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Abstract

Software projects often suffer from low quality caused by a lack of control over
the development process. Software metrics and models are invaluable for process

characterization and quality improvement.

The impact of the object-oriented design choices on the quality of the resulting
system is investigated and innovative statistical methods are applied to deal with
the peculiarities of the software engineering data. The ability of these models is
empirically validated using industrial datasets, identifying approximately 50% of

the classes causing 80% of the defects in the system.

Software reliability growth models are adopted to characterize the occurrence of
service requests and help in resource allocation using multimodel approach.
Models’ performance is assessed with respect to specific goals, using combined
numerical and graphical methods. Parametric and non-parametric statistical
methods are used to fully describe this process and sensitivity of the modeis to the

imprecision of the input data.
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1. Introduction

Studies show that, on the average, software development projects overshoot their
schedule by half and larger projects generally do worse (Gibbs, 1994; Brooks,
1987; Pressman, 1996). For every six new large software systems which are put
into operation, two others are canceled. It is reported that three quarters of all
large systems are "operating failures” that either do not function as intended or are

not used at all.

Software projects fail due to lack of control over the software development
process. Quality is a key element in success of any software product. Assuring
high quality is an increasingly complex time- and effort-consuming activity. A
proper characterization and understanding of this process is thus essential in
achieving higher quality software. Software engineering uses a systematic
approach to the development of software. Models based on software metrics

provide a way of quantitative management of software quality.

A great part of effort and time in the development of a software product is spent
on servicing demands for modifications in the behavior of the system (Basili and
Weiss, 1984). The demands for modification of the system are referred to as
Service Requests (SRs). Due to the high impact SRs have on the overall process
of software development, time to market, and the customer’s satisfaction (Bays,
1999), there is clearly a need for further investigation to define a systematic and

replicable framework for the analysis of SRs.

Design of an object-oriented software system offers a substantial amount of
information about the software system even before any coding has started. A
widely used set of software metrics for object-oriented systems is the suite
proposed by Chidamber and Kemerer (1994). This set of metrics, referred to as
the CK suite, measures different aspects of software design, such as complexity,
coupling, cohesion, and inheritance. Clearly, it is valuable to empirically validate
the ability of these metrics to be used for identification of the critical classes that
consume most of the development effort and resources and need special attention

in the development and testing activities.
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For the projects analyzed in this study, all the modifications of the classes caused
by defects in software operation are recorded throughout the development
process. It is assumed that the number of modifications referring to defects
represents a good estimation of the defect-proneness of the class (Fenton and
Pfleeger, 1997).

This study proposes novel methods for prediction and description of defect
behavior of the classes in object-oriented systems, and investigates possibilities
for better resource allocation in the process servicing requests for modifications in
such systems. The presented models quantify the impact of choices made in
object-oriented design on the quality of the resulting system. Furthermore, the
existing and new software reliability growth models are adopted to characterize

the timings of service requests and help in resource allocation.

Innovative statistical methods are applied to deal with the peculiarities of the
software engineering data, such as non-normally distribution, overdispersed count
data on the absolute measurement scale, and high occurrence of zero counts.
These models are employed for estimation of the number of defects from the
design metrics (class 3 model; Fenton and Pfleeger, 1997). The ability of Poisson
regression model, negative binomial regression model, and zero-inflated negative
binomial regression model to identify defect-prone classes in the system is
validated on different industrial datasets from industrial environment in real-time

telecommunication and commercial application domains.

In combination with classical statistical methods, such as correlation coefficients
and standard error, multiple combined methods are used for assessment of
models’ performance with respect to specific goals, including dispersion
coefficient and graphical method referred to as Alberg diagram.

The results of the analysis performed in this study show that the proposed
methodology is both feasible and useful. Although the presented results are
specific for the projects developed in these environments, the process used in the

analysis can be easily replicated and applied in different environments.



The models applied in this study successfully explain the excessive variability in
the data and can be used to identify approximately 50% of the classes causing
80% of the defects in the system. Measure of communication between classes,
i.e., response for a class, shows a good potential as a predictor for this purpose

over the projects analyzed in this study.

One of the goals of this thesis is to help project managers in making informed
decisions in the servicing process. The appropriate characterization and
understanding of this expensive and time-consuming activity enables better
planning and scheduling, resource allocation, identification of bottlenecks, and
accurate estimation of the time required for a software system to become stable
(Basili et al., 1996). Based on this information, different projects and
development processes can be assessed and compared with respect to the process

of servicing SRs.

The framework for an accurate description of the various aspects of SRs
occurrence is proposed in this study. Software reliability growth models are
adopted to characterize the occurrence of service requests and help in resource
allocation using multimodel approach. Proposed framework provides a
quantitative comparison and assessment of the descriptive power of the different
models applied to occurrence of SRs. Models’ performance is assessed with

respect to specific goals, using combined numerical and graphical methods.

In addition to the software reliability growth models, gamma analysis and
parametric linear regression are used to fully describe the occurrences of service
requests over time. A Monte Carlo simulation is performed to assess the
sensitivity of the proposed models to the imprecision of the input data, typical
when people participate in the data collection process. Results indicate that a
multimodel approach is recommended for most reliable results in analysis of

service requests.

The thesis is organized as follows: The rest of Section 1 provides a background
overview of the software engineering discipline and software development

processes. Issues specific to software quality and reliability are discussed in

3



Section 2. A systematic summary of the software metrics and associated statistical
methods for measurement of different software attributes is provided in Section 3.
A detailed overview of various data analysis techniques applicable to software
engineering is provided in Section 4. This section also provides explanation of the
software reliability growth models and innovative models for overdispersed count
data with excess zeroes, such as the zero-inflated negative binomial model. The
potential of these models to be used for quality improvement is empirically
evaluated in later sections of the thesis. Empirical investigation techniques and
data collection process are discussed in Section 5. The rest of the thesis is
organized around the analyses of the specific datasets from different industrial
software development environments. Analysis of software service requests for
four projects from the real-time telecommunication domain and three datasets
from two companies in commercial domain is described in Section 6. The impact
of object-oriented design on the defect behavior is investigated in Section 7 using
five real-time and two commercial projects. The naming scheme for the fourteen
projects used in this study is based on the corresponding sections where the
particular projects are analyzed. Discussion of the results and conclusion are

provided in Section 8.

1.1. Software Engineering Discipline

Virtually all domains of life now depend on complex computer-based systems.
More and more products incorporate computers and controlling software in some
form. The software in these systems represents a large and increasing proportion
of the total system costs. Therefore, producing software in a cost-effective way is

essential for the functioning of the international economy.

Software engineering is a discipline whose goal is the cost-effective development

of software systems. As an engineering discipline, software engineering

recognizes existing organizational and financial constraints and looks for

solutions within these constraints. It is not just concerned with the technical

processes of software development but also with activities such as software

project management and methods to support software production. Software
4



engineering is concerned with all aspects of software production from early stages

of system specification through to maintaining the system after its release.

Software is abstract and not constrained by materials, physical laws or
manufacturing processes. This lack of limitations simplifies parts of software
engineering, giving it great potentials. On the other hand, software easily becomes

extremely complex and difficult to understand.

Software engineering is a relatively young discipline, first proposed in 1968
(Sommerville, 2001). It emerged from early experience that an informal approach
to software development was not enough for building complex software
applications. This problem was referred to as “software crisis” (Gibbs, 1994).
Software projects were typically late, unreliable, difficult to maintain, costing
more than predicted. It was clear that new techniques and methods were needed to

control the complexity of such complex systems.

Some of the software engineering techniques have become part of software
engineering and are now widely used. However, there are still problems in
producing complex software which meets user expectations, is delivered on time
and to budget. Many software projects still have problems and this has led to
some commentators (Pressman, 1996) suggesting that software engineering is in a

state of chronic affliction.

As the ability to produce software has increased so too has the complexity of the
software systems required. New technologies and requirements in different
application domains place new demands on software engineering. There is a

constant need and room for improvement.

1.2. Software Development Process

A software development process is defined as a set of all activities that produce a

software product (Sommerville, 2001).

Software development processes are complex and heavily dependent on human

judgment and creativity. Although there is a wide variety of different software



processes, there are four basic activities common to all software processes:

specification, development, validation, and evolution.

Software specification activity defines the functionality of the software and

constraints on its operation.

Software development activity is focused on producing the software to meet the

specifications.

Software validation activity ensures that the software does what the customer

wants.

Software evolution is concerned with the changes that have to be made to

software to meet changing customer needs.

Different software processes organize these activities in different ways and are
described at different levels of detail. The timing of the activities varies, as does
the result of each activity. Different organizations may use different processes to
produce the same type of product. However, some processes are more suitable
than others for some types of application. If an inappropriate process is used, this
will probably reduce the quality or the usefulness of the software product to be
developed.

Although there is no ‘ideal’ software process, there is a lot of scope for improving
the software process in many organizations. Many organizations still rely on ad
hoc processes and do not take advantage of software engineering methods in their

software development.

A software process model is a simplified description of a software process which
is presented from a particular perspective. Software process model is a
simplification of the actual process which is being described. Process models may
include activities which are part of the process, software products, and the

personnel and resources involved in software engineering.

There are a number of different general models or paradigms of software process,

such as the waterfall, evolutionary, and component-based approaches.



The waterfall approach takes the software development activities and represents
them as a separate process phases, such as requirements specification, software
design, implementation, testing, and evolution. After each stage is defined the

development process goes on to the following stage.

The evolutionary development approach interleaves the activities of specification,
development, and validation. An initial system is rapidly developed from very
abstract specifications. This is then refined with customer input to produce a
system which satisfies the customer’s needs. The system may then be delivered.
Alternatively, it may be reimplemented using a more structural approach to

produce a more robust and maintainable system.

The component approach to software development, based on assembly from
reusable components, assumes that parts of the system already exist. The system
development process focuses on integrating these parts rather than developing

them from scratch.

Some software processes are more mature than others, as noted by the Software
Engineering Institute’s (SEI) reports on process maturity (Humphrey, 1989;
Paulk, 1991). While some organizations have clearly-defined processes, others are
more volatile, changing significantly with the people who work on the projects.
The SEI has suggested that there are five levels of process maturity, ranging from
ad hoc (the least controllable) to repeatable, defined, managed, and optimizing

(the most controllable).

SEI Capability Maturity Model (CMM) uses process visibility as the key
discriminator among a set of maturity levels. The more visibility into the overall
development process, the higher the maturity and the better managers and
developers can understand and control their activities. Section 3 provides more
details on use of software metrics to increase visibility and control over the

development process.



1.3. Costs of Software Development

The goal of software engineering is Software-production of high-quality software

in a cost-effective way (Sommerville, 2001).

There is no simple description of the software development costs. The precise
distribution of costs across the software process depends on a lot of different
factors, including the process used and the type of software that is being

developed.

The percentage distribution of the total cost of developing a typical software
system can be roughly represented with Figure 1. However, the distribution of
cost greatly depends on the development process, application domain,
programming language etc.

If the software is developed using an evolutionary approach, there is no clear
distinction between specification, design, and development. Specification, design,
implementation, and unit testing are carried out in parallel within a development
activity. However, there is still a need for a separate system testing activity once

the initial implementation is completed.

Overall, system integration and testing tend to be the most expensive development
activity. For critical systems, this phase can account for 50% of the total system
costs. This study focuses on this aspect of software development through the
analysis of the process of servicing requests for change in the software system
(Section 6), and through the analysis of the design characteristics with most
significant impact on defect behavior of the classes in an object-oriented system
(Section 7).

Specification Design Development Integration and testing

0% 50% 100%

Figure 1: An example of cost distribution in software development

On the top of development costs, costs are also incurred in changing the software
after it has been released and gone into use. For many software systems which

have a long lifetime, these costs are likely to exceed the development costs by
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factor of 3 or 4. The analysis of service requests performed in this study provides

an objective support for determination when the product is ready to be released.

1.4. Object-Oriented Design

Although software design is still an ad hoc process in many software projects,

there is a clear need for formal design management and change control.

‘Structured methods’ propose a more structured approach to software design.
Structured methods represent sets of notations and guidelines for software design.
Examples of include Structured Design (Constantine and Yourdon, 1979),
Jackson System Development (Jackson, 1992), and various approaches to object-

oriented design (Booch, 1994; Rumbaugh et al., 1991, Jacobson, 1992).

In addition to classical structured, top-down design methods, there is a need for a
software development paradigm that can handle the added complexity and
complex user interfaces. One of the biggest reasons for moving to the object-
oriented paradigm for developing complex applications is that it allows designers
to model the real world more closely (Riel, 1996).

Object-oriented methods include an inheritance model of the system, models of
the static and dynamic relationships between objects and model of objects
interactions at run time. The analysis of design issues of the software systems in

this study is performed using the CK suite object-oriented design metrics.

Various structured methods have been applied successfully in many large
projects. The success of methods often depends on their suitability for an
application domain and specific organization. This study focuses on empirical
data from industrial environment in telecommunication and commercial

application domain.

1.5. Software Validation

The role of the software validation activity is to check if a software system

conforms to specifications and if it meets customer’s expectations. The majority



of validation effort is incurred in the testing phase. Validation also involves

inspection and reviews at each stage of the software development process.

Complex software systems are built out of sub-systems, which are built out of
modules. These systems are not tested as single, monolithic unit. Testing is
carried out incrementally in conjunction with system implementation. Typical

stages of the testing process are:

Unit testing — Individual components (modules), such as classes of an object-
oriented system, are tested to ensure that they operate correctly. Each component

is tested independently, without other system components.

Sub-system testing — This phase involves testing collections of modules which
have been integrated into sub-systems. The most common problems which arise
in large software systems are interface mismatches. The sub-system test process
therefore concentrates on detection of module interface errors by rigorously

exercising these interfaces.

System testing — The sub-systems are integrated to make up the system. This
process is concerned with finding errors that result from unanticipated interactions
between sub-systems. It is also concerned with validating that the system meets its

functional and non-functional requirements.

Acceptance testing — This is the final stage in the testing process before the
system is accepted for operational use. The system is tested with data supplied by
the system customer rather than simulated test data. Acceptance testing may
reveal errors and omissions in the system requirements definition because the real

data exercise the system in different ways from the test data.

Various types of SRs are result of the software validation activities. The
occurrence of SRs and its impact on allocation of effort and resources in the

development process are discussed in Section 6 of this study.

1.6. Managing and Scheduling Software Projects

Software managers face a particularly demanding task of project scheduling.

Managers estimate the time and resources required to complete activities and

10



organize them into a coherent sequence. Unless the project being scheduled is
similar to a previous project, previous experience is an uncertain basis for new
project scheduling. Schedule estimations is further complicated by the fact that
different projects may use different design methods and implementation
languages.

Project scheduling involves separating the total work involved in a project into

separate activities and judging the time required to complete these activities.

As well as calendar time, managers must also estimate the resources needed to

complete each task. The principal resource is the human effort required.

Software metrics and models provide a quantitative way to systematically build

corporate experience and make informed estimates and decisions.
2. Software Quality and Reliability

Quality of a software product is influenced by the development technology,
characteristics of the development process, and quality of the personnel involved

in the development (Sommerville, 2001).

There has been a lot of effort to form a single model for expressing software
quality. An international standard for software quality was proposed in 1992. This
standard is called Software Product Evaluation: Quality Characteristics and
Guidelines for their Use, but more commonly referred to as ISO 9126 (Ince,
1994). In the standard, software quality is defined to be: “The totality of features
and characteristics of a software product that bear on its ability to satisfy stated or

implied need.”

ISO 9126 decomposes quality into six factors: functionality, reliability, efficiency,
usability, maintainability, and portability.

This decomposition approach to software quality measurement requires careful
planning and data collection. Proper implementation even for a small number of
quality attributes uses extra resources that managers are often reluctant to supply.
A framework for empirical analysis of software quality is proposed in Section 5.2,
and different aspects of quality are investigated in Sections 6 and 7.

11



Software reliability represents a key attribute of software quality. Quantitative
methods for its assessment evolve from the theory of hardware reliability and date
back to early 1970s (Goel and Okumoto, 1979).

The basic problem of reliability theory is to predict when a system will eventually
fail. The same approach applies in software. Although there are many reasons for
software to fail, none involves wear or tear. Usually, software fails because of a
design problem. The impact of software design aspects on the defect behavior of

the system is investigated in detail in Section 7 in this study.

Rather than maintaining reliability, as it is done with hardware systems, software
reliability is growing over time. This aspect of software reliability is discussed in
Section 4.4 and empirically validated using data from industrial environment in

Section 6.

2.1. Defects, Failures, and Service Requests

It is important to measure different aspects of software quality in order to improve
the overall quality of software systems. Such information can be useful to
determining:

How many problems have been found with a product;

How effective are the prevention, detection, and removal process;

Whether the product is ready for release to the next development stage or to the

customer;,

How the current version of the product compares in quality with previous or

competing versions.

The terminology used to support this investigation and analysis must be precise,
allowing understanding the causes as well as effects of quality assessment and

improvement efforts.

There is considerable disagreement about the definition of defects, errors, faults,
and failures (Fenton and Neil, 1999). In different studies, defect counts refer to
post release defects or defects discovered after some arbitrary point in the
software cycle, and total known defects.

12



A fault occurs when a human error results in a mistake in some software product.
For example, a developer might misunderstand a user-interface requirement, and
therefore create a design that includes the misunderstanding. The design fault can
also result in incorrect code, as well as incorrect instructions in the manual. Thus,
a single error can result in one or more faults, and a fault can reside in any of the

products of development.

On the other hand, a failure is the departure of a system from its required
behavior. Failures can be discovered both before and after system delivery, as

they occur in testing as well as in operation.

Faults represent problems that developer sees, while failures are problems that the
user sees. Not every fault results in a failure, since the conditions under which a

fault results in system failure may never be met.

The reliability of a software system is defined in terms of failures observed during
operation, rather than in terms of faults. It is usually impossible to infer much
about reliability from fault information alone. System containing many faults may

be very reliable, because the conditions that trigger the faults may be very rare.

One of the problems is that the terminology is not uniform, including terms such
as: errors, anomalies, defects, bugs, crashes, etc. There is no general consensus on
what constitutes a defect. A defect can be either a fault discovered during review

and testing, or a failure that has been observed during software operation.

A good, clear way of describing what is done in reaction to problems is also
necessary. For example, if an investigation of a failure results in the detection of
fault, then a change is made to the product to improve it. A change can also be
made if a fault is detected during a review or inspection process. In fact, one fault

can result in multiple changes to the product.

SRs, discussed in this study, represent a more general term that helps in answering
the questions from beginning of this section. Multimodel approach for this
analysis based on the software reliability growth models is presented in Section 6.
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As already mentioned, the terminology differs widely between studies. In addition
to defects and similar concepts, there is also a notion of a service request. A great
part of effort and time in the development of a software product is spent on
servicing demands for modifications in the behavior of the system. These
demands are referred to as Service Requests (SRs). Due to the high impact SRs
have on the overall process of software development, there is clearly a need for
further investigation to define a systematic and replicable framework for the
analysis of SRs. The process of servicing SRs requires careful control based on

multiple goals, such as time to market and customers satisfaction (Bays, 1999).

