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Abstract

The focus of this work is the study of anti-plane deformations of an elastic

solid containing a crack. A more comprehensive model of the mechanism

of fracture was found by incorporating surface mechanics on the face of the

crack. Included are comparisons between the refined model and the classical

model with appropriate conclusions drawn about the effect of the surface on

the displacement field in the entire solid.

A boundary value problem for the displacement is developed for the case

when Mode-III stresses are applied. In particular it was shown that the

ensuing (refined) model is well-posed. The displacement and stresses were

numerically determined using various input stresses and surface parameters.

With the incorporation of surface mechanics, it is shown that the refined

model is more stable and convergent than in the classical case. From the

numerical solutions, approximations for adjusted deformation and stress

concentration values are provided for future use.
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Preliminaries



1 - Introduction

1.1 Purpose

The purpose of this work was to study surface layer effects on an elastic solid.

In order to quantify these effects a Mode-III stress, anti-plane crack problem

was formulated from both the classical constitutive model and one using a

different surface material description from the body material. Well-posedness

of the refined model is proven and the differences between displacements

and stresses from the two models are quantified. In addition, numerical

convergence and stability was studied for both models, showing that the

refined model was more convergent and stable than the Classical model.

1.2 Contribution

The classical constitutive model for displacements under load in an isotropic

solid has been well studied and details can be found in the works of

Chou and Pagano [1], Sokolnikoff [2], Love [3], Gurtin [4], England [5]

amongst others. The classical constitutive model (summarized in Section

2.2) yields reasonable results for smooth boundaries with small (linearized)

displacements. However, when the surface curvature becomes high or

boundaries lack smoothness (for example cusps or crack tips), singularities

in both stress and strain are found. These singularities are not physically
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realistic and call for model refinement.

Surface energy models merge nano-molecular effects into the standard

constitutive model and provide a path forward utilizing standard continuum

mechanics theory. Extensive work has been done using surface effect models

and a comprehensive summary has been published by Wang et. al [6].

The Gurtin and Murdoch model of surface elasticity [7, 8] (GM model)

allows such a merging of nano-molecular effects of the boundary surface

material into the classical continuum mechanics model. This method has

grown in popularity in the last decade, as can be seen in the works by Kim

et. al [9, 10, 11], Sharma et. al [12], Vardoulakis [13] and Antipov [14]. A

simplified interpretation of the GM model will be presented in Section 2.3.

In order to keep things manageable, the focus of this study was on the effect

of the GM model on a linear, planar crack with Mode-III loading. The

three types of stress modes on cracks are shown in Figure 1.1 [15]. Mode-I

and Mode-II loading (Figures 1.1a and 1.1b respectively) give in-plane

displacements, where Mode-III loading (Figure 1.1c) yields anti-plane

(perpendicular to the plane) [16] displacements. In this work, Mode-III loads

and anti-plane displacement as shown in Figure 1.1c were only considered.

In Section 3.1, the general assumptions for anti-plane displacement are

reviewed. Section 3.2 provides a formulation from first principals of the

classical anti-plane displacement boundary value problem with a straight

crack in an infinite plane. Section 3.3 provides a refined formulation of the

anti-plane displacement problem utilizing the GM model discussed in Section

3
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(c) Mode-III (anti-plane)

Figure 1.1: Crack Mode Loading Types

2.3. A comparison shows that the GM model collapses to the classical case

when the surface effects are eliminated. The proof of uniqueness for the

solution of the refined boundary value problem with surface effects is given

in Section 3.4. An equivalent non-dimensional problem is formulated in

Section 3.5, where a linear boundary value problem with just one constant

(the surface parameter) emerges.

Since the two problems formulated in Chapter 3 are planar, complex variable

analysis can be used to formulate a one dimensional problem on the crack

face. A summary of the applicable complex variable rules and assumptions

utilized are given in Section 4.1. Application of these assumptions to the

boundary conditions of the formulated anti-plane displacement problem are

given in Sections 4.2 and 4.3. This application leads to three single variable

integral equations [17, 18, 19] for displacement and gradient components on

the crack face (Section 4.4). A formulation (in the form of a complex Cauchy

Integral [20, 21]) for the displacement and gradient components in the body

material is outlined in Section 4.5.

Chapter 5 provides an outline of the numerical method used to solve the

integral equations derived in Chapter 4. Section 5.1 provides a numerical

4



formulation for solving the general form of a Fredholm Equation of the Second

Kind [22, 17, 18, 23], and Section 5.2 outlines a procedure for numerically

integrating the input stress functions. Using these foundations, numerical

approximations of the anti-plane displacement and gradient components

(which are linearly related to the stresses) on the crack face are outlined in

Sections 5.3 and 5.4 respectively. Formulations for numerical approximation

of the displacement and gradients inside the body material are given in

Sections 5.5 and 5.6.

The numerical model was tested using different input stress functions

and surface parameters. The analytical solution to the classic case is

formulated in Section 6.1 and comparisons to the numerical results with

surface parameters eliminated shows that the formulated solution in this

work collapses to the classical case. The effect of different input stress

functions across the crack face is discussed in Section 6.2. Generalizations

and approximations of displacement and opposing shear stress versus the

surface parameter via curve fitting are provided in Section 6.3. These

approximations can be used as “quick check” adjustment equations for

future use. A brief discussion of accuracy and refinement convergence of

the numerical model is outlined in Section 6.4 and it was determined that

the model was finite, convergent and stable for resultant displacement and

opposing shear stress.

Chapter 7 provides some distinct conclusions from this study. The model

presented in this work is proven well posed, and provides finite and stable

results. This gives leeway to some future problems of related interest and

potential refinements of this work in Chapter 8.
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2 - Constitutive Models

2.1 Continuum Mechanics Preliminaries

In the following sections, it will be assumed that standard, linear Continuum

Mechanics rules apply. A deeper review can be found in any text on the

subject [4, 24]. A summary of the continuum mechanics rules, assumptions

and notation related to this work is summarized in the following statements.

1. All vector spaces are assumed linear.

2. Unless otherwise stated, all vector and tensor components in this work

are Cartesian.

3. Unless otherwise stated, Indicial/Einstein Summation Notation [4, 24]

shall be assumed everywhere. Given this, summation symbols (
∑

) may

be omitted when summation is required.

4. The transpose [4] of any tensor (A) is defined by the relation:

a ·Ab = b ·ATa (2.1.1)

Where a and b are arbitrary, constant vectors.

5. The Tensor Product operator (⊗) has the following property for any

set of vectors (a, b, c):

6



(a⊗ b) c = (b · c)a (2.1.2)

6. Any vector (v) or tensor (A) field can be expressed in cartesian

coordinates as:

v ≡ viei, i = 1, 2, 3 (2.1.3)

A ≡ Aijei ⊗ ej , i, j = 1, 2, 3 (2.1.4)

Where: the vector ei is the unit directional vector along the positive xi

axis; and vi, Aij represent the components of the vector (v) and tensor

(A) respectively.

7. The Identity Tensor (I) is defined as:

I ≡ δijei ⊗ ej , i, j = 1, 2, 3 (2.1.5)

And the Kronecker delta function (δij) is defined as:

δij ≡

 1, i = j

0, i 6= j
i, j = 1, 2, 3 (2.1.6)

8. The Spacial Gradient Operator in cartesian coordinates is defined as:

∇ ≡ ∂

∂xi
ei, i = 1, 2, 3 (2.1.7)

And the gradient of any scalar (f) or vector (v) follows the differential

relations:

7



df ≡ ∇f · dx (2.1.8)

dv ≡ (∇v) dx (2.1.9)

Hence, the gradients of any scalar (f) or vector (v) in cartesian

coordinates is:

∇f =

(
∂f

∂xi

)
ei, i = 1, 2, 3 (2.1.10)

∇v =

(
∂vi
∂xj

)
ei ⊗ ej , i, j = 1, 2, 3 (2.1.11)

9. The divergence (div(∗) ≡ ∇ · (∗)) of any vector (v) or tensor (A) field

has the following properties:

∇ · v = Tr {∇v} (2.1.12)

a · (∇ ·A) = ∇ ·
(
ATa

)
(2.1.13)

Where: a is any arbitrary, constant vector; and the the trace (Tr {A})

is defined as the sum of the diagonal components, or:

Tr {A} ≡
3∑
i=1

3∑
j=1

Aijδij = Aijδij = Aii, i = 1, 2, 3 (2.1.14)

So, the divergence of any vector (v) or tensor (A) in cartesian

coordinates is:

∇ · v =
∂vi
∂xi

, i = 1, 2, 3 (2.1.15)

∇ ·A =
∂Aij
∂xj

ei, i, j = 1, 2, 3 (2.1.16)
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Using these basic rules, the constitutive relations in the following sections

can be utilized.

2.2 Classical Constitutive Model

2.2.1 Body Equations

The linearized constitutive model for the static deformation of an isotropic

solid in three dimensions is [1, 4, 2, 24, 5]:

ε =
1

2

(
∇u+ (∇u)T

)
(2.2.1)

σ = λTr {ε} I + 2µε (2.2.2)

∇ · σ + b = 0 (2.2.3)

Equations 2.2.1 and 2.2.2 represent the definitions of strain (ε) and Cauchy

Stress (σ) tensors respectively for linear deformation of an isotropic solid.

Equation 2.2.3 represents a force balance anywhere in the body material. In

these equations: u is the displacement vector of the body, and b represents

the externally applied body forces. Note that:

ε =
1

2

(
∇u+ (∇u)T

)
=

1

2

∂ui
∂xj

(ei ⊗ ej + ej ⊗ ei)

So:

Tr {ε} =
1

2

(
Tr

{
∂ui
∂xj

ei ⊗ ej
}

+ Tr

{
∂ui
∂xj

ej ⊗ ei
})

=
3∑
i=1

∂ui
∂xi

= ∇ · u

Therefore, in terms of displacement (u), the Cauchy Stress Tensor is:

σ = λ (∇ · u) I + µ
[
∇u+ (∇u)T

]
(2.2.4)

9



Further simplification yields the Cauchy Stress Tensor components (in

Cartesian):

σij = λ

(
3∑

k=1

∂uk
∂xk

)
δij + µ

[
∂ui
∂xj

+
∂uj
∂xi

]
, i, j = 1, 2, 3 (2.2.5)

Given 2.2.4:

∇ · σ = ∇ ·
(
λ (∇ · u) I + µ

[
∇u+ (∇u)T

])
= λ∇ (∇ · u) + µ∇ · (∇u) + µ∇ · (∇u)T

Which yields the following equations for body deflection:

(λ+ µ)
∂2ui
∂xj∂xi

+ µ
∂2ui
∂x2

j

+ bi = 0, i, j = 1, 2, 3 (2.2.6)

2.2.2 Boundary Conditions

The boundary conditions are determined by assuming a prescribed stress

vector (t), which has the surface force balance:

t = σn (2.2.7)

Where n is the surface normal vector of a boundary curve (f(x1, x2, x3)) and

is defined by:

n ≡ ∇f|∇f | = niei, i = 1, 2, 3 (2.2.8)

Using Equations 2.2.5 and 2.2.7, the stress vector has the following components:

ti =

[
λ

(
3∑

k=1

∂uk
∂xk

)
δij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)]
nj, i, j = 1, 2, 3 (2.2.9)
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The quantities ti in Equation 2.2.9 are then equated to the known, applied

stress vector components on the surface to get the boundary condition

equations.

2.3 Surface Effects

The classical model in Section 2.2 does not take into account atom interaction

on the material surface. When the ratio between surface area and material

volume increases these interactions become more dominant and the physics

requires an adjustment. Atomic interactions are incorporated into the GM

model as a thin surface layer on the free boundary under some initial surface

tension. The assumption is that this layer has behavior similar to a surface

tension on water [7], or a thin layer of netting or tape that disperses energy

on the boundary. A visual illustration of this idea is shown in Figure 2.1.

t n

Bulk
Material

t n

Bulk
Material

Interface
Material

n

t b
t b

t

n

Bulk Material

Interface
Material

(a) Traction applied directly
to material surface. Without
surface effects, this defaults
to the classical model.

t n

Bulk
Material

t n

Bulk
Material

Interface
Material

n

t b
t b

t

n

Bulk Material

Interface
Material

(b) Interface material
with a thin surface layer
under tension with external
traction unchanged.

t n

Bulk
Material

t n

Bulk
Material

Interface
Material

n

t b
t b

t

n

Bulk Material

Interface
Material

(c) Adjusted traction on
body surface from force
balance across interface
layer material (tb = t− ts).

Figure 2.1: Illustration of the GM model

Figure 2.1a shows traction on the boundary with surface effects ignored,

which is the classical model from Section 2.2. The traction applied to the

boundary is direct with no energy dispersion from surface effects. When the

boundary curvature is moderate, then this model is well accepted. Figure

11



2.1b shows the boundary with a thin surface layer with energy dissipation

[7, 11, 12]. When the curvature of the boundary becomes more extreme, this

thin layer will have a more pronounced effect [8, 11].

