_; = i and I; = i to
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Ty (he, he—1) and E,,(he, Yg), respectively, as follows:

1 if ht—l - lla ht - 127 ]t = It—l =1
Tk(ht7 ht—h -[t7 [t—l) -

0 otherwise
(6.7)
Em(ht7 Y;H It = Z) = {Elea EmLQ? e 7Emdw717Emdw72]T

which means when I, # I, {, no process mode switching is considered. The elements

B, (hi; Or—rpr, 1) and E,,_, (hy, Oy—r41, 1) in Equation (6.7) are taken in linear and quadratic
forms, respectively, which can be employed to sufficiently describe the relevant statistics of a
normally distributed dataset [42, 94]. For simplicity, in the following contents, the notations

T, and E,, will be employed to denote the SCRF feature functions.

6.3.3 Parameter Estimation Using EM Algorithm

In this section, the parameters of the proposed SCRF model are estimated by means of the
EM algorithm, as the direct MLE to estimate the parameters is intractable due to existence
of hidden variables. The observed dataset is denoted as D, = {O1.1, S1.1, hi.7}, and the
latent dataset is represented as D,, = {[;.r}. In the E-step, the conditional expectation
of the joint log-likelihood function in presence of latent variable, known as ()-function, is
formulated, and the derived Q-function is maximized in the M-step. The E-step and M-step
are performed iteratively to ensure the increase of the log-likelihood function corresponding

to the complete data until convergence [144, 145].
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6.3.3.1 E-step

The @Q-function, which is expected the log likelihood function with respect to the missing

data or hidden variables, is formulated as:

Q(9|@(Old)) = EDm|(D0;@(°“l)){10g P(D,, Dp,|O)} (6.8)

where O represents all the unknown parameters, i.e., © = {A, M, X}, and O represents
the estimated values of the unknown parameters from the previous iteration.

Based on the chain rule, the above Q-function can be further factorized. Moreover,
given the profile of the operating conditions I;.7, the conditional probability distribution of
hi.r is independent of the scheduling variable profile S;.7. Given the scheduling variable,
the conditional probability distribution of the operating conditions is independent of O;.7.

Therefore, the final expression of the ()-function is formulated as follows:

Q(010) =" " og P(hy1| 111, Orr; © +ZZ 1) Jog P(I,|S,; ©)
L =1 I (6.9)

Here, the first log likelihood term has been defined in Equation (6.5), which can be
treated as an overall conditional probability of the SCRF model. For simplicity, the posterior
probabilities in the Q-function are defined as P(X|D,; Q) = T)((Ol ), where X represents
any variable or sequence, whose posterior probability is to be determined.

While maximizing the Q)-function, the most challenging problem is to calculate the first
log likelihood term, as it requires enumeration. As different combinations of 1.7 could result
in different factorizations of the LCCRFSs, a propagation algorithm is utilized in this work
for an efficient enumeration. In the proceeding contents, factorized formulation of the term
(@1 in Equation (6.9) is presented.

Based on the SCRF definition provided in Equation (6.5), the first term in Equation
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(6.9) can be expanded as below:

Z Z I:)lcll ]t{z MNeT} + Z ZTIold {Z s b

t=1 It 1],5 t=1 It (6,10)
> " log Z(1,0;0)
It
To calculate >, TI(iZTd) log Z(I,0;0), a forward propagation strategy is configured.
First, a series of intermediate functions are defined at the sampling instant ¢ for simplic-

ity, as:

(ht7ht 17-[t7It 17}/1-5) - eXp{Z Aka‘i‘ZMm m} <611)

m=1

When I; # I;_4, the feature function Ty (h¢, hy—1, Iy, I;—1) will be evaluated to zero, making
the process mode sequence after time instant ¢ independent of the previous time instants,
thereby facilitating the factorization of »_; Tlfld) log Z(I,0;©). Hence, at each sampling

instant ¢, a sequence of forward intermediate variables {ay, },_, are defined as:

t
de
{Oét,n(ht,]t)}flzz =) Z 901(ht—n+1aft—n+1,Y£fn+1) H SDt/(ht/,htul,[t/?[tul,Yi/)

ht—n41:t—1 t=t—n-+2

(6.12)

where oy 1(he, It) = @1(he, I, Y:) stands for the feature functions corresponding to the initial
process modes without any switching.
In the next sampling instant, if I, = I, 1, the forward intermediate variable {1111},

can be calculated via the following forward propagation rule:

at+1,n+1<ht+17 Iih) = Z Ot (Pegr, has Ten, 1, Yiga) - at,n(hb L) (6.13)
hi
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Based on the forward propagation results, the following function set is defined:

Qt,n(lt) - 7§fl(i)+l i+ IOg Z at,n(hh It)

hi

(old)

where ;. can be derived as:

n+1:t

’Y§toici)+1 it = Zi ; Jl;él le ; 32;&7‘ P<h1T7 ItinJrl —

21 1 Zgl =1,j17i ZJQ 1g27é1P(h1:Ta[tfn+1 =
c=1I =4, 1y = j1, Ly11 = jo|Orr, S1ir; ©©D)
=1 =4,I_ = j1, Lt11 = j2|Orp, S1.p; OD)
ijl 1,j17#% ZZ 1,jo7#i P<ht—n:t+1|]t—n+1:t =1,

DFRD DA DA o (TERIR]) AT A

[t—n - ]17 [t—i-l - j27 K—n:t—i—b G(Old ) P(It—n—i-l:t = i;

It—n = j17 [t—i—l = an K—n:t—i—la 6( old ) P(It—n—i-l:t - i,

)
)
It— :j17[t+1 :j2|St nt+17 ))
Ly = j1, [111 = Jo|Si—nuas1; OLD)

Finally, 3>, _7/"% log Z(I,0;©) is derived like:

> i log Z(I,0;0) ZZRt (1))