Counts restricted only to defects have a limited power in predicting reliability
because, despite usefulness from a system developer’s point of view, they do not
measure the quality of the system as the user is likely to experience it (Fenton and
Neil, 1999). SRs, on the other hand, have higher potential in measuring the
general quality of the product since they also capture requests for modifications
triggered from customers in order to improve quality and usability of the product

from their standpoint.

This kind of information is also very useful for product managers, helping them
allocate available resources in best possible way in order to achieve their goals.
The patterns in occurrence of SRs with respect to their severity and the type,
occurrence over time and effort necessary fixing them are discussed in Section 6,
and the appropriate models are built to support management in resource allocation

decisions.
3. Software Metrics

Measurement offers visibility into the ways in which the processes, products,
resources, methods, and techniques of software development relate to one another.
It can help in answering questions about the effectiveness of techniques or tools,
the productivity of development activities such as testing and configuration

management, the productivity of products and more.

In addition, measurement is used to define a baseline for understanding the nature
and impact of proposed changes. Finally, measurement allows managers and
14



developers to monitor the effects of activities and changes on all aspects of
development, so that action can be taken as early as possible to control the final

outcome.

3.1. Types of Software Metrics

Measurement is performed on software development process and the various
software products (Basili and Rombach, 1988), and resources (Fenton and
Pfleeger, 1997). Improving product requires proper characterization of the

available resources in addition to understanding the product and the process.

Every measurement activity has to identify entities and attributes to be measured.
In software metrics, there are three such classes: processes, products, and

resources.

A process represents a collection of software-related activities. A product is any
artifact that results form a process activity. Resources are entities required by a

process activity.

Within each class of entity, there are internal and external attributes. Internal
attributes of a product, process, or resource are those that can be measured purely

in terms of the product, process, or resource itself, separate from its behavior.

External attributes of product, process, or resource are those that can be measured
only with respect to how the product, process, or resource relates to its

environment.

An example of a product attribute is the design. Some examples of internal
aspects of design are size, coupling, complexity, and cohesiveness. External

aspects are quality, complexity for use, and extendibility.

Examples of internal attributes of the testing process are time, effort, and number
of discovered problems or defects, while external attributes are cost and cost-

effectiveness.

Internal attributes of human resources in software development are effort and

utilization, and external aspects are productivity, experience, and satisfaction.
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Product metrics are concerned with characteristics of the software itself. There are

two classes of these metrics: dynamic and static.

Dynamic metrics are collected by measurements made of a program in execution,
while static metrics are collected by measurements made of the system

representations such as design, code, or documentation.

These different types of metrics are related to different quality attributes.
Dynamic metrics help to assess the efficiency whereas static metrics help to

assess the complexity.

In addition to the objective metrics, subjective metrics are also required in some
cases, especially for aspects such as experience of personnel, type of application,
understandability etc. These aspects are typically categorized to a reasonable

degree of accuracy on a nominal measurement scale.

The CK metrics suite collected in this study represents an example of objective
static internal product metrics, while SRs represent external metrics. Some aspects

of SRs, such as severity and priority are assigned subjectively on an ordinal scale.

3.2. Structural Metrics

The most obvious and easiest to understand internal software product attribute is
the size of the software system. The size is a static attribute that can be measured
without having to execute the system. However, even for this relatively simple
attribute, there are multiple ways to measure it regarding to the different
perspective of interest. For example, there are aspects of physical length and
functionality for the user. The complexity and the amount of genuinely new

software developer should also be taken into account.

There are three major products of the software development process whose size
can be measured: specification, design, and code. The commonly used measure of
source code program length is the number of Lines Of Code (LOC). Many
different schemes have been proposed for counting LOC. In order to avoid any

confusion that can easily be created if the precise definition of the LOC is not
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provided, a simple and widely accepted way of counting LOC based on number of

semicolons is used in this study.

Reuse is a product attribute partially related to the software size. Different entities
can be reused in the software development process (design, code), and reuse can
be implemented in many different ways (e.g. verbatim or slightly modified).
Consequently, different aspects of reuse are measured using various software
metrics. A useful set of metrics is the amount of reuse metrics used to assess and
monitor reuse improvement and effort. In general, these metrics are defined as the
ratio of the amount of the reused lifecycle item reused and the total size of that
item. The form of this metric based on LOC would be ratio of LOC in the module
and the total LOC in the module (Frakes and Terry, 1996).

The WebMetrics tool for software metrics collection (Section 5.3), used and

improved in this study, also supports collection of reuse metrics.

For measurement of the amount of functionality in a system, function points are
suggested by Albrecht (Albrecht and Gaffney, 1986). Function points are based
on subjective judgment and are mainly used as a part of the effort estimation
method.

Although related to the size, complexity represents another interesting product
attribute that can be interpreted in different ways. For example, Fenton and
Pfleeger (1997) refer to the computational complexity, algorithmic complexity,
structural complexity, and cognitive complexity. Computational complexity
reflects the complexity of the underlying problem. Algorithmic complexity
measures the complexity of the algorithm used to solve the problem. Structural
complexity is used to quantify the structure of the software that implements the
algorithm. Cognitive complexity measures the effort required to understand the
software implementation. Complexity of the object-oriented software design is

discussed in the following section.

There are other useful internal product attributes besides size and complexity.
Structural properties of software can help understand some difficulties in software

development.
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McCabe (1976) proposed that software complexity could be measured by the
cyclomatic number of the program’s flow graph. For a program with flow graph
F, the cyclomatic number v measures the number of linearly independent paths
through F and can be calculated as:

WWF)=e-n+2
where F has e arcs and n nodes. Although the cyclomatic number cannot be used

as a general complexity measure (Fenton and Pfleeger, 1997), sometimes it is a

useful indicator of the maintenance effort.

3.3. Object-Oriented Metrics

Software can be produced in various ways. The traditional approach is to use a
procedural language. However, there are other alternatives, such as object-
oriented software development. The popularity of the object-oriented methods

caused the need for appropriate object-oriented measures.

In the definition of the object-oriented systems by Yand and Weber (1990), the
world is composed of substantial individuals that possess a finite set of properties.
Collectively, an individual and its properties constitute an object. A class is a set
of objects with common properties. Attributes such as coupling, cohesion,
inheritance, and object complexity are defined for the classes of an object-oriented

system.

As mentioned, relatively simple and well-understood set of CK metrics is used in
this study. This suite of six metrics shows a good potential as a complete
measurement framework in an object-oriented environment (Mendonga and
Basili, 2000). Depth of inheritance tree (DIT) for a class corresponds to the
maximum length from the root of the inheritance hierarchy to the node of the
observed class. Another metrics related to inheritance is the number of children
(NOC), representing the number of immediate descendants of the class in the
inheritance tree. Coupling between objects (CBO) is defined as the number of
other classes to which a class is coupled through method invocation or use of

instance variables. Response for a class (RFC) is the cardinality of the set of ail
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internal methods and external methods directly invoked by them. The number of
methods (NOM) is used as a simplified version of more general weighted
methods count (WMC). The number of internal methods is extracted instead of
forming a weighted sum of methods based on complexity. The lack of cohesion in
methods (LCOM) is defined as the number of pairs of non-cohesive methods
minus the count of cohesive method pairs, based on common instance variables
used by the methods in a class. Since the analyzed code is written in C++, source

lines of code are counted using semicolons.

A number of alternative object-oriented measures have been proposed. Some of
them account for deficiencies of the CK suite (Li, 1998). The metric suite
proposed by Li (1998) consists of the number of ancestor classes (NAC), number
of local methods (NLM), class method complexity (CMC), number of descendent
classes (NDC), coupling through abstract data type (CTA), and coupling through
message passing (CTM). Marchesi (1998) introduces metrics for object oriented
analysis models in UML. Nesi and Querci (1998) propose a set of complexity and
size metrics for effort evaluation and prediction, providing also a validation for
some of them. Reyes and Carver (1998) define an object-oriented inter-
application reuse measure. Shih et al. (1998) propose a concepts of unit repeated
inheritance and inheritance level technique for measuring the software complexity
of an inheritance hierarchy. Bansiya and Davis (1999) introduce Average Method
Complexity (AMC) and Class Design Entropy (CDE) that measure the
complexity of a class using the information content. Kamiya et al. (1999) propose
revised set of CK metrics for software with reused components. Miller ez al.
(1999) propose four new measures of hierarchy, inheritance, identity,
polymorphism, and encapsulation in an object-oriented design. Teologlou (1999)

describes the predictive object points for size and effort estimation.

3.4. Validity of Software Metrics

With a variety of the metrics proposed in software engineering, there is a clear

need for validation whether a specific measure captures the attributes it claims to

describe (Weyuker, 1988). Although it is essential to validate characteristics of a
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measure, it is also important to determine whether the measure is part of a valid
prediction system, i.e., to demonstrate that the measure is useful for estimation
and prediction of some dependant variable in the software development process
(Fenton and Pfleeger, 1997). This means that a measure must be viewed in the
context in which it will be used; a measure may be valid for some uses but not for
others. However, a measure can serve only one of these purposes, i.e., a measure

should not be rejected as invalid just because it is not a predictor.

It is said that a measure is valid in the narrow sense (internally valid) if it is useful
for assessment purposes. If the measure is valid in the narrow sense, it is also
called internally or semantically valid. If a measure is also a component of a
prediction system, it is said to be valid in the wide sense (Fenton and Pfleeger,
1997).

The best way to validate a software measure is to use it on multiple datasets and
assess its usefulness for description of measured attributes or as a component of a
prediction system. In this study, the CK metrics suite is used to capture defect

behavior of the classes in the system.

3.5. The Goal Question Metric Paradigm

Measurement results can be used and interpreted in a variety of ways: for cost
estimation, reliability purposes, maintainability etc. The purpose of measurement
should be clearly stated. In addition, the customer, the manager, and the developer
all view the product and the process from different perspectives. Thus, they are
interested in different aspects of the project with different levels of detail.

It is essential to measure what is needed and useful for the organization, rather
than what is convenient or easy to measure. Such software metrics programs often
fail because the resulting data are not useful to the process.

These aspects of software measurement are summarized in the Goal Question
Metric (GQM) paradigm (Basili and Rombach, 1988). This paradigm represents a
mechanism for formalizing the characterization, planning, construction, analysis,

and learning tasks in software engineering. It represents a systematic approach for
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setting project goals customized for a specific organization and defining them in

an operational way.

To clearly specify a set of operational goals, the measurement process is

organized in a top-down order.
* The GQM approach provides such a framework involving three steps:
= List the major goals of an organization or a specific project.

» Derive a set of questions from the goals in order to determine if the goals are
being met.
=  Decide what must be measured in order to be able to answer the questions

adequately.

s The use of the resulting data is also defined in this way, as will be discussed in

Section 5.

Different sets of guidelines exist for defining product-related and process-related
questions in the GQM framework (Basili and Rombach, 1988). Product related
questions are formulated for the purpose of defining the product attributes, such as
cost, changes, or defects. They define a specific quality perspective of interest,
e.g. reliability. Process-related questions are formulated for the purpose of
defining the a specific quality perspective of the process quality, such as reduction

of defects or cost effectiveness.

The goal of this study is to demonstrate how the advanced software engineering
models can be used for assurance and improvement of software quality. Two
factors with great impact of the quality of software products are allocation of
resources throughout the development process and the design of the system.
External product quality metrics - historical data about occurrence of SRs over
time - are used for building the models to support resource allocation. Internal
product metrics - object-oriented design metrics from the CK metrics suite - are
used to identify the critical defect prone classes in the system early in the

development process. This information can be also used for efficient resource
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allocation and for improvements in the design of the system. The GQM
framework used in this study is presented in Table 1.

Goal Question Metrics
How to effectively Data about occurrence of SRs over time
allocate available with additional information about types
resources? of SRs

How to recognize
Improve critical defect-prone,
quality of the | effort-consuming
software classes in the system
X CK object-oriented design metrics suite
early in the

development process?

How to improve

design?

Table 1: GQM framework used in this study

What is not evident from the GQM tree or table is the model needed to combine
the measurement in a sensible way so that the questions can be answered. The
GQM approach must be supplemented by one or more models that express the
relationships among the metrics. The appropriate models for software metrics data
are discussed in Section 4, and the resulting framework for empirical investigation

is presented in Section 5.

3.6. Types of Metrics Data

Measurement is by definition a mapping from an empirical relation system to a
numerical system (Fenton and Pfleeger, 1997). The purpose of performing this
mapping is manipulation of the data in numerical system, and drawing conclusion
about attributes in the empirical domain. But not all measurement mappings are
the same. In fact, the differences among the mappings can restrict the kinds of

analyses.
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The notion of measurement scale is essential for understanding these restrictions

and application of appropriate analyses for the data.

Measurement scale is defined as the pair of the measurement mapping and the set

of empirical and numerical systems.

A mapping from one acceptable measure to another is called an admissible

transformation (Fenton and Pfleeger, 1997). The more restrictive the class of

admissible transformations, the more sophisticated the measurement scale. For

example, the class of admissible transformations for measuring length is very

restrictive. All admissible transformations are of the form:

M is the original measure, M’ is the new one, and a is a constant.

M’'=aM

Admissible Simple Software . Applicable
Scale . L. Relations Statistics
transformations examples engineering methods
. Types of ) Mode,
Nominal 1-1 mapping Labeling Equivalence
defects freq.
Any monotonically . ) )
. . Severity of Equivalence Median, Non-
Ordinal increasing function Preference .
defects greater than percent parametric
fromMto M’
(Spearman
L . . Equivalence correlation)
Linear increasing Timing of
, Temp. greater than, | Mean,
Interval function M’=aM+b SRs . .
(°F, °C) ratio of variance
(a>0) occurrence
intervals
Linear increasing Equivalence, Non-
function passin| ater than, arametric
Ratio P g Length Program size gre P
through 0 M'=aM ratio of Geom. and
(a>0) intervals, mean parametric
ratio of (Pearson
Absolute Identity M’=M Counts Defectcount | . correlation)

Table 2: Scale types (taken in part and with modifications from Fenton and
Pfleeger, 1997)




Nominal scale is the most primitive form of measurement. There is no ordering
among the classes defined by a nominal scale. Any distinct symbolic

representation represents an acceptable measure on a nominal scale.

Classification of SRs according to their type (see Table 8) represents an example
of a nominal scale. This measurement clearly provides information about
additional attribute of SRs. In this way, a clear distinction between the different
types of SRs is created, and every SR belongs to exactly one class. Any mapping
that assigns different classes of SRs to different symbols represents an acceptable
measure. Thus, the class of admissible transformations for a nominal scale

measure is the set of all one-to-one mappings.

The ordinal scale contains information about the ordering of different categories,
which does not have to be numeric. This ordering is based on the empirical
attributes. Any mapping that preserves the ordering is an acceptable
transformation. This scale contains only ranking information, so operations such

as addition, subtraction, and other arithmetic operations are not defined.

Classification of SRs in terms of their severity or priority (see Table 7) defines an
ordinal scale based on subjective assessment of SRs. There is a clear order
relation “more severe than” between the different categories. To preserve this
ordering, any monotonically increasing transformation represents an acceptable

transformation.

The interval scale is more sophisticated and carries more information than
nominal and ordinal scales. This scale captures information about the distance
between the different categories. An interval scale preserves differences but not
ratios. Addition and subtraction are acceptable, but not multiplication and
division.

The timing of occurrence of SRs is an example of an interval scale. This timing
can be measured in units of months, weeks, days, or hours, where each time is
noted relative to a given fixed event - start of the project, for example.
Consequently, the time of occurrence of an SR can be subtracted from the time

when it was fixed. This operation is permitted for an interval scale and, in this
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case, results in the time that was necessary to fix the problem. This measurement
can also be transformed by setting a different starting date, e.g., new release — 300
days after start of the project, and using days instead of weeks. This would give:

M’=7M+300

Ratio scale is common in physical sciences and engineering. This measurement
mapping preserves ordering, intervals between entities, and their ratios. There is a
natural zero measure, representing lack of the measured attribute. All arithmetic

operations can be meaningfully applied for this scale.

Time interval is a representative of this type of scale. Time necessary to fix an SR
represents an example of a time interval. Size and length measures are also ratio
measures. Consequently, software size expressed in LOC can be considered a
ratio scale. Clearly, it is possible to have a software module with zero LOC. A

ratio of the size of two programs can also be calculated.

Absolute is the most restrictive scale with respect to the admissible set of
transformations. This measure represents counts of empirical entities. All

arithmetic operations on such counts are possible.

Absolute scale is typical in software engineering. Number of SRs in a project and
number of defects for a class are both examples of measures on an absolute scale.

All the metrics from the CK suite are also absolute.

Understanding scale types is essential in determining what type of statistical
analysis is applicable for data. For example, it is inappropriate to compute ratios
with any scale bellow ratio scale. Table 2 presents a summary of the meaningful
statistics for different scales types. This table is partially taken with modifications
from Fenton and Pfleeger (1997). Every meaningful statistic for lower scale type

is also meaningful for a higher one.

The logic behind the above proscriptions for use of statistical methods is that
statistical measures should remain invariant under the admissible transformations
for a particular scale (Briand et al., 1996a). There are two types of invariance.

First, invariance in value, where the numerical value of the statistic remains
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unchanged under the admissible transformations. Second, invariance in reference,
where the value of the statistic may change, but it would still refer to the same
item or location. For example, the value of the median may change but it would
still refer to the item at the middle of the distribution under monotonic increasing
transformations. The item at the mean would remain the same under linear

transformations even though the value of the mean changes.

3.7. Parametric and Nonparametric Statistics

The nature of the collected data determines the appropriate methods for their
analysis. Most of the popular statistical techniques and tests require specific
assumptions about the population of the sampled data. Furthermore, in many
cases there are additional assumptions: that the distribution is roughly normal, that
the variance are known or equal, or that the samples are independent (Freund and
Simon, 1996). Oftentimes with software engineering data, it is doubtful whether
all the necessary assumptions are met. For such cases, alternative nonparametric

procedures based on less stringent assumptions are more appropriate.

Aside from the fact that nonparametric techniques can be used under more general
conditions, they are often relatively easy to explain and understand. Nevertheless,
the choice of a nonparametric statistic over an analogous parametric statistic, in
general, results in loss of statistical power. This means that the probability of
successful validating the hypothesis is reduced even if the hypothesis is valid
(Briand et al., 1996a). Having in mind that the statistical power is closely related
to sample size, level of significance, and magnitude of the effect (e.g., correlation
coefficient), it is even more difficult to prove a hypothesis in a software

engineering environment where data are sparse, and correlations are typically low.

An example of an advanced non-parametric statistical technique is the gamma
analysis introduced in Section 4.5 and used in Section 6 for analysis of patterns in

occurrence of SRs.

Alternative to the parametric Pearson’s correlation coefficient is nonparametric

rank correlation, often called Spearman’s coefficient. To calculate the rank
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correlation coefficient for a given set of paired data, the data should be first
ranked among themselves from low to high or from high to low. Then, the other
variable is also ranked in the same way. The sum of the squares of the differences

between the ranks is then found, and the correlation coefficient is calculated.