Figure 2.1c shows the force balance across this interface layer, where the

surface stress on the bulk material boundary is reduced due to absorption

of surface energy from the boundary layer. Denote this reduction as ts

(the surface effect adjustment). Since the interface material layer behaves

like a “coating” under pre-stress, the adjustment required on the input load

can by quantified by “projecting” this interface layer upon the bulk surface

boundary with adjusted tangential surface traction. Given this, the GM

model is constructed with the assumption that this interface layer only has

a surface tangential component [7], hence lies in “tangent space” with no

surface normal properties (ts · n = 0). The Tangential Projection Tensor

(P ) - which can be used to project any vector or tensor field this tangent

space - is defined as [12]:

P ≡ I − n⊗ n (2.3.1)

Where n is the normal vector of the material surface. Note that regardless

of the coordinate system, P = P T = P 2. Using the Tangential Projection

Tensor, the Surface Gradient [7, 12, 11] operator is defined as:

∇s(∗) = ∇(∗)P (2.3.2)

Therefore the “Surface Divergence” of any vector (v) or tensor (T ) field has

the following properties [7, 8, 12, 11]:
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∇s · v = Tr {∇sv}

a · (∇s · T ) = ∇s ·
(
T Ta

) (2.3.3)

Where a is any arbitrary, constant vector. Because the interfacial stress

tensor (S - a symmetric tensor for isotropic materials) is an absorbtion of

surface energy due to tension, it must be tangential to the material surface

(or, resides in Tangent Space). So, S is required to have the following

property [7]:

Sn = 0 (2.3.4)

Assuming an isotropic material with small (linear) deformations, then

applying a force balance across the material sufrace/interface material layer

yeilds [7, 8, 12, 11]:

[σn] +∇s · S = 0 (2.3.5)

Where: [σn] denotes the jump in traction across the interface material, or

alternatively, the adjusted value of traction on the boundary. So, Equation

2.3.5 has the equivalent form as a function of the adjusted boundary traction

on the body (tb) and the externally applied boundary traction (t), being:

tb = t−∇s · S (2.3.6)

Here: tb represents the adjusted surface traction, t represents the externally

applied traction (without surface effects) and ∇s ·S (= ts from Figure 2.1c)

represents the surface effect adjustment due to the surface energy dispersion.

This adjustment is always tangent to the boundary normal with surface

13



tension on the interface material, which translates as a reduction of shear

stress on the body surface. For an isotropic solid with “small” (linear)

deformations, the interface material has a stress tensor in the form [12, 11].

S = (σo + (λs + σo)Tr {εs})P + 2 (µs − σo) εs (2.3.7)

Where σo represents an interfacial “surface tension” of the interface material

with units J/m2. The modified Lame’s constants (µs and λs) have the same

units of σo and have the transformations [12]:

µs = µĥ (2.3.8)

λs =
2λµĥ

λ+ µ
(2.3.9)

Where ĥ is the average thickness of the assumed interface layer. Sharma

et. al have worked this out to be between 1 and 2 lattice spacings (usually

measured in Angstrom) [12]. If the surface effect constants α and β are

defined as:

α ≡ λs + σo (2.3.10)

β ≡ µs − σo (2.3.11)

Using Equations 2.3.10 and 2.3.11, Equation 2.3.7 has the simplified form:

S = (σo + αTr {εs})P + 2βεs (2.3.12)

Given that the interface material and body surface are considered “compliant”

in the constitutive model [7, 8], the strains must be equivalent. However,

the strain tensor must also be projected to tangent space to give a material
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strain tensor (εs) and has the relation to the body strain tensor (ε) through

the following projection relation [12, 11, 10, 9]:

εs = PεP (2.3.13)

To use this model, the body displacement in the body (bulk) material follows

the same relations as Section 2.2.1, however the boundary conditions must

be adjusted using Equations 2.3.6, 2.3.12 and 2.3.13.
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Part II

Problem Formulation



3 - Mode-III Crack Problem

3.1 General Anti-Plane Displacement

Anti-plane displacement is the displacement component along the x3 axis

(u3) as a function of the planar coordinates x1 and x2 [16]. The main

assumption used in the following problem formulations is that the planar

displacement components (u1 and u2) are much smaller in magnitude than

the anti-plane displacement (u3) magnitude. So the problem is simplified by

assuming u1, u2 ' 0. Define (for convenience) the anti-plane displacement

magnitude u3 ≡ w = w(x1, x2). The normal vector (from Equation 2.2.8) of

any boundary in the plane then becomes a function of the planar coordinates

such that:

n = n1e1 + n2e2 (3.1.1)

Using the assumptions above along with Equation 2.2.6, anti-plane displacement

in the body material follows Laplace’s Equation in the plane:

∂2w

∂x2
1

+
∂2w

∂x2
2

= 0 (3.1.2)

The Cauchy Stress and Strain Tensors defined in Equations 2.2.2 and 2.2.1

respectively for anti-plane displacement are:
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ε =
1

2

[
∂w

∂x1

(e1 ⊗ e3 + e3 ⊗ e1) +
∂w

∂x2

(e2 ⊗ e3 + e3 ⊗ e2)

]
(3.1.3)

σ = µ

[
∂w

∂x1

(e1 ⊗ e3 + e3 ⊗ e1) +
∂w

∂x2

(e2 ⊗ e3 + e3 ⊗ e2)

]
(3.1.4)

Given Equations 3.1.3 and 3.1.4, the relation to stress and strain tensors for

the anti-plane case simplifies to:

σ = 2µε (3.1.5)

Where the only components of stress and strain in the anti-plane case are:

σ13 ≡ µ
∂w

∂x1

σ23 ≡ µ
∂w

∂x2

(3.1.6)

ε13 ≡
1

2

∂w

∂x1

ε23 ≡
1

2

∂w

∂x2

(3.1.7)

Using Equations 2.2.9, 3.1.1 and 3.1.4 the anti-plane traction vector is:

t = µ

(
∂w

∂x1

n1 +
∂w

∂x2

n2

)
e3 = µ (∇w · n) e3 = µ

∂w

∂n
e3 (3.1.8)

Anti-plane displacement with Mode-III loads also have the property that [16]:

w+ = −w− (3.1.9)

Where the positive (w+ = w(x1, x2)) and negative (w− = w(x1,−x2)) regions

of the body are given the superscript (+) and (−) respectively. From this, a

result which will be useful later is:

∂nw

∂xn1

+

= −∂
nw

∂xn1

−
, n > 1 (3.1.10)

∂nw

∂xn2

+

= (−1)n+1∂
nw

∂xn2

−
, n > 1 (3.1.11)
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3.2 Classical Anti-Plane Crack Model

Assume a straight crack along the x1-axis of length 2a and centered at the

origin defined by L, such that:

L ∈ x1, x2 = [−a, a], 0± (3.2.1)

It shall also be assumed that the crack size is significantly smaller than the

body material extents, and therefore the plane can be assumed infinitely

large. The normal vector on the crack face (L) becomes:

n± = ∓e2 (3.2.2)

The Stress Vector (from Equation 3.1.8) along the crack face is:

t± = ∓µ ∂w
∂x2

±
e3, on L (3.2.3)

The prescribed Mode-III stress loading on the crack line shall be defined as:

σ23(x1, 0
±) ≡ P (x1) (3.2.4)

So the surface traction from Equation 3.2.3 also has the form:

t± = ∓P (x1)e3, on L (3.2.5)

Using Equations 3.2.3 and 3.2.5, the classical case for anti-plane shear has

the boundary condition on the crack face (L):

µ
∂w

∂x2

±
= P (x1), on L (3.2.6)
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For simplicity, it shall also be assumed that there is no stress at the extents

of the plane or externally applied inside the body material (∴ b = 0). This

leads to the classical anti-plane displacement boundary value problem, given

by Equations 3.2.7 through 3.2.9.

∂2w

∂x2
1

+
∂2w

∂x2
2

= 0 in R2\L (3.2.7)

µ
∂w

∂x2

±
= P (x1) on L (3.2.8)∣∣∣∣∂w∂n

∣∣∣∣→ 0 as |x| → ∞ (3.2.9)

3.3 Anti-Plane Shear with Surface Effects

Assuming the same input loading and crack geometry as the classical case in

Section 3.2, then the Projection Tensor from Equation 2.3.1 becomes:

P = e1 ⊗ e1 + e3 ⊗ e3 (3.3.1)

Using Equations 3.1.3 and 3.3.1, the surface material strain tensor from

Equation 2.3.13 is:

εs =
1

2

∂w

∂x1

(e1 ⊗ e3 + e3 ⊗ e1) (3.3.2)

Note that the surface strain (εs) in Equation 3.3.2 has no diagonal terms

(∴ Tr {εs} = 0), hence the Surface Strain tensor from Equation 2.3.12 for an

anti-plane crack is:

S = σo (e1 ⊗ e1 + e3 ⊗ e3) + β
∂w

∂x1

(e1 ⊗ e3 + e3 ⊗ e1) (3.3.3)

It is worthwhile to note the differences (and similarities) between the surface
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stress tensor in Equation 3.3.3 (S) and the bulk material stress tensor

in Equation 3.1.4 (σ). The two major differences are that the normal

components (in the direction of e2) for σ are eliminated and replaced with

a tangential and uniform surface tension (σo). In this particular case (for an

anti-plane crack), the two tensors are merely joined by the projection relation

similar to the strain tensor relation, but with an added surface tension:

S = P

(
σoI +

β

µ
σ

)
P (3.3.4)

Using Equation 2.3.3, the surface divergence of S simplifies to:

∇s · S = β
∂2w

∂x2
1

e3 (3.3.5)

The force balance from Equation 2.3.6 yields the adjusted boundary conditions

with surface effects:

tb = t− β∂
2w

∂x2
1

e3

With the same prescribed traction along the crack as in Equation 3.2.4 the

adjusted boundary conditions with surface effects on the crack face (L) is:

µ
∂w

∂x2

±
= P (x1)∓ β∂

2w

∂x2
1

±

, on L (3.3.6)

This leads to the boundary value problem for anti-plane displacement with

surface effects, given by Equations 3.3.7 through 3.3.9.

∂2w

∂x2
1

+
∂2w

∂x2
2

= 0 in R2\L (3.3.7)

µ
∂w

∂x2

±
= P (x1)∓ β∂

2w

∂x2
1

±

on L (3.3.8)
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∣∣∣∣∂w∂n
∣∣∣∣→ 0 as |x| → ∞ (3.3.9)

The problem definition above is identical to the classic case (Equations

3.2.7 through 3.2.9) with exception of the surface effect. Note that when

the surface constant β → 0, the problem in Equations 3.3.7 through 3.3.9

collapses to the classic case.

3.4 Uniqueness of Solution

The difference between two separate solutions of the boundary value problem

in Equations 3.3.7 through 3.3.9 is defined as:

v(x1, x2) ≡ w2(x1, x2)− w2(x1, x2) (3.4.1)

This yields the zero-stress problem for v(x1, x2) given by:

∂2v

∂x2
1

+
∂2v

∂x2
2

= 0 in R2\L (3.4.2)

µ
∂v

∂x2

±
= ∓β ∂

2v

∂x2
1

±

on L (3.4.3)∣∣∣∣ ∂v∂n
∣∣∣∣→ 0 as |x| → ∞ (3.4.4)

Given that the geometry of the crack tips (x1, x2 = ±a, 0) is only piecewise

continuous, the derivatives there are indeterminate. This lack of smoothness

gives rise to debate about the surface energies there and poses issues with

uniqueness. However, methods by Krutitskii [25, 26] and Knowles [27]

provide insight. Using these methods, begin by redefining the geometry of

the problem.
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Consider a finite planar area (B) of radius R that encompasses a “smooth”

inner boundary (∂Ω) around the crack at a distance defined as ε (a+ε� R).