1.7 t=1 I

with Ry(I,) = 32! | qin(I;). Consequently, the Q-function in Equation (6.9) becomes:

@l@ old) Z{ Z I(t0lcll . Z T Z TIOld)

t=1 Ii_1,I+
M
> tmEw =Y R(L) + > 7V log P(1|S;:©)}
m=1 It [t
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The posterior probability TI( 4 .1, in Equation (6.17) can be derived as:

TI(o_ld)I — P(Qt:t—lut =i, 1,4 .: 7, }/t:t—.l; Qeld))
D i Zj:l P(hyy 1|l = i, 11 = j, Yi_1; ©0D)
P(I, = i|S;; 01 . P(I,_; = j|S,_; ©LD)
P(I; = 1]Sy; ©©d)) . P(I,_; = j|S;_q; ©ld)

(6.18)

where the conditional probability P(hy, 1|, = i,1,-1 = j, Yi4_1;0?) is equivalent to a
local LCCRF model. The posterior probability Tl(fld) can be calculated in a similar way.
After the QQ-function formulation in the E-step, the unknown parameters © will be esti-

mated in the M-step by maximizing the formulated Q-function.

6.3.3.2 M-step

This step is to determine the unknown parameters by maximizing the -function derived
early. In this work, the unknown weighting parameters of the SCRF model are computed
by the L-BFGS optimization algorithm [105]. In order to increase the computational effi-
ciency of the gradients, a backward propagation strategy is proposed. Similar to the forward
propagation strategy, at each time instant ¢, a series of backward intermediate variables

{Bin )24 are introduced:

t+n—1

de
{Bin(he, 1) 1o zs™ = Z H v (hars hyr 1, Ty, Iy 1, Y ) (6.19)

htt1:t4n—1 t'=

where ;1 (he, It) is defined as @1 (hy, I1, Y3).
Similar to the forward propagation strategy, an intermediate variable {/;_ 1n+1}n’t+l

with [,_; = I, is derived as shown below:

Bi—t i1 (b1, [1—1) = Z ot(hey hia, I, i1, Yy) - Ben(ha, 1) (6.20)
ht

Gradient calculation of Q-function with respect to unknown parameters yields the fol-
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lowing terms:
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where the partial derivative terms in right hand side of Equation (6.21) are given as follows:
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Then the unknown parameters A\ and p,, can be updated by the L-BFGS approach. The

validity variables o; are estimated by performing the following optimization:

o) = argmax Qs(o;)

o (6.24)

s.t. 04 min <og; < 05 maz

where the two parameters o0; i, and o; ,q, represent the lower and upper bounds of the
unknown parameter o;, respectively. Many existing nonlinear optimization algorithms can
be selected to solve this problem, for example, the sequential QP algorithm [128] and the

nonlinear interior point local optimization algorithm [37], etc..

6.3.4 Simplified SCRF Parameter Estimation

Throughout the entire steps of EM algorithm, enumeration of » 7, TI(lold) log Z(I,0;0) de-
mands high computational complexity. Hence, a simplified algorithm is presented for pa-

rameter estimation considering the following facts: (i) the operating conditions can be re-
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trieved from the scheduling variable with uncertainties, and (ii) the operating conditions are
smoothly transferred between each other. Hence, for the sake of computational efficiency,
we can consider the stationary and transition periods of the operating conditions separately.
During a specific operating period, the system is naturally considered to operate in the same
operating condition, and while during transition periods between two adjacent operating
conditions, the system will transit from one operating condition to another. As illustrated
in Fig. 6.3, the entire time segment can be decomposed to two stationary operation periods,
namely, stationary periods 1 and 2, and one transition period between them. The transition
period can be further decomposed to two segments. It is assumed that the first segment
has similar properties as the stationary period 1, and the second segmentation has similar
properties as the stationary period 2. Let d;. be the duration of the first portion of the
trth transition period, which is not known and hence, can be considered as a latent variable.
In this case, the noises during the stationary periods and two half transition periods are

assumed to be independent of each other.

Scheduling variable

| . . |
Transition period 1 ; Stationary period 2 |
| | | ; .
| I | |
| |

| | |
| Stationary period 1 | | I |
I I
| | | | |

I
e d )] | |
| I I . ;
s
TI 1 TISZ (TItl) Tltg (TZSI) TZSZ

Figure 6.3: An illustration of the stationary and transition periods indicated by the schedul-
ing variable

As a result, the entire operating condition sequence can be decomposed into small seg-
ments based on the two stationary periods and two transition periods. Therefore, the pro-
posed SCRF framework can be simplified and the unknown parameters are estimated by the

EM algorithm, as presented in the following.
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For the transition segment decomposition, the latent variable d;,. is considered to follow
a normal distribution, i.e., dy. ~ N(pq, 03), with the unknown parameters 14 and 0.
As a result, the unknown parameter set becomes © = {A, M, X, 14,04}, and the objec-

tive @Q-function in the EM algorithm can be rearranged into the following form:

Q(®|@(0ld)) - Z Z T](il;l)P(dlzTr‘IlzT7 hl:Ta Ol:T7 SI:T; @(Old)) log P(hlzT|d1:Tr7 ]1:T7 Ol:T; 6)

di.r, 1.7
(old old)
+ ZZTI ) log P(I,|S,;©) + ZZ (1) 1og P (dy,; ©)
t=1 I tr=1 dy,

= Ql (A7 M) + QQ(E) + Q3(,Ud> Ud)
(6.25)

where T, represents the total number of transition periods.