Having in mind that software metrics data are typically non-normally distributed,
the Spearman’s correlation is the general method applicable for measurement of
magnitude of the effect of one variable to another. This method is used Section 7

for analysis of impact of object-oriented design on the defect behavior of the

classes in the system.

3.8. Pragmatic Approach

There is a strong position of some software engineering practitioners that a
pragmatic approach to software metrics analysis should be taken. In particular,
Briand at al. (1996a) state that, in most cases, the measurement goals should be
used to determine the type of analysis to be applied. Then, if a pattern is detected,
the scientists should start analyzing the validity of the assumptions and
considering alternative techniques. Furthermore, they demonstrate that some of
the theoretical proscriptions would represent a substantial hindrance to the
progress of empirical research in software engineering. Briand et al. (1996a) base
their arguments on studies performed by statisticians and behavioral scientists
over long period of time. Part of this earlier research demonstrated that observed
scales sometimes fall somewhere between the ordinal and interval levels of

measurement.

Although there is no doubt that some analyses could provide useful results even
though all theoretical assumptions are not met in reality, it is very important to
apply statistical method with assumptions closest to the empirical system. This is
also important having in mind that inappropriate methods can give wrong and

misleading results.

Briand et al. (1996a) confront findings by Mayer (1971) and Labovitz (1971)
about treating ordinal and interval data. Mayer (1971) demonstrates that treating
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ordinal data as interval can be inappropriate, leading to underestimation of
relationships between the variables. In response to this, Labovitz (1971) states that
Mayer’s findings are applicable only to dichotomized scales. Such a scale clusters
items on one part of the scale to the extent where they are almost overlapped, and

stretches the other part of the scale.

Software engineering data is often dichotomized with most of the items
concentrated in one part of the scale (typically low values), calling for extreme
care in selection of appropriate statistical methods for analysis. Part of this study
(Section 7) is dealing with the number of defects for classes. This dependent
variable has high concentration of low and zero values. For this reason and with
respect to the count type of the data, the appropriate statistical models, such as
negative binomial model and its zero inflated extension, are investigated in detail

in Section 4 and applied in Section 7.
4. Data Analysis in Software Engineering

Software engineering is based on questions about the process of software
development and different sets of data collected from the process. The goal of
software engineering is to understand the data and answer the questions in the best
possible way. The experience and historical data in software engineering are best

summarized in form of statistical models.

In general, a model is an abstraction of reality. It makes it possible to view the
entity or concept from a particular perspective by removing less significant
details. However, in order to provide useful results, it is essential to understand

models’ capabilities and limitations.

4.1. Types of Models in Software Engineering

Models are used for descriptive purposes, to explain relationships between the
different components of the system. They can be formulated in different forms: as
equations, mappings, diagrams etc.

In addition to their descriptive applications, models are also used for prediction

purposes. Based on the baseline models developed on the historical data, it is
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possible to make reasonable predictions of the future behavior of the analyzed
system. An example of this use of models is demonstrated in the analysis of SRs
in this study.

In order to solve a prediction problem, it is necessary to define a prediction
system (Fenton and Pfleeger, 1997). A prediction system consists of a prediction
model, an inference procedure, and a prediction procedure. The prediction model
forms a specification of the system under consideration. The inference procedure
defines how the parameters of the model are estimated. The prediction procedure
is used to interpret the results of the model and the inference procedure in order to

make the prediction.

Formally, a statistical model represents a set of assumptions about the joint
distribution of the data (Lloyd, 1999). These assumptions can be divided into two
components. First, the error distribution represents the assumption that the data
comes from some specific family of distributions. Second, the systematic
component of a statistical model represents the statement about the underlying

pattern of the data.

The error distribution is used to describe the random variations of the data around
the systematic component. For continuous data, for example, the normal
distribution is often assumed (Lloyd, 1999). For discrete data, the most common
distribution is the Poisson distribution. This issue is discussed in more details in
Section 4.3, and appropriate regression models are applied for defect data in
Section 7.

The systematic component of a statistical model commonly refers to the mean
values. In this case, the systematic component is called the regression function of

the model.

In order to build a sound statistical model of the underlying data, it is essential to
correctly identify both components of the model. First, it is necessary to identify
the error distribution of the data or give a quantitative statement how much is the
distribution of the sample different from the assumed distribution. Definition of
the regression function and estimation (fitting) of the unknown parameters of the

29



model represent the second step in building the model. Section 4.3 of this study
provides more details on these two steps, and sections 6 and 7 employ different

regression models for empirical data and provide the interpretation of the results.

4.2. Problems with Software Engineering Data

Software engineering datasets often have a number of characteristics that make
analysis difficult (Gray and MacDonell, 1997). These difficulties include missing
data, large number of variables (leading to lower degrees of freedom), strong
colinearity between the variables, heteroscedasticity, complex non-linear

relationships, outliers, and small size of datasets.

All these factors make the modeling process more difficult and the models of the
process less reliable. Some of these problems can be at least partially overcome.
For example, heteroscedasticity can be reduced by various transformations, and
colinearity can be removed by principal component analysis (Briand and Wiist,
1999).

Another distinct area of concern is the acceptability and validation of the models.
This includes the issue of the model explaining its predictions. Without sufficient
semantic meaning attached to the model, a satisfactory level of validation is
unlikely to be achieved. This problem is made even more serious by the small
datasets commonly used for building the models, which sometimes produce

counterintuitive results.

The final area of concern is generalizability. Since the first models based on
software metrics were derived, attempts have been made to apply the models
associated with them to other projects within the organization, or even to other
organizations. Use of standard COCOMO coefficients in cost estimation is an
example of such an attempt. The need to recalibrate a model for a new
environment has been recognized and supported by numerous authors (Kemerer,
1987). Even the models that are easily regenerated, such as linear regression

models, have problems with generalizability, given their susceptibility to outliers.
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An awareness of possible approaches helps assure that the most appropriate model
is developed through employing the most suitable alternative. In some cases, the
combination of the methods may be useful, each providing estimates that can be
combined. Such a case is described in this study when multiple SRGMs are used
according to the different goals in the analysis (Section 6).

Small samples in software engineering make it difficult to identify the patterns
that a given data set may have. Resampling schemas provide a way for dealing
with this problem through generating artificial data sets from the original training
set. A popular resampling technique is called the bootstrap method. There are
many possible ways to generate bootstrap samples. In addition to bootstrapping,

there are also other resampling schemes such as cross-validation and jackknifing.

Software engineering data often has to deal with large number of variables and
low number of data points, resulting in low degree of freedom. To solve this
problem, the stepwise regression method can be applied. In this regression
method, all the available predictors are allowed to enter the model. Independent
variables are selected to enter the model based on the p-value. The p-value is a
measure of the statistical significance, representing the probability that the
outcome of the analysis is just a result of chance. The lower the p-value is, the
higher is the statistical significance of the result. The independent variable with
the smallest p-value is entered at each step of the regression, if that value is
sufficiently small. Variables already in the model are removed if their p-value
becomes sufficiently large. The method terminates when no more variables are
eligible for inclusion or removal. For example, p = 0.01 can be used as the criteria

for a variable to enter the model, and p = 0.05 as the exit criteria.

It is common in software engineering, like in other fields, to have colinearity
between measures capturing similar underlying phenomena. Briand and Wiist
(2000) use the Principal Component Analysis (PCA) to determine the different
dimensions captured by the design measures in their work.

Principal component analysis is a transformation typically associated with
muitidimensional data. PCA reduces the redundancy contained within the data by

31



creating a new series of variables (components). The mean of the original data is
the origin of the transformed system with the mutually orthogonal transformed
axes of each component. The resulting components are often more interpretable

than the original variables.

Similar method for reduction of dimensions, called factor analysis, can also be
used to group variables that measure mutually strongly related aspects into a
single factor. Each of these factors represents a major dimension within the data
(Gray and MacDonell, 1997).

The basic and most popular regression models, such as the linear regression
model, assume homoscedasticity of the error distribution for the data (see Section
4.3.1). This means that the errors have a constant variance independent on the
predicting variables. When the variance differs across observations, the errors are
heteroscedastic. Possible way to deal with this problem is to transform the
dependent variable in the analysis in order to improve homoscedasticity.
However, this approach has to be carefully applied with consideration to the type
of the dependent variable and the possible transformations for the corresponding

measurement scale (discussed in Section 3.6).

For the models to be useful, it is necessary to identify their level of
generalizability. Clearly, models developed for a specific company need not work
for a different company. Furthermore, the same models might not be applicable
within the same company for different teams or projects. In order to fully
understand the characteristics of the model, it is necessary to clearly specify the

environment for which the model was developed.

To validate generalizability of a model, it is useful to apply the model with
necessary adjustments to different datasets. This could show that the modeling
approach and the form of the model are successful for different environments,
different projects, or even for different application domains. In this study, the
models are developed using same methodology for fourteen different projects,

developed in four companies, in two different application domains,.
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Another problem with the software engineering data is that they are unbalanced.
A balanced dataset should have equal number of available data points for each
combination of the values of the independent variables. Clearly, such datasets are
extremely rear in empirical data coming from the software industry. The two
major problems caused by lack of balance are that the impact of factors can be

concealed and that spurious correlations can be observed.

Kitchenham (1998) proposes a procedure for analyzing unbalanced datasets. This
method is based on the forward pass residual analysis, similar to stepwise
regression, to identify the most significant factors. The procedure is demonstrated
on two simple artificial datasets with only three ordinal-scale independent

variables with three levels each.

Author states that the procedure is easily extendable to ratio, interval, or absolute
scale factors. However, the suggested way for dealing with some problems, such
as non-normal distribution of the dependent variable, is to use non-linear
transformation of the data. This approach has serious limitations depending on the
scale of the measurement data used in the analysis (Table 2). Although potentially
useful method for specific datasets, this approach is far from being general.

In software engineering, it is necessary to calculate probabilities for values that
the analyzed random variable can assume. The probability distribution, in the

form of a table, graph, or formula, provides this information.

Although the normal distribution is often assumed for the software engineering
data, this approach is not always properly justified. This is particularly the case
for variables of the count type that are common in software metrics. In Section 7
of this study, the dependent variable number of defects for a class (measured on

the absolute scale) is modeled.

4.3. Regression Models

Treating count variables as continuous, although being common practice (Fenton
and Neil, 1999; Gray and MacDonell, 1997), also endorsed by Briand et al
(1996), may result in inefficient and biased models (Long, 1997). Discreteness of
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the dependent variable leads to conservative confidence intervals, i.e.,

overestimated significance level for dependent variables.

The most common distributions applied to count data are based on the Poisson
and multinomial distributions (Lloyd, 1999). The Poisson distribution is
particularly suitable for counting events occurring over time. In the corresponding
PRM, the Poisson distribution determines the probability of a count, where the
mean of the distribution is a function of the independent variables. PRM has been
used in software engineering for modeling the number of faults (Graves er al.,
2000) and the effort expressed in hours (Briand and Wiist, 1999). PRM requires
equidispersion, i.e., equality of the conditional variance and the conditional mean
of the dependent variable. When conditions for the PRM are not met, e.g., in case
of high conditional variance of the dependent variable, the Negative Binomial
(NB) distribution and the associated NBRM can be used (Lloyd, 1999; Briand and
Wiist, 1999).

It is common in software metrics data that the number of zeros exceeds the
prediction of both PRM and NBRM. Zero-inflated count models explicitly model
the number of predicted zeros (Lambert, 1990).

The following subsections explain these models.

4.3.1. Linear Regression Model

Linear regression model is very popular method in software metrics studies (Fray
and MacDonell, 1997). It is used in many different ways, often in combination

with various transformations to permit non-linearity.
The linear regression model can be written as:
y=Po+ Bixi+ ...+ Baxa + €
where y is the dependent variable, the x’s are independent variables, and ¢ is a
stochastic error. The S, through B, are the parameters that indicate the effect of a

given x on y. fy is the intercept that indicates the expected value of y when all of

the x’s are 0.
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A number of assumptions are added to complete the specification of the model

(Long, 1997). The first two assumptions concemn the independent variables.

Linearity represents the assumption that the dependent variable is linearly related
to the independent variables used in the model. Nonlinear relations in the model

are possible through the inclusion of transformed variables.

Second assumption, colinearity, states that the independent variables x used in the
model have to be linearly independent. This means that none of them is a linear

combination of the remaining predictors in the model.

A second set of assumptions concerns the distribution of the error. Error ¢ can be
thought of as an intrinsically random, unobservable influence on the dependent
variable. Alternatively, £ can be viewed as the effect of a large number of
variables excluded from the model that individually have small effect on the

dependent variable.

The assumption of the zero conditional mean requires that the conditional
expectation of the error is equal to zero. This means that, for a given set of values

for the independent variables, the error is expected to be zero.

Furthermore, the errors are assumed to be homoscedastic and uncorrelated.
Homoscedasticity represents the constant variance of error, independent on x’s.

The errors are also assumed to be uncorrelated across different observations.

Finally, it is assumed that errors, as a combination of many small unobserved

factors, are normally distributed (Long, 1997).

It is often the case that most of the assumptions of the linear regression model are
not satisfied for the empirical software engineering data. More appropriate models

to deal with such datasets are discussed in the following subsections.

4.3.2. Ordinal Least Squares and Maximum Likelihood Methods
Although ordinal least squares (OLS) is the most frequently used method of

estimation for regression models, its application for fitting the parameters of the
model is justified if error distribution is assumed to be normal. On the other hand,

the maximum likelihood (ML) method provides a general solution for fitting of
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the model parameters for non-normally distributed data, when the underlying
distribution is known or assumed. The OLS and the ML estimates of model
parameters are approximately the same for the linear model if error distribution is
assumed to be normal. ML is also applicable for models, such as PRM, where the

variance of the data is not constant (Tryfos, 1998).

ML method is designed to maximize the probability that the model represents the
best fit to the empirical data. This estimator is consistent, i.e., the probability that
this estimator differs from the true parameter by an arbitrary small amount tends
toward zero as the sample size grows. The variance of the ML estimator is the
smallest possible among consistent estimators. This feature is usually referred to
as asymptotic efficiency of the ML estimator. Thus, the ML estimators are used

for the models in this analysis in Section 7.

4.3.3. Poisson Regression Model

The Poisson process is a simple model for occurrence of random variables that
assumes the probability of an arrival in a small interval determined by the
independent variables is determined only by the size of the interval, not on the
history of the process to that time (Papoulis, 1991). A Poisson distribution is the

distribution of the numbers of events resulting from a Poisson process.
The Poisson distribution for a dependent variable y, and a vector of n independent

variables x=( x;, ... x,) is given by:

et u
y!

Pr(ylx)=

where u is the mean value of the dependent variable.

The Poisson distribution requires equidispersion of the data, that is, the
conditional mean and the conditional variance of the dependent variable should be
equal (Briand and Wiist, 1999; Lloyd, 1999):

E(ylx)=Var(y| x)

In practice, the conditional variance of the dependent variable in the model is

often higher than its conditional mean, ie., the dependent variable is
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overdispersed. The main cause of the overdispersion is failure of the Poisson
distribution to account for heterogeneity in the data. Overdispersion seriously
compromises the goodness of fit of the model (Lloyd, 1999), resulting also in
over-estimated statistical significance of the predictors in the model (Cameron
and Trivedi, 1986).

The PRM accounts for heterogeneity in the data based on the observed
characteristics of items, i.e., based on the independent variables. To fully define
the PRM, a regression function describing the underlying pattem, i.e., the mean of
the data has to be defined in combination with the error distribution. The goal of
statistical analysis is to find a simple regression function that successfully models

the main behavior of the data.

The exponential regression function, corresponding to the multiplicative model
for the means, is commonly used with the Poisson distribution (Long, 1997;
Lloyd, 1999). The conditional mean is given by:

#( y | x)= eﬁo"ﬂl‘:'-»*ﬂr‘. = e-l’ﬂ

where 8 is the vector of model parameters.

4.3.4. Negative Binomial Regression Model

Empirical data are often over-dispersed, i.e., the value of the conditional variance
is higher than the conditional mean of the dependent variable in the PRM. The
main reason for this is the lack of complete control over experiments, attributing a
great part of the variability in the observed data to unknown sources. This is also

known as unexplained heterogeneity.
An extension of the PRM, the negative binomial regression model, allows the
conditional variance of the dependent variable to exceed the conditional mean.

The NBRM can be derived from the Poisson distribution based on the unobserved
heterogeneity by accounting for the combined effect of unobserved variables
omitted from the original model (Gourieroux et al., 1984). In the NBRM, the

mean y is replaced with the random variable /i :
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xp+e

h=e
where ¢ represents a random error uncorrelated with x.

The relationship between Z and the original x is:
A=e"e* = pe* = ué

With assumption that E(g) = 0, the expected count after adding the new source of

variation is the same as it was for the PRM, i.e., E( Z) = u.

For a given combination of independent variables in the NBRM, there is a
distribution of u’s rather than a single value. Consequently, the probability
distribution function for d = ¢° must be specified to solve the probability for the
dependent variable. The resulting distribution is a combination of the Poisson

distribution and another probability distribution.

Pr(y|x)=[[Pr(y|x.5)- g(6)dé

Q Sy §

Gamma distribution (with positive parameter v) is commonly assumed for ¢ due

to the closed form of the resulting distribution:

v

g(5)=7?(-‘;75""e"’" forv>0

The resulting combined NB distribution is given with:

I'(y, +v) v u
Pr(y |x )= i . I8 %
yilx) yl-I'(v) v+u‘.) (V'*'“.-)

where v is a positive estimated parameter, and I” stands for the Euler gamma

function:
Mix)= J.t"' .e”'dt
0

For the NB distribution, the conditional mean of the dependent variable is the
same as for the PRM while the conditional variance of the dependent variable is

quadratic in the mean &
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Var(y| x)= u(z +€)

Since v is positive (Long, 1999) and u for count variables is also positive, the
variance exceeds the conditional mean of the Poisson distribution. The v is
usually referred to as the dispersion parameter a since increasing a increases the
conditional variance of y. Consequently, a low value of a represents a low level of

over-dispersion.

The NB distribution corrects three main sources of poor fit that are often found

when the Poisson distribution is used.

First, the variance of the NB-distributed dependent variable exceeds the

corresponding variance of the Poisson distribution for the given mean.

Second, the increased variance in the NB results in substantially larger

probabilities for small counts.
Third, the probabilities for larger counts are slightly larger in the NB distribution.

All three aspects of the NB distribution in comparison with the Poisson
distribution are presented in Figure 2. In the first part of the graph, probability of
low values given by the NB distribution is higher than the one given by Poisson
distribution. A similar behavior of the two distribution functions can be observed
for the larger counts, where NB distribution also has higher values. For given
mean for both distribution #=3 and v=0.84 for NB distribution, the Varng = 13.69
is greater than Varpgisson= 3.
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Figure 2: Poisson and NB distribution for x=3

The resulting NBRM is the most commonly used model based on the combination

of the Poisson distribution with other distributions (Long, 1999).

With increased a, the probability of zero values in the NB is increased. For
sufficiently big a, the conditional mode for all the values of the dependent

variable becomes equal to 0.