A visualization is shown in Figure 3.1.

x2

x1
-a a

R

2ε
∂Ω

B

∂Β

Ω\B

Figure 3.1: Finite Body with Smooth Boundaries

The boundary of the outer circular area and inner area encompassing the

crack are denoted by ∂B and ∂Ω respectively. The extents of the plane is

denoted by ∂Ω∞, which represents the limit as |x| → ∞ (or R2). Define the

values of v on the boundary of ∂Ω to be:

v±ε ≡ v(x1,±ε) on ∂Ω1,2, (3.4.5)

vr ≡ v(∓a+ ε cos(ϕ), ε sin(ϕ)) on ∂Ω3,4 (3.4.6)

Where: ∂Ω1 and ∂Ω2 are the upper (x2 = +ε) and lower (x2 = −ε) portions

of the straight part of ∂Ω respectively (∂Ω1,2 ∈ x1 = [−a, a], x2 = ±ε); ∂Ω3

(π/2 ≤ ϕ ≤ 3π/2) and ∂Ω4 (−π/2 ≤ ϕ ≤ π/2) are the left and right curved

portions of ∂Ω respectively (in cylindrical coordinates) and the boundary
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∂Ω =
⋃4
i=1 ∂Ωi. Using this geometry, Green’s 1st Identity [18] yields:

∫
B

|∇v|2 dA =

∮
∂B

v
∂v

∂n
ds−

∮
∂Ω

v
∂v

∂n
ds (3.4.7)

Given 3.4.4, it must hold that v = O (R−1) + C∞ (C∞ is a constant) as

R→∞. Hence, ∂v
∂n

= O (R−2) as R→∞. Therefore:

lim
R→∞

∮
∂B

v
∂v

∂n
ds =

∫ 2π

0

[
O
(
R−1

)
+ C∞

] [
O
(
R−2

)]
Rdθ = 0

Where: B → Ω as R → ∞. Using this result along with Equations 3.2.2,

3.4.5 and 3.4.6, then Equation 3.4.7 becomes:

∫
Ω

|∇v|2 dA = −
∮
∂Ω

v
∂v

∂n
ds = −

4∑
i=1

∫
∂Ωi

v
∂v

∂n
ds

= −
∫ a

−a
v+
ε

(
∇v+

ε · (−e2)
)

(−dx1)−
∫ a

−a
v−ε
(
∇v−ε · e2

)
dx1

− 2ε

∫ π
2

−π
2

vr (∇vr · (−er)) dθ

= −
∫ a

−a
v+
ε

∂vε
∂x2

+

dx1 −
∫ a

−a
v−ε
∂vε
∂x2

−
dx1 + 2ε

∫ π
2

−π
2

vr
∂vr
∂r

dθ

= −I1 − I2 + 2εI3

The integrals I1 and I2 are determined using the boundary condition

Equation 3.4.3, and noting that v+ = −v− for anti-plane displacement

(Equation 3.1.9). As ε→ 0:

lim
ε→0

I1 = lim
ε→0

∫ a

−a
v+
ε

∂vε
∂x2

+

dx1 =

∫ a

−a
v+ ∂v

∂x2

+

dx1 = −β
µ

∫ a

−a
v+ ∂

2v

∂x2
1

+

dx1

lim
ε→0

I2 = lim
ε→0

∫ a

−a
v−ε
∂vε
∂x2

−
dx1 =

∫ a

−a
v−

∂v

∂x2

−
dx1 =

β

µ

∫ a

−a
v−
∂2v

∂x2
1

−

dx1

=
β

µ

∫ a

−a
v+ ∂

2v

∂x2
1

+

dx1 = − lim
ε→0

I1
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Given that the function w (and therefore v) is piecewise continuous (the

crack tips are joined), it follows from the Hölder Condition [19, 18] that the

product of v and it’s derivatives ( ∂v
∂n

) are finite [25, 27, 19] such that:

lim
ε→0
|I3| = lim

ε→0

∣∣∣∣∣
∫ π

2

−π
2

vr
∂vr
∂r

dθ

∣∣∣∣∣ =

∣∣∣∣∣
∫ π

2

−π
2

v(±a, 0)
∂v

∂n
(±a, 0)dθ

∣∣∣∣∣
≤
∫ π

2

−π
2

|v(±a, 0)∇v(±a, 0)| dθ =

∫ π
2

−π
2

V 2
o dθ = πV 2

o

Where V 2
o is some positive and finite value. Taking the limit as ε→ 0 on the

right hand side of Equation 3.4.7 then yields:

lim
ε→0

(I1 − I2 − 2εI3) =
��

��lim
ε→0

(I1)−
��

��lim
ε→0

(I1) +
��

���
�:0

lim
ε→0

(2εI3) = 0

Which gives the following result:

∫
Ω

|∇v|2 dA = 0 (3.4.8)

Hence, by localization |∇v| ≡ 0 in Ω and v = const in Ω (= R2\L).

This means that any two solutions differ by only a constant (rigid body

displacement), however given that v+ = −v− for anti-plane displacement the

values at the crack tips yield the condition that v(−a, 0) = v(a, 0) = 0. It is

then concluded that v ≡ 0 (or, w2 = w1) and any solution for the problem

in Equations 3.3.7 through 3.3.9 is unique.

It should also be noted that by using the same method for the classical case

(when β → 0) given by Equations 3.2.7 through 3.2.9 yields the same result.
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3.5 Normalized Problem

The number of constants in the boundary value problem given by Equations

3.3.7 through 3.3.9 can be reduced from three (a, µ and β) to one by

normalizing the variables. Begin by applying the spacial transformation of

the independent coordinates so that x1, x2 → x, y, where:

x ≡ x1

a
and y ≡ x2

a
(3.5.1)

This yields a dimensionless set of spacial coordinates in the plane. Applying

this transformation to the derivatives of w(x1, x2) gives the following relations

(n > 1):

∂nw

∂xn1
=

(
1

a

)n
∂nw

∂xn
and

∂nw

∂xn2
=

(
1

a

)n
∂nw

∂yn
(3.5.2)

The dimensionless input function P̃ shall be defined such that:

P̃ (x) ≡ P (x1)

Po
=
P (ax)

Po
(3.5.3)

Where Po is defined as the root mean squared value of the input stress along

the crack face:

Po ≡
√

1

2a

∫ a

−a
(P (t))2 dt (3.5.4)

The dimensionless, unit anti-plane displacement (u(x, y)) can then be defined

as:

u(x, y) ≡ w(x1, x2)

ϑ
(3.5.5)

Where the stress parameter (ϑ) is:
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ϑ ≡ a

(
Po
µ

)
(3.5.6)

Putting this all together yields the following normalized equivalent to the

boundary value problem in Equations 3.3.7 through 3.3.9:

∂2u

∂x2
+
∂2u

∂y2
= 0, in R2\L (3.5.7)

∂u

∂y

±
= P̃ ∓ γ ∂

2u

∂x2

±

on L (3.5.8)∣∣∣∣ ∂u∂n
∣∣∣∣→ 0 as |x| → ∞ (3.5.9)

Where the dimensionless surface parameter (γ) is defined as:

γ ≡ β

aµ
=
µs − σo
aµ

(3.5.10)

These transformations are all invertible except for the cases when the

constants a (half the crack length), Po (input stress magnitude) or µ (modulus

of rigidity) are zero, which are not points of interest for the boundary value

problem.
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4 - Complex Variables Analysis

4.1 The Complex Plane

Using complex variables analysis, any planar coordinate (x, y) can be

transformed into a function of one variable by defining the complex coordinate

(z) in the plane and it’s complex conjugate (z) as [20]:

z ≡ x+ iy and z ≡ x− iy (4.1.1)

Where the complex number i ≡
√
−1. Define φ(z) as the Complex Anti-Plane

Displacement Function, such that:

φ(z) ≡ u(x, y) + iv(x, y) (4.1.2)

Where: u(x, y) is the unit displacement defined in Section 3.5 and v(x, y) is

the complex conjugate to u(x, y). Since u(x, y) follows Laplace’s Equation

(Equation 3.5.7) in the body, then φ(z) is an analytic (or holomorphic)

function in the body (not including the crack) and the functions u(x, y) and

v(x, y) follow the Cauchy-Riemann Conditions [20] in R2\L:

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
(4.1.3)

The complex conjugate [20, 21] of the function φ(z) is defined as:
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φ(z) = φ(z) ≡ u(x, y)− iv(x, y) (4.1.4)

Since φ(z) is analytic in the body, it follows the reflection principal [21, 19,

20]:

φ(z) = φ(z) = u(x,−y)− iv(x,−y) (4.1.5)

Define the positive (+) and negative (−) regions of the function φ(z) to be:

φ±(z) ≡ u(x,±y) + iv(x,±y) (4.1.6)

This reveals an important conclusion to be used later:

φ±(z) = φ∓(z) (4.1.7)

Given that the function φ(z) is analytic in the body, the first derivative of

φ(z) is given by [20]:

φ′(z) =
∂u

∂x
+ i

∂v

∂x
(4.1.8)

Using 4.1.3, the derivative of φ(z) in terms of the function u(x, y) is:

φ′(z) =
∂u

∂x
− i∂u

∂y
(4.1.9)

Finally, utilizing Equation 4.1.8 once more, the second derivative of φ(z) is:

φ′′(z) =
∂2u

∂x2
− i ∂

2u

∂x∂y
(4.1.10)

The above framework satisfies the body Equation 3.5.7 (the harmonic

29



condition). Application of this framework to the boundary condition

Equations 3.5.8 and 3.5.9 is given in the following sections.

4.2 Boundary Conditions

The boundary condition from Equation 3.5.8 can be transformed into

functions of φ(z) and it’s derivatives by noting:

∂u

∂x
=

1

2

(
φ′(z) + φ′(z)

)
= Re {φ′(z)} (4.2.1)

∂u

∂y
=
i

2

(
φ′(z)− φ′(z)

)
= −Im {φ′(z)} (4.2.2)

∂2u

∂x2
=

1

2

(
φ′′(z) + φ′′(z)

)
= Re {φ′′(z)} (4.2.3)

Since the normal vector is arbitrary at the plane extents, the boundary

condition in Equation 3.5.9 is equivalent to:

lim
|z|→∞

φ′(z) = 0 (4.2.4)

Using Equations 4.2.1 through 4.2.3, Equation 3.5.8 can be re-written as:

i

2

[
φ′(t)− φ′(t)

]±
= P̃ (t)∓ γ

2

[
φ′′(t) + φ′′(t)

]±
(4.2.5)

Where t is defined as a real coordinate anywhere on the crack face such that

t ∈ x = [−1, 1]. Proceeding further, Equations 3.1.11 and 4.2.2 gives the

result:

[
φ′(z)− φ′(z)

]+

=
[
φ′(z)− φ′(z)

]−
(4.2.6)

Applying Equation 4.1.7 (reflection principal) to 4.2.6 gives:
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[φ′(z)]
+ −

[
φ′(z)

]−
= [φ′(z)]

− −
[
φ′(z)

]+
∴ [φ′(z)]

+
+
[
φ′(z)

]+
= [φ′(z)]

−
+
[
φ′(z)

]− ≡ Φ(z)

This means that Φ(z) is invariant across the crack (L) and is analytic

everywhere in the complex plane. Using Louivilles Theorem [20], then Φ(z)

must be a constant (≡ Φo).

Φ(z) = φ′(z) + φ′(z) ≡ Φo

However, given the boundary condition Equation 4.2.4, it is clear that Φo ≡ 0.

Hence:

φ′(z) = −φ′(z) (4.2.7)

Similarly, the general case (nth derivative) leads to the following conclusion:

[
φ(n)(z)

]±
=
[
φ(n)(z)

]∓
= −

[
φ(n)(z)

]∓
(4.2.8)

Adding both boundary conditions in Equation 4.2.5 (the (+) and (−) cases)

yields:

i

2

([
φ′(t)− φ′(t)

]+

+
[
φ′(t)− φ′(t)

]−)
= 2P̃ (t)

− γ

2

([
φ′′(t) + φ′′(t)

]+

−
[
φ′′(t) + φ′′(t)

]−)
∴
i

2

(
[φ′(t)]

+
+ [φ′(t)]

−
+ [φ′(t)]

+
+ [φ′(t)]

−
)

= 2P̃ (t)

− γ

2

(
[φ′′(t)]

+ − [φ′′(t)]
− − [φ′′(t)]

−
+ [φ′′(t)]

+
)

Adding like terms provides a final equation encompassing all the boundary
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conditions (Equations 3.5.8 and 3.5.9) as a function of φ(t):

i
(

[φ′(t)]
+

+ [φ′(t)]
−
)

+ γ
(

[φ′′(t)]
+ − [φ′′(t)]

−
)

= 2P̃ (t) (4.2.9)

4.3 The Hilbert Problem

The boundary condition in Equation 4.2.9 is not useful in it’s current form.

However, the Hilbert Problem [21] and it’s known solution can be utilized. If

there is a multi-valued function in the complex plane, such that the “jump”

in value across a line (or crack, L) is given by:

F+(t)− F−(t) = h(t) (4.3.1)

Then the solution of the problem in Equation 4.3.1 is given by [21]:

F (z) =
1

2πi

∫
L

h(t)

t− zdt+ F∞ (4.3.2)

Where F∞ is a constant and L denotes the crack extents (L ∈ t = [−1, 1]).