Based on the scheduling variable, the prior probability of current operating conditions
can be estimated according to Equation (6.4). By calculating the prior probability P(1;|S;),
several probabilistic thresholds can be set to determine the segmentations of stationary
and transition periods. Assume there are S; stationary periods and 7, transition periods
in total, and the time segments of stationary and transition periods are represented by

s, 1% sy =1,---,5; and Ttl, T2 Jt, = 1,--- T, respectively. Therefore, Q1(A, M
Sd Sd tr tr
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can be derived as shown in the following:
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where ng, and n;, represent the lengths of the s stationary period and the second half of
the t!* transition period, respectively, which can be calculated as:

ne, =T3-T3+1 n, =TT —d, (6.27)

d

In the E-step, the posterior probability P(d;. |I1.7, Cops; ©©4) needs to be calculated as

shown below:

P(dy, | 117, Cops; ©N) = P(dy, Ly, hapy Oty Sav; ©Y)
_ P(haaldy,, Las, Oau; Q@) P(I,4|ds,, Sap; ©D)
>, Plhaslds, s Lo, Oan; ©CD) P(1opldy, , Sa; OCD)
P (dtr;@(dd))
P(d, :00)

(6.28)

where a and b represent the starting and ending points of the " transition period, namely
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Ttt: and Tttf, respectively.
In the M-step, similar numerical optimization needs to be performed to determine the

parameters, as illustrated in section 6.3.3.2.

6.3.5 Simplified Online Process Mode Diagnosis Based on the
SCRF Model

In the proposed work, after training the SCRF model, the identified model will be employed
for the online application. Essentially, the objective is to find the mode that maximizes
the probability given all the past information, i.e., h; = argmax;,, P(h|O1., Si:¢; @) As the
current process mode mainly depends on the most recent operating stationary or transition

periods rather than the entire operating sequence, P(h|O1.¢, S1.4; é)) can be simplified as:

(ht|01taslta ) |OT3tusTst7®)

ht, [TS it = Z’OTS it STS it @)

(6.29)
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where T, denotes the starting point of the most recent operating condition to which the
current time instant ¢ belongs, which can be T3, T{* or T{* + [u4] + 1, where [] represents
the round off operator. Finally, the optimal estimation of the current process mode is the

one with the highest posterior probability P(h:|O1., S1.; é)

6.4 Validations

In this section, two application scenarios are considered to validate the performance of the

proposed SCRF algorithm. For comparison purposes, the conventional LCCRF and multiple
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HMDMs [146] are employed.

6.4.1 Simulation: Two CSTRs in Series

In this section, a simulated system containing two CSTRs in series proposed by Henson et
al. [108] is employed for performance evaluation of the proposed algorithm, whose schematic
is illustrated in Fig. 6.4. The notations ¢, C4 and T represent the flowrate, concentration
and temperature, respectively. The coolant flows through both reactors to maintain an
appropriate reaction temperature. The whole system is operated in open loop condition and
the final product concentration in the second reactor, C'4, is the critical PV related to the
product quality. Since the feed flow has different concentrations Cs¢, the final product is
generated with concentrations attributing to different qualities. Therefore, it is desirable
to detect the concentration quality levels of the feed flow to meet the desired final product
requirements. The first principles model of the CSTR system and related parameter settings

can be found in Henson et al. [108].

Cy:Trnq,

CA2’ TZ

q.

9., Ty I\

-

v

Figure 6.4: The schematic of CSTR in series [108]

As the coolant flowrate ¢, has a significant influence on the entire operation, it is selected
as the scheduling variable [147]. Three operating conditions, i.e., ¢. = 97L/min, 102L/min

and 107L/min, are considered. The feed flowrate ¢y is fixed as 100L/min, while the feed
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concentration C4¢ is manipulated to simulate various process modes, as its fluctuation results
in different final product concentrations, thus different products. It is assumed that the feed
concentration Cus has three levels, namely high (Mode 1), medium (Mode 2), and low
(Mode 3), and the switching between the process modes is simulated by following semi-
Markov properties [148]. The feed concentration Cy4; is simulated with Gaussian white
noise contamination in Modes 1 and 3. In Mode 2, Cyy is corrupted with auto-correlated
Gaussian noise. All the related simulation parameters are summarized in Table 6.1, wherein
the variables T R; and dur; represent the Markov switching matrix and the duration of each
simulated state under the #*" operating condition, respectively.

Table 6.1: Parameters of the simulated CSTR system

Operating condition Operating condition 1 Operating condition 2 Operating condition 3

0.7 0.25 0.05 0.99 0.005 0.005 0.6 0.1 0.3
Semi-Markov TRy = 1025 05 025 TRy= |0.005 0.99 0.005 TR3= {0306 0.1
switching rule 0.25 0.25 0.5 0.005 0.005 0.99 0.3 0205
dury =90 durg =120 durs = 60
Scheduling S1 =97 So =102 S3 =107
variable 01 =0.6 09=0.3 03=0.5
Process mode Feed concentration CAf Feed concentration CAf Feed concentration CAf
Process mode 1 mean(Cyyr) = 1.18 mean(Cyyr) = 1.18 mean(Cyyr) = 1.15
std(Cyy) = 0.01 std(Cyr) = 0.01 std(Cyr) = 0.01
— — — =4
Process mode 2 mean(Cyyp) = 1.12 mean(Cyf) = 1.12 mean(Cyf) = 1.05
Std(CAf) = 0.008 Std(CAf) = 0.008 Std(CAf) = 0.008
Process mode 3 mean(C45) = 1.08 mean(Cyf) = 1.02 mean(Cy5) = 1.01
std(C q5) = 0.005 std(C.q5) = 0.005 std(C 45) = 0.005

A training dataset with 16600 samples is employed for model development, and a vali-
dation dataset with the same length is used for performance evaluation. The product con-
centrations C'4; and Cyo are selected as the monitored PVs. The profile of the scheduling
variable ¢. and the dataset for validation can be found in Fig. 6.5.

To evaluate the performance of the proposed SCRF strategy, LCCRF and the multi-
ple HMMs [146] approaches are compared. For the multiple HMMs strategy, under each
operating condition, an HMM model is employed to model the process mode transitions.