An alternative way to derive the NB distribution is based on the idea of the
contagion process (Eggenberger and Pélya, 1923). The contagion is the process
where analyzed items with a set of the independent variables initially have the
same probability of certain event, but this probability changes as events occur
over time. A process is contagious if the occurrence of events changes the future
behavior of the process. Consequently, contagion violates the assumption of
independence in the Poisson distribution. Both the unobserved heterogeneity and
contagion can result in the NB distribution of the dependent variable. The

heterogeneity is thus sometimes referred to as spurious contagion.

The NBRM model can be estimated by the maximum likelihood method,

maximizing the likelihood equation:

N
L(ﬁl.v.X)=l_I=IIPr(y.-lx.-)



4.3.5. Zero Inflated Regression Model
The underprediction of zeroes in the PRM is partially resolved by the NBRM’s

increased conditional variance for the same conditional mean. On the other hand,
zero-inflated models change the mean structure in order to explicitly model the
occurrence of zero counts (Long, 1997). These models also increase the

conditional variance of the dependent variable, as explained bellow.

Zero-inflated models allow the possibility that different processes generate zero
counts and positive counts. They assume that two different groups form the
population. An item belongs to one of the groups with probability y and to the
other with probability Z-y. This probability is determined from the characteristics
of the item (Lambert, 1992; Greene, 1994). Items in the first group always have
zero counts. Such items are different from those that have zero counts with a
certain probability. These latter items belong to the second group together with
the items with non-zero counts. The concept of two groups represents a discrete,
unobserved heterogeneity since it is not known to which of the two groups an

item with a zero count belongs.

In the group with items that are not always equal to zero, the resulting counts are
governed by the PRM or the NBRM. For the NBRM, zeroes in this group occur
with probability:
v H
Pr(y =0|-")=(m)
where y;=¢?.
The overall probability of zeroes is a combination of the probabilities of zeroes
from each group multiplied by the probability of an item belonging to a particular
group.
The resulting model has the following form:
Pr(y=0{x)= y(x)+(1- y(x))Puly=0lx)
Pr(y£0\x)=(1- y(x))Pu(y|x)
where Py(yl|x) is the probability given by the PRM or NBRM.
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In the combined zero-inflated model, probability y is determined by either a
probit or logit model y=F(zy), where F is the normal or the logistic cumulative
distribution function, respectively (Long, 1997). In this study, the ZINB model

based on logit probability for zero counts is used.

Variance of the ZINB model is given with (Long, 1999):
Var(ylx,z) = u(1-w)[1 + p (v + @)]

The variance of the ZINB model exceeds variance of the PRM or any non-zero y.

The corresponding maximum likelihood method is available for zero-inflated
models. The predictor vector z can (but does not have to) be the same as the
vector x in the original PRM or NBRM. Clearly, if z and x are equal, i.e., if the
same predictors are used in both parts of the model, the resulting model has twice

as many parameters as the corresponding NRBM.

4.4. Software Reliability Growth Models

Various methods for the software reliability management and control operate on
the data describing time between failures, failure rate, or cumulative count of
failures over time (Littlewood, 1981). A Software Reliability Growth Model
(SRGM) is a formal equation describing the cumulative number of errors

discovered over time.

Based on the error-detection rate, SRGMs can be classified as concave or S-
shaped. S-shaped models start with convex shape, reflecting the initial learning
phase during which the detection rate increases (Lyu, 1996). Convex shape then
gradually becomes concave as the time progresses. Both types of models assume
finite number of errors in the software product. As most of the errors are detected
and the product reaches the stable state, the error-detection rate decreases in both
types of SRGMs.

Table 3 contains an overview of selected models. This table is an adaptation of
Table A in (Wood, 1996), extended with a more S-shaped version of the Weibul
model (W-S).
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Model Shape Properties Reference
GO S-shaped a(1-(1+bt)e™)
S-shaped 'Yamada et al. (1983)
(GO-S) a>0, b>0
Goel-Okumoto a(1-e™) Goel and Okumoto
Concave
(GO) a>0,b>0 (1979)
Gompertz a-b°
S-shaped [Kececioglu (1991)
G) 2>0, 0<b<l, O<c<l
Hossain- Bt bt
_ a(l-e™)/(1+ce™) Hossain and DahiyaJ
Dahiya/GO S-shaped
a=0, b>0, c>0 (1993)
(HD)
Logistic a/(1+be™)
S-shaped Musa et al. (1987)
(L) a>0, b>0, ¢ >0
Weibull a(l1-e™")
S-shaped Musa et al. (1987)
W) a>0,b>0,c>0
Weibull more a(1-(1+b-1°)-e™" )
S-shaped This study
S-shaped (W-S) 2>0,b>0, ¢ >0
Yamada a(1-e™"")
) Concave Yamada et al. (1986)
[Exponential (YE) 2>0,b>0, c>0
Yamada Raleigh a(1—eH1=T)
S-shaped 'Yamada et al. (1986)
(YR)

a>0,b>0, ¢ >0

Table 3: Software reliability growth models (adopted version of Table A in

Wood, 1996)
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The time component in the models listed in Table 3, and in software reliability
models in general, can be measured using calendar time, execution time, or the
number of tests performed (Lyu, 1996). Since, in general, resources and effort in
the development and testing process are changing over time, using effort
information in combination with time would result in a realistic estimation. Effort
alone is not capable of completely describing the servicing process since it does

not account for the learning process, which is also dependent on time.

In this study, the calendar time information about occurrence of SRs is used. This
type of information is easily available to project managers, making this approach

widely applicable.

Since there is no single “best” general software reliability growth model, it is
necessary to select one or more models that are most suitable for a particular

software project and goal in the analysis (Littlewood, 1981).

A multimodel approach introduced in Section 6 of this study is on multiple
criteria for effectiveness, predictive validity, goodness of fit, capability, and

simplicity of the models.

4.5. Gamma Analysis

Gamma analysis is a non-parametric statistical technique used to identify the
general order of different kinds of entities in a sequence. It is also used to quantify
the amount of distinctness or overlapping of the time of their occurrences.

Different entities being analyzed are usually referred to as “phases”.

A nonparametric statistic called gamma score, which assesses the quantity of
phases of one type in series that coming before or after the phases of another type,
is computed using gamma analysis. The gamma score for a pair of phases is based
on Gordan and Kruskal’s gamma statistic (Pelz, 1985), defined with:

P-Q
P+Q

where P is she count of phases of one type preceding the other type of phase, and
Q is the same count for the other phase with respect to the first phase. The resuit
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of the analysis for a sequence of phases is a table of gamma scores for all the pairs
of phases. The precedence score is defined as the average of gamma scores for

that class, and represents the ranking of a phase in the total ordering of phases.

“Gamma maps” visualize the result of gamma analysis by ranking the phases
based on the precedence scores and boxes are drawn to show the level of
separation of the phases. Absolute value of precedence score is referred to as
separation score, indicating the amount of distinctness of the phases. Phases with
value of separation score greater than 0.50 are shown in separate boxes. Phases
with separation scores between 0.50 and 0.25 are placed in continuous boxes.

Phases with separation scores below the 0.25 value are shown in the same box.

Kemerer and Slaughter propose gamma statistics for the analysis of software
evolution (Kemerer and Slaughter, 1999). It is found that Gamma analysis is also

particularly suited to determine the orders of appearance of different kinds of SRs.

Gamma analysis is used to describe occurrence of SRs of different type over time.
According to the usual practices in statistics (Pelz, 1985), the events occurring

less than 4 times have been excluded from the analysis.

4.6. Methods and Criteria for Models Comparison

The goal of software engineering models is to create an accurate description of the
software development process, to serve as a base for assessment and future

improvements, and to predict future behavior of the process and the products.

It is necessary to select one or more models that are most suitable for the goals in
the analysis and for particular software projects (Littlewood, 1981).

Various methods can be used to determine how well the model fits the data and
how effective it is in prediction. These methods can be numerical or graphical,

such as the correlation coefficients and the Alberg diagrams, explained in the

following sections.

Applicability, effectiveness, and predictive ability are often used for assessment
of models (Tian et al., 1995). Applicability evaluates the performance of a model

over time and across the different datasets, e.g., for different projects.
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Effectiveness of the model quantifies its ability to be fitted to the actual
observations. The ability of the model to predict future behavior in the software
development process, based on the historical data, is usually referred to as

predictive validity or predictive ability of the model (Fenton and Pfleeger, 1997).

Goodness of fit, based on the sum of square errors, is commonly used measure of
effectiveness of the model (Yamada er al., 1983). Other aspects of effectiveness
can be evaluated using correlation coefficients and graphical methods, such as
Alberg diagrams.

Capability and simplicity are also important factors for practical comparison of
different models (Pressman, 1991). Model capability estimates usefulness of the
information that the model provides for the software development process.
Clearly, it is desirable to have a model with parameters that have some physical
meaning, which can be well understood and interpreted. For a model to be really
useful, it is essential that data collection process is time- and cost-effective. This
characteristic of the model is referred to as the model simplicity. For example, the
information about the modifications in the software is usually easily available to
project managers from the company’s software configuration management

system, and this analysis is based on such dataset.

More detailed set of criteria is described in Section 6 where multi-model approach

is used for description and prediction of occurrence of SRs over time.

4.6.1. Correlation Coefficient

Correlation coefficient is a measure of the extent to which two random variables
track one another, i.e., magnitude of the effect of one variable to another. The
parametric Pearson’s correlation of two random variables x and y is given by:

_Ex-7)y-7)

where E is an expected value of the random variables, X and y are the

expectations of x and y, and o and oy are the standard deviations of x and y.



The correlation of two random variables can range from -1 to 1. The correlation
coefficient is positive when the relationship between x and y is such that small
values of y tend to go with small values of x, and large values of y tend to go with
large values of x. When the link between the two variables is poor and knowledge
of one of them does not help in prediction of the other one, the absolute value of

the correlation coefficient has a low absolute value.

For typically non-normally distributed software metrics data, on different
measurement scales, and non-linear relationships, the nonparametric Spearman’s
rank correlation is more general alternative to the parametric Pearson’s correlation
coefficient. To calculate the rank correlation coefficient for a given set of paired
data, the data are ranked among themselves from low to high or from high to low.
Then, the other variable is also ranked in the same way. The sum of the squares of
the differences between the ranks is then found, and the correlation coefficient is

calculated.

4.6.2. Alberg Diagrams

A graphical method called Alberg diagram, appropriate for scales below interval
scale, can be used to compare performance of the different predictive models in
terms of the criticality prediction for the classes in the system (Ohlsson and
Alberg, 1996). This diagram is based on the Pareto principle (also referred to as
80/20 rule; Ebert and Baisch, 1998). Pareto rule states that a small number of
modules (i.e., classes in Section 6 of this study) causes the major portion of the
problems and, consequently, consumes the most effort in the system. Alberg
diagram is formed by placing modules in decreasing order with respect to the
number of defects. The x-axis is the percentage of the total number of modules,
while y-axes represents the cumulative number of defects discovered in the

corresponding classes.

By comparing the curves formed using the observed data and the results
estimated by the model, the effectiveness of the model in identifying critical

classes can be assessed. It is reported that models with lower correlation
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coefficients can provide better prediction with respect to the criticality of the
analyzed modules (Ohisson and Alberg, 1996).

This can also be shown in the simple example in Figure 3. In this example, there
are seven classes (Cl through C7) with corresponding SR counts. There are also
two different models ~ A and B. Model A in this example has higher correlation
with the empirical data (0.498) than model B (0.228). However, in the range from
approximately 60% to 80% of the defects model B performs better in terms of

criticality prediction.

SRs Model A | Model B

Cl 89 C3 |40 |C7 {1

- | c2 |70 |ctL | 80 |C1 |80
: l = c3 140 [c4 |30 [C2 |70
. == [cs (30 |7 |1 |c3 |40
) \ C5 |20 [C2 [70 |C5 |20
- T Cé6 {10 [C5 |20 [C6 |10
c1 |1 C6 |10 |C4 |30

Figure 3: An example of Alberg diagram

4.6.3. Sensitivity Analysis of the Models

Since the some software metrics, such as data about SRs are collected by
developers, they are subject to human errors and imprecision. To assess sensitivity
of the models to errors, a Monte Carlo simulation can be applied to determine

what level of error affect the structure of the models and what can be tolerated

without problems.

Monte Carlo Simulation is a computationally intensive mathematical technique
for numerically solving differential problems. This technique has the advantage
that it is a "brute force" technique that will solve many problems for which no
other solutions exist. Monte Carlo simulation is appropriate when closed form or
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other simple solutions does not exist for a problem. It is used extensively in highly

complex problems.

In Section 6, white noise N(0,s) is added to the timing of the original data. The
standard deviation, s, assumes values from half a day to an entire year. For each
value of the standard deviation, the simulation is iterated 100 times. In each
iteration, the associated models are extracted and their parameters are compared

with the 95% confidence interval of the original models.
5. Empirical Investigation in Software Engineering

To answer the many questions of software engineering, it is necessary to provide
an objective and scientific evidence. Three main ways for providing such

evidence are surveys, case studies, and formal experiments (Fenton and Pfleeger,
1997).

5.1. Basic Research Techniques

A survey represents a retrospective study of a situation with the goal to document
relationships within the system and outcomes of the changes made to the system.
A survey is always done after en event has occurred. Software engineering
surveys typically poll a set of data from software development process to
determine the impact of a particular method, tool, or technique, or to determine

trends or relationships.

In a survey, there is no control over the underlying process or system when a
survey is performed. Because a survey is a retrospective study, the situation can
be recorded and compared with similar ones, but it is not possible to manipulate

variables.

Different levels of manipulation of the relevant variables are possible only in case
studies and experiments. Case studies and formal experiments are usually not

retrospective. The goals and plan of the investigation are made in advance.

A case study is a research technique for identification and documentation of the

key factors that affect the system under analysis. Case studies usually look at a
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typical project, and surveys are used to poll the behavior over large groups of
projects.

A formal experiment is a rigorous controlled investigation of a system, where the
factors of interest are identified and manipulated to investigate their effect on the
outcome. Since formal experiments require a great deal of control, they tend to be

relatively small, involving relatively small numbers of people and events.

To form a framework for an empirical investigation, it is necessary to form
definition, plan, operations, and interpretation of the experiment (Basili et al.,
1986). Definition of the experiment is used to set up a clear motivation of the
experiment and to provide details about the object, purpose perspective, domain,
and scope of the experiment. This information could be then used to improve the

existing process and assure high quality of the products.

Objects of the experiment in software engineering typically are the development
process and the resulting products. The domain and scope of the experiment
should also be precisely defined, stating the characteristics of the analyzed project

and the environment.

With a precise definition of the empirical study in place, it is possible to proceed
to the planning phase. Planning covers issues of experiment design, criteria for
comparison between the testing groups, and methods for measurement.
Experimental design is based on the information about the size and other
characteristics of the development teams, and specification of the projects that the

groups will work on.

For preparation for operation of the empirical study or experiment, the developers
and managers should be provided with basic training in the concepts being
introduced. Data collection is then performed through the development of the
projects. Finally, the quantitative and qualitative analysis is performed.

The results of the empirical investigation are then analyzed using various
statistical methods applicable for the particular data sets. Criteria for assessment
of the results of new practices are usually based on their effects on the quality of
the developed software and the costs of the development.
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To interpret the results of the experiment the context has to be clearly stated, and

the impact of the treatment has to be described.

Although formal experiments theoretically have best potential to provide the most
useful results, it is often very difficult to perform them. The primary reason for
this is the restrictively high price of a formal experiment in an industrial
environment. Even when a formal experiment is feasible from the cost
perspective, for example in an academic environment (Williams, 2000), it might
not be possible to replicate all the settings and control all the variables that might
influence the outcome. This is particularly the case having in mind that software

development is heavily dependent on the human factor.

Consequently, surveys and case studies represent the typical research techniques
in software engineering. This study provides results of multiple case studies from

different industrial environments.

5.2. Framework for Empirical Investigation

As discussed in Section 3.5, the GQM paradigm (Basili and Rombach, 1988)
represents a systematic approach for setting project goals customized for a
specific organization and defining them in an operational way. The measurement
process is organized in a top-down order in three steps, starting from the major
goals of the organization. A set of questions is derived from the goals. These

questions determine the set of metrics to be used.

The questions in the GQM framework also directly influence the way in which the
empirical investigation is performed. The definition of the experiment or other
research technique described in Section 5.1, is directly related with the goal from
the GQM paradigm (Basili and Selby, 1991). The design of the investigation is
closely related to the components of the GQM paradigm where the set of
questions is defined. The data collection process is directly defined by the selected
set of metrics in GQM.

As discussed in Section 3.6, every software metric has an associated measurement

scale and corresponding set of admissible transformations. The notion of
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measurement scale is essential for application of appropriate data analyses

techniques and models (Section 4).

The data collection process and type and quality of the data also directly influence
applicable statistical methods (Kitchenham, 1998). Finally, the interpretation of
the results depends on the initial set of goals from GQM, and the results of
statistical analysis.

The resulting framework for empirical investigation in software engineering is
graphically presented in Figure 4, using has and defines relationships between the

entities in the framework.

The set of goals in this study, stated in the GQM form in Section 3.5, is based on
improving the quality of the products. Set of metrics used in the study is based on
two factors with great impact of software quality: allocation of resources in the
development process, and the design of the system. Software metrics describing
these two aspects of software development are collected in industrial
environment. Particular care has been taken in investigation and proper allocation
of statistical methods and model applicable for the collected metrics. The analysis
of the collected data and interpretation of the results with respect to the initial

goals is performed with in Sections 6 and 7.
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Figure 4: Framework for empirical investigation in software engineering

5.3. Data Collection Process

Tool used for data collection in this study is WebMetrics, a research system for

software metrics collection (Succi et al, 1998). The main feature of the system is

the variety of metrics extraction tools available for different languages - C, C++,

Java, Smalltalk, and Rational Rose petal format. The WebMetrics tool is written

in Java.

The metrics tool calculates a predetermined set of metrics shown in Table 4. New

metrics can be programmed using the provided APL

Object-Oriented Metrics Procedural Metrics Reuse Metrics
Class LOC Function LOC Internal and external
NOM McCabe's cyclomatic reuse level,

DIT complexity frequency, and
NOC Halstead volume density for classes,
objects, and files ‘
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Object-Oriented Metrics Procedural Metrics Reuse Metrics

CBO Information flow (Fan- | objects, and files
REC In/Fan-Out)
LCOM

Table 4: Metrics collected by WebMetrics

5.3.1. Metrics Extraction

The field of software metrics is constantly changing. There is no standard set of
metrics, and new measures are always being proposed. Metrics researchers have
to modify their existing parser tools in order to accommodate the new measures.
This is a real challenge since such tools usually have very complex parser-
generator and language-semantics related source code. It is also easy for metrics
researchers to inject errors while modifying the large amounts of code involved.
Therefore, it would be desirable to decouple the information extraction process
from the use of the information. More specifically, the language parsing should be
decoupled from the metrics analysis portion of the process. This requires an
additional layer of abstraction with an associated intermediate representation, as

shown in Figure 5.