This result can be applied to Equation 4.2.9 such that:

φ′(z) =
1

2πi

∫
L

f(t)

t− zdt (4.3.3)

Is the solution to the problem:

f(t) ≡ [φ′(t)]
+ − [φ′(t)]

−
(4.3.4)

Here: f(t) is an unknown function, where if provided would lead directly to

analytical solution to φ′(z) using Equation 4.3.3. Also, if the function g(t) is

defined such that:
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g(t) ≡ [φ(t)]+ − [φ(t)]− (4.3.5)

Then φ(z) has the following solution:

φ(z) =
1

2πi

∫
L

g(t)

t− zdt+ φo (4.3.6)

Where φo is a complex constant which can be interpreted as some form of a

rigid body displacement. A more direct comparison of Equations 4.3.4 and

4.3.5 is found by considering:

g′(t) =
d

dt

(
[φ(t)]+ − [φ(t)]−

)
= [φ′(t)]

+ − [φ′(t)]
−

Then the function f(t) is defined as the derivative of the function g(t):

f(t) ≡ g′(t) (4.3.7)

Also, taking the derivative of Equation 4.3.5 directly provides another

relation between f(t) and g(t):

φ′(z) =
1

2πi

d

dz

[∫
L

g(t)

t− z dt
]

+
�
�
��7

0
dφo
dz

=
1

2πi

∫
L

g(t)

(t− z)2

=
1

2πi

[
− g(t)

t− z

∣∣∣∣t=1

t=−1

+

∫
L

g′(t)

t− zdt
]

Therefore:

∫
L

f(t)

t− zdt = − g(t)

t− z

∣∣∣∣t=1

t=−1

+

∫
L

g′(t)

t− zdt (4.3.8)

Hence, using the relation in Equation 4.3.7 it must hold true that:

33



g(1)

1− z +
g(−1)

1 + z
= 0 (4.3.9)

Using Equations 4.3.4 and 3.1.11, then:

f(t) = [φ′(t)]
+ − [φ′(t)]

−
= lim

x,y→t,0+

(
∂u

∂x
− i∂u

∂y

)
− lim

x,y→t,0−

(
∂u

∂x
− i∂u

∂y

)
=

(
∂u

∂t

+

− ∂u

∂t

−)
− i
(
�
�
��∂u

∂y

+

−
�
�
��∂u

∂y

−
)

Finally, applying Equations 3.1.6 and 3.5.5, a physical interpretation of the

function f(t) emerges:

f(t) = g′(t) =
∂u

∂t

+

− ∂u

∂t

−
=

1

Po

(
σ+

13 − σ−13

)
(4.3.10)

Equation 4.3.10 demonstrates that the function f(t) (or g′(t)) is defined as

the jump in the gradient component of anti-plane displacement in the x

direction across the crack face. Furthermore, f(t) is linearly proportional to

the jump in shear stress σ13 across the crack face. Using the Fundamental

Theorem of Calculus [28]:

g(1)− g(−1) =

∫ 1

−1

g′(t)dt (4.3.11)

Then:

g(1)− g(−1) =

∫ 1

−1

f(t)dt =

∫ 1

−1

(
∂u

∂t

+

− ∂u

∂t

−)
dt

=
(
u(1, 0+)− u(−1, 0+)

)
−
(
u(1, 0−)− u(−1, 0−)

)
=
(
u(1, 0+)− u(1, 0−)

)
−
(
u(−1, 0+)− u(−1, 0−)

)
Note that t = ±1 is actually the point where the (+) and (−) regions of the
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crack join. Given this, it must hold that u(1, 0+) = u(1, 0−) and u(−1, 0+) =

u(−1, 0−). Hence:

g(−1)− g(1) = 0

Or, alternatively:

g(−1) = g(1) ≡ go (4.3.12)

Where go is a real valued constant. Also, the function f(t) must be

anti-symmetric and follows the relation:

∫ 1

−1

f(t)dt = 0 (4.3.13)

Using Equation 4.3.9 with 4.3.12 gives:

go

(
1

1− z +
1

1 + z

)
= 0

Hence, the constant go ≡ 0. So:

g(1) = g(−1) = 0 (4.3.14)

Furthermore, taking any arbitrary point s, where −1 < s < 1, then:

g(1)− g(s) =
(
u(1, 0+)− u(s, 0+)

)
−
(
u(1, 0−)− u(s, 0−)

)
g(s)− g(−1) =

(
u(s, 0+)− u(−1, 0+)

)
−
(
u(s, 0−)− u(−1, 0−)

)
Subtract these two equations to get:

g(s) = u(s, 0+)− u(s, 0−) (4.3.15)
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It is then concluded that the function g(t) is defined as the jump in unit

displacement (u) across the crack face.

4.4 Integral Equation Formulation

Given Equations 4.3.3 and 4.3.6, utilize the Plemelj Formula [21]:

[φ(t)− φo]± = ±1

2
g(t) +

1

2πi

∫
L

g(s)

s− tds (4.4.1)

Since φo is a constant, an alternate form Equation 4.4.1 is:

[φ(t)]± = ±1

2
g(t) + φo +

1

2πi

∫
L

g(s)

s− tds (4.4.2)

Taking the nth derivative of 4.4.1 directly yields:

[
φ(n)(t)

]±
= ±1

2
g(n)(t) +

1

2πi

dn

dtn

[∫
L

g(s)

s− tds
]
, n ≥ 1 (4.4.3)

Using Equation 4.4.3 with Equation 4.2.9, the following integro-differential

equation emerges:

1

π

d

dt

[∫
L

g(s)

s− tds
]

+ γg′′(t) = 2P̃ (t) (4.4.4)

Note that the variables t and s are along the crack and lie on the real

axis between −1 ≤ t, s ≤ 1. So Equation 4.4.4 is a real (not complex)

integro-differential equation and satisfies all boundary conditions on the

crack.

Using Equation 4.3.14, an alternate form of 4.4.4 in terms of f(t) can be

found by noting:
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d

dt

[∫
L

g(s)

s− tds
]

=

∫
L

g(s)

(s− t)2
ds =

∫
L

g′(s)

s− tds−��
�
��

��*
0[

g(s)

s− t

]s=1

s=−1

Since f(t) = g′(t), then:

1

π

[∫
L

f(s)

s− tds
]

+ γf ′(t) = 2P̃ (t) (4.4.5)

Integrating Equations 4.4.4 and 4.4.5 with respect to t yields:

γg′(t) +
1

π

∫
L

g(s)

s− tds = 2ζ1(t)− C1 (4.4.6)

γf(t)− 1

π

∫
L

f(s) ln |s− t|ds = 2ζ1(t)− C ′1 (4.4.7)

Where C1 and C ′1 are real constants of integration and the function ζ1(x) is

defined as:

ζ1(x) ≡
∫ x

0

P̃ (t)dt (4.4.8)

Integrating Equation 4.4.4 a second time with respect to t yields:

γg(t)− 1

π

∫
L

g(s) ln |s− t|dt = 2ζ2(t)− C1t− C2 (4.4.9)

Where C2 is a second constant of integration and ζ2(x) is defined as:

ζ2(x) ≡
∫ x

0

∫ t

0

P̃ (s)dsdt (4.4.10)

Note that Equations 4.4.7 and 4.4.9 are identical with exception of the

integration order of the input function and the number of constants.

Depending on whether the displacement or stress (which are linearly

proportional to the gradient elements) magnitudes are desired, they are
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both solutions of the same integral equation. If function θ(x) is defined as:

θ(x) ≡ lim
y→0+

u(x, y) (4.4.11)

Then θ is a direct, unit anti-plane displacement on the crack face where:

u(x, 0±) = ±θ(x) (4.4.12)

Also noting that u+ = −u− (Equation 3.1.9), then:

g(x) = u(x, 0+)− u(x, 0−) = θ(x)− (−θ(x))

Hence:

g(x) = 2θ(x) (4.4.13)

f(x) = 2θ′(x) (4.4.14)

Using Equations 4.4.9, 4.4.7, 4.4.13, and 4.4.14, then re-arranging the

variables the integral equations for θ′(x) and θ(x) are:

γθ′(x)− 1

π

∫
L

θ′(t) ln |t− x|dt = ζ1(x)− C ′1 (4.4.15)

γθ(x)− 1

π

∫
L

θ(t) ln |t− x|dt = ζ2(x)− C1x− C2 (4.4.16)

Where: −1 ≤ x, t ≤ 1. Equations 4.4.15 and 4.4.16 are Fredholm Equations

of the second kind [17, 18]. Given Equation 4.3.14, the required boundary

conditions on the crack tips are:

θ(−1) = θ(1) = 0 (4.4.17)
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Using Equation 4.3.13 and 4.4.14, the required slope condition (anti-symmetry

requirement) is:

∫ 1

−1

θ′(x)dx = 0 (4.4.18)

The constants C1, C ′1 and C2 from the Fredholm Equations 4.4.15 and 4.4.16

are determined by the boundary conditions at the crack tips from Equation

4.4.17 and the anti-symmetry requirement in Equation 4.4.18. From the

solutions of Equations 4.4.15 and 4.4.16, the anti-plane displacement (w)

and corresponding stress (σ13) on the crack face are retrievable using the

inverse transformations from Section 3.5.

Taking these formulations further, it is possible to calculate the adjusted

input stress (σ23) due to the surface effect directly by interpreting Equation

3.3.8 in a different way. Note that:

∂u

∂y
=
σ23

Po
(4.4.19)

Using this result along with Equation 3.3.8, the adjusted unit input stress

along the (+) crack face (define as θy(x)) has the form:

θy(x) ≡ ∂u

∂y
(x, 0+) = P̃ (x)− γθ′′(x) (4.4.20)

Also, taking the derivative of Equation 4.4.15 gives:

γθ′′(x)− 1

π

∫
L

θ′(t)

t− xdt = P̃ (x)

However:
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d

dt
[θ′(t) ln |t− x|] = θ′′(t) ln |t− x|+ θ′(t)

t− x

Hence, the integral equation for θ′′(x) is:

γθ′′(x)− 1

π

∫
L

θ′′(t) ln |t− x|dt = P̃ (x)−
[

1

π
θ′(t) ln |t− x|

]t=1

t=−1

(4.4.21)

Again, note the similarities between the left hand side of Equation 4.4.21

compared to Equations 4.4.15 and 4.4.16. If the magnitude of corresponding

stresses at the crack tips (σ13 ∝ θ′(±1)) are finite and non zero, then the

right hand side of Equation 4.4.21 can not be. Given this, the adjusted input

stresses at the crack tips (σ23 ∝ θy(±1)) are not finite with this model, even

if the externally applied stress function (P̃ ) is.

4.5 Body Displacements and Gradients

Assuming a solution can be found for θ(x) from Equation 4.4.16, the unit

displacement anywhere in the bulk material is the real part of Equation 4.3.6:

u(x, y) = Re

{
1

πi

∫
L

θ(t)

t− zdt
}

+ uo (4.5.1)

Where uo is a real constant and is defined as the real part of φo such that:

φo ≡ uo + ivo (4.5.2)

To further investigate the value of uo, note that using 4.4.2 gives:

[φ(t)]+ + [φ(t)]− = 2φo +
1

πi

∫
L

g(s)

s− tds (4.5.3)
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Using t = 0 in Equation 4.5.3, and again noting that u+ = −u−:

[φ(0)]+ + [φ(0)]− = [���
�u(0, 0) + iv(0, 0)]+ + [���

�u(0, 0) + iv(0, 0)]−

∴i
(
v(0, 0+) + v(0, 0−)

)
= 2uo + i

(
2vo −

1

π

∫
L

g(s)

s
ds

)

Hence, the constant uo = 0. The value of u(x, y) anywhere in the body is

then:

u(x, y) = Re {φ(z)} = Im

{
1

π

∫
L

θ(t)

t− zdt
}

(4.5.4)

Similarly, Equations 4.3.3 and 4.1.9 provide the gradient elements anywhere

in the body:

∂u

∂x
= Re {φ′(z)} = Im

{
1

π

∫
L

θ′(t)

t− zdt
}

(4.5.5)

∂u

∂y
= −Im {φ′(z)} = Re

{
1

π

∫
L

θ′(t)

t− zdt
}

(4.5.6)

Where θ′(x) is the solution of Equation 4.4.15.
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Part III

Solution and Results



5 - Numerical Model

5.1 Numerical Integral Equation Formulation

The displacement and slope on the crack face can be found by solving the

Fredholm Equations 4.4.15 and 4.4.16, which both have the general form:

γθ(x)− 1

π

∫ 1

−1

θ(t) ln |t− x|dt = ζ(x), − 1 ≤ x ≤ 1 (5.1.1)

Various methods (such as Collocation and Neumann Series Expansions [22])

were successfully implemented to solve Equation 5.1.1. However, using some

creative analytical tricks before computation a discretized residual model can

be used for approximation. This method (similar to finite element method)

is proven stable and convergent. Examples of such numerical procedures

for various singular integral equations are laid out in the works of Atkinson

[23] and Delves & Mohamed [22]. Discretization and meshing used is from

standard Finite Element Analysis [29, 30] theory. The full procedure used

to approximate the solution for Equation 5.1.1 is as follows.

Start by discretizing x (−1 < x < 1) into N elements with p points per

element, and define the spacial length of each element as:

he ≡ xep − xe1 (5.1.2)
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This gives a subspace of solutions for θ(x), such that:

θ(x) ≡



θ1(x) , x1
1 ≤ x ≤ x1

p

θ2(x) , x2
1 ≤ x ≤ x2

p

...

θe(x) , xe1 ≤ x ≤ xep
...