Comparison of the diagnosis results among the three algorithms is illustrated in Fig. 6.6.
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Figure 6.5: The changing profiles of the scheduling variable g. (L/min) and the process data
Ca1 (mol/L) and Cyy (mol/L) in the validation dataset

Correspondingly, in order to quantify the diagnosis accuracy, we also compute the percentage
of correctly identified process modes over the complete data sequence. In this case study,
the diagnosis accuracies of the SCRF, the LCCRF and the multiple HMMs algorithms are
91.87%, 87.23% and 78.00%, respectively. From this comparison, the multiple HMMs can-
not provide better diagnosis results compared with two CRF based algorithms, because the
process observations have longer range dependency than that the HMMs can describe. From
Fig. 6.6, it can also be found that the diagnosis performance of HMMs gets severely degraded
under the operating conditions 1 and 2, where the process observations have relatively small
magnitudes and process mode transitions are harder to be detected. In contrast, by modeling
long range observation dependency, the CRF based algorithms exhibit better performances
than HMMs. Furthermore, from both qualitative and quantitative comparisons, the pro-
posed SCREF algorithm has achieved the best diagnosis performance. The conventional LC-
CRF can detect most process modes correctly, but it always provides delayed process mode

detections. Especially during the operating condition transition periods, the LCCRF model
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tends to provide wrong diagnosis results compared with the proposed SCRF, because only a
single CRF is not sufficient to model the process during the operating condition transition
periods. On the contrary, the proposed SCRF algorithm, that employs multiple LCCRF
models to differentiate the process modes under different operating conditions, provides the

most accurate process mode diagnosis results.
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Figure 6.6: The process mode diagnosis performance comparison among the SCRF, the
LCCRF and multiple HMMs algorithms in the simulated CSTR process.

6.4.2 Experimental Study through Hybrid Tank System

For further performance evaluations, a pilot-scale experimental study is conducted on a
hybrid tank system, whose schematic is illustrated in Fig. 6.7. The whole system is composed
of three cylindrical tanks connected in series through six valves, i.e., Vi - V4, V5 and V4.
Outlet valves are provided at the bottom of each tank, i.e., V5, V7 and V4 for tanks 1, 2 and

3, respectively. Water can be fed into the two side tanks via the two identical pumps driven
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by DC motors, and the feed flowrates can be changed by the users. The three tank levels

are measured from the installed level sensors LT} - LT3, individually.
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Figure 6.7: The schematic of the experimental hybrid tank system

Manipulation of the feed flowrates of tanks 1 and 3 results in two different operating con-
ditions. It is considered that low-level operating condition 1 occurs when the feed flowrates
of tanks 1 and 3 are set around 4.75 and 5.15, respectively. Increasing the two lateral feed
flowrates to the values around 6.15 and 6.00 results in high-level operating condition 2.
When the hybrid tank system works in the high-level operating condition 2, the tanks 1 and
3 are maintained at a level which is higher than the locations of the junction valves V; and
V5. Since V) and V5 are kept open throughout the whole experiment process, once the water
levels exceed the levels of V; and V,, we consider that operating condition has changed. For
the purpose of simulating different process modes, status of the two lower junction valves V;
and V; are changed from open to closed, simultaneously. When V5 and V; become closed,
there is a chance that water might overflow in both lateral tanks, especially around the
high-level operating condition 2. Therefore, the abnormal process mode is defined when V3
and V} are closed, and the process mode is assumed to be normal when V5 and Vj are open.
The left tank feed flowrate is selected as the scheduling variable in this case, and the water

levels of all the three tanks form the process outputs. The parameter settings are shown
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Figure 6.8: The changing profiles of the selected scheduling variable and the tank levels (%)
for validation in the hybrid tank experiment

in Table 6.2. Here, the process modes 1 and 2 simulate the normal and abnormal process
modes, respectively.

Table 6.2: Parameters of the experimental hybrid tank system

Operating condition Operating condition 1 Operating condition 2

. 0.8 0.2 0.75 0.25
Semi-Markov Th = [0.2 0.8] Thy = [0.2 0.8]
switching rule

dury = 40 dure = 20
Scheduling variable S1 =4.75 So = 6.15
left feed flowrate o1 =0.2 o2 = 0.16
Process mode Process mode 1 Process mode 2
Junction valve condition V3, V4 open V3, V4 closed

Experiment is conducted with sampling interval 1 second and the collected training and
validation datasets have a length of 7500 samples. Validation data are presented in Fig.
6.8, wherein the feed flowrate of tank 1, i.e, the scheduling variable, is shown in the first
subfigure, and the water levels of tanks 1, 3 and 2 are illustrated in the second to the fourth

subfigures, respectively.
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Figure 6.9: The process mode diagnosis performances of the proposed SCRF, the LCCRF
and the multiple HMMs approaches.

The proposed SCRF, the LCCRF and the multiple HMMs strategies have been imple-
mented on the validation data, and the real-time diagnosis results are displayed in Fig.
6.9. In this case, the process mode diagnosis accuracies of the SCRF, the LCCRF and the
multiple HMMs approaches are 94.56%, 92.33% and 67.19%, respectively, among which the
multiple HMMs get the lowest diagnosis accuracy and SCRF achieves the best performance.
Due to multiple process disturbances, the level measurements of the three tank system are
contaminated with noise, which increases the difficulty to differentiate the abnormal process
modes from the noise contaminated observations. By including more information from the
observations, the two CRF based algorithms achieve a better diagnosis performance than
the multiple HMMs algorithm. Considering the diagnosis performances of the SCRF and
LCCRF algorithms, both algorithms can detect the process modes accurately in the high-
level operating condition, since the abnormal process mode has more obvious effects on the

observations than in the low-level operating condition. However, in the low-level operating
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condition with smaller level measurements, the abnormal process mode is mixed with process
noise and it gets more difficult to be detected. Compared with the SCRF, the LCCRF has
delayed or even missing detections in this situation. By involving multiple CRF models, the
SCRF can sufficiently capture the process changing properties under multiple operating con-
ditions, therefore more accurate process mode diagnosis performance can be achieved. The
more complicated the process is, the more advantages of SCRF can be exhibited compared

with the existing approaches.