S

Source
Code

Parsers

Relations

Analyzer

Figure 5: Relations as additional abstraction layer in software metrics
analysis
The tool parses source files into relation files. The relations describe the existence
and relations between entities found in the source files. Then, the tool analyzes all

the relations and calculates metrics from them.
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The relations produced by the metrics tools conform to the WebMetrics Relations
Language (WRL) - a high-level, metrics-oriented intermediate representation
used to convey the structure of a source program. The structure of a system is
based on entities (such as classes and functions) and their interactions with each
other. WRL describes a set of such relations. All of the WebMetrics language
parsers output WRL.

Each metrics tool consists of a grammar parser, a symbol table, and supporting
classes. The grammar parser recognizes the syntax of a particular language and is
written in JavaCC (Metamata, 2001). The metrics tool is written in Java 2, and it

can work on all platforms with adequate virtual machine.

The extra layer of abstraction inserted into the metrics analysis process creates a
more modular architecture overall. There are tradeoffs involving this approach,

but the benefits seem to outweigh the shortcomings.

Metrics researchers only need to deal with the high-level, metrics-oriented
intermediate representation when adding or modifying metrics to calculate. This
spares them from having to know intimidating details about how a language is
parsed. What this means in the end is that modifications can be done more easily,
more quickly, and with less chance of injecting errors into the existing source

code.

In addition, the breakdown of the metrics extraction process into modules offers
more opportunities for reuse. Each module and abstraction layer is a point of

reference for reuse by other modules.

On the other hand, adding an extra layer of abstraction means that initial
development time will be longer, since the developer needs to spend more effort
in the design of the modules and the intermediate representation. However, the
savings in maintenance effort later on in the development lifecycle offset this

disadvantage.

Performance will likely degrade with the extra layer, but that is expected for

having more flexibility.
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Also, the intermediate representation needs to be designed very carefully. It has to

be adequate enough such that all desired metrics can be calculated from that

representation alone.

5.3.2. WebMetrics Relations Language

The relations are designed in form of a logic language, as Prolog-like clauses.

This structure is ideal for describing language-entity relations.

Currently, the following relations are defined. They have been chosen to

specifically facilitate the calculation of certain OO design and procedural metrics:

Relation Description Simple Example
hasLOC(entity, x) The specified entity has x | hasLOC(Stack, 6)
lines of code.
hasClass(entity, class) The specified entity contains | hasClass(Stack,

the specified (inner) class.

Stack::Iterator)

hasMethod(entity, The specified entity has the | hasMethod(Stack,
method) specified method. Stack::push)
hasAttribute(entity, The specified entity has an | hasAttribute(Stack,

attribute, typename)

attribute of the specified
type.

Stack::size, int)

hasMetric(entity, metric, | The specified entity has the | hasMetric(A.aMethod#

value) specified value for a|O#, Fanln,0).
particular metric.

hasFile(filename). A parsed entity includes the | hasFile(D:/Parsers/Incl
specified file. ude/VClinclude/winver

.h).

extends(entity, class) The specified entity is a | extends(Stack,

specialization of the | Collection)
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Relation Description Simple Example

specified class.

calls(entity, method, x) | The specified entity called | calls(Stack::push,
the specified method x | Stack:isFull, 1)

times.
usesAttribute(entity, The specified entity uses the | usesAttribute(Stack::is
attribute, x) specified attribute x times. Full, Stack::size, 2)

Table 5: Set of WebMetrics relations

5.3.3. The CK Metrics Example

As an example, the following table illustrates how the CK metrics can be
expressed in terms of the relations, using a simplified set-based notation called SL
(Succi and Uhlik, 1997).
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Metrics expressed in terms of relations

WMC

wme(X )= |{I : hasMethod (X, 1)},

DIT

parents(X ) ={I : extends(X 1)}

dit(X)=if (] parents(X ] # 0) max({dit(I): I in parents(X)})else O.

NOC

noc(X)= |{I : extends(I, X )}l

CBO

methods(X ) = {I : hasMethod(X ,I)}.

attributeClasse$X ) ={I : hasAttribe( X, _, )} union{l : Y inmethod§X); hasAttribee(Y, _, 1)}
usedClasses(X ) ={I : usesAtribute(X , I, _)}union {I : Y in methods(X ) ; usesAttribute(Y .1, _}
calledMethods(X )={I :Y in methods(X) ; calls(Y,1,_)}
methodClasses(X ) ={I : Y in calledMethods(X ) ; hasMethod(1,Y)}
cbd X)= |attﬁbute¢Classe.(X ) unionmethodClases(X ) unionusedClasss(X )|

RFC

localMethods(X ) = {I : hasMethod (X ,I %k

calledMethods(X )= {1 : Y in localMethods(X); calls(Y,1, )}
rfe(X ) = |localMethods(X ) union calledMethods(X ).

LCOM
methods(X )= {I : hasMethod(X ,I )k

commonAttiibutes(X,Y ) ={I : usesAntritute(X ,I,_), usesAttribute(Y, I, )}
setQ(X)={{1.J): I in method{X).J in method{X }:I # J |commonAnibuteq1.J ) #0}

seth(X)= {(1 ,J): I in method{X),J in method{X }1 # J .|commanAm'bure(l v ) = 0}.

diff (X ) = (serP(X )| ~|serQ(X )/ 2.
lcom(X ) = if (diff (X ) 2 0) diff (X ) else 0.

Table 6: Expression of CK metrics in terms of relations

This shows that the relations can be used to formaily express the CK metrics. The

metric values can then be calculated directly using these expressions.
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6. Analysis of Service Requests

6.1. Discussion of the Experimental Data from Real-time Domain

This section focuses on four projects coming from a major North-American
telecommunication company (Project A, Project B, Project C, and Project D). The
original data has been transformed in an appropriate way to avoid revealing any

confidential information, but still without any loss of accuracy or information.

Product A

Product B

Product C

l: Product D

Figure 6: Temporal evolution of the four projects

Time

Figure 6 contains the temporal evolution and the dependencies of the four
projects. Projects A and C were the basis for the development of projects B and D.
The development and testing of products lasted about one year for projects A and
B, four years for project C and two years for project D. Projects A and B were the
result of an acquisition of an external company and had a remarkable time
pressure. Projects C and D come from the “regular” line of business. All the four
projects are in the real-time telecommunication domain and their code was written
mainly in C++.

The developers of the four projects had about the same education and skills — a
BSc either in Electrical and Computer Engineering or in Computer Science. No

particular pattern was observed in the assignment of developers to projects.
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In total, there were 1295 different SRs for all the four projects (153 for Project A,
345 for Project B, 625 for Project C, and 172 for Project D).

The information on SRs is stored in a corporate repository. For each SR there is
the time such SR was entered and how long it took to serve it. Figure 7 contains

the arrival time of the SRs. The specific dates of arrival are omitted from the x

axis for confidentiality.
Products Aanct 8 Products C end 0
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Figure 7: Arrival time of Service Requests for the four projects

Each service requests has an associated severity, which is subjectively determined
by the tester following corporate guidelines. The company adopts an ordinal scale
to quantify the severity, ranging from S1 — the most severe SR, to S5 — a cosmetic
SR.

Table 7 contains the description of the severity levels used at the company and the
breakdown of the SRs by severity for each project. There are very few SRs of
level SS. This is considered a consequence of the target real-time application

domain, where cosmetic issues are often not addressed.

Level Description A B C D

Critical - A problem that 5 13 74 20
makes the whole system, a | (3 294 | (3.779%) | (11.84%) | (11.63%)
subsystem, or  major
S1 feature/function non-

operational.

Issue is worked 24 hours a

day, seven days a week,




Level Description A B C D
with the objective to solve
it in 48 hours.
Major - Non-emergency 51 113 267 94
failure  of  system | 33 33q) | (32.75%) | (42.72%) | (54.65%)
operations with no
significant effect to overall
S2 system performance.
The objective is to start
serving the request in 72
hours and to resolve the
problem in one month.
Minor - Item that can be 78 196 250 50
worked around efficiently | (59 9ga) | (56.81%) | (40.00%) | (29.07%)
and does not cause serious
S3
problems.
The objective is to solve
the issue in 180 days.
Marginal - Issue with no 17 21 31 6
S4 s
visible impact. (11.11%) | (6.09%) | (4.96%) | (3.49%)
Ignorable - 2 2 3 2
S5 Documentation and lowest (1.31%) | (0.58%) | (0.48%) | (1.16%)
impact requests.
153 345 625 172
Total
(100%) | (100%) | (100%) | (100%)

Table 7: Severity levels of the SRs in the four projects
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SRs for projects A and B also have associated information on the type of the

service request. Table 8 contains the description of such types and their

frequencies.

Name Description A B
Assistance Request for additional help with 0 12
(A) configuration of the system, or 0.00%) | (3.83%)

interpretation of the specification.
Deficiency Lack of support for the specified 28 69
D) functionality. (15.56%) | (22.04%)
Enhancement | Request for an enhancement in 6 8
(E) functionality of the software. (333%) | (2.56%)
Feature Possible request for a new feature or 2 11
®) change of an existing one. (L11%) | (3.51%)
Hardware Problem  traceable to  hardware l 2
(H) components of the system. (0.56%) | (0.64%)
Information Request for an update of missing or 2 5
M incorrect information. (L.11%) | (1.60%)
Other Other unclassified service requests. 2 2
(&) (1.11%) | (0.64%)
Product Report of a system-level product defect. 47 69
service (26.11%) | (22.04%)
request
®)
Software Problem traceable to software. 92 147
(S) (51.11%) | (46.96%)

Table 8: Types of SRs in projects A and B
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6.1.1. Extraction and Analysis of the Models for Timing of SRs

In this section, the performance of the models describing the timing of SRs listed
in Table 3 is assessed. The models are first analyzed across the four entire
datasets. A separate analysis is then performed for the different severity levels
and, for Project A, for the different components, to determine the impact and the
use of such additional information, if any. The analysis on the types of SRs is not

performed, since there are multiple types with very few numbers of SRs.

The parameters of the models are estimated using least square error regression on
the available SR data. The statistical tool used to tune the model parameters
employs an iterative estimation algorithm for finding the global minimum of the
cost function. The bootstrap method is used to determine the confidence intervals

for parameters of models.
As mentioned, the goal of modeling the occurrences of SRs is twofold:
To create an accurate description for assessment, comparison and improvement,

To predict the occurrence of the SRs early in the evolution of the SR serving

process.

The first goal can be further organized in terms of goodness of fit, the accuracy of
the final point, relative precision of fit, coverage of fit, and predictive ability of

the model.

The goodness of fit represents how well the model fits the data, and therefore it is
a reliable descriptor of the overall process, to be used for comparison and

assessment. The goodness of fit is measured using the sum square errors.

The accuracy of the final point represents whether the model is able to determine
the total final number of SRs. It is measured with E:

A-«
A

E=100-

where A and a are respectively the true and estimated value of the total SRs

served.
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The relative precision of fit is the size of the bootstrap 95% confidence interval
computed over the parameters of the model and normalized over the size of the

interval of time of SRs arrival.

The coverage of fit is the degree to which the 95% confidence interval captures

the oncoming service requests (shown in the Data Coverage column of Table 9).

Relative precision of fit and coverage of fit measure two complementary aspects
of the fit that must be considered together to evaluate the value of a model: a very
large 95% confidence interval might be able to capture most of the data, but it

would be totally useless.

The predictive ability represents how early in the development the model is able
to predict the final count of SRs. A model is considered to successfully predict the
total count of SRs if the count is estimated within the +10% range of the final
number of SRs recorded. The predictive ability of a model is measured by
computing the ratio of when the model successfully predicts the final number of

SRs and the overall length of the interval of time of SRs arrivals.

Table 9 presents the results of the analysis and Table 10 provides the ranking of

the models for each criteria.

The suitability of the models is highly variable, there is not a model performing
the best in all cases. However, for the family of datasets used in this analysis, the

choice can be restricted a few models that perform much better than the others.

For both projects A and B the group of models that perform reasonably well
consists of G, GO-S, HD, L, W, and W-S. For projects C and D this group is
reduced to HD, G, and L. (For an overview of SRGMs, see Table 3 in Section
4.4.) Only those three models were able to model the long initial concave shape of

the SR occurrence.

From this analysis, it appears that a reliable estimation can be performed only

using multiple models together.



Goodness of Fit Accuracy of Final Point Predictive Ability

A| B C D A B C D AlB| C D
G 18 B7 646 ROS .11 PR.84 6042 [11.22 0.640.50N/A [N/A
GO 103 207 [7386 878 [42.56 [40.45[1294.11 312.58 |IN/JAIN/AIN/A [N/A
GO-S B0 HK8 12563 463 (8.01 R2.68 [3869.67[2803.781.000.75N/A IN/A
HD 20 43 [167 B9 0.74 K425 P48 0.68 [0.730.500.98 10.77
L 6 62 |166 B9 P25 5.69 P47 072 IN/AD.500.98 0.77
w 16 6 BI04 B66 [0.98 ©.08 [132.69 (1421 [0.18 0.17|NIA IN/A
W-S |16 [33 |1455 89 10.06 .50 P58.37 115.69 1.000.67'N/A IN/A
YE 104 212 i10329/897 145.1542.3418.12 [59.18 [N/A0.670.05 [N/A
YR 17 @43 B721 635 |[1.96 $6.81 @A1.80 |L.75 IN/AIN/AINVA. IN/A

Relative F ecision of Coverage of Fit

it

A| B C D A B C D
G 440 1159 1527979217 |89.71[5.88 P5.27 9.0l
GO 1509]1628 @950 [1678 [76.47 99.16 37.84 47.52
GO-S (613 |107 14524 Bl4 [75.00 2.52 5845 [1.92
HD 306 977 P08 P34 W2.6540.34 5541 [51.49
L 457 417 [736 695 (80.88 W1.18 47.30 [73.27
w 11773467 }17715(12368 [89.71 {73.95 99.32 199.01
W-S |1714{1444 168379]13280 ©98.53 P9.16 99.66 199.01
YE 388214184 [79115(1558 {89.71 99.16 99.66 K2.57

6847[7007 2154 240 [98.53 |87.39 1892 K95

Table 9: Result of the analysis of the SRGMs
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Table 10: Ranking of the SRGMs

Building models using only SRs of a given severity and, for project A, only SRs
coming from individual components does not appear to alter significantly in most
of the cases the SRGMs.

Using the 95% confidence interval, no remarkable variation of the models across
the different severity levels is detected. There is some possible indication that SRs
of severity S1 may result in different models. However, such indication is not
consistent across all the projects: 4 models out of the best 6 are different for

project A, 2 out of 6 for project B, 1 out of 3 for project C and none for project D.
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It could be therefore considered an artifactual result of the fewer data points of

such level of severity.

The analysis performed on the individual components in project A does not reveal

any difference.

Altogether, it appears that the information on severity and the specific
components does not increase the performances of the SGRM for the projects

under consideration.

6.1.2. Time to Resolve the SRs

As mentioned, it is important for managers to predict the time required to serve
SRs. It is intuitive to expect a learning process and the decrease of the time to
serve as the SRs servicing process progresses. The analysis of variance confirms
this intuition in all the datasets and evidences that the most influential significant

factor explaining the variation in time to serve is the calendar time (Figure 8).
The correlation coefficients between calendar time and time to serve are high for
all the projects (r Project A = 082, r Project B = 077, r Project C = 0.67, r Project D = 0.82)

with high level of significance (always, p < 10%).

ProjectA Project 8
<] ]
e i
i i
E o
Projectc Projecto
P i
L] 2
L !

Figure 8: Scatterplot of the variation of the time to serve with the regression
line
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The linear regression coefficients are listed in Table 11.

Slope Sig. Intercept Sig. r
Project A | -0.63 <107 258.95 <107 0.82
Project B | -0.53 <103 235.89 <10? 0.77
Project C |-0.47 <10? 428.78 <10 0.67
Project D | -0.65 <10’ 365.24 <107 0.82

Table 11: Coefficients of linear regressions

The high level of significance of the coefficients suggests the presence of linear

relations.

Unfortunately, the linear models provide reasonable but not exceptional
descriptions of the data. The distributions of residuals follow quite closely a
normal distribution. However, the scatterplots of residuals evidence a variation of
the spread of the data with calendar time, especially for projects C and D, and the
Durbin Watson coefficients reveal for projects A and B the presence of positive

autocorrelation.

Polynomial and logistic models have also been tried but without any improvement

of the representations.

The effect of severity on servicing time are analyzed in the same way as for the
SRGMs. Models specific to the single levels of severity are extracted and the 95%

confidence intervals of the parameters of the models are compared.

Like for the case of SRGMs, the limited size of some of the datasets prevents
from making general conclusions. It appears, though, that SRs of severity S1
results in models significantly different from other SRs in 3 out of 4 cases. The
managers of the company explain this with the fact that such SRs are the only that
require 24 hours /day, 7 days/week servicing. No remarkable differences were
identified for the other levels. The difference of severity S1 may also be the cause
of the patterns in the scatterplots of residuals that were previously observed. The

models specific to each severity level have been analyzed; however, the limited
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amount of data for certain levels of severity does not support any final conclusion.

More careful investigation is clearly required.

For project A, no difference has been noted on the servicing time across

components.

6.1.3. Kinds of SRs

Knowing the temporal distribution of the kinds of SRs over time allows a proper
allocation of the right kinds of resources and enables an analysis of the overall

evolution of the servicing process.

In this research, gamma analysis is applied to the severity of SRs (Figure 9) and,
for projects A and B only, to the types of SRs (Figure 10). Not all severity levels
and types of SRs appear in the gamma maps, since elements occurring less than 4
times cannot be included (Pelz, 1985).

With respect to the severity, the gamma analysis reveals that in general SRs with
the lower priority tend to come first, while higher priority SRs occurred in the
later stages of development. Such results have been reported to the managers of
the company. They relate such results to the pressure that occurs at the end of the
development of the projects, when, due to time constraints, the focus is on higher

priority SRs, which refer to matters that are essential to ship the final product.

This pressure is especially evident in project B, where the temporal occurrences of
SRs of different severity are quite distinct. Also in project A such effect is
remarkable, even if not intense. Project A and B are the projects with the shorter
time frames (Figure 6). In projects C and D the pressure is still evident but at a
much lower degree, since there is a significant overlap between the temporal
occurrences of SRs of different severity. The managers at the company confirm
that project A and B were the one for which the highest level of pressure was

experience by the employees.

With respect to the types, it appears that in both project A and B there were
initially requests related mainly to problems in understanding the requirements of
the final systems —the types “Deficiency,” “Software,” and “Feature.” In the later
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stages, the requests were more related to minor issues or to understanding what

the systems were supposed to do —the types “Enhancements” and “Assistance.”

Also for types of SRs, the managers confirm that the results conform to the real

evolution of such projects.