θN(x) , xN1 ≤ x ≤ xNp

(5.1.3)

In this case, x1
1 = −1 and xNp = 1 (the endpoints). To enforce continuity

of the solution between elements, it is required that xep = xe+1
1 and

θ(xep) = θ(xe+1
1 ). Each element solution shall be approximated as a Lagrange

Polynomial [29, 30]:

θe(x) '
p∑

n=1

θenM
e
n(x) (5.1.4)

Where: θen are the values of θ(xen), and the interpolating functions (M e
n(x))

are defined as polynomial shape functions:

M e
n(x) ≡

p∏
a=1
a6=n

[
x− xea
xen − xea

]
(5.1.5)

Define the kernel integral function from Equation 5.1.1 as:

k(x) ≡
∫ 1

−1

θ(t) ln |t− x|dt =
N∑
e=1

ke(x) (5.1.6)

Let the kernel integral for each element (ke(x)) be defined as:

ke(x) ≡
∫ xep

xe1

θe(t) ln |t− x|dt (5.1.7)
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Using Equations 5.1.3, 5.1.4 and 5.1.7, the kernel integral function for each

element has the approximation:

ke(x) =

∫ xep

xe1

θe(t) ln |t− x|dt '
∫ xep

xe1

(
p∑

n=1

θenM
e
n(t)

)
ln |t− x|dt

=

p∑
n=1

θen

∫ xep

xe1

M e
n(t) ln |t− x|dt =

p∑
n=1

θenψ
e
n(x)

Where ψen(x) is defined as the element logarithmic interpolation integral:

ψen(x) ≡
∫ xep

xe1

M e
n(t) ln |t− x|dt (5.1.8)

Solving ψen(x) numerically is problematic due to the singular nature of the

natural log term. However, since the Lagrange interpolation functions are

polynomials it is convenient to define the element logarithmic interpolation

function as:

He
k(x) ≡

∫ xep−x

xe1−x
sk−1 ln |s|ds =

[
sk

k

(
ln |s| − 1

k

)]xep−x
xe1−x

, k ≥ 1 (5.1.9)

Before proceeding, the following must be considered:

1. When s → 0 in Equation 5.1.9 (or alternatively when x → xep, x
e
1),

there is a computational issue of ln |s| → ±∞. This can be mitigated

numerically by noting that:

lim
s→0

sk

k

(
ln |s| − 1

k

)
= 0, k ≥ 1

Instead of attempting computation at the element endpoints, manually

apply the relations:
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He
k(x

e
1) =

hke
k

(
ln(he)−

1

k

)
(5.1.10)

He
k(x

e
p) = (−1)k+1h

k
e

k

(
ln(he)−

1

k

)
(5.1.11)

2. Elements with more than 2 points (p > 2) can can produce significant

computational errors when evaluating the value of He
k close to the

element endpoints (x ∼= xe1, x
e
p). If each element is kept “simple” by

enforcing the constraint p = 2, then only the endpoints are used and

using Equations 5.1.10 and 5.1.11 significantly reduces this error. Given

this, each element will be approximated as a linear function (p = 2)

and only h-refinement [29, 30] (increasing N) will be pursued.

With p = 2, the continuity conditions yield the global relations: xe1 ≡ xe,

xe2 ≡ xe+1, θe1 ≡ Θe, and θe2 ≡ Θe+1. The approximated solution for θ(x) and

discretized locations are then subspace vectors in the form:

Θ = 〈Θ1,Θ2, . . . ,Θn, . . . ,ΘN+1〉 (5.1.12)

x = 〈x1, x2, . . . , xn, . . . , xN+1〉 (5.1.13)

The interpolating functions for each element are:

M e
1 (x) =

x− xe+1

xe − xe+1

= −x− xe+1

he
(5.1.14)

M e
2 (x) =

x− xe
xe+1 − xe

=
x− xe
he

(5.1.15)

The function ψe1(x) can now be determined analytically:

ψe1(x) =

∫ xe+1

xe
M e

1 (t) ln |t− x|dt = − 1

he

∫ xe+1

xe
(t− xe+1) ln |t− x|dt

= − 1

he

[∫ xe+1

xe
t ln |t− x|dt− xe+1

∫ xe+1

xe
ln |t− x|dt

]
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= − 1

he

[∫ xe+1−x

xe−x
(s+ x) ln |s|ds− xe+1

∫ xe+1−x

xe−x
ln |s|ds

]
= − 1

he

[∫ xe+1−x

xe−x
s ln |s|ds+ (x− xe+1)

∫ xe+1−x

xe−x
ln |s|ds

]

Finally, using Equation 5.1.9 yields:

ψe1(x) = − 1

he
[He

2(x) + (x− xe+1)He
1(x)] (5.1.16)

Similarly, for ψe2(x):

ψe2(x) =
1

he
[He

2(x) + (x− xe)H
e
1(x)] (5.1.17)

Using this discretization, Equation 5.1.1 has the approximation:

γ

[
2∑
i=1

M e
i (x)Θe

]
− 1

π

N∑
k=1

[
ψk1(x)Θk + ψk2(x)Θk+1

]
= ζ(x) (5.1.18)

Also note that when p = 2, the interpolation functions at the node points

have the following properties:

M e
1 (xe) = 1 M e

1 (xe+1) = 0

M e
2 (xe) = 0 M e

2 (xe+1) = 1

Using each location from the vector x provides N + 1 linear equations for

N + 1 unknowns (Θ1,Θ2, . . . ,ΘN+1):

γΘe −
1

π

N∑
k=1

[
ψk1(xe)Θk + ψk2(xe)Θk+1

]
= ζ(xe), e = 1, 2, . . . , N + 1

Or, alternatively:

KΘ = F (5.1.19)

47



Where K and F are defined as the stiffness matrix and forcing vector

respectively. The solution of this set then has the relation:

Θ = K−1F (5.1.20)

Here, convergence is assumed (and discussed more in Section 6.4), meaning:

lim
N→∞

Θ = θ(x)

5.2 Numerical Integration of Input Functions

Recall the integrated unit input stress functions (ζ1 and ζ2 from Equations

4.4.8 and 4.4.10 respectively):

ζ1(x) ≡
∫ x

0

P̃ (t)dt

ζ2(x) ≡
∫ x

0

∫ t

0

P̃ (s)dsdt

These integrals can be computed numerically using the Gauss Quadrature

Method [29, 30] assuming that the unit input stress function (P̃ (x)) is not

singular in the range of −1 ≤ x ≤ 1. First, transform s, t to ξ, η such that:

s ≡ t

2
(ξ + 1) and t ≡ x

2
(η + 1) (5.2.1)

The integrals from 4.4.8 and 4.4.10 can then be transformed into the variable

space ξ and η as follows:

ds =
t

2
dξ and dt =

x

2
dη

∴ s =
1

2

[x
2
η +

x

2

]
ζ +

1

2

[x
2
η +

x

2

]
=
x

4
(ξ + 1) (η + 1)
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ds =
t

2
dξ =

1

2

[x
2
η +

x

2

]
dξ =

x

4
(η + 1) dξ

Plugging these back into Equations 4.4.8 and 4.4.10 yields:

ζ1(x) =
x

2

∫ 1

−1

P̃
(x

2
[η + 1]

)
dη (5.2.2)

ζ2(x) =
x2

8

∫ 1

−1

∫ 1

−1

(η + 1) P̃
(x

4
[ξ + 1] [η + 1]

)
dξdη (5.2.3)

Define the number of Gauss Points [30] for each integral as G, such that the

functions ζ1 and ζ2 have the numerical approximations at any point x:

ζ1(x) ' x

2

G∑
i=1

WiP̃
(x

2
[ηi + 1]

)
(5.2.4)

ζ2(x) ' x2

8

G+1∑
j=1

G∑
i=1

WiWj (ηi + 1) P̃
(x

4
[ξj + 1] [ηi + 1]

)
(5.2.5)

Where Wi, Wj are the Gauss Weights and ηi, ξj are the Gauss Points. If

P̃ (x) is a polynomial of order k, then the approximations in Equations 5.2.4

and 5.2.5 are exact (neglecting numerical error) if [29, 30]:

G ≥ 1

2
(k + 1) , GP ∈ I (5.2.6)

If the function P̃ (x) is not a polynomial, then increasing the number of Gauss

Points increases accuracy.

5.3 Crack Face Displacement

Use Equation 5.1.20 as a base for an approximation to 4.4.16, where:

γθ(x)− 1

π

∫ 1

−1

θ(t) ln |t− x|dt+ C1x+ C2 = ζ2(x)
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The global system of equations is then given by:

KΘ + C1 + C2 = F2 (5.3.1)

Where the stiffness matrix K is same as in Equation 5.1.20. The vectors C1,

C2 and F2 are defined as:

C1 = C1 〈x1, x2, . . . , xn, . . . , xN+1〉 (5.3.2)

C2 = C2 〈1, 1, . . . , 1, . . . , 1〉 (5.3.3)

F2 = 〈ζ2(x1), ζ2(x2), . . . , ζ2(xn), . . . , ζ2(xN+1)〉 (5.3.4)

The function ζ2(x) is computed through the approximation in Equation 5.2.5.

The constants C1 and C2 require using Equation 4.4.17, which become:

Θ1 = 0 and ΘN+1 = 0 (5.3.5)

This gives a total of N + 3 linear equations for N + 3 unknowns (Θ1, Θ2, . . .,

ΘN+1, C1 and C2).

5.4 Crack Face Derivatives

It is useful to compute the crack face derivatives (θ′(x) and θ′′(x)) because

they are linearly proportional to the stresses and strains on the crack face.

Taking the same approach from Section 5.3, the solution to Equation 4.4.15

is formulated using the approximation from 5.1.20 as a base. Start with:

γθ′(x)− 1

π

∫ 1

−1

θ′(t) ln |t− x|dt+ C ′1 = ζ1(x)

This yields the system of global equations:
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KΘ′ + C′1 = F1 (5.4.1)

The stiffness matrix K is same as in Equation 5.1.20. Also, the vector

subspace solution is defined as:

Θ′ =
〈
Θ′1,Θ

′
2, . . . ,Θ

′
n, . . . ,Θ

′
N ,Θ

′
N+1

〉
(5.4.2)

Using Equation 5.2.4, the vectors C′1 and F1 are defined as:

C′1 = C ′1 〈1, 1, . . . , 1, . . . , 1〉 (5.4.3)

F1 = 〈ζ1(x1), ζ1(x2), . . . , ζ1(xn), . . . , ζ1(xN+1)〉 (5.4.4)

θ′(x) for each linear element (p = 2) is approximated by using Equations

5.1.4, 5.1.14, and 5.1.15 (xe ≤ x ≤ xe+1):

dθe

dx
' 1

he

[(
Θ′e+1 −Θ′e

)
x−

(
Θ′e+1xe −Θ′exe+1

)]
Because of the constant C ′1, Equation 4.3.13 is also required. Note that:

∫ xe+1

xe

dθe

dx
dx ' 1

he

∫ xe+1

xe

[(
Θ′e+1 −Θ′e

)
x−

(
Θ′e+1xe −Θ′exe+1

)]
dx

=
1

2

(
Θ′e+1 −Θ′e

)
(xe+1 + xe)−

(
Θ′e+1xe −Θ′exe+1

)
=
he
2

(
Θ′e+1 + Θ′e

)
Which gives the final equation:

N∑
e=1

he
(
Θ′e+1 + Θ′e

)
= 0 (5.4.5)

This yields a total of N + 2 linear equations for N + 2 unknowns (Θ′1, Θ′2,
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. . ., Θ′N+1 and C ′1).

Instead of directly attempting to solve Equation 4.4.21 (which is singular at

the end points), θ′′(x) can be approximated using the finite difference method

[29]. For each element, assume the approximation:

d2θe

dx2
' Θ′e+1 −Θ′e

xe+1 − xe
≡ Θ′′e (5.4.6)

Note that this approximation for θ′′(x) is an average across the elements and

does not give a continuous solution. Also, there is one less value in this

subspace (N components). However, assuming a center finite difference (the

discretization is the average point of each element) then:

x′e ≡ 1
2

(xe+1 + xe) (5.4.7)

This yields a vector subspace approximation defined as:

Θ′′ = 〈Θ′′1,Θ′′2, . . . ,Θ′n, . . . ,Θ′′N〉 (5.4.8)

x′ = 〈x′1, x′2, . . . , x′n, . . . , x′N〉 (5.4.9)

Using the boundary condition in Equation 3.5.8, the y-component of the

gradient on the crack face is:

∂u

∂y
(x, 0+) ≡ θy(x) = P̃ (x)− γθ′′(x)

Which provides an approximation for θy(x) in each element:

θey(x
′
e) ' P̃ (x′e)− γΘ′′e (5.4.10)
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Given that the approximation in Equation 5.4.6 and 5.4.7 are averages across

the elements and that the values of θy(±1) are not finite (see Section 4.4),

then the values computed for the function θy(x) will not be convergent near

these points.

5.5 Bulk Displacement

Using Equation 4.5.4, the unit displacement anywhere in the body was

determined to be:

u(x, y) = Re {φ(z)} = Im

{
1

π

∫ 1

−1

θ(t)

t− zdt
}

Where:

φ(z) =
1

πi

∫ 1

−1

θ(t)

t− zdt

Using the same discretization for θ(x) as Equation 5.1.3, the function φ(z)

has the approximation:

φ(z) ' 1

πi

N∑
e=1

∫ xe+1

xe

θe(t)

t− zdt =
1

πi

N∑
e=1

Ie(z)

Where the function Ie is defined as:

Ie(z) ≡
∫ xe+1

xe

θe(t)

t− zdt (5.5.1)

Utilizing the subspace approximation for θ(x) from Equation 5.1.12, note

that each element approximation for θe(x) is a linear function of the form:

θe(x) ' 1

he
[(Θe+1 −Θe)x− (Θe+1xe −Θexe+1)]
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If the element constants are defined as:

me ≡
Θe+1 −Θe

xe+1 − xe
and be ≡

Θexe+1 −Θe+1xe
xe+1 − xe

Then, Ie(z) from Equation 5.5.1 becomes:

Ie(z) =

∫ xe+1

xe

met+ be
t− z dt =

∫ xe+1−z

xe−z

(
me +

mez + be
s

)
ds

Therefore, after some simplification:

Ie(z) = mehe + (mez + be) log

(
xe+1 − z
xe − z

)
(5.5.2)

So, the function φ(z) has the approximation:

φ(z) ' 1

πi

N∑
e=1

[
mehe + (mez + be) log

(
xe+1 − z
xe − z

)]
(5.5.3)

Finally, using Equation 4.5.4, the unit displacement (u(x, y)) anywhere in

the body is approximated to be:

u(x, y) '
N∑
e=1

Im

{[
Θe+1ze −Θeze+1

πhe

]
log

(
ze+1

ze

)}
(5.5.4)

Where: ze ≡ z − xe and ze+1 ≡ z − xe+1. The relation in Equation 5.5.4

holds anywhere in the body except along the crack face (x, y = [−1, 1], 0).