6.5 Conclusions

In this chapter, a novel SCRF model has been proposed to diagnose the process mode, i.e.,
normal and abnormal, in real time, regardless of the varying operating conditions. Under
the framework of SCRF approach, multiple LCCRF models are identified and switched
between each other for process monitoring. In order to increase the computational efficiency,
a simplified parameter estimation strategy is proposed for SCRF model identification. The
monitoring performance of the SCRF approach has been demonstrated by a CSTR simulation

and a hybrid tank system experiment.

149



Chapter 7

Concluding Remarks and Future
Works

In this chapter, conclusions of the above chapters are summarized. The main idea of this
thesis is explained and connected to the previous chapters. Finally, the potential future

directions are introduced.

7.1 Concluding Remarks

The focus of this thesis is to solve fault detection and diagnosis problems based on both
unsupervised hierarchical MSPM approach and supervised CRF algorithm. A large number
of fault detection and diagnosis algorithms both unsupervised and supervised have been
developed to deal with different practical scenarios during process operation, with the aim
of fully excavating the features obtained from the process data.

In Chapter 2, the mathematical backgrounds are explained in details. The modeling,
training and inference of CRFs are presented. As alternative solutions to the MLE with
latent variables, EM and VB algorithms are introduced and compared to demonstrate their
advantages while solving problems with hidden variables.

Chapter 3 proposes an effective hierarchically distributed process monitoring scheme
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and applies it to solve the early flare event prediction problem for a refinery process, with
limited access to process knowledge but large amounts of process data. As a practical large-
scale process, there exist several challenges, such as high-dimensionality, nonstationarity,
time-varying characteristics, various process changing patterns, high correlations and small
number of faulty events, etc.. A hierarchically distributed monitoring framework is developed
with a two-layer structure. The bottom layer is composed by monitoring individual units and
the top layer is created to integrate the information from the bottom layer. The two layers
are embedded with both time-domain MSPM and frequency-domain approaches. Meanwhile,
the proposed algorithm is also efficient to solve fault isolation problems by tracing the fault
across different units. Both of the time-domain MSPM and the frequency-domain algorithms
are tested and compared, and finally the time-domain MSPM algorithm is proven to provide a
better solution. The unsupervised approach is appropriate for the problem of the considered
flare event prediction as there is essentially no sufficient faulty events available in the data
set. The limitation of the proposed approach, similar to all other unsupervised approaches,
is that no reference is used.

In the subsequent chapters, as supervised learning approaches, three main theoretical

contributions are made based on the LCCRF structure:

e The marginalized CRF. The first theoretical contribution based on the CRF model is
made in Chapter 4. As a probabilistic discriminative model, the LCCRF is first intro-
duced as a conditional probabilistic counterpart of the HMMs, with higher modeling
flexibility and improved process operating mode diagnosis performance. The equiva-
lent conditions of the LCCRFs and HMMs are derived to demonstrate the advantages
of LCCRFs. Furthermore, a marginalized CRF model to deal with the missing obser-
vation problems is proposed. Because the CRF's involve more complicated observations
such as the missing observations, it makes training and inference more complicated.
A new forward-backward algorithm is proposed to efficiently solve the training and

inference problems of the marginalized CRF model. The performance of the proposed
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CRF algorithm has been tested on both simulated and experimental studies, and the

superior performance of CRFs over HMMs is demonstrated.

The two-stage HCRF'. The second theoretical contribution based on CRF model is made
in Chapter 5. In this work, aiming at the problems of feature selection and the online
adaption of process changes, a two-stage HCRF structure is proposed and implemented
by making full use of the available process measurements. The process observations
from different operating modes are first separated and analyzed by a MMHCREF model
to select the most relevant variables to detect operating mode changes, known as
the first-stage HCRF model. Then based on the outputs of the first-stage HCRF
model, the second-stage HCRF model is proposed by including the transitions among
different operating modes with a time-varying structure. With the prior knowledge of
the second-stage HCRF model, the VB algorithm is employed to solve the unknown
model parameters. Briefly, the first-stage HCRF model contributes to determining a
set of local classifiers to select most relevant variables, and the second-stage HCRF
model conducts an online operating mode diagnosis on the basis of the local classifiers
in the first-stage HCRF. The superior performance of the two-stage HCRF's over the

conventional algorithm is demonstrated on a numerical case study.

The switching CRF. The third theoretical contribution based on the CRF model is
given in Chapter 6. In this work, the process operating mode diagnosis problem for
processes with multiple operating conditions is considered. Instead of using only one
CRF model for process operating mode diagnosis, a SCRF structure is created to ex-
tend unitary LCCRF into multiple LCCRF's, which can be switched between each other
according to the changes of the process operating conditions. The process operating
conditions are considered to be latent and a scheduling variable is included to infer
the potential changes of operating conditions. In this sense, the EM algorithm is used

to solve the training problem of the proposed SCRF model. The performances are
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validated through several case studies.

7.2 Future Works

In this section, potential future directions are summarized.

7.2.1 Feature Dimension Reduction in Probabilistic Discrimina-

tive Models

Owing to the direct modeling of the conditional probability, one of the outstanding advan-
tages of the probabilistic discriminative models is the capability to include any features into
modeling without need to formulate the explicit distributions of these features. In this way,
high dimensional features can be addressed in such a framework with the cost of increased
model parameters. However, when some of the features are likely to be correlated with each
other as in the MSPM algorithms, it is meaningful to combine the probabilistic counterparts
of the MSPM algorithms with the discriminative probabilistic modeling. In this way, the
correlations among the raw features can be more precisely addressed and the latent features
with lower dimensions can be extracted by the MSPM algorithms. Then in the probabilistic
discriminative framework, the latent features are used for further classification.