Project A S4 S3S1 S2
Project B S4 S3 S2 S1
Project C S4 S2 S3 S1

Project D S4 S3S182

Figure 9: Gamma analysis of the severity

Project A D SPE

Project B F DIESP A

Time
Figure 10: Gamma analysis for projects A and B

6.1.4. Sensitivity of the Models
Since the SRs are collected by developers, they are subject to human errors and
imprecision. To assess sensitivity of the models to errors, a Monte Carlo
simulation is run to determine what level of error affect the structure of the
models and what can be tolerated without problems.
A white noise, N(0,s) is added to the timing of the original data. The standard
deviation, s, assumes values from half a day to an entire year. For each value of

the standard deviation, the simulation is iterated 100 times. In each iteration, the
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associated models are extracted and it is checked if their parameters are within the

95% confidence interval of the original models.

The graph in Figure 11 contains the results for the best performing SRGMs. The
x-axis is the log of the standard deviation of the noise, in days. The y-axis
represent the percentage of times the parameters of each model fall within the

95% confidence interval for the given standard deviation.

The best performing SRGMs models have different sensitivity to imprecise input.
Most of the models are resistant to the noise with standard deviation below 5
days, while some models can even tolerate two weeks without significant

degradation in performances. Table 12 contains the ranking of the models.

Project A Project B

Time to serve
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Figure 11: Performance of SRGM:s in presence of error

95% confidence intervals
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3 L L L L

4| W-S w N/A | N/A

5 W | GO-S| NA | NA

6| HD | WS | NNA | N/A

Table 12: Ranking of the SRGMs with respect to their sensitivity to error

Linear regression showed high resistance to noisy conditions, with quite good
results even for the data-entry error on the level of about 10 days, as represented

in the Figure 12(a).
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Figure 12: Performances in presence of noise of (a) the linear regression
models and (b) the gamma analysis
The gamma analysis appears more sensitive to presence of noise. The degradation
starts when the error reaches about 2 days. However, the curves oscillate more:

this can be a result of the non-parametric and non linear nature of this statistical

analysis.

6.1.5. Summary of the Results and Discussion
In this section, the obtained results are briefly summarized and discussed.

It appears that in general SRGMs can model effectively the timing of
occurrences of SRs provided that a multimodel approach is taken. Such
multimodel approach is useful not only to achieve the different goals of the

analysis but also to have more robust results for each individual goal.
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The results regarding the predictive ability of the models are not completely
consistent: for projects A and B there are models that can make reasonable
estimations half way through the servicing process, while for projects C and D the

situation is less clear and demand a closer investigation.

In this part of research, across the 4 analyzed projects, three SRGMs perform have
consistently good. Such models are the Gomperz, the Hossain-Dahiya, and the
Logistic.

Overall, the models do not change significantly taking into account either the
information on severity of SRs or the knowledge on to which internal component
the SRs refer. However, the impacts of SRs of severity S1 are unclear, probably

due to the limited amount of data available.

The analysis of the time of SRs occurrences with SRGMs is quite robust to errors:
in general the parameters of the best performing models do not change

significantly for white, Gaussian error with standard deviation up to five days.

The time to serve is well correlated to the calendar time. However, the linear
regressions extracted from the data satisfy only partially the criteria for a linear
model. This might be due to the influence of severity of SRs, which, if taken into
account, appear to alter the structure of the models. Unfortunately, also in this

case, the limited amount of data does not allow to obtain more definite results.

The linear models are also quite resistant to noise; their parameters do not

significantly change for levels of standard deviation up to 5 days.

The temporal occurrences of the different kinds of SRs can be described with
gamma analysis, resulting in models that are accurate explanation of what
effectively happened. For all the four projects the more severe SRs tend to occur
especially at the end of development, due to the final rush to have the product
shipped. This situation is especially true for project B, the one that had the most

severe pressure, according to the managers of the company.

With respect to the types of SRs, SRs related to requirements occur earlier while
SRs for product understanding and use later.
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The models extracted with gamma analysis are more sensitive to errors. The level

of tolerance is a standard deviation of about 2 days.

6.2. Discussion of the Experimental Data from Commercial Domain

This section focuses on three different software projects, referred to as Project 1
(P1), Project 2 (P2), and Project 3 (P3), coming from two companies (companies
A and B). Pl is developed by company A, and the other two projects (P2 and P3)
by company B. All three projects are developed for the commercial application

domain.

Pl is mainly written in C++, while P2 and P3 are developed in RPG. The size of
the products, expressed in the thousands of lines of code (KLOC), is 48 KLOC for
P1, 99 KL.OC for P2, and 100 KLOC for P3.

The developers in both companies had education level equivalent to a BSc in
Electrical and Computer Engineering or Computer Science. Personnel and

resources were assigned to the projects with no particular pattern, suggesting no

selection bias.

Severity Description Count
Level
A problem that makes the
whole system, a subsystem, 5
Critical
or major feature (function) | (3.7%)
non-operational.
Partial failure of system
operati with no 73
Serious perations l
significant effect to overall | (54.5%)
system performance.
Non- A problem that can be 56
critical worked around causing no (41.8%)
serious problems.
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Priority Description Count
level
Issue is worked 24 hours a
day, seven days a week| 68
High :
untii the problem is| (50.8%)
resolved.
The objective is to resolve 56
Medium | the reported problem within
(41.8%)
one month.
The objective is to resolve 10
Low the reported problem in less
7.4%
than 6 months. (7.4%)

Table 13: Severity and priority levels of the SRs in the P1 dataset

Type of SRs Description Count
Change Request for an additional new feature or a significant | 30
Request (C) change or enhancement of the existing requirements. 22.4%
Documentation | Request for a fix of incomplete or incorrect 1
Doc) documentation. 0.8%
Duplicate Request that was determined to report on the same | 7
D) problem as an earlier SR. 5.2%
Mistake 2

SR reporting on a problem that does not exist.
™) 1.5%
Support Request for additional help with configuration of the | 16
(S) system, or interpretation of the specification. 11.9%
S/W Bug 78
System-level problem traceable to code.
(Sb) 58.2%

Table 14: Types of SRs in P1 dataset
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The development of P1 took two and a half years, while development of P2 and
P3 took five and five and a half years, respectively.

There were in total 134 SRs in four partially overlapped releases of P1. Project P2
had four consecutive releases with the total of 126 SRs, and P3 had five releases
with the total of 76 SRs. There was practically no overlapping in the development

of the successive releases of projects P2 and P3.

The information about the date the SRs occurred and the date they were fixed is
recorded in both companies. Only the P1 dataset has information about severity,

priority level (Table 13), and types of SRs (Table 14) associated with each SR.

The severity level of an SR is related to its importance for the overall
functionality of the application from the customers’ perspective. The priority of
an SR depends on the organizational and technical importance of an SR. Table 7

contains description of the severity and priority levels of SRs in the P1 dataset.

Serious SRs make the major part of the dataset (54.5%), followed by non-critical
SRs (41.8%), while less than 4% of all SRs are critical. Low percentage of critical
SRs can be interpreted as a consequence of the application domain, but it can also
be attributed to the corporate development process and subjective factors. For
example, developers might be reluctant to assign critical severity to an SR due to

the commitments required in fixing such an SR (see Table 7).

When the priority assigned to SRs is concerned, the majority of SRs have high
priority (50.8%), followed by medium (41.8%) and low priority (7.4%).

With respect to types of SRs, those SRs referring to software “bugs” are most
frequent type of SRs in the P1 dataset (58.2%). The least often type of SRs is
related to documentation, making only 0.8% of the total count.

Types of SRs also report on requests that did not result in modifications to the
system: duplicate and mistake SRs. However, these SRs are treated in the same
way as the other types since they also require effort to be spent in identification,

isolation and further investigation of the reported problem.
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6.2.1. Extraction and Analysis of the Models for timing of SRs

In this section, the ability of models listed in Table 3 to describe the occurrence of

SRs over time is analyzed.

The least square error regression is used for fitting of the parameters of the
models. The statistical tool that was used employs an iterative estimation
algorithm for finding the global minimum of the cost function, and the bootstrap

method to determine the confidence intervals for the parameters.

The goal in modeling the occurrence of SRs is both to create an accurate
description of the SRs servicing process, to serve as a base for assessment and
future improvements, and to predict the occurrence of the SRs early in the

software evolution.

The criteria used to evaluate SRGMs are (similar to Section 6.1): goodness of fit,
accuracy of the final point, relative precision of fit, coverage of fit, and predictive
ability.

The goodness of fit represents how well the model fits the data. This criterion is
measured using the standard deviation of residuals, i.e., the root mean square error

(Tryfos, 1997). The unit used for goodness of fit in Table 15 is the number of
SRs.

The accuracy of the final point corresponds to the effectiveness of the model in
determining the final number of SRs observed in the dataset. It is measured using
the relative error in the estimated number of SRs, and expressed in percentiles of
the final number of SRs in Table 15.

The relative precision of fit is the size of the 95% confidence interval for
parameters of the model, normalized over the development time interval. The unit
used for this measure in Table 15 corresponds to the product of the time
(expressed in days) and the number of SRs. Models with low value of the relative
precision of fit typically have high capability of providing useful information

about the occurrence of SRs.
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The coverage of fit represents the degree to which the bootstrap confidence
interval captures the observed service requests. In Table 15, the coverage of fit is

expressed in percentile of the total number of SRs within the confidence interval.

The coverage and the relative precision of fit represent complementary aspects of
the model fit. To properly evaluate a model they should be considered together. A
wide confidence interval captures most of the data points, but it does not provide

useful information about the occurrence of SRs.

The predictive ability describes how early in the development process a model is
able to predict the final count of SRs within the £10% range of the final number
of SRs recorded. Values in Table 15 represent the ratio of the time necessary for

the model to converge and the total development time.

The three software projects come from the same application domain but are
developed in different programming languages and environments, and during
relatively long period of time. Consequently, it is difficult to restrict the nine
SRGMs to a smaller set of models with consistently good results across the
different datasets, i.e., with high applicability level. This is primarily because the
occurrence of SRs over time widely departs from the clear S-shaped or concave

behavior for all three software projects (Figure 13).
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Figure 13: Occurrence of SRs over time for the three projects
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From the occurrence of the SRs over time, shown in Figure 13, it is clear that P2
does not reach a stable phase with low SR rate. Reasons for releasing the product
before the stable stage in servicing SRs is reached depend on other aspects of the
software development process, corporate release methodology, and various
business pressures. This kind of trend cannot be successfully explained by any of
the available models, since all of them assume a finite number of errors present in

the software.

Goodness of fit, accuracy of the final point, relative precision of fit, and coverage
of fit are all used to quantify various aspects of the models’ applicability,
capability, and effectiveness. Predictive ability is used to validate predictive

characteristics of the model.

The accuracy of the final point and the predictive ability are both associated with
the precision in estimation of the final count of SRs in the dataset. Consequently,
the rankings of the models with respect to these two criteria are interrelated.
When occurrence of SRs does not reach the stable phase, e.g., in case of P2, the
results of both criteria do not make sense. Therefore the respective columns are

grayed for P2.

Results of the analysis and model assessment are presented in Table 15, with the

best results shown in bold. In Table 16, the models are ranked based on their

performances.
Goodl{ess of Accurac): of Final Prl::::it(l);eof
Fit Point Fit

Pl | P2 | P3 Pl P2 P3 PI| P2 | P3

G 54440071499 | 522 | 47.23 5.30 144 237 | 158
GO |882]4.14(4.80] 5.51 |56624 16.02 260(2518 | 331
GO-S |13.50| 6.88 | 5.87 | 8.74 | 17.57 8.34 172 282 | 205
HD (882421480 552 |44746 16.01 2581 811 | 387
L 5744561548 | 255 | 15.19 9.39 488 | 142 | 252
w 5.83 | 4.35 | 4.65 |4645.03] 209.28 345 1625} 3610 1874
W-S |6.07]423|5.11]513.92)923.64 3.02 1664; 2604 | 2435
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e

8.79 | 4.34 | 4.85 |1480.28{ 711.33| 129.69 |579[4709]1927

YR |[1532] 894 |7.48| 001 {13619 155102 |300(5343|8181
C°""F'E;g° of | Ppredictive Ability
G |pPI|P2|P3| PI | P2 P3

59.30/90.32157.29| 0.67 | N/A 0.56
GO-S |66.28195.97182.29] 0.76 | N/A N/A
15.1263.71{11.46] 091 | N/A 0.97
L |66.28{83.87|80.21| 0.76 | N/A N/A
33.72|58.87{14.58] 0.76 | N/A 097
97.67/99.19{96.88] N/A | N/A 0.95
96.51{94.35(98.96| N/A | N/A 0.45
52.33199.19196.88] N/A | N/A N/A
61.63(99.19|98.96f 0.67 | 0.25 0.08
Table 15: Result of the analysis of the SRGMs for the three projects

~1Eb

Goodness of Fit mr;?i:tf mf.ﬁ.'ﬁ.'.'li Fit
pr|{P2|P3|pPIL|P2|P3|PI|P2|P3
1| |G |W|YR|YR|YR|[G|L |G
2 | L |GO|wp| L | L |WS|GOS| G |GOS
3 lw|m|60! 6 lgos| w | D [go-s| L
4 |WS|WS|YE|GO| G| G |GO|HD|GO
5 |YE|YE| G |HD| W [GO-S| YR | GO | HD
s | co wslcos|lmb| L | L [ws| w
7 |HD| L | L |W-S|GO|HD| YE| W | YE
8 |Go-s|Go-s|Go-s| YE| YE|GO| W | YE WS
9 | YR|YR|YR| W |WS| YE|W-S| YR | YR
Coverage of Fit P;e::;;tg ¢
prlpP2| P3| Pl }P2]| P3
I | W w|Ws| G|YR|YR
2 |ws|YEIlYR|YR| G |w-=s
3 |mp| YR w [Go | GO | w
4 |GO|go| YE I'IDGO-SGO-S
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5s |YR|ws{cgo| L |HD| L
GGGHDGO-SVLVG
7 |YE|HD| G | w {ws| co
8 | L |cos| L |ws|yE|HD
9 |cos| L |co-s| YE YE

Table 16: Ranking of the SRGM:s for the three projects
In general, the G and the L models show relatively high level of applicability by

consistently ranking high on the list of models’ performance with respect to the
set of criteria used in this study. The G model is especially good in terms of
relative precision and goodness of fit. On the other hand, the YR model

demonstrates a fair accuracy in estimation and early prediction of the final point.

For all the three projects the YE model performs poorly in most of the criteria:
accuracy of the final point, relative precision of fit, and predictive ability. This
ranks the YE model relatively low on the overall list of the applicable models
together with the GO-S and the YR models, both of which have consistently poor
goodness of fit, while the GO-S model also has low coverage of fit.

Although the G and the GO-S models have good precision of fit for all the
projects, they also show relatively poor results with respect to the coverage of fit.
On the other hand, the W model is highly ranked for all three datasets with respect
to the coverage of fit, having much lower ranking when the relative precision of

fit is concerned.

As mentioned, relative precision and coverage of fit correspond to complementary
aspects of the model’s performance. This study is interested in both capturing the
shape of the occurrence of SRs over time, and covering most of the observed data
points within the confidence interval. Although a very wide confidence interval
captures most of the data points, it does not provide useful information about the
occurrence of SRs. A desirable descriptive model should have a low value for the

relative precision of fit and a high value for the coverage of fit.

Figure 14 presents scatterplot of the coverage of fit and the relative precision of fit
(on the logarithmic scale) for the nine models and the three datasets. The high
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value of Spearman’s non-parametric correlation between the two measures (r =
0.83, p < 10?) indicates that the models with a high relative precision typically
have high coverage of fit.

Covemge of it
-
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Figure 14: Scatterplot of the coverage of fit vs. relative precision of fit (a),
and the zoomed portion of this graph (b)

The models with low values of the relative precision and high values of the
coverage of fit are located in the upper left-hand side of the graph (a) in Figure 14.
This portion of the graph is zoomed in Figure 14 (b), showing the best models and

the corresponding datasets with respect to both precision and coverage fit.

6.2.2. Time to Resolve the SRs

Another important aspect in the description of the process of serving SRs is the
productivity of this process. Productivity can be expressed in terms of the time
required to service an SR after the request was submitted. It is intuitive to expect
that the learning process, i.e., increasing understanding of the system as time
progresses, has a strong impact to the productivity in servicing SRs. However, it
is interesting to check if there are other aspects with high influence to the time

required for servicing SRs.

This analysis is performed only on the P1 dataset since the time to service SRs is

not recorded in the other two datasets.

For modeling the effect of other categorical SR attributes, such as severity,
priority level, and software release, the stepwise linear regression is used with
dummy variables (Tryfos, 1997).
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The resulting model (Table 11) identifies the calendar time as the only statistically
relevant variable with influence on variation in the servicing time. Quadratic and
cubic models have also been tried but without any improvement in the

performance of the final model.

Slope | Slope Signif. | Intercept | Interc. Signif. r

-0.12 0.01 121.14 p<10® 0.22

Table 17: Coefficients of linear regression

The resulting linear model has a low correlation coefficient and a moderate value
of the slope parameter. In addition, there is a clear pattern in the distribution of

residuals for this regression (Figure 15).
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Figure 15: Variation of time to service SRs with calendar time

6.2.3. Kinds of SRs

Understanding the distribution and occurrence of the different types of SRs over
time allows a proper allocation of the right kind of resources and better insight in

the evolution of the servicing process.

As mentioned, severity level of an SR is related with the customers’ perspective
of system’s functionality, while the priority is assigned according to SR’s
technical and organizational importance in the development process. While
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intuitively these two aspects of SRs are interrelated, it is interesting to analyze this

relation in more details.

Figure 16 graphically presents the percentage in which each priority level
contributes to a total count of SRs, across the different severity levels. From this
graph, it can be seen that all critically severe SRs were assigned high priority
level. The percentage of SRs assigned both low and medium priority levels
decreases with increased severity levels, while the percentage of high-priority SRs

increases.

To some extent, SRs with higher severity correspond to SRs with higher priority
level. However, the correlation coefficient for categorical data (Freund and
Simon, 1996), calculated with respect to the severity and priority levels of SRs,

has a moderate positive value r = 0.33.

0% 10% 2% W% O% % % 0% 0% W% 100%
Priority level

Figure 16: Severity and priority levels of SRs for the P1 dataset

To describe occurrence of different types of SRs over time, gamma analysis is
performed with respect to severity, priority level, and type of SRs from P1. Phases
with less than 4 data points in the dataset are not considered for this analysis
(Pelz, 1985).

With respect to severity of SRs, Figure 10 shows that non-critical SRs tend to
appear early in the process, with a low level of overlapping with the following

phase in which critical and severe SRs appear.

While there are two distinctive phases in occurrence of SRs with different

severities, the SRs with different priority levels tend to be more overlapped
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(Figure 10). Generally, high priority SRs tend to appear earlier in the process,
followed by SRs with low and medium priority.

Severity of SRs: N CS
Priority level of SRs: HLM
Types of SRs: SSbDC

Figure 17: Gamma analysis for P1 with respect to the severity, priority level,
and types of SRs

Occurrence of different types of SRs also shows high level of overlapping.
Requests for support (S) tend to appear first, followed by software bugs (Sb) and

duplicate SRs (D), while requests for change (C) occur later in the process.

6.2.4. Sensitivity of the Models

The data about SRs are subject to human errors and imprecision in the collection
process. A Monte Carlo simulation with additive white noise is performed to
determine the level of error that can be tolerated without significantly affecting

models’ structure.