However, the values for displacement along the crack face (θ(x)) is already

formulated and re-computation is not required. It should be noted that

the largest numerical error will occur when evaluating φ(z) near the crack.

The required accuracy is achieved by using h-refinement (decrease he, or

conversely increasing N). Discussion of accuracy and refinement is given in

Section 6.4.

54



5.6 Gradient in Bulk Material

The logic in this section is identical to Section 5.5. Using Equations 4.5.5

and 4.5.6, the displacement gradients are:

∂u

∂x
= Re {φ′(z)} = Im

{
1

π

∫
L

θ′(t)

t− zdt
}

∂u

∂y
= −Im {φ′(z)} = Re

{
1

π

∫
L

θ′(t)

t− zdt
}

Where:

φ′(z) =
1

πi

∫ 1

−1

θ′(t)

t− zdt

Using the same technique as in the formulation for Equation 5.5.3 and

the approximation for θ′(x) from Section 5.4, the function φ′(z) has the

approximation:

φ′(z) '
N∑
e=1

1

πi

[(
Θ′e+1 −Θ′e

)
+

(
Θ′e+1ze −Θ′eze+1

he

)
log

(
ze+1

ze

)]
(5.6.1)

This directly yields an approximation for the gradients in the bulk material:

∂u

∂x
'

N∑
e=1

Im

{[
Θ′e+1ze −Θ′eze+1

πhe

]
log

(
ze+1

ze

)}
(5.6.2)

∂u

∂y
'

N∑
e=1

1

π

[
Θ′e+1 −Θ′e + Re

{(
Θ′e+1ze −Θ′eze+1

he

)
log

(
ze+1

ze

)}]
(5.6.3)

Similar to Equation 5.5.4, the approximations in Equations 5.6.1 through

5.6.3 hold anywhere in the body except on the crack face. The values of the

gradient components are already formulated as functions θ′(x) and θy(x).

The required accuracy is achieved by using h-refinement (decrease he, or

conversely increasing N) where the largest error is near the crack itself.
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6 - Results

6.1 Comparison to Classical Solution (γ = 0)

The solution to the classical anti-plane crack problem has been worked out

by Muskhelishvili [21, 19] and Sih [31]. Starting with Equation 4.2.9 and

letting the surface parameter (γ) equal zero, there should be convergence to

the solution of the classic boundary value problem from Section 3.2. The

equivalent problem can be stated as Equation 4.2.9 with γ = 0, such that:

[φ′(t)]
+

+ [φ′(t)]
−

= −2iP̃ (t) (6.1.1)

Alternatively, use Equation 4.4.16 with γ = 0 to get a Fredholm Equation of

the First Kind [23]:

− 1

π

∫ 1

−1

θo(t) ln |t− x|dt = ζ2(x)− C1x− C2 (6.1.2)

Where θo is defined as θ with no surface effects. The known analytical

solution of Equation 6.1.1 is [21, 19]:

φ′(z) = − 1

π

∫
L

P̃ (t)

√
t2 − 1

z2 − 1

dt

t− z (6.1.3)

Note that:

∫ 1

−1

√
t2 − 1

t− z dt = πi
(√

z2 − 1− z
)

(6.1.4)
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Then the direct solution for Equation 6.1.3 with a constant input function

(assume P̃ = −1 for convenience) is:

φ′(z) = i

[
1− z√

z2 − 1

]
(6.1.5)

Using the relation from Equation 4.1.9, the gradient components are:

∂u

∂x
= Re {φ′(z)} = Im

{
z√

z2 − 1

}
(6.1.6)

∂u

∂y
= −Im {φ′(z)} = −1−Re

{
z√

z2 − 1

}
(6.1.7)

The displacement is found by integrating Equation 6.1.5 once more:

φ(z) =

∫
φ′(z)dz = i

[∫
dz −

∫
z√

z2 − 1
dz

]
= i
[
z −
√
z2 − 1

]
+ C

Where C is a complex constant of integration. Note that the constant C must

be purely complex since at z = ±1, Re {φ(±1)} = 0. So, the displacement

anywhere in the plane is given by:

u(x, y) = Re {φ(z)} = −Im
{
z −
√
z2 − 1

}
(6.1.8)

The unit displacement on the crack face (when z = x+ i0+ and |x| ≤ 1) has

a circular/elliptical shape:

u(x, 0+) = θo(x) =
√

1− x2, −1 ≤ x ≤ 1 (6.1.9)

The result in Equation 6.1.9 also matches the result by Broberg [32] for the

shape of a crack face for quasi-static anti-plane displacement with no surface

effects. The gradient components on the crack face are:
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∂u

∂x
(x, 0+) ≡ θ′o(x) = − x√

1− x2
, −1 < x < 1 (6.1.10)

∂u

∂y
(x, 0+) ≡ θoy(x) = −1, −1 < x < 1 (6.1.11)

Note the singularities in both gradient components at the crack tips (when

z = ±1). This limits the use of these formulations and highlights the major

problem with the classical case. The classical case does show realistic values

for displacement across the crack and in the body, however the singularities

in the gradient elements (which are linearly proportional to the stresses)

make it impossible to evaluate stresses at, or near the crack tips. Even

though this inconsistency exists, the classical model is useful in highlighting

that there are stress concentrations at crack tips.

Plotting Equations 6.1.9 and 6.1.10 against the numerical solutions from

Sections 5.3 and 5.4 respectively (using γ = 0 and P̃ = −1) shows a strong

correlation using just 16 elements for the displacement and 64 elements for

the slope - see Figure 6.1. It should also be noted that Equations 5.4.10 and

6.1.11 produce the same result when γ = 0, including the singularity at the

crack tips. This singularity for θo(±) is there regardless of the value of γ, as

proven in Section 4.4. Given these results, it is concluded that the function

in Equation 6.1.9 is the analytical solution of the Fredholm Equation 6.1.2

and the following limits hold:

lim
γ→0

θ(n)(x) = θ(n)
o (x)

lim
γ→0

θy(x) = θoy(x)

(6.1.12)

See Figure 6.2 for a comparison of contour displacement plots in the

positive complex plane (y ≥ 0) between Equation 6.1.8 (Figure 6.2a) and
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(a) Classical Solution from Equation 6.1.9 versus Approximated Displacement from Section
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(b) Classical Solution from Equation 6.1.10 versus Approximated Slope from Section 5.4
(N = 64, endpoints not shown)

Figure 6.1: Displacement and Slope on Crack Face, where: P̃ = −1, γ = 0
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the numerical solution from Section 5.5 (Figure 6.2b). In this case, the

difference between the plots is indistinguishable, which lends more validity

to the numerical model formulations in Chapter 5. The solution in the

negative complex plane (y ≤ 0) is just the negative value of the positive

plane (u+ = −u−) so this portion was not plotted here.

Using other input stress loads (P 6= const) for this comparison is assumed to

correlate, however the analytical formulations of the integral from Equation

6.1.3 are difficult for anything other than an input stress on the crack face

σ23(x, 0±) = P (x) = const (or P̃ (x) = ±1) and is beyond the scope of this

study.

6.2 Effect of Input Load Profiles (P̃ (x))

Testing of the numerical model was done using various input loading profiles

(and different values of γ). Figures 6.3 through 6.10 are plots of solutions

from input stress profiles of increasing polynomial order and show reasonable

results. The similarities included for each case are:

1. The displacement at the crack tips (x = ±1) is always zero (the

boundary condition in Equation 4.4.17).

2. The maximum displacement is reduced when γ increases, which

complies with the GM constitutive model from Section 2.3.

3. The slope function (hence the shear stress σ13) at the crack tips (θ′(±1))

is reduced when γ increases and finite when γ 6= 0.

4. The area of the slope curves (θ′(x)) above and below the x-axis is the

same (the anti-symmetric condition in Equation 4.4.18).
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(b) Numerical Solution from Equation 5.5.4 using 50 elements along the crack face.

Figure 6.2: Comparison of classic anti-plane crack displacement and the
numerical solution with no surface effects (γ = 0), where: Po = −1
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Figure 6.3: Crack face displacement and slope (P̃ = −1 and various γ)
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(a) Input Stress Function (P̃ (x))
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(b) Adjusted Input Stress Function (θy(x)), end points not shown

Figure 6.4: Applied and Adjusted Input Stress (P̃ = −1 and various γ)
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Figure 6.5: Crack face displacement and slope (P̃ = x2 − 1 and various γ)
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(b) Adjusted Input Stress Function (θy(x)), end points not shown

Figure 6.6: Applied and Adjusted Input Stress (P̃ = x2 − 1 and various γ)
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Figure 6.7: Crack face displacement and slope (P̃ = −3
√

3
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x(x − 1)(x + 1)

and various γ)
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Figure 6.9: Crack face displacement and slope (P̃ = x2 (x− 1) (x+ 1) and
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Figure 6.10: Applied and Adjusted Input Stress (P̃ = 4x2 (x− 1) (x+ 1) and
various γ)
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5. The slope profiles (θ′(x)) correlate to the displacement profiles (θ(x)).

6. The displacement (θ(x)) follows the direction of input traction.

7. The adjusted unit input stress (θy(x)) magnitude across the crack face is

lower than the input stress magnitude (P̃ (x)) except for the endpoints.

8. Singularities (divergent computations) of the adjusted unit input stress

(θy) exist at the crack tips for any value of γ (this was proven in Section

4.4).

For further testing of the numerical model, take an extreme case when P̃ =

−1 + 2H(x), where H(x) is the Heaviside Step Function. Figures 6.11 and

6.12 show the effect of this input with γ = 0.1. Figure 6.11a shows the

displacement(θ(x)), slope (θ′(x)) and adjusted input stress (θy(x)) profiles

across the crack face. Note that there is a cusp at x = 0, which is expected

given the discontinuity of the input load (P̃ ). The body displacement plot

(Figure 6.11b) shows inverted displacement across the x axis (matching the

conditions that u+ = −u−) as well as the y axis (matching the direction of

the input function). The body gradient plots (Figures 6.12a and 6.12b) also

show expected results given that:

∂u

∂x

+

= −∂u
∂x

−
and

∂u

∂y

+

=
∂u

∂y

−

6.3 Effect of Surface Parameter (γ)

Even though the numerical model can handle different input load profiles

(P̃ (x)), this is not necessarily required. If the crack length is “small,” then

the assumption that the input stress loading on the crack face is constant
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Figure 6.12: Gradient components in body (P̃ = −1 + 2H(x), γ = 0.1,
N = 128)
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(∴ P̃ = ±1) is adequate.

Figure 6.13 shows the reduced unit displacement (θmax ≡ θ(0)) versus surface

parameter (γ) using 50 elements (N = 50) and a constant stress input

function (P̃ = ±1). As shown in Figure 6.13a, when γ increases there is

a reduction of maximum unit displacement on the crack face. This plot

indicates that:

lim
γ→∞

θ(0) = 0

When taking the inverse of the values in Figure 6.13a and re-plotting (Figure

6.13b), there is a very strong linear correlation (R2 = 0.9999765) which

resembles:

θmax ≡ θ(0) ' 1

2γ + 1
(6.3.1)

Figure 6.13c shows the absolute difference (∆) from this data set between

the numerically computed values and Equation 6.3.1, where:

∆(γ) ≡
∣∣∣∣θmax − 1

2γ + 1

∣∣∣∣ (6.3.2)

The maximum difference of this data set was found to be 0.0121 (or 1.21%)

when γ = 0.069. This estimate is quite reasonable and noting that θo(0) = 1,

then Equation 6.3.1 is an acceptable estimate for maximum displacement

reduction (θ(0)/θo(0)) as a function of γ.

As γ increases, the displacement profile across the crack also changes from

an elliptic/circular shape to one resembling a quadratic function. This leads
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Figure 6.13: Effect of Surface Parameter (γ) on maximum crack face
displacement with constant stress input (P̃ = ±1).
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to the following hypothesis for an approximation anywhere along the crack

face:

θ(x) ' θmax [θo(x)]K (6.3.3)

To linearize this equation, take the natural log of each side:

ln (θ) = K ln (θo) + ln (θmax)

By taking a series of linear interpolations a data set of K versus γ is retrieved

and this plot set is shown in Figure 6.14. Figure 6.14a shows K versus γ

directly (using 500 points). This plot set appears to have an asymptote at

K = 2, and given that K = 1 when γ = 0 the following approximation is

assumed:

1

2−K − 1 ' mγ (6.3.4)

Figure 6.14b shows this plot set and m (a linear slope) is found to be

approximately 13.8362 with an R2 value of 0.99924 - indicating a strong linear

fit. Solving for K in Equation 6.3.4 yields the following approximation:

θ(x) ' (1− x2)(
2mγ+1
2mγ+2)

2γ + 1
(6.3.5)

Note that using this approximation:

lim
γ→0

K =
1

2

lim
γ→∞

K = 1

Which matches what the proposed form of Equation 6.3.3. The relative
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76



absolute difference (in %) between the approximation in Equation 6.3.5 is

defined as:

∆(γ) ≡
∣∣∣∣ θ(x)

θmax
− θKo (x)

∣∣∣∣
max

This difference versus γ is plotted in Figure 6.14c and indicates a maximum

relative difference to be approximately 4.53%. Given this, Equation 6.3.5 is

an acceptable approximation for the crack shape profile with constant input

load.