There are some challenges while dealing with this problem. First, the conditional prob-
ability modeling framework increases the modeling complexity and causes the integral of
both latent features and the unknown labels harder to address than the probabilistic gener-
ative models combined with MSPM algorithms. Second, because of introducing the latent
features, the alternatives of standard MLE algorithms, such as EM and VB, need to be
further extended for model training. The increased model complexity can make the pos-
terior probabilities of latent variables very difficult to derive. In this sense, more effective
inference strategies should be developed based on the designed probabilistic discriminative

model structure.
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7.2.2 'Transfer Learning of the CRF's

In Chapter 6, a SCRF framework has been developed to solve the process operating mode di-
agnosis problem for the processes with multiple operating conditions. This work is developed
by extending a unitary LCCRF model suitable to a single operating condition to multiple
LCCRFs to adapt to different operating conditions. To track the change of the operating
conditions, a scheduling variable is selected that needs to be available in the SCRF struc-
ture. By taking considerations of the facts that some processes might not have a suitable
scheduling variable, and the same operating modes in different operating conditions might
have high similarity among each other, transfer learning technique is a good choice to make
the developed CRF model more general and effective for different operating conditions. The
knowledge that CRF learned from one operating condition may be transferred to the other

operating conditions, without creating a number of CRF models.

7.2.3 Probabilistic Graphical Model Based Fault-tolerant Control

Strategy

In general, fault-tolerant control can be treated as a system that integrates online fault
detection and diagnosis, automatic operating condition assessment and the remedial action
calculation to compensate the detected faults. In this thesis, the fault detection and diagnosis
problems solved by probabilistic graphical model have been discussed, but the actions after
fault diagnosis have not been considered. Moreover, not limited to calculating the posterior
probabilities, the probabilistic graphical models can also be employed for decision making,
such as influence diagrams and Markov decision processes [149], where the decisions are
obtained by certain strategies. The rewards of making a specific decision vary according to
the states and can be uncertain and model-free. This contributes to a unified fault-tolerant
probabilistic structure with advantages of both fault detection and diagnosis and decision

making.
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7.2.4 Survival Analysis for Remaining Useful Life Prediction

When solving fault detection and diagnosis problems, the conventional MSPM algorithms
are used as unsupervised learning algorithms. By selecting a portion of normal operating
data, the most suitable MSPM algorithm is employed to build a model, which can be used
to detect process abnormalities. However, when targeting on a permanent failure prediction
problem, such as motor pump failure, the abnormalities detected by the designed MSPM
model can be anything that is different from the normal operations, and might not be the
failures that are interested. Unless a unique signature to the final failure is given, otherwise
the MSPM algorithms will provide high false positives that are not directly related to the
final failure.

To solve this problem, the concept of the time-to-event distribution is introduced and
combined with the conventional MSPM algorithms. Survival analysis covers a series of
approaches to model the time-to-failure distribution and therefore creates a survival curve for
specific process or equipment under monitoring. The survival curve depicts the distribution
of survival life which is modeled by integrating the process features into a probabilistic
model. By making use of the latent features extracted by MSPM algorithms, the connection
between the process abnormalities and the process survival time is established, by which
the process remaining useful life can be predicted with the potential likelihood. Moreover,
since the individual survival analysis problem can be treated as a probabilistic multi-task
classification problem, the probabilistic discriminative models, for example, CRFs, can also
be involved for structural modeling for more complicated and correlated features. By this

means, more reliable permanent failure prediction algorithms can be developed.
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Appendix A

Proof of the Equivalence of HMM and
LCCRF Model [93]

Since it is a generative model, the HMM models the joint probability P(h, O), but the CRF
models the conditional probability P(h|O) and does not consider the joint distribution.
Given a set of discrete states {hy, ha, ..., hr}, where hy € {1,2,..., N} and the corresponding
observations {Oq, Os, ..., Or}, the joint probability P(h, O) can be derived under the HMM

framework as follows:

P(h, O) :P(hl,hg,...,hT,Ol,OQ,...,OT)
:P(OT‘OTfly"'7OlahT7"'7hl) 'P<hT’OT71a"'7Ol7hT717"'7h1) (Al)

-+ P(O1[hy) - P(h1)

Following the two conditional independence assumptions of HMMs [150], i.e. P(h¢|hi—1, ...
hy) = P(hi|hi—1) and P(O¢|h, hi—1, ..., h1) = P(Oy|hs), the above joint probability P(h, O)

can be simplified as follows:

P(h,0) = ﬁP(Ot‘ht) - P(hy|hy—1) (A.2)
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And the conditional probability P(h|O) can be formulated thereafter as below:

CP(hO)  PhO)  TI%, PO Plhilh)
PO ="p(0) = S5 PIR.0) ~ 3, [0 PO, - PRI
exp >, {log P(hi|hi—1) +log P(Oy|he)}

S e X, {log P(hi|hi_y) + log P(Oi|h))}

(A.3)

where P(hh;—1) and P(O¢|h;) are the transition and emission probabilities of HMM, re-
spectively, and the notation h’ represents all possible combinations of the states.
Now let us consider the conditional distribution P(k|O) under the CRF framework in

Equations (4.1) and (4.2) as below:

P(hIO) = P S T{Zf:k log P(h|hy—1) Ty (s, her) + Z%:&log P(O4|he) En(he, O)}
D hr €XD Dy {2y log P(hi| i) T (i, B ) + 3y 10g POl hy) Er (R, On) ¥
_ _%Xp Zthl{Zszl AeTy (B, he—1) + Z%ﬂ fim B (e, Op) }
D CXP Z?:l{Z?:l AeTyo (i, hi_y) + Z%:l fim B (R, Op) }

(A.4)

Assuming the summations over weights A\, and p,, to be unity and by choosing feature

functions shown below, we can demonstrate that Equation (A.4) is equivalent to Equation

(A.3).