The white noise is added to the timing of the original data, with standard deviation
ranging from half a day up to an entire year. The simulation is repeated 100 times
for each value of the standard deviation. Every time the simulation is run, the
parameters of the models are calculated and the check is performed whether these

parameters are within the 95% confidence interval of the original models.

The sensitivity to imprecision in the input data depends both on the underlying
dataset and on the corresponding model. Models applied to all of the available
datasets show relatively good resistance to errors in the input data ranging from
around 9 days for P2 (the G model), up to 19 days for P3 (the W model). Figure
18 presents the results of Monte Carlo analysis and Table 12 contains the ranking
of the models with respect to their robustness. In Figure 18 the x-axis is the log of
the standard deviation of the noise, expressed in days. The y-axis represents the
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percentage of the total number of simulation runs, for the given standard

deviation, with the parameters of the resulting model within the confidence

interval.

The GO-S model consistently shows high robustness to the introduced noise for

all the projects. The other six models follow this pattern, while the YE and the YR

models show poor resistance to noise.
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Figure 18: Monte Carlo analysis of the robustness of SRGMs to the noise in

the input data

A model with wide confidence interval for its parameters, i.e., high value of the

precision of fit, typically has relatively high resistance to noise. Such a model,

however, does not provide useful information about the occurrence and the

process of servicing SRs.

P1 P2 P3
1] GO-S| GO | GO-S
2 w GO-S
3 G w G
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P1

P2
4 | WS L w
HD

5 L

6 G

Table 18: Ranking of the SRGMs with respect to the robustness to noise in
the input data

Monte Carlo analysis is also used to assess the robustness of the linear model
applied to time to serve SRs. This model also shows high robustness to
imprecision in the input data, being able to tolerate noise corresponding to

approximately two weeks.
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Figure 19: Robustness of the gamma analysis linear regression results in

presence of the noise in the input data
Results of the gamma analysis appear to be more sensitive to the presence of
imprecision in the input data. The degradation starts with the errors in the range of

one day. The graphs in Figure 19 present the results of the Monte Carlo

simulations for gamma analysis and for the linear regression model.

6.2.5. Summary of the Results and Discussion

This study is focused on analysis of the data from the commercial application
domain. It is interesting to compare results of this analysis with the findings in

other domains. A similar analysis of service requests in the real-time applications
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is presented in Section 6.1. Overall, this study shows more heterogeneous resuits

caused by diverse profiles in occurrence of SRs in the three analyzed projects.

As already mentioned, the process of servicing SRs is strongly related to the
reliability issues since SRs often represent reports of software failures. Clearly,
reliability requirements are considerably different for the two application
domains. While reliability is an important issue in delivering a commercial

application, it is the essential factor in real-time applications.

Unlike the analysis of the real-time projects, where it was possible to distinguish
three models performing reasonably well across the analyzed projects and with
respect to the set of criteria employed, in case of the commercial projects analyzed
in this section, it is much more difficult to identify the most applicable models. To
some extent the G and the L models perform better than other models since they
show high flexibility and effectiveness across the analyzed projects. On the other
hand the YE model performs relatively poorly for all the datasets used in this
study.

The results evidence much lower impact of the learning process on the occurrence
of SRs over time in the commercial domain compared to real-time applications.
Cumulative occurrence of SRs over time tends to be more concave in case of
commercial applications, indicating less critical initial learning process. Resulting
linear regression model also supports shorter initial time required for serving SRs

in commercial applications and much lower correlation with the calendar time.

This analysis has access to information about severity and priority level assigned
to SRs. Due to the characteristics of the application domain, the percentage of
critically severe SRs is lower compared to the real-time applications analyzed in
Section 6.1. Results of gamma analysis showed two distinctive phases in the
occurrence of SRs with different severity, while the SRs with different priority
levels tend to be more overlapped. Distribution of SRs over time with respect to
severity indicates similarity with the one in the real-time projects. In both cases,
SRs with lower severity tend to appear earlier in the process. Possible reason for

this is that more focus is put on critical SRs towards the release deadline due to
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the business pressures. Although higher priority SRs tend to appear earlier in the

process, the level of overlapping is high.

While different classifications of SR types make it impossible to make direct
comparison with respect to the occurrence of SRs in the two domains, a higher
level of overlapping of the different phases can be identified in the commercial

applications compared to the real-time domain projects discussed in Section 6.1.

The results of the Monte Carlo simulation facilitate assessment of the level of
human error present in the collected data that can be tolerated by the models. With
respect to the robustness of the SRGMs to the imprecision in the input data,
results are rather consistent with the previous work. Most of the models
(excluding the YE and the YR models) show relatively low sensitivity to noise in
the range of approximately one week or more. The G model is the best choice in
terms of robustness in the real-time domain. The GO-S is consistently performing
well concerning this aspect in commercial applications. Sensitivity to noise of
both gamma analysis and linear regression model is also similar in both domains.
Linear model applied to time to service SRs is typically resistant to the errors in
the input data of the order of approximately 10 days. Gamma analysis appears to
be more sensitive method for which degradation starts with the errors in the range

of one day.

Summary of the findings in this study and comparison with the analysis

performed in the real-time telecommunication domain is provided in Table 19.

Real-time Commercial
Occurrence of SRs over
) Clearly S-shaped Less clear, concave
time
Highl applicable
ghly PP G,HD,L G, L
SRGMs
Less applicable SRGMs | GO, YE, YR YE
Robustness to | Approx. 5 days Approx. 7 days
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Real-time Commercial

imprecision

Impact of leamning to
High Low
time to solve SRs

Occurrence of SRs by | Low severity SRs occur | Low severity SRs occur

severity early early

Occurrence of SRs by | Relatively distinct | Highly overlapped
types phases phases

Table 19: Comparison of the results in real-time and commercial domain

7. Impact of Object-Oriented Design on Class Defect Behavior

7.1. Discussion of the Experimental Data from Real-Time Domain

This section focuses on five projects developed by a North-American company
that prefers to remain anonymous. The projects were developed and tested over
approximately five years. The projects are developed for embedded system in a
real-time telecommunication domain, mainly using the C++ programming
language.

Developers assigned to the projects had similar experience and education levels
equivalent to BSc in Electrical and Computer Engineering or in Computer
Science. No particular pattern was observed in the assignment of developers to

projects, suggesting no selection bias.

Total size of the five projects is 63394 lines of code, with 395 classes for which
set of object-oriented design metrics was extracted and the number of revisions
was recorded (Table 20).

The CK suite of object-oriented design metrics and the source lines of code counts
are collected from the source code using WebMetrics, a software metrics

collection system (Succi et al., 1998).
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Project| Number of classes| LOC
A 93 8802
B 119 6496
C 101 24989
D 44 5316
E 38 17791

Table 20: Number of available data points for projects

A summary of the descriptive statistics for the extracted metrics is provided in
Table 21. It is found that both metrics dealing with inheritance, the depth of
inheritance tree and the number of children assume low values. Similar behavior

was also observed in work by Chidamber et al. (1998) and by Ronchetti and Succi

(2000).
Project A Project B
Min Max Mean |Std. Dev. Min Max Mean |Std. Dev.
LOC 2l 754 94.65 129.11] I} 1128 57.24 156.86
NOM 0 54 978 929 O 74 924 13.79
DIT 0 4 0.90 127, O 3 097 1.12
INOC o 11 027 1390 O 5 0.6 0.6
CBO 0 68 11.68 12177 @ 63  4.17 8.02
IRFC o 122 24.59 2593 O 246 1759 35.36
ILCOM 0 821 5944 11594 O 1540 8790 234.98
Defects 1} 28 5.28 471 QO 22 235 5.28
Project C Project D
Min Max |Mean |Std. Dev. Min Max Mean (Std. Dev.
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L.OC 1} 1377} 247.420 302.98 2| 1674 120.82 258.24]
NOM 1| 219 32.60 41.13) Q@ 94 16.09 19.26
DIT 0 2 097 096 O 1] 0.25 0.4-1{
NOC o Ilf 0.16 1200 O 4 0.14{ 0.63
CBO o 121 23.17 2409 QO 114 11.05 18.24
RFC 2l 2831 67.46 71900 O 33§ 3323 5238
L.COM 023247|1041.301 3197.59| O 3897 256.57, 701.88
Defects 0 24 138 3.120 0O 16 1.30 2.92
Project E

Min Max |Mean (Std. Dev.
L.OC 2 3181} 468.18 611.86
NOM O 188 41.61 4341
DIT 0 2 0.26] 0.55
INOC o 2 0.05 0.32
CBO 0 124{ 17.82 22.67
RFC o 418 69.05 75.19
L.COM (117048/1606.03; 3585.45
Defects a 32 555 7.03

Table 21: Descriptive Statistics of the extracted metrics and defects for the

External measure used as the dependent variable in this analysis is the number of
revisions for a class. As commonly done in software engineering, it is assumed
here that number of revisions closely corresponds to the number of defects found

in a class. In this study, these two terms will be used interchangeably.

projects
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The number of defects found in a class ranges from O to 32, with most of the
classes having very low number of defects. Boxplots of the observed data (Figure
20) evidence the non-normal, Poisson-like, nature of the distributions. The
number of defect counts for project D is low resulting in the boxplot for this

project to be concentrated around zero.
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Figure 20: Boxplots for distribution of the number of defects

As observed by Ebert and Baisch (1998), the distribution of defects often follows
the Pareto rule. Alberg diagrams (Ohisson and Alberg, 1996) evidence presence
of this principle, that is relatively small portion of the system classes is causing
most of the defects. Figure 21 shows the observed number of defects for the five
projects in the form of the Alberg diagram. From the figure, it can be seen that
80% of the defects are caused by only 3% of the classes in projects B, C,and E,
4% in project E, and 28% in project A.
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Figure 21: Cumulative number of defects for the five projects

7.1.1. Extraction of the Models

To determine models capturing the number of defects on the basis of object-
oriented metrics, the analysis proceeds as follows. The Spearman rank correlation
is calculated between the number of defects and the internal metrics. Table 22
presents the correlation coefficients with those statistically significant at the 10°
level marked with the star. Then, more advanced statistical models are applied to
deal with non-normal distribution of the dependent variable and other specifics of
the empirical data. For this purpose, PRM, NBRM, and ZINBRM based on the
extracted set of design metrics for modeling the number of defects are used. In

these models, the exponent of the regression function is a linear combination of

the metrics used as predictors.

CBO | DIT |LCOM|NOC |[NOM| RFC | LOC

A 0.000 -0.07, 0.11f -0.20; 0.14 0.1l 0.08

L »

B 0.36] 0.59 024 -0.13] 022 031 0.24

C 0437 024 046 0.031 0417 0437 046
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CBO | DIT {LCOM|NOC |NOM| RFC | LOC

D 0.199y 0.05f 0.1 -0.17] 0.18 0.25 0.24

E 0.45 0.06f 032 -0.21 031 045 0.52

Table 22: Correlations between number of defects and internal metrics for
the projects
The regression function in the PRM can be written in the log-linear form:

In(u) = xp
This suggests that the PRM can be approximated by the linear regression model:
In(y) = xp+e
Since y; can also assume zero value, it is necessary to add a positive constant ¢ to
the dependent variable before taking the log (Long, 1997). Values of ¢ equal to
0.1 and 0.5 are typically used. In this analysis, ¢ = 0.5 is used. The resulting

regression model is given with:

In(y+c) = xp+e
The parameters of this generalized linear model are estimated using the method of
ordinal least squares (OLS). Although estimations of this model can be biased,

they can be used for approximation of the statistical significance of parameters in
the corresponding PRM (King, 1988).

The application of the ordinal least squares (OLS) method for fitting the
parameters of the generalized linear regression model is justified if error
distribution is assumed to be normal. In this case the OLS and the maximum
likelihood (ML) estimates of B are approximately the same for the linear model.
On the other hand, the ML provides a very general solution for fitting of the
model parameters. The ML estimator is consistent, i.e., the probability that the
ML estimator differs from the true parameter by an arbitrary small amount tends
toward zero as the sample size grows. The variance of the ML estimator is the

smallest possible among consistent estimators. This feature is usually referred to
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as asymptotic efficiency of the ML estimator. Thus, the ML estimators are used
for the models in this analysis.

Log-likelihood function for the ML estimation in case of the Poisson distribution
is given by:
k
1(B) = Y (y:-inlu(B))-1(B))
=l

By maximizing this sum over the available data points the vector of model

parameters #=( B, ..., Bx) is determined.

Instead of the OLS, the more general ML method for estimation of the PRM,
NBRM, and ZINBRM using the five predictors with highest correlation
coefficients in from Table 22. In the ZINBRM, the logit model is used for
prediction of zeroes in combination with the NBRM. Due to the high cross
correlation among the predictors and relatively small datasets, only univariate

models are used.

The NBRM model can be estimated by the maximum likelihood method,

maximizing the likelihood equation:

L(B|y.x)=I1Pry, | x,)

The corresponding maximum likelihood method is also available for zero-inflated
models (Long, 1997).

Table 23 presents a summary of the correlation coefficient r and dispersion
parameter a for the resulting models. For comparison purposes the models are
built based on each of the identified predictors. In order to compare the ability of

the design metrics, models using LOC as a predictor are also included.

RFC NOM | LCOM | CBO LOC

r (74 r (74 r (44 r (24 r o

A [PRMOLS [0.512(17.31/0.4330.33 [0.505[2.75 [0.099{8.29 0.085/11.39

PRM ML {0.349/0.32 0.3980.33 |0.495/0.30 {0.182(0.36 0.1710.35
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RFC NOM | LCOM | CBO LOC

r (74 r a r o r a r a

INBRM 0.34210.32 10.2780.11 [0.475/0.30 [0.1820.34 0.17100.35

ZINBRM [0.3420.32 [0.276/0.02 [0.476{0.23 0.182/0.34 0.1710.17

PRM OLS [0.392/0.96 [0.1772.11 |0.01219.79 10.208/0.27 0.023[33.30

PRM ML [0.391(0.45 [0.154/0.26 {0.070(0.25 {0.194{0.17 0.112(0.83

NBRM 0.392/0.32 10.11000.07 {0.078/0.84 0.108/0.83 0.12710.05

ZINBRM [0.297/0.29 [0.122/0.05 |0.0724.24 0.066{4.01 10.1210.05

PRM OLS [0.5484.87 10.213[3.45 10.29212.86 {0.733{2.98 10.79927.84

PRM ML [0.5484.18 [0.193(2.96 [0.267|12.49 0.655/0.46 10.8312.96

NBRM 0.550{3.33 10.264{0.31 {0.817|0.60 {0.6770.39 0.831]2.52

ZINBRM [0.551{2.91 {0.154{0.16 0.823(0.46 [0.6700.31 |0.8321.34

PRM OLS [0.156|11.02/0.222{5.55 [0.173[7.22 0.16814.73 10.151}5.82

PRM ML {0.1907.50 [0.221|5.55 {0.204{0.69 [0.189/0.57 0.162/5.64

INBRM 0.175[5.62 {0.219/0.54 0.195/0.60 [0.189(0.76 10.1613.93

ZINBRM [0.175/5.44 (0.231{0.48 (0.196/0.43 [0.189(0.76 10.16100.62

PRM OLS [0.648|1.28 [0.262{1.46 0.398[1.37 0.727|1.13 0.719|1.10

PRM ML [0.648(1.19 [0.246{1.36 [0.394{1.28 [0.725|1.05 0.716|1.03

INBRM 0.648/0.50 10.226|0.10 0.389f0.12 0.717/0.79 0.7080.77

ZINBRM (0.6480.50 10.230,0.03 [0.391(0.04 0.7 19‘0.59 0.7110.57

Table 23: Performance of the models with respect to correlation and

dispersion
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7.1.2. Analysis of the Results
As explained in the previous section, the log-linear PRM is given with:
NumberOfDefects = e**P

Where x is the corresponding predictor from Table 22, and S, and S, are model

parameters.

PRM model is estimated using both OLS and ML methods, and NBRM and
ZINBRM are built using ML. Results in Table 23 suggest significant differences
compared to the baseline PRM OLS models. First, a high level of overdispersion
is present in the PRM OLS models. This result is not surprising for the software
metrics data. Overdispersion is significantly reduced with ML estimators.
However, the other typical result of the ML method is slightly lower correlation

between the observed data and the models’ estimations.

Models based on the negative binomial distribution show even higher capability
of dealing with overdispersion. This improvement is partially the result of
increased probability of low and high values of the dependent variable with the
NB distribution (Figure 2).

Although the NBRM deals with overdispersion more successfully than PRM, the

disadvantage is slightly lower resulting correlation with the observed data in most

of the cases.

Overall, ZINBRM results in the lowest dispersion parameters with lower
correlation coefficients, similar to the NBRM. This model incorporates the
capability to successfully predict zero values with the ability of the NB

distribution to account for overdispersion.

Since the metrics are non-negative, positive values of model parameters suggest
positive influence of the predictors to the dependent variable. The link between
the dependent variable and predictors is exponential in the analyzed regression

models.

Except for the project D, all resulting models suggest high influence of

communication between classes, measured by RFC, to the dependent variable in
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the analysis. In related studies (Table 31), only Basili er al. (1996) also report
significant influence of RFC on the dependent variable in their study — fault
probability.

RFC includes methods called from outside the class representing a measure of
communication between classes. The complexity of a class also increases with the
increased number of methods invoked from a class. Testing and fixing of such

classes requires more effort and understanding from both testers and developers.

RFC is a measure with a relatively wide range of values, opposed to DIT or NOC
for example. In this study, RFC ranges from O up to 418. Clearly, the higher the
communication of a class with other classes, the higher will be the probability of
introducing defects and, consequently, higher the need for modifications in that

class.

*12

100 1

Figure 22: RFC boxplots for the five projects

The data from all five projects show that most of classes call relatively small
number of methods (Figure 22). Median values of RFC are shown in Table 24.
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Project A|Project B{Project C|Project D|Project D

15

6 37 20

56

Table 24: Median values of RFC

Low number of classes with high RFC values also supports the fact that small

number of classes accounts for most of the defects in the system. Managing this

aspect of object-oriented design is important for successful allocation of testing

and fixing effort. To further investigate this issue, Alberg diagrams are used.

Propem A

[ ]

Figure 23: Alberg diagrams for the RFC-based models

As already mentioned in Section 4.6.2, Alberg diagram can be used to graphically

compare performance of the different models with respect to criticality prediction

(Ohisson and Alberg, 1996). For illustration, Figure 23 shows Alberg diagrams
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for the five projects using models based on RFC. Performance of the models
applied to the data from project E is practically overlapped on the corresponding
Alberg diagram.

Table 25 compares the percentage of the classes associated to 80% of the defects
in the system with estimation from each of the models applied to the project data.
The ideal number of defects for classes represents the observed best possible
prediction that any model can achieve. From this value, it can be seen that very
low percent of classes cause 80% of the total number of defects in the system. All
the developed models model this aspect in the class criticality with limited
success. However, most of the models can be used to select 50% or less of all
classes for more thorough investigation, providing useful guidelines in resource

allocation.