The effect of γ on the maximum slope of the crack face (θ′max ≡ θ′(−1)) is

plotted in Figure 6.15 with prescribed convergence error less than 1% (error

is explained in Section 6.4). Noting that the slope is infinite at the crack tips

with no surface effects (γ = 0), a plot of the inverse of this slope is shown

in Figure 6.15a. Note that the plot is asymptotic to a linear function as γ

increases. A reasonable curve fit approximation for the range of γ < 1 could

not be found (see Figure 6.15b), however a linear fit for values of γ > 1 with

an R2 value of 0.99999 is given by:

θ′max '
1

1.0057γ + 0.2863
, γ > 1 (6.3.6)

Noting the result from Figure 6.15b, an inequality for any value of γ is:

θ′max ≥
1

1.0057γ + 0.2863
(6.3.7)

The effect of γ on maximum adjusted input stress (θy(x)) was not quantifiable

due to the singularities in the model at the crack tips (discussed in Section

4.4). However, away from the crack tips there is a definite reduction of
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input loading due to the surface effect. This can be seen in the previously

presented Figures 6.4, 6.6, 6.8, 6.10 and 6.11a.

Figures 6.16 through 6.19 were constructed to quantify the effect of γ on the

bulk material with a constant stress input (P̃ = −1). When γ increases,

there is a reduction in both the bulk material displacement and the total

unit shear stress magnitude(τ), defined as:

τ ≡ |∇u| =
√(

∂u

∂x

)2

+

(
∂u

∂y

)2

=
1

Po

√
σ2

13 + σ2
23 (6.3.8)

Clearly in each case, there are stress concentrations at the crack tips (which

is expected). However, the radius of effect from these stress concentrations

diminishes as γ increases. This reduction can be also quantified using linear

curve fitting. Define the displacement variable ξ as a linear transformation

along the x axis such that when x = 1, ξ = 0. So:

ξ(x) ≡ x− 1, x > 1

As shown in Figures 6.16a, 6.17a, 6.18a and 6.16a, as ξ increases (x > 1)

the total stress reduces. Also, as γ increases, the distance from the crack tip

(ξ) to any given value of unit shear stress decreases. Figure 6.20a shows this

effect more clearly which shows plots of stress magnitude (τ) as a function

of increasing ξ and γ. Note that the values of stress magnitude are infinite

(and non-convergent) when ξ → 0. Taking the square root and inverse of

the data in Figure 6.20a provides very linear profiles except for the region

very close to the crack (ξ < 1) - see Figure 6.20b.

Taking multiple linear curve fits of different values of γ (where 0 ≤ γ ≤ 5),
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Figure 6.16: Displacement and Unit Stress Magnitude in Body Material (P̃ =
−1, γ = 0, N = 128)
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Figure 6.17: Displacement and Unit Stress Magnitude in Body Material (P̃ =
−1, γ = 0.5, N = 128)
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Figure 6.18: Displacement and Unit Stress Magnitude in Body Material (P̃ =
−1, γ = 1, N = 128)
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Figure 6.19: Displacement and Unit Stress Magnitude in Body Material (P̃ =
−1, γ = 2, N = 128)
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and ignoring the regions close to the crack (in this data set, all values with

ξ > 1 were used) provides linear approximations in the form:

1√
τ
' mξ + b (6.3.9)

Figure 6.21 shows the squared values of m and b plotted against γ. These

linearized plots produced R2 values of 0.99999 for both m and b. Hence, m

and b as functions of γ are approximated to be:

m(γ) '
√

4.7270γ + 2.1906

b(γ) '
√

4.6078γ + 2.1288

Define the Unit Radius of Effect (R) as the distance from the origin with a

given maximum stress magnitude - which in the present case can be found

on the x axis, hence:

R(τ) ≡ ξ + 1 (6.3.10)

Using the approximations for m and b and solving for τ and ξ in Equations

6.3.9 and 6.3.10 respectively yields an approximation for maximum unit stress

magnitude at any given unit radius (R > 2):

τ(R) ' 1(
(R− 1)

√
4.7270γ + 2.1906 +

√
4.6078γ + 2.1288

)2 (6.3.11)

Alternatively, this equation can be inverted (for R) to estimate the radial

extent of a given unit stress magnitude, such that:

R(τ) ' 1√
τ (4.7270γ + 2.1906)

−
√

4.6078γ + 2.1288

4.7270γ + 2.1906
+ 1
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Note that the ratio of b/m is always approximately 1 (within 0.02), so this

expression can be simplified further:

R(τ) ' 1√
τ (4.7270γ + 2.1906)

(6.3.12)

Since R > 2, to use the approximation in Equation 6.3.12 it is required that:

τ <
1

m2 + b2 + 2mb
<

1

9.3348γ + 4.3194
(6.3.13)

6.4 Numerical Convergence and Accuracy

The numerical solutions of integral Equations 4.4.15 and 4.4.16 were computed

using an increasing number of elements to show convergence. Convergence

plots for the values of θmax and θ′max with a constant stress input are shown

in Figure 6.22, where the number of elements was increased in each run by

powers of 2 (N = 2, 4, 8, 16, . . . , 4096).

Figure 6.22a shows a trend for θ(0) (≡ θmax) with increasing N (the number

of elements) using different values of the surface effect parameter (γ). These

approximations all showed stiff convergence with less than 50 elements.

Refinement convergence of the slope at the endpoints (θ′(−1) ≡ θ′max) is

shown in Figure 6.22b. There is convergence here, however more elements

are required as the surface parameter decreases in value. This makes sense

because as the surface parameter goes to zero (the classical model) the

stresses on the crack tips (which is linearly proportional to the slope) becomes

infinite - see Equation 6.1.10. This leads to the introduction of two accuracy

refinement parameters (Υ and Υ′ for θ(x) and θ′(x) respectively) which
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represent the desired accuracy in percent. Define relative error between

approximations for θ(x) and θ′(x) as ε̃ and ε̃′ respectively:

ε̃(n) ≡
∣∣∣∣ΘMAX(N = 2n+1)−ΘMAX(N = 2n)

ΘMAX(N = 2n+1)

∣∣∣∣ (6.4.1)

ε̃′(n) ≡
∣∣∣∣Θ′MAX(N = 2n+1)−Θ′MAX(N = 2n)

Θ′MAX(N = 2n+1)

∣∣∣∣ (6.4.2)

Then, simply refine the element size until the desired accuracy is reached, or

when ε̃ < Υ and ε̃′ < Υ′. An example plot is shown in Figure 6.23a, which

shows the number of elements used to calculate the maximum slope in the

computation of Figure 6.15 with Υ′ = 0.1%.

The adjusted stress input function (θy(x)) never converges numerically at

the endpoints, which is expected (and proven in Section 4.4). However,

away from the crack tips the values are convergent. Insight can be found by

evaluating the function θ′′(x) (which is linearly proportional to θy(x)). In

order to explore convergence of the function θ′′(x) in a controlled manner,

again the Heaviside Step function is used. Figure 6.23b shows plots of

refinement on the cusp (previously plotted in Figure 6.11a). Similar to the

values of θ′(x), convergence of it’s derivative is slower and heavily dependent

on γ. Beyond 4096 elements was not possible due to lack of computer

memory.
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Part IV

Conclusions



7 - Conclusions

This chapter summarizes the contributions, applicable conclusions and

shortcomings of the models formulated in this study.

7.1 Boundary Value Problem

The anti-plane displacement problem given in Equations 3.3.7 through 3.3.9:

∂2w

∂x2
1

+
∂2w

∂x2
2

= 0 in R2\L

µ
∂w

∂x2

±
= P (x1)∓ β∂

2w

∂x2
1

±

on L∣∣∣∣∂w∂n
∣∣∣∣→ 0 as |x| → ∞

Has a unique solution and is well posed. Given this, the dimensionless

equivalent problem in Equations 3.5.7 through 3.5.9 is also well posed

since the transformations in Section 3.5 are all invertible for any point of

interest. Setting the surface effect constant (β) to zero (or γ → 0) collapses

the boundary value problem to the classical case given by Equations 3.2.7

through 3.2.9.

The displacement on the crack face is found to be the solution (θ(x)) of

the Fredhholm Integral Equation 4.4.16. The derivatives of θ(x) (θ′(x) and

θ′′(x)) are the solutions of the similar Fredholm Equations 4.4.15 and 4.4.21.
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The x and y gradient components on the crack face are given as the functions

θ′(x) and θy(x) respectively and these functions are linearly proportional to

the stresses (σ13 and σ23) along the crack face. The y component of the

displacement gradient on the crack face is also linearly proportional to the

function θ′′(x) and is given by Equation 4.4.20. The full system of equations

is given below:

γθ(x)− 1

π

∫
L

θ(t) ln |t− x|dt = ζ2(x)− C1x− C2

γθ′(x)− 1

π

∫
L

θ′(t) ln |t− x|dt = ζ1(x)− C ′1

γθ′′(x)− 1

π

∫
L

θ′′(t) ln |t− x|dt = P̃ (x)−
[

1

π
θ′(t) ln |t− x|

]t=1

t=−1

θy(x) = P̃ (x)− γθ′′(x)

Where the constants C1, C ′1 and C2 require the crack tip and anti-symmetric

conditions from Equations 4.4.17 and 4.4.18:

θ(−1) = θ(1) = 0∫ 1

−1

θ′(x)dx = 0

The unit displacement and gradient components in the body material are

given by Equations 4.5.4, 4.5.5 and 4.5.6:

u(x, y) = Im

{
1

π

∫
L

θ(t)

t− zdt
}

∂u

∂x
(x, y) = Im

{
1

π

∫
L

θ′(t)

t− zdt
}

∂u

∂y
(x, y) = Re

{
1

π

∫
L

θ′(t)

t− zdt
}

Where the complex coordinate z ≡ x + iy. The final solution then requires
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the inverse transformations from Section 3.5, where:

w(x1, x2) =
aPo
µ
u(x, y) =

aPo
µ
u(x1/a, x2/a)

σ13(x1, x2) = Po
∂u

∂x
(x1/a, x2/a)

σ23(x1, x2) = Po
∂u

∂y
(x1/a, x2/a)

7.2 Approximations from This Study

The magnitude of unit displacement anywhere across the crack can be

approximated using Equation 6.3.5:

θ(x) ' (1− x2)(
2mγ+1
2mγ+2)

2γ + 1

For the actual displacement use the transformation relation from Equation

3.5.6, such that:

w(x1, 0
+) ' a

(
Po
µ

)
(1− (x1/a)2)(

2mγ+1
2mγ+2)

2γ + 1
, |x1| ≤ a (7.2.1)

This approximation has less than 5% error in the range of γ ≤ 5 and can be

used as a quick estimate of crack shape with a constant stress input.

The maximum magnitude of θ′(x) is on the crack tips (θ′max = θ′(±1)) and is

finite. With a constant stress input, the value of θ′max follows the inequality

relation from Equation 6.3.7:

θ′max ≥
1

1.0057γ + 0.2863

Using the inverse transformation from Section 3.5, it is concluded that the
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maximum opposing shear stress (σ13,max) at the crack tips (x1 = ±a) for a

constant load input (σ23(x, 0) = ±Po) is:

σ13,max ≥
Po

1.0057γ + 0.2863
=

aPoµ

1.0057β + 0.2863aµ
(7.2.2)

When γ ≥ 1 the relation above becomes a more precise approximation and

the inequality becomes an equality.

The maximum unit shear stress magnitude (τ) at a distance outside the crack

can be approximated using Equation 6.3.11:

τ(R) ' 1(
(R− 1)

√
4.7270γ + 2.1906 +

√
4.6078γ + 2.1288

)2

Using the inverse transformation from Section 3.5 again, |σ| ≡ Poτ and

Rs ≡ aR, which yields:

|σ|(Rs) '
Po[

(Rs/a− 1)
√

4.7270γ + 2.1906 +
√

4.6078γ + 2.1288
]2 (7.2.3)

Where: R > 2a. To find the radius outside a crack with a given maximum

shear stress magnitude, use the same transformations from Section 3.5 and

the relation from Equation 6.3.12:

Rs(|σ|) '
a
√
Po√

|σ| (4.7270γ + 2.1906)
(7.2.4)

Which is an accurate estimate of the radius in the plane for a given maximum

stress when:

|σ| < Po
9.3348γ + 4.3194

(7.2.5)
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7.3 Summary of Surface Effect Model

The physics of the GM model was interpreted as follows:

1. Energy is dispersed on the boundary, reducing the input shear stress

(compare the functions θy to P̃ ). This can be seen in Figures 6.4, 6.6,

6.8, 6.10 and 6.11a. In each case (with exception of the region near the

crack tips) the adjusted input stress magnitude shows a reduction when

γ increases. The singularities on the crack tips are already there in the

classical model, however this model does not have a jump discontinuity

from the value of input stress (P̃ ) to ±∞ like the classical case.