,
1 ifht,1 =1 and ht :j
Tk(ht, ht—l) - (A5)

0 otherwise
\

;

1 ifh,=4 and O, € B
Em(ht,Ot) - (AG)

0 otherwise

\

where 7,7 € {1,2,..., N} are the state values and B is the set of all possible observation

values.
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Appendix B

Detailed Derivations and Pseudocodes

of Chapter 4

B.1 Detailed Steps of Forward and Backward Propa-
gation

For the forward propagation, a set of intermediate variables « is proposed to increase the
computational efficiency for the normalization term Z(O,s). Based on the definition of

at(ht,h(f)

timis)> at the time point ¢ 4 1, the intermediate variable ay;; can be formulated as

follows:

t+1

de obs mis
at+1(ht+1,h§i)1,mis) = Z Z H Spt’(ht’yht’—h},t/( ' )) ‘%’(hthht/ﬂ,-~-aht'+d—170t(/ ))

hi: ng'zj:l) t'=1

(B.1)

which can be calculated by the following recursion based on the result of «.

175



(obs) (mas)
et (hesrs b t+1mzs E E Pri1 ht+1>htaY2+1 oF Vet (Pegs ooy Pega, Opfy )
ht O§T1w>

¢
Z Z H@t'(ht',htulaY;/(Obs)) Yo (s oo Py 170(%8)) (B.2)

hi:i—1 O(WS) t'=1

—ZSDHl ht+1yhtaY£+OfS) M1 (Petr, o Pega) - at<h‘t7h’tj;)7,zs)
hi

where the lengths of operating mode sequences R\ and hl(ff-)l,mis depends on the missing

t,mis
measurements within the time range t —d + 2 to ¢t + 1.
After the forward propagation procedures, the normalization term Z(O,s) can be calcu-

lated based on ar(hr), which can be proved as below:

obs Z Z ngt htaht la ObS)) 'f)/t(hta"'vht—i-d—bogmw))

hy.1 O(mz.s) t=1

DI Hwt hic et Y (b o hisar, O) (B3)

hr hir- 10("”5 ) t=1

= Z CYT(hT)

Similarly, for backward propagation, a set of backward variables 3 is proposed with the

definition as below:

de (mas) obs
ﬁt(hter*Q?hz(fbmzs f Z Z nyt/ ht/ ’ h‘turd 1’ H (Pt’ ht/ hy- 17}/75/( b ))

O(””S hiya—1.7t'= =t+d—1

(B.4)

According to this definition, at the time point ¢ — 1, the corresponding intermediate
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variable 3;_; can be computed as follows:

ﬁt 1(ht+d 37 t lmzs Z Z H %/ ht’ . ht’+d 17 (i) H §0t' ht’ ht’ 17Y0b8>

OETISI)" ht+d 2Tt/ t— 1 t 7t+d 2

- Z Z ’yt—l(ht—la ceey ht+d—27 OlngS)) . Sot+d—2(ht+d—27 ht+d—37 1/;53(_)28_)2)

O(mzs) ht+d—2

SRSl | RSP | QTR

O(m’bs) hitd—1.7 t'= =t+d—1

=y > %,1<ht,1,...,ht+d,2,0§’_”fs>)-gowd,Q(th,z,th,g,Yt‘jS‘ig)
OETfS) httd—2
Bi(ipass Byss)
(B.5)

and h(

i—1.mis depend on the missing

where the lengths of operating mode sequences ht mis

measurements within the time range t +d — 3 to t — 1.

B.2 The Pseudocodes of the Marginalized CRF's
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Algorithm 2 Parameter Estimation

Require: The training dataset {hy, ha, ..., hr}, {O1, O, ...,Or} and the tolerance ¢ as ter-

mination criteria;

Ensure: The estimated weighting parameters © = {\g, iy };
1: Initialization: assign the initial guess for ® randomly and initial values for gradients;
2: while gradient > ¢ do

3:

10:
11:
12:
13:

14:

15:
16:
17:
18:
19:
20:
21:

gradient(\g) < 0, gradient(y,) < 0
log Z(h, Ogs) < 0
log Z(Ops), P(ht, hi—1|Os), P(hy, tm;il|00bs) < MCRF _Inference(Oy.r,d,®)
fort=1—1T do
108 Z (R, Ops) < 10g Z (R, Ogps) + S35 NeTi(hyy hor) + SN i B (e, Y,))
gradient(\g) < gradient(\g) + Tk (he, he—1) — Zh;,h;,l PRy, W1 |Oops)Ti (R, hy_y)
if O, is missing then '
1og Z(h, Opps) 108 Z(h, Ops) H1og {3 smie exp Sty SN p1 By (e, O™}
end if ‘
if O;_;y1 is missing then
gradient(fim) <— gradient () + Zo(miﬂ w(Ot(m;jl) Eui(hy, Otml’fr)l)

Dy Xogmie, Pt O} Oot) B, (1, OF1)
else
gradient (i) <— gradient(pm;) + Emi(he, Or—141)
- Zhg P(h:f’OObS)Emz (h;, Ot*lJrl)
end if
end for
l((_)) — log Z(ha Oobs) + IOg Z(Oobs)
© « L_BFGS(l(®), gradient(©®))

22: end while
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Algorithm 3 Inference of Marginalized CRF's

Require: The observations in training dataset {Oy, Os, ...,Or}, impact factor d and the
estimated parameters ©;
Ensure: The marginal probabilities P(hy, hy_1|Ops), P(hs, Otm;jl\Oobs) and the normaliza-
tion term log Z(Oys)
: function MCRF _INFERENCE(O;.1,d, ©)
: ay.1, Br.r < Forward_Backward(Oy.r,d, ©)

1
2
3 // Normalization term calculation

4: log Z(Ogps) < log >, ar(hr)