Table 25 indicates only minor difference in performance of the different models
based on the same predictor and applied to the same projects. In fact NB and
ZINB slightly outperform PRM model in some cases. This is an evidence that
these models provide at least the same performance in indication of the defect
prone classes as the other models, while providing much better description of

overdispersed data with excess of zeroes.

Proj.A | Proj.B | Proj.C | Proj.D | Proj.E
% % % % %
Ideal 28 3 4 3 14
PRM OLS 38
30
PRM ML 44
RFC 58 44 59
NBRM
22 41
ZINBRM
CBO PRM OLS 69 49 26 53 34
PRM ML
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Proj. A | Proj.B | Proj.C | Proj.D | Proj.E
% % % % %
NBRM
ZINBRM
PRM OLS 55
58
PRM ML 76
LCOM 38 24 41
NBRM
57 55
ZINBRM
PRM OLS 62
PRM ML 42 59
NOM 25 60
NBRM 60
ZINBRM 41 76
PRM OLS
PRM ML
LOC 58 39 18 35 40
NBRM
ZINBRM
Table 25: Percentile of classes identified for inspection to detect 80% of the

defects

7.2. Discussion of the Experimental data from Commercial Domain

This study is focused on two software projects from the commercial application

domain. Both projects are developed in C++ programming language; project A

over two and a half years, and project B over 6 years. All the developers,

approximately 50 developers for project A and 11 developers for project B. All

developers had similar experience and education levels (equivalent to BSc in

Electrical and Computer Engineering or Computer Science) were involved in the
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development process. No particular pattern was observed in the assignment of
developers to different problems or parts of the system, suggesting no selection
bias.

Project A consists of 150 classes and project B of 144 classes for which the set of
object-oriented design metrics was extracted and the number of defects and
changed LOC was recorded. Total size of the projects A and B is 23 and 25
KLOC (thousands of lines of code), respectively.

Summary of the descriptive statistics for the extracted metrics is provided in
Table 26.

Project A Project B
Min| Max | Mean | Std. Dev. | Min| Max { Mean | Std. Dev.
CBO ©0 |11l 995 (1443 0 PR3 4.69 4.70
DIT |0 [2 0.35 10.56 0 |l 2.39 2.47
[LCOM (0 (20710 42891 [210246 0 2138 {170.94 |1124.19
NOC 0 5 0.25 10.84 0 RO 0.52 1.55
INOM © [205 |16.38 [26.07 0 RI12 (1347 16.45
‘RFC 0 336 [32.08 |50.53 0 PR18 342 25.96
[LOC 1 (1674 |105.7 [227.28 |l {7110 [55.79 86.23
lDefects 0 7 P4l o1 P W [L1T B4

Table 26: Descriptive Statistics of the extracted CK metrics and LOC for
project A
Number of modifications directly related to software defects for a class is used as
a proxy for the defect-proneness of the class. The models are built for this external

measure as the dependent variable and metrics from the CK set as predictors.

The correlation between the collected design metrics and the number of defects is

calculated and summarized in Table 27.
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CBO | DIT [LCOM| LOC | NOC |NOM | RFC

[Project A[0.18 [0.12 (.16 (0.12 [0.12 0.14 [0.17

- - L4

005 10.22° 037" 0.03 035 [0.34

-

[Project B (0.20

Table 27;: Correlation coefficients between the extracted metrics and number

of defects

For project A, there are in total 287 defects recorded, ranging from 0 to 17 defects
per class. Total of 514 defects are recorded for project B, with up to 41 defects per
class. Most of the classes in both projects have low number of defects. Histograms
of the observed data in Figure 20 show that the normal distribution cannot be
assumed for the dependent variable. PRM, NBRM, and ZINBRM are used for

dealing with count data.

Figure 24:Histogram of the number of defects

The Pareto rule (Ebert and Baisch, 1998) is applicable with respect to the number
of defects. Less than 30% of the classes in project A correspond to 80% of the
total number of defects, while in project B only 2% of the classes accounts for
80% of defects in the system. The presence of this principle that a relatively small
portion of the system consumes most of the effort is closer examined using Alberg

diagrams (Ohlsson and Alberg, 1996), shown in Figure 26.
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7.2.1. Extraction of the Models

For modeling the number of defects, three regression models based on the
extracted set of design metrics are used. In these models, the exponent of the

regression function is a linear combination of the metrics used as predictors.

The regression function in the PRM can be written in the log-linear form:

In(u) = xp
This suggests that the PRM can be approximated by the linear regression model:
In(y) = xp+e
Since y can also take zero value, it is necessary to add a positive constant c to the
dependent variable before taking the log (Long, 1997). Values of ¢ equal to 0.1
and 0.5 are typically used. In this analysis, ¢ = 0.5 is used. The resulting

regression model is given with:
In(y+c) = xp+e

The parameters of this generalized linear model are estimated using the method of
ordinal least squares (OLS). Although potentially biased, OLS estimations can be
used for approximation of the statistical significance of parameters in the
corresponding PRM (King, 1988).

The stepwise regression method with the log-linear form of the PRM is first
applied. All the available metrics are allowed to enter this model. In the stepwise
linear regression, independent variables are selected to enter the model based on
the p-value. p-value is a measure of the statistical significance, representing the
probability the outcome of the analysis is just a result of chance. The lower the p-
value is, the higher is the statistical significance of the result. The independent
variable with the smallest p-value is entered at each step of the regression, if that
value is sufficiently small. Variables already in the model are removed if their p-
value becomes sufficiently large. The method terminates when no more variables
are eligible for inclusion or removal. In this analysis, p-value 0.01 is used as the

entry criteria for a variable to enter the model, and p-value 0.05 is used to remove

variable.
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The two PRMs (PRM OLS 1 and PRM OLS 2) identified by the stepwise method
for both projects are based on RFC and DIT as predictors. Although colinearity
between some of the metrics is relatively high, the two metrics in the identified
models (RFC and DIT) are not highly correlated (r = 0.02 and 0.03 for two
datasets). In both models, parameters associated with RFC have positive, highly

significant values.

Project A Project B

Intercept | RFC DIT | Intercept| RFC DIT

PRMOLS 1| -1.63" | 0.64 042" | 001"

PRM OLS 2 -0.09 001" | 0.07 036" | 0.02" | -0.04

Table 28: Coefficients of the PRM with statistical significance

Using the results given with the PRM OLS 1 and PRM OLS 2, the same pair of
metrics (RFC and DIT) is used for building the other models. Instead of the OLS,
the more general ML method is used for estimation of the PRM, NBRM, and
ZINBRM. In the ZINBRM, the logit model is used for prediction of zeroes in
combination with the NBRM.

The comparison of the resulting univariate (with extension 1) and bivariate (with
extension 2) models with respect to the correlation coefficient r, dispersion

parameter a, and Relative Square Error (RSE) is provided in Table 29.

Univariate Bivariate

r a RSE r a RSE

PRMOLS |[0.401]1347| 0.79 |0416|13.24| 0.79

Project | PRMML 0.713] 207 [ 0.79 {0749 1.85 | 0.79

A NBRM |0424!| 051 | 079 |0467| 042 | 0.80

ZINBRM |0.782| 046 | 080 |0.783| 0.39 | 0.79

Project | PRMOLS |0.280| 047 | 9.15 [ 0287 0.65 | 9.12




Univariate Bivariate

B PRMML [0240}| 032 | 9.57 [0.232]| 048 | 9.84

NBRM |0.225] 031 | 11.86 [0.203 | 0.18 | 19.38

ZINBRM {0.229| 024 | 11.82 | 0.206 | 0.16 | 19.24

Table 29: Resulting models

7.2.2. Analysis of the Results

Two reasonably good PRMs based on RFC and DIT (univariate and bivariate) are
identified by the stepwise regression. These models in the log-linear form are
given with:

In(NumberOfDefects +0.5) = B, + B,RFC + B,DIT

Where f; parameters are zero for metrics that do not enter a specific model.

Corresponding NBRM and ZINBRM are built using the ML for estimation of
parameters. Results in Table 29 suggest significant differences between the

models and some quantitative improvements in compared to the baseline PRM
OLS models.

First, a high level of overdispersion is present in the PRM OLS models. This
result is not surprising for the software metrics data. However, overdispersion is
significantly lower with ML estimators. The other result of the ML method is

increased correlation between the model prediction and the observed data.

Models based on the NB distribution show even higher capability of dealing with
overdispersion. This improvement is partially the result of increased probability of
low and high values of the dependent variable with the NB distribution.

Although the NBRM deals with the overdispersion more successfully than PRM,
the disadvantage is a lower resulting correlation with the observed data.

ZINB regression models result in the highest correlation coefficient and the
lowest dispersion parameter. These models incorporate the capability to

successfully predict zero values with the ability of the NB distribution to account
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for overdispersion. Improvements achieved by the ZINBRM come with the
expense of doubling the number of model parameters compared to the original
NBRM.

The resulting bivariate models in Table 29 show slightly better performance than
univariate models. The additional variable enables bivariate models to better fit
the observed data. However, this improvement is modest and depends on many

factors, such as the underlying dataset.

TR .

O 20 4 6 8 100 120 140 160 160 X0 220 40 2

RFC T

Project A

Project B

Figure 25: Histograms of RFC and DIT

Since the metrics are non-negative, positive values of model parameters suggest
positive influence of the predictors to the dependent variable. The link between
the dependent variable and predictors is exponential in the analyzed regression

models.
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All resulting models suggest high influence of communication between classes
measured by RFC to the dependent variable in the analysis. The additional
predictor, the measure of inheritance DIT, does not significantly increase the
performance of the bivariate models compared to the univariate RFC-based
models. In addition, model parameters associated with DIT have much lower

statistical significance than RFC-related parameters.

Relatively narrow range of DIT also limits the influence of this measure to the
resulting models. RFC is a measure with a wider range of values. In this study,
RFC ranged from 5 up to 250. Clearly, the higher the communication of a class

with other classes, the higher will be the need for modifications in that class.

As mentioned, Alberg diagrams are used to graphically compare the ability of
different models for criticality prediction of the modules in the software system
(Ohlsson and Alberg, 1996). Figure 26 shows Alberg diagrams for the models
employed on the dataset in this study with respect to the number of defects., The
lines representing the resulting models in the graph are close to each other and
partially overlapped, evidencing very similar performance of the models in the
criticality prediction.

The line representing the observed number of defects shows that less than 30% of
the classes cause 80% of the total number of the defects in the system. Alberg
diagram shows that both univariate and bivariate models have relatively good
performance in prediction of the defect-prone classes. Using any of those models,
less than 50% of the classes can be identified that cause 80% of the defects in the
system. Performance of the models ranges from identification of 43 % for

bivariate models to 45 % for univariate models.
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Project A
Project B
Project A Project B
Univariate |Bivariate (Univariate Bivariate

PRM OLS 45 43 48 48
PRMML 45 43 48 44
NBRM 45 44 47 45
ZINBRM 45 44 47 45

Figure 26: Alberg diagrams for the models and predicted percentiles of the
classes with 80% of the defects in the system

As mentioned, RFC is a measure of communication between classes defined as

the number of internal and external methods that can be executed in response to a
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message received by an object of the class. Clearly, a large number of methods,
potentially invoked from a class, increases the complexity of the class and
requires greater level of understanding and effort in development and debugging

of the class.

Depth of inheritance tree represents the position the class has in the inheritance
hierarchy, i.e. the maximum distance from the root node when multiple
inheritance is supported, i.e. in C++. Although the deeper position of the class in
the hierarchy increases its potential for reuse through inheritance, at the same time
the increased number of inherited methods makes it more difficult to predict the
behavior of the class. It can be beneficial to keep the level of inheritance relatively
low, at expense of compromising the potential of reuse through inheritance, in

order to enable easier testing and understanding of design and implementation.

While some of the object-oriented design metrics tend to change through the
evolution of the project from the design phase to implementation, DIT is one of
the measures determined by the architecture of the system and it typically stays
unchanged in this process. Consequently, the depth of inheritance tree information

can be used relatively early in the software development process.

In order to quantify applicability, effectiveness, predictive ability, and capability
of the models, they are ranked according to correlation coefficients,
overdispersion and RSE in Table 30. Models with the same performance with

respect to a specific factor share cells in the table.

Effectiveness of the model can be expressed in terms of correlation of its
estimations with the observed data and in terms of RSE. PRM OLS and PRM ML

models show best performance with respect to these criteria on both datasets.

Part of the capability of the models to explain the empirical data is attributed to
their ability to account for overdispersion and occurrence of zero counts. With
respect to these criteria, using dispersion parameter a as a measure, ZINB and

NBRM perform best on the two datasets.

Alberg diagrams can be used to assess both effectiveness of the models and their
predictive ability. Alberg diagrams applied to data in this analysis demonstrate
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only minor differences in performance of the models. Alberg diagrams support
higher effectiveness and predictive ability of bivariate models in comparison to

univariate models.

Correlation Overdispersion Square Error
Project A |Project B |Project A |Project B |ProjectA  |Project B
1 [ZINBRM [PRMOLS [NBRM ZINBRM  lppMmoLs [PRM OLS
£ P [PRMOLS [PRMML [PRMML |NBRM  [PRMML [PRMML
§ 3 PRMML [zINBRM [PRMOLS PRMML [NBRM  7iNgRM
4 [INBRM NBRM  ZINBRM [PRMOLS ZINBRM [NBRM
| ZINBRM [PRMOLS [ZINBRM [ZINBRM | . o [PRMOLS
2 P PRMML [FRMML NBRM  [NBRM  lpbpMML [PRMML
g 3 [NBRM ZINBRM [PRMML [PRMML [ZINBRM [ZINBRM
4 [PRM OLS FBRM PRM OLS [PRM OLS P’BRM NBRM

Table 30: Ranking of the models with respect to the applied criteria

7.3. Related Studies and Discussion

Table 31 in this chapter presents an overview of the related work in this area and

comparison to the study performed in this study.

Having these papers focused on different dependent variables using different
explanatory metrics at the same time, it is not possible to make strict comparison
of the results or to make strong generalization. However, all the dependent
variables used in these papers are trying to explain various aspects of software

development effort using design measures.

Although the dependent variables are heavily skewed and non-normally
distributed (Li and Henri, 1993; Chidamber et al., 1998, Ronchetti and Succi,
2000), only Briand and Wiist take this aspect into account by applying Poisson
regression. For the same reasons, Basili e al. (1996) decide not to use defect
count or density but binary dependent variable representing probability of defects
for a class.

112



Furthermore, Li and Henri (1993) do not clearly specify the form of the model
they use. Set of metrics used in the papers is also not uniform. Ronchetti and
Succi (2000) use only subset of CK suite available to them, while Briand and

Wiist (1999) use variety of other metrics in combination with the CK suite,

Considerable influence of RFC to the dependent variable was reported by Basili ez
al. (1996), while Chidamber et al. (1998) find CBO and LCOM and Li and Henry
(1993) find CBO as dominant factors in explaining independent variables in their
studies. Paper by Ronchetti and Succi (2000), also performed in the
telecommunication domain, reports NOM as a dominant factor in explaining

software size as a proxy of development effort.
This study contributes to the existing research on this subject by focusing on

specific application domains using novel statistical methods applied to data from

industrial projects in telecommunication and commercial application domains.

Briand and
Liand Henri, | Basilietal, Chidamber .
Study Wiist, This study
1993 1996 etal., 1998
1999
Environment | Industrial University Industrial University Industrial
Lifecycle
hase of the Desi & | Desi & | Design &
P Design & code | Code & g g
independent code code code
variable
Programming
Classic-ADA | C++ C++ C++ C++
language
Real-time
Application User interface | Information Financial
Music editor | telecom and
domain and scientific | system application .
commercial
Size 2 projects 8 projects 3 projects 1 project 7 projects
Number  of Productivi Number of
uctivity, | Devel t [ Num o
Dependent lines changed | Number of v velopimen
rework effort, | time as a | defects fora
variables during faults
. design effort | proxy for | class
maintenance -
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Briand and

Liand Henri, | Basilietal, Chidamber .
Study Wiist, This study
1993 1996 etal., 1998
1999
as a proxy for effort
maintenance
effort
Stepwise .
. Poisson
. linear Poisson,
. Parametric . regression
Statistical . Logistic regression NB, and
linear and
analysis . regression including ) ZINB
regression regression .
dummy regression
. trees
variables
. Overall
High values |
No other CK | NOM, DIT, Size RFC  has
. of CBO and .
metrics  but | CBO, RFC LCOM measures can | dominant
. CBO influence | significantly L be used as | statistically
Conclusions . significantly
significantly influence the good significant
influence the
the dependent | dependent predictors of | effect to the
. . dependent
variable variable . effort dependent
variable
variable
DIT and NOC
assume low
LCOM,
values. CBO,
Coupling CBO, and
NOM, and
measures do | DIT  also
The cross- | RFC are
not have
Other correlation of | highly . o
. . N/A . substantially | significant
considerations the CK metrics | correlated; the | .
improve influence to
are low other
. quality of the | some of the
correlations
models analyzed
between N
. projects
metrics  are
low
Table 31: Related studies
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8. Conclusion

Quality is a key element in success of any software product. A proper
characterization and understanding of this process is essential in achieving higher
quality software. Models based on software metrics are employed in this study to

provide a way of quantitative management of software quality.

A great part of effort and time in the development of software products is spent on
servicing demands for modifications in the behavior of the systems. This study

builds a systematic and replicable framework for the analysis of SRs.

Design of an object-oriented software system offers a substantial amount of
information about the system even before any coding has started. This study
empirically validates the ability of the CK object-oriented design metrics suite to
be used for identification of the critical classes that consume most of the
development effort and resources and need special attention in the development

and testing activities.

This study proposes innovative methods for prediction and description of defect
behavior of the classes in object-oriented systems, and investigates possibilities
for better resource allocation in the process servicing requests for modifications in
such systems. The existing and new software reliability growth models are also
adopted to characterize the timings of service requests and help in resource
allocation. Novel statistical methods are applied to deal with the peculiarities of
the software engineering data, such as non-normally distribution, overdispersed
count data on the absolute measurement scale, and high occurrence of zero
counts. This approach is validated on different datasets from industrial
environment in real-time telecommunication and commercial application

domains.

Results of the analysis indicate that models based on Poisson and negative
binomial distribution successfully explain the excessive variability in the data and
can be used to identify approximately 50% of the classes causing 80% of the

defects in the system. Measure of communication between classes, i.e., response
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for a class, shows a good potential as a predictor for this purpose over the projects
analyzed in this study.

The proposed framework for an accurate description of the various aspects of SRs
occurrence resulted in a multimodel approach based on software reliability growth
models, gamma analysis, and parametric linear regression. A Monte Carlo
simulation is performed to assess the sensitivity of the proposed models to the
imprecision of the input data, typical when people participate in the data
collection process. Results indicate that the multimodel approach is recommended

for most reliable results in analysis of service requests.
The work performed in this study can be continued using new available datasets
and applying the framework for empirical investigation established in this study.

Some of the proposed techniques could be used for building tools to support
decision-making in the software development process. A prototype of such a tool
based on the proposed multimodel approach for analysis of SRs is currently being

considered.
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