2. From this reduction of input shear stress, the displacement (w) and

opposing stress (σ13) are reduced and finite across the crack face.

Figures 6.3, 6.5, 6.7, 6.9 and 6.11a show this trend conclusively for

both displacement (θ ∝ w) and slope (θ′ ∝ σ13).

3. The displacements and stress magnitudes are also reduced. This can

be seen in Figures 6.16 through 6.19.

4. With the presence of the surface effect, the radius of effect in the body

material is also reduced.

It is assumed that the GM model is not “adding in” another element to

the model, but it does not ignore surface effects. Given the convergent

plots in Figures 6.22 and 6.23b, it is apparent that the function θ(x) along

with it’s derivatives θ′(x) and θ′′(x) are convergent across the crack face.

The function θ′′(x) does not converge near the crack tips, however all three

functions showed a reduction and convergence across the crack tip when γ

increased. Comparing this to the classical model (without surface effects), it

is concluded that the GM model is more stable and convergent.
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7.4 Effect of Input Parameters

Using the relationships and approximations from the previous sections, the

effects of various input parameters (all defined as constants in the boundary

value problem) are quantified. Table 7.1 provides a summary of the effect on

displacement, stresses, strains and radius of effect as each input parameter

is increased. If the input parameter is decreased, simply reverse the trends

given in the table.

Table 7.1: Effect of Parameters on Displacement, Stresses, Strains and
Radius of Effect

Description w σ ε Rs

γ ↑ Surface Parameter ↓ ↓ ↓ ↓

a ↑ Half Crack Length ↑ ↑ ↑ ↑

β ↑ Surface Effect Constant ↓ ↓ ↓ ↓

µ ↑ Modulus of Rigidity ↓ ↑ ↓ ↑

Po ↑ Input Stress Value (RMS) ↑ ↑ ↑ ↑
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8 - Suggested Future Work

This chapter is a discussion of possible model refinements and future

problems of interest.

8.1 Clamped Ends and Natural Boundary

Condition

The dimensionless boundary value problem from Equations 3.5.7 through

3.5.9 has the equivalent form:

∂2u

∂x2
+
∂2u

∂y2
= 0 in A(= R2\L) (8.1.1)

∂u

∂n
= P̃ (x)− γ ∂

2u

∂x2
on L (8.1.2)∣∣∣∣ ∂u∂n

∣∣∣∣→ 0 on Γ∞ (8.1.3)

Where the total boundary is ∂A = L
⋃

Γ∞. Multiplying each equation by

the solution (u) and integrating yields a form of the energy residual equation:

∫
A

u∇ · (∇u) dA−
∫
L

u

(
∂u

∂n
− P̃ + γ

∂2u

∂x2

)
ds−

∫
Γ∞

u
∂u

∂n
ds = 0 (8.1.4)

Using the divergence theorem:

∫
A

u∇ · (∇u) dA =

∫
∂A

u
∂u

∂n
ds−

∫
A

|∇u|2 dA
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∫
L

u
∂2u

∂x2
ds = ±

[
u
∂u

∂x

]
L

−
∫
L

(
∂u

∂x

)2

ds

After simplification, this yields the result:

∫
A

|∇u|2 dA−
∫
L

uP̃ds− γ
∫
L

(
∂u

∂x

)2

ds± γ
[
u
∂u

∂x

]
L

= 0 (8.1.5)

This is similar to the finite element weak form [29, 30] and implies the natural

boundary conditions [33] at the crack tips:

lim
x→±1

(
u
∂u

∂x

)
= 0 (8.1.6)

Which suggest that the BVP has two separate natural boundary conditions

at the crack tips (four combinations in total). In the problem studied in this

work, it was assumed that u(±1, 0) = 0 due to the condition u+ = −u−.

However, a crack with a clamped end would require the displacement gradient

( ∂u
∂n

) at the endpoint to be zero. Kim et el. solved a similar problem of this

work for the stresses (with surface effects) utilizing the boundary condition

∂u
∂x

(±1, 0) = 0 [9, 10] to achieve finite stresses everywhere.

The convergence of the adjusted unit input shear stress (θy) at the crack tips

was not possible using the displacement conditions u(±1, 0) = 0. However,

using the condition that the slopes are zero at the crack tips (∂u
∂x

(±1, 0) =

θ′(±1) = 0) should yield stable and convergent results. Recall Equations

4.4.21 and 4.4.20 from Section 4.4:

γθ′′(x)− 1

π

∫
L

θ′′(t) ln |t− x|dt = P̃ (x)− 1

π
θ′(t) ln |t− x||t=1

t=−1

θy(x) ≡ ∂u

∂y
(x, 0+) = P̃ − γθ′′(x)
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If the values of θ′(±1)→ 0 +O(x), then:

lim
t→±1

θ′(t) ln |t− x| = 0

Given this, the solution of θ′′(x) should be stable and convergent at the crack

tips, leading to the conclusion of finite stress magnitudes on the crack tips.

When evaluating the two problems with clamped and un-clamped conditions,

Vardoulakis et. al concluded that solutions were more convergent in the

clamped case [13] (or when ∂u
∂n

(±1, 0) = 0 ). It would be of interest to

formulate the clamped problem using the GM model used in this work to see

how it compares to Vardoulakis’ findings (which utilized a different surface

energy model) and how the crack face (and body) displacement changes with

the clamped condition.

8.2 Realistic Values of γ for Various Materials

The surface parameter (defined in Equation 3.5.10) is:

γ ≡ µs − σo
aµ

Recall the transformation from Equation 2.3.8, being:

µs = µĥ

Knowledge of both the lattice spacing (the interface layer thickness ĥ is

approximately 1 to 2 times the lattice spacing) and the surface tension

(σo) are outstanding requirements to determine appropriate values of the
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surface parameter. Molecular dynamics simulations could be done in order

to estimate these values for various materials. Once this information is

obtained, physical tests could be done in order to verify the results in

this work. Alternatively, using precise instruments one could experimentally

determine the surface parameter for a particular case by using approximation

in Equation 6.3.5 and transformation in Equation 3.5.10.

As a first hypothesis to this study, assuming surface tension is negligible (or

that σo � µs) then:

γ ' µs

aµ
=
ĥ

a

If the crack length is of the order of millimeters (10−3m) and the lattice

spacing is of the order of angstrom (10−10m), then a value of γ in the range

of 10−7 is reasonable.

8.3 Analytical Solutions

Section 6.1 is a review of the classical problem and it’s known analytical

solution. Using a similar idea from Sections 4.3 and 4.4, the problem could

be posed by defining the following:

[φ′(t)]
+

+ [φ′(t)]
+ ≡ h(t) (8.3.1)

[φ′′(t)]
+ − [φ′′(t)]

+ ≡ k(t) (8.3.2)

Which have the known solutions [21, 19]:

φ′(z) =
1

2πi

∫
L

√
t2 − 1

z2 − 1

(
h(t)

t− z

)
dt (8.3.3)
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φ′′(z) =
1

2πi

∫
L

k(t)

t− zdt (8.3.4)

Using the boundary condition from Equation 4.2.9, the following relation is

found:

ih(t) + γk(t) = 2P̃ (t) (8.3.5)

Also note that:

d

dz

(
1

(t− z)
√
z2 − 1

)
=

2z2 − tz − 1

(t− z)2 (z2 − 1)
3
2

≡ ζ(t, z) (8.3.6)

Using this result, another form of the function φ′′(z) is:

φ′′(z) =
1

2πi

∫
L

h(t)ζ(t, z)
√
t2 − 1dt (8.3.7)

Using Equation 8.3.4 and the Localization Theorem [28], a second relation

between h and k is:

h(t)ζ(t, z)
√
t2 − 1− k(t)

(t− z)
= 0 (8.3.8)

Using Equations 8.3.5 and 8.3.8, h(t) and k(t) are determined to be:

k(t) =
2P̃ (t)ζ(t, z) (t− z)

√
t2 − 1

i+ γζ(t, z) (t− z)
√
t2 − 1

(8.3.9)

h(t) =
2P̃ (t)

i+ ζ(t, z) (t− z)
√
t2 − 1

(8.3.10)

Plugging these back into Equations 8.3.3 and 8.3.4 yields the direct expressions

for φ′(z) and φ′′(z):
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φ′(z) =
1

2πi

∫
L

√
t2 − 1

z2 − 1

(
2P̃ (t)

i+ γζ(t, z) (t− z)
√
t2 − 1

)
dt

t− z (8.3.11)

φ′′(z) =
1

2πi

∫
L

(
2P̃ (t)ζ(t, z)

√
t2 − 1

i+ γζ(t, z) (t− z)
√
t2 − 1

)
dt (8.3.12)

Integrate Equation 8.3.11 to get φ(z):

φ(z) =

∫ z

0

φ′(s)ds+ C1 (8.3.13)

Which yields a final solution for displacement anywhere in the body:

u(x, y) = Re {φ(z)} = Re

{∫ z

0

φ′(s)ds

}
+D1 (8.3.14)

Where D1 is the real part of the complex constant C1. Using the additional

boundary condition u(±1, 0) = 0, the constant D1 represents a rigid body

displacement and is zero in this case. Hence:

u(x, y) = Re

{∫ z

0

φ′(s)ds

}
(8.3.15)

Unfortunately, the expression in Equation 8.3.15 is not overly useful given

the complexity of the integral. Also, the fact that the integral is singular

eliminates the possibility of conventional numerical integration. It would be

of interest to find an analytical solution using the method presented in this

section, or something similar from the known works of Muskhelishvili [21, 19].
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8.4 Other Problems of Interest

8.4.1 Bonded Surface Problems

The GM model could be used to formulate bonding problems. In this case,

the bonding material would act as the interface layer and could be projected

on the material surface. Three examples of some bonding problems which

are slight modifications of the study in this work are shown in Figure 8.1.

Body 2

Body 1Body 1

Body 2

Body 1Bonded
Surface

Crack

Bonded Surface

Body

Filled/Welded
Crack

(a) Two body materials
with different material
characteristics bonded by
some other material

Body 2

Body 1Body 1

Body 2

Body 1Bonded
Surface

Crack

Bonded Surface

Body

Filled/Welded
Crack

(b) Two body materials
with different material
characteristics bonded by
some other material and a
crack

Body 2

Body 1Body 1

Body 2

Body 1Bonded
Surface

Crack

Bonded Surface

Body

Filled/Welded
Crack

(c) Typical Crack problem,
but with a bonding material,
weld, repair, or glue on the
crack

Figure 8.1: Plane Bonding Problems of Interest

The first example (Figure 8.1a) would consist of two different materials

bonded with an interface layer. This interface layer could be modeled by

projecting the properties of the tensile layer upon the boundaries, which is

the same method used in this work.

Figure 8.1b shows two different materials bonded (like in the first example),

but with a crack (or gap) in the bonding layer. This problem could be

modeled with and without surface effects on the crack to predict failure (or

tearing) of the bonding material under different stress loads.
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A third problem of interest is where the crack has been “repaired” (Figure

8.1c). This would require determining realistic values of the surface parameter

(γ), since a repair would make the crack surface much stiffer. A problem

similar to the one posed in Figure 8.1c was posed and solved by Antipov and

Shiavone [14] which yielded shapes and slope plots that were very similar to

the problem posed in this work.

8.4.2 Three Dimensional Problem

In the formulation of the anti-plane/Mode-III displacement boundary

value problem in Equations 3.3.7 through 3.3.9, it was assumed that the

displacement (w) was not a function of the x3 variable (or that thickness

of the plane did not have an effect). If the problem is re-formulated

using x3 dependence, it would be of interest to know how this affects the

stability and convergence of stresses and displacements using the GM model.

Assuming such a model has a solution, a hypothesis is that the adjusted

input stress component σ23 at the crack tip would be convergent numerically

and definitively finite at the crack tips. Currently, this is the last outstanding

issue with the planar model (and the solutions) presented in this work.

Unfortunately, dependence on the x3 component eliminates the possibility

of complex variable methods and would be much more difficult to solve

analytically. However, a numerical model could be formulated for comparision.

8.4.3 Dynamic Problems

It is possible to use the GM model in dynamic plane wave propagation

problems. This could be modeled similar to the anti-plane/Mode-III crack
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displacement case in this work, but with dynamic effects. Comparison to the

classical case could be made and the effect of different surface parameters

could be calculated. This would essentially be like adding a damping system

to the surface of the crack. It would be of interest to note how different

surface parameters would affect the natural frequency of the crack face and

how this would change fatigue estimations near the crack tips. It would also

be notable if the surface parameter changes any other effects, such as crack

face modal shapes or possible sound emission from vibration.

Other dynamic problems, such as time dependence would also be of interest.

Determining the effects of load velocity (such as a pulse stress or impact

load) could bring clarity on impact type problems and how the GM model

changes the results. This type of loading for the classical case was published

by Broberg [32]. Taking a similar approach, but using the GM model could

yield notable results.
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