5: // Marginal probability calculation

6 fort=2—=1T do

7 Gard—2(hi—1, oy haga—2) <= 1 (hs—1, hiflm,s) Bi(hitda—2, hﬁbr)ms)
8

9

Vt+d*2(ht7 ) ht+d*2) A ther,l at(ht7 ht,mis? Orgmll—f—l) 5t+1(ht+d 1 h£+)1 mzs)
fori=d—2—1do

10: Crric1 (hu—t, ooy Pugi) thﬂ. Gi(hi—1, ooy hagi) - Orvi(Pisi, Peyioa, Y,;(Jrozbs)>
11: Vivio1(ey ooy heio1) <= 305, Villes oo hugs) - egi(hes, Besvioa, Y}/Sffs))
12: end for 1
13: P(ht7 ht71|oobs) <— m . th(ht; ht*17 Y Obs ) Ct(ht 1, ht)
14: hy, O (mis Ous) «— ——— - 14(h
( t t— l+1’ b. ) Z<Oobs) t( t)
15: end for

16:  return P(hy, hi_1|Os), P(hy, O™ [Ops) and log Z(O,ps)
17: end function
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Algorithm 4 Forward-backward Propagation for Marginalized CRFs

Require: The observations in training dataset {Oy, Os,...,Or}, impact factor d and the
estimated parameters O;
Ensure: The propagation intermediate variables o and 3;
1: function FORWARD_BACKWARD(O1.7,d, ©)
2: Initialization: al(hl) < g01<h1, ho, 01), ﬂT(hT) +—1

3: // The forward propagation
4: fort=1—1T do
obs
d: at+1(ht+17 ht) h’i,{r)ns) — at(hta h’g;)us) ’ @t—i—l(ht—i-la ht7 Kgrl ))
6: i1 (b b)Y, i (haga, e B
7: if O;11 is missing then
8: i1 (g, h’gi)l,mis) — a1 (e, hzg,];)u's) Ner1(Pesrs o Pega)
9: else
10: o1 (hepr B i) < v (hegs, b))
11: end if
12: end for

13: // The backward propagation
14: fort=T —1do

15: Bi-1(Pera—2, hita—s, hl(tby)ms) — Bi(hira—2, hib,)ms) “Oerd—2(heya—2, Pita—s, lﬁfff_)Q)
16: if O,_; is missing then
17: Bi-1(hitd-s3, hﬁ’l)l,mis) S Dheya s B1(hera—2, huta-s, hg?ms)nt—l(ht—la vy Puya—2)
18: else
b b
19: Bi—1(hiya—s, hﬁ_)l,mis) — ZhHH Bi—1(hiya—2, hiva-s, hﬁ,r)m-s)
20: end if
21: end for
22: return aq.7 and Sy.7

23: end function
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Appendix C

Detailed Derivations and Pseudocode

of Chapter 5

C.1 The Pseudocode of Variable Selection in the First-

stage HCRF

Algorithm 5 Variable selection for the first-stage HCRF

Require: The training dataset {A™ O™}Y_  full variable set S and empty variable rank
set R;
Ensure: The ranked variables from the most irrelevant to the most relevant;
1: Initialization: use all the available variables for MMHCRF training and set var oyt = M;
2: while var. ., > 1 do
3: train the first-stage HCRF model with variables in set § and obtain aya,,,.,

4 calculate W (@yareyun:)

5: for m in S do

6: calculate Wi_m)(Qvarcoun: )
7: calculate AW (_,,)

S: end for

9: rank AW,

10: m* = arg min,, AW _,)

11: S+S—m*

12: R+ RUm*

13: VAT count < VAT count — 1
14: end while
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C.2 The Variational Parameter Estimation of the Dirich-
let Distribution

By substituting ¢(¢) ~ Dir(v) into log P(Li.7, y1.17, X1.7|¢) of Equation (5.24), Dy is

derived as

Dicr(v) = (log (€))e(c) — (l0g P(C|n))qc) — Z/Zq (L)a(€) > ew (v, Li; )dC + Coge

ul

T
= (log ¢(¢))g(¢) — (log P(¢[n))gc) — > _( Zeul(yt,Lt;C»q(Lt)q(c) +Cy©
t=1

(C.1)

With the characteristics of Dirichlet distribution, the first two terms can be easily ob-

tained as

<1OgQ(Cyt|Vyt) (Cyy) =logI’ Zyytl Zlogr(yyhl) +Z(Vyt,l - 1)( Vytl Zyyt U
(log P(Cyelmye))acc,,) = logT’ Znytl ZlOgF Myed) + Z Myt — D (W (vy,0) — \P(Z Vye,t'))
l/

(C.2)

where I'(+) and U(-) are the gamma function and digamma function, respectively, given as

(v, 1) :/ 2ot le ™3y
0
o (vy, 1) (C.3)

vy, 1

F(”?JM)

\I[(Vyt,l) =
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The third term of Equation (C.1) can be further derived as

<Z Cuy (yta Lt; C)>Q(Lt) <1Og P(Lt|yt7 )> (L¢)q(€)

ul

= Z q(Ly = 1){log Gy, 1)g(c) (C.4)

:Z Lt—l Vytl Zyytl'

By substituting the intermediate results in Equations (C.2) - (C.4), the KL divergence

in Equation (C.1) can be simplified as

T
DKL(”yt)_Z(Vytl_nytl_Zq Lt:l) Vytl Zyytl/ +log I’ Zyytl

=1 (C.5)

— Z log T'(vy,.) + Cy,,

Taking derivative with respect to vy, ;, one can get

8DKL Vy, 1 ’ T T
8V< ly ) =v (Vyt,l)(yyml_nyml_z Lt - l Z Yyel! Z Vyt’l/_nyt’l/_z Q(Lt - l/))
Yt t=1 t=1
(C.6)
The final result can be obtained by setting Equation (C.6) to zero as
Vyed = Myt + Y q(Le = 1) (C.7)
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